WorldWideScience

Sample records for intensity laser therapy

  1. Low Intensity Laser Therapy Applied in the Healing of Wounds

    Science.gov (United States)

    Kahn, Fred; Matthews, Jeffrey

    2009-06-01

    Objective: The aim of this study was to determine the outcomes of Low Intensity Laser Therapy (LILT) on wound healing for patients presenting with pain, compromised neurological and physical function and tissue damage associated with vascular/diabetic ulcerations of the lower extremity. Methods: A retrospective case review of six patients treated with LILT (GaAlAs SLD, 660 nm, 750 mW, 3.6 J/cm2; GaAlAs SLD, 840 nm, 1,500 mW, 6.48 J/cm2; GaAlAs laser, 830 nm, 75 mW, 270 J/cm2) was conducted of clinical features including pain, measured by visual analogue scale (VAS), motor function, measured by range of motion (ROM) and visual outcome, measured by wound dimensions for six patients (n = 6; 5 males, 1 female; age = 67.83 years). Results: Significant progress with regard to alleviation of pain (ΔVAS = -5), improvements in motor function (ΔROM = +40%), epithelialization (wound closure rate = 3%/week) and complete wound closure was achieved. No recurrence of pathology at least one month post cessation of therapy was evident (x¯% reduction in wound area = 100%). Conclusions: LILT achieved consistent, effective and clear endpoints, was cost effective, created no adverse effects and ultimately led to the salvage of extremities.

  2. High Intensity Laser Therapy (HILT) versus TENS and NSAIDs in low back pain: clinical study

    Science.gov (United States)

    Zati, Allesandro; Fortuna, Damiano; Valent, A.; Filippi, M. V.; Bilotta, Teresa W.

    2004-09-01

    Low back pain, caused by lumbar disc herniation, is prevalently treated with a conservative approach. In this study we valued the efficacy of High Intensity Laser Therapy (HILT), compared with accepted therapies such as TENS and NSAIDs. Laser therapy obtained similar results in the short term, but better clinical effect over time than TENS and NSAIDs. In conclusion high intensity laser therapy appears to be a interesting new treatment, worthy of further research.

  3. High-intensity laser therapy during chronic degenerative tenosynovitis experimentally induced in broiler chickens

    Science.gov (United States)

    Fortuna, Damiano; Rossi, Giacomo; Bilotta, Teresa W.; Zati, Allesandro; Gazzotti, Valeria; Venturini, Antonio; Pinna, Stefania; Serra, Christian; Masotti, Leonardo

    2002-10-01

    The aims of this study was the safety and the efficacy of High Intensity Laser Therapy (HILT) on chronic degenerative tenosynovitis. We have effectuated the histological evaluation and seroassay (C reactive protein) on 18 chickens affect by chronic degenerative tenosynovitis experimentally induced. We have been employed a Nd:YAG laser pulsed wave; all irradiated subjects received the same total energy (270 Joule) with a fluence of 7,7 J/cm2 and intensity of 10,7 W/cm2. The histological findings revealed a distinct reduction of the mineralization of the choral matrix, the anti-inflammatory effect of the laser, the hyperplasia of the synoviocytes and ectasia of the lymphatic vessels.

  4. Low Intensity laser therapy in patients with burning mouth syndrome: a randomized, placebo-controlled study

    Directory of Open Access Journals (Sweden)

    Norberto Nobuo SUGAYA

    Full Text Available Abstract The aim of this study was to assess the effectiveness of low intensity laser therapy in patients with Burning Mouth Syndrome (BMS. Thirty BMS subjects were randomized into two groups – Laser (LG and Placebo (CG. Seven patients dropped out, leaving 13 patients in LG and 10 patients in CG. Each patient received 4 irradiations (laser or placebo twice a week, for two consecutive weeks (blinded to the type of irradiation received. Infrared laser (AsGaAI irradiations were applied to the affected mucosa in scanning mode, wavelength of 790 nm, output power of 20 mW and fluence of 6 J/cm2. A visual analogue scale (VAS was used to assess the therapeutic effect before and after each irradiation, and at all the control time periods: 7, 14, 30, 60 and 90 days after the last irradiation. One researcher delivered irradiation and another recorded the results. Both researchers were blinded, the first to the results, and the second to the type of radiation applied. The results were categorized according to the percentage of symptom level variation, and showed a statistically better response in LG in only two categories of the control checkpoints (p=0.02; Fisher’s Exact Test. According to the protocol used in this study, low intensity laser therapy is as beneficial to patients with BMS as placebo treatment, indicating a great emotional component of involvement in BMS symptomatology. Nevertheless, there were positive results in some statistical analyses, thus encouraging further research in BMS laser therapy with other irradiation parameters.

  5. Intensity modulated radiation therapy using laser-accelerated protons: a Monte Carlo dosimetric study

    International Nuclear Information System (INIS)

    Fourkal, E; Li, J S; Xiong, W; Nahum, A; Ma, C-M

    2003-01-01

    In this paper we present Monte Carlo studies of intensity modulated radiation therapy using laser-accelerated proton beams. Laser-accelerated protons coming out of a solid high-density target have broad energy and angular spectra leading to dose distributions that cannot be directly used for therapeutic applications. Through the introduction of a spectrometer-like particle selection system that delivers small pencil beams of protons with desired energy spectra it is feasible to use laser-accelerated protons for intensity modulated radiotherapy. The method presented in this paper is a three-dimensional modulation in which the proton energy spectrum and intensity of each individual beamlet are modulated to yield a homogeneous dose in both the longitudinal and lateral directions. As an evaluation of the efficacy of this method, it has been applied to two prostate cases using a variety of beam arrangements. We have performed a comparison study between intensity modulated photon plans and those for laser-accelerated protons. For identical beam arrangements and the same optimization parameters, proton plans exhibit superior coverage of the target and sparing of neighbouring critical structures. Dose-volume histogram analysis of the resulting dose distributions shows up to 50% reduction of dose to the critical structures. As the number of fields is decreased, the proton modality exhibits a better preservation of the optimization requirements on the target and critical structures. It is shown that for a two-beam arrangement (parallel-opposed) it is possible to achieve both superior target coverage with 5% dose inhomogeneity within the target and excellent sparing of surrounding tissue

  6. Comparison between Epidural Block vs. High Intensity Laser Therapy for Controlling Chronic Low Back Pain

    Directory of Open Access Journals (Sweden)

    Badiozaman Radpay

    2016-01-01

    Full Text Available Background: Chronic low back pain is among a wide spread musculoskeletal conditions that is related to disability with high economy cost. There are several treatment modalities for controlling chronic low back pain (CLBP, among them high intensity laser therapy (HILT and epidural blocks (EB use more commonly. This study aimed to evaluate the benefits and hazards of each of these two methods.Materials and Methods: We designed a randomized controlled double blind study during 24 months.101 patients divided in 2 groups (52 in EB and 49 in HILT group. Pain intensity was assessed by using faces pain scales (FPS and LINKERT questionaries' before procedure and during one, four, 12, and 24 weeks after beginning the procedures.Results: There were no differences between two groups in FPS lumber tenderness, straight leg rising test (SLRT, paresthesia, deep tendon reflex (DTR, and imaging changes. Motor problems seem was less in HILT group comparing EB.Conclusion: This study showed both EB and HILT approaches can control the pain intensity and motor activities in CLBP patients. Future studies will clarify the precise importance of each these methods.

  7. A study of the effect of low intensity laser therapy on the osseointegration of hydroxyapatite implants

    International Nuclear Information System (INIS)

    Rajab, A.A.

    1999-01-01

    Three significant developments over the last decade in the maxillofacial region have been the predictable use of dental implants, the employment of hydroxyapatite as an implant coating, with a potential for more rapid osseointegration, and the introduction of Low Intensity Laser Therapy (LILT) for the enhancement of healing. Implants, although proving a major advance in prosthetics have the disadvantage that loading has to be delayed for a period, which in the case of the mouth needs to be 3 - 6 months after insertion. Hydroxyapatite offers the possibility of a shortened period of delay. Low Intensity Laser Therapy (LILT) has been shown to accelerate the healing of bony fractures, both experimentally and clinically. This thesis sets out to evaluate whether LILT could enhance the process of osseointegration, particularly when used with ceramic hydroxyapatite implants in an animal model. If so, this could provide a future clinical combination which would allow earlier loading of hydroxyapatite coated dental implants and also their counterparts in femoral head replacement. There has been virtually no research work undertaken on this aspect. An animal research study has been undertaken to investigate the effect of LILT on the osseointegration of endosseous implants. HA ceramic implants were inserted in two different anatomical sites, namely the mandible and femur in 40 rabbits. The animals were divided into three groups, comprising a low energy laser group (25 J/cm 2 per treatment), a high energy group (125 J/cm 2 per treatment ) and a control group. Animals were sacrificed at four and twelve weeks, with equivalent numbers of representatives of the three groups. The evolved method of evaluation involved radiographic methods (plain x-ray, radiovisiography RVG and the innovative technique of x-ray microtomography XMT), mechanical push out testing (Instron machine) and histological examination (qualitative and quantitative histomorphometry). The conclusions of the study

  8. Low intensity laser therapy and functional orthopedics contribution in pain and temporo mandibular dysfunction treatment

    International Nuclear Information System (INIS)

    Lollato, Renata Fronzaglia

    2003-01-01

    Temporo Mandibular Dysfunction (TMD) is a term used to describe disorders which involve temporomandibular joint (TMJ), masticatory muscles, and associated structures, isolatedly or not, whose most frequent symptoms pain. Its etiology involve controversies, and among risk factors is Class 11 malocclusion. A lot of techniques are used for TMD treatment, and the most recent are Low Intensity Laser Therapy (LILT) and Functional Orthopedics (FO). The aim of this study was to evaluate pain and buccal mobility in subjects with Class II malocclusion and TMD symptoms, treated with LILT and FO associated or not. Eighteen subjects were selected and divided in three groups. Group 1 was treated with LILT, λ = 780 nm, 70 mW, 15 J/cm 2 per point, in six sessions during two weeks. The application was in three points around the TMJ and in masticatory muscles: masseter, temporalis, sternomastoid and trapezius, on both sides when there was pain. Palpation was made before and five minutes after application and subjects answered a questionnaire with a score for pain evaluation. Group 2 received functional orthopedics aparatology Planas Indirect Composed Plates, and was evaluated once a week during two weeks, after palpation and following the same score as group 1. Group 3 received both therapies at the same time, and the first application coincided with the aparatology installation. The evaluation followed the parameters of group 1. The results were statically analyzed , and in general form did not show significant differences. There was remission of pain symptoms in ali of the groups, and group 3 showed more rapidly results. This fact leaded us to a conclusion that the association of the LILT with FO was the best treatment for the pain symptoms remission in TMD. (author)

  9. Laser therapy for cancer

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000905.htm Laser therapy for cancer To use the sharing features ... Lasers are also used on the skin. How Laser Therapy is Used Laser therapy can be used ...

  10. Effects of the low-intensity laser therapy on the prevention of dental caries induced in rats

    International Nuclear Information System (INIS)

    Mueller, Karin Praia

    2004-01-01

    The purpose of this study was to investigate the effects of low intensity laser therapy, associated or not to an acidulated phosphate fluoride, on the prevention of dental caries induced in rats. It was used 40 wistar rats, female, weaned with 18 days, fed with a cariogenic diet during 48 days and inoculated orally with Streptococcus mutans by three consecutive days starting from the second day of the diet. On the fifth day of experiment the animals were divided into five groups: G c (control) the animas were no submitted to any treatment; G L (laser) irradiation with low power laser (GaAlAs, λ=660 nm, P=30 mW, Δt=5 sec, 5 J/cm 2 ); G F (fluoride) topical application of acidulated phosphate fluoride (APF 1,23%) for four minutes; G LF (laser + fluoride) irradiation with low power laser followed by topical application of acidulated phosphate fluoride; G FL (fluoride + laser) topical application of acidulated phosphate fluoride followed by low power laser. The animals were sacrificed after 48 days; the molars were extracted and prepared to determine the dental caries lesions area by optical microscopy, enamel microhardness and analysis of the calcium and phosphorus ratio (Ca/P) by energy dispersive spectroscopy. The results were statistically analyzed by ANOVA (p LF was smaller than that for G F and G FL groups but no statistical difference was observed. There was no significant statistical difference between the microhardness of the G C and G L groups and among G FL , G LF and G F groups. Regarding to the calcium and phosphorus ratio, it was not observed significant statistical differences among the groups. These findings suggest that low-intensity laser radiation associated with acidulated phosphate fluoride reduces the caries area and could be an alternative in the prevention of the dental caries. (author)

  11. The hypoalgesic effects of low-intensity infrared laser therapy: a study on 555 cases

    Science.gov (United States)

    Tam, Giuseppe

    2004-09-01

    Objective: Low energy lasers are widely used to treat a variety of musculoskeletal conditions. The aim of this clinical study is to determine the action of the IR diode laser 904 nm pulsed on pain reduction therapy. Summary Background Data: With respect to pain, has been shown the Low power density laser increases the endorphin synthesis in the dorsal posterior horn of the spinal cord stopping the production of bradykinin and serotonin. Besides laser causes local vasodilatation of the capillaries and an improved circulation of drainage liquids in interstitial space causing an analgesic effect. Additionally, laser interferes in the cytochines (TNF-α, interleukin-1 and interleukin-6) that drive inflammation in the arthritis and are secreted from CD4 e T cells. Methods: Treatment was carried out on 555 cases and 525 patients (322 women and 203 men) in the period between 1987 and 2002. The patients, whose age ranged from 25 to 70, with a mean age of 45 years, were suffering from rheumatic, degenerative and traumatic pathologies. The majority of the patients had been seen by orthopaedists and rheumatologists and had undergone x-ray, ultrasound scanning, Tac, RM examination. All patients had received drug-based treatment and/or physiotherapy with poor results. Two thirds were experiencing acute symptomatic pain, while the others presented a chronic pathology with recurrent crises. We used a pulsed IR diode laser, GaAs 904 nm, maximum power 60 W, frequency impulse 1300 Hz, pulsed duration 200 nanoseconds; peak power per pulse 27W; maximal energy density: 9J/cm2; total number of Joules per treatment session: 10-75J/cm2, chronic 12-90J/cm2. Average number of applications: 12; maximum number of applications: 20. Results: In the evaluation of the results the following parameters have been considered: disappearance of spontaneous and induced pain (Likert scale, Rolland Morris disability scale, dynamometer). The pathologies treated were osteoarthritis in general, epicondylitis

  12. Laser Therapy

    Science.gov (United States)

    ... for Every Season How to Choose the Best Skin Care Products In This Section Dermatologic Surgery What is dermatologic ... for Every Season How to Choose the Best Skin Care Products Laser Resurfacing Uses for Laser Resurfacing Learn more ...

  13. Effects of the infrared diode low intensity laser therapy for oral mucositis: a clinical trial

    International Nuclear Information System (INIS)

    Freire, Maria do Rosario Santos

    2004-01-01

    Chemotherapy associated or not with radiotherapy and surgery may be used for treating patients presenting some pathogenies such as cancer. Many side effects are visibly in the mouth in several forms as a consequence of this treatment and oral mucositis is the most common, with great prevalence, causing degrees of morbidity and even death. This research is about improving the quality of life for these patients by using of laser radiation through a GaAlAs active medium, in a continuous manner, with a low power ( 60 mW), the diode laser acting at 780 nm wavelength infrared, with a energy density 7,5 J/cm 2 and 6,0 J/cm 2 , for the therapeutic and preventive groups respectively, and a third control group without radiation. Two protocols were studied in patients during 5-fluorouracil chemotherapic regime and combinations, because nowadays polychemotherapy is used, an associations of drugs, for a neoadjuvant treatment, adjuvant, potentionalize or palliative means, for the chemotherapy treatment. In a context of 60 patients, 16 patients had received the laser irradiations doses, 10 days for the therapeutic protocols and 11 days for the preventive irradiations. The therapeutic group presented a 50% of the total healing process and significant decrease in symptoms of pain (VAS=0 with p =0,01). For the preventive irradiations (D-5, D, D+5), that means the day of the QT, 5 days before the chemotherapy regime starts until 5 days later, only 1 patient had some kind of ulceration during more than four months of control. Results of the present study showed to be effective and promising for both employed protocols, therapeutic and preventive. Further studies must be developed in order to improve the present results. (author)

  14. Randomized, Double-Blind, and Placebo-Controlled Clinic Report of Intranasal Low-Intensity Laser Therapy on Vascular Diseases

    Directory of Open Access Journals (Sweden)

    Timon Cheng-Yi Liu

    2012-01-01

    Full Text Available The intranasal low intensity GaInP/AlGaInP diode 650 nm laser therapy (ILGLT might improve blood lipid and hemorheologic behavior of patients in view of its previous research, but it should be further supported by a randomized, double-blind, and placebo-controlled clinical study. In this paper, 90 patients with coronary heart disease or cerebral infarction were randomly divided into two groups, 60 in the treatment group and 30 in the control group, and were blindly treated with ILGLT at 8.38 and 0 mW/cm2 for 30 min each time once a day ten days each session for two sessions between which there were three days for rest, respectively. Fasting blood lipid such as total cholesterol and low/high-density lipoprotein cholesterol and hemorheologic behavior such as blood viscosity, plasma viscosity, redox viscosity and red blood cell aggregation were assessed before the first treatment and after the two sessions and were found to be significantly improved by ILGLT. It was concluded that ILGLT may improve blood lipid and hemorheologic behavior of patients with coronary heart disease or cerebral infarction.

  15. Influence of low-intensity laser therapy on spatial perception threshold and electroneurographic finding in patients with diabetic polyneuropathy

    Directory of Open Access Journals (Sweden)

    Perić Zoran

    2007-01-01

    Full Text Available Introduction: Low-intensity laser therapy (LILT can be applied in cases when patients with diabetic polyneuropathy (DPN suffer from chronic severe neuropathic pain. Objective. We wanted to analyze influence of LILT on spatial perception threshold (SPT and electroneurographic (ENG parameters in patients with painful DPN. Method. We analyzed 45 patients (25 males, average age 54.3 years (54.3±10.9, with clinical and ENG signs of painful DPN. The patients were divided into two groups: A and B. Group A consisted of 30 patients with DPN who had 30 LILT treatments over the period of 12 weeks and group B consisted of 15 patients with DPN who received only vitamin therapy per os within the same period. Prior to and after 12 weeks of treatment, the following ENG parameters were determined using surface electrodes: motor (MCV and sensory conduction velocities (SCV values (in m/s of nervus (n. peroneus (NP, n. tibialis (NT and n. medianus (NM and their motor distal latency (MDL values (in ms. SPT value (score as number from 1 to 8 was determined with Tactile Circumferential Discriminator on dorsal part of foot’s big toe skin. For statistical analysis, we used Student’s t-test and Pearson correlation (sig. 2 tailed study. Results. We registered statistically significant difference between SPT (p<0.01 values prior to (5.25±1.11 and after (4.87±0.90 LILT, as well as NMMCV (p<0.05 values prior to (47.18±5.08 and after (49.12±3.72 LILT. Besides, we registered, only after LILT, statistically significant correlation between SPT and NMDML (p<0.01 values and also between SPT and NMSCV (p<0.05 values. The differences and correlations between other analyzed parameters before and after treatments were not significant (p>0.05. Conclusion. In this study we registered significant decrease of SPT and increase of NMMCV after LILT and that indicated a favorable effect of this treatment in analyzed patients with painful DPN. In our opinion these results need further

  16. Spatiotemporal control of laser intensity

    Science.gov (United States)

    Froula, Dustin H.; Turnbull, David; Davies, Andrew S.; Kessler, Terrance J.; Haberberger, Dan; Palastro, John P.; Bahk, Seung-Whan; Begishev, Ildar A.; Boni, Robert; Bucht, Sara; Katz, Joseph; Shaw, Jessica L.

    2018-05-01

    The controlled coupling of a laser to plasma has the potential to address grand scientific challenges1-6, but many applications have limited flexibility and poor control over the laser focal volume. Here, we present an advanced focusing scheme called a `flying focus', where a chromatic focusing system combined with chirped laser pulses enables a small-diameter laser focus to propagate nearly 100 times its Rayleigh length. Furthermore, the speed at which the focus moves (and hence the peak intensity) is decoupled from the group velocity of the laser. It can co- or counter-propagate along the laser axis at any velocity. Experiments validating the concept measured subluminal (-0.09c) to superluminal (39c) focal-spot velocities, generating a nearly constant peak intensity over 4.5 mm. Among possible applications, the flying focus could be applied to a photon accelerator7 to mitigate dephasing, facilitating the production of tunable XUV sources.

  17. Within-patient right-left blinded comparison of diode (810 nm) laser therapy and intense pulsed light therapy for hair removal.

    Science.gov (United States)

    Cameron, H; Ibbotson, S H; Dawe, R S; Ferguson, J; Moseley, H

    2008-10-01

    Excessive facial hair in women can cause significant psychological distress. A variety of treatment methods are available, including lasers and, more recently, intense pulsed light (IPL) sources. There are very few studies comparing laser and IPL devices. The purpose of our study was to compare a laser diode device with an IPL, using a within-patient, right-left, assessor-blinded, controlled, study design. Hair counts were made, using coded close-up photographs. Treatments were carried out on three occasions at 6-week intervals, and a final assessment was made 6 weeks following the third treatment. Patient self-assessment was also included. Nine women were recruited, and seven completed the study. Average hair counts in a 16 cm(2) area before and after treatment were, respectively, 42.4 and 10.4 (laser), 38.1 and 20.4 (IPL), 45.3 and 44.7 (control). Both laser and IPL reduced the hair count substantially; laser vs control was significant at P=0.028, but IPL vs control had P=0.13, suggesting that more subjects or more treatments were required if statistical significance were to be achieved. Despite subjecting the patients to higher pain scores and more inflammation, laser was preferred by five patients; two preferred IPL and one had no preference.

  18. High-intensity laser physics

    International Nuclear Information System (INIS)

    Mohideen, U.

    1993-01-01

    This thesis is a study of the effect of high intensity lasers on atoms, free electrons and the generation of X-rays from solid density plasmas. The laser produced 50 milli Joule 180 femto sec pulses at 5 Hz. This translates to a maximum intensity of 5 x 10 18 W/cm 2 . At such high fields the AC stark shifts of atoms placed at the focus is much greater than the ionization energy. The characteristics of multiphoton ionization of atoms in intense laser fields was studied by angle resolved photoelectron spectroscopy. Free electrons placed in high intensity laser fields lead to harmonic generation. This phenomenon of Nonlinear Compton Scattering was theoretically investigated. Also, when these high intensity pulses are focused on solids a hot plasma is created. This plasma is a bright source of a short X-ray pulse. The pulse-width of X-rays from these solid density plasmas was measured by time-resolved X-ray spectroscopy

  19. Laser therapy for periodontitis

    Science.gov (United States)

    Efanov, O. I.

    2001-04-01

    An investigation was made of applying pulsed (lambda) equals 0.89 micrometers laser radiation in the treatment for early diagnosed periodontitis. The investigation was made on 65 patients (47 patients constituted the experimental group and 18 patients constituted a control group) affected by periodontitis. Clinical and functional tests revealed that laser therapy produced a string effect on the course of the illness. It reduced bleeding, inflammation, and pruritus. However, it did not produce an affect on electroexcitation. Biomicroscopic examinations and periodontium rheography revealed that the gingival blood flow became normal after the course of laser therapy. The capillary permeability and venous congestion decreased, which was confirmed by the increased time of vacuum tests, raised gingival temperature, reduced tissue clearance, and increased oxygen tension. Apart from that, laser therapy subsided fibrinolysis, proteolytic tissue activity, and decreased the exudative inflammation of periodontium.

  20. Diagnosis and indications for low-intensity laser therapy of the pathology of the oral cavity mucosa of patients with hematologic and gastroenteric diseases

    Science.gov (United States)

    Kunin, Anatoly A.; Minakov, E. V.; Sutscenko, A. V.; Vornovsky, V. A.; Dunaeva, S. V.; Stepanov, Nicolay N.; Shumilovitch, Bogdan R.

    1996-11-01

    In the recent years low intensity laser irradiation is made use of in stomatology with the view of treating numerous diseases of the oral cavity mucosa and parodontium. The oral cavity mucosa lesions caused by the internal organs diseases, especially those of blood and the gastroenteric tract, constitute a particular group. Such diseases are usually manifested by an inflammation, erosions, ulcers, hemorrhages. An abundant microflora of the oral cavity and diminished immunity of the patients contribute to the possibility of septicaemia development. Laser therapy of the oral cavity mucosa lesions according to strictly defined indications promotes rapid healing of ulcers, arresting the oral cavity mucosa inflammation, providing a reduction in bleeding and presents a safe prophylactic means of stomatogenic sepsis.

  1. Intense pulsed light, near infrared pulsed light, and fractional laser combination therapy for skin rejuvenation in Asian subjects: a prospective multi-center study in China.

    Science.gov (United States)

    Tao, Li; Wu, Jiaqiang; Qian, Hui; Lu, Zhong; Li, Yuanhong; Wang, Weizhen; Zhao, Xiaozhong; Tu, Ping; Yin, Rui; Xiang, Leihong

    2015-09-01

    Ablative skin rejuvenation therapies have limitations for Asian people, including post-inflammatory hyperpigmentation and long down time. Non-ablative lasers are safer but have limited efficacy. This study is to investigate the safety and efficacy of a combination therapy consisting of intense pulsed light (IPL), near infrared (NIR) light, and fractional erbium YAG (Er:YAG) laser for skin rejuvenation in Asian people. This study recruited 113 subjects from six sites in China. Subjects were randomly assigned to a full-face group, who received combination therapy, and split-face groups, in which one half of the face received combination therapy and the other half received IPL monotherapy. Each subject received five treatment sessions during a period of 90 days. Subjects were followed up at 1 and 3 months post last treatment. Three months after last treatment, the full-face group (n = 57) had a global improvement rate of 29 % and 29 % for wrinkles, 32 % for skin texture, 33 % for pigment spots, 28 % for pore size, respectively. For patients in the split-face groups (n = 54), monotherapy side had a global improvement rate of 23 % and 20 % for wrinkles, 27 % for skin texture, 25 % for pigment spots, 25 % for pore size, respectively. Both combination therapy and monotherapy resulted in significant improvements at the follow-up visits compared to baseline (P < 0.001). Combination therapy showed significantly greater improvements compared to monotherapy at two follow-up visits (P < 0.05). Combination therapy is a safe and more effective strategy than IPL monotherapy for skin rejuvenation in Asian people.

  2. High-intensity laser application in Orthodontics

    Directory of Open Access Journals (Sweden)

    Eduardo Franzotti Sant’Anna

    Full Text Available ABSTRACT Introduction: In dental practice, low-level laser therapy (LLLT and high-intensity laser therapy (HILT are mainly used for dental surgery and biostimulation therapy. Within the Orthodontic specialty, while LLLT has been widely used to treat pain associated with orthodontic movement, accelerate bone regeneration after rapid maxillary expansion, and enhance orthodontic tooth movement, HILT, in turn, has been seen as an alternative for addressing soft tissue complications associated to orthodontic treatment. Objective: The aim of this study is to discuss HILT applications in orthodontic treatment. Methods: This study describes the use of HILT in surgical treatments such as gingivectomy, ulotomy, ulectomy, fiberotomy, labial and lingual frenectomies, as well as hard tissue and other dental restorative materials applications. Conclusion: Despite the many applications for lasers in Orthodontics, they are still underused by Brazilian practitioners. However, it is quite likely that this demand will increase over the next years - following the trend in the USA, where laser therapies are more widely used.

  3. Stimulation of human gingival fibroblasts viability and growth by roots treated with high intensity lasers, photodynamic therapy and citric acid.

    Science.gov (United States)

    Karam, Paula Stephania Brandão Hage; Ferreira, Rafael; Oliveira, Rodrigo Cardoso; Greghi, Sebastião Luiz Aguiar; de Rezende, Maria Lúcia Rubo; Sant'Ana, Adriana Campos Passanezi; Zangrando, Mariana Schutzer Ragghianti; Damante, Carla Andreotti

    2017-09-01

    The aim of this study was to compare the effect of root biomodification by lasers, citric acid and antimicrobial photodynamic therapy (aPDT) on viability and proliferation of human gingival fibroblasts (FGH). Groups were divided in control (CC - only cells), and root fragments treated by: scaling and root planing (positice control - SC), Er:YAG (ER-60mJ,10pps,10Hz,10s,2940nm), Nd:YAG (ND-0.5W,15Hz,10s,1640nm), antimicrobial photodynamic therapy (PDT-InGaAIP,30mW,45J/cm 2 ,30s,660nm,toluidine blue O), citric acid plus tetracycline (CA). Fibroblasts (6th passage, 2×10 3 ) were cultivated in a 24-h conditioned medium by the treated root fragments. Cell viability was measured by MTT test at 24, 48, 72 and 96h. In a second experiment, FGH cells (10 4 ) were cultivated on root fragments which received the same treatments. After 24, 48, 72h the number of cells was counted in SEM pictures. In addition, chemical elements were analyzed by energy dispersive spectroscopy (EDS). Data was analyzed by two-way ANOVA (first experiment), repeated measures ANOVA (second experiment) and ANOVA (EDS experiment) tests complemented by Tukey's test (pplaning stimulated fibroblast viability while Er:YAG and Nd:YAG treated root surfaces presented higher number of cells. Copyright © 2017. Published by Elsevier Ltd.

  4. Plasmas and intense laser light

    International Nuclear Information System (INIS)

    Kennedy, E.T.

    1984-01-01

    The present article begins with a description of the laser technology required to reach the high irradiances of interest and provides a brief outline of the more important diagnostic techniques used in investigating the plasmas. An introduction to plasma waves is given and the linear and nonlinear excitation of waves is discussed. The remainder of the article describes some of the experimental evidence supporting the interpretation of the plasma behaviour at high laser-light intensities in terms of the excitation of plasma waves and the subsequent heating of plasma by these waves. (author)

  5. Laser therapy in sinusitis

    International Nuclear Information System (INIS)

    Hernandez Diaz, Adel; Orellana Molina, Alina; Larrea Cox, Pedro; Combarro Romero, Andres; Corcho Corcho, Carlos; Morales Valdes, Omar; Gonzalez Mendez, Bianka M.

    2009-01-01

    The sinusitis is an inflammation of one or more breasts peri-nasals. It is common in the months of winter and it can last months or years if it is not treat. At the moment we have several means that try to offer our patients a better treatment. One of these instruments is the low power laser that for their properties to the interaction with the biological tissues offers therapeutic effects on the alive tissues, achieving at the level cellular important changes for a quick answer of the damaged tissue. We intended to demonstrate the effectiveness of the treatment with low power laser in patient with sinusitis. It was carried out an explanatory and retrospective study, where it was applied as treatment the low power laser, for that which a team of model Cuban production Fisser 21. The feminine sex, the affected age group prevailed it was among 36 to 50 years for both groups, the maxillary sinusitis prevailed regarding the frontal. The migraine, the nasal obstruction and the sensation of congestion of the head were present in most of the cases. 75% of the patients' treaties noticed improvement of the symptoms between the 1st and 3rd sessions. At the end 80% cured without necessity of a second treatment cycle. The accompanying symptoms almost disappeared in their entirety. We recommend using the treatment of low power laser, as therapy of first line for the treatment of sinusitis of infectious cause. (Author)

  6. Effects of the low-intensity laser therapy on the prevention of dental caries induced in rats; Efeitos da radiacao laser em baixa intensidade na prevencao de carie dental induzida em ratos

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Karin Praia

    2004-07-01

    The purpose of this study was to investigate the effects of low intensity laser therapy, associated or not to an acidulated phosphate fluoride, on the prevention of dental caries induced in rats. It was used 40 wistar rats, female, weaned with 18 days, fed with a cariogenic diet during 48 days and inoculated orally with Streptococcus mutans by three consecutive days starting from the second day of the diet. On the fifth day of experiment the animals were divided into five groups: G{sub c} (control) the animas were no submitted to any treatment; G{sub L} (laser) irradiation with low power laser (GaAlAs, {lambda}=660 nm, P=30 mW, {delta}t=5 sec, 5 J/cm{sup 2}); G{sub F} (fluoride) topical application of acidulated phosphate fluoride (APF 1,23%) for four minutes; G{sub LF} (laser + fluoride) irradiation with low power laser followed by topical application of acidulated phosphate fluoride; G{sub FL} (fluoride + laser) topical application of acidulated phosphate fluoride followed by low power laser. The animals were sacrificed after 48 days; the molars were extracted and prepared to determine the dental caries lesions area by optical microscopy, enamel microhardness and analysis of the calcium and phosphorus ratio (Ca/P) by energy dispersive spectroscopy. The results were statistically analyzed by ANOVA (pintensity laser radiation associated with acidulated phosphate fluoride reduces the caries area and could be an alternative in the prevention of the dental caries. (author)

  7. Intensity-modulated radiation therapy.

    Science.gov (United States)

    Goffman, Thomas E; Glatstein, Eli

    2002-07-01

    Intensity-modulated radiation therapy (IMRT) is an increasingly popular technical means of tightly focusing the radiation dose around a cancer. As with stereotactic radiotherapy, IMRT uses multiple fields and angles to converge on the target. The potential for total dose escalation and for escalation of daily fraction size to the gross cancer is exciting. The excitement, however, has greatly overshadowed a range of radiobiological and clinical concerns.

  8. The utilization of high-intensity lasers

    International Nuclear Information System (INIS)

    Fabre, E.

    1988-01-01

    The 1988 progress report of the laboratory for the Utilization of High-Intensity Lasers (Polytechnic School, France), is presented. The research program is focused on the laser-plasma physics, on the generation of high pressures by means of laser shock heating, on the laser spectroscopy and on the laser implosions. Numerical simulation codes are developed. Concerning the atomic physics, the investigations on dense plasmas and the x-laser research developments are carried out. The research activities of the laboratory teams, the published papers, the national and international cooperations, are given [fr

  9. Laser therapy (image)

    Science.gov (United States)

    A laser is used for many medical purposes. Because the laser beam is so small and precise, it enables ... without injuring surrounding tissue. Some uses of the laser are retinal surgery, excision of lesions, and cauterization ...

  10. Vegetative deviation in patients with slow-repair processes in the post-operative wound and effect of the combined use of low-intensity laser therapy and pantovegin electrophoresis

    Directory of Open Access Journals (Sweden)

    Dugieva M.Z.

    2013-12-01

    Full Text Available Aim of this study was to evaluate the influence of combined use of low-intensity infrared laser therapy when exposed area of the thymus and electrophoresis of pantovegin on vegetative status of patients with the slowdown in the wound recovery reparative processes. Material study were 190 patients after gynecological laparotomy. Result. The article presents data on changes in vegetative status in postoperative gynecological patients with a slowdown in the wound recovery reparative processes. In this group of patients in the postoperative period parasimpatikotony prevails. By combination of low-intensity infrared laser therapy when exposed area of the thymus and pantovegin electrophoresis achieved more rapid normalization of available changes with the transition to the use of combination eitony. It is recommended to use physiotherapy method for slowing reparative processes in the wound.

  11. Stimulated Raman backscattering at high laser intensities

    Energy Technology Data Exchange (ETDEWEB)

    Skoric, M M [Vinca Inst. of Nuclear Sciences, Belgrade (Yugoslavia); Tajima, Toshiki; Sasaki, Akira; Maluckov, A; Jovanovic, M

    1998-03-01

    Signatures of Stimulated Raman backscattering of a short-pulse high-intensity laser interacting with an underdense plasma are discussed. We introduce a nonlinear three-wave interaction model that accounts for laser pump depletion and relativistic detuning. A mechanism is revealed based on a generic route to chaos, that predicts a progressive increase of the backscatter complexity with a growing laser intensity. Importance of kinetic effects is outlined and demonstrated in fluid-hybrid and particle simulations. As an application, we show that spectral anomalies of the backscatter, predicted by the above model, are consistent with recent sub-picosecond, high-intensity laser gas-target measurements at Livermore and elsewhere. Finally, a recently proposed scheme for generation of ultra-short, low-prepulse laser pulses by Raman backscattering in a thin foil target, is shown. (author)

  12. Progress in Ultrafast Intense Laser Science VIII

    CERN Document Server

    Nisoli, Mauro; Hill, Wendell; III, III

    2012-01-01

    The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science and optical science which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield as well as graduate students can grasp the importance and attractions of the research topic at hand. These are followed by reports of cutting-edge discoveries. This eighth volume covers a broad range of topics from this interdisciplinary research field, focusing on molecules interacting with ultrashort and intense laser fields, advanced technologies for the characterization of ultrashort laser pulses and their applications, laser plasma formation and laser acceleration.

  13. Intrinsic intensity fluctuations in random lasers

    International Nuclear Information System (INIS)

    Molen, Karen L. van der; Mosk, Allard P.; Lagendijk, Ad

    2006-01-01

    We present a quantitative experimental and theoretical study of intensity fluctuations in the emitted light of a random laser that has different realizations of disorder for every pump pulse. A model that clarifies these intrinsic fluctuations is developed. We describe the output versus input power graphs of the random laser with an effective spontaneous emission factor (β factor)

  14. Progress in ultrafast intense laser science XII

    CERN Document Server

    Roso, Luis; Li, Ruxin; Mathur, Deepak; Normand, Didier

    2015-01-01

    This  volume covers a broad range of topics focusing on atoms, molecules, and clusters interacting in intense laser field, laser induced filamentation, and laser plasma interaction and application. The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries. .

  15. Laser therapy of muscle injuries.

    Science.gov (United States)

    Dawood, Munqith S; Al-Salihi, Anam Rasheed; Qasim, Amenah Wala'a

    2013-05-01

    Low-level lasers are used in general therapy and healing process due to their good photo-bio-stimulation effects. In this paper, the effects of diode laser and Nd:YAG laser on the healing process of practically managed skeletal muscle trauma has been successfully studied. Standard impact trauma was induced by using a specially designed mechanical device. The impacted muscle was left for 3 days for complete development of blunt trauma. After that it was irradiated by five laser sessions for 5 days. Two types of lasers were used; 785-nm diode laser and 1.064-nm Nd:YAG laser, both in continuous and pulsed modes. A special electronic circuit was designed and implemented to modulate the diode laser for this purpose. Tissue samples of crushed skeletal muscle have been dissected from the injured irradiated muscle then bio-chemically analyzed for the regeneration of contractile and collagenous proteins using Lowry assay for protein determination and Reddy and Enwemeka assay for hydroxyproline determination. The results showed that both lasers stimulate the regeneration capability of traumatized skeletal muscle. The diode laser in CW and pulsed modes showed better results than the Nd:YAG in accelerating the preservation of the normal tissue content of collagenous and contractile proteins beside controlling the regeneration of non-functional fibrous tissue. This study proved that the healing achieved by the laser treatment was faster than the control group by 15-20 days.

  16. Progress in Ultrafast Intense Laser Science VI

    CERN Document Server

    Yamanouchi, Kaoru; Bandrauk, André D

    2010-01-01

    The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries. This sixth volume covers a broad range of topics from this interdisciplinary research field, focusing on responses of molecules to ultrashort intense laser pulses, generation and characterization of attosecond pulses and high-order harmonics, and filamentation and laser-plasma interaction.

  17. Spin and radiation in intense laser fields

    International Nuclear Information System (INIS)

    Walser, M.W.; Urbach, D.J.; Hatsagortsyan, K.Z.; Hu, S.X.; Keitel, C.H.

    2002-01-01

    The spin dynamics and its reaction on the particle motion are investigated for free and bound electrons in intense linearly polarized laser fields. Employing both classical and quantum treatments we analytically evaluate the spin oscillation of free electrons in intense laser fields and indicate the effect of spin-orbit coupling on the motion of the electron. In Mott scattering an estimation for the spin oscillation is derived. In intense laser ion dynamics spin signatures are studied in detail with emphasis on high-order harmonic generation in the tunneling regime. First- and second-order calculations in the ratio of electron velocity and the speed of light show spin signatures in the radiation spectrum and spin-orbit effects in the electron polarization

  18. Only lasers can be used for low level laser therapy.

    Science.gov (United States)

    Moskvin, Sergey Vladimirovich

    2017-12-01

    The question of lasers' exclusivity, as well as the degree of influence of special properties of low-intensity laser illumination (LILI), such as coherence, polarity and monochromaticity, on the effectiveness of low level laser therapy (LLLT) continues to cause arguments. The study analyzes publications from 1973 to 2016, in which laser and conventional light sources are compared, and the following conclusions are drawn. First, there are a lot of publications with incorrect comparison or unfounded statements. Secondly, other sources of light are often meant by LILI without any justification. Thirdly, all studies, in which the comparison is carried out correctly and close parameters of the impact and the model are used, have a firm conclusion that laser light is much more effective. Fourthly, it is uniquely identified that the most important parameter that determines the efficiency of lasers is monochromaticity, i.e., a much narrower spectral width than for all other light sources. Only laser light sources can be used for LLLT! © Author(s) 2017. This article is published with open access by China Medical University.

  19. Progress in Ultrafast Intense Laser Science II

    CERN Document Server

    Yamanouchi, Kaoru; Agostini, Pierre; Ferrante, Gaetano

    2007-01-01

    This book series addresses a newly emerging interdisciplinary research field, Ultrafast Intense Laser Science, spanning atomic and molecular physics, molecular science, and optical science. Its progress is being stimulated by the recent development of ultrafast laser technologies. Highlights of this second volume include Coulomb explosion and fragmentation of molecules, control of chemical dynamics, high-order harmonic generation, propagation and filamentation, and laser-plasma interaction. All chapters are authored by foremost experts in their fields and the texts are written at a level accessible to newcomers and graduate students, each chapter beginning with an introductory overview.

  20. Aligning molecules with intense nonresonant laser fields

    DEFF Research Database (Denmark)

    Larsen, J.J.; Safvan, C.P.; Sakai, H.

    1999-01-01

    Molecules in a seeded supersonic beam are aligned by the interaction between an intense nonresonant linearly polarized laser field and the molecular polarizability. We demonstrate the general applicability of the scheme by aligning I2, ICl, CS2, CH3I, and C6H5I molecules. The alignment is probed...... by mass selective two dimensional imaging of the photofragment ions produced by femtosecond laser pulses. Calculations on the degree of alignment of I2 are in good agreement with the experiments. We discuss some future applications of laser aligned molecules....

  1. Laser therapy in cardiovascular disease

    Science.gov (United States)

    Rindge, David

    2009-02-01

    Cardiovascular disease is the number one cause of death worldwide. It is broadly defined to include anything which adversely affects the heart or blood vessels. One-third of Americans have one or more forms of it. By one estimate, average human life expectancy would increase by seven years if it were eliminated. The mainstream medical model seeks mostly to "manage" cardiovascular disease with pharmaceuticals or to surgically bypass or reopen blocked vessels via angioplasty. These methods have proven highly useful and saved countless lives. Yet drug therapy may be costly and ongoing, and it carries the risk of side effects while often doing little or nothing to improve underlying health concerns. Similarly, angioplasty or surgery are invasive methods which entail risk. Laser therapy1 regenerates tissue, stimulates biological function, reduces inflammation and alleviates pain. Its efficacy and safety have been increasingly well documented in cardiovascular disease of many kinds. In this article we will explore the effects of laser therapy in angina, atherosclerosis, coronary artery disease, hypertension, hyperlipidemia, myocardial infarction, stroke and other conditions. The clinical application of various methods of laser therapy, including laserpuncture and transcutaneous, supravascular and intravenous irradiation of blood will be discussed. Implementing laser therapy in the treatment of cardiovascular disease offers the possibility of increasing the health and wellbeing of patients while reducing the costs and enhancing safety of medical care.

  2. Low intensity laser therapy and functional orthopedics contribution in pain and temporo mandibular dysfunction treatment; Contribuicao do laser em baixa intensidade e da ortopedia funcional dos maxilares no tratamento da dor e disfuncao tempora-mandibular

    Energy Technology Data Exchange (ETDEWEB)

    Lollato, Renata Fronzaglia

    2003-07-01

    Temporo Mandibular Dysfunction (TMD) is a term used to describe disorders which involve temporomandibular joint (TMJ), masticatory muscles, and associated structures, isolatedly or not, whose most frequent symptoms pain. Its etiology involve controversies, and among risk factors is Class 11 malocclusion. A lot of techniques are used for TMD treatment, and the most recent are Low Intensity Laser Therapy (LILT) and Functional Orthopedics (FO). The aim of this study was to evaluate pain and buccal mobility in subjects with Class II malocclusion and TMD symptoms, treated with LILT and FO associated or not. Eighteen subjects were selected and divided in three groups. Group 1 was treated with LILT, {lambda} = 780 nm, 70 mW, 15 J/cm{sup 2} per point, in six sessions during two weeks. The application was in three points around the TMJ and in masticatory muscles: masseter, temporalis, sternomastoid and trapezius, on both sides when there was pain. Palpation was made before and five minutes after application and subjects answered a questionnaire with a score for pain evaluation. Group 2 received functional orthopedics aparatology Planas Indirect Composed Plates, and was evaluated once a week during two weeks, after palpation and following the same score as group 1. Group 3 received both therapies at the same time, and the first application coincided with the aparatology installation. The evaluation followed the parameters of group 1. The results were statically analyzed , and in general form did not show significant differences. There was remission of pain symptoms in ali of the groups, and group 3 showed more rapidly results. This fact leaded us to a conclusion that the association of the LILT with FO was the best treatment for the pain symptoms remission in TMD. (author)

  3. Interaction of Intense Lasers with Plasmas

    Science.gov (United States)

    Shvets, Gennady

    1995-01-01

    This thesis addresses two important topics in nonlinear laser plasma physics: the interaction of intense lasers with a non thermal homogeneous plasma, the excitation of laser wakefields in hollow plasma channels, and the stability of channel guided propagation of laser pulses. In the first half of this thesis a new theoretical approach to the nonlinear interaction of intense laser pulses with underdense plasmas is developed. Unlike previous treatments, this theory is three-dimensional, relativistically covariant, and does not assume that astudied. An experimental check of this calculation is suggested, based on the predicted non-linear polarization rotation (the second harmonic is emitted polarized perpendicularly to polarization of the incident signal). The concept of renormalization is applied to the plasma and electromagnetic radiation (photons and plasmons). To the lowest order, this corresponds to relativistically correcting the electron mass for its oscillation in an intense EM field and to replacing the vacuum dispersion relation by the usual relativistic plasma dispersion relation. This renormalization procedure is then carried to higher order in epsilon=omega_sp{p} {2}a^2/[(1+a^2/2)^ {3/2}omega^2]. This yields the nonlinear modification of the index of refraction of a strong electromagnetic wave and the dispersion of a weak probe in the presence of the wave. In the second part of this thesis the stability of short laser pulses propagating through parabolic channels and the wake excitation of hollow plasma channels are studied. The stability of a channel guided short laser pulse propagation is analyzed for the first time. Perturbations to the laser pulse are shown to modify the ponderomotive pressure, which distorts the dielectric properties of the plasma channel. The channel perturbation then further distorts the laser pulse. A set of coupled mode equations is derived, and a matrix dispersion relation is obtained analytically. The ponderomotive excitation

  4. Progress in ultrafast intense laser science XIII

    CERN Document Server

    III, Wendell; Paulus, Gerhard

    2017-01-01

    This thirteenth volume covers a broad range of topics from this interdisciplinary research field, focusing on atoms, molecules, and clusters interacting in intense laser field and high-order harmonics generation and their applications. The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, the interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries.   .

  5. Progress in Ultrafast Intense Laser Science

    CERN Document Server

    Yamanouchi, Kaoru; Li, Ruxin; Chin, See Leang

    2009-01-01

    The PUILS series presents Progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science. PUILS has been stimulated by the recent development of ultrafast laser technologies. Each volume contains approximately 15 chapters, authored by researchers at the forefront. Each chapter opens with an overview of the topics to be discussed, so that researchers, who are not experts in the specific topics, as well as graduate students can grasp the importance and attractions of this sub-field of research, and these are followed by reports of cutting-edge discoveries. This fourth volume covers a broad range of topics from this interdisciplinary research field, focusing on strong field ionization of atoms; excitation, ionization and fragmentation of molecules; nonlinear intense optical phenomena and attosecond pulses; and laser - solid interactions and photoemission.

  6. Progress in Ultrafast Intense Laser Science III

    CERN Document Server

    Yamanouchi, Kaoru; Agostini, Pierre; Ferrante, Gaetano

    2008-01-01

    The PUILS series presents Progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science. PUILS has been stimulated by the recent development of ultrafast laser technologies. Each volume contains approximately 15 chapters, authored by researchers at the forefront. Each chapter opens with an overview of the topics to be discussed, so that researchers, who are not experts in the specific topics, as well as graduate students can grasp the importance and attractions of this sub-field of research, and these are followed by reports of cutting-edge discoveries. This third volume covers a diverse range of disciplines, focusing on such topics as strong field ionization of atoms, ionization and fragmentation of molecules and clusters, generation of high-order harmonics and attosecond pulses, filamentation and laser plasma interaction, and the development of ultrashort and ultrahigh-intensity light sources.

  7. Efficacy of Laser Therapy in Ankle Sprains : Design of a Randomized Clinical Trial

    NARCIS (Netherlands)

    de Bie, Robert A.; de Vet, Henrica CW; Knipschild, Paul G.; van den Wildenberg, Frans AJM; Lenssen, Ton F.; Bouter, Lex

    1997-01-01

    Studies on low intensity 904 nm laser therapy in the treatment of musculoskeletal disorders show conflicting results. Yet, on the basis of a systematic review we concluded that 904 nm laser therapy for musculoskeletal disorders seems to be promising, when compared to placebo laser therapy. Quick

  8. [Assessment of rehabilitation progress in patients with cervical radicular pain syndrome after application of high intensity laser therapy - HILT and Saunders traction device].

    Science.gov (United States)

    Haładaj, Robert; Pingot, Julia; Pingot, Mariusz

    2015-07-01

    Osteoarthritis of the spine is a major global health problem, it is an epidemic of our times. It affects all parts of the spine, but the hardest to treat is its cervical region. The cervical spine is most mobile, delicate and sensitive to any load. It requires special care in conservative treatment. To date the selection of effective therapeutic approaches has been controversial. The aim of the study was to assess the progress of rehabilitation in patients with cervical radicular pain syndrome after using two different methods of treatment: HILT and spinal axial traction with the use of Saunders device. The randomized study included 150 patients (81 women and 69 men, aged 24-67 years, mean age 45.5) divided into two groups of 75 patients each with characteristic symptoms of radicular pain. The measurement of the range of cervical spine movement of the cervical spine, visual analog scale for pain - VAS and a NDI questionnaire (Neck Disability Index - Polish version) - an indicator of functional disorders - were used to evaluate the effectiveness of the two different therapies. The results obtained by Saunders method remained significantly higher than those obtained when HILT laser therapy was used for most of the examined parameters. A thorough analysis of the results showed greater analgesic efficacy, improved global mobility and reduced functional impairment in patients treated with Saunders method. Both therapeutic methods manifest analgesic effect and a positive impact on the improvement of range of cervical spine movement in patients with radicular pain in this spine region. HILT laser therapy and Saunders traction device reduce neck disability index in the treated patients. © 2015 MEDPRESS.

  9. Progress in ultrafast intense laser science XI

    CERN Document Server

    Yamanouchi, Kaoru; Martin, Philippe

    2014-01-01

    The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance

  10. Progress in ultrafast intense laser science

    CERN Document Server

    Yamanouchi, Kaoru; Mathur, Deepak

    2014-01-01

    The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance

  11. Unsteady thermal blooming of intense laser beams

    Science.gov (United States)

    Ulrich, J. T.; Ulrich, P. B.

    1980-01-01

    A four dimensional (three space plus time) computer program has been written to compute the nonlinear heating of a gas by an intense laser beam. Unsteady, transient cases are capable of solution and no assumption of a steady state need be made. The transient results are shown to asymptotically approach the steady-state results calculated by the standard three dimensional thermal blooming computer codes. The report discusses the physics of the laser-absorber interaction, the numerical approximation used, and comparisons with experimental data. A flowchart is supplied in the appendix to the report.

  12. Laser biostimulation therapy planning supported by imaging

    Science.gov (United States)

    Mester, Adam R.

    2018-04-01

    Ultrasonography and MR imaging can help to identify the area and depth of different lesions, like injury, overuse, inflammation, degenerative diseases. The appropriate power density, sufficient dose and direction of the laser treatment can be optimally estimated. If required minimum 5 mW photon density and required optimal energy dose: 2-4 Joule/cm2 wouldn't arrive into the depth of the target volume - additional techniques can help: slight compression of soft tissues can decrease the tissue thickness or multiple laser diodes can be used. In case of multiple diode clusters light scattering results deeper penetration. Another method to increase the penetration depth is a second pulsation (in kHz range) of laser light. (So called continuous wave laser itself has inherent THz pulsation by temporal coherence). Third solution of higher light intensity in the target volume is the multi-gate technique: from different angles the same joint can be reached based on imaging findings. Recent developments is ultrasonography: elastosonography and tissue harmonic imaging with contrast material offer optimal therapy planning. While MRI is too expensive modality for laser planning images can be optimally used if a diagnostic MRI already was done. Usual DICOM images offer "postprocessing" measurements in mm range.

  13. Evaluation of the ocular protection for low intensity therapeutic lasers

    International Nuclear Information System (INIS)

    Cordon, Rosely

    2003-01-01

    The low intensity laser therapy (LILT) has been extensively used in medicine and dentistry presenting positive effects. However, the laser radiation can also cause adverse effects. Due to the ocular focalization property, in the wavelength from 400 to 1400 nm, the retina is more susceptible to damage by radiation than any other part of the human body. Then, the ocular protection is frequently emphasized. This protection must attenuate the radiation to a safe level. The International Electrotechnical Commission (IEC) standard IEC 60825-1 suggests safety requirements for medical laser equipment, including the ocular protection, based on maximum permissible exposure levels. The Brazilian legislation adopts a corresponding IEC standard, the NBR IEC 601.2.22, for safety requirements. The aim of this study was to analyze the adequacy of the ocular protectors furnished by four laser equipment manufacturers, commercially available in Brazil, commonly used for LILT. For this purpose, the laser equipment and the respective ocular protectors were characterized. The adequacy was verified according to the IEC standards. It was found, among other results, ocular protectors attenuating to safe levels the radiation emitted by the respective laser equipment, however, presenting inadequate visual transmission. Inefficient protection and protection indicated in cases where they were not necessary were also observed. (author)

  14. Laser/Light Therapy for Birthmarks

    Science.gov (United States)

    ... for Every Season How to Choose the Best Skin Care Products In This Section Dermatologic Surgery What is dermatologic ... for Every Season How to Choose the Best Skin Care Products Laser/Light Therapy for Birthmarks In laser/light ...

  15. [Magneto-laser therapy of chronic gastritis in children and adolescents].

    Science.gov (United States)

    Zviagin, A A; Nikolaenko, E A

    2008-01-01

    The efficiency of transcutaneous magneto-laser treatment as a component of combined therapy of chronic gastritis in children and adolescents (aged 5-17 years) was compared with that of pharmacotherapy and low-intensity laser therapy. The patients were allocated to three groups of 25 persons each. Patients of group 1 were given only drug therapy, those in group 2 were treated with pharmaceuticals and low-intensity laser therapy. The patients comprising group 3 were subjected to the action of magneto-laser radiation. Magneto-laser therapy was shown to result in a significantly more expressed improvement of clinical and morphological characteristics of the patients compared with pharmacotherapy alone. There was no significant difference between effects of magneto-laser and low-intensity laser radiation.

  16. High-intensity-laser-electron scattering

    International Nuclear Information System (INIS)

    Meyerhofer, D.D.

    1997-01-01

    In the field of an intense laser, photon-electron scattering becomes nonlinear when the oscillatory energy of the electron approaches its rest mass. The electron wave function is dressed by the field with a concomitant increase in the effective electron mass. When the photon energy in the electron rest frame is comparable to the electron rest mass, multiphoton Compton scattering occurs. When the photon energy is significantly lower than the electron rest mass, the electron acquires momentum from the photon field and emits harmonics. This paper reviews nonlinear photon-electron scattering processes and results from two recent experiments where they have been observed

  17. A case report of low intensity laser therapy (LILT) in the management of venous ulceration: potential effects of wound debridement upon efficacy.

    Science.gov (United States)

    Lagan, K M; Mc Donough, S M; Clements, B A; Baxter, G D

    2000-02-01

    This single case report (ABA design) was undertaken as a preliminary investigation into the clinical effects of low intensity laser upon venous ulceration, applied to wound margins only, and the potential relevance of wound debridement and wound measurement techniques to any effects observed. Ethical approval was granted by the University of Ulster's Research Ethical Committee and the patient recruited was required to attend 3 times per week for a total of 8 weeks. Treatments were carried out using single source irradiation (830 nm; 9 J/cm2, CB Medico, Copenhagen, Denmark) in conjunction with dry dressings during each visit. Assessment of wound surface area, wound appearance, and current pain were completed by an independent investigator. Planimetry and digitizing were completed for wound tracings and for photographs to quantify surface areas. Video image analysis was also performed on photographs of wounds. The primary findings were changes in wound appearance, and a decrease in wound surface area (range 33.3-46.3%), dependent on the choice of measurement method. Video image analysis was used, but rejected as an accurate method of wound measurement. Treatment intervention produced a statistically significant reduction in wound area using the C statistic on digitizing data for photographs (at Phase one only; Z = 2.412; p debridement emerged as an important procedure to be carried out prior to measuring wounds. Despite fluctuating pain levels recorded throughout the duration of the study, VAS scores showed a decrease of 15% at the end of the study. This hypoalgesic effect was, however, statistically significant (using the C statistic) at Phase one only (Z = 2.554; p types of ulceration.

  18. Activity of processes of a lipoperoksidation at patients with a long postoperative pain syndrome against the combined application of application of low-intensive infrared laser therapy at impact on thymus area and pantovegin electrophoresis

    Directory of Open Access Journals (Sweden)

    Dugieva M.Z.

    2013-12-01

    Full Text Available The aim of the study was to optimize the treatment of postoperative gynecological patients using physiotherapy method. Material and methods. It was examined 220 patients in postoperative period. It was investigated antioxidant status and lipid peroxidation. Results. It is demonstrated that patients with prolonged postoperative pain disorders are more pronounced as compared with the control group. The article presents data on the effectiveness of the impact on the antioxidant system and lipid peroxidation in postoperative period of combined use of low-intensity infrared laser therapy when exposed area of the thymus and in pantovegin electrophoresis in patients sustained postoperative pain after gynecological laparotomy. Conclusion. It is shown that this method helps to reduce pain in the postoperative wound.

  19. Laser and intense pulsed light hair removal technologies

    DEFF Research Database (Denmark)

    Haedersdal, M; Beerwerth, F; Nash, J F

    2011-01-01

    Light-based hair removal (LHR) is one of the fastest growing, nonsurgical aesthetic cosmetic procedures in the United States and Europe. A variety of light sources including lasers, e.g. alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), Nd:YAG laser (1064 nm) and broad-spectrum intense...

  20. A review of laser and light therapy in melasma

    Directory of Open Access Journals (Sweden)

    M.K. Trivedi, BS, BA

    2017-03-01

    Full Text Available Melasma is a dysregulation of the homeostatic mechanisms that control skin pigmentation and excess pigment is produced. Traditional treatment approaches with topical medications and chemical peels are commonly used but due to the refractory and recurrent nature of melasma, patients often seek alternative treatment strategies such as laser and light therapy. Several types of laser and light therapy have been studied in the treatment of melasma. Intense pulsed light, low fluence Q-switched lasers, and non-ablative fractionated lasers are the most common lasers and light treatments that are currently performed. They all appear effective but there is a high level of recurrence with time and some techniques are associated with an increased risk for postinflammatory hyper- or hypopigmentation. The number and frequency of treatments varies by device type but overall, Q-switched lasers require the greatest number of treatment applications to see a benefit. Vascular-specific lasers do not appear to be effective for the treatment of melasma. Ablative fractionated lasers should be used with caution because they have a very high risk for postinflammatory hypo- and hyperpigmentation. The use of nonablative fractionated laser treatments compared with other laser and light options may result in slightly longer remission intervals. Picosecond lasers, fractional radiofrequency, and laser-assisted drug delivery are promising future approaches to treat melasma. The goal of this review is to summarize the efficacy and safety of the most commonly used laser and light therapies to treat melasma, briefly present future laser-based treatment options for patients with melasma, and provide recommendations for treatment on the basis of the reviewed information.

  1. Advanced approaches to high intensity laser-driven ion acceleration

    International Nuclear Information System (INIS)

    Henig, Andreas

    2010-01-01

    Since the pioneering work that was carried out 10 years ago, the generation of highly energetic ion beams from laser-plasma interactions has been investigated in much detail in the regime of target normal sheath acceleration (TNSA). Creation of ion beams with small longitudinal and transverse emittance and energies extending up to tens of MeV fueled visions of compact, laser-driven ion sources for applications such as ion beam therapy of tumors or fast ignition inertial con finement fusion. However, new pathways are of crucial importance to push the current limits of laser-generated ion beams further towards parameters necessary for those applications. The presented PhD work was intended to develop and explore advanced approaches to high intensity laser-driven ion acceleration that reach beyond TNSA. In this spirit, ion acceleration from two novel target systems was investigated, namely mass-limited microspheres and nm-thin, free-standing diamond-like carbon (DLC) foils. Using such ultrathin foils, a new regime of ion acceleration was found where the laser transfers energy to all electrons located within the focal volume. While for TNSA the accelerating electric field is stationary and ion acceleration is spatially separated from laser absorption into electrons, now a localized longitudinal field enhancement is present that co-propagates with the ions as the accompanying laser pulse pushes the electrons forward. Unprecedented maximum ion energies were obtained, reaching beyond 0.5 GeV for carbon C 6+ and thus exceeding previous TNSA results by about one order of magnitude. When changing the laser polarization to circular, electron heating and expansion were shown to be efficiently suppressed, resulting for the first time in a phase-stable acceleration that is dominated by the laser radiation pressure which led to the observation of a peaked C 6+ spectrum. Compared to quasi-monoenergetic ion beam generation within the TNSA regime, a more than 40 times increase in

  2. Advanced approaches to high intensity laser-driven ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Henig, Andreas

    2010-04-26

    Since the pioneering work that was carried out 10 years ago, the generation of highly energetic ion beams from laser-plasma interactions has been investigated in much detail in the regime of target normal sheath acceleration (TNSA). Creation of ion beams with small longitudinal and transverse emittance and energies extending up to tens of MeV fueled visions of compact, laser-driven ion sources for applications such as ion beam therapy of tumors or fast ignition inertial con finement fusion. However, new pathways are of crucial importance to push the current limits of laser-generated ion beams further towards parameters necessary for those applications. The presented PhD work was intended to develop and explore advanced approaches to high intensity laser-driven ion acceleration that reach beyond TNSA. In this spirit, ion acceleration from two novel target systems was investigated, namely mass-limited microspheres and nm-thin, free-standing diamond-like carbon (DLC) foils. Using such ultrathin foils, a new regime of ion acceleration was found where the laser transfers energy to all electrons located within the focal volume. While for TNSA the accelerating electric field is stationary and ion acceleration is spatially separated from laser absorption into electrons, now a localized longitudinal field enhancement is present that co-propagates with the ions as the accompanying laser pulse pushes the electrons forward. Unprecedented maximum ion energies were obtained, reaching beyond 0.5 GeV for carbon C{sup 6+} and thus exceeding previous TNSA results by about one order of magnitude. When changing the laser polarization to circular, electron heating and expansion were shown to be efficiently suppressed, resulting for the first time in a phase-stable acceleration that is dominated by the laser radiation pressure which led to the observation of a peaked C{sup 6+} spectrum. Compared to quasi-monoenergetic ion beam generation within the TNSA regime, a more than 40 times

  3. Laser-enhanced high-intensity focused ultrasound heating in an in vivo small animal model

    Science.gov (United States)

    Jo, Janggun; Yang, Xinmai

    2016-11-01

    The enhanced heating effect during the combination of high-intensity focused ultrasound (HIFU) and low-optical-fluence laser illumination was investigated by using an in vivo murine animal model. The thighs of murine animals were synergistically irradiated by HIFU and pulsed nano-second laser light. The temperature increases in the target region were measured by a thermocouple under different HIFU pressures, which were 6.2, 7.9, and 9.8 MPa, in combination with 20 mJ/cm2 laser exposures at 532 nm wavelength. In comparison with conventional laser therapies, the laser fluence used here is at least one order of magnitude lower. The results showed that laser illumination could enhance temperature during HIFU applications. Additionally, cavitation activity was enhanced when laser and HIFU irradiation were concurrently used. Further, a theoretical simulation showed that the inertial cavitation threshold was indeed decreased when laser and HIFU irradiation were utilized concurrently.

  4. Electrons and atoms in intense laser fields

    International Nuclear Information System (INIS)

    Davidovich, L.

    1982-01-01

    Several non-linear effects that show up when electrons and atoms interact with strong laser fields are considered. Thomson scattering, electron potential scattering in the presence of a laser beam, atomic ionization by strong laser fields, the refraction of electrons by laser beams and the Kapitza-Dirac effect are discussed. (Author) [pt

  5. Electrons and atoms in intense laser fields

    International Nuclear Information System (INIS)

    Davidovich, L.

