WorldWideScience

Sample records for intense positron source

  1. Design of an intense positron source for linear colliders

    International Nuclear Information System (INIS)

    Ida, H.; Yamada, K.; Funahashi, Y.

    1994-01-01

    The Japan Linear Collider (JLC) requires an intense positron source of 8x10 11 particles per rf-pulse. A computer simulation reveals the possibility of such an intense positron source using 'conventional' technology. In order to relax the limitation of the incident electron energy density due to thermal stress in the converter target, the incident beam radius is enlarged within the range so as not to reduce the positron capture efficiency. A pre-damping ring and beam transport system to the pre-damping ring, which have a large transverse acceptance, play important roles for a high capture efficiency. A prototype positron source has been designed and installed at downstream of 1.54 GeV S-band linac in Accelerator Test Facility (ATF) in order to carry out experiments to develop the essential technology for JLC. The simulated results will be tested in experiments with the prototype positron source. (author)

  2. The proposed INEL intense slow positron source, beam line, and positron microscope facility

    International Nuclear Information System (INIS)

    Makowitz, H.; Denison, A.B.; Brown, B.

    1993-01-01

    A program is currently underway at the Idaho National Engineering Laboratory (INEL) to design and construct an Intense Slow Positron Beam Facility with an associated Positron Microscope. Positron beams have been shown to be valuable research tools and have potential application in industrial processing and nondestructive evaluation (microelectronics, etc.). The limit of resolution or overall usefulness of the technique has been limited because of lack of sufficient intensity. The goal of the INEL positron beam is ≥ 10 12 slow e+/s over a 0.03 cm diameter which represents a 10 3 to 10 4 advancement in beam current over existing beam facilities. The INEL is an ideal site for such a facility because of the nuclear reactors capable of producing intense positron sources and the personnel and facilities capable of handling high levels of radioactivity. A design using 58 Co with moderators and remoderators in conjunction with electrostatic positron beam optics has been reached after numerous computer code studies. Proof-of-principle electron tests have demonstrated the feasibility of the large area source focusing optics. The positron microscope development is occurring in conjunction with the University of Michigan positron microscope group. Such a Beam Facility and associated Intense Slow Positron Source (ISPS) can also be utilized for the generation and study of positron, and positron electron plasmas at ≤ 10 14 particles/cm 3 with plasma temperatures ranging from an eV to many keV, as well as an intense x-ray source via positron channeling radiation. The possibility of a tunable x-ray laser based on channeling positron radiation also exists. In this discussion the authors will present a progress report on various activities associated with the INEL ISPS

  3. Conceptual design of a high-intensity positron source for the Advanced Neutron Source

    International Nuclear Information System (INIS)

    Hulett, L.D.; Eberle, C.C.

    1994-12-01

    The Advanced Neutron Source (ANS) is a planned new basic and applied research facility based on a powerful steady-state research reactor that provides neutrons for measurements and experiments in the fields of materials science and engineering, biology, chemistry, materials analysis, and nuclear science. The useful neutron flux will be at least five times more than is available in the world's best existing reactor facility. Construction of the ANS provides a unique opportunity to build a positron spectroscopy facility (PSF) with very-high-intensity beams based on the radioactive decay of a positron-generating isotope. The estimated maximum beam current is 1000 to 5000 times higher than that available at the world's best existing positron research facility. Such an improvement in beam capability, coupled with complementary detectors, will reduce experiment durations from months to less than one hour while simultaneously improving output resolution. This facility will remove the existing barriers to the routine use of positron-based analytical techniques and will be a giant step toward realization of the full potential of the application of positron spectroscopy to materials science. The ANS PSF is based on a batch cycle process using 64 Cu isotope as the positron emitter and represents the status of the design at the end of last year. Recent work not included in this report, has led to a proposal for placing the laboratory space for the positron experiments outside the ANS containment; however, the design of the positron source is not changed by that relocation. Hydraulic and pneumatic flight tubes transport the source material between the reactor and the positron source where the beam is generated and conditioned. The beam is then transported through a beam pipe to one of several available detectors. The design presented here includes all systems necessary to support the positron source, but the beam pipe and detectors have not been addressed yet

  4. Positron sources

    International Nuclear Information System (INIS)

    Chehab, R.

    1994-01-01

    A tentative survey of positron sources is given. Physical processes on which positron generation is based are indicated and analyzed. Explanation of the general features of electromagnetic interactions and nuclear β + decay makes it possible to predict the yield and emittance for a given optical matching system between the positron source and the accelerator. Some kinds of matching systems commonly used - mainly working with solenoidal field - are studied and the acceptance volume calculated. Such knowledge is helpful in comparing different matching systems. Since for large machines, a significant distance exists between the positron source and the experimental facility, positron emittance has to be preserved during beam transfer over large distances and methods used for that purpose are indicated. Comparison of existing positron sources leads to extrapolation to sources for future linear colliders. Some new ideas associated with these sources are also presented. (orig.)

  5. Positron sources

    International Nuclear Information System (INIS)

    Chehab, R.

    1989-01-01

    A tentative survey of positron sources is given. Physical processes on which positron generation is based are indicated and analyzed. Explanation of the general features of electromagnetic interactions and nuclear β + decay makes it possible to predict the yield and emittance for a given optical matching system between the positron source and the accelerator. Some kinds of matching systems commonly used - mainly working with solenoidal fields - are studied and the acceptance volume calculated. Such knowledge is helpful in comparing different matching systems. Since for large machines, a significant distance exists between the positron source and the experimental facility, positron emittance has to be preserved during beam transfer over large distances and methods used for that purpose are indicated. Comparison of existing positron sources leads to extrapolation to sources for future linear colliders

  6. EPOS-An intense positron beam project at the ELBE radiation source in Rossendorf

    International Nuclear Information System (INIS)

    Krause-Rehberg, R.; Sachert, S.; Brauer, G.; Rogov, A.; Noack, K.

    2006-01-01

    EPOS, the acronym of ELBE Positron Source, describes a running project to build an intense pulsed beam of mono-energetic positrons (0.2-40 keV) for materials research. Positrons will be created via pair production at a tungsten target using the pulsed 40 MeV electron beam of the superconducting linac electron linac with high brilliance and low emittance (ELBE) at Forschungszentrum Rossendorf (near Dresden, Germany). The chosen design of the system under construction is described and results of calculations simulating the interaction of the electron beam with the target are presented, and positron beam formation and transportation is also discussed

  7. Construction and use of an intense positron source at new linac facilities in Germany. Conceptual report

    International Nuclear Information System (INIS)

    Brauer, G.

    2000-07-01

    In this conceptual report the idea to establish an European positron source for applied research (''EPOS'') based on new LINAC facilities in Germany (ELBE/Rossendorf or TTF-DESY/Hamburg) is considered. The report contains not only the outline of obvious applications in atomic physics, materials science and surface physics, but also several new methodical developments which are only possible with an intense positron beam. This opportunity will also allow the use and further development of imaging techniques being of special interest for industrial applications. (orig.)

  8. The Intense Slow Positron Source concept: A theoretical perspective on a proposed INEL Facility

    International Nuclear Information System (INIS)

    Makowitz, H.; Abrashoff, J.D.; Landman, W.H.; Albano, R.K.; Tajima, T.

    1992-01-01

    An analysis has been performed of the INEL Intense Slow Positron Source (ISPS) concept. The results of the theoretical study are encouraging. A full-scale device with a monoenergetic 5 KeV positron beam of ≥10 12 e + /s on a ≤0.03-cmdiameter target appears feasible and can be obtained within the existing infrastructure of INEL reactor facilities. A 30.0-cm-diameter, large area source dish, moderated at first with thin crystalline W films and later by solid Ne, is proposed as the initial device in order to explore problems with a facility scale system. A demonstration scale beam at ≥10 10 slow e + /s is proposed using a 58 Co source plated on a 6-cm-diameter source dish insert, placed in a 30- cm adapter

  9. A feasibility study of high intensity positron sources for the S-band and TESLA linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Glantz, R.

    1997-10-01

    Future high energy linear colliders require luminosities above 10{sup 33} cm{sup -2}s{sup -1}. Therefore beam intensities have to be provided up to two orders of magnitude higher than achieved at present. It is comparably simple to reach high electron intensities. Positron intensities in this range, however, are difficult to realize with conventional positron sources. A new method of positron production was proposed in 1979 by V.E. Balakin and A.A. Mikhailichenko. The photons, necessary for pair production, are not generated by bremsstrahlung but by high energy electrons passing through an undulator. Based on this principle, a high intensity, unpolarized and polarized positron source for linear colliders was developed by K.Floettmann. In the present work, the requirements derived by K.Floettmann are used to study the feasibility of both the polarized and the unpolarized positron source. For economical reasons it is advantageous to use the beam after the interaction for positron production. In the main part of the present work a beam line is developed which guarantees a stable operation of the unpolarized wiggler-based positron source for the S-Band and TESLA linear collider. The requirements on the electron beam emittances are much higher for the polarized undulator-based source. For TESLA it is shown, that an operation of the polarized source is possible for design interactions. For a stable operation, taking into account perturbations at the interaction point, further investigations are necessary. For the SBLC, an operation of the polarized source is not possible with the present design.

  10. BEPC II positron source

    International Nuclear Information System (INIS)

    Pei Guoxi; Sun Yaolin; Liu Jintong; Chi Yunlong; Liu Yucheng; Liu Nianzong

    2006-01-01

    BEPC II-an upgrade project of the Beijing Electron Positron Collider (BEPC) is a factory type of e + e - collider. The fundamental requirements for its injector linac are the beam energy of 1.89 GeV for on-energy injection and a 40 mA positron beam current at the linac end with a low beam emittance of 1.6 μm and a low energy spread of ±0.5% so as to guarantee a higher injection rate (≥50 mA/min) to the storage ring. Since the positron flux is proportional to the primary electron beam power on the target, the authors will increase the electron gun current from 4A to 10A by using a new electron gun system and increase the primary electron energy from 120 MeV to 240 MeV. The positron source itself is an extremely important system for producing more positrons, including a positron converter target chamber, a 12kA flux modulator, the 7m focusing module with DC power supplies and the support. The new positron production linac from the electron gun to the positron source has been installed into the tunnel. In what follows, the authors will emphasize the positron source design, manufacture and tests. (authors)

  11. PF slow positron source

    International Nuclear Information System (INIS)

    Shirakawa, A.; Enomoto, A.; Kurihara, T.

    1993-01-01

    A new slow-positron source is under construction at the Photon Factory. Positrons are produced by bombarding a tantalum rod with high-energy electrons; they are moderated in multiple tungsten vanes. We report here the present status of this project. (author)

  12. Intense low energy positron beams

    International Nuclear Information System (INIS)

    Lynn, K.G.; Jacobsen, F.M.

    1993-01-01

    Intense positron beams are under development or being considered at several laboratories. Already today a few accelerator based high intensity, low brightness e + beams exist producing of the order of 10 8 - 10 9 e + /sec. Several laboratories are aiming at high intensity, high brightness e + beams with intensities greater than 10 9 e + /sec and current densities of the order of 10 13 - 10 14 e + sec - 1 cm -2 . Intense e + beams can be realized in two ways (or in a combination thereof) either through a development of more efficient B + moderators or by increasing the available activity of B + particles. In this review we shall mainly concentrate on the latter approach. In atomic physics the main trust for these developments is to be able to measure differential and high energy cross-sections in e + collisions with atoms and molecules. Within solid state physics high intensity, high brightness e + beams are in demand in areas such as the re-emission e + microscope, two dimensional angular correlation of annihilation radiation, low energy e + diffraction and other fields. Intense e + beams are also important for the development of positronium beams, as well as exotic experiments such as Bose condensation and Ps liquid studies

  13. Formation of a high intensity low energy positron string

    Science.gov (United States)

    Donets, E. D.; Donets, E. E.; Syresin, E. M.; Itahashi, T.; Dubinov, A. E.

    2004-05-01

    The possibility of a high intensity low energy positron beam production is discussed. The proposed Positron String Trap (PST) is based on the principles and technology of the Electron String Ion Source (ESIS) developed in JINR during the last decade. A linear version of ESIS has been used successfully for the production of intense highly charged ion beams of various elements. Now the Tubular Electron String Ion Source (TESIS) concept is under study and this opens really new promising possibilities in physics and technology. In this report, we discuss the application of the tubular-type trap for the storage of positrons cooled to the cryogenic temperatures of 0.05 meV. It is intended that the positron flux at the energy of 1-5 eV, produced by the external source, is injected into the Tubular Positron Trap which has a similar construction as the TESIS. Then the low energy positrons are captured in the PST Penning trap and are cooled down because of their synchrotron radiation in the strong (5-10 T) applied magnetic field. It is expected that the proposed PST should permit storing and cooling to cryogenic temperature of up to 5×109 positrons. The accumulated cooled positrons can be used further for various physics applications, for example, antihydrogen production.

  14. Formation of a high intensity low energy positron string

    International Nuclear Information System (INIS)

    Donets, E.D.; Donets, E.E.; Syresin, E.M.; Itahashi, T.; Dubinov, A.E.

    2004-01-01

    The possibility of a high intensity low energy positron beam production is discussed. The proposed Positron String Trap (PST) is based on the principles and technology of the Electron String Ion Source (ESIS) developed in JINR during the last decade. A linear version of ESIS has been used successfully for the production of intense highly charged ion beams of various elements. Now the Tubular Electron String Ion Source (TESIS) concept is under study and this opens really new promising possibilities in physics and technology. In this report, we discuss the application of the tubular-type trap for the storage of positrons cooled to the cryogenic temperatures of 0.05 meV. It is intended that the positron flux at the energy of 1-5 eV, produced by the external source, is injected into the Tubular Positron Trap which has a similar construction as the TESIS. Then the low energy positrons are captured in the PST Penning trap and are cooled down because of their synchrotron radiation in the strong (5-10 T) applied magnetic field. It is expected that the proposed PST should permit storing and cooling to cryogenic temperature of up to 5x10 9 positrons. The accumulated cooled positrons can be used further for various physics applications, for example, antihydrogen production

  15. Positron sources for electron-positron colliders application to the ILC and CLIC

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    The increased demanding qualities for positron sources dedicated to e+e- colliders pushed on investigations oriented on new kinds of e+ sources. The different kinds of positron sources polarized and no polarized are considered. Their main features (intensity, emittance) are described and analysed. Comparison between the different sources is worked out. The characteristics of the positron beam available in the collision point are greatly depending on the capture device and on the positron accelerator. Different kinds of capture systems are considered and their qualities, compared. Intense positron sources which are necessary for the colliders require intense incident beams (electrons or photons). The large number of pairs created in the targets leads to important energy deposition and so, thermal heating, which associated to temperature gradients provoke mechanical stresses often destructive. Moreover, the important Coulomb collisions, can affect the atomic structure in crystal targets and the radiation resist...

  16. Intense positron beams and possible experiments

    International Nuclear Information System (INIS)

    Lynn, K.G.; Frieze, W.E.

    1983-07-01

    In this paper, we survey some of the ideas that have been proposed regarding the production of intense beams of low energy positrons. Various facilities to produce beams of this type are already under design or construction and other methods beyond those in use have been previously discussed. Moreover, a variety of potential experiments utilizing intense positron beams have been suggested. It is to be hoped that this paper can serve as a useful summary of some of the current ideas, as well as a stimulation for new ideas to be forthcoming at the workshop. 31 references

  17. Proposal for an intense slow positron beam facility at PSI

    International Nuclear Information System (INIS)

    Waeber, W.B.; Taqqu, D.; Zimmermann, U.; Solt, G.

    1990-05-01

    In the domain of condensed matter physics and materials sciences monoenergetic slow positrons in the form of highest intensity beams are demonstrated to be extreamly useful and considered to be highly needed. This conclusion has been reached and the scientific relevance of the positron probe has been highlighted at an international workshop in November 1989 at PSI, where the state of the art and the international situation on slow positron beams, the fields of application of intense beams and the technical possibilities at PSI for installing intense positron sources have been evaluated. The participants agreed that a high intensity beam as a large-scale user facility at PSI would serve fundamental and applied research. The analysis of responses given by numerous members of a widespread positron community has revealed a large research potential in the domain of solid-state physics, atomic physics and surface, thin-film and defect physics, for example. The excellent feature of slow positron beams to be a suitable probe also for lattice defects near surfaces or interfaces has attracted the interest not only of science but also of industry.In this report we propose the installation of an intense slow positron beam facility at PSI including various beam lines of different qualities and based on the Cyclotron production of β + emitting source material and on a highest efficiency moderation scheme which exceeds standard moderation efficiencies by two orders of magnitude. In its proposed form, the project is estimated to be realizable in the nineties and costs will amount to between 15 and 20 MSFr. (author) 10 figs., 6 tabs., 78 refs

  18. The cryogenic source of slow monochromatic positrons

    International Nuclear Information System (INIS)

    Meshkov, I.N.; Pavlov, V.N.; Sidorin, A.O.; Yakovenko, S.L.

    2008-01-01

    The cryogenic source of slow monochromatic positrons based on the 22 Na isotope has been designed and constructed at JINR. Positrons emitted from radioactive source 22 Na have a very broad energy spectrum up to 0.5 MeV. To generate monochromatic beam of slow positrons the solid neon is used as a moderator. The solid neon allows forming slow positron beam of the energy of 1.2 eV at the spectrum width of 1 eV. The efficiency of moderation is 1 % of total positron flux

  19. Generation of an intense pulsed positron beam and its applications

    International Nuclear Information System (INIS)

    Suzuki, Ryoichi; Mikado, Tomohisa; Ohgaki, Hideaki; Chiwaki, Mitsukuni; Yamazaki, Tetsuo; Kobayashi, Yoshinori.

    1994-01-01

    A positron pulsing system for an intense positron beam generated by an electron linac has been developed at the Electrotechnical Laboratory. The pulsing system generates an intense pulsed positron beam of variable energy and variable pulse period. The pulsed positron beam is used as a non destructive probe for various materials researches. In this paper, we report the present status of the pulsed positron beam and its applications. (author)

  20. A high intensity positron beam at the Brookhaven reactor

    International Nuclear Information System (INIS)

    Weber, M.; Lynn, K.G.; Roellig, L.O.; Mills, A.P. Jr.; Moodenbaugh, A.R.

    1987-01-01

    We describe a high intensity, low energy positron beam utilizing high specific activity /sup 64/Cu sources (870 Ci/g) produced in a reactor with high thermal neutron flux. Fast-to-slow moderation can be performed in a self moderation mode or with a transmission moderator. Slow positron rates up to 1.6 x 10/sup 8/ e/sup +//s with a half life of 12.8 h are calculated. Up to 1.0 x 10/sup 8/ e/sup +//s have been observed. New developments including a Ne moderator and an on-line isotope separation process are discussed. 21 refs., 9 figs

  1. Study of an hybrid positron source using channeling for CLIC

    CERN Document Server

    Dadoun, O; Chehab, R; Poirier, F; Rinolfi, L; Strakhovenko, V; Variola, A; Vivoli, A

    2009-01-01

    The CLIC study considers the hybrid source using channeling as the baseline for positron production. The hybrid source uses a few GeV electron beam impinging on a crystal tungsten radiator. With the tungsten crystal oriented on its axis it results an intense, relatively low energy photon beam due mainly to channeling radiation. Those photons are then impinging on an amorphous tungsten target producing positrons by e+e− pair creation. In this note the optimization of the positron yield and the peak energy deposition density in the amorphous target are studied according to the distance between the crystal and the amorphous targets, the primary electron energy and the amorphous target thickness.

  2. Probing the positron moderation process using high-intensity, highly polarized slow-positron beams

    Science.gov (United States)

    Van House, J.; Zitzewitz, P. W.

    1984-01-01

    A highly polarized (P = 0.48 + or - 0.02) intense (500,000/sec) beam of 'slow' (Delta E = about 2 eV) positrons (e+) is generated, and it is shown that it is possible to achieve polarization as high as P = 0.69 + or - 0.04 with reduced intensity. The measured polarization of the slow e+ emitted by five different positron moderators showed no dependence on the moderator atomic number (Z). It is concluded that only source positrons with final kinetic energy below 17 keV contribute to the slow-e+ beam, in disagreement with recent yield functions derived from low-energy measurements. Measurements of polarization and yield with absorbers of different Z between the source and moderator show the effects of the energy and angular distributions of the source positrons on P. The depolarization of fast e+ transmitted through high-Z absorbers has been measured. Applications of polarized slow-e+ beams are discussed.

  3. 22 Na positron source for annihilation positron spectroscopy

    International Nuclear Information System (INIS)

    Cimpeanu, Catalina; Craciun, L.; Dragulescu, E.; Dudu, D.; Racolta, P.M.; Voiculescu, Dana; Miron, N.

    2002-01-01

    To extend the nuclear physics applications and to perform the study of vacancy - type defects in metals, semiconductors, polymers etc., we decided to promote positron annihilation techniques. In order to achieve this goal we started a project of dedicated positron sources produced at the IFIN-HH U-120 Cyclotron. We have used the nuclear reaction 24 Mg(d,α) 22 Na and deuterons of 13 MeV energy. The paper presents the main steps of this procedure like: general conditions required for 22 NaCl sources, reactive chamber and characteristics of Mg target, parameters for the irradiation, radiochemical procedures to separate Na from Mg after the irradiation and geometrical or mechanical requirements for dedicated NaCl source for positron annihilation spectrometry. In the e + lifetime measurements the e + 'death - stop' signals are always provided by γ - quanta generated by the e + e - annihilation and the 'birth - start' signals may be obtained from 'prompt' γ - quanta emitted from the NaCl source (the 1.275 MeV photons). The 22 NaCl stock solution obtained by radiochemical separation will be kept in the sealed quartz vials in dry places and will be dropped between the studied materials before use in positron spectrometry. (authors)

  4. 22 Na positron source for annihilation positron spectroscopy

    International Nuclear Information System (INIS)

    Cimpeanu, Catalina; Craciun, L.; Dragulescu, E.; Dudu, D.; Racolta, P. M.; Voiculescu, Dana; Miron, N.

    2003-01-01

    To extend the nuclear physics applications and to perform the study of vacancy - type defects in metals, semiconductors, polymers etc., we decided to promote positron annihilation techniques. In order to achieve this goal we started a project of dedicated positron sources produced at the IFIN-HH U-120 Cyclotron. We have used the nuclear reaction: 24 Mg(d,α) 22 Na with deuterons of 13 MeV energy. The paper presents the main characteristics of this procedure, as follows: general conditions asked for 22 NaCl sources, reactive chamber and characteristics of Mg target, parameters for the irradiation, radiochemical procedures for separating Na from Mg after the irradiation and geometrical or mechanical requirements for dedicated NaCl source for positron annihilation spectrometry. In the e + lifetime measurements, the e + end - start signals may be obtained from prompt γ -quanta emitted from the NaCl source (1. 275 MeV photons). The 22 NaCl stock solution obtained by radiochemical separation will be kept in quartz sealed ampoules in dry places and will be dropped between the study materials before the use in positron spectrometry. (authors)

  5. The Upgrade of the Neutron Induced Positron Source NEPOMUC

    Science.gov (United States)

    Hugenschmidt, C.; Ceeh, H.; Gigl, T.; Lippert, F.; Piochacz, C.; Pikart, P.; Reiner, M.; Weber, J.; Zimnik, S.

    2013-06-01

    In summer 2012, the new NEutron induced POsitron Source MUniCh (NEPOMUC) was installed and put into operation at the research reactor FRM II. At NEPOMUC upgrade 80% 113Cd enriched Cd is used as neutron-gamma converter in order to ensure an operation time of 25 years. A structure of Pt foils inside the beam tube generates positrons by pair production. Moderated positrons leaving the Pt front foil are electrically extracted and magnetically guided to the outside of the reactor pool. The whole design, including Pt-foils, the electric lenses and the magnetic fields, has been improved in order to enhance both the intensity and the brightness of the positron beam. After adjusting the potentials and the magnetic guide and compensation fields an intensity of about 3·109 moderated positrons per second is expected. During the first start-up, the measured temperatures of about 90°C ensure a reliable operation of the positron source. Within this contribution the features and the status of NEPOMUC upgrade are elucidated. In addition, an overview of recent positron beam experiments and current developments at the spectrometers is given.

  6. Simulation of a Positron Source for CEBAF

    International Nuclear Information System (INIS)

    S. Golge; A. Freyberger; C. Hyde-Wright

    2007-01-01

    A positron source for the 6 GeV (or the proposed 12 GeV upgrade) recirculating linacs at Jefferson Lab is presented. The proposed 100nA CW positron source has several unique characteristics; high incident beam power (100kW), 10 MeV incident electron beam energy, CW incident beam and CW production. Positron production with 10 MeV electrons has several advantages; the energy is below neutron threshold so the production target will not become activated during use and the absolute energy spread is bounded by the low incident energy. These advantages are offset by the large angular distribution of the outgoing positrons. Results of simulations of the positron production, capture, acceleration and injection into the recirculating linac are presented. Energy flow and thermal management of the production target present a challenge and are included in the simulations

  7. Progress of the intense positron beam project EPOS

    International Nuclear Information System (INIS)

    Krause-Rehberg, R.; Brauer, G.; Jungmann, M.; Krille, A.; Rogov, A.; Noack, K.

    2008-01-01

    EPOS (the ELBE POsitron Source) is a running project to build an intense, bunched positron beam for materials research. It makes use of the bunched electron beam of the ELBE radiation source (Electron Linac with high Brilliance and low Emittance) at the Research Centre Dresden-Rossendorf (40 MeV, 1 mA). ELBE has unique timing properties, the bunch length is <5 ps and the repetition time is 77 ns. In contrast to other Linacs made for Free Electron Lasers (e.g., TTF at DESY, Hamburg), ELBE can be operated in full cw-mode, i.e., with an uninterrupted sequence of bunches. The article continues an earlier publication. It concentrates on details of the timing system and describes issues of radiation protection

  8. Stress evaluation at the ILC positron source

    Energy Technology Data Exchange (ETDEWEB)

    Ushakov, Andriy; Moortgat-Pick, Gudrid [Universitaet Hamburg, II. Institut fuer Theoretische Physik, Luruper Chaussee 149, 22761 Hamburg (Germany); Riemann, Sabine; Dietrich, Felix [Deutsches Elektronen-Synchrotron (DESY), Standort Zeuthen, Platanenallee 6, 15738 Zeuthen (Germany); Aulenbacher, Kurt; Tyukin, Valery; Heil, Philipp [Johannes Gutenberg-Universitaet Mainz, Institut fuer Kernphysik, Johann-Joachim-Becher-Weg 45, 55128 Mainz (Germany)

    2016-07-01

    High luminosity is required at future Linear Colliders which is particularly challenging for all corresponding positron sources. At the International Linear Collider (ILC), polarized positrons are obtained from electron-positron pairs by converting high-energy photons produced by passing the high-energy main electron beam through a helical undulator. The conversion target undergoes cyclic stress with high peak values. To distribute the thermal load, the target is designed as wheel spinning in vacuum with 100 m/s. However, the cyclic stress over long time at high target temperatures could exceed the fatigue stress limit. In the talk, an overview of the ILC positron source is given. The prospects to study material parameters under conditions as expected at the ILC are discussed.

  9. High intensity positron program at LLNL

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Howell, R.; Stoeffl, W.; Carter, D.

    1999-01-01

    Lawrence Livermore National Laboratory (LLNL) is the home of the world's highest current beam of keV positrons. The potential for establishing a national center for materials analysis using positron annihilation techniques around this capability is being actively pursued. The high LLNL beam current will enable investigations in several new areas. We are developing a positron microprobe that will produce a pulsed, focused positron beam for 3-dimensional scans of defect size and concentration with submicron resolution. Below we summarize the important design features of this microprobe. Several experimental end stations will be available that can utilize the high current beam with a time distribution determined by the electron linac pulse structure, quasi-continuous, or bunched at 20 MHz, and can operate in an electrostatic or (and) magnetostatic environment. Some of the planned early experiments are: two-dimensional angular correlation of annihilation radiation of thin films and buried interfaces, positron diffraction holography, positron induced desorption, and positron induced Auger spectroscopy

  10. High intensity positron program at LLNL

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Howell, R.H.; Stoeffl, W.

    1998-01-01

    Lawrence Livermore National Laboratory (LLNL) is the home of the world's highest current beam of keV positrons. The potential for establishing a national center for materials analysis using positron annihilation techniques around this capability is being actively pursued. The high LLNL beam current will enable investigations in several new areas. We are developing a positron microprobe that will produce a pulsed, focused positron beam for 3-dimensional scans of defect size and concentration with submicron resolution. Below we summarize the important design features of this microprobe. Several experimental end stations will be available that can utilize the high current beam with a time distribution determined by the electron linac pulse structure, quasi-continuous, or bunched at 20 MHz, and can operate in an electrostatic or (and) magnetostatic environment. Some of the planned early experiments are: two-dimensional angular correlation of annihilation radiation of thin films and buried interfaces, positron diffraction holography, positron induced desorption, and positron induced Auger spectra

  11. 22 Na positron source for annihilation positron spectroscopy

    International Nuclear Information System (INIS)

    Cimpeanu, Catalina; Craciun, Liviu; Dragulescu, Emilian; Dudu, Dorin; Racolta, Petre Mihai; Voiculescu, Dana; Miron, N.

