WorldWideScience

Sample records for intensity-modulated radiotherapy planning

  1. Dosimetric comparison between intensity modulated brachytherapy versus external beam intensity modulated radiotherapy for cervix cancer: a treatment planning study

    International Nuclear Information System (INIS)

    Subramani, V.; Sharma, D.N.; Jothy Basu, K.S.; Rath, G.K.; Gopishankar, N.

    2008-01-01

    To evaluate the dosimetric superiority of intensity modulated brachytherapy (IMBT) based on inverse planning optimization technique with classical brachytherapy optimization and also with external beam intensity modulated radiotherapy planning technique in patients of cervical carcinoma

  2. A comparative study of standard intensity-modulated radiotherapy and RapidArc planning techniques for ipsilateral and bilateral head and neck irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pursley, Jennifer, E-mail: jpursley@mgh.harvard.edu [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, MA (United States); Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Damato, Antonio L.; Czerminska, Maria A.; Margalit, Danielle N. [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, MA (United States); Sher, David J. [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, MA (United States); Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX (United States); Tishler, Roy B. [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, MA (United States)

    2017-04-01

    The purpose of this study was to investigate class solutions using RapidArc volumetric-modulated arc therapy (VMAT) planning for ipsilateral and bilateral head and neck (H&N) irradiation, and to compare dosimetric results with intensity-modulated radiotherapy (IMRT) plans. A total of 14 patients who received ipsilateral and 10 patients who received bilateral head and neck irradiation were retrospectively replanned with several volumetric-modulated arc therapy techniques. For ipsilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the contralateral parotid, two 260° or 270° arcs, and two 210° arcs. For bilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the shoulders, and 3 arcs. All patients had a sliding-window-delivery intensity-modulated radiotherapy plan that was used as the benchmark for dosimetric comparison. For ipsilateral neck irradiation, a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid was dosimetrically comparable to intensity-modulated radiotherapy, with improved conformity (conformity index = 1.22 vs 1.36, p < 0.04) and lower contralateral parotid mean dose (5.6 vs 6.8 Gy, p < 0.03). For bilateral neck irradiation, 3-arc volumetric-modulated arc therapy techniques were dosimetrically comparable to intensity-modulated radiotherapy while also avoiding irradiation through the shoulders. All volumetric-modulated arc therapy techniques required fewer monitor units than sliding-window intensity-modulated radiotherapy to deliver treatment, with an average reduction of 35% for ipsilateral plans and 67% for bilateral plans. Thus, for ipsilateral head and neck irradiation a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid is

  3. Dosimetric aspects of breast radiotherapy with three-dimensional and intensity-modulated radiotherapy helical tomotherapy planning modules

    International Nuclear Information System (INIS)

    Yadav, Poonam; Yan, Yue; Ignatowski, Tasha; Olson, Anna

    2017-01-01

    In this work, we investigated the dosimetric differences between the intensity-modulated radiotherapy (IMRT) plans and the three-dimensional (3D) helical plans based on the TomoTherapy system. A total of 15 patients with supine setup were randomly selected from the data base. For patients with lumpectomy planning target volume (PTV), regional lymph nodes were also included as part of the target. For dose sparing, the significant differences between the helical IMRT and helical 3D were only found in the heart and contralateral breast. For the dose to the heart, helical IMRT reduced the maximum point dose by 6.98 Gy compared to the helical 3D plan (p = 0.01). For contralateral breast, the helical IMRT plans significantly reduced the maximum point dose by 5.6 Gy compared to the helical 3D plan. However, compared to the helical 3D plan, the helical IMRT plan increased the volume for lower dose (13.08% increase in V 5 Gy , p = 0.01). In general, there are no significant differences in dose sparing between helical IMRT and helical 3D plans.

  4. Treatment-Planning Study of Prostate Cancer Intensity-Modulated Radiotherapy With a Varian Clinac Operated Without a Flattening Filter

    International Nuclear Information System (INIS)

    Vassiliev, Oleg N.; Kry, Stephen F.; Kuban, Deborah A.; Salehpour, Mohammad; Mohan, Radhe; Titt, Uwe

    2007-01-01

    Purpose: To assess the feasibility of intensity-modulated radiotherapy for prostate cancer using photon beams from an accelerator operated without a flattening filter; and to determine potential benefits and drawbacks of using unflattened beams for this type of treatment. Methods and Materials: Intensity-modulated radiotherapy plans were generated for 10 patients with early-stage prostate cancer. For each patient, four plans were generated: with and without the flattening filter, at 6 and 18 MV. The prescription dose was 75.6 Gy to 98% of the planning target volume. The number of beams, their orientations, and optimization constraints were the same for all plans. Plans were generated with Eclipse 8.0 (Varian Medical Systems). Results: All the plans developed with unflattened beams were clinically acceptable. In terms of patient dose distributions, plans with unflattened beams were similar to the corresponding plans with flattened beams. Plans with unflattened beams required fewer monitor units (MUs) per plan: on average, by a factor of 2.0 at 6 MV and 2.6 at 18 MV, assuming that removal of the flattening filter was not followed by recalibration of MUs. Conclusions: Clinically acceptable intensity-modulated radiotherapy plans for prostate cancer can be developed with unflattened beams at both 6 and 18 MV. Dosimetrically, flattened and unflattened beams generated similar treatment plans. The plans with unflattened beams required substantially fewer MUs. The reduction in the number of MUs indicates corresponding reduction in beam-on time and in the amount of radiation outside the target

  5. Intensity-modulated three-dimensional conformal radiotherapy

    International Nuclear Information System (INIS)

    Mohan, Radhe

    1996-01-01

    Optimized intensity-modulated treatments one of the important advances in photon radiotherapy. Intensity modulation provides a greatly increased control over dose distributions. Such control can be maximally exploited to achieve significantly higher levels of conformation to the desired clinical objectives using sophisticated optimization techniques. Safe, rapid and efficient delivery of intensity-modulated treatments has become feasible using a dynamic multi-leaf collimator under computer control. The need for all other field shaping devices such as blocks, wedges and compensators is eliminated. Planning and delivery of intensity-modulated treatments is amenable to automation and development of class solutions for each treatment site and stage which can be implemented not only at major academic centers but on a wide scale. A typical treatment involving as many as 10 fields can be delivered in times shorter than much simpler conventional treatments. The main objective of the course is to give an overview of the current state of the art of planning and delivery methods of intensity-modulated treatments. Specifically, the following topics will be covered using representative optimized plans and treatments: 1. A typical procedure for planning and delivering an intensity-modulated treatment. 2. Quantitative definition of criteria (i.e., the objective function) of optimization of intensity-modulated treatments. Clinical relevance of objectives and the dependence of the quality of optimized intensity-modulated plans upon whether the objectives are stated purely in terms of simple dose or dose-volume criteria or whether they incorporate biological indices. 3. Importance of the lateral transport of radiation in the design of intensity-modulated treatments. Impact on dose homogeneity and the optimum choice of margins. 4. Use of intensity-modulated treatments in escalation of tumor dose for the same or lower normal tissue dose. Fractionation of intensity-modulated treatments

  6. Intensity-modulated three-dimensional conformal radiotherapy

    International Nuclear Information System (INIS)

    Mohan, Radhe

    1997-01-01

    Optimized intensity-modulated treatments one of the important advances in photon radiotherapy. Intensity modulation provides a greatly increased control over dose distributions. Such control can be maximally exploited to achieve significantly higher levels of conformation to the desired clinical objectives using sophisticated optimization techniques. Safe, rapid and efficient delivery of intensity-modulated treatments has become feasible using a dynamic multi-leaf collimator under computer control. The need for all other field shaping devices such as blocks, wedges and compensators is eliminated. Planning and delivery of intensity-modulated treatments is amenable to automation and development of class solutions for each treatment site and stage which can be implemented not only at major academic centers but on a wide scale. A typical treatment involving as many as 10 fields can be delivered in times shorter than much simpler conventional treatments. The main objective of the course is to give an overview of the current state of the art of planning and delivery methods of intensity-modulated treatments. Specifically, the following topics will be covered using representative optimized plans and treatments: 1. A typical procedure for planning and delivering an intensity-modulated treatment. 2. Quantitative definition of criteria (i.e., the objective function) of optimization of intensity-modulated treatments. Clinical relevance of objectives and the dependence of the quality of optimized intensity-modulated plans upon whether the objectives are stated purely in terms of simple dose or dose-volume criteria or whether they incorporate biological indices. 3. Importance of the lateral transport of radiation in the design of intensity-modulated treatments. Impact on dose homogeneity and the optimum choice of margins. 4. Use of intensity-modulated treatments in escalation of tumor dose for the same or lower normal tissue dose. Fractionation of intensity-modulated treatments

  7. Dosimetric aspects of breast radiotherapy with three-dimensional and intensity-modulated radiotherapy helical tomotherapy planning modules

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Poonam [Department of Human Oncology, University of Wisconsin-Madison, Madison, WI (United States); Service of Radiation Therapy, University of Wisconsin Aspirus Cancer Center, Wisconsin Rapids, WI (United States); Yan, Yue, E-mail: yyan5@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Ignatowski, Tasha [Service of Radiation Therapy, University of Wisconsin Aspirus Cancer Center, Wisconsin Rapids, WI (United States); Olson, Anna [Department of Human Oncology, University of Wisconsin-Madison, Madison, WI (United States); Service of Radiation Therapy, University of Wisconsin Aspirus Cancer Center, Wisconsin Rapids, WI (United States)

    2017-04-01

    In this work, we investigated the dosimetric differences between the intensity-modulated radiotherapy (IMRT) plans and the three-dimensional (3D) helical plans based on the TomoTherapy system. A total of 15 patients with supine setup were randomly selected from the data base. For patients with lumpectomy planning target volume (PTV), regional lymph nodes were also included as part of the target. For dose sparing, the significant differences between the helical IMRT and helical 3D were only found in the heart and contralateral breast. For the dose to the heart, helical IMRT reduced the maximum point dose by 6.98 Gy compared to the helical 3D plan (p = 0.01). For contralateral breast, the helical IMRT plans significantly reduced the maximum point dose by 5.6 Gy compared to the helical 3D plan. However, compared to the helical 3D plan, the helical IMRT plan increased the volume for lower dose (13.08% increase in V{sub 5} {sub Gy}, p = 0.01). In general, there are no significant differences in dose sparing between helical IMRT and helical 3D plans.

  8. Chest wall desmoid tumours treated with definitive radiotherapy: a plan comparison of 3D conformal radiotherapy, intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy

    International Nuclear Information System (INIS)

    Liu, Jia; Ng, Diana; Lee, James; Stalley, Paul; Hong, Angela

    2016-01-01

    Definitive radiotherapy is often used for chest wall desmoid tumours due to size or anatomical location. The delivery of radiotherapy is challenging due to the large size and constraints of normal surrounding structures. We compared the dosimetry of 3D conformal radiotherapy (3DCRT), intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc radiotherapy (VMAT) to evaluate the best treatment option. Ten consecutive patients with inoperable chest wall desmoid tumours (PTV range 416–4549 cm 3 ) were selected. For each patient, 3DCRT, IMRT and VMAT plans were generated and the Conformity Index (CI), organ at risk (OAR) doses and monitor unit (MU) were evaluated. The Wilcoxon signed-rank test was used to compare dose delivered to both target and OARs. The mean number of fields for 3DCRT and IMRT were 6.3 ± 2.1, 7.2 ± 1.8. The mean number of arcs for VMAT was 3.7 ± 1.1. The mean conformity index of VMAT (0.98 ± 0.14) was similar to that of IMRT (1.03 ± 0.13), both of which were significantly better than 3DCRT (1.35 ± 0.20; p = 0.005). The mean dose to lung was significantly higher for 3DCRT (11.9Gy ± 7.9) compared to IMRT (9.4Gy ± 5.4, p = 0.014) and VMAT (8.9Gy ± 4.5, p = 0.017). For the 3 females, the low dose regions in the ipsilateral breast for VMAT were generally less with VMAT. IMRT plans required 1427 ± 532 MU per fraction which was almost 4-fold higher than 3DCRT (313 ± 112, P = 0.005). Compared to IMRT, VMAT plans required 60 % less MU (570 ± 285, P = 0.005). For inoperable chest wall desmoid tumours, VMAT delivered equivalent target coverage when compared to IMRT but required 60 % less MU. Both VMAT and IMRT were superior to 3DCRT in terms of better PTV coverage and sparing of lung tissue

  9. Comparison of simple and complex liver intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Lee, Mark T; Purdie, Thomas G; Eccles, Cynthia L; Sharpe, Michael B; Dawson, Laura A

    2010-01-01

    Intensity-modulated radiotherapy (IMRT) may allow improvement in plan quality for treatment of liver cancer, however increasing radiation modulation complexity can lead to increased uncertainties and requirements for quality assurance. This study assesses whether target coverage and normal tissue avoidance can be maintained in liver cancer intensity-modulated radiotherapy (IMRT) plans by systematically reducing the complexity of the delivered fluence. An optimal baseline six fraction individualized IMRT plan for 27 patients with 45 liver cancers was developed which provided a median minimum dose to 0.5 cc of the planning target volume (PTV) of 38.3 Gy (range, 25.9-59.5 Gy), in 6 fractions, while maintaining liver toxicity risk <5% and maximum luminal gastrointestinal structure doses of 30 Gy. The number of segments was systematically reduced until normal tissue constraints were exceeded while maintaining equivalent dose coverage to 95% of PTV (PTVD95). Radiotherapy doses were compared between the plans. Reduction in the number of segments was achieved for all 27 plans from a median of 48 segments (range 34-52) to 19 segments (range 6-30), without exceeding normal tissue dose objectives and maintaining equivalent PTVD95 and similar PTV Equivalent Uniform Dose (EUD(-20)) IMRT plans with fewer segments had significantly less monitor units (mean, 1892 reduced to 1695, p = 0.012), but also reduced dose conformity (mean, RTOG Conformity Index 1.42 increased to 1.53 p = 0.001). Tumour coverage and normal tissue objectives were maintained with simplified liver IMRT, at the expense of reduced conformity

  10. Bladder radiotherapy treatment: A retrospective comparison of 3-dimensional conformal radiotherapy, intensity-modulated radiation therapy, and volumetric-modulated arc therapy plans

    Energy Technology Data Exchange (ETDEWEB)

    Pasciuti, Katia, E-mail: k.pasciuti@virgilio.it [Department of Radiotherapy Physics, Royal Free Hospital, London (United Kingdom); Kuthpady, Shrinivas [Department of Radiotherapy, Royal Free Hospital, London (United Kingdom); Anderson, Anne; Best, Bronagh [Department of Radiotherapy Physics, Royal Free Hospital, London (United Kingdom); Waqar, Saleem; Chowdhury, Subhra [Department of Radiotherapy, Royal Free Hospital, London (United Kingdom)

    2017-04-01

    To examine tumor's and organ's response when different radiotherapy plan techniques are used. Ten patients with confirmed bladder tumors were first treated using 3-dimensional conformal radiotherapy (3DCRT) and subsequently the original plans were re-optimized using the intensity-modulated radiation treatment (IMRT) and volumetric-modulated arc therapy (VMAT)-techniques. Targets coverage in terms of conformity and homogeneity index, TCP, and organs' dose limits, including integral dose analysis were evaluated. In addition, MUs and treatment delivery times were compared. Better minimum target coverage (1.3%) was observed in VMAT plans when compared to 3DCRT and IMRT ones confirmed by a statistically significant conformity index (CI) results. Large differences were observed among techniques in integral dose results of the femoral heads. Even if no statistically significant differences were reported in rectum and tissue, a large amount of energy deposition was observed in 3DCRT plans. In any case, VMAT plans provided better organs and tissue sparing confirmed also by the normal tissue complication probability (NTCP) analysis as well as a better tumor control probability (TCP) result. Our analysis showed better overall results in planning using VMAT techniques. Furthermore, a total time reduction in treatment observed among techniques including gantry and collimator rotation could encourage using the more recent one, reducing target movements and patient discomfort.

  11. Improved Planning Time and Plan Quality Through Multicriteria Optimization for Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Craft, David L.; Hong, Theodore S.; Shih, Helen A.; Bortfeld, Thomas R.

    2012-01-01

    Purpose: To test whether multicriteria optimization (MCO) can reduce treatment planning time and improve plan quality in intensity-modulated radiotherapy (IMRT). Methods and Materials: Ten IMRT patients (5 with glioblastoma and 5 with locally advanced pancreatic cancers) were logged during the standard treatment planning procedure currently in use at Massachusetts General Hospital (MGH). Planning durations and other relevant planning information were recorded. In parallel, the patients were planned using an MCO planning system, and similar planning time data were collected. The patients were treated with the standard plan, but each MCO plan was also approved by the physicians. Plans were then blindly reviewed 3 weeks after planning by the treating physician. Results: In all cases, the treatment planning time was vastly shorter for the MCO planning (average MCO treatment planning time was 12 min; average standard planning time was 135 min). The physician involvement time in the planning process increased from an average of 4.8 min for the standard process to 8.6 min for the MCO process. In all cases, the MCO plan was blindly identified as the superior plan. Conclusions: This provides the first concrete evidence that MCO-based planning is superior in terms of both planning efficiency and dose distribution quality compared with the current trial and error–based IMRT planning approach.

  12. Magnetic Resonance-Based Treatment Planning for Prostate Intensity-Modulated Radiotherapy: Creation of Digitally Reconstructed Radiographs

    International Nuclear Information System (INIS)

    Chen, Lili; Nguyen, Thai-Binh; Jones, Elan; Chen Zuoqun; Luo Wei; Wang Lu; Price, Robert A.; Pollack, Alan; Ma, C.-M. Charlie

    2007-01-01

    Purpose: To develop a technique to create magnetic resonance (MR)-based digitally reconstructed radiographs (DRR) for initial patient setup for routine clinical applications of MR-based treatment planning for prostate intensity-modulated radiotherapy. Methods and Materials: Twenty prostate cancer patients' computed tomography (CT) and MR images were used for the study. Computed tomography and MR images were fused. The pelvic bony structures, including femoral heads, pubic rami, ischium, and ischial tuberosity, that are relevant for routine clinical patient setup were manually contoured on axial MR images. The contoured bony structures were then assigned a bulk density of 2.0 g/cm 3 . The MR-based DRRs were generated. The accuracy of the MR-based DDRs was quantitatively evaluated by comparing MR-based DRRs with CT-based DRRs for these patients. For each patient, eight measuring points on both coronal and sagittal DRRs were used for quantitative evaluation. Results: The maximum difference in the mean values of these measurement points was 1.3 ± 1.6 mm, and the maximum difference in absolute positions was within 3 mm for the 20 patients investigated. Conclusions: Magnetic resonance-based DRRs are comparable to CT-based DRRs for prostate intensity-modulated radiotherapy and can be used for patient treatment setup when MR-based treatment planning is applied clinically

  13. Dosimetric comparison of three-dimensional conformal and intensity modulated radiotherapy in brain glioma

    International Nuclear Information System (INIS)

    Lu Jie; Zhang Guifang; Bai Tong; Yin Yong; Fan Tingyong; Wu Chaoxia

    2009-01-01

    Objective: To investigate the dosimetry advantages of intensity modulated radiotherapy (IMRT)of brain glioma compared with that of three-dimensional conformal radiotherapy (SD CRT). Methods: Ten patients with brain glioma were enrolled in this study. Three-dimensional conf0rmal and intensity modulated radiotherapy plans were performed for each patient. The dose distributions of target volume and normal tissues, conformal index (CI) and heterogeneous index (HI) were analyzed using the dose-volume histogram (DVH). The prescription dose was 60 Gy in 30 fractions. Results: IMRT plans decrease the maximum dose and volume of brainstem, mean dose of affected side parotid and maximum dose of spinal-cord. The CI for PTV of IMRT was superior to that of SD CRT, the HI for PTV has no statistical significance of the two model plans. Conclusions: IMRT plans can obviously decrease the dose and volume of brainstem. IMRT is a potential method in the treatment of brain glioma, and dose escalation was possible in patients with brain glioma. (authors)

  14. A Dosimetric Evaluation of Conventional Helmet Field Irradiation Versus Two-Field Intensity-Modulated Radiotherapy Technique

    International Nuclear Information System (INIS)

    Yu, James B.; Shiao, Stephen L.; Knisely, Jonathan

    2007-01-01

    Purpose: To compare dosimetric differences between conventional two-beam helmet field irradiation (external beam radiotherapy, EBRT) of the brain and a two-field intensity-modulated radiotherapy (IMRT) technique. Methods and Materials: Ten patients who received helmet field irradiation at our institution were selected for study. External beam radiotherapy portals were planned per usual practice. Intensity-modulated radiotherapy fields were created using the identical field angles as the EBRT portals. Each brain was fully contoured along with the spinal cord to the bottom of the C2 vertebral body. This volume was then expanded symmetrically by 0.5 cm to construct the planning target volume. An IMRT plan was constructed using uniform optimization constraints. For both techniques, the nominal prescribed dose was 3,000 cGy in 10 fractions of 300 cGy using 6-MV photons. Comparative dose-volume histograms were generated for each patient and analyzed. Results: Intensity-modulated radiotherapy improved dose uniformity over EBRT for whole brain radiotherapy. The mean percentage of brain receiving >105% of dose was reduced from 29.3% with EBRT to 0.03% with IMRT. The mean maximum dose was reduced from 3,378 cGy (113%) for EBRT to 3,162 cGy (105%) with IMRT. The mean percent volume receiving at least 98% of the prescribed dose was 99.5% for the conventional technique and 100% for IMRT. Conclusions: Intensity-modulated radiotherapy reduces dose inhomogeneity, particularly for the midline frontal lobe structures where hot spots occur with conventional two-field EBRT. More study needs to be done addressing the clinical implications of optimizing dose uniformity and its effect on long-term cognitive function in selected long-lived patients

  15. Quantitative comparison of volumetric modulated arc therapy and intensity modulated radiotherapy plan quality in sino-nasal cancer

    International Nuclear Information System (INIS)

    Sankaralingam, Marimuthu; Glegg, Martin; Smith, Suzanne; James, Allan; Rizwanullah, Mohammed

    2012-01-01

    The aim of this study was to compare various dosimetric parameters of dynamic mlc intensity modulated radiotherapy (IMRT) plans with volumetric modulated arc therapy (VMAT) plans for sino-nasal cancers, which are rare and complex tumors to treat with radiotherapy. IMRT using five fields, coplanar in the sagittal plane and VMAT employing two coplanar arc plans were created for five patients. The plans were assessed by comparing Conformity Index and Sigma Index (dose homogeneity) in the Planning Target Volume (PTV) and through comparison of dose-volume characteristics to the following organs at risk (OARs): Spinal cord, brainstem, eye, ipsilateral and contralateral optic nerve and the volume of brain receiving 10% of the prescribed dose (V 10% ). The total monitor units required to deliver the plan were also compared. Conformity Index was found to be superior in VMAT plans for three patients and in IMRT plans for two patients. Dose homogeneity within the PTV was better with VMAT plans for all five cases. The mean difference in Sigma Index was 0.68%. There was no significant difference in dose between IMRT and VMAT plans for any of the OARs assessed in these patients. The monitor units were significantly reduced in the VMAT plan in comparison to the IMRT plan for four out of five patients, with mean reduction of 66%. It was found in this study that for the treatment of sino-nasal cancer, VMAT produced minimal, and statistically insignificant improvement in dose homogeneity within the PTV when compared with IMRT. VMAT plans were delivered using significantly fewer monitor units. We conclude in this study that VMAT does not offer significant improvement of treatment for sino-nasal cancer over the existing IMRT techniques, but the findings may change with a larger sample of patients in this rare condition. (author)

  16. Simple Carotid-Sparing Intensity-Modulated Radiotherapy Technique and Preliminary Experience for T1-2 Glottic Cancer

    International Nuclear Information System (INIS)

    Rosenthal, David I.; Fuller, Clifton D.; Barker, Jerry L.; Mason, Bryan M.S.; Garcia, John A. C.; Lewin, Jan S.; Holsinger, F. Christopher; Stasney, C. Richard; Frank, Steven J.; Schwartz, David L.; Morrison, William H.; Garden, Adam S.; Ang, K. Kian

    2010-01-01

    Purpose: To investigate the dosimetry and feasibility of carotid-sparing intensity-modulated radiotherapy (IMRT) for early glottic cancer and to report preliminary clinical experience. Methods and Materials: Digital Imaging and Communications in Medicine radiotherapy (DICOM-RT) datasets from 6 T1-2 conventionally treated glottic cancer patients were used to create both conventional IMRT plans. We developed a simplified IMRT planning algorithm with three fields and limited segments. Conventional and IMRT plans were compared using generalized equivalent uniform dose and dose-volume parameters for in-field carotid arteries, target volumes, and organs at risk. We have treated 11 patients with this simplified IMRT technique. Results: Intensity-modulated radiotherapy consistently reduced radiation dose to the carotid arteries (p < 0.05) while maintaining the clinical target volume coverage. With conventional planning, median carotid V35, V50, and V63 were 100%, 100%, and 69.0%, respectively. With IMRT planning these decreased to 2%, 0%, and 0%, respectively (p < 0.01). Radiation planning and treatment times were similar for conventional radiotherapy and IMRT. Treatment results have been excellent thus far. Conclusions: Intensity-modulated radiotherapy significantly reduced unnecessary radiation dose to the carotid arteries compared with conventional lateral fields while maintaining clinical target volume coverage. Further experience and longer follow-up will be required to demonstrate outcomes for cancer control and carotid artery effects.

  17. Intensity modulated radiotherapy (IMRT) with compensators

    International Nuclear Information System (INIS)

    Salz, H.; Wiezorek, T.; Scheithauer, M.; Kleen, W.; Schwedas, M.; Wendt, T.G.

    2002-01-01

    The irradiation with intensity-modulated fields is possible with static as well as dynamic methods. In our university hospital, the intensity-modulated radiotherapy (IMRT) with compensators was prepared and used for the first time for patient irradiation in July 2001. The compensators consist of a mixture of tin granulate and wax, which is filled in a milled negative mould. The treatment planning is performed with Helax-TMS (MDS Nordion). An additional software is used for editing the modulation matrix ('Modifix'). Before irradiation of the first patient, extensive measurements have been carried out in terms of quality assurance of treatment planning and production of compensators. The results of the verification measurements have shown that IMRT with compensators possesses high spatial and dosimetric exactness. The calculated dose distributions are applied correctly. The accuracy of the calculated monitor units is normally better than 3%; in small volumes, further dosimetric inaccuracies between calculated and measured dose distributions are mostly less than 3%. Therefore, the compensators contribute to the achievement of high-level IMRT even when apparatuses without MLC are used. This paper describes the use of the IMRT with compensators, presents the limits of this technology, and discusses the first practical experiences. (orig.) [de

  18. Intensity modulated radiotherapy and 3D conformal radiotherapy for whole breast irradiation: a comparative dosimetric study and introduction of a novel qualitative index for plan evaluation, the normal tissue index

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Jackie; Suttie, Clare; Bromley, Regina; Morgia, Marita; Lamoury, Gillian [Department of Radiation Oncology, Royal North Shore Hospital, St Leonards, New South Wales (Australia)

    2015-09-15

    We report on a retrospective dosimetric study, comparing 3D conformal radiotherapy (3DCRT) and hybrid intensity modulated radiotherapy (hIMRT). We evaluated plans based on their planning target volume coverage, dose homogeneity, dose to organs at risk (OARs) and exposure of normal tissue to radiation. The Homogeneity Index (HI) was used to assess the dose homogeneity in the target region, and we describe a new index, the normal tissue index (NTI), to assess the dose in the normal tissue inside the tangent treatment portal. Plans were generated for 25 early-stage breast cancer patients, using a hIMRT technique. These were compared with the 3DCRT plans of the treatment previously received by the patients. Plan quality was evaluated using the HI, NTI and dose to OARs. The hIMRT technique was significantly more homogenous than the 3DCRT technique, while maintaining target coverage. The hIMRT technique was also superior at minimising the amount of tissue receiving D{sub 105%} and above (P < 0.0001). The ipsilateral lung and contralateral breast maximum were significantly lower in the hIMRT plans (P < 0.05 and P < 0.005), but the 3DCRT technique achieved a lower mean heart dose in left-sided breast cancer patients (P < 0.05). Hybrid intensity modulated radiotherapy plans achieved improved dose homogeneity compared to the 3DCRT plans and superior outcome with regard to dose to normal tissues. We propose that the addition of both HI and NTI in evaluating the quality of intensity modulated radiotherapy (IMRT) breast plans provides clinically relevant comparators which more accurately reflect the new paradigm of treatment goals and outcomes in the era of breast IMRT.

  19. Intensity modulated radiotherapy and 3D conformal radiotherapy for whole breast irradiation: a comparative dosimetric study and introduction of a novel qualitative index for plan evaluation, the normal tissue index

    International Nuclear Information System (INIS)

    Yim, Jackie; Suttie, Clare; Bromley, Regina; Morgia, Marita; Lamoury, Gillian

    2015-01-01

    We report on a retrospective dosimetric study, comparing 3D conformal radiotherapy (3DCRT) and hybrid intensity modulated radiotherapy (hIMRT). We evaluated plans based on their planning target volume coverage, dose homogeneity, dose to organs at risk (OARs) and exposure of normal tissue to radiation. The Homogeneity Index (HI) was used to assess the dose homogeneity in the target region, and we describe a new index, the normal tissue index (NTI), to assess the dose in the normal tissue inside the tangent treatment portal. Plans were generated for 25 early-stage breast cancer patients, using a hIMRT technique. These were compared with the 3DCRT plans of the treatment previously received by the patients. Plan quality was evaluated using the HI, NTI and dose to OARs. The hIMRT technique was significantly more homogenous than the 3DCRT technique, while maintaining target coverage. The hIMRT technique was also superior at minimising the amount of tissue receiving D 105% and above (P < 0.0001). The ipsilateral lung and contralateral breast maximum were significantly lower in the hIMRT plans (P < 0.05 and P < 0.005), but the 3DCRT technique achieved a lower mean heart dose in left-sided breast cancer patients (P < 0.05). Hybrid intensity modulated radiotherapy plans achieved improved dose homogeneity compared to the 3DCRT plans and superior outcome with regard to dose to normal tissues. We propose that the addition of both HI and NTI in evaluating the quality of intensity modulated radiotherapy (IMRT) breast plans provides clinically relevant comparators which more accurately reflect the new paradigm of treatment goals and outcomes in the era of breast IMRT

  20. Impact of gantry rotation time on plan quality and dosimetric verification. Volumetric modulated arc therapy (VMAT) vs. intensity modulated radiotherapy (IMRT)

    Energy Technology Data Exchange (ETDEWEB)

    Pasler, Marlies; Wirtz, Holger; Lutterbach, Johannes [Gemeinschaftspraxis fuer Strahlentherapie Singen-Friedrichshafen, Singen (Germany)

    2011-12-15

    To compare plan quality criteria and dosimetric accuracy of step-and-shoot intensity-modulated radiotherapy (ss-IMRT) and volumetric modulated arc radiotherapy (VMAT) using two different gantry rotation times. This retrospective planning study based on 20 patients was comprised of 10 prostate cancer (PC) and 10 head and neck (HN) cancer cases. Each plan contained two target volumes: a primary planning target volume (PTV) and a boost volume. For each patient, one ss-IMRT plan and two VMAT plans at 90 s (VMAT90) and 120 s (VMAT120) per arc were generated with the Pinnacle {sup copyright} planning system. Two arcs were provided for the PTV plans and a single arc for boost volumes. Dosimetric verification of the plans was performed using a 2D ionization chamber array placed in a full scatter phantom. VMAT reduced delivery time and monitor units for both treatment sites compared to IMRT. VMAT120 vs. VMAT90 increased delivery time and monitor units in PC plans without improving plan quality. For HN cases, VMAT120 provided comparable organs at risk sparing and better target coverage and conformity than VMAT90. In the VMAT plan verification, an average of 97.1% of the detector points passed the 3 mm, 3% {gamma} criterion, while in IMRT verification it was 98.8%. VMAT90, VMAT120, and IMRT achieved comparable treatment plans. Slower gantry movement in VMAT120 plans only improves dosimetric quality for highly complex targets.

  1. Impact of gantry rotation time on plan quality and dosimetric verification. Volumetric modulated arc therapy (VMAT) vs. intensity modulated radiotherapy (IMRT)

    International Nuclear Information System (INIS)

    Pasler, Marlies; Wirtz, Holger; Lutterbach, Johannes

    2011-01-01

    To compare plan quality criteria and dosimetric accuracy of step-and-shoot intensity-modulated radiotherapy (ss-IMRT) and volumetric modulated arc radiotherapy (VMAT) using two different gantry rotation times. This retrospective planning study based on 20 patients was comprised of 10 prostate cancer (PC) and 10 head and neck (HN) cancer cases. Each plan contained two target volumes: a primary planning target volume (PTV) and a boost volume. For each patient, one ss-IMRT plan and two VMAT plans at 90 s (VMAT90) and 120 s (VMAT120) per arc were generated with the Pinnacle copyright planning system. Two arcs were provided for the PTV plans and a single arc for boost volumes. Dosimetric verification of the plans was performed using a 2D ionization chamber array placed in a full scatter phantom. VMAT reduced delivery time and monitor units for both treatment sites compared to IMRT. VMAT120 vs. VMAT90 increased delivery time and monitor units in PC plans without improving plan quality. For HN cases, VMAT120 provided comparable organs at risk sparing and better target coverage and conformity than VMAT90. In the VMAT plan verification, an average of 97.1% of the detector points passed the 3 mm, 3% γ criterion, while in IMRT verification it was 98.8%. VMAT90, VMAT120, and IMRT achieved comparable treatment plans. Slower gantry movement in VMAT120 plans only improves dosimetric quality for highly complex targets.

  2. Clinical Experience With Image-Guided Radiotherapy in an Accelerated Partial Breast Intensity-Modulated Radiotherapy Protocol

    International Nuclear Information System (INIS)

    Leonard, Charles E.; Tallhamer, Michael M.S.; Johnson, Tim; Hunter, Kari C.M.D.; Howell, Kathryn; Kercher, Jane; Widener, Jodi; Kaske, Terese; Paul, Devchand; Sedlacek, Scot; Carter, Dennis L.

    2010-01-01

    Purpose: To explore the feasibility of fiducial markers for the use of image-guided radiotherapy (IGRT) in an accelerated partial breast intensity modulated radiotherapy protocol. Methods and Materials: Nineteen patients consented to an institutional review board approved protocol of accelerated partial breast intensity-modulated radiotherapy with fiducial marker placement and treatment with IGRT. Patients (1 patient with bilateral breast cancer; 20 total breasts) underwent ultrasound guided implantation of three 1.2- x 3-mm gold markers placed around the surgical cavity. For each patient, table shifts (inferior/superior, right/left lateral, and anterior/posterior) and minimum, maximum, mean error with standard deviation were recorded for each of the 10 BID treatments. The dose contribution of daily orthogonal films was also examined. Results: All IGRT patients underwent successful marker placement. In all, 200 IGRT treatment sessions were performed. The average vector displacement was 4 mm (range, 2-7 mm). The average superior/inferior shift was 2 mm (range, 0-5 mm), the average lateral shift was 2 mm (range, 1-4 mm), and the average anterior/posterior shift was 3 mm (range, 1 5 mm). Conclusions: This study shows that the use of IGRT can be successfully used in an accelerated partial breast intensity-modulated radiotherapy protocol. The authors believe that this technique has increased daily treatment accuracy and permitted reduction in the margin added to the clinical target volume to form the planning target volume.

  3. Functional Image-Guided Radiotherapy Planning in Respiratory-Gated Intensity-Modulated Radiotherapy for Lung Cancer Patients With Chronic Obstructive Pulmonary Disease

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp [Department of Radiation Oncology, Hiroshima University, Graduate School of Biomedical Sciences, Hiroshima City (Japan); Nishibuchi, Ikuno; Murakami, Yuji; Kenjo, Masahiro; Kaneyasu, Yuko; Nagata, Yasushi [Department of Radiation Oncology, Hiroshima University, Graduate School of Biomedical Sciences, Hiroshima City (Japan)

    2012-03-15

    Purpose: To investigate the incorporation of functional lung image-derived low attenuation area (LAA) based on four-dimensional computed tomography (4D-CT) into respiratory-gated intensity-modulated radiotherapy (IMRT) or volumetric modulated arc therapy (VMAT) in treatment planning for lung cancer patients with chronic obstructive pulmonary disease (COPD). Methods and Materials: Eight lung cancer patients with COPD were the subjects of this study. LAA was generated from 4D-CT data sets according to CT values of less than than -860 Hounsfield units (HU) as a threshold. The functional lung image was defined as the area where LAA was excluded from the image of the total lung. Two respiratory-gated radiotherapy plans (70 Gy/35 fractions) were designed and compared in each patient as follows: Plan A was an anatomical IMRT or VMAT plan based on the total lung; Plan F was a functional IMRT or VMAT plan based on the functional lung. Dosimetric parameters (percentage of total lung volume irradiated with {>=}20 Gy [V20], and mean dose of total lung [MLD]) of the two plans were compared. Results: V20 was lower in Plan F than in Plan A (mean 1.5%, p = 0.025 in IMRT, mean 1.6%, p = 0.044 in VMAT) achieved by a reduction in MLD (mean 0.23 Gy, p = 0.083 in IMRT, mean 0.5 Gy, p = 0.042 in VMAT). No differences were noted in target volume coverage and organ-at-risk doses. Conclusions: Functional IGRT planning based on LAA in respiratory-guided IMRT or VMAT appears to be effective in preserving a functional lung in lung cancer patients with COPD.

  4. Intensity-modulated radiotherapy (IMRT) for carcinoma of the maxillary sinus: A comparison of IMRT planning systems

    International Nuclear Information System (INIS)

    Ahmed, Raef S.; Ove, Roger; Duan, Jun; Popple, Richard; Cobb, Glenn

    2006-01-01

    The treatment of maxillary sinus carcinoma with forward planning can be technically difficult when the neck also requires radiotherapy. This difficulty arises because of the need to spare the contralateral face while treating the bilateral neck. There is considerable potential for error in clinical setup and treatment delivery. We evaluated intensity-modulated radiotherapy (IMRT) as an improvement on forward planning, and compared several inverse planning IMRT platforms. A composite dose-volume histogram (DVH) was generated from a complex forward planned case. We compared the results with those generated by sliding window fixed field dynamic multileaf collimator (MLC) IMRT, using sets of coplanar beams. All setups included an anterior posterior (AP) beam, and 3-, 5-, 7-, and 9-field configurations were evaluated. The dose prescription and objective function priorities were invariant. We also evaluated 2 commercial tomotherapy IMRT delivery platforms. DVH results from all of the IMRT approaches compared favorably with the forward plan. Results for the various inverse planning approaches varied considerably across platforms, despite an attempt to prescribe the therapy similarly. The improvement seen with the addition of beams in the fixed beam sliding window case was modest. IMRT is an effective means of delivering radiotherapy reliably in the complex setting of maxillary sinus carcinoma with neck irradiation. Differences in objective function definition and optimization algorithms can lead to unexpected differences in the final dose distribution, and our evaluation suggests that these factors are more significant than the beam arrangement or number of beams

  5. A Comparison of Helical Intensity-Modulated Radiotherapy, Intensity-Modulated Radiotherapy, and 3D-Conformal Radiation Therapy for Pancreatic Cancer

    International Nuclear Information System (INIS)

    Poppe, Matthew M.; Narra, Venkat; Yue, Ning J.; Zhou Jinghao; Nelson, Carl; Jabbour, Salma K.

    2011-01-01

    We assessed dosimetric differences in pancreatic cancer radiotherapy via helical intensity-modulated radiotherapy (HIMRT), linac-based IMRT, and 3D-conformal radiation therapy (3D-CRT) with regard to successful plan acceptance and dose to critical organs. Dosimetric analysis was performed in 16 pancreatic cases that were planned to 54 Gy; both post-pancreaticoduodenectomy (n = 8) and unresected (n = 8) cases were compared. Without volume modification, plans met constraints 75% of the time with HIMRT and IMRT and 13% with 3D-CRT. There was no statistically significantly improvement with HIMRT over conventional IMRT in reducing liver V35, stomach V45, or bowel V45. HIMRT offers improved planning target volume (PTV) dose homogeneity compared with IMRT, averaging a lower maximum dose and higher volume receiving the prescription dose (D100). HIMRT showed an increased mean dose over IMRT to bowel and liver. Both HIMRT and IMRT offer a statistically significant improvement over 3D-CRT in lowering dose to liver, stomach, and bowel. The results were similar for both unresected and resected patients. In pancreatic cancer, HIMRT offers improved dose homogeneity over conventional IMRT and several significant benefits to 3D-CRT. Factors to consider before incorporating IMRT into pancreatic cancer therapy are respiratory motion, dose inhomogeneity, and mean dose.

  6. Evidence-based review: Quality of life following head and neck intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Scott-Brown, Martin; Miah, Aisha; Harrington, Kevin; Nutting, Chris

    2010-01-01

    Inverse planned Intensity modulated radiotherapy (IMRT) can minimize the dose to normal structures and therefore can reduce long-term radiotherapy-related morbidity and may improve patients' long-term quality of life. Despite overwhelming evidence that IMRT can reduce late functional deficits in patients with head and neck cancer, treated with radiotherapy, a review of the published literature produced conflicting results with regard to quality of life outcomes. Following a critical appraisal of the literature, reasons for the discrepant outcomes are proposed.

  7. Automated Planning of Tangential Breast Intensity-Modulated Radiotherapy Using Heuristic Optimization

    International Nuclear Information System (INIS)

    Purdie, Thomas G.; Dinniwell, Robert E.; Letourneau, Daniel; Hill, Christine; Sharpe, Michael B.

    2011-01-01

    Purpose: To present an automated technique for two-field tangential breast intensity-modulated radiotherapy (IMRT) treatment planning. Method and Materials: A total of 158 planned patients with Stage 0, I, and II breast cancer treated using whole-breast IMRT were retrospectively replanned using automated treatment planning tools. The tools developed are integrated into the existing clinical treatment planning system (Pinnacle 3 ) and are designed to perform the manual volume delineation, beam placement, and IMRT treatment planning steps carried out by the treatment planning radiation therapist. The automated algorithm, using only the radio-opaque markers placed at CT simulation as inputs, optimizes the tangential beam parameters to geometrically minimize the amount of lung and heart treated while covering the whole-breast volume. The IMRT parameters are optimized according to the automatically delineated whole-breast volume. Results: The mean time to generate a complete treatment plan was 6 min, 50 s ± 1 min 12 s. For the automated plans, 157 of 158 plans (99%) were deemed clinically acceptable, and 138 of 158 plans (87%) were deemed clinically improved or equal to the corresponding clinical plan when reviewed in a randomized, double-blinded study by one experienced breast radiation oncologist. In addition, overall the automated plans were dosimetrically equivalent to the clinical plans when scored for target coverage and lung and heart doses. Conclusion: We have developed robust and efficient automated tools for fully inversed planned tangential breast IMRT planning that can be readily integrated into clinical practice. The tools produce clinically acceptable plans using only the common anatomic landmarks from the CT simulation process as an input. We anticipate the tools will improve patient access to high-quality IMRT treatment by simplifying the planning process and will reduce the effort and cost of incorporating more advanced planning into clinical practice.

  8. Volumetric Modulated Arc Therapy for Spine Radiosurgery: Superior Treatment Planning and Delivery Compared to Static Beam Intensity Modulated Radiotherapy.

    Science.gov (United States)

    Zach, Leor; Tsvang, Lev; Alezra, Dror; Ben Ayun, Maoz; Harel, Ran

    2016-01-01

    Spine stereotactic radiosurgery (SRS) delivers an accurate and efficient high radiation dose to vertebral metastases in 1-5 fractions. We aimed to compare volumetric modulated arc therapy (VMAT) to static beam intensity modulated radiotherapy (IMRT) for spine SRS. Ten spine lesions of previously treated SRS patients were planned retrospectively using both IMRT and VMAT with a prescribed dose of 16 Gy to 100% of the planning target volume (PTV). The plans were compared for conformity, homogeneity, treatment delivery time, and safety (spinal cord dose). All evaluated parameters favored the VMAT plan over the IMRT plans. D min in the IMRT was significantly lower than in the VMAT plan (7.65 Gy/10.88 Gy, p DSC) was found to be significantly better for the VMAT plans compared to the IMRT plans (0.77/0.58, resp., p  value < 0.01), and an almost 50% reduction in the net treatment time was calculated for the VMAT compared to the IMRT plans (6.73 min/12.96 min, p < 0.001). In our report, VMAT provides better conformity, homogeneity, and safety profile. The shorter treatment time is a major advantage and not only provides convenience to the painful patient but also contributes to the precision of this high dose radiation therapy.

  9. Benchmarking Dosimetric Quality Assessment of Prostate Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Senthi, Sashendra; Gill, Suki S.; Haworth, Annette; Kron, Tomas; Cramb, Jim; Rolfo, Aldo; Thomas, Jessica; Duchesne, Gillian M.; Hamilton, Christopher H.; Joon, Daryl Lim; Bowden, Patrick; Foroudi, Farshad

    2012-01-01

    Purpose: To benchmark the dosimetric quality assessment of prostate intensity-modulated radiotherapy and determine whether the quality is influenced by disease or treatment factors. Patients and Methods: We retrospectively analyzed the data from 155 consecutive men treated radically for prostate cancer using intensity-modulated radiotherapy to 78 Gy between January 2007 and March 2009 across six radiotherapy treatment centers. The plan quality was determined by the measures of coverage, homogeneity, and conformity. Tumor coverage was measured using the planning target volume (PTV) receiving 95% and 100% of the prescribed dose (V 95% and V 100% , respectively) and the clinical target volume (CTV) receiving 95% and 100% of the prescribed dose. Homogeneity was measured using the sigma index of the PTV and CTV. Conformity was measured using the lesion coverage factor, healthy tissue conformity index, and the conformity number. Multivariate regression models were created to determine the relationship between these and T stage, risk status, androgen deprivation therapy use, treatment center, planning system, and treatment date. Results: The largest discriminatory measurements of coverage, homogeneity, and conformity were the PTV V 95% , PTV sigma index, and conformity number. The mean PTV V 95% was 92.5% (95% confidence interval, 91.3–93.7%). The mean PTV sigma index was 2.10 Gy (95% confidence interval, 1.90–2.20). The mean conformity number was 0.78 (95% confidence interval, 0.76–0.79). The treatment center independently influenced the coverage, homogeneity, and conformity (all p 95% only, with it being better at the start (p = .013). Risk status, T stage, and the use of androgen deprivation therapy did not influence any aspect of plan quality. Conclusion: Our study has benchmarked measures of coverage, homogeneity, and conformity for the treatment of prostate cancer using IMRT. The differences seen between centers and planning systems and the coverage

  10. A Multiplan Treatment-Planning Framework: A Paradigm Shift for Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Meyer, Robert R.; Zhang, Hao H.; Goadrich, Laura; Nazareth, Daryl P.; Shi Leyuan; D'Souza, Warren D.

    2007-01-01

    Purpose: To describe a multiplan intensity-modulated radiotherapy (IMRT) planning framework, and to describe a decision support system (DSS) for ranking multiple plans and modeling the planning surface. Methods and Materials: One hundred twenty-five plans were generated sequentially for a head-and-neck case and a pelvic case by varying the dose-volume constraints on each of the organs at risk (OARs). A DSS was used to rank plans according to dose-volume histogram (DVH) values, as well as equivalent uniform dose (EUD) values. Two methods for ranking treatment plans were evaluated: composite criteria and pre-emptive selection. The planning surface determined by the results was modeled using quadratic functions. Results: The DSS provided an easy-to-use interface for the comparison of multiple plan features. Plan ranking resulted in the identification of one to three 'optimal' plans. The planning surface models had good predictive capability with respect to both DVH values and EUD values and generally, errors of <6%. Models generated by minimizing the maximum relative error had significantly lower relative errors than models obtained by minimizing the sum of squared errors. Using the quadratic model, plan properties for one OAR were determined as a function of the other OAR constraint settings. The modeled plan surface can then be used to understand the interdependence of competing planning objectives. Conclusion: The DSS can be used to aid the planner in the selection of the most desirable plan. The collection of quadratic models constructed from the plan data to predict DVH and EUD values generally showed excellent agreement with the actual plan values

  11. Benchmarking Dosimetric Quality Assessment of Prostate Intensity-Modulated Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Senthi, Sashendra, E-mail: sasha.senthi@petermac.org [Division of Radiation Oncology, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia); Gill, Suki S. [Division of Radiation Oncology, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia); Haworth, Annette; Kron, Tomas; Cramb, Jim [Department of Physical Sciences, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia); Rolfo, Aldo [Radiation Therapy Services, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia); Thomas, Jessica [Biostatistics and Clinical Trials, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia); Duchesne, Gillian M. [Division of Radiation Oncology, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia); Hamilton, Christopher H.; Joon, Daryl Lim [Radiation Oncology Department, Austin Repatriation Hospital, Heidelberg, VIC (Australia); Bowden, Patrick [Radiation Oncology Department, Tattersall' s Cancer Center, East Melbourne, VIC (Australia); Foroudi, Farshad [Division of Radiation Oncology, Peter MacCallum Cancer Center, East Melbourne, VIC (Australia)

    2012-02-01

    Purpose: To benchmark the dosimetric quality assessment of prostate intensity-modulated radiotherapy and determine whether the quality is influenced by disease or treatment factors. Patients and Methods: We retrospectively analyzed the data from 155 consecutive men treated radically for prostate cancer using intensity-modulated radiotherapy to 78 Gy between January 2007 and March 2009 across six radiotherapy treatment centers. The plan quality was determined by the measures of coverage, homogeneity, and conformity. Tumor coverage was measured using the planning target volume (PTV) receiving 95% and 100% of the prescribed dose (V{sub 95%} and V{sub 100%}, respectively) and the clinical target volume (CTV) receiving 95% and 100% of the prescribed dose. Homogeneity was measured using the sigma index of the PTV and CTV. Conformity was measured using the lesion coverage factor, healthy tissue conformity index, and the conformity number. Multivariate regression models were created to determine the relationship between these and T stage, risk status, androgen deprivation therapy use, treatment center, planning system, and treatment date. Results: The largest discriminatory measurements of coverage, homogeneity, and conformity were the PTV V{sub 95%}, PTV sigma index, and conformity number. The mean PTV V{sub 95%} was 92.5% (95% confidence interval, 91.3-93.7%). The mean PTV sigma index was 2.10 Gy (95% confidence interval, 1.90-2.20). The mean conformity number was 0.78 (95% confidence interval, 0.76-0.79). The treatment center independently influenced the coverage, homogeneity, and conformity (all p < .0001). The planning system independently influenced homogeneity (p = .038) and conformity (p = .021). The treatment date independently influenced the PTV V{sub 95%} only, with it being better at the start (p = .013). Risk status, T stage, and the use of androgen deprivation therapy did not influence any aspect of plan quality. Conclusion: Our study has benchmarked measures

  12. Anal wall sparing effect of an endorectal balloon in 3D conformal and intensity-modulated prostate radiotherapy.

    NARCIS (Netherlands)

    Smeenk, R.J.; Lin, E.N.J.T. van; Kollenburg, P. van; Kunze-Busch, M.C.; Kaanders, J.H.A.M.

    2009-01-01

    BACKGROUND AND PURPOSE: To investigate the anal wall (Awall) sparing effect of an endorectal balloon (ERB) in 3D conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) for prostate cancer. MATERIALS AND METHODS: In 24 patients with localized prostate carcinoma, two planning

  13. Volumetric Modulated Arc Therapy for Spine Radiosurgery: Superior Treatment Planning and Delivery Compared to Static Beam Intensity Modulated Radiotherapy

    Directory of Open Access Journals (Sweden)

    Leor Zach

    2016-01-01

    Full Text Available Purpose. Spine stereotactic radiosurgery (SRS delivers an accurate and efficient high radiation dose to vertebral metastases in 1–5 fractions. We aimed to compare volumetric modulated arc therapy (VMAT to static beam intensity modulated radiotherapy (IMRT for spine SRS. Methods and Materials. Ten spine lesions of previously treated SRS patients were planned retrospectively using both IMRT and VMAT with a prescribed dose of 16 Gy to 100% of the planning target volume (PTV. The plans were compared for conformity, homogeneity, treatment delivery time, and safety (spinal cord dose. Results. All evaluated parameters favored the VMAT plan over the IMRT plans. Dmin in the IMRT was significantly lower than in the VMAT plan (7.65 Gy/10.88 Gy, p<0.001, the Dice Similarity Coefficient (DSC was found to be significantly better for the VMAT plans compared to the IMRT plans (0.77/0.58, resp., p  value<0.01, and an almost 50% reduction in the net treatment time was calculated for the VMAT compared to the IMRT plans (6.73 min/12.96 min, p<0.001. Conclusions. In our report, VMAT provides better conformity, homogeneity, and safety profile. The shorter treatment time is a major advantage and not only provides convenience to the painful patient but also contributes to the precision of this high dose radiation therapy.

  14. Radiotherapy of prostate cancer with or without intensity modulated beams: a planning comparison

    International Nuclear Information System (INIS)

    Meerleer, Gert O. de; Vakaet, Luc A.M.L.; Gersem, Werner R.T. de; Wagter, Carlos de; Naeyer, Bart de; Neve, Wilfried de

    2000-01-01

    Purpose: To evaluate whether intensity modulated radiotherapy (IMRT) by static segmented beams allows the dose to the main portion of the prostate target to escalate while keeping the maximal dose at the anterior rectal wall at 72 Gy. The value of such IMRT plans was analyzed by comparison with non-IMRT plans using the same beam incidences. Methods and Materials: We performed a planning study on the CT data of 32 consecutive patients with localized adenocarcinoma of the prostate. Three fields in the transverse plane with gantry angles of 0 deg. , 116 deg. , and 244 deg. were isocentered at the center of gravity of the target volume (prostate and seminal vesicles). The geometry of the beams was determined by beam's eye view autocontouring of the target volume with a margin of 1.5 cm. In study 1, the beam weights were determined by a human planner (3D-man) or by computer optimization using a biological objective function with (3D-optim-lim) or without (3D-optim-unlim) a physical term to limit target dose inhomogeneity. In study 2, the 3 beam incidences mentioned above were used and in-field uniform segments were added to allow IMRT. Plans with (IMRT-lim) or without (IMRT-unlim) constraints on target dose inhomogeneity were compared. In the IMRT-lim plan, target dose inhomogeneity was constrained between 15% and 20%. After optimization, plans in both studies were normalized to a maximal rectal dose of 72 Gy. Biological (tumor control probability [TCP], normal tissue complication probability [NTCP]) and physical indices for tumor control and normal tissue complication probabilities were computed, as well as the probability of the uncomplicated local control (P+). Results: The IMRT-lim plan was superior to all other plans concerning TCP (p =no. 89%). For bladder, maximal bladder dose was significantly higher in the IMRT-unlim plan compared to all other plans (p no. <=no. 0.0001). P+ was significantly higher in both IMRT-plans than in all other plans. The 3D

  15. Dosimetric analysis of testicular doses in prostate intensity-modulated and volumetric-modulated arc radiation therapy at different energy levels

    Energy Technology Data Exchange (ETDEWEB)

    Onal, Cem, E-mail: hcemonal@hotmail.com; Arslan, Gungor; Dolek, Yemliha; Efe, Esma

    2016-01-01

    The aim of this study is to evaluate the incidental testicular doses during prostate radiation therapy with intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc radiotherapy (VMAT) at different energies. Dosimetric data of 15 patients with intermediate-risk prostate cancer who were treated with radiotherapy were analyzed. The prescribed dose was 78 Gy in 39 fractions. Dosimetric analysis compared testicular doses generated by 7-field intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy with a single arc at 6, 10, and 15 MV energy levels. Testicular doses calculated from the treatment planning system and doses measured from the detectors were analyzed. Mean testicular doses from the intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy per fraction calculated in the treatment planning system were 16.3 ± 10.3 cGy vs 21.5 ± 11.2 cGy (p = 0.03) at 6 MV, 13.4 ± 10.4 cGy vs 17.8 ± 10.7 cGy (p = 0.04) at 10 MV, and 10.6 ± 8.5 cGy vs 14.5 ± 8.6 cGy (p = 0.03) at 15 MV, respectively. Mean scattered testicular doses in the phantom measurements were 99.5 ± 17.2 cGy, 118.7 ± 16.4 cGy, and 193.9 ± 14.5 cGy at 6, 10, and 15 MV, respectively, in the intensity-modulated radiotherapy plans. In the volumetric-modulated arc radiotherapy plans, corresponding testicular doses per course were 90.4 ± 16.3 cGy, 103.6 ± 16.4 cGy, and 139.3 ± 14.6 cGy at 6, 10, and 15 MV, respectively. In conclusions, this study was the first to measure the incidental testicular doses by intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy plans at different energy levels during prostate-only irradiation. Higher photon energy and volumetric-modulated arc radiotherapy plans resulted in higher incidental testicular doses compared with lower photon energy and intensity-modulated radiotherapy plans.

  16. Comparison of Heart and Coronary Artery Doses Associated With Intensity-Modulated Radiotherapy Versus Three-Dimensional Conformal Radiotherapy for Distal Esophageal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kole, Thomas P.; Aghayere, Osarhieme; Kwah, Jason [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Yorke, Ellen D. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Goodman, Karyn A., E-mail: goodmank@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2012-08-01

    Purpose: To compare heart and coronary artery radiation exposure using intensity-modulated radiotherapy (IMRT) vs. four-field three-dimensional conformal radiotherapy (3D-CRT) treatment plans for patients with distal esophageal cancer undergoing chemoradiation. Methods and Materials: Nineteen patients with distal esophageal cancers treated with IMRT from March 2007 to May 2008 were identified. All patients were treated to 50.4 Gy with five-field IMRT plans. Theoretical 3D-CRT plans with four-field beam arrangements were generated. Dose-volume histograms of the planning target volume, heart, right coronary artery, left coronary artery, and other critical normal tissues were compared between the IMRT and 3D-CRT plans, and selected parameters were statistically evaluated using the Wilcoxon rank-sum test. Results: Intensity-modulated radiotherapy treatment planning showed significant reduction (p < 0.05) in heart dose over 3D-CRT as assessed by average mean dose (22.9 vs. 28.2 Gy) and V30 (24.8% vs. 61.0%). There was also significant sparing of the right coronary artery (average mean dose, 23.8 Gy vs. 35.5 Gy), whereas the left coronary artery showed no significant improvement (mean dose, 11.2 Gy vs. 9.2 Gy), p = 0.11. There was no significant difference in percentage of total lung volume receiving at least 10, 15, or 20 Gy or in the mean lung dose between the planning methods. There were also no significant differences observed for the kidneys, liver, stomach, or spinal cord. Intensity-modulated radiotherapy achieved a significant improvement in target conformity as measured by the conformality index (ratio of total volume receiving 95% of prescription dose to planning target volume receiving 95% of prescription dose), with the mean conformality index reduced from 1.56 to 1.30 using IMRT. Conclusions: Treatment of patients with distal esophageal cancer using IMRT significantly decreases the exposure of the heart and right coronary artery when compared with 3D

  17. SU-E-T-809: Volumetric Modulated Arc Radiotherapy Vs. Intensity-Modulated Radiotherapy for Locally Advanced Laryngeal Carcinoma: A Dosimetric Study

    Energy Technology Data Exchange (ETDEWEB)

    Lu, J-Y; Huang, B-T; Zhang, W-Z; Yan, L-J [Cancer Hospital of Shantou University Medical College, Shantou, Guangdong (China)

    2015-06-15

    Purpose: To compare volumetric modulated arc radiotherapy (VMAT) technique with fixed-gantry intensity-modulated radiotherapy (IMRT) technique for locally advanced laryngeal carcinoma. Methods: CT datasets of eleven patients were included. Dual-arc VMAT and 7-field IMRT plans, which were created based on the Eclipse treatment planning system, were compared in terms of dose-volume parameters, conformity index (CI) and homogeneity index (HI) of planning target volume (PTV), as well as organ-at-risk (OAR) sparing, planning time, monitor units (MUs) and delivery time. Results: Compared with the IMRT plans, the VMAT plans provided lower D2% and better CI/HI for the high-risk PTV (PTV1), and provided better CI and comparable HI for the low-risk PTV (PTV2). Concerning the OAR sparing, the VMAT plans demonstrated significantly lower Dmax of the spinal cord (planning OAR volume, PRV) and brainstem (PRV), as well as lower Dmean and V30Gy of the right parotid. No significant differences were observed between the two plans concerning the doses delivered to the thyroid, carotid, oral cavity and left parotid. Moreover, the VMAT planning (147 ± 18 min) consumed 213% more time than the IMRT planning (48 ± 10 min). The MUs of the VMAT plans (556 ± 52) were 64% less than those of the IMRT plans (1684 ± 409), and the average delivery time (2.1 ± 0.1 min) was 66% less than that of the IMRT plans (6.3 ± 0.7 min). Conclusion: Compared with the IMRT technique, the VMAT technique can achieve superior target dose distribution and better sparing of the spinal cord, brainstem and right parotid, with less MUs and less delivery time. It is recommended for the radiotherapy of locally advanced laryngeal carcinoma.

  18. Minimising contralateral breast dose in post-mastectomy intensity-modulated radiotherapy by incorporating conformal electron irradiation

    NARCIS (Netherlands)

    van der Laan, Hans Paul; Korevaar, Erik W; Dolsma, Willemtje; Maduro, John H; Langendijk, Johannes A

    PURPOSE: To assess the potential benefit of incorporating conformal electron irradiation in intensity-modulated radiotherapy (IMRT) for loco-regional post-mastectomy RT. PATIENTS AND METHODS: Ten consecutive patients that underwent left-sided mastectomy were selected for this comparative planning

  19. Can All Centers Plan Intensity-Modulated Radiotherapy (IMRT) Effectively? An External Audit of Dosimetric Comparisons Between Three-Dimensional Conformal Radiotherapy and IMRT for Adjuvant Chemoradiation for Gastric Cancer

    International Nuclear Information System (INIS)

    Chung, Hans T.; Lee, Brian; Park, Eileen; Lu, Jiade J.; Xia Ping

    2008-01-01

    Purpose: To compare dosimetric endpoints between three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) at our center with limited IMRT experience, and to perform an external audit of the IMRT plans. Methods and Materials: Ten patients, who received adjuvant chemoradiation for gastric cancer, formed the study cohort. For standardization, the planning target volume (PTV) and organs at risk were recontoured with the assistance of a study protocol radiologic atlas. The cohort was replanned with CMS Xio to generate coplanar 3D-CRT and IMRT plans. All 10 datasets, including volumes but without the plans (i.e., blinded), were transmitted to an experienced center where IMRT plans were designed using Nomos Corvus (IMRT-C) and ADAC Pinnacle (IMRT-P). All IMRT plans were normalized to D95% receiving 45 Gy. Results: Intensity-modulated radiotherapy yielded higher PTV V45 (volume that receives ≥45 Gy) (p < 0.001) than 3D-CRT. No difference in V20 was seen in the right (p = 0.9) and left (p 0.3) kidneys, but the liver mean dose (p < 0.001) was superior with IMRT. For the external audit, IMRT-C (p = 0.002) and IMRT-P (p < 0.001) achieved significantly lower left kidney V20 than IMRT, and IMRT-P (p < 0.001) achieved lower right kidney V20 than IMRT. The IMRT-C (p = 0.003) but not IMRT-P (p = 0.6) had lower liver mean doses than IMRT. Conclusions: At our institution with early IMRT experience, IMRT improved PTV dose coverage and liver doses but not kidney doses. An external audit of IMRT plans showed that an experienced center can yield superior IMRT plans

  20. [Positioning errors of CT common rail technique in intensity-modulated radiotherapy for nasopharyngeal carcinoma].

    Science.gov (United States)

    Tian, Fei; Xu, Zihai; Mo, Li; Zhu, Chaohua; Chen, Chaomin

    2012-11-01

    To evaluate the value of CT common rail technique for application in intensity-modulated radiotherapy for nasopharyngeal carcinoma (NPC). Twenty-seven NPC patients underwent Somatom CT scans using the Siemens CTVision system prior to the commencement of the radiotherapy sessions. The acquired CT images were registered with the planning CT images using the matching function of the system to obtain the linear set-up errors of 3 directions, namely X (left to right), Y (superior to inferior), and Z (anterior to posterior). The errors were then corrected online on the moving couch. The 27 NPC patients underwent a total of 110 CT scans and the displacement deviations of the X, Y and Z directions were -0.16∓1.68 mm, 0.25∓1.66 mm, and 0.33∓1.09 mm, respectively. CT common rail technique can accurately and rapidly measure the space error between the posture and the target area to improve the set-up precision of intensity-modulated radiotherapy for NPC.

  1. Dosimetry comparison of irradiation with conformal radiotherapy, intensity modulated radiotherapy, conformal radiotherapy in stereotactic conditions and robotic stereotactic radiotherapy for benign brain tumours

    International Nuclear Information System (INIS)

    Spasic, E.; Noel, A.; Buchheit, I.; Bernier, V.

    2011-01-01

    Purpose. - To compare several techniques in order to determine the best treatment for benign brain tumours. Methods and patients. - A retrospective study was performed for five patients who received 3D-conformal radiotherapy, intensity modulated radiotherapy or CyberKnife R . These patients had a meningioma, a pituitary tumour, a cranio-pharyngioma or a neurinoma. In each case, these treatment plans were optimised and compared with the three other dosimetries. Radiobiological or positioning parameters were evaluated, as well as dosimetric parameters, in order to compare treatments with different characteristics. Results. - The dosimetric parameters showed that the choice of treatment seemed to be determined mostly by tumour size, shape and proximity with organs at risk (not tumour localisation). Whereas the results showed no significant deviations with regards to the radiobiological parameters. Therefore, with these parameters, it was difficult to give priority to a treatment. Conclusions. - With regards to benign brain tumours of medium or large size, intensity modulated radiotherapy seemed the recommended treatment. It enabled to obtain a good ratio between efficacy and toxicity for tumours that are really close to organs at risk. Concerning small benign brain tumours, the CyberKnife R was probably the best treatment. (authors)

  2. Intensity modulated radiotherapy (IMRT) in bilateral retinoblastoma

    International Nuclear Information System (INIS)

    Atalar, Banu; Ozyar, Enis; Gunduz, Kaan; Gungor, Gorkem

    2010-01-01

    External beam radiotherapy (EBRT) for retinoblastoma has traditionally been done with conventional radiotherapy techniques which resulted high doses to the surrounding normal tissues. A 20 month-old girl with group D bilateral retinoblastoma underwent intensity modulated radiotherapy (IMRT) to both eyes after failing chemoreduction and focal therapies including cryotherapy and transpupillary thermotherapy. In this report, we discuss the use of IMRT as a method for reducing doses to adjacent normal tissues while delivering therapeutic doses to the tumour tissues compared with 3-dimensional conformal radiotherapy (3DCRT). At one year follow-up, the patient remained free of any obvious radiation complications. Image guided IMRT provides better dose distribution than 3DCRT in retinoblastoma eyes, delivering the therapeutic dose to the tumours and minimizing adjacent tissue damage

  3. Intensity-Modulated Whole Abdominal Radiotherapy After Surgery and Carboplatin/Taxane Chemotherapy for Advanced Ovarian Cancer: Phase I Study

    International Nuclear Information System (INIS)

    Rochet, Nathalie; Sterzing, Florian; Jensen, Alexandra D.; Dinkel, Julien; Herfarth, Klaus K.; Schubert, Kai; Eichbaum, Michael H.; Schneeweiss, Andreas; Sohn, Christof; Debus, Juergen; Harms, Wolfgang

    2010-01-01

    Purpose: To assess the feasibility and toxicity of consolidative intensity-modulated whole abdominal radiotherapy (WAR) after surgery and chemotherapy in high-risk patients with advanced ovarian cancer. Methods and Materials: Ten patients with optimally debulked ovarian cancer International Federation of Gynecology and Obstetrics Stage IIIc were treated in a Phase I study with intensity-modulated WAR up to a total dose of 30 Gy in 1.5-Gy fractions as consolidation therapy after adjuvant carboplatin/taxane chemotherapy. Treatment was delivered using intensity-modulated radiotherapy in a step-and-shoot technique (n = 3) or a helical tomotherapy technique (n = 7). The planning target volume included the entire peritoneal cavity and the pelvic and para-aortal node regions. Organs at risk were kidneys, liver, heart, vertebral bodies, and pelvic bones. Results: Intensity-modulated WAR resulted in an excellent coverage of the planning target volume and an effective sparing of the organs at risk. The treatment was well tolerated, and no severe Grade 4 acute side effects occurred. Common Toxicity Criteria Grade III toxicities were as follows: diarrhea (n = 1), thrombocytopenia (n = 1), and leukopenia (n = 3). Radiotherapy could be completed by all the patients without any toxicity-related interruption. Median follow-up was 23 months, and 4 patients had tumor recurrence (intraperitoneal progression, n = 3; hepatic metastasis, n = 1). Small bowel obstruction caused by adhesions occurred in 3 patients. Conclusions: The results of this Phase I study showed for the first time, to our knowledge, the clinical feasibility of intensity-modulated whole abdominal radiotherapy, which could offer a new therapeutic option for consolidation treatment of advanced ovarian carcinoma after adjuvant chemotherapy in selected subgroups of patients. We initiated a Phase II study to further evaluate the toxicity of this intensive multimodal treatment.

  4. Intensity-modulated whole abdominal radiotherapy after surgery and carboplatin/taxane chemotherapy for advanced ovarian cancer: phase I study.

    Science.gov (United States)

    Rochet, Nathalie; Sterzing, Florian; Jensen, Alexandra D; Dinkel, Julien; Herfarth, Klaus K; Schubert, Kai; Eichbaum, Michael H; Schneeweiss, Andreas; Sohn, Christof; Debus, Juergen; Harms, Wolfgang

    2010-04-01

    To assess the feasibility and toxicity of consolidative intensity-modulated whole abdominal radiotherapy (WAR) after surgery and chemotherapy in high-risk patients with advanced ovarian cancer. Ten patients with optimally debulked ovarian cancer International Federation of Gynecology and Obstetrics Stage IIIc were treated in a Phase I study with intensity-modulated WAR up to a total dose of 30 Gy in 1.5-Gy fractions as consolidation therapy after adjuvant carboplatin/taxane chemotherapy. Treatment was delivered using intensity-modulated radiotherapy in a step-and-shoot technique (n = 3) or a helical tomotherapy technique (n = 7). The planning target volume included the entire peritoneal cavity and the pelvic and para-aortal node regions. Organs at risk were kidneys, liver, heart, vertebral bodies, and pelvic bones. Intensity-modulated WAR resulted in an excellent coverage of the planning target volume and an effective sparing of the organs at risk. The treatment was well tolerated, and no severe Grade 4 acute side effects occurred. Common Toxicity Criteria Grade III toxicities were as follows: diarrhea (n = 1), thrombocytopenia (n = 1), and leukopenia (n = 3). Radiotherapy could be completed by all the patients without any toxicity-related interruption. Median follow-up was 23 months, and 4 patients had tumor recurrence (intraperitoneal progression, n = 3; hepatic metastasis, n = 1). Small bowel obstruction caused by adhesions occurred in 3 patients. The results of this Phase I study showed for the first time, to our knowledge, the clinical feasibility of intensity-modulated whole abdominal radiotherapy, which could offer a new therapeutic option for consolidation treatment of advanced ovarian carcinoma after adjuvant chemotherapy in selected subgroups of patients. We initiated a Phase II study to further evaluate the toxicity of this intensive multimodal treatment.

  5. Feasibility of using intensity-modulated radiotherapy to improve lung sparing in treatment planning for distal esophageal cancer

    International Nuclear Information System (INIS)

    Chandra, Anurag; Guerrero, Thomas M.; Liu, H. Helen; Tucker, Susan L.; Liao Zhongxing; Wang Xiaochun; Murshed, Hasan; Bonnen, Mark D.; Garg, Amit K.; Stevens, Craig W.; Chang, Joe Y.; Jeter, Melinda D.; Mohan, Radhe; Cox, James D.; Komaki, Ritsuko

    2005-01-01

    Background and purpose: To evaluate the feasibility whether intensity-modulated radiotherapy (IMRT) can be used to reduce doses to normal lung than three-dimensional conformal radiotherapy (3DCRT) in treating distal esophageal malignancies. Patients and methods: Ten patient cases with cancer of the distal esophagus were selected for a retrospective treatment-planning study. IMRT plans using four, seven, and nine beams (4B, 7B, and 9B) were developed for each patient and compared with the 3DCRT plan used clinically. IMRT and 3DCRT plans were evaluated with respect to PTV coverage and dose-volumes to irradiated normal structures, with statistical comparison made between the two types of plans using the Wilcoxon matched-pair signed-rank test. Results: IMRT plans (4B, 7B, 9B) reduced total lung volume treated above 10 Gy (V 1 ), 20 Gy (V 2 ), mean lung dose (MLD), biological effective volume (V eff ), and lung integral dose (P 1 , 5% for V 2 , and 2.5 Gy for MLD. IMRT improved the PTV heterogeneity (P<0.05), yet conformity was better with 7B-9B IMRT plans. No clinically meaningful differences were observed with respect to the irradiated volumes of spinal cord, heart, liver, or total body integral doses. Conclusions: Dose-volume of exposed normal lung can be reduced with IMRT, though clinical investigations are warranted to assess IMRT treatment outcome of esophagus cancers

  6. Development of a quality control system in intensity modulated radiotherapy (IMRT)

    International Nuclear Information System (INIS)

    Souza, Roberto Salomon de; Braz, Delson

    2013-01-01

    The more complex the technique of radiotherapy is, the more refined the quality control must be. The technique of Intensity Modulated Radiotherapy (IMRT) is one of the technological innovations that gained space in the whole worlds in the last decade whose parameters of quality control are not fully established yet. The present work developed a phantom for quality control in IMRT to be implemented in the routine of the Radiotherapy Quality Control Program (PQRT) of the Brazilian National Cancer Institute (INCa). The device consists of a block formed by several polystyrene slice with TDLs and radiochromic film inserted. It should be sent (or taken) to the Program participating institutions to be irradiated under certain conditions and then be returned to the PQRT., where the discrepancy degree between the planned treatment and those effectively delivered will be evaluated. The system was validated through the test cases and the pilot program preformed in nine radiotherapy centers that perform IMRT in the southeast region of Brazil. (author)

  7. Local failure patterns for patients with nasopharyngeal carcinoma after intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Li, Jia-xin; Huang, Shao-min; Jiang, Xin-hua; Ouyang, Bin; Han, Fei; Liu, Shuai; Wen, Bi-xiu; Lu, Tai-xiang

    2014-01-01

    To investigate the clinical feature and the local failure patterns after intensity-modulated radiotherapy for nasopharyngeal carcinoma. Between March 2007 and July 2009, 710 patients with nasopharyngeal carcinoma were treated with intensity-modulated radiotherapy. The magnetic resonance imagings obtained at recurrence were registered with the original planning computed tomography for dosimetry analysis. With a median follow-up of 38 months, 34 patients have developed local recurrence (32 cases valid). The incidence of invasion to nasopharynx, parapharyngeal space and the retropharyngeal space by the primary tumors was 100%, 75.0% and 62.5%, respectively, but 78.1%, 34.4% and 21.9% at recurrence, respectively. The rate of invasion to ethmoid sinus was 3.1% by the primary tumors but 28.1% at recurrence (p = 0.005). The topographic analysis of the local failure patterns showed 'central' in 16 patients; 'marginal' in 9; and 'outside' in 7. The median volumes of primary gross tumor were 45.84 cm 3 in the central failure group, 29.44 cm 3 in the marginal failure group, and 21.52 cm 3 in the outside failure group, respectively (p = 0.012), and the median volumes of primary clinical target1 were 87.28 cm 3 , 61.90 cm 3 and 58.74 cm 3 in the three groups, respectively (p = 0.033). In patients with nasopharyngeal carcinoma treated with intensity-modulated radiotherapy, the recurrent tumors had their unique characteristic and regularity of invasion to adjacent structures. 'Central' failure was the major local failure pattern. The volumes of primary gross tumor and clinical target1 were significantly correlated with recurrent patterns. Employ more aggressive approaches to tumor cells which will be insensitive to radiotherapy may be an effective way to reduce the central failure

  8. Pelvic Ewing sarcomas. Three-dimensional conformal vs. intensity-modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mounessi, F.S.; Lehrich, P.; Haverkamp, U.; Eich, H.T. [Muenster Univ. (Germany). Dept. of Radiation Oncology; Willich, N. [Muenster Univ. (Germany). Dept. of Radiation Oncology; Universitaetsklinikum Muenster (Germany). RiSK - Registry for the Evaluation of Late Side Effects after Radiotherapy in Childhood and Adolescence; Boelling, T. [Center for Radiation Oncology, Osnabrueck (Germany)

    2013-04-15

    The goal of the present work was to assess the potential advantage of intensity-modulated radiotherapy (IMRT) over three-dimensional conformal radiotherapy (3D-CRT) planning in pelvic Ewing's sarcoma. A total of 8 patients with Ewing sarcoma of the pelvis undergoing radiotherapy were analyzed. Plans for 3D-CRT and IMRT were calculated for each patient. Dose coverage of the planning target volume (PTV), conformity and homogeneity indices, as well as further parameters were evaluated. Results The average dose coverage values for PTV were comparable in 3D-CRT and IMRT plans. Both techniques had a PTV coverage of V{sub 95} > 98 % in all patients. Whereas the IMRT plans achieved a higher conformity index compared to the 3D-CRT plans (conformity index 0.79 {+-} 0.12 vs. 0.54 {+-} 0.19, p = 0.012), the dose distribution across the target volumes was less homogeneous with IMRT planning than with 3D-CRT planning. This difference was statistically significant (homogeneity index 0.11 {+-} 0.03 vs. 0.07 {+-} 0.0, p = 0.035). For the bowel, D{sub mean} and D{sub 1%}, as well as V{sub 2} to V{sub 60} were reduced in IMRT plans. For the bladder and the rectum, there was no significant difference in D{sub mean}. However, the percentages of volumes receiving at least doses of 30, 40, 45, and 50 Gy (V{sub 30} to V{sub 50}) were lower for the rectum in IMRT plans. The volume of normal tissue receiving at least 2 Gy (V{sub 2}) was significantly higher in IMRT plans compared with 3D-CRT, whereas at high dose levels (V{sub 30}) it was significantly lower. Compared to 3D-CRT, IMRT showed significantly better results regarding dose conformity (p = 0.012) and bowel sparing at dose levels above 30 Gy (p = 0.012). Thus, dose escalation in the radiotherapy of pelvic Ewing's sarcoma can be more easily achieved using IMRT. (orig.)

  9. Dosimetric comparison of intensity-modulated, conformal, and four-field pelvic radiotherapy boost plans for gynecologic cancer: a retrospective planning study

    International Nuclear Information System (INIS)

    Chan, Philip; Yeo, Inhwan; Perkins, Gregory; Fyles, Anthony; Milosevic, Michael

    2006-01-01

    To evaluate intensity-modulated radiation therapy (IMRT) as an alternative to conformal radiotherapy (CRT) or 4-field box boost (4FB) in women with gynecologic malignancies who are unsuitable for brachytherapy for technical or medical reasons. Dosimetric and toxicity information was analyzed for 12 patients with cervical (8), endometrial (2) or vaginal (2) cancer previously treated with external beam pelvic radiotherapy and a CRT boost. Optimized IMRT boost treatment plans were then developed for each of the 12 patients and compared to CRT and 4FB plans. The plans were compared in terms of dose conformality and critical normal tissue avoidance. The median planning target volume (PTV) was 151 cm 3 (range 58–512 cm 3 ). The median overlap of the contoured rectum with the PTV was 15 (1–56) %, and 11 (4–35) % for the bladder. Two of the 12 patients, both with large PTVs and large overlap of the contoured rectum and PTV, developed grade 3 rectal bleeding. The dose conformity was significantly improved with IMRT over CRT and 4FB (p ≤ 0.001 for both). IMRT also yielded an overall improvement in the rectal and bladder dose-volume distributions relative to CRT and 4FB. The volume of rectum that received the highest doses (>66% of the prescription) was reduced by 22% (p < 0.001) with IMRT relative to 4FB, and the bladder volume was reduced by 19% (p < 0.001). This was at the expense of an increase in the volume of these organs receiving doses in the lowest range (<33%). These results indicate that IMRT can improve target coverage and reduce dose to critical structures in gynecologic patients receiving an external beam radiotherapy boost. This dosimetric advantage will be integrated with other patient and treatment-specific factors, particularly internal tumor movement during fractionated radiotherapy, in the context of a future image-guided radiation therapy study

  10. Evaluation of the impact of dental artefacts on intensity-modulated radiotherapy planning for the head and neck

    International Nuclear Information System (INIS)

    Webster, Gareth J.; Rowbottom, Carl G.; Mackay, Ranald I.

    2009-01-01

    Background and purpose: High density materials create severe artefacts in the computed tomography (CT) scans used for radiotherapy dose calculations. Increased use of intensity-modulated radiotherapy (IMRT) to treat oropharyngeal cancers raises concerns over the accuracy of the resulting dose calculation. This work quantifies their impact and evaluates a simple corrective technique. Materials and methods: Fifteen oropharyngeal patients with severe artefacts were retrospectively planned with IMRT using two different CT/density look-up tables. Each plan was recalculated using a corrected CT dataset to evaluate the dose distribution delivered to the patient. Plan quality in the absence of dental artefacts was similarly assessed. A range of dosimetric and radiobiological parameters were compared pre- and post-correction. Results: Plans using a standard CT/density look-up table (density ≤1.8 g/cm 3 ) revealed inconsistent inter-patient errors, mostly within clinical acceptance, although potentially significantly reducing target coverage for individual patients. Using an extended CT/density look-up table (density ≤10.0 g/cm 3 ) greatly reduced the errors for 13/15 patients. In 2/15 patients with residual errors the CTV extended into the severely affected region and could be corrected by applying a simple manual correction. Conclusions: Use of an extended CT/density look-up table together with a simple manual bulk density correction reduces the impact of dental artefacts on head and neck IMRT planning to acceptable levels.

  11. Retrospective evaluation of dosimetric quality for prostate carcinomas treated with 3D conformal, intensity modulated and volumetric modulated arc radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, Scott B [Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland (Australia); Kairn, Tanya [Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland (Australia); Premion, Wesley Medical Centre, Brisbane, Queensland (Australia); Middlebrook, Nigel; Hill, Brendan; Christie, David R H; Knight, Richard T [Premion, Wesley Medical Centre, Brisbane, Queensland (Australia); Kenny, John [Australian Clinical Dosimetry Services, Australian Radiation Protection and Nuclear Safety Agency, Melbourne, Victoria (Australia); Langton, Christian M; Trapp, Jamie V [Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland (Australia)

    2013-12-15

    This study examines and compares the dosimetric quality of radiotherapy treatment plans for prostate carcinoma across a cohort of 163 patients treated across five centres: 83 treated with three-dimensional conformal radiotherapy (3DCRT), 33 treated with intensity modulated radiotherapy (IMRT) and 47 treated with volumetric modulated arc therapy (VMAT). Treatment plan quality was evaluated in terms of target dose homogeneity and organs at risk (OAR), through the use of a set of dose metrics. These included the mean, maximum and minimum doses; the homogeneity and conformity indices for the target volumes; and a selection of dose coverage values that were relevant to each OAR. Statistical significance was evaluated using two-tailed Welch's T-tests. The Monte Carlo DICOM ToolKit software was adapted to permit the evaluation of dose metrics from DICOM data exported from a commercial radiotherapy treatment planning system. The 3DCRT treatment plans offered greater planning target volume dose homogeneity than the other two treatment modalities. The IMRT and VMAT plans offered greater dose reduction in the OAR: with increased compliance with recommended OAR dose constraints, compared to conventional 3DCRT treatments. When compared to each other, IMRT and VMAT did not provide significantly different treatment plan quality for like-sized tumour volumes. This study indicates that IMRT and VMAT have provided similar dosimetric quality, which is superior to the dosimetric quality achieved with 3DCRT.

  12. Dosimetric comparison of field in field intensity-modulated radiotherapy technique with conformal radiotherapy techniques in breast cancer

    International Nuclear Information System (INIS)

    Ercan, T.; Alco, G.; Zengin, F.; Atilla, S.; Dincer, M.; Igdem, S.; Okkan, S.

    2010-01-01

    The aim of this study was to be able to implement the field-in-field intensity-modulated radiotherapy (FiF) technique in our daily practice for breast radiotherapy. To do this, we performed a dosimetric comparison. Treatment plans were produced for 20 consecutive patients. FiF plans and conformal radiotherapy (CRT) plans were compared for doses in the planning target volume (PTV), the dose homogeneity index (DHI), doses in irradiated soft tissue outside the target volume (SST), ipsilateral lung and heart doses for left breast irradiation, and the monitor unit counts (MU) required for treatment. Averaged values were compared using Student's t-test. With FiF, the DHI is improved 7.0% and 5.7%, respectively (P<0.0001) over the bilateral and lateral wedge CRT techniques. When the targeted volumes received 105% and 110% of the prescribed dose in the PTV were compared, significant decreases are found with the FiF technique. With the 105% dose, the SST, heart, and ipsilateral lung doses and the MU counts were also significantly lower with the FiF technique. The FiF technique, compared to CRT, for breast radiotherapy enables significantly better dose distribution in the PTV. Significant differences are also found for soft tissue volume, the ipsilateral lung dose, and the heart dose. Considering the decreased MUs needed for treatment, the FiF technique is preferred over tangential CRT. (author)

  13. Conformal radiotherapy by intensity modulation of pediatrics tumors

    International Nuclear Information System (INIS)

    Leseur, J.; Le Prise, E.; Carrie, C.; Bernier, V.; Beneyton, V.; Mahe, M.A.; Supiot, S.

    2009-01-01

    The objective of this study is to take stock on the validated and potential indications of the conformal radiotherapy with intensity modulation ( intensity modulated radiotherapy I.M.R.T.) in pediatrics and to propose recommendations for its use as well as the adapted dose constraints. About 40 to 50% of children treated for a cancer are irradiated. The I.M.R.T., by linear accelerator or helical tomo-therapy has for aim to give a homogenous dose to the target volume and to save organs at risk. Its use in pediatrics seems particularly interesting because of the complexity of target volumes and the closeness of organs at risk. In compensation for these positive elements, the importance of low doses irradiation given in big volumes makes fear event consequences on growth and an increased incidence of secondary cancers in children suffering from tumors with high cure rates and long life expectancy. (N.C.)

  14. Planning magnetic resonance imaging for prostate cancer intensity-modulated radiation therapy: Impact on target volumes, radiotherapy dose and androgen deprivation administration.

    Science.gov (United States)

    Horsley, Patrick J; Aherne, Noel J; Edwards, Grace V; Benjamin, Linus C; Wilcox, Shea W; McLachlan, Craig S; Assareh, Hassan; Welshman, Richard; McKay, Michael J; Shakespeare, Thomas P

    2015-03-01

    Magnetic resonance imaging (MRI) scans are increasingly utilized for radiotherapy planning to contour the primary tumors of patients undergoing intensity-modulated radiation therapy (IMRT). These scans may also demonstrate cancer extent and may affect the treatment plan. We assessed the impact of planning MRI detection of extracapsular extension, seminal vesicle invasion, or adjacent organ invasion on the staging, target volume delineation, doses, and hormonal therapy of patients with prostate cancer undergoing IMRT. The records of 509 consecutive patients with planning MRI scans being treated with IMRT for prostate cancer between January 2010 and July 2012 were retrospectively reviewed. Tumor staging and treatment plans before and after MRI were compared. Of the 509 patients, 103 (20%) were upstaged and 44 (9%) were migrated to a higher risk category as a result of findings at MRI. In 94 of 509 patients (18%), the MRI findings altered management. Ninety-four of 509 patients (18%) had a change to their clinical target volume (CTV) or treatment technique, and in 41 of 509 patients (8%) the duration of hormone therapy was changed because of MRI findings. The use of radiotherapy planning MRI altered CTV design, dose and/or duration of androgen deprivation in 18% of patients in this large, single institution series of men planned for dose-escalated prostate IMRT. This has substantial implications for radiotherapy target volumes and doses, as well as duration of androgen deprivation. Further research is required to investigate whether newer MRI techniques can simultaneously fulfill staging and radiotherapy contouring roles. © 2014 Wiley Publishing Asia Pty Ltd.

  15. Photon energy-modulated radiotherapy: Monte Carlo simulation and treatment planning study

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Min; Kim, Jung-in; Heon Choi, Chang; Chie, Eui Kyu; Kim, Il Han; Ye, Sung-Joon [Interdiciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul, 110-744, Korea and Department of Radiation Oncology, Seoul National University Hospital, Seoul, 110-744 (Korea, Republic of); Interdiciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul, 110-744 (Korea, Republic of); Department of Radiation Oncology, Seoul National University Hospital, Seoul, 110-744 (Korea, Republic of); Interdiciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul, 110-744 (Korea, Republic of) and Department of Radiation Oncology, Seoul National University Hospital, Seoul, 110-744 (Korea, Republic of); Interdiciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul, 110-744 (Korea, Republic of); Department of Radiation Oncology, Seoul National University Hospital, Seoul, 110-744 (Korea, Republic of) and Department of Intelligent Convergence Systems, Seoul National University, Seoul, 151-742 (Korea, Republic of)

    2012-03-15

    Purpose: To demonstrate the feasibility of photon energy-modulated radiotherapy during beam-on time. Methods: A cylindrical device made of aluminum was conceptually proposed as an energy modulator. The frame of the device was connected with 20 tubes through which mercury could be injected or drained to adjust the thickness of mercury along the beam axis. In Monte Carlo (MC) simulations, a flattening filter of 6 or 10 MV linac was replaced with the device. The thickness of mercury inside the device varied from 0 to 40 mm at the field sizes of 5 x 5 cm{sup 2} (FS5), 10 x 10 cm{sup 2} (FS10), and 20 x 20 cm{sup 2} (FS20). At least 5 billion histories were followed for each simulation to create phase space files at 100 cm source to surface distance (SSD). In-water beam data were acquired by additional MC simulations using the above phase space files. A treatment planning system (TPS) was commissioned to generate a virtual machine using the MC-generated beam data. Intensity modulated radiation therapy (IMRT) plans for six clinical cases were generated using conventional 6 MV, 6 MV flattening filter free, and energy-modulated photon beams of the virtual machine. Results: As increasing the thickness of mercury, Percentage depth doses (PDD) of modulated 6 and 10 MV after the depth of dose maximum were continuously increased. The amount of PDD increase at the depth of 10 and 20 cm for modulated 6 MV was 4.8% and 5.2% at FS5, 3.9% and 5.0% at FS10 and 3.2%-4.9% at FS20 as increasing the thickness of mercury from 0 to 20 mm. The same for modulated 10 MV was 4.5% and 5.0% at FS5, 3.8% and 4.7% at FS10 and 4.1% and 4.8% at FS20 as increasing the thickness of mercury from 0 to 25 mm. The outputs of modulated 6 MV with 20 mm mercury and of modulated 10 MV with 25 mm mercury were reduced into 30%, and 56% of conventional linac, respectively. The energy-modulated IMRT plans had less integral doses than 6 MV IMRT or 6 MV flattening filter free plans for tumors located in the

  16. SU-E-T-808: Volumetric Modulated Arc Radiotherapy Vs. Intensity-Modulated Radiotherapy for Early-Stage Nasopharyngeal Carcinoma: A Dosimetric Study

    Energy Technology Data Exchange (ETDEWEB)

    Lu, J-Y; Huang, B-T; Zhang, W-Z [Cancer Hospital of Shantou University Medical College, Shantou, Guangdong (China)

    2015-06-15

    Purpose: To compare volumetric modulated arc radiotherapy (VMAT) technique with fixed-gantry intensity-modulated radiotherapy (IMRT) technique for early-stage nasopharyngeal carcinoma. Methods: CT datasets of ten patients with early-stage nasopharyngeal carcinoma were included. Dual-arc VMAT and nine-field IMRT plans were generated for each case, and were then compared in terms of planning-target-volume (PTV) coverage, conformity index (CI) and homogeneity index (HI), as well as organ-at-risk (OAR) sparing, planning time, monitor units (MUs) and delivery time. Results: Compared with the IMRT plans, the VMAT plans provided comparable HI and CI of PTVnx (PTV of primary tumor of nasopharynx), superior CI and inferior HI of PTVnd (PTV of lymph nodes), as well as superior CI and comparable HI of PTV60 (high-risk PTV). The VMAT plans provided better sparing of the spinal cord, oral cavity and normal tissue, but inferior sparing of the brainstem planning OAR volume (PRV), larynx and parotids, as well as comparable sparing of the spinal cord PRV, brainstem, lenses, optic nerves, optic chiasm. Moreover, the average planning time (181.6 ± 36.0 min) for the VMAT plans was 171% more than that of the IMRT plans (68.1 ± 7.6 min). The MUs of the VMAT plans (609 ± 43) were 70% lower than those of the IMRT plans (2071 ± 262), while the average delivery time (2.2 ± 0.1 min) was 66% less than that of the IMRT plans (6.6 ± 0.4 min). Conclusion: Compared with the IMRT technique, the VMAT technique can achieve similar or slightly superior target dose distribution, with no significant advantages on OAR sparing, and it can achieve significant reductions of MUs and delivery time.

  17. SU-E-T-808: Volumetric Modulated Arc Radiotherapy Vs. Intensity-Modulated Radiotherapy for Early-Stage Nasopharyngeal Carcinoma: A Dosimetric Study

    International Nuclear Information System (INIS)

    Lu, J-Y; Huang, B-T; Zhang, W-Z

    2015-01-01

    Purpose: To compare volumetric modulated arc radiotherapy (VMAT) technique with fixed-gantry intensity-modulated radiotherapy (IMRT) technique for early-stage nasopharyngeal carcinoma. Methods: CT datasets of ten patients with early-stage nasopharyngeal carcinoma were included. Dual-arc VMAT and nine-field IMRT plans were generated for each case, and were then compared in terms of planning-target-volume (PTV) coverage, conformity index (CI) and homogeneity index (HI), as well as organ-at-risk (OAR) sparing, planning time, monitor units (MUs) and delivery time. Results: Compared with the IMRT plans, the VMAT plans provided comparable HI and CI of PTVnx (PTV of primary tumor of nasopharynx), superior CI and inferior HI of PTVnd (PTV of lymph nodes), as well as superior CI and comparable HI of PTV60 (high-risk PTV). The VMAT plans provided better sparing of the spinal cord, oral cavity and normal tissue, but inferior sparing of the brainstem planning OAR volume (PRV), larynx and parotids, as well as comparable sparing of the spinal cord PRV, brainstem, lenses, optic nerves, optic chiasm. Moreover, the average planning time (181.6 ± 36.0 min) for the VMAT plans was 171% more than that of the IMRT plans (68.1 ± 7.6 min). The MUs of the VMAT plans (609 ± 43) were 70% lower than those of the IMRT plans (2071 ± 262), while the average delivery time (2.2 ± 0.1 min) was 66% less than that of the IMRT plans (6.6 ± 0.4 min). Conclusion: Compared with the IMRT technique, the VMAT technique can achieve similar or slightly superior target dose distribution, with no significant advantages on OAR sparing, and it can achieve significant reductions of MUs and delivery time

  18. Dosimetric Comparison of Three-Dimensional Conformal Proton Radiotherapy, Intensity-Modulated Proton Therapy, and Intensity-Modulated Radiotherapy for Treatment of Pediatric Craniopharyngiomas

    Energy Technology Data Exchange (ETDEWEB)

    Boehling, Nicholas S. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Grosshans, David R., E-mail: dgrossha@mdanderson.org [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Bluett, Jaques B. [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Palmer, Matthew T. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Song, Xiaofei; Amos, Richard A.; Sahoo, Narayan [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Meyer, Jeffrey J.; Mahajan, Anita; Woo, Shiao Y. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)

    2012-02-01

    Purpose: Cranial irradiation in pediatric patients is associated with serious long-term adverse effects. We sought to determine whether both three-dimensional conformal proton radiotherapy (3D-PRT) and intensity-modulated proton therapy (IMPT) compared with intensity-modulated radiotherapy (IMRT) decrease integral dose to brain areas known to harbor neuronal stem cells, major blood vessels, and other normal brain structures for pediatric patients with craniopharyngiomas. Methods and Materials: IMRT, forward planned, passive scattering proton, and IMPT plans were generated and optimized for 10 pediatric patients. The dose was 50.4 Gy (or cobalt Gy equivalent) delivered in 28 fractions with the requirement for planning target volume (PTV) coverage of 95% or better. Integral dose data were calculated from differential dose-volume histograms. Results: The PTV target coverage was adequate for all modalities. IMRT and IMPT yielded the most conformal plans in comparison to 3D-PRT. Compared with IMRT, 3D-PRT and IMPT plans had a relative reduction of integral dose to the hippocampus (3D-PRT, 20.4; IMPT, 51.3%{sup Asterisk-Operator }), dentate gyrus (27.3, 75.0%{sup Asterisk-Operator }), and subventricular zone (4.5, 57.8%{sup Asterisk-Operator }). Vascular organs at risk also had reduced integral dose with the use of proton therapy (anterior cerebral arteries, 33.3{sup Asterisk-Operator }, 100.0%{sup Asterisk-Operator }; middle cerebral arteries, 25.9%{sup Asterisk-Operator }, 100%{sup Asterisk-Operator }; anterior communicating arteries, 30.8{sup Asterisk-Operator }, 41.7%{sup Asterisk-Operator }; and carotid arteries, 51.5{sup Asterisk-Operator }, 77.6{sup Asterisk-Operator }). Relative reduction of integral dose to the infratentorial brain (190.7{sup Asterisk-Operator }, 109.7%{sup Asterisk-Operator }), supratentorial brain without PTV (9.6, 26.8%{sup Asterisk-Operator }), brainstem (45.6, 22.4%{sup Asterisk-Operator }), and whole brain without PTV (19.4{sup Asterisk

  19. SU-E-T-302: Dosimetric Comparison Between Volumetric Modulated Arc Radiotherapy and Intensity-Modulated Radiotherapy for Locally Recurrent Nasopharyngeal Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Lu, J-Y; Huang, B-T; Zhang, J-Y; Ma, C-C [Cancer Hospital of Shantou University Medical College, Shantou, Guangdong (China)

    2015-06-15

    Purpose: To compare volumetric modulated arc radiotherapy (VMAT) technique with fixed-gantry intensity-modulated radiotherapy (IMRT) technique for locally recurrent nasopharyngeal carcinoma. Methods: CT datasets of eleven nasopharyngeal-carcinoma patients were included. Dual-arc VMAT and seven-field IMRT plans were created for each case, and were then compared in terms of conformity index (CI), homogeneity index (HI) of the planning target volume (PTV), organ-at-risk (OAR) sparing, monitor unit (MU) and delivery time. Results: The D98% (near-minimal dose) of PTV in the VMAT plans was slightly lower than that of the IMRT plans (P < 0.05), while the CI was higher than that of the IMRT plans (P < 0.05). No significant difference was found in the HI between the two plans (P > 0.05). Compared with the IMRT plans, the VMAT plans demonstrated lower Dmean (mean dose) of the bilateral temporal lobes and the whole surrounding normal tissue (P < 0.05), but slightly higher Dmean of brainstem (P < 0.05). In terms of the other OARs, no significant differences were found (P > 0.05). The MUs of the VMAT plans (672 ± 112) was significantly lower than that of the IMRT plans (917 ± 206), by 25 ± 13% (P < 0.05). The average delivery time of the VMAT plans (2.3 ± 0.1 min) was less than that of the IMRT plans (5.1 ± 0.4 min), by 54 ± 3%. Conclusion: For locally recurrent nasopharyngeal carcinoma, the VMAT technique could achieve equivalent or superior dose distribution of the target and better protect the bilateral temporal lobes, compared with the IMRT technique. Moreover, it could reduce the MU and delivery time effectively.

  20. Intensity-Modulated Radiotherapy for Locally Advanced Non-Small-Cell Lung Cancer: A Dose-Escalation Planning Study

    International Nuclear Information System (INIS)

    Lievens, Yolande; Nulens, An; Gaber, Mousa Amr; Defraene, Gilles; De Wever, Walter; Stroobants, Sigrid; Van den Heuvel, Frank

    2011-01-01

    Purpose: To evaluate the potential for dose escalation with intensity-modulated radiotherapy (IMRT) in positron emission tomography-based radiotherapy planning for locally advanced non-small-cell lung cancer (LA-NSCLC). Methods and Materials: For 35 LA-NSCLC patients, three-dimensional conformal radiotherapy and IMRT plans were made to a prescription dose (PD) of 66 Gy in 2-Gy fractions. Dose escalation was performed toward the maximal PD using secondary endpoint constraints for the lung, spinal cord, and heart, with de-escalation according to defined esophageal tolerance. Dose calculation was performed using the Eclipse pencil beam algorithm, and all plans were recalculated using a collapsed cone algorithm. The normal tissue complication probabilities were calculated for the lung (Grade 2 pneumonitis) and esophagus (acute toxicity, grade 2 or greater, and late toxicity). Results: IMRT resulted in statistically significant decreases in the mean lung (p <.0001) and maximal spinal cord (p = .002 and 0005) doses, allowing an average increase in the PD of 8.6-14.2 Gy (p ≤.0001). This advantage was lost after de-escalation within the defined esophageal dose limits. The lung normal tissue complication probabilities were significantly lower for IMRT (p <.0001), even after dose escalation. For esophageal toxicity, IMRT significantly decreased the acute NTCP values at the low dose levels (p = .0009 and p <.0001). After maximal dose escalation, late esophageal tolerance became critical (p <.0001), especially when using IMRT, owing to the parallel increases in the esophageal dose and PD. Conclusion: In LA-NSCLC, IMRT offers the potential to significantly escalate the PD, dependent on the lung and spinal cord tolerance. However, parallel increases in the esophageal dose abolished the advantage, even when using collapsed cone algorithms. This is important to consider in the context of concomitant chemoradiotherapy schedules using IMRT.

  1. Breast-conserving radiation therapy using combined electron and intensity-modulated radiotherapy technique

    International Nuclear Information System (INIS)

    Li, J.G.; Williams, S.S.; Goffinet, D.R.; Boer, A.L.; Xing, L.

    2000-01-01

    An electron beam with appropriate energy was combined with four intensity modulated photon beams. The direction of the electron beam was chosen to be tilted 10-20 laterally from the anteroposterior direction. Two of the intensity-modulated photon beams had the same gantry angles as the conventional tangential fields, whereas the other two beams were rotated 15-25' toward the anteroposterior directions from the first two photon beams. An iterative algorithm was developed which optimizes the weight of the electron beam as well as the fluence profiles of the photon beams for a given patient. Two breast cancer patients with early-stage breast tumors were planned with the new technique and the results were compared with those from 3D planning using tangential fields as well as 9-field intensity-modulated radiotherapy (IMRT) techniques. The combined electron and IMRT plans showed better dose conformity to the target with significantly reduced dose to the ipsilateral lung and, in the case of the left-breast patient, reduced dose to the heart, than the tangential field plans. In both the right-sided and left-sided breast plans, the dose to other normal structures was similar to that from conventional plans and was much smaller than that from the 9-field IMRT plans. The optimized electron beam provided between 70 to 80% of the prescribed dose at the depth of maximum dose of the electron beam. The combined electron and IMRT technique showed improvement over the conventional treatment technique using tangential fields with reduced dose to the ipsilateral lung and the heart. The customized beam directions of the four IMRT fields also kept the dose to other critical structures to a minimum. (author)

  2. Improving bladder cancer treatment with radiotherapy using separate intensity modulated radiotherapy plans for boost and elective fields

    Energy Technology Data Exchange (ETDEWEB)

    Van Rooijen, D.; Van de Kamer, J.; Hulshof, M.; Koning, C.; Bel, A. [Department of Radiation Oncology, Academic Medical Center, Amsterdam (Netherlands)

    2010-06-01

    The aim of this study is to investigate to what extent IMRT can decrease the dose to the organs at risk in bladder cancer treatment compared with conformal treatment while making separate treatment plans for the elective field and the boost. Special attention is paid to sparing small intestines. Twenty patients who were treated with the field-in-field technique (FiF) were re-planned with intensity modulated radiotherapy (IMRT) using five and seven beams, respectively. Separate treatment plans were made for the elective field (including the pelvic lymph nodes) and the boost, which enables position correction for bone and tumour separately. The prescribed dose was 40 Gy to the elective field and 55 or 60 Gy to the planning target volume (PTV). For bladder and rectum, V{sub 45}Gy and V{sub 55}Gy were compared, and for small intestines, V{sub 25}Gy and V{sub 40}Gy. The dose distribution with IMRT conformed better to the shape of the target. There was no significant difference between the techniques in dose to the healthy bladder. The median V{sub 40}Gy of the small intestines decreased from 114 to 66 cc (P = 0.001) with five beam IMRT, and to 55 cc (P = 0.001) with seven beam IMRT compared with FiF. V{sub 45}Gy for rectum decreased from 34.2% to 17.5% (P = 0.004) for both five and seven beam plans, while V{sub 55}Gy for rectum remained the same. With IMRT, a statistically significant dose decrease to the small intestines can be achieved while covering both tumour and elective PTV adequately.

  3. Improving bladder cancer treatment with radiotherapy using separate intensity modulated radiotherapy plans for boost and elective fields

    International Nuclear Information System (INIS)

    Van Rooijen, D.; Van de Kamer, J.; Hulshof, M.; Koning, C.; Bel, A.

    2010-01-01

    The aim of this study is to investigate to what extent IMRT can decrease the dose to the organs at risk in bladder cancer treatment compared with conformal treatment while making separate treatment plans for the elective field and the boost. Special attention is paid to sparing small intestines. Twenty patients who were treated with the field-in-field technique (FiF) were re-planned with intensity modulated radiotherapy (IMRT) using five and seven beams, respectively. Separate treatment plans were made for the elective field (including the pelvic lymph nodes) and the boost, which enables position correction for bone and tumour separately. The prescribed dose was 40 Gy to the elective field and 55 or 60 Gy to the planning target volume (PTV). For bladder and rectum, V 45 Gy and V 55 Gy were compared, and for small intestines, V 25 Gy and V 40 Gy. The dose distribution with IMRT conformed better to the shape of the target. There was no significant difference between the techniques in dose to the healthy bladder. The median V 40 Gy of the small intestines decreased from 114 to 66 cc (P = 0.001) with five beam IMRT, and to 55 cc (P = 0.001) with seven beam IMRT compared with FiF. V 45 Gy for rectum decreased from 34.2% to 17.5% (P = 0.004) for both five and seven beam plans, while V 55 Gy for rectum remained the same. With IMRT, a statistically significant dose decrease to the small intestines can be achieved while covering both tumour and elective PTV adequately.