    1982-11-01

    Several non-linear effects that show up when electrons and atoms interact with strong laser fields are considered. Thomson scattering, electron potential scattering in the presence of a laser beam, atomic ionization by strong laser fields, the refraction of electrons by laser beams and the Kapitza-Dirac effect are discussed. (Author) [pt

  6. Fan beam intensity modulated proton therapy

    Science.gov (United States)

    Hill, Patrick M.

    A fan beam proton therapy is developed which delivers intensity modulated proton therapy using distal edge tracking. The system may be retrofit onto existing proton therapy gantries without alterations to infrastructure in order to improve treatments through intensity modulation. A novel range and intensity modulation system is designed using acrylic leaves that are inserted or retracted from subsections of the fan beam. Leaf thicknesses are chosen in a base-2 system and motivated in a binary manner. Dose spots from individual beam channels range between 1 and 5 cm. Integrated collimators attempting to limit crosstalk among beam channels are investigated, but found to be inferior to uncollimated beam channel modulators. A treatment planning system performing data manipulation in MATLAB and dose calculation in MCNPX is developed. Beamlet dose is calculated on patient CT data and a fan beam source is manually defined to produce accurate results. An energy deposition tally follows the CT grid, allowing straightforward registration of dose and image data. Simulations of beam channels assume that a beam channel either delivers dose to a distal edge spot or is intensity modulated. A final calculation is performed separately to determine the deliverable dose accounting for all sources of scatter. Treatment plans investigate the effects that varying system parameters have on dose distributions. Beam channel apertures may be as large as 20 mm because the sharp distal falloff characteristic of proton dose provides sufficient intensity modulation to meet dose objectives, even in the presence of coarse lateral resolution. Dose conformity suffers only when treatments are delivered from less than 10 angles. Jaw widths of 1--2 cm produce comparable dose distributions, but a jaw width of 4 cm produces unacceptable target coverage when maintaining critical structure avoidance. Treatment time for a prostate delivery is estimated to be on the order of 10 minutes. Neutron production

  7. A digital intensity stabilization system for HeNe laser

    Science.gov (United States)

    Wei, Zhimeng; Lu, Guangfeng; Yang, Kaiyong; Long, Xingwu; Huang, Yun

    2012-02-01

    A digital intensity stabilization system for HeNe laser is developed. Based on a switching power IC to design laser power supply and a general purpose microcontroller to realize digital PID control, the system constructs a closed loop to stabilize the laser intensity by regulating its discharge current. The laser tube is made of glass ceramics and its integrated structure is steady enough to eliminate intensity fluctuations at high frequency and attenuates all intensity fluctuations, and this makes it easy to tune the control loop. The control loop between discharge current and photodiode voltage eliminates the long-term drifts. The intensity stability of the HeNe laser with this system is 0.014% over 12 h.

  8. Ion acceleration with ultra intense and ultra short laser pulses

    International Nuclear Information System (INIS)

    Floquet, V.

    2012-01-01

    Accelerating ions/protons can be done using short laser pulse (few femto-seconds) focused on few micrometers area on solid target (carbon, aluminum, plastic...). The electromagnetic field intensity reached on target (≥10 18 W.cm -2 ) allows us to turn the solid into a hot dense plasma. The dynamic motion of the electrons is responsible for the creation of intense static electric field at the plasma boundaries. These electric fields accelerate organic pollutants (including protons) located at the boundaries. This acceleration mechanism known as the Target Normal Sheath Acceleration (TNSA) has been the topic of the research presented in this thesis.The goal of this work has been to study the acceleration mechanism and to increase the maximal ion energy achievable. Indeed, societal application such as proton therapy requires proton energy up to few hundreds of MeV. To proceed, we have studied different target configurations allowing us to increase the laser plasma coupling and to transfer as much energy as possible to ions (target with microspheres deposit, foam target, grating). Different experiments have also dealt with generating a pre-plasma on the target surface thanks to a pre-pulse. On the application side, fluorescent material such as CdWO 4 has been studied under high flux rate of protons. These high flux rates have been, up to now, beyond the conventional accelerators capabilities. (author) [fr

  9. Intensity-modulated arc therapy simplified

    International Nuclear Information System (INIS)

    Wong, Eugene; Chen, Jeff Z.; Greenland, Jonathan

    2002-01-01

    Purpose: We present a treatment planning strategy for intensity-modulated radiation therapy using gantry arcs with dynamic multileaf collimator, previously termed intensity-modulated arc therapy (IMAT). Methods and Materials: The planning strategy is an extension of the photon bar arc and asymmetric arc techniques and is classified into three levels of complexity, with increasing number of gantry arcs. This principle allows us to generalize the analysis of the number of arcs required for intensity modulation for a given treatment site. Using a phantom, we illustrate how the current technique is more flexible than the photon bar arc technique. We then compare plans from our strategy with conventional three-dimensional conformal treatment plans for three sites: prostate (prostate plus seminal vesicles), posterior pharyngeal wall, and chest wall. Results: Our strategy generates superior IMAT treatment plans compared to conventional three-dimensional conformal plans. The IMAT plans spare critical organs well, and the trade-off for simplicity is that the dose uniformity in the target volume may not rival that of true inverse treatment plans. Conclusions: The analyses presented in this paper give a better understanding of IMAT plans. Our strategy is easier to understand and more efficient in generating plans than inverse planning systems; our plans are also simpler to modify, and quality assurance is more intuitive

  10. [Indications for Retinal Laser Therapy Revisited].

    Science.gov (United States)

    Enders, P; Schaub, F; Fauser, S

    2017-02-10

    Background Laser therapy is an important treatment option in retinal diseases, especially in cases of vascular involvement. Most approaches are based on coagulation of retinal structures. As there is increasing use of agents targetting vascular endothelial growth factor in the treatment of macular diseases, indications for the use of laser treatment need to be reviewed carefully, especially with respect to their significance in first line therapy. This article explains recent strategies and treatment protocols. Materials and Methods Review of current literature in PubMed as well as synopsis of relevant guidelines. Results and Conclusion Retinal laser therapy is still widely used within retinal opthalmology and covers a large spectrum of indications. Despite the success of medical approaches, retinal laser therapy remains an indispensable treatment option for proliferative diabetic retinopathy, central or peripheral vein occlusion and less frequent pathologies, such as retinopathy of prematurity or Coats's disease. Georg Thieme Verlag KG Stuttgart · New York.

  11. [Light, laser and PDT therapy for acne].

    Science.gov (United States)

    Borelli, C; Merk, K; Plewig, G; Degitz, K

    2005-11-01

    In recent years, a number of studies have evaluated the treatment of acne using electromagnetic waves, such as lasers, photodynamic therapy, visible light or radio waves. While the efficacy of laser treatment is still uncertain, photodynamic therapy shows promising results, but with marked side-effects, as destruction of sebaceous glands. Treatment with blue light (405-420 nm wavelength) also appears effective and can be regarded as an treatment option for inflammatory acne.

  12. Fan-beam intensity modulated proton therapy.

    Science.gov (United States)

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-11-01

    This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques. A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0-255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets. Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage. Overall, the sharp distal

  13. Laser therapy for cutaneous sarcoidosis: A review

    Directory of Open Access Journals (Sweden)

    Teo Soleymani

    2016-03-01

    Full Text Available Sarcoidosis is a systemic, multi-organ disease of unknown etiology characteristically defined by the development of non-caseating granulomas. The development of sarcoidosis has been associated with a number of environmental and microbacterial factors coupled with genetic susceptibility. Depending on the type, location and distribution of disease, sarcoidosis can cause functional impairment, symptomatic distress, scarring and disfigurement. The advent of lasers as precise, minimally destructive surgical tools has allowed for their development as promising alternatives that minimize the morbidity associated with current therapies.In this paper, we reviewed the role of laser therapy in the treatment of cutaneous sarcoidosis. A comprehensive search of the Cochrane Library, MEDLINE and PUBMED databases was performed to identify relevant literatures investigating the role of laser therapy in the treatment of cutaneous sarcoidosis. In our opinion, laser therapy, particularly PDL, appears to be an effective, safe and generally well-tolerated modality for the treatment of cutaneous sarcoidosis and should be considered in patients with localized cutaneous disease that is refractory to conventional treatments. Less is known about the efficacy and tolerability of ablative laser therapy for the treatment of cutaneous sarcoidosis, though the limited data appears promising as well. With that said, however, the data is limited and warrants a need for additional larger, randomized controlled studies to further investigate the utility and efficacy of laser therapy in the treatment of cutaneous sarcoidosis.

  14. Intensive integrated therapy of type 2 diabetes

    DEFF Research Database (Denmark)

    Gaede, Peter; Pedersen, Oluf

    2004-01-01

    The macro- and microvascular burden of type 2 diabetes is well established. A number of recent single risk factor intervention trials targeting hyperglycemia, dyslipidemia, hypertension, procoagulation, microalbumuria, and existing cardiovascular disorders have, however, shown major beneficial...... effects on long-term outcome. The results from these studies are anticipated to change the future management of type 2 diabetes, and most of the updated national guidelines for the treatment of type 2 diabetes recommend a multipronged approach driven by ambitious treatment targets. The outcome...... of this intensive integrated therapy has, however, only been investigated in a few studies of patients with type 2 diabetes. One of these trials, the Steno-2 Study, showed that intensive intervention for an average of 7.8 years cuts cardiovascular events as well as nephropathy, retinopathy, and autonomic neuropathy...

  15. Ultra-intense laser-matter interactions at extreme parameters

    International Nuclear Information System (INIS)

    Hegellich, Bjorn M.

    2010-01-01

    at less than 3nm, i.e. 1/300 of the laser wavelength, are even thinner than the plasma skin depth. This drastically changes the laser-matter interaction physics leading to the emergence of new particle acceleration mechanisms, like Break-Out Afterburner (BOA) Acceleration, driven by a relativistic, kinetic plasma instability or Radiation Pressure Acceleration (RPA), driven by stabilized charge separation. Furthermore, these interactions also produce relativistic high harmonics in forward direction as well as mono-en,ergetic electron pulses which might lend itself as a source for fully coherent Thomson scattering in the mulit-keV regime. In this talk I will present an overview over the laser developments leading to this paradigm change as well as over the theoretical and experimental results following from it. Specifically we were able for the first time to demonstrate BOA acceleration of Carbon ions to up to 0.5 GeV using a laser pulse with ∼10 20 W/cm 2 intensity and showing the scalability of this mechanism into regimes relevant for Hadron Therapy. We were further able to demonstrate mono-energetic electron break-out from ultrathin targets, as a first step towards a flying mirror.

  16. Hyper-Ramsey spectroscopy with probe-laser-intensity fluctuations

    Science.gov (United States)

    Beloy, K.

    2018-03-01

    We examine the influence of probe-laser-intensity fluctuations on hyper-Ramsey spectroscopy. We assume, as is appropriate for relevant cases of interest, that the probe-laser intensity I determines both the Rabi frequency (∝√{I } ) and the frequency shift to the atomic transition (∝I ) during probe-laser interactions with the atom. The spectroscopic signal depends on these two quantities that covary with fluctuations in the probe-laser intensity. Introducing a simple model for the fluctuations, we find that the signature robustness of the hyper-Ramsey method can be compromised. Taking the Yb+ electric octupole clock transition as an example, we quantify the clock error under different levels of probe-laser-intensity fluctuations.

  17. Three-dimensional laser pulse intensity diagnostic for photoinjectors

    Directory of Open Access Journals (Sweden)

    Heng Li

    2011-11-01

    Full Text Available Minimizing the electron-beam emittance of photoinjectors is an important task for maximizing the brightness of the next-generation x-ray facilities, such as free-electron lasers and energy recovery linacs. Optimally shaped laser pulses can significantly reduce emittance. A reliable diagnostic for the laser pulse intensity is required for this purpose. We demonstrate measurement of three-dimensional spatiotemporal intensity profiles, with spatial resolution of 20  μm and temporal resolution of 130 fs. The capability is illustrated by measurements of stacked soliton pulses and pulses from a dissipative-soliton laser.

  18. Electron acceleration by a self-diverging intense laser pulse

    International Nuclear Information System (INIS)

    Singh, K.P.; Gupta, D.N.; Tripathi, V.K.; Gupta, V.L.

    2004-01-01

    Electron acceleration by a laser pulse having a Gaussian radial and temporal profile of intensity has been studied. The interaction region is vacuum followed by a gas. The starting point of the gas region has been chosen around the point at which the peak of the pulse interacts with the electron. The tunnel ionization of the gas causes a defocusing of the laser pulse and the electron experiences the action of a ponderomotive deceleration at the trailing part of the pulse with a lower intensity rather than an acceleration at the rising part of the laser pulse with a high intensity, and thus gains net energy. The initial density of the neutral gas atoms should be high enough to properly defocus the pulse; otherwise the electron experiences some deceleration during the trailing part of the pulse and the net energy gain is reduced. The rate of tunnel ionization increases with the increase in the laser intensity and the initial density of neutral gas atoms, and with the decreases in the laser spot size, which causes more defocusing of the laser pulse. The required initial density of neutral gas atoms decreases with the increase in the laser intensity and also with the decrease in the laser spot size

  19. Fast-electron-relaxation measurement for laser-solid interaction at relativistic laser intensities

    International Nuclear Information System (INIS)

    Chen, H.; Shepherd, R.; Chung, H. K.; Kemp, A.; Hansen, S. B.; Wilks, S. C.; Ping, Y.; Widmann, K.; Fournier, K. B.; Beiersdorfer, P.; Dyer, G.; Faenov, A.; Pikuz, T.

    2007-01-01

    We present measurements of the fast-electron-relaxation time in short-pulse (0.5 ps) laser-solid interactions for laser intensities of 10 17 , 10 18 , and 10 19 W/cm 2 , using a picosecond time-resolved x-ray spectrometer and a time-integrated electron spectrometer. We find that the laser coupling to hot electrons increases as the laser intensity becomes relativistic, and that the thermalization of fast electrons occurs over time scales on the order of 10 ps at all laser intensities. The experimental data are analyzed using a combination of models that include Kα generation, collisional coupling, and plasma expansion

  20. An intense polarized beam by a laser ionization injection

    International Nuclear Information System (INIS)

    Ohmori, Chihiro; Hiramatsu, Shigenori; Nakamura, Takeshi.

    1990-12-01

    Accumulation of protons and polarized protons by photo-ionization injection are described. This method consists of (1)producing the neutral hydrogen beam by Lorentz stripping, (2)excitation of the neutral hydrogen beam with a laser, and (3)ionization of the hydrogen beam in the 2P excited state with another laser. When the laser for the excitation is circularly polarized, we can get a polarized proton beam. An ionization efficiency of 98% and a polarization of 80% can be expected by an intense laser beam from a FEL(Free Electron Laser). (author)

  1. Laser spectroscopy monitoring of cancer therapy

    International Nuclear Information System (INIS)

    Jyothi Lakshmi, R.; Ullas, G.; Kartha, V.B.; Alexander, Mohan

    2000-01-01

    Surgery, radiation therapy and chemotherapy are the major treatment modalities for many forms of cancer at present. Monitoring of the therapy, follow up studies on regression of the disease and detection of recurrence are very essential for successful treatment. Any technique which will be of assistance for these purposes will thus be of great help. This paper presents some of our results of Raman and Pulsed Laser fluorescence spectroscopy studies on tissues, body fluids and bone, in oral cancer subjects after radiation therapy

  2. Progress in Ultrafast Intense Laser Science Volume V

    CERN Document Server

    Yamanouchi, Kaoru; Ledingham, Kenneth

    2010-01-01

    The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries. This fifth volume covers a broad range of topics from this interdisciplinary research field, focusing on coherent responses of gaseous and condensed matter to ultrashort intense laser pulses, propagation of intense laser pulses, and laser-plasma interaction and its applications.

  3. Relativistic focusing and ponderomotive channeling of intense laser beams

    International Nuclear Information System (INIS)

    Hafizi, B.; Ting, A.; Sprangle, P.; Hubbard, R. F.

    2000-01-01

    The ponderomotive force associated with an intense laser beam expels electrons radially and can lead to cavitation in plasma. Relativistic effects as well as ponderomotive expulsion of electrons modify the refractive index. An envelope equation for the laser spot size is derived, using the source-dependent expansion method with Laguerre-Gaussian eigenfunctions, and reduced to quadrature. The envelope equation is valid for arbitrary laser intensity within the long pulse, quasistatic approximation and neglects instabilities. Solutions of the envelope equation are discussed in terms of an effective potential for the laser spot size. An analytical expression for the effective potential is given. For laser powers exceeding the critical power for relativistic self-focusing the analysis indicates that a significant contraction of the spot size and a corresponding increase in intensity is possible. (c) 2000 The American Physical Society

  4. Simulation of intense short-pulse laser-plasma interaction

    International Nuclear Information System (INIS)

    Yamagiwa, Mitsuru

    2000-01-01

    We have completed the massive parallelization of a 2-dimensional giga-particle code and have achieved a 530-fold acceleration rate with 512 processing elements (PE's). Using this we have implemented a simulation of the interaction of a solid thin film and a high intensity laser and have discovered a phenomenon in which high quality short pulses from the far ultraviolet to soft X-rays are generated at the back surface of the thin layer. We have also introduced the atomic process database code (Hullac) and have the possibility for high precision simulations of X-ray laser radiation. With respect to laser acceleration we have the possibility to quantitatively evaluate relativistic self-focusing assumed to occur in higher intensity fields. Ion acceleration from a solid target and an underdense plasma irradiated by an intense and an ultra intense laser, respectively, has also been studied by particle-in-cell (PIC) simulations. (author)

  5. Laser therapy and comparative therapy methods in parodontology

    International Nuclear Information System (INIS)

    Schauer, P

    1997-02-01

    This two studies aim to examine application of a diode-laser in periodontal therapy. The aim of the pilot-study was to examine the immediate effect of the diode-laser in reducing the bacterial concentration in periodontal pockets. 50 patients were randomly subdivided into two groups (laser group, control group) and microbiologic samples were collected. One week after the therapy (1 st group: scaling and laser, 2 nd group: scaling) there were taken further more samples from the same periodontal pockets treated before. The microbiologic samples were evaluated to verify bacterial elimination from the periodontal pockets, especially Actinobacillus actinomycetemcomitans could be considerably eliminated from periodontal pockets by the diode laser. In the long-term study, there were two groups, one laser-group and one control-group. All 50 patients were required to have periodontal pockets with a minimum depth of 4 mm in each quadrate. The bacterial reduction, the change of bleeding on probing and the pocket depth had been evaluated six months after therapy. The irradiation with the diode laser allows considerable bacterial elimination, the index of bleeding on probing came out to be significantly better than in the control group. The reduction of pocket depth was also greater than in the control group. (author)

  6. X-ray polarization measurements at relativistic laser intensities

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; Shepherd, R.; Mancini, R.C.

    2004-01-01

    An effort has been started to measure the short pulse laser absorption and energy partition at relativistic laser intensities up to 10 21 W/cm 2 . Plasma polarization spectroscopy is expected to play an important role in determining fast electron generation and measuring the electron distribution function. (author)

  7. Modulation instability of an intense laser beam in an unmagnetized ...

    Indian Academy of Sciences (India)

    The modulation instability of an intense circularly polarized laser beam propagating in an unmagnetized, cold electron–positron–ion plasma is investigated. Adopting a generalized Karpman method, a three-dimensional nonlinear equation is shown to govern the laser field. Then the conditions for modulation instability and ...

  8. Dynamics of intense laser channel formation in an underdense plasma

    International Nuclear Information System (INIS)

    Davis, J.; Petrov, G.M.; Velikovich, A.L.

    2005-01-01

    Efficient guiding and propagation of multi-keV x-rays in plasmas can be achieved by dynamically modifying the media through plasma channel formation. The dynamics of plasma channel formation is studied in preformed underdense plasma irradiated by a high intensity laser. This is done by a two-dimensional model coupling laser propagation to a relativistic particle-in-cell model. For laser intensity of 10 20 W/cm 2 and a laser beam width of 5 μm the channel formation proceeds on a time scale of 60-70 fs in uniform plasma with density 10 18 cm -3 . The channel closes shortly after the rear of the laser pulse has passed due to Coulomb attraction from the ion core. Electron cavitation occurs only if the laser intensity is above a certain threshold intensity and the laser pulse duration exceeds 100 fs. X-ray generation and propagation is feasible for ultrarelativistic laser pulses with small beam width, less than ∼20 μm, and duration of more than 100 fs

  9. Laser Photoradiation Therapy For Neonatal Jaundice

    Science.gov (United States)

    Hamza, Mostafa; Hamza, Mohammad

    1987-04-01

    This paper describes our leading experience in the clinical application of laser in the treatment of neonatal jaundice. Currently, the irradiation of jaundiced infants during neonatal life to fluorescent light is the most common treatment of neonatal hyperbilirubinemia. The authors have investigated the photodegradation of bilirubin by laser in vitro and in Gunn rats before embarking on its clinical application in the treatment of jaundice in the new born child. This work was done to study the theraputic effect of laser compared to the currently used phototherapy in the treatment of neonatal jaundice. We selected 16 full term neonates with jaundice to be the subject of this study. The neonates of the study were devided into two groups. The first group was treated with continuous phototherapy . The second group recieved photoradiation therapy with gas laser The laser used was a CW argon-ion laser tuned to oscillate at 488.0 nm wavelength. This wavelength selection was based on our previous studies on the effect of laser irradiation of Gunn rats at different wavelengths. Comparison of the results of both methods of treatment will be reported in detail. The advantages and limitations of laser photoradiation therapy for neonatal jaundice will be discussed.

  10. Nucleotide excision repair pathway assessment in DNA exposed to low-intensity red and infrared lasers

    International Nuclear Information System (INIS)

    Fonseca, A.S.; Campos, V.M.A.; Magalhaes, L.A.G.; Paoli, F.

    2015-01-01

    Low-intensity lasers are used for prevention and management of oral mucositis induced by anticancer therapy, but the effectiveness of treatment depends on the genetic characteristics of affected cells. This study evaluated the survival and induction of filamentation of Escherichia coli cells deficient in the nucleotide excision repair pathway, and the action of T 4 endonuclease V on plasmid DNA exposed to low-intensity red and near-infrared laser light. Cultures of wild-type (strain AB1157) E. coli and strain AB1886 (deficient in uvrA protein) were exposed to red (660 nm) and infrared (808 nm) lasers at various fluences, powers and emission modes to study bacterial survival and filamentation. Also, plasmid DNA was exposed to laser light to study DNA lesions produced in vitro by T 4 endonuclease V. Low-intensity lasers: i) had no effect on survival of wild-type E. coli but decreased the survival of uvrA protein-deficient cells, ii) induced bacterial filamentation, iii) did not alter the electrophoretic profile of plasmids in agarose gels, and iv) did not alter the electrophoretic profile of plasmids incubated with T 4 endonuclease V. These results increase our understanding of the effects of laser light on cells with various genetic characteristics, such as xeroderma pigmentosum cells deficient in nucleotide excision pathway activity in patients with mucositis treated by low-intensity lasers. (author)

  11. Nucleotide excision repair pathway assessment in DNA exposed to low-intensity red and infrared lasers

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, A.S.; Campos, V.M.A.; Magalhaes, L.A.G., E-mail: adnfonseca@ig.com.br [Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro, RJ (Brazil). Departamento de Biofisica e Biometria. Lab. de Ciencias Radiologicas; Paoli, F. [Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG (Brazil). Instituto de Ciencias Biologicas. Departamento de Morfologia

    2015-10-15

    Low-intensity lasers are used for prevention and management of oral mucositis induced by anticancer therapy, but the effectiveness of treatment depends on the genetic characteristics of affected cells. This study evaluated the survival and induction of filamentation of Escherichia coli cells deficient in the nucleotide excision repair pathway, and the action of T{sub 4} endonuclease V on plasmid DNA exposed to low-intensity red and near-infrared laser light. Cultures of wild-type (strain AB1157) E. coli and strain AB1886 (deficient in uvrA protein) were exposed to red (660 nm) and infrared (808 nm) lasers at various fluences, powers and emission modes to study bacterial survival and filamentation. Also, plasmid DNA was exposed to laser light to study DNA lesions produced in vitro by T{sub 4} endonuclease V. Low-intensity lasers: i) had no effect on survival of wild-type E. coli but decreased the survival of uvrA protein-deficient cells, ii) induced bacterial filamentation, iii) did not alter the electrophoretic profile of plasmids in agarose gels, and iv) did not alter the electrophoretic profile of plasmids incubated with T{sub 4} endonuclease V. These results increase our understanding of the effects of laser light on cells with various genetic characteristics, such as xeroderma pigmentosum cells deficient in nucleotide excision pathway activity in patients with mucositis treated by low-intensity lasers. (author)

  12. Single-energy intensity modulated proton therapy

    Science.gov (United States)

    Farace, Paolo; Righetto, Roberto; Cianchetti, Marco

    2015-09-01

    In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described. The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods. It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan. When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT.

  13. Single-energy intensity modulated proton therapy.

    Science.gov (United States)

    Farace, Paolo; Righetto, Roberto; Cianchetti, Marco

    2015-10-07

    In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described.The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods.It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan.When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT.

  14. Single-energy intensity modulated proton therapy

    International Nuclear Information System (INIS)

    Farace, Paolo; Righetto, Roberto; Cianchetti, Marco

    2015-01-01

    In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described.The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods.It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan.When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT. (note)

  15. Film Dosimetry for Intensity Modulated Radiation Therapy

    International Nuclear Information System (INIS)

    Benites-Rengifo, J.; Martinez-Davalos, A.; Celis, M.; Larraga, J.

    2004-01-01

    Intensity Modulated Radiation Therapy (IMRT) is an oncology treatment technique that employs non-uniform beam intensities to deliver highly conformal radiation to the targets while minimizing doses to normal tissues and critical organs. A key element for a successful clinical implementation of IMRT is establishing a dosimetric verification process that can ensure that delivered doses are consistent with calculated ones for each patient. To this end we are developing a fast quality control procedure, based on film dosimetry techniques, to be applied to the 6 MV Novalis linear accelerator for IMRT of the Instituto Nacional de Neurologia y Neurocirugia (INNN) in Mexico City. The procedure includes measurements of individual fluence maps for a limited number of fields and dose distributions in 3D using extended dose-range radiographic film. However, the film response to radiation might depend on depth, energy and field size, and therefore compromise the accuracy of measurements. In this work we present a study of the dependence of Kodak EDR2 film's response on the depth, field size and energy, compared with those of Kodak XV2 film. The first aim is to devise a fast and accurate method to determine the calibration curve of film (optical density vs. doses) commonly called a sensitometric curve. This was accomplished by using three types of irradiation techniques: Step-and-shoot, dynamic and static fields

  16. Applications of super - high intensity lasers in nuclear engineering

    International Nuclear Information System (INIS)

    Salomaa, R.; Hakola, A.; Santala, M.

    2007-01-01

    Laser-plasma interactions arising when a super intense ultrashort laser pulse impinges a solid target creates intense partly collimated and energy resolved photons, high energy electron and protons and neutrons. In addition the plasma plume can generate huge magnetic and electric fields. Also ultra short X-ray pulses are created. We have participated in some of such experiments at Rutherford and Max-Planck Institute and assessed the applications of such kind as laser-driven accelerators. This paper discusses applications in nuclear engineering (neutron sources, isotope separation, fast ignition and transmutation, etc). In particular the potential for extreme time resolution and to partial energy resolution are assessed

  17. Higher order harmonic generation in the intense laser pulse

    International Nuclear Information System (INIS)

    Parvizi, R.; Bahrampour, A.; Karimi, M.

    2006-01-01

    The high intensity pulse of laser field ionizes the atoms and electrons are going to the continuum states of atoms. electrons absorb energy from the strong laser field. The back ground electromagnetic field causes to come back the electrons to ground states of atoms and the absorbed energy is emitted as a high order odd harmonics of incident light. The intensity of emitted harmonics depends on the material atoms and the laser pulse shape. I this paper the effects of step pulse duration on the high order harmonic radiated by the Argon, Helium, and Hydrogen atoms are reported.

  18. The first observations of laser satellites from plasma created by high intense laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Skobelev, I.Yu.; Faenov, A.Ya.; Magunov, A.I. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo (Russian Federation); Osterheld, A.; Young, B.; Dunn, J.; Stewart, R.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    Laser satellites, i.e. spectral lines caused by non-linear interaction of strong laser radiation with multicharged ions, are observed for the first time. Their identification are carried out by comparison of both experimental wavelengths and intensities with theoretical ones. It is shown that observation of laser satellites allows to measure directly the energies of ionic metastable states. (orig.). 3 refs.

  19. Dense xenon nanoplasmas in intense laser fields

    International Nuclear Information System (INIS)

    Hilse, P.; Moll, M.; Schlanges, M.; Bornath, Th.

    2010-01-01

    Complete text of publication follows. One reason for the on-going interest in laser-cluster interactions is the efficient absorption of the radiation energy of near-infrared femtosecond laser pulses by clusters. Consequently, in laser-cluster experiments the emission of highly charged ions, very energetic electrons, higher harmonics, fast fragments as well at strong x-rays in the multi-keV range is observed. The cluster response is highly nonlinear. Different theoretical models and simulations indicate that resonant collective absorption plays a central role. The rapid expansion of irradiated clusters is essential as, at a certain time, the cluster reaches the density fulfilling the resonance condition. This can occur during a single pulse. A better control can be achieved by dual-pulse laser excitation with varying time delay between two pulses. A further optimization is possible by pulse shaping which is a modern tool in laser experiments. With pulse shaping, the dynamics of the system determined by heating, ionization and expansion can be specifically affected. For an understanding of the underlying physical processes in the dynamics of laser-cluster interaction, a theoretical description is presented using a genetic algorithm and basing on the relatively simple nanoplasma model. Recently, experiments as well as calculations were performed for silver clusters. Highly charged silver ions could be produced very efficiently with a pulse structure consisting of a smaller pre-pulse followed by a larger main pulse. The focus of the present contribution is on xenon clusters and their different behavior compared to metallic clusters as silver. Acknowledgements. This work was supported by the Deutsche Forschungsgemeinschaft via SFB 652.

  20. High-Intensity Femtosecond Laser Interaction with Rare Gas Clusters

    Institute of Scientific and Technical Information of China (English)

    林亚风; 钟钦; 曾淳; 陈哲

    2001-01-01

    With a 45 fs multiterawatt 790 nm laser system and jets of argon and krypton atomic clusters, a study of the interaction of fs intense laser pulses with large size rare gas dusters was conducted. The maximum laser intensity of about 7 × 1016 W/cm2 and dusters composed of thousands of atoms which were determined through Rayleigh scattering measurements were involved inthe experiments. On the one hand, the results indicate that the interaction is strongly cluster size dependent. The stronger the interaction, the larger the clusters are. On the other hand, a saturation followed by a drop of the energy of ions ejected from the interaction will occur when the laser intensity exceeds a definite value for clusters of a certain size.

  1. Simulation of intense laser-dense matter interactions. X-ray production and laser absorption

    Energy Technology Data Exchange (ETDEWEB)

    Ueshima, Yutaka; Kishimoto, Yasuaki; Sasaki, Akira [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment; Sentoku, Yasuhiko; Tajima, Toshiki

    1998-03-01

    The development of short-pulse ultra high intensity lasers will enable us to generate short-pulse intense soft and hard X-rays. Acceleration of an electron in laser field generates intense illuminated located radiation, Larmor radiation, around KeV at 10{sup 18} W/cm{sup 2} with 100 TW and 1 {mu}m wave length laser. The Coulomb interaction between rest ions and relativistic electron generates broad energy radiation, bremsstrahlung emission, over MeV at 10{sup 18} W/cm{sup 2} with the same condition. These intense radiations come in short pulses of the same order as that of the irradiated laser. The generated intense X-rays, Larmor and bremsstrahlung radiation, can be applied to sources of short pulse X-ray, excitation source of inner-shell X-ray laser, position production and nuclear excitation, etc. (author)

  2. Low-intensity infrared laser effects on zymosan-induced articular inflammatory response

    Science.gov (United States)

    Januária dos Anjos, Lúcia Mara; da Fonseca, Adenilson d. S.; Gameiro, Jacy; de Paoli, Flávia

    2015-03-01

    Low-level therapy laser is a phototherapy treatment that involves the application of low power light in the red or infrared wavelengths in various diseases such as arthritis. In this work, we investigated whether low-intensity infrared laser therapy could cause death by caspase-6 apoptosis or DNA damage pathways in cartilage cells after zymosaninduced articular inflammatory process. Inflammatory process was induced in C57BL/6 mouse by intra-articular injection of zymosan into rear tibio-tarsal joints. Thirty animals were divided in five groups: (I) control, (II) laser, (III) zymosan-induced, (IV) zymosan-induced + laser and (V). Laser exposure was performed after zymosan administration with low-intensity infrared laser (830 nm), power 10 mW, fluence 3.0 J/cm2 at continuous mode emission, in five doses. Twenty-four hours after last irradiation, the animals were sacrificed and the right joints fixed and demineralized. Morphological analysis was observed by hematoxylin and eosin stain, pro-apoptotic (caspase-6) was analyzed by immunocytochemistry and DNA fragmentation was performed by TUNEL assay in articular cartilage cells. Inflammatory process was observed in connective tissue near to articular cartilage, in IV and V groups, indicating zymosan effect. This process was decreased in both groups after laser treatment and dexamethasone. Although groups III and IV presented higher caspase-6 and DNA fragmentation percentages, statistical differences were not observed when compared to groups I and II. Our results suggest that therapies based on low-intensity infrared lasers could reduce inflammatory process and could not cause death by caspase-6 apoptosis or DNA damage pathways in cartilage cells after zymosan-induced articular inflammatory process.

  3. The interaction of intense subpicosecond laser pulses with underdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Coverdale, Christine Ann [Univ. of California, Davis, CA (United States)

    1995-05-11

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 1016 W/cm2 laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by Lplasma ≥ 2LRayleigh > cτ. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (no ≤ 0.05ncr). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in ω-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.

  4. Studies of intense-laser plasma instabilities

    Czech Academy of Sciences Publication Activity Database

    Láska, Leoš; Krása, Josef; Badziak, J.; Jungwirth, Karel; Krouský, Eduard; Margarone, Daniele; Parys, P.

    2013-01-01

    Roč. 272, May (2013), 94-98 ISSN 0169-4332 R&D Projects: GA MŠk(CZ) 7E09092; GA MŠk(CZ) LC528; GA AV ČR IAA100100715 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser plasma instabilities * self-generated magnetic field * longitudinal structure of the expanding plasma Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.538, year: 2013

  5. Inverse planning of intensity modulated proton therapy

    International Nuclear Information System (INIS)

    Nill, S.; Oelfke, U.; Bortfeld, T.

    2004-01-01

    A common requirement of radiation therapy is that treatment planning for different radiation modalities is devised on the basis of the same treatment planning system (TPS). The present study presents a novel multi-modal TPS with separate modules for the dose calculation, the optimization engine and the graphical user interface, which allows to integrate different treatment modalities. For heavy-charged particles, both most promising techniques, the distal edge tracking (DET) and the 3-dimensional scanning (3D) technique can be optimized. As a first application, the quality of optimized intensity-modulated treatment plans for photons (IMXT) and protons (IMPT) was analyzed in one clinical case on the basis of the achieved physical dose distributions. A comparison of the proton plans with the photon plans showed no significant improvement in terms of target volume dose, however there was an improvement in terms of organs at risk as well as a clear reduction of the total integral dose. For the DET technique, it is possible to create a treatment plan with almost the same quality of the 3D technique, however with a clearly reduced number (factor of 5) of beam spots as well as a reduced optimization time. Due to its modular design, the system can be easily expanded to more sophisticated dose-calculation algorithms or to modeling of biological effects. (orig.) [de

  6. Laser puncture therapy of nervous system disorders

    Energy Technology Data Exchange (ETDEWEB)

    Anishchenko, G.; Kochetkov, V.

    1984-08-29

    The authors discuss experience with treatment of nervous system disorders by means of laser-puncture therapy. Commenting on the background of the selection of this type of treatment, they explain that once researchers determined the biological action of laser light on specific nerve receptors of the skin, development of laser apparatus capable of concentrating the beam in the millimeter band was undertaken. The devices that are being used for laser-puncture are said to operate in the red helium-neon band of light. The authors identify beam parameters that have been selected for different groups of acupuncture points of the skin, and the courses of treatment (in seconds of radiation) and their time intervals. They go on to discuss the results of treatment of over 800 patients categorized in a group with disorders of the peripheral nervous system and a second group with disorders of the central nervous system.

  7. Pulsed laser radiation therapy of skin tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, A.P.; Moskalik, K.G.

    1980-11-15

    Radiation from a neodymium laser was used to treat 846 patients with 687 precancerous lesions or benign tumors of the skin, 516 cutaneous carcinomas, 33 recurrences of cancer, 51 melanomas, and 508 metastatic melanomas in the skin. The patients have been followed for three months to 6.5 years. No relapses have been observed during this period. Metastases to regional lymph nodes were found in five patients with skin melanoma. Pulsed laser radiation may be successfully used in the treatment of precancerous lesions and benign tumors as well as for skin carcinoma and its recurrences, and for skin melanoma. Laser radiation is more effective in the treatment of tumors inaccessible to radiation therapy and better in those cases in which surgery may have a bad cosmetic or even mutilating effect. Laser beams can be employed in conjunction with chemo- or immunotherapy.

  8. Prepulse effect on intense femtosecond laser pulse propagation in gas

    International Nuclear Information System (INIS)

    Giulietti, Antonio; Tomassini, Paolo; Galimberti, Marco; Giulietti, Danilo; Gizzi, Leonida A.; Koester, Petra; Labate, Luca; Ceccotti, Tiberio; D'Oliveira, Pascal; Auguste, Thierry; Monot, Pascal; Martin, Philippe

    2006-01-01

    The propagation of an ultrashort laser pulse can be affected by the light reaching the medium before the pulse. This can cause a serious drawback to possible applications. The propagation in He of an intense 60-fs pulse delivered by a Ti:sapphire laser in the chirped pulse amplification (CPA) mode has been investigated in conditions of interest for laser-plasma acceleration of electrons. The effects of both nanosecond amplified spontaneous emission and picosecond pedestals have been clearly identified. There is evidence that such effects are basically of refractive nature and that they are not detrimental for the propagation of a CPA pulse focused to moderately relativistic intensity. The observations are fully consistent with numerical simulations and can contribute to the search of a stable regime for laser acceleration

  9. Heating of underdense plasmas by intense lasers

    International Nuclear Information System (INIS)

    Kruer, W.L.

    1972-08-01

    In this note we show that two intense driving fields with frequency much greater than the electron plasma frequency (ω/sub pe/), but with a frequency separation of nearly ω/sub pe/, will couple electron and ion plasma waves and drive them unstable. 6 refs

  10. Propagation of intense laser pulses in an underdense plasma

    International Nuclear Information System (INIS)

    Monot, P.; Auguste, T.; Gibbon, P.; Jakober, F.; Mainfray, G.

    1994-01-01

    Experiments carried out with a laser beam focused into a vacuum chamber onto a 3-mm long, pulsed hydrogen jet, at powers close to the critical power required for relativistic self focusing, have shown that an underdense plasma is able to significantly reduce the divergence of an intense laser pulse. The propagation mode is in good agreement with theoretical predictions of relativistic self focusing. 2 figs., 8 refs

  11. Vacuum ultraviolet Ar2*laser pumped by a high-intensity laser

    International Nuclear Information System (INIS)

    Kubodera, Shoichi; Kaku, Masanori; Higashiguchi, Takeshi

    2004-01-01

    We observed a small-signal gain of Ar 2 * emission at 126 nm by use of an Ar-filled hollow fiber to guide the ultrashort-pulse high-intensity laser propagation. The small signal gain coefficient was measured to be 0.05 cm -1 at 126 nm. Kinetic analysis revealed that the electrons produced by the high-intensity laser through an optical-field ionization process initiated the Ar 2 * production process. This laser scheme could be combined with high harmonic radiation of the pump laser in the vacuum ultraviolet (VUV), leading to the production of amplified ultrashort VUV pulses. (author)

  12. Effects of the infrared diode low intensity laser therapy for oral mucositis: a clinical trial; Estudo clinico dos efeitos do laser diodo de baixa intensidade de emissao infravermelha para casos de mucosite bucal

    Energy Technology Data Exchange (ETDEWEB)

    Freire, Maria do Rosario Santos

    2004-07-01

    Chemotherapy associated or not with radiotherapy and surgery may be used for treating patients presenting some pathogenies such as cancer. Many side effects are visibly in the mouth in several forms as a consequence of this treatment and oral mucositis is the most common, with great prevalence, causing degrees of morbidity and even death. This research is about improving the quality of life for these patients by using of laser radiation through a GaAlAs active medium, in a continuous manner, with a low power ( 60 mW), the diode laser acting at 780 nm wavelength infrared, with a energy density 7,5 J/cm{sup 2} and 6,0 J/cm{sup 2}, for the therapeutic and preventive groups respectively, and a third control group without radiation. Two protocols were studied in patients during 5-fluorouracil chemotherapic regime and combinations, because nowadays polychemotherapy is used, an associations of drugs, for a neoadjuvant treatment, adjuvant, potentionalize or palliative means, for the chemotherapy treatment. In a context of 60 patients, 16 patients had received the laser irradiations doses, 10 days for the therapeutic protocols and 11 days for the preventive irradiations. The therapeutic group presented a 50% of the total healing process and significant decrease in symptoms of pain (VAS=0 with p =0,01). For the preventive irradiations (D-5, D, D+5), that means the day of the QT, 5 days before the chemotherapy regime starts until 5 days later, only 1 patient had some kind of ulceration during more than four months of control. Results of the present study showed to be effective and promising for both employed protocols, therapeutic and preventive. Further studies must be developed in order to improve the present results. (author)

  13. Hydrodynamic time scales for intense laser-heated clusters

    International Nuclear Information System (INIS)

    Parra, Enrique; Alexeev, Ilya; Fan, Jingyun; Kim, Kiong Y.; McNaught, Stuart J.; Milchberg, Howard M.

    2003-01-01

    Measurements are presented of x-ray (>1.5 keV) and extreme ultraviolet (EUV, λ equal to 2-44 nm) emission from argon clusters irradiated with constant-energy (50 mJ), variable-width laser pulses ranging from 100 fs to 10 ns. The results for clusters can be understood in terms of two time scales: a short time scale for optimal resonant absorption at the critical-density layer in the expanding plasma, and a longer time scale for the plasma to drop below critical density. We present a one-dimensional hydrodynamic model of the intense laser-cluster interaction in which the laser field is treated self-consistently. We find that nonuniform expansion of the heated material results in long-time resonance of the laser field at the critical-density plasma layer. These simulations explain the dependence of generation efficiency on laser pulse width

  14. Lasers and intense pulsed light (IPL) association with cancerous lesions.

    Science.gov (United States)

    Ash, Caerwyn; Town, Godfrey; Whittall, Rebecca; Tooze, Louise; Phillips, Jaymie

    2017-11-01

    The development and use of light and lasers for medical and cosmetic procedures has increased exponentially over the past decade. This review article focuses on the incidence of reported cases of skin cancer post laser or IPL treatment. The existing evidence base of over 25 years of laser and IPL use to date has not raised any concerns regarding its long-term safety with only a few anecdotal cases of melanoma post treatment over two decades of use; therefore, there is no evidence to suggest that there is a credible cancer risk. Although laser and IPL technology has not been known to cause skin cancer, this does not mean that laser and IPL therapies are without long-term risks. Light therapies and lasers to treat existing lesions and CO 2 laser resurfacing can be a preventative measure against BCC and SCC tumour formation by removing photo-damaged keratinocytes and encouraged re-epithelisation from stem cells located deeper in the epidermis. A review of the relevant literature has been performed to address the issue of long-term IPL safety, focussing on DNA damage, oxidative stress induction and the impact of adverse events.

  15. Summary for the WG4: physics with high intensity lasers

    International Nuclear Information System (INIS)

    Takahashi, T.

    2006-01-01

    There are many physics opportunities in laser-beam interactions and innovations in the laser- and the beam technologies expand them or even open new window in the field. Therefore, physics with high intense lasers is an attractive application of nanobeam technologies. The topics in the working group 4 covers fundamental physics based on technique related with nanobeam development aiming to encourage communication between physics and accelerator communities. Due to the limited time for the preparation, we did not try comprehensive coverage of the field but invited topics which are planed near future or can be studied at the ILC test facilities. (author)

  16. Stereotactic CO2 laser therapy for hydrocephalus

    Science.gov (United States)

    Kozodoy-Pins, Rebecca L.; Harrington, James A.; Zazanis, George A.; Nosko, Michael G.; Lehman, Richard M.

    1994-05-01

    A new fiber-optic delivery system for CO2 radiation has been used to successfully treat non-communicating hydrocephalus. This system consists of a hollow sapphire waveguide employed in the lumen of a stereotactically-guided neuroendoscope. CO2 gas flows through the bore of the hollow waveguide, creating a path for the laser beam through the cerebrospinal fluid (CSF). This delivery system has the advantages of both visualization and guided CO2 laser radiation without the same 4.3 mm diameter scope. Several patients with hydrocephalus were treated with this new system. The laser was used to create a passage in the floor of the ventricle to allow the flow of CSF from the ventricles to the sub-arachnoid space. Initial postoperative results demonstrated a relief of the clinical symptoms. Long-term results will indicate if this type of therapy will be superior to the use of implanted silicone shunts. Since CO2 laser radiation at 10.6 micrometers is strongly absorbed by the water in tissue and CSF, damage to tissue surrounding the lesion with each laser pulse is limited. The accuracy and safety of this technique may prove it to be an advantageous therapy for obstructive hydrocephalus.

  17. DNA fragmentation and nuclear phenotype in tendons exposed to low-intensity infrared laser

    Science.gov (United States)

    de Paoli, Flavia; Ramos Cerqueira, Larissa; Martins Ramos, Mayara; Campos, Vera M.; Ferreira-Machado, Samara C.; Geller, Mauro; de Souza da Fonseca, Adenilson

    2015-03-01

    Clinical protocols are recommended in device guidelines outlined for treating many diseases on empirical basis. However, effects of low-intensity infrared lasers at fluences used in clinical protocols on DNA are controversial. Excitation of endogenous chromophores in tissues and free radicals generation could be described as a consequence of laser used. DNA lesions induced by free radicals cause changes in DNA structure, chromatin organization, ploidy degrees and cell death. In this work, we investigated whether low-intensity infrared laser therapy could alter the fibroblasts nuclei characteristics and induce DNA fragmentation. Tendons of Wistar rats were exposed to low-intensity infrared laser (830 nm), at different fluences (1, 5 and 10 J/cm2), in continuous wave (power output of 10mW, power density of 79.6 mW/cm2). Different frequencies were analyzed for the higher fluence (10 J/cm2), at pulsed emission mode (2.5, 250 and 2500 Hz), with the laser source at surface of skin. Geometric, densitometric and textural parameters obtained for Feulgen-stained nuclei by image analysis were used to define nuclear phenotypes. Significant differences were observed on the nuclear phenotype of tendons after exposure to laser, as well as, high cell death percentages was observed for all fluences and frequencies analyzed here, exception 1 J/cm2 fluence. Our results indicate that low-intensity infrared laser can alter geometric, densitometric and textural parameters in tendon fibroblasts nuclei. Laser can also induce DNA fragmentation, chromatin lost and consequently cell death, using fluences, frequencies and emission modes took out from clinical protocols.

  18. Low-intensity laser irradiation use for oral and lip precancer treatment

    Science.gov (United States)

    Kunin, Anatoly A.; Podolskaya, Elana E.; Stepanov, Nicolay N.; Petrov, Anatoly; Erina, Stanislava V.; Pankova, Svetlana N.

    1996-09-01

    Precancer and background diseases of the oral mucosa and lips, such as lichen planus, chronic ulcers and fissures, meteorological heilit, lupus erythematosus, after radiation heilit were treated by low-intensity laser irradiation. Laser therapy of the over-mentioned diseases was combined with medicinal treatment. All the patients were selected and treated in the limits of dispensary system. THe choice of diagnostic methods were made according to each concrete nosological form. A great attention was paid to the goal- directly sanitation of the oral cavity and treatment of attended internal diseases. The etiological factors were revealed and statistically analyzed. The results received during our researches demonstrated high effectiveness of laser irradiation combined with medicinal therapy in the treatment of oral mucosa and lips precancer diseases.

  19. Atomic electron correlations in intense laser fields

    International Nuclear Information System (INIS)

    DiMauro, L.F.; Sheehy, B.; Walker, B.; Agostini, P.A.

    1998-01-01

    This talk examines two distinct cases in strong optical fields where electron correlation plays an important role in the dynamics. In the first example, strong coupling in a two-electron-like system is manifested as an intensity-dependent splitting in the ionized electron energy distribution. This two-electron phenomenon (dubbed continuum-continuum Autler-Townes effect) is analogous to a strongly coupled two-level, one-electron atom but raises some intriguing questions regarding the exact nature of electron-electron correlation. The second case examines the evidence for two-electron ionization in the strong-field tunneling limit. Although their ability to describe the one-electron dynamics has obtained a quantitative level of understanding, a description of the two (multiple) electron ionization remains unclear

  20. Plasma hydrodynamics of the intense laser-cluster interaction*

    Science.gov (United States)

    Milchberg, Howard

    2002-11-01

    We present a 1D hydrodynamic model of the intense laser-cluster interaction in which the laser field is treated self-consistently. We find that for clusters initially as small as 25Å in radius, for which the hydrodynamic model is appropriate, nonuniform expansion of the heated material results in long-time resonance of the laser field at the critical density plasma layer. A significant result of this is that the ponderomotive force, which is enhanced at the critical density surface, can be large enough to strongly modify the plasma hydrodynamics, even at laser intensities as low as 10^15 W/cm^2 for 800 nm laser pulses. Recent experiments in EUV and x-ray generation as a function of laser pulsewidth [1], and femtosecond time-resolved measurements of cluster transient polarizability [2] provide strong support for the basic physics of this model. Recent results using a 2D hybrid fluid/PIC code show qualitative agreement with the 1D hydrocode [3]. *Work supported by the National Science Foundation and the EUV-LLC. 1. E. Parra, I. Alexeev, J. Fan, K. Kim, S.J. McNaught, and H. M. Milchberg, Phys. Rev. E 62, R5931 (2000). 2. K.Y. Kim, I. Alexeev, E. Parra, and H.M. Milchberg, submitted for publication. 3. T. Taguchi, T. Antonsen, and H.M Milchberg, this meeting.

  1. High energy bremsstrahlung in an intense laser field

    International Nuclear Information System (INIS)

    Schlessinger, L.; Wright, J.A.

    1980-02-01

    The cross section for bremsstrahlung emission and absorption by electrons in an intense laser field has been calculated in the Born approximation for the electron-ion potential. Typical numerical results are presented as a function of the ratio of the electron guiver energy to its energy and the ratio of the bremsstrahlung energy to the electron energy. The intense field correction factor for the rate of bremsstrahlung emission and absorption for electrons with a Boltzmann distribution of energies has been calculated. Numerical results for the correction factor are presented for the Boltzmann case as a function of the ratio of the electron quiver energy to its thermal energy and the ratio of the bremsstrahlung energy to the thermal energy. For typical laser fusion parameters, this correction factor which is the ratio of the thermal bremsstrahlung emission rate in the intense laser field to the rate at zero field can be quite significant. For a laser of wavelength 1.06 μm at an intensity of 3 x 10 15 w/cm 2 and an electron temperature of 1 keV, the correction factor varies from 0.98 at a bremsstrahlung energy of 100 V to greater than 5 at a bremsstrahlung energy of 10 keV

  2. Bistability of Pulsating Intensities for Double-Locked Laser Diodes

    National Research Council Canada - National Science Library

    Erneux, Thomas

    2004-01-01

    .... The investigation will concentrate on two Edifferential Cavity mode (ECM) solutions of the laser rate equations, because coupling might lead to high-frequency intensity oscillations. The objective is to determine the conditions for stability of these solutions. Conclusions will be tested by numerical bifurcation studies.

  3. Intensity-Modulated Radiation Therapy (IMRT)

    Science.gov (United States)

    ... type your comment or suggestion into the following text box: Comment: E-mail: Area code: Phone no: Thank ... Accelerator Prostate Cancer Treatment Head and Neck Cancer Treatment Introduction to Cancer Therapy (Radiation Oncology) ...

  4. Intensity dependence of electron gas kinetics in a laser corona

    Directory of Open Access Journals (Sweden)

    Mašek Martin

    2013-11-01

    Full Text Available In various experimental situations relevant to the laser fusion, such as plasma near the light entrance holes of hohlraum in the indirect drive experiments or more recently in the shock ignition direct drive a relatively long underdense plasma of corona type is encountered, which is subject to an intense nanosecond laser beam. The plasma is only weakly collisional and thus in the electron phase space a complicated kinetic evolution is going on, which is taking the electron gas fairly far from the thermal equilibrium and contributes to its unstable behaviour. These phenomena impede the absorption and thermalization of the incoming laser energy, create groups of fast electrons and also may lead to a non-linear reflection of the heating laser beam. One of the key processes leading to the electron acceleration is the stimulated Raman scattering (SRS in its non-linear phase. The SRS in the presence of electron-ion collisions requires a certain threshold intensity above which the mentioned non-dissipative phenomena can occur and develop to the stage, where they may become unpleasant for the fusion experiments. To assess this intensity limit a computational model has been developed based on the Vlasov-Maxwell kinetics describing such a plasma in 1D geometry. At a relatively high intensity of 1016 W/cm2 a number of non-linear phenomena are predicted by the code such as a saturation of Landau damping, which is then translated in an unfavourable time dependence of the reflected light intensity and formation of accelerated electron groups due to the electron trapping. The purpose of the present contribution is to map the intensity dependence of this non-linear development with the aim of assessing its weight in fusion relevant situations.

  5. Evaluation of the ocular protection for low intensity therapeutic lasers; Avaliacao da protecao ocular para lasers terapeuticos em baixa intensidade

    Energy Technology Data Exchange (ETDEWEB)

    Cordon, Rosely

    2003-07-01

    The low intensity laser therapy (LILT) has been extensively used in medicine and dentistry presenting positive effects. However, the laser radiation can also cause adverse effects. Due to the ocular focalization property, in the wavelength from 400 to 1400 nm, the retina is more susceptible to damage by radiation than any other part of the human body. Then, the ocular protection is frequently emphasized. This protection must attenuate the radiation to a safe level. The International Electrotechnical Commission (IEC) standard IEC 60825-1 suggests safety requirements for medical laser equipment, including the ocular protection, based on maximum permissible exposure levels. The Brazilian legislation adopts a corresponding IEC standard, the NBR IEC 601.2.22, for safety requirements. The aim of this study was to analyze the adequacy of the ocular protectors furnished by four laser equipment manufacturers, commercially available in Brazil, commonly used for LILT. For this purpose, the laser equipment and the respective ocular protectors were characterized. The adequacy was verified according to the IEC standards. It was found, among other results, ocular protectors attenuating to safe levels the radiation emitted by the respective laser equipment, however, presenting inadequate visual transmission. Inefficient protection and protection indicated in cases where they were not necessary were also observed. (author)

  6. Nuclear Fusion Effects Induced in Intense Laser-Generated Plasmas

    Directory of Open Access Journals (Sweden)

    Lorenzo Torrisi

    2013-01-01

    Full Text Available Deutered polyethylene (CD2n thin and thick targets were irradiated in high vacuum by infrared laser pulses at 1015W/cm2 intensity. The high laser energy transferred to the polymer generates plasma, expanding in vacuum at supersonic velocity, accelerating hydrogen and carbon ions. Deuterium ions at kinetic energies above 4 MeV have been measured by using ion collectors and SiC detectors in time-of-flight configuration. At these energies the deuterium–deuterium collisions may induce over threshold fusion effects, in agreement with the high D-D cross-section valuesaround 3 MeV energy. At the first instants of the plasma generation, during which high temperature, density and ionacceleration occur, the D-D fusions occur as confirmed by the detection of mono-energetic protonsand neutrons with a kinetic energy of 3.0 MeV and 2.5 MeV, respectively, produced by the nuclear reaction. The number of fusion events depends strongly on the experimental set-up, i.e. on the laser parameters (intensity, wavelength, focal spot dimension, target conditions (thickness, chemical composition, absorption coefficient, presence of secondary targets and used geometry (incidence angle, laser spot, secondary target positions.A number of D-D fusion events of the order of 106÷7 per laser shot has been measured.

  7. Time-resolved explosion of intense-laser-heated clusters.

    Science.gov (United States)

    Kim, K Y; Alexeev, I; Parra, E; Milchberg, H M

    2003-01-17

    We investigate the femtosecond explosive dynamics of intense laser-heated argon clusters by measuring the cluster complex transient polarizability. The time evolution of the polarizability is characteristic of competition in the optical response between supercritical and subcritical density regions of the expanding cluster. The results are consistent with time-resolved Rayleigh scattering measurements, and bear out the predictions of a recent laser-cluster interaction model [H. M. Milchberg, S. J. McNaught, and E. Parra, Phys. Rev. E 64, 056402 (2001)

  8. Time-resolved explosion of intense-laser-heated clusters

    International Nuclear Information System (INIS)

    Kim, K.Y.; Alexeev, I.; Parra, E.; Milchberg, H.M.

    2003-01-01

    We investigate the femtosecond explosive dynamics of intense laser-heated argon clusters by measuring the cluster complex transient polarizability. The time evolution of the polarizability is characteristic of competition in the optical response between supercritical and subcritical density regions of the expanding cluster. The results are consistent with time-resolved Rayleigh scattering measurements, and bear out the predictions of a recent laser-cluster interaction model [H. M. Milchberg, S. J. McNaught, and E. Parra, Phys. Rev. E 64, 056402 (2001)

  9. Histological analysis of low-intensity laser therapy effects in peripheral nerve regeneration in Wistar rats Avaliação histológica dos efeitos da laserterapia de baixa potência sobre os processos de regeneração nervosa periférica em ratos Wistar

    Directory of Open Access Journals (Sweden)

    Cibele Nazaré da Silva Câmara

    2011-02-01

    Full Text Available Purpose: Analyze the influence of low-intensity laser therapy in the sciatic nerve regeneration of rats submitted to controlled crush through histological analysis. Methods: Were used 20 Wistar rats, to analyze the influence of low-intensity laser therapy in the sciatic nerve regeneration, where the injury of the type axonotmesis was induced by a haemostatic clamp Crile (2nd level of the rack. The animals were randomly distributed in 2 groups. Control group (CG n = 10 and Laser group (LG n = 10. These were subdivided in 2 subgroups each, according to the euthanasia period: (CG14 _ n = 5 and CG21 _ n = 5 and (LG14 _ n = 5 and LG21 _ n = 5. At the end of treatment, the samples were removed and prepared for histological analysis, where were analyzed and quantified the following findings: Schwann cells, myelinic axons with large diameter and neurons. Results: In the groups submitted to low-intensity laser therapy, were observed an increase in the number of all analyzed aspects with significance level. Conclusion: The irradiation with low intensity laser (904nm influenced positively the regeneration of the sciatic nerve in Wistar rats after being injured by crush (axonotmesis, becoming the nerve recovery more rapid and efficient.Objetivo: Verificar a influência da terapia com laser de baixa potência na regeneração histológica do nervo ciático de ratos submetidos à neuropraxia controlada. Métodos: Foi utilizada a amostra de 20 ratos da linhagem Wistar, para verificar a influência da terapia com laser de baixa intensidade na regeneração nervosa periférica, onde a lesão do tipo axoniotmese foi induzida por meio de preensão com pinça hemostática de Crile. Os animais foram distribuídos randomicamente dois grupos. Grupo controle (CG n = 10, e Grupo laser (LG n = 10. Cada um destes grupos foi subdividido em dois subgrupos dependendo do período da eutanásia: (CG14 - n = 5 e CG21 - n = 5 e (LG14 - n = 5 e LG21 - n = 5. Ao final do

  10. Intensive Insulin Therapy: Tight Blood Sugar Control

    Science.gov (United States)

    ... specific situation. McCulloch DK. General principles of insulin therapy in diabetes mellitus. http://www.uptodate.com/home. Accessed Dec. ... Diabetes Association. http://www.diabetes.org/living-with-diabetes/treatment-and-care/blood-glucose-control/checking-your-blood- ...

  11. Radiologic protection in intensive therapy units

    International Nuclear Information System (INIS)

    Andrea, H.; Juliana, C.; Gerusa, R.; Laurete, M.B.; Suelen, S.; Derech, Rodrigo D.A.

    2013-01-01

    The discovery of X-ray was a great achievement for humanity, especially for the medical community. In Intensive Care Units (ICUs), the RX tests, performed with mobile devices, add immense value to the diagnosis of inpatients who do not have the option to carry them out of bed. Following the technology and its improvements, fatalities arose from misuse of ionizing radiation, which mostly gave up for lack of knowledge of the biological effects caused by them, which leads to fear among professionals and often prevents a quick job and effectively by professionals of radiological techniques. The research it is a systematic review of the literature and justified by the scarcity of materials that reflect on the radiological protection in ICUs. For this study we found the Virtual Health Library (VHL) and Pubmed were indexed terms radiological protection and intensive care units, the search in Portuguese and English terms were used radiological protection and intensive care unit. The study aims to inform professionals of ICUs on the main aspects that refer to X-rays in hospital beds, the standards of radiological protection and personal protective equipment, thus avoiding possible damage to the biological health of workers, addressing subjects in rules and laws about the X radiation, emphasizing the protection of professionals in intensive care. It is clear, finally, that little research is conducted in the context of radiological protection of workers ICU's and this is a place that receives daily RX equipment, deserving more attention to protect the worker. (author)

  12. Immunodeficiency and laser magnetic therapy in urology

    Science.gov (United States)

    Maati, Moufagued; Rozanov, Vladimir V.; Avdoshin, V. P.

    1996-11-01

    The importance of immunodeficiency problem has increased last time not only due to AIDS appearance, but also to a great extent as a result of the development and active practical use of the methods of immunology parameters investigations. Al great pharmaceutical firms are organizing the process of creating the drugs, influencing on the different phases of immunity, but unfortunately, the problem of their adverse effect and connected complications is till today a milestone. A great number of investigations, proving a good effect of laser-magnetic therapy concerning immune system have been done today. There is, in particular, changing of blood counts and immunologic tests after intravenous laser irradiation of blood. Intravenous laser irradiation of blood results in increasing of lymphocytes, T-immuno stimulation, stabilization of t-lymphocyte subpopulation, increasing of t-lymphocyte helper activity and decreasing of suppressor one.Under this laser action number of circulating immune complexes is decreased, and blood serum bactericide activity and lisozyme number are increased.

  13. Comparative Study of Diode Laser Versus Neodymium-Yttrium Aluminum: Garnet Laser Versus Intense Pulsed Light for the Treatment of Hirsutism.

    Science.gov (United States)

    Puri, Neerja

    2015-01-01

    Lasers are widely used for the treatment of hirsutism. But the choice of the right laser for the right skin type is very important. Before starting with laser therapy, it is important to assess the skin type, the fluence, the pulse duration and the type of laser to be used. To compare the efficacy and side effects of Diode laser, Neodymium-yttrium aluminum - garnet (Nd: YAG) laser and intense pulsed light (IPL) on 30 female patients of hirsutism. Thirty female patients with hirsutism were selected for a randomised controlled study. The patients were divided into three groups of 10 patients each. In group I patients diode laser was used, in group II patients long pulsed Nd: YAG laser was used and in group III, IPL was used. The patients were evaluated and result graded according to a 4-point scale as excellent, >75% reduction; good, 50-75% reduction; fair; 25-50% reduction; and poor, diode laser group, followed by 35% hair reduction in the Nd: Yag laser group and 10% hair reduction in the IPL group. The percentage of hair reduction after four sessions of treatment was maximum (64%) in the diode laser group, followed by 62% hair reduction in the Nd: Yag laser group and 48% hair reduction in the IPL group. The percentage of hair reduction after eight sessions of treatment was maximum (92%) in the diode laser group, followed by 90% hair reduction in the Nd: YAG group and 70% hair reduction in the IPL group. To conclude for the Indian skin with dark hairs, the diode laser still stands the test of time. But, since the diode laser has a narrow margin of safety, proper pre and post-procedure cooling is recommended. Although, the side effects of Nd: YAG laser are less as compared to the diode laser, it is less efficacious as compared to the diode laser.

  14. Occupational Therapy in the Intensive Care Unit: A Systematic Review.

    Science.gov (United States)

    Weinreich, Mark; Herman, Jennifer; Dickason, Stephanie; Mayo, Helen

    2017-07-01

    This paper is a synthesis of the available literature on occupational therapy interventions performed in the adult intensive care unit (ICU). The databases of Ovid MEDLINE, Embase, the Cochrane Library, ClinicalTrials.gov and CINAHL databases were systematically searched from inception through August 2016 for studies of adults who received occupational therapy interventions in the ICU. Of 1,938 citations reviewed, 10 studies met inclusion criteria. Only one study explicitly discussed occupational therapy interventions performed and only one study specifically tested the efficacy of occupational therapy. Future research is needed to clarify the specific interventions and role of occupational therapy in the ICU and the efficacy of these interventions.

  15. Optical properties of a multibarrier structure under intense laser fields

    Science.gov (United States)

    Ospina, D. A.; Akimov, V.; Mora-Ramos, M. E.; Morales, A. L.; Tulupenko, V.; Duque, C. A.