    2005-01-01

    To extend the nuclear physics applications and to perform the study of vacancy - type defects in metals, semiconductors, polymers, etc., we developed new positron annihilation techniques. In line with this goal we started a project for production of positron sources at the IFIN-HH U-120 Cyclotron. We made use of the nuclear reaction: 24 Mg(d,α) 22 Na with deuterons of 13 MeV energy. The paper present the main steps of this procedure which are: establishing the conditions required for 22 NaCl sources, for the parameters of reaction chamber and the characteristics of Mg target, parameters for the irradiation, radiochemical procedures for separation of Na from Mg after irradiation as well as the geometrical and mechanical requirements for the NaCl source. In the e + lifetime measurements the e + 'stop' signals are always provided by gamma - quanta generated by the e + e - annihilation and the 'start' signals are obtained from 'prompt' gamma - quanta emitted by the NaCl source (1.275 MeV photons). The 22 NaCl stock solution obtained by radiochemical separation will be kept in quartz sealed ampoules. (authors)

  12. Positron annihilation studies on bulk metallic glass and high intensity positron beam developments

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Stoeffl, W.

    2003-01-01

    Positron annihilation spectroscopy is an ideal probe to examine atomic scale open-volume regions in materials. Below, we summarize the recent results on studies of open-volume regions of a multicomponent Zr-Ti-Ni-Cu-Be bulk metallic glass. Our studies establish two types of open-volume regions, one group that is too shallow to trap positrons at room temperature and becomes effective only at low temperatures and the other group that localizes positrons at room temperature and is large enough to accommodate hydrogen. The second half of the paper will concentrate on the high intensity positron program at Lawrence Livermore National Laboratory. A new positron production target is under development and we are constructing two experimental end stations to accommodate a pulsed positron microprobe and an experiment on positron diffraction and holography. Important design considerations of these experiments will be described. (author)

  13. Intense positron beam and its application to surface science

    International Nuclear Information System (INIS)

    Ito, Y.; Hirose, M.; Kanazawa, I.; Sueoka, O.; Takamura, S.; Okada, S.

    1992-01-01

    Intense pulsed slow positron beam has been produced using the 100 MeV electron LINAC of JAERI · Tokai. In order to use the beam for surface studies such as positron diffraction and positron microscopy, it was transferred from the solenoid magnetic field to field free region and then was brightness-enhanced. The beam size was reduced from 10 mmφ (in the magnetic field) to 0.5 mmφ after two stages of re-moderation. Using the intense brightness-enhanced positron beam we have observed for the first time RHEPD (Reflection High-Energy Positron Diffraction) patterns. A design of re-emission positron microscopy is also described. (author)

  14. Description of the intense, low energy, monoenergetic positron beam at Brookhaven

    International Nuclear Information System (INIS)

    Lynn, K.G.; Mills, A.P. Jr.; Roellig, L.O.; Weber, M.

    1985-01-01

    An intense (4 x 10 7 s -1 ), low energy (approx. =1.0 eV), monoenergetic (ΔE approx. = 75 MeV) beam of positrons has been built at the Brookhaven National Laboratory. This flux is more than 10 times greater than any existing beam from radioactive sources. Plans are underway to increase further the flux by more than an order of magnitude. The intense low energy positron beam is made by utilizing the High Flux Beam Reactor at Brookhaven to produce the isotope 64 Cu with an activity of 40 curies of positrons. Source moderation techniques are utilized to produce the low energy positron beam from the high energy positrons emitted from 64 Cu. 31 refs., 7 figs

  15. Development of an Electron-Positron Source for Positron Annihilation Lifetime Spectroscopy

    Science.gov (United States)

    2009-12-19

    REPORT Development of an electron- positron source for positron annihilation lifetime spectroscopy : FINAL REPORT 14. ABSTRACT 16. SECURITY...to generate radiation, to accelerate particles, and to produce electrons and positrons from vacuum. From applications using existing high-repetition...theoretical directions. This report reviews work directed toward the application of positron generation from laser interaction with matter 1. REPORT DATE

  16. Orbiting transmission source for positron tomography

    International Nuclear Information System (INIS)

    Huesman, R.H.; Derenzo, S.E.; Cahoon, J.L.; Geyer, A.B.; Moses, W.W.; Uber, D.C.; Vuletich, T.; Budinger, T.F.

    1988-01-01

    Accidental suppression and effective data rates have been measured for the orbiting transmission source as implemented in the Donner 600-Crystal Positron Tomograph. A mechanical description of the orbiting source and a description of the electronics used to discard scattered and accidental events is included. Since accidental coincidences were the rate-limiting factor in transmission data acquisition, the new method allows us to acquire sufficient transmission data in a shorter time with a more active transmission source

  17. High intensity positron program at LLNL

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Howell, R.; Stoeffl, W.; Carter, D.

    1999-01-01

    Lawrence Livermore National Laboratory (LLNL) is the home of the world close-quote s highest current beam of keV positrons. The potential for establishing a national center for materials analysis using positron annihilation techniques around this capability is being actively pursued. The high LLNL beam current will enable investigations in several new areas. We are developing a positron microprobe that will produce a pulsed, focused positron beam for 3-dimensional scans of defect size and concentration with submicron resolution. Below we summarize the important design features of this microprobe. Several experimental end stations will be available that can utilize the high current beam with a time distribution determined by the electron linac pulse structure, quasi-continuous, or bunched at 20 MHz, and can operate in an electrostatic or (and) magnetostatic environment. Some of the planned early experiments are: two-dimensional angular correlation of annihilation radiation of thin films and buried interfaces, positron diffraction holography, positron induced desorption, and positron induced Auger spectroscopy. copyright 1999 American Institute of Physics

  18. Automatic sup sup 1 sup sup 8 F positron source supply system for a monoenergetic positron beam

    CERN Document Server

    Saito, F; Itoh, Y; Goto, A; Fujiwara, I; Kurihara, T; Iwata, R; Nagashima, Y; Hyodo, T

    2000-01-01

    A system which supplies an intense sup sup 1 sup sup 8 F (half life 110 min) positron source produced by an AVF cyclotron through sup sup 1 sup sup 8 O(p,n) sup sup 1 sup sup 8 F reaction has been constructed. Produced sup sup 1 sup sup 8 F is transferred to a low background experiment hall through a capillary. It is electro-deposited on a graphite rod and used for a source of a slow positron beam. In the meantime the next batch of target sup sup 1 sup sup 8 O water is loaded and proton irradiation proceeds. This system makes it possible to perform continuous positron beam experiments using the 18 F positron source.

  19. Planned Positron Factory project

    International Nuclear Information System (INIS)

    Okada, Sohei

    1990-01-01

    The Japan Atomic Energy Research Institute, JAERI, has started, drafting a construction plan for the 'Positron Factory', in which intense energy-controllable monoenergetic positron beams are produced from pair-production reactions caused by high-energy electrons from a linac. The JAERI organized a planning committee to provide a basic picture for the Positron Factory. This article presents an overview of the interactions of positrons, intense positron sources and the research program and facilities planned for the project. The interactions of positrons and intense positron sources are discussed focusing on major characteristics of positrons in different energy ranges. The research program for the Positron Factory is then outlined, focusing on advanced positron annihilation techniques, positron spectroscopy (diffraction, scattering, channeling, microscopy), basic positron physics (exotic particle science), and positron beam technology. Discussion is also made of facilities required for the Positron Factory. (N.K.)

  20. Construction report of the PF slow-positron source. 1

    International Nuclear Information System (INIS)

    Enomoto, Atsushi; Kurihara, Toshikazu; Kobayashi, Hitoshi

    1993-12-01

    The slow positron source utilizing the electron beam of the 2.5 GeV electron beam accelerator which is the synchrotron radiation injector is being constructed. The outline of the project and the present state of construction are reported. As of November, 1993, by injecting the electron beam of about 10 W to the targets for producing positrons, the slow positrons of 4 x 10 4 e + /s has been obtained in the laboratory. Finally, with the electron beam of 30 kW, it is aimed at to obtain the slow positron beam of 2 x 10 9 e + /s. In the slow positron source, the electron beam from the 2.5 GeV linear accelerator is used as the primary beam. This beam is led to the target with electromagnets. Radiation shields were strengthened, and the electrostatic lens system was attached to efficiently extract and send out slow positrons. The conveying system for slow positrons is explained. Primary electron beam, target and moderator for producing slow positrons, the change to continuous current of pulsed slow positron beam and the heightening of luminance of slow positron beam, and the experiment on the utilization of slow positron beam, and the control system for positron conveyance path are reported. (K.I.)

  1. Brilliant positron sources for CLIC and other collider projects

    CERN Document Server

    Rinolfi, Louis; Dadoun, Olivier; Kamitani, Takuya; Strakhovenko, Vladimir; Variola, Alessandro

    2013-01-01

    The CLIC (Compact Linear Collider), as future linear collider, requires an intense positron source. A brief history is given up to the present baseline configuration which assumes unpolarized beams. A conventional scheme, with a single tungsten target as source of e-e+ pairs, has been studied several years ago. But, in order to reduce the beam energy deposition on the e+ target converter, a double-target system has been studied and proposed as baseline for CLIC. With this ‘‘hybrid target’’, the positron production scheme is based on the channeling process. A 5 GeV electron beam impinges on a thin crystal tungsten target aligned along its axis, enhancing the photon production by channeling radiation. A large number of photons are sent to a thick amorphous tungsten target, generating large number of e-e+ pairs, while the charged particles are bent away, reducing the deposited energy and the PEDD (Peak Energy Deposition Density). The targets parameters are optimized for the positron production. Polarize...

  2. Intense fusion neutron sources

    International Nuclear Information System (INIS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-01-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10 15 -10 21 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10 20 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  3. Intense fusion neutron sources

    Science.gov (United States)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  4. Positron spectroscopy of 2D materials using an advanced high intensity positron beam

    Science.gov (United States)

    McDonald, A.; Chirayath, V.; Lim, Z.; Gladen, R.; Chrysler, M.; Fairchild, A.; Koymen, A.; Weiss, A.

    An advanced high intensity variable energy positron beam(~1eV to 20keV) has been designed, tested and utilized for the first coincidence Doppler broadening (CDB) measurements on 6-8 layers graphene on polycrystalline Cu sample. The system is capable of simultaneous Positron annihilation induced Auger electron Spectroscopy (PAES) and CDB measurements giving it unparalleled sensitivity to chemical structure at external surfaces, interfaces and internal pore surfaces. The system has a 3m flight path up to a micro channel plate (MCP) for the Auger electrons emitted from the sample. This gives a superior energy resolution for PAES. A solid rare gas(Neon) moderator was used for the generation of the monoenergetic positron beam. The positrons were successfully transported to the sample chamber using axial magnetic field generated with a series of Helmholtz coils. We will discuss the PAES and coincidence Doppler broadening measurements on graphene -Cu sample and present an analysis of the gamma spectra which indicates that a fraction of the positrons implanted at energies 7-60eV can become trapped at the graphene/metal interface. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.

  5. Experimental Study of a Positron\\\\ Source Using Channeling

    CERN Multimedia

    Gavrykov, V; Kulibaba, V; Baier, V; Beloborodov, K; Bojenok, A; Bukin, A; Burdin, S; Dimova, T; Druzhinin, V; Dubrovin, M; Seredniakov, S; Shary, V; Strakhovenko, V; Keppler, P; Major, J; Bogdanov, A V; Potylitsin, A; Vnoukov, I; Artru, X; Lautesse, P; Poizat, J-C; Remillieux, J

    2002-01-01

    Many simulations have predicted that the yield of positrons, resulting from the interaction of fast electrons in a solid target, increases if the target is a crystal oriented with a major axis parallel to the electron beam. Tests made at Orsay and Tokyo confirmed these expectations. The experiment WA 103 concerns the determination of the main characteristics (emittance, energy spread) of a crystal positron source which could replace advantageously the conventional positron converters foreseen in some linear collider projects. The main element of the set-up is a magnetic spectrometer, using a drift chamber, where the positron trajectories are reconstructed (see Figure 1) A first run has been operated in july 2000 and the first results showed, as expected, a significant enhancement in photon and positron generation along the $$ axis of the tungsten crystal. Indications about a significant increase in the number of soft photons and positrons were also gathered : this point is of importance for the positron colle...

  6. Positron source based on the 48V isotope dedicated to positron lifetime spectroscopy

    International Nuclear Information System (INIS)

    Dryzek, Jerzy

    2009-01-01

    In the paper we consider application of the 48 V isotope as a source in the positron lifetime spectroscopy. The isotope was produced in the 48 Ti(p,n) 48 V reaction using 15 MeV proton beam. As a target the natural titanium thin plate was used. The measurements using the typical positron lifetime spectrometer have shown the usefulness of the source obtained for this application. Due to its properties, the source may be used for measurements of positron annihilation characteristics in high temperature or aggressive environments. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Polarized positron sources for the future linear colliders

    International Nuclear Information System (INIS)

    Chaikovska, I.

    2012-01-01

    This thesis introduces the polarized positron source as one of the key element of the future Linear Collider (LC). In this context, the different schemes of the polarized positron source are described highlighting the main issues in this technology. In particular, the main focus is on the Compton based positron source adopted by the CLIC as a preferred option for the future positron source upgrade. In this case, the circularly polarized high energy gamma rays resulting from Compton scattering are directed to a production target where an electromagnetic cascade gives rise to the production of positrons by e + -e - pair conversion. To increase the efficiency of the gamma ray production stage, a multiple collision point line integrated in energy recovery linac is proposed. The simulations of the positron production, capture and primary acceleration allow to estimate the positron production efficiency and provide a simple parametrization of the Compton based polarized positron source in the view of the future LC requirements. The storage ring based Compton source option, so-called Compton ring, is also described. The main constraint of this scheme is given by the beam dynamics resulting in the large energy spread and increased bunch length affecting the gamma ray production rate. An original theoretical contribution is shown to calculate the energy spread induced by Compton scattering. Moreover, an experiment to test the gamma ray production by Compton scattering using a state-of-art laser system developed at LAL has been conducted in the framework of the 'Mighty Laser' project at the ATF, KEK. The experimental layout as well as the main results obtained are discussed in details. The studies carried out in this thesis show that the polarized positron source based on Compton scattering is a promising candidate for the future LC polarized positron source. (author)

  8. Project of positron source at the U-120 Cyclotron, Bucharest. Status report

    International Nuclear Information System (INIS)

    Racolta, P.M.; Popa Simil, L.; Voiculescu, Dana; Miron, N.

    1999-01-01

    To extend the applications with our U-120 Cyclotron we started a project of off-line and on-line positron sources produced at the cyclotron. This machine may be successfully used for producing positron sources with few day half-life for off-line positron studies (eg. 48 V), or a cyclotron on-line intense positron beam (eg. 27 Si) with a variable energy for various materials study experiments, enough to cover a depth range from few micrometers down to tens of nanometers. Until now, using a 48 V positron source we performed experiments for determination of the Doppler broadening of the 511 KeV peak for different materials (copper, lead, indium). This research is carrier out on a cooperation agreement between IFIN-HH Bucharest and LISES-Chisinau. The positron source project is now in its initial stage. This stage consists of the experiments on the off-line version using positron sources produced in the cyclotron (eg. 48 V, 22 Na), to develop experience with detection chains (Doppler broadening and positron annihilation lifetime spectroscopy), to choose proper experiments in order to select moderator materials (W, Mo, Pt, etc.) and to study and design the different versions for the on-line production of positrons with the cyclotron. Slow positrons are valuable tools in atomic physics, materials science and solid state physics research. The controlled energy beam facility can be used to probe defects in metals, to study Fermi surfaces and materials surfaces and interfaces and to obtain detailed information about the electronic structure of materials. The aim of this project is to perform applications in the semiconductor industry, for coating materials, polymers, biomaterials etc. (authors)

  9. Project of positron source at the U-120 cyclotron Bucharest status report

    International Nuclear Information System (INIS)

    Racolta, P.M.; Simil Popa, L.; Voiculescu, Dana; Miron, N.

    2000-01-01

    To extend the applications with our U-120 Cyclotron we started a project of off-line positron sources produced at the cyclotron. This machine may be successfully used for producing positron sources with few day half-life for off-line positron studies (e.g. 48 V), or a cyclotron on-line intense positron beam (e.g. 27 Si) with a variable energy for various materials study experiments, enough to cover a depth range from a few micrometers down to tens of nanometers. Until now, using a 48 V positron source we performed experiments for determination of the Doppler broadening of the 511 keV peak for different materials (copper, lead, indium). This research is carried out on a cooperation agreement between IFIN-HH Bucharest and LISES-Chisinau. The positron source project is now in its initial stage. This stage consists of the experiments on the off-line version using positron source produced in the cyclotron (e.g. 48 V, 22 Na), to develop experience with detection chains (Doppler broadening and positron annihilation lifetime spectroscopy) to choose proper experiments in order to select moderator materials (W, Mo, Pt, etc.) and to study and design the different versions for the on-line positron production by cyclotron. Slow positrons are valuable tools in atomic physics, materials science and solid state physics research. The controlled energy beam facility can be used to probe defects in metals, to study Fermi surfaces and materials surfaces and interfaces and to obtained detailed information about electronic structures of materials. The aim of this project is to perform applications in the semiconductor industry, for coating materials, polymers, biomaterials, etc. (authors)

  10. Polarization Study for NLC Positron Source Using EGS4

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C

    2000-09-20

    SLAC is exploring a polarized positron source to study new physics for the NLC project. The positron source envisioned in this paper consists of a polarized electron source, a 50-MeV electron accelerator, a thin target less-than-or-equal-to 0.2 radiation length for positron production, and a capture system for high-energy, small angular divergence positrons. The EGS4 code was used to study the yield, energy spectra, emission-angle distribution, and the mean polarization of the positrons emanating from W-Re and Ti targets hit by longitudinally polarized electron and photon beams. To account for polarization within the EGS4 code a method devised by Flottmann was used, which takes into account polarization transfer for pair production, bremsstrahlung, and Compton interactions. A mean polarization of 0.85 for positrons with energies greater than 25 MeV was obtained. Most of the high-energy positrons were emitted within a forward angle of 20 degrees. The yield of positrons above 25 MeV per incident photon was 0.034, which was about 70 times higher than that obtained with an electron beam.

  11. High-intensity positron microprobe at the Thomas Jefferson National Accelerator Facility

    International Nuclear Information System (INIS)

    Golge, S.; Vlahovic, B.; Wojtsekhowski, B.

    2014-01-01

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity high-brightness slow-positron production source with a projected intensity on the order of 10 10  e + /s. Reaching this intensity in our design relies on the transport of positrons (T + below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. This design progressed through Monte Carlo optimizations of: electron/positron beam energies and converter target thickness, transport of the e + beam from the converter to the moderator, extraction of the e + beam from the magnetic channel, a synchronized raster system, and moderator efficiency calculations. For the extraction of e + from the magnetic channel, a magnetic field terminator plug prototype has been built and experimental results on the effectiveness of the prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.

  12. High-intensity positron microprobe at the Thomas Jefferson National Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Golge, S., E-mail: serkan.golge@nasa.gov; Vlahovic, B. [North Carolina Central University, Durham, North Carolina 27707 (United States); Wojtsekhowski, B. [Jefferson Laboratory, 12000 Jefferson Ave., Newport News, Virginia 23606 (United States)

    2014-06-21

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity high-brightness slow-positron production source with a projected intensity on the order of 10{sup 10 }e{sup +}/s. Reaching this intensity in our design relies on the transport of positrons (T{sub +} below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. This design progressed through Monte Carlo optimizations of: electron/positron beam energies and converter target thickness, transport of the e{sup +} beam from the converter to the moderator, extraction of the e{sup +} beam from the magnetic channel, a synchronized raster system, and moderator efficiency calculations. For the extraction of e{sup +} from the magnetic channel, a magnetic field terminator plug prototype has been built and experimental results on the effectiveness of the prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.

  13. Ion implanted Na22 source for positron lifetime measurements

    International Nuclear Information System (INIS)

    Fluss, M.J.; Smedeskjaer, L.C.

    1979-04-01

    A new positron source-sample fabrication technique, intended for high temperature positron annihilation measurements, was developed. The method makes use of a mass separator to implant pure Na 22 into the sample surface. The application of this technique to Cu is described. A brief discussion of the origin of the source component is given, and different possibilities of correcting for it are pointed out. 3 references

  14. Development of a Positron Source for JLab at the IAC

    Energy Technology Data Exchange (ETDEWEB)

    Forest, Tony [Idaho State Univ., Pocatello, ID (United States)

    2013-10-12

    We report on the research performed towards the development of a positron sour for Jefferson Lab's (JLab) Continuous Electron Beam Accelerator Facility (CEBAF) in Newport News, VA. The first year of work was used to benchmark the predictions of our current simulation with positron production efficiency measurements at the IAC. The second year used the benchmarked simulation to design a beam line configuration which optimized positron production efficiency while minimizing radioactive waste as well as design and construct a positron converter target. The final year quantified the performance of the positron source. This joint research and development project brought together the experiences of both electron accelerator facilities. Our intention is to use the project as a spring board towards developing a program of accelerator based research and education which will train students to meet the needs of both facilities as well as provide a pool of trained scientists.

  15. Beam Collimation Studies for the ILC Positron Source

    Energy Technology Data Exchange (ETDEWEB)

    Drozhdin, A.; /Fermilab; Nosochkov, Y.; Zhou, F.; /SLAC

    2008-06-26

    Results of the collimation studies for the ILC positron source beam line are presented. The calculations of primary positron beam loss are done using the ELEGANT code. The secondary positron and electron beam loss, the synchrotron radiation along the beam line and the bremsstrahlung radiation in the collimators are simulated using the STRUCT code. The first part of the collimation system, located right after the positron source target (0.125 GeV), is used for protection of the RF Linac sections from heating and radiation. The second part of the system is used for final collimation before the beam injection into the Damping Ring at 5 GeV. The calculated power loss in the collimation region is within 100 W/m, with the loss in the collimators of 0.2-5 kW. The beam transfer efficiency from the target to the Damping Ring is 13.5%.

  16. Physical models and primary design of reactor based slow positron source at CMRR

    Science.gov (United States)

    Wang, Guanbo; Li, Rundong; Qian, Dazhi; Yang, Xin

    2018-07-01

    Slow positron facilities are widely used in material science. A high intensity slow positron source is now at the design stage based on the China Mianyang Research Reactor (CMRR). This paper describes the physical models and our primary design. We use different computer programs or mathematical formula to simulate different physical process, and validate them by proper experiments. Considering the feasibility, we propose a primary design, containing a cadmium shield, a honeycomb arranged W tubes assembly, electrical lenses, and a solenoid. It is planned to be vertically inserted in the Si-doping channel. And the beam intensity is expected to be 5 ×109

  17. Positron annihilation lifetime spectroscopy source correction determination: A simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, Gurmeet S.; Keeble, David J., E-mail: d.j.keeble@dundee.ac.uk

    2016-02-01

    Positron annihilation lifetime spectroscopy (PALS) can provide sensitive detection and identification of vacancy-related point defects in materials. These measurements are normally performed using a positron source supported, and enclosed by, a thin foil. Annihilation events from this source arrangement must be quantified and are normally subtracted from the spectrum before analysis of the material lifetime components proceeds. Here simulated PALS spectra reproducing source correction evaluation experiments have been systematically fitted and analysed using the packages PALSfit and MELT. Simulations were performed assuming a single lifetime material, and for a material with two lifetime components. Source correction terms representing a directly deposited source and various foil supported sources were added. It is shown that in principle these source terms can be extracted from suitably designed experiments, but that fitting a number of independent, nominally identical, spectra is recommended.

  18. Development of mini linac-based positron source and an efficient positronium convertor for positively charged antihydrogen production

    Science.gov (United States)

    Muranaka, T.; Debu, P.; Dupré, P.; Liszkay, L.; Mansoulie, B.; Pérez, P.; Rey, J. M.; Ruiz, N.; Sacquin, Y.; Crivelli, P.; Gendotti, U.; Rubbia, A.

    2010-04-01

    We have installed in Saclay a facility for an intense positron source in November 2008. It is based on a compact 5.5 MeV electron linac connected to a reaction chamber with a tungsten target inside to produce positrons via pair production. The expected production rate for fast positrons is 5·1011 per second. The study of moderation of fast positrons and the construction of a slow positron trap are underway. In parallel, we have investigated an efficient positron-positronium convertor using porous silica materials. These studies are parts of a project to produce positively charged antihydrogen ions aiming to demonstrate the feasibility of a free fall antigravity measurement of neutral antihydrogen.

  19. Development of mini linac-based positron source and an efficient positronium convertor for positively charged antihydrogen production

    International Nuclear Information System (INIS)

    Muranaka, T; Debu, P; Dupre, P; Liszkay, L; Mansoulie, B; Perez, P; Rey, J M; Ruiz, N; Sacquin, Y; Crivelli, P; Gendotti, U; Rubbia, A

    2010-01-01

    We have installed in Saclay a facility for an intense positron source in November 2008. It is based on a compact 5.5 MeV electron linac connected to a reaction chamber with a tungsten target inside to produce positrons via pair production. The expected production rate for fast positrons is 5·10 11 per second. The study of moderation of fast positrons and the construction of a slow positron trap are underway. In parallel, we have investigated an efficient positron-positronium convertor using porous silica materials. These studies are parts of a project to produce positively charged antihydrogen ions aiming to demonstrate the feasibility of a free fall antigravity measurement of neutral antihydrogen.

  20. Development of mini linac-based positron source and an efficient positronium convertor for positively charged antihydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Muranaka, T; Debu, P; Dupre, P; Liszkay, L; Mansoulie, B; Perez, P; Rey, J M; Ruiz, N; Sacquin, Y [Irfu, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Crivelli, P; Gendotti, U; Rubbia, A, E-mail: tomoko.muranaka@cea.f [Institut fuer TelichenPhysik, ETHZ, CH-8093 Zuerich (Switzerland)

    2010-04-01

    We have installed in Saclay a facility for an intense positron source in November 2008. It is based on a compact 5.5 MeV electron linac connected to a reaction chamber with a tungsten target inside to produce positrons via pair production. The expected production rate for fast positrons is 5{center_dot}10{sup 11} per second. The study of moderation of fast positrons and the construction of a slow positron trap are underway. In parallel, we have investigated an efficient positron-positronium convertor using porous silica materials. These studies are parts of a project to produce positively charged antihydrogen ions aiming to demonstrate the feasibility of a free fall antigravity measurement of neutral antihydrogen.

  1. Pulsars as the sources of high energy cosmic ray positrons

    International Nuclear Information System (INIS)

    Hooper, Dan; Blasi, Pasquale; Serpico, Pasquale Dario

    2009-01-01

    Recent results from the PAMELA satellite indicate the presence of a large flux of positrons (relative to electrons) in the cosmic ray spectrum between approximately 10 and 100 GeV. As annihilating dark matter particles in many models are predicted to contribute to the cosmic ray positron spectrum in this energy range, a great deal of interest has resulted from this observation. Here, we consider pulsars (rapidly spinning, magnetized neutron stars) as an alternative source of this signal. After calculating the contribution to the cosmic ray positron and electron spectra from pulsars, we find that the spectrum observed by PAMELA could plausibly originate from such sources. In particular, a significant contribution is expected from the sum of all mature pulsars throughout the Milky Way, as well as from the most nearby mature pulsars (such as Geminga and B0656+14). The signal from nearby pulsars is expected to generate a small but significant dipole anisotropy in the cosmic ray electron spectrum, potentially providing a method by which the Fermi gamma-ray space telescope would be capable of discriminating between the pulsar and dark matter origins of the observed high energy positrons

  2. SLC positron source: Simulation and performance

    International Nuclear Information System (INIS)

    Pitthan, R.; Braun, H.; Clendenin, J.E.; Ecklund, S.D.; Helm, R.H.; Kulikov, A.V.; Odian, A.C.; Pei, G.X.; Ross, M.C.; Woodley, M.D.

    1991-06-01

    Performance of the source was found to be in good general agreement with computer simulations with S-band acceleration, and where not, the simulations lead to identification of problems, in particular the underestimated impact of linac misalignments due to the 1989 Loma Prieta Earthquake. 13 refs., 7 figs

  3. Positron energy distributions from a hybrid positron source based on channeling radiation

    International Nuclear Information System (INIS)

    Azadegan, B.; Mahdipour, A.; Dabagov, S.B.; Wagner, W.