  4. The clinical implementation of respiratory-gated intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Keall, Paul; Vedam, Sastry; George, Rohini; Bartee, Chris; Siebers, Jeffrey; Lerma, Fritz; Weiss, Elisabeth; Chung, Theodore

    2006-01-01

    The clinical use of respiratory-gated radiotherapy and the application of intensity-modulated radiotherapy (IMRT) are 2 relatively new innovations to the treatment of lung cancer. Respiratory gating can reduce the deleterious effects of intrafraction motion, and IMRT can concurrently increase tumor dose homogeneity and reduce dose to critical structures including the lungs, spinal cord, esophagus, and heart. The aim of this work is to describe the clinical implementation of respiratory-gated IMRT for the treatment of non-small cell lung cancer. Documented clinical procedures were developed to include a tumor motion study, gated CT imaging, IMRT treatment planning, and gated IMRT delivery. Treatment planning procedures for respiratory-gated IMRT including beam arrangements and dose-volume constraints were developed. Quality assurance procedures were designed to quantify both the dosimetric and positional accuracy of respiratory-gated IMRT, including film dosimetry dose measurements and Monte Carlo dose calculations for verification and validation of individual patient treatments. Respiratory-gated IMRT is accepted by both treatment staff and patients. The dosimetric and positional quality assurance test results indicate that respiratory-gated IMRT can be delivered accurately. If carefully implemented, respiratory-gated IMRT is a practical alternative to conventional thoracic radiotherapy. For mobile tumors, respiratory-gated radiotherapy is used as the standard of care at our institution. Due to the increased workload, the choice of IMRT is taken on a case-by-case basis, with approximately half of the non-small cell lung cancer patients receiving respiratory-gated IMRT. We are currently evaluating whether superior tumor coverage and limited normal tissue dosing will lead to improvements in local control and survival in non-small cell lung cancer

  5. Intensity Modulated Neutron Radiotherapy for the Treatment of Adenocarcinoma of the Prostate

    International Nuclear Information System (INIS)

    Santanam, Lakshmi; He, Tony; Yudelev, Mark; Forman, Jeffrey D.; Orton, Colin G.; Heuvel, Frank van den; Maughan, Richard L.; Burmeister, Jay

    2007-01-01

    Purpose: This study investigates the enhanced conformality of neutron dose distributions obtainable through the application of intensity modulated neutron radiotherapy (IMNRT) to the treatment of prostate adenocarcinoma. Methods and Materials: An in-house algorithm was used to optimize individual segments for IMNRT generated using an organ-at-risk (OAR) avoidance approach. A number of beam orientation schemes were investigated in an attempt to approach an optimum solution. The IMNRT plans were created retrospectively for 5 patients previously treated for prostate adenocarcinoma using fast neutron therapy (FNT), and a comparison of these plans is presented. Dose distributions and dose-volume histograms (DVHs) were analyzed and plans were evaluated based on percentage volumes of rectum and bladder receiving 95%, 80%, and 50% (V 95 , V 80 , V 50 ) of the prescription dose, and on V 60 for both the femoral heads and GM muscle group. Results: Plans were normalized such that the IMNRT DVHs for prostate and seminal vesicles were nearly identical to those for conventional FNT plans. Use of IMNRT provided reductions in rectum V 95 and V 80 of 10% (2-27%) and 13% (5-28%), respectively, and reductions in bladder V 95 and V 80 of 12% (3-26%) and 4% (7-10%), respectively. The average decrease in V 60 for the femoral heads was 4.5% (1-18%), with no significant change in V 60 for the GM muscle group. Conclusions: This study provides the first analysis of the application of intensity modulation to neutron radiotherapy. The IMNRT technique provides a substantial reduction in normal tissue dose in the treatment of prostate cancer. This reduction should result in a significant clinical advantage for this and other treatment sites

  6. A dosimetric comparison of two-phase adaptive intensity-modulated radiotherapy for locally advanced nasopharyngeal cancer

    OpenAIRE

    Chitapanarux, Imjai; Chomprasert, Kittisak; Nobnaop, Wannapa; Wanwilairat, Somsak; Tharavichitkul, Ekasit; Jakrabhandu, Somvilai; Onchan, Wimrak; Traisathit, Patrinee; Van Gestel, Dirk

    2015-01-01

    The purpose of this investigation was to evaluate the potential dosimetric benefits of a two-phase adaptive intensity-modulated radiotherapy (IMRT) protocol for patients with locally advanced nasopharyngeal cancer (NPC). A total of 17 patients with locally advanced NPC treated with IMRT had a second computed tomography (CT) scan after 17 fractions in order to apply and continue the treatment with an adapted plan after 20 fractions. To simulate the situation without adaptation, a hybrid plan w...

  7. Implementation of intensity-modulated conformational radiotherapy for cervical cancers at the Alexis Vautrin Centre

    International Nuclear Information System (INIS)

    Renard-Oldrini, Sophie

    2010-01-01

    As platinum salt based concomitant conformational radiotherapy and chemotherapy have been used as a standard treatment for cervical cancers but resulted in digestive and haematological toxicities, this research thesis reports the application of intensity-modulated conformational radiation therapy. After having recalled some epidemiological, anatomical aspects, diagnosis and treatments aspects regarding cervical cancer, the author presents this last treatment technique (principles, benefits, practical implementation). The author discusses results obtained by an experiment during which seven patients have been treated by simple conformational radiation therapy, and four by intensity-modulated conformational radiation therapy. Results are discussed in terms of volumes (clinical target volume, growth target volume, planned target volume), dosimetric results, toxicities (urine and skin), weight loss [fr

  8. Dosimetric study of volumetric arc modulation with RapidArc and intensity-modulated radiotherapy in patients with cervical cancer and comparison with 3-dimensional conformal technique for definitive radiotherapy in patients with cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Guy, Jean-Baptiste [Department of Radiation Oncology, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest en Jarez (France); Falk, Alexander T. [Department of Radiation Oncology, Centre Antoine Lacassagne, Nice (France); Auberdiac, Pierre [Department of Radiation Oncology, Clinique Claude Bernard, Albi (France); Cartier, Lysian; Vallard, Alexis [Department of Radiation Oncology, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest en Jarez (France); Ollier, Edouard [Department of Pharmacology-Toxicology, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Priest en Jarez (France); Trone, Jane-Chloé; Khodri, Moustapha [Department of Radiation Oncology, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest en Jarez (France); Chargari, Cyrus [Department of Radiation Oncology, Hôpital d’instruction de Armées du Val-de-Grâce, Paris (France); Magné, Nicolas, E-mail: nicolas.magne@icloire.fr [Department of Radiation Oncology, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest en Jarez (France)

    2016-04-01

    Introduction: For patients with cervical cancer, intensity-modulated radiation therapy (IMRT) improves target coverage and allows dose escalation while reducing the radiation dose to organs at risk (OARs). In this study, we compared dosimetric parameters among 3-dimensional conformal radiotherapy (3D-CRT), “step-and-shoot” IMRT, and volumetric intensity-modulated arc radiotherapy (VMAT) in a series of patients with cervical cancer receiving definitive radiotherapy. Computed tomography (CT) scans of 10 patients with histologically proven cervical cancer treated with definitive radiation therapy (RT) from December 2008 to March 2010 at our department were selected for this study. The gross tumor volume (GTV) and clinical target volume (CTV) were delineated following the guidelines of the Gyn IMRT consortium that included cervix, uterus, parametrial tissues, and the pelvic nodes including presacral. The median age was 57 years (range: 30 to 85 years). All 10 patients had squamous cell carcinoma with Federation of Gynecology and Obstetrics (FIGO) stage IB-IIIB. All patients were treated by VMAT. OAR doses were significantly reduced for plans with intensity-modulated technique compared with 3D-CRT except for the dose to the vagina. Between the 2 intensity-modulated techniques, significant difference was observed for the mean dose to the small intestine, to the benefit of VMAT (p < 0.001). There was no improvement in terms of OARs sparing for VMAT although there was a tendency for a slightly decreased average dose to the rectum: − 0.65 Gy but not significant (p = 0.07). The intensity modulation techniques have many advantages in terms of quality indexes, and particularly OAR sparing, compared with 3D-CRT. Following the ongoing technologic developments in modern radiotherapy, it is essential to evaluate the intensity-modulated techniques on prospective studies of a larger scale.

  9. Treatment Planning Study to Determine Potential Benefit of Intensity-Modulated Radiotherapy Versus Conformal Radiotherapy for Unresectable Hepatic Malignancies

    International Nuclear Information System (INIS)

    Eccles, Cynthia L.; Bissonnette, Jean-Pierre; Craig, Tim; Taremi, Mojgan; Wu Xia; Dawson, Laura A.

    2008-01-01

    Purpose: To compare intensity-modulated radiotherapy (IMRT) with conformal RT (CRT) for hypofractionated isotoxicity liver RT and explore dose escalation using IMRT for the same/improved nominal risk of liver toxicity in a treatment planning study. Methods and Materials: A total of 26 CRT plans were evaluated. Prescription doses (24-54 Gy within six fractions) were individualized on the basis of the effective liver volume irradiated maintaining ≤5% risk of radiation-induced liver disease. The dose constraints included bowel (0.5 cm 3 ) and stomach (0.5 cm 3 ) to ≤30 Gy, spinal cord to ≤25 Gy, and planning target volume (PTV) to ≤140% of the prescribed dose. Two groups were evaluated: (1) PTV overlapping or directly adjacent to serial functioning normal tissues (n = 14), and (2) the liver as the dose-limiting normal tissue (n = 12). IMRT plans using direct machine parameter optimization maintained the CRT plan beam arrangements, an estimated radiation-induced liver disease risk of 5%, and underwent dose escalation, if all normal tissue constraints were maintained. Results: IMRT improved PTV coverage in 19 of 26 plans (73%). Dose escalation was feasible in 9 cases by an average of 3.8 Gy (range, 0.6-13.2) in six fractions. Three of seven plans without improved PTV coverage had small gross tumor volumes (≤105 cm 3 ) already receiving 54 Gy, the maximal prescription dose allowed. In the remaining cases, the PTV range was 9.6-689 cm 3 ; two had overlapped organs at risk; and one had four targets. IMRT did not improve these plans owing to poor target coverage (n = 2) and nonliver (n = 2) dose limits. Conclusion: Direct machine parameter optimization IMRT improved PTV coverage while maintaining normal tissue tolerances in most CRT liver plans. Dose escalation was possible in a minority of patients

  10. Transition from 2-D radiotherapy to 3-D conformal and intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    2008-05-01

    Cancer is one of the leading causes of death globally and radiotherapy is currently an essential component in the management of cancer patients, either alone or in combination with surgery or chemotherapy, both for cure or palliation. It is now recognized that safe and effective radiotherapy service needs not only substantial capital investment in radiotherapy equipment and specially designed facilities but also continuous investment in maintenance and upgrading of the equipment to comply with the technical progress, but also in training the staff. The recent IAEA-TECDOC publication 'Setting up a Radiotherapy Programme: Clinical, Medical Physics, Radiation Protection and Safety Aspects' provides general guidelines for designing and implementing radiotherapy services in Member States. Advances in computer technology have enabled the possibility of transitioning from basic 2- dimensional treatment planning and delivery (2-D radiotherapy) to a more sophisticated approach with 3-dimensional conformal radiotherapy (3-D CRT). Whereas 2-D radiotherapy can be applied with simple equipment, infrastructure and training, transfer to 3-D conformal treatments requires more resources in technology, equipment, staff and training. A novel radiation treatment approach using Intensity Modulated Radiation Therapy (IMRT) that optimizes the delivery of radiation to irregularly shaped tumour volumes demands even more sophisticated equipment and seamless teamwork, and consequentially more resources, advanced training and more time for treatment planning and verification of dose delivery than 3-D CRT. Whereas 3-D CRT can be considered as a standard, IMRT is still evolving. Due to the increased interest of Member States to the modern application of radiotherapy the IAEA has received a number of requests for guidance coming from radiotherapy departments that wish to upgrade their facilities to 3-D CRT and IMRT through Technical Cooperation programme. These requests are expected to increase

  11. Intensity-Modulated Radiotherapy versus 3-Dimensional Conformal Radiotherapy Strategies for Locally Advanced Non-Small-Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Uğur Selek

    2014-12-01

    Full Text Available Chemoradiotherapy is the current standard of care in patients with advanced inoperable stage IIIA or IIIB non-small cell lung cancer (NSCLC. Three-dimensional radiotherapy (3DCRT has been a trusted method for a long time and has well-known drawbacks, most of which could be improved by Intensity Modulated Radiotherapy (IMRT. IMRT is not currently the standard treatment of locally advanced NSCLC, but almost all patients could benefit to a degree in organ at risk sparing, dose coverage conformality, or dose escalation. The most critical step for a radiation oncology department is to strictly evaluate its own technical and physical capabilities to determine the ability of IMRT to deliver an optimal treatment plan. This includes calculating the internal tumor motion (ideally 4DCT or equivalent techniques, treatment planning software with an up-to-date heterogeneity correction algorithm, and daily image guidance. It is crucial to optimise and individualise the therapeutic ratio for each patient during the decision of 3DCRT versus IMRT. The current literature rationalises the increasing use of IMRT, including 4D imaging plus PET/CT, and encourages the applicable knowledge-based and individualised dose escalation using advanced daily image-guided radiotherapy.

  12. Positron Emission Tomography/Computed Tomography-Guided Intensity-Modulated Radiotherapy for Limited-Stage Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Shirvani, Shervin M.; Komaki, Ritsuko; Heymach, John V.; Fossella, Frank V.; Chang, Joe Y.

    2012-01-01

    Purpose: Omitting elective nodal irradiation from planning target volumes does not compromise outcomes in patients with non–small-cell lung cancer, but whether the same is true for those with limited-stage small-cell lung cancer (LS-SCLC) is unknown. Therefore, in the present study, we sought to determine the clinical outcomes and the frequency of elective nodal failure in patients with LS-SCLC staged using positron emission tomography/computed tomography and treated with involved-field intensity-modulated radiotherapy. Methods and Materials: Between 2005 and 2008, 60 patients with LS-SCLC at our institution underwent disease staging using positron emission tomography/computed tomography before treatment using an intensity-modulated radiotherapy plan in which elective nodal irradiation was intentionally omitted from the planning target volume (mode and median dose, 45 Gy in 30 fractions; range, 40.5 Gy in 27 fractions to 63.8 Gy in 35 fractions). In most cases, concurrent platinum-based chemotherapy was administered. We retrospectively reviewed the clinical outcomes to determine the overall survival, relapse-free survival, and failure patterns. Elective nodal failure was defined as recurrence in initially uninvolved hilar, mediastinal, or supraclavicular nodes. Survival was assessed using the Kaplan-Meier method. Results: The median age of the study patients at diagnosis was 63 years (range, 39–86). The median follow-up duration was 21 months (range, 4–58) in all patients and 26 months (range, 4–58) in the survivors. The 2-year actuarial overall survival and relapse-free survival rate were 58% and 43%, respectively. Of the 30 patients with recurrence, 23 had metastatic disease and 7 had locoregional failure. We observed only one isolated elective nodal failure. Conclusions: To our knowledge, this is the first study to examine the outcomes in patients with LS-SCLC staged with positron emission tomography/computed tomography and treated with definitive

  13. Positron Emission Tomography/Computed Tomography-Guided Intensity-Modulated Radiotherapy for Limited-Stage Small-Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Shirvani, Shervin M.; Komaki, Ritsuko [Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Heymach, John V.; Fossella, Frank V. [Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Chang, Joe Y., E-mail: jychang@mdanderson.org [Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States)

    2012-01-01

    Purpose: Omitting elective nodal irradiation from planning target volumes does not compromise outcomes in patients with non-small-cell lung cancer, but whether the same is true for those with limited-stage small-cell lung cancer (LS-SCLC) is unknown. Therefore, in the present study, we sought to determine the clinical outcomes and the frequency of elective nodal failure in patients with LS-SCLC staged using positron emission tomography/computed tomography and treated with involved-field intensity-modulated radiotherapy. Methods and Materials: Between 2005 and 2008, 60 patients with LS-SCLC at our institution underwent disease staging using positron emission tomography/computed tomography before treatment using an intensity-modulated radiotherapy plan in which elective nodal irradiation was intentionally omitted from the planning target volume (mode and median dose, 45 Gy in 30 fractions; range, 40.5 Gy in 27 fractions to 63.8 Gy in 35 fractions). In most cases, concurrent platinum-based chemotherapy was administered. We retrospectively reviewed the clinical outcomes to determine the overall survival, relapse-free survival, and failure patterns. Elective nodal failure was defined as recurrence in initially uninvolved hilar, mediastinal, or supraclavicular nodes. Survival was assessed using the Kaplan-Meier method. Results: The median age of the study patients at diagnosis was 63 years (range, 39-86). The median follow-up duration was 21 months (range, 4-58) in all patients and 26 months (range, 4-58) in the survivors. The 2-year actuarial overall survival and relapse-free survival rate were 58% and 43%, respectively. Of the 30 patients with recurrence, 23 had metastatic disease and 7 had locoregional failure. We observed only one isolated elective nodal failure. Conclusions: To our knowledge, this is the first study to examine the outcomes in patients with LS-SCLC staged with positron emission tomography/computed tomography and treated with definitive intensity-modulated

  14. Intensity modulated radiotherapy for breast cancer

    International Nuclear Information System (INIS)

    Riou, O.; Fenoglietto, P.; Lemanski, C.; Azria, D.

    2012-01-01

    Intensity modulated radiotherapy (IMRT) is a technique allowing dose escalation and normal tissue sparing for various cancer types. For breast cancer, the main goals when using IMRT were to improve dose homogeneity within the breast and to enhance coverage of complex target volumes. Nonetheless, better heart and lung protections are achievable with IMRT as compared to standard irradiation for difficult cases. Three prospective randomized controlled trials of IMRT versus standard treatment showed that a better breast homogeneity can translate into better overall cosmetic results. Dosimetric and clinical studies seem to indicate a benefit of IMRT for lymph nodes irradiation, bilateral treatment, left breast and chest wall radiotherapy, or accelerated partial breast irradiation. The multiple technical IMRT solutions available tend to indicate a widespread use for breast irradiation. Nevertheless, indications for breast IMRT should be personalized and selected according to the expected benefit for each individual. (authors)

  15. Potential clinical efficacy of intensity-modulated conformal therapy

    International Nuclear Information System (INIS)

    Meeks, Sanford L.; Buatti, John M.; Bova, Francis J.; Friedman, William A.; Mendenhall, William M.; Zlotecki, Robert A.

    1998-01-01

    Purpose: The purpose of this study was to examine the potential benefit of using intensity-modulated conformal therapy for a variety of lesions currently treated with stereotactic radiosurgery or conventional radiotherapy. Methods and Materials: Intensity-modulated conformal treatment plans were generated for small intracranial lesions, as well as head and neck, lung, breast, and prostate cases, using the Peacock Plan[reg] treatment-planning system (Nomos Corporation). For small intracranial lesions, intensity-modulated conformal treatment plans were compared with stereotactic radiosurgery treatment plans generated for patient treatment at the University of Florida Shands Cancer Center. For other sites (head and neck, lung, breast, and prostate), plans generated using the Peacock Plan[reg] were compared with conventional treatment plans, as well as beam's-eye-view conformal treatment plans. Plan comparisons were accomplished through conventional qualitative review of two-dimensional (2D) dose distributions in conjunction with quantitative techniques, such as dose-volume histograms, dosimetric statistics, normal tissue complication probabilities, tumor control probabilities, and objective numerical scoring. Results: For small intracranial lesions, there is little difference between intensity-modulated conformal treatment planning and radiosurgery treatment planning in the conformation of high isodose lines with the target volume. However, stereotactic treatment planning provides a steeper dose gradient outside the target volume and, hence, a lower normal tissue toxicity index. For extracranial sites, objective numerical scores for beam's-eye-view and intensity-modulated conformal planning techniques are superior to scores for conventional treatment plans. The beam's-eye-view planning technique prevents geographic target misses and better excludes healthy tissues from the treatment portal. Compared with scores for the beam's-eye-view planning technique, scores for

  16. Intensity-Modulated Radiotherapy for Sinonasal Cancer: Improved Outcome Compared to Conventional Radiotherapy

    International Nuclear Information System (INIS)

    Dirix, Piet; Vanstraelen, Bianca; Jorissen, Mark; Vander Poorten, Vincent; Nuyts, Sandra

    2010-01-01

    Purpose: To evaluate clinical outcome and toxicity of postoperative intensity-modulated radiotherapy (IMRT) for malignancies of the nasal cavity and paranasal sinuses. Methods and Materials: Between 2003 and 2008, 40 patients with cancer of the paranasal sinuses (n = 34) or nasal cavity (n = 6) received postoperative IMRT to a dose of 60 Gy (n = 21) or 66 Gy (n = 19). Treatment outcome and toxicity were retrospectively compared with that of a previous patient group (n = 41) who were also postoperatively treated to the same doses but with three-dimensional conformal radiotherapy without intensity modulation, from 1992 to 2002. Results: Median follow-up was 30 months (range, 4-74 months). Two-year local control, overall survival, and disease-free survival were 76%, 89%, and 72%, respectively. Compared to the three-dimensional conformal radiotherapy treatment, IMRT resulted in significantly improved disease-free survival (60% vs. 72%; p = 0.02). No grade 3 or 4 toxicity was reported in the IMRT group, either acute or chronic. The use of IMRT significantly reduced the incidence of acute as well as late side effects, especially regarding skin toxicity, mucositis, xerostomia, and dry-eye syndrome. Conclusions: Postoperative IMRT for sinonasal cancer significantly improves disease-free survival and reduces acute as well as late toxicity. Consequently, IMRT should be considered the standard treatment modality for malignancies of the nasal cavity and paranasal sinuses.

  17. Treatment planning comparison of electron arc therapy and photon intensity modulated radiotherapy for Askin's tumor of chest wall

    International Nuclear Information System (INIS)

    Jamema, Swamidas V.; Sharma, Pramod K.; Laskar, Siddhartha; Deshpande, Deepak D.; Shrivastava, Shyam K.

    2007-01-01

    Background and Purpose: A dosimetric study to quantitatively compare radiotherapy treatment plans for Askin's tumor using Electron Arc (EA) vs. photon Intensity Modulated Radiotherapy (IMRT). Materials and methods: Five patients treated with EA were included in this study. Treatment plans were generated for each patient using EA and IMRT. Plans were compared using dose volume histograms (DVH) of the Planning Target Volume (PTV) and Organs at Risk (OAR). Results: IMRT resulted in superior PTV coverage, and homogeneous dose distribution compared to EA. For EA, 92% of the PTV was covered to 85% of the dose compared to IMRT in which 96% was covered to 95% of the dose. V 107 that represents the hot spot within the PTV was more in IMRT compared to EA: 7.4(±2)% vs. 3(±0.5)%, respectively. With PTVs located close to the spinal cord (SC), the dose to SC was more with EA, whereas for PTVs located away from the SC, the dose to SC was more with IMRT. The cardiac dose profile was similar to that of SC. Ipsilateral lung received lower doses with IMRT while contralateral lung received higher dose with IMRT compared to EA. For non-OAR normal tissues, IMRT resulted in large volumes of low dose regions. Conclusions: IMRT resulted in superior PTV coverage and sparing of OAR compared to EA plans. Although IMRT seems to be superior to EA, one needs to keep in mind the volume of low dose regions associated with IMRT, especially while treating young children

  18. Cardiac Exposure in the Dynamic Conformal Arc Therapy, Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy of Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Xin Ming

    Full Text Available To retrospectively evaluate the cardiac exposure in three cohorts of lung cancer patients treated with dynamic conformal arc therapy (DCAT, intensity-modulated radiotherapy (IMRT, or volumetric modulated arc therapy (VMAT at our institution in the past seven years.A total of 140 lung cancer patients were included in this institutional review board approved study: 25 treated with DCAT, 70 with IMRT and 45 with VMAT. All plans were generated in a same commercial treatment planning system and have been clinically accepted and delivered. The dose distribution to the heart and the effects of tumor laterality, the irradiated heart volume and the beam-to-heart distance on the cardiac exposure were investigated.The mean dose to the heart among all 140 plans was 4.5 Gy. Specifically, the heart received on average 2.3, 5.2 and 4.6 Gy in the DCAT, IMRT and VMAT plans, respectively. The mean heart doses for the left and right lung tumors were 4.1 and 4.8 Gy, respectively. No patients died with evidence of cardiac disease. Three patients (2% with preexisting cardiac condition developed cardiac disease after treatment. Furthermore, the cardiac exposure was found to increase linearly with the irradiated heart volume while decreasing exponentially with the beam-to-heart distance.Compared to old technologies for lung cancer treatment, modern radiotherapy treatment modalities demonstrated better heart sparing. But the heart dose in lung cancer radiotherapy is still higher than that in the radiotherapy of breast cancer and Hodgkin's disease where cardiac complications have been extensively studied. With strong correlations of mean heart dose with beam-to-heart distance and irradiated heart volume, cautions should be exercised to avoid long-term cardiac toxicity in the lung cancer patients undergoing radiotherapy.

  19. Dosimetric and Radiobiologic Comparison of 3D Conformal Versus Intensity Modulated Planning Techniques for Prostate Bed Radiotherapy

    International Nuclear Information System (INIS)

    Koontz, Bridget F.; Das, Shiva; Temple, Kathy; Bynum, Sigrun; Catalano, Suzanne; Koontz, Jason I.; Montana, Gustavo S.; Oleson, James R.

    2009-01-01

    Adjuvant radiotherapy for locally advanced prostate cancer improves biochemical and clinical disease-free survival. While comparisons in intact prostate cancer show a benefit for intensity modulated radiation therapy (IMRT) over 3D conformal planning, this has not been studied for post-prostatectomy radiotherapy (RT). This study compares normal tissue and target dosimetry and radiobiological modeling of IMRT vs. 3D conformal planning in the postoperative setting. 3D conformal plans were designed for 15 patients who had been treated with IMRT planning for salvage post-prostatectomy RT. The same computed tomography (CT) and target/normal structure contours, as well as prescription dose, was used for both IMRT and 3D plans. Normal tissue complication probabilities (NTCPs) were calculated based on the dose given to the bladder and rectum by both plans. Dose-volume histogram and NTCP data were compared by paired t-test. Bladder and rectal sparing were improved with IMRT planning compared to 3D conformal planning. The volume of the bladder receiving at least 75% (V75) and 50% (V50) of the dose was significantly reduced by 28% and 17%, respectively (p = 0.002 and 0.037). Rectal dose was similarly reduced, V75 by 33% and V50 by 17% (p = 0.001 and 0.004). While there was no difference in the volume of rectum receiving at least 65 Gy (V65), IMRT planning significant reduced the volume receiving 40 Gy or more (V40, p = 0.009). Bladder V40 and V65 were not significantly different between planning modalities. Despite these dosimetric differences, there was no significant difference in the NTCP for either bladder or rectal injury. IMRT planning reduces the volume of bladder and rectum receiving high doses during post-prostatectomy RT. Because of relatively low doses given to the bladder and rectum, there was no statistically significant improvement in NTCP between the 3D conformal and IMRT plans.

  20. Dosimetric and radiobiologic comparison of 3D conformal versus intensity modulated planning techniques for prostate bed radiotherapy.

    Science.gov (United States)

    Koontz, Bridget F; Das, Shiva; Temple, Kathy; Bynum, Sigrun; Catalano, Suzanne; Koontz, Jason I; Montana, Gustavo S; Oleson, James R

    2009-01-01

    Adjuvant radiotherapy for locally advanced prostate cancer improves biochemical and clinical disease-free survival. While comparisons in intact prostate cancer show a benefit for intensity modulated radiation therapy (IMRT) over 3D conformal planning, this has not been studied for post-prostatectomy radiotherapy (RT). This study compares normal tissue and target dosimetry and radiobiological modeling of IMRT vs. 3D conformal planning in the postoperative setting. 3D conformal plans were designed for 15 patients who had been treated with IMRT planning for salvage post-prostatectomy RT. The same computed tomography (CT) and target/normal structure contours, as well as prescription dose, was used for both IMRT and 3D plans. Normal tissue complication probabilities (NTCPs) were calculated based on the dose given to the bladder and rectum by both plans. Dose-volume histogram and NTCP data were compared by paired t-test. Bladder and rectal sparing were improved with IMRT planning compared to 3D conformal planning. The volume of the bladder receiving at least 75% (V75) and 50% (V50) of the dose was significantly reduced by 28% and 17%, respectively (p = 0.002 and 0.037). Rectal dose was similarly reduced, V75 by 33% and V50 by 17% (p = 0.001 and 0.004). While there was no difference in the volume of rectum receiving at least 65 Gy (V65), IMRT planning significant reduced the volume receiving 40 Gy or more (V40, p = 0.009). Bladder V40 and V65 were not significantly different between planning modalities. Despite these dosimetric differences, there was no significant difference in the NTCP for either bladder or rectal injury. IMRT planning reduces the volume of bladder and rectum receiving high doses during post-prostatectomy RT. Because of relatively low doses given to the bladder and rectum, there was no statistically significant improvement in NTCP between the 3D conformal and IMRT plans.

  1. Head and neck cancers: clinical benefits of three-dimensional conformal radiotherapy and of intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Giraud, P.; Jaulerry, C.; Brunin, F.; Zefkili, S.; Helfre, S.; Chauvet, I.; Rosenwald, J.C.; Cosset, J.M.

    2002-01-01

    The conformal radiotherapy approach, three-dimensional conformal radiotherapy (3DCRT) or intensity-modulated radiotherapy (IMRT), is based on modern imaging modalities, efficient 3-D treatment planning systems, sophisticated immobilization systems and rigorous quality assurance and treatment verification. The central objective of conformal radiotherapy is to ensure a high dose distribution tailored to the limits of the target volume while reducing exposure of normal tissues. These techniques would then allow further tumor dose escalation. Head-and-neck tumors are some of the most attractive localizations to test conformal radiotherapy. They combine ballistic difficulties due to particularly complex shapes (nasopharynx, ethmoid) and problems due to the number and low tolerance of neighbouring organs like parotids, eyes, brainstem and spinal cord. The therapeutic irradiation of head-and-neck tumors thus remains a challenge for the radiation oncologist. Conformal radiotherapy does have a significant potential for improving local control and reducing toxicity when compared to standard radiotherapy. However, in the absence of prospective randomized trials, it is somewhat difficult at present to evaluate the real benefits drawn from 3DCRT and IMRT. The published clinical reports on the use of conformal radiotherapy are essentially dealing with dosimetric comparisons on relatively small numbers of patients. Recently, a few publications have emphasized the clinical experience several precursor teams with a suitable follow-up. This paper describes the current state-of-the-art of 3DCRT and IMRT in order to evaluate the impact of these techniques on head-and-neck cancers irradiation. (authors)

  2. Radiation-Induced Cancers From Modern Radiotherapy Techniques: Intensity-Modulated Radiotherapy Versus Proton Therapy

    International Nuclear Information System (INIS)

    Yoon, Myonggeun; Ahn, Sung Hwan; Kim, Jinsung; Shin, Dong Ho; Park, Sung Yong; Lee, Se Byeong; Shin, Kyung Hwan; Cho, Kwan Ho

    2010-01-01

    Purpose: To assess and compare secondary cancer risk resulting from intensity-modulated radiotherapy (IMRT) and proton therapy in patients with prostate and head-and-neck cancer. Methods and Materials: Intensity-modulated radiotherapy and proton therapy in the scattering mode were planned for 5 prostate caner patients and 5 head-and-neck cancer patients. The secondary doses during irradiation were measured using ion chamber and CR-39 detectors for IMRT and proton therapy, respectively. Organ-specific radiation-induced cancer risk was estimated by applying organ equivalent dose to dose distributions. Results: The average secondary doses of proton therapy for prostate cancer patients, measured 20-60cm from the isocenter, ranged from 0.4 mSv/Gy to 0.1 mSv/Gy. The average secondary doses of IMRT for prostate patients, however, ranged between 3 mSv/Gy and 1 mSv/Gy, approximately one order of magnitude higher than for proton therapy. Although the average secondary doses of IMRT were higher than those of proton therapy for head-and-neck cancers, these differences were not significant. Organ equivalent dose calculations showed that, for prostate cancer patients, the risk of secondary cancers in out-of-field organs, such as the stomach, lungs, and thyroid, was at least 5 times higher for IMRT than for proton therapy, whereas the difference was lower for head-and-neck cancer patients. Conclusions: Comparisons of organ-specific organ equivalent dose showed that the estimated secondary cancer risk using scattering mode in proton therapy is either significantly lower than the cases in IMRT treatment or, at least, does not exceed the risk induced by conventional IMRT treatment.

  3. Investigation of the added value of high-energy electrons in intensity-modulated radiotherapy: four clinical cases

    International Nuclear Information System (INIS)

    Korevaar, Erik W.; Huizenga, Henk; Loef, Johan; Stroom, Joep C.; Leer, Jan Willem H.; Brahme, Anders

    2002-01-01

    Purpose: Intensity-modulated radiotherapy (IMRT) with photon beams is currently pursued in many clinics. Theoretically, inclusion of intensity- and energy-modulated high-energy electron beams (15-50 MeV) offers additional possibilities to improve radiotherapy treatments of deep-seated tumors. In this study the added value of high-energy electron beams in IMRT treatments was investigated. Methods and Materials: In a comparative treatment planning study, conventional treatment plans and various types of IMRT plans were constructed for four clinical cases (cancer of the bladder, pancreas, chordoma of the sacrum, and breast). The conventional plans were used for the actual treatment of the patients. The IMRT plans were optimized using the Orbit optimization code (Loef et al., 2000) with a radiobiologic objective function. The IMRT plans were either photon or combined electron and photon beam plans, with or without dose homogeneity constraints assuming standard or increased radiosensitivities of organs at risk. Results: Large improvements in expected treatment outcome are found using IMRT plans compared to conventional plans, but differences in tumor control probability (TCP) and normal tissue complication probabilities (NTCP) values between IMRT plans with and without electrons are small. However, the use of electrons improves the dose-volume histograms for organs at risk, especially at lower dose levels (e.g., 0-40 Gy). Conclusions: This preliminary study indicates that addition of higher energy electrons to IMRT can only marginally improve treatment outcome for the selected cases. The dose-volume histograms of organs at risk show improvements for IMRT with higher energy electrons, which may reduce tumor induction but does not substantially reduce NTCP

  4. Intensity-Modulated Radiotherapy for Craniospinal Irradiation: Target Volume Considerations, Dose Constraints, and Competing Risks

    International Nuclear Information System (INIS)

    Parker, William; Filion, Edith; Roberge, David; Freeman, Carolyn R.

    2007-01-01

    Purpose: To report the results of an analysis of dose received to tissues and organs outside the target volume, in the setting of spinal axis irradiation for the treatment of medulloblastoma, using three treatment techniques. Methods and Materials: Treatment plans (total dose, 23.4 Gy) for a standard two-dimensional (2D) technique, a three-dimensional (3D) technique using a 3D imaging-based target volume, and an intensity-modulated radiotherapy (IMRT) technique, were compared for 3 patients in terms of dose-volume statistics for target coverage, as well as organ at risk (OAR) and overall tissue sparing. Results: Planning target volume coverage and dose homogeneity was superior for the IMRT plans for V 95% (IMRT, 100%; 3D, 96%; 2D, 98%) and V 107% (IMRT, 3%; 3D, 38%; 2D, 37%). In terms of OAR sparing, the IMRT plan was better for all organs and whole-body contour when comparing V 10Gy , V 15Gy , and V 20Gy . The 3D plan was superior for V 5Gy and below. For the heart and liver in particular, the IMRT plans provided considerable sparing in terms of V 10Gy and above. In terms of the integral dose, the IMRT plans were superior for liver (IMRT, 21.9 J; 3D, 28.6 J; 2D, 38.6 J) and heart (IMRT, 9 J; 3D, 14.1J; 2D, 19.4 J), the 3D plan for the body contour (IMRT, 349 J; 3D, 337 J; 2D, 555 J). Conclusions: Intensity-modulated radiotherapy is a valid treatment option for spinal axis irradiation. We have shown that IMRT results in sparing of organs at risk without a significant increase in integral dose

  5. A comparison of conformal and intensity-modulated techniques for oesophageal radiotherapy

    International Nuclear Information System (INIS)

    Nutting, Christopher M.; Bedford, James L.; Cosgrove, Vivian P.; Tait, Diana M.; Dearnaley, David P.; Webb, Steve

    2001-01-01

    Background and purpose: To investigate the potential of intensity-modulated radiotherapy (IMRT) to reduce lung irradiation in the treatment of oesophageal carcinoma with radical radiotherapy. Materials and methods: A treatment planning study was performed to compare two-phase conformal radiotherapy (CFRT) with IMRT in five patients. The CFRT plans consisted of anterior, posterior and bilateral posterior oblique fields, while the IMRT plans consisted of either nine equispaced fields (9F), or four fields (4F) with orientations equal to the CFRT plans. IMRT plans with seven, five or three equispaced fields were also investigated in one patient. Treatment plans were compared using dose-volume histograms and normal tissue complication probabilities. Results: The 9F IMRT plan was unable to improve on the homogeneity of dose to the planning target volume (PTV), compared with the CFRT plan (dose range, 16.9±4.5 (1 SD) vs. 12.4±3.9%; P=0.06). Similarly, the 9F IMRT plan was unable to reduce the mean lung dose (11.7±3.2 vs. 11.0±2.9 Gy; P=0.2). Similar results were obtained for seven, five and three equispaced fields in the single patient studied. The 4F IMRT plan provided comparable PTV dose homogeneity with the CFRT plan (11.8±3.3 vs. 12.4±3.9%; P=0.6), with reduced mean lung dose (9.5±2.3 vs 11.0±2.9 Gy; P=0.001). Conclusions: IMRT using nine equispaced fields provided no improvement over CFRT. This was because the larger number of fields in the IMRT plan distributed a low dose over the entire lung. In contrast, IMRT using four fields equal to the CFRT fields offered an improvement in lung sparing. Thus, IMRT with a few carefully chosen field directions may lead to a modest reduction in pneumonitis, or allow tumour dose escalation within the currently accepted lung toxicity

  6. Conformal radiotherapy by intensity modulation of pediatrics tumors; Radiotherapie conformationnelle par modulation d'intensite des tumeurs pediatriques

    Energy Technology Data Exchange (ETDEWEB)

    Leseur, J.; Le Prise, E. [Centre Eugene-Marquis, 35 - Rennes (France); Carrie, C. [Centre Leon Berard, 69 - Lyon (France); Bernier, V. [Centre Alexis-Vautrin, 54 - Nancy (France); Beneyton, V. [Centre Paul-Strauss, 67 - Strasbourg (France); Mahe, M.A.; Supiot, S. [Centre Rene-Gauducheau, 44 - Nantes (France)

    2009-10-15

    The objective of this study is to take stock on the validated and potential indications of the conformal radiotherapy with intensity modulation ( intensity modulated radiotherapy I.M.R.T.) in pediatrics and to propose recommendations for its use as well as the adapted dose constraints. About 40 to 50% of children treated for a cancer are irradiated. The I.M.R.T., by linear accelerator or helical tomo-therapy has for aim to give a homogenous dose to the target volume and to save organs at risk. Its use in pediatrics seems particularly interesting because of the complexity of target volumes and the closeness of organs at risk. In compensation for these positive elements, the importance of low doses irradiation given in big volumes makes fear event consequences on growth and an increased incidence of secondary cancers in children suffering from tumors with high cure rates and long life expectancy. (N.C.)

  7. A dosimetric comparison of fan-beam intensity modulated radiotherapy with gamma knife stereotactic radiosurgery for treating intermediate intracranial lesions

    International Nuclear Information System (INIS)

    Ma Lijun; Xia Ping; Verhey, Lynn J.; Boyer, Arthur L.

    1999-01-01

    Purpose: To compare and evaluate treatment plans for the fan-beam intensity modulated radiotherapy and the Gamma Knife radiosurgery for treating medium-size intracranial lesions (range 4-25 cm 3 ). Methods and Materials: Treatment plans were developed for the Leksell Gamma Knife and a fan-beam inverse treatment planning system for intensity modulated radiotherapy. Treatment plan comparisons were carried out using dose-volume histogram (DVH), tissue-volume ratio (TVR), and maximum dose to the prescription dose (MDPD) ratio. The study was carried out for both simulated targets and clinical targets with irregular shapes and at different locations. Results: The MDPD ratio was significantly greater for the Gamma Knife plans than for the fan-beam IMRT plans. The Gamma Knife plans produced equivalent TVR values to the fan-beam IMRT plans. Based on the DVH comparison, the fan-beam IMRT delivered significantly more dose to the normal brain tissue than the Gamma Knife. The results of the comparison were found to be insensitive to the target locations. Conclusion: The Gamma Knife is better than the fan-beam IMRT in sparing normal brain tissue while producing equivalent tumor dose conformity for treating medium-size intracranial lesions. However, the target dose homogeneity is significantly better for the fan-beam IMRT than for the Gamma Knife

  8. Outcome after intensity modulated radiotherapy for anaplastic thyroid carcinoma

    International Nuclear Information System (INIS)

    He, Xiayun; Li, Duanshu; Hu, Chaosu; Wang, Zhuoying; Ying, Hongmei; Wu, Yi

    2014-01-01

    Anaplastic thyroid carcinoma (ATC) is a malignancy with one of the highest fatality rates. We reviewed our recent clinical experience with intensity modulated radiotherapy (IMRT) combined with surgery and chemotherapy for the management of ATC. 13 patients with ATC who were treated by IMRT in our institution between October 2008 and February 2011, have been analyzed. The target volume for IMRT was planned to include Gross tumor volume (GTV): primary tumor plus any N + disease (66 Gy/33 F/6.6 W), with elective irradiation of thyroid bed, bilateral level II through VI and mediastinal lymph nodes to the level of the carina (54-60 Gy). Seven patients received surgical intervention and eleven patients had chemotherapy. The median radiotherapy dose to GTV was 60 Gy/30 fractions/6 weeks. The median survival time of the 13 patients was 9 months. The direct causes of death were distant metastases (75%) and progression of the locoregional disease (25%). Ten patients were spared dyspnea and tracheostomy because their primary neck lesion did not progress. The results showed that IMRT combined by surgery and chemotherapy for ATC might be beneficial to improve locoregional control. Further new therapies are needed to control metastases

  9. SU-E-T-608: Performance Comparison of Four Commercial Treatment Planning Systems Applied to Intensity-Modulated Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Y; Li, R; Chi, Z [The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, CN, Shijiazhuang, Hebei (China)

    2014-06-01

    Purpose: To compare the performances of four commercial treatment planning systems (TPS) used for the intensity-modulated radiotherapy (IMRT). Methods: Ten patients of nasopharyngeal (4 cases), esophageal (3 cases) and cervical (3 cases) cancer were randomly selected from a 3-month IMRT plan pool at one radiotherapy center. For each patient, four IMRT plans were newly generated by using four commercial TPS (Corvus, Monaco, Pinnacle and Xio), and then verified with Matrixx (two-dimensional array/IBA Company) on Varian23EX accelerator. A pass rate (PR) calculated from the Gamma index by OminiPro IMRT 1.5 software was evaluated at four plan verification standards (1%/1mm, 2%/2mm, 3%/3mm, 4%/4mm and 5%/5mm) for each treatment plan. Overall and multiple pairwise comparisons of PRs were statistically conducted by analysis of covariance (ANOVA) F and LSD tests among four TPSs. Results: Overall significant (p>0.05) differences of PRs were found among four TPSs with F test values of 3.8 (p=0.02), 21.1(>0.01), 14.0 (>0.01), 8.3(>0.01) at standards of 1%/1mm to 4%/4mm respectively, except at 5%/5mm standard with 2.6 (p=0.06). All means (standard deviation) of PRs at 3%/3mm of 94.3 ± 3.3 (Corvus), 98.8 ± 0.8 (Monaco), 97.5± 1.7 (Pinnacle), 98.4 ± 1.0 (Xio) were above 90% and met clinical requirement. Multiple pairwise comparisons had not demonstrated a consistent low or high pattern on either TPS. Conclusion: Matrixx dose verification results show that the validation pass rates of Monaco and Xio plans are relatively higher than those of the other two; Pinnacle plan shows slight higher pass rate than Corvus plan; lowest pass rate was achieved by the Corvus plan among these four kinds of TPS.

  10. Single-arc volumetric-modulated arc therapy (sVMAT) as adjuvant treatment for gastric cancer: Dosimetric comparisons with three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT)

    International Nuclear Information System (INIS)

    Wang, Xin; Li, Guangjun; Zhang, Yingjie; Bai, Sen; Xu, Feng; Wei, Yuquan; Gong, Youling

    2013-01-01

    To compare the dosimetric differences between the single-arc volumetric-modulated arc therapy (sVMAT), 3-dimensional conformal radiotherapy (3D-CRT), and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for gastric cancer as adjuvant radiotherapy. Twelve patients were retrospectively analyzed. In each patient's case, the parameters were compared based on the dose-volume histogram (DVH) of the sVMAT, 3D-CRT, and IMRT plans, respectively. Three techniques showed similar target dose coverage. The maximum and mean doses of the target were significantly higher in the sVMAT plans than that in 3D-CRT plans and in the 3D-CRT/IMRT plans, respectively, but these differences were clinically acceptable. The IMRT and sVMAT plans successfully achieved better target dose conformity, reduced the V 20/30 , and mean dose of the left kidney, as well as the V 20/30 of the liver, compared with the 3D-CRT plans. And the sVMAT technique reduced the V 20 of the liver much significantly. Although the maximum dose of the spinal cord were much higher in the IMRT and sVMAT plans, respectively (mean 36.4 vs 39.5 and 40.6 Gy), these data were still under the constraints. Not much difference was found in the analysis of the parameters of the right kidney, intestine, and heart. The IMRT and sVMAT plans achieved similar dose distribution to the target, but superior to the 3D-CRT plans, in adjuvant radiotherapy for gastric cancer. The sVMAT technique improved the dose sparings of the left kidney and liver, compared with the 3D-CRT technique, but showed few dosimetric advantages over the IMRT technique. Studies are warranted to evaluate the clinical benefits of the VMAT treatment for patients with gastric cancer after surgery in the future

  11. Individualized planning target volumes for intrafraction motion during hypofractionated intensity-modulated radiotherapy boost for prostate cancer

    International Nuclear Information System (INIS)

    Cheung, Patrick; Sixel, Katharina; Morton, Gerard; Loblaw, D. Andrew; Tirona, Romeo; Pang, Geordi; Choo, Richard; Szumacher, Ewa; DeBoer, Gerrit; Pignol, Jean-Philippe

    2005-01-01

    Purpose: The objective of the study was to access toxicities of delivering a hypofractionated intensity-modulated radiotherapy (IMRT) boost with individualized intrafraction planning target volume (PTV) margins and daily online correction for prostate position. Methods and materials: Phase I involved delivering 42 Gy in 21 fractions using three-dimensional conformal radiotherapy, followed by a Phase II IMRT boost of 30 Gy in 10 fractions. Digital fluoroscopy was used to measure respiratory-induced motion of implanted fiducial markers within the prostate. Electronic portal images were taken of fiducial marker positions before and after each fraction of radiotherapy during the first 9 days of treatment to calculate intrafraction motion. A uniform 10-mm PTV margin was used for the first phase of treatment. PTV margins for Phase II were patient-specific and were calculated from the respiratory and intrafraction motion data obtained from Phase I. The IMRT boost was delivered with daily online correction of fiducial marker position. Acute toxicity was measured using National Cancer Institute Common Toxicity Criteria, version 2.0. Results: In 33 patients who had completed treatment, the average PTV margin used during the hypofractionated IMRT boost was 3 mm in the lateral direction, 3 mm in the superior-inferior direction, and 4 mm in the anteroposterior direction. No patients developed acute Grade 3 rectal toxicity. Three patients developed acute Grade 3 urinary frequency and urgency. Conclusions: PTV margins can be reduced significantly with daily online correction of prostate position. Delivering a hypofractionated boost with this high-precision IMRT technique resulted in acceptable acute toxicity

  12. Contribution of PET and PET/CT in CTV/PTV-modulation for planning of intensity modulated radiotherapy (IMRT)

    International Nuclear Information System (INIS)

    Oehler, W.; Baum, R.P.

    2004-01-01

    PET and PET/CT enlarge the possibilities of purely anatomic imaging by opening up new horizons in determining the metabolic and molecular properties of tumors. This enables to determine the spread of tumors with higher accuracy, especially concerning the primary staging and the diagnosis of recurrences. Patients with locoregional disease which are curable by surgery or local radiotherapy (eventually in combination with chemotherapy) can be differentiated from those patients, where only palliative treatment is indicated. Novel nuclear medicine procedures, which use specific tracers, open the door for the molecular treatment of tumors. This will be especially important for radiation oncology. In future it will be possible to define specific tumor areas within a morphologically homogeneous tumor (e.g. areas of tumor hypoxia, increased local tumor stem cell concentration, tumor parts with higher proliferative activity etc.). With IMRT (intensity modulated radiotherapy) we have already now the opportunity, to concentrate the dose to these specific tumor areas, without overloading normal tissues and organs at risk. (orig.)

  13. The impact of introducing intensity modulated radiotherapy into routine clinical practice.

    Science.gov (United States)

    Miles, Elizabeth A; Clark, Catharine H; Urbano, M Teresa Guerrero; Bidmead, Margaret; Dearnaley, David P; Harrington, Kevin J; A'Hern, Roger; Nutting, Christopher M

    2005-12-01

    Intensity modulated radiotherapy (IMRT) at the Royal Marsden Hospital London was introduced in July 2001. Treatment delivery was dynamic using a single-phase technique. Concerns were raised regarding increased clinical workload due to introduction of new technology. The potential increased use of resources was assessed. IMRT patient selection was within guidelines of clinical trials and included patients undergoing prostate plus pelvic lymph node (PPN) irradiation and head and neck cancer (HNC) treatment. Patient planning, quality assurance and treatment times were collected for an initial IMRT patient group. A comparative group of patients with advanced HNC undergoing two- or three-phase conventional radiotherapy, requiring matched photon and electron fields, were also timed. The median overall total planning time for IMRT was greater for HNC patients compared to the PPN cohort. For HNC the overall IMRT planning time was significantly longer than for conventional. The median treatment time for conventional two- or three-phase HNC treatments, encompassing similar volumes to those treated with IMRT, was greater than that for the IMRT HNC patient cohort. A reduction in radiographer man hours per patient of 4.8h was recorded whereas physics time was increased by 4.9h per patient. IMRT currently increases overall planning time. Additional clinician input is required for target volume localisation. Physics time is increased, a significant component of this being patient specific QA. Radiographer time is decreased. For HNC a single phase IMRT treatment has proven to be more efficient than a multiple phase conventional treatment. IMRT has been integrated smoothly and efficiently into the existing treatment working day. This preliminary study suggests that IMRT could be a routine treatment with efficient use of current radiotherapy resources.

  14. Intensity-modulated radiotherapy for neoadjuvant treatment of gastric cancer

    International Nuclear Information System (INIS)

    Knab, Brian; Rash, Carla; Farrey, Karl; Jani, Ashesh B.

    2006-01-01

    Radiation therapy plays an integral role in the treatment of gastric cancer in the postsurgery setting, the inoperable/palliative setting, and, as in the case of the current report, in the setting of neoadjuvant therapy prior to surgery. Typically, anterior-posterior/posterior-anterior (AP/PA) or 3-field techniques are used. In this report, we explore the use of intensity-modulated radiotherapy (IMRT) treatment in a patient whose care was transferred to our institution after 3-field radiotherapy (RT) was given to a dose of 30 Gy at an outside institution. If the 3-field plan were continued to 50 Gy, the volume of irradiated liver receiving greater than 30 Gy would have been unacceptably high. To deliver the final 20 Gy, an opposed parallel AP/PA plan and an IMRT plan were compared to the initial 3-field technique for coverage of the target volume as well as dose to the kidneys, liver, small bowel, and spinal cord. Comparison of the 3 treatment techniques to deliver the final 20 Gy revealed reduced median and maximum dose to the whole kidney with the IMRT plan. For this 20-Gy boost, the volume of irradiated liver was lower for both the IMRT plan and the AP/PA plan vs. the 3-field plan. Comparing the IMRT boost plan to the AP/PA boost-dose range ( 10 Gy) in comparison to the AP/PA plan. The IMRT boost plan also irradiated a smaller volume of the small bowel compared to both the 3-field plan and the AP/PA plan, and also delivered lower dose to the spinal cord in comparison to the AP/PA plan. Comparison of the composite plans revealed reduced dose to the whole kidney using IMRT. The V20 for the whole kidney volume for the composite IMRT plan was 30% compared to approximately 60% for the composite AP/PA plan. Overall, the dose to the liver receiving greater than 30 Gy was lower for the composite IMRT plan and was well below acceptable limits. In conclusion, our study suggests a dosimetric benefit of IMRT over conventional planning, and suggests an important role for

  15. Intensity-modulated radiotherapy -the State of the Art

    International Nuclear Information System (INIS)

    Ling, C.

    2002-01-01

    Full text: In the last two decades of the last century, the development of three-dimensional conformal radiotherapy (3D-CRT) has substantially reduces the volume of critical organs irradiated to high doses, and has permitted the increase of tumor dose without concomitant increase in normal tissue complication. At Memorial Sloan Kettering Cancer Center, a clinical trial in cancer of the prostate has accrued >1600 patient and the prescription dose has been escalated to 81 Gy with 3D-CRT, and to 86.4 Gy using intensity modulated radiotherapy (IMRT), with promising results. 3D-CRT and IMRT involves the delineation of target and non-target structures from patient-specific 3D image data-sets (primarily CT, sometimes supplemented with MRI, PET etc.), the calculation and display of 3D dose distributions, the analysis and evaluation of structure-specific dose-volume data (DVH-dose volume histogram), radiation delivery with computer-controlled multileaf collimators (MLC), and treatment verification with electronic portal images. However, the dose distribution conformality achieved with 3D-CRT can be further improved by the use of computer-optimized IMRT. In addition, the treatment design phase of 3D-CRT involves several iterative steps and can be time-consuming, particularly when the anatomical geometry is complex. Thus, IMRT is an incremental advance from 3D-CRT with two key enhancements: 1) computerized iterative treatment plan optimization, and 2) the use of intensity-modulated radiation beams. To deliver the IM beams, one efficacious approach is to use MLC in the dynamic mode, using the so-called sliding-window technique, i.e. the leaves of the MLC are in motion while the radiation is being delivered. Since 1995, we have treated over 1500 patients with IMRT. This discussion shall describe the physical aspects of IMRT, emphasizing those features and benefits unique to this approach. Pertinent clinical results will also be briefly presented

  16. Inverse planning of energy-modulated electron beams in radiotherapy

    International Nuclear Information System (INIS)

    Gentry, John R.; Steeves, Richard; Paliwal, Bhudatt A.

    2006-01-01

    The use of megavoltage electron beams often poses a clinical challenge in that the planning target volume (PTV) is anterior to other radiosensitive structures and has variable depth. To ensure that skin as well as the deepest extent of the PTV receives the prescribed dose entails prescribing to a point beyond the depth of peak dose for a single electron energy. This causes dose inhomogeneities and heightened potential for tissue fibrosis, scarring, and possible soft tissue necrosis. Use of bolus on the skin improves the entrant dose at the cost of decreasing the therapeutic depth that can be treated. Selection of a higher energy to improve dose homogeneity results in increased dose to structures beyond the PTV, as well as enlargement of the volume receiving heightened dose. Measured electron data from a linear accelerator was used as input to create an inverse planning tool employing energy and intensity modulation using bolus (e-IMRT TM ). Using tools readily available in a radiotherapy department, the applications of energy and intensity modulation on the central axis makes it possible to remove hot spots of 115% or more over the depths clinically encountered. The e-IMRT TM algorithm enables the development of patient-specific dose distributions with user-defined positions of peak dose, range, and reduced dose to points beyond the prescription point

  17. Postoperative Irradiation of Gynecologic Malignancies: Improving Treatment Delivery Using Aperture-Based Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Nadeau, Sylvain; Bouchard, Myriam; Germain, Isabelle; Raymond, Paul-Emile; Beaulieu, Frederic; Beaulieu, Luc; Roy, Rene; Gingras, Luc

    2007-01-01

    Purpose: To evaluate dosimetric and treatment delivery advantages of aperture-based intensity-modulated radiotherapy (AB-IMRT) for the treatment of patients receiving whole pelvic radiotherapy for gynecologic malignancies. Methods and Materials: Nineteen patients undergoing pelvic radiotherapy after resection of endometrial cancers were selected. A 45-Gy dose was prescribed to the target volume delineated on a planning CT scan. An in-house inverse planning system, Ballista, was used to develop a treatment plan using aperture-based multileaf collimator segments. This approach was compared with conventional four-field, enlarged four-field, and static beamlet-based IMRT (BB-IMRT) techniques in terms of target coverage, dose-volume histogram statistics for surrounding normal tissues, and numbers of segments and monitor units (MU). Results: Three quarters (76.4%) of the planning target volume received the prescription dose with conventional four-field plans. With adequate target coverage, the Ballista plans significantly reduced the volume of bowel and bladder irradiated at the prescribed dose (p < 0.001), whereas the two approaches provided equivalent results for the rectum (p 0.5). On the other hand, AB-IMRT and BB-IMRT plans showed only small differences in dose-volume histogram statistics of unknown clinical impact, whereas Ballista plan delivery required on average 73% and 59% fewer segments and MU, respectively. Conclusion: With respect to conventional techniques, AB-IMRT for the treatment of gynecologic malignancies provides dosimetric advantages similar to those with BB-IMRT but with clear treatment delivery improvements

  18. Norwegian Oncologists' Expectations of Intensity-modulated Radiotherapy

    International Nuclear Information System (INIS)

    Muren, Ludvig P.; Mella, Olav; Hafslund, Rune; Dahl, Olav

    2002-01-01

    Although intensity-modulated radiotherapy (IMRT) may increase the therapeutic ratio of radiotherapy for a range of malignancies, only a few IMRT treatments have yet been performed in the Nordic countries. The scores derived from a national survey to assess Norwegian oncologists' expectations of IMRT are presented. A questionnaire was distributed to all consultants in oncology at Norwegian radiotherapy clinics. Summary scores of daily general radiotherapy workload (DGRTW), acquaintance with IMRT (AI) and expectations of IMRT (EI) were derived. Thirty-nine questionnaires (67%) were returned from a total of 58 oncologists. The oncologists' scores on the AI scale (mean score: 7.5 out of 21) were rather low. Their AI scores were found to be positively correlated with their DGRTW. Higher scores on the EI scale were documented (mean score: 6.2 out of 14): 15 oncologists (39%) rated IMRT as one of the three major contributors to potentially increased cancer survival. Oncologists treating patients with prostate, head and neck, gastrointestinal and CNS tumours had higher EI scores than the other oncologists (7.7 vs. 5.1; p=0.01). The Norwegian radiation oncologists' expectations of IMRT are high in terms of both the potential clinical benefit and the rate of implementation. This should encourage the radiotherapy communities to continue (or rapidly initiate) their efforts in providing the routines required for safe implementation of IMRT

  19. Dosimetric comparison of intensity modulated radiotherapy techniques and standard wedged tangents for whole breast radiotherapy

    International Nuclear Information System (INIS)

    Fong, Andrew; Bromley, Regina; Beat, Mardi; Vien, Din; Dineley, Jude; Morgan, Graeme

    2009-01-01

    Full text: Prior to introducing intensity modulated radiotherapy (IMRT) for whole breast radiotherapy (WBRT) into our department we undertook a comparison of the dose parameters of several IMRT techniques and standard wedged tangents (SWT). Our aim was to improve the dose distribution to the breast and to decrease the dose to organs at risk (OAR): heart, lung and contralateral breast (Contra Br). Treatment plans for 20 women (10 right-sided and 10 left-sided) previously treated with SWT for WBRT were used to compare (a) SWT; (b) electronic compensators IMRT (E-IMRT); (c) tangential beam IMRT (T-IMRT); (d) coplanar multi-field IMRT (CP-IMRT); and (e) non-coplanar multi-field IMRT (NCP-IMRT). Plans for the breast were compared for (i) dose homogeneity (DH); (ii) conformity index (CI); (iii) mean dose; (iv) maximum dose; (v) minimum dose; and dose to OAR were calculated (vi) heart; (vii) lung and (viii) Contra Br. Compared with SWT, all plans except CP-IMRT gave improvement in at least two of the seven parameters evaluated. T-IMRT and NCP-IMRT resulted in significant improvement in all parameters except DH and both gave significant reduction in doses to OAR. As on initial evaluation NCP-IMRT is likely to be too time consuming to introduce on a large scale, T-IMRT is the preferred technique for WBRT for use in our department.

  20. SU-E-T-409: Intensity Modulated Robotic Radiotherapy

    International Nuclear Information System (INIS)

    Wang, B; Jin, L; Li, J; Chen, L; Ma, C; Fan, J; Zhang, C

    2014-01-01

    Purpose: As compared with the IRIS-based models, the MLC-based CyberKnife system allows more efficient treatment delivery due to its improved coverage of large lesions and intensity modulation. The treatment delivery efficiency is mainly determined by the number of selected nodes. This study aimed to demonstrate that relatively small sets of optimally selected nodes could produce high-quality plans. Methods: The full body path of the CyberKnife system consists of 110 nodes, from which we selected various sets for 4 prostate cancer cases using our in-house beamselection software. With the selected nodes we generated IMRT plans using our in-house beamlet-based inverse-planning optimization program. We also produced IMRT plans using the MultiPlan treatment planning system (version 5.0) for the same cases. Furthermore, the nodes selected by MultiPlan were used to produce plans with our own optimization software so that we could compare the quality of the selected sets of nodes. Results: Our beam-selection program selected one node-set for each case, with the number of nodes ranging from 23 to 34. The IMRT plans based on the selected nodes and our in-house optimization program showed adequate target coverage, with favorable critical structure sparing for the cases investigated. Compared with the plans using the nodes selected by MultiPlan, the plans generated with our selected beams provided superior rectum/bladder sparing for 75% of the cases. The plans produced by MultiPlan with various numbers of nodes also suggested that the plan quality was not compromised significantly when the number of nodes was reduced. Conclusion: Our preliminary results showed that with beamletbased planning optimization, one could produce high-quality plans with an optimal set of nodes for MLC-based robotic radiotherapy. Furthermore, our beam-selection strategy could help further improve critical structure sparing

  1. Skin-Sparing Radiation Using Intensity-Modulated Radiotherapy After Conservative Surgery in Early-Stage Breast Cancer: A Planning Study

    International Nuclear Information System (INIS)

    Saibishkumar, Elantholi P.; MacKenzie, Marc A.; Severin, Diane; Mihai, Alina; Hanson, John M.Sc.; Daly, Helene; Fallone, Gino; Parliament, Matthew B.; Abdulkarim, Bassam S.

    2008-01-01

    Purpose: To evaluate the feasibility of skin-sparing by configuring it as an organ-at-risk (OAR) while delivering whole-breast intensity-modulated radiotherapy (IMRT) in early breast cancer. Methods and Materials: Archival computed tomography scan images of 14 left-sided early-breast tumor patients who had undergone lumpectomy were selected for this study. Skin was contoured as a 4- to 5-mm strip extending from the patient outline to anterior margin of the breast planning target volume (PTV). Two IMRT plans were generated by the helical tomotherapy approach to deliver 50 Gy in 25 fractions to the breast alone: one with skin dose constraints (skin-sparing plan) and the other without (non-skin-sparing plan). Comparison of the plans was done using a two-sided paired Student t test. Results: The mean skin dose and volume of skin receiving 50 Gy were significantly less with the skin-sparing plan compared with non-skin-sparing plan (42.3 Gy vs. 47.7 Gy and 12.2% vs. 57.8% respectively; p < 0.001). The reduction in skin dose was confirmed by TLD measurements in anthropomorphic phantom using the same plans. Dose-volume analyses for other OARs were similar in both plans. Conclusions: By configuring the skin as an OAR, it is possible to achieve skin dose reduction while delivering whole-breast IMRT without compromising dose profiles to PTV and OARs

  2. Parotid Gland Dose in Intensity-Modulated Radiotherapy for Head and Neck Cancer: Is What You Plan What You Get?

    International Nuclear Information System (INIS)

    O'Daniel, Jennifer C.; Garden, Adam S.; Schwartz, David L.; Wang He; Ang, Kian K.; Ahamad, Anesa; Rosenthal, David I.; Morrison, William H.; Asper, Joshua A.; Zhang Lifei; Tung Shihming; Mohan, Radhe; Dong Lei

    2007-01-01

    Purpose: To quantify the differences between planned and delivered parotid gland and target doses, and to assess the benefits of daily bone alignment for head and neck cancer patients treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: Eleven head and neck cancer patients received two CT scans per week with an in-room CT scanner over the course of their radiotherapy. The clinical IMRT plans, designed with 3-mm to 4-mm planning margins, were recalculated on the repeat CT images. The plans were aligned using the actual treatment isocenter marked with radiopaque markers (BB) and bone alignment to the cervical vertebrae to simulate image-guided setup. In-house deformable image registration software was used to map daily dose distributions to the original treatment plan and to calculate a cumulative delivered dose distribution for each patient. Results: Using conventional BB alignment led to increases in the parotid gland mean dose above the planned dose by 5 to 7 Gy in 45% of the patients (median, 3.0 Gy ipsilateral, p = 0.026; median, 1.0 Gy contralateral, p = 0.016). Use of bone alignment led to reductions relative to BB alignment in 91% of patients (median, 2 Gy; range, 0.3-8.3 Gy; 15 of 22 parotids improved). However, the parotid dose from bone alignment was still greater than planned (median, 1.0 Gy, p = 0.007). Neither approach affected tumor dose coverage. Conclusions: With conventional BB alignment, the parotid gland mean dose was significantly increased above the planned mean dose. Using daily bone alignment reduced the parotid dose compared with BB alignment in almost all patients. A 3- to 4-mm planning margin was adequate for tumor dose coverage

  3. Prostate intensity-modulated radiotherapy planning in seven mouse clicks: Development of a class solution for cancer.

    Science.gov (United States)

    Wood, Maree; Fonseca, Amara; Sampson, David; Kovendy, Andrew; Westhuyzen, Justin; Shakespeare, Thomas; Turnbull, Kirsty

    2016-01-01

    The aim of the retrospective study was to develop a planning class solution for prostate intensity-modulated radiotherapy (IMRT) that achieved target and organs-at-risk (OAR) doses within acceptable departmental protocol criteria using the Monaco treatment planning system (Elekta-CMS Software, MO, USA). Advances in radiation therapy technology have led to a re-evaluation of work practices. Class solutions have the potential to produce highly conformal plans in a time-efficient manner. Using data from intermediate and high risk prostate cancer patients, a stepwise quality improvement model was employed. Stage 1 involved the development of a broadly based treatment template developed across 10 patients. Stage 2 involved template refinement and clinical audit ( n  = 20); Stage 3, template review ( n  = 50) and Stage 4 an assessment of a revised template against the actual treatment plan involving 72 patients. The computer algorithm that comprised the Stage 4 template met clinical treatment criteria for 82% of patients. Minor template changes were required for a further 13% of patients. Major changes were required in 4%; one patient could not be assessed. The average calculation time was 13 min and involved seven mouse clicks by the planner. Thus, the new template met treatment criteria or required only minor changes in 95% of prostate patients; this is an encouraging result suggesting improvements in planning efficiency and consistency. It is feasible to develop a class solution for prostate IMRT using a stepwise quality improvement model which delivers clinically acceptable plans in the great majority of prostate cases.

  4. The impact of introducing intensity modulated radiotherapy into routine clinical practice

    International Nuclear Information System (INIS)

    Miles, Elizabeth A.; Clark, Catharine H.; Urbano, M. Teresa Guerrero; Bidmead, Margaret; Dearnaley, David P.; Harrington, Kevin J.; A'Hern, Roger; Nutting, Christopher M.

    2005-01-01

    Background and purpose: Intensity modulated radiotherapy (IMRT) at Royal Marsden Hospital London was introduced in July 2001. Treatment delivery was dynamic using a single-phase technique. Concerns were raised regarding increased clinical workload due to introduction of new technology. The potential increased use of resources was assessed. Patients and methods: IMRT patient selection was within guidelines of clinical trials and included patients undergoing prostate plus pelvic lymph node (PPN) irradiation and head and neck cancer (HNC) treatment. Patient planning, quality assurance and treatment times were collected for an initial IMRT patient group. A comparative group of patients with advanced HNC undergoing two- or three-phase conventional radiotherapy, requiring matched photon and electron fields, were also timed. Results: The median overall total planning time for IMRT was greater for HNC patients compared to the PPN cohort. For HNC the overall IMRT planning time was significantly longer than for conventional. The median treatment time for conventional two- or three-phase HNC treatments, encompassing similar volumes to those treated with IMRT, was greater than that for the IMRT HNC patient cohort. A reduction in radiographer man hours per patient of 4.8 h was recorded whereas physics time was increased by 4.9 h per patient. Conclusions: IMRT currently increases overall planning time. Additional clinician input is required for target volume localisation. Physics time is increased, a significant component of this being patient specific QA. Radiographer time is decreased. For HNC a single phase IMRT treatment has proven to be more efficient than a multiple phase conventional treatment. IMRT has been integrated smoothly and efficiently into the existing treatment working day. This preliminary study suggests that IMRT could be a routine treatment with efficient use of current radiotherapy resources

  5. Locoregional control after intensity-modulated radiotherapy for nasopharyngeal carcinoma with an anatomy-based target definition

    International Nuclear Information System (INIS)

    Kawashima, Mitsuhiko; Ariji, Takaki; Kameoka, Satoru

    2013-01-01

    The objective of the study was to evaluate locoregional control after intensity-modulated radiotherapy for nasopharyngeal cancer using a target definition along with anatomical boundaries. Forty patients with biopsy-proven squamous cell or non-keratinizing carcinoma of the nasopharynx who underwent intensity-modulated radiotherapy between April 2006 and November 2009 were reviewed. There were 10 females and 30 males with a median age of 48 years (range, 17-74 years). More than half of the patients had T3/4 (n=21) and/or N2/3 (n=24) disease. Intensity-modulated radiotherapy was administered as 70 Gy/33 fractions with or without concomitant chemotherapy. The clinical target volume was contoured along with muscular fascia or periosteum, and the prescribed radiotherapy dose was determined for each anatomical compartment and lymph node level in the head and neck. One local recurrence was observed at Meckel's cave on the periphery of the high-risk clinical target volume receiving a total dose of <63 Gy. Otherwise, six locoregional failures were observed within irradiated volume receiving 70 Gy. Local and nodal control rates at 3 years were 91 and 89%, respectively. Adverse events were acceptable, and 25 (81%) of 31 patients who were alive without recurrence at 2 years had xerostomia of ≤ Grade 1. The overall survival rate at 3 years was 87%. Target definition along with anatomically defined boundaries was feasible without compromise of the therapeutic ratio. It is worth testing this method further to minimize the unnecessary irradiated volume and to standardize the target definition in intensity-modulated radiotherapy for nasopharyngeal cancer. (author)

  6. Ways of improving the quality of planning radiotherapy with modulated intensity

    International Nuclear Information System (INIS)

    Khvorostenko, M.I.; Kikhtenko, I.N.; Khvorostenko, Yu.M.; Volokitin, S.V.; Sklyar, N.V.

    2017-01-01

    3D planning standards do not exclude the presence of sections of the tumor with absorbed dose less than planned, which is considered as a prerequisite for relapse. To improve radiation therapy outcomes in cancer patients through the enhancing (intensity-modulated radiation therapy (IMRT) radiation planning quality, identifying areas of the tumor with minimal optical density exposed to lower absorbed dose in comparison with the planned one and assessment of the ways to eliminate it. Due to identified locations with a minimum optical density and the absorbed dose lower than the planned one, the ''resale'' was carried out. It was aimed to achieve the values recorded in the plan. The percentage of coverage isodose GTV and PTV was increased; on the area, where the total focal dose was lower than the planned, the dose absorbed was increased in comparison with the recorded one. Assessment of the tumor areas with minimal optical density makes it possible to detect areas with likely lower value of the total focal dose in comparison with the target on; correction of the total focal dose in these areas will improve the quality of radiation therapy.

  7. Intensity modulated conformal radiotherapy

    International Nuclear Information System (INIS)

    Noel, Georges; Moty-Monnereau, Celine; Meyer, Aurelia; David, Pauline; Pages, Frederique; Muller, Felix; Lee-Robin, Sun Hae; David, Denis Jean

    2006-12-01

    This publication reports the assessment of intensity-modulated conformal radiotherapy (IMCR). This assessment is based on a literature survey which focussed on indications, efficiency and safety on the short term, on the risk of radio-induced cancer on the long term, on the role in the therapeutic strategy, on the conditions of execution, on the impact on morbidity-mortality and life quality, on the impact on the health system and on public health policies and program. This assessment is also based on the opinion of a group of experts regarding the technical benefit of IMCR, its indications depending on the cancer type, safety in terms of radio-induced cancers, and conditions of execution. Before this assessment, the report thus indicates indications for which the use of IMCR can be considered as sufficient or not determined. It also proposes a technical description of IMCR and helical tomo-therapy, discusses the use of this technique for various pathologies or tumours, analyses the present situation of care in France, and comments the identification of this technique in foreign classifications

  8. Monte Carlo Treatment Planning for Advanced Radiotherapy

    DEFF Research Database (Denmark)

    Cronholm, Rickard

    This Ph.d. project describes the development of a workflow for Monte Carlo Treatment Planning for clinical radiotherapy plans. The workflow may be utilized to perform an independent dose verification of treatment plans. Modern radiotherapy treatment delivery is often conducted by dynamically...... modulating the intensity of the field during the irradiation. The workflow described has the potential to fully model the dynamic delivery, including gantry rotation during irradiation, of modern radiotherapy. Three corner stones of Monte Carlo Treatment Planning are identified: Building, commissioning...... and validation of a Monte Carlo model of a medical linear accelerator (i), converting a CT scan of a patient to a Monte Carlo compliant phantom (ii) and translating the treatment plan parameters (including beam energy, angles of incidence, collimator settings etc) to a Monte Carlo input file (iii). A protocol...

  9. Dynamic intensity-modulated non-coplanar arc radiotherapy (INCA) for head and neck cancer

    International Nuclear Information System (INIS)

    Krayenbuehl, Jerome; Davis, J. Bernard; Ciernik, I. Frank

    2006-01-01

    Background and purpose: To define the potential advantages of intensity-modulated radiotherapy (IMRT) applied using a non-coplanar dynamic arc technique for the treatment of head and neck cancer. Materials and methods: External beam radiotherapy (EBRT) was planned in ten patients with head and neck cancer using coplanar IMRT and non-coplanar arc techniques, termed intensity modulated non-coplanar arc EBRT (INCA). Planning target volumes (PTV1) of first order covered the gross tumor volume and surrounding clinical target volume treated with 68-70 Gy, whereas PTV2 covered the elective lymph nodes with 54-55 Gy using a simultaneous internal boost. Treatment plan comparison between IMRT and INCA was carried out using dose-volume histogram and 'equivalent uniform dose' (EUD). Results: INCA resulted in better dose coverage and homogeneity of the PTV1, PTV2, and reduced dose delivered to most of the organs at risk (OAR). For the parotid glands, a reduction of the mean dose of 2.9 (±2.0) Gy was observed (p 0.002), the mean dose to the larynx was reduced by 6.9 (±2.9) Gy (p 0.003), the oral mucosa by 2.4 (±1.1) Gy (p < 0.001), and the maximal dose to the spinal cord by 3.2 (±1.7) Gy (p = 0.004). The mean dose to the brain was increased by 3.0 (±1.4) Gy (p = 0.002) and the mean lung dose increased by 0.2 (±0.4) Gy (p = 0.87). The EUD suggested better avoidance of the OAR, except for the lung, and better coverage and dose uniformity were achieved with INCA compared to IMRT. Conclusion: Dose delivery accuracy with IMRT using a non-coplanar dynamic arc beam geometry potentially improves treatment of head and neck cancer

  10. Rationale and development of image-guided intensity-modulated radiotherapy post-prostatectomy: the present standard of care?

    Directory of Open Access Journals (Sweden)

    Murray JR

    2015-11-01

    Full Text Available Julia R Murray,1,2 Helen A McNair,2 David P Dearnaley1,2 1Academic Urology Unit, Institute of Cancer Research, London, 2Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, Sutton, UK Abstract: The indications for post-prostatectomy radiotherapy have evolved over the last decade, although the optimal timing, dose, and target volume remain to be well defined. The target volume is susceptible to anatomical variations with its borders interfacing with the rectum and bladder. Image-guided intensity-modulated radiotherapy has become the gold standard for radical prostate radiotherapy. Here we review the current evidence for image-guided techniques with intensity-modulated radiotherapy to the prostate bed and describe current strategies to reduce or account for interfraction and intrafraction motion. Keywords: radiotherapy, prostate cancer, post-prostatectomy, image-guided radiation therapy

  11. Dosimetric comparison of the related parameters between simultaneous integrated boost intensity-modulated radiotherapy and sequential boost conformal radiotherapy for postoperative malignant glioma of the brain

    International Nuclear Information System (INIS)

    Shao Qian; Lu Jie; Li Jianbin; Sun Tao; Bai Tong; Liu Tonghai; Yin Yong

    2011-01-01

    Objective: To compare the dosimetric of different parameter of simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) with sequential boost conformal radiotherapy (SB-CRT) for postoperative malignant glioma of the brain. Methods: Ten patients with malignant glioma of brain were selected to study. Each patient was simulated all by CT and MRI, and the imagings of CT and MRI were all sent to Pinnacle 3 planning system. The fusion technology with MR-CT imaging was used on Pinnacle 3 planning system. The target volume was delineated and defined based on MRI. The postoperative residual lesion and resection cavity were defined as gross tumor volume (GTV) and expanded GTV some scope was defined as clinical target volume (CTV). The margins of GTV expanded 10 mm and 25 mm were defined as CTV1 and CTV2 respectively. CTV1 and CTV2 all enlarged 5 mm were defined as PTV1 and PTV2 respectively. The plans of simultaneous integrated boost intensity-modulated radiotherapy and sequential boost conformal radiotherapy were respectively designed for each patient using Pinnacle 3 planning system and the dosimetric of different parameter was compared. The prescribe dose of SIB-IMRT was PTV1: 62.5 Gy/25 f, PTV2: 50.0 Gy/25 f; and SB-CRT was PTV1: 66.0 Gy/33 f, PTV2: 50.0 Gy/25 f. The dosimetries of different parameters of SIB-IMRT and SB-CRT were compared by using Paired-Samples T Test. Results: The maximum and mean dose of PTV1, PTV2, and brainstem were of significant difference (P 0.05). Conclusion: The SIB-IMRT plan is better than the SB-CRT plan. The CI and HI of SIB-IMRT are superior to SB-CRT. At the same time, it can preserve the important organs such as brainstem and reduce the mean dose of whole brain. On the other hand it can shorten the total period of therapy time. (authors)

  12. Study on the possibility of using a 60 Co therapeutical unity in Intensity Modulated Radiotherapy (IMRT)

    International Nuclear Information System (INIS)

    Dantas, Samuel Cesar

    2009-06-01

    With the increasing advances in complex treatment techniques, there is a tendency to obtain more sophisticated equipment to deliver the dose. The use of 3D conformal radiotherapy is now routine in many radiotherapy facilities as well as the utilization of intensity modulated radiotherapy (IMRT). Both are usually implemented using linear accelerators equipped with multi leaves collimators, which create the conformity and the fluence distributions required. However, the complexity of increasingly sophisticated equipment, such as linear accelerators, requires a frequent quality control of their operation, as well as a detailed and constant maintenance. Even carrying out these procedures, the accelerators may present technical problems interrupting for a long time a treatment using the IMRT technique. Despite the clear practical and technological advantages that linear accelerators have on 60 Co irradiators, these devices occupy an important place in radiotherapy, mainly due to the low cost of equipment installation and maintenance when compared to those required by accelerators. Many radiotherapy facilities that work with IMRT have tele therapeutic isocentric 60 Co units. In principle, such equipment would be able to be used for treatment with IMRT using compensating blocks to modulate the beam. This study investigates this possibility and shows that it is feasible. The comparison of treatment plans of a head-and-neck cancer and other of a cancer of the central nervous system, based on a 60 Co irradiator and a Linac 2300 C/D, presented advantages for the 60 Co irradiator. Furthermore; the delivery of dose obtained with the two systems showed themselves equivalent when compared to their respective plans. (author)

  13. Anal wall sparing effect of an endorectal balloon in 3D conformal and intensity-modulated prostate radiotherapy.

    Science.gov (United States)

    Smeenk, Robert Jan; van Lin, Emile N J Th; van Kollenburg, Peter; Kunze-Busch, Martina; Kaanders, Johannes H A M

    2009-10-01

    To investigate the anal wall (Awall) sparing effect of an endorectal balloon (ERB) in 3D conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) for prostate cancer. In 24 patients with localized prostate carcinoma, two planning CT-scans were performed: with and without ERB. A prostate planning target volume (PTV) was defined, and the Awall was delineated, using two different methods. Three-field and 4-field 3D-CRT plans, and IMRT plans were generated with a prescription dose of 78Gy. In 144 treatment plans, the minimum dose (D(min)), maximum dose (D(max)), and mean dose (D(mean)) to the Awall were calculated, as well as the Awall volumes exposed to doses ranging from >or=20Gy to >or=70Gy (V(20)-V(70), respectively). In the 3D-CRT plans, an ERB significantly reduced D(mean), D(max), and V(30)-V(70). For IMRT all investigated dose parameters were significantly reduced by the ERB. The absolute reduction of D(mean) was 12Gy in 3D-CRT and was 7.5Gy in IMRT for both methods of Awall delineation. Application of an ERB showed a significant Awall sparing effect in both 3D-CRT and IMRT. This may lead to reduced late anal toxicity in prostate radiotherapy.

  14. Improved genetic algorithm in optimization of beam orientation in intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Ni Xinye; Yang Jianhua; Sun Suping; Yao Yi

    2009-01-01

    Objective: At present beam orientation selection in intensity-modulated radiotherapy (IMRT) is mainly based on empiric knowledge. This study is to evaluate the feasibility of automated beam angle selection. Methods: Genetic algorithm technique which based on beam eye view dose measurement (BEVD-GA) was tested on two clinical cases, including a spine column cancer and a lung cancer. Three plans were obtained under the following different beam configurations: five equiangular-spaced beams, five beams with GA-selected, and five beams with BEVD-GA-selected beams. Then the dose distribution was compared among the three plans. Results: The method, restricting the range of genetic algorithm followed by carrying through genetic operations, not only shortened the optimization time, but also improved the optimization effect. For spine column cancer and lung cancer, the best IMRT plans were obtained with BEVD-GA-selected beams, which used automated beam orientation selection. Conclusions: Comparing with the conventional manual beam orientation selection, beam orientation optimization which is feasible in IMRT planning may significantly improve the efficiency and result. (authors)

  15. Normal liver tissue sparing by intensity-modulated proton stereotactic body radiotherapy for solitary liver tumours

    International Nuclear Information System (INIS)

    Petersen, Joergen B. B.; Hansen, Anders T.; Lassen, Yasmin; Grau, Cai; Hoeyer, Morten; Muren, Ludvig P.

    2011-01-01

    Background. Stereotactic body radiotherapy (SBRT) is often the preferred treatment for the advanced liver tumours which owing to tumour distribution, size and multi-focality are out of range of surgical resection or radiofrequency ablation. However, only a minority of patients with liver tumours may be candidates for conventional SBRT because of the limited radiation tolerance of normal liver, intestine and other normal tissues. Due to the favourable depth-dose characteristics of protons, intensity-modulated proton therapy (IMPT) may be a superior alternative to photon-based SBRT. The purpose of this treatment planning study was therefore to investigate the potential sparing of normal liver by IMPT compared to photon-based intensity-modulated radiotherapy (IMRT) for solitary liver tumours. Material and methods. Ten patients with solitary liver metastasis treated at our institution with multi-field SBRT were retrospectively re-planned with IMRT and proton pencil beam scanning techniques. For the proton plans, two to three coplanar fields were used in contrast to five to six coplanar and non-coplanar photon fields. The same planning objectives were used for both techniques. A risk adapted dose prescription to the PTV surface of 12.5-16.75 Gy x 3 was used. Results. The spared liver volume for IMPT was higher compared to IMRT in all 10 patients. At the highest prescription dose level, the median liver volume receiving less than 15 Gy was 1411 cm 3 for IMPT and 955 cm 3 for IMRT (p D 15 Gy > 700 cm 3 constraint. For the D mean = 15 Gy constraint, nine of 10 cases could be treated at the highest dose level using IMPT whereas with IMRT, only two cases met this constraint at the highest dose level and six at the lowest dose level. Conclusion. A considerable sparing of normal liver tissue can be obtained using proton-based SBRT for solitary liver tumours

  16. Independent monitor unit calculation for intensity modulated radiotherapy using the MIMiC multileaf collimator

    International Nuclear Information System (INIS)

    Chen Zhe; Xing Lei; Nath, Ravinder

    2002-01-01

    A self-consistent monitor unit (MU) and isocenter point-dose calculation method has been developed that provides an independent verification of the MU for intensity modulated radiotherapy (IMRT) using the MIMiC (Nomos Corporation) multileaf collimator. The method takes into account two unique features of IMRT using the MIMiC: namely the gantry-dynamic arc delivery of intensity modulated photon beams and the slice-by-slice dose delivery for large tumor volumes. The method converts the nonuniform beam intensity planned at discrete gantry angles of 5 deg. or 10 deg. into conventional nonmodulated beam intensity apertures of elemental arc segments of 1 deg. This approach more closely simulates the actual gantry-dynamic arc delivery by MIMiC. Because each elemental arc segment is of uniform intensity, the MU calculation for an IMRT arc is made equivalent to a conventional arc with gantry-angle dependent beam apertures. The dose to the isocenter from each 1 deg. elemental arc segment is calculated by using the Clarkson scatter summation technique based on measured tissue-maximum-ratio and output factors, independent of the dose calculation model used in the IMRT planning system. For treatments requiring multiple treatment slices, the MU for the arc at each treatment slice takes into account the MU, leakage and scatter doses from other slices. This is achieved by solving a set of coupled linear equations for the MUs of all involved treatment slices. All input dosimetry data for the independent MU/isocenter point-dose calculation are measured directly. Comparison of the MU and isocenter point dose calculated by the independent program to those calculated by the Corvus planning system and to direct measurements has shown good agreement with relative difference less than ±3%. The program can be used as an independent initial MU verification for IMRT plans using the MIMiC multileaf collimators

  17. Intensity-modulated radiotherapy significantly reduces xerostomia compared with conventional radiotherapy

    International Nuclear Information System (INIS)

    Braam, Petra M.; Terhaard, Chris H.J. M.D.; Roesink, Judith M.; Raaijmakers, Cornelis P.J.

    2006-01-01

    Purpose: Xerostomia is a severe complication after radiotherapy for oropharyngeal cancer, as the salivary glands are in close proximity with the primary tumor. Intensity-modulated radiotherapy (IMRT) offers theoretical advantages for normal tissue sparing. A Phase II study was conducted to determine the value of IMRT for salivary output preservation compared with conventional radiotherapy (CRT). Methods and Materials: A total of 56 patients with oropharyngeal cancer were prospectively evaluated. Of these, 30 patients were treated with IMRT and 26 with CRT. Stimulated parotid salivary flow was measured before, 6 weeks, and 6 months after treatment. A complication was defined as a stimulated parotid flow rate <25% of the preradiotherapy flow rate. Results: The mean dose to the parotid glands was 48.1 Gy (SD 14 Gy) for CRT and 33.7 Gy (SD 10 Gy) for IMRT (p < 0.005). The mean parotid flow ratio 6 weeks and 6 months after treatment was respectively 41% and 64% for IMRT and respectively 11% and 18% for CRT. As a result, 6 weeks after treatment, the number of parotid flow complications was significantly lower after IMRT (55%) than after CRT (87%) (p = 0.002). The number of complications 6 months after treatment was 56% for IMRT and 81% for CRT (p = 0.04). Conclusions: IMRT significantly reduces the number of parotid flow complications for patients with oropharyngeal cancer

  18. Intensity modulated radiotherapy with fixed collimator jaws for locoregional left-sided breast cancer irradiation.

    Science.gov (United States)

    Wang, Juanqi; Yang, Zhaozhi; Hu, Weigang; Chen, Zhi; Yu, Xiaoli; Guo, Xiaomao

    2017-05-16

    The purpose of this study is to evaluate the intensity modulated radiotherapy (IMRT) with the fixed collimator jaws technique (FJT) for the left breast and regional lymph node. The targeted breast tissue and the lymph nodes, and the normal tissues were contoured for 16 left-sided breast cancer patients previously treated with radiotherapy after lumpectomy. For each patient, treatment plans using different planning techniques, i.e., volumetric modulated arc therapy (VMAT), tangential IMRT (tangential-IMRT), and IMRT with FJT (FJT-IMRT) were developed for dosimetric comparisons. A dose of 50Gy was prescribed to the planning target volume. The dose-volume histograms were generated, and the paired t-test was used to analyze the dose differences. FJT-IMRT had similar mean heart volume receiving 30Gy (V30 Gy) with tangential-IMRT (1.5% and 1.6%, p = 0.41), but inferior to the VMAT (0.8%, p < 0.001). In the average heart mean dose comparison, FJT-IMRT had the lowest value, and it was 0.6Gy lower than that for the VMAT plans (p < 0.01). A significant dose increase in the contralateral breast and lung was observed in VMAT plans. Compared with tangential-IMRT and VMAT plans, FJT-IMRT reduced the mean dose of thyroid, humeral head and cervical esophageal by 47.6% (p < 0.01) and 45.7% (p < 0.01), 74.3% (p =< 0.01) and 73% (p =< 0.01), and 26.7% (p =< 0.01) and 29.2% (p =< 0.01). In conclusion, compared with tangential-IMRT and VMAT, FJT-IMRT plan has the lowest thyroid, humeral head and cervical esophageal mean dose and it can be a reasonable treatment option for a certain subgroup of patients, such as young left-breast cancer patients and/or patients with previous thyroid disease.

  19. A treatment planning study comparing helical tomotherapy with intensity-modulated radiotherapy for the treatment of anal cancer

    International Nuclear Information System (INIS)

    Joseph, Kurian Jones; Syme, Alasdair; Small, Cormac; Warkentin, Heather; Quon, Harvey; Ghosh, Sunita; Field, Colin; Pervez, Nadeem; Tankel, Keith; Patel, Samir; Usmani, Nawaid; Severin, Diane; Nijjar, Tirath; Fallone, Gino; Pedersen, John

    2010-01-01

    Purpose: A planning study to compare helical tomotherapy (HT) and intensity-modulated radiotherapy (IMRT) for the treatment of anal canal cancer. Materials and methods: Sixteen (8 males and 8 females) patients with anal cancer previously treated radically were identified. HT and IMRT plans were generated and dosimetric comparisons of the plans were performed. The planning goals were to deliver 54 Gy to the tumor (PTV 54Gy ) and 48 Gy to the nodes at risk (PTV Node ) in 30 fractions. Results: PTVs: HT plans were more homogeneous for both men and women. Male patients: HT vs. IMRT: D max : 55.87 ± 0.58 vs. 59.17 ± 3.24 (p = 0.036); D min : 52.91 ± 0.36 vs. 44.09 ± 6.84 (p = 0.012); female patients: HT vs. IMRT: D max : 56.14 ± 0.71 vs. 59.47 ± 0.81 (p = 0.012); D min : 52.36 ± 0.87 vs. 50.97 ± 1.42 (p = 0.028). OARs: In general, HT plans delivered a lower dose to the peritoneal cavity, external genitalia and the bladder and IMRT plans resulted in greater sparing of the pelvic bones (iliac crest/femur) for both men and women. Iliac crest/femur: the difference was significant only for the mean V10 Gy of iliac crest in women (p ≤ 0.012). External genitalia: HT plans achieved better sparing in women compared to men (p ≤ 0.046). For men, the mean doses were 18.96 ± 3.17 and 15.72 ± 3.21 for the HT and IMRT plan, respectively (p ≤ 0.017). Skin: both techniques achieved comparable sparing of the non-target skin (p = NS). Conclusions: HT and IMRT techniques achieved comparable target dose coverage and organ sparing, whereas HT plans were more homogeneous for both men and women.

  20. Dose deviations caused by positional inaccuracy of multileaf collimator in intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Wang, H.C.; Chui, C.S.; Tsai, H.Y.; Chen, C.H.; Tsai, L.F.

    2008-01-01

    Introduction: Multileaf collimator (MLC) is currently a widely used system in the delivery of intensity modulated radiotherapy (IMRT). The accuracy of the multileaf position plays an important role in the final outcome of the radiation treatment. According to ICRU recommendation, a dose inaccuracy over than 5% of prescribed dose affects treatment results. In order to quantify the influence of leaf positional errors on dose distribution, we set different MLC positional inaccuracy from 0 to 6 mm for step-and-shoot IMRT in clinical cases. Two-dimensional dose distributions of radiotherapy plans with different leaf displacements generated with a commercial treatment planning system. And verification films were used to measure two-dimensional dose distributions. Then a computerized dose comparison system will be introduced to analyze the dose deviations. Materials/methods: We assumed MLC positional inaccuracy from 0 to 6 mm for step-and-shoot IMRT in clinical cases by simulating the different leaf displacements with a commercial treatment planning system. Then we transferred the treatment plans with different leaf offset that may be happened in clinical situation to linear accelerator. Verification films (Kodat EDR2) were well positioned within solid water phantoms to be irradiated by the simulated plans. The films were scanned to display two-dimensional dose distributions. Finally, we compared with the dose distributions with MLC positional inaccuracy by a two-dimensional dose comparison software to analyze the deviations in Gamma indexes and normalized agreement test (NAT) values. Results: In general, the data show that larger leaf positional error induces larger dose error. More fields used for treatment generate lesser errors. Besides, leaf position relative to a field influences the degree of dose error. A leaf lying close to the border of a field leads to a more significant dose deviation than a leaf in the center. Algorithms for intensity modulation also affect

  1. Patterns of local-regional failure after primary intensity modulated radiotherapy for nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Kong, Fangfang; Ying, Hongmei; Du, Chengrun; Huang, Shuang; Zhou, Junjun; Chen, Junchao; Sun, Lining; Chen, Xiaohui; Hu, Chaosu

    2014-01-01

    To analyze patterns of local-regional failure after primary intensity modulated radiotherapy (IMRT) for nasopharyngeal carcinoma (NPC). A total of 370 non-metastatic NPC patients consecutively treated with IMRT (with or without chemotherapy) were analyzed. Radiotherapy was administered using a simultaneous integrated boost (SIB) technique at the total prescribed dose of 66-70.4Gy (2.0-2.2Gy per fraction). The location and extent of local-regional failures were transferred to the pretreatment planning computed tomography (CT) for dosimetric analysis. The dose of radiation received by V recur (volume of recurrence) was calculated and analyzed with dose-volume histogram (DVH). Failures were classified as: 'in field' if 95% of V recur was within the 95% isodose, 'marginal' if 20% to 95% of V recur was within the 95% isodose, or 'outside' if less than 20% of V recur was inside the 95% isodose. With a median follow up of 26 months, 25 local-regional failures were found in 18 patients. The 1- and 2-year actuarial local-regional control rates for all patients were 99.7% and 95.5% respectively. Among the 22 local–regional failures with available diagnostic images, 16 (64%) occurred within the 95% isodose lines and were considered in-field failures; 3 (12%) were marginal and 3 (12%) were outside-field failures. Intensity-modulated radiotherapy provides excellent local-regional control for NPC. In-field failures are the main patterns for local-regional recurrence. Reducing the coverage of critical adjacent tissues in CTV purposefully for potential subclinical diseases was worth of study. Great attention in all IMRT steps is necessary to reduce potential causes of marginal failures. More studies about radioresistance are needed to reduce in-field failures

  2. Anal wall sparing effect of an endorectal balloon in 3D conformal and intensity-modulated prostate radiotherapy

    International Nuclear Information System (INIS)

    Smeenk, Robert Jan; Lin, Emile N.J.Th. van; Kollenburg, Peter van; Kunze-Busch, Martina; Kaanders, Johannes H.A.M.

    2009-01-01

    Background and purpose: To investigate the anal wall (Awall) sparing effect of an endorectal balloon (ERB) in 3D conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) for prostate cancer. Materials and methods: In 24 patients with localized prostate carcinoma, two planning CT-scans were performed: with and without ERB. A prostate planning target volume (PTV) was defined, and the Awall was delineated, using two different methods. Three-field and 4-field 3D-CRT plans, and IMRT plans were generated with a prescription dose of 78 Gy. In 144 treatment plans, the minimum dose (D min ), maximum dose (D max ), and mean dose (D mean ) to the Awall were calculated, as well as the Awall volumes exposed to doses ranging from ≥20 Gy to ≥70 Gy (V 20 - V 70 , respectively). Results: In the 3D-CRT plans, an ERB significantly reduced D mean , D max , and V 30 - V 70 . For IMRT all investigated dose parameters were significantly reduced by the ERB. The absolute reduction of D mean was 12 Gy in 3D-CRT and was 7.5 Gy in IMRT for both methods of Awall delineation. Conclusions: Application of an ERB showed a significant Awall sparing effect in both 3D-CRT and IMRT. This may lead to reduced late anal toxicity in prostate radiotherapy.

  3. Patterns of Failure and Toxicity after Intensity-Modulated Radiotherapy for Head and Neck Cancer

    International Nuclear Information System (INIS)

    Schoenfeld, Gordon O.; Amdur, Robert J.; Morris, Christopher G.; Li, Jonathan G.; Hinerman, Russell W.; Mendenhall, William M.

    2008-01-01

    Purpose: To determine the outcome of patients treated with intensity-modulated radiotherapy (IMRT) for head and neck cancer. Methods and Materials: We reviewed the charts of 100 consecutive patients treated with IMRT for squamous cell carcinoma of the oropharynx (64%), nasopharynx (16%), hypopharynx (14%), and larynx (6%). Most patients were treated with a concomitant boost schedule to 72 Gy. Of the 100 patients, 54 (54%) received adjuvant chemotherapy, mostly concurrent cisplatin. The dosimetry plans for patients with either locoregional failure or Grade 4-5 complications were reviewed and fused over the computed tomography images corresponding with the location of the event. Marginal failures were defined as those that occurred at a region of high-dose falloff, where conventional fields would have provided better coverage. Results: The median follow-up of living patients was 3.1 years (range, 1-5.2 years). The 3-year rate of local control, locoregional control, freedom from relapse, cause-specific survival, and overall survival for all patients was 89%, 87%, 72%, 78%, and 71%, respectively. The 3-year rate of freedom from relapse, cause-specific survival, and overall survival for the 64 oropharynx patients was 86%, 92%, and 84%, respectively. Of the 10 local failures, 2 occurred at the margin of the high-dose planning target volume. Both regional failures occurred within the planning target volume. No locoregional failures occurred outside the planning target volume. Of the 100 patients, 8 and 5 had Grade 4 and 5 complications from treatment, respectively. All patients with Grade 5 complications had received adjuvant chemotherapy. No attempt was made to discriminate between the complications from IMRT and other aspects of the patients' treatment. Conclusion: Intensity-modulated radiotherapy did not compromise the outcome compared with what we have achieved with conventional techniques. The 2 cases of recurrence in the high-dose gradient region highlight the

  4. Hippocampal-Sparing Whole-Brain Radiotherapy: A 'How-To' Technique Using Helical Tomotherapy and Linear Accelerator-Based Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Gondi, Vinai; Tolakanahalli, Ranjini; Mehta, Minesh P.; Tewatia, Dinesh; Rowley, Howard; Kuo, John S.; Khuntia, Deepak; Tome, Wolfgang A.

    2010-01-01

    Purpose: Sparing the hippocampus during cranial irradiation poses important technical challenges with respect to contouring and treatment planning. Herein we report our preliminary experience with whole-brain radiotherapy using hippocampal sparing for patients with brain metastases. Methods and Materials: Five anonymous patients previously treated with whole-brain radiotherapy with hippocampal sparing were reviewed. The hippocampus was contoured, and hippocampal avoidance regions were created using a 5-mm volumetric expansion around the hippocampus. Helical tomotherapy and linear accelerator (LINAC)-based intensity-modulated radiotherapy (IMRT) treatment plans were generated for a prescription dose of 30 Gy in 10 fractions. Results: On average, the hippocampal avoidance volume was 3.3 cm 3 , occupying 2.1% of the whole-brain planned target volume. Helical tomotherapy spared the hippocampus, with a median dose of 5.5 Gy and maximum dose of 12.8 Gy. LINAC-based IMRT spared the hippocampus, with a median dose of 7.8 Gy and maximum dose of 15.3 Gy. On a per-fraction basis, mean dose to the hippocampus (normalized to 2-Gy fractions) was reduced by 87% to 0.49 Gy 2 using helical tomotherapy and by 81% to 0.73 Gy 2 using LINAC-based IMRT. Target coverage and homogeneity was acceptable with both IMRT modalities, with differences largely attributed to more rapid dose fall-off with helical tomotherapy. Conclusion: Modern IMRT techniques allow for sparing of the hippocampus with acceptable target coverage and homogeneity. Based on compelling preclinical evidence, a Phase II cooperative group trial has been developed to test the postulated neurocognitive benefit.

  5. Multicentre quality assurance of intensity-modulated radiation therapy plans: a precursor to clinical trials

    International Nuclear Information System (INIS)

    Williams, M. J.; Bailey, M. J.; Forstner, D.; Metcalfe, P. E

    2007-01-01

    Full text: A multicentre planning study comparing intensity-modulated radiation therapy (IMRT) plans for the treatment of a head and neck cancer has been carried out. Three Australian radiotherapy centres, each with a different planning system, were supplied a fully contoured CT dataset and requested to generate an IMRT plan in accordance with the requirements of an IMRT-based radiation therapy oncology group clinical trial. Plan analysis was carried out using software developed specifically for reviewing multicentre clinical trial data. Two out of the three plans failed to meet the prescription requirements with one misinterpreting the prescription and the third failed to meet one of the constraints. Only one plan achieved all of the dose objectives for the critical structures and normal tissues. Although each centre used very similar planning parameters and beam arrangements the resulting plans were quite different. The subjective interpretation and application of the prescription and planning objectives emphasize one of the many difficulties in carrying out multicentre IMRT planning studies. The treatment prescription protocol in a clinical trial must be both lucid and unequivocally stated to avoid misinterpretation. Australian radiotherapy centres must show that they can produce a quality IMRT plan and that they can adhere to protocols for IMRT planning before using it in a clinical trial

  6. SU-F-T-342: Dosimetric Constraint Prediction Guided Automatic Mulit-Objective Optimization for Intensity Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Song, T; Zhou, L; Li, Y

    2016-01-01

    Purpose: For intensity modulated radiotherapy, the plan optimization is time consuming with difficulties of selecting objectives and constraints, and their relative weights. A fast and automatic multi-objective optimization algorithm with abilities to predict optimal constraints and manager their trade-offs can help to solve this problem. Our purpose is to develop such a framework and algorithm for a general inverse planning. Methods: There are three main components contained in this proposed multi-objective optimization framework: prediction of initial dosimetric constraints, further adjustment of constraints and plan optimization. We firstly use our previously developed in-house geometry-dosimetry correlation model to predict the optimal patient-specific dosimetric endpoints, and treat them as initial dosimetric constraints. Secondly, we build an endpoint(organ) priority list and a constraint adjustment rule to repeatedly tune these constraints from their initial values, until every single endpoint has no room for further improvement. Lastly, we implement a voxel-independent based FMO algorithm for optimization. During the optimization, a model for tuning these voxel weighting factors respecting to constraints is created. For framework and algorithm evaluation, we randomly selected 20 IMRT prostate cases from the clinic and compared them with our automatic generated plans, in both the efficiency and plan quality. Results: For each evaluated plan, the proposed multi-objective framework could run fluently and automatically. The voxel weighting factor iteration time varied from 10 to 30 under an updated constraint, and the constraint tuning time varied from 20 to 30 for every case until no more stricter constraint is allowed. The average total costing time for the whole optimization procedure is ∼30mins. By comparing the DVHs, better OAR dose sparing could be observed in automatic generated plan, for 13 out of the 20 cases, while others are with competitive

  7. SU-F-T-342: Dosimetric Constraint Prediction Guided Automatic Mulit-Objective Optimization for Intensity Modulated Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Song, T; Zhou, L [Southern Medical University, Guangzhou, Guangdong (China); Li, Y [Beihang University, Beijing, Beijing (China)

    2016-06-15

    Purpose: For intensity modulated radiotherapy, the plan optimization is time consuming with difficulties of selecting objectives and constraints, and their relative weights. A fast and automatic multi-objective optimization algorithm with abilities to predict optimal constraints and manager their trade-offs can help to solve this problem. Our purpose is to develop such a framework and algorithm for a general inverse planning. Methods: There are three main components contained in this proposed multi-objective optimization framework: prediction of initial dosimetric constraints, further adjustment of constraints and plan optimization. We firstly use our previously developed in-house geometry-dosimetry correlation model to predict the optimal patient-specific dosimetric endpoints, and treat them as initial dosimetric constraints. Secondly, we build an endpoint(organ) priority list and a constraint adjustment rule to repeatedly tune these constraints from their initial values, until every single endpoint has no room for further improvement. Lastly, we implement a voxel-independent based FMO algorithm for optimization. During the optimization, a model for tuning these voxel weighting factors respecting to constraints is created. For framework and algorithm evaluation, we randomly selected 20 IMRT prostate cases from the clinic and compared them with our automatic generated plans, in both the efficiency and plan quality. Results: For each evaluated plan, the proposed multi-objective framework could run fluently and automatically. The voxel weighting factor iteration time varied from 10 to 30 under an updated constraint, and the constraint tuning time varied from 20 to 30 for every case until no more stricter constraint is allowed. The average total costing time for the whole optimization procedure is ∼30mins. By comparing the DVHs, better OAR dose sparing could be observed in automatic generated plan, for 13 out of the 20 cases, while others are with competitive

  8. Toxicity and dosimetric analysis of non-small cell lung cancer patients undergoing radiotherapy with 4DCT and image-guided intensity modulated radiotherapy: a regional centre's experience.