    2015-11-01

    Using the diagonalization method and within the effective mass and parabolic band approximations, the energy spectrum and the wave functions are investigated in biased multibarrier structure taking into account the effects of nonresonant intense laser fields. We calculated the optical properties from the susceptibility using a nonperturbative formalism recently reported. We study the changes in the intersubband optical absorption coefficients and refraction index for several values of the dressing laser parameter and for some specific values of the electric field applied along the growth direction of the heterostructure. It is concluded from our study that the peaks in the optical absorption spectrum have redshifts or blueshifts as a function of the laser parameter and the electric field. These parameters could be suitable tools for tuning the electronic and optical properties of the multibarrier structure.

  16. Intensity position modulation for free-space laser communication system

    Science.gov (United States)

    Jangjoo, Alireza; Faghihi, F.

    2004-12-01

    In this research a novel modulation technique for free-space laser communication system called Intensity Position Modulation (IPM) is carried out. According to TEM00 mode of a laser beam and by linear fitting on the Gaussian function as an approximation, the variation of linear part on the reverse biased pn photodiode produced alternating currents which contain the information. Here, no characteristic property of the beam as intensity or frequency is changed and only the beam position moves laterally. We demonstrated that in this method no bandwidth is required, so it is possible to reduce the background radiation noise by narrowband filtering of the carrier. The fidelity of the analog voice communication system which is made upon the IPM is satisfactory and we are able to transmit the audio signals up to 1Km.

  17. Nuclear diagnostics of high intensity laser plasma interactions

    International Nuclear Information System (INIS)

    Krushelnick, K.; Santala, M.I.K.; Beg, F.N.; Clark, E.L.; Dangor, A.E.; Tatarakis, M.; Watts, I.; Wei, M.S.; Zepf, M.; Ledingham, K.W.D.; McCanny, T.; Spencer, I.; Clarke, R.J.; Norreys, P.A.

    2002-01-01

    Nuclear activation has been observed in materials exposed to energetic protons and heavy ions generated from high intensity laser-solid interactions (at focused intensities up to 5x10 19 W/cm 2 ). The energy spectrum of the protons is determined through the use of these nuclear activation techniques and is found to be consistent with other ion diagnostics. Heavy ion fusion reactions and large neutron fluxes from the (p, n) reactions were also observed. The reduction of proton emission and increase in heavy ion energy using heated targets was also observed

  18. Intensity-modulated radiation therapy: dynamic MLC (DMLC) therapy, multisegment therapy and tomotherapy. An example of QA in DMLC therapy

    International Nuclear Information System (INIS)

    Webb, S.

    1998-01-01

    Intensity-modulated radiation therapy will make a quantum leap in tumor control. It is the new radiation therapy for the new millennium. The major methods to achieve IMRT are: 1. Dynamic multileaf collimator (DMLC) therapy, 2. multisegment therapy, and 3. tomotherapy. The principles of these 3 techniques are briefly reviewed. Each technique presents unique QA issues which are outlined. As an example this paper will present the results of a recent new study of an important QA concern in DMLC therapy. (orig.) [de

  19. Resonant heating of a cluster plasma by intense laser light

    International Nuclear Information System (INIS)

    Antonsen, Thomas M. Jr.; Taguchi, Toshihiro; Gupta, Ayush; Palastro, John; Milchberg, Howard M.

    2005-01-01

    Gases of atomic clusters are interaction media for laser pulse propagation with properties useful for applications such as extreme ultraviolet (EUV) and x-ray microscopy, harmonic generation, EUV lithography, and laser plasma acceleration. To understand cluster heating and expansion, a series of two- and three-dimensional electrostatic particle in cell simulations of the explosion of argon clusters of diameter in the range 20 nm-53 nm have been preformed. The studies show that heating is dominated by a nonlinear, resonant absorption process that gives rise to a size-dependent intensity threshold for strong absorption and that controls the dielectric properties of the cluster. Electrons are first accelerated out from the cluster and then driven back into it by the combined effects of the laser field and the electrostatic field produced by the laser-driven charge separation. Above the intensity threshold for strong heating there is a dramatic increase in the production of energetic particles and harmonic radiation. The dielectric properties of a gas of clusters are determined by the ensemble average cluster polarizability. Individual electrons contribute to the polarizability differently depending on whether they are in the core of the cluster or in the outer edge. Consequently, there can be large fluctuations in polarizability during the heating of a cluster

  20. Intensity and frequency stabilization of a laser diode by simultaneously controlling its temperature and current

    Science.gov (United States)

    Mu, Weiwei; Hu, Zhaohui; Wang, Jing; Zhou, Binquan

    2017-10-01

    Nuclear magnetic resonance gyroscope (NMRG) detects the angular velocity of the vehicle utilizing the interaction between the laser beam and the alkali metal atoms along with the noble gas atoms in the alkali vapor cell. In order to reach high precision inertial measurement target, semiconductor laser in NMRG should have good intensity and frequency stability. Generally, laser intensity and frequency are stabilized separately. In this paper, a new method to stabilize laser intensity and frequency simultaneously with double-loop feedback control is presented. Laser intensity is stabilized to the setpoint value by feedback control of laser diode's temperature. Laser frequency is stabilized to the Doppler absorption peak by feedback control of laser diode's current. The feedback control of current is a quick loop, hence the laser frequency stabilize quickly. The feedback control of temperature is a slow loop, hence the laser intensity stabilize slowly. With the feedback control of current and temperature, the laser intensity and frequency are stabilized finally. Additionally, the dependence of laser intensity and frequency on laser diode's current and temperature are analyzed, which contributes to choose suitable operating range for the laser diode. The advantage of our method is that the alkali vapor cell used for stabilizing laser frequency is the same one as the cell used for NMRG to operate, which helps to miniaturize the size of NMRG prototype. In an 8-hour continuous measurement, the long-term stability of laser intensity and frequency increased by two orders of magnitude and one order of magnitude respectively.

  1. High-Power, High-Intensity Laser Propagation and Interactions

    Science.gov (United States)

    2014-03-10

    intensity as the weighting function. The full refractive index associated with the laser plasma interaction having a parabolic density variation ...radiation in turn enhances the electron density wave further amplifying the radiation. Considering spatial variations in the z direction only the FEL...effL/ at the entrance to the wiggler where effL is the effective interaction length. This requirement can be expressed by the following inequality

  2. Laser apparatus for surgery and force therapy based on high-power semiconductor and fibre lasers

    International Nuclear Information System (INIS)

    Minaev, V P

    2005-01-01

    High-power semiconductor lasers and diode-pumped lasers are considered whose development qualitatively improved the characteristics of laser apparatus for surgery and force therapy, extended the scope of their applications in clinical practice, and enhanced the efficiency of medical treatment based on the use of these lasers. The characteristics of domestic apparatus are presented and their properties related to the laser emission wavelength used in them are discussed. Examples of modern medical technologies based on these lasers are considered. (invited paper)

  3. Generation of Ultra-high Intensity Laser Pulses

    International Nuclear Information System (INIS)

    Fisch, N.J.; Malkin, V.M.

    2003-01-01

    Mainly due to the method of chirped pulse amplification, laser intensities have grown remarkably during recent years. However, the attaining of very much higher powers is limited by the material properties of gratings. These limitations might be overcome through the use of plasma, which is an ideal medium for processing very high power and very high total energy. A plasma can be irradiated by a long pump laser pulse, carrying significant energy, which is then quickly depleted in the plasma by a short counterpropagating pulse. This counterpropagating wave effect has already been employed in Raman amplifiers using gases or plasmas at low laser power. Of particular interest here are the new effects which enter in high power regimes. These new effects can be employed so that one high-energy optical system can be used like a flashlamp in what amounts to pumping the plasma, and a second low-power optical system can be used to extract quickly the energy from the plasma and focus it precisely. The combined system can be very compact. Thus, focused intensities more than 10 25 W/cm 2 can be contemplated using existing optical elements. These intensities are several orders of magnitude higher than what is currently available through chirped pump amplifiers

  4. Line intensities for diagnosing laser-produced plasmas

    International Nuclear Information System (INIS)

    Kauffman, R.L.; Matthews, D.L.; Lee, R.W.; Whitten, B.L.; Kilkenny, J.D.

    1983-01-01

    We have measured relative line intensities of the K x-ray spectra of Si, Cl, and Ca from laser-produced plasmas to assess their usefulness as a plasma diagnostic. The different elements are added at low concentrations to CH disks which are irradiated at 5 x 10 14 W/cm 2 with a 0.53 μm laser pulse of 20 Joules at 1 nsec. The concentration of each element is kept low in order not to change the Z of the plasma, and therefore the plasma dynamics. The various spectra are measured with a time-resolved spectrograph to obtain line intensities as a function of time over the length of the laser pulse. These relative intensities of various He-like and H-like lines are compared with calculations from a steady-state level population code. The results give good consistency among the various line ratios. Agreement is not as good for analysis of the Li-like satellite lines. Modelling of the Li-like lines need further investigation. 10 references, 9 figures

  5. High intensive short laser pulse interaction with submicron clusters media

    International Nuclear Information System (INIS)

    Faenov, A. Ya

    2008-01-01

    The interaction of short intense laser pulses with structured targets, such as clusters, exhibits unique features, stemming from the enhanced absorption of the incident laser light compared to solid targets. Due to the increased absorption, these targets are heated significantly, leading to enhanced emission of x rays in the keV range and generation of electrons and multiple charged ions with kinetic energies from tens of keV to tens of MeV. Possible applications of these targets can be an electron/ion source for a table top accelerator, a neutron source for a material damage study, or an x ray source for microscopy or lithography. The overview of recent results, obtained by the high intensive short laser pulse interaction with different submicron clusters media will be presented. High resolution K and L shell spectra of plasma generated by superintense laser irradiation of micron sized Ar, Kr and Xe clusters have been measured with intensity 10"17"-10"19"W/cm"2"and a pulse duration of 30-1000fs. It is found that hot electrons produced by high contrast laser pulses allow the isochoric heating of clusters and shift the ion balance toward the higher charge states, which enhances both the X ray line yield and the ion kinetic energy. Irradiation of clusters, produced from such gas mixture, by a fs Ti:Sa laser pulses allows to enhance the soft X ray radiation of Heβ(665.7eV)and Lyα(653.7eV)of Oxygen in 2-8 times compare with the case of using as targets pure CO"2"or N"2"O clusters and reach values 2.8x10"10"(∼3μJ)and 2.7x10"10"(∼2.9μJ)ph/(sr·pulse), respectively. Nanostructure conventional soft X ray images of 100nm thick Mo and Zr foils in a wide field of view (cm"2"scale)with high spatial resolution (700nm)are obtained using the LiF crystals as soft X ray imaging detectors. When the target used for the ion acceleration studies consists of solid density clusters embedded into the background gas, its irradiation by high intensity laser light makes the target

  6. A REVIEW OF LOW-INTENSITY ULTRASOUND FOR CANCER THERAPY

    Science.gov (United States)

    WOOD, ANDREW K. W.; SEHGAL, CHANDRA M.

    2015-01-01

    The literature describing the use of low-intensity ultrasound in four major areas of cancer therapy was reviewed - sonodynamic therapy, ultrasound mediated chemotherapy, ultrasound mediated gene delivery and antivascular ultrasound therapy. Each technique consistently resulted in the death of cancer cells and the bioeffects of ultrasound were primarily attributed to thermal actions and inertial cavitation. In each therapeutic modality, theranostic contrast agents composed of microbubbles played a role in both therapy and vascular imaging. The development of these agents is important as it establishes a therapeutic-diagnostic platform which can monitor the success of anti-cancer therapy. Little attention, however, has been given to either the direct assessment of the underlying mechanisms of the observed bioeffects or to the viability of these therapies in naturally occurring cancers in larger mammals; if such investigations provided encouraging data there could be a prompt application of a therapy technique in treating cancer patients. PMID:25728459

  7. Signal intensity enhancement of laser ablated volume holograms

    Science.gov (United States)

    Versnel, J. M.; Williams, C.; Davidson, C. A. B.; Wilkinson, T. D.; Lowe, C. R.

    2017-11-01

    Conventional volume holographic gratings (VHGs) fabricated in photosensitive emulsions such as gelatin containing silver salts enable the facile visualization of the holographic image in ambient lighting. However, for the fabrication of holographic sensors, which require more defined and chemically-functionalised polymer matrices, laser ablation has been introduced to create the VHGs and thereby broaden their applications, although the replay signal can be challenging to detect in ambient lighting. When traditional photochemical bleaching solutions used to reduce light scattering and modulate refractive index within the VHG are applied to laser ablated volume holographic gratings, these procedures decrease the holographic peak intensity. This is postulated to occur because both light and dark fringes contain a proportion of metal particles, which upon solubilisation are converted immediately to silver iodide, yielding no net refractive index modulation. This research advances a hypothesis that the reduced intensity of holographic replay signals is linked to a gradient of different sized metal particles within the emulsion, which reduces the holographic signal and may explain why traditional bleaching processes result in a reduction in intensity. In this report, a novel experimental protocol is provided, along with simulations based on an effective medium periodic 1D stack, that offers a solution to increase peak signal intensity of holographic sensors by greater than 200%. Nitric acid is used to etch the silver nanoparticles within the polymer matrix and is thought to remove the smaller particles to generate more defined metal fringes containing a soluble metal salt. Once the grating efficiency has been increased, this salt can be converted to a silver halide, to modulate the refractive index and increase the intensity of the holographic signal. This new protocol has been tested in a range of polymer chemistries; those containing functional groups that help to

  8. Low-intensity laser radiation in complex treatment of inflammatory diseases of parodontium

    Science.gov (United States)

    Sokolova, Irina A.; Erina, Stanislava V.

    1995-04-01

    The problem of complex treatment of inflammatory disease of parodontium has become very acute and actual at the moment. The diseases of inflammatory nature are considered to be the most vital issues of the day. The state of the local immune system of oral cavity plays the most important role in the complicated mechanism of inflammatory process development in the tissues of parodontium. Recently physical factors have become predominant in the system of complex therapy of parodontitis. The application of low-intense laser radiation (LLR) is considered to be the most important and up-to-date method in the preventive dentistry. There were 60 patients of average damage rate suffering from chronic generalizing parodontitis at the age of 25 up to 55 under observation. The major goal of examination was to get the objective results of the following methods' application: parodontium index (Russel, 1956), hygiene index (Fyodorov, Volodkina, 1971), Bacterioscopy of dental-gingival pockets content, simple and broadened stomatoscopy (Kunin, 1970), SIgA level determination in mixed saliva (Manchini et all, 1965) and R-protein level in gingival blood (Kulberg, 1990). All the patients were split into 2 groups. The first group (30 patients) has undergone the laser therapy course while the second group of 30 patients couldn't get it (LLR). Despite the kind of therapy they have undergone, all the patients have got the local anti-inflammatory medicamental therapy. The results of clinical observations have proved the fact that laser therapy application makes it possible to shorten the course of treatment in 1.5 times. The shifts of oral cavity local resistance take place in case of chronic generalizing parodontitis. The direct immunostimulating effect could be observed as a result of LLR- therapy application. The close connection of both anti-inflammatory medicamental and LLR-therapy has proved the possibility of purposeful local immune status correction in case of parodontitis.

  9. Improvement of disfiguring skin conditions by laser therapy

    NARCIS (Netherlands)

    van Drooge, A.M.

    2014-01-01

    Since their introduction in dermatology, lasers became a welcome addition to the therapeutic armentarium for disfiguring skin conditions. In this thesis, we evaluated laser therapy for the treatment of scars, of benign dermal tumours, and of port-wine stains. For scars, many different laser devices

  10. Dynamics of laser mass-limited foil interaction at ultra-high laser intensities

    Energy Technology Data Exchange (ETDEWEB)

    Yu, T. P., E-mail: tongpu@nudt.edu.cn [College of Science, National University of Defense Technology, Changsha 410073 (China); State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073 (China); Sheng, Z. M. [Key Laboratory for Laser Plasmas (MoE) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Yin, Y.; Zhuo, H. B.; Ma, Y. Y.; Shao, F. Q. [College of Science, National University of Defense Technology, Changsha 410073 (China); Pukhov, A. [Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf (Germany)

    2014-05-15

    By using three-dimensional particle-in-cell simulations with synchrotron radiation damping incorporated, dynamics of ultra-intense laser driven mass-limited foils is presented. When a circularly polarized laser pulse with a peak intensity of ∼10{sup 22} W/cm{sup 2} irradiates a mass-limited nanofoil, electrons are pushed forward collectively and a strong charge separation field forms which acts as a “light sail” and accelerates the protons. When the laser wing parts overtake the foil from the foil boundaries, electrons do a betatron-like oscillation around the center proton bunch. Under some conditions, betatron-like resonance takes place, resulting in energetic circulating electrons. Finally, bright femto-second x rays are emitted in a small cone. It is also shown that the radiation damping does not alter the foil dynamics radically at considered laser intensities. The effects of the transverse foil size and laser polarization on x-ray emission and foil dynamics are also discussed.

  11. Self-guiding of high-intensity laser pulses for laser wake field acceleration

    International Nuclear Information System (INIS)

    Umstader, D.; Liu, X.

    1992-01-01

    A means of self-guiding an ultrashort and high-intensity laser pulse is demonstrated both experimentally and numerically. Its relevance to the laser wake field accelerator concept is discussed. Self-focusing and multiple foci formation are observed when a high peak power (P>100 GW), 1 μm, subpicosecond laser is focused onto various gases (air or hydrogen). It appears to result from the combined effects of self-focusing by the gas, and de-focusing both by diffraction and the plasma formed in the central high-intensity region. Quasi-stationary computer simulations show the same multiple foci behavior as the experiments. The results suggest much larger nonlinear electronic susceptibilities of a gas near or undergoing ionization in the high field of the laser pulse. Although self-guiding of a laser beam by this mechanism appears to significantly extend its high-intensity focal region, small-scale self-focusing due to beam non-uniformity is currently a limitation

  12. Relativistic electron mirrors from high intensity laser nanofoil interactions

    International Nuclear Information System (INIS)

    Kiefer, Daniel

    2012-01-01

    The reflection of a laser pulse from a mirror moving close to the speed of light could in principle create an X-ray pulse with unprecedented high brightness owing to the increase in photon energy and accompanying temporal compression by a factor of 4γ 2 , where γ is the Lorentz factor of the mirror. While this scheme is theoretically intriguingly simple and was first discussed by A. Einstein more than a century ago, the generation of a relativistic structure which acts as a mirror is demanding in many different aspects. Recently, the interaction of a high intensity laser pulse with a nanometer thin foil has raised great interest as it promises the creation of a dense, attosecond short, relativistic electron bunch capable of forming a mirror structure that scatters counter-propagating light coherently and shifts its frequency to higher photon energies. However, so far, this novel concept has been discussed only in theoretical studies using highly idealized interaction parameters. This thesis investigates the generation of a relativistic electron mirror from a nanometer foil with current state-of-the-art high intensity laser pulses and demonstrates for the first time the reflection from those structures in an experiment. To achieve this result, the electron acceleration from high intensity laser nanometer foil interactions was studied in a series of experiments using three inherently different high power laser systems and free-standing foils as thin as 3nm. A drastic increase in the electron energies was observed when reducing the target thickness from the micrometer to the nanometer scale. Quasi-monoenergetic electron beams were measured for the first time from ultrathin (≤5nm) foils, reaching energies up to ∝35MeV. The acceleration process was studied in simulations well-adapted to the experiments, indicating the transition from plasma to free electron dynamics as the target thickness is reduced to the few nanometer range. The experience gained from those

  13. Relativistic electron mirrors from high intensity laser nanofoil interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, Daniel

    2012-12-21

    The reflection of a laser pulse from a mirror moving close to the speed of light could in principle create an X-ray pulse with unprecedented high brightness owing to the increase in photon energy and accompanying temporal compression by a factor of 4γ{sup 2}, where γ is the Lorentz factor of the mirror. While this scheme is theoretically intriguingly simple and was first discussed by A. Einstein more than a century ago, the generation of a relativistic structure which acts as a mirror is demanding in many different aspects. Recently, the interaction of a high intensity laser pulse with a nanometer thin foil has raised great interest as it promises the creation of a dense, attosecond short, relativistic electron bunch capable of forming a mirror structure that scatters counter-propagating light coherently and shifts its frequency to higher photon energies. However, so far, this novel concept has been discussed only in theoretical studies using highly idealized interaction parameters. This thesis investigates the generation of a relativistic electron mirror from a nanometer foil with current state-of-the-art high intensity laser pulses and demonstrates for the first time the reflection from those structures in an experiment. To achieve this result, the electron acceleration from high intensity laser nanometer foil interactions was studied in a series of experiments using three inherently different high power laser systems and free-standing foils as thin as 3nm. A drastic increase in the electron energies was observed when reducing the target thickness from the micrometer to the nanometer scale. Quasi-monoenergetic electron beams were measured for the first time from ultrathin (≤5nm) foils, reaching energies up to ∝35MeV. The acceleration process was studied in simulations well-adapted to the experiments, indicating the transition from plasma to free electron dynamics as the target thickness is reduced to the few nanometer range. The experience gained from those

  14. The pitfalls of dosimetric commissioning for intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Tohyama, Naoki; Kodama, Takashi; Hatano, K.

    2013-01-01

    Intensity modulated radiation therapy (IMRT) allows higher radiation dose to be focused to the target volumes while minimizing the dose to OAR. To start of clinical treatment in IMRTvwe must perform commissioning strictly than 3D-conformal radiotherapy (CRT). In this report, pitfalls of dosimetric commissioning for intensity modulated radiation therapy were reviewed. Multileaf collimator (MLC) offsets and MLC transmissions are important parameters in commissioning of RTPS for IMRT. Correction of depth scaling and fluence scaling is necessary for dose measurement using solid phantom. (author)

  15. Frequency conversion of high-intensity, femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Banks, P S

    1997-06-01

    Almost since the invention of the laser, frequency conversion of optical pulses via non- linear processes has been an area of active interest. However, third harmonic generation using ~(~1 (THG) in solids is an area that has not received much attention because of ma- terial damage limits. Recently, the short, high-intensity pulses possible with chirped-pulse amplification (CPA) laser systems allow the use of intensities on the order of 1 TW/cm2 in thin solids without damage. As a light source to examine single-crystal THG in solids and other high field inter- actions, the design and construction of a Ti:sapphire-based CPA laser system capable of ultimately producing peak powers of 100 TW is presented. Of special interest is a novel, all-reflective pulse stretcher design which can stretch a pulse temporally by a factor of 20,000. The stretcher design can also compensate for the added material dispersion due to propagation through the amplifier chain and produce transform-limited 45 fs pulses upon compression. A series of laser-pumped amplifiers brings the peak power up to the terawatt level at 10 Hz, and the design calls for additional amplifiers to bring the power level to the 100 TW level for single shot operation. The theory for frequency conversion of these short pulses is presented, focusing on conversion to the third harmonic in single crystals of BBO, KD*P, and d-LAP (deuterated I-arginine phosphate). Conversion efficiencies of up to 6% are obtained with 500 fs pulses at 1053 nm in a 3 mm thick BBO crystal at 200 GW/cm 2. Contributions to this process by unphasematched, cascaded second harmonic generation and sum frequency generation are shown to be very significant. The angular relationship between the two orders is used to measure the tensor elements of C = xt3)/4 with Crs = -1.8 x 1O-23 m2/V2 and .15Cri + .54Crs = 4.0 x 1O-23 m2/V2. Conversion efficiency in d-LAP is about 20% that in BBO and conversion efficiency in KD*P is 1% that of BBO. It is calculated

  16. Design and testing of low intensity laser biostimulator

    Directory of Open Access Journals (Sweden)

    Pallikarakis Nicolas E

    2005-01-01

    . The novel method proposed for testing the device efficiency allows for objectively recording of SLB potentials evoked by laser stimulus. Based on the biopotential records obtained with this method, a scientifically based conclusion can be drawn about the effectiveness of the commercially available devices for low-level laser therapy used in Medical Acupuncture. The prototype tests showed that with the biostimulator presented, SLB could be effectively stimulated at low power levels. However more studies are needed to derive a general conclusion about the SLB biostimulation mechanism of lasers and their most effective power and optical settings.

  17. Multi-energy ion implantation from high-intensity laser

    Czech Academy of Sciences Publication Activity Database

    Cutroneo, Mariapompea; Torrisi, L.; Ullschmied, Jiří; Dudžák, Roman

    2016-01-01

    Roč. 61, č. 2 (2016), s. 109-113 ISSN 0029-5922. [PLASMA 2015 : International Conference on Research and Applications of Plasmas. Warsaw, 07.09.2015-11.09.2015] R&D Projects: GA MŠk(CZ) LM2011019; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389021 ; RVO:61389005 Keywords : high-intensity laser * implantation * material modification Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BL - Plasma and Gas Discharge Physics (UFP-V) Impact factor: 0.760, year: 2016

  18. Keratomodelling with low-intensity ultraviolet radiation of excimer laser

    International Nuclear Information System (INIS)

    Vitrishchak, I.B.; Vorontsov, V.V.; Murzin, A.G.; Polikarpov, S.S.; Soms, L.N.

    1990-01-01

    A study was made on possibility of keratomodelling with low-intensive UV-radiation of excimer laser with subablation energy density in a pulse. Model specimens of polymers and cornea tissue were used. It is shown that the range of threshold energy density in a pulse expands with increase of UV-radiation wave length and contracts with increase of pulse repetition frequency. This range appeared to be different for polymers and cornea tissue. It was revealed that cornea tissue represented a complex high-molecular bipolymer with high water content

  19. Adiabatic theory of ionization of atoms by intense laser pulses

    International Nuclear Information System (INIS)

    Tolstikhin, Oleg I; Morishita, Toru; Watanabe, Shinichi

    2009-01-01

    As a first step towards the adiabatic theory of ionization of atoms by intense laser pulses, here we consider the simplest one-dimensional zero-range potential model. The asymptotic solution to the time-dependent Schroedinger equation in the adiabatic regime is obtained and the photoelectron spectrum is calculated. The factorization formula for the photoelectron spectrum in the back-rescattering region, first suggested by Morishita et al. [Phys. Rev. Lett. 100, 013903 (2008)] on the basis of ab initio calculations, is derived analytically.

  20. Ionization of molecular hydrogen in ultrashort intense laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Vanne, Yulian V.

    2010-03-18

    A novel ab initio numerical approach is developed and applied that solves the time-dependent Schroedinger equation describing two-electron diatomic molecules (e.g. molecular hydrogen) exposed to an intense ultrashort laser pulse. The method is based on the fixed-nuclei and the non-relativistic dipole approximations and aims to accurately describe both correlated electrons in full dimensionality. The method is applicable for a wide range of the laser pulse parameters and is able to describe both few-photon and many-photon single ionization processes, also in a non-perturbative regime. A key advantage of the method is its ability to treat the strong-field response of the molecules with arbitrary orientation of the molecular axis with respect to the linear-polarized laser field. Thus, this work reports on the first successful orientation-dependent analysis of the multiphoton ionization of H{sub 2} performed by means of a full-dimensional numerical treatment. Besides the investigation of few-photon regime, an extensive numerical study of the ionization by ultrashort frequency-doubled Ti:sapphire laser pulses (400 nm) is presented. Performing a series of calculations for different internuclear separations, the total ionization yields of H{sub 2} and D{sub 2} in their ground vibrational states are obtained for both parallel and perpendicular orientations. A series of calculations for 800 nm laser pulses are used to test a popular simple interference model. Besides the discussion of the ab initio numerical method, this work considers different aspects related to the application of the strong-field approximation (SFA) for investigation of a strong-field response of an atomic and molecular system. Thus, a deep analysis of the gauge problem of SFA is performed and the quasistatic limit of the velocity-gauge SFA ionization rates is derived. The applications of the length-gauge SFA are examined and a recently proposed generalized Keldysh theory is criticized. (orig.)

  1. Near resonant absorption by atoms in intense fluctuating laser fields

    International Nuclear Information System (INIS)

    Smith, S.J.

    1994-01-01

    The objective of this program was to make quantitative measurements of the effects of higher-order phase/frequency correlations in a laser beam on nonlinear optical absorption processes in atoms. The success of this program was due in large part to a unique experimental capability for modulating the extracavity beam of a stabilized (approx-lt 200 kHz) continuous-wave laser with statistically-well-characterized stochastic phase (or frequency) fluctuations, in order to synthesize laser bandwidths to ∼20 MHz (depending on noise amplitude), with profiles variable between Gaussian and Lorentzian (depending on noise bandwidth). Laser driven processes investigated included the following: (1) the optical Autler-Towns effect in the 3S 1/2 (F = 2, M F = 2) → 3P 3/2 (F = 3, M F = 3) two- level Na resonance, using a weak probe to the 4D 5/2 level; (2) the variance and spectra of fluorescence intensity fluctuations in the two-level Na resonance; (3) the Hanle effect in the 1 S 0 - 3 P 1 , transition at λ = 555.6 nm in 174 Yb; (4) absorption (and gain) of a weak probe, when the probe is a time-delayed replica of the resonant (with the two-level Na transition) pump laser; and (5) four-wave-mixing in a phase-conjugate geometry, in a sodium cell, and, finally, in a diffuse atomic sodium beam. The experimental results from these several studies have provided important confirmation of advanced theoretical methods

  2. Ionization of molecular hydrogen in ultrashort intense laser pulses

    International Nuclear Information System (INIS)

    Vanne, Yulian V.

    2010-01-01

    A novel ab initio numerical approach is developed and applied that solves the time-dependent Schroedinger equation describing two-electron diatomic molecules (e.g. molecular hydrogen) exposed to an intense ultrashort laser pulse. The method is based on the fixed-nuclei and the non-relativistic dipole approximations and aims to accurately describe both correlated electrons in full dimensionality. The method is applicable for a wide range of the laser pulse parameters and is able to describe both few-photon and many-photon single ionization processes, also in a non-perturbative regime. A key advantage of the method is its ability to treat the strong-field response of the molecules with arbitrary orientation of the molecular axis with respect to the linear-polarized laser field. Thus, this work reports on the first successful orientation-dependent analysis of the multiphoton ionization of H 2 performed by means of a full-dimensional numerical treatment. Besides the investigation of few-photon regime, an extensive numerical study of the ionization by ultrashort frequency-doubled Ti:sapphire laser pulses (400 nm) is presented. Performing a series of calculations for different internuclear separations, the total ionization yields of H 2 and D 2 in their ground vibrational states are obtained for both parallel and perpendicular orientations. A series of calculations for 800 nm laser pulses are used to test a popular simple interference model. Besides the discussion of the ab initio numerical method, this work considers different aspects related to the application of the strong-field approximation (SFA) for investigation of a strong-field response of an atomic and molecular system. Thus, a deep analysis of the gauge problem of SFA is performed and the quasistatic limit of the velocity-gauge SFA ionization rates is derived. The applications of the length-gauge SFA are examined and a recently proposed generalized Keldysh theory is criticized. (orig.)

  3. Improvement of disfiguring skin conditions by laser therapy

    OpenAIRE

    van Drooge, A.M.

    2014-01-01

    Since their introduction in dermatology, lasers became a welcome addition to the therapeutic armentarium for disfiguring skin conditions. In this thesis, we evaluated laser therapy for the treatment of scars, of benign dermal tumours, and of port-wine stains. For scars, many different laser devices have been proposed. In this thesis, we performed a review that showed the pulsed dye laser most effective in hypertrophic scars. We did not find enough evidence for the efficacy of ablative fractio...

  4. Effect of axial length on laser spot size during photodynamic therapy: an experimental study in monkeys.

    Science.gov (United States)

    Kondo, Mineo; Ito, Yasuki; Miyata, Kentaro; Kondo, Nagako; Ishikawa, Kohei; Terasaki, Hiroko

    2006-01-01

    To investigate the effect of shorter axial length on the laser spot size and laser energy during photodynamic therapy (PDT) in monkeys. Experimental study with four rhesus monkeys. PDT was performed on the normal retina of monkeys whose ocular axial lengths are shorter (19.55 to 20.25 mm) than that of humans. After the PDT, the eyes were enucleated, and the diameter of the irradiated laser spot was measured with a microcaliper. The area of actual laser spot was only 0.56 to 0.61 times of the planned area, which indicated that the laser energy/area was 1.64 to 1.78 times more intense than planned initially. These results are the in vivo demonstration that the diameter of PDT laser spot is smaller for eyes with shorter axial lengths.

  5. Immediate pain relief effect of low level laser therapy for sports injuries: Randomized, double-blind placebo clinical trial.

    Science.gov (United States)

    Takenori, A; Ikuhiro, M; Shogo, U; Hiroe, K; Junji, S; Yasutaka, T; Hiroya, K; Miki, N

    2016-12-01

    To determine the immediate pain relief effect of low-level laser therapy on sports injuries in athletes and degree of pain relief by the therapy. Double-blind, randomized, comparative clinical study. Participants were 32 college athletes with motion pain at a defined site. Participants were randomized into two groups in which the tested or placebo laser therapy was administered to determine pain intensity from painful action before and after laser irradiation, using the Modified Numerical Rating Scale. The post-therapeutic Modified Numerical Rating Scale score was subtracted from the pre-therapeutic Modified Numerical Rating Scale score to determine pain intensity difference, and the rate of pain intensity difference to pre-therapeutic Modified Numerical Rating Scale was calculated as pain relief rate. Low-level laser therapy was effective in 75% of the laser group, whereas it was not effective in the placebo group, indicating a significant difference in favor of the laser group (p<0.001). Pain relief rate was significantly higher in the laser group than in the placebo group (36.94% vs. 8.20%, respectively, p<0.001), with the difference in pain relief rate being 28.74%. Low-level laser therapy provided an immediate pain relief effect, reducing pain by 28.74%. It was effective for pain relief in 75% of participants. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  6. 'J-KAREN' - high intensity, high contrast laser

    International Nuclear Information System (INIS)

    Kiriyama, Hiromitsu; Mori, Michiaki; Nakai, Yoshiki; Okada, Hajime; Sasao, Hajime; Sagisaka, Akito; Ochi, Yoshihiro; Tanaka, Momoko; Kondo, Kiminori; Tateno, Ryo; Sugiyama, Akira; Daido, Hiroyuki; Koike, Masato; Kawanishi, Syunichi; Shimomura, Takuya; Tanoue, Manabu; Wakai, Daisuke; Kondo, Shuji; Kanazawa, Shuhei

    2010-01-01

    We report on the high intensity, high contrast double chirped-pulse amplification (CPA) Ti:sapphire laser system (named J-KAREN). By use of an optical parametric chirped-pulse amplification (OPCPA) preamplifier that is seeded by a cleaned high-energy pulse, a background amplified spontaneous emission (ASE) level of 10 -10 relative to the peak main femtosecond pulse on the picosecond timescales demonstrated with an output energy of 1.7 J and a pulse duration of 30 fs, corresponding to a peak power of 60TW at a 10 Hz repetition rate. This system which uses a cryogenically-cooled Ti:sapphire final amplifier generates focused peak intensity in excess of 10 20 W/cm 2 at a 10 Hz repetition rate. (author)

  7. Geometrical theory of nonlinear phase distortion of intense laser beams

    International Nuclear Information System (INIS)

    Glaze, J.A.; Hunt, J.T.; Speck, D.R.

    1975-01-01

    Phase distortion arising from whole beam self-focusing of intense laser pulses with arbitrary spatial profiles is treated in the limit of geometrical optics. The constant shape approximation is used to obtain the phase and angular distribution of the geometrical rays in the near field. Conditions for the validity of this approximation are discussed. Geometrical focusing of the aberrated beam is treated for the special case of a beam with axial symmetry. Equations are derived that show both the shift of the focus and the distortion of the intensity distribution that are caused by the nonlinear index of refraction of the optical medium. An illustrative example treats the case of beam distortion in a Nd:Glass amplifier

  8. Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Bin; Chu Wei; Li Guihua; Zhang Haisu; Ni Jielei [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Graduate School of Chinese Academy of Sciences, Beijing 100080 (China); Gao Hui; Liu Weiwei [Institute of Modern Optics, Nankai University, Tianjin, 300071 (China); Yao Jinping; Cheng Ya; Xu Zhizhan [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Chin, See Leang [Center for Optics, Photonics and Laser (COPL) and Department of Physics, Engineering Physics and Optics, Universite Laval, Quebec City, QC, G1V 0A6 (Canada)

    2011-12-15

    We demonstrate that the peak intensity in the filament core, which is inherently limited by the intensity clamping effect during femtosecond laser filamentation, can be significantly enhanced using spatiotemporally focused femtosecond laser pulses. In addition, the filament length obtained by spatiotemporally focused femtosecond laser pulses is {approx}25 times shorter than that obtained by a conventional focusing scheme, resulting in improved high spatial resolution.

  9. Can low-intensity extracorporeal shockwave therapy improve erectile dysfunction?

    DEFF Research Database (Denmark)

    Olsen, Anne B; Persiani, Marie; Boie, Sidsel

    2015-01-01

    OBJECTIVE: The aim of this study was to investigate whether low-intensity extracorporeal shockwave therapy (LI-ESWT) can be used as a treatment for men with erectile dysfunction of organic origin. MATERIALS AND METHODS: This prospective, randomized, blinded, placebo-controlled study included 112 ...... are needed. KEYWORDS: Erectile dysfunction; extracorporeal shockwave; penis...

  10. Intensive cognitive behavioural therapy for obsessive-compulsive disorder

    DEFF Research Database (Denmark)

    Jonsson, H.; Kristensen, M.; Arendt, M.

    2015-01-01

    Despite promising results from intensive formats of cognitive-behavioural therapy (CBT) for obsessive-compulsive disorder (OCD) the format is rarely used. The aim of the study was to systematically review the literature within this area of research and provide a meta-analysis of the effectiveness...

  11. Coherent combs in ionization by intense and short laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Krajewska, K., E-mail: Katarzyna.Krajewska@fuw.edu.pl [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa (Poland); Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68588-0299 (United States); Kamiński, J.Z., E-mail: Jerzy.Kaminski@fuw.edu.pl [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa (Poland)

    2016-03-22

    Photoionization of positive ions by a train of intense, short laser pulses is investigated within the relativistic strong field approximation, using the velocity gauge. The formation of broad peak structures in the high-energy domain of photoelectrons is observed and interpreted. The emergence of coherent photoelectron energy combs within these structures is demonstrated, and it is interpreted as the consequence of the Fraunhofer-type interference/diffraction of probability amplitudes of ionization from individual pulses comprising the train. Extensions to the coherent angular combs are also studied, and effects related to the radiation pressure are presented. - Highlights: • We develop relativistic Strong-Field Approximation for ionization by intense and short laser pulses of arbitrary spectral compositions. • We show that the consistent interpretation of results is provided by the Keldysh-type saddle point analysis of probability amplitudes. • We derive a general Fraunhofer-type interference/diffraction formula for finite train of pulses. • We study the coherent combs in photoelectron probability distributions.

  12. Atomic and Molecular Systems in Intense Ultrashort Laser Pulses

    Science.gov (United States)

    Saenz, A.

    2008-07-01

    The full quantum mechanical treatment of atomic and molecular systems exposed to intense laser pulses is a so far unsolved challenge, even for systems as small as molecular hydrogen. Therefore, a number of simplified qualitative and quantitative models have been introduced in order to provide at least some interpretational tools for experimental data. The assessment of these models describing the molecular response is complicated, since a comparison to experiment requires often a number of averages to be performed. This includes in many cases averaging of different orientations of the molecule with respect to the laser field, focal volume effects, etc. Furthermore, the pulse shape and even the peak intensity is experimentally not known with very high precision; considering, e.g., the exponential intensity dependence of the ionization signal. Finally, experiments usually provide only relative yields. As a consequence of all these averagings and uncertainties, it is possible that different models may successfully explain some experimental results or features, although these models disagree substantially, if their predictions are compared before averaging. Therefore, fully quantum-mechanical approaches at least for small atomic and molecular systems are highly desirable and have been developed in our group. This includes efficient codes for solving the time-dependent Schrodinger equation of atomic hydrogen, helium or other effective one- or two-electron atoms as well as for the electronic motion in linear (effective) one-and two-electron diatomic molecules like H_2.Very recently, a code for larger molecular systems that adopts the so-called single-active electron approximation was also successfully implemented and applied. In the first part of this talk popular models describing intense laser-field ionization of atoms and their extensions to molecules are described. Then their validity is discussed on the basis of quantum-mechanical calculations. Finally, some

  13. Topics in high-intensity laser plasma interaction

    International Nuclear Information System (INIS)

    Leemans, W.P.

    1991-01-01

    The interaction of high intensity laser pulses with pre-formed and laser-produced plasmas is studied. Through experiments and simulations we have investigated stimulated Compton scattering in preformed plasmas and the plasma physics aspects of tunnel-ionized gases. A theoretical study is presented on the nonlinear dynamics of relativistic plasma waves driven by colinear optical mixing. The electron density-fluctuation spectra induced by stimulated Compton scattering have been directly observed for the first time. A CO2 laser was focused into pre-formed plasmas with densities n(e) varied from 0.4-6 x 10(exp 16) cu cm. The fluctuations corresponding to backscatter were probed using Thomson scattering. At low n(e), the scattered spectra peak at a frequency shift Delta omega is approximately kv e and appears to be in a linear regime. At the highest n(e), a nonlinear saturation of the SCS instability is observed due to a self-induced perturbation of the electron distribution function. Tunnel-ionized plasmas have been studied through experiments and particle simulations. Experimentally, qualitative evidence for plasma temperature control by varying the laser polarization was obtained by the measurement of stimulated Compton scattering fluctuation spectra and x-ray emission from such plasmas. A higher parallel temperature than expected from the single-particle tunneling model was observed. Simulations indicate that stochastic heating and the Weibel instability play an important role in plasma heating in all directions and isotropization. The non-linear dynamics associated with beatwave (Delta omega, Delta k) excited long wavelength plasma waves in the presence of strong, short wavelength density ripple have been examined, using the relativistic Lagrangian oscillator model. This model shows period doubling that roughly follows Feigenbaum scaling, and a transition to chaos

  14. EVALUATION OF THE THERAPEUTIC EFFICACY OF HIGH-INTENSITY PULSED-PERIODIC LASER RADIATION (CLINICAL AND EXPERIMENTAL OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    V. V. Sokolov

    2016-01-01

    Full Text Available From the experience of clinical observations, we have shown a high therapeutic effectiveness of the medical laser KULON-MED in: cosmetics, non-cancer inflammatory diseases of the gastrointestinal tract and cancer (cancer of the stomach and colon as at different wavelengths, and with different types of photosensitizers. In the area of anti-tumor photodynamic therapy (PDT, based on experimental studies, we have showed the high antitumor (sarcoma S‑37 effectiveness of the laser (with the inhibition of tumor growth of up to 100% for repetitively pulsed irradiation mode, and for mode fractionation doses laser radiation. In addition, significant differences are shown in the effectiveness of anticancer PDT methods in the application of high-intensity lasers, continuous and pulsed caused fundamental properties of laser radiation characteristics – time structure of the radiation pulses. Thus, for the first time we have shown that the time of high-intensity laser pulses structure significantly affects therapeutic efficacy laser system, and hence on the mechanisms of interaction of laser radiation with biological tissue.

  15. Effects of laser wavelength and density scale length on absorption of ultrashort intense lasers on solid-density targets

    Energy Technology Data Exchange (ETDEWEB)

    Susumu, Kato; Eiichi, Takahashi; Tatsuya, Aota; Yuji, Matsumoto; Isao, Okuda; Yoshiro, Owadano [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan)

    2004-07-01

    The interaction of intense laser pulses with overdense plasmas has attracted much interest for the fast igniter concept in inertial fusion energy. Hot electron temperatures and electron energy spectra in the course of interaction between intense laser pulse and overdense plasmas are reexamined from a viewpoint of the difference in laser wavelength. The hot electron temperature measured by a particle-in-cell simulation is scaled by I rather than I{lambda}{sup 2} at the interaction with overdense plasmas with fixed ions, where I and {lambda} are the laser intensity and wavelength, respectively. (authors)

  16. Application of laser therapy in treating inherited forms of psychoverbal retardation in children

    Science.gov (United States)

    Ulas, V. Y.; Voinova, V. M.; Il'in, L. B.; Troitskaya, L. A.; Dobrynina, E. V.; Kazantseva, L. Z.

    2001-04-01

    An investigation was made of applying combined laser therapy in the treatment of 619 children (422 children constituted the experimental group and 197 children composed the control group) affected by inherited forms of psychoverbal retardation. It was found that low-intensity He-Ne laser radiation with the wavelength of 632.8 nm and the output power of 2 mW made it possible to improve the children's mental development. Moreover, it effectively increased their mental activities, such as speech, communication, arbitrary behavior regulation, and locomotory functions. Laser therapy applied in treating children affected by the arrested mental development aggravated by obesity additionally decreased their body weight, increased their field of vision, and eliminated dyslipidemia. It was also found that contraindications to He-Ne laser acupuncture included phenylketonuria-related noncorrected metabolic defects, convulsive syndromes, epileptic activities, convulsive readiness, and cerebrolysine intramuscular injections.

  17. Laser-energy scaling law for neutrons generated from nano particles Coulomb-exploded by intense femtosecond laser pulses

    International Nuclear Information System (INIS)

    Sakabe, Shuji; Hashida, Masaki

    2015-01-01

    To discuss the feasibility of compact neutron sources the yield of laser produced neutrons is scaled by the laser energy. High-energy ions are generated by Coulomb explosion of clusters through intense femtosecond laser-cluster interactions. The laser energy scaling law of the neutron yield is estimated using the laser intensity scaling law for the energy of ions emitted from clusters Coulomb-exploded by an intense laser pulse. The neutron yield for D (D, n) He shows the potential of compact neutron sources with modern laser technology, and the yield for p (Li, n) Be shows much higher than that for Li (p, n) Be with the assumption of 500 nm-class cluster Coulomb explosion. (author)

  18. Glacier Snowline Determination from Terrestrial Laser Scanning Intensity Data

    Directory of Open Access Journals (Sweden)

    Hannah Prantl

    2017-07-01

    Full Text Available Accurately identifying the extent of surface snow cover on glaciers is important for extrapolating end of year mass balance measurements, constraining the glacier surface radiative energy balance and evaluating model simulations of snow cover. Here, we use auxiliary information from Riegl VZ-6000 Terrestrial Laser Scanner (TLS return signals to accurately map the snow cover over a glacier throughout an ablation season. Three classification systems were compared, and we find that supervised classification based on TLS signal intensity alone is outperformed by a rule-based classification employing intensity, surface roughness and an associated optical image, which achieves classification accuracy of 68–100%. The TLS intensity signal shows no meaningful relationship with surface or bulk snow density. Finally, we have also compared our Snow Line Altitude (SLA derived from TLS with SLA derived from the model output, as well as one Landsat image. The results of the model output track the SLA from TLS well, however with a positive bias. In contrast, automatic Landsat-derived SLA slightly underestimates the SLA from TLS. To conclude, we demonstrate that the snow cover extent can be mapped successfully using TLS, although the snow mass remains elusive.

  19. Intravenous Laser Therapy in Young Children with Thermal Injuries

    Directory of Open Access Journals (Sweden)

    R. V. Bocharov

    2014-01-01

    Full Text Available Objective: to evaluate the laboratory and clinical effects of combined intravenous laser therapy in young children with thermalinjuries in the acute period of burn disease.Subjects and methods. Forty children whose mean age was 2.67±0.35 years were examined; thermal injuries accounted for 25.05±1.01% of the total body surface area; of them degrees IIIaIIIb was 19.04±0.85%. A comparison group (n=15 received conventional therapy without taking into account and correcting baseline and current hemostasiological disorders. On day 1, a study group (n=25 had programmed anticoagulant therapy and intravenous laser therapy at different radiation frequencies with a Mustang 20002+ laser therapy apparatus (patent for invention No. 2482894 in addition to the conventional therapy. The laser therapy cycle was 6 to 16 sessions. The investigators estimated and compared the following examined parameters: white blood cell count; leukocytic index of intoxication; plasma average mass molecules at a wavelength of 254 nm; toxogenic granularity of neutrophils; wound exudate discharge time; surgical plasty area; and hospitalization time.Results. The positive laboratory and clinical effects of the performed combined intravenous laser therapy in the combined therapy of burn disease in young children were comparatively shown in the study group patients. The significant decrease in the level of an inflammatory response and endogenous intoxication led to a rapider burn wound cleansing, active epithelization, and reduced surgical plasty volumes.Conclusion. Combined intravenous laser therapy signif icantly exerts antiinflammatory and detoxifying effects in young children with 40% thermal injuries in the acute period of burn disease. Abolishing a systemic inflammatory response by combined intravenous laser therapy initiated early regenerative processes in the burn wound and caused reductions in surgical plasty volumes and hospitalization time, which optimizes ther

  20. The effect of laser unit on photodynamic therapy spot size.

    Science.gov (United States)

    Ansari-Shahrezaei, Siamak; Binder, Susanne; Stur, Michael

    2011-01-01

    To determine the effect of the laser unit on photodynamic therapy (PDT) spot size. A calibrated Gullstrand-type model eye was used for this study. The axial length of the model eye was set to different values ranging from 22.2 to 27.0 mm, and the actual spot size from the laser console was recorded for treating a spot of 4 mm in the center of the artificial fundus using two different laser units (Coherent Opal laser; Coherent Inc, Santa Clara, California, USA and Zeiss Visulas laser; Carl Zeiss Meditec Inc, Dublin, California, USA) and two indirect contact laser lenses (Volk PDT laser lens and Volk Area Centralis lens; Volk Optical Inc, Mentor, Ohio, USA). From myopia to hyperopia, the total deviation from the intended spot size was -22.5% to -7.5% (Opal laser and PDT laser lens), and -17.5% to +2.5% (Visulas laser and PDT laser lens), -12.5% to +7.5% (Opal laser and Area Centralis lens), and -7.5% to +10% (Visulas laser and Area Centralis lens). The used laser unit has a significant effect on PDT spot size in this model. These findings may be important for optimizing PDT of choroidal neovascular lesions.

  1. High intensity laser interactions with sub-micron droplets

    International Nuclear Information System (INIS)

    Mountford, L.C.

    1999-01-01

    A high-density source of liquid ethanol droplets has been developed, characterised and used in laser interaction studies for the first time. Mie Scattering and attenuation measurements show that droplets with a radius of (0.5 ± 0.1) μm and atomic densities of 10 19 atoms/cm 3 can be produced, bridging the gap between clusters and macroscopic solids. Lower density (10 16 cm -3 ) sprays can also be produced and these are electrostatically split into smaller droplets with a radius of (0.3 ± 0.1) μm. This work has been accepted for publication in Review of Scientific Instruments. A range of high intensity interaction experiments have been carried out with this unique sub-micron source. The absolute yield of keV x-rays, generated using 527 nm, 2 ps pulses focused to ∼10 17 W/cm 2 , was measured for the first time. ∼7 μJ of x-rays with photon energies above 1 keV were produced, comparable to yields obtained from much higher Z Xenon clusters. At intensities ≤10 16 W/cm 2 the yield from droplets exceeds that from solid targets of similar Z. The droplet medium is debris free and self-renewing, providing a suitable x-ray source for lithographic techniques. Due to the spacing between the droplets, it was expected that the droplet plasma temperature would exceed that of a solid target plasma, which is typically limited by rapid heat conduction to <1 keV. Analysis of the x-ray data shows this to be true with a mean droplet plasma temperature of (2 ± 0.8) keV, and a number of measurements exceeding 5 keV (to appear in Applied Physics Letters). The absorption of high intensity laser pulses in the dense spray has been measured for the first time and this was found to be wavelength and polarisation independent and in excess of 60%. These first interaction measurements clearly indicate that there are significant differences between the laser heating of droplet, solid and cluster targets. (author)

  2. Probing ultrafast dynamics of solid-density plasma generated by high-contrast intense laser pulses

    Science.gov (United States)

    Jana, Kamalesh; Blackman, David R.; Shaikh, Moniruzzaman; Lad, Amit D.; Sarkar, Deep; Dey, Indranuj; Robinson, Alex P. L.; Pasley, John; Ravindra Kumar, G.

    2018-01-01

    We present ultrafast dynamics of solid-density plasma created by high-contrast (picosecond contrast ˜10-9), high-intensity (˜4 × 1018 W/cm2) laser pulses using time-resolved pump-probe Doppler spectrometry. Experiments show a rapid rise in blue-shift at early time delay (2-4.3 ps) followed by a rapid fall (4.3-8.3 ps) and then a slow rise in blue-shift at later time delays (>8.3 ps). Simulations show that the early-time observations, specifically the absence of any red-shifting of the reflected probe, can only be reproduced if the front surface is unperturbed by the laser pre-pulse at the moment that the high intensity pulse arrives. A flexible diagnostic which is capable of diagnosing the presence of low-levels of pre-plasma formation would be useful for potential applications in laser-produced proton and ion production, such as cancer therapy and security imaging.

  3. Escaping Electrons from Intense Laser-Solid Interactions as a Function of Laser Spot Size

    OpenAIRE

    Rusby, Dean; Gray, Ross; Butler, Nick; Dance, Rachel; Scott, Graeme; Bagnoud, Vincent; Zielbauer, Bernhard; McKenna, Paul; Neely, David

    2018-01-01

    The interaction of a high-intensity laser with a solid target produces an energetic distribution of electrons that pass into the target. These electrons reach the rear surface of the target creating strong electric potentials that act to restrict the further escape of additional electrons. The measurement of the angle, flux and spectra of the electrons that do escape gives insights to the initial interaction. Here, the escaping electrons have been measured using a differentially filtered imag...

  4. A proton beam delivery system for conformal therapy and intensity modulated therapy

    International Nuclear Information System (INIS)

    Yu Qingchang

    2001-01-01

    A scattering proton beam delivery system for conformal therapy and intensity modulated therapy is described. The beam is laterally spread out by a dual-ring double scattering system and collimated by a program-controlled multileaf collimator and patient specific fixed collimators. The proton range is adjusted and modulated by a program controlled binary filter and ridge filters

  5. Interaction of intense ultrashort pulse lasers with clusters

    International Nuclear Information System (INIS)

    Petrov, G. M.; Davis, J.

    2008-01-01

    The dynamics of clusters composed of different material irradiated by a high-intensity ultrashort pulse laser was studied using a fully relativistic three-dimensional molecular dynamics model. Key parameters of the cluster evolution such as particle positions, energy absorption, and cluster explosion were simulated. By a direct comparison of these parameters for clusters of equal initial radius but made of different material (deuterium, neon, argon, and xenon), the main stages and attributes of cluster evolution were elucidated. The simulations showed that clusters made of different material act alike, especially those of heavy elements. Clusters made of heavy elements (neon, argon, and xenon) differentiate from clusters made of light elements (deuterium) by the magnitude of the absorbed energy per cluster and the final mean energy of exploding ions. What most distinguishes clusters composed of different material is the amount of emitted radiation and its spectral range

  6. Multiple ionization dynamics of molecules in intense laser fields

    International Nuclear Information System (INIS)

    Ichimura, Atsushi; Ohyama-Yamaguchi, Tomoko

    2005-01-01

    A classical field-ionization model is developed for sequential multiple ionization of diatomic and linear triatomic molecules exposed to intense (∼ 10 15 W/cm 2 ) laser fields. The distance R ion of Coulomb explosion is calculated for a combination of fragment charges, by considering nonadiabatic excitation followed by field ionization associated with the inner and outer saddle points. For diatomic molecules (N 2 , NO, and I 2 ), the model explains behaviors observed in experiments, as R ion (21→31) ion (21→22) between competing charge-asymmetric and symmetric channels, and even-odd fluctuation along a principal pathway. For a triatomic molecule CO 2 , a comparison of the model with an experiment suggests that charge-symmetric (or nearly symmetric) channels are dominantly populated. (author)

  7. Helium Neon laser therapy for post mastectomy lymphedema and ...

    African Journals Online (AJOL)

    Mohamed M. Khalaf

    2012-12-08

    Dec 8, 2012 ... mastectomy lymphedema and shoulder mobility. Mohamed M. Khalaf *. ,1 .... neurological and orthopedic problems, or diabetes. The patients were ... included 15 patients who received placebo laser therapy in addition to ...

  8. Muonic atoms in super-intense laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Shahbaz, Atif

    2009-01-28

    Nuclear effects in hydrogenlike muonic atoms exposed to intense high-frequency laser fields have been studied. Systems of low nuclear charge number are considered where a nonrelativistic description applies. By comparing the radiative response for different isotopes we demonstrate characteristic signatures of the finite nuclear mass, size and shape in the high-harmonic spectra. Cutoff energies in the MeV domain can be achieved, offering prospects for the generation of ultrashort coherent {gamma}-ray pulses. Also, the nucleus can be excited while the laser-driven muon moves periodically across it. The nuclear transition is caused by the time-dependent Coulomb field of the oscillating charge density of the bound muon. A closed-form analytical expression for electric multipole transitions is derived within a fully quantum mechanical approach and applied to various isotopes. The excitation probabilities are in general very small. We compare the process with other nuclear excitation mechanisms through coupling with atomic shells and discuss the prospects to observe it in experiment. (orig.)

  9. Muonic atoms in super-intense laser fields

    International Nuclear Information System (INIS)

    Shahbaz, Atif

    2009-01-01

    Nuclear effects in hydrogenlike muonic atoms exposed to intense high-frequency laser fields have been studied. Systems of low nuclear charge number are considered where a nonrelativistic description applies. By comparing the radiative response for different isotopes we demonstrate characteristic signatures of the finite nuclear mass, size and shape in the high-harmonic spectra. Cutoff energies in the MeV domain can be achieved, offering prospects for the generation of ultrashort coherent γ-ray pulses. Also, the nucleus can be excited while the laser-driven muon moves periodically across it. The nuclear transition is caused by the time-dependent Coulomb field of the oscillating charge density of the bound muon. A closed-form analytical expression for electric multipole transitions is derived within a fully quantum mechanical approach and applied to various isotopes. The excitation probabilities are in general very small. We compare the process with other nuclear excitation mechanisms through coupling with atomic shells and discuss the prospects to observe it in experiment. (orig.)

  10. A novel diode laser system for photodynamic therapy

    DEFF Research Database (Denmark)

    Samsøe, E.; Andersen, P. E.; Petersen, P.

    2001-01-01

    In this paper a novel diode laser system for photodynamic therapy is demonstrated. The system is based on linear spatial filtering and optical phase conjugate feedback from a photorefractive BaTiO3 crystal. The spatial coherence properties of the diode laser are significantly improved. The system...

  11. Intensity noise properties of Nd:YVO 4 microchip lasers pumped with an amplitude squeezed diode laser

    Science.gov (United States)

    Becher, C.; Boller, K.-J.

    1998-02-01

    We report on intensity noise measurements of single-frequency Nd:YVO 4 microchip lasers optically pumped with amplitude squeezed light from an injection-locked diode laser. Calibrated homodyne measurements show a minimum intensity noise of 10.1 dB above the SQL at a frequency of 100 kHz. The measured intensity noise spectra are described with high accuracy by a theoretical model based on the quantum mechanical Langevin rate equations, including classical and quantum noise sources.

  12. Intensity-modulated radiation therapy: first reported treatment in Australasia

    International Nuclear Information System (INIS)

    Corry, J.; Joon, D.L.; Hope, G.; Smylie, J.; Henkul, Z.; Wills, J.; Cramb, J.; Towns, S.; Archer, P.

    2002-01-01

    Intensity-modulated radiation therapy (IMRT) is an exciting new advance in the practice of radiation oncology. It is the use of non-uniform radiation beams to achieve conformal dose distributions. As a result of the high initial capital costs and the time and complexity of planning, IMRT is not yet a widely available clinical treatment option. We describe the process involved in applying this new technology to a case of locally advanced nasopharyngeal cancer. Copyright (2002) Blackwell Science Pty Ltd

  13. Seeking optimal renal replacement therapy delivery in intensive care units.

    Science.gov (United States)

    Kocjan, Marinka; Brunet, Fabrice P

    2010-01-01

    Globally, critical care environments within health care organizations strive to provide optimal quality renal replacement therapy (RRT), an artificial replacement for lost kidney function. Examination of RRT delivery model literature and a case study review of the multidisciplinary-mixed RRT delivery model utilized within a closed medical surgical intensive care unit illustrates the organizational and clinical management of specialized resource and multidisciplinary roles. The successful utilization of a specific RRT delivery model is dependent upon resource availability.

  14. Potential clinical efficacy of intensity-modulated conformal therapy

    International Nuclear Information System (INIS)

    Meeks, Sanford L.; Buatti, John M.; Bova, Francis J.; Friedman, William A.; Mendenhall, William M.; Zlotecki, Robert A.

    1998-01-01

    Purpose: The purpose of this study was to examine the potential benefit of using intensity-modulated conformal therapy for a variety of lesions currently treated with stereotactic radiosurgery or conventional radiotherapy. Methods and Materials: Intensity-modulated conformal treatment plans were generated for small intracranial lesions, as well as head and neck, lung, breast, and prostate cases, using the Peacock Plan[reg] treatment-planning system (Nomos Corporation). For small intracranial lesions, intensity-modulated conformal treatment plans were compared with stereotactic radiosurgery treatment plans generated for patient treatment at the University of Florida Shands Cancer Center. For other sites (head and neck, lung, breast, and prostate), plans generated using the Peacock Plan[reg] were compared with conventional treatment plans, as well as beam's-eye-view conformal treatment plans. Plan comparisons were accomplished through conventional qualitative review of two-dimensional (2D) dose distributions in conjunction with quantitative techniques, such as dose-volume histograms, dosimetric statistics, normal tissue complication probabilities, tumor control probabilities, and objective numerical scoring. Results: For small intracranial lesions, there is little difference between intensity-modulated conformal treatment planning and radiosurgery treatment planning in the conformation of high isodose lines with the target volume. However, stereotactic treatment planning provides a steeper dose gradient outside the target volume and, hence, a lower normal tissue toxicity index. For extracranial sites, objective numerical scores for beam's-eye-view and intensity-modulated conformal planning techniques are superior to scores for conventional treatment plans. The beam's-eye-view planning technique prevents geographic target misses and better excludes healthy tissues from the treatment portal. Compared with scores for the beam's-eye-view planning technique, scores for

  15. Comparative clinical study using laser and LED-therapy for orofacial pain relief: dentin hypersensitivity and cervicogenic headache

    Science.gov (United States)

    Lizarelli, Rosane F. Z.; Pizzo, Renata C. A.; Florez, Fernando L. E.; Grecco, Clovis; Speciali, Jose G.; Bagnato, Vanderlei S.

    2015-06-01

    Considering several clinical situations, low intensity laser therapy has been widely applied in pain relief or analgesia mechanism. With the advent of new LED-based (light emitting diode) light sources, the need of further clinical experiments aiming to compare the effectiveness among them is paramount. The LED system therapeutic use can be denominated as LEDT - Light Emitting Diode Therapy. This study proposed two clinical evaluations of pain relief effect: to dentin hypersensitivity and to cervicogenic headache using different sources of lasers (low and high intensity) and light emitting diodes (LEDs), one emitting at the spectral band of red (630+/- 5nm) and the other one at infrared band (880+/- 5nm). Two different clinical studies were performed and presented interesting results. Considering dentin hypersensitivity, red and infrared led were so effective than the control group (high intensity laser system); by the other side, considering cervicogenic headache, control group (infrared laser) was the best treatment in comparison to red and infrared led system.

  16. Simulation of QED effects in ultrahigh intensity laser-plasma interaction

    International Nuclear Information System (INIS)

    Kostyukov, I.; Nerush, E.

    2010-01-01

    Complete text of publication follows. Due to an impressive progress in laser technology, laser pulses with peak intensity of nearly 2 x 10 22 W/cm 2 are now available in laboratory. When the matter is irradiated by so intense laser pulses high energy density plasma is produced. Besides of fundamental interest such plasma is the efficient source of particles and radiation with extreme parameters that opens bright perspectives in developments of advanced particle accelerators, next generation of radiation sources, laboratory modelling of astrophysics phenomena etc. Even high laser intensity the radiation reaction and QED effects become important. One of the QED effects, which recently attracts much attention, is the electron-positron plasma creation in strong laser field. The plasma can be produced via electromagnetic cascades: the seeded charged particles is accelerated in the field of counter-propagating laser pulses, then they emit energetic photons, the photons by turn decay in the laser field and create electron-positron pairs. The pair particles accelerated in the laser field produce new generation of the photons and pairs. For self-consistent study of the electron-positron plasma dynamics in the laser field we develop 2D code based on particle-in-cell and Monte-Carlo methods. The electron, positron and photon dynamics as well as evolution of the plasma and laser fields are calculated by PIC technique while photon emission and pair production are calculated by Monte-Carlo method. We simulate pair production in the field of counter-propagating linearly polarized laser pulses. It is shown that for the laser intensity above threshold the plasma production becomes so intense that the laser pulse are strongly absorbed in the plasma. The laser intensity threshold and the rate of laser field absorption are calculated. Acknowledgements. This work has been supported by federal target 'The scientific and scientific-pedagogical personnel of innovation in Russia' and by

  17. Benefits of Laser Therapy in Postmenopausal Vaginal Atrophy

    Science.gov (United States)

    Brînzan, Daniela; Pǎiuşan, Lucian; Daşcǎu, Voicu; Furǎu, Gheorghe

    2011-08-01

    Maybe the worst aspect of menopause is the decline of the quality of the sexual life. The aim of the study is to demonstrate the beneficial effects of laser therapy in comparison with topical application of estrogen preparations, for the treatment of vaginal atrophy and sexual dysfunctions induced by menopause. A total of 50 menopausal patients were examined during a one year period. The methods used for objectifying vaginal atrophy and sexual dysfunctions were history taking, local clinical exam and PAP smear. From this group, 40 patients had vaginal atrophy with sexual dysfunctions. They have been treated differently, being included in four groups: patients treated with local estrogens, patients treated with intravaginal laser therapy, patients treated with both laser therapy and estrogens, patients treated with estrogens and placebo laser therapy. Therapeutic benefit, improvement of vaginal atrophy and quality of sexual life, were objectified by anamnesis (questionnaire), local and general clinical examination and PAP smear. The best results have been obtained, by far, in the 3rd group, followed by the women treated only with laser. In conclusion, we can say that laser therapy is the best way for solving the sexual inconveniences of menopause.