    2013-01-01

    A hybrid positron source which is based on the generation of channeling radiation by relativistic electrons channeled along different crystallographic planes and axes of a tungsten single crystal and subsequent conversion of radiation into e + e − -pairs in an amorphous tungsten target is described. The photon spectra of channeling radiation are calculated using the Doyle–Turner approximation for the continuum potentials and classical equations of motion for channeled particles to obtain their trajectories, velocities and accelerations. The spectral-angular distributions of channeling radiation are found applying classical electrodynamics. Finally, the conversion of radiation into e + e − -pairs and the energy distributions of positrons are simulated using the GEANT4 package

  4. Study on efficiency of multi-wire tungsten moderator for slow positron source on SPring-8 hard synchrotron radiation

    International Nuclear Information System (INIS)

    Plokhoi, Vladimir; Kandiev, Yadgar; Samarin, Sergey; Malyshkin, Gennady; Baidin, Grigory; Litvinenko, Igor; Nikitin, Valery

    1999-01-01

    The paper provides results of numeric simulations of in-target positron production process, processes of moderation, thermalization, diffusion, and reemission of positrons in high efficiency multi-wire moderator made of tungsten monocrystalline wire with regular wire spacing. The paper looks into dynamics of slow positrons in the moderator's vacuum gaps taking into account of external fields. The possibility for using multi-wire moderator with non-regular structure - multi-layer w ire felt m oderator is discussed. According to maximal estimate the multi-wire moderators can reach very high efficiency of fast-slow positron transformation ∼ 10 -2 . Using such moderator the intensity of slow positron source on hard synchrotron radiation of Spring-8 can reach the level of ∼10 11 e + /s. (author)

  5. Plasma Wakefield Acceleration of an Intense Positron Beam

    Energy Technology Data Exchange (ETDEWEB)

    Blue, B

    2004-04-21

    The Plasma Wakefield Accelerator (PWFA) is an advanced accelerator concept which possess a high acceleration gradient and a long interaction length for accelerating both electrons and positrons. Although electron beam-plasma interactions have been extensively studied in connection with the PWFA, very little work has been done with respect to positron beam-plasma interactions. This dissertation addresses three issues relating to a positron beam driven plasma wakefield accelerator. These issues are (a) the suitability of employing a positron drive bunch to excite a wake; (b) the transverse stability of the drive bunch; and (c) the acceleration of positrons by the plasma wake that is driven by a positron bunch. These three issues are explored first through computer simulations and then through experiments. First, a theory is developed on the impulse response of plasma to a short drive beam which is valid for small perturbations to the plasma density. This is followed up with several particle-in-cell (PIC) simulations which study the experimental parameter (bunch length, charge, radius, and plasma density) range. Next, the experimental setup is described with an emphasis on the equipment used to measure the longitudinal energy variations of the positron beam. Then, the transverse dynamics of a positron beam in a plasma are described. Special attention is given to the way focusing, defocusing, and a tilted beam would appear to be energy variations as viewed on our diagnostics. Finally, the energy dynamics imparted on a 730 {micro}m long, 40 {micro}m radius, 28.5 GeV positron beam with 1.2 x 10{sup 10} particles in a 1.4 meter long 0-2 x 10{sup 14} e{sup -}/cm{sup 3} plasma is described. First the energy loss was measured as a function of plasma density and the measurements are compared to theory. Then, an energy gain of 79 {+-} 15 MeV is shown. This is the first demonstration of energy gain of a positron beam in a plasma and it is in good agreement with the predictions

  6. A low-neutron background slow-positron source

    International Nuclear Information System (INIS)

    White, M. M.

    1998-01-01

    The addition of a thermionic rf gun [1] and a photocathode rf gun will allow the Advanced Photon Source (APS) linear accelerator (linac) [2] [3] to become a free-electron laser (FEL) driver [4]. As the FEL project progresses, the existing high-charge DC thermionic gun will no longer be critical to APS operation and could be used to generate high-energy or low-energy electrons to drive a slow-positron source. We investigated possibilities to create a useful low-energy source that could operate semi-independently and would have a low neutron background

  7. High Intensity Source Laboratory (HISL)

    International Nuclear Information System (INIS)

    1992-01-01

    The High Intensity Source Laboratory (HISL) is a laboratory facility operated for the US Department of Energy (DOE) by EG ampersand G, Energy Measurements (EG ampersand G/EM). This document is intended as an overview -- primarily for external users -- of the general purposes and capabilities of HISL; numerous technical details are beyond its scope. Moreover, systems at HISL are added, deleted, and modified to suit current needs, and upgraded with continuing development. Consequently, interested parties are invited to contact the HISL manager for detailed, current, technical, and administrative information. The HISL develops and operates pulsed radiation sources with energies, intensities, and pulse widths appropriate for several applications. Principal among these are development, characterization, and calibration of various high-bandwidth radiation detectors and diagnostic systems. Hardness/vulnerability of electronic or other sensitive components to radiation is also tested. In this connection, source development generally focuses on attending (1) the highest possible intensities with (2) reasonably short pulse widths and (3) comprehensive output characterization

  8. Performance analysis of the intense slow-positron beam at the NC State University PULSTAR reactor

    International Nuclear Information System (INIS)

    Moxom, J.; Hathaway, A.G.; Bodnaruk, E.W.; Hawari, A.I.; Xu, J.

    2007-01-01

    An intense positron beam, for application in nanophase characterization, is now under construction at the 1 MW PULSTAR nuclear reactor at North Carolina State University (NCSU). A tungsten converter/moderator is used, allowing positrons to be emitted from the surface with energies of a few electron volts. These slow positrons will be extracted from the moderator and formed into a beam by electrostatic lenses and then injected into a solenoidal magnetic field for transport to one of three experimental stations, via a beam switch. To optimize the performance of the beam and to predict the slow-positron intensity, a series of simulations were performed. A specialized Monte-Carlo routine was integrated into the charged-particle transport calculations to allow accounting for the probabilities of positron re-emission and backscattering from multiple-bank moderator/converter configurations. The results indicate that either a two-bank or a four-bank tungsten moderator/converter system is preferred for the final beam design. The predicted slow-positron beam intensities range from nearly 7x10 8 to 9x10 8 e + /s for the two-bank and the four-bank systems, respectively

  9. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses

    Science.gov (United States)

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-06-01

    The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  10. Mechanical design and development of a high power target system for the SLC Positron Source

    International Nuclear Information System (INIS)

    Reuter, E.; Mansour, D.; Porter, T.; Sax, W.; Szumillo, A.

    1991-12-01

    In order to bring the SLC Positron Source luminosity up to design specifications, the previous (stationary) positron target had to be replaced with a version which could reliably dissipate the higher power levels and cyclic pulsed thermal stresses of the high intensity 33GeV electron beam. In addition to this basic requirement, the new target system had to meet SLAC's specifications for Ultra High Vacuum, be remotely controllable, ''radiation hard,'' and designed in such a way that it could be removed and replaced quickly and easily with minimum personnel exposure to radiation. It was also desirable to integrate the target and collection components into a compact, easily manufacturable, and easily maintainable module. This paper briefly summarize the mechanical design and development of the new modular target system, its associated controls and software, alignment, and the quick removal system. Operational experience gained with the new system over the first running cycle is also summarized

  11. Investigations on a hybrid positron source with a granular converter

    Energy Technology Data Exchange (ETDEWEB)

    Artru, X. [Institut de Physique Nucleaire de Lyon, Universite Lyon 1, CNRS/IN2P3, Villeurbanne (France); Chaikovska, I. [Laboratoire de l’Accelerateur Lineaire (LAL), Universite Paris-Sud, Bat. 200, 91898 Orsay (France); Chehab, R., E-mail: chehab@lal.in2p3.fr [Institut de Physique Nucleaire de Lyon, Universite Lyon 1, CNRS/IN2P3, Villeurbanne (France); Chevallier, M. [Institut de Physique Nucleaire de Lyon, Universite Lyon 1, CNRS/IN2P3, Villeurbanne (France); Dadoun, O. [Laboratoire de l’Accelerateur Lineaire (LAL), Universite Paris-Sud, Bat. 200, 91898 Orsay (France); Furukawa, K. [Accelerator Laboratory (KEK), Oho, Tsukuba, Ibaraki 305-0801 (Japan); Guler, H. [Laboratoire de l’Accelerateur Lineaire (LAL), Universite Paris-Sud, Bat. 200, 91898 Orsay (France); Kamitani, T.; Miyahara, F.; Satoh, M. [Accelerator Laboratory (KEK), Oho, Tsukuba, Ibaraki 305-0801 (Japan); Sievers, P. [CERN, Geneva (Switzerland); Suwada, T.; Umemori, K. [Accelerator Laboratory (KEK), Oho, Tsukuba, Ibaraki 305-0801 (Japan); Variola, A. [Laboratoire de l’Accelerateur Lineaire (LAL), Universite Paris-Sud, Bat. 200, 91898 Orsay (France)

    2015-07-15

    Promising results obtained with crystal targets for positron production led to the elaboration of a hybrid source made of an axially oriented tungsten crystal, as a radiator, and an amorphous tungsten converter. If the converter is granular, made of small spheres, the heat dissipation is greatly enhanced and the thermal shocks reduced, allowing the consideration of such device for the future linear colliders. A positron source of this kind is investigated. Previous simulations have shown very promising results for the yield as for the energy deposition and the PEDD (Peak Energy Deposition Density). Here, we present detailed simulations made in this granular converter with emphasis on the energy deposition density, which is a critical parameter as learned from the breakdown of the SLC target. A test on the KEKB linac is foreseen; it will allow a determination of the energy deposited and the PEDD in the converter through temperature measurements. Four granular converters, made of W spheres of mm radius have been built at LAL-Orsay; they will be installed at KEK and compared to compact converters. A description of the experimental layout at KEK is provided. Applications to future linear colliders as CLIC and ILC are considered.

  12. The Intense Slow Positron Beam Facility at the NC State University PULSTAR Reactor

    International Nuclear Information System (INIS)

    Hawari, Ayman I.; Moxom, Jeremy; Hathaway, Alfred G.; Brown, Benjamin; Gidley, David W.; Vallery, Richard; Xu, Jun

    2009-01-01

    An intense slow positron beam is in its early stages of operation at the 1-MW open-pool PULSTAR research reactor at North Carolina State University. The positron beam line is installed in a beam port that has a 30-cmx30-cm cross sectional view of the core. The positrons are created in a tungsten converter/moderator by pair-production using gamma rays produced in the reactor core and by neutron capture reactions in cadmium cladding surrounding the tungsten. Upon moderation, slow (∼3 eV) positrons that are emitted from the moderator are electrostatically extracted, focused and magnetically guided until they exit the reactor biological shield with 1-keV energy, approximately 3-cm beam diameter and an intensity exceeding 6x10 8 positrons per second. A magnetic beam switch and transport system has been installed and tested that directs the beam into one of two spectrometers. The spectrometers are designed to implement state-of-the-art PALS and DBS techniques to perform positron and positronium annihilation studies of nanophases in matter.

  13. Notes on the rf system for the SLC positron source

    Energy Technology Data Exchange (ETDEWEB)

    Hoag, H.

    1984-10-17

    The proposed arrangement of accelerator structures, waveguide feeds and klystrons is shown. A 50 MW klystron at 20-3C will provide power for the high-field capture section immediately following the target. About 1 meter downstream of this section there will be a standard girder of four 3.05-meter SLAC constant gradient accelerator sections. These will be powered by a klystron at station 20-3D. Current thinking is that this will also be a 50 MW tube, but 35 MW might well be sufficient. Both stations will be SLEDded. The length of the rectangular waveguide feed to the capture section will be approximately 132 ft, and the attenuation will be about 0.97 db. The corresponding numbers for the feed to the standard girder are 153 ft and 1.07 db. In CN-268 dated 6/22/84: Positron Source: First 50 Nanoseconds, K. Moffeit shows that good positron acceptance requires very high accelerating fields (on the order of 70 MV/m) in the first meter following the target. Various ways of approaching this gradient in a 1-meter section have been examined.

  14. Jet target intense neutron source

    International Nuclear Information System (INIS)

    Meier, K.L.

    1977-01-01

    A jet target Intense Neutron Source (INS) is being built by the Los Alamos Scientific Laboratory with DOE/MFE funding in order to perform radiation damage experiments on materials to be used in fusion power reactors. The jet target can be either a supersonic or a subsonic jet. Each type has its particular advantages and disadvantages, and either of the jets can be placed inside the spherical blanket converter which will be used to simulate a fusion reactor neutron environment. Preliminary mock-up experiments with a 16-mA, 115 keV, H + ion beam on a nitrogen gas supersonic jet show no serious problems in the beam formation, transport, or jet interaction

  15. Ion source and injection line for high intensity medical cyclotron

    Science.gov (United States)

    Jia, XianLu; Guan, Fengping; Yao, Hongjuan; Zhang, TianJue; Yang, Jianjun; Song, Guofang; Ge, Tao; Qin, Jiuchang

    2014-02-01

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H- ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H- ion source (CIAE-CH-I type) and a short injection line, which the H- ion source of 3 mA/25 keV H- beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from the extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.

  16. Positron Beam Characteristics at NEPOMUC Upgrade

    Science.gov (United States)

    Hugenschmidt, C.; Ceeh, H.; Gigl, T.; Lippert, F.; Piochacz, C.; Reiner, M.; Schreckenbach, K.; Vohburger, S.; Weber, J.; Zimnik, S.

    2014-04-01

    In 2012, the new neutron induced positron source NEPOMUC upgrade was put into operation at FRMII. Major changes have been made to the source which consists of a neutron-γ-converter out of Cd and a Pt foil structure for electron positron pair production and positron moderation. The new design leads to an improvement of both intensity and brightness of the mono-energetic positron beam. In addition, the application of highly enriched 113Cd as neutron-γ-converter extends the lifetime of the positron source to 25 years. A new switching and remoderation device has been installed in order to allow toggling from the high-intensity primary beam to a brightness enhanced remoderated positron beam. At present, an intensity of more than 109 moderated positrons per second is achieved at NEPOMUC upgrade. The main characteristics are presented which comprise positron yield and beam profile of both the primary and the remoderated positron beam.

  17. Preliminary considerations of an intense slow positron facility based on a 78Kr loop in the high flux isotopes reactor

    International Nuclear Information System (INIS)

    Hulett, L.D. Jr.; Donohue, D.L.; Peretz, F.J.; Montgomery, B.H.; Hayter, J.B.

    1990-01-01

    Suggestions have been made to the National Steering Committee for the Advanced Neutron Source (ANS) by Mills that provisions be made to install a high intensity slow positron facility, based on a 78 Kr loop, that would be available to the general community of scientists interested in this field. The flux of thermal neutrons calculated for the ANS is E + 15 sec -1 m -2 , which Mills has estimated will produce 5 mm beam of slow positrons having a current of about 1 E + 12 sec -1 . The intensity of such a beam will be a least 3 orders of magnitude greater than those presently available. The construction of the ANS is not anticipated to be complete until the year 2000. In order to properly plan the design of the ANS, strong considerations are being given to a proof-of-principle experiment, using the presently available High Flux Isotopes Reactor, to test the 78 Kr loop technique. The positron current from the HFIR facility is expected to be about 1 E + 10 sec -1 , which is 2 orders of magnitude greater than any other available. If the experiment succeeds, a very valuable facility will be established, and important formation will be generated on how the ANS should be designed. 3 refs., 1 fig

  18. Positron emission intensities in the decay of 64Cu, 76Br and 124I

    International Nuclear Information System (INIS)

    Qaim, S.M.; Bisinger, T.; Hilgers, K.; Nayak, D.; Coenen, H.H.

    2007-01-01

    The relatively long-lived positron emitters 64 Cu (t 1/2 = 12.7 h), 76 Br (t 1/2 = 16.2 h) and 124 I (t 1/2 = 4.18 d) are finding increasing applications in positron emission tomography (PET). For precise determination of their positron emission intensities, each radionuclide was prepared via a charged particle induced reaction in a ''no-carrier-added'' form and with high radionuclidic purity. It was then subjected to γ-ray and X-ray spectroscopy as well as to anticoincidence beta and γγ-coincidence counting. The positron emission intensities measured were: 64 Cu (17.8 ± 0.4)%, 76 Br (58.2 ± 1.9)% and 124 I (22.0 ± 0.5)%. The intensity of the weak 1346 keV γ-ray emitted in the decay of 64 Cu was determined as (0.54 ± 0.03)%. Some implications of the precisely determined nuclear data are discussed. (orig.)

  19. Concepts for a slow-positron target at the advanced photon source

    International Nuclear Information System (INIS)

    Lessner, E.; White, M.

    1997-01-01

    The Advanced Photon Source (APS) linear accelerator beam could be used to produce slow positrons during the hours between the storage ring injection cycles. Initial concepts for the design of a target that is optimized for slow-positron production are discussed, and simulation results are presented. Some possible ways to increase the nominal linac beam power for improved slow-positron production are also discussed

  20. Generation and application of slow positrons based on a electron LINAC

    International Nuclear Information System (INIS)

    Kurihara, Toshikazu

    2002-01-01

    History of slow positron in Institute of Materials Structure Science High Energy Accelerator Research Organization is explained. The principle of generation and application of intense positron beam is mentioned. Two sources of intense positron are radioactive decay of radioactive isotopes emitting positron and electron-positron pair creation. The radioactive decay method uses 58 Co, 64 Cu, 11 C, 13 N, 15 O and 18 F. The electron-positron pair creation method uses nuclear reactor or electron linear accelerator (LINAC). The positron experimental facility in this organization consists of electron LINAC, slow positron beam source, positron transport and experimental station. The outline of this facility is started. The intense slow positron beam is applied to research positronium work function, electron structure of surface. New method such as combination of positron lifetime measurement and slow positron beam or Auger electron spectroscopy by positron annihilation excitation and positron reemission microscope are developed. (S.Y.)

  1. The rise in the positron fraction. Distance limits on positron point sources from cosmic ray arrival directions and diffuse gamma-rays

    Energy Technology Data Exchange (ETDEWEB)

    Gebauer, Iris; Bentele, Rosemarie [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2016-07-01

    The rise in the positron fraction as observed by AMS and previously by PAMELA, cannot be explained by the standard paradigm of cosmic ray transport in which positrons are produced by cosmic-ray-gas interactions in the interstellar medium. Possible explanations are pulsars, which produce energetic electron-positron pairs in their rotating magnetic fields, or the annihilation of dark matter. Here we assume that these positrons originate from a single close-by point source, producing equal amounts of electrons and positrons. The propagation and energy losses of these electrons and positrons are calculated numerically using the DRAGON code, the source properties are optimized to best describe the AMS data. Using the FERMI-LAT limits on a possible dipole anisotropy in electron and positron arrival directions, we put a limit on the minimum distance of such a point source. The energy losses that these energetic electrons and positrons suffer on their way through the galaxy create gamma ray photons through bremsstrahlung and Inverse Compton scattering. Using the measurement of diffuse gamma rays from Fermi-LAT we put a limit on the maximum distance of such a point source. We find that a single electron positron point source powerful enough to explain the locally observed positron fraction must reside between 225 pc and 3.7 kpc distance from the sun and compare to known pulsars.

  2. Construction of the spin-polarized slow positron beam with the RI source

    Energy Technology Data Exchange (ETDEWEB)

    Nakajyo, Terunobu; Tashiro, Mutsumi; Kanazawa, Ikuzo [Tokyo Gakugei Univ., Koganei (Japan); Komori, Fumio; Murata, Yoshimasa; Ito, Yasuo

    1997-03-01

    The electrostatic slow-positron beam is constructed by using {sup 22}Na source. We design the electrostatic lens, the system of the detector, and the Wien filter for the experiment`s system of the spin-polarized slow positron beam. The reemitted spin-polarized slow-positron spectroscopy is proposed for studying magnetic thin films and magnetic multilayers. We calculated the depolarized positron fractions in the Fe thin film Fe(10nm)/Cu(substrate) and the multilayers Cu(1nm)/Fe(10nm)/Cu(substrate). (author)

  3. Feasibility studies of a polarized positron source based on the Bremsstrahlung of polarized electrons

    International Nuclear Information System (INIS)

    Dumas, J.

    2011-09-01

    The nuclear and high-energy physics communities have shown a growing interest in the availability of high current, highly-polarized positron beams. A sufficiently energetic polarized photon or lepton incident on a target may generate, via Bremsstrahlung and pair creation within a solid target foil, electron-positron pairs that should carry some fraction of the initial polarization. Recent advances in high current (> 1 mA) spin polarized electron sources at Jefferson Lab offer the perspective of creating polarized positrons from a low energy electron beam. This thesis discusses polarization transfer from electrons to positrons in the perspective of the design optimization of a polarized positron source. The PEPPo experiment, aiming at a measurement of the positron polarization from a low energy (< 10 MeV) highly spin polarized electron beam is discussed. A successful demonstration of this technique would provide an alternative scheme for the production of low energy polarized positrons and useful information for the optimization of the design of polarized positron sources in the sub-GeV energy range. (author)

  4. Proceedings of the workshop on new kinds of positron sources for linear colliders

    International Nuclear Information System (INIS)

    Clendenin, J.; Nixon, R.

    1997-06-01

    It has been very clear from the beginning of studies for future linear colliders that the conventional positron source approach, as exemplified by the SLC source, is pushing uncomfortably close to the material limits of the conversion target. Nonetheless, since this type of positron source is better understood and relatively inexpensive to build, it has been incorporated into the initial design studies for the JLC/NLC. New ideas for positron sources for linear colliders have been regularly reported in the literature and at accelerator conferences for at least a decade, and indeed the recirculation scheme associated with the VLEPP design is nearly two decades old. Nearly all the new types of positron sources discussed in this workshop come under the heading of crystals (or channeling), undulators, and Compton. Storage ring and nuclear reactor sources were not discussed. The positron source designs that were discussed have varying degrees of maturity, but except for the case of crystal sources, where proof of principle experiments have been undertaken, experimental results are missing. It is hoped that these presentations, and especially the recommendations of the working groups, will prove useful to the various linear collider groups in deciding if and when new experimental programs for positron sources should be undertaken

  5. Positron-atom collisions

    International Nuclear Information System (INIS)

    Drachman, R.J.

    1984-01-01

    The past decade has seen the field of positron-atom collisions mature into an important sub-field of atomic physics. Increasingly intense positron sources are leading towards a situation in which electron and positron collision experiments will be on almost an equal footing, challenging theory to analyze their similarities and differences. The author reviews the advances made in theory, including dispersion theory, resonances, and inelastic processes. A survey of experimental progress and a brief discussion of astrophysical positronics is also included. (Auth.)

  6. Generation and application of slow positrons based on a electron LINAC

    CERN Document Server

    Kurihara, T

    2002-01-01

    History of slow positron in Institute of Materials Structure Science High Energy Accelerator Research Organization is explained. The principle of generation and application of intense positron beam is mentioned. Two sources of intense positron are radioactive decay of radioactive isotopes emitting positron and electron-positron pair creation. The radioactive decay method uses sup 5 sup 8 Co, sup 6 sup 4 Cu, sup 1 sup 1 C, sup 1 sup 3 N, sup 1 sup 5 O and sup 1 sup 8 F. The electron-positron pair creation method uses nuclear reactor or electron linear accelerator (LINAC). The positron experimental facility in this organization consists of electron LINAC, slow positron beam source, positron transport and experimental station. The outline of this facility is started. The intense slow positron beam is applied to research positronium work function, electron structure of surface. New method such as combination of positron lifetime measurement and slow positron beam or Auger electron spectroscopy by positron annihil...

  7. Opportunities and challenges of a low-energy positron source in the LERF

    Science.gov (United States)

    Benson, Stephen; Wojtsekhowski, Bogdan; Vlahovic, Branislav; Golge, Serkan

    2018-05-01

    Though there are many applications of low energy positrons, many experiments are source limited. Using the LERF accelerator at the Thomas Jefferson National Accelerator Facility, it is possible to build a high brightness source of very low-energy positrons. The accelerator requirements are well within the capabilities of the installed hardware. The accelerator can produce 120 kW of beam with a beam energy of up to 170 MeV. For these experiments, we only need run at up to 120 MeV. The gamma-to-positron converter must be able to absorb 20% of the beam power that the linac delivers. At this low an energy the converter, though challenging, is possible. The transport of the low energy positrons from the production target to the next stage, where the energy is reduced even further, must have a very large acceptance to be able to efficiently transport the flux of positrons from the positron production target to the moderator. We propose to accomplish such a transport by means of a guiding solenoidal field with a novel endcap design. In this presentation, we will present the proposed schemes necessary to realize such a high brightness positron source.

  8. High Intensity Polarized Electron Sources

    International Nuclear Information System (INIS)

    Poelker, Benard; Adderley, Philip; Brittian, Joshua; Clark, J.; Grames, Joseph; Hansknecht, John; McCarter, James; Stutzman, Marcy; Suleiman, Riad; Surles-law, Kenneth

    2008-01-01

    During the 1990s, at numerous facilities world wide, extensive RandD devoted to constructing reliable GaAs photoguns helped ensure successful accelerator-based nuclear and high-energy physics programs using spin polarized electron beams. Today, polarized electron source technology is considered mature, with most GaAs photoguns meeting accelerator and experiment beam specifications in a relatively trouble-free manner. Proposals for new collider facilities however, require electron beams with parameters beyond today's state-of-the-art and serve to renew interest in conducting polarized electron source RandD. And at CEBAF/Jefferson Lab, there is an immediate pressing need to prepare for new experiments that require considerably more beam current than before. One experiment in particular?Q-weak, a parity violation experiment that will look for physics beyond the Standard Model?requires 180 uA average current at polarization >80% for a duration of one year, with run-averaged helicity correlate

  9. Source theory analysis of electron--positron annihilation experiments

    International Nuclear Information System (INIS)

    Schwinger, J.

    1975-01-01

    The phenomenological viewpoint already applied to deep inelastic scattering is extended to the discussion of electron-positron annihilation experiments. Some heuristic arguments lead to simple forms for the pion differential cross section that are in reasonable accord with the published experimental data in the energy interval 3 to 4.8 GeV

  10. ON COMPUTING UPPER LIMITS TO SOURCE INTENSITIES

    International Nuclear Information System (INIS)

    Kashyap, Vinay L.; Siemiginowska, Aneta; Van Dyk, David A.; Xu Jin; Connors, Alanna; Freeman, Peter E.; Zezas, Andreas

    2010-01-01

    A common problem in astrophysics is determining how bright a source could be and still not be detected in an observation. Despite the simplicity with which the problem can be stated, the solution involves complicated statistical issues that require careful analysis. In contrast to the more familiar confidence bound, this concept has never been formally analyzed, leading to a great variety of often ad hoc solutions. Here we formulate and describe the problem in a self-consistent manner. Detection significance is usually defined by the acceptable proportion of false positives (background fluctuations that are claimed as detections, or Type I error), and we invoke the complementary concept of false negatives (real sources that go undetected, or Type II error), based on the statistical power of a test, to compute an upper limit to the detectable source intensity. To determine the minimum intensity that a source must have for it to be detected, we first define a detection threshold and then compute the probabilities of detecting sources of various intensities at the given threshold. The intensity that corresponds to the specified Type II error probability defines that minimum intensity and is identified as the upper limit. Thus, an upper limit is a characteristic of the detection procedure rather than the strength of any particular source. It should not be confused with confidence intervals or other estimates of source intensity. This is particularly important given the large number of catalogs that are being generated from increasingly sensitive surveys. We discuss, with examples, the differences between these upper limits and confidence bounds. Both measures are useful quantities that should be reported in order to extract the most science from catalogs, though they answer different statistical questions: an upper bound describes an inference range on the source intensity, while an upper limit calibrates the detection process. We provide a recipe for computing upper

  11. High efficiency positron moderation

    International Nuclear Information System (INIS)

    Taqqu, D.

    1990-01-01

    A new positron moderation scheme is proposed. It makes use of electric and magnetic fields to confine the β + emitted by a radioactive source forcing them to slow down within a thin foil. A specific arrangement is described where an intermediary slowed-down beam of energy below 10 keV is produced. By directing it towards a standard moderator optimal conversion into slow positrons is achieved. This scheme is best applied to short lived β + emitters for which a 25% moderation efficiency can be reached. Within the state of the art technology a slow positron source intensity exceeding 2 x 10 10 e + /sec is achievable. (orig.)

  12. Beam monitoring system for intense neutron source

    International Nuclear Information System (INIS)

    Tron, A.M.

    2001-01-01

    Monitoring system realizing novel principle of operation and allowing to register a two-dimensional beam current distribution within entire aperture (100...200 mm) of ion pipe for a time in nanosecond range has been designed and accomplished for beam control of the INR intense neutron source, for preventing thermo-mechanical damage of its first wall. Key unit of the system is monitor of two-dimensional beam current distribution, elements of which are high resistant to heating by the beam and to radiation off the source. The description of the system and monitor are presented. Implementation of the system for the future sources with more high intensities are discussed. (author)

  13. Multicharged and intense heavy ion beam sources

    International Nuclear Information System (INIS)

    Kutner, V.B.

    1981-01-01

    The cyclotron plasma-are source (PIG), duoplasmatron (DP), laser source (LS), electron beam ion source (EBIS) and electron cyclotron resonance source (ECRS) from the viewpoint of generating intense and high charge state beams are considered. It is pointed out that for the last years three types of multicharged ion sources-EBIS, ECR and LS have been essentially developed. In the EBIS source the Xe 48+ ions are produced. The present day level of the development of the electron-beam ionization technique shows that by means of this technique intensive uranium nuclei beams production becomes a reality. On the ECR source Xe 26+ approximately 4x10 10 h/s, Asub(r)sup(12+) approximately 10 12 h/s intensive ion beams are produced. In the laser source a full number of C 6+ ions during one laser pulse constitutes not less than 10 10 from the 5x10mm 2 emission slit. At the present time important results are obtained pointing to the possibility to separate the ion component of laser plasma in the cyclotron central region. On the PIG source the Xe 15+ ion current up to 10μA per pulse is produced. In the duoplasmatron the 11-charge state of xenon ion beams is reached [ru

  14. Production of slow-positron beams with an electron linac

    International Nuclear Information System (INIS)

    Howell, R.H.; Alvarez, R.A.; Stanek, M.