    Science.gov (United States)

    Livingston, Gareth C; Last, Andrew J; Shakespeare, Thomas P; Dwyer, Patrick M; Westhuyzen, Justin; McKay, Michael J; Connors, Lisa; Leader, Stephanie; Greenham, Stuart

    2016-09-01

    For patients receiving radiotherapy for locally advance non-small cell lung cancer (NSCLC), the probability of experiencing severe radiation pneumonitis (RP) appears to rise with an increase in radiation received by the lungs. Intensity modulated radiotherapy (IMRT) provides the ability to reduce planned doses to healthy organs at risk (OAR) and can potentially reduce treatment-related side effects. This study reports toxicity outcomes and provides a dosimetric comparison with three-dimensional conformal radiotherapy (3DCRT). Thirty curative NSCLC patients received radiotherapy using four-dimensional computed tomography and five-field IMRT. All were assessed for early and late toxicity using common terminology criteria for adverse events. All plans were subsequently re-planned using 3DCRT to the same standard as the clinical plans. Dosimetric parameters for lungs, oesophagus, heart and conformity were recorded for comparison between the two techniques. IMRT plans achieved improved high-dose conformity and reduced OAR doses including lung volumes irradiated to 5-20 Gy. One case each of oesophagitis and erythema (3%) were the only Grade 3 toxicities. Rates of Grade 2 oesophagitis were 40%. No cases of Grade 3 RP were recorded and Grade 2 RP rates were as low as 3%. IMRT provides a dosimetric benefit when compared to 3DCRT. While the clinical benefit appears to increase with increasing target size and increasing complexity, IMRT appears preferential to 3DCRT in the treatment of NSCLC.

  9. Dosimetric comparison of different multileaf collimator leaves in treatment planning of intensity-modulated radiotherapy for cervical cancer

    International Nuclear Information System (INIS)

    Wang, Shichao; Ai, Ping; Xie, Li; Xu, Qingfeng; Bai, Sen; Lu, You; Li, Ping; Chen, Nianyong

    2013-01-01

    To study the effect of multileaf collimator (MLC) leaf widths (standard MLC [sMLC] width of 10 mm and micro-MLC [mMLC] width of 4 mm) on intensity-modulated radiotherapy (IMRT) for cervical cancer. Between January 2010 and August 2010, a retrospective analysis was conducted on 12 patients with cervical cancer. The treatment plans for all patients were generated with the same machine setup parameters and optimization methods in a treatment planning system (TPS) based on 2 commercial Elekta MLC devices. The dose distribution for the planning tumor volume (PTV), the dose sparing for organs at risk (OARs), the monitor units (MUs), and the number of IMRT segments were evaluated. For the delivery efficiency, the MUs were significantly higher in the sMLC-IMRT plan than in the mMLC-IMRT plan (802 ± 56.9 vs 702 ± 56.7; p 0.05). For the planning quality, the conformity index (CI) between the 2 paired IMRT plans with the mMLC and the sMLC did not differ significantly (average: 0.817 ± 0.024 vs 0.810 ± 0.028; p > 0.05). The differences of the homogeneity index (HI) between the 2 paired plans were statistically significant (average: 1.122 ± 0.010 vs 1.132 ± 0.014; p 10 , V 20 , V 30 , and V 40 , percentage of contoured OAR volumes receiving 10, 20, 30, and 40 Gy, respectively, and the mean dose (D mean ) received. The IMRT plans with the mMLC protected the OARs better than the plans with the sMLC. There were significant differences (p 30 and V 40 of the rectum and V 10 , V 20 , V 40 , and D mean of the bladder. IMRT plans with the mMLC showed advantages over the plans with the sMLC in dose homogeneity for targets, dose sparing of OARs, and fewer MUs in cervical cancer

  10. Australasian Gastrointestinal Trials Group (AGITG) Contouring Atlas and Planning Guidelines for Intensity-Modulated Radiotherapy in Anal Cancer

    International Nuclear Information System (INIS)

    Ng, Michael; Leong, Trevor; Chander, Sarat; Chu, Julie; Kneebone, Andrew; Carroll, Susan; Wiltshire, Kirsty; Ngan, Samuel; Kachnic, Lisa

    2012-01-01

    Purpose: To develop a high-resolution target volume atlas with intensity-modulated radiotherapy (IMRT) planning guidelines for the conformal treatment of anal cancer. Methods and Materials: A draft contouring atlas and planning guidelines for anal cancer IMRT were prepared at the Australasian Gastrointestinal Trials Group (AGITG) annual meeting in September 2010. An expert panel of radiation oncologists contoured an anal cancer case to generate discussion on recommendations regarding target definition for gross disease, elective nodal volumes, and organs at risk (OARs). Clinical target volume (CTV) and planning target volume (PTV) margins, dose fractionation, and other IMRT-specific issues were also addressed. A steering committee produced the final consensus guidelines. Results: Detailed contouring and planning guidelines and a high-resolution atlas are provided. Gross tumor and elective target volumes are described and pictorially depicted. All elective regions should be routinely contoured for all disease stages, with the possible exception of the inguinal and high pelvic nodes for select, early-stage T1N0. A 20-mm CTV margin for the primary, 10- to 20-mm CTV margin for involved nodes and a 7-mm CTV margin for the elective pelvic nodal groups are recommended, while respecting anatomical boundaries. A 5- to 10-mm PTV margin is suggested. When using a simultaneous integrated boost technique, a dose of 54 Gy in 30 fractions to gross disease and 45 Gy to elective nodes with chemotherapy is appropriate. Guidelines are provided for OAR delineation. Conclusion: These consensus planning guidelines and high-resolution atlas complement the existing Radiation Therapy Oncology Group (RTOG) elective nodal ano-rectal atlas and provide additional anatomic, clinical, and technical instructions to guide radiation oncologists in the planning and delivery of IMRT for anal cancer.

  11. Travelling for treatment; does distance and deprivation affect travel for intensity-modulated radiotherapy in the rural setting for head and neck cancer?

    Science.gov (United States)

    Cosway, B; Douglas, L; Armstrong, N; Robson, A

    2017-06-01

    NHS England has commissioned intensity-modulated radiotherapy for head and neck cancers from Newcastle hospitals for patients in North Cumbria. This study assessed whether travel distances affected the decision to travel to Newcastle (to receive intensity-modulated radiotherapy) or Carlisle (to receive conformal radiotherapy). All patients for whom the multidisciplinary team recommended intensity-modulated radiotherapy between December 2013 and January 2016 were included. Index of multiple deprivation scores and travel distances were calculated. Patients were also asked why they chose their treating centre. Sixty-nine patients were included in this study. There were no significant differences in travel distance (p = 0.53) or index of multiple deprivation scores (p = 0.47) between patients opting for treatment in Carlisle or Newcastle. However, 29 of the 33 patients gave travel distance as their main reason for not travelling for treatment. Quantitatively, travel distance and deprivation does not impact on whether patients accept intensity-modulated radiotherapy. However, patients say distance is a major barrier for access. Future research should explore how to reduce this.

  12. Chemotherapy and intensity modulated conformational radiotherapy for locally advanced pancreas cancers

    International Nuclear Information System (INIS)

    Huguet, F.; Wu, A.; Zhang, Z.; Winston, C.; Reidy, D.; Ho, A.; Allen, P.; Karyn, G.

    2011-01-01

    The authors report a retrospective study of the tolerance and survival of 48 patients who have been treated by a chemotherapy followed by a chemotherapy concomitant with an intensity-modulated radiotherapy for a locally advanced pancreas cancer. Results are discussed in terms of toxicity, cancer response, operability, survival rate. Tolerance is good. Local control rates, global survival rates and secondary resection rates are promising. Short communication

  13. Dose to Larynx Predicts for Swallowing Complications After Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Caglar, Hale B.; Tishler, Roy B.; Othus, Megan; Burke, Elaine; Li Yi; Goguen, Laura; Wirth, Lori J.; Haddad, Robert I.; Norris, Carl M.; Court, Laurence E.; Aninno, Donald J. D.; Posner, Marshall R.; Allen, Aaron M.

    2008-01-01

    Purpose: To evaluate early swallowing after intensity-modulated radiotherapy for head and neck squamous cell carcinoma and determine factors correlating with aspiration and/or stricture. Methods and Materials: Consecutive patients treated with intensity-modulated radiotherapy with or without chemotherapy between September 2004 and August 2006 at the Dana Farber Cancer Institute/Brigham and Women's Hospital were evaluated with institutional review board approval. Patients underwent swallowing evaluation after completion of therapy; including video swallow studies. The clinical- and treatment-related variables were examined for correlation with aspiration or strictures, as well as doses to the larynx, pharyngeal constrictor muscles, and cervical esophagus. The correlation was assessed with logistic regression analysis. Results: A total of 96 patients were evaluated. Their median age was 55 years, and 79 (82%) were men. The primary site of cancer was the oropharynx in 43, hypopharynx/larynx in 17, oral cavity in 13, nasopharynx in 11, maxillary sinus in 2, and unknown primary in 10. Of the 96 patients, 85% underwent definitive RT and 15% postoperative RT. Also, 28 patients underwent induction chemotherapy followed by concurrent chemotherapy, 59 received concurrent chemotherapy, and 9 patients underwent RT alone. The median follow-up was 10 months. Of the 96 patients, 31 (32%) had clinically significant aspiration and 36 (37%) developed a stricture. The radiation dose-volume metrics, including the volume of the larynx receiving ≥50 Gy (p = 0.04 and p = 0.03, respectively) and volume of the inferior constrictor receiving ≥50 Gy (p = 0.05 and p = 0.02, respectively) were significantly associated with both aspiration and stricture. The mean larynx dose correlated with aspiration (p = 0.003). Smoking history was the only clinical factor to correlate with stricture (p = 0.05) but not aspiration. Conclusion: Aspiration and stricture are common side effects after

  14. Dosimetric comparison of standard three-dimensional conformal radiotherapy followed by intensity-modulated radiotherapy boost schedule (sequential IMRT plan) with simultaneous integrated boost-IMRT (SIB IMRT) treatment plan in patients with localized carcinoma prostate.

    Science.gov (United States)

    Bansal, A; Kapoor, R; Singh, S K; Kumar, N; Oinam, A S; Sharma, S C

    2012-07-01

    DOSIMETERIC AND RADIOBIOLOGICAL COMPARISON OF TWO RADIATION SCHEDULES IN LOCALIZED CARCINOMA PROSTATE: Standard Three-Dimensional Conformal Radiotherapy (3DCRT) followed by Intensity Modulated Radiotherapy (IMRT) boost (sequential-IMRT) with Simultaneous Integrated Boost IMRT (SIB-IMRT). Thirty patients were enrolled. In all, the target consisted of PTV P + SV (Prostate and seminal vesicles) and PTV LN (lymph nodes) where PTV refers to planning target volume and the critical structures included: bladder, rectum and small bowel. All patients were treated with sequential-IMRT plan, but for dosimetric comparison, SIB-IMRT plan was also created. The prescription dose to PTV P + SV was 74 Gy in both strategies but with different dose per fraction, however, the dose to PTV LN was 50 Gy delivered in 25 fractions over 5 weeks for sequential-IMRT and 54 Gy delivered in 27 fractions over 5.5 weeks for SIB-IMRT. The treatment plans were compared in terms of dose-volume histograms. Also, Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) obtained with the two plans were compared. The volume of rectum receiving 70 Gy or more (V > 70 Gy) was reduced to 18.23% with SIB-IMRT from 22.81% with sequential-IMRT. SIB-IMRT reduced the mean doses to both bladder and rectum by 13% and 17%, respectively, as compared to sequential-IMRT. NTCP of 0.86 ± 0.75% and 0.01 ± 0.02% for the bladder, 5.87 ± 2.58% and 4.31 ± 2.61% for the rectum and 8.83 ± 7.08% and 8.25 ± 7.98% for the bowel was seen with sequential-IMRT and SIB-IMRT plans respectively. For equal PTV coverage, SIB-IMRT markedly reduced doses to critical structures, therefore should be considered as the strategy for dose escalation. SIB-IMRT achieves lesser NTCP than sequential-IMRT.

  15. Dosimetric Evaluation of Intensity Modulated Radiotherapy and 4-Field 3-D Conformal Radiotherapy in Prostate Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Bora Uysal

    2013-03-01

    Full Text Available Objective: The purpose of this dosimetric study is the targeted dose homogeneity and critical organ dose comparison of 7-field Intensity Modulated Radiotherapy (IMRT and 3-D 4-field conformal radiotherapy. Study Design: Cross sectional study. Material and Methods: Twenty patients with low and moderate risk prostate cancer treated at Gülhane Military Medical School Radiation Oncology Department between January 2009 and December 2009 are included in this study. Two seperate dosimetric plans both for 7-field IMRT and 3D-CRT have been generated for each patient to comparatively evaluate the dosimetric status of both techniques and all the patients received 7-field IMRT. Results: Dose-comparative evaluation of two techniques revealed the superiority of IMRT technique with statistically significantly lower femoral head doses along with reduced critical organ dose-volume parameters of bladder V60 (the volume receiving 60 Gy and rectal V40 (the volume receiving 40 Gy and V60. Conclusion: It can be concluded that IMRT is an effective definitive management tool for prostate cancer with improved critical organ sparing and excellent dose homogenization in target organs of prostate and seminal vesicles.

  16. Carotid sparing intensity modulated radiotherapy on early glottic cancer: Preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hoon Sik; Jeong, Bae Kwon; Jeong, Ho Jin; Song, Jin Ho; Kim, Jin Pyeong; Park, Jung Je; Woo, Seung Hoon; Kang, Ki Mun [Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju (Korea, Republic of)

    2016-03-15

    To compare the dose distribution between carotid sparing intensity modulated radiotherapy (IMRT) and opposed lateral field technique (LAFT), and to determine the effects of carotid sparing IMRT in early glottic cancer patients who have risk factors for atherosclerosis. Ten early glottic cancer patients were treated with carotid sparing IMRT. For each patient, the conventional LAFT plan was developed for comparison. IMRT and LAFT plans were compared in terms of planning target volume (PTV) coverage, conformity index, homogeneity index, and the doses to planning organ at risk volume (PRV) for carotid arteries, spinal cord and pharyngeal constrictor muscle. Recurrence was not observed in any patients during the follow-up period. V95% for PTV showed no significant difference between IMRT and LAFT plans, while V100% was significantly higher in the IMRT plan (95.5% vs. 94.6%, p = 0.005). The homogeneity index (11.6%) and conformity index (1.4) in the IMRT plan were significantly better than those in the LAFT plans (8.5% and 5.1, respectively) (p = 0.005). The median V5Gy (90.0%), V25Gy (13.5%), and V50Gy (0%) for carotid artery PRV in the IMRT plan were significantly lower than those in the LAFT plan (99.1%, 89.0%, and 77.3%, respectively) (p = 0.005). Our study suggests that carotid sparing IMRT can significantly decrease the dose to carotid arteries compared to LAFT, and it would be considered for early glottic cancer patient with high risk of atherosclerosis.

  17. Implementation of an image guided intensity-modulated protocol for post-prostatectomy radiotherapy: planning data and acute toxicity outcomes.

    Science.gov (United States)

    Chua, Benjamin; Min, Myo; Wood, Maree; Edwards, Sarah; Hoffmann, Matthew; Greenham, Stuart; Kovendy, Andrew; McKay, Michael J; Shakespeare, Thomas P

    2013-08-01

    There is substantial interest in implementation of image-guided intensity-modulated radiotherapy (IG-IMRT) in the post-prostatectomy setting. We describe our implementation of IG-IMRT, and examine how often published organ-at-risk (OAR) constraints were met. Furthermore, we evaluate the incidence of acute genitourinary and gastrointestinal toxicities when patients were treated according to our protocol. Patients were eligible if they received post-prostatectomy radiotherapy (PPRT). Planning data were collected prospectively, and toxicity assessments were collected before, during and after treatment. Seventy-five eligible patients received either 64 Gy (19%) or 66 Gy (81%) in a single phase to the prostate bed. Suggested rectal dose-constraints of V40Gy < 60% and V60Gy < 40% were met in 64 (85%) and 75 (100%) patients, respectively. IMRT-specific rectal dose-constraints of V40Gy < 35% and V65Gy < 17% were achieved in 5 (7%) and 57 (76%) of patients. Bladder dose-constraint (V50Gy < 50%) was met in 58 (77%) patients. Two patients (3%) experienced new grade 3 genitourinary toxicity and one patient (1%) experienced new grade 3 gastroinestinal toxicity. All grade 3 toxicities had improved by 3-month review. Overall deterioration in urinary and gastrointestinal symptoms occurred in 33 (44%) and 35 (47%) of patients respectively. We report on our implementation of PPRT which takes into account nationally adopted guidelines, with a margin reduction supported by use of daily image guidance. Non-IMRT OAR constraints were met in most cases. IMRT-specific constraints were less often achieved despite margin reductions, suggesting the need for review of guidelines. Severe toxicity was rare, and most patients did not experience deterioration in urinary or bowel function attributable to radiotherapy. © 2013 The Authors. Journal of Medical Imaging and Radiation Oncology © 2013 The Royal Australian and New Zealand College of Radiologists.

  18. Implementation of an image guided intensity-modulated protocol for post-prostatectomy radiotherapy: planning data and acute toxicity outcomes

    International Nuclear Information System (INIS)

    Chua, Benjamin; Min, Myo; Wood, Maree; Edwards, Sarah; Hoffmann, Matthew; Greenham, Stuart; Kovendy, Andrew; McKay, Michael J.; Shakespeare, Thomas P.

    2013-01-01

    There is substantial interest in implementation of image-guided intensity-modulated radiotherapy (IG-IMRT) in the post-prostatectomy setting. We describe our implementation of IG-IMRT, and examine how often published organ-at-risk (OAR) constraints were met. Furthermore, we evaluate the incidence of acute genitourinary and gastrointestinal toxicities when patients were treated according to our protocol. Patients were eligible if they received post-prostatectomy radiotherapy (PPRT). Planning data were collected prospectively, and toxicity assessments were collected before, during and after treatment. Seventy-five eligible patients received either 64Gy (19%) or 66Gy (81%) in a single phase to the prostate bed. Suggested rectal dose-constraints of V40Gy<60% and V60Gy<40% were met in 64 (85%) and 75 (100%) patients, respectively. IMRT-specific rectal dose-constraints of V40Gy<35% and V65Gy<17% were achieved in 5 (7%) and 57 (76%) of patients. Bladder dose-constraint (V50Gy<50%) was met in 58 (77%) patients. Two patients (3%) experienced new grade 3 genitourinary toxicity and one patient (1%) experienced new grade 3 gastrointestinal toxicity. All grade 3 toxicities had improved by 3-month review. Overall deterioration in urinary and gastrointestinal symptoms occurred in 33 (44%) and 35 (47%) of patients respectively. We report on our implementation of PPRT which takes into account nationally adopted guidelines, with a margin reduction supported by use of daily image guidance. Non-IMRT OAR constraints were met in most cases. IMRT-specific constraints were less often achieved despite margin reductions, suggesting the need for review of guidelines. Severe toxicity was rare, and most patients did not experience deterioration in urinary or bowel function attributable to radiotherapy.

  19. Accelerated Intensity-Modulated Radiotherapy to Breast in Prone Position: Dosimetric Results

    International Nuclear Information System (INIS)

    De Wyngaert, J. Keith; Jozsef, Gabor; Mitchell, James; Rosenstein, Barry; Formenti, Silvia C.

    2007-01-01

    Purpose: To report the physics and dosimetry results of a trial of accelerated intensity-modulated radiotherapy to the whole breast with a concomitant boost to the tumor bed in patients treated in the prone position. Methods and Materials: Patients underwent computed tomography planning and treatment in the prone position on a dedicated treatment platform. The platform has an open aperture on the side to allow for the index breast to fall away from the chest wall. Noncontrast computed tomography images were acquired at 2.5- or 3.75-mm-thick intervals, from the level of the mandible to below the diaphragm. A dose of 40.5 Gy was delivered to the entire breast at 2.7-Gy fractions in 15 fractions. An additional dose of 0.5 Gy was delivered as a concomitant boost to the lumpectomy site, with a 1-cm margin, using inverse planning, for a total dose of 48 Gy in 15 fractions. No more than 10% of the heart and lung volume was allowed to receive >18 and >20 Gy, respectively. Results: Between September 2003 and August 2005, 91 patients were enrolled in the study. The median volume of heart that received ≥18 Gy was 0.5%, with a maximal value of 4.7%. The median volume of ipsilateral lung that received ≥20 Gy was 0.8%, with a maximum of 7.2%. Conclusion: This technique for whole breast radiotherapy is feasible and enables an accelerated regimen in the prone position while sparing the lung and heart

  20. Interfractional Dose Variations in Intensity-Modulated Radiotherapy With Breath-Hold for Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Mitsuhiro [Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto (Japan); Shibuya, Keiko, E-mail: kei@kuhp.kyoto-u.ac.jp [Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto (Japan); Nakamura, Akira [Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto (Japan); Shiinoki, Takehiro [Department of Nuclear Engineering, Kyoto University Graduate School of Engineering, Kyoto (Japan); Matsuo, Yukinori [Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto (Japan); Nakata, Manabu [Clinical Radiology Service Division, Kyoto University Hospital, Kyoto (Japan); Sawada, Akira; Mizowaki, Takashi; Hiraoka, Masahiro [Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto (Japan)

    2012-04-01

    Purpose: To investigate the interfractional dose variations for intensity-modulated radiotherapy (RT) combined with breath-hold (BH) at end-exhalation (EE) for pancreatic cancer. Methods and Materials: A total of 10 consecutive patients with pancreatic cancer were enrolled. Each patient was fixed in the supine position on an individualized vacuum pillow with both arms raised. Computed tomography (CT) scans were performed before RT, and three additional scans were performed during the course of chemoradiotherapy using a conventional RT technique. The CT data were acquired under EE-BH conditions (BH-CT) using a visual feedback technique. The intensity-modulated RT plan, which used five 15-MV coplanar ports, was designed on the initial BH-CT set with a prescription dose of 39 Gy at 2.6 Gy/fraction. After rigid image registration between the initial and subsequent BH-CT scans, the dose distributions were recalculated on the subsequent BH-CT images under the same conditions as in planning. Changes in the dose-volume metrics of the gross tumor volume (GTV), clinical target volume (CTV = GTV + 5 mm), stomach, and duodenum were evaluated. Results: For the GTV and clinical target volume (CTV), the 95th percentile of the interfractional variations in the maximal dose, mean dose, dose covering 95% volume of the region of structure, and percentage of the volume covered by the 90% isodose line were within {+-}3%. Although the volume covered by the 39 Gy isodose line for the stomach and duodenum did not exceed 0.1 mL at planning, the volume covered by the 39 Gy isodose line for these structures was up to 11.4 cm{sup 3} and 1.8 cm{sup 3}, respectively. Conclusions: Despite variations in the gastrointestinal state and abdominal wall position at EE, the GTV and CTV were mostly ensured at the planned dose, with the exception of 1 patient. Compared with the duodenum, large variations in the stomach volume receiving high-dose radiation were observed, which might be beyond the

  1. Comparison of optimization algorithms in intensity-modulated radiation therapy planning

    Science.gov (United States)

    Kendrick, Rachel

    Intensity-modulated radiation therapy is used to better conform the radiation dose to the target, which includes avoiding healthy tissue. Planning programs employ optimization methods to search for the best fluence of each photon beam, and therefore to create the best treatment plan. The Computational Environment for Radiotherapy Research (CERR), a program written in MATLAB, was used to examine some commonly-used algorithms for one 5-beam plan. Algorithms include the genetic algorithm, quadratic programming, pattern search, constrained nonlinear optimization, simulated annealing, the optimization method used in Varian EclipseTM, and some hybrids of these. Quadratic programing, simulated annealing, and a quadratic/simulated annealing hybrid were also separately compared using different prescription doses. The results of each dose-volume histogram as well as the visual dose color wash were used to compare the plans. CERR's built-in quadratic programming provided the best overall plan, but avoidance of the organ-at-risk was rivaled by other programs. Hybrids of quadratic programming with some of these algorithms seems to suggest the possibility of better planning programs, as shown by the improved quadratic/simulated annealing plan when compared to the simulated annealing algorithm alone. Further experimentation will be done to improve cost functions and computational time.

  2. Volumetric-modulated arc therapy in postprostatectomy radiotherapy patients: A planning comparison study

    International Nuclear Information System (INIS)

    Forde, Elizabeth; Kneebone, Andrew; Bromley, Regina; Guo, Linxin; Hunt, Peter; Eade, Thomas

    2013-01-01

    The purpose of this study was to compare postprostatectomy planning for volumetric-modulated arc therapy (VMAT) with both single arc (SA) and double arcs (DA) against dynamic sliding window intensity-modulated radiotherapy (IMRT). Ten cases were planned with IMRT, SA VMAT, and DA VMAT. All cases were planned to achieve a minimum dose of 68 Gy to 95% of the planning target volume (PTV) and goals to limit rectal volume >40 Gy to 35% and >65 Gy to 17%, and bladder volumes >40 Gy to 50% and >65 Gy to 25%. Plans were averaged across the 10 patients and compared for mean dose, conformity, homogeneity, rectal and bladder doses, and monitor units. The mean dose to the clinical target volume and PTV was significantly higher (p<0.05) for SA compared with DA or IMRT. The homogeneity index was not significantly different: SA = 0.09; DA = 0.08; and IMRT = 0.07. The rectal V40 was lowest for the DA plan. The rectal V20 was significantly lower (p<0.05) for both the VMAT plans compared with IMRT. There were no significant differences for bladder V40 or rectal and bladder V65. The IMRT plans required 1400 MU compared with 745 for DA and 708 for SA. This study shows that for equivalent dose coverage, SA and DA VMAT plans result in higher mean doses to the clinical target volume and PTV. This greater dose heterogeneity is balanced by improved low-range rectal doses and halving of the monitor units

  3. Volumetric-modulated arc therapy in postprostatectomy radiotherapy patients: A planning comparison study

    Energy Technology Data Exchange (ETDEWEB)

    Forde, Elizabeth, E-mail: eforde@tcd.ie [Radiation Oncology Department, Northern Sydney Cancer Centre, St Leonards, New South Wales (Australia); Kneebone, Andrew [Radiation Oncology Department, Northern Sydney Cancer Centre, St Leonards, New South Wales (Australia); Northern Clinical School, University of Sydney, New South Wales (Australia); Bromley, Regina [Institute of Medical Physics, School of Physics, University of Sydney, New South Wales (Australia); Guo, Linxin; Hunt, Peter [Radiation Oncology Department, Northern Sydney Cancer Centre, St Leonards, New South Wales (Australia); Eade, Thomas [Radiation Oncology Department, Northern Sydney Cancer Centre, St Leonards, New South Wales (Australia); Northern Clinical School, University of Sydney, New South Wales (Australia)

    2013-10-01

    The purpose of this study was to compare postprostatectomy planning for volumetric-modulated arc therapy (VMAT) with both single arc (SA) and double arcs (DA) against dynamic sliding window intensity-modulated radiotherapy (IMRT). Ten cases were planned with IMRT, SA VMAT, and DA VMAT. All cases were planned to achieve a minimum dose of 68 Gy to 95% of the planning target volume (PTV) and goals to limit rectal volume >40 Gy to 35% and >65 Gy to 17%, and bladder volumes >40 Gy to 50% and >65 Gy to 25%. Plans were averaged across the 10 patients and compared for mean dose, conformity, homogeneity, rectal and bladder doses, and monitor units. The mean dose to the clinical target volume and PTV was significantly higher (p<0.05) for SA compared with DA or IMRT. The homogeneity index was not significantly different: SA = 0.09; DA = 0.08; and IMRT = 0.07. The rectal V40 was lowest for the DA plan. The rectal V20 was significantly lower (p<0.05) for both the VMAT plans compared with IMRT. There were no significant differences for bladder V40 or rectal and bladder V65. The IMRT plans required 1400 MU compared with 745 for DA and 708 for SA. This study shows that for equivalent dose coverage, SA and DA VMAT plans result in higher mean doses to the clinical target volume and PTV. This greater dose heterogeneity is balanced by improved low-range rectal doses and halving of the monitor units.

  4. Effects of intensity-modulated radiotherapy on human oral microflora

    International Nuclear Information System (INIS)

    Shao Ziyang; Tang Zisheng; Jiang Yuntao; Ma Rui; Liu Zheng; Huang Zhengwei; Yan Chao

    2011-01-01

    This study aimed to evaluate changes in the biodiversity of the oral microflora of patients with head and neck cancer treated with postoperative intensity-modulated radiotherapy (IMRT) or conventional radiotherapy (CRT). Pooled dental plaque samples were collected during the radiation treatment from patients receiving IMRT (n=13) and CRT (n=12). Denaturing gradient gel electrophoresis (DGGE) was used to analyze the temporal variation of these plaque samples. The stimulated and unstimulated salivary flow rates were also compared between IMRT and CRT patients. Reductions in the severity of hyposalivation were observed in IMRT patients compared with CRT patients. We also observed that the temporal stability of the oral ecosystem was significantly higher in the IMRT group (69.96±7.82%) than in the CRT group (51.98±10.45%) (P<0.05). The findings of the present study suggest that IMRT is more conducive to maintaining the relative stability of the oral ecosystem than CRT. (author)

  5. Intensity-modulated radiotherapy for cancers in childhood

    International Nuclear Information System (INIS)

    Leseur, J.; Le Prise, E.; Leseur, J.; Carrie, C.; Beneyton, V.; Bernier, V.; Beneyton, V.; Mahee, M.A.; Supiot, S.

    2009-01-01

    Approximately 40-50% of children with cancer will be irradiated during their treatment. Intensity-modulated radiotherapy (I.M.R.T.) by linear accelerator or helical tomo-therapy improves dose distribution in target volumes and normal tissue sparing. This technology could be particularly useful for pediatric patients to achieve an optimal dose distribution in complex volumes close to critical structures. The use of I.M.R.T. can increase the volume of tissue receiving low-dose radiation, and consequently carcinogenicity in childhood population with a good overall survival and long period of life expectancy. This review will present the current and potential I.M.R.T. indications for cancers in childhood, and discuss the benefits and problems of this technology aiming to define recommendations in the use of I.M.R.T. and specific doses constraints in Pediatrics. (authors)

  6. The development of intensity modulated radiotherapy (IMRT) for prostate cancer at Austin and Repatriation Medical Centre (ARMC)

    International Nuclear Information System (INIS)

    Joon, D.L.; Mantle, C.; Viotto, A.; Rolfo, A.; Rykers, K.; Fernando, W.; Grace, M.; Liu, G.; Quong, G.; Feigen, M.; Wada, M.; Joon, M.L.; Fogarty, G.; Chao, M.W.; Khoo, V.

    2003-01-01

    To describe the protocol development of the IMRT program for prostate cancer at the ARMC. A series of protocols were defined and developed to facilitate the delivery of intensity modulated radiotherapy for prostate cancer. These included the following: 1. Physical Simulation including bowel and bladder preparation and immobilization 2. Image Acquisition including CT and MRI simulation scans with image co-registration 3. Contouring Definitions including target and organ at risk volumes as well as IMRT optimization and evaluation volumes 4. Radiotherapy Planning including constraint definition, inverse planning and CMS Focus specific parameters 5. DICOM RT interface including data transfer between CMS Focus and the Elekta Linac Desktop record and verify system 6. Verification including action limits and pre-treatment online EPID verification 7. Radiotherapy Delivery being that of step and shoot 8. Quality Assurance including physics testing and documentation The protocol development and testing has lead to the precise clinical delivery of IMRT for prostate cancer at ARMC that exceeds most of the parameters that were previously measured with our conventional and 3D conformal radiotherapy. Further development is now underway to allow it to be implemented as the routine treatment of prostate cancer at ARMC. The clinical implementation of IMRT for prostate cancer involves a collaborative team approach including radiation oncologists, radiation therapists, and radiation physics. This is necessary to develop the appropriate protocols and quality assurance for precision radiotherapy that is required for IMRT

  7. Magnetic resonance sialography for investigating major salivary gland duct system after intensity-modulated radiotherapy of nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Ou Dan; He Xiayun; Zhang Yunyan

    2013-01-01

    We investigated the value of magnetic resonance sialography for evaluating xerostomia induced by intensity-modulated radiotherapy for nasopharyngeal carcinoma. Fourteen patients with nasopharyngeal carcinoma were treated with intensity-modulated radiotherapy. Salivary function was assessed by magnetic resonance sialography and subjective evaluation criteria pre-treatment, 1 week and 1 year post-radiotherapy. A magnetic resonance sialography categorical scoring system was used to compare the visibility of salivary ducts. The average mean dose was 38.93 Gy to the parotid glands and 59.34 Gy to the submandibular glands. Before radiotherapy, the visibility scores of both the parotid and submandibular ducts increased after secretion stimulation. The scores decreased and the response to stimulation was attenuated 1 week post-radiotherapy. For most of the parotid ducts, the visibility score improved at 1 year post-radiotherapy both at rest and under stimulation, but not for the submandibular ducts. With a median follow-up of 12.3 months, 8/12 patients had grade 1 xerostomia and 4/12 had grade 2 xerostomia. Magnetic resonance sialography allows non-invasive evaluation of radiation-induced ductal changes in the major salivary glands and enables reliable prediction of radiation-induced xerostomia. (author)

  8. Toxicity after intensity-modulated, image-guided radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Flentje, Michael; Guckenberger, Matthias; Ok, Sami; Polat, Buelent; Sweeney, Reinhart A.

    2010-01-01

    Purpose: To evaluate toxicity after dose-escalated radiotherapy for prostate cancer using intensity-modulated treatment planning (IMRT) and image-guided treatment (IGRT) delivery. Patients and Methods: 100 patients were treated with simultaneous integrated boost (SIB) IMRT for prostate cancer: doses of 76.23 Gy and 60 Gy in 33 fractions were prescribed to the prostate and the seminal vesicles, respectively, for intermediate- and high-risk patients (n = 74). The total dose was 73.91 Gy in 32 fractions for low-risk patients and after transurethral resection of the prostate (n = 26). The pelvic lymphatics were treated with 46 Gy in 25 fractions in patients with high risk of lymph node metastases using an SIB to the prostate (n = 25). IGRT was practiced with cone-beam computed tomography. Acute and late gastrointestinal (GI) and genitourinary (GU) toxicity was evaluated prospectively (CTCAE v3.0). Results: Treatment was completed as planned by all patients. Acute GI and GU toxicity grade ≥ 2 was observed in 12% and 42% of the patients, respectively, with 4% suffering from GU toxicity grade 3. 6 weeks after treatment, the incidence of acute toxicity grade ≥ 2 had decreased to 12%. With a median follow-up of 26 months, late GI and GU toxicity grade ≥ 2 was seen in 1.5% and 7.7% of the patients at 24 months. Four patients developed late toxicity grade 3 (GI n = 1; GU n = 3). Presence of acute GI and GU toxicity was significantly associated with late GI (p = 0.0007) and GU toxicity (p = 0.006). Conclusion: High-dose radiotherapy for prostate cancer using IMRT and IGRT resulted in low rates of acute toxicity and preliminary results of late toxicity are promising. (orig.)

  9. Toxicity after intensity-modulated, image-guided radiotherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Flentje, Michael [Dept. of Radiotherapy, Univ. Hospital Wuerzburg (Germany); Guckenberger, Matthias; Ok, Sami; Polat, Buelent; Sweeney, Reinhart A.

    2010-10-15

    Purpose: To evaluate toxicity after dose-escalated radiotherapy for prostate cancer using intensity-modulated treatment planning (IMRT) and image-guided treatment (IGRT) delivery. Patients and Methods: 100 patients were treated with simultaneous integrated boost (SIB) IMRT for prostate cancer: doses of 76.23 Gy and 60 Gy in 33 fractions were prescribed to the prostate and the seminal vesicles, respectively, for intermediate- and high-risk patients (n = 74). The total dose was 73.91 Gy in 32 fractions for low-risk patients and after transurethral resection of the prostate (n = 26). The pelvic lymphatics were treated with 46 Gy in 25 fractions in patients with high risk of lymph node metastases using an SIB to the prostate (n = 25). IGRT was practiced with cone-beam computed tomography. Acute and late gastrointestinal (GI) and genitourinary (GU) toxicity was evaluated prospectively (CTCAE v3.0). Results: Treatment was completed as planned by all patients. Acute GI and GU toxicity grade {>=} 2 was observed in 12% and 42% of the patients, respectively, with 4% suffering from GU toxicity grade 3. 6 weeks after treatment, the incidence of acute toxicity grade {>=} 2 had decreased to 12%. With a median follow-up of 26 months, late GI and GU toxicity grade {>=} 2 was seen in 1.5% and 7.7% of the patients at 24 months. Four patients developed late toxicity grade 3 (GI n = 1; GU n = 3). Presence of acute GI and GU toxicity was significantly associated with late GI (p = 0.0007) and GU toxicity (p = 0.006). Conclusion: High-dose radiotherapy for prostate cancer using IMRT and IGRT resulted in low rates of acute toxicity and preliminary results of late toxicity are promising. (orig.)

  10. Sparing functional anatomical structures during intensity-modulated radiotherapy: an old problem, a new solution.

    Science.gov (United States)

    Tan, Wenyong; Han, Guang; Wei, Shaozhong; Hu, Desheng

    2014-08-01

    During intensity-modulated radiotherapy, an organ is usually assumed to be functionally homogeneous and, generally, its anatomical and spatial heterogeneity with respect to radiation response are not taken into consideration. However, advances in imaging and radiation techniques as well as an improved understanding of the radiobiological response of organs have raised the possibility of sparing the critical functional structures within various organs at risk during intensity-modulated radiotherapy. Here, we discuss these structures, which include the critical brain structure, or neural nuclei, and the nerve fiber tracts in the CNS, head and neck structures related to radiation-induced salivary and swallowing dysfunction, and functional structures in the heart and lung. We suggest that these structures can be used as potential surrogate organs at risk in order to minimize their radiation dose and/or irradiated volume without compromising the dose coverage of the target volume during radiation treatment.

  11. Comparison of RapidArc plans and fixed field intensity modulated radiotherapy planning in cervical cancer radiotherapy

    International Nuclear Information System (INIS)

    Liu Xiangyu; Liu Xianfeng; He Ya'nan; Yin Wenjuan; Wu Yongzhong

    2011-01-01

    Objective: To explore the advantages and disadvantages between the RapidArc plans and fixed-field IMRT plan (IMRT). Methods: Ten cases of cervical cancer,aged 55 (36-70), who were to receive post-operative radiotherapy were selected randomly. Single arc (Arc 1), two arcs (Arc 2), and three arc (Arc 3) RapidArc plans and fixed-field IMRT plan were designed respectively in the Eclipse 8.6 planning system. The designing, treatment time, target area, and dose distribution of organs at risk by these 4 planning techniques were compared. Results: The values of average planned treatment time by the Arc 1, Arc 2, and Arc 3 ten cases was 98, 155, 185, and 46 min, respectively. The values of average treatment time in the Varian IX accelerator were 2.15, 3.32, 4.48, and 6.95 min, respectively. The average mean doses were (48.99±1.08),(49.40±0.51), (49.51±0.62), and (48.65±0.92) Gy, respectively. The values of homogeneity index (HI) of target were 1.11±0.07, 1.07±0.02, 1.06±0.02, and 1.12±0.05, respectively. The values of conformal index (CI) of target were 0.73±0.13, 0.87±0.06, 0.87±0.06, and 0.79±0.06, respectively. The doses at rectum, bladder, and small intestine calculated by IMRT plan were the lowest, and the doses at the femoral neck calculated by these 4 plans were similar. Conclusions: The RapidArc plan is superior in dose distribution at target, HI, CI, and treatment time to IMRT, but IMRT plan is superior to RapidArc in planned dose calculation time and protection of organs at risk. However, in general, the RapidArc plan is better in clinical application than IMRT plan. (authors)

  12. Limited benefit of inversely optimised intensity modulation in breast conserving radiotherapy with simultaneously integrated boost

    International Nuclear Information System (INIS)

    Laan, Hans Paul van der; Dolsma, Wil V.; Schilstra, Cornelis; Korevaar, Erik W.; Bock, Geertruida H. de; Maduro, John H.; Langendijk, Johannes A.

    2010-01-01

    Background and purpose: To examine whether in breast-conserving radiotherapy (RT) with simultaneously integrated boost (SIB), application of inversely planned intensity-modulated radiotherapy (IMRT-SIB) instead of three-dimensional RT (3D-CRT-SIB) has benefits that justify the additional costs, and to evaluate whether a potential benefit of IMRT-SIB depends on specific patient characteristics. Material and methods: 3D-CRT-SIB and various IMRT-SIB treatment plans were constructed and optimised for 30 patients with early stage left-sided breast cancer. Coverage of planning target volumes (PTVs) and dose delivered to organs at risk (OARs) were determined for each plan. Overlap between heart and breast PTV (OHB), size of breast and boost PTVs and boost location were examined in their ability to identify patients that might benefit from IMRT-SIB. Results: All plans had adequate PTV coverage. IMRT-SIB generally reduced dose levels delivered to heart, lungs, and normal breast tissue relative to 3D-CRT-SIB. However, IMRT-SIB benefit differed per patient. For many patients, comparable results were obtained with 3D-CRT-SIB, while patients with OHB > 1.4 cm and a relatively large boost PTV volume (>125 cm 3 ) gained most from the use of IMRT-SIB. Conclusions: In breast-conserving RT, results obtained with 3D-CRT-SIB and IMRT-SIB are generally comparable. Patient characteristics could be used to identify patients that are most likely to benefit from IMRT-SIB.

  13. Optimisation of radiotherapy for carcinoma of the parotid gland: a comparison of conventional, three-dimensional conformal, and intensity-modulated techniques

    International Nuclear Information System (INIS)

    Nutting, Christopher M.; Rowbottom, Carl G.; Cosgrove, Vivian P.; Henk, J. Michael; Dearnaley, David P.; Robinson, Martin H.; Conway, John; Webb, Steve

    2001-01-01

    Background and purpose: To compare external beam radiotherapy techniques for parotid gland tumours using conventional radiotherapy (RT), three-dimensional conformal radiotherapy (3DCRT), and intensity-modulated radiotherapy (IMRT). To optimise the IMRT techniques, and to produce an IMRT class solution. Materials and methods: The planning target volume (PTV), contra-lateral parotid gland, oral cavity, brain-stem, brain and cochlea were outlined on CT planning scans of six patients with parotid gland tumours. Optimised conventional RT and 3DCRT plans were created and compared with inverse-planned IMRT dose distributions using dose-volume histograms. The aim was to reduce the radiation dose to organs at risk and improve the PTV dose distribution. A beam-direction optimisation algorithm was used to improve the dose distribution of the IMRT plans, and a class solution for parotid gland IMRT was investigated. Results: 3DCRT plans produced an equivalent PTV irradiation and reduced the dose to the cochlea, oral cavity, brain, and other normal tissues compared with conventional RT. IMRT further reduced the radiation dose to the cochlea and oral cavity compared with 3DCRT. For nine- and seven-field IMRT techniques, there was an increase in low-dose radiation to non-target tissue and the contra-lateral parotid gland. IMRT plans produced using three to five optimised intensity-modulated beam directions maintained the advantages of the more complex IMRT plans, and reduced the contra-lateral parotid gland dose to acceptable levels. Three- and four-field non-coplanar beam arrangements increased the volume of brain irradiated, and increased PTV dose inhomogeneity. A four-field class solution consisting of paired ipsilateral coplanar anterior and posterior oblique beams (15, 45, 145 and 170 degree sign from the anterior plane) was developed which maintained the benefits without the complexity of individual patient optimisation. Conclusions: For patients with parotid gland tumours

  14. Clinical application of intensity and energy modulated radiotherapy with photon and electron beams

    International Nuclear Information System (INIS)

    Xiangkui Mu

    2005-01-01

    In modern, advanced radiotherapy (e.g. intensity modulated photon radiotherapy, IMXT) the delivery time for each fraction becomes prolonged to 10-20 minutes compared with the conventional, commonly 2-5 minutes. The biological effect of this prolongation is not fully known. The large number of beam directions in IMXT commonly leads to a large integral dose in the patient. Electrons would reduce the integral dose but are not suitable for treating deep-seated tumour, due to their limited penetration in tissues. By combining electron and photon beams, the dose distributions may be improved compared with either used alone. One obstacle for using electron beams in clinical routine is that there is no available treatment planning systems that optimise electron beam treatments in a similar way as for IMXT. Protons have an even more pronounced dose fall-off, larger penetration depth and less penumbra widening than electrons and are therefore more suitable for advanced radiotherapy. However, proton facilities optimised for advanced radiotherapy are not commonly available. In some instances electron beams may be an acceptable surrogate. The first part of this study is an experimental in vitro study where the situation in a tumour during fractionated radiotherapy is simulated. The effect of the prolonged fraction time is compared with the predictions by radiobiological models. The second part is a treatment planning study to analyse the mixing of electron and photon beams for at complex target volume in comparison with IMXT. In the next step a research version of an electron beam optimiser was used for the improvement of treatment plans. The aim was to develop a method for translating crude energy and intensity matrices for optimised electrons into a deliverable treatment plan without destroying the dose distribution. In the final part, different methods of treating the spinal canal in medulloblastoma were explored in a treatment planning study that was evaluated with

  15. SU-E-P-58: Dosimetric Study of Conventional Intensity-Modulated Radiotherapy and Knowledge-Based Radiation Therapy for Postoperation of Cervix Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C; Yin, Y [Shandong Tumor Hospital, Jinan, Shandong Provice (China)

    2015-06-15

    Purpose: To compare the dosimetric difference of the target volume and organs at risk(OARs) between conventional intensity-modulated radiotherapy(C-IMRT) and knowledge-based radiation therapy (KBRT) plans for cervix cancer. Methods: 39 patients with cervical cancer after surgery were randomly selected, 20 patient plans were used to create the model, the other 19 cases used for comparative evaluation. All plans were designed in Eclipse system. The prescription dose was 30.6Gy, 17 fractions, OARs dose satisfied to the clinical requirement. A paired t test was used to evaluate the differences of dose-volume histograms (DVH). Results: Comparaed to C-IMRT plan, the KBRT plan target can achieve the similar target dose coverage, D98,D95,D2,HI and CI had no difference (P≥0.05). The dose of rectum, bladder and femoral heads had no significant differences(P≥0.05). The time was used to design treatment plan was significant reduced. Conclusion: This study shows that postoperative radiotherapy of cervical KBRT plans can achieve the similar target and OARs dose, but the shorter designing time.

  16. Cervix carcinomas: place of intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Barillot, I.

    2009-01-01

    While indications of modulated intensity radiation therapy (I.M.R.T.) are perfectly defined in head and neck and prostate cancer patients, this technique remains under evaluation for gynecologic tumours. The implementation of conformal three dimensional radiotherapy in the late 1990 has been the first important step for optimisation of treatment of cervix carcinomas, as it permitted a better target coverage with a significant reduction of the bladder dose. However, this technique often leads to an irradiation of a larger volume of rectum in locally advanced stages and could only spare a limited amount of intestine. I.R.M.T. is one of the optimisation methods potentially efficient for a better sparing of digestive tract during irradiation of cervix carcinomas. The aim of this literature review is to provide the arguments supporting this hypothesis, and to define the place of this technique for dose escalation. (authors)

  17. SU-E-T-449: Hippocampal Sparing Radiotherapy Using Intensity Modulated Radiotherapy and Volumetric Modulated Arc Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S [Korea University, Seoul (Korea, Republic of); Kyung Hee University Hospital at Gangdong, Gangdong-gu (Korea, Republic of); Kim, D; Chung, W [Kyung Hee University Hospital at Gangdong, Gangdong-gu (Korea, Republic of); Yoon, M [Korea University, Seoul (Korea, Republic of)

    2015-06-15

    Purpose: The hippocampus sparing during the cranial irradiation has become interesting because it may mitigate radiation-induced neurocognitive toxicity. Herein we report our preliminary study for sparing the hippocampus with and without tilling condition for patient with brain metastases. Methods: Ten patients previously treated with whole brain were reviewed. Five patients tilted the head to around 30 degrees and others were treated without tilting. Treatment plans of linear accelerator (Linac)-based volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) were generated for prescription dose of 30 Gy in 15 fractions. Hippocampal avoidance regions were created with 5-mm volumetric expansion around the hippocampus. Whole brain, hippocampus and hippocampal avoidance volume were 1372cm3, 6cm3 and 30cm3 and hippocampal avoidance volume was 2.2% of the whole brain planned target volume in average. Organs at risk (OARs) are hippocampus, eyes, lens, and cochleae. Coverage index (CVI), conformity index (CI), homogeneity index (HI) and mean dose to OARs were used to compare dose characteristic of tilted and non-tilted cases. Results: In IMRT, when CI, CVI and HI of whole brain were 0.88, 0.09 and 0.98 in both tilted and non-tilted cases, absorbed dose of hippocampal avoidance volume in tilted cases were 10% lower than non-tilted cases. Doses in other OARs such as eyes, lens, and cochleae were also decreased about 20% when tilting the head. When CI, HI and CVI in VMAT were 0.9, 0.08 and 0.99, the dose-decreased ratio of OARs in both with and without tilting cases were almost the same with IMRT. But absolute dose of hippocampal avoidance volume in VMAT was 30% lower than IMRT. Conclusion: This study confirms that dose to hippocampus decreases if patients tilt the head. When treating the whole brain with head tilted, patients can acquire the same successful treatment Result and also preserve their valuable memory.

  18. Intensity modulated radiotherapy for elderly bladder cancer patients

    International Nuclear Information System (INIS)

    Hsieh, Chen-Hsi; Wang, Li-Ying; Hsieh, Yen-Ping; Shueng, Pei-Wei; Chung, Shiu-Dong; Chan, Pei-Hui; Lai, Siu-Kai; Chang, Hsiao-Chun; Hsiao, Chi-Huang; Wu, Le-Jung; Chong, Ngot-Swan; Chen, Yu-Jen

    2011-01-01

    To review our experience and evaluate treatment planning using intensity-modulated radiotherapy (IMRT) and helical tomotherapy (HT) for the treatment of elderly patients with bladder cancer. From November 2006 through November 2009, we enrolled 19 elderly patients with histologically confirmed bladder cancer, 9 in the IMRT and 10 in the HT group. The patients received 64.8 Gy to the bladder with or without concurrent chemotherapy. Conventional 4-field 'box' pelvic radiation therapy (2DRT) plans were generated for comparison. The median patient age was 80 years old (range, 65-90 years old). The median survival was 21 months (5 to 26 months). The actuarial 2-year overall survival (OS) for the IMRT vs. the HT group was 26.3% vs .37.5%, respectively; the corresponding values for disease-free survival were 58.3% vs. 83.3%, respectively; for locoregional progression-free survival (LRPFS), the values were 87.5% vs. 83.3%, respectively; and for metastases-free survival, the values were 66.7% vs. 60.0%, respectively. The 2-year OS rates for T1, 2 vs. T3, 4 were 66.7% vs. 35.4%, respectively (p = 0.046). The 2-year OS rate was poor for those whose RT completion time greater than 8 weeks when compared with the RT completed within 8 wks (37.9% vs. 0%, p = 0.004). IMRT and HT provide good LRPFS with tolerable toxicity for elderly patients with invasive bladder cancer. IMRT and HT dosimetry and organ sparing capability were superior to that of 2DRT, and HT provides better sparing ability than IMRT. The T category and the RT completion time influence OS rate

  19. Dosimetric comparison of vaginal vault ovoid brachytherapy versus intensity-modulated radiation therapy plans in postoperative patients of cervical carcinoma following whole pelvic radiotherapy

    Directory of Open Access Journals (Sweden)

    Divya Khosla

    2014-01-01

    Full Text Available Introduction: Dosimetric study to compare high dose rate (HDR vaginal vault ovoid brachytherapy plan versus intensity-modulated radiation therapy (IMRT boost plan for doses delivered to target volume and organs at risk (OAR in postoperative patients of cervical carcinoma following whole pelvic radiotherapy (WPRT. Materials and Methods: Fifteen postoperative patients of cervical carcinoma suitable for vaginal ovoid brachytherapy following WPRT of 46 Gy/23 fractions/4.5 weeks were included. All were treated with brachytherapy (two sessions of 8.5 Gy each. The equivalent dose for IMRT was calculated by computing biologically effective dose of brachytherapy by linear quadratic model. Dose of brachytherapy (two sessions of 8.5 Gy was equivalent to IMRT dose of 26 Gy/13 fractions. Doses to target volume and OAR were compared between HDR and IMRT plans. Results: Target volume was well covered with both HDR and IMRT plans, but dose with brachytherapy was much higher (P < 0.05. Mean doses, doses to 0.1, 1, 2, and 5cc, 1/3 rd , 1/2, and 2/3 rd volume of bladder and rectum were significantly lower with HDR plans. Conclusion: In postoperative patients of cervical carcinoma, HDR brachytherapy following WPRT appears to be better than IMRT for tumor coverage and reducing dose to critical organs.

  20. Carotid-Sparing Intensity-Modulated Radiotherapy for Early-Stage Squamous Cell Carcinoma of the True Vocal Cord

    International Nuclear Information System (INIS)

    Chera, Bhishamjit S.; Amdur, Robert J.; Morris, Christopher G.; Mendenhall, William M.

    2010-01-01

    Purpose: To compare radiation doses to carotid arteries among various radiotherapy techniques for treatment of early-stage squamous cell carcinoma (SCC) of the true vocal cords. Methods and Materials: Five patients were simulated using computed tomography (CT). Clinical and planning target volumes (PTV) were created for bilateral and unilateral stage T1 vocal cord cancers. Planning risk volumes for the carotid arteries and spinal cord were delineated. For each patient, three treatment plans were designed for bilateral and unilateral target volumes: opposed laterals (LATS), three-dimensional conformal radiotherapy (3DCRT), and intensity-modulated radiotherapy (IMRT), for a total of 30 plans. More than 95% of the PTV received the prescription dose (63Gy at 2.25 Gy per treatment). Results: Carotid dose was lowest with IMRT. With a bilateral vocal cord target, the median carotid dose was 10Gy with IMRT vs. 25 Gy with 3DCRT and 38 Gy with LATS (p < 0.05); with a unilateral target, the median carotid dose was 4 Gy with IMRT vs. 19 Gy with 3DCRT and 39 Gy with LATS (p < 0.05). The dosimetric tradeoff with IMRT is a small area of high dose in the PTV. The worst heterogeneity results were at a maximum point dose of 80 Gy (127%) in a unilateral target that was close to the carotid. Conclusions: There is no question that IMRT can reduce the dose to the carotid arteries in patients with early-stage vocal cord cancer. The question is whether the potential advantage of reducing the carotid dose outweighs the risk of tumor recurrence due to contouring errors and organ motion and the risk of complications from dose heterogeneity.

  1. Quality control of specific patient in radiotherapy with modulated intensity

    International Nuclear Information System (INIS)

    Aberbuj, P D; Tapia Coca, R C

    2012-01-01

    In this work we comment the details of the patient specific quality controls of the first Intensity Modulated Radiotherapy treatment done at Roffo Institute. These controls consisted in two sets of measurements: absolute dose with ionization chamber and relative dose with two dosimetric systems (Gafchromic EBT2 radiochromic films and the PTW 729 ionization chambers array). Two of the filters did not pass the dosimetrical tests, and they were manufactured again. The new filters passed the tests. For the relative two-dimensional measurements the radiochromic films had a better performance than the array due to their higher spatial resolution (author)

  2. Evaluation of dosimetric variance in whole breast forward-planned intensity-modulated radiotherapy based on 4DCT and 3DCT

    International Nuclear Information System (INIS)

    Wang Wei; Li Jianbin; Hu Hongguang; Sun Tao; Xu Min; Fan Tingyong; Shao Qian

    2013-01-01

    This study was performed to explore and compare the dosimetric variance caused by respiratory movement in the breast during forward-planned intensity-modulated radiotherapy (IMRT) after breast-conserving surgery. A total of 17 enrolled patients underwent the three-dimensional computed tomography (3DCT) simulation scans followed by four-dimensional computed tomography (4DCT) simulation scans during free breathing. The treatment planning constructed using the 3DCT images was copied and applied to the end expiration (EE) and end inspiration (EI) scans and the dose distributions were calculated separately. CTV volume variance amplitude was very small (11.93±28.64 cm 3 ), and the percentage change of CTV volumes receiving 50 Gy and 55 Gy between different scans were all less than 0.8%. There was no statistically significant difference between EI and EE scans (Z=-0.26, P=0.795). However, significant differences were found when comparing the D mean at 3DCT planning with the EI and EE planning (P=0.010 and 0.019, respectively). The homogeneity index at EI, EE and 3D plannings were 0.139, 0.141 and 0.127, respectively, and significant differences existed between 3D and EI, and between 3D and EE (P=0.001 and 0.006, respectively). The conformal index (CI) increased significantly in 3D treatment planning (0.74±0.07) compared with the EI and EE phase plannings (P=0.005 and 0.005, respectively). The V 30 , V 40 , V 50 and D mean of the ipsilateral lung for EE phase planning were significantly lower than for EI (P=0.001-0.042). There were no significant differences in all the dose-volume histogram (DVH) parameters for the heart among these plannings (P=0.128-0.866). The breast deformation during respiration can be disregarded in whole breast IMRT. 3D treatment planning is sufficient for whole breast forward-planned IMRT on the basis of our DVH analysis, but 4D treatment planning, breath-hold, or respiratory gate may ensure precise delivery of radiation dose. (author)

  3. Multi-institutional comparison of simulated treatment delivery errors in ssIMRT, manually planned VMAT and autoplan-VMAT plans for nasopharyngeal radiotherapy

    DEFF Research Database (Denmark)

    Pogson, Elise M; Aruguman, Sankar; Hansen, Christian R

    2017-01-01

    PURPOSE: To quantify the impact of simulated errors for nasopharynx radiotherapy across multiple institutions and planning techniques (auto-plan generated Volumetric Modulated Arc Therapy (ap-VMAT), manually planned VMAT (mp-VMAT) and manually planned step and shoot Intensity Modulated Radiation...... Therapy (mp-ssIMRT)). METHODS: Ten patients were retrospectively planned with VMAT according to three institution's protocols. Within one institution two further treatment plans were generated using differing treatment planning techniques. This resulted in mp-ssIMRT, mp-VMAT, and ap-VMAT plans. Introduced...

  4. DARS: a phase III randomised multicentre study of dysphagia- optimised intensity- modulated radiotherapy (Do-IMRT) versus standard intensity- modulated radiotherapy (S-IMRT) in head and neck cancer

    International Nuclear Information System (INIS)

    Petkar, Imran; Rooney, Keith; Roe, Justin W. G.; Patterson, Joanne M.; Bernstein, David; Tyler, Justine M.; Emson, Marie A.; Morden, James P.; Mertens, Kathrin; Miles, Elizabeth; Beasley, Matthew; Roques, Tom; Bhide, Shreerang A.; Newbold, Kate L.; Harrington, Kevin J.; Hall, Emma; Nutting, Christopher M.

    2016-01-01

    Persistent dysphagia following primary chemoradiation (CRT) for head and neck cancers can have a devastating impact on patients’ quality of life. Single arm studies have shown that the dosimetric sparing of critical swallowing structures such as the pharyngeal constrictor muscle and supraglottic larynx can translate to better functional outcomes. However, there are no current randomised studies to confirm the benefits of such swallow sparing strategies. The aim of Dysphagia/Aspiration at risk structures (DARS) trial is to determine whether reducing the dose to the pharyngeal constrictors with dysphagia-optimised intensity- modulated radiotherapy (Do-IMRT) will lead to an improvement in long- term swallowing function without having any detrimental impact on disease-specific survival outcomes. The DARS trial (CRUK/14/014) is a phase III multicentre randomised controlled trial (RCT) for patients undergoing primary (chemo) radiotherapy for T1-4, N0-3, M0 pharyngeal cancers. Patients will be randomised (1:1 ratio) to either standard IMRT (S-IMRT) or Do-IMRT. Radiotherapy doses will be the same in both groups; however in patients allocated to Do-IMRT, irradiation of the pharyngeal musculature will be reduced by delivering IMRT identifying the pharyngeal muscles as organs at risk. The primary endpoint of the trial is the difference in the mean MD Anderson Dysphagia Inventory (MDADI) composite score, a patient-reported outcome, measured at 12 months post radiotherapy. Secondary endpoints include prospective and longitudinal evaluation of swallow outcomes incorporating a range of subjective and objective assessments, quality of life measures, loco-regional control and overall survival. Patients and speech and language therapists (SLTs) will both be blinded to treatment allocation arm to minimise outcome-reporting bias. DARS is the first RCT investigating the effect of swallow sparing strategies on improving long-term swallowing outcomes in pharyngeal cancers. An integral

  5. Is Planned Neck Dissection Necessary for Head and Neck Cancer After Intensity-Modulated Radiotherapy?

    International Nuclear Information System (INIS)

    Yao Min; Hoffman, Henry T.; Chang, Kristi; Funk, Gerry F.; Smith, Russell B.; Tan Huaming; Clamon, Gerald H.; Dornfeld, Ken; Buatti, John M.

    2007-01-01

    Purpose: The objective of this study was to determine regional control of local regional advanced head and neck squamous cell carcinoma (HNSCC) treated with intensity-modulated radiotherapy (IMRT), along with the role and selection criteria for neck dissection after IMRT. Methods and Materials: A total of 90 patients with stage N2A or greater HNSCC were treated with definitive IMRT from December 1999 to July 2005. Three clinical target volumes were defined and were treated to 70 to 74 Gy, 60 Gy, and 54 Gy, respectively. Neck dissection was performed for selected patients after IMRT. Selection criteria evolved during this period with emphasis on post-IMRT [ 18 F] fluorodeoxyglucose positron emission tomography in recent years. Results: Median follow-up for all patients was 29 months (range, 0.2-74 months). All living patients were followed at least 9 months after completing treatment. Thirteen patients underwent neck dissection after IMRT because of residual lymphadenopathy. Of these, 6 contained residual viable tumor. Three patients with persistent adenopathy did not undergo neck dissection: 2 refused and 1 had lung metastasis. Among the remaining 74 patients who were observed without neck dissection, there was only 1 case of regional failure. Among all 90 patients in this study, the 3-year local and regional control was 96.3% and 95.4%, respectively. Conclusions: Appropriately delivered IMRT has excellent dose coverage for cervical lymph nodes. A high radiation dose can be safely delivered to the abnormal lymph nodes. There is a high complete response rate. Routine planned neck dissection for patients with N2A and higher stage after IMRT is not necessary. Post-IMRT [ 18 F] fluorodeoxyglucose positron emission tomography is a useful tool in selecting patients appropriate for neck dissection

  6. Prostate Bed Motion During Intensity-Modulated Radiotherapy Treatment

    International Nuclear Information System (INIS)

    Klayton, Tracy; Price, Robert; Buyyounouski, Mark K.; Sobczak, Mark; Greenberg, Richard; Li, Jinsheng; Keller, Lanea; Sopka, Dennis; Kutikov, Alexander; Horwitz, Eric M.

    2012-01-01

    Purpose: Conformal radiation therapy in the postprostatectomy setting requires accurate setup and localization of the prostatic fossa. In this series, we report prostate bed localization and motion characteristics, using data collected from implanted radiofrequency transponders. Methods and Materials: The Calypso four-dimensional localization system uses three implanted radiofrequency transponders for daily target localization and real-time tracking throughout a course of radiation therapy. We reviewed the localization and tracking reports for 20 patients who received ultrasonography-guided placement of Calypso transponders within the prostate bed prior to a course of intensity-modulated radiation therapy at Fox Chase Cancer Center. Results: At localization, prostate bed displacement relative to bony anatomy exceeded 5 mm in 9% of fractions in the anterior-posterior (A-P) direction and 21% of fractions in the superior-inferior (S-I) direction. The three-dimensional vector length from skin marks to Calypso alignment exceeded 1 cm in 24% of all 652 fractions with available setup data. During treatment, the target exceeded the 5-mm tracking limit for at least 30 sec in 11% of all fractions, generally in the A-P or S-I direction. In the A-P direction, target motion was twice as likely to move posteriorly, toward the rectum, than anteriorly. Fifteen percent of all treatments were interrupted for repositioning, and 70% of patients were repositioned at least once during their treatment course. Conclusion: Set-up errors and motion of the prostatic fossa during radiotherapy are nontrivial, leading to potential undertreatment of target and excess normal tissue toxicity if not taken into account during treatment planning. Localization and real-time tracking of the prostate bed via implanted Calypso transponders can be used to improve the accuracy of plan delivery.

  7. Intensity modulated radiotherapy for elderly bladder cancer patients

    Directory of Open Access Journals (Sweden)

    Chong Ngot-Swan

    2011-06-01

    Full Text Available Abstract Background To review our experience and evaluate treatment planning using intensity-modulated radiotherapy (IMRT and helical tomotherapy (HT for the treatment of elderly patients with bladder cancer. Methods From November 2006 through November 2009, we enrolled 19 elderly patients with histologically confirmed bladder cancer, 9 in the IMRT and 10 in the HT group. The patients received 64.8 Gy to the bladder with or without concurrent chemotherapy. Conventional 4-field "box" pelvic radiation therapy (2DRT plans were generated for comparison. Results The median patient age was 80 years old (range, 65-90 years old. The median survival was 21 months (5 to 26 months. The actuarial 2-year overall survival (OS for the IMRT vs. the HT group was 26.3% vs .37.5%, respectively; the corresponding values for disease-free survival were 58.3% vs. 83.3%, respectively; for locoregional progression-free survival (LRPFS, the values were 87.5% vs. 83.3%, respectively; and for metastases-free survival, the values were 66.7% vs. 60.0%, respectively. The 2-year OS rates for T1, 2 vs. T3, 4 were 66.7% vs. 35.4%, respectively (p = 0.046. The 2-year OS rate was poor for those whose RT completion time greater than 8 weeks when compared with the RT completed within 8 wks (37.9% vs. 0%, p = 0.004. Conclusion IMRT and HT provide good LRPFS with tolerable toxicity for elderly patients with invasive bladder cancer. IMRT and HT dosimetry and organ sparing capability were superior to that of 2DRT, and HT provides better sparing ability than IMRT. The T category and the RT completion time influence OS rate.

  8. Estimating the costs of intensity-modulated and 3-dimensional conformal radiotherapy in Ontario.

    Science.gov (United States)

    Yong, J H E; McGowan, T; Redmond-Misner, R; Beca, J; Warde, P; Gutierrez, E; Hoch, J S

    2016-06-01

    Radiotherapy is a common treatment for many cancers, but up-to-date estimates of the costs of radiotherapy are lacking. In the present study, we estimated the unit costs of intensity-modulated radiotherapy (imrt) and 3-dimensional conformal radiotherapy (3D-crt) in Ontario. An activity-based costing model was developed to estimate the costs of imrt and 3D-crt in prostate cancer. It included the costs of equipment, staff, and supporting infrastructure. The framework was subsequently adapted to estimate the costs of radiotherapy in breast cancer and head-and-neck cancer. We also tested various scenarios by varying the program maturity and the use of volumetric modulated arc therapy (vmat) alongside imrt. From the perspective of the health care system, treating prostate cancer with imrt and 3D-crt respectively cost $12,834 and $12,453 per patient. The cost of radiotherapy ranged from $5,270 to $14,155 and was sensitive to analytic perspective, radiation technique, and disease site. Cases of head-and-neck cancer were the most costly, being driven by treatment complexity and fractions per treatment. Although imrt was more costly than 3D-crt, its cost will likely decline over time as programs mature and vmat is incorporated. Our costing model can be modified to estimate the costs of 3D-crt and imrt for various disease sites and settings. The results demonstrate the important role of capital costs in studies of radiotherapy cost from a health system perspective, which our model can accommodate. In addition, our study established the need for future analyses of imrt cost to consider how vmat affects time consumption.

  9. IMRT, IGRT, SBRT - Advances in the Treatment Planning and Delivery of Radiotherapy

    CERN Document Server

    Meyer, JL

    2011-01-01

    Over the last 4 years, IMRT, IGRT, SBRT: Advances in the Treatment Planning and Delivery of Radiotherapy has become a standard reference in the field. During this time, however, significant progress in high-precision technologies for the planning and delivery of radiotherapy in cancer treatment has called for a second edition to include these new developments. Thoroughly updated and extended, this new edition offers a comprehensive guide and overview of these new technologies and the many clinical treatment programs that bring them into practical use. Advances in intensity-modulated radiothera

  10. Cardiac avoidance in breast radiotherapy: a comparison of simple shielding techniques with intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Landau, David; Adams, Elizabeth J.; Webb, Steve; Ross, Gillian

    2001-01-01

    Background and purpose: Adjuvant breast radiotherapy (RT) is now part of the routine care of patients with early breast cancer. However, analysis of the Early Breast Cancer Trialists' Collaborative suggests that patients with the lowest risk of dying of breast cancer are at significant risk of cardiac mortality due to longer relapse-free survival. Patients with a significant amount of heart in the high-dose volume have been shown to be at risk of fatal cardiac events. This study was designed to assess whether conformal planning or intensity-modulated radiotherapy (IMRT) techniques allow reduced cardiac irradiation whilst maintaining full target coverage. Material and methods: Ten patients with early breast cancer were available for computed tomography (CT) planning. Each had at least 1 cm maximum heart depth within the posterior border of conventional tangents. For each patient, plans were generated and compared using dose volume histograms for planning target volume (PTV) and organs at risk. The plans included conventional tangents with and without shielding. The shielding was designed to either completely spare the heart or to shield as much heart as possible without compromising PTV coverage. IMRT plans were also prepared using two- and four-field tangential and six-field arc-like beam arrangements. Results: PTV homogeneity was better for the tangential IMRT techniques. For all patients, cardiac irradiation was reduced by the addition of partial cardiac shielding to conventional tangents, without compromise of PTV coverage. The two- and four-field IMRT techniques also reduced heart doses. The average percentage volume of heart receiving >60% of the prescription dose was 4.4% (range 1.0-7.1%) for conventional tangents, 1.5% (0.2-3.9%) for partial shielding, 2.3% (0.5-4.6%) for the two-field IMRT technique and 2.2% (0.4-5.6%) for the four-field IMRT technique. For patients with larger maximum heart depths the four-field IMRT plan achieved greater heart sparing

  11. Dose profile analysis of small fields in intensity modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Medel B, E. [IMSS, Centro Medico Nacional Manuel Avila Camacho, Calle 2 Nte. 2004, Barrio de San Francisco, 72090 Puebla, Pue. (Mexico); Tejeda M, G.; Romero S, K., E-mail: romsakaren@gmail.com [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico Matematicas, Av. San Claudio y 18 Sur, Ciudad Universitaria, 72570 Puebla, Pue.(Mexico)

    2015-10-15

    Full text: Small field dosimetry is getting a very important worldwide task nowadays. The use of fields of few centimeters is more common with the introduction of sophisticated techniques of radiation therapy, as Intensity Modulated Radiotherapy (IMRT). In our country the implementation of such techniques is just getting started and whit it the need of baseline data acquisition. The dosimetry under small field conditions represents a challenge for the physicists community. In this work, a dose profile analysis was done, using various types of dosimeters for further comparisons. This analysis includes the study of quality parameters as flatness, symmetry, penumbra, and other in-axis measurements. (Author)

  12. Decreasing Temporal Lobe Dose With Five-Field Intensity-Modulated Radiotherapy for Treatment of Pituitary Macroadenomas

    International Nuclear Information System (INIS)

    Parhar, Preeti K.; Duckworth, Tamara; Shah, Parinda; DeWyngaert, J. Keith; Narayana, Ashwatha; Formenti, Silvia C.; Shah, Jinesh N.

    2010-01-01

    Purpose: To compare temporal lobe dose delivered by three pituitary macroadenoma irradiation techniques: three-field three-dimensional conformal radiotherapy (3D-CRT), three-field intensity-modulated radiotherapy (3F IMRT), and a proposed novel alternative of five-field IMRT (5F IMRT). Methods and Materials: Computed tomography-based external beam radiotherapy planning was performed for 15 pituitary macroadenoma patients treated at New York University between 2002 and 2007 using: 3D-CRT (two lateral, one midline superior anterior oblique [SAO] beams), 3F IMRT (same beam angles), and 5F IMRT (same beam angles with additional right SAO and left SAO beams). Prescription dose was 45 Gy. Target volumes were: gross tumor volume (GTV) = macroadenoma, clinical target volume (CTV) = GTV, and planning target volume = CTV + 0.5 cm. Structure contouring was performed by two radiation oncologists guided by an expert neuroradiologist. Results: Five-field IMRT yielded significantly decreased temporal lobe dose delivery compared with 3D-CRT and 3F IMRT. Temporal lobe sparing with 5F IMRT was most pronounced at intermediate doses: mean V25Gy (% of total temporal lobe volume receiving ≥25 Gy) of 13% vs. 28% vs. 29% for right temporal lobe and 14% vs. 29% vs. 30% for left temporal lobe for 5F IMRT, 3D-CRT, and 3F IMRT, respectively (p -7 for 5F IMRT vs. 3D-CRT and 5F IMRT vs. 3F IMRT). Five-field IMRT plans did not compromise target coverage, exceed normal tissue dose constraints, or increase estimated brain integral dose. Conclusions: Five-field IMRT irradiation technique results in a statistically significant decrease in the dose to the temporal lobes and may thus help prevent neurocognitive sequelae in irradiated pituitary macroadenoma patients.

  13. Integral test phantom for dosimetric quality assurance of image guided and intensity modulated stereotactic radiotherapy.

    Science.gov (United States)

    Létourneau, Daniel; Keller, Harald; Sharpe, Michael B; Jaffray, David A

    2007-05-01

    The objective of this work is to develop a dosimetric phantom quality assurance (QA) of linear accelerators capable of cone-beam CT (CBCT) image guided and intensity-modulated radiotherapy (IG-IMRT). This phantom is to be used in an integral test to quantify in real-time both the performance of the image guidance and the dose delivery systems in terms of dose localization. The prototype IG-IMRT QA phantom consisted of a cylindrical imaging phantom (CatPhan) combined with an array of 11 radiation diodes mounted on a 10 cm diameter disk, oriented perpendicular to the phantom axis. Basic diode response characterization was performed for 6 and 18 MV photons. The diode response was compared to planning system calculations in the open and penumbrae regions of simple and complex beam arrangements. The clinical use of the QA phantom was illustrated in an integral test of an IG-IMRT treatment designed for a clinical spinal radiosurgery case. The sensitivity of the phantom to multileaf collimator (MLC) calibration and setup errors in the clinical setting was assessed by introducing errors in the IMRT plan or by displacing the phantom. The diodes offered good response linearity and long-term reproducibility for both 6 and 18 MV. Axial dosimetry of coplanar beams (in a plane containing the beam axes) was made possible with the nearly isoplanatic response of the diodes over 360 degrees of gantry (usually within +/-1%). For single beam geometry, errors in phantom placement as small as 0.5 mm could be accurately detected (in gradient > or = 1% /mm). In clinical setting, MLC systematic errors of 1 mm on a single MLC bank introduced in the IMRT plan were easily detectable with the QA phantom. The QA phantom demonstrated also sufficient sensitivity for the detection of setup errors as small as 1 mm for the IMRT delivery. These results demonstrated that the prototype can accurately and efficiently verify the entire IG-IMRT process. This tool, in conjunction with image guidance

  14. Integral test phantom for dosimetric quality assurance of image guided and intensity modulated stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Letourneau, Daniel; Keller, Harald; Sharpe, Michael B.; Jaffray, David A.

    2007-01-01

    The objective of this work is to develop a dosimetric phantom quality assurance (QA) of linear accelerators capable of cone-beam CT (CBCT) image guided and intensity-modulated radiotherapy (IG-IMRT). This phantom is to be used in an integral test to quantify in real-time both the performance of the image guidance and the dose delivery systems in terms of dose localization. The prototype IG-IMRT QA phantom consisted of a cylindrical imaging phantom (CatPhan) combined with an array of 11 radiation diodes mounted on a 10 cm diameter disk, oriented perpendicular to the phantom axis. Basic diode response characterization was performed for 6 and 18 MV photons. The diode response was compared to planning system calculations in the open and penumbrae regions of simple and complex beam arrangements. The clinical use of the QA phantom was illustrated in an integral test of an IG-IMRT treatment designed for a clinical spinal radiosurgery case. The sensitivity of the phantom to multileaf collimator (MLC) calibration and setup errors in the clinical setting was assessed by introducing errors in the IMRT plan or by displacing the phantom. The diodes offered good response linearity and long-term reproducibility for both 6 and 18 MV. Axial dosimetry of coplanar beams (in a plane containing the beam axes) was made possible with the nearly isoplanatic response of the diodes over 360 deg. of gantry (usually within ±1%). For single beam geometry, errors in phantom placement as small as 0.5 mm could be accurately detected (in gradient ≥1%/mm). In clinical setting, MLC systematic errors of 1 mm on a single MLC bank introduced in the IMRT plan were easily detectable with the QA phantom. The QA phantom demonstrated also sufficient sensitivity for the detection of setup errors as small as 1 mm for the IMRT delivery. These results demonstrated that the prototype can accurately and efficiently verify the entire IG-IMRT process. This tool, in conjunction with image guidance capabilities

  15. SU-F-T-358: Is Auto-Planning Useful for Volumetric-Modulated Arc Therapy Planning in Rectal Cancer Radiotherapy?

    International Nuclear Information System (INIS)

    Li, K; Chang, X; Wang, J; Hu, P; Hu, W

    2016-01-01

    Purpose: To evaluate whether Auto-Planning based volumetric-modulated radiotherapy (auto-VMAT) can reduce manual interaction time during treatment planning and improve plan quality for rectal cancer radiotherapy. Methods: Ten rectal cancer patients (stage II and III) after radical resection using Dixon surgery were enrolled. All patients were treated with VMAT technique. The manual VMAT plans (man-VMAT) were designed in the Pinnacle treatment planning system (Version 9.10) following the standard treatment planning procedure developed in our department. Clinical plans were manually designed by our experienced dosimetrists. Additionally, an auto-VMAT plan was created for each patient using Auto-Planning module. However, manual interaction was still applied to meet the clinical requirements. The treatment planning time and plan quality surrogated by the DVH parameters were compared between manual and automated plans. Results: The total planning time and manual interaction time were 50.38 and 4.47 min for the auto-VMAT and 36.81 and 16.94 min for the man-VMAT (t=60.14,−23.86; p=0.000, 0.000). In terms of plan quality, both plans meet the clinical requirements. The PTV homogeneity index (HI) and conformity index (CI) were 0.054 and 0.822 for the auto-VMAT and 0.059 and 0.815 for the man-VMAT (t=−1.72, 0.36;p=0.119,0.730).Compared to the man-VMAT, the auto-VMAT showed reduction of 11.9% and 0.7% in V40 and V50 of the bladder, respectively.The V30 and D mean were reduced by 14.0% and 5.1Gy in the left femur and 12.2% and 3.8Gy in the right femur. Conclusion: The Auto-Planning based VMAT plans not only shows similar or superior plan quality to the manual ones in the rectal cancer radiotherapy, but also improve the planning efficiency significantly. However, manual interactions are still required to achieve a clinically acceptable plan based on our experiences.

  16. SU-F-T-358: Is Auto-Planning Useful for Volumetric-Modulated Arc Therapy Planning in Rectal Cancer Radiotherapy?

    Energy Technology Data Exchange (ETDEWEB)

    Li, K; Chang, X; Wang, J; Hu, P; Hu, W [Fudan University Shanghai Cancer Center, Shanghai, Shanghai (China)

    2016-06-15

    Purpose: To evaluate whether Auto-Planning based volumetric-modulated radiotherapy (auto-VMAT) can reduce manual interaction time during treatment planning and improve plan quality for rectal cancer radiotherapy. Methods: Ten rectal cancer patients (stage II and III) after radical resection using Dixon surgery were enrolled. All patients were treated with VMAT technique. The manual VMAT plans (man-VMAT) were designed in the Pinnacle treatment planning system (Version 9.10) following the standard treatment planning procedure developed in our department. Clinical plans were manually designed by our experienced dosimetrists. Additionally, an auto-VMAT plan was created for each patient using Auto-Planning module. However, manual interaction was still applied to meet the clinical requirements. The treatment planning time and plan quality surrogated by the DVH parameters were compared between manual and automated plans. Results: The total planning time and manual interaction time were 50.38 and 4.47 min for the auto-VMAT and 36.81 and 16.94 min for the man-VMAT (t=60.14,−23.86; p=0.000, 0.000). In terms of plan quality, both plans meet the clinical requirements. The PTV homogeneity index (HI) and conformity index (CI) were 0.054 and 0.822 for the auto-VMAT and 0.059 and 0.815 for the man-VMAT (t=−1.72, 0.36;p=0.119,0.730).Compared to the man-VMAT, the auto-VMAT showed reduction of 11.9% and 0.7% in V40 and V50 of the bladder, respectively.The V30 and D mean were reduced by 14.0% and 5.1Gy in the left femur and 12.2% and 3.8Gy in the right femur. Conclusion: The Auto-Planning based VMAT plans not only shows similar or superior plan quality to the manual ones in the rectal cancer radiotherapy, but also improve the planning efficiency significantly. However, manual interactions are still required to achieve a clinically acceptable plan based on our experiences.

  17. Superiority of conventional intensity-modulated radiotherapy over helical tomotherapy in locally advanced non-small cell lung cancer. A comparative plan analysis

    Energy Technology Data Exchange (ETDEWEB)

    Song, C. [National Cancer Center, Research Institute and Hospital, Goyang (Korea, Republic of). Proton Therapy Center; Seoul National Univ. College of Medicine (Korea, Republic of). Dept. of Radiation Oncology; Pyo, H.; Kim, J. [Sungkyunkwan Univ. School of Medicine, Samsung Medical Center, Seoul (Korea, Republic of). Dept. of Radiation Oncology; Lim, Y.K.; Kim, D.W.; Cho, K.H. [National Cancer Center, Research Institute and Hospital, Goyang (Korea, Republic of). Proton Therapy Center; Kim, W.C. [Inha Univ. School of Medicine, Incheon (Korea, Republic of). Dept. of Radiation Oncology; Kim, H.J. [Seoul National Univ. College of Medicine (Korea, Republic of). Dept. of Radiation Oncology

    2012-10-15

    Purpose: To compare helical tomotherapy (HT) and conventional intensity-modulated radiotherapy (IMRT) using a variety of dosimetric and radiobiologic indexes in patients with locally advanced non-small cell lung cancer (LA-NSCLC). Patients and methods: A total of 20 patients with LA-NSCLC were enrolled. IMRT plans with 4-6 coplanar beams and HT plans were generated for each patient. Dose distributions and dosimetric indexes for the tumors and critical structures were computed for both plans and compared. Results: Both modalities created highly conformal plans. They did not differ in the volumes of lung exposed to > 20 Gy of radiation. The average mean lung dose, volume receiving {>=} 30 Gy, and volume receiving {>=} 10 Gy in HT planning were 18.3 Gy, 18.5%, and 57.1%, respectively, compared to 19.4 Gy, 25.4%, and 48.9%, respectively, with IMRT (p = 0.004, p < 0.001, and p < 0.001). The differences between HT and IMRT in lung volume receiving {>=} 10-20 Gy increased significantly as the planning target volume (PTV) increased. For 6 patients who had PTV greater than 700 cm{sup 3}, IMRT was superior to HT for 5 patients in terms of lung volume receiving {>=} 5-20 Gy. The integral dose to the entire thorax in HT plans was significantly higher than in IMRT plans. Conclusion: HT gave significantly better control of mean lung dose and volume receiving {>=} 30-40 Gy, whereas IMRT provided better control of the lung volume receiving {>=} 5-15 Gy and the integral dose to entire thorax. In most patients with PTV greater than 700 cm{sup 3}, IMRT was superior to HT in terms of lung volume receiving {>=} 5-20 Gy. It is therefore advised that caution should be exercised when planning LA-NSCLC using HT. (orig.)

  18. A Monte Carlo dosimetric quality assurance system for dynamic intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Takegawa, Hideki; Yamamoto, Tokihiro; Miyabe, Yuki; Teshima, Teruki; Kunugi, Tomoaki; Yano, Shinsuke; Mizowaki, Takashi; Nagata, Yasushi; Hiraoka, Masahiro

    2005-01-01

    We are developing a Monte Carlo (MC) dose calculation system, which can resolve dosimetric issues derived from multileaf collimator (MLC) design for routine dosimetric quality assurance (QA) of intensity-modulated radiotherapy (IMRT). The treatment head of the medical linear accelerator equipped with MLC was modeled using the EGS4 MC code. A graphical user interface (GUI) application was developed to implement MC dose computation in the CT-based patient model and compare the MC calculated results with those of a commercial radiotherapy treatment planning (RTP) system, Varian Eclipse. To reduce computation time, the EGS4 MC code has been parallelized on massive parallel processing (MPP) system using the message passing interface (MPI). The MC treatment head model and MLC model were validated by the measurement data sets of percentage depth dose (PDD) and off-center ratio (OCR) in the water phantom and the film measurements for the static and dynamic test patterns, respectively. In the treatment head model, the MC calculated results agreed with those of measurements for both of PDD and OCR. The MC could reproduce all of the MLC dosimetric effects. A quantitative comparison between the results of MC and Eclipse was successfully performed with the GUI application. Parallel speed-up became almost linear. An MC dosimetric QA system for dynamic IMRT has been developed, however there were large dose discrepancies between the MC and the measurement in the MLC model simulation, which are now being investigated. (author)

  19. Nasopharynx carcinoma treatment: from the conventional radiotherapy to the conformal radiotherapy with intensity modulation; Traitement du carcinome du nasopharynx: de la radiotherapie conventionnelle a la radiotherapie conformationnelle avec modulation d'intensite

    Energy Technology Data Exchange (ETDEWEB)

    Mokaouim, K.; Grehange, G.; Truc, G.; Peingnaux, K.; Martin, E.; Zanetta, S.; Bruchon, Y.; Bonnetain, F.; Maingon, P. [Centre Georges-Francois Leclerc, 21 - Dijon (France)

    2009-10-15

    The objective of this study was to evaluate retrospectively the impact of factors linked to the radiotherapy realisation on the local and locoregional control, the global survival, the survival without disease of patients suffering of naso-pharynx carcinoma. Conclusion: the patients suffering of a nasopharynx carcinoma treated by irradiation associated to chemotherapy have an improved global survival and an improved survival without disease. The conformal radiotherapy with or without modulated intensity reduce the risk of serous otitis, trismus and xerostomia at long term. It seems necessary to realize multi centric studies with a longer period of follow up before asserting the advantages of the I.M.R.T. in comparison to the classical and conformal technique in the treatment of naso-pharynx carcinomas. (N.C.)

  20. Effect of MLC leaf position, collimator rotation angle, and gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Sen; Li, Guangjun; Wang, Maojie; Jiang, Qinfeng; Zhang, Yingjie [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan (China); Wei, Yuquan, E-mail: yuquawei@vip.sina.com [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan (China)

    2013-07-01

    The purpose of this study was to investigate the effect of multileaf collimator (MLC) leaf position, collimator rotation angle, and accelerator gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma. To compare dosimetric differences between the simulating plans and the clinical plans with evaluation parameters, 6 patients with nasopharyngeal carcinoma were selected for simulation of systematic and random MLC leaf position errors, collimator rotation angle errors, and accelerator gantry rotation angle errors. There was a high sensitivity to dose distribution for systematic MLC leaf position errors in response to field size. When the systematic MLC position errors were 0.5, 1, and 2 mm, respectively, the maximum values of the mean dose deviation, observed in parotid glands, were 4.63%, 8.69%, and 18.32%, respectively. The dosimetric effect was comparatively small for systematic MLC shift errors. For random MLC errors up to 2 mm and collimator and gantry rotation angle errors up to 0.5°, the dosimetric effect was negligible. We suggest that quality control be regularly conducted for MLC leaves, so as to ensure that systematic MLC leaf position errors are within 0.5 mm. Because the dosimetric effect of 0.5° collimator and gantry rotation angle errors is negligible, it can be concluded that setting a proper threshold for allowed errors of collimator and gantry rotation angle may increase treatment efficacy and reduce treatment time.

  1. Dosimetric Advantage of Intensity-Modulated Radiotherapy for Whole Ventricles in the Treatment of Localized Intracranial Germinoma

    International Nuclear Information System (INIS)

    Sakanaka, Katsuyuki; Mizowaki, Takashi; Hiraoka, Masahiro

    2012-01-01

    Purpose: To investigate the dosimetric advantage of intensity-modulated radiotherapy (IMRT) for whole ventricles (WV) in patients with a localized intracranial germinoma receiving induction chemotherapy. Methods and Materials: Data from 12 consecutive patients with localized intracranial germinomas who received induction chemotherapy and radiotherapy were used. Four-field coplanar three-dimensional conformal radiotherapy (3D-CRT) and seven-field coplanar IMRT plans were created. In both plans, 24 Gy was prescribed in 12 fractions for the planning target volume (PTV) involving WV and tumor bed. In IMRT planning, optimization was conducted to reduce the doses to the organs at risk (OARs) as much as possible, keeping the minimum dose equivalent to that of 3D-CRT. The 3D-CRT and IMRT plans were compared in terms of the dose–volume statistics for target coverage and the OARs. Results: IMRT significantly increased the percentage volume of the PTV receiving 24 Gy compared with 3D-CRT (93.5% vs. 84.8%; p = 0.007), while keeping target homogeneity equivalent to 3D-CRT (p = 0.869). The absolute percentage reduction in the irradiated volume of the normal brain receiving 100%, 75%, 50%, and 25% of 24 Gy ranged from 0.7% to 16.0% in IMRT compared with 3D-CRT (p < 0.001). No significant difference was observed in the volume of the normal brain receiving 10% and 5% of 24 Gy between IMRT and 3D-CRT. Conformation number was significantly improved in IMRT (p < 0.001). For other OARs, the mean dose to the cochlea was reduced significantly in IMRT by 22.3% of 24 Gy compared with 3D-CRT (p < 0.001). Conclusions: Compared with 3D-CRT, IMRT for WV improved the target coverage and reduced the irradiated volume of the normal brain in patients with intracranial germinomas receiving induction chemotherapy. IMRT for WV with induction chemotherapy could reduce the late side effects from cranial irradiation without compromising control of the tumor.

  2. Feasibility of intensity-modulated and image-guided radiotherapy for locally advanced esophageal cancer

    International Nuclear Information System (INIS)

    Nguyen, Nam P; Desai, Anand; Smith-Raymond, Lexie; Jang, Siyoung; Vock, Jacqueline; Vinh-Hung, Vincent; Chi, Alexander; Vos, Paul; Pugh, Judith; Vo, Richard A; Ceizyk, Misty

    2014-01-01

    In this study the feasibility of intensity-modulated radiotherapy (IMRT) and tomotherapy-based image-guided radiotherapy (IGRT) for locally advanced esophageal cancer was assessed. A retrospective study of ten patients with locally advanced esophageal cancer who underwent concurrent chemotherapy with IMRT (1) and IGRT (9) was conducted. The gross tumor volume was treated to a median dose of 70 Gy (62.4-75 Gy). At a median follow-up of 14 months (1-39 months), three patients developed local failures, six patients developed distant metastases, and complications occurred in two patients (1 tracheoesophageal fistula, 1 esophageal stricture requiring repeated dilatations). No patients developed grade 3-4 pneumonitis or cardiac complications. IMRT and IGRT may be effective for the treatment of locally advanced esophageal cancer with acceptable complications

  3. Collimator setting optimization in intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Williams, M.; Hoban, P.

    2001-01-01

    Full text: The aim of this study was to investigate the role of collimator angle and bixel size settings in IMRT when using the step and shoot method of delivery. Of particular interest is minimisation of the total monitor units delivered. Beam intensity maps with bixel size 10 x 10 mm were segmented into MLC leaf sequences and the collimator angle optimised to minimise the total number of MU's. The monitor units were estimated from the maximum sum of positive-gradient intensity changes along the direction of leaf motion. To investigate the use of low resolution maps at optimum collimator angles, several high resolution maps with bixel size 5 x 5 mm were generated. These were resampled into bixel sizes, 5 x 10 mm and 10 x 10 mm and the collimator angle optimised to minimise the RMS error between the original and resampled map. Finally, a clinical IMRT case was investigated with the collimator angle optimised. Both the dose distribution and dose-volume histograms were compared between the standard IMRT plan and the optimised plan. For the 10 x 10 mm bixel maps there was a variation of 5% - 40% in monitor units at the different collimator angles. The maps with a high degree of radial symmetry showed little variation. For the resampled 5 x 5 mm maps, a small RMS error was achievable with a 5 x 10 mm bixel size at particular collimator positions. This was most noticeable for maps with an elongated intensity distribution. A comparison between the 5 x 5 mm bixel plan and the 5 x 10 mm showed no significant difference in dose distribution. The monitor units required to deliver an intensity modulated field can be reduced by rotating the collimator and aligning the direction of leaf motion with the axis of the fluence map that has the least intensity. Copyright (2001) Australasian College of Physical Scientists and Engineers in Medicine

  4. Neural stem cell sparing by linac based intensity modulated stereotactic radiotherapy in intracranial tumors

    International Nuclear Information System (INIS)

    Oehler, Julia; Brachwitz, Tim; Wendt, Thomas G; Banz, Nico; Walther, Mario; Wiezorek, Tilo

    2013-01-01

    Neurocognitive decline observed after radiotherapy (RT) for brain tumors in long time survivors is attributed to radiation exposure of the hippocampus and the subventricular zone (SVZ). The potential of sparing capabilities for both structures by optimized intensity modulated stereotactic radiotherapy (IMSRT) is investigated. Brain tumors were irradiated by stereotactic 3D conformal RT or IMSRT using m3 collimator optimized for PTV and for sparing of the conventional OARs (lens, retina, optic nerve, chiasm, cochlea, brain stem and the medulla oblongata). Retrospectively both hippocampi and SVZ were added to the list of OAR and their dose volume histograms were compared to those from two newly generated IMSRT plans using 7 or 14 beamlets (IMSRT-7, IMSRT-14) dedicated for optimized additional sparing of these structures. Conventional OAR constraints were kept constant. Impact of plan complexity and planning target volume (PTV) topography on sparing of both hippocampi and SVZ, conformity index (CI), the homogeneity index (HI) and quality of coverage (QoC) were analyzed. Limits of agreement were used to compare sparing of stem cell niches with either IMSRT-7 or IMSRT-14. The influence of treatment technique related to the topography ratio between PTV and OARs, realized in group A-D, was assessed by a mixed model. In 47 patients CI (p ≤ 0.003) and HI (p < 0.001) improved by IMSRT-7, IMSRT-14, QoC remained stable (p ≥ 0.50) indicating no compromise in radiotherapy. 90% of normal brain was exposed to a significantly higher dose using IMSRT. IMSRT-7 plans resulted in significantly lower biologically effective doses at all four neural stem cell structures, while contralateral neural stem cells are better spared compared to ipsilateral. A further increase of the number of beamlets (IMSRT-14) did not improve sparing significantly, so IMSRT-7 and IMSRT-14 can be used interchangeable. Patients with tumors contacting neither the subventricular zone nor the cortex benefit

  5. Comparison between intensity modulated radiotherapy (IMRT) and 3D tangential beams technique used in patients with early-stage breast cancer who received breast-conserving therapy

    International Nuclear Information System (INIS)

    Sas-Korczynska, B.; Kokoszka, A.; Korzeniowski, S.; Sladowska, A.; Rozwadowska-Bogusz, B.; Lesiak, J.; Dyczek, S.

    2010-01-01

    Background: The most often found complications in patients with breast cancer who received radiotherapy are cardiac and pulmonary function disorders and development of second malignancies. Aim: To compare the intensity modulated radiotherapy with the 3D tangential beams technique in respect of dose distribution in target volume and critical organs they generate in patients with early-stage breast cancer who received breast-conserving therapy. Materials and methods: A dosimetric analysis was performed to assess the three radiotherapy techniques used in each of 10 consecutive patients with early-stage breast cancer treated with breast-conserving therapy. Radiotherapy was planned with the use of all the three techniques: 3D tangential beams with electron boost, IMRT with electron boost, and intensity modulated radiotherapy with simultaneous integrated boost. Results: The use of the IMRT techniques enables more homogenous dose distribution in target volume. The range of mean and median dose to the heart and lung was lower with the IMRT techniques in comparison to the 3D tangential beams technique. The range of mean dose to the heart amounted to 0.3 - 3.5 Gy for the IMRT techniques and 0.4 - 4.3 for the tangential beams technique. The median dose to the lung on the irradiated side amounted to 4.9 - 5 Gy for the IMRT techniques and 5.6 Gy for the 3D tangential beams technique. Conclusion: The application of the IMRT techniques in radiotherapy patients with early-stage breast cancer allows to obtain more homogenous dose distribution in target volume, while permitting to reduce the dose to critical organs. (authors)

  6. SU-E-T-394: The Use of Jaw Tracking in Intensity Modulated and Volumetric Modulated Arc Radiotherapy for Spine Stereotactic Radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Chin, K; Wen, N; Huang, Y; Kim, J; Zhao, B; Siddiqui, S; Chetty, I; Ryu, S [Henry Ford Health System, Detroit, MI (United States)

    2014-06-01

    Purpose: To evaluate the potential advantages of jaw tracking for intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) in spine radiosurgery. Methods: VMAT and IMRT plans were retrospectively generated for ten patients. Six plans for each patient were created in the Eclipse treatment planning system for a Varian Truebeam equipped with a Millennium 120 MLC. Plans were created to study IMRT and VMAT plans with and without jaw tracking, as well as IMRT plans of different flattening filter free (FFF) energies. Plans were prescribed to the 90% isodose line to 16 or 18 Gy in one fraction to cover 95% of the target. Planning target volume (PTV) coverage, conformity index (CI), dose to spinal cord, distance to fall off from the 90% to 50% isodose line (DTF), as well as delivery time were evaluated. Ion chamber and film measurements were performed to verify calculated and measured dose distributions. Results: Jaw tracking decreased the spinal cord dose for both IMRT and VMAT plans, but a larger decrease was seen with the IMRT plans (p=0.004 vs p=0.04). The average D10% for the spinal cord was least for the 6MV FFF IMRT plan with jaw tracking and was greatest for the 10MV FFF plan without jaw tracking. Treatment times between IMRT and VMAT plans with or without jaw tracking were not significantly different. Measured plans showed greater than 98.5% agreement for planar dose gamma analysis (3%/2 mm) and less than 2.5% for point dose analysis compared to calculated plans. Conclusion: Jaw tracking can be used to help decrease spinal cord dose without any change in treatment delivery or calculation accuracy. Lower dose to the spinal cord was achieved using 6 MV beams compared to 10 MV beams, though 10 MV may be justified in some cases to decrease skin dose.

  7. SU-E-T-394: The Use of Jaw Tracking in Intensity Modulated and Volumetric Modulated Arc Radiotherapy for Spine Stereotactic Radiosurgery

    International Nuclear Information System (INIS)

    Chin, K; Wen, N; Huang, Y; Kim, J; Zhao, B; Siddiqui, S; Chetty, I; Ryu, S

    2014-01-01

    Purpose: To evaluate the potential advantages of jaw tracking for intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) in spine radiosurgery. Methods: VMAT and IMRT plans were retrospectively generated for ten patients. Six plans for each patient were created in the Eclipse treatment planning system for a Varian Truebeam equipped with a Millennium 120 MLC. Plans were created to study IMRT and VMAT plans with and without jaw tracking, as well as IMRT plans of different flattening filter free (FFF) energies. Plans were prescribed to the 90% isodose line to 16 or 18 Gy in one fraction to cover 95% of the target. Planning target volume (PTV) coverage, conformity index (CI), dose to spinal cord, distance to fall off from the 90% to 50% isodose line (DTF), as well as delivery time were evaluated. Ion chamber and film measurements were performed to verify calculated and measured dose distributions. Results: Jaw tracking decreased the spinal cord dose for both IMRT and VMAT plans, but a larger decrease was seen with the IMRT plans (p=0.004 vs p=0.04). The average D10% for the spinal cord was least for the 6MV FFF IMRT plan with jaw tracking and was greatest for the 10MV FFF plan without jaw tracking. Treatment times between IMRT and VMAT plans with or without jaw tracking were not significantly different. Measured plans showed greater than 98.5% agreement for planar dose gamma analysis (3%/2 mm) and less than 2.5% for point dose analysis compared to calculated plans. Conclusion: Jaw tracking can be used to help decrease spinal cord dose without any change in treatment delivery or calculation accuracy. Lower dose to the spinal cord was achieved using 6 MV beams compared to 10 MV beams, though 10 MV may be justified in some cases to decrease skin dose

  8. Changes in Pulmonary Function After Three-Dimensional Conformal Radiotherapy, Intensity-Modulated Radiotherapy, or Proton Beam Therapy for Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Lopez Guerra, Jose L.; Gomez, Daniel R.; Zhuang Yan; Levy, Lawrence B.; Eapen, George; Liu, Hongmei; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.; Liao Zhongxing

    2012-01-01

    Purpose: To investigate the extent of change in pulmonary function over time after definitive radiotherapy for non-small-cell lung cancer (NSCLC) with modern techniques and to identify predictors of changes in pulmonary function according to patient, tumor, and treatment characteristics. Patients and Methods: We analyzed 250 patients who had received ≥60 Gy radio(chemo)therapy for primary NSCLC in 1998–2010 and had undergone pulmonary function tests before and within 1 year after treatment. Ninety-three patients were treated with three-dimensional conformal radiotherapy, 97 with intensity-modulated radiotherapy, and 60 with proton beam therapy. Postradiation pulmonary function test values were evaluated among individual patients compared with the same patient’s preradiation value at the following time intervals: 0–4 (T1), 5–8 (T2), and 9–12 (T3) months. Results: Lung diffusing capacity for carbon monoxide (DLCO) was reduced in the majority of patients along the three time periods after radiation, whereas the forced expiratory volume in 1 s per unit of vital capacity (FEV1/VC) showed an increase and decrease after radiation in a similar percentage of patients. There were baseline differences (stage, radiotherapy dose, concurrent chemotherapy) among the radiation technology groups. On multivariate analysis, the following features were associated with larger posttreatment declines in DLCO: pretreatment DLCO, gross tumor volume, lung and heart dosimetric data, and total radiation dose. Only pretreatment DLCO was associated with larger posttreatment declines in FEV1/VC. Conclusions: Lung diffusing capacity for carbon monoxide is reduced in the majority of patients after radiotherapy with modern techniques. Multiple factors, including gross tumor volume, preradiation lung function, and dosimetric parameters, are associated with the DLCO decline. Prospective studies are needed to better understand whether new radiation technology, such as proton beam therapy

  9. A fixed-jaw method to protect critical organs during intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Chen, Jiayun; Chen, Xinyuan; Huang, Manni; Dai, Jianrong

    2014-01-01

    Intensity-modulated radiotherapy (IMRT) plays an important role in cancer radiotherapy. For some patients being treated with IMRT, the extremely low tolerances of critical organs (such as lens, ovaries, and testicles) cannot be met during treatment planning. The aim of this article is to introduce a new planning method to overcome that problem. In current planning practice, jaw positions are automatically set to cover all target volumes by the planning system (e.g., Pinnacle 3 system). Because of such settings, critical organs may be fully blocked by the multileaf collimator (MLC), but they still sit in the field that is shaped by collimator jaws. These critical organs receive doses from the transmission and leakage of MLC leaves. We manually fixed jaw positions to block them to further reduce such doses. This method has been used for different treatment sites in our clinic, and it was thoroughly evaluated in patients with radical hysterectomy plus ovarian transposition after surgery. For each patient, 2 treatment plans were designed with the same optimization parameters: the original plan with automatically chosen jaw positions (called O-plan) and the plan with fixed-jaw positions (named F-plan). In the F-plan, the jaws were manually fixed to block the ovaries. For target coverage, the mean conformity index (CI) of the F-plan (1.28 ± 0.02) was remarkably lower than that of the O-plan (1.53 ± 0.09) (p < 0.05). The F-plan and the O-plan performed similarly in target dose homogeneity. Meanwhile, for the critical organ sparing, the mean dose of both ovaries were much lower in the F-plan than that in the O-plan (p < 0.05). The V 20 , V 30 , and V 40 of bladder were also lower in the F-plan (93.57 ± 1.98, 73.99 ± 5.76, and 42.33 ± 3.7, respectively) than those in the O-plan (97.98 ± 1.11, 85.07 ± 4.04, and 49.71 ± 3.63, respectively) (p < 0.05). The maximum dose to the spinal cord planning organ at risk (OAR) volume (PRV) in the O-plan (3940.24 ± 102.8) was

  10. The importance of prostate bed tilt during postprostatectomy intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Bell, Linda J.; Cox, Jennifer; Eade, Thomas; Rinks, Marianne; Kneebone, Andrew

    2014-01-01

    Variations in rectal and bladder filling can create a tilt of the prostate bed, which generates the potential for a geographic miss during postprostatectomy radiotherapy. The aim of this study is to assess the effect that bladder and rectum filling has on planning target volume angle, to determine a method to assess prostate bed tilt leading to potential geographic miss, and to discuss possible implementation issues. The cone-beam computed tomography images (n = 377) of 40 patients who received postprostatectomy radiotherapy with intensity-modulated radiotherapy were reviewed. The amount of tilt in the prostate bed was defined as the angle change between 2 surgical clips, one in the upper prostate bed and another in the lower. A potential geographic miss was defined as movement of any clip of more than 1 cm in any direction or 0.5 cm posteriorly when aligned to bone anatomy. Variations in bladder and rectum size were correlated with the degree of prostate bed tilt, and the rate of potential geographic miss was determined. A possible clinical use of prostate bed tilt was then assessed for different imaging techniques. A tilt of more than 10° was seen in 20.2% of images, which resulted in a 57.9% geographic miss rate of the superior clip. When tilt remained within 10°, there was only a 9% rate of geographic miss. Potential geographic miss of the inferior surgical clip was rare, occurring in only 1.9% of all images reviewed. The most common occurrence when the prostate bed tilt increased by more than 10° was a smaller bladder and larger rectum (6.4% of all images). The most common occurrence when the prostate bed tilt decreased by more than 10° was a larger bladder and smaller rectum (1.3% of all images). Significant prostate bed tilt (>± 10°) occurred in more than 20% of images, creating a 58% rate of geographic miss. Greatest prostate bed tilt occurred when the bladder size increased or reduced by more than 2 cm or the superior rectum size increased by more

  11. The importance of prostate bed tilt during postprostatectomy intensity-modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Linda J., E-mail: Linda.Bell1@health.nsw.gov.au [Northern Sydney Cancer Centre, Radiation Oncology Department, Royal North Shore Hospital, St Leonards, New South Wales (Australia); Faculty of Health Sciences, University of Sydney, Lidcombe, New South Wales (Australia); Cox, Jennifer [Northern Sydney Cancer Centre, Radiation Oncology Department, Royal North Shore Hospital, St Leonards, New South Wales (Australia); Faculty of Health Sciences, University of Sydney, Lidcombe, New South Wales (Australia); Eade, Thomas; Rinks, Marianne; Kneebone, Andrew [Northern Sydney Cancer Centre, Radiation Oncology Department, Royal North Shore Hospital, St Leonards, New South Wales (Australia)

    2014-10-01

    Variations in rectal and bladder filling can create a tilt of the prostate bed, which generates the potential for a geographic miss during postprostatectomy radiotherapy. The aim of this study is to assess the effect that bladder and rectum filling has on planning target volume angle, to determine a method to assess prostate bed tilt leading to potential geographic miss, and to discuss possible implementation issues. The cone-beam computed tomography images (n = 377) of 40 patients who received postprostatectomy radiotherapy with intensity-modulated radiotherapy were reviewed. The amount of tilt in the prostate bed was defined as the angle change between 2 surgical clips, one in the upper prostate bed and another in the lower. A potential geographic miss was defined as movement of any clip of more than 1 cm in any direction or 0.5 cm posteriorly when aligned to bone anatomy. Variations in bladder and rectum size were correlated with the degree of prostate bed tilt, and the rate of potential geographic miss was determined. A possible clinical use of prostate bed tilt was then assessed for different imaging techniques. A tilt of more than 10° was seen in 20.2% of images, which resulted in a 57.9% geographic miss rate of the superior clip. When tilt remained within 10°, there was only a 9% rate of geographic miss. Potential geographic miss of the inferior surgical clip was rare, occurring in only 1.9% of all images reviewed. The most common occurrence when the prostate bed tilt increased by more than 10° was a smaller bladder and larger rectum (6.4% of all images). The most common occurrence when the prostate bed tilt decreased by more than 10° was a larger bladder and smaller rectum (1.3% of all images). Significant prostate bed tilt (>± 10°) occurred in more than 20% of images, creating a 58% rate of geographic miss. Greatest prostate bed tilt occurred when the bladder size increased or reduced by more than 2 cm or the superior rectum size increased by more

  12. Induction chemotherapy with nedaplatin with 5-FU followed by intensity-modulated radiotherapy concurrent with chemotherapy for locoregionally advanced nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Zheng Jijun; Wang Ge; Yang, G.Y.