  18. Low-power-laser therapy used in tendon damage

    Science.gov (United States)

    Strupinska, Ewa

    1996-03-01

    The following paper covers evaluation of low-power laser therapy results in chronic Achilles tendon damage and external Epicondylalia (tennis elbow). Fifty patients with Achilles damage (18 women and 32 men, age average 30, 24 plus or minus 10, 39 years) and fifty patients having external Epicondyalgiae (31 women and 19 men, age average 44, 36 plus or minus 10, 88 years) have been examined. The patients were irradiated by semiconductor infrared laser wavelength 904 nm separately or together with helium-neon laser wavelength 632.8 nm. The results of therapy have been based on the patient's interviews and examinations of patients as well as on the Laitinen pain questionnaire. The results prove analgesic effects in usage of low- power laser radiation therapy can be obtained.

  19. Effectiveness of low level laser therapy for treating male infertility

    Science.gov (United States)

    Vladimirovich Moskvin, Sergey; Ivanovich Apolikhin, Oleg

    2018-01-01

    In half of the cases, the infertility of the couple is due to the disorder of the male fertility. The leading factors that cause male infertility are urogenital infections, disorders of the immune system, testicular and prostate pathology, as well as endocrine disorders. Low level laser therapy (LLLT) is a very effective physical therapy method, used in many areas of medicine, including obstetrics and gynaecology, andrology and urology; and it is recommended as an integral part of the complex treatment of infertility. The literature review showed that LLLT is beneficial in treating male infertility. Laser can significantly improve the survival, motility and speed of movement of spermatozoa. Laser therapy of patients with prostatitis and vesiculitis can eliminate infiltrative-exudative changes, improve reproductive and copulatory functions. Local illumination of red (635 nm) and infrared (904 nm) spectra should be combined with intravenous laser blood illumination (ILBI) of red (635 nm) and ultraviolet (UV) (365 nm) spectra. PMID:29806585

  20. Calcific shoulder joint periarthritis. Disappearance of calcifications after laser therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gussetti, P; Moroso, P; Palazzo, C

    1986-01-01

    The authors report their results in the laser therapy of 30 calcific joint periarthritis. In two out of the ten radiographed cases, at the end of therapy, the complete disappearance of calcifications has been shown and in one case a decrease in calcification volume has been demonstrated. In the follow up after 6 months, 80% of clinically checked patients had no painful relapse.

  1. Long-distance propagation of intense short laser pulse in air

    International Nuclear Information System (INIS)

    Yu Wei; Yu, M.Y.; Zhang, J.; Qian, L.J.; Yuan, X.; Lu, P.X.; Li, R.X.; Sheng, Z.M.; Liu, J.R.; Xu, Z.Z.

    2004-01-01

    Long-distance propagation of intense laser pulse in air is reconsidered analytically by generalizing the analogy between the laser spotsize and the orbit of a classical particle. It is shown that multiphoton ionization introduces unique features to the laser-air interaction, thereby enabling the long-distance behavior. Several interesting characteristics of the latter are pointed out

  2. Study of 2ω and 3/2ω harmonics in ultrashort high-intensity laser ...

    Indian Academy of Sciences (India)

    Intense laser pulses from such laser systems may have many pre-pulses like picosecond ... ultrashort laser–matter interaction, as well as to control the source parameters. In situ monitoring of ultrashort ... central wavelength of 790 nm with a bandwidth of 16 ± 2 nm after the compressor. The picosecond intensity contrast ...

  3. Bremsstrahlung production with high-intensity laser matter interactions and applications

    NARCIS (Netherlands)

    Galy, J.; Maucec, M.; Hamilton, D. J.; Edwards, R.; Magill, J.

    2007-01-01

    In the last decade an evolution of experimental relativistic laser-plasma physics has led to highly sophisticated lasers, which are now able to generate ultra short pulses and can be focused to intensities in excess of 10(21) W cm(-2), with more than 500 J on target. In the intense electric field of

  4. Dependence of high order harmonics intensity on laser focal spot position in preformed plasma plumes

    International Nuclear Information System (INIS)

    Singhal, H.; Ganeev, R.; Naik, P. A.; Arora, V.; Chakravarty, U.; Gupta, P. D.

    2008-01-01

    The dependence of the high-order harmonic intensity on the laser focal spot position in laser produced plasma plumes is experimentally studied. High order harmonics up to the 59th order (λ∼13.5 nm) were generated by focusing 48 fs laser pulses from a Ti:sapphire laser system in silver plasma plume produced using 300 ps uncompressed laser radiation as the prepulse. The intensity of harmonics nearly vanished when the best focus was located in the plume center, whereas it peaked on either side with unequal intensity. The focal spot position corresponding to the peak harmonic intensity moved away from the plume center for higher order harmonics. The results are explained in terms of the variation of phase mismatch between the driving laser beam and harmonics radiation produced, relativistic drift of electrons, and defocusing effect due to radial ionization gradient in the plasma for different focal spot positions

  5. Coherence properties of the harmonic generation in intense laser field

    International Nuclear Information System (INIS)

    Salieres, P.

    1995-01-01

    In this thesis is presented an experimental and theoretical study of the harmonic generation in intense field and coherence properties of this radiation. The first part reminds the main harmonic specter characteristics. Follow then experimental studies of the tray extension with the laser lighting, the harmonic generation by ions, and the influence of the laser field on the efficiency of generation. The second part presents the quantum model of the harmonic generation in tunnel regime that we have used for the calculation of the dipoles. We compare dependence in lighting of some harmonic, by insisting on the characteristic behavior of the atomic phase. The theory of the propagation is presented in third part. After the reminder of the case of a perturbative polarization, we develop the case of the polarization in tunnel regime. With the help of numerical simulations, we show the influence of the atomic phase on the agreement of phase, and therefore on the efficiency of conversion and profiles of generation in the medium. The importance of the geometry of the interaction is underlined. The part IV presents the study of the spatial coherence of the harmonic radiation. We develop first consequences of the theory of the agreement of phase for profiles of emission. Then the comparison with experimental profiles is detailed in function of the different parameters( order of non linearity, laser lighting, position of the focus by report in the gaseous medium). The study of the spectral and temporal coherence of the part V begins with the experimental effect investigation of the ionization on specters of the harmonic of weak order. We present then theoretical predictions of the preceding model for spectral and temporal profiles of the harmonic of highest order, generated in tunnel regime. The part VI is devoted to the UVX source aspect of the harmonic radiation. General characteristics (number of photons, agreement) are first detailed, then we present the first experiences

  6. Intensive Outpatient Cognitive Behaviour Therapy for Eating Disorder

    Directory of Open Access Journals (Sweden)

    Riccardo Dalle Grave

    2008-12-01

    Full Text Available The aim of this paper is to describe a novel model of intensive outpatient cognitive-behaviour therapy (CBT indicated for eating disorder patients who are having difficulty modifying their eating habits in response to conventional outpatient CBT. Intensive outpatient CBT is a manual based treatment derived by the CBT-Enhanced (CBT-E for eating disorders. The treatment has four features that distinguish it from the conventional outpatient CBT-E: (1 it is designed to be suitable for both adult and adolescent patients, (2 it is delivered by a multidisciplinary non-eclectic team trained in CBT, (3 there is assistance with eating, (4 there is a family therapy module for patients under the age of 18 years. Preliminary outcome of intensive outpatient CBT-E are encouraging. The treatment has been applied to 20 consecutive underweight eating disorder patients (age 18.2 ± 6.5 years; BMI 14.6 ± 1.5 kg/m2. Thirteen patients (65% concluded the treatment, five (25% were admitted at an eating disorder inpatient unit, and two (10% prematurely interrupted the treatment. Completers obtained significant weight regain and improvement of eating disorder and general psychopathology. Most of the improvements were maintained at six-month follow-up.

  7. Plasma discreteness effects in the presence of an intense, ultrashort laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Savchenko, V.I.; Fisch, N.J.

    1996-03-01

    Discrete effects of the plasma irradiated by an ultrashort, intense laser pulse are investigated. Although, for most plasmas of interest, the damping of the laser pulse is due to collective plasma effects, in certain regimes the energy absorbed in the plasma microfields can be important. A scattering matrix is derived for an electron scattering off an ion in the presence of an intense laser field.

  8. Exotic behavior of molecules in intense laser light fields. New research directions

    Energy Technology Data Exchange (ETDEWEB)

    Yamanouchi, Kaoru [Tokyo Univ., Department of Chemistry, Tokyo (Japan)

    2002-08-01

    The recent investigation of the dynamical behavior of molecules and clusters in intense laser fields has afforded us invaluable opportunities to understand fundamentals of the interaction between molecular species and light fields as well as to manipulate molecules and their dynamical pathways by taking advantage of characteristics of coherent ultrashort laser light fields. In the present report, new directions of this rapidly growing interdisciplinary research fields called molecular science in intense laser fields are discussed by referring to our recent studies. (author)

  9. Plasma discreteness effects in the presence of an intense, ultrashort laser pulse

    International Nuclear Information System (INIS)

    Savchenko, V.I.; Fisch, N.J.

    1996-03-01

    Discrete effects of the plasma irradiated by an ultrashort, intense laser pulse are investigated. Although, for most plasmas of interest, the damping of the laser pulse is due to collective plasma effects, in certain regimes the energy absorbed in the plasma microfields can be important. A scattering matrix is derived for an electron scattering off an ion in the presence of an intense laser field

  10. Volumetric intensity dependence on the formation of molecular and atomic ions within a high intensity laser focus.

    Science.gov (United States)

    Robson, Lynne; Ledingham, Kenneth W D; McKenna, Paul; McCanny, Thomas; Shimizu, Seiji; Yang, Jiamin M; Wahlström, Claes-Göran; Lopez-Martens, Rodrigo; Varju, Katalin; Johnsson, Per; Mauritsson, Johan

    2005-01-01

    The mechanism of atomic and molecular ionization in intense, ultra-short laser fields is a subject which continues to receive considerable attention. An inherent difficulty with techniques involving the tight focus of a laser beam is the continuous distribution of intensities contained within the focus, which can vary over several orders of magnitude. The present study adopts time of flight mass spectrometry coupled with a high intensity (8 x 10(15) Wcm(-2)), ultra-short (20 fs) pulse laser in order to investigate the ionization and dissociation of the aromatic molecule benzene-d1 (C(6)H(5)D) as a function of intensity within a focused laser beam, by scanning the laser focus in the direction of propagation, while detecting ions produced only in a "thin" slice (400 and 800 microm) of the focus. The resultant TOF mass spectra varies significantly, highlighting the dependence on the range of specific intensities accessed and their volumetric weightings on the ionization/dissociation pathways accessed.

  11. Interaction of rare gas clusters in intense laser field

    International Nuclear Information System (INIS)

    Dobosz, Sandrine

    1998-01-01

    Rare gas cluster jet targets have only been scarcely studied in strong laser fields. This is surprising since their properties are particularly appealing. Although considered as a gas phase target, the local density within clusters is comparable to that of the bulk. Intense irradiation of clusters produces a plasma thereby giving rise to strong collisional heating. This explains, in particular, the observation of very high fragment charge states and the generation of X-rays in the keV energy range. The complete set of our experimental results shows that the intra-cluster atoms are first ionised by tunnel ionisation followed by massive electron impact ionisation. Thus, for Xenon clusters, we have observed up to 30-fold charged. The most energetic electrons leave the cluster which contributes to a positive charge build-up on the cluster surface. The plasma expands under the combined action of the Coulomb and kinetic pressures. The contribution of each pressure depends on the cluster size and we show that the Coulomb pressure is prevailing for the smallest sizes. This scenario explains the ejection of fragments with energies of up to lMeV. We have also performed a high resolution X-ray study to explore in situ the properties of the plasma. These studies underline the importance of electron-ion collisions and allow to deterrnine the mean charge states of the emitting ions. Finally, we have developed a model, describing the cluster expansion, which confirms our experimental observations. (author) [fr

  12. The 1989 progress report: Laboratory for the Utilization of High-Intensity Laser

    International Nuclear Information System (INIS)

    Fabre, E.

    1989-01-01

    The 1989 progress report of the laboratory for the Utilization of High-Intensity Lasers of the Polytechnic School (France) is presented. The investigations reported were performed in the following fields: laser-matter interactions in fusion experiments, particles' laser acceleration, picoseconds and femtoseconds interactions, low-flux interactions, development of hydrodynamic codes, laser chocks simulation codes, x-ray lasers, generation of high pressures, implosion physics at 0.26 microns, dense plasmas, material's hardening by laser radiation. The published papers, the conferences and the Laboratory staff are listed [fr

  13. Intensity-modulated radiation therapy clinical evidence and techniques

    CERN Document Server

    Nishimura, Yasumasa

    2015-01-01

    Successful clinical use of intensity-modulated radiation therapy (IMRT) represents a significant advance in radiation oncology. Because IMRT can deliver high-dose radiation to a target with a reduced dose to the surrounding organs, it can improve the local control rate and reduce toxicities associated with radiation therapy. Since IMRT began being used in the mid-1990s, a large volume of clinical evidence of the advantages of IMRT has been collected. However, treatment planning and quality assurance (QA) of IMRT are complicated and difficult for the clinician and the medical physicist. This book, by authors renowned for their expertise in their fields, provides cumulative clinical evidence and appropriate techniques for IMRT for the clinician and the physicist. Part I deals with the foundations and techniques, history, principles, QA, treatment planning, radiobiology and related aspects of IMRT. Part II covers clinical applications with several case studies, describing contouring and dose distribution with cl...

  14. Intensity-Modulated Radiation Therapy for Primary Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    Zhong-min Wang

    2004-01-01

    Radiation therapy has been used to treat primary brain tumors as standard primary and/or adjunctive therapies for decades. It is difficult for conventional radiotherapy to deliver a lethal dose of radiation to the tumors while sparing surrounding normal brain due to complicated structures and multifunction in human brain. With the understanding of radiation physics and computer technology, a number of novel and more precise radiotherapies have been developed in recent years. Intensity modulated radiotherapy (IMRT) is one of these strategies. The use of IMRT in the treatment of primary brain tumors is being increasing nowadays. It shows great promise for some of primary brain tumors and also presents some problems, This review highlights current IMRT in the treatment of mainly primary brain tumors.

  15. Energy and intensity modulated radiation therapy with electrons

    OpenAIRE

    Olofsson, Lennart

    2005-01-01

    In recent years intensity modulated radiation therapy with photons (xIMRT) has gained attention due to its ability to reduce the dose in the tissues close to the tumour volume. However, this technique also results in a large low dose volume. Electron IMRT (eIMRT) has the potential to reduce the integral dose to the patient due to the dose fall off in the electron depth dose curves. This dose fall off makes it possible to modulate the dose distribution in the direction of the beam by selecting...

  16. Linear algebraic methods applied to intensity modulated radiation therapy.

    Science.gov (United States)

    Crooks, S M; Xing, L

    2001-10-01

    Methods of linear algebra are applied to the choice of beam weights for intensity modulated radiation therapy (IMRT). It is shown that the physical interpretation of the beam weights, target homogeneity and ratios of deposited energy can be given in terms of matrix equations and quadratic forms. The methodology of fitting using linear algebra as applied to IMRT is examined. Results are compared with IMRT plans that had been prepared using a commercially available IMRT treatment planning system and previously delivered to cancer patients.

  17. Endoscopic diode laser therapy for chronic radiation proctitis.

    Science.gov (United States)

    Polese, Lino; Marini, Lucia; Rizzato, Roberto; Picardi, Edgardo; Merigliano, Stefano

    2018-01-01

    The purpose of this study is to determine the effectiveness of endoscopic diode laser therapy in patients presenting rectal bleeding due to chronic radiation proctitis (CRP). A retrospective analysis of CRP patients who underwent diode laser therapy in a single institution between 2010 and 2016 was carried out. The patients were treated by non-contact fibers without sedation in an outpatient setting. Fourteen patients (median age 77, range 73-87 years) diagnosed with CRP who had undergone high-dose radiotherapy for prostatic cancer and who presented with rectal bleeding were included. Six required blood transfusions. Antiplatelet (three patients) and anticoagulant (two patients) therapy was not suspended during the treatments. The patients underwent a median of two sessions; overall, a mean of 1684 J of laser energy per session was used. Bleeding was resolved in 10/14 (71%) patients, and other two patients showed improvement (93%). Only one patient, who did not complete the treatment, required blood transfusions after laser therapy; no complications were noted during or after the procedures. Study findings demonstrated that endoscopic non-contact diode laser treatment is safe and effective in CRP patients, even in those receiving antiplatelet and/or anticoagulant therapy.

  18. Study of ultra-high gradient wakefield excitation by intense ultrashort laser pulses in plasma

    International Nuclear Information System (INIS)

    Kotaki, Hideyuki

    2002-12-01

    We investigate a mechanism of nonlinear phenomena in laser-plasma interaction, a laser wakefield excited by intense laser pulses, and the possibility of generating an intense bright electron source by an intense laser pulse. We need to understand and further employ some of these phenomena for our purposes. We measure self-focusing, filamentation, and the anomalous blueshift of the laser pulse. The ionization of gas with the self-focusing causes a broad continuous spectrum with blueshift. The normal blueshift depends on the laser intensity and the plasma density. We, however, have found different phenomenon. The laser spectrum shifts to fixed wavelength independent of the laser power and gas pressure above some critical power. We call the phenomenon 'anomalous blueshift'. The results are explained by the formation of filaments. An intense laser pulse can excite a laser wakefield in plasma. The coherent wakefield excited by 2 TW, 50 fs laser pulses in a gas-jet plasma around 10 18 cm -3 is measured with a time-resolved frequency domain interferometer (FDI). The density distribution of the helium gas is measured with a time-resolved Mach-Zehnder interferometer to search for the optimum laser focus position and timing in the gas-jet. The results show an accelerating wakefield excitation of 20 GeV/m with good coherency, which is useful for ultrahigh gradient particle acceleration in a compact system. This is the first time-resolved measurement of laser wakefield excitation in a gas-jet plasma. The experimental results are compared with a Particle-in-Cell (PIC) simulation. The pump-probe interferometer system of FDI and the anomalous blueshift will be modified to the optical injection system as a relativistic electron beam injector. In 1D PIC simulation we obtain the results of high quality intense electron beam acceleration. These results illuminate the possibility of a high energy and a high quality electron beam acceleration. (author)

  19. Development and optimization of a diode laser for photodynamic therapy.

    Science.gov (United States)

    Lim, Hyun Soo

    2011-01-01

    This study demonstrated the development of a laser system for cancer treatment with photodynamic therapy (PDT) based on a 635 nm laser diode. In order to optimize efficacy in PDT, the ideal laser system should deliver a homogeneous nondivergent light energy with a variable spot size and specific wavelength at a stable output power. We developed a digital laser beam controller using the constant current method to protect the laser diode resonator from the current spikes and other fluctuations, and electrical faults. To improve the PDT effects, the laser system should deliver stable laser energy in continuous wave (CW), burst mode and super burst mode, with variable irradiation times depending on the tumor type and condition. The experimental results showed the diode laser system described herein was eminently suitable for PDT. The laser beam was homogeneous without diverging and the output power increased stably and in a linear manner from 10 mW to 1500 mW according to the increasing input current. Variation between the set and delivered output was less than 7%. The diode laser system developed by the author for use in PDT was compact, user-friendly, and delivered a stable and easily adjustable output power at a specific wavelength and user-set emission modes.

  20. Escaping Electrons from Intense Laser-Solid Interactions as a Function of Laser Spot Size

    Directory of Open Access Journals (Sweden)

    Rusby Dean

    2018-01-01

    Full Text Available The interaction of a high-intensity laser with a solid target produces an energetic distribution of electrons that pass into the target. These electrons reach the rear surface of the target creating strong electric potentials that act to restrict the further escape of additional electrons. The measurement of the angle, flux and spectra of the electrons that do escape gives insights to the initial interaction. Here, the escaping electrons have been measured using a differentially filtered image plate stack, from interactions with intensities from mid 1020-1017 W/cm2, where the intensity has been reduced by defocussing to increase the size of the focal spot. An increase in electron flux is initially observed as the intensity is reduced from 4x1020 to 6x1018 W/cm2. The temperature of the electron distribution is also measured and found to be relatively constant. 2D particle-in-cell modelling is used to demonstrate the importance of pre-plasma conditions in understanding these observations.

  1. Effect of the R dependence of laser-induced polarizability on molecular dynamic alignment in an intense femtosecond laser field

    International Nuclear Information System (INIS)

    Chen Jianxin; Cui Xiaomei; Huang Bomin; Wu Hongchun; Zhuo Shuangmu

    2006-01-01

    In the rotation equation of the angle θ between the molecular axis and the laser polarization direction, the dependence of laser-induced polarizability on the molecular internuclear distance R is considered. The effect of the R dependence of laser-induced polarizability on molecular dynamic alignment in an intense femtosecond laser field is investigated with 20 and 100 fs laser pulses for N 2 molecules and with 60 and 100 fs laser pulses for Br 2 molecules at intensities of 5x10 14 W cm -2 and 5x10 15 W cm -2 . This effect exists and only occurs during the dissociative process after the molecule is ionized. It enhances the degrees of molecular dynamic alignment and is more significant in reorienting the angular distributions of molecules towards the laser polarization direction in the conditions of high laser intensity and short pulse length. Compared with the N 2 molecule, the effect of the R dependence of laser-induced polarizability on molecular dynamic alignment for Br 2 is stronger. The reasons are presented and discussed

  2. Platelet rich plasma versus laser therapy in lateral epicondylitis of elbow

    Directory of Open Access Journals (Sweden)

    Gyaneshwar Tonk

    2014-01-01

    Conclusions: Treatment of patients with chronic lateral epicondylitis with PRP extract reduced pain and significantly increased function, exceeding the effect of low level laser therapy on long term followup. Low-level laser therapy is better in the short term period, but on long term followup injection PRP therapy is better than laser therapy in lateral epicondylitis.

  3. Low-level laser therapy for pain relief after episiotomy: a double-blind randomised clinical trial.

    Science.gov (United States)

    Santos, Jaqueline de O; de Oliveira, Sonia M J V; da Silva, Flora M B; Nobre, Moacyr R C; Osava, Ruth H; Riesco, Maria L G

    2012-12-01

    To evaluate the effectiveness of a low-level laser therapy for pain relief in the perineum following episiotomy during childbirth. Laser irradiation is a painless and non-invasive therapy for perineal pain treatment and its effects have been investigated in several studies, with no clear conclusion on its effectiveness. A double-blind randomised controlled clinical trial. One hundred and fourteen women who underwent right mediolateral episiotomies during vaginal birth in an in-hospital birthing centre in São Paulo, Brazil and reported pain ≥ 3 on a numeric scale (0-10) were randomised into three groups of 38 women each: two experimental groups (treated with red and infrared laser) and a control group. The experimental groups were treated with laser applied at three points directly on the episiotomy after suturing in a single session between 6-56 hours postpartum. We used a diode laser with wavelengths of 660 nm (red laser) and 780 nm (infrared laser). The control group participants underwent all laser procedures, excluding the emission of irradiation. The participants and the pain scores evaluator were blinded to the type of intervention. The perineal pain scores were assessed at three time points: before, immediately after and 30 minutes after low-level laser therapy. The comparison of perineal pain between the three groups showed no significant differences in the three evaluations (p = 0.445), indicating that the results obtained in the groups treated with low-level laser therapy were equivalent to the control group. Low-level laser therapy did not decrease the intensity of perineal pain reported by women who underwent right mediolateral episiotomy. The effect of laser in perineal pain relief was not demonstrated in this study. The dosage may not have been sufficient to provide relief from perineal pain after episiotomy during a vaginal birth. © 2012 Blackwell Publishing Ltd.

  4. Efficiency and threshold pump intensity of CW solar-pumped solid-state lasers

    Science.gov (United States)

    Hwang, In H.; Lee, Ja H.

    1991-01-01

    The authors consider the relation between the threshold pumping intensity, the material properties, the resonator parameters, and the ultimate slope efficiencies of various solid-state laser materials for solar pumping. They clarify the relation between the threshold pump intensity and the material parameters and the relation between the ultimate slope efficiency and the laser resonator parameters such that a design criterion for the solar-pumped solid-state laser can be established. Among the laser materials evaluated, alexandrite has the highest slope efficiency of about 12.6 percent; however, it does not seem to be practical for a solar-pumped laser application because of its high threshold pump intensity. Cr:Nd:GSGG is the most promising for solar-pumped lasing. Its threshold pump intensity is about 100 air-mass-zero (AM0) solar constants and its slope efficiency is about 12 percent when thermal deformation is completely prevented.

  5. Quality assurance of intensity-modulated radiation therapy.

    Science.gov (United States)

    Palta, Jatinder R; Liu, Chihray; Li, Jonathan G

    2008-01-01

    The current paradigm for the quality assurance (QA) program for intensity-modulated radiation therapy (IMRT) includes QA of the treatment planning system, QA of the delivery system, and patient-specific QA. Although the IMRT treatment planning and delivery system is the same as for conventional three-dimensional conformal radiation therapy, it has more parameters to coordinate and verify. Because of complex beam intensity modulation, each IMRT field often includes many small irregular off-axis fields, resulting in isodose distributions for each IMRT plan that are more conformal than those from conventional treatment plans. Therefore, these features impose a new and more stringent set of QA requirements for IMRT planning and delivery. The generic test procedures to validate dose calculation and delivery accuracy for both treatment planning and IMRT delivery have to be customized for each type of IMRT planning and delivery strategy. The rationale for such an approach is that the overall accuracy of IMRT delivery is incumbent on the piecewise uncertainties in both the planning and delivery processes. The end user must have well-defined evaluation criteria for each element of the planning and delivery process. Such information can potentially be used to determine a priori the accuracy of IMRT planning and delivery.

  6. Quality Assurance of Intensity-Modulated Radiation Therapy

    International Nuclear Information System (INIS)

    Palta, Jatinder R.; Liu, Chihray; Li, Jonathan G.

    2008-01-01

    The current paradigm for the quality assurance (QA) program for intensity-modulated radiation therapy (IMRT) includes QA of the treatment planning system, QA of the delivery system, and patient-specific QA. Although the IMRT treatment planning and delivery system is the same as for conventional three-dimensional conformal radiation therapy, it has more parameters to coordinate and verify. Because of complex beam intensity modulation, each IMRT field often includes many small irregular off-axis fields, resulting in isodose distributions for each IMRT plan that are more conformal than those from conventional treatment plans. Therefore, these features impose a new and more stringent set of QA requirements for IMRT planning and delivery. The generic test procedures to validate dose calculation and delivery accuracy for both treatment planning and IMRT delivery have to be customized for each type of IMRT planning and delivery strategy. The rationale for such an approach is that the overall accuracy of IMRT delivery is incumbent on the piecewise uncertainties in both the planning and delivery processes. The end user must have well-defined evaluation criteria for each element of the planning and delivery process. Such information can potentially be used to determine a priori the accuracy of IMRT planning and delivery

  7. 367 cases of CO2 laser therapy on facial acne

    Science.gov (United States)

    Gao, Yunqing; Liu, Songhao; Zhang, You; Liu, T. C.

    1996-09-01

    Since 1989, we have cured 367 persons of facial acne of different course by using direct irradiation of high-power CO2 laser combing with operative therapy of low-power CO2 laser. The cure rate is 100 percent. In this paper, we stated the therapeutic approach. It was shown that this therapeutic approach is simple and effective, and its recurrence rate is zero. There are no cicatrices after healing. It is easy to accept it, and is worthy of extension.

  8. ANALYSIS AND MITIGATION OF X-RAY HAZARD GENERATED FROM HIGH INTENSITY LASER-TARGET INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, R.; Liu, J.C.; Prinz, A.A.; Rokni, S.H.; Woods, M.; Xia, Z.; /SLAC

    2011-03-21

    Interaction of a high intensity laser with matter may generate an ionizing radiation hazard. Very limited studies have been made, however, on the laser-induced radiation protection issue. This work reviews available literature on the physics and characteristics of laser-induced X-ray hazards. Important aspects include the laser-to-electron energy conversion efficiency, electron angular distribution, electron energy spectrum and effective temperature, and bremsstrahlung production of X-rays in the target. The possible X-ray dose rates for several femtosecond Ti:sapphire laser systems used at SLAC, including the short pulse laser system for the Matter in Extreme Conditions Instrument (peak power 4 TW and peak intensity 2.4 x 10{sup 18} W/cm{sup 2}) were analysed. A graded approach to mitigate the laser-induced X-ray hazard with a combination of engineered and administrative controls is also proposed.

  9. Prone Breast Intensity Modulated Radiation Therapy: 5-Year Results

    International Nuclear Information System (INIS)

    Osa, Etin-Osa O.; DeWyngaert, Keith; Roses, Daniel; Speyer, James; Guth, Amber; Axelrod, Deborah; Fenton Kerimian, Maria; Goldberg, Judith D.; Formenti, Silvia C.

    2014-01-01

    Purpose: To report the 5-year results of a technique of prone breast radiation therapy delivered by a regimen of accelerated intensity modulated radiation therapy with a concurrent boost to the tumor bed. Methods and Materials: Between 2003 and 2006, 404 patients with stage I-II breast cancer were prospectively enrolled into 2 consecutive protocols, institutional trials 03-30 and 05-181, that used the same regimen of 40.5 Gy/15 fractions delivered to the index breast over 3 weeks, with a concomitant daily boost to the tumor bed of 0.5 Gy (total dose 48 Gy). All patients were treated after segmental mastectomy and had negative margins and nodal assessment. Patients were set up prone: only if lung or heart volumes were in the field was a supine setup attempted and chosen if found to better spare these organs. Results: Ninety-two percent of patients were treated prone, 8% supine. Seventy-two percent had stage I, 28% stage II invasive breast cancer. In-field lung volume ranged from 0 to 228.27 cm 3 , mean 19.65 cm 3 . In-field heart volume for left breast cancer patients ranged from 0 to 21.24 cm 3 , mean 1.59 cm 3 . There was no heart in the field for right breast cancer patients. At a median follow-up of 5 years, the 5-year cumulative incidence of isolated ipsilateral breast tumor recurrence was 0.82% (95% confidence interval [CI] 0.65%-1.04%). The 5-year cumulative incidence of regional recurrence was 0.53% (95% CI 0.41%-0.69%), and the 5-year overall cumulative death rate was 1.28% (95% CI 0.48%-3.38%). Eighty-two percent (95% CI 77%-85%) of patients judged their final cosmetic result as excellent/good. Conclusions: Prone accelerated intensity modulated radiation therapy with a concomitant boost results in excellent local control and optimal sparing of heart and lung, with good cosmesis. Radiation Therapy Oncology Group protocol 1005, a phase 3, multi-institutional, randomized trial is ongoing and is evaluating the equivalence of a similar dose and fractionation

  10. Prone Breast Intensity Modulated Radiation Therapy: 5-Year Results

    Energy Technology Data Exchange (ETDEWEB)

    Osa, Etin-Osa O.; DeWyngaert, Keith [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States); Roses, Daniel [Department of Surgery, New York University School of Medicine, New York, New York (United States); Speyer, James [Department of Medical Oncology, New York University School of Medicine, New York, New York (United States); Guth, Amber; Axelrod, Deborah [Department of Surgery, New York University School of Medicine, New York, New York (United States); Fenton Kerimian, Maria [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States); Goldberg, Judith D. [Department of Population Health, New York University School of Medicine, New York, New York (United States); Formenti, Silvia C., E-mail: Silvia.formenti@nyumc.org [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States)

    2014-07-15

    Purpose: To report the 5-year results of a technique of prone breast radiation therapy delivered by a regimen of accelerated intensity modulated radiation therapy with a concurrent boost to the tumor bed. Methods and Materials: Between 2003 and 2006, 404 patients with stage I-II breast cancer were prospectively enrolled into 2 consecutive protocols, institutional trials 03-30 and 05-181, that used the same regimen of 40.5 Gy/15 fractions delivered to the index breast over 3 weeks, with a concomitant daily boost to the tumor bed of 0.5 Gy (total dose 48 Gy). All patients were treated after segmental mastectomy and had negative margins and nodal assessment. Patients were set up prone: only if lung or heart volumes were in the field was a supine setup attempted and chosen if found to better spare these organs. Results: Ninety-two percent of patients were treated prone, 8% supine. Seventy-two percent had stage I, 28% stage II invasive breast cancer. In-field lung volume ranged from 0 to 228.27 cm{sup 3}, mean 19.65 cm{sup 3}. In-field heart volume for left breast cancer patients ranged from 0 to 21.24 cm{sup 3}, mean 1.59 cm{sup 3}. There was no heart in the field for right breast cancer patients. At a median follow-up of 5 years, the 5-year cumulative incidence of isolated ipsilateral breast tumor recurrence was 0.82% (95% confidence interval [CI] 0.65%-1.04%). The 5-year cumulative incidence of regional recurrence was 0.53% (95% CI 0.41%-0.69%), and the 5-year overall cumulative death rate was 1.28% (95% CI 0.48%-3.38%). Eighty-two percent (95% CI 77%-85%) of patients judged their final cosmetic result as excellent/good. Conclusions: Prone accelerated intensity modulated radiation therapy with a concomitant boost results in excellent local control and optimal sparing of heart and lung, with good cosmesis. Radiation Therapy Oncology Group protocol 1005, a phase 3, multi-institutional, randomized trial is ongoing and is evaluating the equivalence of a similar dose and

  11. Chirp analysis of high-order harmonics from atoms driven by intense femtosecond laser pulses

    International Nuclear Information System (INIS)

    Kim, Hyung Taek; Kim, I Jong; Hong, Kyung-Han; Lee, Dong Gun; Kim, Jung-Hoon; Nam, Chang Hee

    2004-01-01

    The spectral structure of harmonics was experimentally controlled by changing the chirp of femtosecond laser pulses, and the dependence of harmonic chirp on atomic species was analysed using harmonics from neon and helium. Experimental results and theoretical analysis based on the Wigner distribution function showed that the spectral structure varied sensitively to laser chirp and the harmonic chirp was determined by the competition between dynamically induced negative chirp and self-phase modulation induced positive chirp. The generation of sharp and bright harmonics was achieved with appropriately chirped laser pulses under given experimental conditions, especially negatively chirped pulses in the case of laser intensity above the saturation intensity for optical-field ionization

  12. Current status of intensity-modulated radiation therapy (IMRT)

    International Nuclear Information System (INIS)

    Hatano, Kazuo; Araki, Hitoshi; Sakai, Mitsuhiro

    2007-01-01

    External-beam radiation therapy has been one of the treatment options for prostate cancer. The dose response has been observed for a dose range of 64.8-81 Gy. The problem of external-beam radiotherapy (RT) for prostate cancer is that as the dose increases, adverse effects also increase. Three-dimensional conformal radiation therapy (3D-CRT) has enabled us to treat patients with up to 72-76 Gy to the prostate, with a relatively acceptable risk of late rectal bleeding. Recently, intensity-modulated radiation therapy (IMRT) has been shown to deliver a higher dose to the target with acceptable low rates of rectal and bladder complications. The most important things to keep in mind when using an IMRT technique are that there is a significant trade-off between coverage of the target, avoidance of adjacent critical structures, and the inhomogeneity of the dose within the target. Lastly, even with IMRT, it should be kept in mind that a ''perfect'' plan that creates completely homogeneous coverage of the target volume and zero or small dose to the adjacent organs at risk is not always obtained. Participating in many treatment planning sessions and arranging the beams and beam weights create the best approach to the best IMRT plan. (author)

  13. Influence of intensity fluctuations on laser damage in optical materials

    International Nuclear Information System (INIS)

    Koldunov, M.F.; Manenkov, A.A.; Pocotilo, I.L.

    1995-01-01

    A study is reported of the influence of temporal fluctuations of laser radiation on the development of thermal explosion of absorbing inclusions and on the statistical properties of the laser induced damage in transparent dielectrics. A fluctuation time scale in which the fluctuations affect the thermal explosion of inclusions is established. An analysis is made of the conditions ensuring control of temporal fluctuations of laser radiation so as to eliminate their influence on the experimental statistical relationships governing laser damage associated with the distribution of absorbing inclusions in the bulk and on the surface of a sample

  14. Quantum chaos in the Henon-Heiles oscillator under intense laser fields. IT-1

    International Nuclear Information System (INIS)

    Gupta, Neetu; Deb, B.M.

    2004-01-01

    Full text: The quantum domain behaviour of the classically chaotic Henon-Heiles oscillator (HHO) has been studied earlier by several workers, without invoking either a weak or strong time- dependent external perturbation. This work looks at the motion of an electron moving in the HH potential under intense laser fields. The time-dependent Schroedinger equation is numerically solved in order to study the sensitivity of the system to initial conditions. The similarities in responses between the HHO and atoms/molecules to intense laser fields are examined; from this one might speculate that atoms/molecules in intense laser fields might exhibit quantum chaos

  15. Laser radiation therapy of skin melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, R.I.; Kozlov, A.P.; Moskalik, K.G.

    1981-10-01

    Pulsed neodymium laser radiation was used for the treatment of 79 patients with cutaneous melanomas and 19 patients with melanoma metastases to the skin. The patients were followed up from 3 months up to 8 years. During this period local recurrences were detected in 2 cases. Out of 70 patients with cutaneous melanomas, who by the start of the treatment had no metastases in the regional lymph nodes or distant organs, metastases developed in 15 patients (21.4%). There are all reasons to consider pulsed laser radiation an effective means of treatment of some forms of skin melanoma.

  16. Using prepulsing: a useful way for increasing absorption efficiency of high intensity laser beam

    International Nuclear Information System (INIS)

    Peng Huimin; Zhang Guoping; Sheng Jiatian

    1990-01-01

    Using prepulse to irradiate target for increasing absorption efficiency of high intensity incident laser beam is considered and some theoretical simulations have been done. 1-D non-LTE radiative hydrodynamic code is used to simulate the interactions of laser beam with matter. A gaussian laser prepulse of wavelength 1.06 μm, FWHM 600 ps and peak intensity 1.5 x 10 12 W/cm 2 was used to irradiate 20 μm thick Au plate target, after 3ns a main gaussian pulse with wavelength 1.06 μm, FWHM 600 ps and peak intensity 3.0 x 10 14 W/cm 2 irradiated the expanding Au plasma. The responces of laser-produced plasma conditions are shown. By comparing with without prepulsing, under the condition of same main incident laser pulse, the absorption efficiency is increased from 0.36 to 0.60 and the laser-x-ray conversion efficiency is increased from 0.16 to 0.25. The electron temperature of hot plasma is also higher than without prepulsing, and the x-ray spectrum which is emitted from laser-produced hot plasma is harder and more intense than without prepulsing. The responces of laser-produced plasma for Fe target with prepulsing are shown as well. The conclusion is that using prepulsing is a useful way for getting high absorption laser beam

  17. Impedance-match experiments using high intensity lasers

    International Nuclear Information System (INIS)

    Holmes, N.C.; Trainor, R.J.; Anderson, R.A.; Veeser, L.R.; Reeves, G.A.

    1981-01-01

    The results of a series of impedance-match experiments using copper-aluminum targets irradiated using the Janus Laser Facility are discussed. The results are compared to extrapolations of data obtained at lower pressures using impact techniques. The sources of errors are described and evaluated. The potential of lasers for high accuracy equation of state investigations are discussed

  18. Light/laser therapy in the treatment of acne vulgaris.

    Science.gov (United States)

    Nouri, Keyvan; Villafradez-Diaz, L Magaly

    2005-12-01

    Acne vulgaris is one of the most prevalent skin diseases known. As common as this condition is, the social and psychological consequences are limitless. Although current treatments are available and include topical or oral antibiotics, it is crucial to develop a less risky and more effective therapy such as light/laser therapy. This article focuses specifically on the benefits of the light/laser treatment on acne vulgaris. Porphyrins accumulated in the bacteria, Propionibacterium acnes, one of the etiologic factors involved in the pathogenesis, allows phototherapy to be a successful modality. They have specific absorption peaks at which lasers have optimal effects. The longer the wavelength of the light is, the deeper its penetration and thus the greater its damage to the sebaceous glands. Although blue light is best for the activation of porphyrins, red light is best for deeper penetration and an anti-inflammatory effect. Ultraviolet (UV) light, although it may have initial an anti-inflammatory effects, has been proven to be potentially carcinogenic and have adverse effects such as aging (by UV-A) and burning (by UV-B). Previous studies indicate successful long-term intervention and selective damage of the sebaceous glands by using a diode laser with indocyanine green (ICG) dye. Mid-infrared lasers have been found to decrease lesion counts while also reducing the oiliness of skin and the scarring process. Nonablative laser treatment of acne scars using the Er:YAG laser with a short-pulsed mode has been successful in reducing the appearance of scars by stimulating neocollagenesis. The light/laser therapy has started to be explored with promising results in highly selected patients that require further investigation in greater populations and well-designed protocols.

  19. Effect of the temporal laser pulse asymmetry on pair production processes during intense laser-electron scattering

    Science.gov (United States)

    Hojbota, C. I.; Kim, Hyung Taek; Kim, Chul Min; Pathak, V. B.; Nam, Chang Hee

    2018-06-01

    We investigate the effects of laser pulse shape on strong-field quantum electrodynamics (QED) processes during the collision between a relativistic electron beam and an intense laser pulse. The interplay between high-energy photon emission and two pair production processes, i.e. nonlinear Breit–Wheeler (BW) and Trident, was investigated using particle-in-cell simulations. We found that the temporal evolution of these two processes could be controlled by using laser pulses with different degrees of asymmetry. The temporal envelope of the laser pulse can significantly affect the number of pairs coming from the Trident process, while the nonlinear BW process is less sensitive to it. This study shows that the two QED processes can be examined with state-of-the-art petawatt lasers and the discrimination of the two pair creation processes is feasible by adjusting the temporal asymmetry of the colliding laser pulse.

  20. Dose rate laser simulation tests adequacy: Shadowing and high intensity effects analysis

    International Nuclear Information System (INIS)

    Nikiforov, A.Y.; Skorobogatov, P.K.

    1996-01-01

    The adequacy of laser based simulation of the flash X-ray effects in microcircuits may be corrupted mainly due to laser radiation shadowing by the metallization and the non-linear absorption in a high intensity range. The numerical joint solution of the optical equations and the fundamental system of equations in a two-dimensional approximation were performed to adjust the application range of laser simulation. As a result the equivalent dose rate to laser intensity correspondence was established taking into account the shadowing as well as the high intensity effects. The simulation adequacy was verified in the range up to 4·10 11 rad(Si)/s with the comparative laser test of a specially designed test structure

  1. The role of lasers and intense pulsed light technology in dermatology

    Directory of Open Access Journals (Sweden)

    Husain Z

    2016-02-01

    Full Text Available Zain Husain,1 Tina S Alster1,2 1Department of Dermatology, Georgetown University Hospital, 2Washington Institute of Dermatologic Laser Surgery, Washington, DC, USA Abstract: The role of light-based technologies in dermatology has expanded dramatically in recent years. Lasers and intense pulsed light have been used to safely and effectively treat a diverse array of cutaneous conditions, including vascular and pigmented lesions, tattoos, scars, and undesired hair, while also providing extensive therapeutic options for cosmetic rejuvenation and other dermatologic conditions. Dermatologic laser procedures are becoming increasingly popular worldwide, and demand for them has fueled new innovations and clinical applications. These systems continue to evolve and provide enhanced therapeutic outcomes with improved safety profiles. This review highlights the important roles and varied clinical applications that lasers and intense pulsed light play in the dermatologic practice. Keywords: laser, intense pulsed light, treatment, dermatology, technology

  2. Interaction of ultra-short ultra-intense laser pulses with under-dense plasmas

    International Nuclear Information System (INIS)

    Solodov, A.

    2000-12-01

    Different aspects of interaction of ultra-short ultra-intense laser pulses with underdense plasmas are studied analytically and numerically. These studies can be interesting for laser-driven electron acceleration in plasma, X-ray lasers, high-order harmonic generation, initial confinement fusion with fast ignition. For numerical simulations a fully-relativistic particle code WAKE was used, developed earlier at Ecole Polytechnique. It was modified during the work on the thesis in the part of simulation of ion motion, test electron motion, diagnostics for the field and plasma. The studies in the thesis cover the problems of photon acceleration in the plasma wake of a short intense laser pulse, phase velocity of the plasma wave in the Self-Modulated Laser Wake-Field Accelerator (SM LWFA), relativistic channeling of laser pulses with duration of the order of a plasma period, ion dynamics in the wake of a short intense laser pulse, plasma wave breaking. Simulation of three experiments on the laser pulse propagation in plasma and electron acceleration were performed. Among the main results of the thesis, it was found that reduction of the plasma wave phase velocity in the SM LWFA is crucial for electron acceleration, only if a plasma channel is used for the laser pulse guiding. Self-similar structures describing relativistic guiding of short laser pulses in plasmas were found and relativistic channeling of initially Gaussian laser pulses of a few plasma periods in duration was demonstrated. It was shown that ponderomotive force of a plasma wake excited by a short laser pulse forms a channel in plasma and plasma wave breaking in the channel was analyzed in detail. Effectiveness of electron acceleration by the laser field and plasma wave was compared and frequency shift of probe laser pulses by the plasma waves was found in conditions relevant to the current experiments. (author)

  3. Emotional exhaustion and defense mechanisms in intensive therapy unit nurses.

    Science.gov (United States)

    Regan, Anna; Howard, Ruth A; Oyebode, Jan R

    2009-05-01

    Contrary to its original conceptualization, research has found that emotional demands do not lead to burnout in nurses. According to psychoanalytic theory, unconscious defense mechanisms may protect nurses from conscious awareness of work-related anxiety. This prevents self-report and may explain research findings. The maturity of defense style influences how anxiety is managed. Immature defenses prevent the conscious processing necessary for resolution of anxiety. Therefore, it is hypothesized that the use of immature defenses will lead to emotional exhaustion. This cross-sectional study used questionnaires to explore the defense mechanisms of 87 Intensive Therapy Unit nurses. Although the sample endorsed a predominantly mature defense style, the use of immature defenses predicted emotional exhaustion. Also, lower levels of reported stress associated with emotional demands predicted emotional exhaustion. Although this strongly implies the mediating role of immature defense mechanisms, the results were not statistically significant.

  4. Low-Intensity Extracorporeal Shockwave Therapy in Sexual Medicine

    DEFF Research Database (Denmark)

    Fode, Mikkel; Lowenstein, Lior; Reisman, Yacov

    2017-01-01

    INTRODUCTION: Low-intensity extracorporeal shockwave therapy (LI-ESWT) has emerged as a treatment option for male sexual dysfunction. However, results have been contradictory. AIM: To investigate the knowledge, practice patterns, and attitudes regarding LI-ESWT among experts in sexual medicine....... METHODS: A study-specific questionnaire was handed out at the 18th Congress for the European Society for Sexual Medicine. Participants were queried on their knowledge about LI-ESWT and about their use of the equipment. MAIN OUTCOME MEASURES: Descriptive data on the knowledge of LI-ESWT and perception...... of treatment effects. RESULTS: One hundred ninety-two questionnaires were available for analysis. Most respondents were physicians (79.7%) and most of these specialized in urology (58.9%). Overall, 144 of 192 (75%) reported that they were familiar with LI-ESWT in sexual medicine. Twenty-seven (14.1%) had...

  5. Clinical implementation and quality assurance for intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Ma, C.-M.; Price, R.; McNeeley, S.; Chen, L.; Li, J.S.; Wang, L.; Ding, M.; Fourkal, E.; Qin, L.

    2002-01-01

    This paper describes the clinical implementation and quality assurance (QA) for intensity-modulated radiation therapy (IMRT) based on the experience at Fox Chase Cancer Center, Philadelphia, USA. We will review our procedures for the clinical implementation of the IMRT technique and the requirements for patient immobilization, target delineation, treatment optimization, beam delivery and system administration. We will discuss the dosimetric requirements and measurement procedures for beam commissioning and dosimetry verification for IMRT. We will examine the details of model-based dose calculation for IMRT treatment planning and the potential problems with such dose calculation algorithms. We will discuss the effect of beam delivery systems on the actual dose distributions received by the patients and the methods to incorporate such effects in the treatment optimization process. We will investigate the use of the Monte Carlo method for dose calculation and treatment verification for IMRT

  6. Analytical calculations of intense Gaussian laser beam propagating in plasmas with relativistic collision correction

    International Nuclear Information System (INIS)

    Wang Ying; Yuan Chengxun; Gao Ruilin; Zhou Zhongxiang

    2012-01-01

    Theoretical investigations of a Gaussian laser beam propagating in relativistic plasmas have been performed with the WKB method and complex eikonal function. We consider the relativistic nonlinearity induced by intense laser beam, and present the relativistically generalized forms of the plasma frequency and electron collision frequency in plasmas. The coupled differential equations describing the propagation variations of laser beam are derived and numerically solved. The obtained simulation results present the similar variation tendency with experiments. By changing the plasma density, we theoretically analyze the feasibility of using a plasmas slab of a fixed thickness to compress the laser beam-width and acquire the focused laser intensity. The present work complements the relativistic correction of the electron collision frequency with reasonable derivations, promotes the theoretical approaching to experiments and provides effective instructions to the practical laser-plasma interactions.

  7. Argon laser trabeculoplasty as primary therapy in open angle glaucoma

    International Nuclear Information System (INIS)

    Mahar, P.S.; Jamali, K.K.

    2008-01-01

    To determine the effect of Argon Laser Trabeculoplasty (ALT) as a primary mode of therapy in reducing the intraocular Pressure (IOP) of patients diagnosed with Primary Open Angle Glaucoma (POAG). A total of 35 eyes of 35 patients with the gender distribution of 27 men and 8 women who were newly diagnosed with POAG, were included in this study. Mean age of the patients was 55.2 years with the range of 32 to 76 years. All of them were treated with argon laser trabeculoplasty as a primary mode of therapy. Intra ocular pressure was measured objectively using Goldman applanation tonometer, pre-and-post laser therapy. The pre-laser mean IOP was 27.63 mmHg (range 21-40 mmHg). The post-laser mean IOP measured at 6 months follow up was 15.5 mmHg (range 11 - 33 mmHg) with mean decrease of 12.1 mmHg. The decrease in IOP was seen in 32 eyes (95%) with no change observed in 3 (5%) eyes. The result shows a marked decline in IOP in patients with POAG who underwent ALT as a primary mode of treatment. Further studies with large sample size and longer follow-up will help in making future recommendations. (author)

  8. Instabilities in superconductors and in intense laser produced plasma's

    International Nuclear Information System (INIS)

    Banerjee, Satyajit S.; Mohan, Shyam; Sinha, Jaivardhan; Kahaly, Subendhu; Ravindra Kumar, G.

    2007-01-01

    In this talk I will attempt to discuss phenomena's in two areas of physics which appear quite divorced from each other, viz., superconductivity and plasma's. The first portion of the talk will describe the behavior of a collection of vortices in superconductors in a random pinning environment. Vortices manifest themselves in a variety of systems, like in fluids and in type II superconductors. A collection of vortices inside superconductors behaves like an elastic media. Investigating this elastic medium of the vortex state is a convenient prototype for investigating similar physics in a wide variety of systems, viz., charge density waves, Wigner crystals, magnetic domains, etc. The behavior of all these systems can be generalized under, nature of elastic media in the presence of a random pinning environment and thermal fluctuations. Based on the idea that softer matter is easy to pin we have attempted to investigate how the vortex lattice disorders as its gets softer. Surprisingly we find evidence to two distinct types of instabilities in the vortex lattice instead of one. These two instabilities produce vastly different effects on certain quantities associated with the extent of disorder in the superconductor. It appears that prior to softening of the vortex state, a heterogeneously pinned state of the vortex matter appears, perhaps through a KT like transition. In the second part of the talk, I will attempt to describe some of our recent results pertaining to instabilities and the appearance of giant magnetic fields in plasma's. These results have been obtained with a high sensitivity magneto-optical imaging setup we have developed at IIT Kanpur. Using the setup, we investigate distribution of magnetic fields around dense solid plasmas generated by intense p-polarized laser (∼10 16 Wcm -2 , 100 fs) irradiation of magnetic tapes, using high sensitivity magneto optical imaging technique. We demonstrate giant axial magnetic fields and map out for the first time

  9. Phase control of the probability of electronic transitions in the non-perturbative laser field intensity

    International Nuclear Information System (INIS)

    Yokoyama, Keiichi; Sugita, Akihiro; Yamada, Hidetaka; Teranishi, Yoshiaki; Yokoyama, Atsushi

    2007-01-01

    A preparatory study on the quantum control of the selective transition K(4S 1/2 ) → K(4P J ) (J=1/2, 3/2) in intense laser field is reported. To generate high average power femtosecond laser pulses with enough field intensity, a Ti:Sapphire regenerative amplifier system with a repetition rate of 1 kHz is constructed. The bandwidth and pulse energy are shown to qualify the required values for the completely selective transition with 100% population inversion. A preliminary experiment of the selective excitation shows that the fringe pattern formed by a phase related pulse pair depends on the laser intensity, indicating that the perturbative behavior of the excitation probabilities is not valid any more and the laser intensity reaches a non-perturbative region. (author)

  10. From a quantum to a classical description of intense laser-atom physics with Bohmian trajectories

    International Nuclear Information System (INIS)

    Lai, X Y; Cai Qingyu; Zhan, M S

    2009-01-01

    In this paper, Bohmian mechanics is applied to intense laser-atom physics. The motion of an atomic electron in an intense laser field is obtained from the Bohm-Newton equation. We find that the quantum potential that dominates the quantum effect of a physical system becomes negligible as the electron is driven far from the parent ion by the intense laser field, i.e. the behavior of the electron smoothly tends towards classical soon after the electron is ionized. Our numerical calculations present direct positive evidence for semiclassical trajectory methods in intense laser-atom physics where the motion of the ionized electron is treated by classical mechanics, while quantum mechanics is needed before the ionization.

  11. Self-modulation and anomalous collective scattering of laser produced intense ion beam in plasmas

    Directory of Open Access Journals (Sweden)

    K. Mima

    2018-05-01

    Full Text Available The collective interaction between intense ion beams and plasmas is studied by simulations and experiments, where an intense proton beam produced by a short pulse laser is injected into a pre-ionized gas. It is found that, depending on its current density, collective effects can significantly alter the propagated ion beam and the stopping power. The quantitative agreement that is found between theories and experiments constitutes the first validation of the collective interaction theory. The effects in the interaction between intense ion beams and background gas plasmas are of importance for the design of laser fusion reactors as well as for beam physics. Keywords: Two stream instabilities, Ultra intense short pulse laser, Proton beam, Wake field, Electron plasma wave, Laser plasma interaction, PACS codes: 52.38.Kd, 29.27.Fh, 52.40.Kh, 52.70.Nc

  12. Diagnostic pure transgastric NOTES in an intensive therapy unit patient

    Directory of Open Access Journals (Sweden)

    Maciej Michalik

    2011-06-01

    Full Text Available Natural orifice transluminal endoscopic surgery (NOTES is a natural consequence of evolution in minimally invasivesurgery. It allows one to reduce surgical trauma and the number of complications and to improve cosmetic outcomes.It also shortens the patient’s recovery time. So far there have been only nine NOTES procedures performed in Polandand around 200 NOTES interventions performed worldwide. In this paper a transgastric diagnostic NOTES procedurein a critically ill patient is described. A 60-year-old male patient with multi-organ failure (circulatory, respiratory andrenal insufficiency, with co-morbid hypothyroidism and diabetes mellitus hospitalized in the intensive therapy unit(ITU with unknown cause of his condition was qualified for transgastric diagnostic NOTES procedure. This interventionrevealed the diagnosis of metastatic neoplastic disease and allowed persistent therapy to be avoided. DiagnosticNOTES in selected patients seems to be a very useful. It provides fast diagnosis with relatively small perioperativetrauma. It is an easy procedure that requires a regular or operative endoscope, one surgeon and an endoscopic nurse.It can be done anywhere, including at the patient’s bedside. It provides specimens for histopathology and speeds updiagnostics and decision making, especially in terminally ill patients.

  13. On the control of filamentation of intense laser beams propagating in underdense plasma

    International Nuclear Information System (INIS)

    Williams, E.A.

    2006-01-01

    In indirect drive inertial confinement fusion ignition designs, the laser energy is delivered into the hohlraum through the laser entrance holes (LEHs), which are sized as small as practicable to minimize x-ray radiation losses. On the other hand, deleterious laser plasma processes, such as filamentation and stimulated backscatter, typically increase with laser intensity. Ideally, therefore, the laser spot shape should be a close fit to the LEH, with uniform (envelope) intensity in the spot and minimal energy at larger radii spilling onto the LEH material. This keeps the laser intensity as low as possible, consistent with the area of the LEH aperture and the power requirements of the design. This can be achieved (at least for apertures significantly larger than the laser's aberrated focal spot) by the use of custom-designed phase plates. However, outfitting the 192-beam National Ignition Facility [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Tech. 26, 755 1994)] laser with multiple sets of phase plates optimized for a variety of different LEH aperture sizes is an expensive proposition. It is thus important to assess the impact on laser-plasma interaction processes of using phase plates with a smaller than optimum focal spot (or even no phase plates at all!) and then defocusing the beam to expand it to fill the LEH and lower its intensity. Significant effects are found from changes in the characteristic sizes of the laser speckle, from the lack of uniformity of the laser envelope out of the focal plane and on the efficacy of additional polarization smoothing and/or smoothing by spectral dispersion (SSD). These effects are quantified with analytic estimates and simulations using PF3D, our laser-plasma interaction code

  14. Laser-enhanced cavitation during high intensity focused ultrasound: An in vivo study

    OpenAIRE

    Cui, Huizhong; Zhang, Ti; Yang, Xinmai

    2013-01-01

    Laser-enhanced cavitation during high intensity focused ultrasound (HIFU) was studied in vivo using a small animal model. Laser light was employed to illuminate the sample concurrently with HIFU radiation. The resulting cavitation was detected with a passive cavitation detector. The in vivo measurements were made under different combinations of HIFU treatment depths, laser wavelengths, and HIFU durations. The results demonstrated that concurrent light illumination during HIFU has the potentia...

  15. Pondermotive absorption of a short intense laser pulse in a non-uniform plasma

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, A A; Platonov, K Yu [Inst. for Laser Physics, SC ` Vavilov State Optical Inst.` 12, Birzhevaya line, St Petersburg (Russian Federation); Tanaka, K A

    1998-03-01

    An analytical description of the pondermotive absorption mechanism at a short high intense laser pulse interaction with a strong inhomogeneous plasma is presented. The optimal conditions for the maximum of resonance absorption of laser pulse interaction with non-uniform plasma at normal incidence are founded. (author)

  16. Low-intensity infrared lasers alter actin gene expression in skin and muscle tissue

    International Nuclear Information System (INIS)

    Fonseca, A S; Mencalha, A L; Campos, V M A; Ferreira-Machado, S C; Peregrino, A A F; Magalhães, L A G; Geller, M; Paoli, F

    2013-01-01

    The biostimulative effect of low-intensity lasers is the basis for treatment of diseases in soft tissues. However, data about the influence of biostimulative lasers on gene expression are still scarce. The aim of this work was to evaluate the effects of low-intensity infrared lasers on the expression of actin mRNA in skin and muscle tissue. Skin and muscle tissue of Wistar rats was exposed to low-intensity infrared laser radiation at different fluences and frequencies. One and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis and evaluation of actin gene expression by quantitative polymerase chain reaction. The data obtained show that laser radiation alters the expression of actin mRNA differently in skin and muscle tissue of Wistar rats depending of the fluence, frequency and time after exposure. The results could be useful for laser dosimetry, as well as to justify the therapeutic protocols for treatment of diseases of skin and muscle tissues based on low-intensity infrared laser radiation. (paper)

  17. Study of 2ω and 3/2ω harmonics in ultrashort high-intensity laser ...

    Indian Academy of Sciences (India)

    An experimental study is presented on measurements of optical spectrum of the laser light scattered from solid surface irradiated by Ti:sapphire laser pulses up to an intensity of 1.2 × 1018 W cm-2. The spectrum has well-defined peaks at wavelengths corresponding to 2 and 3/2 radiations. The spectral features vary with ...

  18. Request for Support for the Conference on Super Intense Laser Atom Physics

    International Nuclear Information System (INIS)

    Todd Ditmire

    2004-01-01

    The Conference on Super Intense Laser Atom Physics (SILAP) was held in November 2003 in Dallas, Texas. The venue for the meeting was South Fork Ranch in the outskirts of Dallas. The topics of the meeting included high harmonic generation and attosecond pulse generation, strong field interactions with molecules and clusters, particle acceleration, and relativistic laser atom interactions

  19. Ponderomotive dressing of doubly-excited states with intensity-controlled laser light

    Directory of Open Access Journals (Sweden)

    Ding Thomas

    2013-03-01

    Full Text Available We laser-dress several doubly-excited states in helium. Tuning the coupling-laser intensity from perturbative to the strong-coupling regime, we are able to measure phases imprinted on the two-electron wavefunctions, and observe a new continuum coupling mechanism.

  20. Laser therapy in the periodontitis treatment

    International Nuclear Information System (INIS)

    Pinto Nancassa, Raul; Quintana Gonzalez, Julio; Rodriguez de Bernardo, Carlos; Hernandez Cruz, Hector; Hernandez Alvarez, Victor

    2009-01-01

    We performed a controlled clinical trial to evaluate the efficacy of low-power laser surgery combined with parodontal in the treatment of periodontitis in patients undergoing surgical treatment for this condition in the municipality of Moron North Clinic from February to July 2006. The world of work consisted of all patients diagnosed with periodontitis in this period of time were operated on at the Clinic of North County Moron (N = 86), leaving the sample for 80 patients. In patients where surgery was applied parodontal combined with low power laser radiation pain appeared in only a small number of cases 48 hours and none required the use of analgesics. For seven days the largest percentage of individuals submitted a total healing of soft tissue. No side effects to treatment. Patients treated with surgery parodontal, in whole required the use of analgesics in the first 24 hours and even at 72 hours after surgery in some patients, the seven days the number of patients with partial healing of the soft tissues was although the prevailing high total healing. There was no bone gain, the patients were stable, resulting in only stop. Statistically significant differences were found between groups suggesting that allowing the treatment of low-power laser in the surgery of periodontitis as well as being easy to apply proved to be effective. (Author)

  1. Postgraduate education in noninvasive laser therapy

    Science.gov (United States)

    Navratil, Leos; Kymplova, Jaroslava; Navratilova, Blanka

    2002-10-01

    Non-invasive lasertherapy became today an appreciated treatment method. To avoid its degradation, it is necessary that every physician, who indicates it, would pass out the basic course in these problems. So the error danger by its application would be reduced. As we have verified, in every country the education process is different; we don't consider this fact as right. In the Czech Republic the Radiobiologic Society of Czech Medical Society J. E. Purkynje in co-operation with the Institute of Further Physician's Education, having wide experiences in postgraduate education, organizes already five years such courses. The basic course has 20 lessons, in which the graduates are acquainted with physical base of laser, hygienic rulings for working with laser and biologic changes induced by low level laser in the tissue in vivo. A considerable attention is dedicated to clinical practice and practical education on clinical departments in the fields of dermatology, physiotherapy, stomatology and gynaecology. This course is completed with a lecture of the recent marketing in health service. Participants document their knowledge's in the closing test. Every physician can perfect his knowledge's in a continuation course. Our experiences proved that the education in phototherapy in Czech Republic is on high level in comparison with number of other countries.

  2. Effects of small, intense laser spots on thin films

    International Nuclear Information System (INIS)

    Estabrook, K.

    1986-01-01

    Two-dimensional hydrodynamic simulations show that small diameter laser spots burn through flat foils considerably faster than larger spots. The physical mechanisms are (1) more nearly spherical divergence from the smaller spots which allows the debris to rapidly convect radially away from the small volume of laser heated plasma and (2) a variation on thermal self-focusing in which light is refracted into this volume, increasing the local heating rate

  3. Intense pulsed sources of ions and electrons produced by lasers

    International Nuclear Information System (INIS)

    Bourrabier, G.; Consoli, T.; Slama, L.