    1982-01-01

    Intense, pulsed beams of low-energy positrons have been produced by a high-energy beam from an electron linac. The production efficiency for low-energy positrons has been determined for electrons with 60 to 120 MeV energy, low-energy positron beams from a linac can be of much higher intensity than those beams currently derived from radioactive sources

  15. Study of a positron source generated by photons from ultrarelativistic channeled particles

    International Nuclear Information System (INIS)

    Chehab, R.; Couchot, F.; Nyaiesh, A.R.; Richard, F.; Artru, X.

    1989-03-01

    Radiation by channeled electrons in Germanium and Silicon crystals along the axis is studied as a very promising photon source of small angular divergence for positron generation in amorphous targets. Radiation rates for different crystal lengths - from some tenths of mm to 10 mm - and two electron incident energies, 5 and 20 GeV, are considered and a comparison between the two crystals is presented. Thermic behaviour of the crystal under incidence of bunches of 10 10 electrons is also examined. The corresponding positron yields for tungsten amorphous converters - of 0.5 and 1 X o thickness - are calculated considering the case of a Germanium photon generator. Assuming a large acceptance optical matching system as the adiabatic device of the SLC, accepted positrons are evaluated and positron yields larger than 1 e + /e - are obtained

  16. Hybrid scheme of positron source at SPARC-LAB LNF facility

    Energy Technology Data Exchange (ETDEWEB)

    Abdrashitov, S.V., E-mail: abdsv@tpu.ru [National Research Tomsk Polytechnic University, Lenin Ave 30, 634050 Tomsk (Russian Federation); National Research Tomsk State University, Lenin Ave 36, 634050 Tomsk (Russian Federation); Bogdanov, O.V. [National Research Tomsk Polytechnic University, Lenin Ave 30, 634050 Tomsk (Russian Federation); Dabagov, S.B. [INFN Laboratori Nazionali di Frascati, Via E. Fermi 40, I-00044 Frascati, RM (Italy); RAS PN Lebedev Physical Institute, Leninskiy Prospekt 53, 119991 Moscow (Russian Federation); NRNU MEPhI, Kashirskoe Highway 31, 115409 Moscow (Russian Federation); Pivovarov, Yu.L.; Tukhfatullin, T.A. [National Research Tomsk Polytechnic University, Lenin Ave 30, 634050 Tomsk (Russian Federation)

    2015-07-15

    The hybrid scheme of the positron source for SPARC-LAB LNF facility (Frascati, Italy) is proposed. The comparison of the positron yield in a thin amorphous W converter of 0.1 mm thickness produced by bremsstrahlung, by axial 〈1 0 0〉 and planar (1 1 0) channeling radiations in a W crystal is performed for the positron energy range of 1 ÷ 3 MeV. It is shown that the radiation from 200 MeV electrons (parameters of SPARC-LAB LNF Frascati) in a 10 μm W crystal can produce positrons in the radiator of 0.1 mm thickness with the rate of 10–10{sup 2} s{sup −1} at planar channeling, of 10{sup 2}–10{sup 3} s{sup −1} at bremsstrahlung and of 10{sup 3}–10{sup 4} s{sup −1} at axial channeling.

  17. Microstructural probing of ferritic/martensitic steels using internal transmutation-based positron source

    Science.gov (United States)

    Krsjak, Vladimir; Dai, Yong

    2015-10-01

    This paper presents the use of an internal 44Ti/44Sc radioisotope source for a direct microstructural characterization of ferritic/martensitic (f/m) steels after irradiation in targets of spallation neutron sources. Gamma spectroscopy measurements show a production of ∼1MBq of 44Ti per 1 g of f/m steels irradiated at 1 dpa (displaced per atom) in the mixed proton-neutron spectrum at the Swiss spallation neutron source (SINQ). In the decay chain 44Ti → 44Sc → 44Ca, positrons are produced together with prompt gamma rays which enable the application of different positron annihilation spectroscopy (PAS) analyses, including lifetime and Doppler broadening spectroscopy. Due to the high production yield, long half-life and relatively high energy of positrons of 44Ti, this methodology opens up new potential for simple, effective and inexpensive characterization of radiation induced defects in f/m steels irradiated in a spallation target.

  18. Conceptual design of a slow positron source based on a magnetic trap

    CERN Document Server

    Volosov, V I; Mezentsev, N A

    2001-01-01

    A unique 10.3 T superconducting wiggler was designed and manufactured at BINP SB RAS. The installation of this wiggler in the SPring-8 storage ring provides a possibility to generate a high-intensity beam of photons (SR) with energy above 1 MeV (Ando et al., J. Synchrotron Radiat. 5 (1998) 360). Conversion of photons to positrons on high-Z material (tungsten) targets creates an integrated positron flux more than 10 sup 1 sup 3 particles per second. The energy spectrum of the positrons has a maximum at 0.5 MeV and the half-width about 1 MeV (Plokhoi et al., Jpn. J. Appl. Phys. 38 (1999) 604). The traditional methods of positron moderation have the efficiency epsilon=N sub s /N sub f of 10 sup - sup 4 (metallic moderators) to 10 sup - sup 2 (solid rare gas moderators) (Mills and Gullikson, Appl. Phys. Lett. 49 (1986) 1121). The high flux of primary positrons restricts the choice to a tungsten moderator that has epsilon approx 10 sup - sup 4 only (Schultz, Nuc. Instr. and Meth. B 30 (1988) 94). The aim of our pr...

  19. Beam intensity increases at the intense pulsed neutron source accelerator

    International Nuclear Information System (INIS)

    Potts, C.; Brumwell, F.; Norem, J.; Rauchas, A.; Stipp, V.; Volk, G.

    1985-01-01

    The Intense Pulsed Neutron Source (IPNS) accelerator system has managed a 40% increase in time average beam current over the last two years. Currents of up to 15.6μA (3.25 x 10 12 protons at 30 Hz) have been successfully accelerated and cleanly extracted. Our high current operation demands low loss beam handling to permit hands-on maintenance. Synchrotron beam handling efficiencies of 90% are routine. A new H - ion source which was installed in March of 1983 offered the opportunity to get above 8 μA but an instability caused unacceptable losses when attempting to operate at 10 μA and above. Simple techniques to control the instabilities were introduced and have worked well. These techniques are discussed below. Other improvements in the regulation of various power supplies have provided greatly improved low energy orbit stability and contributed substantially to the increased beam current

  20. Internal positron source production with a cyclotron and vacancy study in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kawasuso, Atsuo; Masuno, Shin-ichi; Okada, Sohei [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Hasegawa, Masayuki; Suezawa, Masashi

    1997-03-01

    In order to detect thermal vacancies in Si, in situ positron annihilation measurement has been performed using an internal source method. An increase (decrease) in S-parameter (W-parameter) was observed above 1200degC. It was explained in terms of the formation of thermal vacancies. (author)

  1. The intense slow positron beam facility at the PULSTAR reactor and applications in nano-materials study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ming; Moxom, Jeremy; Hawari, Ayman I. [Nuclear Reactor Program, Department of Nuclear Engineering, North Carolina State University, P.O. Box 7909, Raleigh, NC 27695 (United States); Gidley, David W. [Department of Physics, University of Michigan, 450 Church Street, Ann Arbor MI 48109 (United States)

    2013-04-19

    An intense slow positron beam has been established at the PULSTAR nuclear research reactor of North Carolina State University. The slow positrons are generated by pair production in a tungsten moderator from gammarays produced in the reactor core and by neutron capture reactions in cadmium. The moderated positrons are electrostatically extracted and magnetically guided out of the region near the core. Subsequently, the positrons are used in two spectrometers that are capable of performing positron annihilation lifetime spectroscopy (PALS) and positron Doppler broadening spectroscopy (DBS) to probe the defect and free volume properties of materials. One of the spectrometers (e{sup +}-PALS) utilizes an rf buncher to produce a pulsed beam and has a timing resolution of 277 ps. The second spectrometer (Ps-PALS) uses a secondary electron timing technique and is dedicated to positronium lifetime measurements with an approximately 1 ns timing resolution. PALS measurements have been conducted in the e{sup +}-PALS spectrometer on a series of nano-materials including organic photovoltaic thin films, membranes for filtration, and polymeric fibers. These studies have resulted in understanding some critical issues related to the development of the examined nano-materials.

  2. The intense slow positron beam facility at the PULSTAR reactor and applications in nano-materials study

    Science.gov (United States)

    Liu, Ming; Moxom, Jeremy; Hawari, Ayman I.; Gidley, David W.

    2013-04-01

    An intense slow positron beam has been established at the PULSTAR nuclear research reactor of North Carolina State University. The slow positrons are generated by pair production in a tungsten moderator from gammarays produced in the reactor core and by neutron capture reactions in cadmium. The moderated positrons are electrostatically extracted and magnetically guided out of the region near the core. Subsequently, the positrons are used in two spectrometers that are capable of performing positron annihilation lifetime spectroscopy (PALS) and positron Doppler broadening spectroscopy (DBS) to probe the defect and free volume properties of materials. One of the spectrometers (e+-PALS) utilizes an rf buncher to produce a pulsed beam and has a timing resolution of 277 ps. The second spectrometer (Ps-PALS) uses a secondary electron timing technique and is dedicated to positronium lifetime measurements with an approximately 1 ns timing resolution. PALS measurements have been conducted in the e+-PALS spectrometer on a series of nano-materials including organic photovoltaic thin films, membranes for filtration, and polymeric fibers. These studies have resulted in understanding some critical issues related to the development of the examined nano-materials.

  3. Model-independent requirements to the source of positrons in the galactic centre

    International Nuclear Information System (INIS)

    Aharonyan, F.A.

    1986-01-01

    The main requirements, following from the observational data in a wide range of electromagnetic waves, to positron source in the galactic centre are formulated. The most probable mechanism providing an efficiency of positron production of 10% is the pair production at photon-photon collisions. This mechanism can be realized a) in a thermal e + e - pair-dominated weak-relativistic plasma and b) at the development of a nonthermal electromagnetic cascade initiated by relativistic particles in the field of X-rays. Gamma-astronomical observations in the region of E γ ≥ 10 11 eV can be crucial in the choice of the model

  4. Effective source size, radial, angular and energy spread of therapeutic 11C positron emitter beams produced by 12C fragmentation

    Science.gov (United States)

    Lazzeroni, Marta; Brahme, Anders

    2014-02-01

    The use of positron emitter light ion beams in combination with PET (Positron Emission Tomography) and PET-CT (Computed Tomography) imaging could significantly improve treatment verification and dose delivery imaging during radiation therapy. The present study is dedicated to the analysis of the beam quality in terms of the effective source size, as well as radial, angular and energy spread of the 11C ion beam produced by projectile fragmentation of a primary point monodirectional and monoenergetic 12C ion beam in a dedicated range shifter of different materials. This study was performed combining analytical methods describing the transport of particles in matter and the Monte Carlo code SHIELD-HIT+. A high brilliance and production yield of 11C fragments with a small effective source size and emittance is best achieved with a decelerator made of two media: a first liquid hydrogen section of about 20 cm followed by a hydrogen rich section of variable length. The calculated intensity of the produced 11C ion beam ranges from about 5% to 8% of the primary 12C beam intensity depending on the exit energy and the acceptance of the beam transport system. The angular spread is lower than 1 degree for all the materials studied, but the brilliance of the beam is the highest with the proposed mixed decelerator.

  5. Positron Source from Betatron X-rays Emitted in a Plasma Wiggler

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.K.; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; /UCLA; Barnes, C.D.; Decker, F.J.; Hogan, M.J.; Iverson, R.H.; Krejcik, P.; O' Connell, C.L.; Siemann, R.; Walz, D.R.; /SLAC; Deng, S.; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

    2006-04-21

    In the E-167 plasma wakefield accelerator (PWFA) experiments in the Final Focus Test Beam (FFTB) at the Stanford Linear Accelerator Center (SLAC), an ultra-short, 28.5 GeV electron beam field ionizes a neutral column of Lithium vapor. In the underdense regime, all plasma electrons are expelled creating an ion column. The beam electrons undergo multiple betatron oscillations leading to a large flux of broadband synchrotron radiation. With a plasma density of 3 x 10{sup 17}cm{sup -3}, the effective focusing gradient is near 9 MT/m with critical photon energies exceeding 50 MeV for on-axis radiation. A positron source is the initial application being explored for these X-rays, as photo-production of positrons eliminates many of the thermal stress and shock wave issues associated with traditional Bremsstrahlung sources. Photo-production of positrons has been well-studied; however, the brightness of plasma X-ray sources provides certain advantages. In this paper, we present results of the simulated radiation spectra for the E-167 experiments, and compute the expected positron yield.

  6. Intense γ-ray generation for a polarized positron beam in a linear collider

    Directory of Open Access Journals (Sweden)

    Y. Miyahara

    2001-12-01

    Full Text Available γ-ray generation by Compton backscattering in an optical lens series with periodic focal points is considered to produce a polarized positron beam for a linear collider. The lens series is composed of 20 unit cells with a length of 210 mm. Each lens has a hole to pass an electron beam with an energy of 5.8 GeV and the generated γ rays. It is shown by diffraction analysis that laser beam loss in the series is very small, and the beam size is periodically reduced to 26 μm. Electron beam size is reduced to 34 μm in a superconducting solenoid with a field of 15 T. To get a required γ-ray yield of 7×10^{15} γ/s, only one circularly polarized CO_{2} laser source with a power of 24 kW is needed.

  7. Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth

    OpenAIRE

    Abeysekara, A. U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Rojas, D. Avila; Solares, H. A. Ayala; Barber, A. S.; Bautista-Elivar, N.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Berley, D.

    2017-01-01

    The unexpectedly high flux of cosmic ray positrons detected at Earth may originate from nearby astrophysical sources, dark matter, or unknown processes of cosmic-ray secondary production. We report the detection, using the HighAltitude Water Cherenkov Observatory (HAWC), of extended tera-electron volt gamma-ray emission coincident with the locations of two nearby middle-aged pulsars (Geminga and PSR B0656+14). The HAWC observations demonstrate that these pulsars are indeed local sources of ac...

  8. Measurement of the positron polarization at an helical undulator based positron source for the international linear collider ILC. The E-166 experiment at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Laihem

    2008-06-05

    A helical undulator based polarized positron source is forseen at a future International Linear Collider (ILC). The E-166 experiment has tested this scheme using a one meter long, short-period, pulsed helical undulator installed in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 46.6 GeV electron beam passing through this undulator generated circularly polarized photons with energies up to about 8 MeV. The generated photons of several MeV with circular polarization are then converted in a relatively thin target to generate longitudinally polarized positrons. Measurements of the positron polarization have been performed at 5 different energies of the positrons. In addition electron polarization has been determined for one energy point. For a comparison of the measured asymmetries with the expectations detailed simulations were necessary. This required upgrading GEANT4 to include the dominant polarization dependent interactions of electrons, positrons and photons in matter. The measured polarization of the positrons agrees with the expectations and is for the energy point with the highest polarization at 6MeV about 80%. (orig.)

  9. Status of the intense pulsed neutron source

    International Nuclear Information System (INIS)

    Brown, B.S.; Carpenter, J.M.; Crawford, R.K.; Rauchas, A.V.; Schulke, A.W.; Worlton, T.G.

    1989-01-01

    Since 1981 the average proton currents at IPNS has increased substantially. The reliability has averaged 91%. The moderator has changed from a room temperature polyethylene to cryogenic methane. This report details progress made at IPNS (Intense Pulsed Neutron Source) during the last two years. The topics discussed are the operating status of the accelerator systems, other accelerator activities (such as, IPNS participation in SDI), instrumentation operating at IPNS, chopper development at IPNS, data acquisition, Booster target, moderators and examples of recent scientific results. The ever increasing instrument capability, the Booster target and the very active involvement with the scientific user community guarantees a productive scientific future at IPNS. 9 figs., 3 tabs

  10. Demonstration of electron clearing effect by means of a clearing electrode in high-intensity positron ring

    International Nuclear Information System (INIS)

    Suetsugu, Y.; Fukuma, H.; Wang, L.; Pivi, M.; Morishige, A.; Suzuki, Y.; Tsukamoto, M.; Tsuchiya, M.

    2009-01-01

    In the beam pipe of high-intensity positron/proton storage rings, undesired electron clouds may be first produced by photoelectrons and the ionization of residual gases; then the clouds increase by the secondary electron emission. In this study, a strip-line clearing electrode has been developed to mitigate the electron-cloud effect in high-intensity positron/proton storage rings. The electrode is composed of a thin tungsten layer with a thickness of 0.1 mm formed on a thin alumina ceramic layer with a thickness of 0.2 mm. The narrow alumina gap between the electrode and the beam pipe decreases the beam impedance and also enhances the heat transfer from the electrode to the beam pipe. A test model has been installed in the KEK B-factory (KEKB) positron ring, along with an electron monitor with a retarding grid. The electron density in a field free region decreased by one order of magnitude was observed on the application of ±500 V to the electrode at a beam current of 1.6 A with 1585 bunches. The reduction in the electron density was more drastic in a vertical magnetic field of 0.77 T, that is, the electron density decreased by several orders by applying +500 V to the electrode at the same beam current. This experiment is the first experiment demonstrating the principle of the clearing electrode that is used to mitigate the electron-cloud effect in a positron ring.

  11. Magnetic focusing of an intense slow positron beam for enhanced depth-resolved analysis of thin films and interfaces

    CERN Document Server

    Falub, C V; Mijnarends, P E; Schut, H; Veen, A V

    2002-01-01

    The intense reactor-based slow positron beam (POSH) at the Delft research reactor has been coupled to a Two-Dimensional Angular Correlation of Annihilation Radiation (2D-ACAR) setup. The design is discussed with a new target chamber for the 2D-ACAR setup based on Monte Carlo simulations of the positron trajectories, beam energy distribution and beam transmission in an increasing magnetic field gradient. Numerical simulations and experiment show that when the slow positron beam with a FWHM of 11.6 mm travels in an increasing axial magnetic field created by a strong NdFeB permanent magnet, the intensity loss is negligible above approx 6 keV and a focusing factor of 5 in diameter is achieved. Monte Carlo simulations and Doppler broadening experiments in the target region show that in this configuration the 2D-ACAR setup can be used to perform depth sensitive studies of defects in thin films with a high resolution. The positron implantation energy can be varied from 0 to 25 keV before entering the non-uniform mag...

  12. Microstructural probing of ferritic/martensitic steels using internal transmutation-based positron source

    Energy Technology Data Exchange (ETDEWEB)

    Krsjak, Vladimir, E-mail: vladimir.krsjak@psi.ch; Dai, Yong

    2015-10-15

    This paper presents the use of an internal {sup 44}Ti/{sup 44}Sc radioisotope source for a direct microstructural characterization of ferritic/martensitic (f/m) steels after irradiation in targets of spallation neutron sources. Gamma spectroscopy measurements show a production of ∼1MBq of {sup 44}Ti per 1 g of f/m steels irradiated at 1 dpa (displaced per atom) in the mixed proton–neutron spectrum at the Swiss spallation neutron source (SINQ). In the decay chain {sup 44}Ti → {sup 44}Sc → {sup 44}Ca, positrons are produced together with prompt gamma rays which enable the application of different positron annihilation spectroscopy (PAS) analyses, including lifetime and Doppler broadening spectroscopy. Due to the high production yield, long half-life and relatively high energy of positrons of {sup 44}Ti, this methodology opens up new potential for simple, effective and inexpensive characterization of radiation induced defects in f/m steels irradiated in a spallation target.

  13. Pulsed neutron source very intense, Booster

    International Nuclear Information System (INIS)

    Abbate, J.M.

    1978-09-01

    A compact Accelerator-Booster (fast, pulsed and modulate reactivity research reactor) is a new and appropriate conception to use as a very intense thermal neutrons source. Its definition and feasibility have been already described in several studies showing its relative advantages in comparison with others kinds of facilities. This work, wich is part of one of those studies, contains a general analysis on the meis facility parameters and core and shielding theoretical calculations. The following results were obtained: Selection and test of a calculation system suitable to use in compact fast reactors; Development a method to perform estimations in some safety and shielding problems and obtainment of adequate theoretical predictions on the general performance. Moreover, final results for importent parameters of the feasibility study and predesign (critical mass and volume, lifetime, etc.) and others related to the use of plutonium oxide as fuel are given and then evaluations of different basic functions are showed. (author) [es

  14. The Los Alamos Intense Neutron Source

    International Nuclear Information System (INIS)

    Nebel, R.A.; Barnes, D.C.; Bollman, R.; Eden, G.; Morrison, L.; Pickrell, M.M.; Reass, W.

    1997-01-01

    The Intense Neutron Source (INS) is an Inertial Electrostatic Confinement (IEC) fusion device presently under construction at Los Alamos National Laboratory. It is designed to produce 10 11 neutrons per second steady-state using D-T fuel. Phase 1 operation of this device will be as a standard three grid IEC ion focus device. Expected performance has been predicted by scaling from a previous IEC device. Phase 2 operation of this device will utilize a new operating scheme, the Periodically Oscillating Plasma Sphere (POPS). This scheme is related to both the Spherical Reflect Diode and the Oscillating Penning Trap. With this type of operation the authors hope to improve plasma neutron production to about 10 13 neutrons/second

  15. Intense Terahertz Sources for 2D Spectroscopy

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov

    in a molecular dynamics (MD) simulation. With this THz induced nonlinear responses and mode couplings in CsI and sucrose are investigated for increasing field strengths, and it is found that these occur for sucrose when the field strength is in the MV/cm range. THz sources based on LiNbO3, DAST, DSTMS and 2...... observed having a Gaussian beam profile. In addition to the intense THz pulses focused in free-space in order to achieve the highest possible field strength, it is shown that resonant microslit arrays can be used to enhance the THz field, and with the possibility of mounting crystalline samples inside...... the metallic slits, this is proposed as a combined spectroscopy system for investigating high-field phenomena. With a carefully optimized design, the slit resonance can be coupled to the lattice modes of the array structure to achieve a field enhancement of more than 35 times, which is approximately 60 % more...

  16. Physics of high intensity nanosecond electron source

    International Nuclear Information System (INIS)

    Herrera-Gomez, A.; Spicer, W.E.

    1993-08-01

    A new high-intensity, short-time electron source is now being used at the Stanford Linear Accelerator Center (SLAC). Using a GaAs negative affinity semiconductor in the construction of the cathode, it is possible to fulfill operation requirements such as peak currents of tens of amperes, peak widths of the order of nanoseconds, hundreds of hours of operation stability, and electron spin polarization. The cathode is illuminated with high intensity laser pulses, and photoemitted electrons constitute the yield. Because of the high currents, some nonlinear effects are present. Very noticeable is the so-called Charge Limit (CL) effect, which consists of a limit on the total charge in each pulse-that is, the total bunch charge stops increasing as the light pulse total energy increases. In this paper, we explain the mechanism of the CL and how it is caused by the photovoltaic effect. Our treatment is based on the Three-Step model of photoemission. We relate the CL to the characteristics of the surface and bulk of the semiconductor, such as doping, band bending, surface vacuum level, and density of surface states. We also discuss possible ways to prevent the Char's Level effect

  17. Intense pulsed neutron source accelerator status

    International Nuclear Information System (INIS)

    Potts, C.W.; Brumwell, F.R.; Stipp, V.F.

    1983-01-01

    The Intense Pulsed Neutron Source (IPNS) facility has been in operation since November 1, 1981. From that date through August 1, 1983, the accelerator system was scheduled for 7191 hours of operation. During this period, 627 million pulses totaling about 1.1 x 10 21 protons were delivered to the spallation target. The accelerator has exceeded goals set in 1981 by averaging 8.65 μA over this two year period. This average beam current, while modest by the standards of proposed machines, makes the IPNS synchrotron (Rapid Cycling Synchrotron [RCS]) the highest intensity proton synchrotron in the world today. Detailed data on accelerator operation are presented. Weekly average currents of 12 μA have been achieved along with peaks of 13.9 μA. A great deal has been learned about the required operating constraints during high beam current operation. It should be possible to increase the average beam current during this next year to 12 μA while observing these restraints. Improvement plans have been formulated to increase the beam current to 16 μA over the next three years

  18. Status of the intense pulsed neutron source

    International Nuclear Information System (INIS)

    Carpenter, J.M.; Brown, B.S.; Kustom, R.L.; Lander, G.H.; Potts, C.W.; Schulke, A.W.; Wuestefeld, G.

    1985-01-01

    Fortunately in spite of some premature reports of its impending demise, IPNS has passed the fourth anniversary of the first delivery of protons to the targets (May 5, 1981) and is approaching the fourth anniversary of its operation as a scattering facility (August 4, 1981). On June 10, 1984, the RCS delivered its one billionth pulse to the IPNS target - the total number of protons delivered to the targets amounted then to 75 stp cm 3 of H 2 gas. Since startup IPNS has improved steadily in terms of the performance of the Rapid Cycling Synchrotron, the source and its moderators and the scattering instruments, and a substantial and productive user program has evolved. This report summarizes the current status of the Intense Pulsed Neutron Source at Argonne National Laboratory. We include reference to recent accelerator operating experience, neutron facility operating experience, improvements to these systems, design work on the ASPUN high-current facility, booster target design, the new solid methane moderator, characterization of the room temperature moderators, and provide some examples of recent results from several of the spectrometers

  19. Micropolyelectrons as possible sources of the anomalous positron peaks in heavy-ion reactions

    International Nuclear Information System (INIS)

    Wong, Cheuk-Yin.

    1988-01-01

    We propose that aggregates of electrons and positrons in a small assembly [micropolyelectrons (e + e - ) n ], held together by their own electromagnetic interactions, are probably the sources of the anomalous positron peaks observed in heavy-ion reactions. The quasistability of the micropolyelectrons arises from a strong noncentral, short-range, attractive interaction between an electron and a positron in their 0 ++ state, which may be supercritical and may lead to a condensation of such pairs. These entities are strongly attracted to a nucleus with a large charge, due to the quadratic Coulomb interaction between the nucleus and the constituents, and may therefore have binding energies greater than their rest masses to render them spontaneously produced in a strong Coulomb field. Final-state interactions between the produced micropolyelectrons and the receding nuclei may lead to their being nearly at rest and back-to-back decay into e + and e - in some cases, and their being captured into stationary orbits and asymmetrical decay in some other cases

  20. High repetition rate intense ion beam source

    International Nuclear Information System (INIS)

    Hammer, D.A.; Glidden, S.C.; Noonan, B.

    1992-01-01

    This final report describes a ≤ 150kV, 40kA, 100ns high repetition rate pulsed power system and intense ion beam source which is now in operation at Cornell University. Operation of the Magnetically-controlled Anode Plasma (MAP) ion diode at > 100Hz (burst mode for up to 10 pulse bursts) provides an initial look at repetition rate limitations of both the ion diode and beam diagnostics. The pulsed power systems are capable of ≥ 1kHz operation (up to 10 pulse bursts), but ion diode operation was limited to ∼100Hz because of diagnostic limitations. By varying MAP diode operating parameters, ion beams can be extracted at a few 10s of keV or at up to 150keV, the corresponding accelerating gap impedance ranging from about 1Ω to about 10Ω. The ability to make hundreds of test pulses per day at an average repetition rate of about 2 pulses per minute permits statistical analysis of diode operation as a function of various parameters. Most diode components have now survived more than 10 4 pulses, and the design and construction of the various pulsed power components of the MAP diode which have enabled us to reach this point are discussed. A high speed data acquisition system and companion analysis software capable of acquiring pulse data at 1ms intervals (in bursts of up to 10 pulses) and processing it in ≤ min is described

  1. Ionizing nightglow: sources, intensity, and spatial distribution

    International Nuclear Information System (INIS)

    Young, J.M.; Troy, B.E. Jr.; Johnson, C.Y.; Holmes, J.C.

    1975-01-01

    Photometers carried aboard an Aerobee rocket mapped the ultraviolet night sky at White Sands, New Mexico. Maps for five 300 A passbands in the wavelength range 170 to 1400 A reveal spatial radiation patterns unique to each spectral subregion. The major ultraviolet features seen in these maps are ascribed to a variety of sources: 1) solar Lyman α (1216 A) and Lyman β (1026 A), resonantly scattered by geocoronal hydrogen; 2) solar HeII (304 A) resonantly scattered by ionized helium in the Earth's plasmasphere; 3) solar HeI (584 A) resonantly scattered by neutral helium in the interstellar wind and Doppler shifted so that it penetrates the Earth's helium blanket; and 4) starlight in the 912 to 1400 A band, primarily from early-type stars in the Orion region. Not explained are the presence of small, but measurable, albedo signals observed near the peak of flight. Intensities vary from several kilorayleighs for Lyman α to a few rayleighs for HeII. (auth)

  2. Application of the 4 pigammaMethod to the Absolute Standardization of Radioactive Sources of Positron Emitters

    International Nuclear Information System (INIS)

    Peyres Medina, V.; Garcia-Torano Martinez, E.; Roteta Ibarra, M.

    2006-01-01

    We discuss the application of the method known as 4 p i g amma c ounting t o the standardization of positron emitters. Monte Carlo simulations are used to calculate the detection efficiency of positrons emitted by the nuclides 22Na and 18F. Two experimental setups are used, both based on a NaI(Tl) well detector. The results of the standardizations are in good agreement with those obtained by other methods. It is shown that the 4 p i g amma m ethod can be successfully used for the absolute standardization of sources of positron emitters. (Author) 23 refs

  3. Selection of the optimum magnet design for the International Linear Collider positron source helical undulator

    Directory of Open Access Journals (Sweden)

    D. J. Scott

    2007-03-01

    Full Text Available A comparison of possible undulator designs for the International Linear Collider positron source has resulted in a superconducting bifilar wire design being selected. After a comprehensive paper study and fabrication of the two preeminent designs, the superconducting undulator was chosen instead of the permanent magnet alternative. This was because of its superior performance in terms of magnetic field strength and quality, operational flexibility, risk of radiation damage, ease in achieving the required vacuum, and cost. The superconducting undulator design will now be developed into a complete system design for the full 200 m long magnet that is required.