    2010-01-01

    This Phase II study was conducted to evaluate the activity and feasibility of a regimen of nedaplatin and 5-fluorouracil as induction chemotherapy, followed by intensity-modulated radiotherapy concurrent with chemotherapy in patients with locoregionally advanced nasopharyngeal carcinoma. Patients received neoadjuvant chemotherapy comprised two cycles of 5-fluorouracil at 700 mg/m 2 /day administered on days 1-4 as continuous intravenous infusion and nedaplatin (100 mg/m 2 administered intravenous (i.v.) over 2 h) given after the administration of 5-fluorouracil on day 1, repeated every 3 weeks, followed by intensity-modulated radiotherapy concurrent with nedaplatin. During intensity-modulated radiotherapy, nedaplatin was administered at a dose of 100 mg/m 2 intravenous infusion on days 1, 22 and 43, given -60 min before radiation. Fifty-nine (95.8%) of the 60 patients were assessable for response. Thirty-eight cases of complete response and 14 cases of partial response were confirmed after completion of chemoradiation, with the objective response rate of 86.7% (95% confidence interval (CI), 78.1-95.3%). The median follow-up period was 48 months (range, 30-62 months). The 3-year progression-free survival and overall survival were 75.0% (95% CI, 63.0-87.0%) and 85.5% (95% CI, 75.9-95.1%). No patient showed Grade 3 or higher renal dysfunction. The most commonly observed late effect was xerostomia, but the severity diminished over time, and the detectable xerostomia at 24 months was 10.2%. There were no treatment-related deaths during this study. Neoadjuvant chemotherapy with nedaplatin and 5-fluorouracil followed by concomitant nedaplatin and intensity-modulated radiotherapy is an effective and safe treatment for Southern China patients affected by locoregionally advanced nasopharyngeal carcinoma. (author)

  13. Comparison of volumetric modulated arc therapy and intensity modulated radiation therapy for whole brain hippocampal sparing treatment plans based on radiobiological modeling

    Directory of Open Access Journals (Sweden)

    Ethan Kendall

    2018-01-01

    Full Text Available Introduction: In this article, we report the results of our investigation on comparison of radiobiological aspects of treatment plans with linear accelerator-based intensity-modulated radiation therapy and volumetric-modulated arc therapy for patients having hippocampal avoidance whole-brain radiation therapy. Materials and Methods: In this retrospective study using the dose-volume histogram, we calculated and compared biophysical indices of equivalent uniform dose, tumor control probability, and normal tissue complication probability (NTCP for 15 whole-brain radiotherapy patients. Results and Discussions: Dose-response models for tumors and critical structures were separated into two groups: mechanistic and empirical. Mechanistic models formulate mathematically with describable relationships while empirical models fit data through empirical observations to appropriately determine parameters giving results agreeable to those given by mechanistic models. Conclusions: Techniques applied in this manuscript could be applied to any other organs or types of cancer to evaluate treatment plans based on radiobiological modeling.

  14. Conformal intensity-modulated radiotherapy (IMRT) delivered by robotic linac - testing IMRT to the limit?

    International Nuclear Information System (INIS)

    Webb, S.

    1999-01-01

    In this paper it is proposed that intensity-modulated radiotherapy (IMRT) could be delivered optimally by a short-length linac mounted on a robotic arm. The robot would allow the linac to 'plant' narrow pencils of photon radiation with any orientation (excluding zones within which the linac and couch might collide) relative to the planning target volume (PTV). The treatment is specified by the trajectory of the robot and by the number of monitor units (MUs) delivered at each robotic orientation. An inverse-planning method to determine the optimum robotic trajectory is presented. It is shown that for complex PTVs, specifically those with concavities in their outline, the conformality of the treatment is improved by the use of a complex trajectory in comparison with a less complex constrained trajectory and this improvement is quantified. It is concluded that robotic linac delivery would lead to a great flexibility in those IMRT treatments requiring very complicated dose distributions with complex 3D shapes. However, even using very fast computers, the goal of determining whether robotic linac delivery is the ultimate IMRT cannot be conclusively reached at present. (author)

  15. Intensity-Modulated Radiotherapy for Cervical Lymph Node Metastases From Unknown Primary Cancer

    International Nuclear Information System (INIS)

    Madani, Indira; Vakaet, Luc; Bonte, Katrien; Boterberg, Tom; Neve, Wilfried de

    2008-01-01

    Purpose: To compare the effectiveness of intensity-modulated radiotherapy (IMRT) and conventional (two-dimensional) radiotherapy in the treatment of cervical lymph node metastases from unknown primary cancer (UPC). Methods and Materials: Between February 2003 and September 2006, 23 patients with UPC of squamous cell carcinoma were treated with IMRT. Extended putative mucosal and bilateral nodal sites were irradiated to a median dose of 66 Gy. In 19 patients, IMRT was performed after lymph node dissection, and in 4 patients primary radiotherapy was given. The conventional radiotherapy group (historical control group) comprised 18 patients treated to a median dose of 66 Gy between August 1994 and October 2003. Results: Twenty patients completed treatment. As compared with conventional radiotherapy, the incidence of Grade 3 acute dysphagia was significantly lower in the IMRT group (4.5% vs. 50%, p = 0.003). By 6 months, Grade 3 xerostomia was detected in 11.8% patients in the IMRT group vs. 53.4% in the historical control group (p = 0.03). No Grade 3 dysphagia or skin fibrosis was observed after IMRT but these were noted after conventional radiotherapy (26.7%, p = 0.01) and 26.7%, p = 0.03) respectively). With median follow-up of living patients of 17 months, there was no emergence of primary cancer. One patient had persistent nodal disease and another had nodal relapse at 5 months. Distant metastases were detected in 4 patients. The 2-year overall survival and distant disease-free probability after IMRT did not differ significantly from those for conventional radiotherapy (74.8% vs. 61.1% and 76.3% vs. 68.4%, respectively). Conclusions: Use of IMRT for UPC resulted in lower toxicity than conventional radiotherapy, and was similar in efficacy

  16. Dose reduction to normal tissues as compared to the gross tumor by using intensity modulated radiotherapy in thoracic malignancies

    Directory of Open Access Journals (Sweden)

    Bhalla NK

    2006-08-01

    Full Text Available Abstract Background and purpose Intensity modulated radiotherapy (IMRT is a powerful tool, which might go a long way in reducing radiation doses to critical structures and thereby reduce long term morbidities. The purpose of this paper is to evaluate the impact of IMRT in reducing the dose to the critical normal tissues while maintaining the desired dose to the volume of interest for thoracic malignancies. Materials and methods During the period January 2002 to March 2004, 12 patients of various sites of malignancies in the thoracic region were treated using physical intensity modulator based IMRT. Plans of these patients treated with IMRT were analyzed using dose volume histograms. Results An average dose reduction of the mean values by 73% to the heart, 69% to the right lung and 74% to the left lung, with respect to the GTV could be achieved with IMRT. The 2 year disease free survival was 59% and 2 year overall survival was 59%. The average number of IMRT fields used was 6. Conclusion IMRT with inverse planning enabled us to achieve desired dose distribution, due to its ability to provide sharp dose gradients at the junction of tumor and the adjacent critical organs.

  17. A comparative dosimetric study of conventional, conformal and intensity-modulated radiotherapy in postoperative pelvic irradiation of cervical cancer

    International Nuclear Information System (INIS)

    Li Bin; An Jusheng; Wu Lingying; Huang Manni; Gao Juzhen; Xu Yingjie; Dai Jianrong

    2008-01-01

    Objective: To evaluate target-volume coverage and organ at risk (OAR) protection achieved with conventional radiotherapy (CRT), three dimensional conformal radiotherapy (3DCRT), and intensity-modulated radiotherapy(IMRT) through dosimetric comparison in patients with cervical cancer after hysterectomy. Methods: The planning CT scans of 10 patients treated with pelvic radiation after hysterectomy for cervical cancer were used to generate CRT, 3DCRT and IMRT plans for this study. Clinical target volume(CTV) was contoured on the individual axial CT slices of every patient. The CTV was then uniformly expanded by 1.0 cm to create the planning target volume (PTV). The small bowel, rectum, bladder, bone marrow, ovaries, and femoral heads were outlined for the organ at risk (OAR) evaluation. The CRT, 3DCRT and IMRT plans were generated using commercial planning software. CRT plan was prescribed to deliver 45 Gy to the reference point, while IMRT and 3DCRT plans were 45 Gy to 95% of the PTV. Isodose line and dose volume histograms(DVH) were used to evaluate the dose distribution in CTV and OAR. Results: For 10 patients, the average volume of CTV receiving the prescribed dose of CRT was significantly lower than 3DCRT(Q=8.27, P<0.01) and IMRT(Q=8.37, P<0.01), respectively. Comparing with the CRT plan, the 3DCRT and IMRT plans notably reduced the volume of bowel at 30 and 45 Gy levels. The IMRT plan significantly spared rectum and bladder at 30 and 45 Gy levels comparing with the CRT (P<0.01) and 3DCRT(P<0.05) plans, while the 3DCRT plan significantly spared rectum and bladder at 45 Gy level comparing with the CRT(P<0.01) plans. For 4 patients with ovarian transposition, the average doses of ovary over 3 Gy were 2 patients with the 3 DCRT and IMRT plans, and 2 with all three plans. Conclusions: IMRT and 3DCRT are superior to CRT in improving dose coverage of target volume and sparing of OAR, while IMRT being the best. The superiority of IMRT and 3DCRT is obvious in sparing

  18. Simultaneous Integrated Boost Using Intensity-Modulated Radiotherapy Compared With Conventional Radiotherapy in Patients Treated With Concurrent Carboplatin and 5-Fluorouracil for Locally Advanced Oropharyngeal Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Clavel, Sebastien, E-mail: sebastien.clavel@umontreal.ca [Department of Radiation Oncology, Centre Hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Nguyen, David H.A.; Fortin, Bernard [Department of Radiation Oncology, Hopital Maisonneuve-Rosemont, Montreal, QC (Canada); Despres, Philippe [Department of Radiation Oncology, Centre Hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Khaouam, Nader [Department of Radiation Oncology, Hopital Maisonneuve-Rosemont, Montreal, QC (Canada); Donath, David [Department of Radiation Oncology, Centre Hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Soulieres, Denis [Department of Medical Oncology, Centre Hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Guertin, Louis [Department of Head and Neck Surgery, Centre Hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Nguyen-Tan, Phuc Felix [Department of Radiation Oncology, Hopital Maisonneuve-Rosemont, Montreal, QC (Canada)

    2012-02-01

    Purpose: To compare, in a retrospective study, the toxicity and efficacy of simultaneous integrated boost using intensity-modulated radiotherapy (IMRT) vs. conventional radiotherapy (CRT) in patients treated with concomitant carboplatin and 5-fluorouracil for locally advanced oropharyngeal cancer. Methods and Materials: Between January 2000 and December 2007, 249 patients were treated with definitive chemoradiation. One hundred patients had 70 Gy in 33 fractions using IMRT, and 149 received CRT at 70 Gy in 35 fractions. Overall survival, disease-free survival, and locoregional control were estimated using the Kaplan-Meier method. Results: Median follow-up was 42 months. Three-year actuarial rates for locoregional control, disease-free survival, and overall survival were 95.1% vs. 84.4% (p = 0.005), 85.3% vs. 69.3% (p = 0.001), and 92.1% vs. 75.2% (p < 0.001) for IMRT and CRT, respectively. The benefit of the radiotherapy regimen on outcomes was also observed with a Cox multivariate analysis. Intensity-modulated radiotherapy was associated with less acute dermatitis and less xerostomia at 6, 12, 24, and 36 months. Conclusions: This study suggests that simultaneous integrated boost using IMRT is associated with favorable locoregional control and survival rates with less xerostomia and acute dermatitis than CRT when both are given concurrently with chemotherapy.

  19. Simultaneous Integrated Boost Using Intensity-Modulated Radiotherapy Compared With Conventional Radiotherapy in Patients Treated With Concurrent Carboplatin and 5-Fluorouracil for Locally Advanced Oropharyngeal Carcinoma

    International Nuclear Information System (INIS)

    Clavel, Sébastien; Nguyen, David H.A.; Fortin, Bernard; Després, Philippe; Khaouam, Nader; Donath, David; Soulières, Denis; Guertin, Louis; Nguyen-Tan, Phuc Felix

    2012-01-01

    Purpose: To compare, in a retrospective study, the toxicity and efficacy of simultaneous integrated boost using intensity-modulated radiotherapy (IMRT) vs. conventional radiotherapy (CRT) in patients treated with concomitant carboplatin and 5-fluorouracil for locally advanced oropharyngeal cancer. Methods and Materials: Between January 2000 and December 2007, 249 patients were treated with definitive chemoradiation. One hundred patients had 70 Gy in 33 fractions using IMRT, and 149 received CRT at 70 Gy in 35 fractions. Overall survival, disease-free survival, and locoregional control were estimated using the Kaplan-Meier method. Results: Median follow-up was 42 months. Three-year actuarial rates for locoregional control, disease-free survival, and overall survival were 95.1% vs. 84.4% (p = 0.005), 85.3% vs. 69.3% (p = 0.001), and 92.1% vs. 75.2% (p < 0.001) for IMRT and CRT, respectively. The benefit of the radiotherapy regimen on outcomes was also observed with a Cox multivariate analysis. Intensity-modulated radiotherapy was associated with less acute dermatitis and less xerostomia at 6, 12, 24, and 36 months. Conclusions: This study suggests that simultaneous integrated boost using IMRT is associated with favorable locoregional control and survival rates with less xerostomia and acute dermatitis than CRT when both are given concurrently with chemotherapy.

  20. Nasopharyngeal Carcinoma Treated with Precision-Oriented Radiation Therapy Techniques Including Intensity-Modulated Radiotherapy: Preliminary Results

    Directory of Open Access Journals (Sweden)

    Wen-Shan Liu

    2004-02-01

    Full Text Available This paper reports preliminary results with intensity-modulated radiotherapy (IMRT in nasopharyngeal carcinoma (NPC. Between August 2000 and May 2001, we treated 19 patients with NPC using IMRT. Twelve patients had stage I-II disease and seven had stage III-IV disease. Six patients received 9.0-19.8 Gy three-dimensional conformal radiotherapy (3D-CRT before IMRT and 18 patients received a brachytherapy boost after IMRT. The mean follow-up time was 13.0 months. All patients with stage II-IV disease except one received two cycles of chemoradiotherapy with cisplatin and 5-fluorouracil (5-FU during radiotherapy, followed by two to four cycles of chemotherapy after radiotherapy. Tumor response was assessed using clinical examination and computerized tomography or magnetic resonance imaging. The mean doses administered to the gross tumor volume and clinical tumor volume were 70.9 Gy and 63.2 Gy, respectively. The mean doses administered to the right and left parotid glands were 38.1 Gy and 38.6 Gy, respectively. All 19 patients had a complete response of primary and lymph node disease. Grade III mucositis developed during chemoradiotherapy in 15 patients (79%. In addition, clinical grade I xerostomia was recorded in nine patients, grade II in nine, and grade III in one. This study demonstrated that 3D-CRT, IMRT, intracavitary brachytherapy, and chemotherapy are effective and safe methods to treat NPC. Although IMRT treatment spared parotid gland function, its efficacy may be significantly influenced by disease stage and location of the neck lymph nodes. More cases and a longer follow-up to assess survival and complications are planned.

  1. Sensitivity of intensity modulated proton therapy plans to changes in patient weight

    International Nuclear Information System (INIS)

    Albertini, Francesca; Bolsi, Alessandra; Lomax, Antony J.; Rutz, Hans Peter; Timmerman, Beate; Goitein, Gudrun

    2008-01-01

    Purpose: A retrospective study to investigate the sensitivity of intensity modulated proton therapy (IMPT) to changes in body weight occurring during the course of radiotherapy for patients treated in the sacral region. Materials and methods: During therapy, important weight gain and loss were observed for two patients treated to para-spinal tumors, which resulted in both patients being re-scanned and re-planned. Both patients were treated as part of their therapy, with a narrow-angle IMPT (NA-IMPT) plan delivering a 'dose hole' around the cauda equina (CE), which was mainly formed through modulation of Bragg peaks in depth. To investigate the impact of these weight changes on the proton range and delivered dose, the nominal fields were re-calculated on the new CT data sets. Results were analyzed by comparing these new plans with those originally delivered and by calculating changes in range and delivered doses in target volumes and normal tissues. Results: Maximum differences in proton range in the CE region of up to +8 mm and -13 mm, respectively, for the patient who gained weight and for the patient who lost weight, increased the maximum dose to the CE by only 2%. This indicates that both IMPT plans were relatively insensitive to substantial range uncertainties. Even greater differences in range (16 mm) in the planning target volume only slightly affected its dose homogeneity (differences in V 90% of 6% in the worst case). Nevertheless, some large undesired local dose differences were observed. Conclusions: We demonstrated, that, at least for the two analyzed cases, NA-IMPT plans are less sensitive to weight variations than one may expect. Still, we would advise to calculate new plans in case of substantial change in weight for patients treated in the sacral region, primarily due to the presence of new hot/cold area

  2. Hypofractionated Accelerated Radiotherapy Using Concomitant Intensity-Modulated Radiotherapy Boost Technique for Localized High-Risk Prostate Cancer: Acute Toxicity Results

    International Nuclear Information System (INIS)

    Lim, Tee S.; Cheung, Patrick; Loblaw, D. Andrew; Morton, Gerard; Sixel, Katharina E.; Pang, Geordi; Basran, Parminder; Zhang Liying; Tirona, Romeo; Szumacher, Ewa; Danjoux, Cyril; Choo, Richard; Thomas, Gillian

    2008-01-01

    Purpose: To evaluate the acute toxicities of hypofractionated accelerated radiotherapy (RT) using a concomitant intensity-modulated RT boost in conjunction with elective pelvic nodal irradiation for high-risk prostate cancer. Methods and Materials: This report focused on 66 patients entered into this prospective Phase I study. The eligible patients had clinically localized prostate cancer with at least one of the following high-risk features (Stage T3, Gleason score ≥8, or prostate-specific antigen level >20 ng/mL). Patients were treated with 45 Gy in 25 fractions to the pelvic lymph nodes using a conventional four-field technique. A concomitant intensity-modulated radiotherapy boost of 22.5 Gy in 25 fractions was delivered to the prostate. Thus, the prostate received 67.5 Gy in 25 fractions within 5 weeks. Next, the patients underwent 3 years of adjuvant androgen ablative therapy. Acute toxicities were assessed using the Common Terminology Criteria for Adverse Events, version 3.0, weekly during treatment and at 3 months after RT. Results: The median patient age was 71 years. The median pretreatment prostate-specific antigen level and Gleason score was 18.7 ng/L and 8, respectively. Grade 1-2 genitourinary and gastrointestinal toxicities were common during RT but most had settled at 3 months after treatment. Only 5 patients had acute Grade 3 genitourinary toxicity, in the form of urinary incontinence (n = 1), urinary frequency/urgency (n = 3), and urinary retention (n = 1). None of the patients developed Grade 3 or greater gastrointestinal or Grade 4 or greater genitourinary toxicity. Conclusion: The results of the present study have indicated that hypofractionated accelerated RT with a concomitant intensity-modulated RT boost and pelvic nodal irradiation is feasible with acceptable acute toxicity

  3. Performance evaluation of an algorithm for fast optimization of beam weights in anatomy-based intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Ranganathan, Vaitheeswaran; Sathiya Narayanan, V.K.; Bhangle, Janhavi R.; Gupta, Kamlesh K.; Basu, Sumit; Maiya, Vikram; Joseph, Jolly; Nirhali, Amit

    2010-01-01

    This study aims to evaluate the performance of a new algorithm for optimization of beam weights in anatomy-based intensity modulated radiotherapy (IMRT). The algorithm uses a numerical technique called Gaussian-Elimination that derives the optimum beam weights in an exact or non-iterative way. The distinct feature of the algorithm is that it takes only fraction of a second to optimize the beam weights, irrespective of the complexity of the given case. The algorithm has been implemented using MATLAB with a Graphical User Interface (GUI) option for convenient specification of dose constraints and penalties to different structures. We have tested the numerical and clinical capabilities of the proposed algorithm in several patient cases in comparison with KonRad inverse planning system. The comparative analysis shows that the algorithm can generate anatomy-based IMRT plans with about 50% reduction in number of MUs and 60% reduction in number of apertures, while producing dose distribution comparable to that of beamlet-based IMRT plans. Hence, it is clearly evident from the study that the proposed algorithm can be effectively used for clinical applications. (author)

  4. 'Tongue-and-groove' effect in intensity modulated radiotherapy with static multileaf collimator fields

    International Nuclear Information System (INIS)

    Que, W; Kung, J; Dai, J

    2004-01-01

    The 'tongue-and-groove problem' in step-and-shoot delivery of intensity modulated radiotherapy is investigated. A 'tongue-and-groove' index (TGI) is introduced to quantify the 'tongue-and-groove' effect in step-and-shoot delivery. Four different types of leaf sequencing methods are compared. The sliding window method and the reducing level method use the same number of field segments to deliver the same intensity map, but the TGI is much less for the reducing level method. The leaf synchronization method of Van Santvoort and Heijmen fails in step-and-shoot delivery, but a new method inspired by the method of Van Santvoort and Heijmen is shown to eliminate 'tongue-and-groove' underdosage completely

  5. Chemotherapy and intensity modulated conformational radiotherapy for locally advanced pancreas cancers; Chimiotherapie et radiotherapie conformationnelle avec modulation d'intensite pour les cancers du pancreas localement evolues

    Energy Technology Data Exchange (ETDEWEB)

    Huguet, F. [Hopital Tenon, Paris (France); Wu, A.; Zhang, Z.; Winston, C.; Reidy, D.; Ho, A.; Allen, P.; Karyn, G. [Memorial Sloan-Kettering Cancer Center, New York (United States)

    2011-10-15

    The authors report a retrospective study of the tolerance and survival of 48 patients who have been treated by a chemotherapy followed by a chemotherapy concomitant with an intensity-modulated radiotherapy for a locally advanced pancreas cancer. Results are discussed in terms of toxicity, cancer response, operability, survival rate. Tolerance is good. Local control rates, global survival rates and secondary resection rates are promising. Short communication

  6. Intensity-modulated radiation therapy: a review with a physics perspective.

    Science.gov (United States)

    Cho, Byungchul

    2018-03-01

    Intensity-modulated radiation therapy (IMRT) has been considered the most successful development in radiation oncology since the introduction of computed tomography into treatment planning that enabled three-dimensional conformal radiotherapy in 1980s. More than three decades have passed since the concept of inverse planning was first introduced in 1982, and IMRT has become the most important and common modality in radiation therapy. This review will present developments in inverse IMRT treatment planning and IMRT delivery using multileaf collimators, along with the associated key concepts. Other relevant issues and future perspectives are also presented.

  7. Promising results with image guided intensity modulated radiotherapy for muscle invasive bladder cancer

    International Nuclear Information System (INIS)

    Whalley, D.; Caine, H.; McCloud, P.; Guo, L.; Kneebone, A.; Eade, T.

    2015-01-01

    To describe the feasibility of image guided intensity modulated radiotherapy (IG-IMRT) using daily soft tissue matching in the treatment of bladder cancer. Twenty-eight patients with muscle-invasive carcinoma of the bladder were recruited to a protocol of definitive radiation using IMRT with accelerated hypofractionation with simultaneous integrated boost (SIB). Isotropic margins of .5 and 1 cm were used to generate the high risk and intermediate risk planning target volumes respectively. Cone beam CT (CBCT) was acquired daily and a soft tissue match was performed. Cystoscopy was scheduled 6 weeks post treatment. The median age was 83 years (range 58-92). Twenty patients had stage II or III disease, and eight were stage IV. Gross disease received 66 Gy in 30 fractions in 11 patients (ten with concurrent chemotherapy) or 55 Gy in 20 fractions for those of poorer performance status or with palliative intent. All patients completed radiation treatment as planned. Three patients ceased chemotherapy early due to toxicity. Six patients (21 %) had acute Grade ≥ 2 genitourinary (GU) toxicity and six (21 %) had acute Grade ≥ 2 gastrointestinal (GI) toxicity. Five patients (18 %) developed Grade ≥2 late GU toxicity and no ≥2 late GI toxicity was observed. Nineteen patients underwent cystoscopy following radiation, with complete response (CR) in 16 cases (86 %), including all patients treated with chemoradiotherapy. Eight patients relapsed, four of which were local relapses. Of the patients with local recurrence, one underwent salvage cystectomy. For patients treated with definitive intent, freedom from locoregional recurrence (FFLR) and overall survival (OS) was 90 %/100 % for chemoradiotherapy versus 86 %/69 % for radiotherapy alone. IG- IMRT using daily soft tissue matching is a feasible in the treatment of bladder cancer, enabling the delivery of accelerated synchronous integrated boost with good early local control outcomes and low toxicity

  8. The Dosimetric Consequences of Intensity Modulated Radiotherapy for Cervix Cancer: The Impact of Organ Motion, Deformation and Tumour Regression

    Science.gov (United States)

    Lim, Karen Siah Huey

    Hypothesis: In intensity modulated radiotherapy (IMRT) for cervix cancer, the dose received by the tumour target and surrounding normal tissues is significantly different to that indicated by a single static plan. Rationale: The optimal use of IMRT in cervix cancer requires a greater attention to clinical target volume (CTV) definition and tumour & normal organ motion to assure maximum tumour control with the fewest side effects. Research Aims: 1) Generate consensus CTV contouring guidelines for cervix cancer; 2) Evaluate intra-pelvic tumour and organ dynamics during radiotherapy; 3) Analyze the dose consequences of intra-pelvic organ dynamics on different radiotherapy strategies. Results: Consensus CTV definitions were generated using experts-in-the-field. Substantial changes in tumour volume and organ motion, resulted in significant reductions in accumulated dose to tumour targets and variability in accumulated dose to surrounding normal tissues. Significance: Formalized CTV definitions for cervix cancer is important in ensuring consistent standards of practice. Complex and unpredictable tumour and organ dynamics mandates daily soft-tissue image guidance if IMRT is used. To maximize the benefits of IMRT for cervix cancer, a strategy of adaptation is necessary.

  9. Stereotactic Image-Guided Intensity Modulated Radiotherapy Using the HI-ART II Helical Tomotherapy System

    International Nuclear Information System (INIS)

    Holmes, Timothy W.; Hudes, Richard; Dziuba, Sylwester; Kazi, Abdul; Hall, Mark; Dawson, Dana

    2008-01-01

    The highly integrated adaptive radiation therapy (HI-ART II) helical tomotherapy unit is a new radiotherapy machine designed to achieve highly precise and accurate treatments at all body sites. The precision and accuracy of the HI-ART II is similar to that provided by stereotactic radiosurgery systems, hence the historical distinction between external beam radiotherapy and stereotactic procedures based on differing precision requirements is removed for this device. The objectives of this work are: (1) to describe stereotactic helical tomotherapy processes (SRS, SBRT); (2) to show that the precision and accuracy of the HI-ART meet the requirements defined for SRS and SBRT; and (3) to describe the clinical implementation of a stereotactic image-guided intensity modulated radiation therapy (IG-IMRT) system that incorporates optical motion management

  10. Influence of jaw tracking in intensity-modulated and volumetric-modulated arc radiotherapy for head and neck cancers: a dosimetric study

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Karthick Raj [Research and Development Centre, Bharathiar University, Tamilnadu (India); Upadhayay, Sagar [Radiation Oncology, Kathmandu Cancer Center, Bhaktapur (Nepal); Das, K. J. Maria [Dept. of Radiotherapy, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh (India)

    2017-03-15

    To Study the dosimetric advantage of the Jaw tracking technique in intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) for Head and Neck Cancers. We retrospectively selected 10 previously treated head and neck cancer patients stage (T1/T2, N1, M0) in this study. All the patients were planned for IMRT and VMAT with simultaneous integrated boost technique. IMRT and VMAT plans were performed with jaw tracking (JT) and with static jaw (SJ) technique by keeping the same constraints and priorities for a particular patient. Target conformity, dose to the critical structures and low dose volumes were recorded and analyzed for IMRT and VMAT plans with and without JT for all the patients. The conformity index average of all patients followed by standard deviation (x¯x¯ ± σx¯σx¯) of the JT-IMRT, SJ-IMRT, JT-VMAT, and SJ-VMAT were 1.72 ± 0.56, 1.67 ± 0.57, 1.83 ± 0.65, and 1.85 ± 0.64, and homogeneity index were 0.059 ± 0.05, 0.064 ± 0.05, 0.064 ± 0.04, and 0.064 ± 0.05. JT-IMRT shows significant mean reduction in right parotid and left parotid shows of 7.64% (p < 0.001) and 7.45% (p < 0.001) compare to SJ-IMRT. JT-IMRT plans also shows considerable dose reduction to thyroid, inferior constrictors, spinal cord and brainstem compared to the SJ-IMRT plans. Significant dose reductions were observed for critical structure in the JT-IMRT compared to SJ-IMRT technique. In JT-VMAT plans dose reduction to the critical structure were not significant compared to the SJ-IMRT due to relatively lesser monitor units.

  11. Evaluation of a mixed beam therapy for post-mastectomy breast cancer patients: bolus electron conformal therapy combined with intensity modulated photon radiotherapy and volumetric modulated photon arc therapy.

    Science.gov (United States)

    Zhang, Rui; Heins, David; Sanders, Mary; Guo, Beibei; Hogstrom, Kenneth

    2018-05-10

    The purpose of this study was to assess the potential benefits and limitations of a mixed beam therapy, which combined bolus electron conformal therapy (BECT) with intensity modulated photon radiotherapy (IMRT) and volumetric modulated photon arc therapy (VMAT), for left-sided post-mastectomy breast cancer patients. Mixed beam treatment plans were produced for nine post-mastectomy radiotherapy (PMRT) patients previously treated at our clinic with VMAT alone. The mixed beam plans consisted of 40 Gy to the chest wall area using BECT, 40 Gy to the supraclavicular area using parallel opposed IMRT, and 10 Gy to the total planning target volume (PTV) by optimizing VMAT on top of the BECT+IMRT dose distribution. The treatment plans were created in a commercial treatment planning system (TPS), and all plans were evaluated based on PTV coverage, dose homogeneity index (DHI), conformity index (CI), dose to organs at risk (OARs), normal tissue complication probability (NTCP), and secondary cancer complication probability (SCCP). The standard VMAT alone planning technique was used as the reference for comparison. Both techniques produced clinically acceptable PMRT plans but with a few significant differences: VMAT showed significantly better CI (0.70 vs. 0.53, p 0.5 cm and volume of tissue between the distal PTV surface and heart or lung approximately > 250 cm 3 ) between distal PTV surface and lung may benefit the most from mixed beam therapy. This work has demonstrated that mixed beam therapy (BECT+IMRT : VMAT = 4 : 1) produces clinically acceptable plans having reduced OAR doses and risks of side effects compared with VMAT. Even though VMAT alone produces more homogenous and conformal dose distributions, mixed beam therapy remains as a viable option for treating post-mastectomy patients, possibly leading to reduced normal tissue complications. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Dosimetric comparison of intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) in total scalp irradiation: a single institutional experience

    International Nuclear Information System (INIS)

    Ostheimer, Christian; Huebsch, Patrick; Janich, Martin; Gerlach, Reinhard; Vordermark, Dirk

    2016-01-01

    Total scalp irradiation (TSI) is a rare but challenging indication. We previously reported that non-coplanar intensity-modulated radiotherapy (IMRT) was superior to coplanar IMRT in organ-at-risk (OAR) protection and target dose distribution. This consecutive treatment planning study compared IMRT with volumetric-modulated arc therapy (VMAT). A retrospective treatment plan databank search was performed and 5 patient cases were randomly selected. Cranial imaging was restored from the initial planning computed tomography (CT) and target volumes and OAR were redelineated. For each patients, three treatment plans were calculated (coplanar/non-coplanar IMRT, VMAT; prescribed dose 50 Gy, single dose 2 Gy). Conformity, homogeneity and dose volume histograms were used for plan. VMAT featured the lowest monitor units and the sharpest dose gradient (1.6 Gy/mm). Planning target volume (PTV) coverage and homogeneity was better in VMAT (coverage, 0.95; homogeneity index [HI], 0.118) compared to IMRT (coverage, 0.94; HI, 0.119) but coplanar IMRT produced the most conformal plans (conformity index [CI], 0.43). Minimum PTV dose range was 66.8% –88.4% in coplanar, 77.5%–88.2% in non-coplanar IMRT and 82.8%–90.3% in VMAT. Mean dose to the brain, brain stem, optic system (maximum dose) and lenses were 18.6, 13.2, 9.1, and 5.2 Gy for VMAT, 21.9, 13.4, 14.5, and 6.3 Gy for non-coplanar and 22.8, 16.5, 11.5, and 5.9 Gy for coplanar IMRT. Maximum optic chiasm dose was 7.7, 8.4, and 11.1 Gy (non-coplanar IMRT, VMAT, and coplanar IMRT). Target coverage, homogeneity and OAR protection, was slightly superior in VMAT plans which also produced the sharpest dose gradient towards healthy tissue

  13. Dosimetric comparison of intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) in total scalp irradiation: a single institutional experience

    Energy Technology Data Exchange (ETDEWEB)

    Ostheimer, Christian; Huebsch, Patrick; Janich, Martin; Gerlach, Reinhard; Vordermark, Dirk [Dept. of Radiation Oncology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Germany)

    2016-12-15

    Total scalp irradiation (TSI) is a rare but challenging indication. We previously reported that non-coplanar intensity-modulated radiotherapy (IMRT) was superior to coplanar IMRT in organ-at-risk (OAR) protection and target dose distribution. This consecutive treatment planning study compared IMRT with volumetric-modulated arc therapy (VMAT). A retrospective treatment plan databank search was performed and 5 patient cases were randomly selected. Cranial imaging was restored from the initial planning computed tomography (CT) and target volumes and OAR were redelineated. For each patients, three treatment plans were calculated (coplanar/non-coplanar IMRT, VMAT; prescribed dose 50 Gy, single dose 2 Gy). Conformity, homogeneity and dose volume histograms were used for plan. VMAT featured the lowest monitor units and the sharpest dose gradient (1.6 Gy/mm). Planning target volume (PTV) coverage and homogeneity was better in VMAT (coverage, 0.95; homogeneity index [HI], 0.118) compared to IMRT (coverage, 0.94; HI, 0.119) but coplanar IMRT produced the most conformal plans (conformity index [CI], 0.43). Minimum PTV dose range was 66.8% –88.4% in coplanar, 77.5%–88.2% in non-coplanar IMRT and 82.8%–90.3% in VMAT. Mean dose to the brain, brain stem, optic system (maximum dose) and lenses were 18.6, 13.2, 9.1, and 5.2 Gy for VMAT, 21.9, 13.4, 14.5, and 6.3 Gy for non-coplanar and 22.8, 16.5, 11.5, and 5.9 Gy for coplanar IMRT. Maximum optic chiasm dose was 7.7, 8.4, and 11.1 Gy (non-coplanar IMRT, VMAT, and coplanar IMRT). Target coverage, homogeneity and OAR protection, was slightly superior in VMAT plans which also produced the sharpest dose gradient towards healthy tissue.

  14. Limited Advantages of Intensity-Modulated Radiotherapy Over 3D Conformal Radiation Therapy in the Adjuvant Management of Gastric Cancer

    International Nuclear Information System (INIS)

    Alani, Shlomo; Soyfer, Viacheslav; Strauss, Natan; Schifter, Dan; Corn, Benjamin W.

    2009-01-01

    Purpose: Although chemoradiotherapy was considered the standard adjuvant treatment for gastric cancer, a recent Phase III trial (Medical Research Council Adjuvant Gastric Infusional Chemotherapy [MAGIC]) did not include radiotherapy in the randomization scheme because it was considered expendable. Given radiotherapy's potential, efforts needed to be made to optimize its use for treating gastric cancer. We assessed whether intensity-modulated radiotherapy (IMRT) could improve upon our published results in patients treated with three-dimensional (3D) conformal therapy. Methods and Materials: Fourteen patients with adenocarcinoma of the stomach were treated with adjuvant chemoradiotherapy using a noncoplanar four-field arrangement. Subsequently, a nine-field IMRT plan was designed using a CMS Xio IMRT version 4.3.3 module. Two IMRT beam arrangements were evaluated: beam arrangement 1 consisted of gantry angles of 0 deg., 53 deg., 107 deg., 158 deg., 204 deg., 255 deg., and 306 deg.. Beam arrangement 2 consisted of gantry angles of 30 deg., 90 deg., 315 deg., and 345 deg.; a gantry angle of 320 deg./couch, 30 deg.; and a gantry angle of 35 o /couch, 312 o . Both the target volume coverage and the dose deposition in adjacent critical organs were assessed in the plans. Dose-volume histograms were generated for the clinical target volume, kidneys, spine, and liver. Results: Comparison of the clinical target volumes revealed satisfactory coverage by the 95% isodose envelope using either IMRT or 3D conformal therapy. However, IMRT was only marginally better than 3D conformal therapy at protecting the spine and kidneys from radiation. Conclusions: IMRT confers only a marginal benefit in the adjuvant treatment of gastric cancer and should be used only in the small subset of patients with risk factors for kidney disease or those with a preexisting nephropathy.

  15. Limited advantages of intensity-modulated radiotherapy over 3D conformal radiation therapy in the adjuvant management of gastric cancer.

    Science.gov (United States)

    Alani, Shlomo; Soyfer, Viacheslav; Strauss, Natan; Schifter, Dan; Corn, Benjamin W

    2009-06-01

    Although chemoradiotherapy was considered the standard adjuvant treatment for gastric cancer, a recent Phase III trial (Medical Research Council Adjuvant Gastric Infusional Chemotherapy [MAGIC]) did not include radiotherapy in the randomization scheme because it was considered expendable. Given radiotherapy's potential, efforts needed to be made to optimize its use for treating gastric cancer. We assessed whether intensity-modulated radiotherapy (IMRT) could improve upon our published results in patients treated with three-dimensional (3D) conformal therapy. Fourteen patients with adenocarcinoma of the stomach were treated with adjuvant chemoradiotherapy using a noncoplanar four-field arrangement. Subsequently, a nine-field IMRT plan was designed using a CMS Xio IMRT version 4.3.3 module. Two IMRT beam arrangements were evaluated: beam arrangement 1 consisted of gantry angles of 0 degrees , 53 degrees , 107 degrees , 158 degrees , 204 degrees , 255 degrees , and 306 degrees . Beam arrangement 2 consisted of gantry angles of 30 degrees , 90 degrees , 315 degrees , and 345 degrees ; a gantry angle of 320 degrees /couch, 30 degrees ; and a gantry angle of 35 degrees /couch, 312 degrees . Both the target volume coverage and the dose deposition in adjacent critical organs were assessed in the plans. Dose-volume histograms were generated for the clinical target volume, kidneys, spine, and liver. Comparison of the clinical target volumes revealed satisfactory coverage by the 95% isodose envelope using either IMRT or 3D conformal therapy. However, IMRT was only marginally better than 3D conformal therapy at protecting the spine and kidneys from radiation. IMRT confers only a marginal benefit in the adjuvant treatment of gastric cancer and should be used only in the small subset of patients with risk factors for kidney disease or those with a preexisting nephropathy.

  16. [Intensity modulated radiation therapy for patients with gynecological malignancies after hysterectomy and chemotherapy/radiotherapy].

    Science.gov (United States)

    Chen, Zhen-yun; Ma, Yue-bing; Sheng, Xiu-gui; Zhang, Xiao-ling; Xue, Li; Song, Qu-qing; Liu, Nai-fu; Miao, Hua-qin

    2007-04-01

    To investigate the value of intensity modulated radiation therapy (IMRT) for patient with gynecological malignancies after treatment of hysterectomy and chemotherapy/radiotherapy. All 32 patients with cervical or endometrial cancer after hysterectomy received full course IMRT after 1 to 3 cycles of chemotherapy (Karnofsky performance status(KPS) > or =70). Seventeen of these patients underwent postoperative preventive irradiation and the other 15 patients were pelvic wall recurrence and/or retroperitoneal lymph node metastasis, though postoperative radiotherapy and/or chemotherapy had been given after operation. The median dose delivered to the PTV was 56.8 Gy for preventive irradiation, and 60.6 Gy for pelvic wall recurrence or retroperioneal lymph node metastasis irradiation. It was required that 90% of iso-dose curve could covere more than 99% of GTV. However, The mean dose irradiated to small intestine, bladder, rectum, kidney and spinal cord was 21.3 Gy, 37.8 Gy, 35.3 Gy, 8.5 Gy, 22.1 Gy, respectively. Fourteen patients presented grade I (11 patients) or II (3 patients) digestive tract side-effects, Five patients developed grade I or II bone marrow depression. Twelve patients had grade I skin reaction. The overall 1-year survival rate was 100%. The 2- and 3- year survival rate for preventive irradiation were both 100%, but which was 5/7 and 3/6 for the patients with pelvic wall recurrence or retroperioneal lymph node metastasis. Intensity modulated radiation therapy can provide a better dose distribution than traditional radiotherapy for both prevention and pelvic wall recurrence or retroperioneal lymph node metastasis. The toxicity is tolerable. The adjacent organs at risk can well be protected.

  17. Dose determination in radiotherapy for photon beams modified by static intensity modulators

    International Nuclear Information System (INIS)

    Castellanos Lopez, M.E.

    1998-01-01

    The static intensity modulators, used in radiotherapy, modify the spectral composition of the beam and lead to specific problems of the dose calculation. The aim of this work was to establish a three dimensional calculation, global and accurate, adapted to the primary-diffused separation algorithm and valid for any static modulator type. A theoretical study, experimentally verified, allowed the evaluation of the primary fluence, resulting from metallic sheets placed between photons beams of 6 to 23 MV nominal energy. It has been showed that the diffused, coming from the modulators, could be neglected for weak thickness and for the relative dose variation. In return it leads to significant variations of many % on the absolute dose and must be take into account for the bigger thicknesses. Corrective methods for the primary fluence have been proposed. From the energy spectra of the beam, the metallic modulator influence has been studied on the primary and diffused components of the dose and improvements of the calculation method have been proposed. These improvements are based on the modulator representation as a transmission matrix and on semi-empirical corrective factors. (A.L.B.)

  18. Serial tomotherapy vs. MLC-IMRT (Multileaf Collimator Intensity Modulated Radiotherapy) for simultaneous boost treatment large intracerebral lesions

    International Nuclear Information System (INIS)

    Wolff, Dirk; Lohr, Frank; Mai, Sabine; Polednik, Martin; Wenz, Frederik; Dobler, Barbara

    2009-01-01

    Introduction: Recent data suggest that a radiosurgery boost treatment for up to three brain metastases in addition to whole brain radiotherapy (WBRT) is beneficial. Sequential treatment of multiple metastatic lesions is time-consuming and optimal normal tissue sparing is not trivial for larger metastases when separate plans are created and are only superimposed afterwards. Sequential Tomotherapy with noncoplanar arcs and Multi-field IMRT may streamline the process and enable easy simultaneous treatment. We compared plans for 2-3 intracerebral targets calculated with Intensity Modulated Radiotherapy (IMRT) based on treatment with MLC or sequential Tomotherapy using the Peacock-System. Treatment time was not to exceed 90 min on a linac with standart dose rate. MIMiC plans without treatment-time restrictions were created as a benchmark. Materials and methods: Calculations are based on a Siemens KD2 linac with a dose rate of 200 MU/min. Step-and-Shoot IMRT is performed with a standard MLC (2 x 29 leaves, 1 cm), serial Tomotherapy with the Multivane-Collimator MIMiC (NOMOS Inc. USA). Treatment plans are created with Corvus 5.0. To create plans with good conformity we chose a noncoplanar beam- and arc geometry for each approach (IMRT 4-, MIMiC 5-couch angles). The benchmark MIMiC plans with maximally steep dose gradients had 9 couch angles. For plan comparison reasons, 10Gy were prescribed to 90% of the PTV. Steepness of dose gradients, homogeneity and conformity were assessed by the following parameters: Volume encompassed by certain isodoses outside the target as well as homogeneity and conformity as indicated by Homogeneity- and Conformity-Index. Results: Plans without treatment-time restrictions had slightest dose to organ at risk (OAR), normal tissue and least Conformity-index. MIMiC- and MLC-IMRT based plans can be treated within the intended period of 90 min, all plans met the required dose. MLC based plans resulted in higher dose to organs at risk (OAR) and dose

  19. Optimization approaches to volumetric modulated arc therapy planning

    Energy Technology Data Exchange (ETDEWEB)

    Unkelbach, Jan, E-mail: junkelbach@mgh.harvard.edu; Bortfeld, Thomas; Craft, David [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States); Alber, Markus [Department of Medical Physics and Department of Radiation Oncology, Aarhus University Hospital, Aarhus C DK-8000 (Denmark); Bangert, Mark [Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg D-69120 (Germany); Bokrantz, Rasmus [RaySearch Laboratories, Stockholm SE-111 34 (Sweden); Chen, Danny [Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Li, Ruijiang; Xing, Lei [Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Men, Chunhua [Department of Research, Elekta, Maryland Heights, Missouri 63043 (United States); Nill, Simeon [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom); Papp, Dávid [Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695 (United States); Romeijn, Edwin [H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Salari, Ehsan [Department of Industrial and Manufacturing Engineering, Wichita State University, Wichita, Kansas 67260 (United States)

    2015-03-15

    Volumetric modulated arc therapy (VMAT) has found widespread clinical application in recent years. A large number of treatment planning studies have evaluated the potential for VMAT for different disease sites based on the currently available commercial implementations of VMAT planning. In contrast, literature on the underlying mathematical optimization methods used in treatment planning is scarce. VMAT planning represents a challenging large scale optimization problem. In contrast to fluence map optimization in intensity-modulated radiotherapy planning for static beams, VMAT planning represents a nonconvex optimization problem. In this paper, the authors review the state-of-the-art in VMAT planning from an algorithmic perspective. Different approaches to VMAT optimization, including arc sequencing methods, extensions of direct aperture optimization, and direct optimization of leaf trajectories are reviewed. Their advantages and limitations are outlined and recommendations for improvements are discussed.

  20. Monte Carlo treatment planning with modulated electron radiotherapy: framework development and application

    Science.gov (United States)

    Alexander, Andrew William

    Within the field of medical physics, Monte Carlo radiation transport simulations are considered to be the most accurate method for the determination of dose distributions in patients. The McGill Monte Carlo treatment planning system (MMCTP), provides a flexible software environment to integrate Monte Carlo simulations with current and new treatment modalities. A developing treatment modality called energy and intensity modulated electron radiotherapy (MERT) is a promising modality, which has the fundamental capabilities to enhance the dosimetry of superficial targets. An objective of this work is to advance the research and development of MERT with the end goal of clinical use. To this end, we present the MMCTP system with an integrated toolkit for MERT planning and delivery of MERT fields. Delivery is achieved using an automated "few leaf electron collimator" (FLEC) and a controller. Aside from the MERT planning toolkit, the MMCTP system required numerous add-ons to perform the complex task of large-scale autonomous Monte Carlo simulations. The first was a DICOM import filter, followed by the implementation of DOSXYZnrc as a dose calculation engine and by logic methods for submitting and updating the status of Monte Carlo simulations. Within this work we validated the MMCTP system with a head and neck Monte Carlo recalculation study performed by a medical dosimetrist. The impact of MMCTP lies in the fact that it allows for systematic and platform independent large-scale Monte Carlo dose calculations for different treatment sites and treatment modalities. In addition to the MERT planning tools, various optimization algorithms were created external to MMCTP. The algorithms produced MERT treatment plans based on dose volume constraints that employ Monte Carlo pre-generated patient-specific kernels. The Monte Carlo kernels are generated from patient-specific Monte Carlo dose distributions within MMCTP. The structure of the MERT planning toolkit software and

  1. Conformal intensity-modulated radiotherapy (IMRT) delivered by robotic linac-conformality versus efficiency of dose delivery

    International Nuclear Information System (INIS)

    Webb, Steve

    2000-01-01

    Intensity-modulated radiotherapy (IMRT) may be delivered with a high-energy-photon linac mounted on a robotic gantry and executing a complex trajectory. In a previous paper an inverse-planning technique was developed for such an application. Here the work is extended to demonstrate the dependence of conformality on the size of the elemental pencil beam, on the complexity of the trajectory and on the sampling of azimuth and elevation of the collimated source. The improved conformality of complex trajectories is demonstrated and benchmarked relative to simpler trajectories, more representative of existing non-robotic IMRT techniques. Specifically, by choosing a very fine pencil beam, exquisitely conformal dose distributions have been obtained. Important sampling considerations have been determined. Expressions have been derived for the dosimetry and monitor-unit efficiency of robotic IMRT. Equivalent trajectories were computed for executing the complex robotic trajectories instead by using a conventional linac. The work benchmarks an ideal in IMRT against which more practical and more common techniques may be measured. (author)

  2. Approximating convex Pareto surfaces in multiobjective radiotherapy planning

    International Nuclear Information System (INIS)

    Craft, David L.; Halabi, Tarek F.; Shih, Helen A.; Bortfeld, Thomas R.

    2006-01-01

    Radiotherapy planning involves inherent tradeoffs: the primary mission, to treat the tumor with a high, uniform dose, is in conflict with normal tissue sparing. We seek to understand these tradeoffs on a case-to-case basis, by computing for each patient a database of Pareto optimal plans. A treatment plan is Pareto optimal if there does not exist another plan which is better in every measurable dimension. The set of all such plans is called the Pareto optimal surface. This article presents an algorithm for computing well distributed points on the (convex) Pareto optimal surface of a multiobjective programming problem. The algorithm is applied to intensity-modulated radiation therapy inverse planning problems, and results of a prostate case and a skull base case are presented, in three and four dimensions, investigating tradeoffs between tumor coverage and critical organ sparing

  3. Prospective Trial of High-Dose Reirradiation Using Daily Image Guidance With Intensity-Modulated Radiotherapy for Recurrent and Second Primary Head-and-Neck Cancer

    International Nuclear Information System (INIS)

    Chen, Allen M.; Farwell, D. Gregory; Luu, Quang; Cheng, Suzan; Donald, Paul J.; Purdy, James A.

    2011-01-01

    Purpose: To report a single-institutional experience using intensity-modulated radiotherapy with daily image-guided radiotherapy for the reirradiation of recurrent and second cancers of the head and neck. Methods and Materials: Twenty-one consecutive patients were prospectively treated with intensity-modulated radiotherapy from February 2006 to March 2009 to a median dose of 66 Gy (range, 60-70 Gy). None of these patients received concurrent chemotherapy. Daily helical megavoltage CT scans were obtained before each fraction as part of an image-guided radiotherapy registration protocol for patient alignment. Results: The 1- and 2-year estimates of in-field control were 72% and 65%, respectively. A total of 651 daily megavoltage CT scans were obtained. The mean systematic shift to account for interfraction motion was 1.38 ± 1.25 mm, 1.79 ± 1.45 mm, and 1.98 ± 1.75 mm for the medial-lateral, superior-inferior, and anterior-posterior directions, respectively. Pretreatment shifts of >3 mm occurred in 19% of setups in the medial-lateral, 27% in the superior-inferior, and 33% in the anterior-posterior directions, respectively. There were no treatment-related fatalities or hospitalizations. Complications included skin desquamation, odynophagia, otitis externa, keratitis, naso-lacrimal duct stenosis, and brachial plexopathy. Conclusions: Intensity-modulated radiotherapy with daily image guidance results in effective disease control with relatively low morbidity and should be considered for selected patients with recurrent and second primary cancers of the head and neck.

  4. Intensity modulated radiotherapy (IMRT) for pediatric cancer patients: The advantage and fear of second malignant neoplasm

    International Nuclear Information System (INIS)

    Zaghloul, M.S.

    2013-01-01

    Intensity-modulated radiotherapy is used for delivering more efficient homogenous dose to the target and lowering of dose to the surrounding normal tissues. However, a second malignant neoplasm may develop after prolonged latent period. The use of modern precise radiotherapy techniques in the pediatric age group has many controversial issues in spite of its proven dosimetric distribution advantages and the considerable decrease of normal tissue complication probability (NTCP). This concern is due to many factors; mainly the exposure of a larger volume of normal tissues to low dose radiotherapy. Children have more proliferating tissues compared to the adults. However, the epidemiological data did not detect an increase in the incidence of radiation-induced second malignancy. This issue is still controversial as IMRT and other precise radiotherapy techniques were not widely used except recently. This may entail a thorough careful follow up for children treated with these techniques to detect any incidence increase

  5. Inverse planning of intensity modulated proton therapy

    International Nuclear Information System (INIS)

    Nill, S.; Oelfke, U.; Bortfeld, T.

    2004-01-01

    A common requirement of radiation therapy is that treatment planning for different radiation modalities is devised on the basis of the same treatment planning system (TPS). The present study presents a novel multi-modal TPS with separate modules for the dose calculation, the optimization engine and the graphical user interface, which allows to integrate different treatment modalities. For heavy-charged particles, both most promising techniques, the distal edge tracking (DET) and the 3-dimensional scanning (3D) technique can be optimized. As a first application, the quality of optimized intensity-modulated treatment plans for photons (IMXT) and protons (IMPT) was analyzed in one clinical case on the basis of the achieved physical dose distributions. A comparison of the proton plans with the photon plans showed no significant improvement in terms of target volume dose, however there was an improvement in terms of organs at risk as well as a clear reduction of the total integral dose. For the DET technique, it is possible to create a treatment plan with almost the same quality of the 3D technique, however with a clearly reduced number (factor of 5) of beam spots as well as a reduced optimization time. Due to its modular design, the system can be easily expanded to more sophisticated dose-calculation algorithms or to modeling of biological effects. (orig.) [de

  6. Dosimetric comparison using different multileaf collimeters in intensity-modulated radiotherapy for upper thoracic esophageal cancer

    Directory of Open Access Journals (Sweden)

    Fu Yuchuan

    2010-07-01

    Full Text Available Abstract Purpose To study the impacts of multileaf collimators (MLC width [standard MLC width of 10 mm (sMLC and micro-MLC width of 4 mm (mMLC] in the intensity-modulated radiotherapy (IMRT planning for the upper thoracic esophageal cancer (UTEC. Methods and materials 10 patients with UTEC were retrospectively planned with the sMLC and the mMLC. The monitor unites (MUs and dose volume histogram-based parameters [conformity index (CI and homogeneous index (HI] were compared between the IMRT plans with sMLC and with mMLC. Results The IMRT plans with the mMLC were more efficient (average MUs: 703.1 ± 68.3 than plans with the sMLC (average MUs: 833.4 ± 73.8 (p p 5 (3260.3 ± 374.0 vs 3404.5 ± 374.4/gEUD (1815.1 ± 281.7 vs 1849.2 ± 297.6 of the spinal cord, the V10 (33.2 ± 6.5 vs 34.0 ± 6.7, V20 (16.0 ± 4.6 vs 16.6 ± 4.7, MLD (866.2 ± 174.1 vs 887.9 ± 172.1 and gEUD (938.6 ± 175.2 vs 956.8 ± 171.0 of the lungs were observed in the plans with the mMLC, respectively (p Conclusions Comparing to the sMLC, the mMLC not only demonstrated higher efficiencies and more optimal target coverage, but also considerably improved the dose sparing of OARs in the IMRT planning for UTEC.

  7. Intensity modulated radiotherapy for sinonasal malignancies with a focus on optic pathway preservation

    Directory of Open Access Journals (Sweden)

    Chi Alexander

    2013-01-01

    Full Text Available Abstract Purpose To assess if intensity-modulated radiotherapy (IMRT can possibly lead to improved local control and lower incidence of vision impairment/blindness in comparison to non-IMRT techniques when treating sinonasal malignancies; what is the most optimal dose constraints for the optic pathway; and the impact of different IMRT strategies on optic pathway sparing in this setting. Methods and materials A literature search in the PubMed databases was conducted in July, 2012. Results Clinical studies on IMRT and 2D/3D (2 dimensional/3 dimensional RT for sinonasal malignancies suggest improved local control and lower incidence of severe vision impairment with IMRT in comparison to non-IMRT techniques. As observed in the non-IMRT studies, blindness due to disease progression may occur despite a lack of severe toxicity possibly due to the difficulty of controlling locally very advanced disease with a dose ≤ 70 Gy. Concurrent chemotherapy’s influence on the the risk of severe optic toxicity after radiotherapy is unclear. A maximum dose of ≤ 54 Gy with conventional fractionation to the optic pathway may decrease the risk of blindness. Increased magnitude of intensity modulation through increasing the number of segments, beams, and using a combination of coplanar and non-coplanar arrangements may help increase dose conformality and optic pathway sparing when IMRT is used. Conclusion IMRT optimized with appropriate strategies may be the treatment of choice for the most optimal local control and optic pathway sparing when treating sinonasal malignancy.

  8. Comparative dosimetric study of three-dimensional conformal, dynamic conformal arc, and intensity-modulated radiotherapy for brain tumor treatment using Novalis system

    International Nuclear Information System (INIS)

    Ding Meisong; Newman, Francis M.S.; Kavanagh, Brian D.; Stuhr, Kelly M.S.; Johnson, Tim K.; Gaspar, Laurie E.

    2006-01-01

    Purpose: To investigate the dosimetric differences among three-dimensional conformal radiotherapy (3D-CRT), dynamic conformal arc therapy (DCAT), and intensity-modulated radiotherapy (IMRT) for brain tumor treatment. Methods and Materials: Fifteen patients treated with Novalis were selected. We performed 3D-CRT, DCAT, and IMRT plans for all patients. The margin for the planning target volume (PTV) was 1 mm, and the specific prescription dose was 90% for all plans. The target coverage at the prescription dose, conformity index (CI), and heterogeneity index were analyzed for all plans. Results: For small tumors (PTV ≤2 cm 3 ), the three dosimetric parameters had approximate values for both 3D-CRT and DCAT plans. The CI for the IMRT plans was high. For medium tumors (PTV >2 to ≤100 cm 3 ), the three plans were competitive with each other. The IMRT plans had a greater CI, better target coverage at the prescription dose, and a better heterogeneity index. For large tumors (PTV >100 cm 3 ), the IMRT plan had good target coverage at the prescription dose and heterogeneity index and approximate CI values as those in the 3D-CRT and DCAT plans. Conclusion: The results of our study have shown that DCAT is suitable for most cases in the treatment of brain tumors. For a small target, 3D-CRT is useful, and IMRT is not recommended. For larger tumors, IMRT is superior to 3D-CRT and very competitive in sparing critical structures, especially for big tumors

  9. Effect of MLC Leaf Width and PTV Margin on the Treatment Planning of Intensity-Modulated Stereotactic Radiosurgery (IMSRS) or Radiotherapy (IMSRT)

    International Nuclear Information System (INIS)

    Chang Jenghwa; Yenice, Kamil M.; Jiang Kailiu; Hunt, Margie; Narayana, Ashwatha

    2009-01-01

    We studied the effect of MLC (multileaf collimator) leaf width and PTV (planning target volume) margin on treatment planning of intensity modulated stereotactic radiosurgery (IMSRS) or radiotherapy (IMSRT). Twelve patients previously treated with IMSRS/IMSRT were retrospectively planned with 5- and 3-mm MLC leaf widths and 3- and 2-mm PTV margins using the already contoured clinical target volume and critical structures. The same beam arrangement, planning parameters, and optimization method were used in each of the 4 plans for a given patient. Each plan was normalized so that the prescription dose covered at least 99% of the PTV. Plan indices - D mean (mean dose), conformity index (CI), V 70 (volume receiving ≥ 70% of the prescription dose), and V 50 (volume receiving ≥ 50% of the prescription dose) - were calculated from the dose-volume histograms (DVHs) of the PTV, normal tissue, and organs at risk (OARs). Hypothesis testing was performed on the mean ratios of plan indices to determine the statistical significance of the relative differences. The PTV was well covered for all plans, as no significant differences were observed for D 95 , V 95 , D max , D min , and D mean of the PTV. The irradiated volume was ∼23% smaller when 2-mm instead of 3-mm PTV margin was used, but it was only reduced by ∼6% when the MLC leaf width was reduced from 5 mm to 3 mm. For normal tissue and brainstem, V 70 , V 50 , and D mean were reduced more effectively by a decrease in MLC width, while D mean of optic nerve and chiasm were more sensitive to a change in PTV margin. The DVH statistics for the PTV and normal structures from the treatment plan with 5-mm MLC and 2-mm PTV margin were equal to those with 3-mm MLC and 3-mm PTV margin. PTV margin reduction is more effective in sparing the normal tissue and OARs than a reduction in MLC leaf width. For IMSRS, where highly accurate setup and small PTV margins are routinely employed, the use of 5-mm MLC is therefore less desirable.

  10. Intensity-modulated whole pelvic radiotherapy in women with gynecologic malignancies

    International Nuclear Information System (INIS)

    Mundt, Arno J.; Lujan, Anthony E.; Rotmensch, Jacob; Waggoner, Steven E.; Yamada, S. Diane; Fleming, Gini; Roeske, John C.

    2002-01-01

    Purpose: To describe our initial clinical experience with intensity-modulated whole pelvic radiotherapy (IM-WPRT) in women with gynecologic malignancies. Methods and Materials: Between February 2000 and August 2001, 40 gynecology patients underwent IM-WPRT. After fabrication of customized immobilization, all patients underwent contrast-enhanced CT, and a clinical target volume was contoured consisting of the upper vagina, parametria, uterus (if present), and presacral and pelvic lymph node regions. The clinical target volume was expanded by 1 cm to create a planning target volume (PTV). Using commercially available software, 7- or 9-field, 6-MV, coplanar IM-WPRT plans were generated for all patients. The worst acute gastrointestinal and genitourinary toxicity during treatment was scored on a 4-point scale: 0, none; 1, mild, no medications required; 2, moderate, medications required; and 3, severe, treatment breaks or cessation, hospitalization. As a comparison, acute toxicities in 35 previously treated conventional WPRT patients were analyzed. No significant differences were noted in the clinicopathologic and treatment factors between the two groups. Results: IM-WPRT plans provided excellent PTV coverage, with considerable sparing of the surrounding normal tissues. On average, 98.1% of the PTV received the prescription dose. The average percentage of the PTV receiving 110% and 115% of the prescription dose was 9.8% and 0.2%, respectively. IM-WPRT was well tolerated, with no patient developing Grade 3 toxicity. Grade 2 acute gastrointestinal toxicity was less common in the IM-WPRT group (60 vs. 91%, p=0.002) than in the conventional WPRT group. Moreover, the percentage of IM-WPRT and WPRT patients requiring no or only infrequent antidiarrheal medications was 75% and 34%, respectively (p=0.001). Although less Grade 2 genitourinary toxicity was seen in the IM-WPRT group (10% vs. 20%), this difference was not statistically significant (p=0.22). Conclusion: IM-WPRT is a

  11. Spinal cordd biological safety comparison of intensity modulated radiotherapy and conventional radiation therapy

    International Nuclear Information System (INIS)

    Xilinbaoleri; Xu Wanlong; Chen Gang; Liu Hao; Wang Ruozheng; Bai Jingping

    2010-01-01

    Objective: To compare the spine intensity modulated radiation therapy (IMRT) and the conventional radiation therapy on the beagle spinal cord neurons, in order to prove the biological safety of IMRT of the spinal cord. Methods: Twelve selected purebred beagles were randomly divided into 2 groups. A beagle clinical model of tumor was mimiced in the ninth and tenth thoracic vertebrae. Then the beagles were irradiated by 2 different models of intensity modulated radiotherapy and conventional radiation therapy, with the total irradiation doses of 50 and 70 Gy. The samples of spinal cord were taken out from the same position of the nine and tenth thoracic vertebrae at the third month after radiation.All the samples were observed by the electron microscope, and the Fas and HSP70 expression in spinal cord neurons were evaluated by immunohistochemistry method. Terminal deoxynucleatidyl transferase mediated dUTP nick and labeling (TUNEL) technique was used to examine the apoptotic cells in the spinal cord. Results: The neurons in the spinal cord of IMRT group were mainly reversible injury, and those in the conventional radiation therapy were mainly apoptosis. Compared with the conventional radiation therapy group [50 Gy group, (7.3 ± 1.1)%; 70 Gy group, (11.3 ± 1.4)%], the apoptosis rate of the spinal cord neurons of the intensity modulated radiotherapy group [50 Gy group, (1.2 ± 0.7)%; 70 Gy group (2.5 ± 0.8)%] was much lower[(50 Gy group, t=0.022, P<0.05; 70 Gy group, t=0.017, P<0.05)]. The expression levels of Fas in the IMPT group (50 Gy group, 4.6 ± 0.8; 70 Gy group, 7.4 ± 1.1) were also much lowerthan those in the other group (50 Gy group, 15.1 ± 6.4; 70 Gy group, 19.3 ± 7.6. 50 Gy group, t=0.231, P<0.05; 70 Gy group, t=0.457, P<0.05), while the expression levels of HSP70 in the IMPT group (50 Gy group, 9.1 ± 0.8; 70 Gy group, 7.3 ± 1.4)were much higher than those in the conventional radiation therapy group (50 Gy group, 2.1 ± 0.9; 70 Gy group, 1.7 ± 0

  12. Locally Advanced Oncocytic Carcinoma of the Nasal Cavity Treated With Surgery and Intensity-modulated Radiotherapy

    Directory of Open Access Journals (Sweden)

    Yu-Wen Hu

    2010-03-01

    Full Text Available Oncocytic carcinomas of the nasal cavity are extremely rare. We report 1 patient whose primary tumor and neck lymphadenopathies were under control nearly 2 years after combined surgery and radiotherapy. An 80-year-old man with a history of nasal oncocytoma had received excision twice previously. Computed tomography demonstrated locally advanced recurrent tumor invading the paranasal sinuses and orbit with lymphadenopathies in the right neck. Skull base surgery was performed. Pathological examination revealed oncocytic carcinoma. Positron emission tomography showed hypermetabolic lesions in the surgical bed and right neck. The patient subsequently received intensity-modulated radiotherapy to the primary site and the whole neck. Follow-up computed tomography 4 months later showed marked shrinkage of the neck lymphadenopathies. There was no progression after nearly 2 years. Although these tumors have historically been regarded as radioresistant, the combined treatment of surgery followed by radiotherapy may offer the best chance for control of locally advanced disease.

  13. A dosimetric comparison of two-phase adaptive intensity-modulated radiotherapy for locally advanced nasopharyngeal cancer

    International Nuclear Information System (INIS)

    Chitapanarux, Imjai; Chomprasert, Kittisak; Nobnaop, Wannapa; Wanwilairat, Somsak; Tharavichitkul, Ekasit; Jakrabhandu, Somvilai; Onchan, Wimrak; Patrinee, Traisathit; Gestel, Dirk Van

    2015-01-01

    The purpose of this investigation was to evaluate the potential dosimetric benefits of a two-phase adaptive intensity-modulated radiotherapy (IMRT) protocol for patients with locally advanced nasopharyngeal cancer (NPC). A total of 17 patients with locally advanced NPC treated with IMRT had a second computed tomography (CT) scan after 17 fractions in order to apply and continue the treatment with an adapted plan after 20 fractions. To simulate the situation without adaptation, a hybrid plan was generated by applying the optimization parameters of the original treatment plan to the anatomy of the second CT scan. The dose-volume histograms (DVHs) and dose statistics of the hybrid plan and the adapted plan were compared. The mean volume of the ipsilateral and contralateral parotid gland decreased by 6.1 cm 3 (30.5%) and 5.4 cm 3 (24.3%), respectively. Compared with the hybrid plan, the adapted plan provided a higher dose to the target volumes with better homogeneity, and a lower dose to the organs at risk (OARs). The Dmin of all planning target volumes (PTVs) increased. The Dmax of the spinal cord and brainstem were lower in 94% of the patients (1.6-5.9 Gy, P < 0.001 and 2.1-9.9 Gy, P < 0.001, respectively). The D mean of the contralateral parotid decreased in 70% of the patients (range, 0.2-4.4 Gy). We could not find a relationship between dose variability and weight loss. Our two-phase adaptive IMRT protocol improves dosimetric results in terms of target volumes and OARs in patients with locally advanced NPC. (author)

  14. BENEFITS OF INTENSITY-MODULATED RADIOTHERAPY (IMRT IN PATIENTS WITH HEAD AND NECK MALIGNANCIES- A SINGLE INSTITUTION EXPERIENCE

    Directory of Open Access Journals (Sweden)

    Sherry Seasor Abraham

    2017-09-01

    Full Text Available BACKGROUND Radiotherapy and surgery are the principal curative modalities in treatment of head and neck cancer. Conventional twodimensional and three-dimensional conformal radiotherapy result in significant side effects and altered quality of life. IntensityModulated Radiotherapy (IMRT can spare the normal tissues, while delivering a curative dose to the tumour-bearing tissues. This study reveals the role of IMRT in head and neck cancer in view of normal tissue sparing with good tumour control. MATERIALS AND METHODS Radical radiotherapy was given using linear accelerator up to a dose of 66 to 70 gray in 30 to 33 fractions (intensity-modulated radiotherapy with simultaneous integrated boost over 6 to 7 weeks to 56 eligible patients. Concurrent cisplatin was given to patients with locally-advanced disease up to a dose of 40 mg/m2 weekly once along with radiation. The patients were monitored weekly once during the treatment for acute skin and mucosal toxicities using the RTOG scoring criteria. After the treatment, locoregional response was assessed and recorded at 6 weeks, 3 months and 6 months intervals. RESULTS Severe skin toxicity (grade III or more was seen in approximately 7% patients. Severe mucosal toxicity (grade III or more was seen in approximately 80% of patients. IMRT technique showed better skin sparing compared to 3D conformal radiotherapy. Severe mucosal toxicity was slightly higher in this study due to the simultaneous integrated boost technique used for dose intensification to the mucosa, which results in better primary tumour control. At the end of 6 months, 75% patients achieved locoregional control and residual/recurrent disease was seen in 25% of patients. IMRT offered good locoregional control with less skin toxicity and acceptable mucosal toxicity. The results were similar to the previous study reports using IMRT. CONCLUSION IMRT is a better treatment option in locally-advanced head and neck malignancies providing good

  15. Temporary organ displacement coupled with image-guided, intensity-modulated radiotherapy for paraspinal tumors

    International Nuclear Information System (INIS)

    Katsoulakis, Evangelia; Thornton, Raymond H; Yamada, Yoshiya; Solomon, Stephen B; Maybody, Majid; Housman, Douglas; Niyazov, Greg; Riaz, Nadeem; Lovelock, Michael; Spratt, Daniel E; Erinjeri, Joseph P

    2013-01-01

    To investigate the feasibility and dosimetric improvements of a novel technique to temporarily displace critical structures in the pelvis and abdomen from tumor during high-dose radiotherapy. Between 2010 and 2012, 11 patients received high-dose image-guided intensity-modulated radiotherapy with temporary organ displacement (TOD) at our institution. In all cases, imaging revealed tumor abutting critical structures. An all-purpose drainage catheter was introduced between the gross tumor volume (GTV) and critical organs at risk (OAR) and infused with normal saline (NS) containing 5-10% iohexol. Radiation planning was performed with the displaced OARs and positional reproducibility was confirmed with cone-beam CT (CBCT). Patients were treated within 36 hours of catheter placement. Radiation plans were re-optimized using pre-TOD OARs to the same prescription and dosimetrically compared with post-TOD plans. A two-tailed permutation test was performed on each dosimetric measure. The bowel/rectum was displaced in six patients and kidney in four patients. One patient was excluded due to poor visualization of the OAR; thus 10 patients were analyzed. A mean of 229 ml (range, 80–1000) of NS 5-10% iohexol infusion resulted in OAR mean displacement of 17.5 mm (range, 7–32). The median dose prescribed was 2400 cGy in one fraction (range, 2100–3000 in 3 fractions). The mean GTV D min and PTV D min pre- and post-bowel TOD IG-IMRT dosimetry significantly increased from 1473 cGy to 2086 cGy (p=0.015) and 714 cGy to 1214 cGy (p=0.021), respectively. TOD increased mean PTV D95 by 27.14% of prescription (p=0.014) while the PTV D05 decreased by 9.2% (p=0.011). TOD of the bowel resulted in a 39% decrease in mean bowel D max (p=0.008) confirmed by CBCT. TOD of the kidney significantly decreased mean kidney dose and D max by 25% (0.022). TOD was well tolerated, reproducible, and facilitated dose escalation to previously radioresistant tumors abutting critical structures while

  16. Automatic planning on hippocampal avoidance whole-brain radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuo, E-mail: shuo0220@gmail.com; Zheng, Dandan; Zhang, Chi; Ma, Rongtao; Bennion, Nathan R.; Lei, Yu; Zhu, Xiaofeng; Enke, Charles A.; Zhou, Sumin

    2017-04-01

    Mounting evidence suggests that radiation-induced damage to the hippocampus plays a role in neurocognitive decline for patients receiving whole-brain radiotherapy (WBRT). Hippocampal avoidance whole-brain radiotherapy (HA-WBRT) has been proposed to reduce the putative neurocognitive deficits by limiting the dose to the hippocampus. However, urgency of palliation for patients as well as the complexities of the treatment planning may be barriers to protocol enrollment to accumulate further clinical evidence. This warrants expedited quality planning of HA-WBRT. Pinnacle{sup 3} Automatic treatment planning was designed to increase planning efficiency while maintaining or improving plan quality and consistency. The aim of the present study is to evaluate the performance of the Pinnacle{sup 3} Auto-Planning on HA-WBRT treatment planning. Ten patients previously treated for brain metastases were selected. Hippocampal volumes were contoured on T1 magnetic resonance (MR) images, and planning target volumes (PTVs) were generated based on RTOG0933. The following 2 types of plans were generated by Pinnacle{sup 3} Auto-Planning: the one with 2 coplanar volumetric modulated arc therapy (VMAT) arcs and the other with 9-field noncoplanar intensity-modulated radiation therapy (IMRT). D{sub 2%} and D{sub 98%} of PTV were used to calculate homogeneity index (HI). HI and Paddick Conformity index (CI) of PTV as well as D{sub 100%} and D{sub max} of the hippocampus were used to evaluate the plan quality. All the auto-plans met the dose coverage and constraint objectives based on RTOG0933. The auto-plans eliminated the necessity of generating pseudostructures by the planners, and it required little manual intervention which expedited the planning process. IMRT quality assurance (QA) results also suggest that all the auto-plans are practically acceptable on delivery. Pinnacle{sup 3} Auto-Planning generates acceptable plans by RTOG0933 criteria without time-consuming planning process. The

  17. Automatic planning on hippocampal avoidance whole-brain radiotherapy

    International Nuclear Information System (INIS)

    Wang, Shuo; Zheng, Dandan; Zhang, Chi; Ma, Rongtao; Bennion, Nathan R.; Lei, Yu; Zhu, Xiaofeng; Enke, Charles A.; Zhou, Sumin

    2017-01-01

    Mounting evidence suggests that radiation-induced damage to the hippocampus plays a role in neurocognitive decline for patients receiving whole-brain radiotherapy (WBRT). Hippocampal avoidance whole-brain radiotherapy (HA-WBRT) has been proposed to reduce the putative neurocognitive deficits by limiting the dose to the hippocampus. However, urgency of palliation for patients as well as the complexities of the treatment planning may be barriers to protocol enrollment to accumulate further clinical evidence. This warrants expedited quality planning of HA-WBRT. Pinnacle 3 Automatic treatment planning was designed to increase planning efficiency while maintaining or improving plan quality and consistency. The aim of the present study is to evaluate the performance of the Pinnacle 3 Auto-Planning on HA-WBRT treatment planning. Ten patients previously treated for brain metastases were selected. Hippocampal volumes were contoured on T1 magnetic resonance (MR) images, and planning target volumes (PTVs) were generated based on RTOG0933. The following 2 types of plans were generated by Pinnacle 3 Auto-Planning: the one with 2 coplanar volumetric modulated arc therapy (VMAT) arcs and the other with 9-field noncoplanar intensity-modulated radiation therapy (IMRT). D 2% and D 98% of PTV were used to calculate homogeneity index (HI). HI and Paddick Conformity index (CI) of PTV as well as D 100% and D max of the hippocampus were used to evaluate the plan quality. All the auto-plans met the dose coverage and constraint objectives based on RTOG0933. The auto-plans eliminated the necessity of generating pseudostructures by the planners, and it required little manual intervention which expedited the planning process. IMRT quality assurance (QA) results also suggest that all the auto-plans are practically acceptable on delivery. Pinnacle 3 Auto-Planning generates acceptable plans by RTOG0933 criteria without time-consuming planning process. The expedited quality planning achieved by

  18. Monitor Unit Calculation for the Multileaf Intensity Modulating Collimator (MIMiCTM) in the PeacockTM Plan System

    International Nuclear Information System (INIS)

    Kania, Aleksander A.; Bleier, Alan R.; Carol, Mark P.

    1995-01-01

    A finite-size pencil beam method has been chosen for dose modelling in conformal radiotherapy when the Multileaf Intensity Modulating Collimator (MIMiC) is used to deliver the treatment. The MIMiC has two rows of 20 tungsten leaves which retract toward or away from the accelerator gantry, producing two intensity-modulated transaxial treatment slices which are 20 cm x 1 or 2 cm at isocenter. The treatment field is thus a fan beam made up of 40 sub-beams or finite-size pencil beams, leading to the choice of the model. Rotational treatments with the MIMiC are modelled in Peacock Plan as a set of ports spaced at gantry angle increments of 5 deg. to 10 deg. . The fractional time spent by the leaf in the beam during the gantry angle increment determines the intensity. The intensities from each leaf for each port are optimized in Peacock Plan, one treatment slice at a time, and then the dose from all slices is combined. The treatment planning system uses a two-dimensional measured pencil beam profile from one leaf at a selected reference depth along with measured open field, broad beam profiles at several depths. This makes beam data collection simple and dosimetrically flexible. The nature of the measured data imposes some conditions on calculation of Monitor Units (MU). The calculation must also take into consideration that two independent slices are delivered at the same time, and that multiple slices may be used to treat targets which are longer in the inferior-superior direction than the field produced by two slices. The MU calculation method is derived and presented as an enhancement of the traditional method of MU determination for treatments based on static ports. Experimental results indicative of the validity and limitations of the model will be demonstrated

  19. Stereotactic intensity-modulated radiation therapy (IMRT) and inverse treatment planning for advanced pleural mesothelioma. Feasibility and initial results

    Energy Technology Data Exchange (ETDEWEB)

    Muenter, M.W.; Thilmann, C.; Hof, H.; Debus, J. [Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg (Germany); Nill, S.; Hoess, A.; Partridge, M. [Dept. of Medical Physics, German Cancer Research Center (dkfz), Heidelberg (Germany); Haering, P. [Dept. of Central Dosimetry, German Cancer Research Center (dkfz), Heidelberg (Germany); Manegold, C. [Dept. of Medical Oncology/Internal Medicine, Thoraxklinik Heidelberg gGmbH, Heidelberg (Germany); Wannenmacher, M. [Dept. of Clinical Radiology, Univ. of Heidelberg, Heidelberg (Germany)

    2003-08-01

    Background and Purpose: Complex-shaped malignant pleural mesotheliomas (MPMs) with challenging volumes are extremely difficult to treat by conventional radiotherapy due to tolerance doses of the surrounding normal tissue. In a feasibility study, we evaluated if inversely planned stereotactic intensity-modulated radiation therapy (IMRT) could be applied in the treatment of MPM. Patients and Methods: Eight patients with unresectable lesions were treated after failure of chemotherapy. All patients were positioned using noninvasive patient fixation techniques which can be attached to the applied extracranial stereotactic system. Due to craniocaudal extension of the tumor, it was necessary to develop a special software attached to the inverse planning program KonRad, which can connect two inverse treatment plans and consider the applied dose of the first treatment plan in the area of the matchline of the second treatment plan. Results: Except for one patient, in whom radiotherapy was canceled due to abdominal metastasis, treatment could be completed in all patients and was well tolerated. Median survival after diagnosis was 20 months and after IMRT 6.5 months. Therefore, both the 1-year actuarial overall survival from the start of radiotherapy and the 2-year actuarial overall survival since diagnosis were 28%. IMRT did not result in clinically significant acute side effects. By using the described inverse planning software, over- or underdosage in the region of the field matchline could be prevented. Pure treatment time ranged between 10 and 21 min. Conclusion: This study showed that IMRT is feasible in advanced unresectable MPM. The presented possibilities of stereotactic IMRT in the treatment of MPM will justify the evaluation of IMRT in early-stage pleural mesothelioma combined with chemotherapy in a study protocol, in order to improve the outcome of these patients. Furthermore, dose escalation should be possible by using IMRT. (orig.)

  20. Lowering Whole-Body Radiation Doses in Pediatric Intensity-Modulated Radiotherapy Through the Use of Unflattened Photon Beams

    International Nuclear Information System (INIS)

    Cashmore, Jason; Ramtohul, Mark; Ford, Dan

    2011-01-01

    Purpose: Intensity modulated radiotherapy (IMRT) has been linked with an increased risk of secondary cancer induction due to the extra leakage radiation associated with delivery of these techniques. Removal of the flattening filter offers a simple way of reducing head leakage, and it may be possible to generate equivalent IMRT plans and to deliver these on a standard linear accelerator operating in unflattened mode. Methods and Materials: An Elekta Precise linear accelerator has been commissioned to operate in both conventional and unflattened modes (energy matched at 6 MV) and a direct comparison made between the treatment planning and delivery of pediatric intracranial treatments using both approaches. These plans have been evaluated and delivered to an anthropomorphic phantom. Results: Plans generated in unflattened mode are clinically identical to those for conventional IMRT but can be delivered with greatly reduced leakage radiation. Measurements in an anthropomorphic phantom at clinically relevant positions including the thyroid, lung, ovaries, and testes show an average reduction in peripheral doses of 23.7%, 29.9%, 64.9%, and 70.0%, respectively, for identical plan delivery compared to conventional IMRT. Conclusions: IMRT delivery in unflattened mode removes an unwanted and unnecessary source of scatter from the treatment head and lowers leakage doses by up to 70%, thereby reducing the risk of radiation-induced second cancers. Removal of the flattening filter is recommended for IMRT treatments.

  1. Selection of the optimal radiotherapy technique for locally advanced hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Lee, Ik-Jae; Seong, Jinsil; Koom, Woong-Sub; Kim, Yong-Bae; Jeon, Byeong-Chul; Kim, Joo-Ho; Han, Kwang-Hyub

    2011-01-01

    Various techniques are available for radiotherapy of hepatocellular carcinoma, including three-dimensional conformal radiotherapy, linac-based intensity-modulated radiotherapy and helical tomotherapy. The purpose of this study was to determine the optimal radiotherapy technique for hepatocellular carcinoma. Between 2006 and 2007, 12 patients underwent helical tomotherapy for locally advanced hepatocellular carcinoma. Helical tomotherapy computerized radiotherapy planning was compared with the best computerized radiotherapy planning for three-dimensional conformal radiotherapy and linac-based intensity-modulated radiotherapy for the delivery of 60 Gy in 30 fractions. Tumor coverage was assessed by conformity index, radical dose homogeneity index and moderated dose homogeneity index. Computerized radiotherapy planning was also compared according to the tumor location. Tumor coverage was shown to be significantly superior with helical tomotherapy as assessed by conformity index and moderated dose homogeneity index (P=0.002 and 0.03, respectively). Helical tomotherapy showed significantly lower irradiated liver volume at 40, 50 and 60 Gy (V40, V50 and V60, P=0.04, 0.03 and 0.01, respectively). On the contrary, the dose-volume of three-dimensional conformal radiotherapy at V20 was significantly smaller than those of linac-based intensity-modulated radiotherapy and helical tomotherapy in the remaining liver (P=0.03). Linac-based intensity-modulated radiotherapy showed better sparing of the stomach compared with helical tomotherapy in the case of separated lesions in both lobes (12.3 vs. 24.6 Gy). Helical tomotherapy showed the high dose-volume exposure to the left kidney due to helical delivery in the right lobe lesion. Helical tomotherapy achieved the best tumor coverage of the remaining normal liver. However, helical tomotherapy showed much exposure to the remaining liver at the lower dose region and left kidney. (author)

  2. Application of a Novel Dose-Uncertainty Model for Dose-Uncertainty Analysis in Prostate Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Jin Hosang; Palta, Jatinder R.; Kim, You-Hyun; Kim, Siyong

    2010-01-01

    Purpose: To analyze dose uncertainty using a previously published dose-uncertainty model, and to assess potential dosimetric risks existing in prostate intensity-modulated radiotherapy (IMRT). Methods and Materials: The dose-uncertainty model provides a three-dimensional (3D) dose-uncertainty distribution in a given confidence level. For 8 retrospectively selected patients, dose-uncertainty maps were constructed using the dose-uncertainty model at the 95% CL. In addition to uncertainties inherent to the radiation treatment planning system, four scenarios of spatial errors were considered: machine only (S1), S1 + intrafraction, S1 + interfraction, and S1 + both intrafraction and interfraction errors. To evaluate the potential risks of the IMRT plans, three dose-uncertainty-based plan evaluation tools were introduced: confidence-weighted dose-volume histogram, confidence-weighted dose distribution, and dose-uncertainty-volume histogram. Results: Dose uncertainty caused by interfraction setup error was more significant than that of intrafraction motion error. The maximum dose uncertainty (95% confidence) of the clinical target volume (CTV) was smaller than 5% of the prescribed dose in all but two cases (13.9% and 10.2%). The dose uncertainty for 95% of the CTV volume ranged from 1.3% to 2.9% of the prescribed dose. Conclusions: The dose uncertainty in prostate IMRT could be evaluated using the dose-uncertainty model. Prostate IMRT plans satisfying the same plan objectives could generate a significantly different dose uncertainty because a complex interplay of many uncertainty sources. The uncertainty-based plan evaluation contributes to generating reliable and error-resistant treatment plans.

  3. A Monte Carlo dose calculation tool for radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Ma, C.-M.; Li, J.S.; Pawlicki, T.; Jiang, S.B.; Deng, J.; Lee, M.C.; Koumrian, T.; Luxton, M.; Brain, S.

    2002-01-01

    A Monte Carlo user code, MCDOSE, has been developed for radiotherapy treatment planning (RTP) dose calculations. MCDOSE is designed as a dose calculation module suitable for adaptation to host RTP systems. MCDOSE can be used for both conventional photon/electron beam calculation and intensity modulated radiotherapy (IMRT) treatment planning. MCDOSE uses a multiple-source model to reconstruct the treatment beam phase space. Based on Monte Carlo simulated or measured beam data acquired during commissioning, source-model parameters are adjusted through an automated procedure. Beam modifiers such as jaws, physical and dynamic wedges, compensators, blocks, electron cut-outs and bolus are simulated by MCDOSE together with a 3D rectilinear patient geometry model built from CT data. Dose distributions calculated using MCDOSE agreed well with those calculated by the EGS4/DOSXYZ code using different beam set-ups and beam modifiers. Heterogeneity correction factors for layered-lung or layered-bone phantoms as calculated by both codes were consistent with measured data to within 1%. The effect of energy cut-offs for particle transport was investigated. Variance reduction techniques were implemented in MCDOSE to achieve a speedup factor of 10-30 compared to DOSXYZ. (author)

  4. Comparison of Intensity-Modulated Radiotherapy Planning Based on Manual and Automatically Generated Contours Using Deformable Image Registration in Four-Dimensional Computed Tomography of Lung Cancer Patients

    International Nuclear Information System (INIS)

    Weiss, Elisabeth; Wijesooriya, Krishni; Ramakrishnan, Viswanathan; Keall, Paul J.

    2008-01-01

    Purpose: To evaluate the implications of differences between contours drawn manually and contours generated automatically by deformable image registration for four-dimensional (4D) treatment planning. Methods and Materials: In 12 lung cancer patients intensity-modulated radiotherapy (IMRT) planning was performed for both manual contours and automatically generated ('auto') contours in mid and peak expiration of 4D computed tomography scans, with the manual contours in peak inspiration serving as the reference for the displacement vector fields. Manual and auto plans were analyzed with respect to their coverage of the manual contours, which were assumed to represent the anatomically correct volumes. Results: Auto contours were on average larger than manual contours by up to 9%. Objective scores, D 2% and D 98% of the planning target volume, homogeneity and conformity indices, and coverage of normal tissue structures (lungs, heart, esophagus, spinal cord) at defined dose levels were not significantly different between plans (p = 0.22-0.94). Differences were statistically insignificant for the generalized equivalent uniform dose of the planning target volume (p = 0.19-0.94) and normal tissue complication probabilities for lung and esophagus (p = 0.13-0.47). Dosimetric differences >2% or >1 Gy were more frequent in patients with auto/manual volume differences ≥10% (p = 0.04). Conclusions: The applied deformable image registration algorithm produces clinically plausible auto contours in the majority of structures. At this stage clinical supervision of the auto contouring process is required, and manual interventions may become necessary. Before routine use, further investigations are required, particularly to reduce imaging artifacts

  5. PET/CT scanning guided intensity-modulated radiotherapy in treatment of recurrent ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Du, Xue-lian, E-mail: duxuelian23800@yahoo.com.cn [Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan 250117 (China); Shandong Academy of Medical Science, Jinan 250012 (China); Jiang, Tao, E-mail: melody23800@yahoo.com.cn [Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan 250117 (China); Shandong Academy of Medical Science, Jinan 250012 (China); Sheng, Xiu-gui, E-mail: jnsd2000@yahoo.cn [Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan 250117 (China); Shandong Academy of Medical Science, Jinan 250012 (China); Li, Qing-shui, E-mail: lqs1966@126.com [Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan 250117 (China); Shandong Academy of Medical Science, Jinan 250012 (China); Wang, Cong, E-mail: jnwc1981@hotmail.com [Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan 250117 (China); Shandong Academy of Medical Science, Jinan 250012 (China); Yu, Hao, E-mail: jnyh2200@sina.com [Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan 250117 (China); Shandong Academy of Medical Science, Jinan 250012 (China)

    2012-11-15

    Objective: This study was undertaken to evaluate the clinical contribution of positron emission tomography using {sup 18}F-fluorodeoxyglucose and integrated computer tomography (FDG-PET/CT) guided intensity-modulated radiotherapy (IMRT) for treatment of recurrent ovarian cancer. Materials and methods: Fifty-eight patients with recurrent ovarian cancer from 2003 to 2008 were retrospectively studied. In these patients, 28 received PET/CT guided IMRT (PET/CT-IMRT group), and 30 received CT guided IMRT (CT-IMRT group). Treatment plans, tumor response, toxicities and survival were evaluated. Results: Changes in GTV delineation were found in 10 (35.7%) patients based on PET-CT information compared with CT data, due to the incorporation of additional lymph node metastases and extension of the metastasis tumor. PET/CT guided IMRT improved tumor response compared to CT-IMRT group (CR: 64.3% vs. 46.7%, P = 0.021; PR: 25.0% vs. 13.3%, P = 0.036). The 3-year overall survival was significantly higher in the PET-CT/IMRT group than control (34.1% vs. 13.2%, P = 0.014). Conclusions: PET/CT guided IMRT in recurrent ovarian cancer patients improved the delineation of GTV and reduce the likelihood of geographic misses and therefore improve the clinical outcome.

  6. Adjuvant whole abdominal intensity modulated radiotherapy (IMRT) for high risk stage FIGO III patients with ovarian cancer (OVAR-IMRT-01) – Pilot trial of a phase I/II study: study protocol

    International Nuclear Information System (INIS)

    Rochet, Nathalie; Jensen, Alexandra D; Sterzing, Florian; Munter, Marc W; Eichbaum, Michael H; Schneeweiss, Andreas; Sohn, Christof; Debus, Juergen; Harms, Wolfgang

    2007-01-01

    The prognosis for patients with advanced epithelial ovarian cancer remains poor despite aggressive surgical resection and platinum-based chemotherapy. More than 60% of patients will develop recurrent disease, principally intraperitoneal, and die within 5 years. The use of whole abdominal irradiation (WAI) as consolidation therapy would appear to be a logical strategy given its ability to sterilize small tumour volumes. Despite the clinically proven efficacy of whole abdominal irradiation, the use of radiotherapy in ovarian cancer has profoundly decreased mainly due to high treatment-related toxicity. Modern intensity-modulated radiation therapy (IMRT) could allow to spare kidneys, liver, and bone marrow while still adequately covering the peritoneal cavity with a homogenous dose. The OVAR-IMRT-01 study is a single center pilot trial of a phase I/II study. Patients with advanced ovarian cancer stage FIGO III (R1 or R2< 1 cm) after surgical resection and platinum-based chemotherapy will be treated with whole abdomen irradiation as consolidation therapy using intensity modulated radiation therapy (IMRT) to a total dose of 30 Gy in 1.5 Gy fractions. A total of 8 patients will be included in this trial. For treatment planning bone marrow, kidneys, liver, spinal cord, vertebral bodies and pelvic bones are defined as organs at risk. The planning target volume includes the entire peritoneal cavity plus pelvic and para-aortic node regions. The primary endpoint of the study is the evaluation of the feasibility of intensity-modulated WAI and the evaluation of the study protocol. Secondary endpoint is evaluation of the toxicity of intensity modulated WAI before continuing with the phase I/II study. The aim is to explore the potential of IMRT as a new method for WAI to decrease the dose to kidneys, liver, bone marrow while covering the peritoneal cavity with a homogenous dose, and to implement whole abdominal intensity-modulated radiotherapy into the adjuvant multimodal

  7. Impact of pelvic nodal irradiation with intensity-modulated radiotherapy on treatment of prostate cancer

    International Nuclear Information System (INIS)

    Price, Robert A.; Hannoun-Levi, Jean-Michel; Horwitz, Eric; Buyyounouski, Mark; Ruth, Karen J.; Ma, C.-M.; Pollack, Alan

    2006-01-01

    Purpose: The aim of this study was to evaluate the feasibility of treating the pelvic lymphatic regions during prostate intensity-modulated radiotherapy (IMRT) with respect to our routine acceptance criteria. Methods and Materials: A series of 10 previously treated prostate patients were randomly selected and the pelvic lymphatic regions delineated on the fused magnetic resonance/computed tomography data sets. A targeting progression was formed from the prostate and proximal seminal vesicles only to the inclusion of all pelvic lymphatic regions and presacral region resulting in 5 planning scenarios of increasing geometric difficulty. IMRT plans were generated for each stage for two accelerator manufacturers. Dose volume histogram data were analyzed with respect to dose to the planning target volumes, rectum, bladder, bowel, and normal tissue. Analysis was performed for the number of segments required, monitor units, 'hot spots,' and treatment time. Results: Both rectal endpoints were met for all targets. Bladder endpoints were not met and the bowel endpoint was met in 40% of cases with the inclusion of the extended and presacral lymphatics. A significant difference was found in the number of segments and monitor units with targeting progression and between accelerators, with the smaller beamlets yielding poorer results. Treatment times between the 2 linacs did not exhibit a clinically significant difference when compared. Conclusions: Many issues should be considered with pelvic lymphatic irradiation during IMRT delivery for prostate cancer including dose per fraction, normal structure dose/volume limits, planning target volumes generation, localization, treatment time, and increased radiation leakage. We would suggest that, at a minimum, the endpoints used in this work be evaluated before beginning IMRT pelvic nodal irradiation

  8. Forward-planned intensity modulated radiation therapy using a cobalt source: A dosimetric study in breast cancer

    Directory of Open Access Journals (Sweden)

    Savino Cilla

    2013-01-01

    Full Text Available This analysis evaluates the feasibility and dosimetric results of a simplified intensity-modulated radiotherapy (IMRT treatment using a cobalt-therapy unit for post-operative breast cancer. Fourteen patients were included. Three plans per patient were produced by a cobalt-60 source: A standard plan with two wedged tangential beams, a standard tangential plan optimized without the use of wedges and a plan based on the forward-planned "field-in-field" IMRT technique (Co-FinF where the dose on each of the two tangential beams was split into two different segments and the two segments weight was determined with an iterative process. For comparison purposes, a 6-MV photon standard wedged tangential treatment plan was generated. D mean , D 98% , D 2% , V 95% , V 107%, homogeneity, and conformity indices were chosen as parameters for comparison. Co-FinF technique improved the planning target volume dose homogeneity compared to other cobalt-based techniques and reduced maximum doses (D 2% and high-dose volume (V 110% . Moreover, it showed a better lung and heart dose sparing with respect to the standard approach. The higher dose homogeneity may encourage the adoption of accelerated-hypofractionated treatments also with the cobalt sources. This approach can promote the spread of breast conservative treatment in developing countries.

  9. IMRT plan verification in radiotherapy

    International Nuclear Information System (INIS)

    Vlk, P.

    2006-01-01

    This article describes the procedure for verification of IMRT (Intensity modulated radiation therapy) plan, which is used in the Oncological Institute of St. Elisabeth in Bratislava. It contains basic description of IMRT technology and developing a deployment plan for IMRT planning system CORVUS 6.0, the device Mimic (Multilammelar intensity modulated collimator) and the overall process of verifying the schedule created. The aim of verification is particularly good control of the functions of MIMIC and evaluate the overall reliability of IMRT planning. (author)

  10. Some aspects of the design of intensity modulated beams for breast radiotherapy

    International Nuclear Information System (INIS)

    Evans, PM; Hansen, VN; Swindell, W

    1995-01-01

    An electronic portal imaging system has been used to design intensity modulated beams to achieve compensation for missing tissue and tissue heterogeneity in tangential irradiation of the breast. A portal image of the breast is calibrated for radiological thickness and an estimate of the outline of lung and soft tissue is made. This is used with the desired dose prescription to design intensity modulated beams, IMBs. The practical implementation of the IMBs may be achieved using a multileaf collimator, MLC. The leaves of the MLC may be scanned dynamically or a set of multiple static fields may be used. We have compared the uniformity of the achievable dose distribution for both cases. In the static case, the effects of varying the number of fields and their relative intensities have been investigated. The use of scanning leaves yields a dose distribution which is close to optimal. Multiple static fields produce results close to optimal if a large number, typically 30 are used. However, even for the more practicable case of 5 fields, the hot and cold spots are significantly reduced compared to a simple wedge. When studying the optimum intensity distribution for the set of static fields, it was found that having the first field with a large intensity irradiating the whole target volume and a set of 'top-up' fields of equal magnitude was best. This study suggests that an MLC may indeed be used to deliver IMBs for radiotherapy of the breast. We can presently deliver the multiple static field technique. For the small number of beams which are presently deliverable, an improvement of dosimetry over the use of a simple wedge is indicated. In the future, with the scanning leaves technique, dose distributions with greatly reduced dose inhomogeneities should be achievable

  11. Acceleration of intensity-modulated radiotherapy dose calculation by importance sampling of the calculation matrices

    International Nuclear Information System (INIS)

    Thieke, Christian; Nill, Simeon; Oelfke, Uwe; Bortfeld, Thomas

    2002-01-01

    In inverse planning for intensity-modulated radiotherapy, the dose calculation is a crucial element limiting both the maximum achievable plan quality and the speed of the optimization process. One way to integrate accurate dose calculation algorithms into inverse planning is to precalculate the dose contribution of each beam element to each voxel for unit fluence. These precalculated values are stored in a big dose calculation matrix. Then the dose calculation during the iterative optimization process consists merely of matrix look-up and multiplication with the actual fluence values. However, because the dose calculation matrix can become very large, this ansatz requires a lot of computer memory and is still very time consuming, making it not practical for clinical routine without further modifications. In this work we present a new method to significantly reduce the number of entries in the dose calculation matrix. The method utilizes the fact that a photon pencil beam has a rapid radial dose falloff, and has very small dose values for the most part. In this low-dose part of the pencil beam, the dose contribution to a voxel is only integrated into the dose calculation matrix with a certain probability. Normalization with the reciprocal of this probability preserves the total energy, even though many matrix elements are omitted. Three probability distributions were tested to find the most accurate one for a given memory size. The sampling method is compared with the use of a fully filled matrix and with the well-known method of just cutting off the pencil beam at a certain lateral distance. A clinical example of a head and neck case is presented. It turns out that a sampled dose calculation matrix with only 1/3 of the entries of the fully filled matrix does not sacrifice the quality of the resulting plans, whereby the cutoff method results in a suboptimal treatment plan

  12. Radiation Planning Assistant - A Streamlined, Fully Automated Radiotherapy Treatment Planning System

    Science.gov (United States)

    Court, Laurence E.; Kisling, Kelly; McCarroll, Rachel; Zhang, Lifei; Yang, Jinzhong; Simonds, Hannah; du Toit, Monique; Trauernicht, Chris; Burger, Hester; Parkes, Jeannette; Mejia, Mike; Bojador, Maureen; Balter, Peter; Branco, Daniela; Steinmann, Angela; Baltz, Garrett; Gay, Skylar; Anderson, Brian; Cardenas, Carlos; Jhingran, Anuja; Shaitelman, Simona; Bogler, Oliver; Schmeller, Kathleen; Followill, David; Howell, Rebecca; Nelson, Christopher; Peterson, Christine; Beadle, Beth

    2018-01-01

    The Radiation Planning Assistant (RPA) is a system developed for the fully automated creation of radiotherapy treatment plans, including volume-modulated arc therapy (VMAT) plans for patients with head/neck cancer and 4-field box plans for patients with cervical cancer. It is a combination of specially developed in-house software that uses an application programming interface to communicate with a commercial radiotherapy treatment planning system. It also interfaces with a commercial secondary dose verification software. The necessary inputs to the system are a Treatment Plan Order, approved by the radiation oncologist, and a simulation computed tomography (CT) image, approved by the radiographer. The RPA then generates a complete radiotherapy treatment plan. For the cervical cancer treatment plans, no additional user intervention is necessary until the plan is complete. For head/neck treatment plans, after the normal tissue and some of the target structures are automatically delineated on the CT image, the radiation oncologist must review the contours, making edits if necessary. They also delineate the gross tumor volume. The RPA then completes the treatment planning process, creating a VMAT plan. Finally, the completed plan must be reviewed by qualified clinical staff. PMID:29708544

  13. Vector-model-supported optimization in volumetric-modulated arc stereotactic radiotherapy planning for brain metastasis

    International Nuclear Information System (INIS)

    Liu, Eva Sau Fan; Wu, Vincent Wing Cheung; Harris, Benjamin; Foote, Matthew; Lehman, Margot; Chan, Lawrence Wing Chi

    2017-01-01

    Long planning time in volumetric-modulated arc stereotactic radiotherapy (VMA-SRT) cases can limit its clinical efficiency and use. A vector model could retrieve previously successful radiotherapy cases that share various common anatomic features with the current case. The prsent study aimed to develop a vector model that could reduce planning time by applying the optimization parameters from those retrieved reference cases. Thirty-six VMA-SRT cases of brain metastasis (gender, male [n = 23], female [n = 13]; age range, 32 to 81 years old) were collected and used as a reference database. Another 10 VMA-SRT cases were planned with both conventional optimization and vector-model-supported optimization, following the oncologists' clinical dose prescriptions. Planning time and plan quality measures were compared using the 2-sided paired Wilcoxon signed rank test with a significance level of 0.05, with positive false discovery rate (pFDR) of less than 0.05. With vector-model-supported optimization, there was a significant reduction in the median planning time, a 40% reduction from 3.7 to 2.2 hours (p = 0.002, pFDR = 0.032), and for the number of iterations, a 30% reduction from 8.5 to 6.0 (p = 0.006, pFDR = 0.047). The quality of plans from both approaches was comparable. From these preliminary results, vector-model-supported optimization can expedite the optimization of VMA-SRT for brain metastasis while maintaining plan quality.