    1966-11-01

    We describe a device for the acceleration of the plasma burst produced by focusing a laser beam into a metal target. We extract the electrons and the ions from the plasma. The maximum current is around 2000 amperes during few microseconds. The study of the effect of the kind of the target on the characteristics of the current shows the great importance of the initial conditions that is the ionisation potential of the target and the energy laser. (authors) [fr

  4. Hemodynamic Effect of Laser Therapy in Spontaneously Hypertensive Rats

    Energy Technology Data Exchange (ETDEWEB)

    Tomimura, Suely, E-mail: suelytomimura@uol.com.br [Programa de Pós-Graduação em Biofotônica em Ciências da Saúde da Universidade Nove de Julho (UNINOVE) (Brazil); Silva, Bianca Passos Assumpção [Programa de Graduação e Pós-Graduação em Medicina da UNINOVE (Brazil); Sanches, Iris Callado [Laboratório de Fisiologia Translacional da UNINOVE (Brazil); Canal, Marina [Programa de Graduação e Pós-Graduação em Medicina da UNINOVE (Brazil); Consolim-Colombo, Fernanda [Programa de Graduação e Pós-Graduação em Medicina da UNINOVE (Brazil); Unidade de Hipertensão e Central Médica de Laser do Instituto do Coração - Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (InCor/HC-FMUSP), São Paulo, SP (Brazil); Conti, Felipe Fernandes; Angelis, Katia De [Laboratório de Fisiologia Translacional da UNINOVE (Brazil); Chavantes, Maria Cristina [Programa de Pós-Graduação em Biofotônica em Ciências da Saúde da Universidade Nove de Julho (UNINOVE) (Brazil); Programa de Graduação e Pós-Graduação em Medicina da UNINOVE (Brazil); Unidade de Hipertensão e Central Médica de Laser do Instituto do Coração - Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (InCor/HC-FMUSP), São Paulo, SP (Brazil)

    2014-08-15

    Systemic arterial hypertension (SAH) is considered to be the greatest risk factor for the development of neuro-cardiovascular pathologies, thus constituting a severe Public Health issue in the world. The Low-Level Laser Therapy (LLLT), or laser therapy, activates components of the cellular structure, therefore converting luminous energy into photochemical energy and leading to biophysical and biochemical reactions in the mitochondrial respiratory chain. The LLLT promotes cellular and tissue photobiomodulation by means of changes in metabolism, leading to molecular, cellular and systemic changes. The objective of this study was to analyze the action of low-level laser in the hemodynamic modulation of spontaneously hypertensive rats, in the long term. Animals (n = 16) were randomly divided into the Laser Group (n = 8), which received three weekly LLLT irradiations for seven weeks, and into the Sham Group (n = 8), which received three weekly simulations of laser for seven weeks, accounting for 21 applications in each group. After seven weeks, animals were cannulated by the implantation of a catheter in the left carotid artery. On the following day, the systemic arterial pressure was recorded. The Laser Group showed reduced levels of mean blood pressure, with statistically significant reduction (169 ± 4 mmHg* vs. 182 ± 4 mmHg from the Sham Group) and reduced levels of diastolic pressure (143 ± 4 mmHg* vs. 157 ± 3 mmHg from the Sham Group), revealing a 13 and 14 mmHg decrease, respectively. Besides, there was a concomitant important decline in heart rate (312 ± 14 bpm vs. 361 ± 13 bpm from the Sham Group). Therefore, laser therapy was able to produce hemodynamic changes, thus reducing pressure levels in spontaneously hypertensive rats.

  5. Hemodynamic Effect of Laser Therapy in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Suely Tomimura

    2014-08-01

    Full Text Available Systemic arterial hypertension (SAH is considered to be the greatest risk factor for the development of neuro-cardiovascular pathologies, thus constituting a severe Public Health issue in the world. The Low-Level Laser Therapy (LLLT, or laser therapy, activates components of the cellular structure, therefore converting luminous energy into photochemical energy and leading to biophysical and biochemical reactions in the mitochondrial respiratory chain. The LLLT promotes cellular and tissue photobiomodulation by means of changes in metabolism, leading to molecular, cellular and systemic changes. The objective of this study was to analyze the action of low-level laser in the hemodynamic modulation of spontaneously hypertensive rats, in the long term. Animals (n = 16 were randomly divided into the Laser Group (n = 8, which received three weekly LLLT irradiations for seven weeks, and into the Sham Group (n = 8, which received three weekly simulations of laser for seven weeks, accounting for 21 applications in each group. After seven weeks, animals were cannulated by the implantation of a catheter in the left carotid artery. On the following day, the systemic arterial pressure was recorded. The Laser Group showed reduced levels of mean blood pressure, with statistically significant reduction (169 ± 4 mmHg* vs. 182 ± 4 mmHg from the Sham Group and reduced levels of diastolic pressure (143 ± 4 mmHg* vs. 157 ± 3 mmHg from the Sham Group, revealing a 13 and 14 mmHg decrease, respectively. Besides, there was a concomitant important decline in heart rate (312 ± 14 bpm vs. 361 ± 13 bpm from the Sham Group. Therefore, laser therapy was able to produce hemodynamic changes, thus reducing pressure levels in spontaneously hypertensive rats.

  6. Effects of low-level laser therapy on burning mouth syndrome.

    Science.gov (United States)

    Valenzuela, S; Lopez-Jornet, P

    2017-02-01

    To investigate low-level laser therapy (LLLT) applied to treat burning mouth syndrome (BMS). This prospective, comparative, partially blinded, single-centre, clinical trial of GaAlAs Laser, with 815 nm wavelength, included 44 BMS patients divided randomly into three groups: Group I (n = 16): GaAlAs laser 815 nm wavelength, 1 W output power, continuous emissions, 4 s, 4 J and fluence rate 133·3 J cm -2 ; Group II (n = 16): GaAlAs infrared laser, 815 nm wavelength, 1 W output power, continuous emissions, 6 s, 6 J and fluence rate 200 J cm -2 ; Group III (n = 12) placebo group, sham laser. All groups received a weekly dose for 4 weeks. Pain intensity was recorded using a 10-cm visual analogue scale; patients responded to the oral health impact profile (OHIP-14), xerostomia severity test and the hospital anxiety-depression scale (HAD). These assessments were performed at baseline, 2 and 4 weeks. LLLT decreased pain intensity and improved OHIP-14 scores significantly from baseline to 2 weeks in groups I and II compared with the placebo group. No statistically significant differences were found from 2 to 4 weeks. Overall improvements in visual analogue scale (VAS) scores from baseline to the end of treatment were as follows: Group I 15·7%; Group II 15·6%; Group III placebo 7·3%. LLLT application reduces symptoms slightly in BMS patients. © 2016 John Wiley & Sons Ltd.

  7. Multi-keV X-ray area source intensity at SGII laser facility

    Science.gov (United States)

    Wang, Rui-rong; An, Hong-hai; Xie, Zhi-yong; Wang, Wei

    2018-05-01

    Experiments for investigating the feasibility of multi-keV backlighters for several different metallic foil targets were performed at the Shenguang II (SGII) laser facility in China. Emission spectra in the energy range of 1.65-7.0 keV were measured with an elliptically bent crystal spectrometer, and the X-ray source size was measured with a pinhole camera. The X-ray intensity near 4.75 keV and the X-ray source size for titanium targets at different laser intensity irradiances were studied. By adjusting the total laser energy at a fixed focal spot size, laser intensity in the range of 1.5-5.0 × 1015 W/cm2, was achieved. The results show that the line emission intensity near 4.75 keV and the X-ray source size are dependent on the laser intensity and increase as the laser intensity increases. However, an observed "peak" in the X-ray intensity near 4.75 keV occurs at an irradiance of 4.0 × 1015 W/cm2. For the employed experimental conditions, it was confirmed that the laser intensity could play a significant role in the development of an efficient multi-keV X-ray source. The experimental results for titanium indicate that the production of a large (˜350 μm in diameter) intense backlighter source of multi-keV X-rays is feasible at the SGII facility.

  8. Efficient energy absorption of intense ps-laser pulse into nanowire target

    Energy Technology Data Exchange (ETDEWEB)

    Habara, H.; Honda, S.; Katayama, M.; Tanaka, K. A. [Graduate School of Engineering, Osaka University, 2-1 Suita, Osaka 565-0871 (Japan); Sakagami, H. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Nagai, K. [Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuda 4259, Midori-ku, Yokohama 226-8503, Kanagawa (Japan)

    2016-06-15

    The interaction between ultra-intense laser light and vertically aligned carbon nanotubes is investigated to demonstrate efficient laser-energy absorption in the ps laser-pulse regime. Results indicate a clear enhancement of the energy conversion from laser to energetic electrons and a simultaneously small plasma expansion on the surface of the target. A two-dimensional plasma particle calculation exhibits a high absorption through laser propagation deep into the nanotube array, even for a dense array whose structure is much smaller than the laser wavelength. The propagation leads to the radial expansion of plasma perpendicular to the nanotubes rather than to the front side. These features may contribute to fast ignition in inertial confinement fusion and laser particle acceleration, both of which require high current and small surface plasma simultaneously.

  9. Particle-in-cell modeling of laser Thomson scattering in low-density plasmas at elevated laser intensities

    Science.gov (United States)

    Powis, Andrew T.; Shneider, Mikhail N.

    2018-05-01

    Incoherent Thomson scattering is a non-intrusive technique commonly used for measuring local plasma density. Within low-density, low-temperature plasmas and for sufficient laser intensity, the laser may perturb the local electron density via the ponderomotive force, causing the diagnostic to become intrusive and leading to erroneous results. A theoretical model for this effect is validated numerically via kinetic simulations of a quasi-neutral plasma using the particle-in-cell technique.

  10. High-intensity laser synchrotron x-ray source

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1995-10-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the Laser Synchrotron Light Source (LSLS) concept is still waiting for a convincing demonstration. Available at the BNL's Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power C0 2 laser may be used as prototype LSLS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps C0 2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 70 MeV electron bunch. Flashes of well-collimated, up to 9.36-keV (∼ Angstrom) x-rays of 10-ps pulse duration, with a flux of ∼10 19 photons/sec will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to a variable e-beam energy. A natural short-term extension of the proposed experiment would be further enhancement of the x-ray flux to a 10 21 -10 22 photons/sec level, after the ongoing ATF CO 2 laser upgrade to 1 TW peak power and electron bunch shortening to 3 ps. The ATF LSLS x-ray beamline, exceeding by orders of magnitude the peak fluxes attained at the National Synchrotron Light Source (NSLS) x-ray storage ring, may become attractive for certain users, e.g., for biological x-ray microscopy. In addition, a terawatt CO 2 laser will enable harmonic multiplication of the x-ray spectrum via nonlinear Compton scattering

  11. The role of lasers and intense pulsed light technology in dermatology

    Science.gov (United States)

    Husain, Zain; Alster, Tina S

    2016-01-01

    The role of light-based technologies in dermatology has expanded dramatically in recent years. Lasers and intense pulsed light have been used to safely and effectively treat a diverse array of cutaneous conditions, including vascular and pigmented lesions, tattoos, scars, and undesired hair, while also providing extensive therapeutic options for cosmetic rejuvenation and other dermatologic conditions. Dermatologic laser procedures are becoming increasingly popular worldwide, and demand for them has fueled new innovations and clinical applications. These systems continue to evolve and provide enhanced therapeutic outcomes with improved safety profiles. This review highlights the important roles and varied clinical applications that lasers and intense pulsed light play in the dermatologic practice. PMID:26893574

  12. Histomorphometric analysis of the Achilles tendon of Wistar rats treated with laser therapy and eccentric exercise

    Directory of Open Access Journals (Sweden)

    Maria V. de Souza

    2015-12-01

    lowest amount (p=0.0000 of fibroblasts, according to the morphometric analysis. However, histological evaluation showed a significant group x time interaction (p=0.0024. Greater amounts of fibroblasts were observed in groups E, L and LE on the 7th, 14th and 21st days, respectively. The animals that received laser therapy and were exercised showed a greater (p=0.0000 amount of collagen fibers over time. Laser therapy at a dose of 3J and at a wavelength of 904nm, starting 24h after surgical induction of tendinopathy in Wistar rats, is suitable for angiogenesis and prevention of tendon thickening, which can be associated with the intensity of inflammatory process. When associated with eccentric exercise, the therapy has the advantage of increasing the amount of collagen fibers, reducing fibrinous adhesions and inflammatory infiltrate, despite prolonging angiogenesis. Therefore, eccentric exercise performed concomitantly with laser therapy improves the histological properties of the injured tendon.

  13. High-Intensity Laser Diagnostics for OMEGA EP

    International Nuclear Information System (INIS)

    Bromage, J.; Zuegel, J.D.; Bahk, S.-W.; Vickery, D.S.; Waxer, L.J.; Irwin, D.; Bagnoud, V.; Boni, R.; Moore, M.D.; Junquist, R.; Stoeckl, C.

    2006-01-01

    OMEGA EP is a new high-energy petawatt laser system under construction at the University of Rochester's Laboratory for Laser Energetics. This paper describes our designs for two diagnostics critical to OMEGA EP's mission. The focal-spot diagnostic (FSD) is responsible for characterizing the focal spot of OMEGA EP's off-axis parabolic mirror at full energy. The ultrafast temporal diagnostic (UTD) is responsible for characterizing pulse shapes of full-energy target shots ranging in width from <1 to 100 ps as well as setting the desired pulse width before the shot. These diagnostics will enable, for the first time, complete spatial and temporal characterization of the focus of a high-energy petawatt laser at full energy

  14. High-intensity laser diagnostics for OMEGA EP

    Energy Technology Data Exchange (ETDEWEB)

    Bromage, J.; Zuegel, J.D.; Bahk, S.W.; Vickery, D.S.; Waxer, L.J.; Irwin, D.; Bagnoud, V.; Boni, R.; Moore, M.D.; Jungquist, R.; Stoeckl, C. [Rochester Univ., Lab. for Laser Energetics, NY (United States)

    2006-06-15

    OMEGA EP (Extended Performance) is a new high-energy peta-watt laser system under construction at the University of Rochester's Laboratory for Laser Energetics. This paper describes our designs for two diagnostics critical to OMEGA EP's mission. The focal-spot diagnostic (FSD) is responsible for characterizing the focal spot of OMEGA EP's off-axis parabolic mirror at full energy. The ultrafast temporal diagnostic (UTD) is responsible for characterizing pulse shapes of full-energy target shots ranging in width from < 1 to 100 ps as well as setting the desired pulse width before the shot. These diagnostics will enable, for the first time, complete spatial and temporal characterization of the focus of a high-energy peta-watt laser at full energy. (authors)

  15. High-intensity laser diagnostics for OMEGA EP

    International Nuclear Information System (INIS)

    Bromage, J.; Zuegel, J.D.; Bahk, S.W.; Vickery, D.S.; Waxer, L.J.; Irwin, D.; Bagnoud, V.; Boni, R.; Moore, M.D.; Jungquist, R.; Stoeckl, C.

    2006-01-01

    OMEGA EP (Extended Performance) is a new high-energy peta-watt laser system under construction at the University of Rochester's Laboratory for Laser Energetics. This paper describes our designs for two diagnostics critical to OMEGA EP's mission. The focal-spot diagnostic (FSD) is responsible for characterizing the focal spot of OMEGA EP's off-axis parabolic mirror at full energy. The ultrafast temporal diagnostic (UTD) is responsible for characterizing pulse shapes of full-energy target shots ranging in width from < 1 to 100 ps as well as setting the desired pulse width before the shot. These diagnostics will enable, for the first time, complete spatial and temporal characterization of the focus of a high-energy peta-watt laser at full energy. (authors)

  16. Low-intensity red and infrared lasers on XPA and XPC gene expression

    International Nuclear Information System (INIS)

    Fonseca, A S; Magalhães, L A G; Mencalha, A L; Ferreira-Machado, S C; Geller, M; Paoli, F

    2014-01-01

    Laser devices emit monochromatic, coherent, and highly collimated intense beams of light that are useful for a number of biomedical applications. However, for low-intensity lasers, possible adverse effects of laser light on DNA are still controversial. In this work, the expression of XPA and XPC genes in skin and muscle tissue exposed to low-intensity red and infrared lasers was evaluated. Skin and muscle tissue of Wistar rats were exposed to low-intensity red and infrared lasers at different fluences in continuous mode emission. Skin and muscle tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of actin gene expression by quantitative polymerase chain reaction. Data obtained show that laser radiation alters the expression of XPA and XPC mRNA differently in skin and muscle tissue of Wistar rats, depending on physical (fluence and wavelength) and biological (tissue) parameters. Laser light could modify expression of genes related to the nucleotide excision repair pathway at fluences and wavelengths used in clinical protocols. (letter)

  17. Low-intensity red and infrared laser effects at high fluences on Escherichia coli cultures

    Energy Technology Data Exchange (ETDEWEB)

    Barboza, L.L.; Campos, V.M.A.; Magalhaes, L.A.G. [Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro, RJ (Brazil). Departamento de Biofisica e Biometria; Paoli, F. [Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG (Brazil). Departamento de Morfologia; Fonseca, A.S., E-mail: adnfonseca@ig.com.br [Universidade Federal do Estado do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Departamento de Ciencias Fisiologicas

    2015-10-15

    Semiconductor laser devices are readily available and practical radiation sources providing wavelength tenability and high monochromaticity. Low-intensity red and near-infrared lasers are considered safe for use in clinical applications. However, adverse effects can occur via free radical generation, and the biological effects of these lasers from unusually high fluences or high doses have not yet been evaluated. Here, we evaluated the survival, filamentation induction and morphology of Escherichia coli cells deficient in repair of oxidative DNA lesions when exposed to low-intensity red and infrared lasers at unusually high fluences. Cultures of wild-type (AB1157), endonuclease III-deficient (JW1625-1), and endonuclease IV-deficient (JW2146-1) E. coli, in exponential and stationary growth phases, were exposed to red and infrared lasers (0, 250, 500, and 1000 J/cm{sup 2}) to evaluate their survival rates, filamentation phenotype induction and cell morphologies. The results showed that low-intensity red and infrared lasers at high fluences are lethal, induce a filamentation phenotype, and alter the morphology of the E. coli cells. Low-intensity red and infrared lasers have potential to induce adverse effects on cells, whether used at unusually high fluences, or at high doses. Hence, there is a need to reinforce the importance of accurate dosimetry in therapeutic protocols. (author)

  18. Propagation of an intense laser beam in a tapered plasma channel

    International Nuclear Information System (INIS)

    Jha, Pallavi; Singh, Ram Gopal; Upadhyaya, Ajay K.; Mishra, Rohit K.

    2008-01-01

    Propagation characteristics and modulation instability of an intense laser beam propagating in an axially tapered plasma channel, having a parabolic radial density profile, are studied. Using the source-dependent expansion technique, the evolution equation for the laser spot is set up and conditions for propagation of the laser beam with a constant spot size (matched beam) are obtained. Further, the dispersion relation and growth rate of modulation instability of the laser pulse as it propagates through linearly and quadratically tapered plasma channels, have been obtained

  19. Highly charged ions generated with intense laser beams

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Jungwirth, Karel; Králiková, Božena; Láska, Leoš; Pfeifer, Miroslav; Rohlena, Karel; Skála, Jiří; Ullschmied, Jiří; Hnatowicz, Vladimír; Peřina, Vratislav; Badziak, J.; Parys, P.; Wolowski, J.; Woryna, E.; Szydlowski, A.

    2003-01-01

    Roč. 205, - (2003), s. 355-359 ISSN 0168-583X. [International Symposium on Swift Heavy Ions in Matter /5./. Taormina-Giardini Naxos, 22.05.2002-25.05.2002] R&D Projects: GA MŠk LN00A100 Grant - others:HPRI(XE) CT-1999-00053; IAEA(XE) 11535/RO Institutional research plan: CEZ:AV0Z2043910; CEZ:AV0Z1010921 Keywords : laser-produced plasma * highly charged ions * ion implantation * windowless electron multiplier Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.041, year: 2003

  20. Intensity Modulated Radiation Therapy. Development of the technique

    International Nuclear Information System (INIS)

    Rafailovici, L.; Alva, R.; Chiozza, J.; Donato, H.; Falomo, S.; Cardiello, C.; Furia, O.; Martinez, A.; Filomia, M.L.; Sansogne, R.; Arbiser, S.; Dosoretz, B.

    2008-01-01

    Full text: Introduction: Intensity Modulated Radiation Therapy (IMRT) is a result of advances in computer sciences that allowed the development of new technology related to planning and radiation therapy. IMRT was developed to homogenize the dose in the target volumes and decrease the dose in the surrounding healthy tissue. Using a software with high calculation capacity a simultaneous irradiation with different doses in a given volume is achieved. IMRT is based on internal planning. Material and methods: 628 patients were treated with IMRT in prostate lesions, head and neck, breast, thorax, abdomen and brain since August 2008. The software for IMRT is the XIO CMS and the accelerator used is a Varian Clinac 6 / 100. IMRT requires a first simulation, where immobilization systems are selected (mats, thermoplastic masks, among others) and the demarcation of the target structures, healthy tissue and dose prescription by a tattoo. Images of CT / MRI are merged when necessary. Once the system made the treatment optimization, this one is regulated by modulators. These are produced by numerical control machines from digital files produced by software. In a second modulation the planned irradiation is checked and tattoo is carried out according with this. We have a strict process of quality assurance to assess the viability of the plan before its implementation. We use the Map Check it possible to compare the dose on the central axis and the distribution in the whole plane regarding to that generated by the planning system. From 03/2008 the virtual simulation process was implemented integrating the described stages. Results and Conclusions: IMRT is a complex technique. The meticulous planning, implementation of process and quality control allows the use of this technique in a reliable and secure way. With IMRT we achieved a high level of dose conformation, less irradiation of healthy tissue, lower rates of complications and the dose escalation for some tumors. (authors) [es

  1. Ultrasound-based guidance of intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Fung, Albert Y.C.; Ayyangar, Komanduri M.; Djajaputra, David; Nehru, Ramasamy M.; Enke, Charles A.

    2006-01-01

    In ultrasound-guided intensity-modulated radiation therapy (IMRT) of prostate cancer, ultrasound imaging ascertains the anatomical position of patients during x-ray therapy delivery. The ultrasound transducers are made of piezoelectric ceramics. The same crystal is used for both ultrasound production and reception. Three-dimensional (3D) ultrasound devices capture and correlate series of 2-dimensional (2D) B-mode images. The transducers are often arranged in a convex array for focusing. Lower frequency reaches greater depth, but results in low resolution. For clear image, some gel is usually applied between the probe and the skin contact surface. For prostate positioning, axial and sagittal scans are performed, and the volume contours from computed tomography (CT) planning are superimposed on the ultrasound images obtained before radiation delivery at the linear accelerator. The planning volumes are then overlaid on the ultrasound images and adjusted until they match. The computer automatically deduces the offset necessary to move the patient so that the treatment area is in the correct location. The couch is translated as needed. The currently available commercial equipment can attain a positional accuracy of 1-2 mm. Commercial manufacturer designs differ in the detection of probe coordinates relative to the isocenter. Some use a position-sensing robotic arm, while others have infrared light-emitting diodes or pattern-recognition software with charge-couple-device cameras. Commissioning includes testing of image quality and positional accuracy. Ultrasound is mainly used in prostate positioning. Data for 7825 daily fractions of 234 prostate patients indicated average 3D inter-fractional displacement of about 7.8 mm. There was no perceivable trend of shift over time. Scatter plots showed slight prevalence toward superior-posterior directions. Uncertainties of ultrasound guidance included tissue inhomogeneities, speckle noise, probe pressure, and inter

  2. Relativistic derivation of the ponderomotive force produced by two intense laser fields

    International Nuclear Information System (INIS)

    Stroscio, M.A.

    1985-01-01

    The ponderomotive force plays a fundamental role in the absorption of laser light on self-consistent plasma density profiles, in multiple-photon ionization, and in intense field electrodynamics. The relativistic corrections to the ponderomotive force of a transversely polarized electromagnetic wave lead to an approximately 20-percent reduction in the single particle ponderomotive force produced by a 10-γm 10 16 -W/cm 2 laser field. Recent experimental investigations are based on using two intense laser fields to produce desired lasermatter interactions. This paper presents the first derivation of the nonlinear relativistic ponderomotive force produced by two intense laser fields. The results demonstrate that relativistic ponderomotive forces are not additive

  3. Quantum mechanical theory of collisional ionization in the presence of intense laser radiation

    Science.gov (United States)

    Bellum, J. C.; George, T. F.

    1978-01-01

    The paper presents a quantum mechanical formalism for treating ionizing collisions occurring in the presence of an intense laser field. Both the intense laser radiation and the internal electronic continuum states associated with the emitted electrons are rigorously taken into account by combining discretization techniques with expansions in terms of electronic-field representations for the quasi-molecule-plus-photon system. The procedure leads to a coupled-channel description of the heavy-particle dynamics which involves effective electronic-field potential surfaces and continua. It is suggested that laser-influenced ionizing collisions can be studied to verify the effects of intense laser radiation on inelastic collisional processes. Calculation procedures for electronic transition dipole matrix elements between discrete and continuum electronic states are outlined.

  4. Electron Raman scattering in a double quantum well tuned by an external nonresonant intense laser field

    Science.gov (United States)

    Tiutiunnyk, A.; Mora-Ramos, M. E.; Morales, A. L.; Duque, C. M.; Restrepo, R. L.; Ungan, F.; Martínez-Orozco, J. C.; Kasapoglu, E.; Duque, C. A.

    2017-02-01

    In this work we shall present a study of inelastic light scattering involving inter-subband electron transitions in coupled GaAs-(Ga,Al)As quantum wells. Calculations include the electron related Raman differential cross section and Raman gain. The effects of an external nonresonant intense laser field are used in order to tune these output properties. The confined electron states will be described by means of a diagonalization procedure within the effective mass and parabolic band approximations. It is shown that the application of the intense laser field can produce values of the intersubband electron Raman gain above 400 cm-1. The system proposed here is an alternative choice for the development of AlxGa1-xAs semiconductor laser diodes that can be tuned via an external nonresonant intense laser field.

  5. QED effects induced harmonics generation in extreme intense laser foil interaction

    Science.gov (United States)

    Yu, J. Y.; Yuan, T.; Liu, W. Y.; Chen, M.; Luo, W.; Weng, S. M.; Sheng, Z. M.

    2018-04-01

    A new mechanism of harmonics generation (HG) induced by quantum electrodynamics (QED) effects in extreme intense laser foil interaction is found and investigated by particle-in-cell (PIC) simulations. When two laser pulses with identical intensities of 1.6× {10}24 {{W}} {{{cm}}}-2 are counter-incident on a thin foil target, harmonics emission is observed in their reflected electromagnetic waves. Such harmonics radiation is excited due to transversely oscillating electric currents coming from the vibration of QED effect generated {e}-{e}+ pairs. The effects of laser intensity and polarization were studied. By distinguishing the cascade depth of generated photons and pairs, the influence of QED cascades on HG was analyzed. Although the current HG is not an efficient way for radiation source applications, it may provide a unique way to detect the QED processes in the near future ultra-relativistic laser solid interactions.

  6. Intensity and shape of spectral lines from laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jamelot, G; Jaegle, P; Carillon, A; Wehenkel, C [Centre National de la Recherche Scientifique, 91 - Orsay (France); Paris-11 Univ., 91 - Orsay (France); Ecole Polytechnique, 91 - Palaiseau (France))

    1979-01-01

    In starting from spectral studies of multicharged ions in dense laser-produced plasmas, the main processes which determine the intensity and the shape of lines in the X-UV range are described. The role of radiation transfer is underlined. Intensity anomalies resulting from occurrence of population inversions are considered and a recent experiment performed for investigating such anomalies is described.

  7. Simultaneous bilateral laser therapy accelerates recovery after noise-induced hearing loss in a rat model

    Directory of Open Access Journals (Sweden)

    Jae-Hun Lee

    2016-07-01

    Full Text Available Noise-induced hearing loss is a common type of hearing loss. The effects of laser therapy have been investigated from various perspectives, including in wound healing, inflammation reduction, and nerve regeneration, as well as in hearing research. A promising feature of the laser is its capability to penetrate soft tissue; depending on the wavelength, laser energy can penetrate into the deepest part of the body without damaging non-target soft tissues. Based on this idea, we developed bilateral transtympanic laser therapy, which uses simultaneous laser irradiation in both ears, and evaluated the effects of bilateral laser therapy on cochlear damage caused by noise overexposure. Thus, the purpose of this research was to assess the benefits of simultaneous bilateral laser therapy compared with unilateral laser therapy and a control. Eighteen Sprague-Dawley rats were exposed to narrow-band noise at 115 dB SPL for 6 h. Multiple auditory brainstem responses were measured after each laser irradiation, and cochlear hair cells were counted after the 15th such irradiation. The penetration depth of the 808 nm laser was also measured after sacrifice. Approximately 5% of the laser energy reached the contralateral cochlea. Both bilateral and unilateral laser therapy decreased the hearing threshold after noise overstimulation in the rat model. The bilateral laser therapy group showed faster functional recovery at all tested frequencies compared with the unilateral laser therapy group. However, there was no difference in the endpoint ABR results or final hair cell survival, which was analyzed histologically.

  8. Clinical and bacteriological study of the effect of Nd:YAG laser in gingivitis therapy

    Science.gov (United States)

    Colojoara, Carmen; Mavrantoni, Androniki; Miron, Mariana I.

    2000-06-01

    The relationship between dental plaque and gingivitis was verified. Nonspecific gingivitis is an inflammatory process, frequently caused by enzymes and toxins liberate by bacteria form dental plaque. Loose plaque has come under a great deal of investigation because of its role in attachment loss. The current methods used in the treatment of non specific gingivitis encompass the use of antibiotics and conventional surgical techniques. Treating gingivitis with laser energy may further reduce the gingival inflammation and decrease the wound healing time. The lack of correlation between the quantity of dental plaque and the intensity of gingivitis determined us to study the effect of Nd:YAG pulsed laser in reduction of gingival inflammation and wound healing. The aim of this work is to evaluate clinically the anti- inflammatory and wound healing effect of pulsed Nd:YAG laser and to compare the appearance and the levels of the bacteria in the supergingival and subgingival plaque in adolescents with tooth crowding after Nd:YAG laser. The experimental procedure consisted of a clinical and bacteriological study which was undertaken in 20 patients presenting moderate gingivitis. A group of 10 patients was the subject of a bacteriological study and the other group of 10 was used for clinical and histological examination. For each group the clinical criteria of evaluation were: the gingival index, papillary bleeding index, spontaneous aches. Each patient was tested before and after laser exposure or conventional therapy for bacteriological analyses. The results prove that early gingivitis exposure to laser registers a decrease of bacterial colony number and absence of loss of attachment as compared to the application of the conventional treatment. Clinical study has shown that the combination of scaling and root planning with laser therapy is enough to provide improvement in clinical indices and reduction in the number of bacterial colonies.

  9. Proton emission from laser-generated plasmas at different intensities

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Cutroneo, M.; Cavallaro, S.; Giuffrida, L.; Margarone, Daniele

    2012-01-01

    Roč. 57, č. 2 (2012), s. 237-240 ISSN 0029-5922. [International Conference on Research and Applications of Plasmas (PLASMA). Warsaw, 12.09.2011-16.09.2011] Institutional support: RVO:68378271 Keywords : laser-generated plasma * hydrogenated targets * proton acceleration Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.507, year: 2012

  10. Thomson scattering of polarized photons in an intense laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Byung Yunn

    2006-02-21

    We present a theoretical analysis of the Thomson scattering of linearly and circularly polarized photons from a pulsed laser by electrons. The analytical expression for the photon distribution functions presented in this paper should be useful to designers of Thomson scattering experiments.

  11. Dosimetric verification of the intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Zou Huawei; Jia Mingxuan; Wu Rong; Xiao Fuda; Dong Xiaoqi

    2004-01-01

    Objective: To discuss the methods of the dosimetric verification in the intensity-modulated radiation therapy (IMRT) and insure correct execution of the IMRT planning in the clinical practice. Methods: The CMSFOCUS9200 inverse planning system was used to provide optimized 5-field IMRT treatment plans for the patients. A phantom was made from true water-equivalent material. The doses of the interesting points and isodose distributions of the interesting planes in the phantom were calculated using patients' treatment plan. The phantom was placed on the couch of the accelerator and was irradiated using the phantom's treatment planning data. The doses of interesting points were measured using a 0.23 cc chamber and the isodose distributions of interesting planes were measured using RIT 113 film dosimetry system in the phantom. The results were compared with those from calculation in planning system for verification. Results: The doses and isodose distributions measured by the chamber and the film were consistent with those predicted by the planning. The error between the measured dose and calculated dose in the interesting points was less than 3%. Conclusion: The dosimetric verification of IMRT is a reliable measure in the course of its implementation. (authors)

  12. Intensity-Modulated Radiation Therapy in Childhood Ependymoma

    International Nuclear Information System (INIS)

    Schroeder, Thomas M.; Chintagumpala, Murali; Okcu, M. Fatih; Chiu, J. Kam; Teh, Bin S.; Woo, Shiao Y.; Paulino, Arnold C.

    2008-01-01

    Purpose: To determine the patterns of failure after intensity-modulated radiation therapy (IMRT) for localized intracranial ependymoma. Methods and Materials: From 1994 to 2005, 22 children with pathologically proven, localized, intracranial ependymoma were treated with adjuvant IMRT. Of the patients, 12 (55%) had an infratentorial tumor and 14 (64%) had anaplastic histology. Five patients had a subtotal resection (STR), as evidenced by postoperative magnetic resonance imaging. The clinical target volume encompassed the tumor bed and any residual disease plus margin (median dose 54 Gy). Median follow-up for surviving patients was 39.8 months. Results: The 3-year overall survival rate was 87% ± 9%. The 3-year local control rate was 68% ± 12%. There were six local recurrences, all in the high-dose region of the treatment field. Median time to recurrence was 21.7 months. Of the 5 STR patients, 4 experienced recurrence and 3 died. Patients with a gross total resection had significantly better local control (p = 0.024) and overall survival (p = 0.008) than those with an STR. At last follow-up, no patient had developed visual loss, brain necrosis, myelitis, or a second malignancy. Conclusions: Treatment with IMRT provides local control and survival rates comparable with those in historic publications using larger treatment volumes. All failures were within the high-dose region, suggesting that IMRT does not diminish local control. The degree of surgical resection was shown to be significant for local control and survival

  13. [Induced thymus aging: radiation model and application perspective for low intensive laser radiation].

    Science.gov (United States)

    Sevost'ianova, N N; Trofimov, A V; Lin'kova, N S; Poliakova, V O; Kvetnoĭ, I M

    2010-01-01

    The influence of gamma-radiation on morphofunctional state of thymus is rather like as natural thymus aging. However gamma-radiation model of thymus aging widely used to investigate geroprotectors has many shortcomings and limitations. Gamma-radiation can induce irreversible changes in thymus very often. These changes are more intensive in comparison with changes, which can be observed at natural thymus aging. Low intensive laser radiation can not destroy structure of thymus and its effects are rather like as natural thymus aging in comparison with gamma-radiation effects. There are many parameters of low intensive laser radiation, which can be changed to improve morphofunctional thymus characteristics in aging model. Using low intensive laser radiation in thymus aging model can be very perspective for investigations of aging immune system.

  14. Collisionless energy absorption in the short-pulse intense laser-cluster interaction

    International Nuclear Information System (INIS)

    Kundu, M.; Bauer, D.

    2006-01-01

    In a previous paper [Phys. Rev. Lett. 96, 123401 (2006)] we have shown by means of three-dimensional particle-in-cell simulations and a simple rigid-sphere model that nonlinear resonance absorption is the dominant collisionless absorption mechanism in the intense, short-pulse laser cluster interaction. In this paper we present a more detailed account of the matter. In particular we show that the absorption efficiency is almost independent of the laser polarization. In the rigid-sphere model, the absorbed energy increases by many orders of magnitude at a certain threshold laser intensity. The particle-in-cell results display maximum fractional absorption around the same intensity. We calculate the threshold intensity and show that it is underestimated by the common overbarrier ionization estimate

  15. Formation of a laser beam with a doughnut intensity distribution

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, I I; Troitskii, IU V; Iakushkin, S V

    1986-02-01

    The conditions of the simultaneous generation of TEM01 and TEM10 modes forming a beam with a doughnut intensity distribution are investigated. In the case of a complete suppression of the TEM00 mode, the ratio of the intensity at the crest of the ring to the intensity at the ring axis reaches 200 and is limited by dispersion in the optical elements of the resonator. Operation with mutual locking of TEM01 and TEM10 modes has been achieved which is characterized by complete spatial coherence of the ring-shaped beam.

  16. Cooling rates and intensity limitations for laser-cooled ions at relativistic energies

    Science.gov (United States)

    Eidam, Lewin; Boine-Frankenheim, Oliver; Winters, Danyal

    2018-04-01

    The ability of laser cooling for relativistic ion beams is investigated. For this purpose, the excitation of relativistic ions with a continuous wave and a pulsed laser is analyzed, utilizing the optical Bloch equations. The laser cooling force is derived in detail and its scaling with the relativistic factor γ is discussed. The cooling processes with a continuous wave and a pulsed laser system are investigated. Optimized cooling scenarios and times are obtained in order to determine the required properties of the laser and the ion beam for the planed experiments. The impact of beam intensity effects, like intrabeam scattering and space charge are analyzed. Predictions from simplified models are compared to particle-in-cell simulations and are found to be in good agreement. Finally two realistic example cases of Carbon ions in the ESR and relativistic Titanium ions in SIS100 are compared in order to discuss prospects for future laser cooling experiments.

  17. A tesselation-based model for intensity estimation and laser plasma interactions calculations in three dimensions

    Science.gov (United States)

    Colaïtis, A.; Chapman, T.; Strozzi, D.; Divol, L.; Michel, P.

    2018-03-01

    A three-dimensional laser propagation model for computation of laser-plasma interactions is presented. It is focused on indirect drive geometries in inertial confinement fusion and formulated for use at large temporal and spatial scales. A modified tesselation-based estimator and a relaxation scheme are used to estimate the intensity distribution in plasma from geometrical optics rays. Comparisons with reference solutions show that this approach is well-suited to reproduce realistic 3D intensity field distributions of beams smoothed by phase plates. It is shown that the method requires a reduced number of rays compared to traditional rigid-scale intensity estimation. Using this field estimator, we have implemented laser refraction, inverse-bremsstrahlung absorption, and steady-state crossed-beam energy transfer with a linear kinetic model in the numerical code Vampire. Probe beam amplification and laser spot shapes are compared with experimental results and pf3d paraxial simulations. These results are promising for the efficient and accurate computation of laser intensity distributions in holhraums, which is of importance for determining the capsule implosion shape and risks of laser-plasma instabilities such as hot electron generation and backscatter in multi-beam configurations.

  18. Interaction of intense femtosecond laser pulses with high-Z solids

    International Nuclear Information System (INIS)

    Zhidkov, A.; Sasaki, Akira; Utsumi, Takayuki; Fukumoto, Ichirou; Tajima, Toshiki; Yoshida, Masatake; Kondo, Kenichi

    2000-01-01

    A plasma irradiated by an intense very short pulse laser can be an ultimate high brightness source of incoherent inner-shell X-ray emission of 1-30 keV. The recently developed 100 TW, 20 fs laser facility in JAERI can make considerable enhancement here. To show this a hybrid model combining hydrodynamics and collisional particle-in-cell simulations is applied. Effect of laser prepulse on the interaction of an intense s-polarized femtosecond, ∼20/40 fs, laser pulse with high-Z solid targets is studied. A new absorption mechanism originating from the interaction of the laser pulse with plasma waves excited by the relativistic component of the Lorentz force is found to increase the absorption rate over 30% even for a very short laser pulse. The obtained hot electron temperature exceeds 0.5-1 MeV at optimal conditions for absorption. Results of the simulation for lower laser pulse intensities are in good agreement with the experimental measurements of the hot electron energy distribution. (author)

  19. Effect of low-level laser therapy on tooth sensitivity induced by in-office bleaching.

    Science.gov (United States)

    Moosavi, Horieh; Arjmand, Nooshin; Ahrari, Farzaneh; Zakeri, Majid; Maleknejad, Fatemeh

    2016-05-01

    This study aimed to investigate the effect of low-level laser therapy (LLLT) on tooth sensitivity induced by in-office bleaching. Sixty-six patients enrolled in this randomized clinical trial. Following the in-office procedure with 40% hydrogen peroxide, the participants were randomly divided into three groups. The patients in group 1 received irradiation from a low-level red laser (LLRL; 660 nm, 200 mW, 15 s, 12 J/cm(2)), whereas participants in group 2 were subjected to a low-level infrared laser (LLIL; 810 nm) under similar conditions as in group 1. In group 3 (placebo), the laser treatment was the same as that in groups 1 and 2, but without energy output. The degree of tooth sensitivity was recorded at 1, 24, and 48 h after bleaching using a visual analog scale (VAS). The change in tooth shade was measured 30 days after tooth whitening. The intensity of tooth sensitivity was not significantly different between groups at 1 h after bleaching (p > 0.05). At 24 h after therapy, pain level was significantly lower in the LLIL group compared to the LLRL and placebo groups (p bleaching, VAS scores in the LLIL and LLRL groups were comparable to each other (p > 0.05) and both were significantly lower than that of the placebo group (p  0.05). LLLT with an infrared diode laser could be recommended as a suitable strategy to reduce the intensity of tooth sensitivity after in-office bleaching.

  20. Feasibility of using laser ion accelerators in proton therapy

    CERN Document Server

    Bulanov, S V

    2002-01-01

    The feasibility of using the laser plasma as a source of the high-energy ions for the proton radiation therapy is discussed. The proposal is based on the recent inventions of the effective ions acceleration in the experiments and through numerical modeling of the powerful laser radiation interaction with the gaseous and solid state targets. The principal peculiarity of the dependence of the protons energy losses in the tissues (the Bragg peak of losses) facilities the solution of one of the most important problems of the radiation therapy, which consists in realizing the tumor irradiation by sufficiently high and homogeneous dose with simultaneous minimization of the irradiation level, relative to the healthy and neighbouring tissues and organs

  1. Chalcogen doping of silicon via intense femtosecond-laser irradiation

    International Nuclear Information System (INIS)

    Sheehy, Michael A.; Tull, Brian R.; Friend, Cynthia M.; Mazur, Eric

    2007-01-01

    We have previously shown that doping silicon with sulfur via femtosecond-laser irradiation leads to near-unity absorption of radiation from ultraviolet wavelengths to below band gap short-wave infrared wavelengths. Here, we demonstrate that doping silicon with two other group VI elements (chalcogens), selenium and tellurium, also leads to near-unity broadband absorption. A powder of the chalcogen dopant is spread on the silicon substrate and irradiated with femtosecond-laser pulses. We examine and compare the resulting morphology, optical properties, and chemical composition for each chalcogen-doped substrate before and after thermal annealing. Thermal annealing reduces the absorption of below band gap radiation by an amount that correlates with the diffusivity of the chalcogen dopant used to make the sample. We propose a mechanism for the absorption of below band gap radiation based on defects in the lattice brought about by the femtosecond-laser irradiation and the presence of a supersaturated concentration of chalcogen dopant atoms. The selenium and tellurium doped samples show particular promise for use in infrared photodetectors as they retain most of their infrared absorptance even after thermal annealing-a necessary step in many semiconductor device manufacturing processes

  2. Intensive Versus Distributed Aphasia Therapy: A Nonrandomized, Parallel-Group, Dosage-Controlled Study.

    Science.gov (United States)

    Dignam, Jade; Copland, David; McKinnon, Eril; Burfein, Penni; O'Brien, Kate; Farrell, Anna; Rodriguez, Amy D

    2015-08-01

    Most studies comparing different levels of aphasia treatment intensity have not controlled the dosage of therapy provided. Consequently, the true effect of treatment intensity in aphasia rehabilitation remains unknown. Aphasia Language Impairment and Functioning Therapy is an intensive, comprehensive aphasia program. We investigated the efficacy of a dosage-controlled trial of Aphasia Language Impairment and Functioning Therapy, when delivered in an intensive versus distributed therapy schedule, on communication outcomes in participants with chronic aphasia. Thirty-four adults with chronic, poststroke aphasia were recruited to participate in an intensive (n=16; 16 hours per week; 3 weeks) versus distributed (n=18; 6 hours per week; 8 weeks) therapy program. Treatment included 48 hours of impairment, functional, computer, and group-based aphasia therapy. Distributed therapy resulted in significantly greater improvements on the Boston Naming Test when compared with intensive therapy immediately post therapy (P=0.04) and at 1-month follow-up (P=0.002). We found comparable gains on measures of participants' communicative effectiveness, communication confidence, and communication-related quality of life for the intensive and distributed treatment conditions at post-therapy and 1-month follow-up. Aphasia Language Impairment and Functioning Therapy resulted in superior clinical outcomes on measures of language impairment when delivered in a distributed versus intensive schedule. The therapy progam had a positive effect on participants' functional communication and communication-related quality of life, regardless of treatment intensity. These findings contribute to our understanding of the effect of treatment intensity in aphasia rehabilitation and have important clinical implications for service delivery models. © 2015 American Heart Association, Inc.

  3. Skinning of argon clusters by Coulomb explosion induced with an intense femtosecond laser pulse

    International Nuclear Information System (INIS)

    Sakabe, S.; Shirai, K.; Hashida, M.; Shimizu, S.; Masuno, S.

    2006-01-01

    The energy distributions of ions emitted from argon clusters Coulomb exploded at an intensity of 17 W/cm 2 with an intense femtosecond laser have been experimentally studied. The power m of energy E of the ion energy distribution (dN/dE∼E m ) is expected to be 1/2 for spherical ion clusters, but it is in fact reduced smaller than 1/2 as the laser intensity is decreased. This reduction can be well interpreted as resulting from the instantaneous ionization of the surface of the cluster. The validity of this interpretation was confirmed by experiments with double pulse irradiation. A cluster irradiated by the first pulse survives as a skinned cluster, and the remaining core part is Coulomb exploded by the second pulse. It is shown that a cluster can be skinned by an intense short laser pulse, and the laser-intensity dependence of the skinned layer thickness can be reasonably explained by the laser-induced space charge field created in the cluster

  4. Kalman Filtered MR Temperature Imaging for Laser Induced Thermal Therapies

    OpenAIRE

    Fuentes, D.; Yung, J.; Hazle, J. D.; Weinberg, J. S.; Stafford, R. J.

    2011-01-01

    The feasibility of using a stochastic form of Pennes bioheat model within a 3D finite element based Kalman filter (KF) algorithm is critically evaluated for the ability to provide temperature field estimates in the event of magnetic resonance temperature imaging (MRTI) data loss during laser induced thermal therapy (LITT). The ability to recover missing MRTI data was analyzed by systematically removing spatiotemporal information from a clinical MR-guided LITT procedure in human brain and comp...

  5. Linear energy transfer incorporated intensity modulated proton therapy optimization

    Science.gov (United States)

    Cao, Wenhua; Khabazian, Azin; Yepes, Pablo P.; Lim, Gino; Poenisch, Falk; Grosshans, David R.; Mohan, Radhe

    2018-01-01

    The purpose of this study was to investigate the feasibility of incorporating linear energy transfer (LET) into the optimization of intensity modulated proton therapy (IMPT) plans. Because increased LET correlates with increased biological effectiveness of protons, high LETs in target volumes and low LETs in critical structures and normal tissues are preferred in an IMPT plan. However, if not explicitly incorporated into the optimization criteria, different IMPT plans may yield similar physical dose distributions but greatly different LET, specifically dose-averaged LET, distributions. Conventionally, the IMPT optimization criteria (or cost function) only includes dose-based objectives in which the relative biological effectiveness (RBE) is assumed to have a constant value of 1.1. In this study, we added LET-based objectives for maximizing LET in target volumes and minimizing LET in critical structures and normal tissues. Due to the fractional programming nature of the resulting model, we used a variable reformulation approach so that the optimization process is computationally equivalent to conventional IMPT optimization. In this study, five brain tumor patients who had been treated with proton therapy at our institution were selected. Two plans were created for each patient based on the proposed LET-incorporated optimization (LETOpt) and the conventional dose-based optimization (DoseOpt). The optimized plans were compared in terms of both dose (assuming a constant RBE of 1.1 as adopted in clinical practice) and LET. Both optimization approaches were able to generate comparable dose distributions. The LET-incorporated optimization achieved not only pronounced reduction of LET values in critical organs, such as brainstem and optic chiasm, but also increased LET in target volumes, compared to the conventional dose-based optimization. However, on occasion, there was a need to tradeoff the acceptability of dose and LET distributions. Our conclusion is that the

  6. Simultaneous beam geometry and intensity map optimization in intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Lee, Eva K.; Fox, Tim; Crocker, Ian

    2006-01-01

    Purpose: In current intensity-modulated radiation therapy (IMRT) plan optimization, the focus is on either finding optimal beam angles (or other beam delivery parameters such as field segments, couch angles, gantry angles) or optimal beam intensities. In this article we offer a mixed integer programming (MIP) approach for simultaneously determining an optimal intensity map and optimal beam angles for IMRT delivery. Using this approach, we pursue an experimental study designed to (a) gauge differences in plan quality metrics with respect to different tumor sites and different MIP treatment planning models, and (b) test the concept of critical-normal-tissue-ring-a tissue ring of 5 mm thickness drawn around the planning target volume (PTV)-and its use for designing conformal plans. Methods and Materials: Our treatment planning models use two classes of decision variables to capture the beam configuration and intensities simultaneously. Binary (0/1) variables are used to capture 'on' or 'off' or 'yes' or 'no' decisions for each field, and nonnegative continuous variables are used to represent intensities of beamlets. Binary and continuous variables are also used for each voxel to capture dose level and dose deviation from target bounds. Treatment planning models were designed to explicitly incorporate the following planning constraints: (a) upper/lower/mean dose-based constraints, (b) dose-volume and equivalent-uniform-dose (EUD) constraints for critical structures, (c) homogeneity constraints (underdose/overdose) for PTV, (d) coverage constraints for PTV, and (e) maximum number of beams allowed. Within this constrained solution space, five optimization strategies involving clinical objectives were analyzed: optimize total intensity to PTV, optimize total intensity and then optimize conformity, optimize total intensity and then optimize homogeneity, minimize total dose to critical structures, minimize total dose to critical structures and optimize conformity

  7. Iterative regularization in intensity-modulated radiation therapy optimization

    International Nuclear Information System (INIS)

    Carlsson, Fredrik; Forsgren, Anders

    2006-01-01

    A common way to solve intensity-modulated radiation therapy (IMRT) optimization problems is to use a beamlet-based approach. The approach is usually employed in a three-step manner: first a beamlet-weight optimization problem is solved, then the fluence profiles are converted into step-and-shoot segments, and finally postoptimization of the segment weights is performed. A drawback of beamlet-based approaches is that beamlet-weight optimization problems are ill-conditioned and have to be regularized in order to produce smooth fluence profiles that are suitable for conversion. The purpose of this paper is twofold: first, to explain the suitability of solving beamlet-based IMRT problems by a BFGS quasi-Newton sequential quadratic programming method with diagonal initial Hessian estimate, and second, to empirically show that beamlet-weight optimization problems should be solved in relatively few iterations when using this optimization method. The explanation of the suitability is based on viewing the optimization method as an iterative regularization method. In iterative regularization, the optimization problem is solved approximately by iterating long enough to obtain a solution close to the optimal one, but terminating before too much noise occurs. Iterative regularization requires an optimization method that initially proceeds in smooth directions and makes rapid initial progress. Solving ten beamlet-based IMRT problems with dose-volume objectives and bounds on the beamlet-weights, we find that the considered optimization method fulfills the requirements for performing iterative regularization. After segment-weight optimization, the treatments obtained using 35 beamlet-weight iterations outperform the treatments obtained using 100 beamlet-weight iterations, both in terms of objective value and of target uniformity. We conclude that iterating too long may in fact deteriorate the quality of the deliverable plan

  8. Quality assurance of patients for intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Yoon, Sang Min; Yi, Byong Yong; Choi, Eun Kyung; Kim, Jong Hoon; Ahn, Seung Do; Lee, Sang Wook

    2002-01-01

    To establish and verify the proper and the practical IMRT (intensity-modulated radiation therapy) patient QA (Quality Assurance). An IMRT QA which consists of 3 steps and 16 items were designed and examined the validity of the program by applying to 9 patients, 12 IMRT cases of various sites. The three step QA program consists of RTP related QA, treatment information flow QA, and a treatment delivery QA procedure. The evaluation of organ constraints, the validity of the point dose, and the dose distribution are major issues in the RTP related QA procedure. The leaf sequence file generation, the evaluation of the MLC control file, the comparison of the dry run film, and the IMRT field simulate image were included in the treatment information flow procedure QA. The patient setup QA, the verification of the IMRT treatment fields to the patients, and the examination of the data in the Record and Verify system make up the treatment delivery QA procedure. The point dose measurement results of 10 cases showed good agreement with the RTP calculation within 3%. One case showed more than a 3% difference and the other case showed more than 5%, which was out side the tolerance level. We could not find any differences of more than 2 mm between the RTP leaf sequence and the dry run film. Film dosimetry and the dose distribution from the phantom plan showed the same tendency, but quantitative analysis was not possible because of the film dosimetry nature. No error had been found from the MLC control file and one mis-registration case was found before treatment. This study shows the usefulness and the necessity of the IMRT patient QA program. The whole procedure of this program should be performed, especially by institutions that have just started to accumulate experience. But, the program is too complex and time consuming. Therefore, we propose practical and essential QA items for institutions in which the IMRT is performed as a routine procedure

  9. Intensity Modulated Radiation Therapy With Dose Painting to Treat Rhabdomyosarcoma

    International Nuclear Information System (INIS)

    Yang, Joanna C.; Dharmarajan, Kavita V.; Wexler, Leonard H.; La Quaglia, Michael P.; Happersett, Laura; Wolden, Suzanne L.

    2012-01-01

    Purpose: To examine local control and patterns of failure in rhabdomyosarcoma patients treated with intensity modulated radiation therapy (RT) with dose painting (DP-IMRT). Patients and Methods: A total of 41 patients underwent DP-IMRT with chemotherapy for definitive treatment. Nineteen also underwent surgery with or without intraoperative RT. Fifty-six percent had alveolar histologic features. The median interval from beginning chemotherapy to RT was 17 weeks (range, 4-25). Very young children who underwent second-look procedures with or without intraoperative RT received reduced doses of 24-36 Gy in 1.4-1.8-Gy fractions. Young adults received 50.4 Gy to the primary tumor and lower doses of 36 Gy in 1.8-Gy fractions to at-risk lymph node chains. Results: With 22 months of median follow-up, the actuarial local control rate was 90%. Patients aged ≤7 years who received reduced overall and fractional doses had 100% local control, and young adults had 79% (P=.07) local control. Three local failures were identified in young adults whose primary target volumes had received 50.4 Gy in 1.8-Gy fractions. Conclusions: DP-IMRT with lower fractional and cumulative doses is feasible for very young children after second-look procedures with or without intraoperative RT. DP-IMRT is also feasible in adolescents and young adults with aggressive disease who would benefit from prophylactic RT to high-risk lymph node chains, although dose escalation might be warranted for improved local control. With limited follow-up, it appears that DP-IMRT produces local control rates comparable to those of sequential IMRT in patients with rhabdomyosarcoma.

  10. Numerical studies of acceleration of thorium ions by a laser pulse of ultra-relativistic intensity

    Directory of Open Access Journals (Sweden)

    Domanski Jaroslaw

    2018-01-01

    Full Text Available One of the key scientific projects of ELI-Nuclear Physics is to study the production of extremely neutron-rich nuclides by a new reaction mechanism called fission-fusion using laser-accelerated thorium (232Th ions. This research is of crucial importance for understanding the nature of the creation of heavy elements in the Universe; however, they require Th ion beams of very high beam fluencies and intensities which are inaccessible in conventional accelerators. This contribution is a first attempt to investigate the possibility of the generation of intense Th ion beams by a fs laser pulse of ultra-relativistic intensity. The investigation was performed with the use of fully electromagnetic relativistic particle-in-cell code. A sub-μm thorium target was irradiated by a circularly polarized 20-fs laser pulse of intensity up to 1023 W/cm2, predicted to be attainable at ELI-NP. At the laser intensity ~ 1023 W/cm2 and an optimum target thickness, the maximum energies of Th ions approach 9.3 GeV, the ion beam intensity is > 1020 W/cm2 and the total ion fluence reaches values ~ 1019 ions/cm2. The last two values are much higher than attainable in conventional accelerators and are fairly promising for the planned ELI-NP experiment.

  11. Measurements of magnetic fields generated in underdense plasmas by intense lasers

    International Nuclear Information System (INIS)

    Najmudin, Z.; Walton, B. R.; Mangles, S. P. D.; Dangor, A. E.; Krushelnick, K.; Fritzler, S.; Malka, V.; Faure, J.; Tatarakis, M.

    2006-01-01

    Measurements have been made of the magnetic field generated by the passage of high intensity short laser pulses through underdense plasmas. For a 30 fs, 1 J, 800 nm linearly-polarised laser pulse, an azimuthal magnetic field is observed at a radial extent of approximately 200 μm. The field is found to exceed 2.8 MG. For a 1 ps, 40 J, 1054 nm circularly-polarised laser pulse, a solenoidal field is observed that can exceed 7 MG. This solenoidal field is absent with linear polarised light, and hence can be considered as an Inverse Faraday effect. Both types of field are found to decay on the picosecond timescale. For both the azimuthal and solenoidal fields produced by such intense lasers, the production of energetic electrons by the interaction is thought to be vital for magnetic field generation

  12. Induction of subterahertz surface waves on a metal wire by intense laser interaction with a foil

    Science.gov (United States)

    Teramoto, Kensuke; Inoue, Shunsuke; Tokita, Shigeki; Yasuhara, Ryo; Nakamiya, Yoshihide; Nagashima, Takeshi; Mori, Kazuaki; Hashida, Masaki; Sakabe, Shuji

    2018-02-01

    We have demonstrated that a pulsed electromagnetic wave (Sommerfeld wave) of subterahertz frequency and 11-MV/m field strength can be induced on a metal wire by the interaction of an intense femtosecond laser pule with an adjacent metal foil at a laser intensity of 8.5 × 1018W /c m2 . The polarity of the electric field of this surface wave is opposite to that obtained by the direct interaction of the laser with the wire. Numerical simulations suggest that an electromagnetic wave associated with electron emission from the foil induces the surface wave. A tungsten wire is placed normal to an aluminum foil with a gap so that the wire is not irradiated and damaged by the laser pulse, thus making it possible to generate surface waves on the wire repeatedly.

  13. Control of proton beam divergence in intense-laser foil-plasma interaction

    International Nuclear Information System (INIS)

    Kawata, S.; Sonobe, R.; Miyazaki, S.; Sakai, K.; Kikuchi, T.

    2006-01-01

    Quality of an ion beam is one of the critical factors in intense-laser ion beam generation. A purpose of this study is the suppression of transverse proton divergence by a controlled electron cloud in laser-foil interactions. In this study, the foil target has a hole at the opposite side of the laser illumination. The electrons accelerated by an intense laser are limited in transverse by a neutral plasma at a protuberant part. Therefore the protons are accelerated and also controlled transversely by the electron cloud structure. In our 2.5-dimensional Particle-in-Cell simulations we demonstrate that the transverse shape of the electron cloud is well controlled and the collimated proton beam is generated successfully in the target with the hole. (authors)

  14. Radiation Dose Measurement for High-Intensity Laser Interactions with Solid Targets at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Taiee [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-09-25

    A systematic study of photon and neutron radiation doses generated in high-intensity laser-solid interactions is underway at SLAC National Accelerator Laboratory. We found that these laser-solid experiments are being performed using a 25 TW (up to 1 J in 40 fs) femtosecond pulsed Ti:sapphire laser at the Linac Coherent Light Source’s (LCLS) Matter in Extreme Conditions (MEC) facility. Additionally, radiation measurements were performed with passive and active detectors deployed at various locations inside and outside the target chamber. Results from radiation dose measurements for laser-solid experiments at SLAC MEC in 2014 with peak intensity between 1018 to 7.1x1019 W/cm2 are presented.

  15. Limit on Excitation and Stabilization of Atoms in Intense Optical Laser Fields.

    Science.gov (United States)

    Zimmermann, H; Meise, S; Khujakulov, A; Magaña, A; Saenz, A; Eichmann, U

    2018-03-23

    Atomic excitation in strong optical laser fields has been found to take place even at intensities exceeding saturation. The concomitant acceleration of the atom in the focused laser field has been considered a strong link to, if not proof of, the existence of the so-called Kramers-Henneberger (KH) atom, a bound atomic system in an intense laser field. Recent findings have moved the importance of the KH atom from being purely of theoretical interest toward real world applications; for instance, in the context of laser filamentation. Considering this increasing importance, we explore the limits of strong-field excitation in optical fields, which are basically imposed by ionization through the spatial field envelope and the field propagation.

  16. Maskless Lithography Using Negative Photoresist Material: Impact of UV Laser Intensity on the Cured Line Width

    Science.gov (United States)

    Mohammed, Mohammed Ziauddin; Mourad, Abdel-Hamid I.; Khashan, Saud A.

    2018-06-01

    The application of maskless lithography technique on negative photoresist material is investigated in this study. The equipment used in this work is designed and built especially for maskless lithography applications. The UV laser of 405 nm wavelength with 0.85 Numerical Aperture is selected for direct laser writing. All the samples are prepared on a glass substrate. Samples are tested at different UV laser intensities and different stage velocities in order to study the impact on patterned line width. Three cases of spin coated layers of thickness 90 μm, 40 μm, and 28 μm on the substrate are studied. The experimental results show that line width has a generally increasing trend with intensity. However, a decreasing trend was observed for increasing velocity. The overall performance shows that the mr-DWL material is suitable for direct laser writing systems.

  17. Maskless Lithography Using Negative Photoresist Material: Impact of UV Laser Intensity on the Cured Line Width

    Science.gov (United States)

    Mohammed, Mohammed Ziauddin; Mourad, Abdel-Hamid I.; Khashan, Saud A.

    2018-04-01

    The application of maskless lithography technique on negative photoresist material is investigated in this study. The equipment used in this work is designed and built especially for maskless lithography applications. The UV laser of 405 nm wavelength with 0.85 Numerical Aperture is selected for direct laser writing. All the samples are prepared on a glass substrate. Samples are tested at different UV laser intensities and different stage velocities in order to study the impact on patterned line width. Three cases of spin coated layers of thickness 90 μm, 40 μm, and 28 μm on the substrate are studied. The experimental results show that line width has a generally increasing trend with intensity. However, a decreasing trend was observed for increasing velocity. The overall performance shows that the mr-DWL material is suitable for direct laser writing systems.

  18. Control of ion beam generation in intense short pulse laser target interaction

    International Nuclear Information System (INIS)

    Nagashima, T.; Izumiyama, T.; Barada, D.; Kawata, S.; Gu, Y.J.; Wang, W.M.; Ma, Y.Y.; Kong, Q.

    2013-01-01

    In intense laser plasma interaction, several issues still remain to be solved for future laser particle acceleration. In this paper we focus on a control of generation of high-energy ions. In this study, near-critical density plasmas are employed and are illuminated by high intensity short laser pulses; we have successfully generated high-energy ions, and also controlled ion energy and the ion energy spectrum by multiple-stages acceleration. We performed particle-in-cell simulations in this paper. The first near-critical plasma target is illuminated by a laser pulse, and the ions accelerated are transferred to the next target. The next identical target is also illuminated by another identical large pulse, and the ion beam introduced is further accelerated and controlled. In this study four stages are employed, and finally a few hundreds of MeV of protons are realized. A quasi-monoenergetic energy spectrum is also obtained. (author)

  19. Changes in N400 Topography Following Intensive Speech Language Therapy for Individuals with Aphasia

    Science.gov (United States)

    Wilson, K. Ryan; O'Rourke, Heather; Wozniak, Linda A.; Kostopoulos, Ellina; Marchand, Yannick; Newman, Aaron J.

    2012-01-01

    Our goal was to characterize the effects of intensive aphasia therapy on the N400, an electrophysiological index of lexical-semantic processing. Immediately before and after 4 weeks of intensive speech-language therapy, people with aphasia performed a task in which they had to determine whether spoken words were a "match" or a "mismatch" to…

  20. Laser and intense pulsed light hair removal technologies

    DEFF Research Database (Denmark)

    Haedersdal, M; Beerwerth, F; Nash, J F

    2011-01-01

    devices have been sold directly to consumers for treatment in the home. In this review, we outline the principles underlying laser and IPL technologies and undertake an evidence-based assessment of the short- and long-term efficacy of the different devices available to the practising dermatologist...... pulsed light (IPL, 590-1200 nm), are available and used widely for such procedures in dermatological/clinical settings under proper supervision. Patient selection and appropriate fluence settings are managed by professionals to maximize efficacy while minimizing adverse events. In the past 5 years, LHR...

  1. Magnetic field generation during intense laser channelling in underdense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, A. G.; Sarri, G.; Doria, D.; Kar, S.; Borghesi, M. [School of Mathematics and Physics, The Queen' s University of Belfast, University Road, Belfast BT7 1NN (United Kingdom); Vranic, M.; Guillaume, E.; Silva, L. O.; Vieira, J. [GoLP/IPFN, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon (Portugal); Amano, Y.; Habara, H.; Tanaka, K. A. [Graduate School of Engineering Osaka University. Suita, Osaka 5650871 (Japan); Heathcote, R.; Norreys, P. A. [STFC Rutherford Appleton Laboratory, Didcot, Oxon OX1 0Qx (United Kingdom); Hicks, G.; Najmudin, Z.; Nakamura, H. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom)

    2016-06-15

    Channel formation during the propagation of a high-energy (120 J) and long duration (30 ps) laser pulse through an underdense deuterium plasma has been spatially and temporally resolved via means of a proton imaging technique, with intrinsic resolutions of a few μm and a few ps, respectively. Conclusive proof is provided that strong azimuthally symmetric magnetic fields with a strength of around 0.5 MG are created inside the channel, consistent with the generation of a collimated beam of relativistic electrons. The inferred electron beam characteristics may have implications for the cone-free fast-ignition scheme of inertial confinement fusion.