  4. 3D numerical thermal stress analysis of the high power target for the SLC Positron Source

    International Nuclear Information System (INIS)

    Reuter, E.M.; Hodgson, J.A.

    1991-05-01

    The volumetrically nonuniform power deposition of the incident 33 GeV electron beam in the SLC Positron Source Target is hypothesized to be the most likely cause target failure. The resultant pulsed temperature distributions are known to generate complicated stress fields with no known closed-form analytical solution. 3D finite element analyses of these temperature distributions and associated thermal stress fields in the new High Power Target are described here. Operational guidelines based on the results of these analyses combined with assumptions made about the fatigue characteristics of the exotic target material are proposed. 6 refs., 4 figs

  5. High-intensity sources for light ions

    International Nuclear Information System (INIS)

    Leung, K.N.

    1995-10-01

    The use of the multicusp plasma generator as a source of light ions is described. By employing radio-frequency induction discharge, the performance of the multicusp source is greatly improved, both in lifetime and in high brightness H + and H - beam production. A new technique for generating multiply-charged ions in this type of ion source is also presented

  6. Intense neutron sources for cancer treatment

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Significant progress has been made in the development of small, solid-target, pulsed neutron sources for nuclear weapons applications. The feasibility of using this type of neutron source for cancer treatment is discussed. Plans for fabrication and testing of such a source is briefly described

  7. Correction of head movements in positron emission tomography using point source tracking system: a simulation study.

    Science.gov (United States)

    Nazarparvar, Babak; Shamsaei, Mojtaba; Rajabi, Hossein

    2012-01-01

    The motion of the head during brain positron emission tomography (PET) acquisitions has been identified as a source of artifact in the reconstructed image. In this study, a method is described to develop an image-based motion correction technique for correcting the post-acquisition data without using external optical motion-tracking system such as POLARIS. In this technique, GATE has been used to simulate PET brain scan using point sources mounted around the head to accurately monitor the position of the head during the time frames. The measurement of head motion in each frame showed a transformation in the image frame matrix, resulting in a fully corrected data set. Using different kinds of phantoms and motions, the accuracy of the correction method is tested and its applicability to experimental studies is demonstrated as well.

  8. Study of a positron generation

    International Nuclear Information System (INIS)

    Nakahara, Kazuo; Enomoto, A.; Ikeda, M.; Ohsawa, S.; Kamitani, T.; Hosoyama, K.; Takei, H.; Emoto, T.; Tani, S.

    1998-03-01

    In the Power Reactor and Nuclear Fuel Development Corporation (PNC), the following are examined as part of an application technology using a high power electron linac: monochromatic gamma ray sources, free electron lasers, and intense positron sources. This report presents the study of an intense positron source, which has been developed jointly by High Energy Accelerator Research Organization (KEK) and PNC. In this report, we describe following items for an adaptive estimate of a superconducting magnet in order to efficiently converge a positron beam. (1) The cryostat which included the superconducting magnet is manufactured. (2) An excitement test of the superconducting magnet is carried out with a magnetic substance such as the electromagnet yoke. (author)

  9. Development of slow positron beam lines and applications

    Science.gov (United States)

    Mondal, Nagendra Nath

    2018-05-01

    A positron is an antiparticle of an electron that can be formed in diverse methods: natural or artificial β-decay process, fission and fusion reactions, and a pair production of electron-positron occurred in the reactor and the high energy accelerator centers. Usually a long-lifetime radio isotope is customized for the construction of a slow positron beam lines in many laboratories. The typical intensity of this beam depends upon the strength of the positron source, moderator efficiency, and guiding, pulsing, focusing and detecting systems. This article will review a few positron beam lines and their potential applications in research, especially in the Positronium Bose-Einstein Condensation.

  10. Calibration of an advanced photon source linac beam position monitor used for positron position measurement of a beam containing both positrons and electrons

    International Nuclear Information System (INIS)

    Sereno, Nicholas S.

    1998-01-01

    The Advanced Photon Source (APS) linac beam position monitors can be used to monitor the position of a beam containing both positrons and electrons. To accomplish this task, both the signal at the bunching frequency of 2856 MHz and the signal at 2x2856 MHz are acquired and processed for each stripline. The positron beam position is obtained by forming a linear combination of both 2856 and 5712 MHz signals for each stripline and then performing the standard difference over sum computation. The required linear combination of the 2856 and 5712 MHz signals depends on the electrical calibration of each stripline/cable combination. In this paper, the calibration constants for both 2856 MHz and 5712 MHz signals for each stripline are determined using a pure beam of electrons. The calibration constants are obtained by measuring the 2856 and 5712 MHz stripline signals at various electron beam currents and positions. Finally, the calibration constants measured using electrons are used to determine positron beam position for the mixed beam case

  11. Livermore intense neutron source: design concepts

    International Nuclear Information System (INIS)

    Davis, J.C.; Anderson, J.D.; Booth, R.; Logan, C.M.; Osher, J.E.

    1975-07-01

    The Lawrence Livermore laboratory proposes to build an irradiation facility containing several 14 MeV T(d,n) neutron sources for materials damage experimentation. A source strength of 4 x 10 13 n/s can be produced with 400 keV D + beam on the tritium in titanium target system now used on the Livermore Rotating Target Neutron Source (RTNS). To produce the desired source strength an accelerator which can deliver 150 mA of 400 keV D + ions must be built. For the target to remain within the time-temperature regime of the present system it must have a diameter of 46 cm and rotate at 5000 rpm. With a beam spot 1 cm fwhm the useful target lifetime is expected to be the 100 hours typical of the present system. A maximum flux of 1.5 x 10 13 n/cm 2 s will be attainable over a sample 1 mm thick by 8 mm in diameter. (U.S.)

  12. Intense pulsed neutron source status report

    International Nuclear Information System (INIS)

    Brown, B.S.; Bohringer, D.E.; Brumwell, F.R.; Carpenter, J.M.; Crawford, R.K.; Rauchas, A.V.; Schulke, A.W.; Worlton, T.G.

    1991-01-01

    The status and future plans of IPNS will be reviewed. At the celebration of our 10th anniversary in 7 months, IPNS will have performed over 2000 experiments and has over 230 scientists visiting IPNS annually. Plans for a new spallation source concept using a fixed field alternating gradient synchrotron will be presented. (author)

  13. Informal workshop on intense polarized ion sources: a summary

    International Nuclear Information System (INIS)

    Schultz, P.F.

    1980-01-01

    An Informal Workshop on Intense Polarized Ion Sources was held on March 6, 1980, at the O'Hare Hilton Hotel, Chicago, Illinois. The purpose of the Workshop was to discuss problems in developing higher-intensity polarized proton sources, particularly the optically-pumped source recently proposed by L.W. Anderson of the University of Wisconsin. A summary of the discussions is reported

  14. Status of the intense pulsed neutron source

    International Nuclear Information System (INIS)

    Brown, B.S.; Carpenter, J.M.; Crawford, R.K.; Rauchas, A.V.; Schulke, A.W.; Worlton, T.G.

    1988-01-01

    IPNS is not unique in having concerns about the level of funding, and the future looks good despite these concerns. This report details the progress made at IPNS during the last two years. Other papers in these proceedings discuss in detail the status of the enriched uranium Booster target, the two instruments that are under construction, GLAD and POSY II, and a proposal for research on an Advanced Pulsed Neutron Source (ASPUN) that has been submitted to the Department of Energy (DOE). Further details on IPNS are available in the IPNS Progress Report 1987--1988, available by writing the IPNS Division Office. 9 refs., 3 tabs

  15. Turbulence generation through intense kinetic energy sources

    Science.gov (United States)

    Maqui, Agustin F.; Donzis, Diego A.

    2016-06-01

    Direct numerical simulations (DNS) are used to systematically study the development and establishment of turbulence when the flow is initialized with concentrated regions of intense kinetic energy. This resembles both active and passive grids which have been extensively used to generate and study turbulence in laboratories at different Reynolds numbers and with different characteristics, such as the degree of isotropy and homogeneity. A large DNS database was generated covering a wide range of initial conditions with a focus on perturbations with some directional preference, a condition found in active jet grids and passive grids passed through a contraction as well as a new type of active grid inspired by the experimental use of lasers to photo-excite the molecules that comprise the fluid. The DNS database is used to assert under what conditions the flow becomes turbulent and if so, the time required for this to occur. We identify a natural time scale of the problem which indicates the onset of turbulence and a single Reynolds number based exclusively on initial conditions which controls the evolution of the flow. It is found that a minimum Reynolds number is needed for the flow to evolve towards fully developed turbulence. An extensive analysis of single and two point statistics, velocity as well as spectral dynamics and anisotropy measures is presented to characterize the evolution of the flow towards realistic turbulence.

  16. Transmission positron microscopes

    International Nuclear Information System (INIS)

    Doyama, Masao; Kogure, Yoshiaki; Inoue, Miyoshi; Kurihara, Toshikazu; Yoshiie, Toshimasa; Oshima, Ryuichiro; Matsuya, Miyuki

    2006-01-01

    Immediate and near-future plans for transmission positron microscopes being built at KEK, Tsukuba, Japan, are described. The characteristic feature of this project is remolding a commercial electron microscope to a positron microscope. A point source of electrons kept at a negative high voltage is changed to a point source of positrons kept at a high positive voltage. Positional resolution of transmission microscopes should be theoretically the same as electron microscopes. Positron microscopes utilizing trapping of positrons have always positional ambiguity due to the diffusion of positrons

  17. Global Sourcing, Technology, and Factor Intensity: Firm-level Relationships

    OpenAIRE

    TOMIURA Eiichi

    2007-01-01

    This paper empirically examines how technology and capital intensity are related with the firm's global sourcing decision. Firm-level data are derived from a survey covering all manufacturing industries in Japan without any firm-size threshold. Firms are disaggregated by their make-or-buy decision (in-house or outsourcing) and by their choice of sourcing location (offshore or domestic). Capital-intensive or R&D-intensive firms tend to source in-house from their FDI affiliates rather than outs...

  18. Performance and limitations of positron emission tomography (PET) scanners for imaging very low activity sources.

    Science.gov (United States)

    Freedenberg, Melissa I; Badawi, Ramsey D; Tarantal, Alice F; Cherry, Simon R

    2014-02-01

    Emerging applications for positron emission tomography (PET) may require the ability to image very low activity source distributions in the body. The performance of clinical PET scanners in the regime where activity in the field of view is source in the NEMA scatter phantom), the BGO-based scanner significantly outperformed the LSO-based scanner. This was largely due to the effect of background counts emanating from naturally occurring but radioactive (176)Lu within the LSO detector material, which dominates the observed counting rate at the lowest activities. Increasing the lower energy threshold from 350 keV to 425 keV in an attempt to reduce this background did not significantly improve the measured NECR performance. The measured singles rate due to (176)Lu emissions within the scanner energy window was also found to be dependent on temperature, and to be affected by the operation of the CT component, making approaches to correct or compensate for the background more challenging. We conclude that for PET studies in a very low activity range, BGO-based scanners are likely to have better performance because of the lack of significant background. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Proton and Ion Sources for High Intensity Accelerators

    CERN Multimedia

    Scrivens, R

    2004-01-01

    Future high intensity ion accelerators, including the Spallation Neutron Source (SNS), the European Spallation Source (ESS), the Superconducting Proton Linac (SPL) etc, will require high current and high duty factor sources for protons and negative hydrogen ions. In order to achieve these goals, a comparison of the Electron Cyclotron Resonance, radio-frequency and Penning ion sources, among others, will be made. For each of these source types, the present operational sources will be compared to the state-of-the-art research devices with special attention given to reliability and availability. Finally, the future research and development aims will be discussed.

  20. Performance of the intense pulsed neutron source accelerator system

    International Nuclear Information System (INIS)

    Potts, C.; Brumwell, F.; Rauchas, A.; Stipp, V.; Volk, G.

    1983-01-01

    The Intense Pulsed Neutron Source (IPNS) facility has now been operating in a routine way for outside users since November 1, 1981. From that date through December of 1982, the accelerator system was scheduled for neutron science for 4500 hours. During this time the accelerator achieved its short-term goals by delivering about 380,000,000 pulses of beam totaling over 6 x 10 20 protons. The changes in equipment and operating practices that evolved during this period of intense running are described. The intensity related instability threshold was increased by a factor of two and the accelerator beam current has been ion source limited. Plans to increase the accelerator intensity are also described. Initial operating results with a new H - ion source are discussed

  1. LED intense headband light source for fingerprint analysis

    Science.gov (United States)

    Villa-Aleman, Eliel

    2005-03-08

    A portable, lightweight and high-intensity light source for detecting and analyzing fingerprints during field investigation. On-site field analysis requires long hours of mobile analysis. In one embodiment, the present invention comprises a plurality of light emitting diodes; a power source; and a personal attachment means; wherein the light emitting diodes are powered by the power source, and wherein the power source and the light emitting diodes are attached to the personal attachment means to produce a personal light source for on-site analysis of latent fingerprints. The present invention is available for other applications as well.

  2. The beam intensity and positron monitoring system of the Daresbury Electron Synchrotron (NINA)

    International Nuclear Information System (INIS)

    Poole, D.E.; Ring, T.; Peters, D.G.; Allen, J.

    1976-01-01

    The beam sensing system of NINA has been redesigned and rebuilt to provide comprehensive monitoring of beam intensity and position. The reasons for the change are stated, and the requirements and performance specification for the new system are listed. The report falls under the following heads: the sensing head; the head electronics unit; the line receiver unit; performance of installed monitors; display system and computer interface. The performance of the new system is summarized. (U.K.)

  3. Shielding calculations for the Intense Neutron Source Facility. Final report

    International Nuclear Information System (INIS)

    Battat, M.E.; Henninger, R.J.; Macdonald, J.L.; Dudziak, D.J.

    1978-06-01

    Results of shielding calculations for the Intnse Neutron Source (INS) facility are presented. The INS facility is designed to house two sources, each of which will produce D--T neutrons with intensities in the range from 1 to 3 x 10 15 n/s on a continuous basis. Topics covered include the design of the biological shield, use of two-dimensional discrete-ordinates results to specify the source terms for a Monte Carlo skyshine calculation, air activation, and dose rates in the source cell (after shutdown) due to activation of the biological shield

  4. High Intensity High Charge State ECR Ion Sources

    CERN Document Server

    Leitner, Daniela

    2005-01-01

    The next-generation heavy ion beam accelerators such as the proposed Rare Isotope Accelerator (RIA), the Radioactive Ion Beam Factory at RIKEN, the GSI upgrade project, the LHC-upgrade, and IMP in Lanzhou require a great variety of high charge state ion beams with a magnitude higher beam intensity than currently achievable. High performance Electron Cyclotron Resonance (ECR) ion sources can provide the flexibility since they can routinely produce beams from hydrogen to uranium. Over the last three decades, ECR ion sources have continued improving the available ion beam intensities by increasing the magnetic fields and ECR heating frequencies to enhance the confinement and the plasma density. With advances in superconducting magnet technology, a new generation of high field superconducting sources is now emerging, designed to meet the requirements of these next generation accelerator projects. The talk will briefly review the field of high performance ECR ion sources and the latest developments for high intens...

  5. Generation of a high-brightness pulsed positron beam for the Munich scanning positron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Piochacz, Christian

    2009-11-20

    Within the present work the prerequisites for the operation of the Munich scanning positron microscope (SPM) at the high intense neutron induced positron source Munich (NEPOMUC) were established. This was accomplished in two steps: Firstly, a re-moderation device was installed at the positron beam facility NEPOMUC, which enhances the brightness of the positron beam for all connected experiments. The second step was the design, set up and initial operation of the SPM interface for the high efficient conversion of the continuous beam into a bunched beam. The in-pile positron source NEPOMUC creates a positron beam with a diameter of typically 7 mm, a kinetic energy of 1 keV and an energy spread of 50 eV. The NEPOMUC re-moderator generates from this beam a low energy positron beam (20 - 200 eV) with a diameter of less than 2 mm and an energy spread well below 2.5 eV. This was achieved with an excellent total efficiency of 6.55{+-}0.25 %. The re-moderator was not only the rst step to implement the SPM at NEPOMUc, it enables also the operation of the pulsed low energy positron beam system (PLEPS). Within the present work, at this spectrometer rst positron lifetime measurements were performed, which revealed the defect types of an ion irradiated uranium molybdenum alloy. Moreover, the instruments which were already connected to the positron beam facility bene ts considerably of the high brightness enhancement. In the new SPM interface an additional re-moderation stage enhances the brightness of the beam even more and will enable positron lifetime measurements at the SPM with a lateral resolution below 1 {mu}m. The efficiency of the re-moderation process in this second stage was 24.5{+-}4.5 %. In order to convert high efficiently the continuous positron beam into a pulsed beam with a repetition rate of 50 MHz and a pulse duration of less than 50 ps, a sub-harmonic pre-bucher was combined with two sine wave bunchers. Furthermore, the additional re-moderation stage of the

  6. Generation of a high-brightness pulsed positron beam for the Munich scanning positron microscope

    International Nuclear Information System (INIS)

    Piochacz, Christian

    2009-01-01

    Within the present work the prerequisites for the operation of the Munich scanning positron microscope (SPM) at the high intense neutron induced positron source Munich (NEPOMUC) were established. This was accomplished in two steps: Firstly, a re-moderation device was installed at the positron beam facility NEPOMUC, which enhances the brightness of the positron beam for all connected experiments. The second step was the design, set up and initial operation of the SPM interface for the high efficient conversion of the continuous beam into a bunched beam. The in-pile positron source NEPOMUC creates a positron beam with a diameter of typically 7 mm, a kinetic energy of 1 keV and an energy spread of 50 eV. The NEPOMUC re-moderator generates from this beam a low energy positron beam (20 - 200 eV) with a diameter of less than 2 mm and an energy spread well below 2.5 eV. This was achieved with an excellent total efficiency of 6.55±0.25 %. The re-moderator was not only the rst step to implement the SPM at NEPOMUc, it enables also the operation of the pulsed low energy positron beam system (PLEPS). Within the present work, at this spectrometer rst positron lifetime measurements were performed, which revealed the defect types of an ion irradiated uranium molybdenum alloy. Moreover, the instruments which were already connected to the positron beam facility bene ts considerably of the high brightness enhancement. In the new SPM interface an additional re-moderation stage enhances the brightness of the beam even more and will enable positron lifetime measurements at the SPM with a lateral resolution below 1 μm. The efficiency of the re-moderation process in this second stage was 24.5±4.5 %. In order to convert high efficiently the continuous positron beam into a pulsed beam with a repetition rate of 50 MHz and a pulse duration of less than 50 ps, a sub-harmonic pre-bucher was combined with two sine wave bunchers. Furthermore, the additional re-moderation stage of the SPM

  7. A novel source of MeV positron bunches driven by energetic protons for PAS application

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Zongquan, E-mail: tqq1123@mail.ustc.edu.cn [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Xu, Wenzhen; Liu, Yanfen; Xiao, Ran; Kong, Wei [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Ye, Bangjiao, E-mail: bjye@ustc.edu.cn [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-11-01

    This paper proposes a novel methodology of MeV positrons generation for PAS application. Feasibility of this proposal analyzed by G4Beamline and Transport have shown reasonable success. Using 2 Hz, 1.6 GeV, 100 ns and 1.5 μC/bunch proton bunches for bombarding a graphite target, about 100 ns e{sup +} bunches are generated. Quasi-monochromatic positrons in the range of 1–10 MeV included in these bunches have a flux of >10{sup 7}/s, peak brightness of 10{sup 14}/s. A magnetic-confinement beamline is utilized to transport the positrons and a “Fast Beam Chopper” is unprecedentedly extended to chop those relativistic bunches. The positron beam can be finally characterized by the energy range of 1–10 MeV and bunch width from one hundred ps up to 1 ns. Such ultrashort bunches can be useful in tomography-type positron annihilation spectroscopy (PAS) as well as other applications.

  8. A novel source of MeV positron bunches driven by energetic protons for PAS application

    Science.gov (United States)

    Tan, Zongquan; Xu, Wenzhen; Liu, Yanfen; Xiao, Ran; Kong, Wei; Ye, Bangjiao

    2014-11-01

    This paper proposes a novel methodology of MeV positrons generation for PAS application. Feasibility of this proposal analyzed by G4Beamline and Transport have shown reasonable success. Using 2 Hz, 1.6 GeV, 100 ns and 1.5 μC/bunch proton bunches for bombarding a graphite target, about 100 ns e+ bunches are generated. Quasi-monochromatic positrons in the range of 1-10 MeV included in these bunches have a flux of >107/s, peak brightness of 1014/s. A magnetic-confinement beamline is utilized to transport the positrons and a "Fast Beam Chopper" is unprecedentedly extended to chop those relativistic bunches. The positron beam can be finally characterized by the energy range of 1-10 MeV and bunch width from one hundred ps up to 1 ns. Such ultrashort bunches can be useful in tomography-type positron annihilation spectroscopy (PAS) as well as other applications.

  9. Intense neutron source: high-voltage power supply specifications

    International Nuclear Information System (INIS)

    Riedel, A.A.

    1980-08-01

    This report explains the need for and sets forth the electrical, mechanical and safety specifications for a high-voltage power supply to be used with the intense neutron source. It contains sufficient information for a supplier to bid on such a power supply

  10. High intensity line source for x-ray spectrometer calibration

    International Nuclear Information System (INIS)

    Thoe, R.S.

    1986-06-01

    A high intensity electron-impact x-ray source using a one-dimensional Pierce lens has been built for the purpose of calibrating a bent crystal x-ray spectrometer. This source focuses up to 100 mA of 20-keV electrons to a line on a liquid-cooled anode. The line (which can serve as a virtual slit for the spectrometer) measures approximately 800 μ x 2 cm. The source is portable and therefore adaptable to numerous types of spectrometer applications. One particular application, the calibration of a high resolution (r = 10 4 ) time-resolved cyrstal spectrometer, will be discussed in detail

  11. Design for a high intensity slow positron facility using forward scattered radiation from an electron linear accelerator

    International Nuclear Information System (INIS)

    Hulett, L.D. Jr.; Lewis, T.A.; Alsmiller, R.G. Jr.; Peelle, R.; Pendyale, S.; Dale, J.M.; Rosseel, T.M.

    1986-01-01

    A tungsten moderator will be placed behind the target of the Oak Ridge Electron Linear Accelerator (ORELA) to convert gamma radiation to slow positrons. These will be extracted and led through evacuated solenoids to an experiment room. A Penning trap will be used to extend the slow positron pulses to achieve duty factors of 10% or greater. The facility will be used for atomic and molecular physics studies, positron microscopy, and materials research. Operations will be inexpensive and will not interfere with the normal function of ORELA, the measurement of neutron cross sections by flight-time spectrometry

  12. Intense neutron source facility for the fusion energy program

    International Nuclear Information System (INIS)

    Armstrong, D.D.; Emigh, C.R.; Meier, K.L.; Meyer, E.A.; Schneider, J.D.

    1975-01-01

    The intense neutron source is based on the ability of a supersonic flow of gas to dissipate an enormous quantity of heat generated in the neutron-producing target by multiple Coulomb collisions. A description is given of the principles involved in forming the supersonic jet, in forming the intense tritium-ion beam, in the vacuum systems, and in the tritium handling systems. An overview of the entire facility is included. It is believed that the facility can be operated with high reliability, ensuring a productive radiation damage program. (U.S.)

  13. High intensity negative proton beams from a SNICS ion source

    International Nuclear Information System (INIS)

    Evans, C.R.; Hollander, M.G.

    1991-01-01

    For the past year we have been involved in a project to develop an intense (> 100μA) negative proton beam from a SNICS (Source of Negative Ions by Cesium Sputtering) ion source. This report will cover how we accomplished and exceeded this goal by more than 40%. Included in these observations will be the following: A description of an effective method for making titanium hydride cathodes. How to overcome the limitations of the titanium hydride cathode. The modification of the SNICS source to improve output; including the installation of the conical ionizer and the gas cathode. A discussion of problems including: poisoning the proton beam with oxygen, alternative gas cathode materials, the clogging of the gas inlet, long burn-in times, and limited cathode life times. Finally, how to optimize source performance when using a gas cathode, and what is the mechanism by which a gas cathode operates; facts, fantasies, or myth

  14. Intensity correlation imaging with sunlight-like source

    Science.gov (United States)

    Wang, Wentao; Tang, Zhiguo; Zheng, Huaibin; Chen, Hui; Yuan, Yuan; Liu, Jinbin; Liu, Yanyan; Xu, Zhuo

    2018-05-01

    We show a method of intensity correlation imaging of targets illuminated by a sunlight-like source both theoretically and experimentally. With a Faraday anomalous dispersion optical filter (FADOF), we have modulated the coherence time of a thermal source up to 0.167 ns. And we carried out measurements of temporal and spatial correlations, respectively, with an intensity interferometer setup. By skillfully using the even Fourier fitting on the very sparse sampling data, the images of targets are successfully reconstructed from the low signal-noise-ratio(SNR) interference pattern by applying an iterative phase retrieval algorithm. The resulting imaging quality is as well as the one obtained by the theoretical fitting. The realization of such a case will bring this technique closer to geostationary satellite imaging illuminated by sunlight.

  15. A self-consistent model of cosmic-ray fluxes and positron excess: roles of nearby pulsars and a sub-dominant source population

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Jagdish C.; Razzaque, Soebur, E-mail: jjagdish@uj.ac.za, E-mail: srazzaque@uj.ac.za [Department of Physics, University of Johannesburg, P. O. Box 524, Auckland Park 2006 (South Africa)

    2017-09-01

    The cosmic-ray positron flux calculated using the cosmic-ray nuclei interactions in our Galaxy cannot explain observed data above 10 GeV. An excess in the measured positron flux is therefore open to interpretation. Nearby pulsars, located within sub-kiloparsec range of the Solar system, are often invoked as plausible sources contributing to the excess. We show that an additional, sub-dominant population of sources together with the contributions from a few nearby pulsars can explain the latest positron excess data from the Alpha Magnetic Spectrometer (AMS). We simultaneously model, using the DRAGON code, propagation of cosmic-ray proton, Helium, electron and positron and fit their respective flux data. Our fit to the Boron to Carbon ratio data gives a diffusion spectral index of 0.45, which is close to the Kraichnan turbulent spectrum.

  16. Angular intensity of a gas-phase field ionization source

    International Nuclear Information System (INIS)

    Orloff, J.; Swanson, L.W.

    1979-01-01

    Angular intensities of 1 μA sr -1 have been measured for a gas-phase field ionization source in an optical column under practical operating conditions. The source, which was differentially pumped and cooled to 77 K, utilized a -oriented iridium emitter and precooled hydrogen gas at 10 -2 Torr. The ion beam was collimated with an electrostatic lens and detected below an aperture subtending 0.164 msr. A transmitted current of approx.10 -10 A was measured at voltages corresponding to a field of approx. =2.2 V/A at the emitter

  17. Light and Light Sources High-Intensity Discharge Lamps

    CERN Document Server

    Flesch, Peter G

    2006-01-01

    Light and Light Sources gives an introduction to the working principles of high-intensity discharge (HID) lamps and points out challenges and problems associated with the development and operation of HID lamps. The state-of-the-art in electrode and plasma diagnostics as well as numerical methods used for the understanding of HID lamps are described. This volume addresses students as well as scientists and researchers at universities and in industry.

  18. Proton induction linacs as high-intensity neutron sources

    International Nuclear Information System (INIS)

    Keefe, D.; Hoyer, E.

    1981-01-01

    Proton induction linacs are explored as high intensity neutron sources. The induction linac - concept, properties, experience with electrons, and possibilities - and its limitations for accelerating ions are reviewed. A number of proton induction linac designs are examined with the LIACEP program and general conclusions are given. Results suggest that a proton induction accelerator of the lowest voltage, consistent with good neutron flux, is preferred and could well be cost competitive with the usual rf linac/storage ring designs. (orig.)

  19. Degree of polarization and source counts of faint radio sources from Stacking Polarized intensity

    International Nuclear Information System (INIS)

    Stil, J. M.; George, S. J.; Keller, B. W.; Taylor, A. R.

    2014-01-01

    We present stacking polarized intensity as a means to study the polarization of sources that are too faint to be detected individually in surveys of polarized radio sources. Stacking offers not only high sensitivity to the median signal of a class of radio sources, but also avoids a detection threshold in polarized intensity, and therefore an arbitrary exclusion of sources with a low percentage of polarization. Correction for polarization bias is done through a Monte Carlo analysis and tested on a simulated survey. We show that the nonlinear relation between the real polarized signal and the detected signal requires knowledge of the shape of the distribution of fractional polarization, which we constrain using the ratio of the upper quartile to the lower quartile of the distribution of stacked polarized intensities. Stacking polarized intensity for NRAO VLA Sky Survey (NVSS) sources down to the detection limit in Stokes I, we find a gradual increase in median fractional polarization that is consistent with a trend that was noticed before for bright NVSS sources, but is much more gradual than found by previous deep surveys of radio polarization. Consequently, the polarized radio source counts derived from our stacking experiment predict fewer polarized radio sources for future surveys with the Square Kilometre Array and its pathfinders.