  14. Vector-model-supported optimization in volumetric-modulated arc stereotactic radiotherapy planning for brain metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Eva Sau Fan [Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane (Australia); Department of Health Technology and Informatics, The Hong Kong Polytechnic University (Hong Kong); Wu, Vincent Wing Cheung [Department of Health Technology and Informatics, The Hong Kong Polytechnic University (Hong Kong); Harris, Benjamin [Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane (Australia); Foote, Matthew; Lehman, Margot [Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane (Australia); School of Medicine, University of Queensland (Australia); Chan, Lawrence Wing Chi, E-mail: wing.chi.chan@polyu.edu.hk [Department of Health Technology and Informatics, The Hong Kong Polytechnic University (Hong Kong)

    2017-07-01

    Long planning time in volumetric-modulated arc stereotactic radiotherapy (VMA-SRT) cases can limit its clinical efficiency and use. A vector model could retrieve previously successful radiotherapy cases that share various common anatomic features with the current case. The prsent study aimed to develop a vector model that could reduce planning time by applying the optimization parameters from those retrieved reference cases. Thirty-six VMA-SRT cases of brain metastasis (gender, male [n = 23], female [n = 13]; age range, 32 to 81 years old) were collected and used as a reference database. Another 10 VMA-SRT cases were planned with both conventional optimization and vector-model-supported optimization, following the oncologists' clinical dose prescriptions. Planning time and plan quality measures were compared using the 2-sided paired Wilcoxon signed rank test with a significance level of 0.05, with positive false discovery rate (pFDR) of less than 0.05. With vector-model-supported optimization, there was a significant reduction in the median planning time, a 40% reduction from 3.7 to 2.2 hours (p = 0.002, pFDR = 0.032), and for the number of iterations, a 30% reduction from 8.5 to 6.0 (p = 0.006, pFDR = 0.047). The quality of plans from both approaches was comparable. From these preliminary results, vector-model-supported optimization can expedite the optimization of VMA-SRT for brain metastasis while maintaining plan quality.

  15. Factors influencing bowel sparing in intensity modulated whole pelvic radiotherapy for gynaecological malignancies

    International Nuclear Information System (INIS)

    Georg, Petra; Georg, Dietmar; Hillbrand, Martin; Kirisits, Christian; Poetter, Richard

    2006-01-01

    Background and purpose: To evaluate the influence of uterus and bladder size on large and small bowel sparing with intensity modulated whole pelvic radiotherapy (IM-WPRT) in gynecologic patients. Patients and methods: Twenty patients were selected; 10 women with cervical cancer treated with definitive radiotherapy (group 'DEF') and 10 endometrial cancer patients treated postoperatively (group 'POST'). Bladder, rectal wall, small (SB) and large bowel (LB) were delineated as organs at risk. A conformal four field technique and a seven field IMRT plan (prescription dose 50.4 Gy) were compared in terms of DVH and various target parameters. Results: At doses between 40 and 50.4 Gy statistically significant improvements (P<0.05) were observed for IM-WPRT for irradiated volume of rectal wall and bladder. In both patient groups, with IMRT the average irradiated volume of SB was reduced by a factor of 6 at 50.4 Gy. This ratio was 2 for LB. In the DEF group the effect of SB-sparing with IMRT correlated with bladder size (correlation coefficient 0.70) while it did not correlate in the postoperative group. The effect of LB-sparing decreased with increasing bladder size in both groups but the impact of IMRT was larger for postoperative patients. Conclusions: IMRT significantly reduced the absolute volume of rectal wall, bladder and bowel irradiated at the prescribed dose level in gynaecologic patients. Main differences between POST and DEF patients receiving IM-WPRT were absolute volumes of LB irradiated to doses between 35 and 50 Gy, suggesting an impact of intact uterus on LB volume in the pelvis. POST patients seem to benefit most from elective nodal IMRT. Bladder filling is an important co-factor influencing the benefit of IMRT with respect to OAR sparing

  16. Breath-hold technique in conventional APPA or intensity-modulated radiotherapy for Hodgkin's lymphoma. Comparison of ILROG IS-RT and the GHSG IF-RT

    Energy Technology Data Exchange (ETDEWEB)

    Kriz, Jan; Spickermann, Max; Lehrich, Philipp; Reinartz, Gabriele; Eich, Hans; Haverkamp, Uwe [University of Muenster, Department of Radiation Oncology, Muenster (Germany); Schmidberger, Heinz [University Mainz, Department of Radiation Oncology, Mainz (Germany)

    2015-09-15

    The present study addresses the role of intensity-modulated radiotherapy (IMRT) in contrast to standard RT (APPA) for patients with Hodgkin's lymphoma (HL) with a focus on deep inspiration breath-hold (DIBH) technique and a comparison between the International Lymphoma Radiation Oncology Group (ILROG) Involved Site Radiotherapy (IS-RT) versus the German Hodgkin Study Group (GHSG) Involved Field Radiotherapy (IF-RT). APPA treatment and 2 IMRT plans were compared for 11 patients with HL. Furthermore, treatment with DIBH versus free breathing (FB) and two different treatment volumes, i.e. IF-RT versus IS-RT, were compared. IMRT was planned as a sliding-window technique with 5 and 7 beam angles. For each patient 12 different treatment plans were calculated (132 plans). Following organs at risk (OAR) were analysed: lung, heart, spinal cord, oesophagus, female breast and skin. Comparisons of the different values with regard to dose-volume histograms (DVH), conformity and homogeneity indices were made. IS-RT reduces treatment volumes. With respect to the planning target volume (PTV), IMRT achieves better conformity but the same homogeneity. Regarding the D{sub mean} for the lung, IMRT shows increased doses, while RT in DIBH reduces doses. The IMRT shows improved values for D{sub max} concerning the spinal cord, whereas the APPA shows an improved D{sub mean} of the lung and the female breast. IS-RT reduces treatment volumes. Intensity-modulated radiotherapy shows advantages in the conformity. Treatment in DIBH also reduces the dose applied to the lungs and the heart. (orig.) [German] Ziel dieser Auswertung ist es, die konventionelle APPA-Feldanordnung mit der Intensitaetsmodulierten Radiotherapie (IMRT) bei Patienten mit Hodgkin-Lymphom (HL) zu vergleichen. Ein besonderer Fokus liegt hierbei auf der Bestrahlung in tiefer Inspiration und Atemanhaltetechnik (DIBH). Des Weiteren wurde die ''Involved-site''-Radiotherapie (IS-RT) der International

  17. The dosimetric impact of inversely optimized arc radiotherapy plan modulation for real-time dynamic MLC tracking delivery

    International Nuclear Information System (INIS)

    Falk, Marianne; Larsson, Tobias; Keall, Paul; Chul Cho, Byung; Aznar, Marianne; Korreman, Stine; Poulsen, Per; Munck af Rosenschoeld, Per

    2012-01-01

    Purpose: Real-time dynamic multileaf collimator (MLC) tracking for management of intrafraction tumor motion can be challenging for highly modulated beams, as the leaves need to travel far to adjust for target motion perpendicular to the leaf travel direction. The plan modulation can be reduced by using a leaf position constraint (LPC) that reduces the difference in the position of adjacent MLC leaves in the plan. The purpose of this study was to investigate the impact of the LPC on the quality of inversely optimized arc radiotherapy plans and the effect of the MLC motion pattern on the dosimetric accuracy of MLC tracking delivery. Specifically, the possibility of predicting the accuracy of MLC tracking delivery based on the plan modulation was investigated. Methods: Inversely optimized arc radiotherapy plans were created on CT-data of three lung cancer patients. For each case, five plans with a single 358 deg. arc were generated with LPC priorities of 0 (no LPC), 0.25, 0.5, 0.75, and 1 (highest possible LPC), respectively. All the plans had a prescribed dose of 2 Gy x 30, used 6 MV, a maximum dose rate of 600 MU/min and a collimator angle of 45 deg. or 315 deg. To quantify the plan modulation, an average adjacent leaf distance (ALD) was calculated by averaging the mean adjacent leaf distance for each control point. The linear relationship between the plan quality [i.e., the calculated dose distributions and the number of monitor units (MU)] and the LPC was investigated, and the linear regression coefficient as well as a two tailed confidence level of 95% was used in the evaluation. The effect of the plan modulation on the performance of MLC tracking was tested by delivering the plans to a cylindrical diode array phantom moving with sinusoidal motion in the superior-inferior direction with a peak-to-peak displacement of 2 cm and a cycle time of 6 s. The delivery was adjusted to the target motion using MLC tracking, guided in real-time by an infrared optical system

  18. Recommendations for the use of PET and PET-CT for radiotherapy planning in research projects.

    Science.gov (United States)

    Somer, E J; Pike, L C; Marsden, P K

    2012-08-01

    With the increasing use of positron emission tomography (PET) for disease staging, follow-up and therapy monitoring in a number of oncological indications there is growing interest in the use of PET and PET-CT for radiation treatment planning. In order to create a strong clinical evidence base for this, it is important to ensure that research data are clinically relevant and of a high quality. Therefore the National Cancer Research Institute PET Research Network make these recommendations to assist investigators in the development of radiotherapy clinical trials involving the use of PET and PET-CT. These recommendations provide an overview of the current literature in this rapidly evolving field, including standards for PET in clinical trials, disease staging, volume delineation, intensity modulated radiotherapy and PET-augmented planning techniques, and are targeted at a general audience. We conclude with specific recommendations for the use of PET in radiotherapy planning in research projects.

  19. A comparison of swallowing dysfunction after three-dimensional conformal and intensity-modulated radiotherapy. A systematic review by the Italian Head and Neck Radiotherapy Study Group

    International Nuclear Information System (INIS)

    Ursino, Stefano; Morganti, Riccardo; Cristaudo, Agostino; Paiar, Fabiola; D'Angelo, Elisa; Lohr, Frank; Mazzola, Rosario; Merlotti, Anna; Russi, Elvio Grazioso; Musio, Daniela; Alterio, Daniela; Bacigalupo, Almalina

    2017-01-01

    Dysphagia is one of the most important treatment-related side effects in head and neck cancer (HNC), as it can lead to severe life-threating complications such as aspiration pneumonia and malnutrition. Intensity-modulated radiotherapy (IMRT) could reduce swallowing dysfunction by producing a concave dose distribution and reducing doses to the swallowing-related organs at risk (SWOARs). The aim of this study was to review the current literature in order to compare swallowing outcomes between IMRT and three-dimensional conformal radiotherapy (3DCRT). A search was conducted in the PubMed and Embase databases to identify studies on swallowing outcomes, both clinically and/or instrumentally assessed, after 3DCRT and IMRT. Dysphagia-specific quality of life and objective instrumental data are summarized and discussed. A total of 262 papers were retrieved from the searched databases. An additional 23 papers were retrieved by hand-searching the reference lists. Ultimately, 22 papers were identified which discussed swallowing outcomes after 3DCRT and IMRT for HNC. No outcomes from randomized trials were identified. Despite several methodological limitations, reports from the current literature seem to suggest better swallowing outcomes with IMRT compared to 3DCRT. Further improvements are likely to result from the increased use of IMRT plans optimized for SWOAR sparing. (orig.) [de

  20. Long-term decision regret after post-prostatectomy image-guided intensity-modulated radiotherapy.

    Science.gov (United States)

    Shakespeare, Thomas P; Chin, Stephen; Manuel, Lucy; Wen, Shelly; Hoffman, Matthew; Wilcox, Shea W; Aherne, Noel J

    2017-02-01

    Decision regret (DR) may occur when a patient believes their outcome would have been better if they had decided differently about their management. Although some studies investigate DR after treatment for localised prostate cancer, none report DR in patients undergoing surgery and post-prostatectomy radiotherapy. We evaluated DR in this group of patients overall, and for specific components of therapy. We surveyed 83 patients, with minimum 5 years follow-up, treated with radical prostatectomy (RP) and post-prostatectomy image-guided intensity-modulated radiotherapy (IG-IMRT) to 64-66 Gy following www.EviQ.org.au protocols. A validated questionnaire identified DR if men either indicated that they would have been better off had they chosen another treatment, or they wished they could change their mind about treatment. There was an 85.5% response rate, with median follow-up post-IMRT 78 months. Adjuvant IG-IMRT was used in 28% of patients, salvage in 72% and ADT in 48%. A total of 70% of patients remained disease-free. Overall, 16.9% of patients expressed DR for treatment, with fourfold more regret for the RP component of treatment compared to radiotherapy (16.9% vs 4.2%, P = 0.01). DR for androgen deprivation was 14.3%. Patients were regretful of surgery due to toxicity, not being adequately informed about radiotherapy as an alternative, positive margins and surgery costs (83%, 33%, 25% and 8% of regretful patients respectively). Toxicity caused DR in the three radiotherapy-regretful and four ADT-regretful patients. Patients were twice as regretful overall, and of surgery, for salvage vs adjuvant approaches (both 19.6% vs 10.0%). Decision regret after RP and post-prostatectomy IG-IMRT is uncommon, although patients regret RP more than post-operative IG-IMRT. This should reassure urologists referring patients for post-prostatectomy IG-IMRT, particularly in the immediate adjuvant setting. Other implications include appropriate patient selection for RP (and

  1. Treatment planning, optimization, and beam delivery technqiues for intensity modulated proton therapy

    Science.gov (United States)

    Sengbusch, Evan R.

    , beamlet weight, the number of delivered beamlets, and the number of delivery angles. These methods are evaluated via treatment planning studies including left-sided whole breast irradiation, lung stereotactic body radiotherapy, nasopharyngeal carcinoma, and whole brain radiotherapy with hippocampal avoidance. Improvements in efficiency and efficacy relative to traditional proton therapy and intensity modulated photon radiation therapy are discussed.

  2. High-dose simultaneously integrated breast boost using intensity-modulated radiotherapy and inverse optimization

    International Nuclear Information System (INIS)

    Hurkmans, Coen W.; Meijer, Gert J.; Vliet-Vroegindeweij, Corine van; Sangen, Maurice J. van der; Cassee, Jorien

    2006-01-01

    Purpose: Recently a Phase III randomized trial has started comparing a boost of 16 Gy as part of whole-breast irradiation to a high boost of 26 Gy in young women. Our main aim was to develop an efficient simultaneously integrated boost (SIB) technique for the high-dose arm of the trial. Methods and Materials: Treatment planning was performed for 5 left-sided and 5 right-sided tumors. A tangential field intensity-modulated radiotherapy technique added to a sequentially planned 3-field boost (SEQ) was compared with a simultaneously planned technique (SIB) using inverse optimization. Normalized total dose (NTD)-corrected dose volume histogram parameters were calculated and compared. Results: The intended NTD was produced by 31 fractions of 1.66 Gy to the whole breast and 2.38 Gy to the boost volume. The average volume of the PTV-breast and PTV-boost receiving more than 95% of the prescribed dose was 97% or more for both techniques. Also, the mean lung dose and mean heart dose did not differ much between the techniques, with on average 3.5 Gy and 2.6 Gy for the SEQ and 3.8 Gy and 2.6 Gy for the SIB, respectively. However, the SIB resulted in a significantly more conformal irradiation of the PTV-boost. The volume of the PTV-breast, excluding the PTV-boost, receiving a dose higher than 95% of the boost dose could be reduced considerably using the SIB as compared with the SEQ from 129 cc (range, 48-262 cc) to 58 cc (range, 30-102 cc). Conclusions: A high-dose simultaneously integrated breast boost technique has been developed. The unwanted excessive dose to the breast was significantly reduced

  3. Intensity-modulated radiation therapy.

    Science.gov (United States)

    Goffman, Thomas E; Glatstein, Eli

    2002-07-01

    Intensity-modulated radiation therapy (IMRT) is an increasingly popular technical means of tightly focusing the radiation dose around a cancer. As with stereotactic radiotherapy, IMRT uses multiple fields and angles to converge on the target. The potential for total dose escalation and for escalation of daily fraction size to the gross cancer is exciting. The excitement, however, has greatly overshadowed a range of radiobiological and clinical concerns.

  4. Dosimetric validation of new semiconductor diode dosimetry system for intensity modulated radiotherapy

    Directory of Open Access Journals (Sweden)

    Rajesh Kinhikar

    2012-01-01

    Full Text Available Introduction: The new diode Isorad was validated for intensity modulated radiotherapy (IMRT and the observations during the validation are reported. Materials and Methods: The validation includes intrinsic precision, post-irradiation stability, dose linearity, dose-rate effect, angular response, source to surface (SSD dependence, field size dependence, and dose calibration. Results: The intrinsic precision of the diode was more than 1% (1 σ. The linearity found in the whole range of dose analyzed was 1.93% (R 2 = 1. The minimum and maximum variation in the measured and calculated dose were found to be 0.78% (with 25 MU at ioscentre and 4.8% (with 1000 MU at isocentre, respectively. The maximal variation in angular response with respect to arbitrary angle 0° found was 1.31%. The diode exhibited a 51.7% and 35% decrease in the response in the 35 cm and 20 cm SSD range, respectively. The minimum and the maximum variation in the measured dose from the diode and calculated dose were 0.82% (5 cm × 5 cm and 3.75% (30 cm × 30 cm, respectively. At couch 270°, the response of the diode was found to vary maximum by 1.4% with ΁ 60 gantry angle. Mean variation between measured dose with diode and planned dose by TPS was found to be 1.3% (SD 0.75 for IMRT patient-specific quality assurance. Conclusion: For the evaluation of IMRT, use of cylindrical diode is strongly recommended.

  5. VERIDOS: a new tool for quality assurance for intensity modulated radiotherapy.

    Science.gov (United States)

    Wiezorek, Tilo; Schwedas, Michael; Scheithauer, Marcel; Salz, Henning; Bellemann, Matthias; Wendt, Thomas G

    2002-12-01

    The use of intensity modulated radiation fields needs an extended quality assurance concept. This consists of a linac related part and a case related part. Case related means the verification of an individual treatment plan, optimized on a CT data set of an individual patient and prepared for the treatment of this patient. This part of the quality assurance work is usually time consuming, delivers only partially quantitative results and is uncomfortable without additional help. It will be shown in this paper how the software VERIDOS will improve the optimization of the case related part of the quality assurance work. The main function of the software is the quantitative comparison of the calculated dose distribution from the treatment planning software with the measured dose distribution of an irradiated phantom. Several additional functions will be explained. Two self-developed phantoms made of RW3 (solid water) and GAFCHROMIC films or Kodak EDR2 films for the measurement of the dose distributions were used. VERIDOS was tested with the treatment planning systems Helay-TMS and Brainscan. VERIDOS is a suitable tool for the import of calculated dose matrices from the treatment planning systems Helax-TMS and Brainscan and of measured dose matrices exported from the dosimetry software Mephysto (PTW). The import from other treatment planning systems and scanning software applications for film dosimetry is generally possible. In such case the import function has to be adapted to the special header of the import matrix. All other functions of this software tool like normalization (automatically, manually), working with corrections (ground substraction, factors), overlay/comparison of dose distributions, difference matrix, cutting function (profiles) and export functions work reliable. VERIDOS improves the optimization of the case related part of the quality assurance work for intensity modulated radiation therapy (IMRT). The diverse functions of the software offer the

  6. VERIDOS: A new tool for quality assurance for intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Wiezorek, T.; Schwedas, M.; Scheithauer, M.; Salz, H.; Wendt, T.G.; Bellemann, M.

    2002-01-01

    Background: The use of intensity modulated radiation fields needs an extended quality assurance concept. This consists of a linac related part and a case related part. Case related means the verification of an individual treatment plan, optimized on a CT data set of an individual patient and prepared for the treatment of this patient. This part of the quality assurance work is usually time consuming, delivers only partially quantitative results and is uncomfortable without additional help. It will be shown in this paper how the software VERIDOS will improve the optimization of the case related part of the quality assurance work. Material and Methods: The main function of the software is the quantitative comparison of the calculated dose distribution from the treatment planning software with the measured dose distribution of an irradiated phantom. Several additional functions will be explained. Two self-developed phantoms made of RW3 (solid water) and GAFCHROMIC films or Kodak EDR2 films for the measurement of the dose distributions were used. VERIDOS was tested with the treatment planning systems Helax-TMS and Brainscan. Results: VERIDOS is a suitable tool for the import of calculated dose matrices from the treatment planning systems Helax-TMS and Brainscan and of measured dose matrices exported from the dosimetry software Mephysto (PTW). The import from other treatment planning systems and scanning software applications for film dosimetry is generally possible. In such case the import function has to be adapted to the special header of the import matrix. All other functions of this software tool like normalization (automatically, manually), working with corrections (ground substraction, factors), overlay/comparison of dose distributions, difference matrix, cutting function (profiles) and export functions work reliable. Conclusions: VERIDOS improves the optimization of the case related part of the quality assurance work for intensity modulated radiation therapy

  7. Urethra sparing - potential of combined Nickel-Titanium stent and intensity modulated radiation therapy in prostate cancer.

    Science.gov (United States)

    Thomsen, Jakob Borup; Arp, Dennis Tideman; Carl, Jesper

    2012-05-01

    To investigate a novel method for sparing urethra in external beam radiotherapy of prostate cancer and to evaluate the efficacy of such a treatment in terms of tumour control using a mathematical model. This theoretical study includes 20 patients previously treated for prostate cancer using external beam radiotherapy. All patients had a Nickel-Titanium (Ni-Ti) stent inserted into the prostate part of urethra. The stent has been used during the treatment course as an internal marker for patient positioning prior to treatment. In this study the stent is used for delineating urethra while intensity modulated radiotherapy was used for lowering dose to urethra. Evaluation of the dose plans were performed using a tumour control probability model based on the concept of uniform equivalent dose. The feasibility of the urethra dose reduction method is validated and a reduction of about 17% is shown to be possible. Calculations suggest a nearly preserved tumour control probability. A new concept for urethra dose reduction is presented. The method relies on the use of a Ni-Ti stent as a fiducial marker combined with intensity modulated radiotherapy. Theoretical calculations suggest preserved tumour control. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Cervix carcinomas: place of intensity-modulated radiotherapy; Les cancers du col uterin: place de la radiotherapie avec modulation d'intensite

    Energy Technology Data Exchange (ETDEWEB)

    Barillot, I. [Centre Regional Universitaire de Cancerologie H.S.-Kaplan, Hopital Bretonneau, CHU de Tours, 37 - Tours (France); Universite Francois-Rabelais, 37 - Tours (France)

    2009-10-15

    While indications of modulated intensity radiation therapy (I.M.R.T.) are perfectly defined in head and neck and prostate cancer patients, this technique remains under evaluation for gynecologic tumours. The implementation of conformal three dimensional radiotherapy in the late 1990 has been the first important step for optimisation of treatment of cervix carcinomas, as it permitted a better target coverage with a significant reduction of the bladder dose. However, this technique often leads to an irradiation of a larger volume of rectum in locally advanced stages and could only spare a limited amount of intestine. I.R.M.T. is one of the optimisation methods potentially efficient for a better sparing of digestive tract during irradiation of cervix carcinomas. The aim of this literature review is to provide the arguments supporting this hypothesis, and to define the place of this technique for dose escalation. (authors)

  9. Hippocampal sparing radiotherapy for glioblastoma patients: a planning study using volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Hofmaier, Jan; Kantz, Steffi; Söhn, Matthias; Dohm, Oliver S.; Bächle, Stefan; Alber, Markus; Parodi, Katia; Belka, Claus; Niyazi, Maximilian

    2016-01-01

    The purpose of this study is to investigate the potential to reduce exposure of the contralateral hippocampus in radiotherapy for glioblastoma using volumetric modulated arc therapy (VMAT). Datasets of 27 patients who had received 3D conformal radiotherapy (3D-CRT) for glioblastoma with a prescribed dose of 60Gy in fractions of 2Gy were included in this planning study. VMAT plans were optimized with the aim to reduce the dose to the contralateral hippocampus as much as possible without compromising other parameters. Hippocampal dose and treatment parameters were compared to the 3D-CRT plans using the Wilcoxon signed-rank test. The influence of tumour location and PTV size on the hippocampal dose was investigated with the Mann–Whitney-U-test and Spearman’s rank correlation coefficient. The median reduction of the contralateral hippocampus generalized equivalent uniform dose (gEUD) with VMAT was 36 % compared to the original 3D-CRT plans (p < 0.05). Other dose parameters were maintained or improved. The median V30Gy brain could be reduced by 17.9 % (p < 0.05). For VMAT, a parietal and a non-temporal tumour localisation as well as a larger PTV size were predictors for a higher hippocampal dose (p < 0.05). Using VMAT, a substantial reduction of the radiotherapy dose to the contralateral hippocampus for patients with glioblastoma is feasible without compromising other treatment parameters. For larger PTV sizes, less sparing can be achieved. Whether this approach is able to preserve the neurocognitive status without compromising the oncological outcome needs to be investigated in the setting of prospective clinical trials

  10. Comparison of the efficacy of intensity modulated radiotherapy delivered by competing technologies

    International Nuclear Information System (INIS)

    Seco, Joao Carlos

    2003-01-01

    The project involved the study and comparison of the various intensity-modulated radiation therapy (IMRT) delivery techniques. IMRT can be delivered via (i) the NOMOS MIMiC tomotherapy device, (ii) the dynamic multileaf collimator (DMLC), and (iii) the technique of multiple-static fields (MSF) using a multileaf collimator (MLC). To evaluate the relative benefits and limitations of the different methods of delivering IMRT an inverse-planning simulation code was developed. The simulation uses two distinct beam models: (a) the PEACOCK pencil-beam model based on the double Gaussian convolution for the MIMiC, and (b) the macropencil beam model (with the extended source model included to correct for the output factor) which is used for the DMLC and MSF-MLC delivery techniques. The process of delivering an IMRT treatment may involve various beam-modifying techniques such as multileaf collimators, the NOMOS MIMiC, blocks, wedges, etc. The constraints associated with the IMRT delivery technique are usually neglected in the process of obtaining the 'optimal' inverse treatment plan. Consequently, dose optimization may be significantly reduced when the 'optimal' beam profiles are converted to leaf/diaphragm positions via a leaf-sequencing interpreter. The work developed assessed the effects on the optimum treatment plan of the following leaf-sequencing algorithms: MSF-MLC, DMLC, and NOMOS MIMiC. An increase of 2.5%, 3.7% and 5.7% was observed for the PTV dose, when delivering a fluence profile with the DMLC, MSF, and NOMOS MIMiC techniques, respectively. An intensity-modulated beam optimization algorithm was developed to incorporate the delivery constraints into the optimization cycle. The optimization algorithm was based on the quasi-Newton method of iteratively solving minimization problems. The developed algorithm iteratively corrects the incident, pencil-beam-like fluence to incorporate the delivery constraints. In the case of the DMLC and MSF the optimization converged

  11. Evaluation of detector array technology for the verification of advanced intensity-modulated radiotherapy

    Science.gov (United States)

    Hussien, Mohammad

    Purpose: Quality assurance (QA) for intensity modulated radiotherapy (IMRT) has evolved substantially. In recent years, various ionization chamber or diode detector arrays have become commercially available, allowing pre-treatment absolute dose verification with near real-time results. This has led to a wide uptake of this technology to replace point dose and film dosimetry and to facilitate QA streamlining. However, arrays are limited by their spatial resolution giving rise to concerns about their response to clinically relevant deviations. The common factor in all commercial array systems is the reliance on the gamma index (γ) method to provide the quantitative evaluation of the measured dose distribution against the Treatment Planning System (TPS) calculated dose distribution. The mathematical definition of the gamma index presents computational challenges that can cause a variation in the calculation in different systems. The purpose of this thesis was to evaluate the suitability of detector array systems, combined with their implementation of the gamma index, in the verification and dosimetry audit of advanced IMRT. Method: The response of various commercial detector array systems (Delta4®, ArcCHECK®, and the PTW 2D-Array seven29™ and OCTAVIUS II™ phantom combination, Gafchromic® EBT2 and composite EPID measurements) to simulated deliberate changes in clinical IMRT and VMAT plans was evaluated. The variability of the gamma index calculation in the different systems was also evaluated by comparing against a bespoke Matlab-based gamma index analysis software. A novel methodology for using a commercial detector array in a dosimetry audit of rotational radiotherapy was then developed. Comparison was made between measurements using the detector array and those performed using ionization chambers, alanine and radiochromic film. The methodology was developed as part of the development of a national audit of rotational radiotherapy. Ten cancer centres were

  12. Utilization of intensity modulated beam radiotherapy (IMBXRT) to diminish dose to the parotid gland in head and neck cancer

    International Nuclear Information System (INIS)

    Shiao, W. Woo; Grant, Walter H.; Butler, E. Brian

    1996-01-01

    Purpose/Objective: To determine if intensity conformal modulated radiotherapy could diminish the radiation dose to the parotid gland in the treatment of primary head and neck cancer. Materials and Methods: The NOMOS Peacock treatment system was utilized in the planning and delivery of conformal radiotherapy for the following diseases: 1) an oropharyngeal cancer that extends from the soft palate to the tonsillar fossa without nodal disease, 2) laryngeal hypopharyngeal cancer without nodal disease, 3) and adenocystic carcinoma, that originated in the hard palate. Patients were treated to areas suspicious for microscopic disease (nodal disease in 1 and 2, perineural spread in 3) at 2 Gy per fraction for a tc of 50 Gy in five weeks. The primary disease was treated at 2.4 Gy per fraction for a total of 60 Gy over five weeks. The percent of the volume of each parotid gland receiving < 20 Gy, <25 Gy and <30 Gy retrospectively was determined for each of the above mentioned optimized plans. The patients were observed for the clinical development of xerostomia. Results: No patient developed clinically apparent xerostomia within one month of completion of radiotherapy. Conclusion: IMBXRT could reduce the volume to parotid glands receiving high radiation doses. Sparing of the parotid glands appear to be most easily accomplished when irradiating head and neck tumors that do not require regional nodal treatment. For head and neck cancer that requires nodal treatment it is possible to spare a significant portion of the parotid glands if the disease originates below the hyoid bone where the primary site is not in close proximity to the parotid glands. Objective salivary flow data are being obtained pre ar post treatment, to confirm the subjective impression of lack of clinical xerostomia. IMBXRT is potentially beneficial in decreasing the morbidity of xerostomia related to head and neck irradiation

  13. Isocentric integration of intensity-modulated radiotherapy with electron fields improves field junction dose uniformity in postmastectomy radiotherapy.

    Science.gov (United States)

    Wright, Pauliina; Suilamo, Sami; Lindholm, Paula; Kulmala, Jarmo

    2014-08-01

    In postmastectomy radiotherapy (PMRT), the dose coverage of the planning target volume (PTV) with additional margins, including the chest wall, supraclavicular, interpectoral, internal mammary and axillar level I-III lymph nodes, is often compromised. Electron fields may improve the medial dose coverage while maintaining organ at risk (OAR) doses at an acceptable level, but at the cost of hot and cold spots at the electron and photon field junction. To improve PMRT dose coverage and uniformity, an isocentric technique combining tangential intensity-modulated (IM)RT fields with one medial electron field was implemented. For 10 postmastectomy patients isocentric IMRT with electron plans were created and compared with a standard electron/photon mix and a standard tangent technique. PTV dose uniformity was evaluated based on the tolerance range (TR), i.e. the ratio of the standard deviation to the mean dose, a dice similarity coefficient (DSC) and the 90% isodose coverage and the hot spot volumes. OAR and contralateral breast doses were also recorded. IMRT with electrons significantly improved the PTV dose homogeneity and conformity based on the TR and DSC values when compared with the standard electron/photon and tangent technique (p < 0.02). The 90% isodose coverage improved to 86% compared with 82% and 80% for the standard techniques (p < 0.02). Compared with the standard electron/photon mix, IMRT smoothed the dose gradient in the electron and photon field junction and the volumes receiving a dose of 110% or more were reduced by a third. For all three strategies, the OAR and contralateral breast doses were within clinically tolerable limits. Based on these results two-field IMRT combined with an electron field is a suitable strategy for PMRT.

  14. Intensity-Modulated Radiotherapy for Resected Mesothelioma: The Duke Experience

    International Nuclear Information System (INIS)

    Miles, Edward F.; Larrier, Nicole A.; Kelsey, Christopher R.; Hubbs, Jessica L.; Ma Jinli; Yoo, Sua; Marks, Lawrence B.

    2008-01-01

    Purpose: To assess the safety and efficacy of intensity-modulated radiotherapy (IMRT) after extrapleural pneumonectomy for malignant pleural mesothelioma. Methods and Materials: Thirteen patients underwent IMRT after extrapleural pneumonectomy between July 2005 and February 2007 at Duke University Medical Center. The clinical target volume was defined as the entire ipsilateral hemithorax, chest wall incisions, including drain sites, and involved nodal stations. The dose prescribed to the planning target volume was 40-55 Gy (median, 45). Toxicity was graded using the modified Common Toxicity Criteria, and the lung dosimetric parameters from the subgroups with and without pneumonitis were compared. Local control and survival were assessed. Results: The median follow-up after IMRT was 9.5 months. Of the 13 patients, 3 (23%) developed Grade 2 or greater acute pulmonary toxicity (during or within 30 days of IMRT). The median dosimetric parameters for those with and without symptomatic pneumonitis were a mean lung dose (MLD) of 7.9 vs. 7.5 Gy (p = 0.40), percentage of lung volume receiving 20 Gy (V 20 ) of 0.2% vs. 2.3% (p = 0.51), and percentage of lung volume receiving 5 Gy (V 20 ) of 92% vs. 66% (p = 0.36). One patient died of fatal pulmonary toxicity. This patient received a greater MLD (11.4 vs. 7.6 Gy) and had a greater V 20 (6.9% vs. 1.9%), and V 5 (92% vs. 66%) compared with the median of those without fatal pulmonary toxicity. Local and/or distant failure occurred in 6 patients (46%), and 6 patients (46%) were alive without evidence of recurrence at last follow-up. Conclusions: With limited follow-up, 45-Gy IMRT provides reasonable local control for mesothelioma after extrapleural pneumonectomy. However, treatment-related pulmonary toxicity remains a significant concern. Care should be taken to minimize the dose to the remaining lung to achieve an acceptable therapeutic ratio

  15. Comparison of long-term survival and toxicity of simultaneous integrated boost vs conventional fractionation with intensity-modulated radiotherapy for the treatment of nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Tao HM

    2016-03-01

    Full Text Available Hengmin Tao,1,2 Yumei Wei,1 Wei Huang,1 Xiujuan Gai,1,2 Baosheng Li11Department of 6th Radiation Oncology, Shandong Cancer Hospital and Institute, 2School of Medicine and Life Sciences, Jinan University-Shandong Academy of Medical Sciences, Jinan, People’s Republic of ChinaAim: In recent years, the intensity-modulated radiotherapy with simultaneous integrated boost (IMRT-SIB and intensity-modulated radiotherapy with conventional fractionation (IMRT-CF have been involved in the treatment of nasopharyngeal carcinoma (NPC. However, the potential clinical effects and toxicities are still controversial.Methods: Here, 107 patients with biopsy-proven locally advanced NPC between March 2004 and January 2011 were enrolled in the retrospective study. Among them, 54 patients received IMRT-SIB, and 53 patients received IMRT-CF. Subsequently, overall survival (OS, 5-year progression-free survival (PFS, 5-year locoregional recurrence-free survival (LRFS, and relevant toxicities were analyzed.Results: In the present study, all patients completed the treatment, and the overall median follow-up time was 80 months (range: 8–126 months. The 5-year OS analysis revealed no significant difference between the IMRT-SIB and IMRT-CF groups (80.9% vs 80.5%, P=0.568. In addition, there were also no significant between-group differences in 5-year PFS (73.3% vs 74.4%, P=0.773 and 5-year LRFS (88.1% vs 90.8%, P=0.903. Notably, the dose to critical organs (spinal cord, brainstem, and parotid gland in patients treated by IMRT-CF was significantly lower than that in patients treated by IMRT-SIB (all P<0.05.Conclusion: Both IMRT-SIB and IMRT-CF techniques are effective in treating locally advanced NPC, with similar OS, PFS, and LRFS. However, IMRT-CF has more advantages than IMRT-SIB in protecting spinal cord, brainstem, and parotid gland from acute and late toxicities, such as xerostomia. Further prospective study is warranted to confirm our findings.Keywords: intensity-modulated

  16. Comparison of intensity-modulated radiotherapy and 3-dimensional conformal radiotherapy as adjuvant therapy for gastric cancer.

    Science.gov (United States)

    Minn, A Yuriko; Hsu, Annie; La, Trang; Kunz, Pamela; Fisher, George A; Ford, James M; Norton, Jeffrey A; Visser, Brendan; Goodman, Karyn A; Koong, Albert C; Chang, Daniel T

    2010-08-15

    The current study was performed to compare the clinical outcomes and toxicity in patients treated with postoperative chemoradiotherapy for gastric cancer using intensity-modulated radiotherapy (IMRT) versus 3-dimensional conformal radiotherapy (3D CRT). Fifty-seven patients with gastric or gastroesophageal junction cancer were treated postoperatively: 26 with 3D CRT and 31 with IMRT. Concurrent chemotherapy was capecitabine (n=31), 5-fluorouracil (5-FU) (n=25), or none (n=1). The median radiation dose was 45 Gy. Dose volume histogram parameters for kidney and liver were compared between treatment groups. The 2-year overall survival rates for 3D CRT versus IMRT were 51% and 65%, respectively (P=.5). Four locoregional failures occurred each in the 3D CRT (15%) and the IMRT (13%) patients. Grade>or=2 acute gastrointestinal toxicity was found to be similar between the 3D CRT and IMRT patients (61.5% vs 61.2%, respectively) but more treatment breaks were needed (3 vs 0, respectively). The median serum creatinine from before radiotherapy to most recent creatinine was unchanged in the IMRT group (0.80 mg/dL) but increased in the 3D CRT group from 0.80 mg/dL to 1.0 mg/dL (P=.02). The median kidney mean dose was higher in the IMRT versus the 3D CRT group (13.9 Gy vs 11.1 Gy; P=.05). The median kidney V20 was lower for the IMRT versus the 3D CRT group (17.5% vs 22%; P=.17). The median liver mean dose for IMRT and 3D CRT was 13.6 Gy and 18.6 Gy, respectively (P=.19). The median liver V30 was 16.1% and 28%, respectively (PCancer Society.

  17. Optimization in radiotherapy treatment planning thanks to a fast dose calculation method

    International Nuclear Information System (INIS)

    Yang, Mingchao

    2014-01-01

    This thesis deals with the radiotherapy treatments planning issue which need a fast and reliable treatment planning system (TPS). The TPS is composed of a dose calculation algorithm and an optimization method. The objective is to design a plan to deliver the dose to the tumor while preserving the surrounding healthy and sensitive tissues. The treatment planning aims to determine the best suited radiation parameters for each patient's treatment. In this thesis, the parameters of treatment with IMRT (Intensity modulated radiation therapy) are the beam angle and the beam intensity. The objective function is multi-criteria with linear constraints. The main objective of this thesis is to demonstrate the feasibility of a treatment planning optimization method based on a fast dose-calculation technique developed by (Blanpain, 2009). This technique proposes to compute the dose by segmenting the patient's phantom into homogeneous meshes. The dose computation is divided into two steps. The first step impacts the meshes: projections and weights are set according to physical and geometrical criteria. The second step impacts the voxels: the dose is computed by evaluating the functions previously associated to their mesh. A reformulation of this technique makes possible to solve the optimization problem by the gradient descent algorithm. The main advantage of this method is that the beam angle parameters could be optimized continuously in 3 dimensions. The obtained results in this thesis offer many opportunities in the field of radiotherapy treatment planning optimization. (author) [fr

  18. Adjuvant intensity-modulated proton therapy in malignant pleural mesothelioma. A comparison with intensity-modulated radiotherapy and a spot size variation assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lorentini, S. [Agenzia Provinciale per la Protonterapia (ATreP), Trento (Italy); Padova Univ. (Italy). Medical Physics School; Amichetti, M.; Fellin, F.; Schwarz, M. [Agenzia Provinciale per la Protonterapia (ATreP), Trento (Italy); Spiazzi, L. [Brescia Hospital (Italy). Medical Physics Dept.; Tonoli, S.; Magrini, S.M. [Brescia Hospital (Italy). Radiation Oncology Dept.

    2012-03-15

    Intensity-modulated radiation therapy (IMRT) is the state-of-the-art treatment for patients with malignant pleural mesothelioma (MPM). The goal of this work was to assess whether intensity-modulated proton therapy (IMPT) could further improve the dosimetric results allowed by IMRT. We re-planned 7 MPM cases using both photons and protons, by carrying out IMRT and IMPT plans. For both techniques, conventional dose comparisons and normal tissue complication probability (NTCP) analysis were performed. In 3 cases, additional IMPT plans were generated with different beam dimensions. IMPT allowed a slight improvement in target coverage and clear advantages in dose conformity (p < 0.001) and dose homogeneity (p = 0.01). Better organ at risk (OAR) sparing was obtained with IMPT, in particular for the liver (D{sub mean} reduction of 9.5 Gy, p = 0.001) and ipsilateral kidney (V{sub 20} reduction of 58%, p = 0.001), together with a very large reduction of mean dose for the contralateral lung (0.2 Gy vs 6.1 Gy, p = 0.0001). NTCP values for the liver showed a systematic superiority of IMPT with respect to IMRT for both the esophagus (average NTCP 14% vs. 30.5%) and the ipsilateral kidney (p = 0.001). Concerning plans obtained with different spot dimensions, a slight loss of target coverage was observed along with sigma increase, while maintaining OAR irradiation always under planning constraints. Results suggest that IMPT allows better OAR sparing with respect to IMRT, mainly for the liver, ipsilateral kidney, and contralateral lung. The use of a spot dimension larger than 3 x 3 mm (up to 9 x 9 mm) does not compromise dosimetric results and allows a shorter delivery time.

  19. Quality controls in intensity-modulated conformational radiotherapy. S.F.P.M. report nr 26, January 2010

    International Nuclear Information System (INIS)

    Valinta, Danielle; Poinsignon, Anne; Caron, Jerome; Dejean, Catherine; Corsetti, Dominique; Marcie, Serge; Mazurier, Jocelyne; Naudy, Suzanne; Aget, Helene; Marchesi, Vincent; Vieillevigne, Laure; Dedieu, Veronique; Bramoule, Celine; Caselles, Olivier; Lacaze, Brigitte; Mazurier, Jocelyne

    2009-08-01

    This report proposes a comprehensive presentation of the different controls which can be performed for the implementation of 3D intensity-modulated conformal radiation therapy (IMCR). The authors first present the IMCR principle by describing modes of production of modulated beams, the practical realisation of intensity modulation with Multi Leaf Collimator (MLC), multi leaf collimators, and the inverse planning system. They present the quality control of the accelerator (pre-requisites, linearity of the monitor chamber, symmetry and homogeneity), the quality control of multi leaf collimators (prerequisites, leaf absolute calibration, static mode, dynamic mode), the quality control of the treatment planning system (prerequisites, tests specific to IMCR, example in dynamic mode with the chair test), the quality control of the treatment plan (objective, necessary equipment and software solutions, measurement of point absolute dose, control of dose distribution, independent calculation of the number of monitor units), and the treatment verification (pre-treatment verification, patient repositioning during treatment). Finally, they indicate human means required for IMCR implementation, and formulate some recommendations for this implementation

  20. Urethra sparing – potential of combined Nickel–Titanium stent and intensity modulated radiation therapy in prostate cancer

    International Nuclear Information System (INIS)

    Thomsen, Jakob Borup; Arp, Dennis Tideman; Carl, Jesper

    2012-01-01

    Background and purpose: To investigate a novel method for sparing urethra in external beam radiotherapy of prostate cancer and to evaluate the efficacy of such a treatment in terms of tumour control using a mathematical model. Materials and methods: This theoretical study includes 20 patients previously treated for prostate cancer using external beam radiotherapy. All patients had a Nickel–Titanium (Ni–Ti) stent inserted into the prostate part of urethra. The stent has been used during the treatment course as an internal marker for patient positioning prior to treatment. In this study the stent is used for delineating urethra while intensity modulated radiotherapy was used for lowering dose to urethra. Evaluation of the dose plans were performed using a tumour control probability model based on the concept of uniform equivalent dose. Results: The feasibility of the urethra dose reduction method is validated and a reduction of about 17% is shown to be possible. Calculations suggest a nearly preserved tumour control probability. Conclusions: A new concept for urethra dose reduction is presented. The method relies on the use of a Ni–Ti stent as a fiducial marker combined with intensity modulated radiotherapy. Theoretical calculations suggest preserved tumour control.

  1. Hypofractionated Intensity-Modulated Radiotherapy for Carcinoma of the Prostate: Analysis of Toxicity

    International Nuclear Information System (INIS)

    Coote, Joanna H.; Wylie, James P.; Cowan, Richard A.; Logue, John P.; Swindell, Ric; Livsey, Jacqueline E.

    2009-01-01

    Purpose: Dose escalation for prostate cancer improves biological control but with a significant increase in late toxicity. Recent estimates of low α/β ratio for prostate cancer suggest that hypofractionation may result in biological advantage. Intensity-modulated radiotherapy (IMRT) should enable dose escalation to the prostate while reducing toxicity to local organs. We report late toxicity data of a hypofractionated IMRT regime. Methods and Materials: Eligible men had T2-3N0M0 adenocarcinoma prostate, and either Gleason score ≥ 7 or prostate-specific antigen 20-50 ng/L. Patients received 57-60 Gy to prostate in 19-20 fractions using five-field IMRT. All received hormonal therapy for 3 months before radiotherapy to a maximum of 6 months. Toxicity was assessed 2 years postradiotherapy using the RTOG criteria, LENT/SOMA, and UCLA prostate index assessment tools. Results: Acute toxicity was favorable with no RTOG Grade 3 or 4 toxicity. At 2 years, there was 4% Grade 2 bowel and 4.25% Grade 2 bladder toxicity. There was no Grade 3 or 4 bowel toxicity; one patient developed Grade 3 bladder toxicity. UCLA data showed a slight improvement in urinary function at 2 years compared with pretreatment. LENT/SOMA assessments demonstrated general worsening of bowel function at 2 years. Patients receiving 60 Gy were more likely to develop problems with bowel function than those receiving 57 Gy. Conclusions: These data demonstrate that hypofractionated radiotherapy using IMRT for prostate cancer is well tolerated with minimal late toxicity at 2 years posttreatment. Ongoing studies are looking at the efficacy of hypofractionated regimes with respect to biological control.

  2. PLANNING NATIONAL RADIOTHERAPY SERVICES

    Directory of Open Access Journals (Sweden)

    Eduardo eRosenblatt

    2014-11-01

    Full Text Available Countries, states and island nations often need forward planning of their radiotherapy services driven by different motives. Countries without radiotherapy services sponsor patients to receive radiotherapy abroad. They often engage professionals for a feasibility study in order to establish whether it would be more cost-beneficial to establish a radiotherapy facility. Countries where radiotherapy services have developed without any central planning, find themselves in situations where many of the available centres are private and thus inaccessible for a majority of patients with limited resources. Government may decide to plan ahead when a significant exodus of cancer patients travel to another country for treatment, thus exposing the failure of the country to provide this medical service for its citizens. In developed countries the trigger has been the existence of highly visible waiting lists for radiotherapy revealing a shortage of radiotherapy equipment.This paper suggests that there should be a systematic and comprehensive process of long-term planning of radiotherapy services at the national level, taking into account the regulatory infrastructure for radiation protection, planning of centres, equipment, staff, education pr

  3. Physical and clinical aspects of the dynamic intensity-modulated radiotherapy of 21 patients

    International Nuclear Information System (INIS)

    Engler, Mark J.; Tsai, J.-S.; Ulin, Kenneth; Wu Julian; Ling, Marilyn N.; Fagundes, Marcio; Kramer, Bradley; Wazer, David E.

    1996-01-01

    Purpose: To describe the physical and clinical aspects of the dynamic intensity modulated radiotherapy of 21 patients. Methods and Materials: Dynamic, intensity modulated radiotherapy (IMR) was given to 21 patients with advanced or recurrent disease. 13 patients were immobilized with head screws, and 8, with non-invasive thermoplastic masks. The system was selected because it was designed de novo from a well established simulated annealing optimization model (SA), and with stringent leakage requirements and rapid leaf transit time for a multi leaf collimator (MLC). The system included a 6 MV linear accelerator (linac), an MLC, a quad processing computer system with SA software, a computer MLC controller with inclinometers and interlocks to stop radiation upon potential MLC or linac gantry fault detection, and immobilization devices attached to CT and treatment tables. The MLC was built around a 2 x 20 array of leaves with 9 half value layers of attenuation of the primary beam (99.8%). Over a trillion (2 40 ) beamlet patterns were dynamically changeable per deg. of linac gantry rotation. With all leaves shut, transmission was within a secondary collimator standard of < 0.5% of the primary beam. MLC control was via touch screen computer, and a disk drive which read beam pattern sequences from a disk generated by the planning system. Planning included 3D CT and magnetic resonance localization of regions of interest (ROI). The SA cost function incorporated idealized dose-volume parameter sets of up to 21 ROI/patient. Relative importance and spatial pre-eminance of each ROI were quantified into the constraint set, together with an instrument data file (IDR) built from depth dose and crossplot data of 8 x 8 to 20 x 200 mm field sizes and patterns measured with small diodes in a water tanc phantom. Planner output included dose volume histograms, tabulated dosimetry statistics, 2D dose distributions, and 3D translucent renderings of patient surfaces with underlying colored

  4. Multi-GPU configuration of 4D intensity modulated radiation therapy inverse planning using global optimization

    Science.gov (United States)

    Hagan, Aaron; Sawant, Amit; Folkerts, Michael; Modiri, Arezoo

    2018-01-01

    We report on the design, implementation and characterization of a multi-graphic processing unit (GPU) computational platform for higher-order optimization in radiotherapy treatment planning. In collaboration with a commercial vendor (Varian Medical Systems, Palo Alto, CA), a research prototype GPU-enabled Eclipse (V13.6) workstation was configured. The hardware consisted of dual 8-core Xeon processors, 256 GB RAM and four NVIDIA Tesla K80 general purpose GPUs. We demonstrate the utility of this platform for large radiotherapy optimization problems through the development and characterization of a parallelized particle swarm optimization (PSO) four dimensional (4D) intensity modulated radiation therapy (IMRT) technique. The PSO engine was coupled to the Eclipse treatment planning system via a vendor-provided scripting interface. Specific challenges addressed in this implementation were (i) data management and (ii) non-uniform memory access (NUMA). For the former, we alternated between parameters over which the computation process was parallelized. For the latter, we reduced the amount of data required to be transferred over the NUMA bridge. The datasets examined in this study were approximately 300 GB in size, including 4D computed tomography images, anatomical structure contours and dose deposition matrices. For evaluation, we created a 4D-IMRT treatment plan for one lung cancer patient and analyzed computation speed while varying several parameters (number of respiratory phases, GPUs, PSO particles, and data matrix sizes). The optimized 4D-IMRT plan enhanced sparing of organs at risk by an average reduction of 26% in maximum dose, compared to the clinical optimized IMRT plan, where the internal target volume was used. We validated our computation time analyses in two additional cases. The computation speed in our implementation did not monotonically increase with the number of GPUs. The optimal number of GPUs (five, in our study) is directly related to the

  5. Study on the photoneutrons produced in 15 MV medical linear accelerators : Comparison of three dimensional conformal radiotherapy and intensity modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Oh Nam [Gangneung Asan Hospital, Gangneung (Korea, Republic of); Yang, Oh Nam; Lim, Cheong Hwan [Hanseo Univ., Seosan (Korea, Republic of)

    2012-12-15

    Intensity-modulated radiotherapy(IMRT) have the ability to provide better dose conformity and sparing of critical normal tissues than three-dimensional radiotherapy(3DCRT). Especially, with the benefit of health insurance in 2011, its use now increasingly in many modern radiotherapy departments. Also the use of linear accelerator with high-energy photon beams over 10 MV is increasing. As is well known, these linacs have the capacity to produce photoneutrons due to photonuclear reactions in materials with a large atomic number such as the target, flattening filters, collimators, and multi-leaf collimators(MLC). MLC-based IMRT treatments increase the monitor units and the probability of production of photoneutrons from photon-induced nuclear reactions. The purpose of this study is to quantitatively evaluate the dose of photoneutrons produced from 3DCRT and IMRT technique for Rando phantom in cervical cancer. We performed the treatment plans with 3DCRT and IMRT technique using Rando phantom for treatment of cervical cancer. An Rando phantom placed on the couch in the supine position was irradiated using 15 MV photon beams. Optically stimulated luminescence dosimeters(OSLD) were attached to 4 different locations (abdomen, chest, head and neck, eyes) and from center of field size and measured 5 times each of locations. Measured neutron dose from IMRT technique increased by 9.0, 8.6, 8.8, and 14 times than 3DCRT technique for abdomen, chest, head and neck, and eyes, respectively. When using IMRT with 15 MV photon beams, the photoneutrons contributed a significant portion on out-of-field. It is difficult to prevent high energy photon beams to produce the photoneutrons due to physical properties, if necessary, It is difficult to prevent high energy photon beams to produce the photoneutrons due to physical properties, if necessary, it is need to provide the additional safe shielding on a linear accelerator and should therefore reduce the out-of-field dose.

  6. Study on the photoneutrons produced in 15 MV medical linear accelerators : Comparison of three dimensional conformal radiotherapy and intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Yang, Oh Nam; Yang, Oh Nam; Lim, Cheong Hwan

    2012-01-01

    Intensity-modulated radiotherapy(IMRT) have the ability to provide better dose conformity and sparing of critical normal tissues than three-dimensional radiotherapy(3DCRT). Especially, with the benefit of health insurance in 2011, its use now increasingly in many modern radiotherapy departments. Also the use of linear accelerator with high-energy photon beams over 10 MV is increasing. As is well known, these linacs have the capacity to produce photoneutrons due to photonuclear reactions in materials with a large atomic number such as the target, flattening filters, collimators, and multi-leaf collimators(MLC). MLC-based IMRT treatments increase the monitor units and the probability of production of photoneutrons from photon-induced nuclear reactions. The purpose of this study is to quantitatively evaluate the dose of photoneutrons produced from 3DCRT and IMRT technique for Rando phantom in cervical cancer. We performed the treatment plans with 3DCRT and IMRT technique using Rando phantom for treatment of cervical cancer. An Rando phantom placed on the couch in the supine position was irradiated using 15 MV photon beams. Optically stimulated luminescence dosimeters(OSLD) were attached to 4 different locations (abdomen, chest, head and neck, eyes) and from center of field size and measured 5 times each of locations. Measured neutron dose from IMRT technique increased by 9.0, 8.6, 8.8, and 14 times than 3DCRT technique for abdomen, chest, head and neck, and eyes, respectively. When using IMRT with 15 MV photon beams, the photoneutrons contributed a significant portion on out-of-field. It is difficult to prevent high energy photon beams to produce the photoneutrons due to physical properties, if necessary, It is difficult to prevent high energy photon beams to produce the photoneutrons due to physical properties, if necessary, it is need to provide the additional safe shielding on a linear accelerator and should therefore reduce the out-of-field dose

  7. Cardiac Side-effects From Breast Cancer Radiotherapy.

    Science.gov (United States)

    Taylor, C W; Kirby, A M

    2015-11-01

    Breast cancer radiotherapy reduces the risk of cancer recurrence and death. However, it usually involves some radiation exposure of the heart and analyses of randomised trials have shown that it can increase the risk of heart disease. Estimates of the absolute risks of radiation-related heart disease are needed to help oncologists plan each individual woman's treatment. The risk for an individual woman varies according to her estimated cardiac radiation dose and her background risk of ischaemic heart disease in the absence of radiotherapy. When it is known, this risk can then be compared with the absolute benefit of the radiotherapy. At present, many UK cancer centres are already giving radiotherapy with mean heart doses of less than 3 Gy and for most women the benefits of the radiotherapy will probably far outweigh the risks. Technical approaches to minimising heart dose in breast cancer radiotherapy include optimisation of beam angles, use of multileaf collimator shielding, intensity-modulated radiotherapy, treatment in a prone position, treatment in deep inspiration (including the use of breath-hold and gating techniques), proton therapy and partial breast irradiation. The multileaf collimator is suitable for many women with upper pole left breast cancers, but for women with central or lower pole cancers, breath-holding techniques are now recommended in national UK guidelines. Ongoing work aims to identify ways of irradiating pan-regional lymph nodes that are effective, involve minimal exposure of organs at risk and are feasible to plan, deliver and verify. These will probably include wide tangent-based field-in-field intensity-modulated radiotherapy or arc radiotherapy techniques in combination with deep inspiratory breath-hold, and proton beam irradiation for women who have a high predicted heart dose from intensity-modulated radiotherapy. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  8. Dosimetric Comparison of Intensity-Modulated Radiotherapy Plans, With or Without Anterior Myocardial Territory and Left Ventricle as Organs at Risk, in Early-Stage Left-Sided Breast Cancer Patients

    International Nuclear Information System (INIS)

    Tan Wenyong; Wang Xiaohong; Qiu Dasheng; Liu Dong; Jia Shaohui; Zeng Fanyu; Chen Zhengwang; Li Beihui; Xu Jiaozhen; Wei Lai; Hu Desheng

    2011-01-01

    Purpose: We evaluated heart sparing using an intensity-modulated radiotherapy (IMRT) plan with the left ventricle (LV) and/or the anterior myocardial territory (AMT) as additional organs at risk (OARs). Methods and Materials: A total of 10 patients with left-sided breast cancer were selected for dosimetric planning. Both lungs, the right breast, heart, LV, and AMT were defined as OARs. We generated one tangential field plan and four IMRT plans for each patient. We examined the dose–volume histogram parameters of the planning target volume and OARs. Results: Compared with the tangential field plan, the mean dose to the heart in the IMRT plans did not show significant differences; however, the dose to the AMT and LV decreased by 18.7–45.4% and 10.8–37.4%, respectively. The maximal dose to the heart decreased by 18.6–35.3%, to the AMT by 22.0–45.1%, and to the LV by 23.5–45.0%, And the relative volumes of the heart (V ≥12 ), AMT (V >11 ) and LV (V >10 ) decreased significantly with different levels, respectively. The volume of the heart, AMT, LV, both lungs, and right breast receiving ≥5 Gy showed a significant increase. Compared with the IMRT (H) plan, the mean dose to the heart, AMT, and LV decreased by 17.5–21.5%, 25.2–29.8%, and 22.8–29.8% and the maximal dose by 13.6–20.6%, 23.1–29.6%, and 17.3–29.1%, respectively. The IMRT plans for both lungs and the right breast showed no significant differences. Conclusions: The IMRT plans with the addition of the AMT and/or LV as OARs considerably increased heart sparing. We recommend including the LV as an additional OAR in such plans.

  9. Is "pelvic radiation disease" always the cause of bowel symptoms following prostate cancer intensity-modulated radiotherapy?

    Science.gov (United States)

    Min, Myo; Chua, Benjamin; Guttner, Yvonne; Abraham, Ned; Aherne, Noel J; Hoffmann, Matthew; McKay, Michael J; Shakespeare, Thomas P

    2014-02-01

    Pelvic radiation disease (PRD) also widely known as "radiation proctopathy" is a well recognised late side-effect following conventional prostate radiotherapy. However, endoscopic evaluation and/or specialist referral for new or persistent post-prostate radiotherapy bowel symptoms is not routine and serious diagnoses may potentially be missed. Here we report a policy of endoscopic evaluation of bowel symptoms persisting >90 days post radiotherapy for prostate cancer. A consecutive series of 102 patients who had radical prostate intensity-modulated radiotherapy (IMRT)/image-guided radiotherapy (IGRT) and who had new or ongoing bowel symptoms or positive faecal occult blood tests (FOBT) on follow up visits more than three months after treatment, were referred for endoscopic examination. All but one (99%) had full colonoscopic investigation. Endoscopic findings included gastric/colonic/rectal polyps (56%), diverticular disease (49%), haemorrhoids (38%), radiation proctopathy (29%), gastritis/oesophagitis (8%) and rarer diagnoses, including bowel cancer which was found in 3%. Only four patients (4%) had radiation proctopathy without associated pathology and 65 patients (63%) had more than one diagnosis. If flexible sigmoidoscopy alone were used, 36.6% of patients and 46.6% patients with polyp(s) would have had their diagnoses missed. Our study has shown that bowel symptoms following prostate IMRT/IGRT are due to numerous diagnoses other than PRD, including malignancy. Routine referral pathways should be developed for endoscopic evaluation/specialist review for patients with new or persistent bowel symptoms (or positive FOBT) following prostate radiotherapy. This recommendation should be considered for incorporation into national guidelines. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Dosimetric complication probability and acoustic analysis of vocal cord region in oropharyngeal carcinoma treated with voice-sparing intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Jain, S.; Gupta, T.; Agarwal, J.P.; Baccher, G.; Shrivastava, S.K.; Reenadevi; Master, J.

    2008-01-01

    Radiation to larynx has long been associated with speech and voice dysfunction. The objective is to study dosimetric parameters and complication probability of vocal cord region (VCR) and the effect of voice-sparing (VS) in the patients treated with intensity modulated radiotherapy (IMRT). The secondary objective is to describe the post-radiation acoustic voice characteristics and correlate them with the dosimetric parameters. (author)

  11. Intensity-modulated arc therapy simplified

    International Nuclear Information System (INIS)

    Wong, Eugene; Chen, Jeff Z.; Greenland, Jonathan

    2002-01-01

    Purpose: We present a treatment planning strategy for intensity-modulated radiation therapy using gantry arcs with dynamic multileaf collimator, previously termed intensity-modulated arc therapy (IMAT). Methods and Materials: The planning strategy is an extension of the photon bar arc and asymmetric arc techniques and is classified into three levels of complexity, with increasing number of gantry arcs. This principle allows us to generalize the analysis of the number of arcs required for intensity modulation for a given treatment site. Using a phantom, we illustrate how the current technique is more flexible than the photon bar arc technique. We then compare plans from our strategy with conventional three-dimensional conformal treatment plans for three sites: prostate (prostate plus seminal vesicles), posterior pharyngeal wall, and chest wall. Results: Our strategy generates superior IMAT treatment plans compared to conventional three-dimensional conformal plans. The IMAT plans spare critical organs well, and the trade-off for simplicity is that the dose uniformity in the target volume may not rival that of true inverse treatment plans. Conclusions: The analyses presented in this paper give a better understanding of IMAT plans. Our strategy is easier to understand and more efficient in generating plans than inverse planning systems; our plans are also simpler to modify, and quality assurance is more intuitive

  12. Quality of life in patients with nasopharyngeal carcinoma after intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Ma Liqin; Zhang Yu; Pan Jianji; Yang Ling; Kong Xiangquan; Ni Xiaolei

    2009-01-01

    Objective: To analyze the status of quality of life (QOL) and the related factors in patients with nasopharyngeal carcinoma (NPC) after radiotherapy, and to explore the significance of intensity modulated radiotherapy (IMRT) in decreasing side effects and improving QOL. Methods: A questionnaire including 35 items was designed according to EORTC QLQ-30 and the related symptoms and side effects of NPC. 142 NPC patients surviving with disease-free after radiotherapy were surveyed for the evaluation of QOL. The median follow-up was 25 months. The information of social demography and clinical details were collected. The patients were divided into IMRT group (75 patients) and conventional radiotherapy (CRT) group (67 patients). A statistical software package SAS 8.1 was used to compare the marks of QOL between the groups and analyze the influencing factors. Results: In IMRT group and CRT group, the marks of affective cognitive domain were 82.8 ± 14.7 and 77.5 ± 16.0 (t=2.07, P=0.040); and the marks of disease and treatment-related symptoms, and reactive domain were 78.9 ± 10.3 and 69.8 ± 13.3 (t=4.59, P= 0.000). The marks were significantly different in xerostomia, trismus, deglutitoy choke, hoarseness, restriction of neck movement and dysphagia (P<0.05). Of the influencing factors of QOL, the domain of body function was sex (regression coefficient was -4.692), the self-evaluation of total QOL were follow-up time and educational background (regression coefficients were -0.618 and 12.316, respectively), the financial status was family monthly income per capita (regression coefficient was -11.133), and the disease and treatment-related symptoms and reactive domain were group (techniques of radiation) and age (regression coefficients were -9.384 and -5.853, respectively). Conclusions: IMRT could improve the QOL through decreasing the side effects of patients with NPC including xerostomia, trismus, restriction of neck movement and dysphagia. Sex, age, family monthly

  13. [Novel irradiation techniques in the treatment of solid tumours. Radiotherapy for metastases].

    Science.gov (United States)

    Mayer, Arpád; Póti, Zsuzsa

    2014-02-23

    Novel developments in percutaneous radiotherapy, such as positron emission tomography/computed tomography, adaptive radiation planning, intensity modulation radiotherapy and intensity modulated arc therapy (RapidArc), as well as the newer generation of image control (cone-beam computed tomography) and image guided radiotherapy ensure increased dosages of planning target volume and clinical target volume of solid tumours without damaging surrounding tissues and providing maximal protection. By raising the dosages of planned target volume and clinical target volume, these novel technical developments have created new indications in the treatment of solid tumours. With the aid of the cone-beam computed tomography and image guided radiotherapy the organ metastasis (lung, liver, spinal cord) and the primary tumour can be treated safety and effectively. Hypofractionation, dose escalation and the use of stereotactic devices can probably decrease radiation damage. The authors review the most common forms of evidence-based fractionation schemes used in irradiation therapy.

  14. Dosimetric Comparison Between Intensity-Modulated with Coplanar Field and 3D Conformal Radiotherapy with Noncoplanar Field for Postocular Invasion Tumor

    International Nuclear Information System (INIS)

    Tu Wenyong; Liu Lu; Zeng Jun; Yin Weidong; Li Yun

    2010-01-01

    This study presents a dosimetric optimization effort aiming to compare noncoplanar field (NCF) on 3 dimensions conformal radiotherapy (3D-CRT) and coplanar field (CF) on intensity-modulated radiotherapy (IMRT) planning for postocular invasion tumor. We performed a planning study on the computed tomography data of 8 consecutive patients with localized postocular invasion tumor. Four fields NCF 3D-CRT in the transverse plane with gantry angles of 0-10 deg., 30-45 deg., 240-270 deg., and 310-335 deg. degrees were isocentered at the center of gravity of the target volume. The geometry of the beams was determined by beam's eye view. The same constraints were prepared with between CF IMRT optimization and NCF 3D-CRT treatment. The maximum point doses (D max) for the different optic pathway structures (OPS) with NCF 3D-CRT treatment should differ in no more than 3% from those with the NCF IMRT plan. Dose-volume histograms (DVHs) were obtained for all targets and organ at risk (OAR) with both treatment techniques. Plans with NCF 3D-CRT and CF IMRT constraints on target dose in homogeneity were computed, as well as the conformity index (CI) and homogeneity index (HI) in the target volume. The PTV coverage was optimal with both NCF 3D-CRT and CF IMRT plans in the 8 tumor sites. No difference was noted between the two techniques for the average D max and D min dose. NCF 3D-CRT and CF IMRT will yield similar results on CI. However, HI was a significant difference between NCF 3D-CRT and CF IMRT plan (p < 0.001). Physical endpoints for target showed the mean target dose to be low in the CF IMRT plan, caused by a large target dose in homogeneity (p < 0.001). The impact of NCF 3D-CRT versus CF IMRT set-up is very slight. NCF3D-CRT is one of the treatment options for postocular invasion tumor. However, constraints for OARs are needed.

  15. Intensity modulated radiotherapy (IMRT) for patients of the Brazilian unified health system (SUS): an analysis of 508 treatments two years after the technique implementation

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Harley Francisco de; Trevisan, Felipe Amstalden; Bighetti, Viviane Marques; Guimaraes, Flavio da Silva; Amaral, Leonardo Lira; Barbi, Gustavo Lazaro; Borges, Leandro Federiche; Peria, Fernanda Maris, E-mail: harley@fmrp.usp.br [Universidade de Sao Paulo (FMRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina

    2014-11-15

    Objective: the offering of high-technology radiotherapy to the population assisted by the Brazilian unified health system (SUS) is limited since it is not included in the system’s list of procedures and, many times, because of the insufficient installed capacity and lack of specialized human resources. Thus the access to intensity-modulated radiotherapy (IMRT) is restricted to few centers in Brazil. The present study is aimed at presenting the characteristics of the first 508 cases treated with IMRT during the first years after the technique implementation in a university hospital. Materials and methods: the first consecutive 508 cases of IMRT treatment completed in the period from May/2011 to September/2013 were reviewed. Static multi leaf was the technique employed. Results: amongst 4,233 treated patients, 12.5% were submitted to IMRT. Main indications for the treatment included cancers located in the skull, head and neck and prostate. Intensity modulated radiotherapy was utilized in about 30% of cranial and 50% of prostate treatments. Treatment toxicity was observed in 4% of the patients. Conclusion: because of restricted access to radiotherapy in addition to lack of coverage for the procedure, IMRT indications for SUS patients should be based on institutional clinical protocols, with special attention to the reduction of toxicity. (author)

  16. Comparative analysis of volumetric-modulated arc therapy and intensity-modulated radiotherapy for base of tongue cancer

    International Nuclear Information System (INIS)

    Nithya, L.; Arulraj, Kumar; Rathinamuthu, Sasikumar; Pandey, Manish Bhushan; Nambi Raj, N. Arunai

    2014-01-01

    The aim of this study was to compare the various dosimetric parameters of dynamic multileaf collimator (MLC) intensity modulated radiation therapy (IMRT) plans with volumetric modulated arc therapy (VMAT) plans for base of tongue cases. All plans were done in Monaco planning system for Elekta synergy linear accelerator with 80 MLC. IMRT plans were planned with nine stationary beams, and VMAT plans were done for 360° arc with single arc or dual arc. The dose to the planning target volumes (PTV) for 70, 63, and 56 Gy was compared. The dose to 95, 98, and 50% volume of PTV were analyzed. The homogeneity index (HI) and the conformity index (CI) of the PTV 70 were also analyzed. IMRT and VMAT plan showed similar dose coverage, HI, and CI. Maximum dose and dose to 1-cc volume of spinal cord, planning risk volume (PRV) cord, and brain stem were compared. IMRT plan and VMAT plan showed similar results except for the 1 cc of PRV cord that received slightly higher dose in VMAT plan. Mean dose and dose to 50% volume of right and left parotid glands were analyzed. VMAT plan gave better sparing of parotid glands than IMRT. In normal tissue dose analyses VMAT was better than IMRT. The number of monitor units (MU) required for delivering the good quality of the plan and the time required to deliver the plan for IMRT and VMAT were compared. The number of MUs for VMAT was higher than that of IMRT plans. However, the delivery time was reduced by a factor of two for VMAT compared with IMRT. VMAT plans yielded good quality of the plan compared with IMRT, resulting in reduced treatment time and improved efficiency for base of tongue cases. (author)

  17. Comparative analysis of volumetric-modulated arc therapy and intensity-modulated radiotherapy for base of tongue cancer

    Directory of Open Access Journals (Sweden)

    L Nithya

    2014-01-01

    Full Text Available The aim of this study was to compare the various dosimetric parameters of dynamic multileaf collimator (MLC intensity modulated radiation therapy (IMRT plans with volumetric modulated arc therapy (VMAT plans for base of tongue cases. All plans were done in Monaco planning system for Elekta synergy linear accelerator with 80 MLC. IMRT plans were planned with nine stationary beams, and VMAT plans were done for 360° arc with single arc or dual arc. The dose to the planning target volumes (PTV for 70, 63, and 56 Gy was compared. The dose to 95, 98, and 50% volume of PTV were analyzed. The homogeneity index (HI and the conformity index (CI of the PTV 70 were also analyzed. IMRT and VMAT plan showed similar dose coverage, HI, and CI. Maximum dose and dose to 1-cc volume of spinal cord, planning risk volume (PRV cord, and brain stem were compared. IMRT plan and VMAT plan showed similar results except for the 1 cc of PRV cord that received slightly higher dose in VMAT plan. Mean dose and dose to 50% volume of right and left parotid glands were analyzed. VMAT plan gave better sparing of parotid glands than IMRT. In normal tissue dose analyses VMAT was better than IMRT. The number of monitor units (MU required for delivering the good quality of the plan and the time required to deliver the plan for IMRT and VMAT were compared. The number of MUs for VMAT was higher than that of IMRT plans. However, the delivery time was reduced by a factor of two for VMAT compared with IMRT. VMAT plans yielded good quality of the plan compared with IMRT, resulting in reduced treatment time and improved efficiency for base of tongue cases.

  18. Quality Assurance Analysis of a Large Multicenter Practice: Does Increased Complexity of Intensity-Modulated Radiotherapy Lead to Increased Error Frequency?

    International Nuclear Information System (INIS)

    Olson, Adam C.; Wegner, Rodney E.; Scicutella, Carol; Heron, Dwight E.; Greenberger, Joel S.; Huq, M. Saiful; Bednarz, Gregory; Flickinger, John C.

    2012-01-01

    Purpose: Error reduction is an important concern in clinical medicine. Intensity-modulated radiotherapy (IMRT) is an important advancement in radiation oncology that increases the complexity of treatment, potentially increasing the error risk. We studied the frequency and severity of errors in a large multicenter practice to ascertain the impact of quality improvement interventions over time, IMRT, and type of practice. Methods and Materials: We analyzed prospective data from three academic and 16 community practice sites with 24,775 courses of radiotherapy (9,210 IMRT courses and 15,565 non-IMRT) between January 2006 and December 2009. All IMRT treatment was performed using one centralized dose planning center for all sites. Results: We prospectively identified various errors or potential errors in 0.14 % vs. 0.40 % of the IMRT vs. non-IMRT courses (13/9,210 vs. 62/15,565, p = 0.0004) and excluding potential errors: 0.03 % for IMRT vs. 0.21% for non-IMRT. We developed the Clinical Radiotherapy Error Severity Scale (CRESS) to classify error severity from 1 to 10, with 1 to 3 for potential or completely correctable errors, 4 to 5 for dose variations 5%. Multivariate analyses of CRESS values, severity >4, and any error (including potential) correlated significantly reduced errors with IMRT (p = 0.0001–0.0024) but found no significant difference between the academic and community practice sites and no change in error frequency over time despite implementation of 39 system-wide policy changes by the centralized quality improvement committee. Conclusions: Despite the increase in complexity with IMRT compared with conventional radiotherapy, it can be delivered with reduced error frequency.

  19. Volumetric modulated arc therapy for delivery of hypofractionated stereotactic lung radiotherapy: A dosimetric and treatment efficiency analysis

    International Nuclear Information System (INIS)

    McGrath, Samuel D.; Matuszak, Martha M.; Yan Di; Kestin, Larry L.; Martinez, Alvaro A.; Grills, Inga S.

    2010-01-01

    Purpose/objective(s): Volumetric modulated arc therapy (VMAT) allows for intensity-modulated radiation delivery during gantry rotation with dynamic MLC motion, variable dose rates and gantry speed modulation. We compared VMAT plans with 3D-CRT for hypofractionated lung radiotherapy. Materials/methods: Twenty-one 3D-CRT plans for Stage IA lung cancer previously treated stereotactically were selected. VMAT plans were generated by optimizing machine aperture shape and radiation intensity at 10 deg. intervals. A partial arc range of 180 deg. was manually selected to coincide with tumor location. The arc was resampled down to 5 deg. intervals to ensure dose calculation accuracy. Identical planning objectives were used for VMAT/3D-CRT. Parameters assessed included dose to PTV and organs-at-risk (OAR), monitor units, and multiple conformity and homogeneity indices. Plans were delivered to a phantom for time comparison. Results: Lung V 20/12.5/10/5 were less with VMAT (relative reduction 4.5%, p = .02; 3.2%, p = .01; 2.6%, p = .01; 4.2%, p = .03, respectively). Mean/maximum-doses to PTV, dose to additional OARs, 95% isodose line conformity, and target volume homogeneity were equivalent. VMAT improved conformity at both the 80% (1.87 vs. 1.93, p = .08) and 50% isodose lines (5.19 vs. 5.65, p = .01). Treatment times were reduced significantly with VMAT (mean 6.1 vs. 11.9 min, p < .01). Conclusions: Single arc VMAT planning achieves highly conformal dose distributions while controlling dose to critical structures, including significant reduction in lung dose volume parameters. Employing a VMAT technique decreases treatment times by 37-63%, reducing the chance of error introduced by intrafraction variation. The quality and efficiency of VMAT is ideally suited for stereotactic lung radiotherapy delivery.

  20. Australia-wide comparison of intensity modulated radiation therapy prostate plans

    International Nuclear Information System (INIS)

    Skala, M.; Holloway, L.; Bailey, M.; Kneebone, A.

    2005-01-01

    The aim of this study was to investigate the ability of Australian centres to produce high-dose intensity modulated radiation therapy (IMRT) prostate plans, and to compare the planning parameters and resultant dose distributions. Five Australian radiation therapy departments were invited to participate. Each centre received an identical 5 mm-slice CT data set complete with contours of the prostate, seminal vesicles, rectum, bladder, femoral heads and body outline. The planning team was asked to produce the best plan possible, using published Memorial Sloan-Kettering Cancer Centre prescription and dose constraints. Three centres submitted plans for evaluation. All plans covered the planning target volume adequately; however, only one plan met all the critical organ dose constraints. Although the planning parameters, beam arrangements and planning systems were different for each centre, the resulting plans were similar. In Australia, IMRT for prostate cancer is in the early stages of implementation, with routine use limited to a few centres. Copyright (2005) Blackwell Science Pty Ltd

  1. A particle swarm optimization algorithm for beam angle selection in intensity-modulated radiotherapy planning

    International Nuclear Information System (INIS)

    Li Yongjie; Yao Dezhong; Yao, Jonathan; Chen Wufan

    2005-01-01

    Automatic beam angle selection is an important but challenging problem for intensity-modulated radiation therapy (IMRT) planning. Though many efforts have been made, it is still not very satisfactory in clinical IMRT practice because of overextensive computation of the inverse problem. In this paper, a new technique named BASPSO (Beam Angle Selection with a Particle Swarm Optimization algorithm) is presented to improve the efficiency of the beam angle optimization problem. Originally developed as a tool for simulating social behaviour, the particle swarm optimization (PSO) algorithm is a relatively new population-based evolutionary optimization technique first introduced by Kennedy and Eberhart in 1995. In the proposed BASPSO, the beam angles are optimized using PSO by treating each beam configuration as a particle (individual), and the beam intensity maps for each beam configuration are optimized using the conjugate gradient (CG) algorithm. These two optimization processes are implemented iteratively. The performance of each individual is evaluated by a fitness value calculated with a physical objective function. A population of these individuals is evolved by cooperation and competition among the individuals themselves through generations. The optimization results of a simulated case with known optimal beam angles and two clinical cases (a prostate case and a head-and-neck case) show that PSO is valid and efficient and can speed up the beam angle optimization process. Furthermore, the performance comparisons based on the preliminary results indicate that, as a whole, the PSO-based algorithm seems to outperform, or at least compete with, the GA-based algorithm in computation time and robustness. In conclusion, the reported work suggested that the introduced PSO algorithm could act as a new promising solution to the beam angle optimization problem and potentially other optimization problems in IMRT, though further studies need to be investigated

  2. The Failure Patterns of Oral Cavity Squamous Cell Carcinoma After Intensity-Modulated Radiotherapy-University of Iowa Experience

    International Nuclear Information System (INIS)

    Yao Min; Chang, Kristi; Funk, Gerry F.; Lu Heming; Tan Huaming; Wacha, Judith C; Dornfeld, Kenneth J.; Buatti, John M.

    2007-01-01

    Purpose: Determine the failure patterns of oral cavity squamous cell carcinoma (SCC) treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: Between May 2001 and July 2005, 55 patients with oral cavity SCC were treated with IMRT for curative intent. Forty-nine received postoperative IMRT, 5 definitive IMRT, and 1 neoadjuvant. Three target volumes were defined (clinical target CTV1, CTV2, and CTV3). The failure patterns were determined by coregistration or comparison of the treatment planning computed tomography to the images obtained at the time of recurrence. Results: The median follow-up for all patients was 17.1 months (range, 0.27-59.3 months). The median follow-up for living patients was 23.9 months (range, 9.3-59.3 months). Nine patients had locoregional failures: 4 local failures only, 2 regional failures only, and 3 had both local and regional failures. Five patients failed distantly; of these, 3 also had locoregional failures. The 2-year overall survival, disease-specific survival, local recurrence-free survival, locoregional recurrence-free survival, and distant disease-free survival was 68%, 74%, 85%, 82%, and 89%, respectively. The median time from treatment completion to locoregional recurrence was 4.1 months (range, 3.0-12.1 months). Except for 1 patient who failed in contralateral lower neck outside the radiation field, all failed in areas that had received a high dose of radiation. The locoregional control is strongly correlated with extracapsular extension. Conclusions: Intensity-modulated RT is effective for oral cavity SCC. Most failures are in-field failures. Further clinical studies are necessary to improve the outcomes of patients with high-risk features, particularly for those with extracapsular extension

  3. Image-guided radiotherapy in near real time with intensity-modulated radiotherapy megavoltage treatment beam imaging.

    Science.gov (United States)

    Mao, Weihua; Hsu, Annie; Riaz, Nadeem; Lee, Louis; Wiersma, Rodney; Luxton, Gary; King, Christopher; Xing, Lei; Solberg, Timothy

    2009-10-01

    To utilize image-guided radiotherapy (IGRT) in near real time by obtaining and evaluating the online positions of implanted fiducials from continuous electronic portal imaging device (EPID) imaging of prostate intensity-modulated radiotherapy (IMRT) delivery. Upon initial setup using two orthogonal images, the three-dimensional (3D) positions of all implanted fiducial markers are obtained, and their expected two-dimensional (2D) locations in the beam's-eye-view (BEV) projection are calculated for each treatment field. During IMRT beam delivery, EPID images of the megavoltage treatment beam are acquired in cine mode and subsequently analyzed to locate 2D locations of fiducials in the BEV. Simultaneously, 3D positions are estimated according to the current EPID image, information from the setup portal images, and images acquired at other gantry angles (the completed treatment fields). The measured 2D and 3D positions of each fiducial are compared with their expected 2D and 3D setup positions, respectively. Any displacements larger than a predefined tolerance may cause the treatment system to suspend the beam delivery and direct the therapists to reposition the patient. Phantom studies indicate that the accuracy of 2D BEV and 3D tracking are better than 1 mm and 1.4 mm, respectively. A total of 7330 images from prostate treatments were acquired and analyzed, showing a maximum 2D displacement of 6.7 mm and a maximum 3D displacement of 6.9 mm over 34 fractions. This EPID-based, real-time IGRT method can be implemented on any external beam machine with portal imaging capabilities without purchasing any additional equipment, and there is no extra dose delivered to the patient.

  4. Intensity Modulated Radiotherapy (IMRT) in the postoperative treatment of an adenocarcinoma of the endometrium complicated by a pelvic kidney

    OpenAIRE

    Castilho, Marcus S; Jacinto, Alexandre A; Viani, Gustavo A; Campana, Andre; Carvalho, Juliana; Ferrigno, Robson; Novaes, Paulo ERS; Fogaroli, Ricardo C; Salvajoli, Joao V

    2006-01-01

    Abstract Background Pelvic Radiotherapy (RT) as a postoperative treatment for endometrial cancer improves local regional control. Brachytherapy also improves vaginal control. Both treatments imply significant side effects that a fine RT technique can help avoiding. Intensity Modulated RT (IMRT) enables the treatment of the target volume while protecting normal tissue. It therefore reduces the incidence and severity of side effects. Case We report on a 50 year-old patient with a serous-papilif...

  5. Health-Related Quality of Life in Patients With Locally Advanced Prostate Cancer After 76 Gy Intensity-Modulated Radiotherapy vs. 70 Gy Conformal Radiotherapy in a Prospective and Longitudinal Study

    International Nuclear Information System (INIS)

    Lips, Irene; Dehnad, Human; Kruger, Arto Boeken; Moorselaar, Jeroen van; Heide, Uulke van; Battermann, Jan; Vulpen, Marco van

    2007-01-01

    Purpose: To compare quality of life (QoL) after 70 Gy conformal radiotherapy with QoL after 76 Gy intensity-modulated radiotherapy (IMRT) in patients with locally advanced prostate carcinoma. Methods and Materials: Seventy-eight patients with locally advanced prostate cancer were treated with 70 Gy three-field conformal radiotherapy, and 92 patients received 76 Gy IMRT with fiducial markers for position verification. Quality of life was measured by RAND-36, the European Organization for Research and Treatment of Cancer core questionnaire (EORTC QLQ-C30(+3)), and the prostate-specific EORTC QLQ-PR25, before radiotherapy (baseline) and 1 month and 6 months after treatment. Quality of life changes in time (baseline vs. 1 month and baseline vs. 6 months) of ≥10 points were considered clinically relevant. Results: Differences between the treatment groups for QoL changes over time occurred in several QoL domains. The 76-Gy group revealed no significant deterioration in QoL compared with the 70-Gy group. The IMRT 76-Gy group even demonstrated a significantly better change in QoL from baseline to 1 month in several domains. The conformal 70-Gy group revealed temporary deterioration in pain, role functioning, and urinary symptoms; for the IMRT 76-Gy group a better QoL in terms of change in health existed after 1 month, which persisted after 6 months. For both treatment groups temporary deterioration in physical role restriction occurred after 1 month, and an improvement in emotional role restriction occurred after 6 months. Sexual activity was reduced after treatment for both groups and remained decreased after 6 months. Conclusions: Intensity-modulated radiotherapy and accurate position verification seem to provide a possibility to increase the radiation dose for prostate cancer without deterioration in QoL

  6. Dosimetric comparison between intensity-modulated with coplanar field and 3D conformal radiotherapy with noncoplanar field for postocular invasion tumor.

    Science.gov (United States)

    Wenyong, Tu; Lu, Liu; Jun, Zeng; Weidong, Yin; Yun, Li

    2010-01-01

    This study presents a dosimetric optimization effort aiming to compare noncoplanar field (NCF) on 3 dimensions conformal radiotherapy (3D-CRT) and coplanar field (CF) on intensity-modulated radiotherapy (IMRT) planning for postocular invasion tumor. We performed a planning study on the computed tomography data of 8 consecutive patients with localized postocular invasion tumor. Four fields NCF 3D-CRT in the transverse plane with gantry angles of 0-10 degrees , 30-45 degrees , 240-270 degrees , and 310-335 degrees degrees were isocentered at the center of gravity of the target volume. The geometry of the beams was determined by beam's eye view. The same constraints were prepared with between CF IMRT optimization and NCF 3D-CRT treatment. The maximum point doses (D max) for the different optic pathway structures (OPS) with NCF 3D-CRT treatment should differ in no more than 3% from those with the NCF IMRT plan. Dose-volume histograms (DVHs) were obtained for all targets and organ at risk (OAR) with both treatment techniques. Plans with NCF 3D-CRT and CF IMRT constraints on target dose in homogeneity were computed, as well as the conformity index (CI) and homogeneity index (HI) in the target volume. The PTV coverage was optimal with both NCF 3D-CRT and CF IMRT plans in the 8 tumor sites. No difference was noted between the two techniques for the average D(max) and D(min) dose. NCF 3D-CRT and CF IMRT will yield similar results on CI. However, HI was a significant difference between NCF 3D-CRT and CF IMRT plan (p 3D-CRT versus CF IMRT set-up is very slight. NCF3D-CRT is one of the treatment options for postocular invasion tumor. However, constraints for OARs are needed. 2010 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  7. Simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) in nasopharyngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Studer, Gabriela [Dept. of Radiation Oncology, Univ. Hospital, Zurich (Switzerland); Peponi, Evangelia; Glanzmann, Christoph; Kunz, Guntram; Renner, Christoph; Tomuschat, Katja

    2010-03-15

    Purpose: To assess the efficacy and safety of using simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) to treat nasopharyngeal cancer (NPC) in a Caucasian cohort. Outcome was analyzed with respect to dose-volume histogram (DVH) values. Patients and Methods: Between 03/2002 and 01/2008, 39 NPC patients underwent SIB-IMRT (37 Caucasians; 31 males; mean age 53 years [16-78 years]). 41% presented with WHO (World Health Organization) type 1 unfavorable histology, 85% with stage III/IV disease. 19 patients had total gross tumor volume (GTV) 16-70 cm{sup 3} (mean 36 cm{sup 3}), while 16 had GTV > 70 cm{sup 3} (73-217 cm{sup 3}; mean 115 cm{sup 3}). All patients with stage II-IV disease received concomitant cisplatin. The prescribed SIB dose delivered to the planning target volume (PTV) was 70 Gy (2.00 Gy/fraction) in 17, 69.6 Gy (2.11 Gy/fraction) in 19, and 66 Gy (2.20 Gy/fraction) in three patients. Results: 3-year local relapse-free, nodal relapse-free, distant metastases-free, disease-free rates and overall survival were 86%, 89%, 85%, 72%, and 85% (median follow-up 30 months [8-71 months]). Histology was a significant prognostic factor concerning overall survival, with worst prognosis in WHO type 1 compared to type 2/3 (75% vs. 93%; p = 0.03). There was a trend in favor of WHO type 2/3 regarding local control (74% vs. 94%; p = 0.052). The PTV DVHs showed a slight left shift compared to reported series. Three patients developed grade 3 late effects (xerostomia [n=2], dysphagia [n=1], hearing loss [n=1]). Conclusion: In comparison with predominantly Asian NPC IMRT series in the literature, chemo-IMRT in the own Caucasian cohort, characterized by less radioresponsive WHO type 1, was equally effective. Treatment tolerance was excellent. (orig.)

  8. SU-E-T-309: Dosimetric Comparison of Simultaneous Integrated Boost Treatment Plan Between Intensity Modulated Radiotherapies (IMRTs), Dual Arc Volumetric Modulated Arc Therapy (DA-VMAT) and Single Arc Volumetric Modulated Arc Therapy (SA-VMAT) for Nasopharyngeal Carcinoma (NPC)

    International Nuclear Information System (INIS)

    Sivakumar, R; Janardhan, N; Bhavani, P; Surendran, J; Saranganathan, B; Ibrahim, S; Jhonson, B; Madhuri, B; Anuradha, C

    2015-01-01

    Purpose: To compare the plan quality and performance of Simultaneous Integrated Boost (SIB) Treatment plan between Seven field (7F) and Nine field(9F) Intensity Modulated Radiotherapies and Single Arc (SA) and Dual Arc (DA) Volumetric Modulated Arc Therapy( VMAT). Methods: Retrospective planning study of 16 patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with 7F-IMRT, Single Arc VMAT and Dual Arc VMAT using CMS, Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation done as per Radiation Therapy Oncology Protocols (RTOG 0225&0615). Dose Prescribed as 70Gy to Planning Target Volumes (PTV70) and 61Gy to PTV61 in 33 fraction as a SIB technique. Conformity Index(CI), Homogeneity Index(HI) were used as analysis parameter for Target Volumes as well as Mean dose and Max dose for Organ at Risk(OAR,s).Treatment Delivery Time(min), Monitor unit per fraction (MU/fraction), Patient specific quality assurance were also analysed. Results: A Poor dose coverage and Conformity index (CI) was observed in PTV70 by 7F-IMRT among other techniques. SA-VMAT achieved poor dose coverage in PTV61. No statistical significance difference observed in OAR,s except Spinal cord (P= 0.03) and Right optic nerve (P=0.03). DA-VMAT achieved superior target coverage, higher CI (P =0.02) and Better HI (P=0.03) for PTV70 other techniques (7F-IMRT/9F-IMRT/SA-VMAT). A better dose spare for Parotid glands and spinal cord were seen in DA-VMAT. The average treatment delivery time were 5.82mins, 6.72mins, 3.24mins, 4.3mins for 7F-IMRT, 9F-IMRT, SA-VMAT and DA-VMAT respectively. Significance difference Observed in MU/fr (P <0.001) and Patient quality assurance pass rate were >95% (Gamma analysis (Γ3mm, 3%). Conclusion: DA-VAMT showed better target dose coverage and achieved better or equal performance in sparing OARs among other techniques. SA-VMAT offered least Treatment Time than other techniques but achieved poor target coverage. DA-VMAT offered

  9. SU-E-T-309: Dosimetric Comparison of Simultaneous Integrated Boost Treatment Plan Between Intensity Modulated Radiotherapies (IMRTs), Dual Arc Volumetric Modulated Arc Therapy (DA-VMAT) and Single Arc Volumetric Modulated Arc Therapy (SA-VMAT) for Nasopharyngeal Carcinoma (NPC)

    Energy Technology Data Exchange (ETDEWEB)

    Sivakumar, R; Janardhan, N; Bhavani, P; Surendran, J; Saranganathan, B; Ibrahim, S; Jhonson, B; Madhuri, B [Omega Hospitals, Hyderabad, Telangana (India); Anuradha, C [Vit University, Vellore, Tamil Nadu (India)

    2015-06-15

    Purpose: To compare the plan quality and performance of Simultaneous Integrated Boost (SIB) Treatment plan between Seven field (7F) and Nine field(9F) Intensity Modulated Radiotherapies and Single Arc (SA) and Dual Arc (DA) Volumetric Modulated Arc Therapy( VMAT). Methods: Retrospective planning study of 16 patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with 7F-IMRT, Single Arc VMAT and Dual Arc VMAT using CMS, Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation done as per Radiation Therapy Oncology Protocols (RTOG 0225&0615). Dose Prescribed as 70Gy to Planning Target Volumes (PTV70) and 61Gy to PTV61 in 33 fraction as a SIB technique. Conformity Index(CI), Homogeneity Index(HI) were used as analysis parameter for Target Volumes as well as Mean dose and Max dose for Organ at Risk(OAR,s).Treatment Delivery Time(min), Monitor unit per fraction (MU/fraction), Patient specific quality assurance were also analysed. Results: A Poor dose coverage and Conformity index (CI) was observed in PTV70 by 7F-IMRT among other techniques. SA-VMAT achieved poor dose coverage in PTV61. No statistical significance difference observed in OAR,s except Spinal cord (P= 0.03) and Right optic nerve (P=0.03). DA-VMAT achieved superior target coverage, higher CI (P =0.02) and Better HI (P=0.03) for PTV70 other techniques (7F-IMRT/9F-IMRT/SA-VMAT). A better dose spare for Parotid glands and spinal cord were seen in DA-VMAT. The average treatment delivery time were 5.82mins, 6.72mins, 3.24mins, 4.3mins for 7F-IMRT, 9F-IMRT, SA-VMAT and DA-VMAT respectively. Significance difference Observed in MU/fr (P <0.001) and Patient quality assurance pass rate were >95% (Gamma analysis (Γ3mm, 3%). Conclusion: DA-VAMT showed better target dose coverage and achieved better or equal performance in sparing OARs among other techniques. SA-VMAT offered least Treatment Time than other techniques but achieved poor target coverage. DA-VMAT offered

  10. Dosimetric comparison of helical tomotherapy, intensity-modulated radiation therapy, volumetric-modulated arc therapy, and 3-dimensional conformal therapy for the treatment of T1N0 glottic cancer

    International Nuclear Information System (INIS)

    Ekici, Kemal; Pepele, Eda K.; Yaprak, Bahaddin; Temelli, Oztun; Eraslan, Aysun F.; Kucuk, Nadir; Altınok, Ayse Y.; Sut, Pelin A.; Alpak, Ozlem D.; Colak, Cemil; Mayadagli, Alpaslan

    2016-01-01

    Various radiotherapy planning methods for T1N0 laryngeal cancer have been proposed to decrease normal tissue toxicity. We compare helical tomotherapy (HT), linac-based intensity-modulated radiation therapy (IMRT), volumetric-modulated arc therapy (VMAT), and 3-D conformal radiotherapy (3D-CRT) techniques for T1N0 laryngeal cancer. Overall, 10 patients with T1N0 laryngeal cancer were selected and evaluated. Furthermore, 10 radiotherapy treatment plans have been created for all 10 patients, including HT, IMRT, VMAT, and 3D-CRT. IMRT, VMAT, and HT plans vs 3D-CRT plans consistently provided superior planning target volume (PTV) coverage. Similar target coverage was observed between the 3 IMRT modalities. Compared with 3D-CRT, IMRT, HT, and VMAT significantly reduced the mean dose to the carotid arteries. VMAT resulted in the lowest mean dose to the submandibular and thyroid glands. Compared with 3D-CRT, IMRT, HT, and VMAT significantly increased the maximum dose to the spinal cord It was observed that the 3 IMRT modalities studied showed superior target coverage with less variation between each plan in comparison with 3D-CRT. The 3D-CRT plans performed better at the D max of the spinal cord. Clinical investigation is warranted to determine if these treatment approaches would translate into a reduction in radiation therapy–induced toxicities.

  11. Intensity-modulated radiotherapy for pituitary adenomas: The preliminary report of Cleveland Clinic experience

    International Nuclear Information System (INIS)

    Mackley, Heath B.; Reddy, Chandana A. M.S.; Lee, S.-Y.; Harnisch, Gayle A.; Mayberg, Marc R.; Hamrahian, Amir H.; Suh, John H.

    2007-01-01

    Purpose: Intensity-modulated radiotherapy (IMRT) is being increasingly used for the treatment of pituitary adenomas. However, there have been few published data on the short- and long-term outcomes of this treatment. This is the initial report of Cleveland Clinic's experience. Methods and Materials: Between February 1998 and December 2003, 34 patients with pituitary adenomas were treated with IMRT. A retrospective chart review was conducted for data analysis. Results: With a median follow-up of 42.5 months, the treatment has proven to be well tolerated, with performance status remaining stable in 90% of patients. Radiographic local control was 89%, and among patients with secretory tumors, 100% had a biochemical response. Only 1 patient required salvage surgery for progressive disease, giving a clinical progression free survival of 97%. The only patient who received more than 46 Gy experienced optic neuropathy 8 months after radiation. Smaller tumor volume significantly correlated with subjective improvements in nonvisual neurologic complaints (p = 0.03), and larger tumor volume significantly correlated with subjective worsening of visual symptoms (p = 0.05). New hormonal supplementation was required for 40% of patients. Younger patients were significantly more likely to require hormonal supplementation (p 0.03). Conclusions: Intensity-modulated radiation therapy is a safe and effective treatment for pituitary adenomas over the short term. Longer follow-up is necessary to determine if IMRT confers any advantage with respect to either tumor control or toxicity over conventional radiation modalities

  12. Potential Benefits of Scanned Intensity-Modulated Proton Therapy Versus Advanced Photon Therapy With Regard to Sparing of the Salivary Glands in Oropharyngeal Cancer

    International Nuclear Information System (INIS)

    Water, Tara A. van de; Lomax, Antony J.; Bijl, Hendrik P.; Jong, Marije E. de; Schilstra, Cornelis; Hug, Eugen B.; Langendijk, Johannes A.

    2011-01-01

    Purpose: To test the hypothesis that scanned intensity-modulated proton therapy (IMPT) results in a significant dose reduction to the parotid and submandibular glands as compared with intensity-modulated radiotherapy with photons (IMRT) and three-dimensional conformal radiotherapy (3D-CRT) for oropharyngeal cancer. In addition, we investigated whether the achieved dose reductions would theoretically translate into a reduction of salivary dysfunction and xerostomia. Methods and Materials: Ten patients with N0 oropharyngeal carcinoma were used. The intensity-modulated plans delivered simultaneously 70 Gy to the boost planning target volume (PTV2) and 54 Gy to the elective nodal areas (PTV1). The 3D-CRT technique delivered sequentially 70 Gy and 46 Gy to PTV2 and PTV1, respectively. Normal tissue complication probabilities were calculated for salivary dysfunction and xerostomia. Results: Planning target volume coverage results were similar for IMPT and IMRT. Intensity-modulated proton therapy clearly improved the conformity. The 3D-CRT results were inferior to these results. The mean dose to the parotid glands by 3D-CRT (50.8 Gy), IMRT (25.5 Gy), and IMPT (16.8 Gy) differed significantly. For the submandibular glands no significant differences between IMRT and IMPT were found. The dose reductions obtained with IMPT theoretically translated into a significant reduction in normal tissue complication probability. Conclusion: Compared with IMRT and 3D-CRT, IMPT improved sparing of the organs at risk, while keeping similar target coverage results. The dose reductions obtained with IMPT vs. IMRT and 3D-CRT varied widely per individual patient. Intensity-modulated proton therapy theoretically translated into a clinical benefit for most cases, but this requires clinical validation.

  13. Change of tumor target volume during waiting time for intensity-modulated radiotherapy (IMRT) in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Chen Bo; Yi Junlin; Gao Li; Xu Guozhen; Huang Xiaodong; Zhang Zhong; Luo Jingwei; Li Suyan

    2007-01-01

    Objective: To determine the influence of change in tumor target volume of nasopharyngeal carcinoma (NPC) while waiting for intensity modulated radiation therapy (IMRT). Methods: From March 2005 to December 2005, 31 patients with nasopharyngeal carcinoma received IMRT as the initial treatment at the Cancer Hospital of Chinese Academic of Medical Sciences. The original simulation CT scan was acquired before IMRT planning. A second CT scan was acquired before the start of radiotherapy. Wait- ing time was defined as the duration between CT simulation and start of radiotherapy. CT-CT fusion was used to minimize the error of delineation between the first tumor target volume (GTV) and the second tumor target volume (sGTV). Tumor target volume was calculated by treatment planning system. T test was carried out to analyse the difference between GTV and sGTV. Pearson correlation and multivariate linear regression was used to analyse the influence factor of the change betweent GTV and sGTV. Results: Median waiting time was 18 days (range, 9-27 days). There were significant differences between GTV and sGTV of both primary tumor (P=0.009) and metastatic lymphoma (P=0.005 ). Both Pearson correlation and multivariate linear regression showed that the change of primary tumor target volume had significant correlation with the first tumor target volume but had no significant correlation with the waiting time, sex, age, T stage and N stage (1992 Chinese Fuzhou Staging Classification). Conclusions: Within the range of the waiting time ob- served in our study, large volume primary tumor would have had a significant increase in volume, but whether the therapeutic effect would be influenced or not would need to be proved by study of large number of cases. Patients with large volume tumor should be considered to reduce the influence of waiting time by enlarging gross target volume and clinical targe volume and by neoadjuveant chemotherapy. For avoiding the unnecessary high-dose to normal

  14. Is “pelvic radiation disease” always the cause of bowel symptoms following prostate cancer intensity-modulated radiotherapy?

    International Nuclear Information System (INIS)

    Min, Myo; Chua, Benjamin; Guttner, Yvonne; Abraham, Ned; Aherne, Noel J.; Hoffmann, Matthew; McKay, Michael J.; Shakespeare, Thomas P.

    2014-01-01

    Background: Pelvic radiation disease (PRD) also widely known as “radiation proctopathy” is a well recognised late side-effect following conventional prostate radiotherapy. However, endoscopic evaluation and/or specialist referral for new or persistent post-prostate radiotherapy bowel symptoms is not routine and serious diagnoses may potentially be missed. Here we report a policy of endoscopic evaluation of bowel symptoms persisting >90 days post radiotherapy for prostate cancer. Methods and materials: A consecutive series of 102 patients who had radical prostate intensity-modulated radiotherapy (IMRT)/image-guided radiotherapy (IGRT) and who had new or ongoing bowel symptoms or positive faecal occult blood tests (FOBT) on follow up visits more than three months after treatment, were referred for endoscopic examination. All but one (99%) had full colonoscopic investigation. Results: Endoscopic findings included gastric/colonic/rectal polyps (56%), diverticular disease (49%), haemorrhoids (38%), radiation proctopathy (29%), gastritis/oesophagitis (8%) and rarer diagnoses, including bowel cancer which was found in 3%. Only four patients (4%) had radiation proctopathy without associated pathology and 65 patients (63%) had more than one diagnosis. If flexible sigmoidoscopy alone were used, 36.6% of patients and 46.6% patients with polyp(s) would have had their diagnoses missed. Conclusions: Our study has shown that bowel symptoms following prostate IMRT/IGRT are due to numerous diagnoses other than PRD, including malignancy. Routine referral pathways should be developed for endoscopic evaluation/specialist review for patients with new or persistent bowel symptoms (or positive FOBT) following prostate radiotherapy. This recommendation should be considered for incorporation into national guidelines

  15. Treatment planning for heavy ion radiotherapy: physical beam model and dose optimization

    International Nuclear Information System (INIS)

    Kraemer, M.; Haberer, T.; Kraft, G.; Schardt, D.; Weber, U.

    2000-09-01

    We describe a novel code system, TRiP, dedicated to the planning of radiotherapy with energetic ions, in particular 12 C. The software is designed to cooperate with three-dimensional active dose shaping devices like the GSI raster scan system. This unique beam delivery system allows to select any combination from a list of 253 individual beam energies, 7 different beam spot sizes and 15 intensity levels. The software includes a beam model adapted to and verified for carbon ions. Inverse planning techniques are implemented in order to obtain a uniform target dose distribution from clinical input data, i.e. CT images and patient contours. This implies the automatic generation of intensity modulated fields of heavy ions with as many as 40000 raster points, where each point corresponds to a specific beam position, energy and particle fluence. This set of data is directly passed to the beam delivery and control system. The treatment planning code is in clinical use since the start of the GSI pilot project in December 1997. To this end 48 patients have been successfully planned and treated. (orig.)

  16. Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization

    Science.gov (United States)

    Krämer, M.; Jäkel, O.; Haberer, T.; Kraft, G.; Schardt, D.; Weber, U.

    2000-11-01

    We describe a novel code system, TRiP, dedicated to the planning of radiotherapy with energetic ions, in particular 12C. The software is designed to cooperate with three-dimensional active dose shaping devices like the GSI raster scan system. This unique beam delivery system allows us to select any combination from a list of 253 individual beam energies, 7 different beam spot sizes and 15 intensity levels. The software includes a beam model adapted to and verified for carbon ions. Inverse planning techniques are implemented in order to obtain a uniform target dose distribution from clinical input data, i.e. CT images and patient contours. This implies the automatic generation of intensity modulated fields of heavy ions with as many as 40 000 raster points, where each point corresponds to a specific beam position, energy and particle fluence. This set of data is directly passed to the beam delivery and control system. The treatment planning code has been in clinical use since the start of the GSI pilot project in December 1997. Forty-eight patients have been successfully planned and treated.