  2. RF acceleration of intense laser generated proton bunches

    Energy Technology Data Exchange (ETDEWEB)

    Almomani, Ali

    2012-07-13

    With respect to laser-accelerated beams, the high current capability of the CH-DTL cavity has been investigated. Beam simulations have demonstrated that 10{sup 10} protons per bunch can be accelerated successfully and loss free along the structure. It was shown that, the maximum number of protons per bunch that can be accelerated in the first cavity by exploiting about 1% of the stored field energy is 2.02 x 10{sup 11} protons. One further aspect is the total number of protons arriving at the linac entrance. One main aspect of an rf postacceleration experiment is the rf operation stability under these beam load conditions. Detailed simulations from the target along the solenoid and down to the linac entrance were presented, applying adapted software. Special care was taken on the time steps, especially close to the target, and on the collective phenomena between electron and proton distributions. The effect of comoving electrons on the beam dynamics has been investigated in detail. A CH-linac with high space charge limit and large transverse and longitudinal acceptance was designed to accept a maximum fraction of the laser generated proton bursts. Due to well-known transformations of the injected beam emittances along the CH-cavity, it is aimed to derive parameters of the laser generated beam by measuring the beam properties behind of the CH-cavity. With respect to the linac development it is intended to realize the first cavity of the proposed CH-DTL and to demonstrate the acceleration of a laser generated proton bunch with the LIGHT project. The first cavity consists of 7 gaps within a total length of about 668 mm. It is operated at 325 MHz and has an effective accelerating field gradient of about 12.6 MV/m. The study on the surface electric field for this cavity shows, that maximum surface fields of about 94 MV/m and 88 MV/m on the third and sixth drift tubes are reachable, respectively.

  3. Generation and characterisation of warm dense matter with intense lasers

    Science.gov (United States)

    Riley, D.

    2018-01-01

    In this paper I discuss the subject of warm dense matter (WDM), which, apart from being of academic interest and relevant to inertial fusion capsules, is a subject of importance to those who wish to understand the formation and structure of planetary interiors and other astrophysical bodies. I broadly outline some key properties of WDM and go on to discuss various methods of generating samples in the laboratory using large laser facilities and outline some common techniques of diagnosis. It is not intended as a comprehensive review but rather a brief outline for scientists new to the field and those with an interest but not working in the field directly.

  4. Radio and chemioinduced oral mucositis treatment: comparison between conventional drug protocol and treatments with low intensity lasers

    International Nuclear Information System (INIS)

    Alencar, Anelise Ribeiro Peixoto

    2011-01-01

    In this clinical study verified the effects of low intensity laser in the prevention and treatment of oral mucositis radio and/or chemical induced. Thirty one patients with head and neck cancer were selected before being submitted to cancer exclusive radiotherapy or radio and associated chemotherapy. The patients were distributed into three randomly groups as follows: group 1- (control) conventional medicine treatment; group 2 - conventional medicine treatment and daily laser therapy as soon as grade two oral mucositis appeared; group 3 - conventional medicine treatment and daily laser therapy to be initiated immediately before radiotherapy sessions.The irradiation parameters were: wavelength of 660nm, potency of 100mW, continuous mode, punctual application, 2J energy on thirty pre-determined 30 points, with 20s of exposure per point. The control group received medical treatment which consisted in using a set of preventive and therapeutic approach for acute radiation-induced adverse effects. Results were evaluated observing occurrence and grade of oral mucositis, score of pain, loss of body mass, use of nasogastric sound line, internment and interruption of oncologic treatment due to oral mucositis. The results showed that the preventive protocol as used was the most effective in prevention and treatment of oral mucositis and that its daily application contributed in relieving the painful symptomatology so collaborating to maintain and/or bettering the life quality of oncologic patients. (author)

  5. Target Surface Area Effects on Hot Electron Dynamics from High Intensity Laser-Plasma Interactions

    Science.gov (United States)

    2016-08-19

    Science, University ofMichigan, AnnArbor,MI 48109-2099, USA E-mail: czulick@umich.edu Keywords: laser- plasma ,mass-limited, fast electrons , sheath...New J. Phys. 18 (2016) 063020 doi:10.1088/1367-2630/18/6/063020 PAPER Target surface area effects on hot electron dynamics from high intensity laser... plasma interactions CZulick, ARaymond,AMcKelvey, VChvykov, AMaksimchuk, AGRThomas, LWillingale, VYanovsky andKKrushelnick Center forUltrafast Optical

  6. Modelling of radiation losses for ion acceleration at ultra-high laser intensities

    Directory of Open Access Journals (Sweden)

    Capdessus Remi

    2013-11-01

    Full Text Available Radiation losses of charged particles can become important in ultra high intensity laser plasma interaction. This process is described by the radiation back reaction term in the electron equation of motion. This term is implemented in the relativistic particle-in-cell code by using a renormalized Lorentz-Abraham-Dirac model. In the hole boring regime case of laser ion acceleration it is shown that radiation losses results in a decrease of the piston velocity.

  7. On the fast gas ionization wave in an intense laser beam

    International Nuclear Information System (INIS)

    Fisher, V.I.

    1980-01-01

    The transfer of the adsorption zone of laser radiation along a beam is considered. It is shown that for a sufficiently strong laser beam intensity, q 0 >q tilde, the conditions of wave propagation differ principally from those known previously. In particular, the plasma temperature behind the wave front Tsup(*) decreases with the increase of q 0 , whereas the wave velocity D(q 0 ) grows faster than a linear function. The structure and laws of propagation of the ionization wave are determined

  8. Observations of MeV electrons and scattered light from intense, subpicosecond laser-plasma interactions

    International Nuclear Information System (INIS)

    Darrow, C.; Lane, S.; Klem, D.; Perry, M.D.

    1993-01-01

    In this paper the authors present work in progress in their experimental investigation of the coupling of intense, subpicosecond laser pulses with plasmas preformed on solid targets. (This situation is to be contrasted with the interaction of intense laser fields with solid-density matter. A subject which has generated considerable interest in the last several years.) The characterization of the energy distribution of energetic electrons which escape a solid target irradiated by an intense laser is discussed. The authors have also performed experiments to study the excitation of parametric instabilities near the quarter-critical layer and second-harmonic generation near the critical layer in the plasma. They discuss some preliminary scattered light spectroscopy measurements

  9. Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics.

    Science.gov (United States)

    Quan, Wei; Hao, XiaoLei; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Wang, YanLan; Sun, RenPing; Lai, XuanYang; Wu, ChengYin; Gong, QiHuang; He, XianTu; Liu, XiaoJun; Chen, Jing

    2016-06-03

    In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends.

  10. Intense laser field effects on a Woods-Saxon potential quantum well

    Science.gov (United States)

    Restrepo, R. L.; Morales, A. L.; Akimov, V.; Tulupenko, V.; Kasapoglu, E.; Ungan, F.; Duque, C. A.

    2015-11-01

    This paper presents the results of the theoretical study of the effects of non-resonant intense laser field and electric and magnetic fields on the optical properties in an quantum well (QW) make with Woods-Saxon potential profile. The electric field and intense laser field are applied along the growth direction of the Woods-Saxon quantum well and the magnetic field is oriented perpendicularly. To calculate the energy and the wave functions of the electron in the Woods-Saxon quantum well, the effective mass approximation and the method of envelope wave function are used. The confinement in the Woods-Saxon quantum well is changed drastically by the application of intense laser field or either the effect of electric and magnetic fields. The optical properties are calculated using the compact density matrix.

  11. Dynamics of a collisionless plasma interacting with an ultra-intense laser pulse

    International Nuclear Information System (INIS)

    Capdessus, Remi

    2013-01-01

    The interaction of a plasma with an ultra-intense laser pulse becomes more and more interesting as a result of the advances made in terms of numerical tools laser technology. The radiation reaction impacts the electrons dynamics, those of the synchrotron radiation as well as those of the ions by means of charge separation field, for laser intensities above 10 22 W/cm 2 . The kinetic equations governing the particles transport at ultra-high intensity have been obtained. The radiation reaction involves the shrinkage of the space volume of the electrons phases. It has been shown with numerical simulations the strong retro-action that the collective effects induce on the synchrotron radiation generated by the accelerated electrons. The importance of the collective effects depends strongly on the ions mass and of the thickness of the considered plasma. These effects could be verified experimentally with hydrogen cryogenic targets. (author) [fr

  12. Optical fibres sensor based in the intensity switch of a linear laser with two Bragg gratings

    International Nuclear Information System (INIS)

    Basurto P, M.A.; Kuzin, E.A.; Archundia B, C.; Marroquin, E.; May A, M.; Cerecedo N, H.H.; Sanchez M, J.J.; Tentori S, D.; Marquez B, I.; Shliagin, M.; Miridonov, S.

    2000-01-01

    In this work we propose a new configuration for an optical fiber temperature sensor, based on a linear type Er-doped fiber laser. The laser cavity consists of an Er-doped fiber and two identical Bragg gratings at the fiber ends (working as reflectors). Temperature changes are detected by measuring, through one of the gratings, the intensity variations at the system's output. When the temperature of one of the Bragg gratings is modified, a wavelength shift of its spectral reflectivity is observed. Hence, the laser emission intensity of the system is modified. We present experimental results of the intensity switch observed when the temperature difference between the gratings detunes their spectral reflectance. Making use of this effect it is possible to develop limit comparators to bound the temperature range for the object under supervision. This limiting work can be performed with a high sensitivity using a very simple interrogation procedure. (Author)

  13. Low-level laser therapy: An experimental design for wound management: A case-controlled study in rabbit model

    Directory of Open Access Journals (Sweden)

    Hossein Hodjati

    2014-01-01

    Full Text Available Background: There is a wide array of articles in medical literature for and against the laser effect on wound healing but without discrete effect determination or conclusion. This experimental study aims to evaluate the efficacy of low-level laser therapy on wound healing. Materials and Methods: Thirty-four rabbits were randomly enrolled in two groups after creating a full thickness of 3 × 3 cm wound. The intervention group received low density laser exposure (4 J/cm 2 on days 0, 3 and 6 with diode helium-neon low-intensity laser device (wl = 808 nm and in control group moist wound dressing applied. Finally, wound-healing process was evaluated by both gross and pathological assessment. Results: Fibrin formation was the same in the two groups (P = 0.4 but epithelialisation was much more in laser group (P = 0.02. Wound inflammation of the laser group was smaller than that of the control groups but statistical significance was not shown (P = 0.09. Although more smooth muscle actin was found in the wounds of the laser group but it was not statistically significant (P = 0.3. Wound diameter showed significant decrease in wound area in laser group (P = 0.003. Conclusion: According to our study, it seems that low-level laser therapy accelerates wound healing at least in some phases of healing process. So, we can conclude that our study also shows some hopes for low level laser therapy effect on wound healing at least in animal model.

  14. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses

    International Nuclear Information System (INIS)

    Ma, Guangjin; Dallari, William; Borot, Antonin; Tsakiris, George D.; Veisz, Laszlo; Krausz, Ferenc; Yu, Wei

    2015-01-01

    We have performed a systematic study through particle-in-cell simulations to investigate the generation of attosecond pulse from relativistic laser plasmas when laser pulse duration approaches the few-cycle regime. A significant enhancement of attosecond pulse energy has been found to depend on laser pulse duration, carrier envelope phase, and plasma scale length. Based on the results obtained in this work, the potential of attaining isolated attosecond pulses with ∼100 μJ energy for photons >16 eV using state-of-the-art laser technology appears to be within reach

  15. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study

    International Nuclear Information System (INIS)

    Lee, Katrina; Lenards, Nishele; Holson, Janice

    2016-01-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient's neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient's data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain.

  16. Ion energy distributions from laser-generated plasmas at two different intensities

    Science.gov (United States)

    Ceccio, Giovanni; Torrisi, Lorenzo; Okamura, Masahiro; Kanesue, Takeshi; Ikeda, Shunsuke

    2018-01-01

    Laser-generated non-equilibrium plasmas were analyzed at Brookhaven National Laboratory (NY, USA) and MIFT Messina University (Italy). Two laser intensities of 1012 W/cm2 and 109 W/cm2, have been employed to irradiate Al and Al with Au coating targets in high vacuum conditions. Ion energy distributions were obtained using electrostatic analyzers coupled with ion collectors. Time of flight measurements were performed by changing the laser irradiation conditions. The study was carried out to provide optimum keV ions injection into post acceleration systems. Possible applications will be presented.

  17. Interaction of intense laser pulses with neutral gases and preformed plasmas

    International Nuclear Information System (INIS)

    Mackinnon, A. J.; Borghesi, M.; Iwase, A.; Jones, M. W.; Willi, O.

    1998-01-01

    The interaction of a high intensity laser pulse with a neutral gas or preformed plasma has been studied over a wide range of target and laser conditions. It was found that the propagation of 2ps laser pulses (λ=1.054μm, P=5-10TW, I∼5x10 14 -1x10 14 -1x10 18 Wcm -2 ) in neutral gases with atomic densities greater than 0.001 of critical was strongly influenced by ionisation induced refraction. Preformed density channels were effective in overcoming refraction but the channel length was found to be limited by ionization induced defocusing of the prepulse

  18. Time Integrated Soft X-ray Imaging in High Intensity Laser Experiments (thesis)

    Energy Technology Data Exchange (ETDEWEB)

    Stafford, David [Univ. of California, Davis, CA (United States)

    2009-01-01

    2009 marks a significant achievement and the dawn of a new era in high intensity laser research with the final commissioning of all 192 beams at the National Ignition Facility (NIF). NIF is a department of energy (DOE) funded project more than 10 years in the making located at the Lawrence Livermore National Laboratory (LLNL). The following research was done as one of many preliminary experiments done to prepare for these historic events. The primary focus of the experimental campaign this paper addresses is to test and develop a thermal x-radiation source using a short pulse laser. This data is hoped to provide information about the thermal transport mechanisms important in the development of prediction models in High Energy Density (HED) science. One of several diagnostics fielded was a soft x-ray imager (SXRI) which is detailed in this paper. The SXRI will be used to measure the relative size of the heated region and also the relative level of specific x-ray emissions among several shot and target configurations. The laser system used was the Titan laser located in the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). Titan uses the JLF Janus Nd:glass laser west frontend system with a Optical Parametric Chirped Pulse Amplification (OPCPA) in place of the nanosecond oscillator. The system is capable of producing laser intensities of over a petawatt with several tens of joules delivered in the beam.

  19. Dehydrogenation involved Coulomb explosion of molecular C2H4FBr in an intense laser field

    Science.gov (United States)

    Pei, Minjie; Yang, Yan; Zhang, Jian; Sun, Zhenrong

    2018-04-01

    The dissociative double ionization (DDI) of molecular 1-fluo-2-bromoethane (FBE) in an intense laser field has been investigated by dc-slice imaging technology. The DDI channels involved with dehydrogenation are revealed and it's believed both the charge distribution and the bound character of real potential energy surfaces of parent ions play important roles in the dissociation process. The relationship between the potential energy surfaces of the precursor species and the photofragment ejection angles are also discussed and analyzed. Furthermore, the competition between the DDI channels has been studied and the Csbnd C bond cleavages dominate the DDI process at relative higher laser intensity.

  20. The effect of high intensity laser propagation instabilities on channel formation in underdense plasmas

    International Nuclear Information System (INIS)

    Najmudin, Z.; Krushelnick, K.; Tatarakis, M.; Clark, E.L.; Danson, C.N.; Malka, V.; Neely, D.; Santala, M.I.K.; Dangor, A.E.

    2003-01-01

    Experiments have been performed using high power laser pulses (up to 50 TW) focused into underdense helium plasmas (n e ≤5x10 19 cm -3 ). Using shadowgraphy, it is observed that the laser pulse can produce irregular density channels, which exhibit features such as long wavelength hosing and 'sausage-like' self-focusing instabilities. This phenomenon is a high intensity effect and the characteristic period of oscillation of these instabilities is typically found to correspond to the time required for ions to move radially out of the region of highest intensity

  1. Spectral singularities, threshold gain, and output intensity for a slab laser with mirrors

    Science.gov (United States)

    Doğan, Keremcan; Mostafazadeh, Ali; Sarısaman, Mustafa

    2018-05-01

    We explore the consequences of the emergence of linear and nonlinear spectral singularities in TE modes of a homogeneous slab of active optical material that is placed between two mirrors. We use the results together with two basic postulates regarding the behavior of laser light emission to derive explicit expressions for the laser threshold condition and output intensity for these modes of the slab and discuss their physical implications. In particular, we reveal the details of the dependence of the threshold gain and output intensity on the position and properties of the mirrors and on the real part of the refractive index of the gain material.

  2. Is reducing variability of blood glucose the real but hidden target of intensive insulin therapy?

    Science.gov (United States)

    Egi, Moritoki; Bellomo, Rinaldo; Reade, Michael C

    2009-01-01

    Since the first report that intensive insulin therapy reduced mortality in selected surgical critically ill patients, lowering of blood glucose levels has been recommended as a means of improving patient outcomes. In this initial Leuven trial, blood glucose control by protocol using insulin was applied to 98.7% of patients in the intensive group but to only 39.2% (P dimension of glucose management, a possible mechanism by which an intensive insulin protocol exerts its putative beneficial effects, and an important goal of glucose management in the intensive care unit. Clinicians need to be aware of this controversy when considering the application of intensive insulin therapy and interpreting future trials.

  3. Comparative analysis of 60Co intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Fox, Christopher; Romeijn, H Edwin; Lynch, Bart; Dempsey, James F; Men, Chunhua; Aleman, Dionne M

    2008-01-01

    In this study, we perform a scientific comparative analysis of using 60 Co beams in intensity-modulated radiation therapy (IMRT). In particular, we evaluate the treatment plan quality obtained with (i) 6 MV, 18 MV and 60 Co IMRT; (ii) different numbers of static multileaf collimator (MLC) delivered 60 Co beams and (iii) a helical tomotherapy 60 Co beam geometry. We employ a convex fluence map optimization (FMO) model, which allows for the comparison of plan quality between different beam energies and configurations for a given case. A total of 25 clinical patient cases that each contain volumetric CT studies, primary and secondary delineated targets, and contoured structures were studied: 5 head-and-neck (H and N), 5 prostate, 5 central nervous system (CNS), 5 breast and 5 lung cases. The DICOM plan data were anonymized and exported to the University of Florida optimized radiation therapy (UFORT) treatment planning system. The FMO problem was solved for each case for 5-71 equidistant beams as well as a helical geometry for H and N, prostate, CNS and lung cases, and for 3-7 equidistant beams in the upper hemisphere for breast cases, all with 6 MV, 18 MV and 60 Co dose models. In all cases, 95% of the target volumes received at least the prescribed dose with clinical sparing criteria for critical organs being met for all structures that were not wholly or partially contained within the target volume. Improvements in critical organ sparing were found with an increasing number of equidistant 60 Co beams, yet were marginal above 9 beams for H and N, prostate, CNS and lung. Breast cases produced similar plans for 3-7 beams. A helical 60 Co beam geometry achieved similar plan quality as static plans with 11 equidistant 60 Co beams. Furthermore, 18 MV plans were initially found not to provide the same target coverage as 6 MV and 60 Co plans; however, adjusting the trade-offs in the optimization model allowed equivalent target coverage for 18 MV. For plans with comparable

  4. Experimental verification of subthreshold laser therapy using conventional pattern scan laser.

    Directory of Open Access Journals (Sweden)

    Tomoyasu Shiraya

    Full Text Available Leading-edge therapeutic laser technologies are not available at every medical facility; therefore, alternative approaches incorporating novel advances in digital and laser technology into more readily available conventional methods have generated significant research interest. Using a rabbit model, this study investigated whether the algorithm used in the Endpoint Management (EM software system of the latest devices could enable subthreshold laser treatment in conventional retinal tissue laser therapy systems.Two types of devices were used, the PASCAL Streamline 577 and the MC 500-Vixi™, and the laser method was classified into three categories: EM; single-shot using PASCAL with arbitrary energy settings (PSS-SDM; and MC500-VixiTM (VX-SDM, which were performed in eight eyes from four Dutch-Belted rabbits. In EM, 100 mW (100% was set as a landmark, and the laser energy parameters were gradually decreased to 80%, 60%, 50%, 40%, 30%, 20%, and 10%, using a 2 × 3 square pattern. In PSS-SDM and VX-SDM, as control, the laser energy was gradually decreased to 100, 80, 60, 50, 40, 30, 20, and 10 mW. The laser settings were fixed at 200 μm, 20 ms, and a wavelength of 577 μm. To identify and compare the extent of tissue damage at each spot size, optical coherence tomography (OCT and histological findings were used to construct a three-dimensional histopathology image using a confocal laser scanning fluorescence microscope.The spot size at 50% setting on EM was 7183 μm2; PSS-SDM required 50 mW (5503 μm2 to 60 mW (10279 μm2 and VX-SDM required 50 mW (7423 μm2 to create the approximate spot size. Furthermore, at 50 mW of PSS-SDM and VX-SDM, the extent of tissue damage in all three methods was generally in accord with the outer nuclear layer by OCT and inner nuclear layer by histopathological imaging.These findings suggest that it may be possible to perform subthreshold laser therapy using approximations from the EM algorithm.

  5. Effect of radiation damping on the interaction of ultra-intense laser pulses with an overdense plasma

    International Nuclear Information System (INIS)

    Zhidkov, Alexei; Koga, James; Sasaki, Akira; Ueshima, Yutaka

    2001-01-01

    The effect of radiation damping on the interaction of an ultra-intense laser pulse with an overdense plasma is studied via relativistic particle-in-cell simulation. The calculation is performed for a Cu solid slab including ionization. We find a strong effect from radiation damping on the electron energy cut-off at about 150 MeV and on the absorption of a laser pulse with an intensity I=5x10 22 W/cm 2 and duration of 20 fs. Hot electrons reradiate more then 10% of the laser energy during the laser pulse. With the laser intensity, the energy loss due to the radiation damping increases as I 3 . In addition, we observe that the laser pulse may not propagate in the plasma even if ω pl 2 /ω 2 γ<1. The increase of skin depth with the laser intensity due to relativistic effects gives rise to the absorption efficiency. (author)

  6. Low Level Laser Therapy for chronic knee joint pain patients.

    Science.gov (United States)

    Nakamura, Takashi; Ebihara, Satoru; Ohkuni, Ikuko; Izukura, Hideaki; Harada, Takashi; Ushigome, Nobuyuki; Ohshiro, Toshio; Musha, Yoshiro; Takahashi, Hiroshi; Tsuchiya, Kazuaki; Kubota, Ayako

    2014-12-27

    Chronic knee joint pain is one of the most frequent complaints which is seen in the outpatient clinic in our medical institute. In previous studies we have reported the benefits of low level laser therapy (LLLT) for chronic pain in the shoulder joints, elbow, hand, finger and the lower back. The present study is a report on the effects of LLLT for chronic knee joint pain. Over the past 5 years, 35 subjects visited the outpatient clinic with complaints of chronic knee joint pain caused by the knee osteoarthritis-induced degenerative meniscal tear. They received low level laser therapy. A 1000 mW semi-conductor laser device was used to deliver 20.1 J/cm(2) per point in continuous wave at 830nm, and four points were irradiated per session (1 treatment) twice a week for 4 weeks. A visual analogue scale (VAS) was used to determine the effects of LLLT for the chronic pain and after the end of the treatment regimen a significant improvement was observed (pknee joint range of motion. Discussions with the patients revealed that it was important for them to learn how to avoid postures that would cause them knee pain in everyday life in order to have continuous benefits from the treatment. The present study demonstrated that 830 nm LLLT was an effective form of treatment for chronic knee pain caused by knee osteoarthritis. Patients were advised to undertake training involving gentle flexion and extension of the knee.

  7. Laser acupuncture versus reflexology therapy in elderly with rheumatoid arthritis.

    Science.gov (United States)

    Adly, Afnan Sedky; Adly, Aya Sedky; Adly, Mahmoud Sedky; Serry, Zahra M H

    2017-07-01

    The purposes of this study are to determine and compare efficacy of laser acupuncture versus reflexology in elderly with rheumatoid arthritis. Thirty elderly patients with rheumatoid arthritis aged between 60 and 70 years were classified into two groups, 15 patients each. Group A received laser acupuncture therapy (904 nm, beam area of 1cm 2 , power 100 mW, power density 100 mW/cm 2 , energy dosage 4 J, energy density 4 J/cm 2 , irradiation time 40 s, and frequency 100,000 Hz). The acupuncture points that were exposed to laser radiation are LR3, ST25, ST36, SI3, SI4, LI4, LI11, SP6, SP9, GB25, GB34, and HT7. While group B received reflexology therapy, both offered 12 sessions over 4 weeks. The changes in RAQoL, HAQ, IL-6, MDA, ATP, and ROM at wrist and ankle joints were measured at the beginning and end of treatment. There was significant decrease in RAQoL, HAQ, IL-6, and MDA pre/posttreatment for both groups (p rheumatoid arthritis.

  8. Coulomb explosion of H2 induced by a sub-10 fs intense laser pulse

    International Nuclear Information System (INIS)

    Saugout, S.

    2006-12-01

    This work presents an experimental and theoretical study of the interaction of H2 with an intense sub-10 fs-laser pulse. The ejection of the two electrons of the molecule by the laser pulse leads to the fragmentation of the physical sys em in two protons. This process is called Coulomb Explosion. The electronic and nuclear dynamics can be analyzed by measuring the kinetic energy spectra as a function of different laser parameters. This dynamics is also analyzed through a non-perturbative, double active electron theoretical model, based on the resolution of the time dependent Schroedinger equation. In this model, the internuclear distance is treated as a quantum variable. The experimental and theoretical results enlight the translation of the kinetic energy spectra towards a higher energy when the pulse duration decreases. Experimentally, laser pulses from 40 to 10 fs were used and down to 1 fs using theoretical simulations. This study shows that, for laser pulses shorter than 4 fs, the carrier envelope phase becomes a crucial parameter. Furthermore, the molecular dynamics of H2 in intense laser field is sensitive to the peak intensity of the pulse. The experimental and theoretical results show that, as the intensity increases, the kinetic energy spectra are centered around a higher energy. In addition, the presence of two double ionization regimes is theoretically demonstrated for a pulse duration of 4 fs. The H 2 molecule is also sensitive to the temporal shape of the laser pulse. This sensitivity allows for the detection of pre- or post-pulses by measuring the experimental kinetic energy spectra. Finally, the different double ionization processes are studied. The results show that the electron rescattering influences the femtosecond nuclear dynamics. (author)

  9. Achilles tendon of wistar rats treated with laser therapy and eccentric exercise

    OpenAIRE

    Souza, Maria Verônica de; Silva, Carlos Henrique Osório; Silva, Micheline Ozana da; Costa, Marcela Bueno Martins da; Dornas, Raul Felipe; Borges, Andréa Pacheco Batista; Natali, Antônio José

    2015-01-01

    ABSTRACTIntroduction:Both laser therapy and eccentric exercises are used in tendon injuries. However, the association of these physiotherapeutic modalities is yet little investigated.Objective:To evaluate the effect of low-level laser therapy associated to eccentric exercise (downhill walking) on Achilles tendinopathy of Wistar rats.Method:Eighteen Achilles tendon from 15 adult male Wistar rats were used. Tendons were distributed in six groups (laser, eccentric exercise, laser and eccentric e...

  10. Intensity stabilisation of optical pulse sequences for coherent control of laser-driven qubits

    Science.gov (United States)

    Thom, Joseph; Yuen, Ben; Wilpers, Guido; Riis, Erling; Sinclair, Alastair G.

    2018-05-01

    We demonstrate a system for intensity stabilisation of optical pulse sequences used in laser-driven quantum control of trapped ions. Intensity instability is minimised by active stabilisation of the power (over a dynamic range of > 104) and position of the focused beam at the ion. The fractional Allan deviations in power were found to be logic gates to be below 10^{-6} per gate.

  11. Guiding of short, intense laser pulses through solid guides and preformed plasma channels

    International Nuclear Information System (INIS)

    Borghesi, M.; Mackinnon, A.J.; Gaillard, R.; Malka, G.; Vickers, C.; Willi, O.; Blanchot, N.; Miquel, J.L.; Canaud, B.; Davies, J.R.; Malka, G.; Offenberger, A.A.

    2000-01-01

    In a series of experiments carried out at the Rutherford Appleton Laboratory, Chilton (UK) and at the Commissariat a l'Energie Atomique, Limeil (France), various techniques of guiding ultra-intense laser pulses over distances exceeding the natural diffraction length were investigated. Efficient guiding was demonstrated both through density channels formed in an underdense plasma by an intense prepulse and through solid guides (hollow capillary tubes). Indication of collimated fast electron propagation though solid targets has also been obtained. (authors)

  12. Automatic Detection of Vehicles Using Intensity Laser and Anaglyph Image

    Directory of Open Access Journals (Sweden)

    Hideo Araki

    2006-12-01

    Full Text Available In this work is presented a methodology to automatic car detection motion presents in digital aerial image on urban area using intensity, anaglyph and subtracting images. The anaglyph image is used to identify the motion cars on the expose take, because the cars provide red color due the not homology between objects. An implicit model was developed to provide a digital pixel value that has the specific propriety presented early, using the ratio between the RGB color of car object in the anaglyph image. The intensity image is used to decrease the false positive and to do the processing to work into roads and streets. The subtracting image is applied to decrease the false positives obtained due the markings road. The goal of this paper is automatically detect motion cars presents in digital aerial image in urban areas. The algorithm implemented applies normalization on the left and right images and later form the anaglyph with using the translation. The results show the applicability of proposed method and it potentiality on the automatic car detection and presented the performance of proposed methodology.

  13. Could quantum gravity phenomenology be tested with high intensity lasers?

    International Nuclear Information System (INIS)

    Magueijo, Joao

    2006-01-01

    In phenomenological quantum gravity theories, Planckian behavior is triggered by the energy of elementary particles approaching the Planck energy, E P , but it is also possible that anomalous behavior strikes systems of particles with total energy near E P . This is usually perceived to be pathological and has been labeled 'the soccer ball problem'. We point out that there is no obvious contradiction with experiment if coherent collections of particles with bulk energy of order E P do indeed display Planckian behavior, a possibility that would open a new experimental window. Unfortunately, field theory realizations of 'doubly' (or deformed) special relativity never exhibit a soccer ball problem; we present several formulations where this is undeniably true. Upon closer scrutiny we discover that the only chance for Planckian behavior to be triggered by large coherent energies involves the details of second quantization. We find a formulation where the quanta have their energy-momentum (mass-shell) relations deformed as a function of the bulk energy of the coherent packet to which they belong, rather than the frequency. Given ongoing developments in laser technology, such a possibility would be of great experimental interest

  14. Molecular electron recollision dynamics in intense circularly polarized laser pulses

    Science.gov (United States)

    Bandrauk, André D.; Yuan, Kai-Jun

    2018-04-01

    Extreme UV and x-ray table top light sources based on high-order harmonic generation (HHG) are focused now on circular polarization for the generation of circularly polarized attosecond pulses as new tools for controlling electron dynamics, such as charge transfer and migration and the generation of attosecond quantum electron currents for ultrafast magneto-optics. A fundamental electron dynamical process in HHG is laser induced electron recollision with the parent ion, well established theoretically and experimentally for linear polarization. We discuss molecular electron recollision dynamics in circular polarization by theoretical analysis and numerical simulation. The control of the polarization of HHG with circularly polarized ionizing pulses is examined and it is shown that bichromatic circularly polarized pulses enhance recollision dynamics, rendering HHG more efficient, especially in molecules because of their nonspherical symmetry. The polarization of the harmonics is found to be dependent on the compatibility of the rotational symmetry of the net electric field created by combinations of bichromatic circularly polarized pulses with the dynamical symmetry of molecules. We show how the field and molecule symmetry influences the electron recollision trajectories by a time-frequency analysis of harmonics. The results, in principle, offer new unique controllable tools in the study of attosecond molecular electron dynamics.

  15. Explosions of water clusters in intense laser fields

    International Nuclear Information System (INIS)

    Kumarappan, V.; Krishnamurthy, M.; Mathur, D.

    2003-01-01

    Energetic, highly charged oxygen ions O q+ (q≤6), are copiously produced upon laser field-induced disassembly of highly charged water clusters, (H 2 O) n and (D 2 O) n , n∼60, that are formed by seeding high-pressure helium or argon with water vapor. Ar n clusters (n∼40 000) formed under similar experimental conditions are found to undergo disassembly in the Coulomb explosion regime, with the energies of Ar q+ ions showing a q 2 dependence. Water clusters, which are argued to be considerably smaller in size, should also disassemble in the same regime, but the energies of fragment O q+ ions are found to depend linearly on q which, according to prevailing wisdom, ought to be a signature of hydrodynamic expansion that is expected of much larger clusters. The implication of these observations on our understanding of the two cluster explosion regimes, Coulomb explosion and hydrodynamic expansion, is discussed. Our results indicate that charge state dependences of ion energy do not constitute an unambiguous experimental signature of cluster explosion regime

  16. Laser trabeculoplasty as the primary therapy in simple and capsular glaucoma

    International Nuclear Information System (INIS)

    Tuulonen, A.

    1984-01-01

    Very little is known about the efficacy of Argon laser trabeculoplasty as an initial therapy in early glaucomatous eyes. Owing to the favourable results gained with laser trabeculoplasty in the treatment of advanced stages of glaucoma and the low rate of complications reported, laser trabeculoplasty was accepted as an alternative to conventional medical therapy in early open angle glaucoma. In this paper, a retrospective study of 54 treated patients, the therapy is reported to be highly effective. (Auth.)

  17. Electro therapy facial and laser skin whitening: Clients' perspective.

    Science.gov (United States)

    Lavanya, D; Manimaran, S; Bhagyalakshmi, K

    2018-01-01

    There are so many beauty salons in Metropolis who provide services to women exclusively [1]. These beauty salons depend mostly on electricity for their services to customers, without it there is no effective means of operation [2]. These beauty salons are definitely leading to women empowerment. The beauty salons are run by the women for women. Since they fall under the category of micro and small enterprises, these salons may avail so many financial and non- financial advantages from the Government of India. They also provide employment opportunities to the women employees. The development of such beauty salons rests on the clients' satisfaction on the provision of their services. Hence it is essential to measure the clients attitude towards the services offered by the beauty salons, especially electro therapy facial, laser skin whitening and laser hair removal treatments, which are coming under micro current treatment as a cosmetic tool.

  18. Effect of low-level laser therapy after extraction of impacted lower third molars.

    Science.gov (United States)

    Ferrante, Maurizio; Petrini, Morena; Trentini, Paolo; Perfetti, Giorgio; Spoto, Giuseppe

    2013-05-01

    The aim of this study is to evaluate the effectiveness of the low-level laser therapy (LLLT) in the control of pain, swelling, and trismus associated with surgical removal of impacted lower third molars. Thirty patients were randomized into two treatment groups, each with 15 patients-group test (LLLT) and a group control (no-LLLT)-and were told to avoid any analgesics 12 h before the procedure. In group test, the 980-nm diode-laser (G-Laser 25 Galbiati, Italy) was applied, using a 600-μm handpiece, intraorally (lingual and vestibular) at 1 cm from the involved area and extraoral at the insertion point of the masseter muscle immediately after surgery and at 24 h. The group control received only routine management. Parameters used for LLLT were: continuous mode, at 300 mW (0.3 W) for a total of 180 s (60 s × 3) (0.3 W × 180 s=54 J). Group test showed improvement in the interincisal opening and remarkable reduction of trismus, swelling and intensity of pain on the first and the seventh postoperative days. Although LLLT has been reported to prevent swelling and trismus following the removal of impacted third molars, some of these studies reported a positive laser effect while others did not. All references to the use of laser therapy in the postoperative management of third molar surgery employ different methodologies and, in some, explanations as to selection of their respective radiation parameters are not given. This study has demonstrated that LLLT, with these parameters, is useful for the reduction of postoperative discomfort after third-molar surgery.

  19. The effects of a low-intensity red laser on bacterial growth, filamentation and plasmid DNA

    International Nuclear Information System (INIS)

    Roos, C; Santos, J N; Guimarães, O R; Geller, M; Fonseca, A S; Paoli, F

    2013-01-01

    Exposure of nonphotosynthesizing microorganisms to light could increase cell division in cultures, a phenomenon denominated as biostimulation. However, data concerning the importance of the genetic characteristics of cells on this effect are as yet scarce. The aim of this work was to evaluate the effects of a low-intensity red laser on the growth, filamentation and plasmids in Escherichia coli cells proficient and deficient in DNA repair. E. coli cultures were exposed to a laser (658 nm, 10 mW, 1 and 8 J cm −2 ) to study bacterial growth and filamentation. Also, bacterial cultures hosting pBSK plasmids were exposed to the laser to study DNA topological forms from the electrophoretic profile in agarose gels. Data indicate the low-intensity red laser: (i) had no effect on the growth of E. coli wild type and exonuclease III deficient cells; (ii) induced bacterial filamentation, (iii) led to no alteration in the electrophoretic profile of plasmids from exonuclease III deficient cells, but plasmids from wild type cells were altered. A low-intensity red laser at the low fluences used in phototherapy has no effect on growth, but induces filamentation and alters the topological forms of plasmid DNA in E. coli cultures depending on the DNA repair mechanisms. (paper)

  20. Atomic motion in a high-intensity standing wave laser field

    International Nuclear Information System (INIS)

    Saez Ramdohr, L.F.

    1987-01-01

    This work discusses the effect of a high-intensity standing wave laser field on the motion of neutral atoms moving with a relatively high velocity. The analysis involves a detailed calculation of the force acting on the atoms and the calculation of the diffusion tensor associated with the fluctuations of the quantum force operator. The high-intensity laser field limit corresponds to a Rabi frequency much greater than the natural rate of the atom. The general results are valid for any atomic velocity. Results are then specialized to the case of slow and fast atoms where the Doppler shift of the laser frequency due to the atomic motion is either smaller or larger than the natural decay rate of the atom. The results obtained for the force and diffusion tensor are applied to a particular ideal experiment that studies the evolution of a fast atomic beam crossing a high-intensity laser beam. The theories developed previously, for a similar laser configuration, discuss only the low atomic velocities case and not the more realistic case of fast atoms. Here, an approximate solution of the equation for the distribution is obtained. Starting from the approximate distribution function, the deflection angle and dispersion angle for the atomic beam with respect to the free motion are calculated

  1. Experimental studies of particle acceleration with ultra-intense lasers - Applications to nuclear physics experiments involving laser-produced plasmas

    International Nuclear Information System (INIS)

    Plaisir, C.

    2010-11-01

    For the last ten years, the Ultra High Intensity Lasers offer the opportunity to produce accelerated particle beams which contain more than 10 12 electrons, protons accelerated into a few ps. We have simulated and developed some diagnostics based on nuclear activation to characterize both the angular and the energy distributions of the particle beams produced with intense lasers. The characterization methods which are presented are illustrated by means of results obtained in different experiments. We would use the particle beams produced to excite nuclear state in a plasma environment. It can modify intrinsic characteristics of the nuclei such as the half-life of some isomeric states. To prepare this kind of experiments, we have measured the nuclear reaction cross section (gamma,n) to produce the isomeric state of the 84 Rb, which has an excitation energy of 463 keV, with the electron accelerator ELSA of CEA/DIF in Bruyeres-le-Chatel (France). (author)

  2. Low-power laser therapy for carpal tunnel syndrome: effective optical power

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2016-01-01

    Full Text Available Low-power laser therapy has been used for the non-surgical treatment of mild to moderate carpal tunnel syndrome, although its efficacy has been a long-standing controversy. The laser parameters in low-power laser therapy are closely related to the laser effect on human tissue. To evaluate the efficacy of low-power laser therapy, laser parameters should be accurately measured and controlled, which has been ignored in previous clinical trials. Here, we report the measurement of the effective optical power of low-power laser therapy for carpal tunnel syndrome. By monitoring the backside reflection and scattering laser power from human skin at the wrist, the effective laser power can be inferred. Using clinical measurements from 30 cases, we found that the effective laser power differed significantly among cases, with the measured laser reflection coefficient ranging from 1.8% to 54%. The reflection coefficient for 36.7% of these 30 cases was in the range of 10–20%, but for 16.7% of cases, it was higher than 40%. Consequently, monitoring the effective optical power during laser irradiation is necessary for the laser therapy of carpal tunnel syndrome.

  3. The effect of length, duration, and intensity of psychological therapy on CORE global distress scores.

    Science.gov (United States)

    Evans, Lauren Jayne; Beck, Alison; Burdett, Mark

    2017-09-01

    This study explores whether improvements, as measured by the CORE-OM/10, as a result of psychological therapy were related to length of treatment in weeks, number of treatment sessions, or treatment intensity, as well as any effect of diagnostic group. Pre- and post-therapy CORE-OM/10 scores were extracted from the clinical records of all secondary care adult psychological therapy team patients who undertook psychological therapy between 2010 and 2013 in one mental health trust. Of the 4,877 patients identified, 925 had complete records. Length of therapy was divided by the number of sessions to create 'treatment intensity' (sessions per week). Nonparametric analyses were used, initial score was controlled for, and diagnostic group was explored. No relationship was found between change in score and the number of sessions, therapy length, or treatment intensity; however, change in score was positively correlated with first-session score. Patients with higher initial scores had longer therapies; however, treatment intensity was similar for patients with lower pre-therapy distress. There were differences in treatment length (weeks) between diagnostic groups. Demographic differences were found between patients with and without complete records, prompting caution in terms of generalizability. These findings are consistent with the responsive regulation model (Barkham et al., 1996) which proposes that patients vary in their response to treatment, resulting in no associations between session numbers or treatment intensity and therapeutic gain with aggregated scores. Patients with higher CORE scores at the outset of psychological therapy had longer not more intensive therapy. There was variation in treatment intensity between diagnostic clusters. Number of sessions, length of therapy (in weeks), and treatment intensity (the number of sessions per week between the first and last therapy sessions) were not related to therapeutic gains. These results fit with a responsive

  4. Biodegradable magnesium nanoparticle-enhanced laser hyperthermia therapy

    Directory of Open Access Journals (Sweden)

    Wang Q

    2012-08-01

    Full Text Available Qian Wang,1 Liping Xie,1 Zhizhu He,2 Derui Di,2 Jing Liu1,21Department of Biomedical Engineering, School of Medicine, Tsinghua University, 2Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of ChinaBackground: Recently, nanoparticles have been demonstrated to have tremendous merit in terms of improving the treatment specificity and thermal ablation effect on tumors. However, the potential toxicity and long-term side effects caused by the introduced nanoparticles and by expelling them out of the body following surgery remain a significant challenge. Here, we propose for the first time to directly adopt magnesium nanoparticles as the heating enhancer in laser thermal ablation to avoid these problems by making full use of the perfect biodegradable properties of this specific material.Methods: To better understand the new nano “green” hyperthermia modality, we evaluated the effects of magnesium nanoparticles on the temperature transients inside the human body subject to laser interstitial heating. Further, we experimentally investigated the heating enhancement effects of magnesium nanoparticles on a group of biological samples: oil, egg white, egg yolk, in vitro pig tissues, and the in vivo hind leg of rabbit when subjected to laser irradiation.Results: Both the theoretical simulations and experimental measurements demonstrated that the target tissues injected with magnesium nanoparticles reached much higher temperatures than tissues without magnesium nanoparticles. This revealed the enhancing behavior of the new nanohyperthermia method.Conclusion: Given the unique features of magnesium nanoparticles – their complete biological safety and ability to enhance heating – which most other advanced metal nanoparticles do not possess, the use of magnesium nanoparticles in hyperthermia therapy offers an important “green” nanomedicine modality for treating tumors

  5. Efficient coupling of high intensity short laser pulses into snow clusters

    Science.gov (United States)

    Palchan, T.; Pecker, S.; Henis, Z.; Eisenmann, S.; Zigler, A.

    2007-01-01

    Measurements of energy absorption of high intensity laser pulses in snow clusters are reported. Targets consisting of sapphire coated with snow nanoparticles were found to absorb more than 95% of the incident light compared to 50% absorption in flat sapphire targets.

  6. Characterization of a proton beam driven by a high-intensity laser

    International Nuclear Information System (INIS)

    Sagisaka, Akito; Daido, Hiroyuki; Ogura, Koichi; Orimo, Satoshi; Hayashi, Yukio; Mori, Michiaki; Nishiuchi, Mamiko; Yogo, Akifumi; Kado, Masataka; Fukumi, Atsushi; Li, Zhong; Pirozhkov, Alexander S.; Nakamura, Shu

    2007-01-01

    High-energy protons are observed with a 3 μm thick tantalum target irradiated with a high intensity laser. The maximum proton energy is ∼900 keV. The half angle of the generated proton beam (>500 keV) is about 10deg. Characterization of the proton beam will significantly contribute to the proton applications. (author)

  7. Interrogation of orbital structure by elliptically polarized intense femtosecond laser pulses

    DEFF Research Database (Denmark)

    Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2011-01-01

    We solve the three-dimensional time-dependent Schrödinger equation and present investigations of the imprint of the orbital angular node in photoelectron momentum distributions of an aligned atomic p-type orbital following ionization by an intense elliptically polarized laser pulse of femtosecond...

  8. Generation of polyyne and methylpolyyne molecules from toluene by intense femtosecond laser pulse irradiation

    International Nuclear Information System (INIS)

    Ramadhan, Ali; Wesolowski, Michal; Duley, Walter; Sanderson, Joseph; Wakabayashi, Tomonari; Shiromaru, Haruo; Fujino, Tatsuya; Kodama, Takeshi

    2015-01-01

    Hydrogen-capped and methyl-capped carbon chains (polyynes) have been generated by intense femtosecond laser irradiation of pure liquid toluene. UV-Vis and Raman spectroscopy were used to confirm the presence of polyynes in the irradiated samples, and high performance liquid chromatography (HPLC) was used to separate polyynes up to C 18 H 2 and HC 13 CH 3 . (paper)

  9. uv laser induced molecular multiphoton ionization and fragmentation. [Intensity dependence, ion properties and yield

    Energy Technology Data Exchange (ETDEWEB)

    Rockwood, S; Reilly, J P; Hohla, K; Kompa, K L

    1979-02-01

    It has been demonstrated that the output from a discharge pumped KrF laser (249 nm) is capable of ionizing a variety of molecules. The nature and yield of ions generated in this process, which were identified by time-of-flight mass spectrometry, exhibit a striking intensity dependence. 12 references, 3 figures.

  10. Band Gap Distortion in Semiconductors Strongly Driven by Intense Mid-Infrared Laser Fields

    Science.gov (United States)

    Kono, J.; Chin, A. H.

    2000-03-01

    Crystalline solids non-resonantly driven by intense time-periodic electric fields are predicted to exhibit unusual band-gap distortion.(e.g., Y. Yacoby, Phys. Rev. 169, 610 (1968); L.C.M. Miranda, Solid State Commun. 45, 783 (1983); J.Z. Kaminski, Acta Physica Polonica A 83, 495(1993).) Such non-perturbative effects have not been observed to date because of the unavoidable sample damage due to the very high intensity required using conventional lasers ( 1 eV photon energy). Here, we report the first clear evidence of laser-induced bandgap shrinkage in semiconductors under intense mid-infrared (MIR) laser fields. The use of long-wavelength light reduces the required intensity and prohibits strong interband absorption, thereby avoiding the damage problem. The significant sub-bandgap absorption persists only during the existence of the MIR laser pulse, indicating the virtual nature of the effect. We show that this particular example of non-perturbative behavior, known as the dynamical Franz-Keldysh effect, occurs when the effective ponderomotive potential energy is comparable to the photon energy of the applied field. This work was supported by ONR, NSF, JST and NEDO.

  11. Time evolution of the vacuum - pair production in high intensity laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Woellert, Anton; Bauke, Heiko; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2013-07-01

    Interaction between the vacuum and high intensity lasers will lead to new possibilities in high-field physics. We present numerical ab initio studies for time evolution of the vacuum state into multiple pair states. The high intensity laser field of two counter-propagating beams is treated classically and in the non-perturbative regime (E{sub 0}/ω ∝ 1). In this regime, the time needed by an electron to become relativistic in presence of a static field E{sub 0} is of same order as the period of the laser field. Pair state probabilities as well as correlations are investigated in real-time depending on polarization and field strength.

  12. Propagation of intense laser radiation through a diffusion flame of burning oil

    Energy Technology Data Exchange (ETDEWEB)

    Gvozdev, S V; Glova, A F; Dubrovskii, V Yu; Durmanov, S T; Krasyukov, A G; Lysikov, A Yu; Smirnov, G V; Pleshkov, V M [State Research Center of Russian Federation ' Troitsk Institute for Innovation and Fusion Research' , Troitsk, Moscow Region (Russian Federation)

    2015-06-30

    We report the results of measuring the absorption coefficient of radiation from a cw ytterbium fibre single-mode laser with the power up to 1.5 kW by a diffusion flame of oil, burning in the atmosphere air at normal pressure on a free surface. For the constant length (30 mm) and width (30 mm) of the flame and the distance 10 mm between the laser beam axis and the oil surface the dependence of the absorption coefficient, averaged over the flame length, on the mean radiation intensity (varied from 4.5 × 10{sup 3} to 1.2 × 10{sup 6} W cm{sup -2}) entering the flame is obtained. The qualitative explanation of nonmonotonic behaviour of the absorption coefficient versus the intensity is presented. (laser applications and other topics in quantum electronics)

  13. Propagation of intense laser radiation through a diffusion flame of burning oil

    International Nuclear Information System (INIS)

    Gvozdev, S V; Glova, A F; Dubrovskii, V Yu; Durmanov, S T; Krasyukov, A G; Lysikov, A Yu; Smirnov, G V; Pleshkov, V M

    2015-01-01

    We report the results of measuring the absorption coefficient of radiation from a cw ytterbium fibre single-mode laser with the power up to 1.5 kW by a diffusion flame of oil, burning in the atmosphere air at normal pressure on a free surface. For the constant length (30 mm) and width (30 mm) of the flame and the distance 10 mm between the laser beam axis and the oil surface the dependence of the absorption coefficient, averaged over the flame length, on the mean radiation intensity (varied from 4.5 × 10 3 to 1.2 × 10 6 W cm -2 ) entering the flame is obtained. The qualitative explanation of nonmonotonic behaviour of the absorption coefficient versus the intensity is presented. (laser applications and other topics in quantum electronics)

  14. Plasma ion emission from high intensity picosecond laser pulse interactions with solid targets

    International Nuclear Information System (INIS)

    Fews, A.P.; Norreys, P.A.; Beg, F.N.; Bell, A.R.; Dangor, A.E.; Danson, C.N.; Lee, P.; Rose, S.J.

    1994-01-01

    The fast ion emission from high intensity, picosecond laser plasmas has been measured to give the characteristic ion energy and the amount of laser energy transferred to ions with energies ≥100 keV/nucleon as a function of incident intensity. The characteristic ion energy varies from 0.2 to 1.3 MeV over the range 2.0x10 17 --2.0x10 18 W cm -2 . Ten percent of the laser energy is transferred into MeV ions at 2.0x10 18 W cm -2 . Calculations of stopping power in high density materials are presented that show that fast ions cannot be ignored in modeling fast ignitor schemes

  15. Ultra-intense, short pulse laser-plasma interactions with applications to the fast ignitor

    Energy Technology Data Exchange (ETDEWEB)

    Wilks, S.C.; Kruer, W.L.; Young, P.E.; Hammer, J.; Tabak, M.

    1995-04-01

    Due to the advent of chirped pulse amplification (CPA) as an efficient means of creating ultra-high intensity laser light (I > 5{times}10{sup 17} W/cm{sup 2}) in pulses less than a few picoseconds, new ideas for achieving ignition and gain in DT targets with less than 1 megajoule of input energy are currently being pursued. Two types of powerful lasers are employed in this scheme: (1) channeling beams and (2) ignition beams. The current state of laser-plasma interactions relating to this fusion scheme will be discussed. In particular, plasma physics issues in the ultra-intense regime are crucial to the success of this scheme. We compare simulation and experimental results in this highly nonlinear regime.

  16. Ultra-intense, short pulse laser-plasma interactions with applications to the fast ignitor

    International Nuclear Information System (INIS)

    Wilks, S.C.; Kruer, W.L.; Young, P.E.; Hammer, J.; Tabak, M.

    1995-04-01

    Due to the advent of chirped pulse amplification (CPA) as an efficient means of creating ultra-high intensity laser light (I > 5x10 17 W/cm 2 ) in pulses less than a few picoseconds, new ideas for achieving ignition and gain in DT targets with less than 1 megajoule of input energy are currently being pursued. Two types of powerful lasers are employed in this scheme: (1) channeling beams and (2) ignition beams. The current state of laser-plasma interactions relating to this fusion scheme will be discussed. In particular, plasma physics issues in the ultra-intense regime are crucial to the success of this scheme. We compare simulation and experimental results in this highly nonlinear regime

  17. Vacuum thermalization of high intensity laser beams and the uncertainty principle

    International Nuclear Information System (INIS)

    Gupta, R.P.; Bhakar, B.S.; Panarella, E.

    1983-01-01

    This chapter phenomenologically calculates the cross section for photon-photon scattering in high intensity laser beams. The consequence of the Heisenberg uncertainty principle must be taken account in any photon-photon scattering calculation when many photons are present within the uncertainty volume. An exact determination of the number of scattering centers present in the scattering region is precluded when high intensity laser beams are involved in the scattering. Predictions are presented which suggest an upper limit to which the coherent photon densities can be increased either during amplification or focusing before scattering becomes predominant. The results of multiphoton ionization of gases, and laser induced CTR plasmas of the future, may be significantly affected due to the enhancement of the photon scattering investigated

  18. Isochoric heating of reduced mass targets by ultra-intense laser produced relativistic electrons

    Energy Technology Data Exchange (ETDEWEB)

    Neumayer, P; Lee, H J; Offerman, D; Shipton, E; Kemp, A; Kritcher, A L; Doppner, T; Back, C A; Glenzer, S H

    2009-02-04

    We present measurements of the chlorine K-alpha emission from reduced mass targets, irradiated with ultra-high intensity laser pulses. Chlorinated plastic targets with diameters down to 50 micrometers and mass of a few 10{sup -8} g were irradiated with up to 7 J of laser energy focused to intensities of several 10{sup 19} W/cm{sup 2}. The conversion of laser energy to K-alpha radiation is measured, as well as high resolution spectra that allow observation of line shifts, indicating isochoric heating of the target up to 18 eV. A zero-dimensional 2-temperature equilibration model, combined with electron impact K-shell ionization and post processed spectra from collisional radiative calculations reproduces the observed K-alpha yields and line shifts, and shows the importance of target expansion due to the hot electron pressure.

  19. Generation of mega-electron-volt electron beams by an ultrafast intense laser pulse

    International Nuclear Information System (INIS)

    Wang Xiaofang; Saleh, Ned; Krishnan, Mohan; Wang Haiwen; Backus, Sterling; Murnane, Margaret; Kapteyn, Henry; Umstadter, Donald; Wang Quandong; Shen Baifei

    2003-01-01

    Mega-electron-volt (MeV) electron emission from the interaction of an ultrafast (τ∼29 fs), intense (>10 18 W/cm 2 ) laser pulse with underdense plasmas has been studied. A beam of MeV electrons with a divergence angle as small as 1 deg. is observed in the forward direction, which is correlated with relativistic filamentation of the laser pulse in plasmas. A novel net-energy-gain mechanism is proposed for electron acceleration resulting from the relativistic filamentation and beam breakup. These results suggest an approach for generating a beam of femtosecond, MeV electrons at a kilohertz repetition rate with a compact ultrafast intense laser system

  20. Directional enhancement of selected high-order-harmonics from intense laser irradiated blazed grating targets.

    Science.gov (United States)

    Zhang, Guobo; Chen, Min; Liu, Feng; Yuan, Xiaohui; Weng, Suming; Zheng, Jun; Ma, Yanyun; Shao, Fuqiu; Sheng, Zhengming; Zhang, Jie

    2017-10-02

    Relativistically intense laser solid target interaction has been proved to be a promising way to generate high-order harmonics, which can be used to diagnose ultrafast phenomena. However, their emission direction and spectra still lack tunability. Based upon two-dimensional particle-in-cell simulations, we show that directional enhancement of selected high-order-harmonics can be realized using blazed grating targets. Such targets can select harmonics with frequencies being integer times of the grating frequency. Meanwhile, the radiation intensity and emission area of the harmonics are increased. The emission direction is controlled by tailoring the local blazed structure. Theoretical and electron dynamics analysis for harmonics generation, selection and directional enhancement from the interaction between multi-cycle laser and grating target are carried out. These studies will benefit the generation and application of laser plasma-based high order harmonics.

  1. Clinical evaluation of the low intensity laser antialgic action of GaAlAs (λ=785 nm) in the treatment of the temporomandibular disorders

    International Nuclear Information System (INIS)

    Sanseverino, Nelly Tichauer Maluf

    2001-01-01

    The therapy with laser emitting low intensity has been currently used in the most diverse fields of medicine as therapeutic conduct for pain. It is a non invasive, painless, non-thermal and aseptic type therapy, without any collateral effects, having a good cost/benefit relationship. However, for the therapy with low-intensity laser to result in positive effects, a correct diagnosis is fundamental, as well as a protocol of adequate application. n odontology, the majority of patients diagnosed with temporomandibular disorders (TMD), present pain and limitations in the movements of the jaw. In this work, a GaAlAs laser emitting low intensity, was used, λ=785 nm, in patients having a dysfunction of the temporomandibular joint with a complaint of pain. Twenty patients were divided into two groups. The group treated received laser therapy in the temporomandibular articulations and in the muscles affected. The dose applied was 45 J/cm 2 , while the ten patients in the control group received 0 J/cm 2 , in a total of nine applications, carried out three times a week, during three weeks. he evaluation of the patients was made through clinical examinations of manual palpation of the masseter, temporal, cervical, posterior neck and sternocleidomastoid muscles, and measurements of opening and laterality of the mouth. The results obtained showed a diminishing of the pain and an increase of the mandibular mobility in the patients treated, when compared to the control group. These results point to this therapy as being an important tool in the treatment of pain in patients with a dysfunction in the TMJ, indicating this therapeutic modality as a co-adjuvant in these treatments. (author)

  2. Interaction of ultra-high intensity laser pulse with a mass limited targets

    International Nuclear Information System (INIS)

    Andreev, A.A.; Platonov, K.Yu.; Limpouch, J.; Psikal, J.; Kawata, S.

    2006-01-01

    Complete test of publication follows. Ultra-high intensity laser pulses may be produced now via CPA scheme by using very short laser pulses of a relatively low energy. Interaction of such pulses with massive target is not very efficient as the energy delivered to charged particles spreads out quickly over large distances and it is redistributed between many secondary particles. One possibility to limit this undesirable energy spread is to use mass limited targets (MLT), for example droplets, big clusters or small foil sections. This is an intermediate regime in target dimensions between bulk solid and nanometer-size atomic cluster targets. A few experimental and theoretical studies have been carried out on laser absorption, fast particle generation and induced nuclear fusion reactions in the interaction of ultrashort laser pulses with MLT plasma. We investigate here laser interactions with MLT via 2D3V relativistic electromagnetic PIC simulations. We assume spherical droplet as a typical MLT. However, the sphere is represented in 2D simulations by an infinite cylinder irradiated uniformly along its length. We assume that MLT is fully ionized before main pulse interaction either due to insufficient laser contrast or due to a prepulse. For simplicity, we assume homogeneous plasma of high initial temperature. We analyze the interaction of relativistic laser pulses of various polarizations with targets of different shapes, such as a foil, quadrant and sphere. The mechanisms of laser absorption, electron and ion acceleration are clarified for different laser and target parameters. When laser interacts with the target front side, kinetic energy of electrons rises rapidly with fast oscillations in the kinetic and field energy, caused by electron oscillations in the laser field. Small energy oscillations, observed later, are caused by the electron motion back and forth through the droplet. Approximately 40% of laser energy is transferred to the kinetic energy of electrons

  3. Intensive insulin therapy improves insulin sensitivity and mitochondrial function in severely burned children.

    Science.gov (United States)

    Fram, Ricki Y; Cree, Melanie G; Wolfe, Robert R; Mlcak, Ronald P; Qian, Ting; Chinkes, David L; Herndon, David N

    2010-06-01

    To institute intensive insulin therapy protocol in an acute pediatric burn unit and study the mechanisms underlying its benefits. Prospective, randomized study. An acute pediatric burn unit in a tertiary teaching hospital. Children, 4-18 yrs old, with total body surface area burned > or =40% and who arrived within 1 wk after injury were enrolled in the study. Patients were randomized to one of two groups. Intensive insulin therapy maintained blood glucose levels between 80 and 110 mg/dL. Conventional insulin therapy maintained blood glucose patients were included in the data analysis consisting of resting energy expenditure, whole body and liver insulin sensitivity, and skeletal muscle mitochondrial function. Studies were performed at 7 days postburn (pretreatment) and at 21 days postburn (posttreatment). Resting energy expenditure significantly increased posttreatment (1476 +/- 124 to 1925 +/- 291 kcal/m(2) x day; p = .02) in conventional insulin therapy as compared with a decline in intensive insulin therapy. Glucose infusion rate was identical between groups before treatment (6.0 +/- 0.8 conventional insulin therapy vs. 6.8 +/- 0.9 mg/kg x min intensive insulin therapy; p = .5). Intensive insulin therapy displayed a significantly higher glucose clamp infusion rate posttreatment (9.1 +/- 1.3 intensive insulin therapy versus 4.8 +/- 0.6 mg/kg x min conventional insulin therapy, p = .005). Suppression of hepatic glucose release was significantly greater in the intensive insulin therapy after treatment compared with conventional insulin therapy (5.0 +/- 0.9 vs. 2.5 +/- 0.6 mg/kg x min; intensive insulin therapy vs. conventional insulin therapy; p = .03). States 3 and 4 mitochondrial oxidation of palmitate significantly improved in intensive insulin therapy (0.9 +/- 0.1 to 1.7 +/- 0.1 microm O(2)/CS/mg protein/min for state 3, p = .004; and 0.7 +/- 0.1 to 1.3 +/- 0.1 microm O(2)/CS/mg protein/min for state 4, p protocol improves insulin sensitivity and mitochondrial

  4. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Katrina, E-mail: Trinabena23@gmail.com; Lenards, Nishele; Holson, Janice

    2016-04-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient's neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient's data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain.

  5. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study.

    Science.gov (United States)

    Lee, Katrina; Lenards, Nishele; Holson, Janice

    2016-01-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient׳s neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient׳s data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  6. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, M., E-mail: maxence.gauthier@stanford.edu; Kim, J. B.; Curry, C. B.; Gamboa, E. J.; Göde, S.; Propp, A.; Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Aurand, B.; Willi, O. [Heinrich-Heine-University Düsseldorf, Düsseldorf (Germany); Goyon, C.; Hazi, A.; Pak, A.; Ruby, J.; Williams, G. J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Kerr, S. [University of Alberta, Edmonton, Alberta T6G 1R1 (Canada); Ramakrishna, B. [Indian Institute of Technology, Hyderabad (India); Rödel, C. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Friedrich-Schiller-University Jena, Jena (Germany)

    2016-11-15

    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  7. Self-organization of high intensity laser pulses propagating in gases

    International Nuclear Information System (INIS)

    Koga, James

    2001-01-01

    In recent years the development of high intensity short pulse lasers has opened up wide fields of science which had previously been difficult to study. Recent experiments of short pulse lasers propagating in air have shown that these laser pulses can propagate over very long distances (up to 12 km) with little or no distortion of the pulse. Here we present a model of this propagation using a modified version of the self-organized criticality model developed for sandpiles by Bak, Tang, and Weisenfeld. The additions to the sandpile model include the formation of plasma which acts as a threshold diffusion term and self-focusing by the nonlinear index of refraction which acts as a continuous inverse diffusion. Results of this simple model indicate that a strongly self-focusing laser pulse shows self-organized critical behavior. (author)

  8. Electrons trajectories around a bubble regime in intense laser plasma interaction

    International Nuclear Information System (INIS)

    Lu, Ding; Xie, Bai-Song; Ali Bake, Muhammad; Sang, Hai-Bo; Zhao, Xue-Yan; Wu, Hai-Cheng

    2013-01-01

    Some typical electrons trajectories around a bubble regime in intense laser plasma interaction are investigated theoretically. By considering a modification of the fields and ellipsoid bubble shape due to the presence of residual electrons in the bubble regime, we study in detail the electrons nonlinear dynamics with or without laser pulse. To examine the electron dynamical behaviors, a set of typical electrons, which locate initially at the front of the bubble, on the transverse edge and at the bottom of the bubble respectively, are chosen for study. It is found that the range of trapped electrons in the case with laser pulse is a little narrower than that without laser pulse. The partial phase portraits for electrons around the bubble are presented numerically and their characteristic behaviors are discussed theoretically. Implication of our results on the high quality electron beam generation is also discussed briefly

  9. Theoretical Modeling of Intensity Noise in InGaN Semiconductor Lasers

    Directory of Open Access Journals (Sweden)

    Moustafa Ahmed

    2014-01-01

    Full Text Available This paper introduces modeling and simulation of the noise properties of the blue-violet InGaN laser diodes. The noise is described in terms of the spectral properties of the relative intensity noise (RIN. We examine the validity of the present noise modeling by comparing the simulated results with the experimental measurements available in literature. We also compare the obtained noise results with those of AlGaAs lasers. Also, we examine the influence of gain suppression on the quantum RIN. In addition, we examine the changes in the RIN level when describing the gain suppression by the case of inhomogeneous spectral broadening. The results show that RIN of the InGaN laser is nearly 9 dB higher than that of the AlGaAs laser.

  10. Intense laser driven collision-less shock and ion acceleration in magnetized plasmas

    Science.gov (United States)

    Mima, K.; Jia, Q.; Cai, H. B.; Taguchi, T.; Nagatomo, H.; Sanz, J. R.; Honrubia, J.