  20. The Baseline Positron Production and Capture Scheme for CLIC

    CERN Document Server

    Dadoun, Olivier; Lepercq, Pierre; Poirier, Freddy; Variola, Alessandro; Chehab, Robert; Rinolfi, Louis; Vivoli, Alessandro; Strakhovenko, Vladimir; Xu, Chengai

    2010-01-01

    The CLIC study considers the hybrid source using channeling as the baseline for unpolarised positron production. The hybrid source uses a few GeV electron beam impinging on a tungsten crystal target. With the crystal oriented on its axis it results an intense relatively low energy photon beam. The later is then impinging on an amorphous tungsten target producing positrons by e+e− pair creation. Downstream the amorphous target, a capture section based on an adiabatic matching device followed by a 2 GHz Pre- Injector Linac focuses and accelerates the positron beam up to around 200 MeV

  1. Analysis of positron annihilation lifetime data by numerical Laplace inversion: Corrections for source terms and zero-time shift errors

    International Nuclear Information System (INIS)

    Gregory, R.B.

    1991-01-01

    We have recently described modifications to the program CONTIN for the solution of Fredholm integral equations with convoluted kernels of the type that occur in the analysis of positron annihilation lifetime data. In this article, modifications to the program to correct for source terms in the sample and reference decay curves and for shifts in the position of the zero-time channel of the sample and reference data are described. Unwanted source components, expressed as a discrete sum of exponentials, may be removed from both the sample and reference data by modification of the sample data alone, without the need for direct knowledge of the instrument resolution function. Shifts in the position of the zero-time channel of up to half the channel width of the multichannel analyzer can be corrected. Analyses of computer-simulated test data indicate that the quality of the reconstructed annihilation rate probability density functions is improved by employing a refernce material with a short lifetime and indicate that reference materials which generate free positrons by quenching positronium formation (i.e. strong oxidizing agents) have lifetimes that are too long (400-450 ps) to provide reliable estimates of the lifetime parameters for the shortlived components with the methods described here. Well-annealed single crystals of metals with lifetimes less than 200 ps, such as molybdenum (123 ps) and aluminium (166 ps) do not introduce significant errors in estimates of the lifetime parameters and are to be preferred as reference materials. The performance of our modified version of CONTIN is illustrated by application to positron annihilation in polytetrafluoroethylene. (orig.)

  2. A study of electron-positron pair equilibria in models of compact X- and gamma-ray sources

    International Nuclear Information System (INIS)

    Bjoernsson, G.

    1990-01-01

    Thermal electron-positron pair equilibria in two temperature models of compact x ray and gamma ray sources are studied. The pairs are assumed to be heated by Coulomb interaction with the much hotter protons and cooled by bremsstrahlung emission, Compton scattering, and annihilation. Two parameters, the proton optical depth and the compactness, characterize each equilibrium state. It is shown that a careful account of the energy balance is very important when the stability properties of the pair equilibria in a spherical plasma cloud are determined. The equilibria are found to be unstable in a very limited range of compactness and proton optical depth. This particular instability is unlikely to be the cause of the observed variability of the compact sources and implies that it is possible to build up high pair densities by a thermal mechanism in two temperature environments. The most important result considers the effects of pairs on the structure of geometrically and effectively optically thin accretion disks. A new approach for solving for the equilibrium structure of the disks is presented. In effect, the pair equilibrium states are projected into the space spanned by the disk structure parameters. This allows a direct visualization of all possible disk solutions at once. Each solution profile needs to be calculated only once and a complete disk solution is obtained by a simple radial coordinate transformation. The disk solutions are thus seen to be scale free in terms of the radial coordinate as well as in terms of the mass of the central object and the accretion rate. Two particular disk solutions are given. It is shown that including electron-positron pairs in the disk structure calculations leads to a breakdown of the thin disk assumptions and that more detailed disk modeling is required before electron-positron pairs can be self-consistently included

  3. Intensity Modulated Radiation Therapy Dose Painting for Localized Prostate Cancer Using 11C-choline Positron Emission Tomography Scans

    International Nuclear Information System (INIS)

    Chang, Joe H.; Lim Joon, Daryl; Lee, Sze Ting; Gong, Sylvia J.; Anderson, Nigel J.; Scott, Andrew M.; Davis, Ian D.; Clouston, David; Bolton, Damien; Hamilton, Christopher S.; Khoo, Vincent

    2012-01-01

    Purpose: To demonstrate the technical feasibility of intensity modulated radiation therapy (IMRT) dose painting using 11 C-choline positron emission tomography PET scans in patients with localized prostate cancer. Methods and Materials: This was an RT planning study of 8 patients with prostate cancer who had 11 C-choline PET scans prior to radical prostatectomy. Two contours were semiautomatically generated on the basis of the PET scans for each patient: 60% and 70% of the maximum standardized uptake values (SUV 60% and SUV 70% ). Three IMRT plans were generated for each patient: PLAN 78 , which consisted of whole-prostate radiation therapy to 78 Gy; PLAN 78-90 , which consisted of whole-prostate RT to 78 Gy, a boost to the SUV 60% to 84 Gy, and a further boost to the SUV 70% to 90 Gy; and PLAN 72-90 , which consisted of whole-prostate RT to 72 Gy, a boost to the SUV 60% to 84 Gy, and a further boost to the SUV 70% to 90 Gy. The feasibility of these plans was judged by their ability to reach prescription doses while adhering to published dose constraints. Tumor control probabilities based on PET scan-defined volumes (TCP PET ) and on prostatectomy-defined volumes (TCP path ), and rectal normal tissue complication probabilities (NTCP) were compared between the plans. Results: All plans for all patients reached prescription doses while adhering to dose constraints. TCP PET values for PLAN 78 , PLAN 78-90 , and PLAN 72-90 were 65%, 97%, and 96%, respectively. TCP path values were 71%, 97%, and 89%, respectively. Both PLAN 78-90 and PLAN 72-90 had significantly higher TCP PET (P=.002 and .001) and TCP path (P 78 . PLAN 78-90 and PLAN 72-90 were not significantly different in terms of TCP PET or TCP path . There were no significant differences in rectal NTCPs between the 3 plans. Conclusions: IMRT dose painting for localized prostate cancer using 11 C-choline PET scans is technically feasible. Dose painting results in higher TCPs without higher NTCPs.

  4. Intense neutron source facility for the fusion energy program

    International Nuclear Information System (INIS)

    Armstrong, D.D.; Emigh, C.R.; Meier, K.L.; Meyer, E.A.; Schneider, J.D.

    1975-01-01

    The Intense Neutron Source Facility, INS, has been proposed to provide a neutronic environment similar to that anticipated in a fully operational fusion-power reactor. The neutron generator will produce an intense flux of 14-MeV neutrons greater than 10 14 neutrons per cm 2 /sec from the collision of two intersecting beams, one of 1.1 A of 270 keV tritium ions and the other of a supersonic jet of deuterium gas. Using either the pure 14-MeV primary neutron spectrum or by tailoring the spectrum with appropriate moderators, crucial radiation-damage effects which are likely to occur in fusion reactors can be thoroughly explored and better understood

  5. Recent performance of the Intense Pulsed Neutron Source accelerator system

    International Nuclear Information System (INIS)

    Potts, C.; Brumwell, F.; Rauchas, A.; Stipp, V.; Volk, G.; Donley, L.

    1987-03-01

    The Intense Pulsed Neutron Source (IPNS) accelerator system has now been in operation as part of a national user program for over five years. During that period steady progress has been made in both beam intensity and reliability. Almost 1.8 billion pulses totaling 4 x 10 21 protons have now been delivered to the spallation neutron target. Recent weekly average currents have reached 15 μA (3.2 x 10 12 protons per pulse, 30 pulses per second) and short-term peaks of almost 17 μA have been reached. In fact, the average current for the last two years is up 31% over the average for the first three years of operation

  6. Brighter H- source for the intense pulsed neutron source accelerator system

    International Nuclear Information System (INIS)

    Stipp, V.; DeWitt, A.; Madsen, J.

    1983-01-01

    Further increases in the beam intensity of the Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory required the replacement of the H - source with a higher current source. A magnetron ion source of Fermi National Accelerator Laboratory (FNAL) design was adapted with a grooved cathode to provide a stable 40 to 50 mA of beam operating at 30 Hz for up to a 90 μs pulse duration. Problems of space charge blowup due to the lack of neutralization of the H - beam were solved by injecting additional gs into the 20 keV transport system. The source has recently been installed in the machine and the available input to the accelerator has more than doubled

  7. Desorption of surface positrons: A source of free positronium at thermal velocities

    International Nuclear Information System (INIS)

    Mills, A.P. Jr.; Pfeiffer, L.

    1979-01-01

    A direct measurement is reported of the velocity of positronium (Ps) ejected into a vacuum when 0- to 100-eV positrons (e + ) strike a negatively biased Cu(111) surface. At 30 0 C, about half the e + form Ps with normal energy component E-bar=3.4(3) eV. At 790 0 C, most of the remaining e + form Ps but with E-bar=0.14(1) eV, and a non-Maxwellian thermal distribution. We infer that surface-bound e + are thermally desorbed to form the extra Ps. These low Ps velocities suggest exciting possibilities for experiments on free Ps

  8. Area radiation monitor at the intense pulsed-neutron source

    International Nuclear Information System (INIS)

    Eichholz, J.J.; Lynch, F.J.; Mundis, R.L.; Howe, M.L.; Dolecek, E.H.

    1981-01-01

    A tissue-equivalent ionization chamber with associated circuitry has been developed for area radiation monitoring in the Intense Pulsed-Neutron Source (IPNS) facility at Argonne National Laboratory. The conventional chamber configuration was modified in order to increase the electric field and effective volume thereby achieving higher sensitivity and linearity. The instrument provides local and remote radiation level indications and a high level alarm. Twenty-four of these instruments were fabricated for use at various locations in the experimental area of the IPNS-1 facility

  9. Positron Factory project

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Sohei; Sunaga, Hiromi; Kaneko, Hirohisa; Kawasuso, Atsuo; Masuno, Shin-ichi; Takizawa, Haruki; Yotsumoto, Keiichi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    We have started drafting a construction program for the Positron Factory, in which linac-based intense monoenergetic positron beams are planned to be applied for materials science, biotechnology and basic physics and chemistry. A technical survey study confirmed the feasibility of manufacturing a dedicated electron linac of 100 kW class with a beam energy of 100 MeV, which will produce a world-highest monoenergetic positron beam of more than 10{sup 10}/sec in intensity. A self-driven rotating converter (electrons to positrons and photons) suitable for the high power electron beam was devised and successfully tested. The practicability of simultaneous extraction of multi-channel monoenergetic positron beams with multiple moderator assemblies, which had been originated on the basis of a Monte Carlo simulation, was demonstrated by an experiment using an electron linac. An efficient moderator structure, which is composed of honeycomb-like assembled moderator foils and reflectors, is also proposed. (author)

  10. Positron annihilation spectroscopy using high-energy photons

    International Nuclear Information System (INIS)

    Butterling, Maik; Jungmann, Marco; Krause-Rehberg, Reinhard; Krille, Arnold; Anwand, Wolfgang; Brauer, Gerhard; Cowan, Thomas E.; Hartmann, Andreas; Kosev, Krasimir; Schwengner, Ronald; Wagner, Andreas

    2010-01-01

    The superconducting electron accelerator ELBE (Electron Linac with high Brilliance and low Emittance) at the Research Centre Dresden-Rossendorf (Germany) serves as a high-intensity bremsstrahlung photon-source delivering a pulsed beam (26 MHz) with very short bunches (<5 ps). The photons are being converted into positrons by means of pair production inside the target material thus forming an intense positron source. The accelerator machine pulse is used as time reference allowing positron lifetime spectroscopy. We performed positron annihilation spectroscopy by pair production in different sample materials and used coincidence techniques to reduce the background due to scattered photons significantly in order resulting in spectra of extraordinary high quality. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  11. Neutron production enhancements for the Intense Pulsed Neutron Source.

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, E. B.

    1999-01-04

    The Intense Pulsed Neutron Source (IPNS) was the first high energy spallation neutron source in the US dedicated to materials research. It has operated for sixteen years, and in that time has had a very prolific record concerning the development of new target and moderator systems for pulsed spallation sources. IPNS supports a very productive user program on its thirteen instruments, which are oversubscribed by more than two times, meanwhile having an excellent overall reliability of 95%. Although the proton beam power is relatively low at 7 kW, the target and moderator systems are very efficient. The typical beam power which gives an equivalent flux for long-wavelength neutrons is about 60 kW, due to the use of a uranium target and liquid and solid methane moderators, precluded at some sources due to a higher accelerator power. The development of new target and moderator systems is by no means stagnant at IPNS. They are presently considering numerous enhancements to the target and moderators that offer prospects for increasing the useful neutron production by substantial factors. Many of these enhancements could be combined, although their combined benefit has not yet been well established. Meanwhile, IPNS is embarking on a coherent program of study concerning these improvements and their possible combination and implementation. Moreover, any improvements accomplished at IPNS would immediately increase the performance of IPNS instruments.

  12. Neutron production enhancements for the Intense Pulsed Neutron Source

    International Nuclear Information System (INIS)

    Iverson, E. B.

    1999-01-01

    The Intense Pulsed Neutron Source (IPNS) was the first high energy spallation neutron source in the US dedicated to materials research. It has operated for sixteen years, and in that time has had a very prolific record concerning the development of new target and moderator systems for pulsed spallation sources. IPNS supports a very productive user program on its thirteen instruments, which are oversubscribed by more than two times, meanwhile having an excellent overall reliability of 95%. Although the proton beam power is relatively low at 7 kW, the target and moderator systems are very efficient. The typical beam power which gives an equivalent flux for long-wavelength neutrons is about 60 kW, due to the use of a uranium target and liquid and solid methane moderators, precluded at some sources due to a higher accelerator power. The development of new target and moderator systems is by no means stagnant at IPNS. They are presently considering numerous enhancements to the target and moderators that offer prospects for increasing the useful neutron production by substantial factors. Many of these enhancements could be combined, although their combined benefit has not yet been well established. Meanwhile, IPNS is embarking on a coherent program of study concerning these improvements and their possible combination and implementation. Moreover, any improvements accomplished at IPNS would immediately increase the performance of IPNS instruments

  13. Radiation damage of polymers studied by positron annihilation. Positron and gamma-ray irradiation effects

    International Nuclear Information System (INIS)

    Suzuki, T.; Oki, Y.; Numajiri, M.; Miura, T.; Kondo, K.; Ito, Y.

    1995-01-01

    Positron irradiation effects on polypropylene (PP) have been studied using positron sources ( 22 Na) during positron annihilation (PA) experiments. The irradiation effect was measured by the intensity (I 3 ) of the long-lived component of positronium (Ps). At a low temperature of around 100 K, I 3 for unirradiated PP samples increased due to a termination of the thermal motion of the -CH 3 groups. However, the increase in I 3 for γ-ray irradiated samples was reduced in inverse proportion to the amount of irradiation. Although no increase in I 3 was observed for 1 MGy-irradiated PP with γ-rays, an increase was observed again after a 48 h irradiation by positrons emitted from 22 Na. This may be due to a reconstructing of the polymer chains. (author)

  14. An intense plane-beam ion source (1963); Source d'ions intense a faisceau plan (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Deicas, R; Valckx, F P.O. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1963-07-01

    Experiments are described carried out on the cross-section of a Penning type ion source which is a prototype of the annular ion source intended for the M.M.I.I. device at the Fontenay-aux-Roses Nuclear Research Centre. It is shown that the existence or absence of a very strong concentration depends in particular on the magnetic geometry. With a suitable magnetic and electrical geometry it is possible to concentrate the discharge towards the slit and thus to increase considerably the electrical yield and the gas yield. In pulsed conditions, the current derived from this source can exceed 100 mA with a slit 20 cm long and 0.2 mm wide. The gas yield can attain 20 per cent. The main characteristics of the discharge and of the beam are examined. (authors) [French] On decrit les experiences faites sur une section droite d'une source d'ions type Penning, qui est un prototype pour une source d'ions annulaire, destine au dispositif M.M.I.I. au Centre d'Etudes Nucleaires de Fontenay-aux-Roses. On montre que l'existence ou non d'un regime intense depend surtout de la geometrie magnetique. Avec une geometrie magnetique et electrique convenables on peut concentrer la decharge vers les levres et ainsi augmenter considerablement le rendement electrique et le rendement en gaz. En regime pulse le courant extrait de cette source peut depasser 100 mA avec une fente de 20 cm de long et 0. 2 mm de largeur. Le rendement en gaz peut atteindre 20 pour cent. On etudie les principales caracteristiques de la decharge et du faisceau. (auteurs)

  15. Design and commissioning of the photon monitors and optical transport lines for the advanced photon source positron accumulator ring

    International Nuclear Information System (INIS)

    Berg, W.; Yang, B.; Lumpkin, A.; Jones, J.

    1996-01-01

    Two photon monitors have been designed and installed in the positron accumulator ring (PAR) of the Advanced Photon Source. The photon monitors characterize the beam's transverse profile, bunch length, emittance, and energy spread in a nonintrusive manner. An optical transport line delivers synchrotron light from the PAR out of a high radiation environment. Both charge-coupled device and fast-gated, intensified cameras are used to measure the transverse beam profile (0.11 - 1 mm for damped beam) with a resolution of 0.06 mm. A streak camera (θ τ =I ps) is used to measure the bunch length which is in the range of 0.3-1 ns. The design of the various transport components and commissioning results of the photon monitors will be discussed

  16. High intensity neutrino source superconducting solenoid cyrostat design

    Energy Technology Data Exchange (ETDEWEB)

    Page, T.M.; Nicol, T.H.; Feher, S.; Terechkine, I.; Tompkins, J.; /Fermilab

    2006-06-01

    Fermi National Accelerator Laboratory (FNAL) is involved in the development of a 100 MeV superconducting linac. This linac is part of the High Intensity Neutrino Source (HINS) R&D Program. The initial beam acceleration in the front end section of the linac is achieved using room temperature spoke cavities, each of which is combined with a superconducting focusing solenoid. These solenoid magnets are cooled with liquid helium at 4.5K, operate at 250 A and have a maximum magnetic field strength of 7.5 T. The solenoid cryostat will house the helium vessel, suspension system, thermal shield, multilayer insulation, power leads, instrumentation, a vacuum vessel and cryogenic distribution lines. This paper discusses the requirements and detailed design of these superconducting solenoid cryostats.

  17. Gasdynamic measurements for the LASL intense neutron source

    International Nuclear Information System (INIS)

    Johnston, S.C.

    1978-02-01

    Measurements made on a two-dimensional simulation of the Los Alamos Scientific Laboratory (LASL) Intense Neutron Source (INS) experiment are discussed. The purpose of this work was to characterize the supersonic INS channel flow under conditions of large amounts of energy deposition. Nozzle channel wall pressure measurements, cold flow leakage rates, vacuum channel pressure and Mach number, leakage flow rates with mass addition to and momentum extraction from the main flow, and flow visualization photographs are given. Energy addition up to thirty percent of the theoretical maximum was achieved via mass addition to and momentum extraction from the main channel flow. In this range, both a weak and strong regime for leakage flow were identified. These regimes differed by about twenty percent in leakage flow rates

  18. Neutron spectra characteristics for the intense neutron source, INS

    International Nuclear Information System (INIS)

    Battat, M.; Dierckx, R.; Emigh, C.R.

    1977-01-01

    The Intense Neutron Source, INS, facility is presently under construction at the Los Alamos Scientific Laboratory. Its purpose is to provide a broad base for research work related to the radiation effects produced by 14-MeV neutrons from a D-T burn of a fusion reactor. The INS facility produces a D-T burn-like reaction from the collision of an intense tritium-ion beam with a supersonic jet target of deuterium gas. The reaction produces a typical D-T 14-MeV neutron spectrum. By adding a fission blanket surrounding the D-T ''burn,'' the neutron spectral shape may be tailored to match almost perfectly the anticipated first-wall spectra from presently proposed fusion reactors. With a blanket in place, the total production of neutrons can be as large as 3 x 10 16 n/s and experimental volumes of the order of 1000 cm 3 can be available at flux levels greater than 0.6 x 10 14 n/cm 2 s

  19. RF cavities for the positron accumulator ring (PAR) of the Advanced Photon Source (APS)

    International Nuclear Information System (INIS)

    Kang, Y.W.; Nassiri, A.; Bridges, J.F.; Smith, T.L.; Song, J.J.

    1995-01-01

    The cavities for the dual frequency system of the APS PAR are described. The system uses two frequencies: a 9.78MHz fundamental system for the particle accumulation and a 117.3MHz twelfth harmonic system for the bunch compression. The cavities have been built, installed, tested, and used for storing the beam in the PAR for about a year. The fundamental cavity is a reentrant coaxial type with a capacitive loading plunger and has 1.6m length. The harmonic cavity is a symmetrical reentrant coaxial type and is 0.8m long. Ferrite tuners are used for frequency tuning. During the accumulation period, the ferrite tuner of the harmonic cavity works as a damper to disable the cavity. During an injection cycle the 9.78MHz system accumulates 24 positron bunches in a bucket and the 117.3MHz system compresses the bunch into a shorter bunch. Measurements were made on the rf properties of the cavities

  20. Measuring temporal stability of positron emission tomography standardized uptake value bias using long-lived sources in a multicenter network.

    Science.gov (United States)

    Byrd, Darrin; Christopfel, Rebecca; Arabasz, Grae; Catana, Ciprian; Karp, Joel; Lodge, Martin A; Laymon, Charles; Moros, Eduardo G; Budzevich, Mikalai; Nehmeh, Sadek; Scheuermann, Joshua; Sunderland, John; Zhang, Jun; Kinahan, Paul

    2018-01-01

    Positron emission tomography (PET) is a quantitative imaging modality, but the computation of standardized uptake values (SUVs) requires several instruments to be correctly calibrated. Variability in the calibration process may lead to unreliable quantitation. Sealed source kits containing traceable amounts of [Formula: see text] were used to measure signal stability for 19 PET scanners at nine hospitals in the National Cancer Institute's Quantitative Imaging Network. Repeated measurements of the sources were performed on PET scanners and in dose calibrators. The measured scanner and dose calibrator signal biases were used to compute the bias in SUVs at multiple time points for each site over a 14-month period. Estimation of absolute SUV accuracy was confounded by bias from the solid phantoms' physical properties. On average, the intrascanner coefficient of variation for SUV measurements was 3.5%. Over the entire length of the study, single-scanner SUV values varied over a range of 11%. Dose calibrator bias was not correlated with scanner bias. Calibration factors from the image metadata were nearly as variable as scanner signal, and were correlated with signal for many scanners. SUVs often showed low intrascanner variability between successive measurements but were also prone to shifts in apparent bias, possibly in part due to scanner recalibrations that are part of regular scanner quality control. Biases of key factors in the computation of SUVs were not correlated and their temporal variations did not cancel out of the computation. Long-lived sources and image metadata may provide a check on the recalibration process.

  1. Positron Emission Tomography/Computed Tomography-Guided Intensity-Modulated Radiotherapy for Limited-Stage Small-Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Shirvani, Shervin M.; Komaki, Ritsuko [Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Heymach, John V.; Fossella, Frank V. [Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Chang, Joe Y., E-mail: jychang@mdanderson.org [Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States)

    2012-01-01

    Purpose: Omitting elective nodal irradiation from planning target volumes does not compromise outcomes in patients with non-small-cell lung cancer, but whether the same is true for those with limited-stage small-cell lung cancer (LS-SCLC) is unknown. Therefore, in the present study, we sought to determine the clinical outcomes and the frequency of elective nodal failure in patients with LS-SCLC staged using positron emission tomography/computed tomography and treated with involved-field intensity-modulated radiotherapy. Methods and Materials: Between 2005 and 2008, 60 patients with LS-SCLC at our institution underwent disease staging using positron emission tomography/computed tomography before treatment using an intensity-modulated radiotherapy plan in which elective nodal irradiation was intentionally omitted from the planning target volume (mode and median dose, 45 Gy in 30 fractions; range, 40.5 Gy in 27 fractions to 63.8 Gy in 35 fractions). In most cases, concurrent platinum-based chemotherapy was administered. We retrospectively reviewed the clinical outcomes to determine the overall survival, relapse-free survival, and failure patterns. Elective nodal failure was defined as recurrence in initially uninvolved hilar, mediastinal, or supraclavicular nodes. Survival was assessed using the Kaplan-Meier method. Results: The median age of the study patients at diagnosis was 63 years (range, 39-86). The median follow-up duration was 21 months (range, 4-58) in all patients and 26 months (range, 4-58) in the survivors. The 2-year actuarial overall survival and relapse-free survival rate were 58% and 43%, respectively. Of the 30 patients with recurrence, 23 had metastatic disease and 7 had locoregional failure. We observed only one isolated elective nodal failure. Conclusions: To our knowledge, this is the first study to examine the outcomes in patients with LS-SCLC staged with positron emission tomography/computed tomography and treated with definitive intensity

  2. Positron Emission Tomography/Computed Tomography-Guided Intensity-Modulated Radiotherapy for Limited-Stage Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Shirvani, Shervin M.; Komaki, Ritsuko; Heymach, John V.; Fossella, Frank V.; Chang, Joe Y.

    2012-01-01

    Purpose: Omitting elective nodal irradiation from planning target volumes does not compromise outcomes in patients with non–small-cell lung cancer, but whether the same is true for those with limited-stage small-cell lung cancer (LS-SCLC) is unknown. Therefore, in the present study, we sought to determine the clinical outcomes and the frequency of elective nodal failure in patients with LS-SCLC staged using positron emission tomography/computed tomography and treated with involved-field intensity-modulated radiotherapy. Methods and Materials: Between 2005 and 2008, 60 patients with LS-SCLC at our institution underwent disease staging using positron emission tomography/computed tomography before treatment using an intensity-modulated radiotherapy plan in which elective nodal irradiation was intentionally omitted from the planning target volume (mode and median dose, 45 Gy in 30 fractions; range, 40.5 Gy in 27 fractions to 63.8 Gy in 35 fractions). In most cases, concurrent platinum-based chemotherapy was administered. We retrospectively reviewed the clinical outcomes to determine the overall survival, relapse-free survival, and failure patterns. Elective nodal failure was defined as recurrence in initially uninvolved hilar, mediastinal, or supraclavicular nodes. Survival was assessed using the Kaplan-Meier method. Results: The median age of the study patients at diagnosis was 63 years (range, 39–86). The median follow-up duration was 21 months (range, 4–58) in all patients and 26 months (range, 4–58) in the survivors. The 2-year actuarial overall survival and relapse-free survival rate were 58% and 43%, respectively. Of the 30 patients with recurrence, 23 had metastatic disease and 7 had locoregional failure. We observed only one isolated elective nodal failure. Conclusions: To our knowledge, this is the first study to examine the outcomes in patients with LS-SCLC staged with positron emission tomography/computed tomography and treated with definitive

  3. H- Ion Sources for High Intensity Proton Drivers

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dudnikov, Vadim [Muons, Inc., Batavia, IL (United States)

    2015-02-20

    Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H+ and H- ion generation around 3 to 5 mA/cm2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency, reliability and availability for pulsed operation as used in the ORNL Spallation Neutron Source . At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm2 per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power 1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with 4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the aluminum nitride (AlN) discharge chamber for 32 days at high discharge power in an RF SPS with an external antenna. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. While this project demonstrated the advantages of the pulsed version of the SA RF SPS as an upgrade to the ORNL Spallation Neutron Source, it led to a possibility for upgrades to CW machines like the many cyclotrons used for commercial applications. Four appendices contain important details of the work carried out under this grant.

  4. Measurement-device-independent quantum key distribution with correlated source-light-intensity errors

    Science.gov (United States)

    Jiang, Cong; Yu, Zong-Wen; Wang, Xiang-Bin

    2018-04-01

    We present an analysis for measurement-device-independent quantum key distribution with correlated source-light-intensity errors. Numerical results show that the results here can greatly improve the key rate especially with large intensity fluctuations and channel attenuation compared with prior results if the intensity fluctuations of different sources are correlated.

  5. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons

    Science.gov (United States)

    Xu, Tongjun; Shen, Baifei; Xu, Jiancai; Li, Shun; Yu, Yong; Li, Jinfeng; Lu, Xiaoming; Wang, Cheng; Wang, Xinliang; Liang, Xiaoyan; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2016-03-01

    Experimental generation of ultrashort MeV positron beams with high intensity and high density using a compact laser-driven setup is reported. A high-density gas jet is employed experimentally to generate MeV electrons with high charge; thus, a charge-neutralized MeV positron beam with high density is obtained during laser-accelerated electrons irradiating high-Z solid targets. It is a novel electron-positron source for the study of laboratory astrophysics. Meanwhile, the MeV positron beam is pulsed with an ultrashort duration of tens of femtoseconds and has a high peak intensity of 7.8 × 1021 s-1, thus allows specific studies of fast kinetics in millimeter-thick materials with a high time resolution and exhibits potential for applications in positron annihilation spectroscopy.