  17. Intensity modulated radiation therapy using laser-accelerated protons: a Monte Carlo dosimetric study

    International Nuclear Information System (INIS)

    Fourkal, E; Li, J S; Xiong, W; Nahum, A; Ma, C-M

    2003-01-01

    In this paper we present Monte Carlo studies of intensity modulated radiation therapy using laser-accelerated proton beams. Laser-accelerated protons coming out of a solid high-density target have broad energy and angular spectra leading to dose distributions that cannot be directly used for therapeutic applications. Through the introduction of a spectrometer-like particle selection system that delivers small pencil beams of protons with desired energy spectra it is feasible to use laser-accelerated protons for intensity modulated radiotherapy. The method presented in this paper is a three-dimensional modulation in which the proton energy spectrum and intensity of each individual beamlet are modulated to yield a homogeneous dose in both the longitudinal and lateral directions. As an evaluation of the efficacy of this method, it has been applied to two prostate cases using a variety of beam arrangements. We have performed a comparison study between intensity modulated photon plans and those for laser-accelerated protons. For identical beam arrangements and the same optimization parameters, proton plans exhibit superior coverage of the target and sparing of neighbouring critical structures. Dose-volume histogram analysis of the resulting dose distributions shows up to 50% reduction of dose to the critical structures. As the number of fields is decreased, the proton modality exhibits a better preservation of the optimization requirements on the target and critical structures. It is shown that for a two-beam arrangement (parallel-opposed) it is possible to achieve both superior target coverage with 5% dose inhomogeneity within the target and excellent sparing of surrounding tissue

  18. Clinical Outcome in Posthysterectomy Cervical Cancer Patients Treated With Concurrent Cisplatin and Intensity-Modulated Pelvic Radiotherapy: Comparison With Conventional Radiotherapy

    International Nuclear Information System (INIS)

    Chen, M.-F.; Tseng, C.-J.; Tseng, C.-C.; Kuo, Y.-C.; Yu, C.-Y.; Chen, W.-C.

    2007-01-01

    Purpose: To assess local control and acute and chronic toxicity with intensity-modulated radiation therapy (IMRT) as adjuvant treatment of cervical cancer. Methods and Materials: Between April 2002 and February 2006, 68 patients at high risk of cervical cancer after hysterectomy were treated with adjuvant pelvic radiotherapy and concurrent chemotherapy. Adjuvant chemotherapy consisted of cisplatin (50 mg/m 2 ) for six cycles every week. Thirty-three patients received adjuvant radiotherapy by IMRT. Before the IMRT series was initiated, 35 other patients underwent conventional four-field radiotherapy (Box-RT). The two groups did not differ significantly in respect of clinicopathologic and treatment factors. Results: IMRT provided compatible local tumor control compared with Box-RT. The actuarial 1-year locoregional control for patients in the IMRT and Box-RT groups was 93% and 94%, respectively. IMRT was well tolerated, with significant reduction in acute gastrointestinal (GI) and genitourinary (GU) toxicities compared with the Box-RT group (GI 36 vs. 80%, p = 0.00012; GU 30 vs. 60%, p = 0.022). Furthermore, the IMRT group had lower rates of chronic GI and GU toxicities than the Box-RT patients (GI 6 vs. 34%, p = 0.002; GU 9 vs. 23%, p = 0.231). Conclusion: Our results suggest that IMRT significantly improved the tolerance to adjuvant chemoradiotherapy with compatible locoregional control compared with conventional Box-RT. However, longer follow-up and more patients are needed to confirm the benefits of IMRT

  19. Intensity-modulated radiotherapy in patients with locally advanced rectal cancer reduces volume of bowel treated to high dose levels

    International Nuclear Information System (INIS)

    Urbano, M. Teresa Guerrero; Henrys, Anthony J.; Adams, Elisabeth J.; Norman, Andrew R.; Bedford, James L.; Harrington, Kevin J.; Nutting, Christopher M.; Dearnaley, David P.; Tait, Diana M.

    2006-01-01

    Purpose: To investigate the potential for intensity-modulated radiotherapy (IMRT) to spare the bowel in rectal tumors. Methods and Materials: The targets (pelvic nodal and rectal volumes), bowel, and bladder were outlined in 5 patients. All had conventional, three-dimensional conformal RT and forward-planned multisegment three-field IMRT plans compared with inverse-planned simultaneous integrated boost nine-field equally spaced IMRT plans. Equally spaced seven-field and five-field and five-field, customized, segmented IMRT plans were also evaluated. Results: Ninety-five percent of the prescribed dose covered at least 95% of both planning target volumes using all but the conventional plan (mean primary and pelvic planning target volume receiving 95% of the prescribed dose was 32.8 ± 13.7 Gy and 23.7 ± 4.87 Gy, respectively), reflecting a significant lack of coverage. The three-field forward planned IMRT plans reduced the volume of bowel irradiated to 45 Gy and 50 Gy by 26% ± 16% and 42% ± 27% compared with three-dimensional conformal RT. Additional reductions to 69 ± 51 cm 3 to 45 Gy and 20 ± 21 cm 3 to 50 Gy were obtained with the nine-field equally spaced IMRT plans-64% ± 11% and 64% ± 20% reductions compared with three-dimensional conformal RT. Reducing the number of beams and customizing the angles for the five-field equally spaced IMRT plan did not significantly reduce bowel sparing. Conclusion: The bowel volume irradiated to 45 Gy and 50 Gy was significantly reduced with IMRT, which could potentially lead to less bowel toxicity. Reducing the number of beams did not reduce bowel sparing and the five-field customized segmented IMRT plan is a reasonable technique to be tested in clinical trials

  20. SU-E-T-175: Clinical Evaluations of Monte Carlo-Based Inverse Treatment Plan Optimization for Intensity Modulated Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Y; Li, Y; Tian, Z; Gu, X; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2015-06-15

    Purpose: Pencil-beam or superposition-convolution type dose calculation algorithms are routinely used in inverse plan optimization for intensity modulated radiation therapy (IMRT). However, due to their limited accuracy in some challenging cases, e.g. lung, the resulting dose may lose its optimality after being recomputed using an accurate algorithm, e.g. Monte Carlo (MC). It is the objective of this study to evaluate the feasibility and advantages of a new method to include MC in the treatment planning process. Methods: We developed a scheme to iteratively perform MC-based beamlet dose calculations and plan optimization. In the MC stage, a GPU-based dose engine was used and the particle number sampled from a beamlet was proportional to its optimized fluence from the previous step. We tested this scheme in four lung cancer IMRT cases. For each case, the original plan dose, plan dose re-computed by MC, and dose optimized by our scheme were obtained. Clinically relevant dosimetric quantities in these three plans were compared. Results: Although the original plan achieved a satisfactory PDV dose coverage, after re-computing doses using MC method, it was found that the PTV D95% were reduced by 4.60%–6.67%. After re-optimizing these cases with our scheme, the PTV coverage was improved to the same level as in the original plan, while the critical OAR coverages were maintained to clinically acceptable levels. Regarding the computation time, it took on average 144 sec per case using only one GPU card, including both MC-based beamlet dose calculation and treatment plan optimization. Conclusion: The achieved dosimetric gains and high computational efficiency indicate the feasibility and advantages of the proposed MC-based IMRT optimization method. Comprehensive validations in more patient cases are in progress.

  1. A method of segment weight optimization for intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Pei Xi; Cao Ruifen; Jing Jia; Cheng Mengyun; Zheng Huaqing; Li Jia; Huang Shanqing; Li Gui; Song Gang; Wang Weihua; Wu Yican; FDS Team

    2011-01-01

    The error caused by leaf sequencing often leads to planning of Intensity-Modulated Radiation Therapy (IMRT) arrange system couldn't meet clinical demand. The optimization approach in this paper can reduce this error and improve efficiency of plan-making effectively. Conjugate Gradient algorithm was used to optimize segment weight and readjust segment shape, which could minimize the error anterior-posterior leaf sequencing eventually. Frequent clinical cases were tasted by precise radiotherapy system, and then compared Dose-Volume histogram between target area and organ at risk as well as isodose line in computed tomography (CT) film, we found that the effect was improved significantly after optimizing segment weight. Segment weight optimizing approach based on Conjugate Gradient method can make treatment planning meet clinical request more efficiently, so that has extensive application perspective. (authors)

  2. Image-Guided Radiotherapy in Near Real Time With Intensity-Modulated Radiotherapy Megavoltage Treatment Beam Imaging

    International Nuclear Information System (INIS)

    Mao Weihua; Hsu, Annie; Riaz, Nadeem; Lee, Louis; Wiersma, Rodney; Luxton, Gary; King, Christopher; Xing Lei; Solberg, Timothy

    2009-01-01

    Purpose: To utilize image-guided radiotherapy (IGRT) in near real time by obtaining and evaluating the online positions of implanted fiducials from continuous electronic portal imaging device (EPID) imaging of prostate intensity-modulated radiotherapy (IMRT) delivery. Methods and Materials: Upon initial setup using two orthogonal images, the three-dimensional (3D) positions of all implanted fiducial markers are obtained, and their expected two-dimensional (2D) locations in the beam's-eye-view (BEV) projection are calculated for each treatment field. During IMRT beam delivery, EPID images of the megavoltage treatment beam are acquired in cine mode and subsequently analyzed to locate 2D locations of fiducials in the BEV. Simultaneously, 3D positions are estimated according to the current EPID image, information from the setup portal images, and images acquired at other gantry angles (the completed treatment fields). The measured 2D and 3D positions of each fiducial are compared with their expected 2D and 3D setup positions, respectively. Any displacements larger than a predefined tolerance may cause the treatment system to suspend the beam delivery and direct the therapists to reposition the patient. Results: Phantom studies indicate that the accuracy of 2D BEV and 3D tracking are better than 1 mm and 1.4 mm, respectively. A total of 7330 images from prostate treatments were acquired and analyzed, showing a maximum 2D displacement of 6.7 mm and a maximum 3D displacement of 6.9 mm over 34 fractions. Conclusions: This EPID-based, real-time IGRT method can be implemented on any external beam machine with portal imaging capabilities without purchasing any additional equipment, and there is no extra dose delivered to the patient.

  3. Feasibility of a unified approach to intensity-modulated radiation therapy and volume-modulated arc therapy optimization and delivery

    International Nuclear Information System (INIS)

    Hoover, Douglas A.; Chen, Jeff Z.; MacFarlane, Michael; Wong, Eugene; Battista, Jerry J.

    2015-01-01

    Purpose: To study the feasibility of unified intensity-modulated arc therapy (UIMAT) which combines intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) optimization and delivery to produce superior radiation treatment plans, both in terms of dose distribution and efficiency of beam delivery when compared with either VMAT or IMRT alone. Methods: An inverse planning algorithm for UIMAT was prototyped within the PINNACLE treatment planning system (Philips Healthcare). The IMRT and VMAT deliveries are unified within the same arc, with IMRT being delivered at specific gantry angles within the arc. Optimized gantry angles for the IMRT and VMAT phases are assigned automatically by the inverse optimization algorithm. Optimization of the IMRT and VMAT phases is done simultaneously using a direct aperture optimization algorithm. Five treatment plans each for prostate, head and neck, and lung were generated using a unified optimization technique and compared with clinical IMRT or VMAT plans. Delivery verification was performed with an ArcCheck phantom (Sun Nuclear) on a Varian TrueBeam linear accelerator (Varian Medical Systems). Results: In this prototype implementation, the UIMAT plans offered the same target dose coverage while reducing mean doses to organs at risk by 8.4% for head-and-neck cases, 5.7% for lung cases, and 3.5% for prostate cases, compared with the VMAT or IMRT plans. In addition, UIMAT can be delivered with similar efficiency as VMAT. Conclusions: In this proof-of-concept work, a novel radiation therapy optimization and delivery technique that interlaces VMAT or IMRT delivery within the same arc has been demonstrated. Initial results show that unified VMAT/IMRT has the potential to be superior to either standard IMRT or VMAT

  4. Evaluation of compensation in breast radiotherapy: a planning study using multiple static fields

    International Nuclear Information System (INIS)

    Donovan, Ellen M.; Johnson, Ursula; Shentall, Glyn; Evans, Philip M.; Neal, Anthony J.; Yarnold, John R.

    2000-01-01

    Purpose: A method that uses electronic portal imaging to design intensity-modulated beams for compensation in breast radiotherapy was implemented using multiple static fields in a planning study. We present the results of the study to verify the algorithm, and to assess improvements to the dosimetry. Methods and Materials: Fourteen patients were imaged with computed tomography (CT) and on a treatment unit using an electronic portal imager. The portal imaging data were used to design intensity-modulated beams to give an ideal dose distribution in the breast. These beams were implemented as multiple static fields added to standard wedged tangential fields. Planning of these treatments was performed on a commercial treatment planning system (Target 2, IGE Medical Systems, Slough, U.K.) using the CT data for each patient. Dose-volume histogram (DVH) analysis of the plans with and without multileaf collimator (MLC) compensation was carried out. This work has been used as the basis for a randomized clinical trial investigating whether improvements in dosimetry are correlated with the reduction of long-term side effects from breast radiotherapy. Results: The planning analysis showed a mean increase in target volume receiving 95-105% of prescribed dose of 7.5% (range -0.8% to 15.9%) when additional MLC compensation was applied. There was no change to the minimum dose for all 14 patient data sets. The change in the volume of breast tissue receiving over 105% of prescribed dose, when applying MLC compensation, was between -1.4% and 11.9%, with positive numbers indicating an improvement. These effects showed a correlation with breast size; the larger the breast the greater the amount of improvement. Conclusions: The method for designing compensation for breast treatments using an electronic portal imager has been verified using planning on CT data for 14 patients. An improvement was seen in planning when applying MLC compensation and this effect was greater the larger the

  5. Transitioning from conventional radiotherapy to intensity-modulated radiotherapy for localized prostate cancer. Changing focus from rectal bleeding to detailed quality of life analysis

    International Nuclear Information System (INIS)

    Yamazaki, Hideya; Nakamura, Satoaki; Nishimura, Takuya; Yoshida, Ken; Yoshioka, Yasuo; Koizumi, Masahiko; Ogawa, Kazuhiko

    2014-01-01

    With the advent of modern radiation techniques, we have been able to deliver a higher prescribed radiotherapy dose for localized prostate cancer without severe adverse reactions. We reviewed and analyzed the change of toxicity profiles of external beam radiation therapy (EBRT) from the literature. Late rectal bleeding is the main adverse effect, and an incidence of >20% of Grade ≥2 adverse events was reported for 2D conventional radiotherapy of up to 70 Gy. 3D conformal radiation therapy (3D-CRT) was found to reduce the incidence to ∼10%. Furthermore, intensity-modulated radiation therapy (IMRT) reduced it further to a few percentage points. However, simultaneously, urological toxicities were enhanced by dose escalation using highly precise external radiotherapy. We should pay more attention to detailed quality of life (QOL) analysis, not only with respect to rectal bleeding but also other specific symptoms (such as urinary incontinence and impotence), for two reasons: (1) because of the increasing number of patients aged >80 years, and (2) because of improved survival with elevated doses of radiotherapy and/or hormonal therapy; age is an important prognostic factor not only for prostate-specific antigen (PSA) control but also for adverse reactions. Those factors shift the main focus of treatment purpose from survival and avoidance of PSA failure to maintaining good QOL, particularly in older patients. In conclusion, the focus of toxicity analysis after radiotherapy for prostate cancer patients is changing from rectal bleeding to total elaborate quality of life assessment. (author)

  6. Patient-specific dosimetric endpoints based treatment plan quality control in radiotherapy

    International Nuclear Information System (INIS)

    Song, Ting; Zhou, Linghong; Staub, David; Chen, Mingli; Lu, Weiguo; Tian, Zhen; Jia, Xun; Li, Yongbao; Jiang, Steve B; Gu, Xuejun

    2015-01-01

    In intensity modulated radiotherapy (IMRT), the optimal plan for each patient is specific due to unique patient anatomy. To achieve such a plan, patient-specific dosimetric goals reflecting each patient’s unique anatomy should be defined and adopted in the treatment planning procedure for plan quality control. This study is to develop such a personalized treatment plan quality control tool by predicting patient-specific dosimetric endpoints (DEs). The incorporation of patient specific DEs is realized by a multi-OAR geometry-dosimetry model, capable of predicting optimal DEs based on the individual patient’s geometry. The overall quality of a treatment plan is then judged with a numerical treatment plan quality indicator and characterized as optimal or suboptimal. Taking advantage of clinically available prostate volumetric modulated arc therapy (VMAT) treatment plans, we built and evaluated our proposed plan quality control tool. Using our developed tool, six of twenty evaluated plans were identified as sub-optimal plans. After plan re-optimization, these suboptimal plans achieved better OAR dose sparing without sacrificing the PTV coverage, and the dosimetric endpoints of the re-optimized plans agreed well with the model predicted values, which validate the predictability of the proposed tool. In conclusion, the developed tool is able to accurately predict optimally achievable DEs of multiple OARs, identify suboptimal plans, and guide plan optimization. It is a useful tool for achieving patient-specific treatment plan quality control. (paper)

  7. Multiobjective evolutionary optimization of the number of beams, their orientations and weights for intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Schreibmann, Eduard; Lahanas, Michael; Xing, Lei; Baltas, Dimos

    2004-01-01

    We propose a hybrid multiobjective (MO) evolutionary optimization algorithm (MOEA) for intensity-modulated radiotherapy inverse planning and apply it to optimize the number of incident beams, their orientations and intensity profiles. The algorithm produces a set of efficient solutions, which represent different clinical trade-offs and contains information such as variety of dose distributions and dose-volume histograms. No importance factors are required and solutions can be obtained in regions not accessible by conventional weighted sum approaches. The application of the algorithm using a test case, a prostate and a head and neck tumour case is shown. The results are compared with MO inverse planning using a gradient-based optimization algorithm

  8. Construction of a remote radiotherapy planning system

    International Nuclear Information System (INIS)

    Ogawa, Yoshihiro; Nemoto, Kenji; Takahashi, Chiaki; Takai, Yoshihiro; Yamada, Shogo; Seiji, Hiromasa; Sasaki, Kazuya

    2005-01-01

    We constructed a remote radiotherapy planning system, and we examined the usefulness of and faults in our system in this study. Two identical radiotherapy planning systems, one installed at our institution and the other installed at an affiliated hospital, were used for radiotherapy planning. The two systems were connected by a wide area network (WAN), using a leased line. Beam data for the linear accelerator at the affiliated hospital were installed in the two systems. During the period from December 2001 to December 2002, 43 remote radiotherapy plans were made using this system. Data were transmitted using a file transfer protocol (FTP) software program. The 43 radiotherapy plans examined in this study consisted of 13 ordinary radiotherapy plans, 28 radiotherapy plans sent to provide assistance for medical residents, and 2 radiotherapy plans for emergency cases. There were ten minor planning changes made in radiotherapy plans sent to provide assistance for medical residents. Our remote radiotherapy planning system based on WAN using a leased line is useful for remote radiotherapy, with advantages for both radiation oncologists and medical residents. (author)

  9. Magnetic resonance assessment of prostate localization variability in intensity-modulated radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Villeirs, Geert M.; Meerleer, Gert O. de; Verstraete, Koenraad L.; Neve, Wilfried J. de

    2004-01-01

    Purpose: To measure prostate motion with magnetic resonance imaging (MRI) during a course of intensity-modulated radiotherapy. Methods and materials: Seven patients with prostate carcinoma were scanned supine on a 1.5-Tesla MRI system with weekly pretreatment and on-treatment HASTE T2-weighted images in 3 orthogonal planes. The bladder and rectal volumes and position of the prostatic midpoint (PMP) and margins relative to the bony pelvis were measured. Results: All pretreatment positions were at the mean position as computed from the on-treatment scans in each patient. The PMP variability (given as 1 SD) in the anterior-posterior (AP), superior-inferior (SI), and right-left (RL) directions was 2.6, 2.4, and 1.0 mm, respectively. The largest variabilities occurred at the posterior (3.2 mm), superior (2.6 mm), and inferior (2.6 mm) margins. A strong correlation was found between large rectal volume (>95th percentile) and anterior PMP displacement. A weak correlation was found between bladder volume and superior PMP displacement. Conclusions: All pretreatment positions were representative of the subsequent on-treatment positions. A clinical target volume (CTV) expansion of 5.3 mm in any direction was sufficient to ascertain a 95% coverage of the CTV within the planning target volume (PTV), provided that a rectal suppository is administered to avoid rectal overdistension and that the patient has a comfortably filled bladder (<300 mL)

  10. Imaging and concomitant dose in radiotherapy

    International Nuclear Information System (INIS)

    Negi, P.S.

    2008-01-01

    Image guidance in radiotherapy now involves multiple imaging procedures for planning, simulation, set-up inter and intrafraction monitoring. Presently ALARA (i.e. as low as reasonable achievable) is the principle of management of dose to radiation workers and patients in any diagnostic imaging procedures including image guided surgery. The situation is different in repeated radiographic/fluoroscopic imaging performed for simulation, dose planning, patient positioning and set-up corrections during preparation/execution of Image guided radiotherapy (IGRT) as well as for Intensity Modulated Radiotherapy (IMRT). Reported imaging and concomitant doses will be highlighted and discussed for the management and optimization of imaging techniques in IMRT and IGRT

  11. Intensity-modulated radiotherapy (IMRT) and conventional three-dimensional conformal radiotherapy for high-grade gliomas: Does IMRT increase the integral dose to normal brain?

    International Nuclear Information System (INIS)

    Hermanto, Ulrich; Frija, Erik K.; Lii, MingFwu J.; Chang, Eric L.; Mahajan, Anita; Woo, Shiao Y.

    2007-01-01

    Purpose: To determine whether intensity-modulated radiotherapy (IMRT) treatment increases the total integral dose of nontarget tissue relative to the conventional three-dimensional conformal radiotherapy (3D-CRT) technique for high-grade gliomas. Methods and Materials: Twenty patients treated with 3D-CRT for glioblastoma multiforme were selected for a comparative dosimetric evaluation with IMRT. Original target volumes, organs at risk (OAR), and dose-volume constraints were used for replanning with IMRT. Predicted isodose distributions, cumulative dose-volume histograms of target volumes and OAR, normal tissue integral dose, target coverage, dose conformity, and normal tissue sparing with 3D-CRT and IMRT planning were compared. Statistical analyses were performed to determine differences. Results: In all 20 patients, IMRT maintained equivalent target coverage, improved target conformity (conformity index [CI] 95% 1.52 vs. 1.38, p mean by 19.8% and D max by 10.7%), optic chiasm (D mean by 25.3% and D max by 22.6%), right optic nerve (D mean by 37.3% and D max by 28.5%), and left optic nerve (D mean by 40.6% and D max by 36.7%), p ≤ 0.01. This was achieved without increasing the total nontarget integral dose by greater than 0.5%. Overall, total integral dose was reduced by 7-10% with IMRT, p < 0.001, without significantly increasing the 0.5-5 Gy low-dose volume. Conclusions: These results indicate that IMRT treatment for high-grade gliomas allows for improved target conformity, better critical tissue sparing, and importantly does so without increasing integral dose and the volume of normal tissue exposed to low doses of radiation

  12. Intensity-modulated radiotherapy with simultaneous modulated accelerated boost technique and chemotherapy in patients with nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Fareed, Muhammad M; AlAmro, Abdullah S; Bayoumi, Yasser; Tunio, Mutahir A; Ismail, Abdul S; Akasha, Rashad; Mubasher, Mohamed; Al Asiri, Mushabbab

    2013-01-01

    To present our experience of intensity-modulated radiotherapy (IMRT) with simultaneous modulated accelerated radiotherapy (SMART) boost technique in patients with nasopharyngeal carcinoma (NPC). Sixty eight patients of NPC were treated between April 2006 and December 2011 including 45 males and 23 females with mean age of 46 (range 15–78). Stage distribution was; stage I 3, stage II 7, stage III 26 and stage IV 32. Among 45 (66.2%) evaluated patients for presence of Epstein-Barr virus (EBV), 40 (88.8%) were positive for EBV. Median radiation doses delivered to gross tumor volume (GTV) and positive neck nodes were 66–70 Gy, 63 Gy to clinical target volume (CTV) and 50.4 Gy to clinically negative neck. In addition 56 (82.4%) patients with bulky tumors (T4/N2+) received neoadjuvant chemotherapy 2–3 cycles (Cisplatin/Docetaxel or Cisplatin/Epirubicin or Cisplatin/5 Flourouracil). Concurrent chemotherapy with radiation was weekly Cisplatin 40 mg/m 2 (40 patients) or Cisplatin 100 mg/m 2 (28 patients). With a median follow up of 20 months (range 3–43), one patient developed local recurrence, two experienced regional recurrences and distant failure was seen in 3 patients. Estimated 3 year disease free survival (DFS) was 94%. Three year DFS for patients with EBV was 100% as compared to 60% without EBV (p = 0.0009). Three year DFS for patients with undifferentiated histology was 98% as compared to 82% with other histologies (p = 0.02). Acute grade 3 toxicity was seen as 21 (30.9%) having G-III mucositis and 6 (8.8%) with G-III skin reactions. Late toxicity was minimal and loss of taste was seen in 3 patients (7.5%) at time of analysis. IMRT with SMART in combination with chemotherapy is feasible and effective in terms of both the clinical response and safety profile. EBV, histopathology and nodal involvement were found important prognostic factors for locoregional recurrence

  13. Effect of stereotactic body radiotherapy versus intensity-modulated radiotherapy in primary liver cancer patients with secondary malignant tumor of vertebra

    Directory of Open Access Journals (Sweden)

    SUN Jing

    2016-06-01

    Full Text Available ObjectiveTo investigate the effect of stereotactic body radiotherapy (SBRT versus intensity-modulated radiotherapy (IMRT in primary liver cancer (PLC patients with secondary malignant tumor of vertebra. MethodsA total of 49 PLC patients with secondary metastatic tumor of vertebra, who were treated in our hospital from December 2011 to January 2014, were enrolled and divided into group A (20 patients treated with SBRT and group B (29 patients treated with IMRT. The prescribed dose was 35 Gy in 5 fractions in group A and 35 Gy in 10 fractions in group B. The time to pain relief, imaging findings, and survival analysis were used to evaluate pain-relieving effect, the condition of lesions, and survival time. The t-test was used to compare continuous data between groups, and the chi-square test was used to compare categorical data between groups. The K-M method was used to plot survival curves for both groups, and the log-rank test was used for survival difference analysis. ResultsThe proportion of patients who achieved complete or partial remission and stable disease shown by radiological examination after radiotherapy showed no significant difference between group A and group B (P=0.873. The pain relief rate also showed no significant difference between group A and group B (P=0.908. The time of pain relief showed a significant difference between group A and group B (t=-3.353, P<0.01. The overall survival showed no significant difference between the two groups (P=0.346. ConclusionRadiotherapy has a definite therapeutic effect in PLC patients with secondary malignant tumor of vertebra. SBRT and IMRT have similar pain-relieving effects. However, with the same prescribed dose, SBRT has a short time to pain relief and does not lead to serious intolerable acute or late toxic and side effects in surrounding fast-response tissues.

  14. SU-E-J-254: Utility of Pinnacle Dynamic Planning Module Utilizing Deformable Image Registration in Adaptive Radiotherapy

    International Nuclear Information System (INIS)

    Jani, S

    2014-01-01

    Purpose For certain highly conformal treatment techniques, changes in patient anatomy due to weight loss and/or tumor shrinkage can result in significant changes in dose distribution. Recently, the Pinnacle treatment planning system added a Dynamic Planning module utilizing Deformable Image Registration (DIR). The objective of this study was to evaluate the effectiveness of this software in adapting to altered anatomy and adjusting treatment plans to account for it. Methods We simulated significant tumor response by changing patient thickness and altered chin positions using a commercially-available head and neck (H and N) phantom. In addition, we studied 23 CT image sets of fifteen (15) patients with H and N tumors and eight (8) patients with prostate cancer. In each case, we applied deformable image registration through Dynamic Planning module of our Pinnacle Treatment Planning System. The dose distribution of the original CT image set was compared to the newly computed dose without altering any treatment parameter. Result was a dose if we did not adjust the plan to reflect anatomical changes. Results For the H and N phantom, a tumor response of up to 3.5 cm was correctly deformed by the Pinnacle Dynamic module. Recomputed isodose contours on new anatomies were within 1 mm of the expected distribution. The Pinnacle system configuration allowed dose computations resulting from original plans on new anatomies without leaving the planning system. Original and new doses were available side-by-side with both CT image sets. Based on DIR, about 75% of H and N patients (11/15) required a re-plan using new anatomy. Among prostate patients, the DIR predicted near-correct bladder volume in 62% of the patients (5/8). Conclusions The Dynamic Planning module of the Pinnacle system proved to be an accurate and useful tool in our ability to adapt to changes in patient anatomy during a course of radiotherapy

  15. A review of stereotactic body radiotherapy – is volumetric modulated arc therapy the answer?

    International Nuclear Information System (INIS)

    Sapkaroski, Daniel; Osborne, Catherine; Knight, Kellie A

    2015-01-01

    Stereotactic body radiotherapy (SBRT) is a high precision radiotherapy technique used for the treatment of small to moderate extra-cranial tumours. Early studies utilising SBRT have shown favourable outcomes. However, major disadvantages of static field SBRT include long treatment times and toxicity complications. Volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) may potentially mitigate these disadvantages. This review aims to assess the feasibility of emerging VMAT and IMRT-based SBRT treatment techniques and qualify which offers the best outcome for patients, whilst identifying any emerging and advantageous SBRT planning trends. A review and synthesis of data from current literature up to September 2013 was conducted on EMBASE, Medline, PubMed, Science Direct, Proquest central, Google Scholar and the Cochrane Database of Systematic reviews. Only full text papers comparing VMAT and or IMRT and or Static SBRT were included. Ten papers were identified that evaluated the results of VMAT/IMRT SBRT. Five related to medically inoperable stage 1 and 2 non-small-cell lung cancer (NSCLC), three to spinal metastasis, one related to abdominal lymph node malignancies, with the final one looking at pancreatic adenocarcinoma. Overall treatment times with VMAT were reduced by 66–70% for lung, 46–58% for spine, 42% and 21% for lymph node and pancreatic metastasis respectively, planning constraints were met with several studies showing improved organs at risk sparing with IMRT/VMAT to static SBRT. Both IMRT and VMAT were able to meet all planning constraints in the studies reviewed, with VMAT offering the greatest treatment efficiency. Early clinical outcomes with VMAT and IMRT SBRT have demonstrated excellent local control and favourable survival outcomes

  16. A review of stereotactic body radiotherapy – is volumetric modulated arc therapy the answer?

    Energy Technology Data Exchange (ETDEWEB)

    Sapkaroski, Daniel, E-mail: daniel.sapkaroski@gmail.com; Osborne, Catherine; Knight, Kellie A [Department of Medical Imaging and Radiation Sciences, Faculty of Medicine, Nursing and Health Sciences, School of Biomedical Sciences, Monash University, Clayton, Vic. (Australia)

    2015-06-15

    Stereotactic body radiotherapy (SBRT) is a high precision radiotherapy technique used for the treatment of small to moderate extra-cranial tumours. Early studies utilising SBRT have shown favourable outcomes. However, major disadvantages of static field SBRT include long treatment times and toxicity complications. Volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) may potentially mitigate these disadvantages. This review aims to assess the feasibility of emerging VMAT and IMRT-based SBRT treatment techniques and qualify which offers the best outcome for patients, whilst identifying any emerging and advantageous SBRT planning trends. A review and synthesis of data from current literature up to September 2013 was conducted on EMBASE, Medline, PubMed, Science Direct, Proquest central, Google Scholar and the Cochrane Database of Systematic reviews. Only full text papers comparing VMAT and or IMRT and or Static SBRT were included. Ten papers were identified that evaluated the results of VMAT/IMRT SBRT. Five related to medically inoperable stage 1 and 2 non-small-cell lung cancer (NSCLC), three to spinal metastasis, one related to abdominal lymph node malignancies, with the final one looking at pancreatic adenocarcinoma. Overall treatment times with VMAT were reduced by 66–70% for lung, 46–58% for spine, 42% and 21% for lymph node and pancreatic metastasis respectively, planning constraints were met with several studies showing improved organs at risk sparing with IMRT/VMAT to static SBRT. Both IMRT and VMAT were able to meet all planning constraints in the studies reviewed, with VMAT offering the greatest treatment efficiency. Early clinical outcomes with VMAT and IMRT SBRT have demonstrated excellent local control and favourable survival outcomes.

  17. Automation of the solution type of intensity modulated radiation therapy with direct planning neoplastic breast lesions

    International Nuclear Information System (INIS)

    Fuente Rosales, Liset De La; Larrinaga Cortina, Eduardo Francisco

    2009-01-01

    Breast cancer ranks first among the lesions malignancies involving the Cuban women and the second in mortality only surpassed by lung injury. The breast-conserving surgery is becoming less appeal, with an increase in the choice of radiotherapy to the breast operated, and the surgical bed. Intensity Modulated Radiation Therapy, IMRT has demonstrated better results in the dose distribution for irradiation dimensional treatment breast shaping, 3DCRT. We developed a MATLAB application to obtain the solution type to direct planning IMRT for breast neoplasm. The technique was implemented in the Planning System Treatment Plus Theraplan v3.8 and Precise1 ELEKTA linear accelerator. Static segments are constructed for each portal of incidence and Excel files are exported as the positions of the blades. The technique was validated with a patient, which he performed a radiographic study of computerized axial tomography planning purposes. The standard solution built is consistent with those reported internationally and consists of a segment type and at least two segments of type B. The assignment of the relative weights of the segments is done manually by trial and error procedure, with the general rule of 90% by weight assigned to segment A and the remaining 10% divided equally between B-type segments IMRT breast obtained in a dose 17% homogeneity better than 3DCRT and reduced the average dose in the lung ipsilateral 15%. (author)

  18. Multifractionated image-guided and stereotactic intensity-modulated radiotherapy of paraspinal tumors: A preliminary report

    International Nuclear Information System (INIS)

    Yamada, Yoshiya; Lovelock, D. Michael; Yenice, Kamil M.; Bilsky, Mark H.; Hunt, Margaret A.; Zatcky, Joan; Leibel, Steven A.

    2005-01-01

    Purpose: The use of image-guided and stereotactic intensity-modulated radiotherapy (IMRT) techniques have made the delivery of high-dose radiation to lesions within close proximity to the spinal cord feasible. This report presents clinical and physical data regarding the use of IMRT coupled with noninvasive body frames (stereotactic and image-guided) for multifractionated radiotherapy. Methods and Materials: The Memorial Sloan-Kettering Cancer Center (Memorial) stereotactic body frame (MSBF) and Memorial body cradle (MBC) have been developed as noninvasive immobilizing devices for paraspinal IMRT using stereotactic (MSBF) and image-guided (MBC) techniques. Patients were either previously irradiated or prescribed doses beyond spinal cord tolerance (54 Gy in standard fractionation) and had unresectable gross disease involving the spinal canal. The planning target volume (PTV) was the gross tumor volume with a 1 cm margin. The PTV was not allowed to include the spinal cord contour. All treatment planning was performed using software developed within the institution. Isocenter verification was performed with an in-room computed tomography scan (MSBF) or electronic portal imaging devices, or both. Patients were followed up with serial magnetic resonance imaging every 3-4 months, and no patients were lost to follow-up. Kaplan-Meier statistics were used for analysis of clinical data. Results: Both the MSBF and MBC were able to provide setup accuracy within 2 mm. With a median follow-up of 11 months, 35 patients (14 primary and 21 secondary malignancies) underwent treatment. The median dose previously received was 3000 cGy in 10 fractions. The median dose prescribed for these patients was 2000 cGy/5 fractions (2000-3000 cGy), which provided a median PTV V100 of 88%. In previously unirradiated patients, the median prescribed dose was 7000 cGy (5940-7000 cGy) with a median PTV V100 of 90%. The median Dmax to the cord was 34% and 68% for previously irradiated and never

  19. Late xerostomia after intensity-modulated conformational radiotherapy of upper aero-digestive tract cancers: study 2004-03 by the head and neck oncology and radiotherapy Group (Gortec)

    International Nuclear Information System (INIS)

    Toledano, I.; Lapeyre, M.; Graff, P.; Serre, C.; Bensadoun, R.J.; Bensadoun, R.J.; Ortholan, C.; Calais, G.; Alfonsi, M.; Giraud, P.; Racadot, S.

    2010-01-01

    The authors report a retrospective assessment of late xerostomia according to the RTOG (Radiation Therapy Oncology Group) classification of the European Organization for Research and Treatment of Cancer (EORTC) among patients treated by intensity-modulated conformational radiotherapy (IMRT) and suffering from upper aero-digestive tract carcinomas of different stages. Some of these patients have bee operated, and some have been treated by chemotherapy. It appears that the IMRT results in a reduction of late xerostomia, and even in an absence of salivary toxicity. Short communication

  20. A comparison of volumetric modulated arc therapy and sliding-window intensity-modulated radiotherapy in the treatment of Stage I-II nasal natural killer/T-cell lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xianfeng [Department of Radiation Oncology, Chongqing Cancer Institute, Chongqing (China); Yang, Yong [Department of Radiation Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Jin, Fu; He, Yanan; Zhong, Mingsong; Luo, Huanli; Qiu, Da; Li, Chao; Yang, Han; He, Guanglei [Department of Radiation Oncology, Chongqing Cancer Institute, Chongqing (China); Wang, Ying, E-mail: zjajf@126.com [Department of Radiation Oncology, Chongqing Cancer Institute, Chongqing (China)

    2016-04-01

    This article is aimed to compare the dosimetric differences between volumetric modulated arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) for Stage I-II nasal natural killer/T-cell lymphoma (NNKTL). Ten patients with Stage I-II NNKTL treated with IMRT were replanned with VMAT (2 arcs). The prescribed dose of the planning target volume (PTV) was 50 Gy in 25 fractions. The VMAT plans with the Anisotropic Analytical Algorithm (Version 8.6.15) were based on an Eclipse treatment planning system; the monitor units (MUs) and treatment time (T) were scored to measure the expected treatment efficiency. All the 10 patients under the study were subject to comparisons regarding the quality of target coverage, the efficiency of delivery, and the exposure of normal adjacent organs at risk (OARs). The study shows that VMAT was associated with a better conformal index (CI) and homogeneity index (HI) (both p < 0.05) but slightly higher dose to OARs than IMRT. The MUs with VMAT (650.80 ± 24.59) were fewer than with IMRT (1300.10 ± 57.12) (relative reduction of 49.94%, p = 0.00) when using 2-Gy dose fractions. The treatment time with VMAT (3.20 ± 0.02 minutes) was shorter than with IMRT (7.38 ± 0.18 minutes) (relative reduction of 56.64%, p = 0.00). We found that VMAT and IMRT both provide satisfactory target dosimetric coverage and OARs sparing clinically. Likely to deliver a bit higher dose to OARs, VMAT in comparison with IMRT, is still a better choice for treatment of patients with Stage I-II NNKTL, thanks to better dose distribution, fewer MUs, and shorter delivery time.

  1. When is respiratory management necessary for partial breast intensity modulated radiotherapy: A respiratory amplitude escalation treatment planning study

    International Nuclear Information System (INIS)

    Quirk, Sarah; Conroy, Leigh; Smith, Wendy L.

    2014-01-01

    Purpose: The impact of typical respiratory motion amplitudes (∼2 mm) on partial breast irradiation (PBI) is minimal; however, some patients have larger respiratory amplitudes that may negatively affect dose homogeneity. Here we determine at what amplitude respiratory management may be required to maintain plan quality. Methods and Materials: Ten patients were planned with PBI IMRT. Respiratory motion (2–20 mm amplitude) probability density functions were convolved with static plan fluence to estimate the delivered dose. Evaluation metrics included target coverage, ipsilateral breast hotspot, homogeneity, and uniformity indices. Results: Degradation of dose homogeneity was the limiting factor in reduction of plan quality due to respiratory motion, not loss of coverage. Hotspot increases were observed even at typical motion amplitudes. At 2 and 5 mm, 2/10 plans had a hotspot greater than 107% and at 10 mm this increased to 5/10 plans. Target coverage was only compromised at larger amplitudes: 5/10 plans did not meet coverage criteria at 15 mm amplitude and no plans met minimum coverage at 20 mm. Conclusions: We recommend that if respiratory amplitude is greater than 10 mm, respiratory management or alternative radiotherapy should be considered due to an increase in the hotspot in the ipsilateral breast and a decrease in dose homogeneity

  2. Multiobjective optimization with a modified simulated annealing algorithm for external beam radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Aubry, Jean-Francois; Beaulieu, Frederic; Sevigny, Caroline; Beaulieu, Luc; Tremblay, Daniel

    2006-01-01

    Inverse planning in external beam radiotherapy often requires a scalar objective function that incorporates importance factors to mimic the planner's preferences between conflicting objectives. Defining those importance factors is not straightforward, and frequently leads to an iterative process in which the importance factors become variables of the optimization problem. In order to avoid this drawback of inverse planning, optimization using algorithms more suited to multiobjective optimization, such as evolutionary algorithms, has been suggested. However, much inverse planning software, including one based on simulated annealing developed at our institution, does not include multiobjective-oriented algorithms. This work investigates the performance of a modified simulated annealing algorithm used to drive aperture-based intensity-modulated radiotherapy inverse planning software in a multiobjective optimization framework. For a few test cases involving gastric cancer patients, the use of this new algorithm leads to an increase in optimization speed of a little more than a factor of 2 over a conventional simulated annealing algorithm, while giving a close approximation of the solutions produced by a standard simulated annealing. A simple graphical user interface designed to facilitate the decision-making process that follows an optimization is also presented

  3. Intensity-Modulated Radiotherapy Results in Significant Decrease in Clinical Toxicities Compared With Conventional Wedge-Based Breast Radiotherapy

    International Nuclear Information System (INIS)

    Harsolia, Asif; Kestin, Larry; Grills, Inga; Wallace, Michelle; Jolly, Shruti; Jones, Cortney; Lala, Moinaktar; Martinez, Alvaro; Schell, Scott; Vicini, Frank A.

    2007-01-01

    Purpose: We have previously demonstrated that intensity-modulated radiotherapy (IMRT) with a static multileaf collimator process results in a more homogenous dose distribution compared with conventional wedge-based whole breast irradiation (WBI). In the present analysis, we reviewed the acute and chronic toxicity of this IMRT approach compared with conventional wedge-based treatment. Methods and Materials: A total of 172 patients with Stage 0-IIB breast cancer were treated with lumpectomy followed by WBI. All patients underwent treatment planning computed tomography and received WBI (median dose, 45 Gy) followed by a boost to 61 Gy. Of the 172 patients, 93 (54%) were treated with IMRT, and the 79 patients (46%) treated with wedge-based RT in a consecutive fashion immediately before this cohort served as the control group. The median follow-up was 4.7 years. Results: A significant reduction in acute Grade 2 or worse dermatitis, edema, and hyperpigmentation was seen with IMRT compared with wedges. A trend was found toward reduced acute Grade 3 or greater dermatitis (6% vs. 1%, p = 0.09) in favor of IMRT. Chronic Grade 2 or worse breast edema was significantly reduced with IMRT compared with conventional wedges. No difference was found in cosmesis scores between the two groups. In patients with larger breasts (≥1,600 cm 3 , n = 64), IMRT resulted in reduced acute (Grade 2 or greater) breast edema (0% vs. 36%, p <0.001) and hyperpigmentation (3% vs. 41%, p 0.001) and chronic (Grade 2 or greater) long-term edema (3% vs. 30%, p 0.007). Conclusion: The use of IMRT in the treatment of the whole breast results in a significant decrease in acute dermatitis, edema, and hyperpigmentation and a reduction in the development of chronic breast edema compared with conventional wedge-based RT

  4. SU-E-P-21: Impact of MLC Position Errors On Simultaneous Integrated Boost Intensity-Modulated Radiotherapy for Nasopharyngeal Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Chengqiang, L; Yin, Y; Chen, L [Shandong Cancer Hospital and Institute, 440 Jiyan Road, Jinan, 250117 (China)

    2015-06-15

    Purpose: To investigate the impact of MLC position errors on simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) for patients with nasopharyngeal carcinoma. Methods: To compare the dosimetric differences between the simulated plans and the clinical plans, ten patients with locally advanced NPC treated with SIB-IMRT were enrolled in this study. All plans were calculated with an inverse planning system (Pinnacle3, Philips Medical System{sub )}. Random errors −2mm to 2mm{sub )},shift errors{sub (} 2mm,1mm and 0.5mm) and systematic extension/ contraction errors (±2mm, ±1mm and ±0.5mm) of the MLC leaf position were introduced respectively into the original plans to create the simulated plans. Dosimetry factors were compared between the original and the simulated plans. Results: The dosimetric impact of the random and system shift errors of MLC position was insignificant within 2mm, the maximum changes in D95% of PGTV,PTV1,PTV2 were-0.92±0.51%,1.00±0.24% and 0.62±0.17%, the maximum changes in the D0.1cc of spinal cord and brainstem were 1.90±2.80% and −1.78±1.42%, the maximum changes in the Dmean of parotids were1.36±1.23% and −2.25±2.04%.However,the impact of MLC extension or contraction errors was found significant. For 2mm leaf extension errors, the average changes in D95% of PGTV,PTV1,PTV2 were 4.31±0.67%,4.29±0.65% and 4.79±0.82%, the averaged value of the D0.1cc to spinal cord and brainstem were increased by 7.39±5.25% and 6.32±2.28%,the averaged value of the mean dose to left and right parotid were increased by 12.75±2.02%,13.39±2.17% respectively. Conclusion: The dosimetric effect was insignificant for random MLC leaf position errors up to 2mm. There was a high sensitivity to dose distribution for MLC extension or contraction errors.We should pay attention to the anatomic changes in target organs and anatomical structures during the course,individual radiotherapy was recommended to ensure adaptive doses.

  5. SU-F-BRB-12: A Novel Haar Wavelet Based Approach to Deliver Non-Coplanar Intensity Modulated Radiotherapy Using Sparse Orthogonal Collimators

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, D; Ruan, D; Low, D; Sheng, K [Deparment of Radiation Oncology, University of California Los Angeles, Los Angeles, CA (United States); O’Connor, D [Deparment of Mathematics, University of California Los Angeles, Los Angeles, CA (United States); Boucher, S [RadiaBeam Technologies, Santa Monica, CA (United States)

    2015-06-15

    Purpose: Existing efforts to replace complex multileaf collimator (MLC) by simple jaws for intensity modulated radiation therapy (IMRT) resulted in unacceptable compromise in plan quality and delivery efficiency. We introduce a novel fluence map segmentation method based on compressed sensing for plan delivery using a simplified sparse orthogonal collimator (SOC) on the 4π non-coplanar radiotherapy platform. Methods: 4π plans with varying prescription doses were first created by automatically selecting and optimizing 20 non-coplanar beams for 2 GBM, 2 head & neck, and 2 lung patients. To create deliverable 4π plans using SOC, which are two pairs of orthogonal collimators with 1 to 4 leaves in each collimator bank, a Haar Fluence Optimization (HFO) method was used to regulate the number of Haar wavelet coefficients while maximizing the dose fidelity to the ideal prescription. The plans were directly stratified utilizing the optimized Haar wavelet rectangular basis. A matching number of deliverable segments were stratified for the MLC-based plans. Results: Compared to the MLC-based 4π plans, the SOC-based 4π plans increased the average PTV dose homogeneity from 0.811 to 0.913. PTV D98 and D99 were improved by 3.53% and 5.60% of the corresponding prescription doses. The average mean and maximal OAR doses slightly increased by 0.57% and 2.57% of the prescription doses. The average number of segments ranged between 5 and 30 per beam. The collimator travel time to create the segments decreased with increasing leaf numbers in the SOC. The two and four leaf designs were 1.71 and 1.93 times more efficient, on average, than the single leaf design. Conclusion: The innovative dose domain optimization based on compressed sensing enables uncompromised 4π non-coplanar IMRT dose delivery using simple rectangular segments that are deliverable using a sparse orthogonal collimator, which only requires 8 to 16 leaves yet is unlimited in modulation resolution. This work is

  6. Pre-trial quality assurance processes for an intensity-modulated radiation therapy (IMRT) trial: PARSPORT, a UK multicentre Phase III trial comparing conventional radiotherapy and parotid-sparing IMRT for locally advanced head and neck cancer.

    Science.gov (United States)

    Clark, C H; Miles, E A; Urbano, M T Guerrero; Bhide, S A; Bidmead, A M; Harrington, K J; Nutting, C M

    2009-07-01

    The purpose of this study was to compare conventional radiotherapy with parotid gland-sparing intensity-modulated radiation therapy (IMRT) using the PARSPORT trial. The validity of such a trial depends on the radiotherapy planning and delivery meeting a defined standard across all centres. At the outset, many of the centres had little or no experience of delivering IMRT; therefore, quality assurance processes were devised to ensure consistency and standardisation of all processes for comparison within the trial. The pre-trial quality assurance (QA) programme and results are described. Each centre undertook exercises in target volume definition and treatment planning, completed a resource questionnaire and produced a process document. Additionally, the QA team visited each participating centre. Each exercise had to be accepted before patients could be recruited into the trial. 10 centres successfully completed the quality assurance exercises. A range of treatment planning systems, linear accelerators and delivery methods were used for the planning exercises, and all the plans created reached the standard required for participation in this multicentre trial. All 10 participating centres achieved implementation of a comprehensive and robust IMRT programme for treatment of head and neck cancer.

  7. Can Intensity-Modulated Radiotherapy Preserve Oral Health-Related Quality of Life of Nasopharyngeal Carcinoma Patients?

    International Nuclear Information System (INIS)

    Pow, Edmond H.N.; Kwong, Dora L.W.; Sham, Jonathan S.T.; Lee, Victor H.F.; Ng, Sherry C.Y.

    2012-01-01

    Purpose: To investigate the changes in salivary function and oral health-related quality of life for patients with nasopharyngeal carcinoma treated by intensity-modulated radiotherapy (IMRT). Methods and Materials: A total of 57 patients with early-stage nasopharyngeal carcinoma received IMRT. The parotid and whole saliva flow was measured, and the Medical Outcomes Study 36-item short form, European Organization for Research and Treatment of Cancer Quality of Life questionnaire-C30, European Organization for Research and Treatment of Cancer Quality of Life questionnaire 35-item head-and-neck module, and Oral Health Impact Profile questionnaires were completed at baseline and 2, 6, 12, 18, and 24 months after IMRT. Results: Parotid saliva flow recovered fully after 1 year and maintained. Whole saliva flow recovered partially to 40% of baseline. A general trend of deterioration in most quality of life scales was observed after IMRT, followed by gradual recovery. Persistent oral-related symptoms were found 2 years after treatment. Conclusion: IMRT for early-stage nasopharyngeal carcinoma could only partially preserve the whole salivary function and oral health-related quality of life.

  8. Can Intensity-Modulated Radiotherapy Preserve Oral Health-Related Quality of Life of Nasopharyngeal Carcinoma Patients?

    Energy Technology Data Exchange (ETDEWEB)

    Pow, Edmond H.N., E-mail: ehnpow@hku.hk [Oral Rehabilitation, University of Hong Kong Faculty of Dentistry, Hong Kong Special Administrative Region (China); Kwong, Dora L.W.; Sham, Jonathan S.T.; Lee, Victor H.F.; Ng, Sherry C.Y. [Department of Clinical Oncology, University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong Special Administrative Region (Hong Kong)

    2012-06-01

    Purpose: To investigate the changes in salivary function and oral health-related quality of life for patients with nasopharyngeal carcinoma treated by intensity-modulated radiotherapy (IMRT). Methods and Materials: A total of 57 patients with early-stage nasopharyngeal carcinoma received IMRT. The parotid and whole saliva flow was measured, and the Medical Outcomes Study 36-item short form, European Organization for Research and Treatment of Cancer Quality of Life questionnaire-C30, European Organization for Research and Treatment of Cancer Quality of Life questionnaire 35-item head-and-neck module, and Oral Health Impact Profile questionnaires were completed at baseline and 2, 6, 12, 18, and 24 months after IMRT. Results: Parotid saliva flow recovered fully after 1 year and maintained. Whole saliva flow recovered partially to 40% of baseline. A general trend of deterioration in most quality of life scales was observed after IMRT, followed by gradual recovery. Persistent oral-related symptoms were found 2 years after treatment. Conclusion: IMRT for early-stage nasopharyngeal carcinoma could only partially preserve the whole salivary function and oral health-related quality of life.

  9. Treatment planning for heavy ion radiotherapy: calculation and optimization of biologically effective dose

    International Nuclear Information System (INIS)

    Kraemer, M.; Scholz, M.

    2000-09-01

    We describe a novel approach to treatment planning for heavy ion radiotherapy based on the local effect model (LEM) which allows to calculate the biologically effective dose not only for the target region but for the entire irradiation volume. LEM is ideally suited to be used as an integral part of treatment planning code systems for active dose shaping devices like the GSI raster scan system. Thus, it has been incorporated into our standard treatment planning system for ion therapy (TRiP). Single intensity modulated fields can be optimized with respect to homogeneous biologically effective dose. The relative biological effectiveness (RBE) is calculated separately for each voxel of the patient CT. Our radiobiologically oriented code system is in use since 1995 for the planning of irradiation experiments with cell cultures and animals such as rats and minipigs. Since 1997 it is in regular and successful use for patient treatment planning. (orig.)

  10. SU-E-T-592: Relationship Between Dose of Distribution and Area of Segment Fields Among Different Intensity-Modulated Radiotherapy Planning in Cervix Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, R; Wang, Y; Cao, Y; Zhang, R; Shang, K; Chi, Z [Hebei Medical University Fourth Hospital, Shijiazhuang, Hebei (China)

    2014-06-01

    Purpose: In premise of uninfluenced to dose distribution of tumor target and organ at risk(OAR) in cervical cancer,area of segment fields was changed to increase efficacy and optimize treatment method by designing different plan of intensity modulated radiotherapy(IMRT). Methods: 12 cases of cervical cancer were confirmed in pathology and treated with step and shoot IMRT. Dose of PTV was 50Gy/25fractions. Every patient was designed 9 treatment plans of IMRT by Pinnacle 8.0m planning system,each plan was used with 9 beams of uniform distribution and fixing incidence direction(200°,240°,280°,320°,0°,40°,80°,120°and 160°respectively),and designed for delivery on Elekta Synergy linear accelerator. All plans were optimized with the direct machine parameter optimization(DMPO) algorithm using the same set of optimization objectives. Number of maximum segment field was defined at 80 and minimum MU in each segment was 5MU,and minimal segment area was 2*1cm{sup 2},2*2cm{sup 2},3*3cm{sup 2},4*4cm{sup 2},5*5cm{sup 2},6*6cm{sup 2},7*7cm{sup 2},8*8cm{sup 2}and 9*9cm{sup 2},respectively.Coverage,homogeneity and conformity of PTV,sparing of OAR, MU and number of segment were compared. Results: In this group, mean volume of PTV was 916.8±228.7 cm{sup 3}. Compared with the area of minimal segment field increased from 2*1cm{sup 2} to 9*9 cm{sup 2},the number of mean MU was decreased from 1405±170 to 490±47 and the number of segment field was reduced from 76±4 to 39±7 respectively(p<0.05). When the limit of minimal segment area was increased from 2*1cm{sup 2} to 7*7 cm{sup 2},dose distribution of PTV,OAR,CI,HI and V{sub 2} {sub 3} were not different (p>0.05),but when the minimal segment area was 8*8 cm{sup 2} and 9*9 cm{sup 2},they were changed compared with 7*7 cm{sup 2} and below(p<0.05). Conclusion: The minimal segment field of IMRT plan designed by Pinnacle 8.0m planning system in cervical carcinoma should be enlarge reasonably and minimal segment area of 7*7 cm

  11. Xerostomia and quality of life after intensity-modulated radiotherapy vs. conventional radiotherapy for early-stage nasopharyngeal carcinoma: Initial report on a randomized controlled clinical trial

    International Nuclear Information System (INIS)

    Pow, Edmond; Kwong, Dora; McMillan, Anne S.; Wong, May; Sham, Jonathan; Leung, Lucullus; Leung, W. Keung

    2006-01-01

    Purpose: To compare directly the effect of intensity-modulated radiotherapy (IMRT) vs. conventional radiotherapy (CRT) on salivary flow and quality of life (QoL) in patients with early-stage nasopharyngeal carcinoma (NPC). Methods and Materials: Fifty-one patients with T2, N0/N1, M0 NPC took part in a randomized controlled clinical study and received IMRT or CRT. Stimulated whole (SWS) and parotid (SPS) saliva flow were measured and Medical Outcomes Short Form 36 (SF-36), European Organization for Research and Treatment of Cancer (EORTC) core quetionnaire, and EORTC head-and-neck module (QLQ-H and N35) were completed at baseline and 2, 6, and 12 months after radiotherapy. Results: Forty-six patients (88%) were in disease remission 12 months after radiotherapy. At 12 months postradiotherapy, 12 (50.0%) and 20 patients (83.3%) in the IMRT group had recovered at least 25% of preradiotherapy SWS and SPS flow respectively, compared with 1 (4.8%) and 2 patients (9.5%), respectively, in the CRT group. Global health scores showed continuous improvement in QoL after both treatments (p < 0.001). However, after 12 months subscale scores for role-physical, bodily pain, and physical function were significantly higher in the IMRT group, indicating a better condition (p < 0.05). Dry mouth and sticky saliva were problems in both groups 2 months after treatment. In the IMRT group, there was consistent improvement over time with xerostomia-related symptoms significantly less common than in the CRT group at 12 months postradiotherapy. Conclusions: IMRT was significantly better than CRT in terms of parotid sparing and improved QoL for early-stage disease. The findings support the case for assessment of health-related QoL in relation to head-and-neck cancer using a site-specific approach

  12. Strategies for Online Organ Motion Correction for Intensity-Modulated Radiotherapy of Prostate Cancer: Prostate, Rectum, and Bladder Dose Effects

    International Nuclear Information System (INIS)

    Rijkhorst, Erik-Jan; Lakeman, Annemarie; Nijkamp, Jasper; Bois, Josien de; Herk, Marcel van; Lebesque, Joos V.; Sonke, Jan-Jakob

    2009-01-01

    Purpose: To quantify and evaluate the accumulated prostate, rectum, and bladder dose for several strategies including rotational organ motion correction for intensity-modulated radiotherapy (IMRT) of prostate cancer using realistic organ motion data. Methods and Materials: Repeat computed tomography (CT) scans of 19 prostate patients were used. Per patient, two IMRT plans with different uniform margins were created. To quantify prostate and seminal vesicle motion, repeat CT clinical target volumes (CTVs) were matched onto the planning CTV using deformable registration. Four different strategies, from online setup to full motion correction, were simulated. Rotations were corrected for using gantry and collimator angle adjustments. Prostate, rectum, and bladder doses were accumulated for each patient, plan, and strategy. Minimum CTV dose (D min ), rectum equivalent uniform dose (EUD, n = 0.13), and bladder surface receiving ≥78 Gy (S78), were calculated. Results: With online CTV translation correction, a 7-mm margin was sufficient (i.e., D min ≥ 95% of the prescribed dose for all patients). A 4-mm margin required additional rotational correction. Margin reduction lowered the rectum EUD(n = 0.13) by ∼2.6 Gy, and the bladder S78 by ∼1.9%. Conclusions: With online correction of both translations and rotations, a 4-mm margin was sufficient for 15 of 19 patients, whereas the remaining four patients had an underdosed CTV volume <1%. Margin reduction combined with online corrections resulted in a similar or lower dose to the rectum and bladder. The more advanced the correction strategy, the better the planned and accumulated dose agreed.

  13. Nasopharyngeal Carcinoma in Children: Comparison of Conventional and Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Laskar, Siddhartha; Bahl, Gaurav; Muckaden, MaryAnn; Pai, Suresh K.; Gupta, Tejpal; Banavali, Shripad; Arora, Brijesh; Sharma, Dayanand; Kurkure, Purna A.; Ramadwar, Mukta; Viswanathan, Seethalaxhmi; Rangarajan, Venkatesh; Qureshi, Sajid; Deshpande, Deepak D.; Shrivastava, Shyam K.; Dinshaw, Ketayun A.

    2008-01-01

    Purpose: To evaluate the efficacy of intensity-modulated radiotherapy (IMRT) in reducing the acute toxicities associated with conventional RT (CRT) in children with nasopharyngeal carcinoma. Patients and Methods: A total of 36 children with nonmetastatic nasopharyngeal carcinoma, treated at the Tata Memorial Hospital between June 2003 and December 2006, were included in this study. Of the 36 patients, 28 were boys and 8 were girls, with a median age of 14 years; 4 (11%) had Stage II and 10 (28%) Stage III disease at presentation. All patients had undifferentiated carcinoma and were treated with a combination of chemotherapy and RT. Of the 36 patients, 19 underwent IMRT and 17 underwent CRT. Results: After a median follow-up of 27 months, the 2-year locoregional control, disease-free, and overall survival rate was 76.5%, 60.6%, and 71.3%, respectively. A significant reduction in acute Grade 3 toxicities of the skin (p = 0.006), mucous membrane (p = 0.033), and pharynx (p = 0.035) was noted with the use of IMRT. The median time to the development of Grade 2 toxicity was delayed with IMRT (skin, 35 vs. 25 days, p = 0.016; mucous-membrane, 39 vs. 27 days, p = 0.002; and larynx, 50 vs. 28 days, p = 0.009). The duration of RT significantly influenced disease-free survival on multivariate analysis (RT duration >52 days, hazard ratio = 5.49, 95% confidence interval, 1.14-26.45, p = 0.034). The average mean dose to the first and second planning target volume was 71.8 Gy and 62.5 Gy with IMRT compared with 66.3 Gy (p = 0.001) and 64.4 Gy (p = 0.046) with CRT, respectively. Conclusion: The results of our study have shown that IMRT significantly reduces and delays the onset of acute toxicity, resulting in improved tolerance and treatment compliance for children with nasopharyngeal carcinoma. Also, IMRT provided superior target coverage and normal tissue sparing compared with CRT

  14. Quality of Life After Hypofractionated Concomitant Intensity-Modulated Radiotherapy Boost for High-Risk Prostate Cancer

    International Nuclear Information System (INIS)

    Quon, Harvey; Cheung, Patrick C.F.; Loblaw, D. Andrew; Morton, Gerard; Pang, Geordi; Szumacher, Ewa; Danjoux, Cyril; Choo, Richard; Kiss, Alex; Mamedov, Alexandre; Deabreu, Andrea

    2012-01-01

    Purpose: To evaluate the change in health-related quality of life (QOL) of patients with high-risk prostate cancer treated using hypofractionated radiotherapy combined with long-term androgen deprivation therapy. Methods and Materials: A prospective Phase I–II study enrolled patients with any of the following: clinical Stage T3 disease, prostate-specific antigen level ≥20 ng/mL, or Gleason score 8–10. Radiotherapy consisted of 45 Gy (1.8 Gy per fraction) to the pelvic lymph nodes with a concomitant 22.5 Gy intensity-modulated radiotherapy boost to the prostate, for a total of 67.5 Gy (2.7 Gy per fraction) in 25 fractions over 5 weeks. Daily image guidance was performed using three gold seed fiducials. Quality of life was measured using the Expanded Prostate Cancer Index Composite (EPIC), a validated tool that assesses four primary domains (urinary, bowel, sexual, and hormonal). Results: From 2004 to 2007, 97 patients were treated. Median follow-up was 39 months. Compared with baseline, at 24 months there was no statistically significant change in the mean urinary domain score (p = 0.99), whereas there were decreases in the bowel (p < 0.01), sexual (p < 0.01), and hormonal (p < 0.01) domains. The proportion of patients reporting a clinically significant difference in EPIC urinary, bowel, sexual, and hormonal scores at 24 months was 27%, 31%, 55%, and 60%, respectively. However, moderate and severe distress related to these symptoms was minimal, with increases of only 3% and 5% in the urinary and bowel domains, respectively. Conclusions: Hypofractionated radiotherapy combined with long-term androgen deprivation therapy was well tolerated. Although there were modest rates of clinically significant patient-reported urinary and bowel toxicity, most of this caused only mild distress, and moderate and severe effects on QOL were limited. Additional follow-up is ongoing to characterize long-term QOL.

  15. Candidate Dosimetric Predictors of Long-Term Swallowing Dysfunction After Oropharyngeal Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Schwartz, David L.; Hutcheson, Katherine; Barringer, Denise; Tucker, Susan L.; Kies, Merrill; Holsinger, F. Christopher; Ang, K. Kian; Morrison, William H.; Rosenthal, David I.; Garden, Adam S.; Dong Lei; Lewin, Jan S.

    2010-01-01

    Purpose: To investigate long-term swallowing function in oropharyngeal cancer patients treated with intensity-modulated radiotherapy (IMRT), and to identify novel dose-limiting criteria predictive for dysphagia. Methods and Materials: Thirty-one patients with Stage IV oropharyngeal squamous carcinoma enrolled on a Phase II trial were prospectively evaluated by modified barium swallow studies at baseline, and 6, 12, and 24 months post-IMRT treatment. Candidate dysphagia-associated organs at risk were retrospectively contoured into original treatment plans. Twenty-one (68%) cases were base of tongue and 10 (32%) were tonsil. Stage distribution was T1 (12 patients), T2 (10), T3 (4), T4 (2), and TX (3), and N2 (24), N3 (5), and NX (2). Median age was 52.8 years (range, 42-78 years). Thirteen patients (42%) received concurrent chemotherapy during IMRT. Thirteen (42%) were former smokers. Mean dose to glottic larynx for the cohort was limited to 18 Gy (range, 6-39 Gy) by matching IMRT to conventional low-neck fields. Results: Dose-volume constraints (V30 < 65% and V35 < 35% for anterior oral cavity and V55 < 80% and V65 < 30% for high superior pharyngeal constrictors) predictive for objective swallowing dysfunction were identified by univariate and multivariate analyses. Aspiration and feeding tube dependence were observed in only 1 patient at 24 months. Conclusions: In the context of glottic laryngeal shielding, we describe candidate oral cavity and superior pharyngeal constrictor organs at risk and dose-volume constraints associated with preserved long-term swallowing function; these constraints are currently undergoing prospective validation. Strict protection of the glottic larynx via beam-split IMRT techniques promises to make chronic aspiration an uncommon outcome.

  16. Comparison of intensity-modulated radiotherapy and volumetric-modulated arc therapy dose measurement for head and neck cancer using optical stimulated luminescence dosimeter

    International Nuclear Information System (INIS)

    Lai, Lu-Han; Chuang, Keh-Shih; Lin, Hsin-Hon; Liu, Yi-Chi; Kuo, Chiung-Wen; Lin, Jao-Perng

    2017-01-01

    The in-vivo dose distributions of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT), a newly developed technique, for head and neck cancer have been investigated for several years. The present study used a head-and-neck RANDO phantom to simulate the clinical conditions of nasopharyngeal carcinoma and compare the radiation doses between VMAT and IMRT. Three types of planning target volume (PTV) profiles were targeted by reducing the PTV surface margin by 0, 3, and 5 mm. An optically stimulated luminescence dosimeter was used to measure the surface doses. The results revealed that VMAT provided on average 16.8–13.8% lower surface doses within the PTV target areas than IMRT. When the PTV margin was reduced by 0 mm, the surface doses for IMRT reached their maximum value, accounting for 75.1% of its prescribed dose (Dp); however, the Dp value of VMAT was only 61.1%. When the PTV margin was reduced by 3 or 5 mm, the surface doses decreased considerably. The observed surface doses were insufficient when the tumours invaded the body surface; however, VMAT exerted larger skin-sparing effects than IMRT when the tumours away from the skin. These results suggest that the skin doses for these two techniques are insufficient for surface tumours. Notably, VMAT can provide lower skin doses for deep tumours. - Highlights: • The surface doses of NPC patients are compared between VMAT and IMRT. • VMAT exerts lower skin dose than IMRT for deep tumours. • The surface tumour coverage is insufficient for VMAT and IMRT.

  17. Can a peri-rectal hydrogel spaceOAR programme for prostate cancer intensity-modulated radiotherapy be successfully implemented in a regional setting?

    International Nuclear Information System (INIS)

    Te Velde, Bridget L.; Westhuyzen, Justin; Wood, Maree; Shakespeare, Thomas P.; Awad, Nader

    2017-01-01

    The aim of this study was to investigate whether the implementation of a hydrogel spacer (SpaceOAR) programme for patients treated with 81 Gy prostate intensity-modulated radiotherapy (IMRT) in a regional setting can reduce rectal doses and toxicity. In this retrospective study, 125 patients with localised prostate cancer treated between April 2014 (programme commencement) and June 2015 were compared: 65 with SpaceOAR (inserted by five different urologists) and 60 patients treated over the same time period without SpaceOAR. Patients were treated with 81 Gy in 45Fx of IMRT over 9 weeks. Planning aims included restricting rectal doses to V40 Gy < 35%, V65 Gy < 17%, V75 Gy < 10%. Acute toxicity was assessed weekly during radiotherapy and at 12 weeks. Rectal volume parameters were all significantly lower in the SpaceOAR group, with an associated reduction in acute diarrhoea (13.8% vs 31.7%). There were no significant differences in the very low rates of acute and late faecal incontinence or proctitis, however, there was a trend towards increased haemorrhoid rate in the SpaceOAR group (11.7% vs 3.1%, P = 0.09). A SpaceOAR programme in a regional setting with urologists performing low volumes of insertions (<1 per month on average) is of clinical benefit, and was associated with significantly lower radiation doses to the rectum and lower rates of acute diarrhoea.

  18. Dosimetric and QA aspects of Konrad inverse planning system for commissioning intensity-modulated radiation therapy

    Directory of Open Access Journals (Sweden)

    Deshpande Shrikant

    2007-01-01

    Full Text Available The intensity-modulated radiation therapy (IMRT planning is performed using the Konrad inverse treatment planning system and the delivery of the treatment by using Siemens Oncor Impression Plus linear accelerator (step and shoot, which has been commissioned recently. The basic beam data required for commissioning the system were generate. The quality assurance of relative and absolute dose distribution was carried out before clinical implementation. The salient features of Konrad planning system, like dependence of grid size on dose volume histogram (DVH, number of intensity levels and step size in sequencer, are studied quantitatively and qualitatively. To verify whether the planned dose [from treatment planning system (TPS] and delivered dose are the same, the absolute dose at a point is determined using CC01 ion chamber and the axial plane dose distribution is carried out using Kodak EDR2 in conjunction with OmniPro IMRT Phantom and OmniPro IMRT software from Scanditronix Wellhofer. To obtain the optimum combination in leaf sequencer module, parameters like number of intensity levels, step size are analyzed. The difference between pixel values of optimum fluence profile and the fluence profile obtained for various combinations of number of intensity levels and step size is compared and plotted. The calculations of the volume of any RT structure in the dose volume histogram are compared using grid sizes 3 mm and 4 mm. The measured and planned dose at a point showed good agreement (< 3% except for a few cases wherein the chamber was placed in a relatively high dose gradient region. The axial plane dose distribution using film dosimetry shows excellent agreement (correlation coefficient> 0.97 in all the cases. In the leaf sequencer module, the combination of number of intensity level 7 with step size of 3 is the optimal solution for obtaining deliverable segments. The RT structure volume calculation is found to be more accurate with grid size of

  19. Whole-pelvic radiotherapy with spot-scanning proton beams for uterine cervical cancer: a planning study

    International Nuclear Information System (INIS)

    Hashimoto, Shingo; Shibamoto, Yuta; Iwata, Hiromitsu; Ogino, Hiroyuki; Shibata, Hiroki; Toshito, Toshiyuki; Sugie, Chikao; Mizoe, Jun-etsu

    2016-01-01

    The aim of this study was to compare the dosimetric parameters of whole-pelvic radiotherapy (WPRT) for cervical cancer among plans involving 3D conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), or spot-scanning proton therapy (SSPT). The dose distributions of 3D-CRT-, IMRT-, and SSPT-based WPRT plans were compared in 10 patients with cervical cancer. All of the patients were treated with a prescribed dose of 50.4 Gy in 1.8-Gy daily fractions, and all of the plans involved the same planning target volume (PTV) constrictions. A 3D-CRT plan involving a four-field box, an IMRT plan involving seven coplanar fields, and an SSPT plan involving four fields were created. The median PTV D95% did not differ between the 3D-CRT, IMRT and SSPT plans. The median conformity index 95% and homogeneity index of the IMRT and SSPT were better than those of the 3D-CRT. The homogeneity index of the SSPT was better than that of the IMRT. SSPT resulted in lower median V20 values for the bladder wall, small intestine, colon, bilateral femoral heads, skin, and pelvic bone than IMRT. Comparing the Dmean values, SSPT spared the small intestine, colon, bilateral femoral heads, skin and pelvic bone to a greater extent than the other modalities. SSPT can reduce the irradiated volume of the organs at risk compared with 3D-CRT and IMRT, while maintaining excellent PTV coverage. Further investigations of SSPT are warranted to assess its role in the treatment of cervical cancer.

  20. Image-guided and adaptive radiotherapy

    International Nuclear Information System (INIS)

    Louvel, G.; Chajon, E.; Henry, O.; Cazoulat, G.; Le Maitre, A.; Simon, A.; Bensadoun, R.J.; Crevoisier, R. de

    2012-01-01

    Image-guided radiotherapy (IGRT) aims to take into account anatomical variations occurring during irradiation by visualization of anatomical structures. It may consist of a rigid registration of the tumour by moving the patient, in case of prostatic irradiation for example. IGRT associated with intensity-modulated radiotherapy (IMRT) is strongly recommended when high-dose is delivered in the prostate, where it seems to reduce rectal and bladder toxicity. In case of significant anatomical deformations, as in head and neck tumours (tumour shrinking and decrease in volume of the salivary glands), re-planning appears to be necessary, corresponding to the adaptive radiotherapy. This should ideally be 'monitored' and possibly triggered based on a calculation of cumulative dose, session after session, compared to the initial planning dose, corresponding to the concept of dose-guided adaptive radiotherapy. The creation of 'planning libraries' based on predictable organ positions (as in cervical cancer) is another way of adaptive radiotherapy. All of these strategies still appear very complex and expensive and therefore require stringent validation before being routinely applied. (authors)

  1. The pitfalls of dosimetric commissioning for intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Tohyama, Naoki; Kodama, Takashi; Hatano, K.

    2013-01-01

    Intensity modulated radiation therapy (IMRT) allows higher radiation dose to be focused to the target volumes while minimizing the dose to OAR. To start of clinical treatment in IMRTvwe must perform commissioning strictly than 3D-conformal radiotherapy (CRT). In this report, pitfalls of dosimetric commissioning for intensity modulated radiation therapy were reviewed. Multileaf collimator (MLC) offsets and MLC transmissions are important parameters in commissioning of RTPS for IMRT. Correction of depth scaling and fluence scaling is necessary for dose measurement using solid phantom. (author)

  2. Intensity-modulated radiation therapy: overlapping co-axial modulated fields

    International Nuclear Information System (INIS)

    Metcalfe, P; Tangboonduangjit, P; White, P

    2004-01-01

    The Varian multi-leaf collimator has a 14.5 cm leaf extension limit from each carriage. This means the target volumes in the head and neck region are sometimes too wide for standard width-modulated fields to provide adequate dose coverage. A solution is to set up asymmetric co-axial overlapping fields. This protects the MLC carriage while in return the MLC provides modulated dose blending in the field overlap region. Planar dose maps for coincident fields from the Pinnacle radiotherapy treatment planning system are compared with planar dose maps reconstructed from radiographic film and electronic portal images. The film and portal images show small leaf-jaw matchlines at each field overlap border. Linear profiles taken across each image show that the observed leaf-jaw matchlines from the accelerator images are not accounted for by the treatment planning system. Dose difference between film reconstructed electronic portal images and planning system are about 2.5 cGy in a modulated field at d max . While the magnitude of the dose differences are small improved round end leaf modelling combined with a finer dose calculation grid may minimize the discrepancy between calculated and delivered dose

  3. First Clinical Release of an Online, Adaptive, Aperture-Based Image-Guided Radiotherapy Strategy in Intensity-Modulated Radiotherapy to Correct for Inter- and Intrafractional Rotations of the Prostate

    International Nuclear Information System (INIS)

    Deutschmann, Heinz; Kametriser, Gerhard; Steininger, Philipp; Scherer, Philipp; Schöller, Helmut; Gaisberger, Christoph; Mooslechner, Michaela; Mitterlechner, Bernhard; Weichenberger, Harald; Fastner, Gert; Wurstbauer, Karl; Jeschke, Stephan; Forstner, Rosemarie; Sedlmayer, Felix

    2012-01-01

    Purpose: We developed and evaluated a correction strategy for prostate rotations using direct adaptation of segments in intensity-modulated radiotherapy (IMRT). Method and Materials: Implanted fiducials (four gold markers) were used to determine interfractional translations, rotations, and dilations of the prostate. We used hybrid imaging: The markers were automatically detected in two pretreatment planar X-ray projections; their actual position in three-dimensional space was reconstructed from these images at first. The structure set comprising prostate, seminal vesicles, and adjacent rectum wall was transformed accordingly in 6 degrees of freedom. Shapes of IMRT segments were geometrically adapted in a class solution forward-planning approach, derived within seconds on-site and treated immediately. Intrafractional movements were followed in MV electronic portal images captured on the fly. Results: In 31 of 39 patients, for 833 of 1013 fractions (supine, flat couch, knee support, comfortably full bladder, empty rectum, no intraprostatic marker migrations >2 mm of more than one marker), the online aperture adaptation allowed safe reduction of margins clinical target volume–planning target volume (prostate) down to 5 mm when only interfractional corrections were applied: Dominant L-R rotations were found to be 5.3° (mean of means), standard deviation of means ±4.9°, maximum at 30.7°. Three-dimensional vector translations relative to skin markings were 9.3 ± 4.4 mm (maximum, 23.6 mm). Intrafractional movements in 7.7 ± 1.5 min (maximum, 15.1 min) between kV imaging and last beam’s electronic portal images showed further L-R rotations of 2.5° ± 2.3° (maximum, 26.9°), and three-dimensional vector translations of 3.0 ±3.7 mm (maximum, 10.2 mm). Addressing intrafractional errors could further reduce margins to 3 mm. Conclusion: We demonstrated the clinical feasibility of an online adaptive image-guided, intensity-modulated prostate protocol on a standard

  4. First clinical release of an online, adaptive, aperture-based image-guided radiotherapy strategy in intensity-modulated radiotherapy to correct for inter- and intrafractional rotations of the prostate.

    Science.gov (United States)

    Deutschmann, Heinz; Kametriser, Gerhard; Steininger, Philipp; Scherer, Philipp; Schöller, Helmut; Gaisberger, Christoph; Mooslechner, Michaela; Mitterlechner, Bernhard; Weichenberger, Harald; Fastner, Gert; Wurstbauer, Karl; Jeschke, Stephan; Forstner, Rosemarie; Sedlmayer, Felix

    2012-08-01

    We developed and evaluated a correction strategy for prostate rotations using direct adaptation of segments in intensity-modulated radiotherapy (IMRT). Implanted fiducials (four gold markers) were used to determine interfractional translations, rotations, and dilations of the prostate. We used hybrid imaging: The markers were automatically detected in two pretreatment planar X-ray projections; their actual position in three-dimensional space was reconstructed from these images at first. The structure set comprising prostate, seminal vesicles, and adjacent rectum wall was transformed accordingly in 6 degrees of freedom. Shapes of IMRT segments were geometrically adapted in a class solution forward-planning approach, derived within seconds on-site and treated immediately. Intrafractional movements were followed in MV electronic portal images captured on the fly. In 31 of 39 patients, for 833 of 1013 fractions (supine, flat couch, knee support, comfortably full bladder, empty rectum, no intraprostatic marker migrations >2 mm of more than one marker), the online aperture adaptation allowed safe reduction of margins clinical target volume-planning target volume (prostate) down to 5 mm when only interfractional corrections were applied: Dominant L-R rotations were found to be 5.3° (mean of means), standard deviation of means ±4.9°, maximum at 30.7°. Three-dimensional vector translations relative to skin markings were 9.3 ± 4.4 mm (maximum, 23.6 mm). Intrafractional movements in 7.7 ± 1.5 min (maximum, 15.1 min) between kV imaging and last beam's electronic portal images showed further L-R rotations of 2.5° ± 2.3° (maximum, 26.9°), and three-dimensional vector translations of 3.0 ±3.7 mm (maximum, 10.2 mm). Addressing intrafractional errors could further reduce margins to 3 mm. We demonstrated the clinical feasibility of an online adaptive image-guided, intensity-modulated prostate protocol on a standard linear accelerator to correct 6 degrees of freedom of

  5. WE-G-BRF-01: Adaptation to Intrafraction Tumor Deformation During Intensity-Modulated Radiotherapy: First Proof-Of-Principle Demonstration

    International Nuclear Information System (INIS)

    Ge, Y; OBrien, R; Shieh, C; Booth, J; Keall, P

    2014-01-01

    Purpose: Intrafraction tumor deformation limits targeting accuracy in radiotherapy and cannot be adapted to by current motion management techniques. This study simulated intrafractional treatment adaptation to tumor deformations using a dynamic Multi-Leaf Collimator (DMLC) tracking system during Intensity-modulated radiation therapy (IMRT) treatment for the first time. Methods: The DMLC tracking system was developed to adapt to the intrafraction tumor deformation by warping the planned beam aperture guided by the calculated deformation vector field (DVF) obtained from deformable image registration (DIR) at the time of treatment delivery. Seven single phantom deformation images up to 10.4 mm deformation and eight tumor system phantom deformation images up to 21.5 mm deformation were acquired and used in tracking simulation. The intrafraction adaptation was simulated at the DMLC tracking software platform, which was able to communicate with the image registration software, reshape the instantaneous IMRT field aperture and log the delivered MLC fields.The deformation adaptation accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the reference aperture. The incremental deformations were arbitrarily determined to take place equally over the delivery interval. The geometric target coverage of delivery with deformation adaptation was compared against the delivery without adaptation. Results: Intrafraction deformation adaptation during dynamic IMRT plan delivery was simulated for single and system deformable phantoms. For the two particular delivery situations, over the treatment course, deformation adaptation improved the target coverage by 89% for single target deformation and 79% for tumor system deformation compared with no-tracking delivery. Conclusion: This work demonstrated the principle of real-time tumor deformation tracking using a DMLC. This is the first step towards the development of an

  6. Simultaneous integrated boost intensity-modulated radiotherapy versus 3-dimensional conformal radiotherapy in preoperative concurrent chemoradiotherapy for locally advanced rectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Bong Kyung; Kang, Min Kyul; Kim, Jae Chul [Dept. of Radiation Oncology, Kyungpook National University School of Medicine, Daegu (Korea, Republic of); Kim, Min Young; Choi, Gyu Seog; Kim, Jong Gwang; Kang, Byung Woog; Kim, Hye Jin; Park, Soo Yeun [Kyungpook National University Chilgok Hospital, Kyungpook National University School of Medicine, Daegu (Korea, Republic of)

    2017-09-15

    To evaluate the feasibility of simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) for preoperative concurrent chemoradiotherapy (PCRT) in locally advanced rectal cancer (LARC), by comparing with 3-dimensional conformal radiotherapy (3D-CRT). Patients who were treated with PCRT for LARC from 2015 January to 2016 December were retrospectively enrolled. Total doses of 45 Gy to 50.4 Gy with 3D-CRT or SIB-IMRT were administered concomitantly with 5-fluorouracil plus leucovorin or capecitabine. Surgery was performed 8 weeks after PCRT. Between PCRT and surgery, one cycle of additional chemotherapy was administered. Pathologic tumor responses were compared between SIB-IMRT and 3D-CRT groups. Acute gastrointestinal, genitourinary, hematologic, and skin toxicities were compared between the two groups based on the RTOG toxicity criteria. SIB-IMRT was used in 53 patients, and 3D-CRT in 41 patients. After PCRT, no significant differences were noted in tumor responses, pathologic complete response (9% vs. 7%; p = 1.000), pathologic tumor regression Grade 3 or higher (85% vs. 71%; p = 0.096), and R0 resection (87% vs. 85%; p = 0.843). Grade 2 genitourinary toxicities were significantly lesser in the SIB-IMRT group (8% vs. 24%; p = 0.023), but gastrointestinal toxicities were not different across the two groups. SIB-IMRT showed lower GU toxicity and similar tumor responses when compared with 3D-CRT in PCRT for LARC.

  7. Intensity-Modulated Radiotherapy in Postoperative Treatment of Oral Cavity Cancers

    International Nuclear Information System (INIS)

    Gomez, Daniel R.; Zhung, Joanne E.; Gomez, Jennifer; Chan, Kelvin; Wu, Abraham J.; Wolden, Suzanne L.; Pfister, David G.; Shaha, Ashok; Shah, Jatin P.; Kraus, Dennis H.; Wong, Richard J.; Lee, Nancy Y.

    2009-01-01

    Purpose: To present our single-institution experience of intensity-modulated radiotherapy (IMRT) for oral cavity cancer. Methods and Materials: Between September 2000 and December 2006, 35 patients with histologically confirmed squamous cell carcinoma of the oral cavity underwent surgery followed by postoperative IMRT. The sites included were buccal mucosa in 8, oral tongue in 11, floor of the mouth in 9, gingiva in 4, hard palate in 2, and retromolar trigone in 1. Most patients had Stage III-IV disease (80%). Ten patients (29%) also received concurrent postoperative chemotherapy with IMRT. The median prescribed radiation dose was 60 Gy. Results: The median follow-up for surviving patients was 28.1 months (range, 11.9-85.1). Treatment failure occurred in 11 cases as follows: local in 4, regional in 2, and distant metastases in 5. Of the 5 patients with distant metastases, 2 presented with dermal metastases. The 2- and 3-year estimates of locoregional progression-free survival, distant metastasis-free survival, disease-free survival, and overall survival were 84% and 77%, 85% and 85%, 70% and 64%, and 74% and 74%, respectively. Acute Grade 2 or greater dermatitis, mucositis, and esophageal reactions were experienced by 54%, 66%, and 40% of the patients, respectively. Documented late complications included trismus (17%) and osteoradionecrosis (5%). Conclusion: IMRT as an adjuvant treatment after surgical resection for oral cavity tumors is feasible and effective, with promising results and acceptable toxicity

  8. Contribution of PET and PET/CT in CTV/PTV-modulation for planning of intensity modulated radiotherapy (IMRT); Aktueller Beitrag der PET und PET/CT zur Zielvolumenmodulation fuer die biologischmedizinische Planung im Rahmen der intensitaetsmodulierten Strahlentherapie (IMRT)

    Energy Technology Data Exchange (ETDEWEB)

    Oehler, W. [Klinik fuer Radioonkologie und Strahlentherapie, Suedharz-Krankenhaus Nordhausen (Germany); Baum, R.P. [Klinik fuer Nuklearmedizin/PET-Zentrum, Zentralklinik Bad Berka (Germany)

    2004-12-01

    PET and PET/CT enlarge the possibilities of purely anatomic imaging by opening up new horizons in determining the metabolic and molecular properties of tumors. This enables to determine the spread of tumors with higher accuracy, especially concerning the primary staging and the diagnosis of recurrences. Patients with locoregional disease which are curable by surgery or local radiotherapy (eventually in combination with chemotherapy) can be differentiated from those patients, where only palliative treatment is indicated. Novel nuclear medicine procedures, which use specific tracers, open the door for the molecular treatment of tumors. This will be especially important for radiation oncology. In future it will be possible to define specific tumor areas within a morphologically homogeneous tumor (e.g. areas of tumor hypoxia, increased local tumor stem cell concentration, tumor parts with higher proliferative activity etc.). With IMRT (intensity modulated radiotherapy) we have already now the opportunity, to concentrate the dose to these specific tumor areas, without overloading normal tissues and organs at risk. (orig.)

  9. Temporal lobe injury after re-irradiation of locally recurrent nasopharyngeal carcinoma using intensity modulated radiotherapy: clinical characteristics and prognostic factors.

    Science.gov (United States)

    Liu, Shuai; Lu, Taixiang; Zhao, Chong; Shen, Jingxian; Tian, Yunming; Guan, Ying; Zeng, Lei; Xiao, Weiwei; Huang, Shaomin; Han, Fei

    2014-09-01

    Temporal lobe injury (TLI) is a debilitating complication after radiotherapy for nasopharyngeal carcinoma (NPC), especially in patients who suffer treatment relapses and receive re-irradiation. We explored the clinical characteristics and prognostic factors of TLI in locally recurrent NPC (rNPC) patients after re-irradiation using intensity modulated radiotherapy (IMRT). A total of 454 temporal lobes (TLs) from 227 locally rNPC patients were reviewed. The clinical characteristics of TLI were analyzed. In the two radiotherapy courses, the equivalent dose in 2 Gy per fraction (EQD2) for the TLs was recalculated to facilitate comparison of the individual data. The median follow-up time was 31 (range, 3-127) months. After re-irradiation using IMRT, 31.3 % (71/227) of patients developed TLI. The median latency of TLI was 15 (range, 4-100) months. Univariate and multivariate analysis showed that the interval time (IT) between the two courses of radiotherapy and the summation of the maximum doses of the two radiotherapy courses (EQD2 - ∑max) were independent factors influencing TLI. The 5-year incidence of TLI for an IT ≤26 or >26 months was 35.9 and 53.7 % respectively (p = 0.024). The median maximum doses delivered to the injured TLs were significantly higher than was the case for the uninjured TLs after two courses of radiotherapy (135.3 and 129.8 Gy, respectively: p 2-year interval was found to be relatively safe.

  10. Automatic interactive optimization for volumetric modulated arc therapy planning

    International Nuclear Information System (INIS)

    Tol, Jim P; Dahele, Max; Peltola, Jarkko; Nord, Janne; Slotman, Ben J; Verbakel, Wilko FAR

    2015-01-01

    Intensity modulated radiotherapy treatment planning for sites with many different organs-at-risk (OAR) is complex and labor-intensive, making it hard to obtain consistent plan quality. With the aim of addressing this, we developed a program (automatic interactive optimizer, AIO) designed to automate the manual interactive process for the Eclipse treatment planning system. We describe AIO and present initial evaluation data. Our current institutional volumetric modulated arc therapy (RapidArc) planning approach for head and neck tumors places 3-4 adjustable OAR optimization objectives along the dose-volume histogram (DVH) curve that is displayed in the optimization window. AIO scans this window and uses color-coding to differentiate between the DVH-lines, allowing it to automatically adjust the location of the optimization objectives frequently and in a more consistent fashion. We compared RapidArc AIO plans (using 9 optimization objectives per OAR) with the clinical plans of 10 patients, and evaluated optimal AIO settings. AIO consistency was tested by replanning a single patient 5 times. Average V95&V107 of the boost planning target volume (PTV) and V95 of the elective PTV differed by ≤0.5%, while average elective PTV V107 improved by 1.5%. Averaged over all patients, AIO reduced mean doses to individual salivary structures by 0.9-1.6Gy and provided mean dose reductions of 5.6Gy and 3.9Gy to the composite swallowing structures and oral cavity, respectively. Re-running AIO five times, resulted in the aforementioned parameters differing by less than 3%. Using the same planning strategy as manually optimized head and neck plans, AIO can automate the interactive Eclipse treatment planning process and deliver dosimetric improvements over existing clinical plans

  11. The situation of radiotherapy in 2011

    International Nuclear Information System (INIS)

    2012-06-01

    Published within the frame of the French 2009-2013 cancer plan, this report proposes an analysis of the situation of radiotherapy in France. More particularly, it analyses the French offer in terms of radiotherapy treatments and the French position in Europe. A second part analyses equipment (accelerators and other equipment) and techniques aimed at radiotherapy treatment preparation and delivery. The following techniques are addressed: three-dimensional conformational, intensity modulation, intracranial and extracranial stereotactic, image-guided, total body irradiation, hadron-therapy, and peri-operative radiotherapy. The last parts analyse the activity of radiotherapy centres in terms of treated patients, of patient age structure, of sessions and preparations, and of treated pathologies, the medical and paramedical personnel in charge of radiotherapy, and financial and cost aspects

  12. Intensity-Modulated Radiation Therapy for Primary Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    Zhong-min Wang

    2004-01-01

    Radiation therapy has been used to treat primary brain tumors as standard primary and/or adjunctive therapies for decades. It is difficult for conventional radiotherapy to deliver a lethal dose of radiation to the tumors while sparing surrounding normal brain due to complicated structures and multifunction in human brain. With the understanding of radiation physics and computer technology, a number of novel and more precise radiotherapies have been developed in recent years. Intensity modulated radiotherapy (IMRT) is one of these strategies. The use of IMRT in the treatment of primary brain tumors is being increasing nowadays. It shows great promise for some of primary brain tumors and also presents some problems, This review highlights current IMRT in the treatment of mainly primary brain tumors.

  13. SU-F-P-52: A Meta-Analysis of Controlled Clinical Trials Comparing Elective Nodal Irradiation with Involved-Field Irradiation for Conformal Or Intensity-Modulated Radiotherapy in Patients with Esophageal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bai, W; Zhang, R; Zhou, Z; Qiao, X [The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei (China)

    2016-06-15

    Purpose: To compare elective nodal irradiation with involved-field irradiation for three-dimensional conformal radiotherapy or intensity-modulated radiotherapy in patients with esophageal cancer by a metaanalysis. Methods: Wanfang, CNKI, VIP, CBM databases, PubMed, Embase and Cochrane Library were searched to identify the controlled clinical trials of elective nodal irradiation with involved-field irradiation for three-dimensional conformal radiotherapy or intensity-modulated radiotherapy in patients with esophageal cancer. The obtained data were analyzed using Stata 11.0. The difference between two groups was estimated by calculating the odds ratio (OR) with 95% confidence interval (95% CI). Results: A total of 12 controlled clinical trials involving 1095 esophageal cancer patients, which were selected according to inclusion and exclusion criteria, were included in this meta-analysis. The meta-analysis showed that the elective nodal irradiation group reduced the rates of out-field failure comparing with involved-field irradiation group (OR=3.727, P=0.007). However, the rates of ≥grades 3 acute radiation pneumonitis and esophagitis were significantly higher in the elective nodal irradiation group than in the involved-field irradiation group (OR=0.348, P=0.001, OR=0.385, P=0.000). 1-, 2-, 3-year local control rates (OR=0.966, P=0.837, OR=0.946, P=0.781; OR=0.732P=0.098) and 1-, 3-, 5-year survival rates were similar in the two groups ( OR=0.966, P=0.837; OR=0.946, P=0.781; OR=0.732, P=0.098; OR=0.952, P=0.756; OR=1.149, P=0.422; OR=0.768, P=0.120). It is the same with the rates of distant metastasis (OR=0.986, P=0.937). Conclusion: Compared with involved-field irradiation, the elective nodal irradiation can reduce the rates of out-field failure for three-dimensional conformal radiotherapy or intensity-modulated radiotherapy in patients with esophageal cancer. However, its advantage of local control and survival rates is not obvious and it increases the incidence

  14. Conformal radiotherapy with intensity modulation and integrated boost in the head and neck cancers: experience of the Curie Institute

    International Nuclear Information System (INIS)

    Toledano, I.; Serre, A.; Bensadoun, R.J.; Ortholan, C.; Racadot, S.; Calais, G.; Alfonsi, M.; Giraud, P.; Graff, P.; Serre, A.; Bensadoun, R.J.; Ortholan, C.; Racadot, S.; Calais, G.; Alfonsi, M.; Giraud, P.

    2009-01-01

    The modulated intensity radiotherapy (I.M.R.T.) is used in the treatment of cancers in superior aero digestive tracts to reduce the irradiation of parotids and to reduce the delayed xerostomia. This retrospective study presents the results got on the fourteen first patients according an original technique of I.M.R.T. with integrated boost. It appears that this technique is feasible and allows to reduce the xerostomia rate without modifying the local control rate. To limit the average dose to the parotids under 30 Gy seems reduce the incidence of severe xerostomia. (N.C.)

  15. Intensity-modulated radiotherapy vs. parotid-sparing 3D conformal radiotherapy. Effect on outcome and toxicity in locally advanced head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lambrecht, M.; Nevens, D.; Nuyts, S. [University Hospitals Leuven (Belgium). Dept. of Radiation Oncology

    2013-03-15

    Background and purpose: Intensity-modulated radiotherapy (IMRT) has rapidly become standard of care in the management of locally advanced head and neck squamous cell carcinoma (HNSCC). In this study, our aim was to retrospectively investigate the effect of the introducing IMRT on outcome and treatment-related toxicity compared to parotid-sparing 3D conformal radiotherapy (3DCRT). Material and methods: A total of 245 patients with stage III and IV HNSCC treated with primary radiotherapy between January 2003 and December 2010 were included in this analysis: 135 patients were treated with 3DCRT, 110 patients with IMRT. Groups were compared for acute and late toxicity, locoregional control (LRC), and overall survival (OS). Oncologic outcomes were estimated using Kaplan-Meier analysis and compared using a log-rank test. Acute toxicity was analyzed according to the Common Terminology Criteria for Adverse Events v3.0 and late toxicity was scored using the RTOG/EORTC late toxicity scoring system. Results: Median follow-up was 35 months in the IMRT group and 68 months in the 3DCRT group. No significant differences were found in 3-year LRC and OS rates between the IMRT group and 3DCRT group. Significantly less acute mucositis {>=} grade 3 was observed in the IMRT group (32% vs. 44%, p = 0.03). There was significantly less late xerostomia {>=} grade 2 in the IMRT group than in the 3DCRT group (23% vs. 68%, p < 0.001). After 24 months, there was less dysphagia {>=} grade 2 in the IMRT group although differences failed to reach statistical significance. Conclusion: The introduction of IMRT in the radiotherapeutic management of locally advanced head and neck cancer significantly improved late toxicity without compromising tumor control compared to a parotid-sparing 3D conformal radiotherapy technique. (orig.)

  16. Concurrent Chemotherapy and Intensity-Modulated Radiotherapy for Locoregionally Advanced Laryngeal and Hypopharyngeal Cancers

    International Nuclear Information System (INIS)

    Lee, Nancy Y.; O'Meara, William; Chan, Kelvin; Della-Bianca, Cesar; Mechalakos, James G.; Zhung, Joanne; Wolden, Suzanne L.; Narayana, Ashwatha; Kraus, Dennis; Shah, Jatin P.; Pfister, David G.

    2007-01-01

    Purpose: To perform a retrospective review of laryngeal/hypopharyngeal carcinomas treated with concurrent chemotherapy and intensity-modulated radiotherapy (IMRT). Methods and Materials: Between January 2002 and June 2005, 20 laryngeal and 11 hypopharyngeal carcinoma patients underwent IMRT with concurrent platinum-based chemotherapy; most patients had Stage IV disease. The prescription of the planning target volume for gross, high-risk, and low-risk subclinical disease was 70, 59.4, and 54 Gy, respectively. Acute/late toxicities were retrospectively scored using the Common Toxicity Criteria scale. The 2-year local progression-free, regional progression-free, laryngectomy-free, distant metastasis-free, and overall survival rates were calculated using the Kaplan-Meier method. Results: The median follow-up of the living patients was 26 months (range, 17-58 months). The 2-year local progression-free, regional progression-free, laryngectomy-free, distant metastasis-free, and overall survival rate was 86%, 94%, 89%, 92%, and 63%, respectively. Grade 2 mucositis or higher occurred in 48% of patients, and all experienced Grade 2 or higher pharyngitis during treatment. Xerostomia continued to decrease over time from the end of RT, with none complaining of Grade 2 toxicity at this analysis. The 2-year post-treatment percutaneous endoscopic gastrostomy-dependency rate for those with hypopharyngeal and laryngeal tumors was 31% and 15%, respectively. The most severe late complications were laryngeal necrosis, necrotizing fascitis, and a carotid rupture resulting in death 3 weeks after salvage laryngectomy. Conclusion: These preliminary results have shown that IMRT achieved encouraging locoregional control of locoregionally advanced laryngeal and hypopharyngeal carcinomas. Xerostomia improved over time. Pharyngoesophageal stricture with percutaneous endoscopic gastrostomy dependency remains a problem, particularly for patients with hypopharyngeal carcinoma and, to a lesser

  17. Determination of beam intensity in a single step for IMRT inverse planning

    International Nuclear Information System (INIS)

    Chuang, Keh-Shih; Chen, Tzong-Jer; Kuo, Shan-Chi; Jan, Meei-Ling; Hwang, Ing-Ming; Chen, Sharon; Lin, Ying-Chuan; Wu, Jay

    2003-01-01

    In intensity modulated radiotherapy (IMRT), targets are treated by multiple beams at different orientations each with spatially-modulated beam intensities. This approach spreads the normal tissue dose to a greater volume and produces a higher dose conformation to the target. In general, inverse planning is used for IMRT treatment planning. The inverse planning requires iterative calculation of dose distribution in order to optimize the intensity profile for each beam and is very computation intensive. In this paper, we propose a single-step method utilizing a figure of merit (FoM) to estimate the beam intensities for IMRT treatment planning. The FoM of a ray is defined as the ratio between the delivered tumour dose and normal tissue dose and is a good index for the dose efficacy of the ray. To maximize the beam utility, it is natural to irradiate the tumour with intensity of each ray proportional to the value of the FoM. The nonuniform beam intensity profiles are then fixed and the weights of the beam are determined iteratively in order to yield a uniform tumour dose. In this study, beams are employed at equispaced angles around the patient. Each beam with its field size that just covers the tumour is divided into a fixed number of beamlets. The FoM is calculated for each beamlet and this value is assigned to be the beam intensity. Various weighting factors are incorporated in the FoM computation to accommodate different clinical considerations. Two clinical datasets are used to test the feasibility of the algorithm. The resultant dose-volume histograms of this method are presented and compared to that of conformal therapy. Preliminary results indicate that this method reduces the critical organ doses at a small expense of uniformity in tumour dose distribution. This method estimates the beam intensity in one single step and the computation time is extremely fast and can be finished in less than one minute using a regular PC

  18. Trajectory optimization for dynamic couch rotation during volumetric modulated arc radiotherapy

    Science.gov (United States)

    Smyth, Gregory; Bamber, Jeffrey C.; Evans, Philip M.; Bedford, James L.

    2013-11-01

    Non-coplanar radiation beams are often used in three-dimensional conformal and intensity modulated radiotherapy to reduce dose to organs at risk (OAR) by geometric avoidance. In volumetric modulated arc radiotherapy (VMAT) non-coplanar geometries are generally achieved by applying patient couch rotations to single or multiple full or partial arcs. This paper presents a trajectory optimization method for a non-coplanar technique, dynamic couch rotation during VMAT (DCR-VMAT), which combines ray tracing with a graph search algorithm. Four clinical test cases (partial breast, brain, prostate only, and prostate and pelvic nodes) were used to evaluate the potential OAR sparing for trajectory-optimized DCR-VMAT plans, compared with standard coplanar VMAT. In each case, ray tracing was performed and a cost map reflecting the number of OAR voxels intersected for each potential source position was generated. The least-cost path through the cost map, corresponding to an optimal DCR-VMAT trajectory, was determined using Dijkstra’s algorithm. Results show that trajectory optimization can reduce dose to specified OARs for plans otherwise comparable to conventional coplanar VMAT techniques. For the partial breast case, the mean heart dose was reduced by 53%. In the brain case, the maximum lens doses were reduced by 61% (left) and 77% (right) and the globes by 37% (left) and 40% (right). Bowel mean dose was reduced by 15% in the prostate only case. For the prostate and pelvic nodes case, the bowel V50 Gy and V60 Gy were reduced by 9% and 45% respectively. Future work will involve further development of the algorithm and assessment of its performance over a larger number of cases in site-specific cohorts.

  19. Audit of an automated checklist for quality control of radiotherapy treatment plans

    International Nuclear Information System (INIS)

    Breen, Stephen L.; Zhang Beibei

    2010-01-01

    Purpose: To assess the effect of adding an automated checklist to the treatment planning process for head and neck intensity-modulated radiotherapy. Methods: Plans produced within our treatment planning system were evaluated at the planners' discretion with an automated checklist of more than twenty planning parameters. Plans were rated as accepted or rejected for treatment, during regular review by radiation oncologists and physicists as part of our quality control program. The rates of errors and their types were characterised prior to the implementation of the checklist and with the checklist. Results: Without the checklist, 5.9% of plans were rejected; the use of the checklist reduced the rejection rate to 3.1%. The checklist was used for 64.7% of plans. Pareto analysis of the causes of rejection showed that the checklist reduced the number of causes of rejections from twelve to seven. Conclusions: The use of an automated checklist has reduced the need for reworking of treatment plans. With the use of the checklist, most rejections were due to errors in prescription or inadequate dose distributions. Use of the checklist by planners must be increased to maximise improvements in planning efficiency.