    2016-05-01

    The generation of strong magnetic field with a laser driven coil has been demonstrated by many experiments. It is applicable to the magnetized fast ignition (MFI), the collision-less shock in the astrophysics and the ion shock acceleration. In this paper, the longitudinal magnetic field effect on the shock wave driven by the radiation pressure of an intense short pulse laser is investigated by theory and simulations. The transition of a laminar shock (electro static shock) to the turbulent shock (electromagnetic shock) occurs, when the external magnetic field is applied in near relativistic cut-off density plasmas. This transition leads to the enhancement of conversion of the laser energy into high energy ions. The enhancement of the conversion efficiency is important for the ion driven fast ignition and the laser driven neutron source. It is found that the total number of ions reflected by the shock increases by six time when the magnetic field is applied.

  11. Classical and quantum mechanical studies of HF in an intense laser field

    International Nuclear Information System (INIS)

    Dardi, P.S.; Gray, S.K.

    1982-01-01

    The behavior of an HF molecule in an intense laser field is investigated with both classical trajectories and quantum dynamics. Vibration-rotation transition probabilities and energy absorption as a function of laser pulse time are calculated for the diatomic initially in its ground state. For comparison, results are also reported for a model nonrotating HF molecule. It is found that classical mechanics does not predict the correct time behavior of the system, nor does it predict the correct rotational state distributions. Classical mechanics does, however, predict pulse time averaged quantities to be the correct order of magnitude. There is also a correct general trend of increased multiphoton excitation for laser frequencies red-shifted from the one-photon resonance, although multiphoton resonance peaks are not observed in the classical results and far too little multiphoton excitation is predicted. The effect of laser phase has also been investigated and shown to be relatively unimportant in both the classical and quantum dynamics

  12. Semi-analytical fluid study of the laser wake field excitation in the strong intensity regime

    Energy Technology Data Exchange (ETDEWEB)

    Jovanović, D., E-mail: djovanov@ipb.ac.rs [Institute of Physics, University of Belgrade, Belgrade (Serbia); Fedele, R., E-mail: renato.fedele@na.infn.it [Dipartimento di Fisica, Universitá di Napoli Federico II, Napoli (Italy); INFN Sezione di Napoli, Napoli (Italy); Belić, M., E-mail: milivoj.belic@qatar.tamu.edu [Texas A & M University at Qatar, Doha (Qatar); De Nicola, S., E-mail: sergio.denicola@spin.cnr.it [Dipartimento di Fisica, Universitá di Napoli Federico II, Napoli (Italy); INFN Sezione di Napoli, Napoli (Italy); CNR-SPIN, Complesso Universitario di Monte S' Angelo, Napoli (Italy)

    2016-09-01

    We present an analytical and numerical study of the interaction of a multi-petawatt, pancake-shaped laser pulse with an unmagnetized plasma. The study has been performed in the ultrarelativistic regime of electron jitter velocities, in which the plasma electrons are almost completely expelled from the pulse region. The calculations are applied to a laser wake field acceleration scheme with specifications that may be available in the next generation of Ti:Sa lasers and with the use of recently developed pulse compression techniques. A set of novel nonlinear equations is derived using a three-timescale description, with an intermediate timescale associated with the nonlinear phase of the electromagnetic wave and with the spatial bending of its wave front. They describe, on an equal footing, both the strong and the moderate laser intensity regimes, pertinent to the core and to the edges of the pulse.

  13. High intensity vacuum ultraviolet and extreme ultraviolet production by noncollinear mixing in laser vaporized media

    Energy Technology Data Exchange (ETDEWEB)

    Todt, Michael A.; Albert, Daniel R.; Davis, H. Floyd, E-mail: hfd1@cornell.edu [Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301 (United States)

    2016-06-15

    A method is described for generating intense pulsed vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) laser radiation by resonance enhanced four-wave mixing of commercial pulsed nanosecond lasers in laser vaporized mercury under windowless conditions. By employing noncollinear mixing of the input beams, the need of dispersive elements such as gratings for separating the VUV/XUV from the residual UV and visible beams is eliminated. A number of schemes are described, facilitating access to the 9.9–14.6 eV range. A simple and convenient scheme for generating wavelengths of 125 nm, 112 nm, and 104 nm (10 eV, 11 eV, and 12 eV) using two dye lasers without the need for dye changes is described.

  14. Geometrical optimization of an ellipsoidal plasma mirror toward tight focusing of ultra-intense laser pulse

    International Nuclear Information System (INIS)

    Kon, A; Nakatsutsumi, M; Chen, Z L; Kodama, R; Buffechoux, S; Fuchs, J; Jin, Z

    2010-01-01

    We developed for the first time, very compact ( 3 ) extremely low f-number (f/number = 0.4) confocal ellipsoid focusing systems. Direct measurement of the laser focal spot using a low-energy laser beam indicates 1/5 reduction of the spot size compared to standard focusing (using a f/2.7 optics). Such mirror is thus able to achieve significant enhancement of the focused laser intensity without modifying the laser system itself. The mirror is then used under plasma mirror regime which enables us to compactify the size, to liberate us from the anxiety of protecting the optics from target debris after shots, and to enhance the temporal contrast. In this paper, we focus our attention to designing and optimizing the geometry of such innovative plasma optics.

  15. Particle-in-cell simulations of high energy electron production by intense laser pulses in underdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Susumu, Kato; Eisuke, Miura; Kazuyoshi, Koyama [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan); Mitsumori, Tanimoto [Meisei Univ., Dept. of Electrical Engineering, Hino, Tokyo (Japan); Masahiro, Adachi [Hiroshima Univ., Graduate school of Advanced Science of Matter, Higashi-Hiroshima, Hiroshima (Japan)

    2004-07-01

    The propagation of intense laser pulses and the generation of high energy electrons from underdense plasmas are investigated using two dimensional particle-in-cell simulations. When the ratio of the laser power to the critical power of relativistic self-focusing gets the optimal value, the laser pulse propagates in a steady way and electrons have maximum energies. (author)

  16. Particle-in-cell simulations of high energy electron production by intense laser pulses in underdense plasmas

    International Nuclear Information System (INIS)

    Susumu, Kato; Eisuke, Miura; Kazuyoshi, Koyama; Mitsumori, Tanimoto; Masahiro, Adachi

    2004-01-01

    The propagation of intense laser pulses and the generation of high energy electrons from underdense plasmas are investigated using two dimensional particle-in-cell simulations. When the ratio of the laser power to the critical power of relativistic self-focusing gets the optimal value, the laser pulse propagates in a steady way and electrons have maximum energies. (author)

  17. Correction of spectral and temporal phases for ultra-intense lasers; Correction des phases spectrale et temporelle pour les lasers ultra-intenses

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, E

    2000-12-15

    The discovery of new regimes of interaction between laser and matter requires to produce laser pulses presenting higher luminous flux density. The only solutions that allow us to reach important power (about ten peta-watts) imply the correction of non-linear effects before compressing the laser pulse so that we do not transfer the phase modulation to the amplitude modulation. The aim of this work is the correction of the spectral phase through the modulation of the temporal phase. The first chapter is dedicated to the review of the physical phenomena involved in the interaction of ultra-intense laser pulse with matter. The peta-watt laser operating on the LIL (integrated laser line), the prototype line of the Megajoule Laser, is described in the second chapter. The third chapter presents the method used and optimized for getting an absolute measurement of the spectral phase in our experimental configuration. The fourth chapter details the analogy existing between the spatial domain and the temporal domain particularly between diffraction and dispersion. This analogy has allowed us to benefit from the knowledge cumulated in the spatial domain, particularly the treatment of the aberrations and their impact on the focal spot and to use it in the temporal domain. The principle of the phase correction is exposed in the fifth chapter. We have formalized the correspondence of the phase modulation between temporal domain and the spectral domain for strongly stretched pulses. In this way a modulation of the temporal phase is turned into a modulation of the spectral phase. All the measurements concerning phases and modulation spectral phase correction are presented in the sixth chapter. In the last chapter we propose an extension of the temporal phase correction by correcting non-linear effects directly in the temporal phase. This correction will improve the performances of the peta-watt laser. Numerical simulations show that the temporal phase correction can lead to a

  18. Experimental study of proton acceleration with ultra-high intensity, high contrast laser beam

    International Nuclear Information System (INIS)

    Flacco, A.

    2008-07-01

    This thesis reports experimental work in the domain of laser-matter interaction to study the production of energetic proton beams. The ion beams accelerated by laser have been increasing in quality, in energy and in repeatability as laser technology keeps improving. The presence of the pedestal before the high peak laser pulse introduces many unknowns in the accelerating conditions that are created on the front and on the rear surface of the target. The first part of the experimental activities is focused to a better comprehension and the experimental validation of the interaction of a 'pedestal-like', moderate intensity, laser pulse on Aluminum targets. The developed interferometric technique proved to be reliable and produced a complete set of maps of the early stages of the plasma expansion. The reflectometry experiment stresses the importance of the quality of the metallic targets and underlines some obscure points on the behaviour of the rear surface of the illuminated foil. For instance the reflectometry measurements on the thicker targets are significantly different from what is foreseen by the simulations about the timescale of the shock break out. In the second part, the XPW laser pulse is used in ion acceleration from thin metal foils. The laser and target parameters are varied to put in evidence the dependence of the ion beam to the experimental condition. In conclusion I can say that first, during the variation of the target thickness, an optimum is put in evidence. Secondly, the correlation between the laser pulse duration and the proton cutoff energy is qualitatively different between thicker (15 μm) and thinner (1.5 μm, 3 μm) targets. For the first, an optimal pulse duration exists while for the seconds, no variation is found - in the searched space - from the monotonic decreasing of the cutoff energy with the peak intensity. The experimental results put however in evidence some points that are not completely understood. (A.C.)

  19. High-order harmonics from bow wave caustics driven by a high-intensity laser

    International Nuclear Information System (INIS)

    Pirozhkov, A.S.; Kando, M.; Esirkepov, T.Zh.

    2012-01-01

    We propose a new mechanism of high-order harmonic generation during an interaction of a high-intensity laser pulse with underdense plasma. A tightly focused laser pulse creates a cavity in plasma pushing electrons aside and exciting the wake wave and the bow wave. At the joint of the cavity wall and the bow wave boundary, an annular spike of electron density is formed. This spike surrounds the cavity and moves together with the laser pulse. Collective motion of electrons in the spike driven by the laser field generates high-order harmonics. A strong localization of the electron spike, its robustness to oscillations imposed by the laser field and, consequently, its ability to produce high-order harmonics is explained by catastrophe theory. The proposed mechanism explains the experimental observations of high-order harmonics with the 9 TW J-KAREN laser (JAEA, Japan) and the 120 TW Astra Gemini laser (CLF RAL, UK) [A. S. Pirozhkov, et al., arXiv:1004.4514 (2010); A. S. Pirozhkov et al, AIP Proceedings, this volume]. The theory is corroborated by high-resolution two-and three-dimensional particle-in-cell simulations.

  20. Impact of laser excitation intensity on deep UV fluorescence detection in microchip electrophoresis.

    Science.gov (United States)

    Schulze, Philipp; Ludwig, Martin; Belder, Detlev

    2008-12-01

    A high intensity 266 nm continuous wave (cw-) laser developed for material processing was utilised as an excitation source for sensitive native fluorescence detection of unlabelled compounds in MCE. This 120 mW laser was attached via an optical fibre into a commercial epifluorescence microscope. With this MCE set-up we evaluated the impact of laser power on the S/N of aromatic compounds as well as of proteins. Compared with a previous work which used a 4 mW pulsed laser for excitation, improved S/N for small aromatics and to a lesser extent for proteins could be attained. The LOD of the system was determined down to 24 ng/mL for serotonin (113 nM), 24 ng/mL for propranolol (81 nM), 80 ng/mL for tryptophan (392 nM) and 80 ng/mL for an aromatic diol (475 nM). Sensitive protein detection was obtained at concentrations of 5 microg/mL for lysocyme, trypsinogen and chymotrypsinogen (340, 208 and 195 nM, respectively). Finally, a comparison of the cw- with a pulsed 266 nm laser, operating at the same average power, showed a higher attainable sensitivity of the cw-laser. This can be attributed to fluorescence saturation and photobleaching effects of the pulsed laser at high pulse energies.

  1. Comparison of the effect of diode laser versus intense pulsed light in axillary hair removal.

    Science.gov (United States)

    Ormiga, Patricia; Ishida, Cleide Eiko; Boechat, Alvaro; Ramos-E-Silva, Marcia

    2014-10-01

    Devices such as diode laser and intense pulsed light (IPL) are in constant development aiming at permanent hair removal, but there are few comparative studies between these technologies. The objective was to comparatively assess axillary hair removal performed by diode laser and IPL and to obtain parameters of referred pain and evolution response for each method. A comparative prospective, double-blind, and randomized study of axillary hair removal performed by the diode laser and IPL was conducted in 21 females. Six sessions were held with application of the diode laser in one axilla and the IPL in the other, with intervals of 30 days and follow-up of 6 months after the last session. Clinical photographs and digital dermoscopy for hair counts in predefined and fixed fields of the treated areas were performed before, 2 weeks after the sixth session, and 6 months after the end of treatment. A questionnaire to assess the pain was applied. The number of hair shafts was significantly reduced with the diode laser and IPL. The diode laser was more effective, although more painful than the IPL. No serious, adverse, or permanent effects were observed with both technologies. Both diode laser and the IPL are effective, safe, and able to produce lasting results in axillary hair removal.

  2. Conventional operation and laser therapy in the treatment of varicose veins

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: To evaluate the effectiveness of endovenous laser therapy and conventional therapy on the varicose of great saphenous vein. Methods: Thirty-two patients received endovenous laser therapy and 32 patients were operated by conventional therapy (high ligation and stripping). The observation results of great saphenous vein(GSV) were recorded by clinical evaluation and duplex ultrasound examination. And the operating time, intraoperative blood loss, time to become moveable, duration of hospitalization and degree of feeling pain were compared between the two groups. Results: Compared with conventional therapy, laser therapy had good curative effect with less complications and no scars and no pains. There were significant differences between the two groups (P<0.01). Conclusion: Laser therapy for varicose of great saphenous vein is better than the conventional therapy. It deserves to be widely used in clinical treatment.

  3. Two electron response to an intense x-ray free electron laser pulse

    International Nuclear Information System (INIS)

    Moore, L R; Parker, J S; Meharg, K J; Armstrong, G S J; Taylor, K T

    2009-01-01

    New x-ray free electron lasers (FELs) promise an ultra-fast ultra-intense regime in which new physical phenomena, such as double core hole formation in at atom, should become directly observable. Ahead of x-ray FEL experiments, an initial key task is to theoretically explore such fundamental laser-atom interactions and processes. To study the response of a two-electron positive ion to an intense x-ray FEL pulse, our theoretical approach is a direct numerical integration, incorporating non-dipole Hamiltonian terms, of the full six-dimensional time-dependent Schroedinger equation. We present probabilities of double K-shell ionization in the two-electron positive ions Ne 8+ and Ar 16+ exposed to x-ray FEL pulses with frequencies in the range 50 au to 300 au and intensities in the range 10 17 to 10 22 W/cm 2 .

  4. Two electron response to an intense x-ray free electron laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Moore, L R; Parker, J S; Meharg, K J; Armstrong, G S J; Taylor, K T, E-mail: l.moore@qub.ac.u [DAMTP, David Bates Building, Queen' s University Belfast, Belfast, BT7 1NN (United Kingdom)

    2009-11-01

    New x-ray free electron lasers (FELs) promise an ultra-fast ultra-intense regime in which new physical phenomena, such as double core hole formation in at atom, should become directly observable. Ahead of x-ray FEL experiments, an initial key task is to theoretically explore such fundamental laser-atom interactions and processes. To study the response of a two-electron positive ion to an intense x-ray FEL pulse, our theoretical approach is a direct numerical integration, incorporating non-dipole Hamiltonian terms, of the full six-dimensional time-dependent Schroedinger equation. We present probabilities of double K-shell ionization in the two-electron positive ions Ne{sup 8+} and Ar{sup 16+} exposed to x-ray FEL pulses with frequencies in the range 50 au to 300 au and intensities in the range 10{sup 17} to 10{sup 22} W/cm{sup 2}.

  5. Intensity and pressure dependence of resonance fluorescence of OH induced by a tunable UV laser

    Science.gov (United States)

    Killinger, D. K.; Wang, C. C.; Hanabusa, M.

    1976-01-01

    The intensity and pressure dependence of the fluorescence spectrum of OH in the presence of N2 and H2O molecules was studied. Saturation of the absorption transition was observed at low pressures, and the corresponding fluorescence signal was found to vary as the square root of the exciting intensity. This observed dependence agreed with the predicted dependence which took into account the presence of laser modes in the spectrum of the exciting radiation. With full laser power incident, a saturation parameter as high as 3 x 10 to the 5th was observed. The fluorescence spectrum was found to peak at 3145 and at 3090 A, with the relative peak intensities dependent upon gas pressures and upon the particular rotational electronic transition used for excitation. It is concluded that vibrational relaxation of the electronically excited OH due to water vapor in the system plays a dominant role in determining the observed fluorescence spectrum.

  6. Does appropriate empiric antibiotic therapy modify intensive care unit-acquired Enterobacteriaceae bacteraemia mortality and discharge?

    NARCIS (Netherlands)

    Pouwels, K B; Van Kleef, E; Vansteelandt, S; Batra, R; Edgeworth, J D; Smieszek, T; Robotham, J V

    2017-01-01

    BACKGROUND: Conflicting results have been found regarding outcomes of intensive care unit (ICU)-acquired Enterobacteriaceae bacteraemia and the potentially modifying effect of appropriate empiric antibiotic therapy. AIM: To evaluate these associations while adjusting for potential time-varying

  7. Low-level laser/light therapy for androgenetic alopecia.

    Science.gov (United States)

    Gupta, Aditya K; Lyons, Danika C A; Abramovits, William

    2014-01-01

    Androgenetic alopecia (AGA) is a persistent and pervasive condition that affects men worldwide. Some common treatment options for AGA include hair prosthetics, oral and topical medications, and surgical hair restoration (SHR). Pharmaceutical and SHR treatments are associated with limitations including adverse side effects and significant financial burden. Low-level laser or light (LLL) devices offer alternative treatment options that are not typically associated with adverse side effects or significant costs. There are clinic- and home-based LLL devices. One home-based laser comb device has set a standard for others; however, this device requires time devoted to carefully moving the comb through the hair to allow laser penetration to the scalp. A novel helmet-like LLL device for hair growth has proven effective in preliminary trials and allows for hands-free use. Regardless, there are few clinical trials that have been conducted regarding LLL devices for AGA and results are mixed. Further research is required to establish the true efficacy of these devices for hair growth in comparison to existing alternative therapies.

  8. Analysis of processes participating during intense iodine-laser-beam interactions with laser-produced plasmas

    Czech Academy of Sciences Publication Activity Database

    Láska, Leoš; Badziak, J.; Jungwirth, Karel; Kalal, M.; Krása, Josef; Krouský, Eduard; Kubeš, P.; Margarone, Daniele; Parys, P.; Pfeifer, Miroslav; Rohlena, Karel; Rosinski, M.; Ryč, L.; Skála, Jiří; Torrisi, L.; Ullschmied, Jiří; Velyhan, Andriy; Wolowski, J.

    2010-01-01

    Roč. 165, 6-10 (2010), s. 463-471 ISSN 1042-0150 R&D Projects: GA MŠk(CZ) LC528; GA AV ČR IAA100100715 EU Projects: European Commission(XE) 228334 - LASERLAB-EUROPE Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser plasma * non-linear processes * magnetic self-focusing * pinching Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.660, year: 2010

  9. Evaluation of low level laser and interferential current in the therapy of complex regional pain syndrome by infrared thermographic camera

    Directory of Open Access Journals (Sweden)

    Kocić Mirjana

    2010-01-01

    Full Text Available Background/Aim. Complex regional pain syndrome type I (CRPS I is characterized by continuous regional pain, disproportional according to duration and intensity and to the sort of trauma or other lesion it was caused by. The aim of the study was to evaluate and compare, by using thermovison, the effects of low level laser therapy and therapy with interferential current in treatment of CRPS I. Methods. The prospective randomized controlled clinical study included 45 patients with unilateral CRPS I, after a fracture of the distal end of the radius, of the tibia and/or the fibula, treated in the Clinical Centre in Nis from 2004 to 2007. The group A consisted of 20 patients treated by low level laser therapy and kinesy-therapy, while the patients in the group B (n = 25 were treated by interferential current and kinesy-therapy. The regions of interest were filmed by a thermovision camera on both sides, before and after the 20 therapeutic procedures had been applied. Afterwards, the quantitative analysis and the comparing of thermograms taken before and after the applied therapy were performed. Results. There was statistically significant decrease of the mean maximum temperature difference between the injured and the contralateral extremity after the therapy in comparison to the status before the therapy, with the patients of the group A (p < 0.001 as well as those of the group B (p < 0.001. The decrease was statistically significantly higher in the group A than in the group B (p < 0.05. Conclusions. By the use of the infrared thermovision we showed that in the treatment of CRPS I both physical medicine methods were effective, but the effectiveness of laser therapy was statistically significantly higher compared to that of the interferential current therapy.

  10. Near Field Intensity Trends of Main Laser Alignment Images in the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Leach, R R; Beltsar, I; Burkhart, S; Lowe-Webb, R; Kamm, V M; Salmon, T; Wilhelmsen, K

    2015-01-22

    The National Ignition Facility (NIF) utilizes 192 high-energy laser beams focused with enough power and precision on a hydrogen-filled spherical, cryogenic target to potentially initiate a fusion reaction. NIF has been operational for six years; during that time, thousands of successful laser firings or shots have been executed. Critical instrument measurements and camera images are carefully recorded for each shot. The result is a massive and complex database or ‘big data’ archive that can be used to investigate the state of the laser system at any point in its history or to locate and track trends in the laser operation over time. In this study, the optical light throughput for more than 1600 NIF shots for each of the 192 main laser beams and 48 quads was measured over a three year period from January 2009 to October 2012. The purpose was to verify that the variation in the transmission of light through the optics over time performed within design expectations during this time period. Differences between average or integrated intensity from images recorded by the input sensor package (ISP) and by the output sensor package (OSP) in the NIF beam-line were examined. A metric is described for quantifying changes in the integrated intensity measurements and was used to view potential trends. Results are presented for the NIF input and output sensor package trends and changes over the three year time-frame.

  11. Intra-pulse transition between ion acceleration mechanisms in intense laser-foil interactions

    Energy Technology Data Exchange (ETDEWEB)

    Padda, H.; King, M.; Gray, R. J.; Powell, H. W.; Gonzalez-Izquierdo, B.; Wilson, R.; Dance, R. J.; MacLellan, D. A.; Butler, N. M. H.; Capdessus, R.; McKenna, P., E-mail: paul.mckenna@strath.ac.uk [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Stockhausen, L. C. [Centro de Laseres Pulsados (CLPU), Parque Cientifico, Calle del Adaja s/n. 37185 Villamayor, Salamanca (Spain); Carroll, D. C. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); Yuan, X. H. [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Borghesi, M. [Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Neely, D. [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom)

    2016-06-15

    Multiple ion acceleration mechanisms can occur when an ultrathin foil is irradiated with an intense laser pulse, with the dominant mechanism changing over the course of the interaction. Measurement of the spatial-intensity distribution of the beam of energetic protons is used to investigate the transition from radiation pressure acceleration to transparency-driven processes. It is shown numerically that radiation pressure drives an increased expansion of the target ions within the spatial extent of the laser focal spot, which induces a radial deflection of relatively low energy sheath-accelerated protons to form an annular distribution. Through variation of the target foil thickness, the opening angle of the ring is shown to be correlated to the point in time transparency occurs during the interaction and is maximized when it occurs at the peak of the laser intensity profile. Corresponding experimental measurements of the ring size variation with target thickness exhibit the same trends and provide insight into the intra-pulse laser-plasma evolution.

  12. Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems.

    Science.gov (United States)

    Kanawade, Rajesh; Mahari, Fanuel; Klämpfl, Florian; Rohde, Maximilian; Knipfer, Christian; Tangermann-Gerk, Katja; Adler, Werner; Schmidt, Michael; Stelzle, Florian

    2015-01-01

    The research work presented in this paper focuses on qualitative tissue differentiation by monitoring the intensity ratios of atomic emissions using 'Laser Induced Breakdown Spectroscopy' (LIBS) on the plasma plume created during laser tissue ablation. The background of this study is to establish a real time feedback control mechanism for clinical laser surgery systems during the laser ablation process. Ex-vivo domestic pig tissue samples (muscle, fat, nerve and skin) were used in this experiment. Atomic emission intensity ratios were analyzed to find a characteristic spectral line for each tissue. The results showed characteristic elemental emission intensity ratios for the respective tissues. The spectral lines and intensity ratios of these specific elements varied among the different tissue types. The main goal of this study is to qualitatively and precisely identify different tissue types for tissue specific laser surgery. © 2015 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag.

  13. High-intensity subpicosecond laser pulse propagation in a 1-cm capillary tube and fast ignitor experiments

    Energy Technology Data Exchange (ETDEWEB)

    Malka, G.; Courtois, C.; Cros, B.; Matthieussent, G. [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique des Gaz et des Plasmas; Blanchot, N.; Bonnaud, G.; Busquet, M.; Canaud, B.; Desenne, D.; Diskier, L.; Garconnet, J.P.; Louis-Jacquet, M.; Lefebvre, E.; Lours, L.; Mens, A.; Miquel, J.L.; Peyrusse, O.; Rousseaux, C. [CEA/Limeil Valenton, 94 - Villeneuve Saint Georges (France); Borghesi, M.; Gaillard, R.; Mackinnon, A.J.; Willi, O. [Imperial Coll., Plasma Physics Groups, London (United Kingdom); Danson, C.; Neely, D. [Rutherford Appleton Lab., Chilton (United Kingdom); Altenberd, D.; Feurer, T.; Forster, E.; Gibbon, P.; Sauerbray, R.; Teubner, U.; Theobald, W.; Uschmann, I. [Institut fur Optik und Quantenelektronik, Jena (Germany); Amiranoff, F.; Baton, S.; Gremillet, L.; Fuchs, J.; Marques, J.R. [Ecole Polytechnique, Lab. d' Utilisation de Lasers Intenses, CNRS-CEA, 91 - Palaiseau (France); Gallant, P.; Kieffer, J.C.; Pepin, H. [INRS Energie et Materiaux, Quebec (Canada); Adam, J.C.; Heron, A.; Laval, G.; Mora, P. [Ecole Polytechnique, 91 - Palaiseau (France). Centre de Physique Theorique

    2000-07-01

    We present an abstract of ultra short and intense laser plasma interaction experiments which were performed with the 100 TW P102 laser facility at CEA/Limeil-Valenton. Laser interaction at relativistic regime (I>10{sup 18} W/cm{sup 2}) has been investigated with different 'targets': overdense plasma, underdense plasma, free electrons and capillary tube. These experiments are of great interests for the Fast Ignitor concept and the Laser Particle Accelerator. (authors)

  14. High-intensity subpicosecond laser pulse propagation in a 1-cm capillary tube and fast ignitor experiments

    International Nuclear Information System (INIS)

    Malka, G.; Courtois, C.; Cros, B.; Matthieussent, G.; Borghesi, M.; Gaillard, R.; Mackinnon, A.J.; Willi, O.; Danson, C.; Neely, D.; Altenberd, D.; Feurer, T.; Forster, E.; Gibbon, P.; Sauerbray, R.; Teubner, U.; Theobald, W.; Uschmann, I.; Amiranoff, F.; Baton, S.; Gremillet, L.; Fuchs, J.; Marques, J.R.; Gallant, P.; Kieffer, J.C.; Pepin, H.; Adam, J.C.; Heron, A.; Laval, G.; Mora, P.

    2000-01-01

    We present an abstract of ultra short and intense laser plasma interaction experiments which were performed with the 100 TW P102 laser facility at CEA/Limeil-Valenton. Laser interaction at relativistic regime (I>10 18 W/cm 2 ) has been investigated with different 'targets': overdense plasma, underdense plasma, free electrons and capillary tube. These experiments are of great interests for the Fast Ignitor concept and the Laser Particle Accelerator. (authors)

  15. Proposed development of novel diagnostics for intense, ultrafast laser-plasma experiments at JAEA-KPSI

    International Nuclear Information System (INIS)

    Bolton, Paul R.; Tatchyn, Roman; Fukuda, Yuji; Kando, Masaki; Daito, Izuru; Ma, Jinglong; Chen, Liming; Pirozhkov, Alexander; Tajima, Toshiki

    2007-01-01

    Development of new diagnostics is critical for future laser-plasma accelerators, laser-driven light sources and for x-ray FELs. Recent laser wakefield electron acceleration developments and novel beam-based light source schemes (such as free electron lasers) obviate the need for next generation ultrafast diagnostics, capable of temporal resolution of a few femtoseconds (and in some cases attoseconds) for laser pulses (high order harmonics), x-ray pulses and electron bunches. Single shot detection capability in noninvasive and parasitic modes is also important. Alterations of laser pulse spectra and the associated dynamics can be informative diagnostics. The portion of a high intensity laser pulse that is transmitted through a self-induced underdense plasma (such as in laser wakefield acceleration LWFA schemes) carries the effects of plasma processes it has experienced. A distinction between the self-modulated laser wakefield (SMLWF) acceleration regime and the forced laser wakefield (FLWF) acceleration regime is in the spectral signature of the transmitted ir laser pulse. The former regime generates sidebands from stimulated Raman forward scattering (SRS-F) and the latter exhibits general spectral broadening that evidences ir laser pulse compression. Transmitted spectral effects can diagnose these acceleration regimes. Existing noninvasive electro-optic (EO) schemes for detection of ultrashort electron bunches are limited by material properties to temporal resolution at the 50-100 femtosecond level. While timing jitter at conventional accelerators is of this order (or greater), single bunch longitudinal profile measurements can require improvement of at least an order of magnitude. A new FO technique is described here which monitors enhancement and associated dynamics of spectral components in a probe pulse. Three correlation schemes for detecting ultrashort x-ray pulses are described. Two-photon absorption in tailored ion targets is proposed for scanning auto

  16. Target micro-displacement measurement by a "comb" structure of intensity distribution in laser plasma propulsion

    Science.gov (United States)

    Zheng, Z. Y.; Zhang, S. Q.; Gao, L.; Gao, H.

    2015-05-01

    A "comb" structure of beam intensity distribution is designed and achieved to measure a target displacement of micrometer level in laser plasma propulsion. Base on the "comb" structure, the target displacement generated by nanosecond laser ablation solid target is measured and discussed. It is found that the "comb" structure is more suitable for a thin film target with a velocity lower than tens of millimeters per second. Combing with a light-electric monitor, the `comb' structure can be used to measure a large range velocity.

  17. Anomalous intensities of Ne-like ion resonance line in plasma produced by picosecond laser pulse

    International Nuclear Information System (INIS)

    Bryunetkin, B.A.; Skobelev, I.Yu.; Faenov, A.Ya.; Kalashnikov, M.P.; Nikles, P.; Shnyupep, M.

    1995-01-01

    An anomalous structure of intensities of spectral lines of CuXX and GeXXX Ne-like ions emitted by plasma produced by laser pulses of picosecond duration and up to 2x10 18 W/cm 2 flux density is recorded for the first time. It is shown that spectrum maximum of these ions is emitted from a plasma region whose density is significantly above the critical value of the length of heating laser radiation wave. 9 refs.; 3 figs

  18. Charge-exchange-induced formation of hollow atoms in high-intensity laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rosmej, F.B. [TU-Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Faenov, A.Ya.; Pikuz, T.A.; Magunov, A.I.; Skobelev, I.Yu. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo (Russian Federation); Auguste, T.; D' Oliveira, P.; Hulin, S.; Monot, P. [Commissariat a lEnergie Atomique DSM/DRECAM/SPAM, Gif-Sur-Yvette Cedex (France); Andreev, N.E.; Chegotov, M.V.; Veisman, M.E. [High Energy Density Research Centre, Institute of High Temperatures of Russian Academy of Sciences, Moscow (Russian Federation)

    1999-03-14

    For the first time registration of high-resolution soft x-ray emission and atomic data calculations of hollow-atom dielectronic satellite spectra of highly charged nitrogen have been performed. Double-electron charge-exchange processes from excited states are proposed for the formation of autoionizing levels nln'l' in high-intensity laser-produced plasmas, when field-ionized ions penetrate into the residual gas. Good agreement is found between theory and experiment. Plasma spectroscopy with hollow ions is proposed and a temperature diagnostic for laser-produced plasmas in the long-lasting recombining regime is developed. (author). Letter-to-the-editor.

  19. Photolysis of phosphodiester bonds in plasmid DNA by high intensity UV laser irradiation

    International Nuclear Information System (INIS)

    Croke, D.T.; Blau, Werner; OhUigin, Colm; Kelly, J.M.; McConnell, D.J.

    1988-01-01

    The cleavage of phosphodiester bonds in DNA exposed to high intensity UV laser pulses in aerated aqueous solution has been investigated using a krypton fluoride excimer laser (248 nm) and bacterial plasmid DNA. The dependence of strand breakage on fluence and intensity has been studied in detail and shows that the process is non-linear with respect to intensity. The relationship between the quantum yield for strand breakage and intensity shows that the strand breakage reaction involves two-photon excitation of DNA bases. The quantum yield rises with intensity from a lower value of 7 x 10 -5 until a maximum value of 4.5 x 10 -4 is attained at intensities of 10 11 W m -2 and above. This value is approximately fifty-fold higher than the quantum yield for strand breakage induced by exposure to low density UV irradiation (254 nm, 12 W m -2 ). DNA sequencing experiments have shown that strand breakage occurs by the specific cleavage of the phosphodiester bond which lies immediately 3' to guanine residues in the DNA, leaving some alkali-labile remnant attached to the terminal phosphate. A mechanism for DNA strand breakage which involves the generation of guanine radical cations is proposed. (author)

  20. Near-field enhanced electron acceleration from dielectric nanospheres in intense few-cycle laser fields

    International Nuclear Information System (INIS)

    Zherebtsov, S.; Znakovskaya, I.; Wirth, A.; Herrwerth, O.; Suessmann, F.; Ahmad, I.; Trushin, S.; Fennel, Th.; Plenge, J.; Antonsson, E.

    2010-01-01

    Complete text of publication follows. The interaction of nanostructured materials with few-cycle laser light has attracted significant attention lately. This interest is driven by both the quest for fundamental insight into the real-time dynamics of many-electron systems and a wide range of far-reaching applications, such as, e.g. ultrafast computation and information storage on the nanoscale and the generation of XUV frequency combs. We investigated the above-threshold electron emission from isolated SiO 2 nanoparticles in waveform controlled few-cycle laser fields at intensities close to the tunneling regime. The enhancement of the electron acceleration from the silica nanoparticles was explored as a function of the particle size (ranging from 50 to 147 nm) and the laser peak intensity (1 - 4x10 13 W/cm 2 ). Obtained cut-off values in the kinetic energy spectra are displayed in Fig. 1. The cut-off values show a linear dependence with intensity within the studied intensity range, with the average cut-off energy being 53 U P , indicated by the black line. Quasi-classical simulations of the emission process reveal that electron rescattering in the locally enhanced near-field of the particle is responsible for the large energy gain. The observed near-field enhancement offers promising new routes for pushing the limits of strong-field phenomena relying on electron rescattering, such as, high-harmonic generation and molecular imaging.

  1. Nondamaging Retinal Laser Therapy: Rationale and Applications to the Macula.

    Science.gov (United States)

    Lavinsky, Daniel; Wang, Jenny; Huie, Philip; Dalal, Roopa; Lee, Seung Jun; Lee, Dae Yeong; Palanker, Daniel

    2016-05-01

    Retinal photocoagulation and nondamaging laser therapy are used for treatment of macular disorders, without understanding of the response mechanism and with no rationale for dosimetry. To establish a proper titration algorithm, we measured the range of tissue response and damage threshold. We then evaluated safety and efficacy of nondamaging retinal therapy (NRT) based on this algorithm for chronic central serous chorioretinopathy (CSCR) and macular telangiectasia (MacTel). Retinal response to laser treatment below damage threshold was assessed in pigmented rabbits by expression of the heat shock protein HSP70 and glial fibrillary acidic protein (GFAP). Energy was adjusted relative to visible titration using the Endpoint Management (EpM) algorithm. In clinical studies, 21 eyes with CSCR and 10 eyes with MacTel were treated at 30% EpM energy with high spot density (0.25-diameter spacing). Visual acuity, retinal and choroidal thickness, and subretinal fluid were monitored for 1 year. At 25% EpM energy and higher, HSP70 was expressed acutely in RPE, and GFAP upregulation in Müller cells was observed at 1 month. Damage appeared starting at 40% setting. Subretinal fluid resolved completely in 81% and partially in 19% of the CSCR patients, and visual acuity improved by 12 ± 3 letters. Lacunae in the majority of MacTel patients decreased while preserving the retinal thickness, and vision improved by 10 letters. Heat shock protein expression in response to hyperthermia helps define the therapeutic window for NRT. Lack of tissue damage enables high-density treatment to boost clinical efficacy, therapy in the fovea, and retreatments to manage chronic diseases.

  2. Description of an Intensive Dialectical Behavior Therapy Program for Multidiagnostic Clients with Eating Disorders

    Science.gov (United States)

    Federici, Anita; Wisniewski, Lucene; Ben-Porath, Denise

    2012-01-01

    The authors describe an intensive outpatient dialectical behavior therapy (DBT) program for multidiagnostic clients with eating disorders who had not responded adequately to standard, empirically supported treatments for eating disorders. The program integrates DBT with empirically supported cognitive behavior therapy approaches that are well…

  3. Self-Guiding of Ultrashort Relativistically Intense Laser Pulses to the Limit of Nonlinear Pump Depletion

    International Nuclear Information System (INIS)

    Ralph, J. E.; Marsh, K. A.; Pak, A. E.; Lu, W.; Clayton, C. E.; Fang, F.; Joshi, C.; Tsung, F. S.; Mori, W. B.

    2009-01-01

    A study of self-guiding of ultra short, relativistically intense laser pulses is presented. Here, the laser pulse length is on the order of the nonlinear plasma wavelength and the normalized vector potential is greater than one. Self-guiding of ultrashort laser pulses over tens of Rayliegh lengths is possible when driving a highly nonlinear wake. In this case, self-guiding is limited by nonlinear pump depletion. Erosion of the pulse due to diffraction at the head of the laser pulse is minimized for spot sizes close to the blow-out radius. This is due to the slowing of the group velocity of the photons at the head of the laser pulse. Using an approximately 10 TW Ti:Sapphire laser with a pulse length of approximately 50 fs, experimental results are presented showing self-guiding over lengths exceeding 30 Rayliegh lengths in various length Helium gas jets. Fully explicit 3D PIC simulations supporting the experimental results are also presented.

  4. Bright ultrashort x-rays from intense subpicosecond laser-plasma interactions

    International Nuclear Information System (INIS)

    Umstadter, D.

    1995-01-01

    Short-pulse, high-intensity lasers interacting with solid targets make possible the study of a new class of laser-plasma interactions. They are unique because during the ultrashort laser pulse relatively little expansion occurs, and the density scale length remains much less than the laser wavelength. This makes possible the direct deposition of a significant amount of the laser energy at close to solid density. Steep plasma temperature and density gradients subsequently cause rapid cooling, resulting in highly non-equilibrium conditions and the concurrent emission of extremely bright ultrashort x-ray pulses. In this study, the latter are investigated experimentally with temporally and spectrally resolved soft x-ray diagnostics. The emitted x-ray spectra from solid targets with various atomic numbers are characterized for a laser pulse width τ l ∼ 400 fs. These ultrashort x rays may be used as (1) a diagnostic of solid-density plasma conditions, (2) a tool for the study of radiation hydrodynamics in a parameter regime that is otherwise inaccessible, and (3) a source for time-resolved diffraction, spectroscopy, or microscopy studies of transient chemical, biological or physical phenomena

  5. [A comparative evaluation of the efficacy of magneto- and laser therapy in patients with osteoarthrosis deformans].

    Science.gov (United States)

    Selivonenko, V G; Syvolap, V D; Porada, L V; Medvedeva, V N; Boev, S S; Morozov, A I; Slin'ko, V G; Berest, S M; Garbuz, L N; Sholokh, S G

    1997-01-01

    A comparative evaluation of efficacy of magneto- and laser therapy was carried out in 82 patients with osteoarthrosis deformans. The magnetic field and laser irradiation dispelled the pain syndrome and synovitis manifestations. It is recommendable that the multiple-modality therapy of patients with osteoarthrosis deformans should involve magneto- and laser therapy (15 to 20 procedures per one course) that improve results of the treatment being received and allow the time of hospitalization to be reduced at an average by 5 bed-days. Laser appeared to be a very effective mode of treatment. No unfavourable side effects were recordable.

  6. [Convalescence and decline in physical function level following intensive therapy

    DEFF Research Database (Denmark)

    Poulsen, J.B.; Moller, K.; Perner, A.

    2009-01-01

    prolong convalescence after discharge. Thus, strategies to counteract neuromuscular dysfunction and to improve physical outcome may reduce the overall burden of critical illness. This review describes the most common predisposing factors and discusses preventative measures and interventions Udgivelsesdato......More patients survive critical illness, which emphasises the need to assess outcome measures other than mortality. A prolonged decline in physical function is frequently observed after discharge in the critically ill. Neuromuscular dysfunction and muscle atrophy incurred during intensive care may...

  7. [Convalescence and decline in physical function level following intensive therapy

    DEFF Research Database (Denmark)

    Poulsen, J.B.; Moller, K.; Perner, A.

    2009-01-01

    More patients survive critical illness, which emphasises the need to assess outcome measures other than mortality. A prolonged decline in physical function is frequently observed after discharge in the critically ill. Neuromuscular dysfunction and muscle atrophy incurred during intensive care may...... prolong convalescence after discharge. Thus, strategies to counteract neuromuscular dysfunction and to improve physical outcome may reduce the overall burden of critical illness. This review describes the most common predisposing factors and discusses preventative measures and interventions Udgivelsesdato...

  8. Delivery confirmation of bolus electron conformal therapy combined with intensity modulated x-ray therapy

    International Nuclear Information System (INIS)

    Kavanaugh, James A.; Hogstrom, Kenneth R.; Fontenot, Jonas P.; Henkelmann, Gregory; Chu, Connel; Carver, Robert A.

    2013-01-01

    Purpose: The purpose of this study was to demonstrate that a bolus electron conformal therapy (ECT) dose plan and a mixed beam plan, composed of an intensity modulated x-ray therapy (IMXT) dose plan optimized on top of the bolus ECT plan, can be accurately delivered. Methods: Calculated dose distributions were compared with measured dose distributions for parotid and chest wall (CW) bolus ECT and mixed beam plans, each simulated in a cylindrical polystyrene phantom that allowed film dose measurements. Bolus ECT plans were created for both parotid and CW PTVs (planning target volumes) using 20 and 16 MeV beams, respectively, whose 90% dose surface conformed to the PTV. Mixed beam plans consisted of an IMXT dose plan optimized on top of the bolus ECT dose plan. The bolus ECT, IMXT, and mixed beam dose distributions were measured using radiographic films in five transverse and one sagittal planes for a total of 36 measurement conditions. Corrections for film dose response, effects of edge-on photon irradiation, and effects of irregular phantom optical properties on the Cerenkov component of the film signal resulted in high precision measurements. Data set consistency was verified by agreement of depth dose at the intersections of the sagittal plane with the five measured transverse planes. For these same depth doses, results for the mixed beam plan agreed with the sum of the individual depth doses for the bolus ECT and IMXT plans. The six mean measured planar dose distributions were compared with those calculated by the treatment planning system for all modalities. Dose agreement was assessed using the 4% dose difference and 0.2 cm distance to agreement. Results: For the combined high-dose region and low-dose region, pass rates for the parotid and CW plans were 98.7% and 96.2%, respectively, for the bolus ECT plans and 97.9% and 97.4%, respectively, for the mixed beam plans. For the high-dose gradient region, pass rates for the parotid and CW plans were 93.1% and 94

  9. Low intensity 635 nm diode laser irradiation inhibits fibroblast-myofibroblast transition reducing TRPC1 channel expression/activity: New perspectives for tissue fibrosis treatment.

    Science.gov (United States)

    Sassoli, Chiara; Chellini, Flaminia; Squecco, Roberta; Tani, Alessia; Idrizaj, Eglantina; Nosi, Daniele; Giannelli, Marco; Zecchi-Orlandini, Sandra

    2016-03-01

    Low-level laser therapy (LLLT) or photobiomodulation therapy is emerging as a promising new therapeutic option for fibrosis in different damaged and/or diseased organs. However, the anti-fibrotic potential of this treatment needs to be elucidated and the cellular and molecular targets of the laser clarified. Here, we investigated the effects of a low intensity 635 ± 5 nm diode laser irradiation on fibroblast-myofibroblast transition, a key event in the onset of fibrosis, and elucidated some of the underlying molecular mechanisms. NIH/3T3 fibroblasts were cultured in a low serum medium in the presence of transforming growth factor (TGF)-β1 and irradiated with a 635 ± 5 nm diode laser (continuous wave, 89 mW, 0.3 J/cm(2) ). Fibroblast-myofibroblast differentiation was assayed by morphological, biochemical, and electrophysiological approaches. Expression of matrix metalloproteinase (MMP)-2 and MMP-9 and of Tissue inhibitor of MMPs, namely TIMP-1 and TIMP-2, after laser exposure was also evaluated by confocal immunofluorescence analyses. Moreover, the effect of the diode laser on transient receptor potential canonical channel (TRPC) 1/stretch-activated channel (SAC) expression and activity and on TGF-β1/Smad3 signaling was investigated. Diode laser treatment inhibited TGF-β1-induced fibroblast-myofibroblast transition as judged by reduction of stress fibers formation, α-smooth muscle actin (sma) and type-1 collagen expression and by changes in electrophysiological properties such as resting membrane potential, cell capacitance and inwardly rectifying K(+) currents. In addition, the irradiation up-regulated the expression of MMP-2 and MMP-9 and downregulated that of TIMP-1 and TIMP-2 in TGF-β1-treated cells. This laser effect was shown to involve TRPC1/SAC channel functionality. Finally, diode laser stimulation and TRPC1 functionality negatively affected fibroblast-myofibroblast transition by interfering with TGF-β1 signaling, namely reducing the

  10. New photon science and extreme field physics: volumetric interaction of ultra-intense laser pulses with over-dense targets

    Energy Technology Data Exchange (ETDEWEB)

    Hegelich, Bjorn M [Los Alamos National Laboratory

    2010-11-24

    The constantly improving capabilities of ultra-high power lasers are enabling interactions of matter with ever extremer fields. As both the on target intensity and the laser contrast are increasing, new physics regimes are becoming accessible and new effects materialize, which in turn enable a host of applications. A first example is the realization of interactions in the transparent-overdense regime (TOR), which is reached by interacting a highly relativistic (a{sub 0} > 10), ultra high contrast laser pulse with a solid density, nanometer target. Here, a still overdense target is turned transparent to the laser by the relativistic mass increase of the electrons, increasing the skin depth beyond the target thickness and thus enabling volumetric interaction of the laser with the entire target instead of only a small interaction region at the critical density surface. This increases the energy coupling, enabling a range of effects, including relativistic optics and pulse shaping, mono-energetic electron acceleration, highly efficient ion acceleration in the break-out afterburner regime, the generation of relativistic and forward directed surface harmonics. In this talk we will show the theoretical framework for this regime, explored by multi-D, high resolution and high density PIC simulations as well as analytic theory and present measurements and experimental demonstrations of direct relativistic optics, relativistic HHG, electron acceleration, and BOA ion acceleration in the transparent overdense regime. These effects can in turn be used in a host of applications including laser pulse shaping, ICF diagnostics, coherent x-ray sources, and ion sources for fast ignition (IFI), homeland security applications and medical therapy. This host of applications already makes transparent-overdense regime one of general interest, a situation reinforced by the fact that the TOR target undergoes an extremely wide HEDP parameter space during interaction ranging from WDM conditions

  11. High-intensity fibre laser design for micro-machining applications

    Science.gov (United States)

    Ortiz-Neria, D. I.; Martinez-Piñón, F.; Hernandez-Escamilla, H.; Alvarez-Chavez, J. A.

    2010-11-01

    This work is focused on the design of a 250W high-intensity continuous-wave fibre optic laser with a 15μm spot size beam and a beam parameter product (BPP) of 1.8 for its use on Laser-assisted Cold Spray process (LCS) in the micro-machining areas. The metal-powder deposition process LCS, is a novel method based on Cold Spray technique (CS) assisted by laser technology. The LCS accelerates metal powders by the use of a high-pressure gas in order to achieve flash welding of particles over substrate. In LCS, the critical velocity of impact is lower with respect with CS while the powder particle is heated before the deposition by a laser beam. Furthermore, LCS does not heat the powder to achieve high temperatures as it happens in plasma processes. This property puts aside cooling problems which normally happen in sintered processes with high oxygen/nitrogen concentration levels. LCS will be used not only in deposition of thin layers. After careful design, proof of concept, experimental data, and prototype development, it should be feasible to perform micro-machining precise work with the use of the highintensity fibre laser presented in this work, and selective deposition of particles, in a similar way to the well-known Direct Metal Laser Sintering process (DMLS). The fibre laser consists on a large-mode area, Yb3+-doped, semi-diffraction limited, 25-m fibre laser cavity, operating in continuous wave regime. The fibre shows an arguably high slope-efficiency with no signs of roll-over. The measured M2 value is 1.8 and doping concentration of 15000ppm. It was made with a slight modification of the traditional MCVD technique. A full optical characterization will be presented.

  12. Hot-electron surface retention in intense short-pulse laser-matter interactions.

    Science.gov (United States)

    Mason, R J; Dodd, E S; Albright, B J

    2005-07-01

    Implicit hybrid plasma simulations predict that a significant fraction of the energy deposited into hot electrons can be retained near the surface of targets with steep density gradients illuminated by intense short-pulse lasers. This retention derives from the lateral transport of heated electrons randomly emitted in the presence of spontaneous magnetic fields arising near the laser spot, from geometric effects associated with a small hot-electron source, and from E fields arising in reaction to the ponderomotive force. Below the laser spot hot electrons are axially focused into a target by the B fields, and can filament in moderate Z targets by resistive Weibel-like instability, if the effective background electron temperature remains sufficiently low. Carefully engineered use of such retention in conjunction with ponderomotive density profile steepening could result in a reduced hot-electron range that aids fast ignition. Alternatively, such retention may disturb a deeper deposition needed for efficient radiography and backside fast ion generation.

  13. Temporal resolution criterion for correctly simulating relativistic electron motion in a high-intensity laser field

    Energy Technology Data Exchange (ETDEWEB)

    Arefiev, Alexey V. [Institute for Fusion Studies, The University of Texas, Austin, Texas 78712 (United States); Cochran, Ginevra E.; Schumacher, Douglass W. [Physics Department, The Ohio State University, Columbus, Ohio 43210 (United States); Robinson, Alexander P. L. [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Chen, Guangye [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2015-01-15

    Particle-in-cell codes are now standard tools for studying ultra-intense laser-plasma interactions. Motivated by direct laser acceleration of electrons in sub-critical plasmas, we examine temporal resolution requirements that must be satisfied to accurately calculate electron dynamics in strong laser fields. Using the motion of a single electron in a perfect plane electromagnetic wave as a test problem, we show surprising deterioration of the numerical accuracy with increasing wave amplitude a{sub 0} for a given time-step. We go on to show analytically that the time-step must be significantly less than λ/ca{sub 0} to achieve good accuracy. We thus propose adaptive electron sub-cycling as an efficient remedy.

  14. Manipulation of the polarization of intense laser beams via optical wave mixing in plasmas

    Science.gov (United States)

    Michel, Pierre; Divol, Laurent; Turnbull, David; Moody, John

    2014-10-01

    When intense laser beams overlap in plasmas, the refractive index modulation created by the beat wave via the ponderomotive force can lead to optical wave mixing phenomena reminiscent of those used in crystals and photorefractive materials. Using a vector analysis, we present a full analytical description of the modification of the polarization state of laser beams crossing at arbitrary angles in a plasma. We show that plasmas can be used to provide full control of the polarization state of a laser beam, and give simple analytical estimates and practical considerations for the design of novel photonics devices such as plasma polarizers and plasma waveplates. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  15. Zero photon dissociation of CS2+ in intense ultrashort laser pulses

    Science.gov (United States)

    Severt, Travis; Betsch, K. J.; Zohrabi, M.; Ablikim, U.; Jochim, Bethany; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.

    2013-05-01

    We measured the dissociation of a CS2+ molecular ion beam in intense laser pulses ( C+ + S+. We speculate that a pump-dump process occurs whereby the vibrational wavepacket in the electronic ground state of CS2+ is pumped into the electronic first excited state's continuum by a single photon during the laser pulse. Once this continuum vibrational wavepacket passes the potential barrier in the ground electronic potential, the emission of a second photon is stimulated by the same laser pulse, most likely when the wavepacket moves through the internuclear distance where the two electronic states are in resonance with the driving field. A comparison is made to ZPD and ATD in the isovalent CO2+ species. Curiously, ATD is the favored mechanism in CO2+. The underlying molecular structure and dynamics determining this preference will be discussed. Supported by Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  16. Self-generated magnetic fields and energy transport by ultra-intense laser-plasma interaction

    International Nuclear Information System (INIS)

    Abudurexiti, A.; Tuniyazi, P.; Wang Qian

    2011-01-01

    The electromagnetic instability (Weibel instability) and its mechanism in ultra-intense laser-plasma interactions are studied by using three-dimensional particle-in-cell simulations. The transport of energy in electron thermal conduction is analyzed by the Spitzer-Harm theory, and the election's vertical pyrogenation phenomenon that resulted from anisotropic heating of laser is observed. The results indicate that the strong magnetic field excited by Weibel instability makes the electron beam deposit its energy within a very short distance, and it restrains the electron thermal flux formed when the laser ponderomotive force bursts through the electron. With the increase of the self-generated magnetic field, the electron will be seized by the wave of magnetic field, and the transport of heat will be restricted. (authors)

  17. Classical-trajectory simulation of accelerating neutral atoms with polarized intense laser pulses

    Science.gov (United States)

    Xia, Q. Z.; Fu, L. B.; Liu, J.

    2013-03-01

    In the present paper, we perform the classical trajectory Monte Carlo simulation of the complex dynamics of accelerating neutral atoms with linearly or circularly polarized intense laser pulses. Our simulations involve the ion motion as well as the tunneling ionization and the scattering dynamics of valence electron in the combined Coulomb and electromagnetic fields, for both helium (He) and magnesium (Mg). We show that for He atoms, only linearly polarized lasers can effectively accelerate the atoms, while for Mg atoms, we find that both linearly and circularly polarized lasers can successively accelerate the atoms. The underlying mechanism is discussed and the subcycle dynamics of accelerating trajectories is investigated. We have compared our theoretical results with a recent experiment [Eichmann Nature (London)NATUAS0028-083610.1038/nature08481 461, 1261 (2009)].

  18. Constraint-induced aphasia therapy versus intensive semantic treatment in fluent aphasia.

    Science.gov (United States)

    Wilssens, Ineke; Vandenborre, Dorien; van Dun, Kim; Verhoeven, Jo; Visch-Brink, Evy; Mariën, Peter

    2015-05-01

    The authors compared the effectiveness of 2 intensive therapy methods: Constraint-Induced Aphasia Therapy (CIAT; Pulvermüller et al., 2001) and semantic therapy (BOX; Visch-Brink & Bajema, 2001). Nine patients with chronic fluent aphasia participated in a therapy program to establish behavioral treatment outcomes. Participants were randomly assigned to one of two groups (CIAT or BOX). Intensive therapy significantly improved verbal communication. However, BOX treatment showed a more pronounced improvement on two communication-namely, a standardized assessment for verbal communication, the Amsterdam Nijmegen Everyday Language Test (Blomert, Koster, & Kean, 1995), and a subjective rating scale, the Communicative Effectiveness Index (Lomas et al., 1989). All participants significantly improved on one (or more) subtests of the Aachen Aphasia Test (Graetz, de Bleser, & Willmes, 1992), an impairment-focused assessment. There was a treatment-specific effect. BOX treatment had a significant effect on language comprehension and semantics, whereas CIAT treatment affected language production and phonology. The findings indicate that in patients with fluent aphasia, (a) intensive treatment has a significant effect on language and verbal communication, (b) intensive therapy results in selective treatment effects, and (c) an intensive semantic treatment shows a more striking mean improvement on verbal communication in comparison with communication-based CIAT treatment.

  19. Time-resolved measurements with intense ultrashort laser pulses: a 'molecular movie' in real time

    International Nuclear Information System (INIS)

    Rudenko, A; Ergler, Th; Feuerstein, B; Zrost, K; Schroeter, C D; Moshammer, R; Ullrich, J

    2007-01-01

    We report on the high-resolution multidimensional real-time mapping of H 2 + and D 2 + nuclear wave packets performed employing time-resolved three-dimensional Coulomb explosion imaging with intense laser pulses. Exploiting a combination of a 'reaction microscope' spectrometer and a pump-probe setup with two intense 6-7 fs laser pulses, we simultaneously visualize both vibrational and rotational motion of the molecule, and obtain a sequence of snapshots of the squared ro-vibrational wave function with time-step resolution of ∼ 0.3 fs, allowing us to reconstruct a real-time movie of the ultrafast molecular motion. We observe fast dephasing, or 'collapse' of the vibrational wave packet and its subsequent revival, as well as signatures of rotational excitation. For D 2 + we resolve also the fractional revivals resulting from the interference between the counter-propagating parts of the wave packet

  20. Propagation of intense laser radiation through a diffusion flame of burning oil

    Science.gov (United States)

    Gvozdev, S. V.; Glova, A. F.; Dubrovskii, V. Yu; Durmanov, S. T.; Krasyukov, A. G.; Lysikov, A. Yu; Smirnov, G. V.; Pleshkov, V. M.

    2015-06-01

    We report the results of measuring the absorption coefficient of radiation from a cw ytterbium fibre single-mode laser with the power up to 1.5 kW by a diffusion flame of oil, burning in the atmosphere air at normal pressure on a free surface. For the constant length (30 mm) and width (30 mm) of the flame and the distance 10 mm between the laser beam axis and the oil surface the dependence of the absorption coefficient, averaged over the flame length, on the mean radiation intensity (varied from 4.5 × 103 to 1.2 × 106 W cm-2) entering the flame is obtained. The qualitative explanation of nonmonotonic behaviour of the absorption coefficient versus the intensity is presented.

  1. High Intensity Laser Power Beaming Architecture for Space and Terrestrial Missions

    Science.gov (United States)

    Nayfeh, Taysir; Fast, Brian; Raible, Daniel; Dinca, Dragos; Tollis, Nick; Jalics, Andrew

    2011-01-01

    High Intensity Laser Power Beaming (HILPB) has been developed as a technique to achieve Wireless Power Transmission (WPT) for both space and terrestrial applications. In this paper, the system architecture and hardware results for a terrestrial application of HILPB are presented. These results demonstrate continuous conversion of high intensity optical energy at near-IR wavelengths directly to electrical energy at output power levels as high as 6.24 W from the single cell 0.8 cm2 aperture receiver. These results are scalable, and may be realized by implementing receiver arraying and utilizing higher power source lasers. This type of system would enable long range optical refueling of electric platforms, such as MUAV s, airships, robotic exploration missions and provide power to spacecraft platforms which may utilize it to drive electric means of propulsion.

  2. Using self-generated harmonics as a diagnostic of high intensity laser-produced plasmas

    International Nuclear Information System (INIS)

    Krushelnick, K; Watts, I; Tatarakis, M; Gopal, A; Wagner, U; Beg, F N; Clark, E L; Clarke, R J; Dangor, A E; Norreys, P A; Wei, M S; Zepf, M

    2002-01-01

    The interaction of high intensity laser pulses (up to I∼10 20 W cm -2 ) with plasmas can generate very high order harmonics of the laser frequency (up to the 75th order have been observed). Measurements of the properties of these harmonics can provide important insights into the plasma conditions which exist during such interactions. For example, observations of the spectrum of the harmonic emission can provide information of the dynamics of the critical surface as well as information on relativistic non-linear optical effects in the plasma. However, most importantly, observations of the polarization properties of the harmonics can provide a method to measure the ultra-strong magnetic fields (greater than 350 MG) which can be generated during these interactions. It is likely that such techniques can be scaled to provide a significant amount of information from experiments at even higher intensities

  3. Characterisation of Intensity Values on Terrestrial Laser Scanning for Recording Enhancement

    Science.gov (United States)

    Balaguer-Puig, M.; Molada-Tebar, A.; Marqués-Mateu, A.; Lerma, J. L.

    2017-08-01

    Mapping surveys based on terrestrial laser scanning (TLS) are common nowadays for different purposes such as documentation of cultural heritage assets. The chance to extract relevant information from TLS surveys depends not only on the fast acquisition of XYZ coordinates, but also on the meaningful intensity values of the fired objects. TLS behaviour depends on several known factors such as distance, texture, roughness, colour and albedo. This paper seeks to find out the mathematical relationship between the TLS intensity values and the colorimetric data using a colour chart. In order to do so, objective colour specification based on well-known colour spaces is needed. The approach used here started with scanning a colour chart containing a number of colour patches with known chromatic and reflection characteristics. After several transformations, the results allowed us to characterise the intensity behaviour of a time-of-flight laser scanner. The characterisation of the intensity values are tested indoor on the colour chart and outdoor on an archaeological shelter. Promising results are obtained to enhance the behaviour of the intensity values coming from the TLS.

  4. Efficacy of intense pulse light therapy and tripple combination cream versus intense pulse light therapy and tripple combination cream alone in epidermal melasma treatment

    International Nuclear Information System (INIS)

    Shakeeb, N.; Noor, S.M.; Paracha, M.M.; Ullah, G.

    2018-01-01

    Objective:To compare the efficacy of intense pulse light therapy (IPL) and triple combination cream (TCC) versus intense pulse light therapy and triple combination cream alone in epidermal melasma treatment, downgrading MASI score to more than 10. Study Design:Randomized controlled trial. Place and Duration of Study:Dermatology Department, Lady Reading Hospital, Peshawar, from August 2014 to January 2015. Methodology:Patients of 18-45 years were included in the study with Fitzpatrick skin type II-V. Sample of 96 patients was divided in to three groups of 32 each, through consecutive (non-probability) sampling method. Detailed history was taken, Woods Lamp Examination done, and melasma area and severity index (MASI) score was calculated. TCC had to be applied daily at night for two months by group A patients while group B was consigned for IPL therapy fortnightly, and those in group C were given both for two months. Efficacy was compared by recalculating MASI score at treatment end as well as at follow-up after 4 weeks, using Chi-square test with significance at p < 0.05. Results:Male and female patients were 10 (31.2%) and 22 (68.8%) in group A, 7 (21.9%) and 25 (78.1%) in group B, while in group C were 12 (37.5%) and 20 (62.5%). The average age was 28.70 +8.70 years. MASI score reduction was achieved in 22 (68.8%) patients in group A; whereas, in 20 (62.5%) and 30(93.8%) patients in group B and C, respectively. Efficacy-wise distribution was significant (p=0.009). Conclusion:Intense pulse light therapy and triple combination cream are more efficacious in epidermal melasma treatment than intense pulse light therapy and triple combination cream alone. (author)

  5. Acetazolamide Therapy for Metabolic Alkalosis in Pediatric Intensive Care Patients.

    Science.gov (United States)

    López, Carolina; Alcaraz, Andrés José; Toledo, Blanca; Cortejoso, Lucía; Gil-Ruiz, Maite Augusta

    2016-12-01

    Patients in PICUs frequently present hypochloremic metabolic alkalosis secondary to loop diuretic treatment, especially those undergoing cardiac surgery. This study evaluates the effectiveness of acetazolamide therapy for metabolic alkalosis in PICU patients. Retrospective, observational study. A tertiary care children's hospital PICU. Children receiving at least a 2-day course of enteral acetazolamide. None. Demographic variables, diuretic treatment and doses of acetazolamide, urine output, serum electrolytes, urea and creatinine, acid-base excess, pH, and use of mechanical ventilation during treatment were collected. Patients were studied according to their pathology (postoperative cardiac surgery, decompensated heart failure, or respiratory disease). A total of 78 episodes in 58 patients were identified: 48 were carried out in cardiac postoperative patients, 22 in decompensated heart failure, and eight in respiratory patients. All patients received loop diuretics. A decrease in pH and PCO2 in the first 72 hours, a decrease in serum HCO3 (mean, 4.65 ± 4.83; p alkalosis secondary to diuretic therapy. Cardiac postoperative patients present a significant increase in urine output after acetazolamide treatment.