  6. Iterative image reconstruction for positron emission tomography based on a detector response function estimated from point source measurements

    International Nuclear Information System (INIS)

    Tohme, Michel S; Qi Jinyi

    2009-01-01

    The accuracy of the system model in an iterative reconstruction algorithm greatly affects the quality of reconstructed positron emission tomography (PET) images. For efficient computation in reconstruction, the system model in PET can be factored into a product of a geometric projection matrix and sinogram blurring matrix, where the former is often computed based on analytical calculation, and the latter is estimated using Monte Carlo simulations. Direct measurement of a sinogram blurring matrix is difficult in practice because of the requirement of a collimated source. In this work, we propose a method to estimate the 2D blurring kernels from uncollimated point source measurements. Since the resulting sinogram blurring matrix stems from actual measurements, it can take into account the physical effects in the photon detection process that are difficult or impossible to model in a Monte Carlo (MC) simulation, and hence provide a more accurate system model. Another advantage of the proposed method over MC simulation is that it can easily be applied to data that have undergone a transformation to reduce the data size (e.g., Fourier rebinning). Point source measurements were acquired with high count statistics in a relatively fine grid inside the microPET II scanner using a high-precision 2D motion stage. A monotonically convergent iterative algorithm has been derived to estimate the detector blurring matrix from the point source measurements. The algorithm takes advantage of the rotational symmetry of the PET scanner and explicitly models the detector block structure. The resulting sinogram blurring matrix is incorporated into a maximum a posteriori (MAP) image reconstruction algorithm. The proposed method has been validated using a 3 x 3 line phantom, an ultra-micro resolution phantom and a 22 Na point source superimposed on a warm background. The results of the proposed method show improvements in both resolution and contrast ratio when compared with the MAP

  7. Few-photon electron-positron pair creation in the collision of a relativistic nucleus and an intense x-ray laser beam

    International Nuclear Information System (INIS)

    Mueller, C.; Gruen, N.; Voitkiv, A.B.

    2004-01-01

    We study the nonlinear process of e - e + pair creation by a nucleus which moves at a relativistic energy in the laboratory frame and collides with an intense x-ray laser beam. The collision system under consideration is chosen in such a way that the simultaneous absorption of at least two photons from the laser wave is required in order to exceed the energy threshold of the reaction. We calculate total and differential rates for both free-free and bound-free pair production. In the case of free-free pair creation we demonstrate the effect of the laser polarization on the spectra of the produced particles, and we show that at very high intensities the total rate exhibits features analogous to those well known from above-threshold ionization rates for atoms. In the case of bound-free pair creation a singularity is found in the laboratory frame angular distribution of the produced positron. This singularity represents a distinct characteristic of the bound-free pair production and allows one to separate this process from free-free pair creation even without detecting a bound state of the captured electron. For both types of pair creation we consider the dependences of the total rates on the collision parameters, give the corresponding scaling laws, and discuss the possibility to observe these nonlinear processes in a future experiment

  8. Kinetic Analysis of Dynamic Positron Emission Tomography Data using Open-Source Image Processing and Statistical Inference Tools.

    Science.gov (United States)

    Hawe, David; Hernández Fernández, Francisco R; O'Suilleabháin, Liam; Huang, Jian; Wolsztynski, Eric; O'Sullivan, Finbarr

    2012-05-01

    In dynamic mode, positron emission tomography (PET) can be used to track the evolution of injected radio-labelled molecules in living tissue. This is a powerful diagnostic imaging technique that provides a unique opportunity to probe the status of healthy and pathological tissue by examining how it processes substrates. The spatial aspect of PET is well established in the computational statistics literature. This article focuses on its temporal aspect. The interpretation of PET time-course data is complicated because the measured signal is a combination of vascular delivery and tissue retention effects. If the arterial time-course is known, the tissue time-course can typically be expressed in terms of a linear convolution between the arterial time-course and the tissue residue. In statistical terms, the residue function is essentially a survival function - a familiar life-time data construct. Kinetic analysis of PET data is concerned with estimation of the residue and associated functionals such as flow, flux, volume of distribution and transit time summaries. This review emphasises a nonparametric approach to the estimation of the residue based on a piecewise linear form. Rapid implementation of this by quadratic programming is described. The approach provides a reference for statistical assessment of widely used one- and two-compartmental model forms. We illustrate the method with data from two of the most well-established PET radiotracers, (15)O-H(2)O and (18)F-fluorodeoxyglucose, used for assessment of blood perfusion and glucose metabolism respectively. The presentation illustrates the use of two open-source tools, AMIDE and R, for PET scan manipulation and model inference.

  9. Performance characterisation and optimisation of the HIPOS positron generator setup

    Energy Technology Data Exchange (ETDEWEB)

    Tucek, K., E-mail: kamil.tucek@ec.europa.eu [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Zeman, A.; Daquino, G.; Debarberis, L. [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Hogenbirk, A. [Nuclear Research and Consultancy Group (NRG), P.O. Box 25, NL-1755 ZG Petten (Netherlands)

    2012-01-01

    As part of an Exploratory Research Project at the Institute for Energy and Transport (Joint Research Centre of the European Commission), a feasibility assessment was performed for the construction and placement of a high-intensity positron facility (HIPOS) in a beam tube, HB9, at the High flux reactor (HFR) in Petten. This paper reports on the results of Monte Carlo simulations to optimise the concept of the HIPOS positron generator and to determine the performance characteristics of the chosen generator design. In the first step, a detailed model of the HFR reactor core, reflector, instrumentation and HB9 beam tube was prepared, and coupled neutron and photon transport calculations were carried out with the MCNP4C3 code to establish neutron and photon source terms on boundary surfaces of the HB9 beam tube. These sources were subsequently used with the MCNPX code to optimise the positron generator concept and geometry. The results showed that the positron beam can reach an integral intensity of 10{sup 13} e{sup +}/s before the moderation stage, easily meeting the specified target and confirming the hypothesis that very high positron yields can be obtained by using combined neutron and gamma radiation sources from a high flux reactor. Full details of the research work are reported in this study.

  10. Fabrication of intense neutron sources for medical applications

    International Nuclear Information System (INIS)

    Boulogne, A.R.; Walker, V.W.

    1975-01-01

    Simulated sources containing 252 Cf equivalents of 0.1 to 1.0 milligrams were prepared. Samarium was used as the simulant in a modified chemical plating technique similar to that used to prepare palladium-californium oxide cermet for industrial applications. The length of the platinum-10 percent iridium doubly encapsulated source with its protective sheath is 0.545 in. (14.1 mm). Outside dia of the source, including its sheath, is 0.109 in. (2.8 mm). Existing ''Brachytrons'' can accommodate this source form. This capsule system will withstand internal gas pressures from helium due to alpha decay and fission gases from a 1 mg 252 Cf source after ten years if the source is subjected to a maximum temperature of 800 0 C, the theoretical temperature of an accidental fire. Under these conditions the safety factor is 3. The capsule system is being tested with tracer amounts of 252 Cf to ensure that it will withstand adverse service conditions as well as tests specified for Special Form Materials. (auth)

  11. Nonlinear positron acoustic solitary waves

    International Nuclear Information System (INIS)

    Tribeche, Mouloud; Aoutou, Kamel; Younsi, Smain; Amour, Rabia

    2009-01-01

    The problem of nonlinear positron acoustic solitary waves involving the dynamics of mobile cold positrons is addressed. A theoretical work is presented to show their existence and possible realization in a simple four-component plasma model. The results should be useful for the understanding of the localized structures that may occur in space and laboratory plasmas as new sources of cold positrons are now well developed.

  12. Consequences of intense intermittent astrophysical radiation sources for terrestrial planets

    Science.gov (United States)

    Melott, Adrian

    2011-11-01

    Life on Earth has developed in the context of cosmic radiation backgrounds. This in turn can be a base for comparison with other potential life-bearing planets. Many kinds of strong radiation bursts are possible by astrophysical entities ranging from gamma-ray bursts at cosmological distances to the Sun itself. Many of these present potential hazards to the biosphere: on timescales long compared with human history, the probability of an event intense enough to disrupt life on the land surface or in the oceans becomes large. One of the mechanisms which comes into play even at moderate intensities is the ionization of the Earth's atmosphere, which leads through chemical changes (specifically, depletion of stratospheric ozone) to increased ultraviolet-B flux from the Sun reaching the surface. UVB is extremely hazardous to most life due to its strong absorption by the genetic material DNA and subsequent breaking of chemical bonds. We characterize intensities at the Earth and rates or upper limits on rates. We estimate how often a major extinction-level event is probable given the current state of knowledge. Moderate level events are dominated by the Sun, but the far more severe infrequent events are dominated by gamma-ray bursts and supernovae. So-called ``short-hard'' gamma-ray bursts are a substantial threat, comparable in magnitude to supernovae and greater than that of the higher-luminosity long bursts considered in most past work. Short bursts may come with little or no warning.

  13. Application of the 4 {sup {pi}{sup {gamma}}} Method to the Absolute Standardization of Radioactive Sources of Positron Emitters; Aplicacion del Metodo 4 {sup {pi}{sup {gamma}}} a la Medida Absoluta de la Actividad de Fuentes Radiactivas Emisoras de Positrones

    Energy Technology Data Exchange (ETDEWEB)

    Peyres Medina, V.; Garcia-Torano Martinez, E.; Roteta Ibarra, M.

    2006-07-01

    We discuss the application of the method known as 4 {sup {pi}{sup {gamma}}} counting to the standardization of positron emitters. Monte Carlo simulations are used to calculate the detection efficiency of positrons emitted by the nuclides 22Na and 18F. Two experimental setups are used, both based on a NaI(Tl) well detector. The results of the standardizations are in good agreement with those obtained by other methods. It is shown that the 4 {sup {pi}{sup {gamma}}} method can be successfully used for the absolute standardization of sources of positron emitters. (Author) 23 refs.

  14. Intense negative hydrogen ion source for neutral injection into tokamaks

    International Nuclear Information System (INIS)

    Prelec, K.; Sluyters, T.

    1975-01-01

    In this scheme negative ions are extracted from a plasma source, accelerated to the required energy and then neutralized by stripping in a gas, metal vapor or plasma jet. One of the most promising direct extraction sources is the magnetron source, operating in the mixed hydrogen-cesium mode. In the present source cathode current densities are up to 20 A/cm 2 at arc voltages between 100 V and 150 V. In order to utilize the discharge more efficiently multislit extraction geometry was adopted. Highest currents were obtained by using six slits, with a total extraction area of 1.35 cm 2 . At an extraction voltage of 18 kV negative hydrogen ion currents close to 1 A were obtained, which corresponds to current densities of about 0.7 A/cm 2 at the extraction aperture. Pulse length was 10-20 ms and the repetition rate 0.1 Hz. The total extracted current was usually 2-3 times the H - current

  15. Long-pulse operation of an intense negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Takeiri, Yasuhiko; Osakabe, Masaki; Tsumori, Katsuyoshi; Kaneko, Osamu; Oka, Yoshihide; Asano, Eiji; Kawamoto, Toshikazu; Akiyama, Ryuichi; Kuroda, Tsutomu [National Inst. for Fusion Science, Nagoya (Japan)

    1997-02-01

    In the National Institute for Fusion Science, as the heating system for the Large Helical Device (LHD), the negative ion NBI system of 20 MW incident power has been planned, and the development of a large current, large size negative ion source has been advanced. Based on the results obtained so far, the design of the LHD-NBI system was reconsidered, and the specification of the actual negative ion source was decided as 180 KeV-40A. This time, the grounding electrode with heightened heat removal capacity was made, and the long pulse operation was attempted, therefore, its results are reported. The structure of the external magnetic filter type large negative ion source used for the long pulse experiment is explained. In order to form the negative ion beam of long pulses, it is necessary to form stable are discharge plasma for long time, and variable resistors were attached to the output side of arc power sources of respective filament systems. By adjusting the resistors, uniform are discharge was able to be caused for longer than 10 s stably. The results of the long pulse experiment are reported. The dependence of the characteristics of negative ion beam on plasma electrode temperature was small, and the change of the characteristics of negative ion beam due to beam pulse width was not observed. (K.I.)

  16. High-intensity laser synchrotron x-ray source

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1995-10-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the Laser Synchrotron Light Source (LSLS) concept is still waiting for a convincing demonstration. Available at the BNL's Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power C0 2 laser may be used as prototype LSLS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps C0 2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 70 MeV electron bunch. Flashes of well-collimated, up to 9.36-keV (∼ Angstrom) x-rays of 10-ps pulse duration, with a flux of ∼10 19 photons/sec will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to a variable e-beam energy. A natural short-term extension of the proposed experiment would be further enhancement of the x-ray flux to a 10 21 -10 22 photons/sec level, after the ongoing ATF CO 2 laser upgrade to 1 TW peak power and electron bunch shortening to 3 ps. The ATF LSLS x-ray beamline, exceeding by orders of magnitude the peak fluxes attained at the National Synchrotron Light Source (NSLS) x-ray storage ring, may become attractive for certain users, e.g., for biological x-ray microscopy. In addition, a terawatt CO 2 laser will enable harmonic multiplication of the x-ray spectrum via nonlinear Compton scattering

  17. Technology for Intensive Poultry Production as a Source of Odour Emissions with Time-Varying Intensity

    Directory of Open Access Journals (Sweden)

    Kuneš Radim

    2017-12-01

    Full Text Available The technology for intensive broiler breeding using deep litter method provides convenient conditions for production of odour substances inside the barn. As a consequence, there are relatively high odour emissions in the breeding area and its surrounding, which has significant impacts on the life quality of both people and animals. The amount of produced emissions increases in time because it is closely related to the amount of poultry droppings accumulated in litter inside the barn. This paper deals with changes in odour intensity depending on time measured since the beginning of broiler fattening. Odour intensity was measured by methods of dynamic olfactometry. The estimated values gradually increased from 45 ouE·m-3 to the highest value of 259 ouE·m-3, which was determined in the final fattening phase (broilers’ age 33 days. The calculated odour substances emission values were in range from 0.02 ouE·s-1·bird-1 at the beginning of fattening up to 0.10 ouE·s-1·bird-1 in the final fattening phase. Odour emissions increased five times during the fattening period.

  18. A deuteron linac for a high-intensity neutron source

    International Nuclear Information System (INIS)

    Staples, J.; Clark, D.; Grunder, H.; Lancaster, H.; Main, R.; Selph, F.; Smith, L.; Voelker, F.; Yourd, R.

    1976-01-01

    The preliminary design of an accelerator suitable to meet the flux and neutron energy requirements of a CTR materials test facility is presented. The specifications of such a facility call for a neutron flux of 10 14 n/cm 2 -sec distributed over an area of about 10 2 cm 2 with a neutron spectrum similar to that anticipated from a fusion reactor. A 30 MeV deuteron linac producing a CW beam of 125 mA, upgradable to 40 MeV at 250 mA at a later date, would produce the relatively broad spectrum of neutrons at the required intensity. Attention to the low-energy beam intercept on the drift tubes and diffusive losses producing neutrons and attendant activation problems are discussed

  19. A future, intense source of negative hydrogen ions

    Science.gov (United States)

    Siefken, Hugh; Stein, Charles

    1994-01-01

    By directly heating lithium hydride in a vacuum, up to 18 micro-A/sq cm of negative hydrogen has been obtained from the crystal lattice. The amount of ion current extracted and analyzed is closely related to the temperature of the sample and to the rate at which the temperature is changed. The ion current appears to be emission limited and saturates with extraction voltage. For a fixed extraction voltage, the ion current could be maximized by placing a grid between the sample surface and the extraction electrode. Electrons accompanying the negative ions were removed by a magnetic trap. A Wein velocity filter was designed and built to provide definitive mass analysis of the extracted ion species. This technique when applied to other alkali hydrides may produce even higher intensity beams possessing low values of emittance.

  20. Linac design study for an intense neutron-source driver

    International Nuclear Information System (INIS)

    Lynch, M.T.; Browman, A.; DeHaven, R.; Jameson, R.; Jason, A.; Neuschaefer, G.; Tallerico, P.; Regan, A.

    1993-01-01

    The 1-MW spallation-neutron source under design study at Los Alamos is driven by a linac-compressor-ring scheme that utilizes a large portion of the existing Los Alamos Meson Physics Facility (LAMPF) linac, as well as the facility infrastructure. The project is referred to as the National Center for Neutron Research (NCNR). A second phase of the proposal will upgrade the driver power to 5 MW. A description of the 1-MW scheme is given in this paper. In addition, the upgrade path to the substantial increase of beam power required for the 5 MW scenario is discussed

  1. Recovery of spent high intensity neutron sources in Atalante Facility

    International Nuclear Information System (INIS)

    Bros, P.; Boyer Deslys, V.; Millet, A.; Solinhac, I.; Donnet, L.; Maillard, C.; Paillard, S.; Ranchoux, M.

    2005-01-01

    The Atalante facility is required by law to recover both neutron and gamma sources with activity levels exceeding 300 mCi. Most of the neutron sources consist of mixtures of alpha-emitters (238Pu, 239Pu, 241Am or 244Cm) and beryllium. Several processes now under consideration are based on routine chemical separation techniques (selective precipitation, extraction chromatography, ion exchange). The treatment produces an actinide oxide (which is used later for R and D studies) and solid beryllium nitrate, which is considered as a waste and transferred to a surface interim storage site if the overall activity of the package after 300 years is less than 50 MBq (ANDRA specifications). The Material Analysis and Metrology Laboratory of Atalante validate the residual alpha activity in the waste. The techniques used include alpha spectrometry and L-line X-ray fluorescence for alpha emitters, and plasma torch measurements (ICP-AES and ICP-MS) for beryllium analysis. Specific equipment for transport (B type cask), storage and treatment (hot shielded cells) are used for this activity. (Author)

  2. Turbulence generation through intense localized sources of energy

    Science.gov (United States)

    Maqui, Agustin; Donzis, Diego

    2015-11-01

    Mechanisms to generate turbulence in controlled conditions have been studied for nearly a century. Most common methods include passive and active grids with a focus on incompressible turbulence. However, little attention has been given to compressible flows, and even less to hypersonic flows, where phenomena such as thermal non-equilibrium can be present. Using intense energy from lasers, extreme molecule velocities can be generated from photo-dissociation. This creates strong localized changes in both the hydrodynamics and thermodynamics of the flow, which may perturb the flow in a way similar to an active grid to generate turbulence in hypersonic flows. A large database of direct numerical simulations (DNS) are used to study the feasibility of such an approach. An extensive analysis of single and two point statistics, as well as spectral dynamics is used to characterize the evolution of the flow towards realistic turbulence. Local measures of enstrophy and dissipation are studied to diagnose the main mechanisms for energy exchange. As commonly done in compressible flows, dilatational and solenoidal components are separated to understand the effect of acoustics on the development of turbulence. Further results for cases that assimilate laboratory conditions will be discussed. The authors gratefully acknowledge the support of AFOSR.

  3. Performance Characteristics Of An Intensity Modulated Advanced X-Ray Source (IMAXS) For Homeland Security Applications

    International Nuclear Information System (INIS)

    Langeveld, Willem G. J.; Brown, Craig; Condron, Cathie; Ingle, Mike; Christensen, Phil A.; Johnson, William A.; Owen, Roger D.; Hernandez, Michael; Schonberg, Russell G.; Ross, Randy

    2011-01-01

    X-ray cargo inspection systems for the detection and verification of threats and contraband must address stringent, competitive performance requirements. High x-ray intensity is needed to penetrate dense cargo, while low intensity is desirable to minimize the radiation footprint, i.e. the size of the controlled area, required shielding and the dose to personnel. In a collaborative effort between HESCO/PTSE Inc., XScell Corp., Stangenes Industries, Inc. and Rapiscan Laboratories, Inc., an Intensity Modulated Advanced X-ray Source (IMAXS) was designed and produced. Cargo inspection systems utilizing such a source have been projected to achieve up to 2 inches steel-equivalent greater penetration capability, while on average producing the same or smaller radiation footprint as present fixed-intensity sources. Alternatively, the design can be used to obtain the same penetration capability as with conventional sources, but reducing the radiation footprint by about a factor of three. The key idea is to anticipate the needed intensity for each x-ray pulse by evaluating signal strength in the cargo inspection system detector array for the previous pulse. The IMAXS is therefore capable of changing intensity from one pulse to the next by an electronic signal provided by electronics inside the cargo inspection system detector array, which determine the required source intensity for the next pulse. We report on the completion of a 9 MV S-band (2998 MHz) IMAXS source and comment on its performance.

  4. Application of positron annihilation spectroscopy for investigation of reactor steels

    International Nuclear Information System (INIS)

    Sojak, S.; Slugen, V.; Petriska, M.; Stacho, M.; Veternikova, J.; Sabelova, V.; Egger, W.; Ravelli, L.

    2013-01-01

    Our work is focused on the study of radiation damage simulated by ion implantations and thermal treatment evaluation of RAFM steels in the form of binary Fe-Cr model alloys. In order to study the microstructure recovery after ion irradiation, we applied an approach for restoration of initial physical and mechanical characteristics of structural materials in the form of thermal annealing, with the goal to decrease the size and amount of accumulated defects. The experimental analysis of material damage at microstructural level was performed by the pulsed low energy positron system (PLEPS) [1] at the high intensity positron source NEPOMUC at the Munich research reactor FRM-II. (authors)

  5. Experimental results and first {sup 22}Na source image reconstruction by two prototype modules in coincidence of a liquid xenon positron emission tomograph for small animal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gallin-Martel, M.-L., E-mail: mlgallin@lpsc.in2p3.fr [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, 53 avenue des Martyrs 38026 Grenoble Cedex (France); Grondin, Y. [Laboratoire TIMC/IMAG, CNRS et Universite Joseph Fourier, Pavillon Taillefer 38706 La Tronche Cedex (France); Gac, N. [Laboratoire L2S, UMR 8506 CNRS - SUPELEC - Univ Paris-Sud, Gif sur Yvette F-91192 (France); Carcagno, Y.; Gallin-Martel, L.; Grondin, D.; Marton, M.; Muraz, J.-F; Rossetto, O.; Vezzu, F. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, 53 avenue des Martyrs 38026 Grenoble Cedex (France)

    2012-08-01

    A detector with a very specific design using liquid Xenon (LXe) in the scintillation mode is studied for Positron Emission Tomography (PET) of small animals. Two prototype modules equipped with Position Sensitive Photo Multiplier Tubes (PSPMTs) operating in the VUV range (178 nm) and at 165 K were built and studied in coincidence. This paper reports on energy, time and spatial resolution capabilities of this experimental test bench. Furthermore, these experimental results were used to perform the first image reconstruction of a {sup 22}Na source placed in the experimental setup.

  6. Experimental results and first 22Na source image reconstruction by two prototype modules in coincidence of a liquid xenon positron emission tomograph for small animal imaging

    International Nuclear Information System (INIS)

    Gallin-Martel, M.-L.; Grondin, Y.; Gac, N.; Carcagno, Y.; Gallin-Martel, L.; Grondin, D.; Marton, M.; Muraz, J.-F; Rossetto, O.; Vezzu, F.

    2012-01-01

    A detector with a very specific design using liquid Xenon (LXe) in the scintillation mode is studied for Positron Emission Tomography (PET) of small animals. Two prototype modules equipped with Position Sensitive Photo Multiplier Tubes (PSPMTs) operating in the VUV range (178 nm) and at 165 K were built and studied in coincidence. This paper reports on energy, time and spatial resolution capabilities of this experimental test bench. Furthermore, these experimental results were used to perform the first image reconstruction of a 22 Na source placed in the experimental setup.

  7. Intensity-Modulated Advanced X-ray Source (IMAXS) for Homeland Security Applications

    International Nuclear Information System (INIS)

    Langeveld, Willem G. J.; Johnson, William A.; Owen, Roger D.; Schonberg, Russell G.

    2009-01-01

    X-ray cargo inspection systems for the detection and verification of threats and contraband require high x-ray energy and high x-ray intensity to penetrate dense cargo. On the other hand, low intensity is desirable to minimize the radiation footprint. A collaboration between HESCO/PTSE Inc., Schonberg Research Corporation and Rapiscan Laboratories, Inc. has been formed in order to design and build an Intensity-Modulated Advanced X-ray Source (IMAXS). Such a source would allow cargo inspection systems to achieve up to two inches greater imaging penetration capability, while retaining the same average radiation footprint as present fixed-intensity sources. Alternatively, the same penetration capability can be obtained as with conventional sources with a reduction of the average radiation footprint by about a factor of three. The key idea is to change the intensity of the source for each x-ray pulse based on the signal strengths in the inspection system detector array during the previous pulse. In this paper we describe methods to accomplish pulse-to-pulse intensity modulation in both S-band (2998 MHz) and X-band (9303 MHz) linac sources, with diode or triode (gridded) electron guns. The feasibility of these methods has been demonstrated. Additionally, we describe a study of a shielding design that would allow a 6 MV X-band source to be used in mobile applications.

  8. Doppler broadening measurements of positron annihilation spectroscopy using a 22 Na source made in IFIN-HH Bucharest

    International Nuclear Information System (INIS)

    Racolta, P.M.; Craciun, L.; Plostinaru, D.; Catana, D.; Muresan, O.; Serban, A.

    2003-01-01

    The Doppler-broadening technique requires an energy-dispersive system. Compared with the angular correlation technique, a compact and relatively simple setup is possible and, thus spectrometers are used in almost all positron laboratories. The energy broadening of the annihilation line is measured by a high-resolution energy-dispersive detector system. The paper describes the principia of this method, experimental arrangement used, and data treatment. (authors)

  9. Intense Pulsed Neutron Source progress report for 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The IPNS Progress Report 10th Anniversary Edition is being published in recognition of the first ten years of successful IPNS operation. To emphasize the significance of this milestone, we wanted this report to stand apart from the previous IPNS Progress Reports, and the best way to do this, we thought, was to make the design and organization of the report significantly different. In their articles, authors were asked to emphasize not only advances made since IPNS began operating but also the groundwork that was laid at its predecessor facilities - Argonne's ZING-P and ZING-P' prototype pulsed neutron sources and CP-5 reactor. Each article stands as a separate chapter in the report, since each represents a particular instrument or class of instruments, system, technique, or area of research. In some cases, contributions were similar to review articles in scientific journals, complete with extensive lists of references. Ten-year cumulative lists of members of IPNS committees and of scientists who have visited or done experiments at IPNS were assembled. A list of published and ''in press'' articles in journals, books, and conference proceedings, resulting from work done at IPNS during the past ten years, was compiled. And archival photographs of people and activities during the ten-year history of IPNS were located and were used liberally throughout the report. The titles of the chapters in this report are: accelerator; computer; radiation effects; powder; stress; single crystal; superconductivity; amorphous; small angle; reflection; quasielastic; inelastic; inelastic magnetic; deep inelastic; user program; the future; and publications

  10. Intense Pulsed Neutron Source progress report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The IPNS Progress Report 10th Anniversary Edition is being published in recognition of the first ten years of successful IPNS operation. To emphasize the significance of this milestone, we wanted this report to stand apart from the previous IPNS Progress Reports, and the best way to do this, we thought, was to make the design and organization of the report significantly different. In their articles, authors were asked to emphasize not only advances made since IPNS began operating but also the groundwork that was laid at its predecessor facilities - Argonne`s ZING-P and ZING-P` prototype pulsed neutron sources and CP-5 reactor. Each article stands as a separate chapter in the report, since each represents a particular instrument or class of instruments, system, technique, or area of research. In some cases, contributions were similar to review articles in scientific journals, complete with extensive lists of references. Ten-year cumulative lists of members of IPNS committees and of scientists who have visited or done experiments at IPNS were assembled. A list of published and ``in press`` articles in journals, books, and conference proceedings, resulting from work done at IPNS during the past ten years, was compiled. And archival photographs of people and activities during the ten-year history of IPNS were located and were used liberally throughout the report. The titles of the chapters in this report are: accelerator; computer; radiation effects; powder; stress; single crystal; superconductivity; amorphous; small angle; reflection; quasielastic; inelastic; inelastic magnetic; deep inelastic; user program; the future; and publications.

  11. A Southern African positron beam

    International Nuclear Information System (INIS)

    Britton, D.T.; Haerting, M.; Teemane, M.R.B.; Mills, S.; Nortier, F.M.; Van der Walt, T.N.

    1997-01-01

    The first stage of a state of the art positron beam, being constructed at the University of Cape Town, is currently being brought into operation. This is the first positron beam on the African continent, as well as being the first positron beam dedicated to solid and surface studies in the southern hemisphere. The project also contains a high proportion of local development, including the encapsulated 22 Na positron source developed by our collaboration. Novel features in the design include a purely magnetic in-line deflector, working in the solenoidal guiding field, to eliminate unmoderated positrons and block the direct line of sight to the source. A combined magnetic projector and single pole probe forming lens is being implemented in the second phase of construction to achieve a spot size of 10 μm without remoderation

  12. Conceptual source design and dosimetric feasibility study for intravascular treatment: a proposal for intensity modulated brachytherapy

    International Nuclear Information System (INIS)

    Kim, Si Yong; Han, Eun Young; Palta, Jatinder R.; Ha, Sung W.