  20. Pleural Intensity-Modulated Radiotherapy for Malignant Pleural Mesothelioma

    International Nuclear Information System (INIS)

    Rosenzweig, Kenneth E.; Zauderer, Marjorie G.; Laser, Benjamin; Krug, Lee M.; Yorke, Ellen; Sima, Camelia S.; Rimner, Andreas; Flores, Raja; Rusch, Valerie

    2012-01-01

    Purpose: In patients with malignant pleural mesothelioma who are unable to undergo pneumonectomy, it is difficult to deliver tumoricidal radiation doses to the pleura without significant toxicity. We have implemented a technique of using intensity-modulated radiotherapy (IMRT) to treat these patients, and we report the feasibility and toxicity of this approach. Methods and Materials: Between 2005 and 2010, 36 patients with malignant pleural mesothelioma and two intact lungs (i.e., no previous pneumonectomy) were treated with pleural IMRT to the hemithorax (median dose, 46.8 Gy; range, 41.4–50.4) at Memorial Sloan-Kettering Cancer Center. Results: Of the 36 patients, 56% had right-sided tumors. The histologic type was epithelial in 78%, sarcomatoid in 6%, and mixed in 17%, and 6% had Stage I, 28% had Stage II, 33% had Stage III, and 33% had Stage IV. Thirty-two patients (89%) received induction chemotherapy (mostly cisplatin and pemetrexed); 56% underwent pleurectomy/decortication before IMRT and 44% did not undergo resection. Of the 36 patients evaluable for acute toxicity, 7 (20%) had Grade 3 or worse pneumonitis (including 1 death) and 2 had Grade 3 fatigue. In 30 patients assessable for late toxicity, 5 had continuing Grade 3 pneumonitis. For patients treated with surgery, the 1- and 2-year survival rate was 75% and 53%, and the median survival was 26 months. For patients who did not undergo surgical resection, the 1- and 2-year survival rate was 69% and 28%, and the median survival was 17 months. Conclusions: Treating the intact lung with pleural IMRT in patients with malignant pleural mesothelioma is a safe and feasible treatment option with an acceptable rate of pneumonitis. Additionally, the survival rates were encouraging in our retrospective series, particularly for the patients who underwent pleurectomy/decortication. We have initiated a Phase II trial of induction chemotherapy with pemetrexed and cisplatin with or without pleurectomy

  1. Pleural Intensity-Modulated Radiotherapy for Malignant Pleural Mesothelioma

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, Kenneth E., E-mail: ken.rosenzweig@mountsinai.org [Department of Radiation Oncology, Mount Sinai Medical Center, New York, NY (United States); Zauderer, Marjorie G. [Department of Medicine, Thoracic Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Laser, Benjamin [Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI (United States); Krug, Lee M. [Department of Medicine, Thoracic Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Yorke, Ellen [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Sima, Camelia S. [Department of Epidemiology/Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Rimner, Andreas [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Flores, Raja [Department of Surgery, Mount Sinai Medical Center, New York, NY (United States); Rusch, Valerie [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2012-07-15

    Purpose: In patients with malignant pleural mesothelioma who are unable to undergo pneumonectomy, it is difficult to deliver tumoricidal radiation doses to the pleura without significant toxicity. We have implemented a technique of using intensity-modulated radiotherapy (IMRT) to treat these patients, and we report the feasibility and toxicity of this approach. Methods and Materials: Between 2005 and 2010, 36 patients with malignant pleural mesothelioma and two intact lungs (i.e., no previous pneumonectomy) were treated with pleural IMRT to the hemithorax (median dose, 46.8 Gy; range, 41.4-50.4) at Memorial Sloan-Kettering Cancer Center. Results: Of the 36 patients, 56% had right-sided tumors. The histologic type was epithelial in 78%, sarcomatoid in 6%, and mixed in 17%, and 6% had Stage I, 28% had Stage II, 33% had Stage III, and 33% had Stage IV. Thirty-two patients (89%) received induction chemotherapy (mostly cisplatin and pemetrexed); 56% underwent pleurectomy/decortication before IMRT and 44% did not undergo resection. Of the 36 patients evaluable for acute toxicity, 7 (20%) had Grade 3 or worse pneumonitis (including 1 death) and 2 had Grade 3 fatigue. In 30 patients assessable for late toxicity, 5 had continuing Grade 3 pneumonitis. For patients treated with surgery, the 1- and 2-year survival rate was 75% and 53%, and the median survival was 26 months. For patients who did not undergo surgical resection, the 1- and 2-year survival rate was 69% and 28%, and the median survival was 17 months. Conclusions: Treating the intact lung with pleural IMRT in patients with malignant pleural mesothelioma is a safe and feasible treatment option with an acceptable rate of pneumonitis. Additionally, the survival rates were encouraging in our retrospective series, particularly for the patients who underwent pleurectomy/decortication. We have initiated a Phase II trial of induction chemotherapy with pemetrexed and cisplatin with or without pleurectomy

  2. Comparison of Toxicity Between Intensity-Modulated Radiotherapy and 3-Dimensional Conformal Radiotherapy for Locally Advanced Non-small-cell Lung Cancer.

    Science.gov (United States)

    Ling, Diane C; Hess, Clayton B; Chen, Allen M; Daly, Megan E

    2016-01-01

    The role of intensity-modulated radiotherapy (IMRT) in reducing treatment-related toxicity for locally advanced non-small-cell lung cancer (NSCLC) remains incompletely defined. We compared acute toxicity and oncologic outcomes in a large cohort of patients treated with IMRT or 3-dimensional conformal radiotherapy (3-DCRT), with or without elective nodal irradiation (ENI). A single-institution retrospective review was performed evaluating 145 consecutive patients with histologically confirmed stage III NSCLC treated with definitive chemoradiotherapy. Sixty-five (44.8%) were treated with 3-DCRT using ENI, 43 (30.0%) with 3-DCRT using involved-field radiotherapy (IFRT), and 37 (25.5%) with IMRT using IFRT. All patients received concurrent chemotherapy. Comparison of acute toxicities by treatment technique (IMRT vs. 3-DCRT) and extent of nodal irradiation (3-DCRT-IFRT vs. 3-DCRT-ENI) was performed for grade 2 or higher esophagitis or pneumonitis, number of acute hospitalizations, incidence of opioid requirement, percutaneous endoscopic gastrostomy utilization, and percentage weight loss during treatment. Local control and overall survival were analyzed by the Kaplan-Meier method. We identified no significant differences in any measures of acute toxicity by treatment technique or extent of nodal irradiation. There was a trend toward lower rates of grade 2 or higher pneumonitis among IMRT patients compared to 3-DCRT patients (5.4% vs. 23.0%; P = .065). Local control and overall survival were similar between cohorts. Acute and subacute toxicities were similar for patients treated with IMRT and with 3-DCRT with or without ENI, with a nonsignificant trend toward a reduction in pneumonitis with IMRT. Larger studies are needed to better define which patients will benefit from IMRT. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Impact of residual setup error on parotid gland dose in intensity-modulated radiation therapy with or without planning organ-at-risk margin

    International Nuclear Information System (INIS)

    Delana, Anna; Menegotti, Loris; Valentini, Aldo; Bolner, Andrea; Tomio, Luigi; Vanoni, Valentina; Lohr, Frank

    2009-01-01

    Purpose: To estimate the dosimetric impact of residual setup errors on parotid sparing in head-and-neck (H and N) intensity-modulated treatments and to evaluate the effect of employing an PRV (planning organ-at-risk volume) margin for the parotid gland. Patients and methods: Ten patients treated for H and N cancer were considered. A nine-beam intensity-modulated radiotherapy (IMRT) was planned for each patient. A second optimization was performed prescribing dose constraint to the PRV of the parotid gland. Systematic setup errors of 2 mm, 3 mm, and 5 mm were simulated. The dose-volume histograms of the shifted and reference plans were compared with regard to mean parotid gland dose (MPD), normal-tissue complication probability (NTCP), and coverage of the clinical target volume (V 95% and equivalent uniform dose [EUD]); the sensitivity of parotid sparing on setup error was evaluated with a probability-based approach. Results: MPD increased by 3.4%/mm and 3.0%/mm for displacements in the craniocaudal and lateral direction and by 0.7%/mm for displacements in the anterior-posterior direction. The probability to irradiate the parotid with a mean dose > 30 Gy was > 50%, for setup errors in cranial and lateral direction and 95% and EUD variations < 1% and < 1 Gy). Conclusion: The parotid gland is more sensitive to craniocaudal and lateral displacements. A setup error of 2 mm guarantees an MPD ≤ 30 Gy in most cases, without adding a PRV margin. If greater displacements are expected/accepted, an adequate PRV margin could be used to meet the clinical parotid gland constraint of 30 Gy, without affecting target volume coverage. (orig.)

  4. Epithelioid hemangioendothelioma of the spine treated with RapidArc volumetric-modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Guy, Jean-Baptiste; Trone, Jane-Chloé [Department of Radiotherapy, Institut de Cancérologie de la Loire, St Priest en Jarez (France); Chargari, Cyrus [Department of Radiation Oncology, HIA du Val de Grâce, Paris (France); Falk, Alexander Tuan [Department of Radiation Oncology, Centre Antoine Lacassagne, Nice (France); Khodri, Mustapha [Department of Physics, Institut de Cancérologie de la Loire, St Priest en Jarez (France); Magné, Nicolas, E-mail: nicolas.magne@icloire.fr [Department of Radiotherapy, Institut de Cancérologie de la Loire, St Priest en Jarez (France)

    2014-10-01

    Radiotherapy for epithelioid hemangioendothelioma (EHE) using volumetric intensity-modulated arc radiotherapy (VMAT). A 48-year-old woman was referred for curative irradiation of a vertebral EHE after failure of surgery. A comparison between VMAT and conventional conformal tridimensional (3D) dosimetry was performed and potential advantage of VMAT for sparing critical organs from irradiation's side effects was discussed. The total delivered dose on the planning target volume was 54 Gy in 27 fractions. The patient was finally treated with VMAT. The tolerance was excellent. There was no acute toxicity, including no increase in pain. With a follow-up of 18 months, no delayed toxicity was reported. The clinical response consisted of a decrease in the dorsal pain. The D{sub max} for the spinal cord was reduced from 55 Gy (3D-radiotherapy [RT]) (which would be an unacceptable dose to the spine because of the risk of myelopathy) to 42.8 Gy (VMAT), which remains below the recommended dose threshold (45 Gy). The dose delivered to 20% of organ volume (D{sub 20}) was reduced from 47 Gy (3D-RT) to 3 Gy (VMAT) for the spinal cord. The study shows that VMAT allows the delivery of curative treatment for vertebral EHEs because of critical organ sparing.

  5. Intensity-Modulated Radiotherapy Reduces Gastrointestinal Toxicity in Patients Treated With Androgen Deprivation Therapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Sharma, Navesh K.; Li Tianyu; Chen, David Y.; Pollack, Alan; Horwitz, Eric M.; Buyyounouski, Mark K.

    2011-01-01

    Purpose: Androgen deprivation therapy (AD) has been shown to increase late Grade 2 or greater rectal toxicity when used concurrently with three-dimensional conformal radiotherapy (3D-CRT). Intensity-modulated radiotherapy (IMRT) has the potential to reduce toxicity by limiting the radiation dose received by the bowel and bladder. The present study compared the genitourinary and gastrointestinal (GI) toxicity in men treated with 3D-CRT+AD vs. IMRT+AD. Methods and Materials: Between July 1992 and July 2004, 293 men underwent 3D-CRT (n = 170) or IMRT (n = 123) with concurrent AD (<6 months, n = 123; ≥6 months, n = 170). The median radiation dose was 76 Gy for 3D-CRT (International Commission on Radiation Units and Measurements) and 76 Gy for IMRT (95% to the planning target volume). Toxicity was assessed by a patient symptom questionnaire that was completed at each visit and recorded using a Fox Chase Modified Late Effects Normal Tissue Task radiation morbidity scale. Results: The mean follow-up was 86 months (standard deviation, 29.3) for the 3D-CRT group and 40 months (standard deviation, 9.7) for the IMRT group. Acute GI toxicity (odds ratio, 4; 95% confidence interval, 1.6-11.7; p = .005) was significantly greater with 3D-CRT than with IMRT and was independent of the AD duration (i.e., <6 vs. ≥6 months). The interval to the development of late GI toxicity was significantly longer in the IMRT group. The 5-year Kaplan-Meier estimate for Grade 2 or greater GI toxicity was 20% for 3D-CRT and 8% for IMRT (p = .01). On multivariate analysis, Grade 2 or greater late GI toxicity (hazard ratio, 2.1; 95% confidence interval, 1.1-4.3; p = .04) was more prevalent in the 3D-CRT patients. Conclusion: Compared with 3D-CRT, IMRT significantly decreased the acute and late GI toxicity in patients treated with AD.

  6. Intensity-Modulated Radiotherapy Triggers Onset of Bullous Pemphigoid in a Patient with Advanced Melanoma Treated with Nivolumab

    Directory of Open Access Journals (Sweden)

    Kayo Tanita

    2018-02-01

    Full Text Available Since the efficacy of ipilimumab on nivolumab-resistant advanced melanoma is extremely low, additional supportive therapy for anti-PD-1 antibody therapy-resistant advanced melanoma is needed. Although several supportive therapies that enhance the antitumor immune response of anti-PD-1 antibodies have already been reported, unexpected immune-related adverse events were detected at the same time. In this report, we describe a patient with advanced melanoma treated with nivolumab followed by intensity-modulated radiotherapy, which might have triggered bullous pemphigoid (BP. Although several cases of BP developing in anti-PD-1 antibody-treated patients have already been reported, in this report, we shed light on the possible pathogenesis of BP developing in a patient treated with nivolumab through M2 macrophages.

  7. Sparing of the submandibular glands by intensity modulated radiotherapy in the treatment of head and neck cancer

    International Nuclear Information System (INIS)

    Saarilahti, Kauko; Kouri, Mauri; Collan, Juhani; Kangasmaeki, Aki; Atula, Timo; Joensuu, Heikki; Tenhunen, Mikko

    2006-01-01

    Background and purpose: The submandibular glands produce most of the unstimulated saliva output and are the key in prevention of radiation-related xerostomia. We investigated whether sparing of the submandibular function is feasible with intensity modulated radiotherapy (IMRT). Patients and methods: Thirty-six patients diagnosed with head and neck cancer were treated with IMRT and had at least one parotid gland excluded from the planning target volume. In a subset, of these patients (n=18) where the risk of cancer recurrence in the contralateral submandibular region was judged low, the contralateral submandibular gland was spared from full-dose irradiation. The total unstimulated and stimulated salivary flow rates and adverse effects were monitored. Results: Twelve months following IMRT mean unstimulated saliva flow was 60% of the baseline value among patients who had one submandibular gland spared and 25% among those who did not (P=0.006). Patients whose contralateral submandibular was spared reported less grade two or three xerostomia (4 vs. 11; P=0.018), and used less saliva substitutes. No cancer recurrences were detected at the vicinity of the spared glands during a median follow-up time of 31 months. Conclusions: Submandibular gland sparing with IMRT is safe in selected patients treated for head and neck cancer. It is effective in prevention of radiation-associated xerostomia

  8. MRI-detected skull-base invasion. Prognostic value and therapeutic implication in intensity-modulated radiotherapy treatment for nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Cheng, Yi-Kan; Jiang, Ning; Yue, Dan; Tang, Ling-Long; Zhang, Fan; Lin, Li; Liu, Xu; Chen, Lei; Ma, Jun; Liu, Li-Zhi

    2014-01-01

    With advances in imaging and radiotherapy, the prognostic value of skull-base invasion in nasopharyngeal carcinoma (NPC) needs to be reassessed. We aimed to define a classification system and evaluate the prognostic value of the classification of magnetic resonance imaging (MRI)-detected skull-base invasion in NPC treated with intensity-modulated radiotherapy (IMRT). We retrospectively reviewed 749 patients who underwent MRI and were subsequently histologically diagnosed with nondisseminated NPC and treated with IMRT. MRI-detected skull-base invasion was not found to be an independent prognostic factor for overall survival (OS), distant metastasis-free survival (DMFS), local relapse-free survival (LRFS), or disease-free survival (DFS; p > 0.05 for all). Skull-base invasion was classified according to the incidence of each site (type I sites inside pharyngobasilar fascia and clivus vs. type II sites outside pharyngobasilar fascia). The 5-year OS, DMFS, LRFS, and DFS rates in the classification of skull-base invasion in NPC were 83 vs. 67 %, 85 vs.75 %, 95 vs. 88 %, and 76 vs. 62 %, respectively (p [de

  9. Intensity modulated radiotherapy with simultaneous integrated boost vs. conventional radiotherapy with sequential boost for breast cancer - A preliminary result.

    Science.gov (United States)

    Lee, Hsin-Hua; Hou, Ming-Feng; Chuang, Hung-Yi; Huang, Ming-Yii; Tsuei, Le-Ping; Chen, Fang-Ming; Ou-Yang, Fu; Huang, Chih-Jen

    2015-10-01

    This study was aimed to assess the acute dermatological adverse effect from two distinct RT techniques for breast cancer patients. We compared intensity-modulated radiotherapy with simultaneous integrated boost (IMRT-SIB) and conventional radiotherapy followed by sequential boost (CRT-SB). The study population was composed of 126 consecutive female breast cancer patients treated with breast conserving surgery. Sixty-six patients received IMRT-SIB to 2 dose levels simultaneously. They received 50.4 Gy at 1.8 Gy per fraction to the whole breast and 60.2 Gy at 2.15 Gy per fraction to the tumor bed by integral boost. Sixty patients in the CRT-SB group received 50 Gy in 25 fractions to the whole breast followed by a boost irradiation to tumor bed in 5-7 fractions to a total dose of 60-64 Gy. Acute skin toxicities were documented in agreement with the Common Terminology Criteria for Adverse Events version 3 (CTCAE v.3.0). Ninety-eight patients had grade 1 radiation dermatitis while 14 patients had grade 2. Among those with grade 2, there were 3 patients in IMRT-SIB group (4.5%) while 11 in CRT-SB group (18.3%). (P = 0.048) There was no patient with higher than grade 2 toxicity. Three year local control was 99.2%, 3-year disease free survival was 97.5% and 3-year overall survival was 99.2%. A significant reduction in the severity of acute radiation dermatitis from IMRT-SIB comparing with CRT-SB is demonstrated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Treatment planning strategy for whole-brain radiotherapy with hippocampal sparing and simultaneous integrated boost for multiple brain metastases using intensity-modulated arc therapy

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, Damodar, E-mail: dpokhrel@kumc.edu; Sood, Sumit; McClinton, Christopher; Shen, Xinglei; Lominska, Christopher; Saleh, Habeeb; Badkul, Rajeev; Jiang, Hongyu; Mitchell, Melissa; Wang, Fen

    2016-01-01

    Purpose: To retrospectively evaluate the accuracy, plan quality and efficiency of intensity-modulated arc therapy (IMAT) for hippocampal sparing whole-brain radiotherapy (HS-WBRT) with simultaneous integrated boost (SIB) in patients with multiple brain metastases (m-BM). Materials and methods: A total of 5 patients with m-BM were retrospectively replanned for HS-WBRT with SIB using IMAT treatment planning. The hippocampus was contoured on diagnostic T1-weighted magnetic resonance imaging (MRI) which had been fused with the planning CT image set. The hippocampal avoidance zone (HAZ) was generated using a 5-mm uniform margin around the paired hippocampi. The m-BM planning target volumes (PTVs) were contoured on T1/T2-weighted MRI registered with the 3D planning computed tomography (CT). The whole-brain planning target volume (WB-PTV) was defined as the whole-brain tissue volume minus HAZ and m-BM PTVs. Highly conformal IMAT plans were generated in the Eclipse treatment planning system for Novalis-TX linear accelerator consisting of high-definition multileaf collimators (HD-MLCs: 2.5-mm leaf width at isocenter) and 6-MV beam. Prescription dose was 30 Gy for WB-PTV and 45 Gy for each m-BM in 10 fractions. Three full coplanar arcs with orbit avoidance sectors were used. Treatment plans were evaluated using homogeneity (HI) and conformity indices (CI) for target coverage and dose to organs at risk (OAR). Dose delivery efficiency and accuracy of each IMAT plan was assessed via quality assurance (QA) with a MapCHECK device. Actual beam-on time was recorded and a gamma index was used to compare dose agreement between the planned and measured doses. Results: All 5 HS-WBRT with SIB plans met WB-PTV D{sub 2%}, D{sub 98%}, and V{sub 30} {sub Gy} NRG-CC001 requirements. The plans demonstrated highly conformal and homogenous coverage of the WB-PTV with mean HI and CI values of 0.33 ± 0.04 (range: 0.27 to 0.36), and 0.96 ± 0.01 (range: 0.95 to 0.97), respectively. All 5

  11. Treatment planning strategy for whole-brain radiotherapy with hippocampal sparing and simultaneous integrated boost for multiple brain metastases using intensity-modulated arc therapy

    International Nuclear Information System (INIS)

    Pokhrel, Damodar; Sood, Sumit; McClinton, Christopher; Shen, Xinglei; Lominska, Christopher; Saleh, Habeeb; Badkul, Rajeev; Jiang, Hongyu; Mitchell, Melissa; Wang, Fen

    2016-01-01

    Purpose: To retrospectively evaluate the accuracy, plan quality and efficiency of intensity-modulated arc therapy (IMAT) for hippocampal sparing whole-brain radiotherapy (HS-WBRT) with simultaneous integrated boost (SIB) in patients with multiple brain metastases (m-BM). Materials and methods: A total of 5 patients with m-BM were retrospectively replanned for HS-WBRT with SIB using IMAT treatment planning. The hippocampus was contoured on diagnostic T1-weighted magnetic resonance imaging (MRI) which had been fused with the planning CT image set. The hippocampal avoidance zone (HAZ) was generated using a 5-mm uniform margin around the paired hippocampi. The m-BM planning target volumes (PTVs) were contoured on T1/T2-weighted MRI registered with the 3D planning computed tomography (CT). The whole-brain planning target volume (WB-PTV) was defined as the whole-brain tissue volume minus HAZ and m-BM PTVs. Highly conformal IMAT plans were generated in the Eclipse treatment planning system for Novalis-TX linear accelerator consisting of high-definition multileaf collimators (HD-MLCs: 2.5-mm leaf width at isocenter) and 6-MV beam. Prescription dose was 30 Gy for WB-PTV and 45 Gy for each m-BM in 10 fractions. Three full coplanar arcs with orbit avoidance sectors were used. Treatment plans were evaluated using homogeneity (HI) and conformity indices (CI) for target coverage and dose to organs at risk (OAR). Dose delivery efficiency and accuracy of each IMAT plan was assessed via quality assurance (QA) with a MapCHECK device. Actual beam-on time was recorded and a gamma index was used to compare dose agreement between the planned and measured doses. Results: All 5 HS-WBRT with SIB plans met WB-PTV D 2% , D 98% , and V 30 Gy NRG-CC001 requirements. The plans demonstrated highly conformal and homogenous coverage of the WB-PTV with mean HI and CI values of 0.33 ± 0.04 (range: 0.27 to 0.36), and 0.96 ± 0.01 (range: 0.95 to 0.97), respectively. All 5 hippocampal sparing

  12. Gamma-H2Ax quantification of low dose irradiation-induced DNA damage in patients receiving intensity modulated radiotherapy (IRMT)

    International Nuclear Information System (INIS)

    Sivabalasingham, S.; Short, S.; Worku, M.; Marks, G.; Guerrero-Urbano, T.

    2013-01-01

    The full text of the publication follows. Purpose/Objective: IMRT (Intensity Modulated Radiotherapy) offers greater target dose compliance yet may produce a comparative higher whole body dose. The aim of this study is to quantify γH2Ax foci in lymphocytes (an established marker of DNA double strand breaks) in patients undergoing IMRT. Material/Methods: Radical inverse planned IMRT was delivered to patients with brain tumours. Peripheral blood samples were collected from each patient at the following time points: baseline; weekly- prior to and 30 minutes after one treatment fraction; 2 and 6 weeks following completion of treatment. Whole blood was centrifuged to separate lymphocytes, which were fixed and stained for fluorescent immunocytochemistry. 150 cells per sample were visualized. γH2Ax foci were identified and counted using confocal microscopy. Results A low basal level of foci was present in all samples prior to any radiation exposure (0.233, SD 0.028). There was a significant increase in mean foci per cell in post radiotherapy treatment samples(0.367 foci per cell pre-treatment and 0.612 foci per cell post treatment, p=0.000) and no significant difference between post-treatment foci numbers at different times during treatment(for example, 0.518 foci per cell at week 1 and 0.760 at week 6, p=0.279). Mean foci numbers returned to background levels at 6 weeks following completion of radiotherapy (0.239 foci per cell at baseline and 0.219 foci per cell at 6 weeks, p=0.529). Comparison between patients treated with different delivery methods is ongoing. Conclusion: γH2Ax is a feasible marker of DNA damage in lymphocytes during IMRT. These data demonstrate a reproducible level of foci induction in patients undergoing IMRT for tumour targets in brain. There is no significant accumulation of foci during treatment and foci numbers return to baseline post treatment. This assay may be useful to assess differences in whole body dose when different delivery methods

  13. Pancreatic cancer planning: Complex conformal vs modulated therapies

    International Nuclear Information System (INIS)

    Chapman, Katherine L.; Witek, Matthew E.; Chen, Hongyu; Showalter, Timothy N.; Bar-Ad, Voichita; Harrison, Amy S.

    2016-01-01

    To compare the roles of intensity-modulated radiation therapy (IMRT) and volumetric- modulated arc therapy (VMAT) therapy as compared to simple and complex 3-dimensional chemoradiotherpy (3DCRT) planning for resectable and borderline resectable pancreatic cancer. In all, 12 patients who received postoperative radiotherapy (8) or neoadjuvant concurrent chemoradiotherapy (4) were evaluated retrospectively. Radiotherapy planning was performed for 4 treatment techniques: simple 4-field box, complex 5-field 3DCRT, 5 to 6-field IMRT, and single-arc VMAT. All volumes were approved by a single observer in accordance with Radiation Therapy Oncology Group (RTOG) Pancreas Contouring Atlas. Plans included tumor/tumor bed and regional lymph nodes to 45 Gy; with tumor/tumor bed boosted to 50.4 Gy, at least 95% of planning target volume (PTV) received the prescription dose. Dose-volume histograms (DVH) for multiple end points, treatment planning, and delivery time were assessed. Complex 3DCRT, IMRT, and VMAT plans significantly (p < 0.05) decreased mean kidney dose, mean liver dose, liver (V 30 , V 35 ), stomach (D 10 %), stomach (V 45 ), mean right kidney dose, and right kidney (V 15 ) as compared with the simple 4-field plans that are most commonly reported in the literature. IMRT plans resulted in decreased mean liver dose, liver (V 35 ), and left kidney (V 15 , V 18 , V 20 ). VMAT plans decreased small bowel (D 10 %, D 15 %), small bowel (V 35 , V 45 ), stomach (D 10 %, D 15 %), stomach (V 35 , V 45 ), mean liver dose, liver (V 35 ), left kidney (V 15 , V 18 , V 20 ), and right kidney (V 18 , V 20 ). VMAT plans significantly decreased small bowel (D 10 %, D 15 %), left kidney (V 20 ), and stomach (V 45 ) as compared with IMRT plans. Treatment planning and delivery times were most efficient for simple 4-field box and VMAT. Excluding patient setup and imaging, average treatment delivery was within 10 minutes for simple and complex 3DCRT, IMRT, and VMAT treatments. This article

  14. A case study of radiotherapy planning for a bilateral metal hip prosthesis prostate cancer patient

    International Nuclear Information System (INIS)

    Su, Andy; Reft, Chester; Rash, Carla; Price, Jennifer; Jani, Ashesh B.

    2005-01-01

    The purpose of this report is to communicate the observed advantage of intensity-modulated radiotherapy (IMRT) in a patient with bilateral metallic hip prostheses. In this patient with early-stage low-risk disease, a dose of 74 Gy was planned in two phases-an initial 50 Gy to the prostate and seminal vesicles and an additional 24 Gy to the prostate alone. Each coplanar beam avoided the prosthesis in the beam's eye view. Using the same target expansions for each phase, IMRT and 3D-conformal radiotherapy (CRT) plans were compared for target coverage and inhomogeneity as well as dose to the bladder and rectum. The results of the analysis demonstrated that IMRT provided superior target coverage with reduced dose to normal tissues for both individual phases of the treatment plan as well as for the composite treatment plan. The dose to the rectum was significantly reduced with the IMRT technique, with a composite V80 of 35% for the IMRT plan versus 70% for 3D-CRT plan. Similarly, the dose to the bladder was significantly reduced with a V80 of 9% versus 20%. Overall, various dosimetric parameters revealed the corresponding 3D-CRT plan would not have been acceptable. The results indicate significant success with IMRT in a clinical scenario where there were no curative alternatives for local treatment other than external beam radiotherapy. Therefore, definitive external beam radiation of prostate cancer patients with bilateral prosthesis is made feasible with IMRT. The work described herein may also have applicability to other groups of patients, such as those with gynecological or other pelvic malignancies

  15. Random and systematic beam modulator errors in dynamic intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Parsai, Homayon; Cho, Paul S; Phillips, Mark H; Giansiracusa, Robert S; Axen, David

    2003-01-01

    This paper reports on the dosimetric effects of random and systematic modulator errors in delivery of dynamic intensity modulated beams. A sliding-widow type delivery that utilizes a combination of multileaf collimators (MLCs) and backup diaphragms was examined. Gaussian functions with standard deviations ranging from 0.5 to 1.5 mm were used to simulate random positioning errors. A clinical example involving a clival meningioma was chosen with optic chiasm and brain stem as limiting critical structures in the vicinity of the tumour. Dose calculations for different modulator fluctuations were performed, and a quantitative analysis was carried out based on cumulative and differential dose volume histograms for the gross target volume and surrounding critical structures. The study indicated that random modulator errors have a strong tendency to reduce minimum target dose and homogeneity. Furthermore, it was shown that random perturbation of both MLCs and backup diaphragms in the order of σ = 1 mm can lead to 5% errors in prescribed dose. In comparison, when MLCs or backup diaphragms alone was perturbed, the system was more robust and modulator errors of at least σ = 1.5 mm were required to cause dose discrepancies greater than 5%. For systematic perturbation, even errors in the order of ±0.5 mm were shown to result in significant dosimetric deviations

  16. Intensity modulated tangential beam irradiation of the intact breast

    International Nuclear Information System (INIS)

    Hong, L.; Hunt, M.; Chui, C.; Forster, K.; Lee, H.; Lutz, W.; Yahalom, J.; Kutcher, G.J.; McCormick, B.

    1997-01-01

    Purpose/Objective: The purpose of this study was to evaluate the potential benefits of intensity modulated tangential beams in the irradiation of the intact breast. The primary goal was to develop an intensity modulated treatment which would substantially decrease the dose to coronary arteries, lung and contralateral breast while still using a standard tangential beam arrangement. Improved target dose homogeneity, within the limits imposed by opposed fields, was also desired. Since a major goal of the study was the development of a technique which was practical for use on a large population of patients, the design of 'standard' intensity profiles analogous in function to conventional wedges was also investigated. Materials and Methods: Three dimensional treatment planning was performed using both conventional and intensity modulated tangential beams. Plans were developed for both the right and left breast for a range of patient sizes and shapes. For each patient, PTV, lung, heart, origin and peripheral branches of the coronary artery, and contralateral breast were contoured. Optimum tangential beam direction and shape were designed using Beams-Eye-View display and then used for both the conventional and intensity modulated plans. For the conventional plan, the optimum wedge combination and beam weighting were chosen based on the dose distribution in a single transverse plane through the field center. Intensity modulated plans were designed using an algorithm which allows the user to specify the prescribed, maximum and minimum acceptable doses and dose volume constraints for each organ of interest. Plans were compared using multiple dose distributions and DVHs. Results: Significant improvements in the doses to critical structures were achieved using the intensity modulated plan. Coronary artery dose decreased substantially for patients treated to the left breast. Ipsilateral lung and contralateral breast doses decreased for all patients. For one patient treated to

  17. Integral dose delivered to normal brain with conventional intensity-modulated radiotherapy (IMRT) and helical tomotherapy IMRT during partial brain radiotherapy for high-grade gliomas with and without selective sparing of the hippocampus, limbic circuit and neural stem cell compartment

    International Nuclear Information System (INIS)

    Marsh, James C.; Ziel, Ellis G; Diaz, Aidnag Z; Turian, Julius V; Wendt, Julie A.; Gobole, Rohit

    2013-01-01

    We compared integral dose with uninvolved brain (ID brain ) during partial brain radiotherapy (PBRT) for high-grade glioma patients using helical tomotherapy (HT) and seven field traditional inverse-planned intensity-modulated radiotherapy (IMRT) with and without selective sparing (SPA) of contralateral hippocampus, neural stem cell compartment (NSC) and limbic circuit. We prepared four PBRT treatment plans for four patients with high-grade gliomas (60Gy in 30 fractions delivered to planning treatment volume (PTV60Gy)). For all plans, a structure denoted 'uninvolved brain' was created, which included all brain tissue not part of PTV or standard (STD) organs at risk (OAR). No dosimetric constraints were included for uninvolved brain. Selective SPA plans were prepared with IMRT and HT; contralateral hippocampus, NSC and limbic circuit were contoured; and dosimetric constraints were entered for these structures without compromising dose to PTV or STD OAR. We compared V100 and D95 for PTV46Gy and PTV60Gy, and ID brain for all plans. There were no significant differences in V100 and D95 for PTV46Gy and PTV60Gy. ID brain was lower in traditional IMRT versus HT plans for STD and SPA plans (mean ID brain 23.64Gy vs. 28Gy and 18.7Gy vs. 24.5Gy, respectively) and in SPA versus STD plans both with IMRT and HT (18.7Gy vs. 23.64Gy and 24.5Gy vs. 28Gy, respectively). n the setting of PBRT for high-grade gliomas, IMRT reduces ID brain compared with HT with or without selective SPA of contralateral hippocampus, limbic circuit and NSC, and the use of selective SPA reduces ID brain compared with STD PBRT delivered with either traditional IMRT or HT.

  18. The normal tissue sparing obtained with simultaneous treatment of pelvic lymph nodes and bladder using intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Soendergaard, Jimmi; Hoeyer, Morten; Wright, Pauliina; Grau, Cai; Muren, Ludvig Paul; Petersen, Joergen B.

    2009-01-01

    We have implemented an intensity-modulated radiotherapy (IMRT) protocol for simultaneous irradiation of bladder and lymph nodes. In this report, doses to normal tissue from IMRT and our previous conformal sequential boost technique are compared. Material and methods. Sixteen patients with urinary bladder cancer were treated using a six-field dynamic IMRT beam arrangement delivering 60 Gy to the bladder and 48 Gy to the pelvic lymph nodes. Dose-volume histogram (DVH) parameters for relevant normal tissues (bowel, bowel cavity, rectum and femoral heads) for the IMRT plans were compared with corresponding DVHs from our previous conformal sequential boost technique. Calculations of the generalized Equivalent Uniform Dose (gEUD) were performed for the bowel, with a reference volume of 200 cm 3 and a volume effect parameter k = 4, as well as for the rectum, using k = 12. Acute gastrointestinal (GI) and genitourinary (GU) RTOG toxicity was recorded. Results. Statistical significant normal tissue sparing was obtained by IMRT. For the bowel, a significant reduction was obtained at all dose levels between 20 and 50 Gy (p 3 at 50 Gy, while the gEUD was reduced from 58 to 53 Gy (p 3 at 50 Gy. The rectum gEUD was reduced from 55 to 53 Gy (p < 0.05). For the femoral heads, IMRT reduced the maximum dose as well as the volumes above all dose levels. The rate of acute peak Grade 2 GI RTOG complications was 38% after IMRT. Conclusion. IMRT to the urinary bladder and elective lymph nodes result in considerable normal tissue sparing compared to conformal sequential boost technique. This has paved the way for further studies combining IMRT with image-guided radiotherapy (IGRT) in bladder cancer

  19. Validation of intensity modulated radiation therapy patient plans with portal images

    International Nuclear Information System (INIS)

    Delpon, G.; Warren, S.; Mahe, D.; Gaudaire, S.; Lisbona, A.

    2007-01-01

    The goal of this study was to show the feasibility of step and shoot intensity-modulated radiation therapy pre-treatment quality control for patients using the electronic portal imaging device (iViewGT) fitted on a Sli+ linac (Elekta Oncology Systems, Crawley, UK) instead of radiographic films. Since the beginning of intensity-modulated radiation therapy treatments, the dosimetric quality control necessary before treating each new patient has been a time-consuming and therefore costly obligation. In order to fully develop this technique, it seems absolutely essential to reduce the cost of these controls, especially the linac time. Up to now, verification of the relative dosimetry field by field has been achieved by acquiring radiographic films in the isocenter plane and comparing them to the results of the XiO planning system (Computerized Medical Systems, Missouri, USA) using RIT113 v4.1 software (Radiological Imaging Technology, Colorado, USA). A qualitative and quantitative evaluation was realised for every field of every patient. A quick and simple procedure was put into place to be able to make the same verifications using portal images. This new technique is not a modification of the overall methodology of analysis. The results achieved by comparing the measurement with the electronic portal imaging device and the calculation with the treatment planning system were in line with those achieved with the films for all indicators we studied (isodoses, horizontal and vertical dose profiles and gamma index). (authors)

  20. Dosimetric comparison for volumetric modulated arc therapy and intensity-modulated radiotherapy on the left-sided chest wall and internal mammary nodes irradiation in treating post-mastectomy breast cancer

    International Nuclear Information System (INIS)

    Zhang, Qian; Yu, Xiao Li; Hu, Wei Gang; Chen, Jia Yi; Wang, Jia Zhou; Ye, Jin Song; Guo, Xiao Mao

    2015-01-01

    The aim of the study was to evaluate the dosimetric benefit of applying volumetric modulated arc therapy (VMAT) on the post-mastectomy left-sided breast cancer patients, with the involvement of internal mammary nodes (IMN). The prescription dose was 50 Gy delivered in 25 fractions, and the clinical target volume included the left chest wall (CW) and IMN. VMAT plans were created and compared with intensity-modulated radiotherapy (IMRT) plans on Pinnacle treatment planning system. Comparative endpoints were dose homogeneity within planning target volume (PTV), target dose coverage, doses to the critical structures including heart, lungs and the contralateral breast, number of monitor units and treatment delivery time. VMAT and IMRT plans showed similar PTV dose homogeneity, but, VMAT provided a better dose coverage for IMN than IMRT (p = 0.017). The mean dose (Gy), V 30 (%) and V 10 (%) for the heart were 13.5 ± 5.0 Gy, 9.9% ± 5.9% and 50.2% ± 29.0% by VMAT, and 14.0 ± 5.4 Gy, 10.6% ± 5.8% and 55.7% ± 29.6% by IMRT, respectively. The left lung mean dose (Gy), V 20 (%), V 10 (%) and the right lung V 5 (%) were significantly reduced from 14.1 ± 2.3 Gy, 24.2% ± 5.9%, 42.4% ± 11.9% and 41.2% ± 12.3% with IMRT to 12.8 ± 1.9 Gy, 21.0% ± 3.8%, 37.1% ± 8.4% and 32.1% ± 18.2% with VMAT, respectively. The mean dose to the contralateral breast was 1.7 ± 1.2 Gy with VMAT and 2.3 ± 1.6 Gy with IMRT. Finally, VMAT reduced the number of monitor units by 24% and the treatment time by 53%, as compared to IMRT. Compared to 5-be am step-and-shot IMRT, VMAT achieves similar or superior target coverage and a better normal tissue sparing, with fewer monitor units and shorter delivery time

  1. Persistently better treatment planning results of intensity-modulated (IMRT) over conformal radiotherapy (3D-CRT) in prostate cancer patients with significant variation of clinical target volume and/or organs-at-risk

    International Nuclear Information System (INIS)

    Fenoglietto, Pascal; Laliberte, Benoit; Allaw, Ali; Ailleres, Norbert; Idri, Katia; Hay, Meng Huor; Moscardo, Carmen Llacer; Gourgou, Sophie; Dubois, Jean-Bernard; Azria, David

    2008-01-01

    Purpose: To compare the dose coverage of planning and clinical target volume (PTV, CTV), and organs-at-risk (OAR) between intensity-modulated (3D-IMRT) and conventional conformal radiotherapy (3D-CRT) before and after internal organ variation in prostate cancer. Methods and materials: We selected 10 patients with clinically significant interfraction volume changes. Patients were treated with 3D-IMRT to 80 Gy (minimum PTV dose of 76 Gy, excluding rectum). Fictitious, equivalent 3D-CRT plans (80 Gy at isocenter, with 95% isodose (76 Gy) coverage of PTV, with rectal blocking above 76 Gy) were generated using the same planning CT data set ('CT planning'). The plans were then also applied to a verification CT scan ('CT verify') obtained at a different moment. PTV, CTV, and OAR dose coverage were compared using non-parametric tests statistics for V95, V90 (% of the volume receiving ≥95 or 90% of the dose) and D50 (dose to 50% of the volume). Results: Mean V95 of the PTV for 'CT planning' was 94.3% (range, 88-99) vs 89.1% (range, 84-94.5) for 3D-IMRT and 3D-CRT (p = 0.005), respectively. Mean V95 of the CTV for 'CT verify' was 97% for both 3D-IMRT and 3D-CRT. Mean D50 of the rectum for 'CT planning' was 26.8 Gy (range, 22-35) vs 43.5 Gy (range, 33.5-50.5) for 3D-IMRT and 3D-CRT (p = 0.0002), respectively. For 'CT verify', this D50 was 31.1 Gy (range, 16.5-44) vs 44.2 Gy (range, 34-55) for 3D-IMRT and 3D-CRT (p = 0.006), respectively. V95 of the rectum was 0% for both plans for 'CT planning', and 2.3% (3D-IMRT) vs 2.1% (3D-CRT) for 'CT verify' (p = non-sig.). Conclusion: Dose coverage of the PTV and OAR was better with 3D-IMRT for each patient and remained so after internal volume changes

  2. The impact of positron emission tomography on primary tumour delineation and dosimetric outcome in intensity modulated radiotherapy of early T-stage nasopharyngeal carcinoma.

    Science.gov (United States)

    Wu, Vincent W C; Leung, Wan-Shun; Wong, Kwun-Lam; Chan, Ying-Kit; Law, Wing-Lam; Leung, Wing-Kwan; Yu, Yat-Long

    2016-08-24

    In intensity modulated radiotherapy (IMRT) of nasopharyngeal carcinoma (NPC), accurate delineation of the gross tumour volume (GTV) is important. Image registration of CT and MRI has been routinely used in treatment planning. With recent development of positron emission tomography (PET), the aims of this study were to evaluate the impact of PET on GTV delineation and dosimetric outcome in IMRT of early stage NPC patients. Twenty NPC patients with T1 or T2 disease treated by IMRT were recruited. For each patient, 2 sets of NP GTVs were delineated separately, in which one set was performed using CT and MRI registration only (GTVCM), while the other set was carried out using PET, CT and MRI information (GTVCMP). A 9-field IMRT plan was computed based on the target volumes generated from CT and MRI (PTVCM). To assess the geometric difference between the GTVCM and GTVCMP, GTV volumes and DICE similarity coefficient (DSC), which measured the geometrical similarity between the two GTVs, were recorded. To evaluate the dosimetric impact, the Dmax, Dmin, Dmean and D95 of PTVs were obtained from their dose volume histograms generated by the treatment planning system. The overall mean volume of GTVCMP was greater than GTVCM by 4.4 %, in which GTVCMP was slightly greater in the T1 group but lower in the T2 group. The mean DSC of the whole group was 0.79 ± 0.05. Similar mean DSC values were also obtained from the T1 and T2 groups separately. The dosimetric parameters of PTVCM fulfilled the planning requirements. When applying this plan to the PTVCMP, the average Dmin (56.9 Gy) and D95 (68.6 Gy) of PTVCMP failed to meet the dose requirements and demonstrated significant differences from the PTVCM (p = 0.001 and 0.016 respectively), whereas the doses to GTVCMP did not show significant difference with the GTVCM. In IMRT of early stage NPC, PET was an important imaging modality in radiotherapy planning so as to avoid underdosing the PTV, although its effect on GTV

  3. Rapid Arc, helical tomotherapy, sliding window intensity modulated radiotherapy and three dimensional conformal radiation for localized prostate cancer: A dosimetric comparison

    Directory of Open Access Journals (Sweden)

    Rajesh A Kinhikar

    2014-01-01

    Full Text Available Objective: The objective of this study was to investigate the potential role of RapidArc (RA compared with helical tomotherapy (HT, sliding window intensity modulated radiotherapy (SW IMRT and three-dimensional conformal radiation therapy (3D CRT for localized prostate cancer. Materials and Methods: Prescription doses ranged from 60 Gy to planning target volume (PTV and 66.25 Gy for clinical target volume prostate (CTV-P over 25-30 fractions. PTV and CTV-P coverage were evaluated by conformity index (CI and homogeneity index (HI. Organ sparing comparison was done with mean doses to rectum and bladder. Results: CI 95 were 1.0 ± 0.01 (RA, 0.99 ± 0.01 (HT, 0.97 ± 0.02 (IMRT, 0.98 ± 0.02 (3D CRT for PTV and 1.0 ± 0.00 (RA, HT, SW IMRT and 3D CRT for CTV-P. HI was 0.11 ± 0.03 (RA, 0.16 ± 0.08 (HT, 0.12 ± 0.03 (IMRT, 0.06 ± 0.01 (3D CRT for PTV and 0.03 ± 0.00 (RA, 0.05 ± 0.01 (HT, 0.03 ± 0.01 (SW IMRT and 3D CRT for CTV-P. Mean dose to bladder were 23.68 ± 13.23 Gy (RA, 24.55 ± 12.51 Gy (HT, 19.82 ± 11.61 Gy (IMRT and 23.56 ± 12.81 Gy (3D CRT, whereas mean dose to rectum was 36.85 ± 12.92 Gy (RA, 33.18 ± 11.12 Gy (HT, IMRT and 38.67 ± 12.84 Gy (3D CRT. Conclusion: All studied intensity-modulated techniques yield treatment plans of significantly improved quality when compared with 3D CRT, with HT providing best organs at risk sparing and RA being the most efficient treatment option, reducing treatment time to 1.45-3.7 min and monitor unit to <400 for a 2 Gy fraction.

  4. Impact of field number and beam angle on functional image-guided lung cancer radiotherapy planning

    Science.gov (United States)

    Tahir, Bilal A.; Bragg, Chris M.; Wild, Jim M.; Swinscoe, James A.; Lawless, Sarah E.; Hart, Kerry A.; Hatton, Matthew Q.; Ireland, Rob H.

    2017-09-01

    To investigate the effect of beam angles and field number on functionally-guided intensity modulated radiotherapy (IMRT) normal lung avoidance treatment plans that incorporate hyperpolarised helium-3 magnetic resonance imaging (3He MRI) ventilation data. Eight non-small cell lung cancer patients had pre-treatment 3He MRI that was registered to inspiration breath-hold radiotherapy planning computed tomography. IMRT plans that minimised the volume of total lung receiving  ⩾20 Gy (V20) were compared with plans that minimised 3He MRI defined functional lung receiving  ⩾20 Gy (fV20). Coplanar IMRT plans using 5-field manually optimised beam angles and 9-field equidistant plans were also evaluated. For each pair of plans, the Wilcoxon signed ranks test was used to compare fV20 and the percentage of planning target volume (PTV) receiving 90% of the prescription dose (PTV90). Incorporation of 3He MRI led to median reductions in fV20 of 1.3% (range: 0.2-9.3% p  =  0.04) and 0.2% (range: 0 to 4.1%; p  =  0.012) for 5- and 9-field arrangements, respectively. There was no clinically significant difference in target coverage. Functionally-guided IMRT plans incorporating hyperpolarised 3He MRI information can reduce the dose received by ventilated lung without comprising PTV coverage. The effect was greater for optimised beam angles rather than uniformly spaced fields.

  5. Intensity modulation in breast radiotherapy: Development of an innovative field-in-field technique at Institut Gustave-Roussy

    International Nuclear Information System (INIS)

    Heymann, S.; Bourhis, J.; Bourgier, C.; Verstraet, R.; Pichenot, C.; Vergne, E.; Lefkopoulos, D.; Husson, F.; Kafrouni, H.; Mahe, J.; Kandalaft, B.; Marsiglia, H.

    2011-01-01

    Purpose. - To assess the potential dosimetric gain of pre-segmentation modulated radiotherapy (OAPS, DosiSoft TM ) of breast, compared to routine 3D conformal radiotherapy. Patients and methods. - Twenty patients treated with conservative surgery for breast cancer (9 right and 11 left sided) with various breast volume (median 537 cm 3 ; range [100-1049 cm 3 ]) have been selected. For each patient, we have delineated a breast volume and a compensation volume (target volumes), as well as organs at risk (lungs and heart). Two treatment plans have been generated: one using the routine 3D conformal technique and the other with the pre-segmentation algorithm of DosiSoft TM (OAPS). The dose distribution were analyzed using the conformity index for target volumes, mean dose and V 30 Gy for the heart, and mean dose, V 20 Gy and V 30 Gy for lungs. Results. - Over the 20 patients, the conformity index increased from 0.897 with routine technique to 0.978 with OAPS (P TM ) is an original method of segmentation of breast. It is automatic, fast and easy, and is able to increase the conformity index, while sparing organ at risk. (authors)

  6. Preliminary results of a phase I/II study of simultaneous modulated accelerated radiotherapy for nondisseminated nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Lee, Sang-wook; Back, Geum Mun; Yi, Byong Yong; Choi, Eun Kyung; Ahn, Seung Do; Shin, Seong Soo; Kim, Jung-hun; Kim, Sang Yoon; Lee, Bong-Jae; Nam, Soon Yuhl; Choi, Seung-Ho; Kim, Seung-Bae; Park, Jin-hong; Lee, Kang Kyoo; Park, Sung Ho; Kim, Jong Hoon

    2006-01-01

    Purpose: To present preliminary results of intensity-modulated radiotherapy (IMRT) with the simultaneous modulated accelerated radiotherapy (SMART) boost technique in patients with nasopharyngeal carcinoma (NPC). Methods and Materials: Twenty patients who underwent IMRT for nondisseminated NPC at the Asan Medical Center between September 2001 and December 2003 were prospectively evaluated. Intensity-modulated radiotherapy was delivered with the 'step and shoot' SMART technique at prescribed doses of 72 Gy (2.4 Gy/day) to the gross tumor volume, 60 Gy (2 Gy/day) to the clinical target volume and metastatic nodal station, and 46 Gy (2 Gy/day) to the clinically negative neck region. Eighteen patients also received cisplatin once per week. Results: The median follow-up period was 27 months. Nineteen patients completed the treatment without interruption; the remaining patient interrupted treatment for 2 weeks owing to severe pharyngitis and malnutrition. Five patients (25%) had Radiation Therapy Oncology Group Grade 3 mucositis, whereas 9 (45%) had Grade 3 pharyngitis. Seven patients (35%) lost more than 10% of their pretreatment weight, whereas 11 (55%) required intravenous fluids and/or tube feeding. There was no Grade 3 or 4 xerostomia. All patients showed complete response. Two patients had distant metastases and locoregional recurrence, respectively. Conclusion: Intensity-modulated radiotherapy with the SMART boost technique allows parotid sparing, as shown clinically and by dosimetry, and might also be more effective biologically. A larger population of patients and a longer follow-up period are needed to evaluate ultimate tumor control and late toxicity

  7. SU-G-TeP1-05: Development and Clinical Introduction of Automated Radiotherapy Treatment Planning for Prostate Cancer

    International Nuclear Information System (INIS)

    Winkel, D; Bol, GH; Asselen, B van; Hes, J; Scholten, V; Kerkmeijer, LGW; Raaymakers, BW

    2016-01-01

    Purpose: To develop an automated radiotherapy treatment planning and optimization workflow for prostate cancer in order to generate clinical treatment plans. Methods: A fully automated radiotherapy treatment planning and optimization workflow was developed based on the treatment planning system Monaco (Elekta AB, Stockholm, Sweden). To evaluate our method, a retrospective planning study (n=100) was performed on patients treated for prostate cancer with 5 field intensity modulated radiotherapy, receiving a dose of 35×2Gy to the prostate and vesicles and a simultaneous integrated boost of 35×0.2Gy to the prostate only. A comparison was made between the dosimetric values of the automatically and manually generated plans. Operator time to generate a plan and plan efficiency was measured. Results: A comparison of the dosimetric values show that automatically generated plans yield more beneficial dosimetric values. In automatic plans reductions of 43% in the V72Gy of the rectum and 13% in the V72Gy of the bladder are observed when compared to the manually generated plans. Smaller variance in dosimetric values is seen, i.e. the intra- and interplanner variability is decreased. For 97% of the automatically generated plans and 86% of the clinical plans all criteria for target coverage and organs at risk constraints are met. The amount of plan segments and monitor units is reduced by 13% and 9% respectively. Automated planning requires less than one minute of operator time compared to over an hour for manual planning. Conclusion: The automatically generated plans are highly suitable for clinical use. The plans have less variance and a large gain in time efficiency has been achieved. Currently, a pilot study is performed, comparing the preference of the clinician and clinical physicist for the automatic versus manual plan. Future work will include expanding our automated treatment planning method to other tumor sites and develop other automated radiotherapy workflows.

  8. Clinical Realization of Sector Beam Intensity Modulation for Gamma Knife Radiosurgery: A Pilot Treatment Planning Study

    International Nuclear Information System (INIS)

    Ma, Lijun; Mason, Erica; Sneed, Penny K.; McDermott, Michael; Polishchuk, Alexei; Larson, David A.; Sahgal, Arjun

    2015-01-01

    Purpose: To demonstrate the clinical feasibility and potential benefits of sector beam intensity modulation (SBIM) specific to Gamma Knife stereotactic radiosurgery (GKSRS). Methods and Materials: SBIM is based on modulating the confocal beam intensities from individual sectors surrounding an isocenter in a nearly 2π geometry. This is in contrast to conventional GKSRS delivery, in which the beam intensities from each sector are restricted to be either 0% or 100% and must be identical for any given isocenter. We developed a SBIM solution based on available clinical planning tools, and we tested it on a cohort of 12 clinical cases as a proof of concept study. The SBIM treatment plans were compared with the original clinically delivered treatment plans to determine dosimetric differences. The goal was to investigate whether SBIM would improve the dose conformity for these treatment plans without prohibitively lengthening the treatment time. Results: A SBIM technique was developed. On average, SBIM improved the Paddick conformity index (PCI) versus the clinically delivered plans (clinical plan PCI = 0.68 ± 0.11 vs SBIM plan PCI = 0.74 ± 0.10, P=.002; 2-tailed paired t test). The SBIM plans also resulted in nearly identical target volume coverage (mean, 97 ± 2%), total beam-on times (clinical plan 58.4 ± 38.9 minutes vs SBIM 63.5 ± 44.7 minutes, P=.057), and gradient indices (clinical plan 3.03 ± 0.27 vs SBIM 3.06 ± 0.29, P=.44) versus the original clinical plans. Conclusion: The SBIM method is clinically feasible with potential dosimetric gains when compared with conventional GKSRS

  9. Reduced Acute Bowel Toxicity in Patients Treated With Intensity-Modulated Radiotherapy for Rectal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Samuelian, Jason M. [Department of Radiation Oncology, Mayo Clinic, Scottsdale, AZ (United States); Callister, Matthew D., E-mail: Callister.matthew@mayo.edu [Department of Radiation Oncology, Mayo Clinic, Scottsdale, AZ (United States); Ashman, Jonathan B. [Department of Radiation Oncology, Mayo Clinic, Scottsdale, AZ (United States); Young-Fadok, Tonia M. [Division of Colorectal Surgery, Mayo Clinic, Scottsdale, AZ (United States); Borad, Mitesh J. [Division of Hematology-Oncology, Mayo Clinic, Scottsdale, AZ (United States); Gunderson, Leonard L. [Department of Radiation Oncology, Mayo Clinic, Scottsdale, AZ (United States)

    2012-04-01

    Purpose: We have previously shown that intensity-modulated radiotherapy (IMRT) can reduce dose to small bowel, bladder, and bone marrow compared with three-field conventional radiotherapy (CRT) technique in the treatment of rectal cancer. The purpose of this study was to review our experience using IMRT to treat rectal cancer and report patient clinical outcomes. Methods and Materials: A retrospective review was conducted of patients with rectal cancer who were treated at Mayo Clinic Arizona with pelvic radiotherapy (RT). Data regarding patient and tumor characteristics, treatment, acute toxicity according to the Common Terminology Criteria for Adverse Events v 3.0, tumor response, and perioperative morbidity were collected. Results: From 2004 to August 2009, 92 consecutive patients were treated. Sixty-one (66%) patients were treated with CRT, and 31 (34%) patients were treated with IMRT. All but 2 patients received concurrent chemotherapy. There was no significant difference in median dose (50.4 Gy, CRT; 50 Gy, IMRT), preoperative vs. postoperative treatment, type of concurrent chemotherapy, or history of previous pelvic RT between the CRT and IMRT patient groups. Patients who received IMRT had significantly less gastrointestinal (GI) toxicity. Sixty-two percent of patients undergoing CRT experienced {>=}Grade 2 acute GI side effects, compared with 32% among IMRT patients (p = 0.006). The reduction in overall GI toxicity was attributable to fewer symptoms from the lower GI tract. Among CRT patients, {>=}Grade 2 diarrhea and enteritis was experienced among 48% and 30% of patients, respectively, compared with 23% (p = 0.02) and 10% (p = 0.015) among IMRT patients. There was no significant difference in hematologic or genitourinary acute toxicity between groups. In addition, pathologic complete response rates and postoperative morbidity between treatment groups did not differ significantly. Conclusions: In the management of rectal cancer, IMRT is associated with a

  10. Reduced Acute Bowel Toxicity in Patients Treated With Intensity-Modulated Radiotherapy for Rectal Cancer

    International Nuclear Information System (INIS)

    Samuelian, Jason M.; Callister, Matthew D.; Ashman, Jonathan B.; Young-Fadok, Tonia M.; Borad, Mitesh J.; Gunderson, Leonard L.

    2012-01-01

    Purpose: We have previously shown that intensity-modulated radiotherapy (IMRT) can reduce dose to small bowel, bladder, and bone marrow compared with three-field conventional radiotherapy (CRT) technique in the treatment of rectal cancer. The purpose of this study was to review our experience using IMRT to treat rectal cancer and report patient clinical outcomes. Methods and Materials: A retrospective review was conducted of patients with rectal cancer who were treated at Mayo Clinic Arizona with pelvic radiotherapy (RT). Data regarding patient and tumor characteristics, treatment, acute toxicity according to the Common Terminology Criteria for Adverse Events v 3.0, tumor response, and perioperative morbidity were collected. Results: From 2004 to August 2009, 92 consecutive patients were treated. Sixty-one (66%) patients were treated with CRT, and 31 (34%) patients were treated with IMRT. All but 2 patients received concurrent chemotherapy. There was no significant difference in median dose (50.4 Gy, CRT; 50 Gy, IMRT), preoperative vs. postoperative treatment, type of concurrent chemotherapy, or history of previous pelvic RT between the CRT and IMRT patient groups. Patients who received IMRT had significantly less gastrointestinal (GI) toxicity. Sixty-two percent of patients undergoing CRT experienced ≥Grade 2 acute GI side effects, compared with 32% among IMRT patients (p = 0.006). The reduction in overall GI toxicity was attributable to fewer symptoms from the lower GI tract. Among CRT patients, ≥Grade 2 diarrhea and enteritis was experienced among 48% and 30% of patients, respectively, compared with 23% (p = 0.02) and 10% (p = 0.015) among IMRT patients. There was no significant difference in hematologic or genitourinary acute toxicity between groups. In addition, pathologic complete response rates and postoperative morbidity between treatment groups did not differ significantly. Conclusions: In the management of rectal cancer, IMRT is associated with a

  11. Radiotherapy and Brachytherapy : Proceedings of the NATO Advanced Study Institute on Physics of Modern Radiotherapy & Brachytherapy

    CERN Document Server

    Lemoigne, Yves

    2009-01-01

    This volume collects a series of lectures presented at the tenth ESI School held at Archamps (FR) in November 2007 and dedicated to radiotherapy and brachytherapy. The lectures focus on the multiple facets of radiotherapy in general, including external radiotherapy (often called teletherapy) as well as internal radiotherapy (called brachytherapy). Radiotherapy strategy and dose management as well as the decisive role of digital imaging in the associated clinical practice are developed in several articles. Grouped under the discipline of Conformal Radiotherapy (CRT), numerous modern techniques, from Multi-Leaf Collimators (MLC) to Intensity Modulated RadioTherapy (IMRT), are explained in detail. The importance of treatment planning based upon patient data from digital imaging (Computed Tomography) is also underlined. Finally, despite the quasi- totality of patients being presently treated with gamma and X-rays, novel powerful tools are emerging using proton and light ions (like carbon ions) beams, bound to bec...

  12. Local Control After Intensity-Modulated Radiotherapy for Head-and-Neck Rhabdomyosarcoma

    International Nuclear Information System (INIS)

    Curtis, Amarinthia E.; Okcu, M. Fatih; Chintagumpala, Murali; Teh, Bin S.; Paulino, Arnold C.

    2009-01-01

    Purpose: To examine the patterns of failure in patients treated with intensity-modulated radiotherapy (IMRT) for head-and-neck rhabdomyosarcoma (RMS). Methods and Materials: Between 1998 and 2005, 19 patients with a diagnosis of head-and-neck RMS received IMRT at The Methodist Hospital. There were 11 male and 8 female patients, with a median age of 6 years at time of irradiation. Tumor location was parameningeal in 7, orbital in 6, and other head-and-neck RMS in 6. Chemotherapy was given to all patients, with vincristine, actinomycin D, and cyclophosphamide being the most common regimen (n = 18). The median prescribed dose was 5040 cGy. The clinical target volume included the gross tumor volume with a 1.5-cm margin. The median duration of follow-up for surviving patients was 56 months. Results: The 4-year overall survival and local control rates were 76% and 92.9%, respectively. One patient developed a local failure in the high-dose region of the radiation field; there were no marginal failures. Distant metastasis was seen in 4 patients. Overall survival was 42.9% for parameningeal sites and 100% for other sites (p < 0.01). Late toxicities were seen in 7 patients. Two secondary malignancies occurred in 1 child with embryonal RMS of the face and a p53 mutation. Conclusions: Local control was excellent in patients receiving IMRT for head-and-neck RMS. Patterns of local failure reveal no marginal failures in this group of patients

  13. A dosimetric comparison of 3D conformal vs intensity modulated vs volumetric arc radiation therapy for muscle invasive bladder cancer

    Directory of Open Access Journals (Sweden)

    Foroudi Farshad

    2012-07-01

    Full Text Available Abstract Background To compare 3 Dimensional Conformal radiotherapy (3D-CRT with Intensity Modulated Radiotherapy (IMRT with Volumetric-Modulated Arc Therapy (VMAT for bladder cancer. Methods Radiotherapy plans for 15 patients with T2-T4N0M0 bladder cancer were prospectively developed for 3-DCRT, IMRT and VMAT using Varian Eclipse planning system. The same radiation therapist carried out all planning and the same clinical dosimetric constraints were used. 10 of the patients with well localised tumours had a simultaneous infield boost (SIB of the primary tumour planned for both IMRT and VMAT. Tumour control probabilities and normal tissue complication probabilities were calculated. Results Mean planning time for 3D-CRT, IMRT and VMAT was 30.0, 49.3, and 141.0 minutes respectively. The mean PTV conformity (CI index for 3D-CRT was 1.32, for IMRT 1.05, and for VMAT 1.05. The PTV Homogeneity (HI index was 0.080 for 3D-CRT, 0.073 for IMRT and 0.086 for VMAT. Tumour control and normal tissue complication probabilities were similar for 3D-CRT, IMRT and VMAT. The mean monitor units were 267 (range 250–293 for 3D-CRT; 824 (range 641–1083 for IMRT; and 403 (range 333–489 for VMAT (P  Conclusions VMAT is associated with similar dosimetric advantages as IMRT over 3D-CRT for muscle invasive bladder cancer. VMAT is associated with faster delivery times and less number of mean monitor units than IMRT. SIB is feasible in selected patients with localized tumours.

  14. Current status of intensity-modulated radiation therapy (IMRT)

    International Nuclear Information System (INIS)

    Hatano, Kazuo; Araki, Hitoshi; Sakai, Mitsuhiro

    2007-01-01

    External-beam radiation therapy has been one of the treatment options for prostate cancer. The dose response has been observed for a dose range of 64.8-81 Gy. The problem of external-beam radiotherapy (RT) for prostate cancer is that as the dose increases, adverse effects also increase. Three-dimensional conformal radiation therapy (3D-CRT) has enabled us to treat patients with up to 72-76 Gy to the prostate, with a relatively acceptable risk of late rectal bleeding. Recently, intensity-modulated radiation therapy (IMRT) has been shown to deliver a higher dose to the target with acceptable low rates of rectal and bladder complications. The most important things to keep in mind when using an IMRT technique are that there is a significant trade-off between coverage of the target, avoidance of adjacent critical structures, and the inhomogeneity of the dose within the target. Lastly, even with IMRT, it should be kept in mind that a ''perfect'' plan that creates completely homogeneous coverage of the target volume and zero or small dose to the adjacent organs at risk is not always obtained. Participating in many treatment planning sessions and arranging the beams and beam weights create the best approach to the best IMRT plan. (author)

  15. Can a peri-rectal hydrogel spaceOAR programme for prostate cancer intensity-modulated radiotherapy be successfully implemented in a regional setting?

    Science.gov (United States)

    Te Velde, Bridget L; Westhuyzen, Justin; Awad, Nader; Wood, Maree; Shakespeare, Thomas P

    2017-08-01

    The aim of this study was to investigate whether the implementation of a hydrogel spacer (SpaceOAR) programme for patients treated with 81 Gy prostate intensity-modulated radiotherapy (IMRT) in a regional setting can reduce rectal doses and toxicity. In this retrospective study, 125 patients with localised prostate cancer treated between April 2014 (programme commencement) and June 2015 were compared: 65 with SpaceOAR (inserted by five different urologists) and 60 patients treated over the same time period without SpaceOAR. Patients were treated with 81 Gy in 45Fx of IMRT over 9 weeks. Planning aims included restricting rectal doses to V40 Gy < 35%, V65 Gy < 17%, V75 Gy < 10%. Acute toxicity was assessed weekly during radiotherapy and at 12 weeks. Rectal volume parameters were all significantly lower in the SpaceOAR group, with an associated reduction in acute diarrhoea (13.8% vs 31.7%). There were no significant differences in the very low rates of acute and late faecal incontinence or proctitis, however, there was a trend towards increased haemorrhoid rate in the SpaceOAR group (11.7% vs 3.1%, P = 0.09). A SpaceOAR programme in a regional setting with urologists performing low volumes of insertions (<1 per month on average) is of clinical benefit, and was associated with significantly lower radiation doses to the rectum and lower rates of acute diarrhoea. © 2017 The Royal Australian and New Zealand College of Radiologists.

  16. Dosimetric Feasibility of Hypofractionated Proton Radiotherapy for Neoadjuvant Pancreatic Cancer Treatment

    International Nuclear Information System (INIS)

    Kozak, Kevin R.; Kachnic, Lisa A.; Adams, Judith C; Crowley, Elizabeth M.; Alexander, Brian M.; Mamon, Harvey J.; Fernandez-Del Castillo, Carlos; Ryan, David P.; DeLaney, Thomas F.; Hong, Theodore S.

    2007-01-01

    Purpose: To evaluate tumor and normal tissue dosimetry of a 5 cobalt gray equivalent (CGE) x 5 fraction proton radiotherapy schedule, before initiating a clinical trial of neoadjuvant, short-course proton radiotherapy for pancreatic adenocarcinoma. Methods and Materials: The first 9 pancreatic cancer patients treated with neoadjuvant intensity-modulated radiotherapy (1.8 Gy x 28) at the Massachusetts General Hospital had treatment plans generated using a 5 CGE x 5 fraction proton regimen. To facilitate dosimetric comparisons, clinical target volumes and normal tissue volumes were held constant. Plans were optimized for target volume coverage and normal tissue sparing. Results: Hypofractionated proton and conventionally fractionated intensity-modulated radiotherapy plans both provided acceptable target volume coverage and dose homogeneity. Improved dose conformality provided by the hypofractionated proton regimen resulted in significant sparing of kidneys, liver, and small bowel, evidenced by significant reductions in the mean doses, expressed as percentage prescribed dose, to these structures. Kidney and liver sparing was most evident in low-dose regions (≤20% prescribed dose for both kidneys and ≤60% prescribed dose for liver). Improvements in small-bowel dosimetry were observed in high- and low-dose regions. Mean stomach and duodenum doses, expressed as percentage prescribed dose, were similar for the two techniques. Conclusions: A proton radiotherapy schedule consisting of 5 fractions of 5 CGE as part of neoadjuvant therapy for adenocarcinoma of the pancreas seems dosimetrically feasible, providing excellent target volume coverage, dose homogeneity, and normal tissue sparing. Hypofractionated proton radiotherapy in this setting merits Phase I clinical trial investigation

  17. Dosimetric study comparing volumetric arc modulation with RapidArc and fixed dynamic intensity-modulated radiation therapy for breast cancer radiotherapy after breast-conserving surgery

    International Nuclear Information System (INIS)

    Tie Jian; Sun Yan; Gong Jian; Han Shukui; Jiang Fan; Wu Hao

    2011-01-01

    Objective: To compare the dosimetric difference between volumetric are modulation with RapidArc and fixed field dynamic IMRT for breast cancer radiotherapy after breast-conserving surgery. Methods: Twenty patients with early left-sided breast cancer received radiotherapy after breast-conserving surgery. After target definition, treatment planning was performed by RapidArc and two fixed fields dynamic IMRT respectively on the same CT scan. The target dose distribution, homogeneity of the breast, and the irradiation dose and volume for the lungs, heart, and contralateral breast were read in the dose-volume histogram (DVH) and compared between RapidArc and IMRT. The treatment delivery time and monitor units were also compared. Results: In comparison with the IMRT planning,the homogeneity of clinical target volume (CTV), the volume proportion of 95% prescribed dose (V 95% ) was significantly higher by 0.65% in RapidArc (t=5.16, P=0.001), and the V 105% and V 110% were lower by 10.96% and 1.48 % respectively, however, without statistical significance (t=-2.05, P=0.055 and t=-1.33, P=0.197). The conformal index of planning target volume (PTV) by the RapidArc planning was (0.88±0.02), significantly higher than that by the IMRT planning [(0.74±0.03), t=18.54, P<0.001]. The homogeneity index (HI) of PTV by the RapidArc planning was 1.11±0.01, significantly lower than that by the IMRT planning (1.12±0.02, t=-2.44, P=0.02). There were no significant differences in the maximum dose (D max ) and V 20 for the ipsilateral lung between the RapidArc and IMRT planning, but the values of V 10 , V 5 , D min and D mean by RapidArc planning were all significantly higher than those by the IMRT planning (all P<0.01). The values of max dose and V 30 for the heart were similar by both techniques, but the values of V 10 and V 5 by the RapidArc planning were significantly higher (by 18% and 50%, respectively). The V 5 of the contralateral breast and lung by the RapidArc planning were

  18. Interfractional variability in intensity-modulated radiotherapy of prostate cancer with or without thermoplastic pelvic immobilization

    International Nuclear Information System (INIS)

    Lee, J.A.; Kim, C.Y.; Park, Y.J.; Yoon, W.S.; Lee, N.K.; Yang, D.S.

    2014-01-01

    To determine the variability of patient positioning errors associated with intensity-modulated radiotherapy (IMRT) for prostate cancer and to assess the impact of thermoplastic pelvic immobilization on these errors using kilovoltage (kV) cone-beam computed tomography (CBCT). From February 2012 to June 2012, the records of 314 IMRT sessions in 19 patients with prostate cancer, performed with or without immobilization at two different facilities in the Korea University Hospital were analyzed. The kV CBCT images were matched to simulation computed tomography (CT) images to determine the simulation-to-treatment variability. The shifts along the x (lateral)-, y (longitudinal)- and z (vertical)-axes were measured, as was the shift in the three dimensional (3D) vector. The measured systematic errors in the immobilized group during treatment were 0.46 ± 1.75 mm along the x-axis, - 0.35 ± 3.83 mm along the y-axis, 0.20 ± 2.75 mm along the z-axis and 4.05 ± 3.02 mm in the 3D vector. Those of nonimmobilized group were - 1.45 ± 7.50 mm along the x-axis, 1.89 ± 5.07 mm along the y-axis, 0.28 ± 3.81 mm along the z-axis and 8.90 ± 4.79 mm in the 3D vector. The group immobilized with pelvic thermoplastics showed reduced interfractional variability along the x- and y-axes and in the 3D vector compared to the nonimmobilized group (p < 0.05). IMRT with thermoplastic pelvic immobilization in patients with prostate cancer appears to be useful in stabilizing interfractional variability during the planned treatment course. (orig.)

  19. Improvement in toxicity in high risk prostate cancer patients treated with image-guided intensity-modulated radiotherapy compared to 3D conformal radiotherapy without daily image guidance.

    Science.gov (United States)

    Sveistrup, Joen; af Rosenschöld, Per Munck; Deasy, Joseph O; Oh, Jung Hun; Pommer, Tobias; Petersen, Peter Meidahl; Engelholm, Svend Aage

    2014-02-04

    Image-guided radiotherapy (IGRT) facilitates the delivery of a very precise radiation dose. In this study we compare the toxicity and biochemical progression-free survival between patients treated with daily image-guided intensity-modulated radiotherapy (IG-IMRT) and 3D conformal radiotherapy (3DCRT) without daily image guidance for high risk prostate cancer (PCa). A total of 503 high risk PCa patients treated with radiotherapy (RT) and endocrine treatment between 2000 and 2010 were retrospectively reviewed. 115 patients were treated with 3DCRT, and 388 patients were treated with IG-IMRT. 3DCRT patients were treated to 76 Gy and without daily image guidance and with 1-2 cm PTV margins. IG-IMRT patients were treated to 78 Gy based on daily image guidance of fiducial markers, and the PTV margins were 5-7 mm. Furthermore, the dose-volume constraints to both the rectum and bladder were changed with the introduction of IG-IMRT. The 2-year actuarial likelihood of developing grade > = 2 GI toxicity following RT was 57.3% in 3DCRT patients and 5.8% in IG-IMRT patients (p analysis, 3DCRT was associated with a significantly increased risk of developing grade > = 2 GI toxicity compared to IG-IMRT (p analysis there was no difference in biochemical progression-free survival between 3DCRT and IG-IMRT. The difference in toxicity can be attributed to the combination of the IMRT technique with reduced dose to organs-at-risk, daily image guidance and margin reduction.

  20. A comparison of optic nerve dosimetry in craniospinal radiotherapy planned and treated with conventional and intensity modulated techniques

    International Nuclear Information System (INIS)

    Rene, Nicholas J.; Brodeur, Marylene; Parker, William; Roberge, David; Freeman, Carolyn

    2010-01-01

    Background and purpose: Some CNS tumours present leptomeningeal dissemination. Craniospinal radiotherapy is complex and recurrences may occur at sites of target volume underdosage. IMRT, being highly conformal to the target, could theoretically underdose the optic nerves if they are not specifically targeted leading to optic nerve recurrences. We analyzed optic nerve dosimetry when they are not specifically targeted. Materials and methods: We designed 3D-conformal and tomotherapy plans for our last five patients treated to the craniospinal axis, not including the optic nerves in the target volume. We analyzed the dose delivered to the optic nerves, to the anterior and posterior half of the optic nerves, and to a theoretical optic nerve-PTV. Results: The dose delivered to the optic nerves was similar for both plans in all patients (V95% close to 100%) except one in whom tomotherapy considerably underdosed the anterior optic nerves. The dose to the optic nerve-PTV was lower with tomotherapy in all patients. Conclusion: Despite not intentionally targeting the optic nerves, the dose to the optic nerves with IMRT was similar to 3D-conformal plans in most cases but left no margin for setup error. In individual cases the anterior half of the optic nerves could be significantly underdosed.

  1. A Broadly Adaptive Array of Dose-Constraint Templates for Planning of Intensity-Modulated Radiation Therapy for Advanced T-Stage Nasopharyngeal Carcinoma

    International Nuclear Information System (INIS)

    Chau, R.M.-C.; Leung, S.-F.; Kam, M.K.-M.; Cheung, K.-Y.; Kwan, W.-H.; Yu, K.-H.; Chiu, K.-W.; Cheung, M.L.-M.; Chan, A.T.-C.

    2009-01-01

    Purpose: To develop and validate adaptive dose-constraint templates in intensity-modulated radiotherapy (IMRT) planning for advanced T-stage nasopharyngeal carcinoma (NPC). Method and Materials: Dose-volume histograms of clinically approved plans for 20 patients with advanced T-stage NPC were analyzed, and the pattern of distribution in relation to the degree of overlap between targets and organs at risk (OARs) was explored. An adaptive dose constraint template (ADCT) was developed based on the degree of overlap. Another set of 10 patients with advanced T-stage NPC was selected for validation. Results of the manual arm optimization protocol and the ADCT optimization protocol were compared with respect to dose optimization time, conformity indices, multiple-dose end points, tumor control probability, and normal tissue complication probability. Results: For the ADCT protocol, average time required to achieve an acceptable plan was 9 minutes, with one optimization compared with 94 minutes with more than two optimizations of the manual arm protocol. Target coverage was similar between the manual arm and ADCT plans. A more desirable dose distribution in the region of overlap between planning target volume and OARs was achieved in the ADCT plan. Dose end points of OARs were similar between the manual arm and ADCT plans. Conclusions: With the developed ADCT, IMRT treatment planning becomes more efficient and less dependent on the planner's experience on dose optimization. The developed ADCT is applicable to a wide range of advanced T-stage NPC treatment and has the potential to be applied in a broader context to IMRT planning for other cancer sites

  2. Fan-beam intensity modulated proton therapy.

    Science.gov (United States)

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-11-01

    This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques. A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0-255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets. Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage. Overall, the sharp distal

  3. PET/CT Based Dose Planning in Radiotherapy

    DEFF Research Database (Denmark)

    Berthelsen, Anne Kiil; Jakobsen, Annika Loft; Sapru, Wendy

    2011-01-01

    radiotherapy planning with PET/CT prior to the treatment. The PET/CT, including the radiotherapy planning process as well as the radiotherapy process, is outlined in detail. The demanding collaboration between mould technicians, nuclear medicine physicians and technologists, radiologists and radiology......This mini-review describes how to perform PET/CT based radiotherapy dose planning and the advantages and possibilities obtained with the technique for radiation therapy. Our own experience since 2002 is briefly summarized from more than 2,500 patients with various malignant diseases undergoing...... technologists, radiation oncologists, physicists, and dosimetrists is emphasized. We strongly believe that PET/CT based radiotherapy planning will improve the therapeutic output in terms of target definition and non-target avoidance and will play an important role in future therapeutic interventions in many...

  4. Matching Intensity-Modulated Radiation Therapy to an Anterior Low Neck Field

    International Nuclear Information System (INIS)

    Amdur, Robert J.; Liu, Chihray; Li, Jonathan; Mendenhall, William; Hinerman, Russell

    2007-01-01

    When using intensity-modulated radiation therapy (IMRT) to treat head and neck cancer with the primary site above the level of the larynx, there are two basic options for the low neck lymphatics: to treat the entire neck with IMRT, or to match the IMRT plan to a conventional anterior 'low neck' field. In view of the potential advantages of using a conventional low neck field, it is important to look for ways to minimize or manage the problems of matching IMRT to a conventional radiotherapy field. Treating the low neck with a single anterior field and the standard larynx block decreases the dose to the larynx and often results in a superior IMRT plan at the primary site. The purpose of this article is to review the most applicable studies and to discuss our experience with implementing a technique that involves moving the position of the superior border of the low neck field several times during a single treatment fraction

  5. Preliminary analysis of the sequential simultaneous integrated boost technique for intensity-modulated radiotherapy for head and neck cancers.

    Science.gov (United States)

    Miyazaki, Masayoshi; Nishiyama, Kinji; Ueda, Yoshihiro; Ohira, Shingo; Tsujii, Katsutomo; Isono, Masaru; Masaoka, Akira; Teshima, Teruki

    2016-07-01

    The aim of this study was to compare three strategies for intensity-modulated radiotherapy (IMRT) for 20 head-and-neck cancer patients. For simultaneous integrated boost (SIB), doses were 66 and 54 Gy in 30 fractions for PTVboost and PTVelective, respectively. Two-phase IMRT delivered 50 Gy in 25 fractions to PTVelective in the First Plan, and 20 Gy in 10 fractions to PTVboost in the Second Plan. Sequential SIB (SEQ-SIB) delivered 55 Gy and 50 Gy in 25 fractions, respectively, to PTVboost and PTVelective using SIB in the First Plan and 11 Gy in 5 fractions to PTVboost in the Second Plan. Conformity indexes (CIs) (mean ± SD) for PTVboost and PTVelective were 1.09 ± 0.05 and 1.34 ± 0.12 for SIB, 1.39 ± 0.14 and 1.80 ± 0.28 for two-phase IMRT, and 1.14 ± 0.07 and 1.60 ± 0.18 for SEQ-SIB, respectively. CI was significantly highest for two-phase IMRT. Maximum doses (Dmax) to the spinal cord were 42.1 ± 1.5 Gy for SIB, 43.9 ± 1.0 Gy for two-phase IMRT and 40.3 ± 1.8 Gy for SEQ-SIB. Brainstem Dmax were 50.1 ± 2.2 Gy for SIB, 50.5 ± 4.6 Gy for two-phase IMRT and 47.4 ± 3.6 Gy for SEQ-SIB. Spinal cord Dmax for the three techniques was significantly different, and brainstem Dmax was significantly lower for SEQ-SIB. The compromised conformity of two-phase IMRT can result in higher doses to organs at risk (OARs). Lower OAR doses in SEQ-SIB made SEQ-SIB an alternative to SIB, which applies unconventional doses per fraction. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  6. Volumetric tumor burden and its effect on brachial plexus dosimetry in head and neck intensity-modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Romesser, Paul B.; Qureshi, Muhammad M.; Kovalchuk, Nataliya; Truong, Minh Tam, E-mail: mitruong@bu.edu

    2014-07-01

    To determine the effect of gross tumor volume of the primary (GTV-P) and nodal (GTV-N) disease on planned radiation dose to the brachial plexus (BP) in head and neck intensity-modulated radiotherapy (IMRT). Overall, 75 patients underwent definitive IMRT to a median total dose of 69.96 Gy in 33 fractions. The right BP and left BP were prospectively contoured as separate organs at risk. The GTV was related to BP dose using the unpaired t-test. Receiver operating characteristics curves were constructed to determine optimized volumetric thresholds of GTV-P and GTV-N corresponding to a maximum BP dose cutoff of > 66 Gy. Multivariate analyses were performed to account for factors associated with a higher maximal BP dose. A higher maximum BP dose (> 66 vs ≤ 66 Gy) correlated with a greater mean GTV-P (79.5 vs 30.8 cc; p = 0.001) and ipsilateral GTV-N (60.6 vs 19.8 cc; p = 0.014). When dichotomized by the optimized nodal volume, patients with an ipsilateral GTV-N ≥ 4.9 vs < 4.9 cc had a significant difference in maximum BP dose (64.2 vs 59.4 Gy; p = 0.001). Multivariate analysis confirmed that an ipsilateral GTV-N ≥ 4.9 cc was an independent predictor for the BP to receive a maximal dose of > 66 Gy when adjusted individually for BP volume, GTV-P, the use of a low anterior neck field technique, total planned radiation dose, and tumor category. Although both the primary and the nodal tumor volumes affected the BP maximal dose, the ipsilateral nodal tumor volume (GTV-N ≥ 4.9 cc) was an independent predictor for high maximal BP dose constraints in head and neck IMRT.

  7. Establishment of postal audit system in intensity-modulated radiotherapy by radiophotoluminescent glass dosimeters and a radiochromic film.

    Science.gov (United States)

    Okamoto, Hiroyuki; Minemura, Toshiyuki; Nakamura, Mitsuhiro; Mizuno, Hideyuki; Tohyama, Naoki; Nishio, Teiji; Wakita, Akihisa; Nakamura, Satoshi; Nishioka, Shie; Iijima, Kotaro; Fujiyama, Daisuke; Itami, Jun; Nishimura, Yasumasa

    2018-04-01

    We developed an efficient postal audit system to independently assess the delivered dose using radiophotoluminescent glass dosimeters (RPLDs) and the positional differences of fields using EBT3 film at the axial plane for intensity-modulated radiotherapy (IMRT). The audit phantom had a C-shaped target structure as a planning target volume (PTV) with four measurement points for the RPLDs and a cylindrical structure as the organ at risk (OAR) for one measurement point. The phantoms were sent to 24 institutions. Point dose measurements with a 0.6 cm 3 PTW farmer chamber were also performed to justify glass dosimetry in IMRT. The measured dose with the RPLDs was compared to the calculated dose in the institution's treatment planning system (TPS). The mean ± 1.96σ of the ratio of the measured dose with the RPLDs to the farmer chamber was 0.997 ± 0.024 with no significant difference (p = .175). The investigations demonstrated that glass dosimetry was reliable with a high measurement accuracy comparable to the chamber. The mean ± 1.96σ for the dose differences with a reference of the TPS dose for the PTV and the OAR was 0.1 ± 2.5% and -2.1 ± 17.8%, respectively. The mean ± 1.96σ for the right-left and the anterior-posterior direction was -0.9 ± 2.8 and 0.5 ± 1.4 mm, respectively. This study is the first report to justify glass dosimetry for implementation in IMRT audit in Japan. We demonstrate that our postal audit system has high accuracy with a high-level criterion of 3%/3 mm. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  8. Clinically practical intensity modulation for complex head and neck lesions using multiple, static MLC fields

    International Nuclear Information System (INIS)

    Verhey, L.J.; Xia, P.; Akazawa, P.

    1997-01-01

    Purpose: A number of different beam delivery methods have been proposed for implementing intensity modulated radiotherapy (IMRT), including fixed gantry with multiple static MLC fields (MSMLC - often referred to as 'stop and shoot'), fixed gantry with dynamic MLC (DMLC), intensity modulated arc therapy (IMAT), Tomotherapy and Peacock MIMiC. Using two complex head and neck cases as examples, we have compared dose distributions achievable with 3-D conformal radiotherapy (3DCRT) to those which can be achieved using IMRT delivered with MSMLC, DMLC and Peacock MIMiC. The goal is to demonstrate the potential value of IMRT in the treatment of complex lesions in the head and neck and to determine whether MSMLC, the simplest of the proposed IMRT methods, can produce dose distributions which are competitive with dynamic IMRT methods and which can be implemented in clinically acceptable times. Materials and Methods: Two patients with nasopharyngeal carcinoma were selected from the archives of the Department of Radiation Oncology at the University of California, San Francisco (UCSF). These patients were previously planned and treated with CT-based 3-D treatment planning methods which are routinely used at UCSF, including non-axial beam directions and partial transmission blocks when indicated. The CT data tapes were then read into a test version of CORVUS, an inverse treatment planning program being developed by NOMOS Corporation, target volumes and critical normal structures were outlined on axial CT slices and dose goals and limits were defined for the targets and normal tissues of interest. Optimized dose plans were then obtained for each delivery method including MSMLC (4 or 5 hand-selected beams with 3 levels of intensity), DMLC (9 evenly spaced axial beams with 10 levels of intensity) and Peacock MIMiC (55 axial beams spanning 270 degrees with 10 levels of intensity). Dose-volume histograms (DVH's) for all IMRT plans were then compared with the 3DCRT plans. Treatment

  9. Protocol for the isotoxic intensity modulated radiotherapy (IMRT) in stage III non-small cell lung cancer (NSCLC): a feasibility study.

    Science.gov (United States)

    Haslett, Kate; Franks, Kevin; Hanna, Gerard G; Harden, Susan; Hatton, Matthew; Harrow, Stephen; McDonald, Fiona; Ashcroft, Linda; Falk, Sally; Groom, Nicki; Harris, Catherine; McCloskey, Paula; Whitehurst, Philip; Bayman, Neil; Faivre-Finn, Corinne

    2016-04-15

    The majority of stage III patients with non-small cell lung cancer (NSCLC) are unsuitable for concurrent chemoradiotherapy, the non-surgical gold standard of care. As the alternative treatment options of sequential chemoradiotherapy and radiotherapy alone are associated with high local failure rates, various intensification strategies have been employed. There is evidence to suggest that altered fractionation using hyperfractionation, acceleration, dose escalation, and individualisation may be of benefit. The MAASTRO group have pioneered the concept of 'isotoxic' radiotherapy allowing for individualised dose escalation using hyperfractionated accelerated radiotherapy based on predefined normal tissue constraints. This study aims to evaluate whether delivering isotoxic radiotherapy using intensity modulated radiotherapy (IMRT) is achievable. Isotoxic IMRT is a multicentre feasibility study. From June 2014, a total of 35 patients from 7 UK centres, with a proven histological or cytological diagnosis of inoperable NSCLC, unsuitable for concurrent chemoradiotherapy will be recruited. A minimum of 2 cycles of induction chemotherapy is mandated before starting isotoxic radiotherapy. The dose of radiation will be increased until one or more of the organs at risk tolerance or the maximum dose of 79.2 Gy is reached. The primary end point is feasibility, with accrual rates, local control and overall survival our secondary end points. Patients will be followed up for 5 years. The study has received ethical approval (REC reference: 13/NW/0480) from the National Research Ethics Service (NRES) Committee North West-Greater Manchester South. The trial is conducted in accordance with the Declaration of Helsinki and Good Clinical Practice (GCP). The trial results will be published in a peer-reviewed journal and presented internationally. NCT01836692; Pre-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence

  10. Health-related quality of life using intensity-modulated radiation therapy for post-prostatectomy radiotherapy

    International Nuclear Information System (INIS)

    Van Gysen, Kirsten L.; Guo, Linxin; Kneebone, Andrew B.; Eade, Thomas N.; Vaux, Kenneth J.; Lazzaro, Enzo M.

    2013-01-01

    Post-prostatectomy radiotherapy (PPRT) with intensity-modulated radiation therapy (IMRT) has the potential to decrease toxicity by reducing dose to surrounding structures. We assessed its impact on health-related quality of life (HRQoL). PPRT patients were enrolled in a prospective HRQoL database. To be eligible, patients were required to be treated with IMRT and have a minimum of 15-month follow up. HRQoL was assessed at baseline, 3, 9 and 15–24 months using the Expanded Prostate Cancer Index Composite questionnaire. Higher scores reflected better HRQoL. Results were analysed as both population means and as individual scores where a moderate change was 10–20 points and a substantial change was >20 points. There were 64 patients eligible and 83% of the cohort received salvage radiotherapy. Prescribed dose was 64Gy in 32 fractions for adjuvant and 66Gy in 33 fractions for salvage IMRT. Mean function scores for urinary, bowel and sexual domains were similar at baseline and 15 months (83.5, 94.2 and 16.9 vs. 82.2, 93.1 and 14.3, respectively). Mean global physical functioning (51.0 vs. 48.1) and mental functioning (51.6 vs. 54.2) showed no difference over time. Individual patient scores by 2 years showed a >20-point deterioration in urinary (12.5%), bowel (1.6%), sexual function (9.4%), physical functioning (3.1%) and mental functioning (1.6%). This report on HRQoL following post-prostatectomy IMRT demonstrates no variation in mean scores in any domain and only 1.6% of patients reporting a greater than 20-point deterioration between baseline and 15–24 months in bowel function.

  11. Pancreatic cancer planning: Complex conformal vs modulated therapies

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Katherine L. [Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA (United States); Witek, Matthew E. [Department of Radiation Oncology, University of Wisconsin School of Medicine School of Medicine and Public Health, Madison, WI (United States); Chen, Hongyu [Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA (United States); Showalter, Timothy N. [Department of Radiation Oncology, University of Virginia, Charlottesville, VA (United States); Bar-Ad, Voichita [Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA (United States); Harrison, Amy S., E-mail: amy.harrison@jefferson.edu [Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA (United States)

    2016-07-01

    To compare the roles of intensity-modulated radiation therapy (IMRT) and volumetric- modulated arc therapy (VMAT) therapy as compared to simple and complex 3-dimensional chemoradiotherpy (3DCRT) planning for resectable and borderline resectable pancreatic cancer. In all, 12 patients who received postoperative radiotherapy (8) or neoadjuvant concurrent chemoradiotherapy (4) were evaluated retrospectively. Radiotherapy planning was performed for 4 treatment techniques: simple 4-field box, complex 5-field 3DCRT, 5 to 6-field IMRT, and single-arc VMAT. All volumes were approved by a single observer in accordance with Radiation Therapy Oncology Group (RTOG) Pancreas Contouring Atlas. Plans included tumor/tumor bed and regional lymph nodes to 45 Gy; with tumor/tumor bed boosted to 50.4 Gy, at least 95% of planning target volume (PTV) received the prescription dose. Dose-volume histograms (DVH) for multiple end points, treatment planning, and delivery time were assessed. Complex 3DCRT, IMRT, and VMAT plans significantly (p < 0.05) decreased mean kidney dose, mean liver dose, liver (V{sub 30}, V{sub 35}), stomach (D{sub 10}%), stomach (V{sub 45}), mean right kidney dose, and right kidney (V{sub 15}) as compared with the simple 4-field plans that are most commonly reported in the literature. IMRT plans resulted in decreased mean liver dose, liver (V{sub 35}), and left kidney (V{sub 15}, V{sub 18}, V{sub 20}). VMAT plans decreased small bowel (D{sub 10}%, D{sub 15}%), small bowel (V{sub 35}, V{sub 45}), stomach (D{sub 10}%, D{sub 15}%), stomach (V{sub 35}, V{sub 45}), mean liver dose, liver (V{sub 35}), left kidney (V{sub 15}, V{sub 18}, V{sub 20}), and right kidney (V{sub 18}, V{sub 20}). VMAT plans significantly decreased small bowel (D{sub 10}%, D{sub 15}%), left kidney (V{sub 20}), and stomach (V{sub 45}) as compared with IMRT plans. Treatment planning and delivery times were most efficient for simple 4-field box and VMAT. Excluding patient setup and imaging, average

  12. Intensity-Modulated Radiotherapy for a Rendu-Osler-Weber Disease Patient with Recurrent Severe Epistaxis: A Case Report

    Directory of Open Access Journals (Sweden)

    Maximilian Niyazi

    2010-01-01

    Full Text Available We present a case of a Rendu-Osler-Weber disease patient with recurrent life threatening epistaxis demanding multiple blood transfusions despite of repetitive endoscopic laser and electrocoagulations, endovascular embolisation, septodermoplasty, and long-term intranasal dressings. As alternative treatment modalities repeatedly failed and the patient became almost permanently dependent on nasal dressing, we performed a highly conformal intensity-modulated radiotherapy of the nasal cavity; a total dose of 50 Gy in 2 Gy single fractions was applied. The therapy was very well tolerated, no acute toxicities occurred. Two weeks after the last radiation dose had been applied, the nasal dressing could be removed without problems. Endoscopical control revealed an almost avascular white mucosa without any trace of bleeding spots; previously existing hemangiomas and crusts had disappeared. After a 1-year-follow up, the patient had no significant recurrent epistaxis.

  13. Intensity modulated radiation therapy: Analysis of patient specific quality control results, experience of Rene-Gauducheau Centre; Radiotherapie conformationnelle avec modulation d'intensite: analyse des resultats des controles precliniques, experience du centre Rene-Gauducheau

    Energy Technology Data Exchange (ETDEWEB)

    Chiavassa, S.; Brunet, G.; Gaudaire, S.; Munos-Llagostera, C.; Delpon, G.; Lisbona, A. [Service de physique medicale, centre Rene-Gauducheau, CLCC Nantes Atlantique, site hospitalier Nord, boulevard Jacques-Monod, 44805 Nantes Saint-Herblain cedex (France)

    2011-07-15

    Purpose. - Systematic verifications of patient's specific intensity-modulated radiation treatments are usually performed with absolute and relative measurements. The results constitute a database which allows the identification of potential systematic errors. Material and methods. - We analyzed 1270 beams distributed in 232 treatment plans. Step-and-shoot intensity-modulated radiation treatments were performed with a Clinac (6 and 23 MV) and sliding window intensity-modulated radiation treatments with a Novalis (6 MV). Results. - The distributions obtained do not show systematic error and all the control meet specified tolerances. Conclusion. - These results allow us to reduce controls specific patients for treatments performed under identical conditions (location, optimization and segmentation parameters of treatment planning system, etc.). (authors)

  14. A class solution for volumetric-modulated arc therapy planning in postprostatectomy radiotherapy

    International Nuclear Information System (INIS)

    Forde, Elizabeth; Bromley, Regina; Kneebone, Andrew; Eade, Thomas

    2014-01-01

    This study is aimed to test a postprostatectomy volumetric-modulated arc therapy (VMAT) planning class solution. The solution applies to both the progressive resolution optimizer algorithm version 2 (PRO 2) and the algorithm version 3 (PRO 3), addressing the effect of an upgraded algorithm. A total of 10 radical postprostatectomy patients received 68 Gy to 95% of the planning target volume (PTV), which was planned using VMAT. Each case followed a set of planning instructions; including contouring, field setup, and predetermined optimization parameters. Each case was run through both algorithms only once, with no user interaction. Results were averaged and compared against Radiation Therapy Oncology Group (RTOG) 0534 end points. In addition, the clinical target volume (CTV) D 100 , PTV D 99 , and PTV mean doses were recorded, along with conformity indices (CIs) (95% and 98%) and the homogeneity index. All cases satisfied PTV D 95 of 68 Gy and a maximum dose < 74.8 Gy. The average result for the PTV D 99 was 64.1 Gy for PRO 2 and 62.1 Gy for PRO 3. The average PTV mean dose for PRO 2 was 71.4 Gy and 71.5 Gy for PRO 3. The CTV D 100 average dose was 67.7 and 68.0 Gy for PRO 2 and PRO 3, respectively. The mean homogeneity index for both algorithms was 0.08. The average 95% CI was 1.17 for PRO 2 and 1.19 for PRO 3. For 98%, the average results were 1.08 and 1.12 for PRO 2 and PRO 3, respectively. All cases for each algorithm met the RTOG organs at risk dose constraints. A successful class solution has been established for prostate bed VMAT radiotherapy regardless of the algorithm used

  15. A class solution for volumetric-modulated arc therapy planning in postprostatectomy radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Forde, Elizabeth, E-mail: eforde@tcd.ie [Radiation Oncology Department, Northern Sydney Cancer Centre, St Leonards, New South Wales (Australia); Bromley, Regina [Radiation Oncology Department, Northern Sydney Cancer Centre, St Leonards, New South Wales (Australia); Institute of Medical Physics, School of Physics, University of Sydney, New South Wales (Australia); Kneebone, Andrew; Eade, Thomas [Radiation Oncology Department, Northern Sydney Cancer Centre, St Leonards, New South Wales (Australia); Northern Clinical School, University of Sydney, New South Wales (Australia)

    2014-10-01

    This study is aimed to test a postprostatectomy volumetric-modulated arc therapy (VMAT) planning class solution. The solution applies to both the progressive resolution optimizer algorithm version 2 (PRO 2) and the algorithm version 3 (PRO 3), addressing the effect of an upgraded algorithm. A total of 10 radical postprostatectomy patients received 68 Gy to 95% of the planning target volume (PTV), which was planned using VMAT. Each case followed a set of planning instructions; including contouring, field setup, and predetermined optimization parameters. Each case was run through both algorithms only once, with no user interaction. Results were averaged and compared against Radiation Therapy Oncology Group (RTOG) 0534 end points. In addition, the clinical target volume (CTV) D{sub 100}, PTV D{sub 99}, and PTV mean doses were recorded, along with conformity indices (CIs) (95% and 98%) and the homogeneity index. All cases satisfied PTV D{sub 95} of 68 Gy and a maximum dose < 74.8 Gy. The average result for the PTV D{sub 99} was 64.1 Gy for PRO 2 and 62.1 Gy for PRO 3. The average PTV mean dose for PRO 2 was 71.4 Gy and 71.5 Gy for PRO 3. The CTV D{sub 100} average dose was 67.7 and 68.0 Gy for PRO 2 and PRO 3, respectively. The mean homogeneity index for both algorithms was 0.08. The average 95% CI was 1.17 for PRO 2 and 1.19 for PRO 3. For 98%, the average results were 1.08 and 1.12 for PRO 2 and PRO 3, respectively. All cases for each algorithm met the RTOG organs at risk dose constraints. A successful class solution has been established for prostate bed VMAT radiotherapy regardless of the algorithm used.

  16. Intensity-modulated tangential beam irradiation of the intact breast

    International Nuclear Information System (INIS)

    Hong, L.; Hunt, M.; Chui, C.; Spirou, S.; Forster, K.; Lee, H.; Yahalom, J.; Kutcher, G.J.; McCormick, B.

    1999-01-01

    Purpose: To evaluate the potential benefits of intensity modulated tangential beams in the irradiation of the intact breast. Methods and Materials: Three-dimensional treatment planning was performed on five left and five right breasts using standard wedged and intensity modulated (IM) tangential beams. Optimal beam parameters were chosen using beams-eye-view display. For the standard plans, the optimal wedge angles were chosen based on dose distributions in the central plane calculated without inhomogeneity corrections, according to our standard protocol. Intensity-modulated plans were generated using an inverse planning algorithm and a standard set of target and critical structure optimization criteria. Plans were compared using multiple dose distributions and dose volume histograms for the planning target volume (PTV), ipsilateral lung, coronary arteries, and contralateral breast. Results: Significant improvements in the doses to critical structures were achieved using intensity modulation. Compared with a standard-wedged plan prescribed to 46 Gy, the dose from the IM plan encompassing 20% of the coronary artery region decreased by 25% (from 36 to 27 Gy) for patients treated to the left breast; the mean dose to the contralateral breast decreased by 42% (from 1.2 to 0.7 Gy); the ipsilateral lung volume receiving more than 46 Gy decreased by 30% (from 10% to 7%); the volume of surrounding soft tissue receiving more than 46 Gy decreased by 31% (from 48% to 33%). Dose homogeneity within the target volume improved greatest in the superior and inferior regions of the breast (approximately 8%), although some decrease in the medial and lateral high-dose regions (approximately 4%) was also observed. Conclusion: Intensity modulation with a standard tangential beam arrangement significantly reduces the dose to the coronary arteries, ipsilateral lung, contralateral breast, and surrounding soft tissues. Improvements in dose homogeneity throughout the target volume can also be

  17. TH-C-BRD-12: Robust Intensity Modulated Proton Therapy Plan Can Eliminate Junction Shifts for Craniospinal Irradiation

    International Nuclear Information System (INIS)

    Liao, L; Jiang, S; Li, Y; Wang, X; Li, H; Zhu, X; Sahoo, N; Gillin, M; Mahajan, A; Grosshans, D; Zhang, X; Lim, G

    2014-01-01

    Purpose: The passive scattering proton therapy (PSPT) technique is the commonly used radiotherapy technique for craniospinal irradiation (CSI). However, PSPT involves many numbers of junction shifts applied over the course of treatment to reduce the cold and hot regions caused by field mismatching. In this work, we introduced a robust planning approach to develop an optimal and clinical efficient techniques for CSI using intensity modulated proton therapy (IMPT) so that junction shifts can essentially be eliminated. Methods: The intra-fractional uncertainty, in which two overlapping fields shift in the opposite directions along the craniospinal axis, are incorporated into the robust optimization algorithm. Treatment plans with junction sizes 3,5,10,15,20,25 cm were designed and compared with the plan designed using the non-robust optimization. Robustness of the plans were evaluated based on dose profiles along the craniospinal axis for the plans applying 3 mm intra-fractional shift. The dose intra-fraction variations (DIV) at the junction are used to evaluate the robustness of the plans. Results: The DIVs are 7.9%, 6.3%, 5.0%, 3.8%, 2.8% and 2.2%, for the robustly optimized plans with junction sizes 3,5,10,15,20,25 cm. The DIV are 10% for the non-robustly optimized plans with junction size 25 cm. The dose profiles along the craniospinal axis exhibit gradual and tapered dose distribution. Using DIVs less than 5% as maximum acceptable intrafractional variation, the overlapping region can be reduced to 10 cm, leading to potential reduced number of the fields. The DIVs are less than 5% for 5 mm intra-fractional shifts with junction size 25 cm, leading to potential no-junction-shift for CSI using IMPT. Conclusion: This work is the first report of the robust optimization on CSI based on IMPT. We demonstrate that robust optimization can lead to much efficient carniospinal irradiation by eliminating the junction shifts

  18. Dose-escalated intensity-modulated radiotherapy and irradiation of subventricular zones in relation to tumor control outcomes of patients with glioblastoma multiforme

    Directory of Open Access Journals (Sweden)

    Kusumawidjaja G

    2016-03-01

    clinical and dosimetric parameters among the DE cohort demonstrated a trend of longer progression-free survival, but not OS, with incremental radiation doses to the ipsilateral SVZ (hazard ratio [HR] =0.95, 95% CI =0.90–1.00, P=0.052 and proportion of ipsilateral SVZ receiving 50 Gy (HR =0.98, 95% CI =0.97–1.00, P=0.017. Conclusion: DE radiotherapy did not improve survival in patients with GBM. Incorporation of ipsilateral SVZ as a radiotherapy target volume for patients with GBM requires prospective validation. Keywords: glioblastoma multiforme, intensity-modulated radiotherapy, dose escalation, subventricular zones

  19. Intensity-modulated Radiosurgery for patients with brain metastases: a mature outcomes analysis.

    Science.gov (United States)

    Wang, Samuel J; Choi, Mehee; Fuller, Clifton D; Salter, Bill J; Fuss, Martin

    2007-06-01

    The purpose of this study was to evaluate the outcomes of patients with brain metastases treated by tomotherapeutic Intensity-modulated Radiosurgery (IMRS). Using retrospective chart review, we analyzed the outcomes of 78 patients (age 33-83 years, median 57 years) who underwent 111 sessions of IMRS (1 to 7 sessions per patient, median 1) for brain metastases (1 to 4 targets per IMRS session, median 1) treated between 2000 and 2005 using a serial tomotherapeutic intensity-modulated radiotherapy treatment (IMRT) planning and delivery system (Peacock, Nomos Corp., Cranberry Township, PA). Treatment planning was performed using an inverse treatment planning optimization algorithm that was optimized for IMRS. A median prescription dose of 15 Gy in combination with WBI, and median 20 Gy for IMRS alone was delivered using 2-4 couch angles over 4-24 rotational arcs. Overall survival was calculated using Kaplan-Meier analysis. To determine the effects of prognostic variables on survival, univariate and multivariate analyses using proportional hazards were performed to assess the effects of age, tumor size, the combination with whole brain irradiation, presence of multiple brain metastases, and presence of extracranial disease. The median overall survival was 6.5 months (95% CI, 5.5-7.9). One- and two-year survival rates were 24% and 10%. In multivariate analyses, age greater than 60 years was the only statistically significant variable that affected survival (hazard rate 1.29, p=0.049). We conclude that tomotherapeutic IMRS is safe and effective to treat patients with brain metastases.

  20. Intensity modulated radiotherapy in early stage Hodgkin lymphoma patients: Is it better than three dimensional conformal radiotherapy?