  6. Radiation therapy with laser-driven accelerated particle beams: physical dosimetry and spatial dose distribution

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Sabine; Assmann, Walter [Ludwig-Maximilians Universitaet Muenchen (Germany); Kneschaurek, Peter; Wilkens, Jan [MRI, Technische Universitaet Muenchen (Germany)

    2011-07-01

    One of the main goals of the Munich Centre for Advanced Photonics (MAP) is the application of laser driven accelerated (LDA) particle beams for radiation therapy. Due to the unique acceleration process ultrashort particle pulses of high intensity (> 10{sup 7} particles /cm{sup 2}/ns) are generated, which makes online detection an ambitious task. So far, state of the art detection of laser accelerated ion pulses are non-electronic detectors like radiochromic films (RCF), imaging plates (IP) or nuclear track detectors (e.g. CR39). All these kind of detectors are offline detectors requiring several hours of processing time. For this reason they are not qualified for an application in radiation therapy where quantitative real time detection of the beam is an essential prerequisite. Therefore we are investigating pixel detectors for real time monitoring of LDA particle pulses. First tests of commercially available systems with 8-20 MeV protons are presented. For radiobiological experiments second generation Gafchromic films (EBT2) have been calibrated with protons of 12 and 20 MeV for a dose range of 0.3-10 Gy. Dose verification in proton irradiation of subcutaneous tumours in mice was successfully accomplished using these films.

  7. Weibel instability mediated collisionless shocks using intense laser-driven plasmas

    Science.gov (United States)

    Palaniyappan, Sasikumar; Fiuza, Federico; Huang, Chengkun; Gautier, Donald; Ma, Wenjun; Schreiber, Jorg; Raymer, Abel; Fernandez, Juan; Shimada, Tom; Johnson, Randall

    2017-10-01

    The origin of cosmic rays remains a long-standing challenge in astrophysics and continues to fascinate physicists. It is believed that ``collisionless shocks'' - where the particle Coulomb mean free path is much larger that the shock transition - are a dominant source of energetic cosmic rays. These shocks are ubiquitous in astrophysical environments such as gamma-ray bursts, supernova remnants, pulsar wind nebula and coronal mass ejections from the sun. A particular type of electromagnetic plasma instability known as Weibel instability is believed to be the dominant mechanism behind the formation of these collisionless shocks in the cosmos. The understanding of the microphysics behind collisionless shocks and their particle acceleration is tightly related with nonlinear basic plasma processes and remains a grand challenge. In this poster, we will present results from recent experiments at the LANL Trident laser facility studying collisionless shocks using intense ps laser (80J, 650 fs - peak intensity of 1020 W/cm2) driven near-critical plasmas using carbon nanotube foam targets. A second short pulse laser driven protons from few microns thick gold foil is used to radiograph the main laser-driven plasma. Work supported by the LDRD program at LANL.

  8. The study towards high intensity high charge state laser ion sources.

    Science.gov (United States)

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  9. Modulating laser intensity profile ellipticity for microstructural control during metal additive manufacturing

    International Nuclear Information System (INIS)

    Roehling, Tien T.; Wu, Sheldon S.Q.; Khairallah, Saad A.; Roehling, John D.; Soezeri, S. Stefan; Crumb, Michael F.; Matthews, Manyalibo J.

    2017-01-01

    Additively manufactured (AM) metals are often highly textured, containing large columnar grains that initiate epitaxially under steep temperature gradients and rapid solidification conditions. These unique microstructures partially account for the massive property disparity existing between AM and conventionally processed alloys. Although equiaxed grains are desirable for isotropic mechanical behavior, the columnar-to-equiaxed transition remains difficult to predict for conventional solidification processes, and much more so for AM. In this study, the effects of laser intensity profile ellipticity on melt track macrostructures and microstructures were studied in 316L stainless steel. Experimental results were supported by temperature gradients and melt velocities simulated using the ALE3D multi-physics code. As a general trend, columnar grains preferentially formed with increasing laser power and scan speed for all beam profiles. However, when conduction mode laser heating occurs, scan parameters that result in coarse columnar microstructures using Gaussian profiles produce equiaxed or mixed equiaxed-columnar microstructures using elliptical profiles. By modulating spatial laser intensity profiles on the fly, site-specific microstructures and properties can be directly engineered into additively manufactured parts.

  10. Relativistic classical and quantum dynamics in intense crossed laser beams of various polarizations

    Directory of Open Access Journals (Sweden)

    M. Verschl

    2007-02-01

    Full Text Available The dynamics of an electron in crossed laser fields is investigated analytically. Two different standing wave configurations are compared. The counterpropagating laser waves are either linearly or circularly polarized. Both configurations have in common that there are one-dimensional trajectories on which the electron can oscillate with vanishing Lorentz force. The dynamics is analyzed for the situations when the electron moves in the vicinity of these ideal axes. If the laser intensities imply nonrelativistic electron dynamics, the system is described quantum mechanically. A semiclassical treatment renders the strongly relativistic regime accessible as well. To describe relativistic wave packets, the results of the classical analysis are employed for a Monte Carlo ensemble. This allows for a comparison of the wave packet dynamics for both configurations in the strongly relativistic regime. It is found for certain cases that relativity slows down the dynamics, i.e., for higher laser intensities, wave packet spreading and the drift away from the ideal axis of vanishing Lorentz force are shown to be increasingly suppressed.

  11. Effects induced by high and low intensity laser plasma on SiC Schottky detectors

    Directory of Open Access Journals (Sweden)

    Sciuto Antonella

    2018-01-01

    Full Text Available Silicon-Carbide detectors are extensively employed as diagnostic devices in laser-generated plasma, allowing the simultaneous detection of photons, electrons and ions, when used in time-of-flight configuration. The plasma generated by high intensity laser (1016 W/cm2 producing high energy ions was characterized by SiC detector with a continuous front-electrode, and a very thick active depth, while SiC detector with an Interdigit front-electrode was used to measure the low energy ions of plasma generated by low intensity laser (1010 W/cm2. Information about ion energy, number of charge states, plasma temperature can be accurately obtained. However, laser exposure induces the formation of surface and bulk defects whose concentration increases with increasing the time to plasma exposure. The surface defects consist of clusters with a main size of the order of some microns and they modify the diode barrier height and the efficiency of the detector as checked by alpha spectrometry. The bulk defects, due to the energy loss of detected ions, strongly affect the electrical properties of the device, inducing a relevant increase of the leakage (reverse current and decrease the forward current related to a deactivation of the dopant in the active detector region.

  12. Effects induced by high and low intensity laser plasma on SiC Schottky detectors

    Science.gov (United States)

    Sciuto, Antonella; Torrisi, Lorenzo; Cannavò, Antonino; Mazzillo, Massimo; Calcagno, Lucia

    2018-01-01

    Silicon-Carbide detectors are extensively employed as diagnostic devices in laser-generated plasma, allowing the simultaneous detection of photons, electrons and ions, when used in time-of-flight configuration. The plasma generated by high intensity laser (1016 W/cm2) producing high energy ions was characterized by SiC detector with a continuous front-electrode, and a very thick active depth, while SiC detector with an Interdigit front-electrode was used to measure the low energy ions of plasma generated by low intensity laser (1010 W/cm2). Information about ion energy, number of charge states, plasma temperature can be accurately obtained. However, laser exposure induces the formation of surface and bulk defects whose concentration increases with increasing the time to plasma exposure. The surface defects consist of clusters with a main size of the order of some microns and they modify the diode barrier height and the efficiency of the detector as checked by alpha spectrometry. The bulk defects, due to the energy loss of detected ions, strongly affect the electrical properties of the device, inducing a relevant increase of the leakage (reverse) current and decrease the forward current related to a deactivation of the dopant in the active detector region.

  13. Intensity and absorbed-power distribution in a cylindrical solar-pumped dye laser

    Science.gov (United States)

    Williams, M. D.

    1984-01-01

    The internal intensity and absorbed-power distribution of a simplified hypothetical dye laser of cylindrical geometry is calculated. Total absorbed power is also calculated and compared with laboratory measurements of lasing-threshold energy deposition in a dye cell to determine the suitability of solar radiation as a pump source or, alternatively, what modifications, if any, are necessary to the hypothetical system for solar pumping.

  14. Analysis of plasma channels in mm-scale plasmas formed by high intensity laser beams

    International Nuclear Information System (INIS)

    Murakami, R; Habara, H; Iwawaki, T; Uematsu, Y; Tanaka, K A; Ivancic, S; Anderson, K; Haberberger, D; Stoeckl, C; Theobald, W; Sakagami, H

    2016-01-01

    A plasma channel created by a high intensity infrared laser beam was observed in a long scale-length plasma (L ∼ 240 μm) with the angular filter refractometry technique, which indicated a stable channel formation up to the critical density. We analyzed the observed plasma channel using a rigorous ray-tracing technique, which provides a deep understanding of the evolution of the channel formation. (paper)

  15. Kalman filtered MR temperature imaging for laser induced thermal therapies.

    Science.gov (United States)

    Fuentes, D; Yung, J; Hazle, J D; Weinberg, J S; Stafford, R J

    2012-04-01

    The feasibility of using a stochastic form of Pennes bioheat model within a 3-D finite element based Kalman filter (KF) algorithm is critically evaluated for the ability to provide temperature field estimates in the event of magnetic resonance temperature imaging (MRTI) data loss during laser induced thermal therapy (LITT). The ability to recover missing MRTI data was analyzed by systematically removing spatiotemporal information from a clinical MR-guided LITT procedure in human brain and comparing predictions in these regions to the original measurements. Performance was quantitatively evaluated in terms of a dimensionless L(2) (RMS) norm of the temperature error weighted by acquisition uncertainty. During periods of no data corruption, observed error histories demonstrate that the Kalman algorithm does not alter the high quality temperature measurement provided by MR thermal imaging. The KF-MRTI implementation considered is seen to predict the bioheat transfer with RMS error 10 sec.

  16. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses

    Science.gov (United States)

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-06-01

    The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  17. [Surgical intensive care medicine. Current therapy concepts for septic diseases].

    Science.gov (United States)

    Niederbichler, A D; Ipaktchi, K; Jokuszies, A; Hirsch, T; Altintas, M A; Handschin, A E; Busch, K H; Gellert, M; Steinau, H-U; Vogt, P M; Steinsträsser, L

    2009-10-01

    The clinical appearance of septic disorders is characterized by an enormous dynamic. The sepsis-induced dysbalance of the immune system necessitates immediate and aggressive therapeutic interventions to prevent further damage progression of the disease to septic shock and multiple organ failure. This includes supportive therapy to normalize and maintain organ and tissue perfusion as well as the identification of the infection focus. In cases where an infectious focus is identified, surgical source control frequently is a key element of the treatment strategy besides pharmacologic and supportive measures. The integrative approach of the management of septic patients requires rapid communication between the involved medical disciplines and the nursing personnel. Therefore, this article outlines current therapeutic concepts of septic diseases as well as central nursing aspects.

  18. Low-level laser therapy to treat fibromyalgia.

    Science.gov (United States)

    Ruaro, J A; Fréz, A R; Ruaro, M B; Nicolau, R A

    2014-11-01

    Several clinical treatments have been proposed to manage symptoms of fibromyalgia. Low-level laser therapy (LLLT) may be a useful tool to treat this dysfunction. The aim of this study was to evaluate the effects of LLLT in patients with fibromyalgia. A placebo-controlled, randomized clinical trial was carried out with 20 patients divided randomly into either an LLLT group (n = 10) or a placebo group (n = 10). The LLLT group was treated with a GaAlAs laser (670 nm, 4 J/cm(2) on 18 tender points) three times a week over 4 weeks. Before and after treatment, patients were evaluated with the Fibromyalgia Impact Questionnaire (FIQ), McGill Pain Questionnaire, and visual analog scale (VAS). Data from the FIQ and McGill questionnaire for the treated and control groups were analyzed by paired t tests, and Wilcoxon tests were used to analyze data from the VAS. After LLLT or sham treatment, the number of tender points was significantly reduced in both groups (LLLT, p fibromyalgia symptoms showed significant improvements after LLLT compared to placebo (FIQ, p = 0.0003; McGill, p = 0.0078; and VAS, p = 0.0020). LLLT provided relief from fibromyalgia symptoms in patients and should be further investigated as a therapeutic tool for management in fibromyalgia.

  19. Effects of low-level laser therapy on wound healing

    Directory of Open Access Journals (Sweden)

    Fabiana do Socorro da Silva Dias Andrade

    Full Text Available OBJECTIVE: To gather and clarify the actual effects of low-level laser therapy on wound healing and its most effective ways of application in human and veterinary medicine.METHODS: We searched original articles published in journals between the years 2000 and 2011, in Spanish, English, French and Portuguese languages, belonging to the following databases: Lilacs, Medline, PubMed and Bireme; Tey should contain the methodological description of the experimental design and parameters used.RESULTS: doses ranging from 3 to 6 J/cm2 appear to be more effective and doses 10 above J/cm2 are associated with deleterious effects. The wavelengths ranging from 632.8 to 1000 nm remain as those that provide more satisfactory results in the wound healing process.CONCLUSION: Low-level laser can be safely applied to accelerate the resolution of cutaneous wounds, although this fact is closely related to the election of parameters such as dose, time of exposure and wavelength.

  20. Infantile hemangioma: pulsed dye laser versus surgical therapy

    Science.gov (United States)

    Remlova, E.; Dostalova, T.; Michalusova, I.; Vranova, J.; Jelinkova, H.; Hubacek, M.

    2014-05-01

    Hemangioma is a mesenchymal benign tumor formed by blood vessels. Anomalies affect up to 10% of children and they are more common in females than in males. The aim of our study was to compare the treatment efficacy, namely the curative effect and adverse events, such as loss of pigment and appearance of scarring, between classical surgery techniques and laser techniques. For that reason a group of 223 patients with hemangioma was retrospectively reviewed. For treatment, a pulsed dye laser (PDL) (Rhodamine G, wavelength 595 nm, pulsewidth between 0.45 and 40 ms, spot diameter 7 mm, energy density 9-11 J cm-2) was used and the results were compared with a control group treated with classical surgical therapy under general anesthesia. The curative effects, mainly number of sessions, appearance of scars, loss of pigment, and relapses were evaluated as a marker of successful treatment. From the results it was evident that the therapeutic effects of both systems are similar. The PDL was successful in all cases. The surgery patients had four relapses. Classical surgery is directly connected with the presence of scars, but the system is safe for larger hemangiomas. It was confirmed that the PDL had the optimal curative effect without scars for small lesions (approximately 10 mm). Surgical treatment under general anesthesia is better for large hemangiomas; the disadvantage is the presence of scars.

  1. Low level laser therapy for patients with cervical disk hernia.

    Science.gov (United States)

    Takahashi, Hiroshi; Okuni, Ikuko; Ushigome, Nobuyuki; Harada, Takashi; Tsuruoka, Hiroshi; Ohshiro, Toshio; Sekiguchi, Masayuki; Musya, Yoshiro

    2012-09-30

    In previous studies we have reported the benefits of low level laser therapy (LLLT) for chronic shoulder joint pain, elbow, hand and finger pain, and low back pain. The present study is a report on the effects of LLLT for chronic neck pain. Over a 3 year period, 26 rehabilitation department outpatients with chronic neck pain, diagnosed as being caused by cervical disk hernia, underwent treatment applied to the painful area with a 1000 mW semi-conductor laser device delivering at 830 nm in continuous wave, 20.1 J/cm(2)/point, and three shots were given per session (1 treatment) with twice a week for 4 weeks. 1. A visual analogue scale (VAS) was used to determine the effects of LLLT for chronic pain and after the end of the treatment regimen a significant improvement was observed (pcervical spine range of motion were observed. 3. Discussions with the patients revealed that in order to receive continued benefits from treatment, it was important for them to be taught how to avoid postures that would cause them neck pain in everyday life. The present study demonstrates that LLLT was an effective form of treatment for neck and back pain caused by cervical disk hernia, reinforced by postural training.

  2. RADIATION THERAPY COMMUNICATION-REIRRADIATION OF A NASAL TUMOR IN A BRACHYCEPHALIC DOG USING INTENSITY MODULATED RADIATION THERAPY.

    Science.gov (United States)

    Rancilio, Nicholas J; Custead, Michelle R; Poulson, Jean M

    2016-09-01

    A 5-year-old spayed female Shih Tzu was referred for evaluation of a nasal transitional carcinoma. A total lifetime dose of 117 Gy was delivered to the intranasal mass in three courses over nearly 2 years using fractionated intensity modulated radiation therapy (IMRT) to spare normal tissues. Clinically significant late normal tissue side effects were limited to bilaterally diminished tear production. The patient died of metastatic disease progression 694 days after completion of radiation therapy course 1. This case demonstrates that retreatment with radiation therapy to high lifetime doses for recurrent local disease may be well tolerated with IMRT. © 2016 American College of Veterinary Radiology.

  3. Interaction of ultra-short ultra-intense laser pulses with under-dense plasmas; Interaction d'impulsions laser ultra-courtes et ultra-intenses avec des plasmas sous denses

    Energy Technology Data Exchange (ETDEWEB)

    Solodov, A

    2000-12-15

    Different aspects of interaction of ultra-short ultra-intense laser pulses with underdense plasmas are studied analytically and numerically. These studies can be interesting for laser-driven electron acceleration in plasma, X-ray lasers, high-order harmonic generation, initial confinement fusion with fast ignition. For numerical simulations a fully-relativistic particle code WAKE was used, developed earlier at Ecole Polytechnique. It was modified during the work on the thesis in the part of simulation of ion motion, test electron motion, diagnostics for the field and plasma. The studies in the thesis cover the problems of photon acceleration in the plasma wake of a short intense laser pulse, phase velocity of the plasma wave in the Self-Modulated Laser Wake-Field Accelerator (SM LWFA), relativistic channeling of laser pulses with duration of the order of a plasma period, ion dynamics in the wake of a short intense laser pulse, plasma wave breaking. Simulation of three experiments on the laser pulse propagation in plasma and electron acceleration were performed. Among the main results of the thesis, it was found that reduction of the plasma wave phase velocity in the SM LWFA is crucial for electron acceleration, only if a plasma channel is used for the laser pulse guiding. Self-similar structures describing relativistic guiding of short laser pulses in plasmas were found and relativistic channeling of initially Gaussian laser pulses of a few plasma periods in duration was demonstrated. It was shown that ponderomotive force of a plasma wake excited by a short laser pulse forms a channel in plasma and plasma wave breaking in the channel was analyzed in detail. Effectiveness of electron acceleration by the laser field and plasma wave was compared and frequency shift of probe laser pulses by the plasma waves was found in conditions relevant to the current experiments. (author)

  4. Characterization of the fast electrons distribution produced in a high intensity laser target interaction

    Energy Technology Data Exchange (ETDEWEB)

    Westover, B. [Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093 (United States); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Chen, C. D.; Patel, P. K.; McLean, H. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Beg, F. N., E-mail: fbeg@ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093 (United States)

    2014-03-15

    Experiments on the Titan laser (∼150 J, 0.7 ps, 2 × 10{sup 20} W cm{sup −2}) at the Lawrence Livermore National Laboratory were carried out in order to study the properties of fast electrons produced by high-intensity, short pulse laser interacting with matter under conditions relevant to Fast Ignition. Bremsstrahlung x-rays produced by these fast electrons were measured by a set of compact filter-stack based x-ray detectors placed at three angles with respect to the target. The measured bremsstrahlung signal allows a characterization of the fast electron beam spectrum, conversion efficiency of laser energy into fast electron kinetic energy and angular distribution. A Monte Carlo code Integrated Tiger Series was used to model the bremsstrahlung signal and infer a laser to fast electron conversion efficiency of 30%, an electron slope temperature of about 2.2 MeV, and a mean divergence angle of 39°. Simulations were also performed with the hybrid transport code ZUMA which includes fields in the target. In this case, a conversion efficiency of laser energy to fast electron energy of 34% and a slope temperature between 1.5 MeV and 4 MeV depending on the angle between the target normal direction and the measuring spectrometer are found. The observed temperature of the bremsstrahlung spectrum, and therefore the inferred electron spectrum are found to be angle dependent.

  5. LASER POINTER DETECTION BASED ON INTENSITY PROFILE ANALYSIS FOR APPLICATION IN TELECONSULTATION

    Directory of Open Access Journals (Sweden)

    NAIREEN IMTIAZ

    2017-08-01

    Full Text Available Telemedicine is application of electronic communication to deliver medical care remotely. An important aspect of telemedicine is teleconsultation which involves obtaining the professional opinion of a healthcare provider. One of the ways to improve eleconsultation is to equip the remote specialist via control of a laser pointer, located in the consultation area to provide a means of gesture. As such, accurate detection of laser spot is crucial in such systems as they rely on visual feedback, which enables the specialist in a remote site to control and point the laser in the active location using a standard mouse. The main issue in laser spot detection in a natural environment is the distinguishability of a laser point image from other bright regions and glare due to camera saturation. This problem remains unsolved without extensive computing and use of hardware filters. In this paper a hybrid algorithm is described which is aimed to work with natural indoor environment while limiting computation. This algorithm combines thresholding and blob evaluation methods with a novel image intensity profile comparison method based on linear regression. A comparison of the algorithm has been done with existing approaches. The developed algorithm shows a higher accuracy and faster execution time making it an ideal candidate for real time detection applications.

  6. Toward compact and ultra-intense laser-based soft x-ray lasers

    Science.gov (United States)

    Sebban, S.; Depresseux, A.; Oliva, E.; Gautier, J.; Tissandier, F.; Nejdl, J.; Kozlova, M.; Maynard, G.; Goddet, J. P.; Tafzi, A.; Lifschitz, A.; Kim, H. T.; Jacquemot, S.; Rousseau, P.; Zeitoun, P.; Rousse, A.

    2018-01-01

    We report here recent work on an optical field ionized (OFI), high-order harmonic-seeded EUV laser. The amplifying medium is a plasma of nickel-like krypton obtained by OFI when focusing a 1 J, 30 fs, circularly-polarized, infrared pulse into a krypton-filled gas cell or krypton gas jet. The lasing transition is the 3d94d (J = 0) → 3d94p (J = 1) transition of Ni-like krypton ions at 32.8 nm and is pumped by collisions with hot electrons. The gain dynamics was probed by seeding the amplifier with a high-order harmonic pulse at different delays. The gain duration monotonically decreased from 7 ps to an unprecedented shortness of 450 fs full width at half-maximum as the amplification peak rose from 150 to 1200 with an increase of the plasma density from 3 × 1018 to 1.2 × 1020 cm-3. The integrated energy of the EUV laser pulse was also measured, and found to be around 2 μJ. It is to be noted that in the ASE mode, longer amplifiers were achieved (up to 2 cm), yielding EUV outputs up to 14 μJ.

  7. Self-focusing and its related interactions at very high laser intensities for fast ignition at Osaka University

    International Nuclear Information System (INIS)

    Tanaka, K.A.; Kodama, R.; Izumi, N.; Takahashi, K.; Heya, M.; Fujita, H.; Kato, Y.; Kitagawa, Y.; Mima, K.; Miyanaga, N.; Norimatsu, T.; Sentoku, Y.; Sunahara, A.; Takabe, H.; Yamanaka, T.; Koase, T.; Iwatani, T.; Ohtani, F.; Miyakoshi, T.; Habara, H.; Tanpo, M.; Tohyama, S.; Weber, F.A.; Barbee, T.W.; Dasilva, L.B.; Dasilva, L.B.

    2000-01-01

    At the Institute of Laser Engineering, various type of experiments related to fast ignition were performed with the 12-beam laser system GEKKO XII and the newly added 100 TW beams line. Using both X-ray and UV laser probes, drilling via ponderomotive laser light self-focusing was studied to show drilling well into the overdense plasma over a distance of 100 μm at a self-focused laser intensity of 10 18 W/cm 2 . This type of self-focusing accelerated electrons up to 0.1 to 1 MeV and was also applied to an imploding shell. (authors)

  8. Laser-Based Strategies to Treat Diabetic Macular Edema: History and New Promising Therapies

    Directory of Open Access Journals (Sweden)

    Young Gun Park

    2014-01-01

    Full Text Available Diabetic macular edema (DME is the main cause of visual impairment in diabetic patients. The management of DME is complex and often various treatment approaches are needed. At the present time, despite the enthusiasm for evaluating several new treatments for DME, including the intravitreal pharmacologic therapies (e.g., corticosteroids and anti-VEGF drugs, laser photocoagulation still remains the current standard in DME. The purpose of this review is to update our knowledge on laser photocoagulation for DME and describe the developments in laser systems. And we will also discuss the new laser techniques and review the latest results including benefits of combined therapy. In this paper, we briefly summarize the major laser therapeutics for the treatment of diabetic macular edema and allude to some future promising laser therapies.

  9. Key elements of successful intensive therapy in patients with type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Banshi Saboo

    2015-01-01

    Full Text Available An intensified diabetes management approach (including increased education, monitoring, and contact with diabetes team should be used for adolescents and also for younger children if glycaemic control is not achieved by insulin therapy. Treatment options may include increased frequency of injections (e.g. the patients on 2 bolus may require 3 or 4 bolus injections, change in the type of basal and/or bolus insulin depending on multiple times monitoring for adolescents and for younger children, and change to continuous subcutaneous insulin infusion pump therapy. Results of epidemiology of diabetes interventions and complications (EDIC Research Group, where the Diabetes Control and Complications Trial patients were further followed up almost for a period of 7 years or more showed that intensive therapy significantly reduced and maintained glycated hemoglobin with relative risk reduction of microvascular complications in the intensive therapy group. In addition, intensive treatment reduced the risk of any cardiovascular disease (CVD event by 42% and the risk of nonfatal myocardial infarction, stroke, or death from CVD by 57%. The reduction of microvascular and macrovascular events in the intensively-treated group persisted due to the "legacy effect" or "metabolic memory" of early intensive glycemic control. The main advantage of intensive insulin therapy is that it reduces the rate of diabetes complications, in the long run. Furthermore, it offers flexibility as the doses can be adjusted according to the activity and food consumed. The main disadvantage of intensive insulin therapy is the risk of hypoglycemia especially in type 1 diabetes mellitus and weight gain.

  10. Intensity-modulated radiation therapy for anal carcinoma

    International Nuclear Information System (INIS)

    Peiffert, D.; Moreau-Claeys, M.V.; Tournier-Rangeard, L.; Huger, S.; Marchesi, V.

    2011-01-01

    Anal canal carcinoma are highly curable by irradiation, combined with chemotherapy in locally advanced disease, with preservation of sphincter function. The clinical target volume for the nodes is extended, often including the inguinal nodes, which is not usual for other pelvic tumours. Acute and late effects are correlated with the volume and dose delivered to organs at risk, i. e. small bowel, bladder and increased by concomitant chemotherapy. Intensity modulated irradiation (IMRT) makes it possible to optimize the dose distribution in this 'complex U shaped' volume, while maintaining the dose distribution for the target volumes. The conversion from conformal irradiation to IMRT necessitates good knowledge of the definition and skills to delineate target volumes and organs at risk, including new volumes needed to optimize the dose distribution. Dosimetric and clinical benefits of IMRT are described, based on early descriptions and evidence-based publication. The growing development of IMRT in anal canal radiotherapy must be encouraged, and long-term benefits should be soon published. Radiation oncologists should precisely learn IMRT recommendations before starting the technique, and evaluate its early and late results for adverse effects, but also for long-term tumour control. (authors)

  11. Experimental platform for investigations of high-intensity laser plasma interactions in the magnetic field of a pulsed power generator

    Science.gov (United States)

    Ivanov, V. V.; Maximov, A. V.; Swanson, K. J.; Wong, N. L.; Sarkisov, G. S.; Wiewior, P. P.; Astanovitskiy, A. L.; Covington, A. M.

    2018-03-01

    An experimental platform for the studying of high-intensity laser plasma interactions in strong magnetic fields has been developed based on the 1 MA Zebra pulsed power generator coupled with the 50-TW Leopard laser. The Zebra generator produces 100-300 T longitudinal and transverse magnetic fields with different types of loads. The Leopard laser creates plasma at an intensity of 1019 W/cm2 in the magnetic field of coil loads. Focusing and targeting systems are integrated in the vacuum chamber of the pulsed power generator and protected from the plasma debris and strong mechanical shock. The first experiments with plasma at laser intensity >2 × 1018 W/cm2 demonstrated collimation of the laser produced plasma in the axial magnetic field strength >100 T.

  12. Optical Frequency Optimization of a High Intensity Laser Power Beaming System Utilizing VMJ Photovoltaic Cells

    Science.gov (United States)

    Raible, Daniel E.; Dinca, Dragos; Nayfeh, Taysir H.

    2012-01-01

    An effective form of wireless power transmission (WPT) has been developed to enable extended mission durations, increased coverage and added capabilities for both space and terrestrial applications that may benefit from optically delivered electrical energy. The high intensity laser power beaming (HILPB) system enables long range optical 'refueling" of electric platforms such as micro unmanned aerial vehicles (MUAV), airships, robotic exploration missions and spacecraft platforms. To further advance the HILPB technology, the focus of this investigation is to determine the optimal laser wavelength to be used with the HILPB receiver, which utilizes vertical multi-junction (VMJ) photovoltaic cells. Frequency optimization of the laser system is necessary in order to maximize the conversion efficiency at continuous high intensities, and thus increase the delivered power density of the HILPB system. Initial spectral characterizations of the device performed at the NASA Glenn Research Center (GRC) indicate the approximate range of peak optical-to-electrical conversion efficiencies, but these data sets represent transient conditions under lower levels of illumination. Extending these results to high levels of steady state illumination, with attention given to the compatibility of available commercial off-the-shelf semiconductor laser sources and atmospheric transmission constraints is the primary focus of this paper. Experimental hardware results utilizing high power continuous wave (CW) semiconductor lasers at four different operational frequencies near the indicated band gap of the photovoltaic VMJ cells are presented and discussed. In addition, the highest receiver power density achieved to date is demonstrated using a single photovoltaic VMJ cell, which provided an exceptionally high electrical output of 13.6 W/sq cm at an optical-to-electrical conversion efficiency of 24 percent. These results are very promising and scalable, as a potential 1.0 sq m HILPB receiver of

  13. ASSESSING PATHOLOGIES ON VILLAMAYOR STONE (SALAMANCA, SPAIN BY TERRESTRIAL LASER SCANNER INTENSITY DATA

    Directory of Open Access Journals (Sweden)

    J. García-Talegón

    2015-02-01

    Full Text Available This paper deals with the assessing of pathologies in façades using a variety of intensity data provided by different terrestrial laser scanner. In particular, a complex building built in the Villamayor Stone that is to be candidate as a Global Heritage Stone Resource has been chosen as study case. The Villamayor Stone were quarrying for the construction and ornamentation of monuments in Salamanca, declared World Heritage City by UNESCO in 1988. The objective of this paper is to assess the pathologies of Villamayor Stone and compare the results obtained through the laser techniques with the classical techniques of mapped pathologies (i.e. visual inspection. For that intensity data coming from laser scanners will be used as non-destructive techniques applied to the façades and several retired plaques (after of building restoration of Villamayor Stone with pathologies (fissures, scales, loss of matter, humidity/biological colonization carried to the laboratory. Subsequently it will perform different comparisons between the accuracy reached with the different sensors and a high precision model setup on laboratory which performs as “ground truth”. In particular, the following objectives will be pursued: i accuracy assessment of the results obtained in in situ and laboratory; ii an automation or semi-automation of the detection of pathologies in Villamayor Stone; iii discriminate the different types of Villamayor Stone used in the façades in function of the radiometric response; iv establish a methodology for detection and assessing of pathologies based on laser scanner intensity data applied to monuments and modern buildings built in Villamayor Stone.

  14. Generation of ultra-intense and ultra-short laser pulses with high temporal contrast

    International Nuclear Information System (INIS)

    Julien, A.

    2006-03-01

    The topic of this thesis work concerns the design and the characterization of an efficient device devoted to the temporal contrast improvement for ultra-intense femtosecond laser pulses. The contrast is defined as the intensity ratio between the main femtosecond pulse and its nanosecond pedestal. This pedestal is the amplified spontaneous emission (ASE), inherent with laser amplification mechanism. The ASE background has dramatic effects for laser-matter interactions on a solid target. The presented work consists in the theoretical and experimental study of a temporal filter based on a third order nonlinear effect acting on the pulse polarization. We have studied several kinds of nonlinear filters. The selected device is based on the process of cross-polarized wave generation (XPW) in crystals with an anisotropic third-order nonlinear susceptibility. This nonlinear filter has been experimented on various femtosecond systems. It allows a contrast improvement of several orders of magnitude, as demonstrated by temporal profiles measurements on a large intensity dynamic. A device to improve the nonlinear process conversion efficiency, it means the filter transmission, has also been achieved. This method is based on constructive interferences between XPW signals generated in different crystals. This setup has made it possible to reach experimentally the maximum theoretical efficiency ( >20%) and in the same time ensures the system stability. At least, we have demonstrated that the filter preserves, or even improves, spectral and spatial qualities of the laser pulse. These results are thus particularly promising and allow contemplating the implementation of the filter in current femtosecond systems. (author)

  15. Self-resonant wakefield excitation by intense laser pulse in plasmas

    International Nuclear Information System (INIS)

    Andreev, N.E.; Pogosova, A.A.; Gorbunov, L.M.; Ramazashvili, R.R.; Kirsanov, V.I.

    1993-01-01

    It is demonstrated by theoretical analysis and numerical calculations that in an underdense plasma the process of three-dimensional evolution of the short and strong laser pulse (with duration equal to several plasma periods) leads to compression and self-modulation of the pulse, so that during a fairly long period of time beats of pulse amplitude generates resonantly a strong and stable plasma wakefield. The intensity of the wake-field is so high that it can provide a new promising outlook for the plasma based accelerator concept. Linear analysis of dispersion relation predicts that taking into account transverse component of wavenumber considerably increases the growth rate of resonance instability of the pulse. The numerical simulations demonstrate that considered self-focusing and resonant-modulation instability are essentially three dimensional processes. Laser field evolution in each transverse cross section of the pulse is synchronized by the regular structure of plasma wave that is excited by the pulse. The considered effect of resonant modulation has a threshold. For the pulses with the intensity below the threshold the refraction dominates and no modulation appears. The studied phenomenon can be referred to as the Self-Resonant Wakefield (SRWF) excitation that is driven by self-focusing and self-modulation of laser pulse with quite a moderate initial duration. In fact, this method of excitation differs from both suggested in Ref.1 (PBWA) and in Refs.2,3 (LWFA), being even more than the combination of these concepts. Unlike the first scheme it does not require initially the two-frequency laser pulse, since the modulation here appears in the most natural way due to evolution of the pulse. In contrast with the LWFA, the considered SRWF generation scheme gives the possibility to raise the intensity of wake-excitation due to pulse self-focusing ( initial stage) and self modulation (second stage)

  16. Nonablative 1550-nm fractional laser therapy versus triple topical therapy for the treatment of melasma: A randomized controlled pilot study

    NARCIS (Netherlands)

    Kroon, Marije W.; Wind, Bas S.; Beek, Johan F.; van der Veen, J. P. Wietze; Nieuweboer-Krobotová, Ludmila; Bos, Jan D.; Wolkerstorfer, Albert

    2011-01-01

    Various treatments are currently available for melasma. However, results are often disappointing. We sought to assess the efficacy and safety of nonablative 1550-nm fractional laser therapy and compare results with those obtained with triple topical therapy (the gold standard). Twenty female

  17. Evaluation of low-level laser therapy in the treatment of masticatory muscles spasticity in children with cerebral palsy

    Science.gov (United States)

    Santos, Maria Teresa Botti Rodrigues; Diniz, Michele Baffi; Gouw-Soares, Sheila Cynthia; Lopes-Martins, Rodrigo Alvaro Brandão; Frigo, Lucio; Baeder, Fernando Martins

    2016-02-01

    Spasticity is a motor disorder frequently present in individuals with cerebral palsy (CP). This study aimed to evaluate the effect of low-level laser therapy (LLLT) on the spasticity of the masseter and anterior temporal muscle fibers in children with CP over three weeks of intermittent laser exposures. The bite force (BF) of the masticatory muscles and the amplitude of mouth opening were evaluated before and after laser irradiation in 30 children with CP. Both sides of the masseter and temporalis muscles were irradiated with low-intensity diode laser pulses of 808-nm wavelength six times over three consecutive weeks. During the subsequent three weeks of postlaser exposures, although no laser treatment was applied, the evaluation parameters were measured and recorded. A significant improvement in the amplitude of mouth opening and a decrease in the BF were observed in the weeks following LLLT (Peffective short-term therapeutic tool. This method increased the amplitude of mouth opening and decreased the muscle tonus of children with spastic CP over a time course of three weeks of intermittent laser applications.

  18. Design of a Novel Servo-motorized Laser Device for Visual Pathways Diseases Therapy

    Directory of Open Access Journals (Sweden)

    Carlos Ignacio Sarmiento

    2015-12-01

    Full Text Available We discuss a novel servo-motorized laser device and a research protocol for visual pathways diseases therapies. The proposed servo-mechanized laser device can be used for potential rehabilitation of patients with hemianopia, quadrantanopia, scotoma, and some types of cortical damages. The device uses a semi spherical structure where the visual stimulus will be shown inside, according to a previous stimuli therapy designed by an ophthalmologist or neurologist. The device uses a pair of servomotors (with torque=1.5kg, which controls the laser stimuli position for the internal therapy and another pair for external therapy. Using electronic tools such as microcontrollers along with miscellaneous electronic materials, combined with LabVIEW based interface, a control mechanism is developed for the new device. The proposed device is well suited to run various visual stimuli therapies. We outline the major design principles including the physical dimensions, laser device’s kinematical analysis and the corresponding software development.

  19. Several methods and apparatus of low-energy laser therapy in veterinary practice

    Science.gov (United States)

    Svirin, Vaytcheslav N.; Rogatkin, Dmitrii A.; Barybin, Vitalii F.

    1998-12-01

    During same years various medical effect of low-energy laser therapy in veterinary were tested. We established that the laser low-energy therapy can be very effective for treatment such animal's diseases as mastitis and demodekose when certain combinations of laser beam parameters are used. This combinations were taken as the principle of a number of laser veterinary apparatus, which we started to produce at `POLUS'. It is our series of apparatus `VEGA-MB' and `VETLAS-3', which is real used today for dogs and cows treatment in Russia.

  20. Laser-matter interaction at high intensity and high temporal contrast

    International Nuclear Information System (INIS)

    Doumy, G.

    2006-01-01

    The continuous progress in the development of laser installations has already lead to ultra-short pulses capable of achieving very high focalized intensities (I > 10 18 W/cm 2 ). At these intensities, matter presents new non-linear behaviours, due to the fact that the electrons are accelerated to relativistic speeds. The experimental access to this interaction regime on solid targets has long been forbidden because of the presence, alongside the femtosecond pulse, of a pedestal (mainly due to the amplified spontaneous emission (ASE) which occurs in the laser chain) intense enough to modify the state of the target. In this thesis, we first characterized, both experimentally and theoretically, a device which allows an improvement of the temporal contrast of the pulse: the Plasma Mirror. It consists in adjusting the focusing of the pulse on a dielectric target, so that the pedestal is mainly transmitted, while the main pulse is reflected by the overcritical plasma that it forms at the surface. The implementation of such a device on the UHI 10 laser facility (CEA Saclay - 10 TW - 60 fs) then allowed us to study the interaction between ultra-intense, high contrast pulses with solid targets. In a first part, we managed to generate and characterize dense plasmas resulting directly from the interaction between the main pulse and very thin foils (100 nm). This characterization was realized by using an XUV source obtained by high order harmonics generation in a rare gas jet. In a second part, we studied experimentally the phenomenon of high order harmonics generation on solid targets, which is still badly understood, but could potentially lead to a new kind of energetic ultra-short XUV sources. (author)

  1. A general theory of electronic parametric instability of relativistically intense laser light in plasma

    International Nuclear Information System (INIS)

    Parr, D.M.

    2000-04-01

    This thesis studies the propagation and stability of ultraintense laser light in plasma. A new method is devised, both general and inclusive yet requiring only modest computational effort. The exact anharmonic waveforms for laser light are established. An examination of their stability extends the theory of electron parametric instabilities to relativistic regimes in plasmas of any density including classically overdense plasma accessible by self-induced transparency. Such instabilities can rapidly degrade intense pulses, but can also be harnessed, for example in the self-resonant laser wakefield accelerator. Understanding both the new and established regimes is thus basic to the success of many applications arising in high-field science, including novel x-ray sources and ignition of laser fusion targets, as well as plasma-based accelerator schemes. A covariant formulation of a cold electron fluid plasma is Lorentz transformed to the laser group velocity frame; this is the essence of the method and produces a very simple final model. Then, first, the zero-order laser 'driver' model is developed, in this frame representing a spatially homogeneous environment and thus soluble numerically as ordinary differential equations. The linearised first-order system leads to a further set of differential equations, whose solution defines the growth and other characteristics of an instability. The method is exact, rugged and flexible, avoiding the many approximations and restrictions previously necessary. This approach unifies all theory on purely electronic parametric instabilities over the last 30 years and, for the first time in generality, extends it into the ultrahigh relativistic regime. Besides extensions to familiar parametric instabilities, such as Stimulated Raman Scattering and Two-Plasmon Decay, strong stimulated harmonic generation emerges across a wide range of harmonics with high growth rates, presenting a varied and complex physical entity

  2. On the multiphoton emission during U.V. and X-ray absorption by atoms in intense laser fields

    International Nuclear Information System (INIS)

    Miranda, L.C.M.

    1981-09-01

    A discussion of the u.v. and x-ray absorption cross section by a hydrogen atom in the presence of an intense i.r. laser field is presented, taking into account the influence of laser field on the electronic states. (Author) [pt

  3. Intensity phase coherence in three-mode Fabry-Pacute erot lasers

    International Nuclear Information System (INIS)

    Nguyen, B.A.; Mandel, P.

    1996-01-01

    We study analytically the intensity phase coherence in a three-mode Fabry-Pacute erot laser. We consider in detail the case of a central mode with maximum gain and two side modes with smaller but equal gains. This laser is characterized by three relaxation oscillation frequencies Ω R double-prime approx-gt Ω L1 double-prime approx-gt Ω L2 double-prime . In the framework of a linearized theory, the laser dynamics is, respectively, inphased and perfectly antiphased at Ω R double-prime and Ω L2 double-prime , irrespective of the modal gains. At Ω L1 double-prime the antiphase is only partial if the side mode gains are smaller than the central mode gain. Analytic gain- and pump-dependent relations between the three frequencies and between the heights of the peaks in the power spectra at these frequencies are established. We also derive universal relations between the peaks of the power spectra of the modal and the total intensities at the same frequencies that do not involve any parameter at all. copyright 1996 The American Physical Society

  4. Venous Lake of the Lips Treated Using Photocoagulation with High-Intensity Diode Laser

    Science.gov (United States)

    Galletta, Vivian C.; de Paula Eduardo, Carlos; Migliari, Dante A.

    2010-01-01

    Abstract Objective: To evaluate the effectiveness of photocoagulation with high-intensity diode laser in the treatment of venous lake (VL) lesions. Background Data: VL is a common vascular lesion characterized by elevated, usually dome-shaped papules, ranging in color from dark blue to dark purple, seen more frequently in elderly patients. They often occur as single lesions on the ears, face, lips, or neck. Once formed, lesions persist throughout life. Although these lesions are usually asymptomatic, they can bleed if injured. Methods: Seventeen patients (7 men and 10 women) with VL on the lip were treated using a noncontact diode laser (wavelength 808 nm, power output 2–3 W in continuous wave). Results: After only one irradiation exposure, all lesions were successfully treated. Healing was completed in approximately 2 to 3 weeks, and none of the patients experienced complications. Postoperative discomfort and scarring were not present or were minimal. Conclusion: Photocoagulation with high-intensity diode laser is an effective, bloodless procedure for the treatment of VL. PMID:19811083

  5. Simulations of bremsstrahlung emission in ultra-intense laser interactions with foil targets

    Science.gov (United States)

    Vyskočil, Jiří; Klimo, Ondřej; Weber, Stefan

    2018-05-01

    Bremsstrahlung emission from interactions of short ultra-intense laser pulses with solid foils is studied using particle-in-cell (PIC) simulations. A module for simulating bremsstrahlung has been implemented in the PIC loop to self-consistently account for the dynamics of the laser–plasma interaction, plasma expansion, and the emission of gamma ray photons. This module made it possible to study emission from thin targets, where refluxing of hot electrons plays an important role. It is shown that the angular distribution of the emitted photons exhibits a four-directional structure with the angle of emission decreasing with the increase of the width of the target. Additionally, a collimated forward flash consisting of high energy photons has been identified in thin targets. The conversion efficiency of the energy of the laser pulse to the energy of the gamma rays rises with both the driving pulse intensity, and the thickness of the target. The amount of gamma rays also increases with the atomic number of the target material, despite a lower absorption of the driving laser pulse. The angular spectrum of the emitted gamma rays is directly related to the increase of hot electron divergence during their refluxing and its measurement can be used in experiments to study this process.

  6. Conformal radiation therapy with or without intensity modulation in the treatment of localized prostate cancer

    International Nuclear Information System (INIS)

    Maingon, P.; Truc, G.; Bosset, M.; Peignaux, K.; Ammor, A.; Bolla, M.

    2005-01-01

    Conformal radiation therapy has now to be considered as a standard treatment of localized prostatic adenocarcinomas. Using conformational methods and intensity modulated radiation therapy requires a rigorous approach for their implementation in routine, focused on the reproducibility of the treatment, target volume definitions, dosimetry, quality control, setup positioning. In order to offer to the largest number of patients high-dose treatment, the clinicians must integrate as prognostic factors accurate definition of microscopic extension as well as the tolerance threshold of critical organs. High-dose delivery is expected to be most efficient in intermediary risks and locally advanced diseases. Intensity modulated radiation therapy is specifically dedicated to dose escalation. Perfect knowledge of classical constraints of conformal radiation therapy is required. Using such an approach in routine needs a learning curve including the physicists and a specific quality assurance program. (author)

  7. Cluster-assisted multiple ionization of methyl iodide by a nanosecond laser: Influence of laser intensity on the kinetic energy and peak profile of multicharged ions

    International Nuclear Information System (INIS)

    Wen Lihua; Li Haiyang; Luo Xiaolin; Niu Dongmei; Xiao Xue; Wang Bin; Liang Feng; Hou Keyong; Shao Shiyong

    2006-01-01

    The dependences of kinetic energies and peak profiles of multicharged ions of I q+ (q = 2-3) and C 2+ on the laser intensity have been studied in detail by time-of-flight mass spectrometry, those multicharged ions are produced by irradiation of methyl iodide cluster beam with a nanosecond 532 nm Nd-YAG laser. Our experiments show that the kinetic energies released of multicharged ions increase linearly with the laser intensity in the range of 3 x 10 9 -2 x 10 11 W/cm 2 . The peaks of multicharged ions are split to forward ions and backward ions, and the ratio of the backward ions to forward ions decreases exponentially with laser intensity. The decreasing of backward ions is probably due to Coulomb scattering by the heavier I + ions when they turn around through the laser focus point. The linear dependence of kinetic energy of multicharged ions on laser intensity is interpreted by the ionization mechanism, in which the laser induced inverse bremsstrahlung heating of electron is the rate-limiting step

  8. Preliminary study on radio-chemo-induced oral mucositis and low level laser therapy

    Science.gov (United States)

    Merigo, Elisabetta; Fontana, Matteo; Fornaini, Carlo; Clini, Fabio; Cella, Luigi; Vescovi, Paolo; Oppici, Aldo

    2012-09-01

    Background: Oral mucositis remains one of the most common and troubling side effects of antineoplastic radiation and drug therapy: its incidence in onco-hematological radio-chemotreated patients is variable between 50 and 100% and its impact on this populations is directly linked with the experience of intense pain causing reduction and modification of therapy regimens, decreased survival rates and increased cost of care. Purpose: Aim of this study is the preliminary evaluation of a Low Level Laser therapy (LLLT) protocol on healing process of oral mucositis and on pain and quality of life of patients experiencing this dramatic side-effect. Materials and methods: Patients were evaluated and treated at the Unita` Operativa Semplice Dipartimentale di Odontostomatologia e Chirurgia Maxillo-Facciale of the Hospital of Piacenza were they were treated for primary disease with protocols of chemotherapy and/or radiotherapy. LLLT protocol was performed with a diode laser (808 nm -XD Smile - Fotona -Slovenia) on a two weeks-6 treatments schedule with power of 0.5 W and application of 30 seconds. Mucositis grading was scored on the basis of WHO classification by two blind operators at each treatment and at 1 and 2 weeks after treatment. Pain and capability of deglutition were described by patients by means questionnaires based on Visual Analogue Scale, Numerical Rating Scale and Quality of Life. Results: A relevant improvement of healing of oral mucositis, in terms of reduction of grading score, and of pain, swallowing discomfort and quality of life was recorded. Discussion and conclusion: Results of this preliminary study are encouraging for the realization of larger studies focused on the application of LLLT protocols in management of radio-chemotreated patients with oral mucositis.

  9. Underutilization of high-intensity statin therapy after hospitalization for coronary heart disease.

    Science.gov (United States)

    Rosenson, Robert S; Kent, Shia T; Brown, Todd M; Farkouh, Michael E; Levitan, Emily B; Yun, Huifeng; Sharma, Pradeep; Safford, Monika M; Kilgore, Meredith; Muntner, Paul; Bittner, Vera

    2015-01-27

    National guidelines recommend use of high-intensity statins after hospitalization for coronary heart disease (CHD) events. This study sought to estimate the proportion of Medicare beneficiaries filling prescriptions for high-intensity statins after hospital discharge for a CHD event and to analyze whether statin intensity before hospitalization is associated with statin intensity after discharge. We conducted a retrospective cohort study using a 5% random sample of Medicare beneficiaries between 65 and 74 years old. Beneficiaries were included in the analysis if they filled a statin prescription after a CHD event (myocardial infarction or coronary revascularization) in 2007, 2008, or 2009. High-intensity statins included atorvastatin 40 to 80 mg, rosuvastatin 20 to 40 mg, and simvastatin 80 mg. Among 8,762 Medicare beneficiaries filling a statin prescription after a CHD event, 27% of first post-discharge fills were for a high-intensity statin. The percent filling a high-intensity statin post-discharge was 23.1%, 9.4%, and 80.7%, for beneficiaries not taking statins pre-hospitalization, taking low/moderate-intensity statins, and taking high-intensity statins before their CHD event, respectively. Compared with beneficiaries not on statin therapy pre-hospitalization, multivariable adjusted risk ratios for filling a high-intensity statin were 4.01 (3.58-4.49) and 0.45 (0.40-0.52) for participants taking high-intensity and low/moderate-intensity statins before their CHD event, respectively. Only 11.5% of beneficiaries whose first post-discharge statin fill was for a low/moderate-intensity statin filled a high-intensity statin within 365 days of discharge. The majority of Medicare beneficiaries do not fill high-intensity statins after hospitalization for CHD. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  10. Comparison of dose-volume histograms for Tomo therapy, linear accelerator-based 3D conformal radiation therapy, and intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Ji, Youn-Sang; Dong, Kyung-Rae; Kim, Chang-Bok; Choi, Seong-Kwan; Chung, Woon-Kwan; Lee, Jong-Woong

    2011-01-01

    Highlights: → Evaluation of DVH from 3D CRT, IMRT and Tomo therapy was conducted for tumor therapy. → The doses of GTV and CTV were compared using DVHs from 3D CRT, IMRT and Tomo therapy. → The GTV was higher when Tomo therapy was used, while the doses of critical organ were low. → They said that Tomo therapy satisfied the goal of radiation therapy more than the others. - Abstract: Evaluation of dose-volume histograms from three-dimensional conformal radiation therapy (3D CRT), intensity-modulated radiation therapy (IMRT), and Tomo therapy was conducted. These three modalities are among the diverse treatment systems available for tumor therapy. Three patients who received tumor therapy for a malignant oligodendroglioma in the cranium, nasopharyngeal carcinoma in the cervical neck, and prostate cancer in the pelvis were selected as study subjects. Therapy plans were made for the three patients before dose-volume histograms were obtained. The doses of the gross tumor volume (GTV) and the clinical target volume (CTV) were compared using the dose-volume histograms obtained from the LINAC-based 3D CRT, IMRT planning station (Varian Eclipse-Varian, version 8.1), and Tomo therapy planning station. In addition, the doses of critical organs in the cranium, cervix, and pelvis that should be protected were compared. The GTV was higher when Tomo therapy was used compared to 3D CRT and the LINAC-based IMRT, while the doses of critical organ tissues that required protection were low. These results demonstrated that Tomo therapy satisfied the ultimate goal of radiation therapy more than the other therapies.

  11. The Multidisk Diode-Pumped High Power Yb:YAG Laser Amplifier of High-Intensity Laser System with 1 kHz Repetition Rate

    Science.gov (United States)

    Kuptsov, G. V.; Petrov, V. V.; Petrov, V. A.; Laptev, A. V.; Kirpichnikov, A. V.; Pestryakov, E. V.

    2018-04-01

    The source of instabilities in the multidisk diode-pumped high power Yb:YAG laser amplifier with cryogenic closed-loop cooling in the laser amplification channel of the high-intensity laser system with 1 kHz repetition rate was determined. Dissected copper mounts were designed and used to suppress instabilities and to achieve repeatability of the system. The equilibrium temperature dependency of the active elements on average power was measured. The seed laser for the multidisk amplifier was numerically simulated and designed to allow one to increase pulses output energy after the amplifier up to 500 mJ.

  12. Time-resolved Thomson scattering on high-intensity laser-produced hot dense helium plasmas

    International Nuclear Information System (INIS)

    Sperling, P; Liseykina, T; Bauer, D; Redmer, R

    2013-01-01

    The introduction of brilliant free-electron lasers enables new pump–probe experiments to characterize warm and hot dense matter states, i.e. systems at solid-like densities and temperatures of one to several hundred eV. Such extreme conditions are relevant for high-energy density studies such as, e.g., in planetary physics and inertial confinement fusion. We consider here a liquid helium jet pumped with a high-intensity optical short-pulse laser that is subsequently probed with brilliant soft x-ray radiation. The optical short-pulse laser generates a strongly inhomogeneous helium plasma which is characterized with particle-in-cell simulations. We derive the respective Thomson scattering spectrum based on the Born–Mermin approximation for the dynamic structure factor considering the full density and temperature-dependent Thomson scattering cross section throughout the target. We observe plasmon modes that are generated in the interior of the target and study their temporal evolution. Such pump–probe experiments are promising tools to measure the important plasma parameters density and temperature. The method described here can be applied to various pump–probe scenarios by combining optical lasers, soft x-rays and hard x-ray sources. (paper)

  13. Emission spectra from super-critical rippled plasma density profiles illuminated by intense laser pulses

    International Nuclear Information System (INIS)

    Ondarza R, R.; Boyd, T.J.M.

    2000-01-01

    High-order harmonic emission from the interaction of intense femtosecond laser pulses with super-critical plasmas characterized by a rippled density profile at the vacuum-plasma interface has been observed from particle-in-cell (PIC) simulations. A plasma simulation box several laser wavelengths in extent was prepared with a rippled density of a fraction of a laser wavelength. Emission spectra at the very initial stage of the interaction were recorded with spectral characteristics dissimilar to those previously reported in the literature. The reflected light spectra were characterized by a strong emission at the plasma line and by a series of harmonics at multiples of the ripple frequency. Harmonic spectra were obtained for different values of the plasma ripple frequency. In all cases the harmonics were emitted at the precise multiple harmonic number of the ripple frequency. Another important feature apparent from the simulations was that the emission peaks appeared to havea complex structure as compared with those for unrippled plasmas. For the cases when the plasma was rippled the peaks that corresponded to the multiples of the rippled density typically showed a double peak for the first few harmonics. The reflected emission plots for the main laser pulse showed strong emission at the plasma frequency and at multiples of that frequency as reported by the authors in the literature. (Author)

  14. Providing music therapy to the unconscious child in the paediatric intensive care unit

    OpenAIRE

    Kennelly, Jeanette; Edwards, Jane

    1997-01-01

    peer-reviewed This paper describes techniques used in the provision of music therapy to two children in a Paediatric Intensive Care Unit during the phase of admission when they were unconscious. The presentation of known songs and adaptations of known songs elicited a range of responses in these children. Further study of the role and effects of music with this patient group is required following positive outcomes for these children receiving music therapy while unconscious ...

  15. Multiply ionization of diethyl ether clusters by 532 nm nanosecond laser: The influence of laser intensity and the electron energy distribution

    International Nuclear Information System (INIS)

    Zhang Nazhen; Wang Weiguo; Zhao Wuduo; Han Fenglei; Li Haiyang

    2010-01-01

    Graphical abstract: The formation mechanism for multiply charged ions (C q+ and O q+ (q = 2-4)) were investigated experimentally and theoretically using a dual polarity time-of-flight mass spectrometer when diethyl ether clusters interacted with nanosecond laser pulse. - Abstract: The formation mechanism for multiply charged ions (C q+ and O q+ (q = 2-4)) were investigated using a dual polarity time-of-flight mass spectrometer when diethyl ether clusters interacted with nanosecond laser pulse. The signal intensity of multiply charged ions and electron energy was measured experimentally. It was shown that the intensity of multiply charged ions increased about 50 times when laser intensity increased from 7.6 x 10 9 to 7.0 x 10 10 W/cm 2 , then saturated as laser intensity increased further. It is interesting that the evolution of the mean value of electron energy was same to that of multiply charged ions. The theoretical calculation showed the ionization potential of atomic ions could be significantly decreased due to the effect of Coulomb screening especially at low laser intensity. It indicated that the electron ionization combined with Coulomb screening effect could explain the production of multiply charged ions in nanosecond laser field.

  16. The effects of intense laser field and applied electric and magnetic fields on optical properties of an asymmetric quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, R.L., E-mail: pfrire@eia.edu.co [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Escuela de Ingeniería de Antioquia-EIA, Envigado (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia); Ungan, F.; Kasapoglu, E. [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonóma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Morales, A.L.; Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2015-01-15

    This paper presents the results of the theoretical study of the effects of non-resonant intense laser field and electric and magnetic fields on the optical properties (the linear and third-order nonlinear refractive index and absorption coefficients) in an asymmetric quantum well. The electric field and intense laser field are applied along the growth direction of the asymmetric quantum well and the magnetic field is oriented perpendicularly. To calculate the energy and the wave functions of the electron in the asymmetric quantum well, the effective mass approximation and the method of envelope wave function are used. The asymmetric quantum well is constructed by using different aluminium concentrations in both right and left barriers. The confinement in the quantum well is changed drastically by either the effect of electric and magnetic fields or by the application of intense laser field. The optical properties are calculated using the compact density matrix approach. The results show that the effect of the intense laser field competes with the effects of the electric and magnetic fields. Consequently, peak position shifts to lower photon energies due to the effect of the intense laser field and it shifts to higher photon energies by the effects of electric and magnetic fields. In general, it is found that the concentration of aluminum, electric and magnetic fields and intense laser field are external agents that modify the optical responses in the asymmetric quantum well.

  17. A Randomized Controlled Trial of 7-Day Intensive and Standard Weekly Cognitive Therapy for PTSD and Emotion-Focused Supportive Therapy

    Science.gov (United States)

    Ehlers, Anke; Hackmann, Ann; Grey, Nick; Wild, Jennifer; Liness, Sheena; Albert, Idit; Deale, Alicia; Stott, Richard; Clark, David M.

    2014-01-01

    Objective Psychological treatments for posttraumatic stress disorder (PTSD) are usually delivered once or twice weekly over several months. It is unclear whether they can be successfully delivered over a shorter period of time. This clinical trial had two goals, (1) to investigate the acceptability and efficacy of a 7-day intensive version of cognitive therapy for PTSD, and (2) to investigate whether cognitive therapy has specific treatment effects by comparing intensive and standard weekly cognitive therapy with an equally credible alternative treatment. Method Patients with chronic PTSD (N=121) were randomly allocated to 7-day intensive or standard 3-month weekly cognitive therapy for PTSD, 3-month weekly emotion-focused supportive therapy, or a 14-week waitlist condition. Primary outcomes were PTSD symptoms and diagnosis as assessed by independent assessors and self-report. Secondary outcomes were disability, anxiety, depression, and quality of life. Measures were taken at initial assessment, 6 weeks and 14 weeks (post-treatment/wait). For groups receiving treatment, measures were also taken at 3 weeks, and follow-ups at 27 and 40 weeks after randomization. All analyses were intent-to-treat. Results At post-treatment/wait assessment, 73%, 77%, 43%, 7% of the intensive cognitive therapy, standard cognitive therapy, supportive therapy, and waitlist groups, respectively, had recovered from PTSD. All treatments were well tolerated and were superior to waitlist on all outcome measures, with the exception of no difference between supportive therapy and waitlist on quality of life. For primary outcomes, disability and general anxiety, intensive and standard cognitive therapy were superior to supportive therapy. Intensive cognitive therapy achieved faster symptom reduction and comparable overall outcomes to standard cognitive therapy. Conclusions Cognitive therapy for PTSD delivered intensively over little more than a week is as effective as cognitive therapy delivered

  18. Laser therapy on points of acupuncture: Are there benefits in dentistry?

    Science.gov (United States)

    de Oliveira, Renata Ferreira; da Silva, Camila Vieira; Cersosimo, Maria Cecília Pereira; Borsatto, Maria Cristina; de Freitas, Patrícia Moreira

    2015-10-01

    Studies have shown the use of laser therapy at points of acupuncture as an alternative to metal needles. The scientific literature in the area of laser acupuncture is rather large; however, the actual mechanisms and effects have not yet been proven in detail. Therefore, the current manuscript reviews the existing literature regarding the effects of laser acupuncture in Dentistry, seeking treatment modalities in which this technique is used and which are able to generate positive clinical results. Thus, the literature survey was conducted in electronic databases--Medline/Pubmed, VHL and Science Direct--using the uniterms "alternative medicine", "low-power laser and acupuncture", "laser acupuncture and dentistry" and "laser therapy and acupuncture". Retrospective and prospective clinical studies were considered. According to the findings of the literature, laser therapy at points of acupuncture was effective for the treatment of various orofacial problems encountered in dentistry, but there are still many differences among the parameters used for irradiation and there is a lack of important information reported by the studies, such as the wavelength, dose, power density, irradiation time and frequency, points of acupuncture selected for irradiation and therapy outcomes. Although these results indicate the potential benefit of the use of laser therapy at points of acupuncture on Dentistry, further double-blinded, controlled clinical trials should be carried out in order to standardize protocols for clinical application. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Adjunctive Non-Surgical Therapy of Inflamed Periodontal Pockets During Maintenance Therapy Using Diode Laser: A Randomized Clinical Trial.

    Science.gov (United States)

    Nguyen, Naomi-Trang; Byarlay, Matthew R; Reinhardt, Richard A; Marx, David B; Meinberg, Trudy A; Kaldahl, Wayne B

    2015-10-01

    Numerous studies have documented the clinical outcomes of laser therapy for untreated periodontitis, but very few have reported on lasers treating inflamed pockets during maintenance therapy. The aim of this study is to compare the effectiveness of scaling and root planing (SRP) plus the adjunctive use of diode laser therapy to SRP alone on changes in the clinical parameters of disease and on the gingival crevicular fluid (GCF) inflammatory mediator interleukin-1β (IL-1β) in patients receiving regular periodontal maintenance therapy. This single-masked and randomized, controlled, prospective study includes 22 patients receiving regular periodontal maintenance therapy who had one or more periodontal sites with a probing depth (PD) ≥ 5 mm with bleeding on probing (BOP). Fifty-six sites were treated with SRP and adjunctive laser therapy (SRP + L). Fifty-eight sites were treated with SRP alone. Clinical parameters, including PD, clinical attachment level (CAL), and BOP, and GCF IL-1β levels were measured immediately before treatment (baseline) and 3 months after treatment. Sites treated with SRP + L and SRP alone resulted in statistically significant reductions in PD and BOP and gains in CAL. These changes were not significantly different between the two therapies. Similarly, differences in GCF IL-1β levels between SRP + L and SRP alone were not statistically significant. In periodontal maintenance patients, SRP + L did not enhance clinical outcomes compared to SRP alone in the treatment of inflamed sites with ≥ 5 mm PD.

  20. Optimization of serious bacterial infections intensive therapy in children in Anesthesiology and Intensive Care Department

    Directory of Open Access Journals (Sweden)

    M. Yu. Kurochkin

    2014-08-01

    Full Text Available Effective selection of antibiotics in children with severe bacterial infections is often difficult because of microflora resistance. Extracorporeal detoxication methods, particularly discrete plasmapheresis are usually used for septic shock and total organ failure prevention. The aim of research. To conduct microbiological monitoring and to study a dynamics of medium molecular peptides in discrete plasmapheresis for intensive care optimization in children with severe bacterial infections in Anesthesiology and Intensive Care Department (AICU. Materials and methods. We investigated respiratory tract microflora by bacteriological method in 120 newborns and 30 children from 1 month with severe bacterial infections at admission and during prolonged stay in AICU. Discrete plasmapheresis was held in four children. Dynamic of medium molecular peptides was studied at admission, before discrete plasmapheresis and after it. Statistical data processing was performed using the Microsoft Excel software package. Results. It was found that in AICU in older children in admission grampositive and gramnegative flora was defined in equal quantity. The best sensitivity of the respiratory tract microflora was for the glycopeptides, oxazolidinones , II generation cephalosporins and macrolides, more than 60% - for aminoglycosides and lincosamides. However, when children spent more than 7-14 days in the department, nosocomial microflora was represented primarily by gram-negative organisms (80%, especially Pseudomonas aeruginosa. It was found to be inappropriate to use cephalosporins and macrolides in AICU for older children after their long stay there; the sensitivity to aminoglycosides was less than 60%, to anti-pseudomonal carbapenems not more than 30%. In AICU of newborns grampositive flora was found in 95%, mostly Staphylococcus haemolyticus. It was entirely sensitive for glycopeptides, oxazolidinones, fluoroquinolones, carbapenems, and also for co-trimoxazole and