    International Nuclear Information System (INIS)

    De Sanctis, Vitaliana; Chiacchiararelli, Laura; Enrici, Riccardo Maurizi; Bolzan, Chiara; D’Arienzo, Marco; Bracci, Stefano; Fanelli, Alessandro; Cox, Maria Christina; Valeriani, Maurizio; Osti, Mattia F; Minniti, Giuseppe

    2012-01-01

    Cure rate of early Hodgkin Lymphoma are high and avoidance of late toxicities is of paramount importance. This comparative study aims to assess the normal tissue sparing capability of intensity-modulated radiation therapy (IMRT) versus standard three-dimensional conformal radiotherapy (3D-CRT) in terms of dose-volume parameters and normal tissue complication probability (NTCP) for different organs at risk in supradiaphragmatic Hodgkin Lymphoma (HL) patients. Ten HL patients were actually treated with 3D-CRT and all treatments were then re-planned with IMRT. Dose-volume parameters for thyroid, oesophagus, heart, coronary arteries, lung, spinal cord and breast were evaluated. Dose-volume histograms generated by TPS were analyzed to predict the NTCP for the considered organs at risk, according to different endpoints. Regarding dose-volume parameters no statistically significant differences were recorded for heart and origin of coronary arteries. We recorded statistically significant lower V30 with IMRT for oesophagus (6.42 vs 0.33, p = 0.02) and lungs (4.7 vs 0.1 p = 0.014 for the left lung and 2.59 vs 0.1 p = 0.017 for the right lung) and lower V20 for spinal cord (17.8 vs 7.2 p = 0.02). Moreover the maximum dose to the spinal cord was lower with IMRT (30.2 vs 19.9, p <0.001). Higher V10 with IMRT for thyroid (64.8 vs 95, p = 0.0019) and V5 for lungs (30.3 vs 44.8, p = 0.03, for right lung and 28.9 vs 48.1, p = 0.001 for left lung) were found, respectively. Higher V5 and V10 for breasts were found with IMRT (V5: 4.14 vs 20.6, p = 0.018 for left breast and 3.3 vs 17, p = 0.059 for right breast; V10: 2.5 vs 13.6 p = 0.035 for left breast and 1.7 vs 11, p = 0.07 for the right breast.) As for the NTCP, our data point out that IMRT is not always likely to significantly increase the NTCP to OARs. In HL male patients IMRT seems feasible and accurate while for women HL patients IMRT should be used with caution

  1. Intensity modulated radiotherapy with concurrent chemotherapy for larynx preservation of advanced resectable hypopharyngeal cancer

    Directory of Open Access Journals (Sweden)

    Chao Hsing-Lung

    2010-05-01

    Full Text Available Abstract Background To analyze the rate of larynx preservation in patients of locally advanced hypopharyngeal cancer treated with intensity modulated radiotherapy (IMRT plus concurrent chemotherapy, and compare the results with patients treated with primary surgery. Methods Between January 2003 and November 2007, 14 patients were treated with primary surgery and 33 patients were treated with concurrent chemoradiotherapy (CCRT using IMRT technique. Survival rate, larynx preservation rate were calculated with the Kaplan-Meier method. Multivariate analysis was conducted for significant prognostic factors with Cox-regression method. Results The median follow-up was 19.4 months for all patients, and 25.8 months for those alive. The 5-year overall survival rate was 33% and 44% for primary surgery and definitive CCRT, respectively (p = 0.788. The 5-year functional larynx-preservation survival after IMRT was 40%. Acute toxicities were common, but usually tolerable. The rates of treatment-related mucositis (≥ grade 2 and pharyngitis (≥ grade 3 were higher in the CCRT group. For multivariate analysis, treatment response and cricoid cartilage invasion strongly correlated with survival. Conclusions IMRT plus concurrent chemotherapy may preserve the larynx without compromising survival. Further studies on new effective therapeutic agents are essential.

  2. Three dimensional intensity modulated brachytherapy (IMBT): Dosimetry algorithm and inverse treatment planning

    International Nuclear Information System (INIS)

    Shi Chengyu; Guo Bingqi; Cheng, Chih-Yao; Esquivel, Carlos; Eng, Tony; Papanikolaou, Niko

    2010-01-01

    Purpose: The feasibility of intensity modulated brachytherapy (IMBT) to improve dose conformity for irregularly shaped targets has been previously investigated by researchers by means of using partially shielded sources. However, partial shielding does not fully explore the potential of IMBT. The goal of this study is to introduce the concept of three dimensional (3D) intensity modulated brachytherapy and solve two fundamental issues regarding the application of 3D IMBT treatment planning: The dose calculation algorithm and the inverse treatment planning method. Methods: A 3D IMBT treatment planning system prototype was developed using the MATLAB platform. This system consists of three major components: (1) A comprehensive IMBT source calibration method with dosimetric inputs from Monte Carlo (EGSnrc) simulations; (2) a ''modified TG-43'' (mTG-43) dose calculation formalism for IMBT dosimetry; and (3) a physical constraint based inverse IMBT treatment planning platform utilizing a simulated annealing optimization algorithm. The model S700 Axxent electronic brachytherapy source developed by Xoft, Inc. (Fremont, CA), was simulated in this application. Ten intracavitary accelerated partial breast irradiation (APBI) cases were studied. For each case, an ''isotropic plan'' with only optimized source dwell time and a fully optimized IMBT plan were generated and compared to the original plan in various dosimetric aspects, such as the plan quality, planning, and delivery time. The issue of the mechanical complexity of the IMBT applicator is not addressed in this study. Results: IMBT approaches showed superior plan quality compared to the original plans and the isotropic plans to different extents in all studied cases. An extremely difficult case with a small breast and a small distance to the ribs and skin, the IMBT plan minimized the high dose volume V 200 by 16.1% and 4.8%, respectively, compared to the original and the isotropic plans. The conformity index for the

  3. Three dimensional intensity modulated brachytherapy (IMBT): Dosimetry algorithm and inverse treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Shi Chengyu; Guo Bingqi; Cheng, Chih-Yao; Esquivel, Carlos; Eng, Tony; Papanikolaou, Niko [Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 (United States); Department of Radiation Oncology, Oklahoma University Health Science Center, Oklahoma City, Oklahoma 73104 (United States); Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 (United States)

    2010-07-15

    Purpose: The feasibility of intensity modulated brachytherapy (IMBT) to improve dose conformity for irregularly shaped targets has been previously investigated by researchers by means of using partially shielded sources. However, partial shielding does not fully explore the potential of IMBT. The goal of this study is to introduce the concept of three dimensional (3D) intensity modulated brachytherapy and solve two fundamental issues regarding the application of 3D IMBT treatment planning: The dose calculation algorithm and the inverse treatment planning method. Methods: A 3D IMBT treatment planning system prototype was developed using the MATLAB platform. This system consists of three major components: (1) A comprehensive IMBT source calibration method with dosimetric inputs from Monte Carlo (EGSnrc) simulations; (2) a ''modified TG-43'' (mTG-43) dose calculation formalism for IMBT dosimetry; and (3) a physical constraint based inverse IMBT treatment planning platform utilizing a simulated annealing optimization algorithm. The model S700 Axxent electronic brachytherapy source developed by Xoft, Inc. (Fremont, CA), was simulated in this application. Ten intracavitary accelerated partial breast irradiation (APBI) cases were studied. For each case, an ''isotropic plan'' with only optimized source dwell time and a fully optimized IMBT plan were generated and compared to the original plan in various dosimetric aspects, such as the plan quality, planning, and delivery time. The issue of the mechanical complexity of the IMBT applicator is not addressed in this study. Results: IMBT approaches showed superior plan quality compared to the original plans and the isotropic plans to different extents in all studied cases. An extremely difficult case with a small breast and a small distance to the ribs and skin, the IMBT plan minimized the high dose volume V{sub 200} by 16.1% and 4.8%, respectively, compared to the original and the

  4. Three dimensional intensity modulated brachytherapy (IMBT): dosimetry algorithm and inverse treatment planning.

    Science.gov (United States)

    Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Esquivel, Carlos; Eng, Tony; Papanikolaou, Niko

    2010-07-01

    The feasibility of intensity modulated brachytherapy (IMBT) to improve dose conformity for irregularly shaped targets has been previously investigated by researchers by means of using partially shielded sources. However, partial shielding does not fully explore the potential of IMBT. The goal of this study is to introduce the concept of three dimensional (3D) intensity modulated brachytherapy and solve two fundamental issues regarding the application of 3D IMBT treatment planning: The dose calculation algorithm and the inverse treatment planning method. A 3D IMBT treatment planning system prototype was developed using the MATLAB platform. This system consists of three major components: (1) A comprehensive IMBT source calibration method with dosimetric inputs from Monte Carlo (EGSnrc) simulations; (2) a "modified TG-43" (mTG-43) dose calculation formalism for IMBT dosimetry; and (3) a physical constraint based inverse IMBT treatment planning platform utilizing a simulated annealing optimization algorithm. The model S700 Axxent electronic brachytherapy source developed by Xoft, Inc. (Fremont, CA), was simulated in this application. Ten intracavitary accelerated partial breast irradiation (APBI) cases were studied. For each case, an "isotropic plan" with only optimized source dwell time and a fully optimized IMBT plan were generated and compared to the original plan in various dosimetric aspects, such as the plan quality, planning, and delivery time. The issue of the mechanical complexity of the IMBT applicator is not addressed in this study. IMBT approaches showed superior plan quality compared to the original plans and tht isotropic plans to different extents in all studied cases. An extremely difficult case with a small breast and a small distance to the ribs and skin, the IMBT plan minimized the high dose volume V200 by 16.1% and 4.8%, respectively, compared to the original and the isotropic plans. The conformity index for the target was increased by 0.13 and 0

  5. Telemedicine in radiotherapy treatment planning: requirements and applications

    International Nuclear Information System (INIS)

    Olsen, D.R.; Bruland, O.S.; Davis, B.J.

    2000-01-01

    Telemedicine facilitates decentralized radiotherapy services by allowing remote treatment planning and quality assurance of treatment delivery. A prerequisite is digital storage of relevant data and an efficient and reliable telecommunication system between satellite units and the main radiotherapy clinic. The requirements of a telemedicine system in radiotherapy is influenced by the level of support needed. In this paper we differentiate between three categories of telemedicine support in radiotherapy. Level 1 features video conferencing and display of radiotherapy images and dose plans. Level 2 involves replication of selected data from the radiotherapy database - facilitating remote treatment planning and evaluation. Level 3 includes real-time, remote operations, e.g. target volume delineation and treatment planning performed by the team at the satellite unit under supervision and guidance from more experienced colleagues at the main clinic. (author)

  6. The impact of positron emission tomography on primary tumour delineation and dosimetric outcome in intensity modulated radiotherapy of early T-stage nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Wu, Vincent W. C.; Leung, Wan-shun; Wong, Kwun-lam; Chan, Ying-kit; Law, Wing-lam; Leung, Wing-kwan; Yu, Yat-long

    2016-01-01

    In intensity modulated radiotherapy (IMRT) of nasopharyngeal carcinoma (NPC), accurate delineation of the gross tumour volume (GTV) is important. Image registration of CT and MRI has been routinely used in treatment planning. With recent development of positron emission tomography (PET), the aims of this study were to evaluate the impact of PET on GTV delineation and dosimetric outcome in IMRT of early stage NPC patients. Twenty NPC patients with T1 or T2 disease treated by IMRT were recruited. For each patient, 2 sets of NP GTVs were delineated separately, in which one set was performed using CT and MRI registration only (GTV CM ), while the other set was carried out using PET, CT and MRI information (GTV CMP ). A 9-field IMRT plan was computed based on the target volumes generated from CT and MRI (PTV CM ). To assess the geometric difference between the GTV CM and GTV CMP , GTV volumes and DICE similarity coefficient (DSC), which measured the geometrical similarity between the two GTVs, were recorded. To evaluate the dosimetric impact, the D max , D min , D mean and D 95 of PTVs were obtained from their dose volume histograms generated by the treatment planning system. The overall mean volume of GTV CMP was greater than GTV CM by 4.4 %, in which GTV CMP was slightly greater in the T1 group but lower in the T2 group. The mean DSC of the whole group was 0.79 ± 0.05. Similar mean DSC values were also obtained from the T1 and T2 groups separately. The dosimetric parameters of PTV CM fulfilled the planning requirements. When applying this plan to the PTV CMP , the average D min (56.9 Gy) and D 95 (68.6 Gy) of PTV CMP failed to meet the dose requirements and demonstrated significant differences from the PTV CM (p = 0.001 and 0.016 respectively), whereas the doses to GTV CMP did not show significant difference with the GTV CM . In IMRT of early stage NPC, PET was an important imaging modality in radiotherapy planning so as to avoid underdosing the PTV, although its

  7. Treatment outcome of localized prostate cancer by 70 Gy hypofractionated intensity-modulated radiotherapy with a customized rectal balloon

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jung; Kim, Jun Won; Hong, Sung Joon; Rha, Koon Ho; Lee, Chang Geol; Yang, Seung Choul; Choi, Young Deuk; Suh, Chang Ok; Cho, Jae Ho [Yonsei Cancer Center, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2014-09-15

    We aimed to analyze the treatment outcome and long-term toxicity of 70 Gy hypofractionated intensity-modulated radiotherapy (IMRT) for localized prostate cancer using a customized rectal balloon. We reviewed medical records of 86 prostate cancer patients who received curative radiotherapy between January 2004 and December 2011 at our institution. Patients were designated as low (12.8%), intermediate (20.9%), or high risk (66.3%). Thirty patients received a total dose of 70 Gy in 28 fractions over 5 weeks via IMRT (the Hypo-IMRT group); 56 received 70.2 Gy in 39 fractions over 7 weeks via 3-dimensional conformal radiotherapy (the CF-3DRT group, which served as a reference for comparison). A customized rectal balloon was placed in Hypo-IMRT group throughout the entire radiotherapy course. Androgen deprivation therapy was administered to 47 patients (Hypo-IMRT group, 17; CF-3DRT group, 30). Late genitourinary (GU) and gastrointestinal (GI) toxicity were evaluated according to the Radiation Therapy Oncology Group criteria. The median follow-up period was 74.4 months (range, 18.8 to 125.9 months). The 5-year actuarial biochemical relapse-free survival rates for low-, intermediate-, and high-risk patients were 100%, 100%, and 88.5%, respectively, for the Hypo-IMRT group and 80%, 77.8%, and 63.6%, respectively, for the CF-3DRT group (p < 0.046). No patient presented with acute or late GU toxicity > or =grade 3. Late grade 3 GI toxicity occurred in 2 patients (3.6%) in the CF-3DRT group and 1 patient (3.3%) in the Hypo-IMRT group. Hypo-IMRT with a customized rectal balloon resulted in excellent biochemical control rates with minimal toxicity in localized prostate cancer patients.

  8. A fast optimization algorithm for multicriteria intensity modulated proton therapy planning

    International Nuclear Information System (INIS)

    Chen Wei; Craft, David; Madden, Thomas M.; Zhang, Kewu; Kooy, Hanne M.; Herman, Gabor T.

    2010-01-01

    Purpose: To describe a fast projection algorithm for optimizing intensity modulated proton therapy (IMPT) plans and to describe and demonstrate the use of this algorithm in multicriteria IMPT planning. Methods: The authors develop a projection-based solver for a class of convex optimization problems and apply it to IMPT treatment planning. The speed of the solver permits its use in multicriteria optimization, where several optimizations are performed which span the space of possible treatment plans. The authors describe a plan database generation procedure which is customized to the requirements of the solver. The optimality precision of the solver can be specified by the user. Results: The authors apply the algorithm to three clinical cases: A pancreas case, an esophagus case, and a tumor along the rib cage case. Detailed analysis of the pancreas case shows that the algorithm is orders of magnitude faster than industry-standard general purpose algorithms (MOSEK's interior point optimizer, primal simplex optimizer, and dual simplex optimizer). Additionally, the projection solver has almost no memory overhead. Conclusions: The speed and guaranteed accuracy of the algorithm make it suitable for use in multicriteria treatment planning, which requires the computation of several diverse treatment plans. Additionally, given the low memory overhead of the algorithm, the method can be extended to include multiple geometric instances and proton range possibilities, for robust optimization.

  9. A fast optimization algorithm for multicriteria intensity modulated proton therapy planning.

    Science.gov (United States)

    Chen, Wei; Craft, David; Madden, Thomas M; Zhang, Kewu; Kooy, Hanne M; Herman, Gabor T

    2010-09-01

    To describe a fast projection algorithm for optimizing intensity modulated proton therapy (IMPT) plans and to describe and demonstrate the use of this algorithm in multicriteria IMPT planning. The authors develop a projection-based solver for a class of convex optimization problems and apply it to IMPT treatment planning. The speed of the solver permits its use in multicriteria optimization, where several optimizations are performed which span the space of possible treatment plans. The authors describe a plan database generation procedure which is customized to the requirements of the solver. The optimality precision of the solver can be specified by the user. The authors apply the algorithm to three clinical cases: A pancreas case, an esophagus case, and a tumor along the rib cage case. Detailed analysis of the pancreas case shows that the algorithm is orders of magnitude faster than industry-standard general purpose algorithms (MOSEK'S interior point optimizer, primal simplex optimizer, and dual simplex optimizer). Additionally, the projection solver has almost no memory overhead. The speed and guaranteed accuracy of the algorithm make it suitable for use in multicriteria treatment planning, which requires the computation of several diverse treatment plans. Additionally, given the low memory overhead of the algorithm, the method can be extended to include multiple geometric instances and proton range possibilities, for robust optimization.

  10. Intensity Modulated Radiotherapy (IMRT) in the postoperative treatment of an adenocarcinoma of the endometrium complicated by a pelvic kidney

    International Nuclear Information System (INIS)

    Castilho, Marcus S; Jacinto, Alexandre A; Viani, Gustavo A; Campana, Andre; Carvalho, Juliana; Ferrigno, Robson; Novaes, Paulo ERS; Fogaroli, Ricardo C; Salvajoli, Joao V

    2006-01-01

    Pelvic Radiotherapy (RT) as a postoperative treatment for endometrial cancer improves local regional control. Brachytherapy also improves vaginal control. Both treatments imply significant side effects that a fine RT technique can help avoiding. Intensity Modulated RT (IMRT) enables the treatment of the target volume while protecting normal tissue. It therefore reduces the incidence and severity of side effects. We report on a 50 year-old patient with a serous-papiliferous adenocarcinoma of the uterus who was submitted to surgical treatment without lymph node sampling followed by Brachytherapy, and Chemotherapy. The patient had a pelvic kidney, and was therefore treated with IMRT. So far, the patient has been free from relapse and with normal kidney function. IMRT is a valid technique to prevent the kidney from radiation damage

  11. Modulated electron radiotherapy treatment planning using a photon multileaf collimator for post-mastectomized chest walls

    International Nuclear Information System (INIS)

    Salguero, Francisco Javier; Palma, Bianey; Arrans, Rafael; Rosello, Joan; Leal, Antonio

    2009-01-01

    Background and purpose: To evaluate the feasibility of using a photon MLC (xMLC) for modulated electron radiotherapy treatment (MERT) as an alternative to conventional post-mastectomy chest wall (CW) irradiation. A Monte Carlo (MC) based planning system was developed to overcome the inaccuracy of the 'pencil beam' algorithm. MC techniques are known to accurately calculate the dose distributions of electron beams, allowing the explicit simulation of electron interactions within the MLC. Materials and methods: Four real clinical CW cases were planned using MERT which were compared with the conventional electron treatments based on blocks and by a straightforward approach using the MLC, and not the blocks (as an intermediate step to MERT) to shape the same segments with SSD between 60 and 70 cm depending on PTV size. MC calculations were verified with an array of ionization chambers and radiochromic films in a solid water phantom. Results: Tests based on gamma analysis between MC dose distributions and radiochromic film measurements showed an excellent agreement. Differences in the absolute dose measured with a plane-parallel chamber at a reference point were below 3% for all cases. MERT solution showed a better PTV coverage and a significant reduction of the doses to the organs at risk (OARs). Conclusion: MERT can effectively improve the current electron treatments by obtaining a better PTV coverage and sparing healthy tissues. More directly, block-shaped treatments could be replaced by MLC-shaped non-modulated segments providing similar results.

  12. High-dose intensity-modulated radiotherapy for prostate cancer using daily fiducial marker-based position verification: acute and late toxicity in 331 patients

    International Nuclear Information System (INIS)

    Lips, Irene M; Dehnad, Homan; Gils, Carla H van; Boeken Kruger, Arto E; Heide, Uulke A van der; Vulpen, Marco van

    2008-01-01

    We evaluated the acute and late toxicity after high-dose intensity-modulated radiotherapy (IMRT) with fiducial marker-based position verification for prostate cancer. Between 2001 and 2004, 331 patients with prostate cancer received 76 Gy in 35 fractions using IMRT combined with fiducial marker-based position verification. The symptoms before treatment (pre-treatment) and weekly during treatment (acute toxicity) were scored using the Common Toxicity Criteria (CTC). The goal was to score late toxicity according to the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer (RTOG/EORTC) scale with a follow-up time of at least three years. Twenty-two percent of the patients experienced pre-treatment grade ≥ 2 genitourinary (GU) complaints and 2% experienced grade 2 gastrointestinal (GI) complaints. Acute grade 2 GU and GI toxicity occurred in 47% and 30%, respectively. Only 3% of the patients developed acute grade 3 GU and no grade ≥ 3 GI toxicity occurred. After a mean follow-up time of 47 months with a minimum of 31 months for all patients, the incidence of late grade 2 GU and GI toxicity was 21% and 9%, respectively. Grade ≥ 3 GU and GI toxicity rates were 4% and 1%, respectively, including one patient with a rectal fistula and one patient with a severe hemorrhagic cystitis (both grade 4). In conclusion, high-dose intensity-modulated radiotherapy with fiducial marker-based position verification is well tolerated. The low grade ≥ 3 toxicity allows further dose escalation if the same dose constraints for the organs at risk will be used

  13. High-dose intensity-modulated radiotherapy for prostate cancer using daily fiducial marker-based position verification: acute and late toxicity in 331 patients

    Directory of Open Access Journals (Sweden)

    Boeken Kruger Arto E

    2008-05-01

    Full Text Available Abstract We evaluated the acute and late toxicity after high-dose intensity-modulated radiotherapy (IMRT with fiducial marker-based position verification for prostate cancer. Between 2001 and 2004, 331 patients with prostate cancer received 76 Gy in 35 fractions using IMRT combined with fiducial marker-based position verification. The symptoms before treatment (pre-treatment and weekly during treatment (acute toxicity were scored using the Common Toxicity Criteria (CTC. The goal was to score late toxicity according to the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer (RTOG/EORTC scale with a follow-up time of at least three years. Twenty-two percent of the patients experienced pre-treatment grade ≥ 2 genitourinary (GU complaints and 2% experienced grade 2 gastrointestinal (GI complaints. Acute grade 2 GU and GI toxicity occurred in 47% and 30%, respectively. Only 3% of the patients developed acute grade 3 GU and no grade ≥ 3 GI toxicity occurred. After a mean follow-up time of 47 months with a minimum of 31 months for all patients, the incidence of late grade 2 GU and GI toxicity was 21% and 9%, respectively. Grade ≥ 3 GU and GI toxicity rates were 4% and 1%, respectively, including one patient with a rectal fistula and one patient with a severe hemorrhagic cystitis (both grade 4. In conclusion, high-dose intensity-modulated radiotherapy with fiducial marker-based position verification is well tolerated. The low grade ≥ 3 toxicity allows further dose escalation if the same dose constraints for the organs at risk will be used.

  14. A Novel Dose Constraint to Reduce Xerostomia in Head-and-Neck Cancer Patients Treated With Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Strigari, Lidia; Benassi, Marcello; Arcangeli, Giorgio; Bruzzaniti, Vicente; Giovinazzo, Giuseppe; Marucci, Laura

    2010-01-01

    Purpose: To investigate the predictors of incidence and duration of xerostomia (XT) based on parotid glands (PG), submandibular glands (SMG), and both glands taken as a whole organ (TG) in head-and-neck cancer patients treated with intensity-modulated radiotherapy. Methods and Materials: A prospective study was initiated in May 2003. Sixty-three head-and-neck patients (44 with nasopharynx cancer) were included in the analysis. Using the dose-volume histogram the PG, SMG, and TG mean doses were calculated. Unstimulated and stimulated salivary flow were measured and XT-related questionnaires were compiled before and at 3, 6, 12, 18, and 24 months after radiotherapy. Salivary gland toxicity was evaluated using the Radiation Therapy Oncology Group scale, and Grade ≥3 toxicity was used as the endpoint. The XT incidence was investigated according to descriptive statistics and univariate and multivariate analysis. The Bonferroni method was used for multiple comparison adjustment. Results: After a reduced flow at 3 months after radiotherapy, recovery of salivary flow was observed over time. Primary site and salivary gland mean doses and volumes were identified in univariate analysis as prognostic factors. Multivariate analysis confirmed that TG mean dose (p = 0.00066) and pretreatment stimulated salivary flow (p = 0.00420) are independent factors for predicting XT. Conclusion: The TG mean dose correlates with XT as assessed by Radiation Therapy Oncology Group criteria, salivary output, and XT-related questionnaires. Our results suggest that TG mean dose is a candidate dose constraint for reducing XT, requiring considerably more validation in non-nasopharyngeal cancer patients.

  15. Segmental and dynamic intensity-modulated radiotherapy delivery techniques for micro-multileaf collimator

    International Nuclear Information System (INIS)

    Agazaryan, Nzhde; Solberg, Timothy D.

    2003-01-01

    A leaf sequencing algorithm has been implemented to deliver segmental and dynamic multileaf collimated intensity-modulated radiotherapy (SMLC-IMRT and DMLC-IMRT, respectively) using a linear accelerator equipped with a micro-multileaf collimator (mMLC). The implementation extends a previously published algorithm for the SMLC-IMRT to include the dynamic MLC-IMRT method and several dosimetric considerations. The algorithm has been extended to account for the transmitted radiation and minimize the leakage between opposing and neighboring leaves. The underdosage problem associated with the tongue-and-groove design of the MLC is significantly reduced by synchronizing the MLC leaf movements. The workings of the leaf sequencing parameters have been investigated and the results of the planar dosimetric investigations show that the sequencing parameters affect the measured dose distributions as intended. Investigations of clinical cases suggest that SMLC and DMLC delivery methods produce comparable results with leaf sequences obtained by root-mean-square (RMS) errors specification of 1.5% and lower, approximately corresponding to 20 or more segments. For SMLC-IMRT, there is little to be gained by using an RMS error specification smaller than 2%, approximately corresponding to 15 segments; however, more segments directly translate to longer treatment time and more strain on the MLC. The implemented leaf synchronization method does not increase the required monitor units while it reduces the measured TG underdoses from a maximum of 12% to a maximum of 3% observed with single field measurements of representative clinical cases studied

  16. Locoregionally advanced nasopharyngeal carcinoma treated with intensity-modulated radiotherapy plus concurrent weekly cisplatin with or without neoadjuvant chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Wee, Chan Woo; Keam, Bhum Suk; Heo, Dae Seog; Sung, Myung Whun; Won, Tae Bin; Wu, Hong Gyun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2015-06-15

    The outcomes of locoregionally advanced nasopharyngeal carcinoma patients treated with concurrent chemoradiation (CCRT) using intensity-modulated radiotherapy (IMRT) with/without neoadjuvant chemotherapy (NCT) were evaluated. Eighty-three patients who underwent NCT followed by CCRT (49%) or CCRT with/without adjuvant chemotherapy (51%) were reviewed. To the gross tumor, 67.5 Gy was prescribed. Weekly cisplatin was used as concurrent chemotherapy. With a median follow-up of 49.4 months, the 5-year local control, regional control, distant metastasis-free survival (DMFS), disease-free survival (DFS), and overall survival rates were 94.7%, 89.3%, 77.8%, 68.0%, and 81.8%, respectively. In multivariate analysis, the American Joint Committee on Cancer stage (p = 0.016) and N stage (p = 0.001) were negative factors for DMFS and DFS, respectively. Overall, NCT demonstrated no benefit and an increased risk of severe hematologic toxicity. However, compared to patients treated with CCRT alone, NCT showed potential of improving DMFS in stage IV patients. CCRT using IMRT resulted in excellent local control and survival outcome. Without evidence of survival benefit from phase III randomized trials, NCT should be carefully administered in locoregionally advanced nasopharyngeal carcinoma patients who are at high-risk of developing distant metastasis and radiotherapy-related mucositis. The results of ongoing trials are awaited.

  17. Locoregionally advanced nasopharyngeal carcinoma treated with intensity-modulated radiotherapy plus concurrent weekly cisplatin with or without neoadjuvant chemotherapy

    International Nuclear Information System (INIS)

    Wee, Chan Woo; Keam, Bhum Suk; Heo, Dae Seog; Sung, Myung Whun; Won, Tae Bin; Wu, Hong Gyun

    2015-01-01

    The outcomes of locoregionally advanced nasopharyngeal carcinoma patients treated with concurrent chemoradiation (CCRT) using intensity-modulated radiotherapy (IMRT) with/without neoadjuvant chemotherapy (NCT) were evaluated. Eighty-three patients who underwent NCT followed by CCRT (49%) or CCRT with/without adjuvant chemotherapy (51%) were reviewed. To the gross tumor, 67.5 Gy was prescribed. Weekly cisplatin was used as concurrent chemotherapy. With a median follow-up of 49.4 months, the 5-year local control, regional control, distant metastasis-free survival (DMFS), disease-free survival (DFS), and overall survival rates were 94.7%, 89.3%, 77.8%, 68.0%, and 81.8%, respectively. In multivariate analysis, the American Joint Committee on Cancer stage (p = 0.016) and N stage (p = 0.001) were negative factors for DMFS and DFS, respectively. Overall, NCT demonstrated no benefit and an increased risk of severe hematologic toxicity. However, compared to patients treated with CCRT alone, NCT showed potential of improving DMFS in stage IV patients. CCRT using IMRT resulted in excellent local control and survival outcome. Without evidence of survival benefit from phase III randomized trials, NCT should be carefully administered in locoregionally advanced nasopharyngeal carcinoma patients who are at high-risk of developing distant metastasis and radiotherapy-related mucositis. The results of ongoing trials are awaited

  18. A hybrid algorithm for instant optimization of beam weights in anatomy-based intensity modulated radiotherapy: a performance evaluation study

    International Nuclear Information System (INIS)

    Vaitheeswaran, Ranganathan; Sathiya Narayanan, V.K.; Bhangle, Janhavi R.; Nirhali, Amit; Kumar, Namita; Basu, Sumit; Maiya, Vikram

    2011-01-01

    The study aims to introduce a hybrid optimization algorithm for anatomy-based intensity modulated radiotherapy (AB-IMRT). Our proposal is that by integrating an exact optimization algorithm with a heuristic optimization algorithm, the advantages of both the algorithms can be combined, which will lead to an efficient global optimizer solving the problem at a very fast rate. Our hybrid approach combines Gaussian elimination algorithm (exact optimizer) with fast simulated annealing algorithm (a heuristic global optimizer) for the optimization of beam weights in AB-IMRT. The algorithm has been implemented using MATLAB software. The optimization efficiency of the hybrid algorithm is clarified by (i) analysis of the numerical characteristics of the algorithm and (ii) analysis of the clinical capabilities of the algorithm. The numerical and clinical characteristics of the hybrid algorithm are compared with Gaussian elimination method (GEM) and fast simulated annealing (FSA). The numerical characteristics include convergence, consistency, number of iterations and overall optimization speed, which were analyzed for the respective cases of 8 patients. The clinical capabilities of the hybrid algorithm are demonstrated in cases of (a) prostate and (b) brain. The analyses reveal that (i) the convergence speed of the hybrid algorithm is approximately three times higher than that of FSA algorithm (ii) the convergence (percentage reduction in the cost function) in hybrid algorithm is about 20% improved as compared to that in GEM algorithm (iii) the hybrid algorithm is capable of producing relatively better treatment plans in terms of Conformity Index (CI) (∼ 2% - 5% improvement) and Homogeneity Index (HI) (∼ 4% - 10% improvement) as compared to GEM and FSA algorithms (iv) the sparing of organs at risk in hybrid algorithm-based plans is better than that in GEM-based plans and comparable to that in FSA-based plans; and (v) the beam weights resulting from the hybrid algorithm are

  19. Spine radiosurgery for the local treatment of spine metastases: Intensity-modulated radiotherapy, image guidance, clinical aspects and future directions

    International Nuclear Information System (INIS)

    Moraes, Fabio Ynoe de; Neves-Junior, Wellington Furtado Pimenta; Hanna, Samir Abdallah; Carvalho, Heloisa de Andrade; Laufer, Ilya

    2016-01-01

    Many cancer patients will develop spinal metastases. Local control is important for preventing neurologic compromise and to relieve pain. Stereotactic body radiotherapy or spinal radiosurgery is a new radiation therapy technique for spinal metastasis that can deliver a high dose of radiation to a tumor while minimizing the radiation delivered to healthy, neighboring tissues. This treatment is based on intensity-modulated radiotherapy, image guidance and rigid immobilization. Spinal radiosurgery is an increasingly utilized treatment method that improves local control and pain relief after delivering ablative doses of radiation. Here, we present a review highlighting the use of spinal radiosurgery for the treatment of metastatic tumors of the spine. The data used in the review were collected from both published studies and ongoing trials. We found that spinal radiosurgery is safe and provides excellent tumor control (up to 94% local control) and pain relief (up to 96%), independent of histology. Extensive data regarding clinical outcomes are available; however, this information has primarily been generated from retrospective and non randomized prospective series. Currently, two randomized trials are enrolling patients to study clinical applications of fractionation schedules spinal Radiosurgery. Additionally, a phase I clinical trial is being conducted to assess the safety of concurrent stereotactic body radiotherapy and ipilimumab for spinal metastases. Clinical trials to refine clinical indications and dose fractionation are ongoing. The concomitant use of targeted agents may produce better outcomes in the future. (author)

  20. Spine radiosurgery for the local treatment of spine metastases: Intensity-modulated radiotherapy, image guidance, clinical aspects and future directions

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Fabio Ynoe de; Neves-Junior, Wellington Furtado Pimenta; Hanna, Samir Abdallah; Carvalho, Heloisa de Andrade [Hospital Sirio-Libanes, Sao Paulo, SP (Brazil). Departamento de Radioterapia; Taunk, Neil Kanth; Yamada, Yoshiya [Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, New York, NY (United States); Laufer, Ilya, E-mail: fymoraes@gmail.com [Memorial Sloan Kettering Cancer Center, Department of Neurosurgery, New York, NY (United States)

    2016-02-15

    Many cancer patients will develop spinal metastases. Local control is important for preventing neurologic compromise and to relieve pain. Stereotactic body radiotherapy or spinal radiosurgery is a new radiation therapy technique for spinal metastasis that can deliver a high dose of radiation to a tumor while minimizing the radiation delivered to healthy, neighboring tissues. This treatment is based on intensity-modulated radiotherapy, image guidance and rigid immobilization. Spinal radiosurgery is an increasingly utilized treatment method that improves local control and pain relief after delivering ablative doses of radiation. Here, we present a review highlighting the use of spinal radiosurgery for the treatment of metastatic tumors of the spine. The data used in the review were collected from both published studies and ongoing trials. We found that spinal radiosurgery is safe and provides excellent tumor control (up to 94% local control) and pain relief (up to 96%), independent of histology. Extensive data regarding clinical outcomes are available; however, this information has primarily been generated from retrospective and non randomized prospective series. Currently, two randomized trials are enrolling patients to study clinical applications of fractionation schedules spinal Radiosurgery. Additionally, a phase I clinical trial is being conducted to assess the safety of concurrent stereotactic body radiotherapy and ipilimumab for spinal metastases. Clinical trials to refine clinical indications and dose fractionation are ongoing. The concomitant use of targeted agents may produce better outcomes in the future. (author)

  1. Function protection of the parotid gland after intensity modulated radiotherapy for thirty-six patients of nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Xiao Zemin; Liao Yuping; Jiang Wuzhong; Wu Tao

    2008-01-01

    Objective: To study the parotid gland function protection of intensity modulated radiotherapy (IMRT) for patients with nasopharyngeal carcinoma (NPC) Methods: Thirty-six NPC patients were divided into IMRT group (therapy group) and conventional fraction (CF) group (control group) by random balanced design. Each group had 18 patients. The planning gross tumor volume (pGTV) of nasopharyngeal was treated with a total dose of 72.0 in therapy group, with a total dose of 70.0 Gy in control group (with daily 2.0 Gy/fraction and 5 times/week). Before treatment and at 3, 6, and 9 months, 1 and 2 years after therapy, all patients performed parotid imaging and both uptake index (UI) and excretion index (EI) after acid stimulation were calculated. The dose-volume histogram (DVH) was used to analyse the dose of parotid. Results: The values of UI were 77.6% and 96.2% at the end of therapy and after tow years in therapy group and 56.8% and 7.0% in contrast group. The values of EI were 64.1% and 95.3% at the end of therapy and after tow years in therapy group and 19.4% and 0 in control group. The mean doses of normal side and the trouble side of parotid gland were 20.0 Gy and 31.0 Gy in therapy group and 61.0 Gy and 68.2 Gy in control group. Conclusions: IMRT can reduce radiation dose of parotid glands compared with CF distinctly and thus protect parotid function effectively. (authors)

  2. Rectal toxicity after intensity modulated radiotherapy for prostate cancer: Which rectal dose volume constraints should we use?

    International Nuclear Information System (INIS)

    Fonteyne, Valérie; Ost, Piet; Vanpachtenbeke, Frank; Colman, Roos; Sadeghi, Simin; Villeirs, Geert; Decaestecker, Karel; De Meerleer, Gert

    2014-01-01

    Background: To define rectal dose volume constraints (DVC) to prevent ⩾grade2 late rectal toxicity (LRT) after intensity modulated radiotherapy (IMRT) for prostate cancer (PC). Material and methods: Six hundred thirty-seven PC patients were treated with primary (prostate median dose: 78 Gy) or postoperative (prostatic bed median dose: 74 Gy (adjuvant)–76 Gy (salvage)) IMRT while restricting the rectal dose to 76 Gy, 72 Gy and 74 Gy respectively. The impact of patient characteristics and rectal volume parameters on ⩾grade2 LRT was determined. DVC were defined to estimate the 5% and 10% risk of developing ⩾grade2 LRT. Results: The 5-year probability of being free from ⩾grade2 LRT, non-rectal blood loss and persisting symptoms is 88.8% (95% CI: 85.8–91.1%), 93.4% (95% CI: 91.0–95.1%) and 94.3% (95% CI: 92.0–95.9%) respectively. There was no correlation with patient characteristics. All volume parameters, except rectal volume receiving ⩾70 Gy (R70), were significantly correlated with ⩾grade2 LRT. To avoid 10% and 5% risk of ⩾grade2 LRT following DVC were derived: R40, R50, R60 and R65 <64–35%, 52–22%, 38–14% and 5% respectively. Conclusion: Applying existing rectal volume constraints resulted in a 5-year estimated risk of developing late ⩾grade2 LRT of 11.2%. New rectal DVC for primary and postoperative IMRT planning of PC patients are proposed. A prospective evaluation is needed

  3. Fan beam intensity modulated proton therapy

    Science.gov (United States)

    Hill, Patrick M.

    A fan beam proton therapy is developed which delivers intensity modulated proton therapy using distal edge tracking. The system may be retrofit onto existing proton therapy gantries without alterations to infrastructure in order to improve treatments through intensity modulation. A novel range and intensity modulation system is designed using acrylic leaves that are inserted or retracted from subsections of the fan beam. Leaf thicknesses are chosen in a base-2 system and motivated in a binary manner. Dose spots from individual beam channels range between 1 and 5 cm. Integrated collimators attempting to limit crosstalk among beam channels are investigated, but found to be inferior to uncollimated beam channel modulators. A treatment planning system performing data manipulation in MATLAB and dose calculation in MCNPX is developed. Beamlet dose is calculated on patient CT data and a fan beam source is manually defined to produce accurate results. An energy deposition tally follows the CT grid, allowing straightforward registration of dose and image data. Simulations of beam channels assume that a beam channel either delivers dose to a distal edge spot or is intensity modulated. A final calculation is performed separately to determine the deliverable dose accounting for all sources of scatter. Treatment plans investigate the effects that varying system parameters have on dose distributions. Beam channel apertures may be as large as 20 mm because the sharp distal falloff characteristic of proton dose provides sufficient intensity modulation to meet dose objectives, even in the presence of coarse lateral resolution. Dose conformity suffers only when treatments are delivered from less than 10 angles. Jaw widths of 1--2 cm produce comparable dose distributions, but a jaw width of 4 cm produces unacceptable target coverage when maintaining critical structure avoidance. Treatment time for a prostate delivery is estimated to be on the order of 10 minutes. Neutron production

  4. Impact of anatomical changes on dose distribution of intensity-modulated radiotherapy for nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Huang Shaomin; Deng Xiaowu; Zhao Chong; Han Fei; Gao Xingwang; Lu Taixiang; Wang Shi

    2010-01-01

    Objective: To observe the physique and anatomy changes in patients with nasopharyngeal carcinoma (NPC) during intensity-modulated radiotherapy (IMRT), using repeated CT images and deformable registration technique, and analyze their impact on delivery dose distribution. Methods: Ten NPC patients were randomly selected from those who had received IMRT treatment.Gross tumor volume of nasopharynx (GTV nx ), GTV of metastastatic lymph node (GTV nd ), clinical target volume (CTV) and normal tissue or organ (OAR) were re-contoured on the in-course repeated CT images using a kind of deformable registration and auto-segmentation software according to the original planning contouring. Changes in volume of treatment targets and organs at risk were evaluated and the trends were then analyzed. Dose distributions were recalculated with repeated CT images and compared to the original plans. Results: The volume of GTV nx were decreased by 6.44%, 10.23% and 9.72%(F=1.34, P=0.278) in the 2-, 4- and 6-week after IMRT comparing with before IMRT, with 6.59%, 30.98 % and 35.13 % (F = 9.22, P =0.000) in GTV nd , 0.73%, 1.86% and 1.41% (F=0.33, P=0.722) in CTV 1 , -1.78%, -6.47% and -9.34% (F =16.89, P =0.000) in CTV 2 , 13.96%, 32.97% and 37.77%(F=17.17, P=0.000) in the left parotid, and 3.56% , 29.57% and 35.63% (F = 13.49, P = 0.000) in the right parotid. The mean dose change rate of GTV nx were -0.39%, 0.08% and 0.32% (F =0.15, P =0.860) in the 2-, 4- and 6-week after IMRT comparing with planning faction dose, with 0.53%, 1.19% and 0.69% (F=0.81, P=0.455) in GTV nd , 1.95%, 2.70% and 3.78% (F=0.61, P=0.552) in the spinal cord, 0.32%, 0.81% and 0.62% (F=0.03, P=0.975) in the brain stem, 4.50%, 4.66% and 7.20% (F=0.33, P=0.725) in the left parotid, 2.20%, 7.17% and 7.12% (F= 1.24, P=0.306) in the right parotid. Conclusions: The GTV nd , CTV 2 and parotids shrinks obviously along with the treatment times for NPC patients during IMRT. Although changes in fraction dose of GTV, CTV, spinal

  5. Phase II study evaluating consolidation whole abdominal intensity-modulated radiotherapy (IMRT in patients with advanced ovarian cancer stage FIGO III - The OVAR-IMRT-02 Study

    Directory of Open Access Journals (Sweden)

    Eichbaum Michael H

    2011-01-01

    Full Text Available Abstract Background The prognosis for patients with advanced FIGO stage III epithelial ovarian cancer remains poor despite the aggressive standard treatment, consisting of maximal cytoreductive surgery and platinum-based chemotherapy. The median time to recurrence is less than 2 years, with a 5-years survival rate of -20-25%. Recurrences of the disease occur mostly intraperitoneally. Ovarian cancer is a radiosensitive tumor, so that the use of whole abdominal radiotherapy (WAR as a consolidation therapy would appear to be a logical strategy. WAR used to be the standard treatment after surgery before the chemotherapy era; however, it has been almost totally excluded from the treatment of ovarian cancer during the past decade because of its high toxicity. Modern intensity-modulated radiation therapy (IMRT has the potential of sparing organs at risk like kidneys, liver, and bone marrow while still adequately covering the peritoneal cavity with a homogenous dose. Our previous phase I study showed for the first time the clinical feasibility of intensity-modulated WAR and pointed out promising results concerning treatment tolerance. The current phase-II study succeeds to the phase-I study to further evaluate the toxicity of this new treatment. Methods/design The OVAR-IMRT-02 study is a single-center one arm phase-II trial. Thirty seven patients with optimally debulked ovarian cancer stage FIGO III having a complete remission after chemotherapy will be treated with intensity-modulated WAR as a consolidation therapy. A total dose of 30 Gy in 20 fractions of 1.5 Gy will be applied to the entire peritoneal cavity including the liver surface and the pelvic and para-aortic node regions. Organ at risk are kidneys, liver (except the 1 cm-outer border, heart, vertebral bodies and pelvic bones. Primary endpoint is tolerability; secondary objectives are toxicity, quality of life, progression-free and overall survival. Discussion Intensity-modulated WAR provides

  6. Phase II study evaluating consolidation whole abdominal intensity-modulated radiotherapy (IMRT) in patients with advanced ovarian cancer stage FIGO III - The OVAR-IMRT-02 Study

    International Nuclear Information System (INIS)

    Rochet, Nathalie; Debus, Juergen; Kieser, Meinhard; Sterzing, Florian; Krause, Sonja; Lindel, Katja; Harms, Wolfgang; Eichbaum, Michael H; Schneeweiss, Andreas; Sohn, Christof

    2011-01-01

    The prognosis for patients with advanced FIGO stage III epithelial ovarian cancer remains poor despite the aggressive standard treatment, consisting of maximal cytoreductive surgery and platinum-based chemotherapy. The median time to recurrence is less than 2 years, with a 5-years survival rate of -20-25%. Recurrences of the disease occur mostly intraperitoneally. Ovarian cancer is a radiosensitive tumor, so that the use of whole abdominal radiotherapy (WAR) as a consolidation therapy would appear to be a logical strategy. WAR used to be the standard treatment after surgery before the chemotherapy era; however, it has been almost totally excluded from the treatment of ovarian cancer during the past decade because of its high toxicity. Modern intensity-modulated radiation therapy (IMRT) has the potential of sparing organs at risk like kidneys, liver, and bone marrow while still adequately covering the peritoneal cavity with a homogenous dose. Our previous phase I study showed for the first time the clinical feasibility of intensity-modulated WAR and pointed out promising results concerning treatment tolerance. The current phase-II study succeeds to the phase-I study to further evaluate the toxicity of this new treatment. The OVAR-IMRT-02 study is a single-center one arm phase-II trial. Thirty seven patients with optimally debulked ovarian cancer stage FIGO III having a complete remission after chemotherapy will be treated with intensity-modulated WAR as a consolidation therapy. A total dose of 30 Gy in 20 fractions of 1.5 Gy will be applied to the entire peritoneal cavity including the liver surface and the pelvic and para-aortic node regions. Organ at risk are kidneys, liver (except the 1 cm-outer border), heart, vertebral bodies and pelvic bones. Primary endpoint is tolerability; secondary objectives are toxicity, quality of life, progression-free and overall survival. Intensity-modulated WAR provides a new promising option in the consolidation treatment of

  7. Assessment of renal function after conformal radiotherapy and intensity-modulated radiotherapy by functional 1H-MRI and 23Na-MRI

    International Nuclear Information System (INIS)

    Haneder, S.; Michaely, H.J.; Schoenberg, S.O.; Konstandin, S.; Schad, L.R.; Siebenlist, K.; Wertz, H.; Wenz, F.; Lohr, F.; Boda-Heggemann, J.

    2012-01-01

    Purpose: Adjuvant radiochemotherapy (RCHT) improves survival of patients with locally advanced gastric cancer. Conventional three-dimensional conformal radiotherapy (3D-CRT) results in ablative doses to a significant amount of the left kidney, while image-guided intensity-modulated radiotherapy (IG-IMRT) provides excellent target coverage with improved kidney sparing. Few long-term results on IMRT for gastric cancer, however, have been published. Functional magnetic resonance imaging (fMRI) at 3.0 T including blood oxygenation-level dependent (BOLD) imaging, diffusion-weighted imaging (DWI) and, for the first time, 23 Na imaging was used to evaluate renal status after radiotherapy with 3D-CRT or IG-IMRT. Patients and methods Four disease-free patients (2 after 3D-CRT and 2 after IMRT; FU for all patients > 5 years) were included in this feasibility study. Morphological sequences, axial DWI images, 2D-gradient echo (GRE)-BOLD images, and 23 Na images were acquired. Mean values/standard deviations for ( 23 Na), the apparent diffusion coefficient (ADC), and R2 * values were calculated for the upper/middle/lower parts of both kidneys. Corticomedullary 23 Na-concentration gradients were determined. Results: Surprisingly, IG-IMRT patients showed no morphological alterations and no statistically significant differences of ADC and R2 * values in all renal parts. Values for mean corticomedullary 23 Na-concentration matched those for healthy volunteers. Results were similar in 3D-CRT patients, except for the cranial part of the left kidney. This was atrophic and presented significantly reduced functional parameters (p = 0.001 - p = 0.033). Reduced ADC values indicated reduced cell density and reduced extracellular space. Cortical and medullary R2 * values of the left cranial kidney in the 3D-CRT group were higher, indicating more deoxygenated hemoglobin due to reduced blood flow/oxygenation. ( 23 Na) of the renal cranial parts in the 3D-CRT group was significantly reduced

  8. Application of the measurement-based Monte Carlo method in nasopharyngeal cancer patients for intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Yeh, C.Y.; Lee, C.C.; Chao, T.C.; Lin, M.H.; Lai, P.A.; Liu, F.H.; Tung, C.J.

    2014-01-01

    This study aims to utilize a measurement-based Monte Carlo (MBMC) method to evaluate the accuracy of dose distributions calculated using the Eclipse radiotherapy treatment planning system (TPS) based on the anisotropic analytical algorithm. Dose distributions were calculated for the nasopharyngeal carcinoma (NPC) patients treated with the intensity modulated radiotherapy (IMRT). Ten NPC IMRT plans were evaluated by comparing their dose distributions with those obtained from the in-house MBMC programs for the same CT images and beam geometry. To reconstruct the fluence distribution of the IMRT field, an efficiency map was obtained by dividing the energy fluence of the intensity modulated field by that of the open field, both acquired from an aS1000 electronic portal imaging device. The integrated image of the non-gated mode was used to acquire the full dose distribution delivered during the IMRT treatment. This efficiency map redistributed the particle weightings of the open field phase-space file for IMRT applications. Dose differences were observed in the tumor and air cavity boundary. The mean difference between MBMC and TPS in terms of the planning target volume coverage was 0.6% (range: 0.0–2.3%). The mean difference for the conformity index was 0.01 (range: 0.0–0.01). In conclusion, the MBMC method serves as an independent IMRT dose verification tool in a clinical setting. - Highlights: ► The patient-based Monte Carlo method serves as a reference standard to verify IMRT doses. ► 3D Dose distributions for NPC patients have been verified by the Monte Carlo method. ► Doses predicted by the Monte Carlo method matched closely with those by the TPS. ► The Monte Carlo method predicted a higher mean dose to the middle ears than the TPS. ► Critical organ doses should be confirmed to avoid overdose to normal organs

  9. Computerised tomography in radiotherapy planning

    International Nuclear Information System (INIS)

    Badcock, P.C.

    1983-01-01

    This study evaluates the effectiveness of computed tomography as an adjunct to radiotherapy planning. Until recently, acquisition of accurate data concerning tumour anatomy lagged behind other developments in radiotherapy. With the advent of computer-tomography (CT), these data can be displayed and transmitted to a treatment planning computer. It is concluded that the greatest inaccuracies in the radiation treatment of patients are to be found in both the inadequate delineation of the target volume within the patient and changes in body outline relative to the target volume over the length of the irradiated volume. The technique was useful in various subgroups (pelvic, intra-thoracic and chest-wall tumours) and for those patients being treated palliatively. With an estimated improvement in cure rate of 4.5% and cost-effective factors of between 3.3 and 5, CT-assisted radiotherapy planning appears to be a worthwhile procedure. (orig.)

  10. Intensity modulated radiotherapy (IMRT) with concurrent chemotherapy as definitive treatment of locally advanced esophageal cancer

    International Nuclear Information System (INIS)

    Roeder, Falk; Nicolay, Nils H; Nguyen, Tam; Saleh-Ebrahimi, Ladan; Askoxylakis, Vasilis; Bostel, Tilman; Zwicker, Felix; Debus, Juergen; Timke, Carmen; Huber, Peter E

    2014-01-01

    To report our experience with increased dose intensity-modulated radiation and concurrent systemic chemotherapy as definitive treatment of locally advanced esophageal cancer. We analyzed 27 consecutive patients with histologically proven esophageal cancer, who were treated with increased-dose IMRT as part of their definitive therapy. The majority of patients had T3/4 and/or N1 disease (93%). Squamous cell carcinoma was the dominating histology (81%). IMRT was delivered in step-and-shoot technique in all patients using an integrated boost concept. The boost volume was covered with total doses of 56-60 Gy (single dose 2-2.14 Gy), while regional nodal regions received 50.4 Gy (single dose 1.8 Gy) in 28 fractions. Concurrent systemic therapy was scheduled in all patients and administered in 26 (96%). 17 patients received additional adjuvant systemic therapy. Loco-regional control, progression-free and overall survival as well as acute and late toxicities were retrospectively analyzed. In addition, quality of life was prospectively assessed according to the EORTC QLQs (QLQ-OG25, QLQ-H&N35 and QLQ-C30). Radiotherapy was completed as planned in all but one patient (96%), and 21 patients received more than 80% of the planned concurrent systemic therapy. We observed ten locoregional failures, transferring into actuarial 1-, 2- and 3-year-locoregional control rates of 77%, 65% and 48%. Seven patients developed distant metastases, mainly to the lung (71%). The actuarial 1-, 2- and 3-year-disease free survival rates were 58%, 48% and 36%, and overall survival rates were 82%, 61% and 56%. The concept was well tolerated, both in the clinical objective examination and also according to the subjective answers to the QLQ questionnaire. 14 patients (52%) suffered from at least one acute CTC grade 3/4 toxicity, mostly hematological side effects or dysphagia. Severe late toxicities were reported in 6 patients (22%), mostly esophageal strictures and ulcerations. Severe side effects to

  11. Impact of intensity-modulated radiation therapy as a boost treatment on the lung-dose distributions for non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Choi, Youngmin; Kim, Jeung Kee; Lee, Hyung Sik; Hur, Won Joo; Chai, Gyu Young; Kang, Ki Mun

    2005-01-01

    Purpose: To investigate the feasibility of intensity-modulated radiotherapy (IMRT) as a method of boost radiotherapy after the initial irradiation by the conventional anterior/posterior opposed beams for centrally located non-small-cell lung cancer through the evaluation of dose distributions according to the various boost methods. Methods and Materials: Seven patients with T3 or T4 lung cancer and mediastinal node enlargement who previously received radiotherapy were studied. All patients underwent virtual simulation retrospectively with the previous treatment planning computed tomograms. Initial radiotherapy plans were designed to deliver 40 Gy to the primary tumor and involved nodal regions with the conventional anterior/posterior opposed beams. Two radiation dose levels, 24 and 30 Gy, were used for the boost radiotherapy plans, and four different boost methods (a three-dimensional conformal radiotherapy [3DCRT], five-, seven-, and nine-beam IMRT) were applied to each dose level. The goals of the boost plans were to deliver the prescribed radiation dose to 95% of the planning target volume (PTV) and minimize the volumes of the normal lungs and spinal cord irradiated above their tolerance doses. Dose distributions in the PTVs and lungs, according to the four types of boost plans, were compared in the boost and sum plans, respectively. Results: The percentage of lung volumes irradiated >20 Gy (V20) was reduced significantly in the IMRT boost plans compared with the 3DCRT boost plans at the 24- and 30-Gy dose levels (p 0.007 and 0.0315 respectively). Mean lung doses according to the boost methods were not different in the 24- and 30-Gy boost plans. The conformity indexes (CI) of the IMRT boost plans were lower than those of the 3DCRT plans in the 24- and 30-Gy plans (p = 0.001 in both). For the sum plans, there was no difference of the dose distributions in the PTVs and lungs according to the boost methods. Conclusions: In the boost plans the V20s and CIs were

  12. Image-guided intensity-modulated radiotherapy for prostate cancer: Dose constraints for the anterior rectal wall to minimize rectal toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Jennifer L., E-mail: peterson.jennifer2@mayo.edu [Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL (United States); Buskirk, Steven J. [Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL (United States); Heckman, Michael G.; Diehl, Nancy N. [Section of Biostatistics, Mayo Clinic Florida, Jacksonville, FL (United States); Bernard, Johnny R. [Section of Biostatistics, Mayo Clinic Florida, Jacksonville, FL (United States); Department of Radiation Oncology, Southern Ohio Medical Center, Portsmouth, OH (United States); Tzou, Katherine S.; Casale, Henry E.; Bellefontaine, Louis P.; Serago, Christopher; Kim, Siyong; Vallow, Laura A.; Daugherty, Larry C.; Ko, Stephen J. [Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL (United States)

    2014-04-01

    Rectal adverse events (AEs) are a major concern with definitive radiotherapy (RT) treatment for prostate cancer. The anterior rectal wall is at the greatest risk of injury as it lies closest to the target volume and receives the highest dose of RT. This study evaluated the absolute volume of anterior rectal wall receiving a high dose to identify potential ideal dose constraints that can minimize rectal AEs. A total of 111 consecutive patients with Stage T1c to T3a N0 M0 prostate cancer who underwent image-guided intensity-modulated RT at our institution were included. AEs were graded according to the Common Terminology Criteria for Adverse Events, version 4.0. The volume of anterior rectal wall receiving 5 to 80 Gy in 2.5-Gy increments was determined. Multivariable Cox regression models were used to identify cut points in these volumes that led to an increased risk of early and late rectal AEs. Early AEs occurred in most patients (88%); however, relatively few of them (13%) were grade ≥2. At 5 years, the cumulative incidence of late rectal AEs was 37%, with only 5% being grade ≥2. For almost all RT doses, we identified a threshold of irradiated absolute volume of anterior rectal wall above which there was at least a trend toward a significantly higher rate of AEs. Most strikingly, patients with more than 1.29, 0.73, or 0.45 cm{sup 3} of anterior rectal wall exposed to radiation doses of 67.5, 70, or 72.5 Gy, respectively, had a significantly increased risk of late AEs (relative risks [RR]: 2.18 to 2.72; p ≤ 0.041) and of grade ≥ 2 early AEs (RR: 6.36 to 6.48; p = 0.004). Our study provides evidence that definitive image-guided intensity-modulated radiotherapy (IG-IMRT) for prostate cancer is well tolerated and also identifies dose thresholds for the absolute volume of anterior rectal wall above which patients are at greater risk of early and late complications.

  13. Image-guided intensity-modulated radiotherapy for prostate cancer: Dose constraints for the anterior rectal wall to minimize rectal toxicity

    International Nuclear Information System (INIS)

    Peterson, Jennifer L.; Buskirk, Steven J.; Heckman, Michael G.; Diehl, Nancy N.; Bernard, Johnny R.; Tzou, Katherine S.; Casale, Henry E.; Bellefontaine, Louis P.; Serago, Christopher; Kim, Siyong; Vallow, Laura A.; Daugherty, Larry C.; Ko, Stephen J.

    2014-01-01

    Rectal adverse events (AEs) are a major concern with definitive radiotherapy (RT) treatment for prostate cancer. The anterior rectal wall is at the greatest risk of injury as it lies closest to the target volume and receives the highest dose of RT. This study evaluated the absolute volume of anterior rectal wall receiving a high dose to identify potential ideal dose constraints that can minimize rectal AEs. A total of 111 consecutive patients with Stage T1c to T3a N0 M0 prostate cancer who underwent image-guided intensity-modulated RT at our institution were included. AEs were graded according to the Common Terminology Criteria for Adverse Events, version 4.0. The volume of anterior rectal wall receiving 5 to 80 Gy in 2.5-Gy increments was determined. Multivariable Cox regression models were used to identify cut points in these volumes that led to an increased risk of early and late rectal AEs. Early AEs occurred in most patients (88%); however, relatively few of them (13%) were grade ≥2. At 5 years, the cumulative incidence of late rectal AEs was 37%, with only 5% being grade ≥2. For almost all RT doses, we identified a threshold of irradiated absolute volume of anterior rectal wall above which there was at least a trend toward a significantly higher rate of AEs. Most strikingly, patients with more than 1.29, 0.73, or 0.45 cm 3 of anterior rectal wall exposed to radiation doses of 67.5, 70, or 72.5 Gy, respectively, had a significantly increased risk of late AEs (relative risks [RR]: 2.18 to 2.72; p ≤ 0.041) and of grade ≥ 2 early AEs (RR: 6.36 to 6.48; p = 0.004). Our study provides evidence that definitive image-guided intensity-modulated radiotherapy (IG-IMRT) for prostate cancer is well tolerated and also identifies dose thresholds for the absolute volume of anterior rectal wall above which patients are at greater risk of early and late complications

  14. Impact of intensity-modulated radiotherapy on acute hematologic toxicity in women with gynecologic malignancies

    International Nuclear Information System (INIS)

    Brixey, Clark J.; Roeske, John C.; Lujan, Anthony E.; Yamada, S. Diane; Rotmensch, Jacob; Mundt, Arno J.

    2002-01-01

    Purpose: To evaluate the impact of intensity-modulated whole pelvic radiotherapy (IM-WPRT) on acute hematologic toxicity (HT) in gynecology patients. Methods and Materials: Between February 2000 and June 2001, 36 patients (24 cervix, 12 uterus) received IM-WPRT. The target consisted of the upper vagina, parametria, uterus, and presacral and pelvic lymph nodes. Using commercially available software, seven or nine coplanar IM-WPRT plans were generated. The planning goals were to irradiate the target while minimizing the dose to the small bowel, bladder, and rectum. Pelvic bone marrow (BM) was not a constraint in the planning process. The variables analyzed included white blood count (WBC), absolute neutrophil count (ANC), platelets, and hemoglobin (Hgb) obtained before and weekly during RT. As a comparison, the HT in 88 patients (44 cervix, 44 uterus) treated to the same target volume and total dose (45 Gy) with conventional four-field WPRT was analyzed. In addition, the medullary spaces within the pelvic bones in 10 women were contoured and the average dose-volume histograms representing the pelvic BM were compared between the two groups. Results: IM-WPRT patients had a lower median age (p=0.008), higher percentage of squamous histologic features (p=0.04), and were more likely to receive chemotherapy (CTX) (p=0.02) than were the WPRT patients. No differences were seen in the baseline WBC, ANC, platelet, or Hgb levels between the two groups. Grade 2 or greater WBC, ANC, and Hgb toxicity was seen in 19.4%, 9.1%, and 8.6% of the IM-WPRT patients, respectively. Comparable rates were seen in the WPRT patients (WBC 21.6%, p=0.79; ANC 8.3%, p=0.91; Hgb 9.2%, p=0.94). No Grade 2 or greater platelet toxicity was seen in either group. Significant HT was infrequent in women treated with RT alone and was comparable in the two groups. In contrast, WPRT + CTX patients experienced more Grade 2 or greater WBC toxicity (60% vs. 31.2%, p=0.08) and developed lower median WBC (2.8 vs

  15. Critical structure sparing in stereotactic ablative radiotherapy for central lung lesions: helical tomotherapy vs. volumetric modulated arc therapy.

    Directory of Open Access Journals (Sweden)

    Alexander Chi

    Full Text Available BACKGROUND: Helical tomotherapy (HT and volumetric modulated arc therapy (VMAT are both advanced techniques of delivering intensity-modulated radiotherapy (IMRT. Here, we conduct a study to compare HT and partial-arc VMAT in their ability to spare organs at risk (OARs when stereotactic ablative radiotherapy (SABR is delivered to treat centrally located early stage non-small-cell lung cancer or lung metastases. METHODS: 12 patients with centrally located lung lesions were randomly chosen. HT, 2 & 8 arc (Smart Arc, Pinnacle v9.0 plans were generated to deliver 70 Gy in 10 fractions to the planning target volume (PTV. Target and OAR dose parameters were compared. Each technique's ability to meet dose constraints was further investigated. RESULTS: HT and VMAT plans generated essentially equivalent PTV coverage and dose conformality indices, while a trend for improved dose homogeneity by increasing from 2 to 8 arcs was observed with VMAT. Increasing the number of arcs with VMAT also led to some improvement in OAR sparing. After normalizing to OAR dose constraints, HT was found to be superior to 2 or 8-arc VMAT for optimal OAR sparing (meeting all the dose constraints (p = 0.0004. All dose constraints were met in HT plans. Increasing from 2 to 8 arcs could not help achieve optimal OAR sparing for 4 patients. 2/4 of them had 3 immediately adjacent structures. CONCLUSION: HT appears to be superior to VMAT in OAR sparing mainly in cases which require conformal dose avoidance of multiple immediately adjacent OARs. For such cases, increasing the number of arcs in VMAT cannot significantly improve OAR sparing.

  16. Parotid-sparing intensity-modulated radiotherapy (IMRT) for nasopharyngeal carcinoma: Preserved parotid function after IMRT on quantitative salivary scintigraphy, and comparison with historical data after conventional radiotherapy

    International Nuclear Information System (INIS)

    Hsiung, C.-Y.; Ting, H.-M.; Huang, H.-Y.; Lee, C.-H.; Huang, E.-Y.; Hsu, H.-C.

    2006-01-01

    Purpose: To evaluate the parotid function after parotid-sparing intensity-modulated radiotherapy (IMRT) in patients with nasopharyngeal carcinoma (NPC). Methods and Materials: From March 2003 to May 2004, 16 patients with nonmetastatic NPC underwent parotid-sparing IMRT. Eight of these patients had Stage III or IV NPC based on the 1997 American Joint Committee on Cancer staging system. The post-IMRT parotid function was evaluated by quantitative salivary scintigraphy and represented by the maximal excretion ratio (MER) of the parotid gland after sialogogue stimulation. The parotid function of 16 NPC patients who were previously treated with conventional radiotherapy was reviewed as the historical control. Results: In the parotid-sparing IMRT group, all 16 patients were alive and without cancer at the end of follow-up period (median, 24.2 months). The mean parotid MER was 53.5% before radiotherapy, 10.7% at 1 month post-IMRT, and 23.3% at 9 months post-IMRT. In the conventional radiotherapy group, the mean parotid MER was 0.6% at 6 to 12 months postradiotherapy. The difference was statistically significant (23.3% vs. 0.6%, p < 0.001, Mann-Whitney test). In the IMRT group, the mean parotid doses ranged from 33.2 Gy to 58.8 Gy (average, 43.9 Gy). The correlation between the mean parotid dose and the percentage decrease of parotid MER at 9 months post-IMRT (dMER) was statically significant (p = 0.008, Pearson correlation). Conclusions: Although the mean parotid doses are relatively high, the significant preservation of parotid function is achieved with IMRT for NPC patients. The significant correlation between mean parotid dose and parotid dMER demonstrates the dose-function relationship of the parotid gland

  17. Quality assurance of intensity-modulated radiation therapy.

    Science.gov (United States)

    Palta, Jatinder R; Liu, Chihray; Li, Jonathan G

    2008-01-01

    The current paradigm for the quality assurance (QA) program for intensity-modulated radiation therapy (IMRT) includes QA of the treatment planning system, QA of the delivery system, and patient-specific QA. Although the IMRT treatment planning and delivery system is the same as for conventional three-dimensional conformal radiation therapy, it has more parameters to coordinate and verify. Because of complex beam intensity modulation, each IMRT field often includes many small irregular off-axis fields, resulting in isodose distributions for each IMRT plan that are more conformal than those from conventional treatment plans. Therefore, these features impose a new and more stringent set of QA requirements for IMRT planning and delivery. The generic test procedures to validate dose calculation and delivery accuracy for both treatment planning and IMRT delivery have to be customized for each type of IMRT planning and delivery strategy. The rationale for such an approach is that the overall accuracy of IMRT delivery is incumbent on the piecewise uncertainties in both the planning and delivery processes. The end user must have well-defined evaluation criteria for each element of the planning and delivery process. Such information can potentially be used to determine a priori the accuracy of IMRT planning and delivery.

  18. Quality Assurance of Intensity-Modulated Radiation Therapy

    International Nuclear Information System (INIS)

    Palta, Jatinder R.; Liu, Chihray; Li, Jonathan G.

    2008-01-01

    The current paradigm for the quality assurance (QA) program for intensity-modulated radiation therapy (IMRT) includes QA of the treatment planning system, QA of the delivery system, and patient-specific QA. Although the IMRT treatment planning and delivery system is the same as for conventional three-dimensional conformal radiation therapy, it has more parameters to coordinate and verify. Because of complex beam intensity modulation, each IMRT field often includes many small irregular off-axis fields, resulting in isodose distributions for each IMRT plan that are more conformal than those from conventional treatment plans. Therefore, these features impose a new and more stringent set of QA requirements for IMRT planning and delivery. The generic test procedures to validate dose calculation and delivery accuracy for both treatment planning and IMRT delivery have to be customized for each type of IMRT planning and delivery strategy. The rationale for such an approach is that the overall accuracy of IMRT delivery is incumbent on the piecewise uncertainties in both the planning and delivery processes. The end user must have well-defined evaluation criteria for each element of the planning and delivery process. Such information can potentially be used to determine a priori the accuracy of IMRT planning and delivery

  19. FoCa: a modular treatment planning system for proton radiotherapy with research and educational purposes.

    Science.gov (United States)

    Sánchez-Parcerisa, D; Kondrla, M; Shaindlin, A; Carabe, A

    2014-12-07

    FoCa is an in-house modular treatment planning system, developed entirely in MATLAB, which includes forward dose calculation of proton radiotherapy plans in both active and passive modalities as well as a generic optimization suite for inverse treatment planning. The software has a dual education and research purpose. From the educational point of view, it can be an invaluable teaching tool for educating medical physicists, showing the insights of a treatment planning system from a well-known and widely accessible software platform. From the research point of view, its current and potential uses range from the fast calculation of any physical, radiobiological or clinical quantity in a patient CT geometry, to the development of new treatment modalities not yet available in commercial treatment planning systems. The physical models in FoCa were compared with the commissioning data from our institution and show an excellent agreement in depth dose distributions and longitudinal and transversal fluence profiles for both passive scattering and active scanning modalities. 3D dose distributions in phantom and patient geometries were compared with a commercial treatment planning system, yielding a gamma-index pass rate of above 94% (using FoCa's most accurate algorithm) for all cases considered. Finally, the inverse treatment planning suite was used to produce the first prototype of intensity-modulated, passive-scattered proton therapy, using 13 passive scattering proton fields and multi-leaf modulation to produce a concave dose distribution on a cylindrical solid water phantom without any field-specific compensator.

  20. Intensity Modulated Radiotherapy (IMRT in the postoperative treatment of an adenocarcinoma of the endometrium complicated by a pelvic kidney

    Directory of Open Access Journals (Sweden)

    Novaes Paulo ERS

    2006-11-01

    Full Text Available Abstract Background Pelvic Radiotherapy (RT as a postoperative treatment for endometrial cancer improves local regional control. Brachytherapy also improves vaginal control. Both treatments imply significant side effects that a fine RT technique can help avoiding. Intensity Modulated RT (IMRT enables the treatment of the target volume while protecting normal tissue. It therefore reduces the incidence and severity of side effects. Case We report on a 50 year-old patient with a serous-papiliferous adenocarcinoma of the uterus who was submitted to surgical treatment without lymph node sampling followed by Brachytherapy, and Chemotherapy. The patient had a pelvic kidney, and was therefore treated with IMRT. So far, the patient has been free from relapse and with normal kidney function. Conclusion IMRT is a valid technique to prevent the kidney from radiation damage.

  1. Hippocampal sparing radiotherapy for pediatric medulloblastoma: impact of treatment margins and treatment technique.

    Science.gov (United States)

    Brodin, N Patrik; Munck af Rosenschöld, Per; Blomstrand, Malin; Kiil-Berthlesen, Anne; Hollensen, Christian; Vogelius, Ivan R; Lannering, Birgitta; Bentzen, Søren M; Björk-Eriksson, Thomas

    2014-04-01

    We investigated how varying the treatment margin and applying hippocampal sparing and proton therapy impact the risk of neurocognitive impairment in pediatric medulloblastoma patients compared with current standard 3D conformal radiotherapy. We included 17 pediatric medulloblastoma patients to represent the variability in tumor location relative to the hippocampal region. Treatment plans were generated using 3D conformal radiotherapy, hippocampal sparing intensity-modulated radiotherapy, and spot-scanned proton therapy, using 3 different treatment margins for the conformal tumor boost. Neurocognitive impairment risk was estimated based on dose-response models from pediatric CNS malignancy survivors and compared among different margins and treatment techniques. Mean hippocampal dose and corresponding risk of cognitive impairment were decreased with decreasing treatment margins (P < .05). The largest risk reduction, however, was seen when applying hippocampal sparing proton therapy-the estimated risk of impaired task efficiency (95% confidence interval) was 92% (66%-98%), 81% (51%-95%), and 50% (30%-70%) for 3D conformal radiotherapy, intensity-modulated radiotherapy, and proton therapy, respectively, for the smallest boost margin and 98% (78%-100%), 90% (60%-98%), and 70% (39%-90%) if boosting the whole posterior fossa. Also, the distance between the closest point of the planning target volume and the center of the hippocampus can be used to predict mean hippocampal dose for a given treatment technique. We estimate a considerable clinical benefit of hippocampal sparing radiotherapy. In choosing treatment margins, the tradeoff between margin size and risk of neurocognitive impairment quantified here should be considered.

  2. An Ensemble Approach to Knowledge-Based Intensity-Modulated Radiation Therapy Planning

    Directory of Open Access Journals (Sweden)

    Jiahan Zhang

    2018-03-01

    Full Text Available Knowledge-based planning (KBP utilizes experienced planners’ knowledge embedded in prior plans to estimate optimal achievable dose volume histogram (DVH of new cases. In the regression-based KBP framework, previously planned patients’ anatomical features and DVHs are extracted, and prior knowledge is summarized as the regression coefficients that transform features to organ-at-risk DVH predictions. In our study, we find that in different settings, different regression methods work better. To improve the robustness of KBP models, we propose an ensemble method that combines the strengths of various linear regression models, including stepwise, lasso, elastic net, and ridge regression. In the ensemble approach, we first obtain individual model prediction metadata using in-training-set leave-one-out cross validation. A constrained optimization is subsequently performed to decide individual model weights. The metadata is also used to filter out impactful training set outliers. We evaluate our method on a fresh set of retrospectively retrieved anonymized prostate intensity-modulated radiation therapy (IMRT cases and head and neck IMRT cases. The proposed approach is more robust against small training set size, wrongly labeled cases, and dosimetric inferior plans, compared with other individual models. In summary, we believe the improved robustness makes the proposed method more suitable for clinical settings than individual models.

  3. SU-E-T-368: Evaluating Dosimetric Outcome of Modulated Photon Radiotherapy (XMRT) Optimization for Head and Neck Patients

    Energy Technology Data Exchange (ETDEWEB)

    McGeachy, P; Villarreal-Barajas, JE; Khan, R [University of Calgary, Calgary, AB (Canada); Tom Baker Cancer Centre, Calgary, AB (Canada); Zinchenko, Y [University of Calgary, Calgary, AB (Canada)

    2015-06-15

    Purpose: The dosimetric outcome of optimized treatment plans obtained by modulating the photon beamlet energy and fluence on a small cohort of four Head and Neck (H and N) patients was investigated. This novel optimization technique is denoted XMRT for modulated photon radiotherapy. The dosimetric plans from XMRT for H and N treatment were compared to conventional, 6 MV intensity modulated radiotherapy (IMRT) optimization plans. Methods: An arrangement of two non-coplanar and five coplanar beams was used for all four H and N patients. Both XMRT and IMRT were subject to the same optimization algorithm, with XMRT optimization allowing both 6 and 18 MV beamlets while IMRT was restricted to 6 MV only. The optimization algorithm was based on a linear programming approach with partial-volume constraints implemented via the conditional value-at-risk method. H and N constraints were based off of those mentioned in the Radiation Therapy Oncology Group 1016 protocol. XMRT and IMRT solutions were assessed using metrics suggested by International Commission on Radiation Units and Measurements report 83. The Gurobi solver was used in conjunction with the CVX package to solve each optimization problem. Dose calculations and analysis were done in CERR using Monte Carlo dose calculation with VMC{sub ++}. Results: Both XMRT and IMRT solutions met all clinical criteria. Trade-offs were observed between improved dose uniformity to the primary target volume (PTV1) and increased dose to some of the surrounding healthy organs for XMRT compared to IMRT. On average, IMRT improved dose to the contralateral parotid gland and spinal cord while XMRT improved dose to the brainstem and mandible. Conclusion: Bi-energy XMRT optimization for H and N patients provides benefits in terms of improved dose uniformity to the primary target and reduced dose to some healthy structures, at the expense of increased dose to other healthy structures when compared with IMRT.

  4. Relative plan robustness of step-and-shoot vs rotational intensity–modulated radiotherapy on repeat computed tomographic simulation for weight loss in head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, David J. [Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester (United Kingdom); The University of Manchester, Manchester Academic Health Science Centre, Institute of Cancer Sciences, Manchester (United Kingdom); Beasley, William J. [The University of Manchester, Manchester Academic Health Science Centre, Institute of Cancer Sciences, Manchester (United Kingdom); Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester (United Kingdom); Garcez, Kate; Lee, Lip W.; Sykes, Andrew J. [Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester (United Kingdom); Rowbottom, Carl G. [The University of Manchester, Manchester Academic Health Science Centre, Institute of Cancer Sciences, Manchester (United Kingdom); Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester (United Kingdom); Slevin, Nicholas J., E-mail: nick.slevin@christie.nhs.uk [Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester (United Kingdom); The University of Manchester, Manchester Academic Health Science Centre, Institute of Cancer Sciences, Manchester (United Kingdom)

    2016-07-01

    Introduction: Interfractional anatomical alterations may have a differential effect on the dose delivered by step-and-shoot intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT). The increased degrees of freedom afforded by rotational delivery may increase plan robustness (measured by change in target volume coverage and doses to organs at risk [OARs]). However, this has not been evaluated for head and neck cancer. Materials and methods: A total of 10 patients who required repeat computed tomography (CT) simulation and replanning during head and neck IMRT were included. Step-and-shoot IMRT and VMAT plans were generated from the original planning scan. The initial and second CT simulation scans were fused and targets/OAR contours transferred, reviewed, and modified. The plans were applied to the second CT scan and doses recalculated without repeat optimization. Differences between step-and-shoot IMRT and VMAT for change in target volume coverage and doses to OARs between first and second CT scans were compared by Wilcoxon signed rank test. Results: There were clinically relevant dosimetric changes between the first and the second CT scans for both the techniques (reduction in mean D{sub 95%} for PTV2 and PTV3, D{sub min} for CTV2 and CTV3, and increased mean doses to the parotid glands). However, there were no significant differences between step-and-shoot IMRT and VMAT for change in any target coverage parameter (including D{sub 95%} for PTV2 and PTV3 and D{sub min} for CTV2 and CTV3) or dose to any OARs (including parotid glands) between the first and the second CT scans. Conclusions: For patients with head and neck cancer who required replanning mainly due to weight loss, there were no significant differences in plan robustness between step-and-shoot IMRT and VMAT. This information is useful with increased clinical adoption of VMAT.

  5. Direct aperture optimization as a means of reducing the complexity of intensity modulated radiation therapy plans

    International Nuclear Information System (INIS)

    Broderick, Maria; Leech, Michelle; Coffey, Mary

    2009-01-01

    Intensity Modulated Radiation Therapy (IMRT) is a means of delivering radiation therapy where the intensity of the beam is varied within the treatment field. This is done by dividing a large beam into many small beamlets. Dose constraints are assigned to both the target and sensitive structures and computerised inverse optimization is performed to find the individual weights of this large number of beamlets. The computer adjusts the intensities of these beamlets according to the required planning dose objectives. The optimized intensity patterns are then decomposed into a series of deliverable multi leaf collimator (MLC) shapes in the sequencing step. One of the main problems of IMRT, which becomes even more apparent as the complexity of the IMRT plan increases, is the dramatic increase in the number of Monitor Units (MU) required to deliver a fractionated treatment. The difficulty with this increase in MU is its association with increased treatment times and a greater leakage of radiation from the MLCs increasing the total body dose and the risk of secondary cancers in patients. Therefore one attempts to find ways of reducing these MU without compromising plan quality. The design of inverse planning systems where the beam is divided into small beamlets to produce the required intensity map automatically introduces complexity into IMRT treatment planning. Plan complexity is associated with many negative factors such as dosimetric uncertainty and delivery issues A large search space is required necessitating much computing power. However, the limitations of the delivery technology are not taken into consideration when designing the ideal intensity map therefore a further step termed the sequencing step is required to convert the ideal intensity map into a deliverable one. Many approaches have been taken to reduce the complexity. These include setting intensity limits, putting penalties on the cost function and using smoothing filters Direct Aperture optimization

  6. Direct aperture optimization as a means of reducing the complexity of intensity modulated radiation therapy plans

    Directory of Open Access Journals (Sweden)

    Coffey Mary

    2009-02-01

    Full Text Available Abstract Intensity Modulated Radiation Therapy (IMRT is a means of delivering radiation therapy where the intensity of the beam is varied within the treatment field. This is done by dividing a large beam into many small beamlets. Dose constraints are assigned to both the target and sensitive structures and computerised inverse optimization is performed to find the individual weights of this large number of beamlets. The computer adjusts the intensities of these beamlets according to the required planning dose objectives. The optimized intensity patterns are then decomposed into a series of deliverable multi leaf collimator (MLC shapes in the sequencing step. One of the main problems of IMRT, which becomes even more apparent as the complexity of the IMRT plan increases, is the dramatic increase in the number of Monitor Units (MU required to deliver a fractionated treatment. The difficulty with this increase in MU is its association with increased treatment times and a greater leakage of radiation from the MLCs increasing the total body dose and the risk of secondary cancers in patients. Therefore one attempts to find ways of reducing these MU without compromising plan quality. The design of inverse planning systems where the beam is divided into small beamlets to produce the required intensity map automatically introduces complexity into IMRT treatment planning. Plan complexity is associated with many negative factors such as dosimetric uncertainty and delivery issues A large search space is required necessitating much computing power. However, the limitations of the delivery technology are not taken into consideration when designing the ideal intensity map therefore a further step termed the sequencing step is required to convert the ideal intensity map into a deliverable one. Many approaches have been taken to reduce the complexity. These include setting intensity limits, putting penalties on the cost function and using smoothing filters Direct

  7. Direct aperture optimization as a means of reducing the complexity of intensity modulated radiation therapy plans

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Maria; Leech, Michelle; Coffey, Mary [Division of Radiation Therapy, School of Medicine, Trinity College Dublin, Dublin, Ireland (United Kingdom)

    2009-02-16

    Intensity Modulated Radiation Therapy (IMRT) is a means of delivering radiation therapy where the intensity of the beam is varied within the treatment field. This is done by dividing a large beam into many small beamlets. Dose constraints are assigned to both the target and sensitive structures and computerised inverse optimization is performed to find the individual weights of this large number of beamlets. The computer adjusts the intensities of these beamlets according to the required planning dose objectives. The optimized intensity patterns are then decomposed into a series of deliverable multi leaf collimator (MLC) shapes in the sequencing step. One of the main problems of IMRT, which becomes even more apparent as the complexity of the IMRT plan increases, is the dramatic increase in the number of Monitor Units (MU) required to deliver a fractionated treatment. The difficulty with this increase in MU is its association with increased treatment times and a greater leakage of radiation from the MLCs increasing the total body dose and the risk of secondary cancers in patients. Therefore one attempts to find ways of reducing these MU without compromising plan quality. The design of inverse planning systems where the beam is divided into small beamlets to produce the required intensity map automatically introduces complexity into IMRT treatment planning. Plan complexity is associated with many negative factors such as dosimetric uncertainty and delivery issues A large search space is required necessitating much computing power. However, the limitations of the delivery technology are not taken into consideration when designing the ideal intensity map therefore a further step termed the sequencing step is required to convert the ideal intensity map into a deliverable one. Many approaches have been taken to reduce the complexity. These include setting intensity limits, putting penalties on the cost function and using smoothing filters Direct Aperture optimization

  8. Consensus Guidelines for Delineation of Clinical Target Volume for Intensity-Modulated Pelvic Radiotherapy for the Definitive Treatment of Cervix Cancer

    International Nuclear Information System (INIS)

    Lim, Karen; Small, William; Portelance, Lorraine; Creutzberg, Carien; Juergenliemk-Schulz, Ina M.; Mundt, Arno; Mell, Loren K.; Mayr, Nina; Viswanathan, Akila; Jhingran, Anuja; Erickson, Beth; De Los Santos, Jennifer; Gaffney, David; Yashar, Catheryn; Beriwal, Sushil; Wolfson, Aaron

    2011-01-01

    Purpose: Accurate target definition is vitally important for definitive treatment of cervix cancer with intensity-modulated radiotherapy (IMRT), yet a definition of clinical target volume (CTV) remains variable within the literature. The aim of this study was to develop a consensus CTV definition in preparation for a Phase 2 clinical trial being planned by the Radiation Therapy Oncology Group. Methods and Materials: A guidelines consensus working group meeting was convened in June 2008 for the purposes of developing target definition guidelines for IMRT for the intact cervix. A draft document of recommendations for CTV definition was created and used to aid in contouring a clinical case. The clinical case was then analyzed for consistency and clarity of target delineation using an expectation maximization algorithm for simultaneous truth and performance level estimation (STAPLE), with kappa statistics as a measure of agreement between participants. Results: Nineteen experts in gynecological radiation oncology generated contours on axial magnetic resonance images of the pelvis. Substantial STAPLE agreement sensitivity and specificity values were seen for gross tumor volume (GTV) delineation (0.84 and 0.96, respectively) with a kappa statistic of 0.68 (p < 0.0001). Agreement for delineation of cervix, uterus, vagina, and parametria was moderate. Conclusions: This report provides guidelines for CTV definition in the definitive cervix cancer setting for the purposes of IMRT, building on previously published guidelines for IMRT in the postoperative setting.

  9. Impact of xerostomia on dysphagia after chemotherapy-intensity-modulated radiotherapy for oropharyngeal cancer: Prospective longitudinal study.

    Science.gov (United States)

    Vainshtein, Jeffrey M; Samuels, Stuart; Tao, Yebin; Lyden, Teresa; Haxer, Marc; Spector, Matthew; Schipper, Matthew; Eisbruch, Avraham

    2016-04-01

    The purpose of this study was to assess how xerostomia affects dysphagia. Prospective longitudinal studies of 93 patients with oropharyngeal cancer treated with definitive chemotherapy-intensity-modulated radiotherapy (IMRT). Observer-rated dysphagia (ORD), patient-reported dysphagia (PRD), and patient-reported xerostomia (PRX) assessment of the swallowing mechanics by videofluoroscopy (videofluoroscopy score), and salivary flow rates, were prospectively assessed from pretherapy through 2 years. ORD grades ≥2 were rare and therefore not modeled. Of patients with no/mild videofluoroscopy abnormalities, a substantial proportion had PRD that peaked 3 months posttherapy and subsequently improved. Through 2 years, highly significant correlations were observed between PRX and PRD scores for all patients, including those with no/mild videofluoroscopy abnormalities. Both PRX and videofluoroscopy scores were highly significantly associated with PRD. On multivariate analysis, PRX score was a stronger predictor of PRD than the videofluoroscopy score. Xerostomia contributes significantly to PRD. Efforts to further decrease xerostomia, in addition to sparing parotid glands, may translate into improvements in PRD. © 2015 Wiley Periodicals, Inc. Head Neck 38: E1605-E1612, 2016. © 2015 Wiley Periodicals, Inc.

  10. A dual model HU conversion from MRI intensity values within and outside of bone segment for MRI-based radiotherapy treatment planning of prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Korhonen, Juha, E-mail: juha.p.korhonen@hus.fi [Clinical Research Institute Helsinki University Central Hospital Ltd., POB-700, 00029 HUS, Finland and Department of Oncology, Helsinki University Central Hospital, POB-180, 00029 HUS (Finland); Kapanen, Mika [Clinical Research Institute Helsinki University Central Hospital Ltd., POB-700, 00029 HUS (Finland); Department of Oncology, Helsinki University Central Hospital, POB-180, 00029 HUS (Finland); Department of Medical Physics, Tampere University Hospital, POB-2000, 33521 Tampere (Finland); Keyriläinen, Jani; Seppälä, Tiina; Tenhunen, Mikko [Department of Oncology, Helsinki University Central Hospital, POB-180, 00029 HUS (Finland)

    2014-01-15

    Purpose: The lack of electron density information in magnetic resonance images (MRI) poses a major challenge for MRI-based radiotherapy treatment planning (RTP). In this study the authors convert MRI intensity values into Hounsfield units (HUs) in the male pelvis and thus enable accurate MRI-based RTP for prostate cancer patients with varying tissue anatomy and body fat contents. Methods: T{sub 1}/T{sub 2}*-weighted MRI intensity values and standard computed tomography (CT) image HUs in the male pelvis were analyzed using image data of 10 prostate cancer patients. The collected data were utilized to generate a dual model HU conversion technique from MRI intensity values of the single image set separately within and outside of contoured pelvic bones. Within the bone segment local MRI intensity values were converted to HUs by applying a second-order polynomial model. This model was tuned for each patient by two patient-specific adjustments: MR signal normalization to correct shifts in absolute intensity level and application of a cutoff value to accurately represent low density bony tissue HUs. For soft tissues, such as fat and muscle, located outside of the bone contours, a threshold-based segmentation method without requirements for any patient-specific adjustments was introduced to convert MRI intensity values into HUs. The dual model HU conversion technique was implemented by constructing pseudo-CT images for 10 other prostate cancer patients. The feasibility of these images for RTP was evaluated by comparing HUs in the generated pseudo-CT images with those in standard CT images, and by determining deviations in MRI-based dose distributions compared to those in CT images with 7-field intensity modulated radiation therapy (IMRT) with the anisotropic analytical algorithm and 360° volumetric-modulated arc therapy (VMAT) with the Voxel Monte Carlo algorithm. Results: The average HU differences between the constructed pseudo-CT images and standard CT images of each

  11. Comparison of mucous and cutaneous toxicity of IMRT and of conventional radiotherapy associated with cetuximab; Comparaison de la toxicite muqueuse et cutanee de la RCMI et de la radiotherapie classique associee au cetuximab

    Energy Technology Data Exchange (ETDEWEB)

    Kreps, S.; Tamby, E.; Dessard Diana, B.; Berges, O.; Botti, M.; Deberne, M.; Henni, M.; Durdux, C.; Housset, M.; Giraud, P. [Hopital europeen Georges-Pompidou, Paris (France)

    2011-10-15

    The authors report a retrospective assessment of acute, cutaneous and mucous toxicity resulting from an association of cetuximab and conventional conformational radiotherapy, and from an intensity-modulated conformational radiotherapy (IMRT). Seven patients presenting nasopharyngeal, oropharyngeal or hypopharyngeal tumours have been irradiated with intensity modulation, and seven without. It appears that the association of cetuximab and radiotherapy is not well tolerated and requires a close monitoring. Intensity-modulated radiotherapy allows a significant reduction of dose and of toxicity. However, mucous toxicity remains significant. Short communication

  12. Recurrence in Region of Spared Parotid Gland After Definitive Intensity-Modulated Radiotherapy for Head and Neck Cancer

    International Nuclear Information System (INIS)

    Cannon, Donald M.; Lee, Nancy Y.

    2008-01-01

    Purpose: To discuss the implications of three examples of periparotid recurrence after definitive intensity-modulated radiotherapy (IMRT) for head and neck cancer (HNC). Methods and Materials: We present 3 patients with HNC who underwent definitive IMRT with concurrent chemotherapy and later had treatment failure in or near a spared parotid gland. Two patients had bilateral multilevel nodal disease, and all had Level II nodal disease ipsilateral to the site of recurrence. The patients were treated using dose-painting IMRT with a dose of 70 Gy to the gross tumor volume and 59.4 Gy or 54 Gy to the high-risk or low-risk clinical tumor volume, respectively. The parotid glands were spared bilaterally. The patients had not undergone any surgical treatment for HNC before radiotherapy. Results: All patients had treatment failure in the region of a spared parotid gland. Failure in the 2 patients with bilateral multilevel nodal involvement occurred in the periparotid lymph nodes. The third patient developed a dermal metastasis near the tail of a spared parotid gland. On pretreatment imaging, the 2 patients with nodal failure had small nonspecific periparotid nodules that showed no hypermetabolic activity on positron emission tomography. Conclusion: For HNC patients receiving definitive IMRT, nonspecific positron emission tomography-negative periparotid nodules on pretreatment imaging should raise the index of suspicion for subclinical disease in the presence of multilevel or Level II nodal metastases. Additional evaluation of such nodules might be indicated before sparing the ipsilateral parotid gland

  13. Left-sided breast cancer irradiation using rotational and fixed-field radiotherapy

    International Nuclear Information System (INIS)

    Qi, X. Sharon; Liu, Tian X.; Liu, Arthur K.; Newman, Francis; Rabinovitch, Rachel; Kavanagh, Brian; Hu, Y. Angie

    2014-01-01

    The 3-dimensional conformal radiotherapy (3DCRT) technique is the standard for breast cancer radiotherapy. During treatment planning, not only the coverage of the planning target volume (PTV) but also the minimization of the dose to critical structures, such as the lung, heart, and contralateral breast tissue, need to be considered. Because of the complexity and variations of patient anatomy, more advanced radiotherapy techniques are sometimes desired to better meet the planning goals. In this study, we evaluated external-beam radiation treatment techniques for left breast cancer using various delivery platforms: fixed-field including TomoDirect (TD), static intensity-modulated radiotherapy (sIMRT), and rotational radiotherapy including Elekta volumetric-modulated arc therapy (VMAT) and tomotherapy helical (TH). A total of 10 patients with left-sided breast cancer who did or did not have positive lymph nodes and were previously treated with 3DCRT/sIMRT to the entire breast were selected, their treatment was planned with Monaco VMAT, TD, and TH. Dosimetric parameters including PTV coverage, organ-at-risk (OAR) sparing, dose-volume histograms, and target minimum/maximum/mean doses were evaluated. It is found that for plans providing comparable PTV coverage, the Elekta VMAT plans were generally more inhomogeneous than the TH and TD plans. For the cases with regional node involvement, the average mean doses administered to the heart were 9.2 (± 5.2) and 8.8 (± 3.0) Gy in the VMAT and TH plans compared with 11.9 (± 6.4) and 11.8 (± 9.2) Gy for the 3DCRT and TD plans, respectively, with slightly higher doses given to the contralateral lung or breast or both. On average, the total monitor units for VMAT plans are 11.6% of those TH plans. Our studies have shown that VMAT and TH plans offer certain dosimetric advantages over fixed-field IMRT plans for advanced breast cancer requiring regional nodal treatment. However, for early-stage breast cancer fixed

  14. Analysis of Biochemical Control and Prognostic Factors in Patients Treated With Either Low-Dose Three-Dimensional Conformal Radiation Therapy or High-Dose Intensity-Modulated Radiotherapy for Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Vora, Sujay A.; Wong, William W.; Schild, Steven E.; Ezzell, Gary A.; Halyard, Michele Y.

    2007-01-01

    Purpose: To identify prognostic factors and evaluate biochemical control rates for patients with localized prostate cancer treated with either high-dose intensity-modulated radiotherapy (IMRT) or conventional-dose three-dimensional conformal radiotherapy 3D-CRT. Methods: Four hundred sixteen patients with a minimum follow-up of 3 years (median, 5 years) were included. Two hundred seventy-one patients received 3D-CRT with a median dose of 68.4 Gy (range, 66-71 Gy). The next 145 patients received IMRT with a median dose of 75.6 Gy (range, 70.2-77.4 Gy). Biochemical control rates were calculated according to both American Society for Therapeutic Radiology and Oncology (ASTRO) consensus definitions. Prognostic factors were identified using both univariate and multivariate analyses. Results: The 5-year biochemical control rate was 60.4% for 3D-CRT and 74.1% for IMRT (p < 0.0001, first ASTRO Consensus definition). Using the ASTRO Phoenix definition, the 5-year biochemical control rate was 74.4% and 84.6% with 3D-RT and IMRT, respectively (p = 0.0326). Univariate analyses determined that PSA level, T stage, Gleason score, perineural invasion, and radiation dose were predictive of biochemical control. On multivariate analysis, dose, Gleason score, and perineural invasion remained significant. Conclusion: On the basis of both ASTRO definitions, dose, Gleason score, and perineural invasion were predictive of biochemical control. Intensity-modulated radiotherapy allowed delivery of higher doses of radiation with very low toxicity, resulting in improved biochemical control

  15. Optimal field splitting for large intensity-modulated fields

    International Nuclear Information System (INIS)

    Kamath, Srijit; Sahni, Sartaj; Ranka, Sanjay; Li, Jonathan; Palta, Jatinder

    2004-01-01

    The multileaf travel range limitations on some linear accelerators require the splitting of a large intensity-modulated field into two or more adjacent abutting intensity-modulated subfields. The abutting subfields are then delivered as separate treatment fields. This workaround not only increases the treatment delivery time but it also increases the total monitor units (MU) delivered to the patient for a given prescribed dose. It is imperative that the cumulative intensity map of the subfields is exactly the same as the intensity map of the large field generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. In this work, we describe field splitting algorithms that split a large intensity-modulated field into two or more intensity-modulated subfields with and without feathering, with optimal MU efficiency while satisfying the hardware constraints. Compared to a field splitting technique (without feathering) used in a commercial planning system, our field splitting algorithm (without feathering) shows a decrease in total MU of up to 26% on clinical cases and up to 63% on synthetic cases

  16. Intensity-modulated radiation therapy for anal carcinoma; Radiotherapie conformationnelle avec modulation d'intensite des cancers de l'anus

    Energy Technology Data Exchange (ETDEWEB)

    Peiffert, D.; Moreau-Claeys, M.V.; Tournier-Rangeard, L.; Huger, S.; Marchesi, V. [Departement de radiotherapie, centre Alexis-Vautrin, 6, avenue de Bourgogne, 54511 Vandoeuvre-les-Nancy cedex (France)

    2011-10-15

    Anal canal carcinoma are highly curable by irradiation, combined with chemotherapy in locally advanced disease, with preservation of sphincter function. The clinical target volume for the nodes is extended, often including the inguinal nodes, which is not usual for other pelvic tumours. Acute and late effects are correlated with the volume and dose delivered to organs at risk, i. e. small bowel, bladder and increased by concomitant chemotherapy. Intensity modulated irradiation (IMRT) makes it possible to optimize the dose distribution in this 'complex U shaped' volume, while maintaining the dose distribution for the target volumes. The conversion from conformal irradiation to IMRT necessitates good knowledge of the definition and skills to delineate target volumes and organs at risk, including new volumes needed to optimize the dose distribution. Dosimetric and clinical benefits of IMRT are described, based on early descriptions and evidence-based publication. The growing development of IMRT in anal canal radiotherapy must be encouraged, and long-term benefits should be soon published. Radiation oncologists should precisely learn IMRT recommendations before starting the technique, and evaluate its early and late results for adverse effects, but also for long-term tumour control. (authors)

  17. Risk Factors for Hearing Loss in Patients Treated With Intensity-Modulated Radiotherapy for Head-and-Neck Tumors

    International Nuclear Information System (INIS)

    Zuur, Charlotte L.; Simis, Yvonne J.; Lamers, Emmy A.; Hart, Augustinus A.; Dreschler, Wouter A.; Balm, Alfons J.; Rasch, Coen R.

    2009-01-01

    Purpose: Radiotherapy (RT) is a common treatment of head-and-neck carcinoma. The objective of this study was to perform a prospective multivariate assessment of the dose-effect relationship between intensity-modulated RT and hearing loss. Methods and Materials: Pure tone audiometry at 0.250-16 kHz was obtained before and after treatment in 101 patients (202 ears). All patients received full-course intensity-modulated RT (range, 56-70 Gy), with a median cochlear dose of 11.4 Gy (range, 0.2-69.7). Results: Audiometry was performed 1 week before and a median of 9 weeks (range, 1-112) after treatment. The mean hearing deterioration at pure tone average air-conduction 1-2-4 kHz was small (from 28.6 dB HL to 30.1 dB HL). However, individual patients showed clinically significant hearing loss, with 10-dB threshold shift incidences of 13% and 18% at pure tone averages air-conduction 1-2-4 kHz and 8-10-12.5 kHz, respectively. Post-treatment hearing capability was unfavorable in the case of greater inner ear radiation doses (p <0.0001), unfavorable baseline hearing capability (p <0.0001), green-eyed patients (p <0.0001), and older age (p <0.0001). Using multivariate analysis, a prediction of individual hearing capabiltity after treatment was made. Conclusion: RT-induced hearing loss in the mean population is modest. However, clinically significant hearing loss was observed in older patients with green eyes and unfavorable pretreatment hearing. In these patients, the intended radiation dose may be adjusted according to the proposed predictive model, aiming to decrease the risk of ototoxicity.

  18. Spatial aspects of combined modality radiotherapy

    International Nuclear Information System (INIS)

    Bodey, Rachel K.; Evans, Phil M.; Flux, Glenn D.

    2005-01-01

    Background and purpose: A combined modality radiotherapy (CMRT) incorporates both external beam radiotherapy (EBT) and targeted radionuclide therapy (TRT) components. The spatial aspects of this combination were explored by utilising intensity modulated radiotherapy (IMRT) to provide a non-uniform EBT dose distribution. Patients and methods: Three methods of prescribing the required non-uniform distribution of EBT dose are described, based on both physical and biological criteria according to the distribution of TRT uptake. The results and consequences of these prescriptions are explored by application to three examples of patient data. Results: The planning procedure adopted allowed IMRT plans to be produced that met the prescription requirements. However, when the treatment was planned as a CMRT, compared with the use of EBT alone, more satisfactory target doses could be achieved with lower doses to normal tissues. The effects of errors in EBT delivery and in the functional data were found to cause a non-uniform prescription to tend towards the uniform case. Conclusions: The methods and results are relevant for more general biological treatment planning, in which IMRT may be used to produce dose distributions prescribed according to tumour function. The effects of delivery and dose calculation errors can have a significant impact on how such treatments should be planned

  19. Patterns of relapse following surgery and postoperative intensity modulated radiotherapy for oral and oropharyngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Collan, Juhani; Vaalavirta, Leila; Kajanti, Mikael; Tenhunen, Mikko; Saarilahti, Kauko (Dept. of Oncology, Helsinki Univ. Central Hospital, and Univ. of Helsinki, Helsinki (Finland)), E-mail: kauko.saarilahti@hus.fi; Lundberg, Marie; Baeck, Leif; Maekitie, Antti (Dept. of Otorhinolaryngology - Head and Neck Surgery, Helsinki Univ. Central Hospital, and Univ. of Helsinki, Helsinki (Finland))

    2011-10-15

    Background. To investigate the patterns of relapse following intensity modulated radiotherapy (IMRT) given after radical surgery for oral and oropharyngeal squamous cell cancer. Patients and methods. One hundred and two patients with oral or oropharyngeal cancer were treated with radical surgery followed by IMRT up to a mean total dose of 60 Gy between years 2001 and 2007. Thirty-nine of the patients (%) also received concomitant weekly cisplatin. Forty of the patients had oral and 62 had oropharyngeal cancer. Data on the tumour, patient and treatment factors were collected. Following therapy the patients were followed by clinical examination, endoscopy and MRI/CT at 2- to 3-months interval up to 2 years and thereafter at 6-month intervals. Results. The mean follow-up time of the patients was 55 months (range, 26-106 months). The rate for local tumour control for the whole cohort was 92.2%: 87.5% for oral cancer patients and 96.7% for oropharyngeal cancer patients. The 5-year disease specific survival was 90.2% and 5-year overall survival 84.3%. During the follow-up eight locoregional recurrences were observed, three at the primary tumour site and one at regional nodal site and four at both sites. The mean time to primary tumour recurrence was seven months (range, 2-10 months) and to nodal recurrence seven months (range, 2-12 months). Distant metastasis occurred in six (6%) patients. The factors associated with poor prognosis were the primary tumour size and tumour site with oral cancers having worse outcome. The treatment was well tolerated with no unexpected toxicities. The most frequent late toxicity was dysphagia necessitating permanent PEG in five patients. This was correlated with the advanced primary tumour size and resulting in wide tumour excision and reconstruction. Conclusions. Surgery combined with postoperative radiotherapy given as IMRT results in low level of tumour recurrence

  20. Patterns of relapse following surgery and postoperative intensity modulated radiotherapy for oral and oropharyngeal cancer

    International Nuclear Information System (INIS)

    Collan, Juhani; Vaalavirta, Leila; Kajanti, Mikael; Tenhunen, Mikko; Saarilahti, Kauko; Lundberg, Marie; Baeck, Leif; Maekitie, Antti

    2011-01-01

    Background. To investigate the patterns of relapse following intensity modulated radiotherapy (IMRT) given after radical surgery for oral and oropharyngeal squamous cell cancer. Patients and methods. One hundred and two patients with oral or oropharyngeal cancer were treated with radical surgery followed by IMRT up to a mean total dose of 60 Gy between years 2001 and 2007. Thirty-nine of the patients (%) also received concomitant weekly cisplatin. Forty of the patients had oral and 62 had oropharyngeal cancer. Data on the tumour, patient and treatment factors were collected. Following therapy the patients were followed by clinical examination, endoscopy and MRI/CT at 2- to 3-months interval up to 2 years and thereafter at 6-month intervals. Results. The mean follow-up time of the patients was 55 months (range, 26-106 months). The rate for local tumour control for the whole cohort was 92.2%: 87.5% for oral cancer patients and 96.7% for oropharyngeal cancer patients. The 5-year disease specific survival was 90.2% and 5-year overall survival 84.3%. During the follow-up eight locoregional recurrences were observed, three at the primary tumour site and one at regional nodal site and four at both sites. The mean time to primary tumour recurrence was seven months (range, 2-10 months) and to nodal recurrence seven months (range, 2-12 months). Distant metastasis occurred in six (6%) patients. The factors associated with poor prognosis were the primary tumour size and tumour site with oral cancers having worse outcome. The treatment was well tolerated with no unexpected toxicities. The most frequent late toxicity was dysphagia necessitating permanent PEG in five patients. This was correlated with the advanced primary tumour size and resulting in wide tumour excision and reconstruction. Conclusions. Surgery combined with postoperative radiotherapy given as IMRT results in low level of tumour recurrence