    2003-01-01

    To propose a conceptual design of a novel source for intensity modulated brachytherapy. The source design incorporates both radioactive and shielding materials (stainless steel or tungsten), to provide an asymmetric dose intensity in the azimuthal direction. The intensity modulated intravascular brachytherapy was performed by combining a series of dwell positions and times, distributed along the azimuthal coordinates. Two simple designs for the beta-emitting sources, with similar physical dimensions to a 90 Sr/Y Novoste Beat-Cath source, were considered in the dosimetric feasibility study. In the first design, the radioactive and materials each occupy half of the cylinder and in the second, the radioactive material occupies only a quarter of the cylinder. The radial and azimuthal dose distributions around each source were calculated using the MCNP Monte Carlo code. The preliminary hypothetical simulation and optimization results demonstrated the 87% difference between the maximum and minimum doses to the lumen wall, due to off-centering of the radiation source, could be reduced to less than 7% by optimizing the azimuthal dwell positions and times of the partially shielded intravascular brachytherapy sources. The novel brachytherapy source design, and conceptual source delivery system, proposed in this study show promising dosimetric characteristics for the realization of intensity modulated brachytherapy in intravascular treatment. Further development of this concept will center on building a delivery system that can precisely control the angular motion of a radiation source in a small-diameter catheter

  13. Conceptual source design and dosimetric feasibility study for intravascular treatment: a proposal for intensity modulated brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Si Yong; Han, Eun Young; Palta, Jatinder R. [College of Medicine, Florida Univ., Florida (United States); Ha, Sung W. [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2003-06-01

    To propose a conceptual design of a novel source for intensity modulated brachytherapy. The source design incorporates both radioactive and shielding materials (stainless steel or tungsten), to provide an asymmetric dose intensity in the azimuthal direction. The intensity modulated intravascular brachytherapy was performed by combining a series of dwell positions and times, distributed along the azimuthal coordinates. Two simple designs for the beta-emitting sources, with similar physical dimensions to a {sub 90}Sr/Y Novoste Beat-Cath source, were considered in the dosimetric feasibility study. In the first design, the radioactive and materials each occupy half of the cylinder and in the second, the radioactive material occupies only a quarter of the cylinder. The radial and azimuthal dose distributions around each source were calculated using the MCNP Monte Carlo code. The preliminary hypothetical simulation and optimization results demonstrated the 87% difference between the maximum and minimum doses to the lumen wall, due to off-centering of the radiation source, could be reduced to less than 7% by optimizing the azimuthal dwell positions and times of the partially shielded intravascular brachytherapy sources. The novel brachytherapy source design, and conceptual source delivery system, proposed in this study show promising dosimetric characteristics for the realization of intensity modulated brachytherapy in intravascular treatment. Further development of this concept will center on building a delivery system that can precisely control the angular motion of a radiation source in a small-diameter catheter.

  14. Design of intense neutron source for fusion material study and the role of universities

    International Nuclear Information System (INIS)

    Ishino, Shiori

    1993-01-01

    Need and requirement for the intense neutron source for fusion materials study have been discussed for many years. Recently, international climate has been becoming gradually maturing to consider this problem more seriously because of the recognition of crucial importance of solving materials problems for fusion energy development. The present symposium was designed to discuss the problems associated with the intense neutron source for material irradiation studies which will have a potential for the National Institute for Fusion Science to become one of the important future research areas. The symposium comprises five sessions; first, the role of materials research in fusion development strategies was discussed followed by a brief summary of current IFMIF (International Fusion Materials Irradiation Facility) activity. Despite the pressing need for intense fusion neutron source, currently available neutron sources are reactor or accelerator based sources of which FFTF and LASREF were discussed. Then, various concepts of intense neutron source candidates were presented including ESNIT, which are currently under design by JAERI. In the fourth session, discussions were made on the study of materials with the intense neutron source from the viewpoint of materials scientists and engineers as the user of the facility. This is followed by discussions on the role of universities from the two stand points, namely, fusion irradiation studies and fusion materials development. Finally summary discussions were made by the participants, indicating important role fundamental studies in universities for the full utilization of irradiation data and the need of pure 14 MeV neutron source for fundamental studies together with the intense surrogate neutron sources. (author)

  15. Multi-keV X-ray area source intensity at SGII laser facility

    Science.gov (United States)

    Wang, Rui-rong; An, Hong-hai; Xie, Zhi-yong; Wang, Wei

    2018-05-01

    Experiments for investigating the feasibility of multi-keV backlighters for several different metallic foil targets were performed at the Shenguang II (SGII) laser facility in China. Emission spectra in the energy range of 1.65-7.0 keV were measured with an elliptically bent crystal spectrometer, and the X-ray source size was measured with a pinhole camera. The X-ray intensity near 4.75 keV and the X-ray source size for titanium targets at different laser intensity irradiances were studied. By adjusting the total laser energy at a fixed focal spot size, laser intensity in the range of 1.5-5.0 × 1015 W/cm2, was achieved. The results show that the line emission intensity near 4.75 keV and the X-ray source size are dependent on the laser intensity and increase as the laser intensity increases. However, an observed "peak" in the X-ray intensity near 4.75 keV occurs at an irradiance of 4.0 × 1015 W/cm2. For the employed experimental conditions, it was confirmed that the laser intensity could play a significant role in the development of an efficient multi-keV X-ray source. The experimental results for titanium indicate that the production of a large (˜350 μm in diameter) intense backlighter source of multi-keV X-rays is feasible at the SGII facility.

  16. Atomic collisions involving pulsed positrons

    DEFF Research Database (Denmark)

    Merrison, J. P.; Bluhme, H.; Field, D.

    2000-01-01

    Conventional slow positron beams have been widely and profitably used to study atomic collisions and have been instrumental in understanding the dynamics of ionization. The next generation of positron atomic collision studies are possible with the use of charged particle traps. Not only can large...... instantaneous intensities be achieved with in-beam accumulation, but more importantly many orders of magnitude improvement in energy and spatial resolution can be achieved using positron cooling. Atomic collisions can be studied on a new energy scale with unprecedented precion and control. The use...

  17. Spectral intensity dependence an isotropy of sources stronger than 0.1 Jy at 2700 MHz

    International Nuclear Information System (INIS)

    Balonek, T.J.; Broderick, J.J.; Condon, J.J.; Crawford, D.F.; Jauncey, D.L.

    1975-01-01

    The 1000-foot (305 m) telescope of the National Astronomy and Ionosphere Center was used to measure 430 MHz flux densities of sources stronger than 0.1 Jy at 2700 MHz. Distributions of the resulting two-point spectral indices α (430, 2700) of sources in the intensity range 0.1less than or equal toS<0.35 Jy were compared with α (318, 2700) distributions of sources stronger than 0.35 Jy at 2700 MHz. The median normal-component spectral index and fraction of flat-spectrum sources in the faintest sample do not continue the previously discovered trend toward increased spectral steepening of faint sources. This result differs from the prediction of simple evolutionary cosmological models and therefore favors the alternative explanation that local source-density inhomogeneities are responsible for the observed intensity dependence of spectral indices

  18. Intense, broadband, pulsed I-R source at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Williams, G.P.

    1984-01-01

    We describe a broadband (1 μm to 1 mm) synchrotron radiation infrared source, pulsed each 20 to 180 nseconds and delivering about 10 15 photons/sec/1% bandpass into f10 optics. The source size is diffraction limited. This source is thus 100 to 1000 times brighter than a 2000 0 K black body, very stable and capable of being used for calibration

  19. Report from the NSLS workshop: Sources and applications of high intensity uv-vuv light

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, E.D.; Hastings, J.B. (eds.)

    1990-01-01

    A workshop was held to evaluate sources and applications of high intensity, ultra violet (UV) radiation for biological, chemical, and materials sciences. The proposed sources are a UV free electron laser (FEL) driven by a high brightness linac and undulators in long, straight sections of a specially designed low energy (400 MeV) storage ring. These two distinct types of sources will provide a broad range of scientific opportunities that were discussed in detail during the workshop.

  20. Report from the NSLS workshop: Sources and applications of high intensity uv-vuv light

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, E.D.; Hastings, J.B. [eds.

    1990-12-31

    A workshop was held to evaluate sources and applications of high intensity, ultra violet (UV) radiation for biological, chemical, and materials sciences. The proposed sources are a UV free electron laser (FEL) driven by a high brightness linac and undulators in long, straight sections of a specially designed low energy (400 MeV) storage ring. These two distinct types of sources will provide a broad range of scientific opportunities that were discussed in detail during the workshop.

  1. Status of spallation neutron source program in High Intensity Proton Accelerator Project

    International Nuclear Information System (INIS)

    Oyama, Yukio

    2001-01-01

    Japan Atomic Energy Research Institute and High Energy Accelerator Organization are jointly designing a 1 MW spallation neutron source as one of the research facilities planned in the High Intensity Proton Accelerator Project. The spallation neutron source is driven by 3 GeV proton beam with a mercury target and liquid hydrogen moderators. The present status of design for these spallation source and relevant facility is overviewed. (author)

  2. Report from the NSLS workshop: Sources and applications of high intensity uv-vuv light

    International Nuclear Information System (INIS)

    Johnson, E.D.; Hastings, J.B.

    1990-01-01

    A workshop was held to evaluate sources and applications of high intensity, ultra violet (UV) radiation for biological, chemical, and materials sciences. The proposed sources are a UV free electron laser (FEL) driven by a high brightness linac and undulators in long, straight sections of a specially designed low energy (400 MeV) storage ring. These two distinct types of sources will provide a broad range of scientific opportunities that were discussed in detail during the workshop

  3. A high-intensity plasma-sputter heavy negative ion source

    International Nuclear Information System (INIS)

    Alton, G.D.; Mori, Y.; Takagi, A.; Ueno, A.; Fukumoto, S.

    1989-01-01

    A multicusp magnetic field plasma surface ion source, normally used for H/sup /minus//ion beam formation, has been modified for the generation of high-intensity, pulsed, heavy negative ion beams suitable for a variety of uses. To date, the source has been utilized to produce mA intensity pulsed beams of more than 24 species. A brief description of the source, and basic pulsed-mode operational data, (e.g., intensity versus cesium oven temperature, sputter probe voltage, and discharge pressure), are given. In addition, illustrative examples of intensity versus time and the mass distributions of ion beams extracted from a number of samples along with emittance data, are also presented. Preliminary results obtained during dc operation of the source under low discharge power conditions suggest that sources of this type may also be used to produce high-intensity (mA) dc beams. The results of these investigations are given, as well, and the technical issues that must be addressed for this mode of operation are discussed. 15 refs., 10 figs., 2 tabs

  4. Beam commission of the high intensity proton source developed at INFN-LNS for the European Spallation Source

    Science.gov (United States)

    Neri, L.; Celona, L.; Gammino, S.; Miraglia, A.; Leonardi, O.; Castro, G.; Torrisi, G.; Mascali, D.; Mazzaglia, M.; Allegra, L.; Amato, A.; Calabrese, G.; Caruso, A.; Chines, F.; Gallo, G.; Longhitano, A.; Manno, G.; Marletta, S.; Maugeri, A.; Passarello, S.; Pastore, G.; Seminara, A.; Spartà, A.; Vinciguerra, S.

    2017-07-01

    At the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS) the beam commissioning of the high intensity Proton Source for the European Spallation Source (PS-ESS) started in November 2016. Beam stability at high current intensity is one of the most important parameter for the first steps of the ongoing commissioning. Promising results were obtained since the first source start with a 6 mm diameter extraction hole. The increase of the extraction hole to 8 mm allowed improving PS-ESS performances and obtaining the values required by the ESS accelerator. In this work, extracted beam current characteristics together with Doppler shift and emittance measurements are presented, as well as the description of the next phases before the installation at ESS in Lund.

  5. The impact of positron emission tomography on primary tumour delineation and dosimetric outcome in intensity modulated radiotherapy of early T-stage nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Wu, Vincent W. C.; Leung, Wan-shun; Wong, Kwun-lam; Chan, Ying-kit; Law, Wing-lam; Leung, Wing-kwan; Yu, Yat-long

    2016-01-01

    In intensity modulated radiotherapy (IMRT) of nasopharyngeal carcinoma (NPC), accurate delineation of the gross tumour volume (GTV) is important. Image registration of CT and MRI has been routinely used in treatment planning. With recent development of positron emission tomography (PET), the aims of this study were to evaluate the impact of PET on GTV delineation and dosimetric outcome in IMRT of early stage NPC patients. Twenty NPC patients with T1 or T2 disease treated by IMRT were recruited. For each patient, 2 sets of NP GTVs were delineated separately, in which one set was performed using CT and MRI registration only (GTV CM ), while the other set was carried out using PET, CT and MRI information (GTV CMP ). A 9-field IMRT plan was computed based on the target volumes generated from CT and MRI (PTV CM ). To assess the geometric difference between the GTV CM and GTV CMP , GTV volumes and DICE similarity coefficient (DSC), which measured the geometrical similarity between the two GTVs, were recorded. To evaluate the dosimetric impact, the D max , D min , D mean and D 95 of PTVs were obtained from their dose volume histograms generated by the treatment planning system. The overall mean volume of GTV CMP was greater than GTV CM by 4.4 %, in which GTV CMP was slightly greater in the T1 group but lower in the T2 group. The mean DSC of the whole group was 0.79 ± 0.05. Similar mean DSC values were also obtained from the T1 and T2 groups separately. The dosimetric parameters of PTV CM fulfilled the planning requirements. When applying this plan to the PTV CMP , the average D min (56.9 Gy) and D 95 (68.6 Gy) of PTV CMP failed to meet the dose requirements and demonstrated significant differences from the PTV CM (p = 0.001 and 0.016 respectively), whereas the doses to GTV CMP did not show significant difference with the GTV CM . In IMRT of early stage NPC, PET was an important imaging modality in radiotherapy planning so as to avoid underdosing the PTV, although its

  6. The impact of positron emission tomography on primary tumour delineation and dosimetric outcome in intensity modulated radiotherapy of early T-stage nasopharyngeal carcinoma.

    Science.gov (United States)

    Wu, Vincent W C; Leung, Wan-Shun; Wong, Kwun-Lam; Chan, Ying-Kit; Law, Wing-Lam; Leung, Wing-Kwan; Yu, Yat-Long

    2016-08-24

    In intensity modulated radiotherapy (IMRT) of nasopharyngeal carcinoma (NPC), accurate delineation of the gross tumour volume (GTV) is important. Image registration of CT and MRI has been routinely used in treatment planning. With recent development of positron emission tomography (PET), the aims of this study were to evaluate the impact of PET on GTV delineation and dosimetric outcome in IMRT of early stage NPC patients. Twenty NPC patients with T1 or T2 disease treated by IMRT were recruited. For each patient, 2 sets of NP GTVs were delineated separately, in which one set was performed using CT and MRI registration only (GTVCM), while the other set was carried out using PET, CT and MRI information (GTVCMP). A 9-field IMRT plan was computed based on the target volumes generated from CT and MRI (PTVCM). To assess the geometric difference between the GTVCM and GTVCMP, GTV volumes and DICE similarity coefficient (DSC), which measured the geometrical similarity between the two GTVs, were recorded. To evaluate the dosimetric impact, the Dmax, Dmin, Dmean and D95 of PTVs were obtained from their dose volume histograms generated by the treatment planning system. The overall mean volume of GTVCMP was greater than GTVCM by 4.4 %, in which GTVCMP was slightly greater in the T1 group but lower in the T2 group. The mean DSC of the whole group was 0.79 ± 0.05. Similar mean DSC values were also obtained from the T1 and T2 groups separately. The dosimetric parameters of PTVCM fulfilled the planning requirements. When applying this plan to the PTVCMP, the average Dmin (56.9 Gy) and D95 (68.6 Gy) of PTVCMP failed to meet the dose requirements and demonstrated significant differences from the PTVCM (p = 0.001 and 0.016 respectively), whereas the doses to GTVCMP did not show significant difference with the GTVCM. In IMRT of early stage NPC, PET was an important imaging modality in radiotherapy planning so as to avoid underdosing the PTV, although its effect on GTV

  7. Multinational ownership and R&D intensity: The role of external knowledge sources and spillovers

    OpenAIRE

    De Beule, Filip; Van Beveren, Ilke

    2011-01-01

    This paper analyzes the drivers of multinational affiliates' R&D intensity, using a unique dataset based on the fourth Community Innovation Survey for Belgium. Specifically, we investigate the role of foreign affiliates' local (host country) embeddedness and of host country spillovers on foreign affiliates' research efforts. Our findings show that foreign affiliates who are able to tap into local knowledge sources demonstrate a higher research intensity, compared to firms lacking such access....

  8. Conceptual Design of Dielectric Accelerating Structures for Intense Neutron and Monochromatic X-ray Sources

    Science.gov (United States)

    Blanovsky, Anatoly

    2004-12-01

    Bright compact photon sources, which utilize electron beam interaction with periodic structures, may benefit a broad range of medical, industrial and scientific applications. A class of dielectric-loaded periodic structures for hard and soft X-ray production has been proposed that would provide a high accelerating gradient when excited by an external RF and/or primary electron beam. Target-distributed accelerators (TDA), in which an additional electric field compensates for lost beam energy in internal targets, have been shown to provide the necessary means to drive a high flux subcritical reactor (HFSR) for nuclear waste transmutation. The TDA may also be suitable for positron and nuclear isomer production, X-ray lithography and monochromatic computer tomography. One of the early assumptions of the theory of dielectric wake-field acceleration was that, in electrodynamics, the vector potential was proportional to the scalar potential. The analysis takes into consideration a wide range of TDA design aspects including the wave model of observed phenomena, a layered compound separated by a Van der Waals gap and a compact energy source based on fission electric cells (FEC) with a multistage collector. The FEC is a high-voltage power source that directly converts the kinetic energy of the fission fragments into electrical potential of about 2MV.

  9. Optimisation of intense X-ray sources of Z-pinch type connected to the high intensity current generator SPHINX

    International Nuclear Information System (INIS)

    Calamy, H.; Lassalle, F.; Grunenwald, J.; Zucchini, F.

    2010-01-01

    A new source of intense X-rays in the spectral range of the keV has been designed in the CEA facilities at Gramat (France). This Z-pinch source is based on the implosion of a cylinder of matter that has been ionized by the Lorentz force generated by the injection in the cylinder of an intense current pulse delivered by a HPP (High Pulsed Powers) generator named SPHINX. The cylinder of matter is made up of a few hundreds of thin metal wires (tungsten or aluminium) whose diameter is less than a few tenths of μm. The SPHINX generator is based on the LTD (Linear Transformer Driver) technology. SPHINX stores an energy of 2.2 MJ and delivers a current of 8 MA over a time of 1 μs. SPHINX does not use any technology of time compression, it is a robust, compact machine with reduced maintenance but the price to pay for this simplification is to maintain a high axial homogeneity of the implosion during the initiation phase, it means the pulse time of 1μs. The preliminary experiments that have been performed give the following results: -) for a tungsten cylinder (X ray 1 keV): 28 kJ, 0.6 TW and 25 ns

  10. Cosmic Ray Positrons from Pulsars

    Science.gov (United States)

    Harding, Alice K.

    2010-01-01

    Pulsars are potential Galactic sources of positrons through pair cascades in their magnetospheres. There are, however, many uncertainties in establishing their contribution to the local primary positron flux. Among these are the local density of pulsars, the cascade pair multiplicities that determine the injection rate of positrons from the pulsar, the acceleration of the injected particles by the pulsar wind termination shock, their rate of escape from the pulsar wind nebula, and their propagation through the interstellar medium. I will discuss these issues in the context of what we are learning from the new Fermi pulsar detections and discoveries.

  11. Generation of monoenergetic positrons

    International Nuclear Information System (INIS)

    Hulett, L.D. Jr.; Dale, J.M.; Miller, P.D. Jr.; Moak, C.D.; Pendyala, S.; Triftshaeuser, W.; Howell, R.H.; Alvarez, R.A.

    1983-01-01

    Many experiments have been performed in the generation and application of monoenergetic positron beams using annealed tungsten moderators and fast sources of 58 Co, 22 Na, 11 C, and LINAC bremstrahlung. This paper will compare the degrees of success from our various approaches. Moderators made from both single crystal and polycrystal tungsten have been tried. Efforts to grow thin films of tungsten to be used as transmission moderators and brightness enhancement devices are in progress

  12. Utilizations of intense pulsed neutron source in radiochemistry and radiation chemistry

    International Nuclear Information System (INIS)

    Shiokawa, Takanobu; Yoshihara, Kenji; Kaji, Harumi; Kusaka, Yuzuru; Tabata, Yoneho.

    1975-01-01

    Intense pulsed neutron sources is expected to supply more useful and fundamental informations in radiochemistry and radiation chemistry. Short-lived intermediate species may be detected and the mechanisms of radiation induced reactions will be elucidated more precisely. Analytical application of pulsed neutrons is also very useful. (auth.)

  13. Calibration of intense 60Co gamma ray sources at the Savannah River Plant

    International Nuclear Information System (INIS)

    Bibler, N.E.

    1976-05-01

    Three different dosimeters were used to calibrate Savannah River Plant 60 Co sources having intensities greater than 10 7 rads/hr. These dosimeters are (a) ceric sulfate dissolved in 0.4M H 2 SO 4 , (b) oxalic acid dissolved in water, and (c) a commercially available nylon film containing a radiochromic dye. Response per unit dose to these dosimeters is independent of radiation intensity at 10 4 to 10 11 rads/hr. The dosimeters were calibrated at 6.0 x 10 5 rads/hr with a 60 Co source whose intensity was determined with the standard Fricke dosimeter. For the sources at 10 7 rads/hr or greater, intensities were calculated from slopes of linear plots of dosimeter response versus irradiation time. Individual dose rates varied from 1.0 x 10 7 to 4.6 x 10 7 rads/hr. Each source was calibrated with at least two different dosimeters. Relative standard deviations varied from 2 to 9 percent. A conservative estimate of the uncertainty in the accuracy of these dosimeters is 10 percent. Of the three dosimeters, the nylon film is easiest to use and is therefore recommended for future calibrations

  14. High intensity metallic ion beam from an ecr ion source using the Mivoc method

    International Nuclear Information System (INIS)

    Barue, C.; Canet, C.; Dupuis, M.; Flambard, J.L.; Leherissier, P.; Lemagnen, F.; Jaffres, P.A.

    2000-01-01

    The MIVOC method has been successfully used at GANIL to produce a high intensity nickel beam with the ECR4 ion source: 20 μA 58 Ni 11+ at 24 kV extraction voltage. This beam has been maintained for 8 days and accelerated up to 74.5 MeV/u by our cyclotrons with a mean intensity of 0.13 pμA on target. This high intensity, required for experiment, led to the discovery of the doubly magic 48 Ni isotope. Experimental setup, handling and off-line preparation using a residual gas analyzer are described in this report. The ion source behavior, performances and limitations are presented in the case of nickel and iron. The ionization efficiencies have been measured and compared to the oven method usually used at GANIL. (author)

  15. Multipurpose intense 14 MeV neutron source at Bratislava: Design study

    International Nuclear Information System (INIS)

    Pivarc, J.; Hlavac, S.; Kral, J.; Oblozinsky, P.; Ribansky, I.; Turzo, I.

    1980-05-01

    The present state of design of the multipurpose intense 14 MeV neutron source based on a D + ion beam and a metal tritide target is reported. It is essentially a 300 keV electrostatic air insulated accelerator capable to accelerate a deuterium ion beam up to 10 mA. With such a beam and a beam spot of 1 cm 2 , a neutron yield typically 10 12 n/s and a useful target lifetime of around 10 h are expected. Various users requirements are met by means of three beam lines: an intense, low current dc and a low current fast pulsed. The key components of the intense source section are the rotating target and the ion source. The rotating target is proposed, with respect of the heat dissipation and the removal of 3 kW/cm 2 , in continuous operation. A rotation speed up to 1100 rpm is considered. The ion source should deliver about 0.5 kW of extracted D + ion beam power. A duoplasmatron source with an electrostatic beam focusing system has been selected. Low current sections of the neutron source may operate with a high frequency ion source as well. The dc section for maximum yields around 10 10 n/s is designed with special regard to beam monitoring. The fast pulsed section should produce up to 1 ns compressible pulsed D + ion beam on a target spot with 5 MHz repetition rate. The report includes information about other components of the neutron source as a high voltage power supply, a vacuum system, beam transport, a diagnostic and control system and basic information about neutron source cells and radiation protection. (author)

  16. Positrons trapped in polyethylene: Electric field effect

    International Nuclear Information System (INIS)

    Bertolaccini, M.; Bisi, A.; Gambarini, G.; Zappa, L.

    1978-01-01

    The intensity of the iot 2 -component of positrons annihilated in polyethylene is found to increase with increasing electric field, while the formation probability of the positron state responsible for this component remains independent of the field. (orig.) 891 HPOE [de

  17. Use of the spectral analysis for estimating the intensity of a weak periodic source

    International Nuclear Information System (INIS)

    Marseguerra, M.

    1989-01-01

    This paper deals with the possibility of exploiting spectral methods for the analysis of counting experiments in which one has to estimate the intensity of a weak periodic source of particles buried in a high background. The general theoretical expressions here obtained for the auto- and cross-spectra are applied to three kinds of simulated experiments. In all cases it turns out that the source intensity can acutally be estimated with a standard deviation comparable with that obtained in classical experiments in which the source can be moved out. Thus the spectral methods represent an interesting technique nowadays easy to implement on low-cost computers which could also be used in many research fields by suitably redesigning classical experiments. The convenience of using these methods in the field of nuclear safeguards is presently investigated in our Institute. (orig.)

  18. Intense resonance neutron source (IREN) - new pulsed source for nuclear physical and applied investigations

    International Nuclear Information System (INIS)

    Anan'ev, V.D.; Furman, W.I.; Kobets, V.V.; Meshkov, I.N.; Pyataev, V.G.; Shirkov, G.D.; Shvets, V.A.; Sumbaev, A.P.; Kuatbekov, R.P.; Tret'yakov, I.T.; Frolov, A.R.; Gurov, S.M.; Logachev, P.V.; Pavlov, V.M.; Skarbo, B.A.

    2005-01-01

    An accelerator-driven subcritical system (200 MeV electron linac + metallic plutonium subcritical core) IREN is constructed at the Joint Institute for Nuclear Research (JINR). The new pulsed neutron source IREN is optimized for maximal yield of resonance neutrons (1-10 5 eV). The S-band electron linac with a pulse duration near 200 ns, repetition rate up to 150 Hz and the mean beam power 10 kW delivers 200-MeV electrons onto a specially designed tungsten target (an electron-neutron converter) situated in the center of a very compact and fast subcritical assembly with K eff 15 per second. A mean fission power of the multiplying target is planned to be near 15 kW. The current status of the project is presented

  19. A high-intensity He-jet production source for radioactive beams

    International Nuclear Information System (INIS)

    Vieira, D.J.; Kimberly, H.J.; Grisham, D.L.; Talbert, W.L.; Wouters, J.M.; Rosenauer, D.; Bai, Y.

    1993-01-01

    The use of a thin-target, He-jet transport system operating with high primary beam intensities is explored as a high-intensity production source for radioactive beams. This method is expected to work well for short-lived, non-volatile species. As such the thin-target, He-jet approach represents a natural complement to the thick-target ISOL method in which such species are not, in general, rapidly released. Highlighted here is a thin-target, He-jet system that is being prepared for a 500 + μA, 800-MeV proton demonstration experiment at LAMPF this summer

  20. Determination of Noise Level and Its Sources in the Neonatal Intensive Care Unit and Neonatal Ward

    Directory of Open Access Journals (Sweden)

    Mahdi Jahangir Blourchian

    2015-12-01

    Full Text Available Background: In Neonatal intensive care units (NICU different sound intensities and frequencies are produced from different sources, which may exert undesirable physiological effects on the infants. The aim of this study was to determine the noise level and its sources in the NICU and neonatal ward of Al-Zahra Hospital of Rasht, Iran. Methods: In this descriptive cross-sectional study, the intensity of the sounds generated by the internal and external sources in the NICU and neonatal ward was measured using a sound level meter device. The sound produced by each of the sources was individually calculated. Data were analyzed performing descriptive and analytical statistics, using SPSS version 19. Results: The mean noise levels in six rooms and a hallway during morning, afternoon and night shifts with the electromechanical devices turned on were 61.67±4.5, 61.32±4.32 and 60.71±4.56 dB, respectively. Moreover, with the devices tuned off the mean noise levels during morning, afternoon and evening shifts were 64.97±2.6, 60.6±1.29 and 57.91±4.73 dB, respectively. The differences between the mean noise levels in the neonatal wards (standard noise level=45 dB during each shift with the electromechanical devices turned on and off were statistically significant (P=0.002 and P

  1. REPORT OF THE SNOWMASS M6 WORKING GROUP ON HIGH INTENSITY PROTON SOURCES.

    Energy Technology Data Exchange (ETDEWEB)

    CHOU,W.; WEI,J.

    2001-08-14

    The M6 working group had more than 40 active participants (listed in Section 4). During the three weeks at Snowmass, there were about 50 presentations, covering a wide range of topics associated with high intensity proton sources. The talks are listed in Section 5. This group also had joint sessions with a number of other working groups, including E1 (Neutrino Factories and Muon Colliders), E5 (Fixed-Target Experiments), M1 (Muon Based Systems), T4 (Particle Sources), T5 (Beam dynamics), T7 (High Performance Computing) and T9 (Diagnostics). The M6 group performed a survey of the beam parameters of existing and proposed high intensity proton sources, in particular, of the proton drivers. The results are listed in Table 1. These parameters are compared with the requirements of high-energy physics users of secondary beams in Working Groups E1 and E5. According to the consensus reached in the E1 and E5 groups, the U.S. HEP program requires an intense proton source, a 1-4 MW Proton Driver, by the end of this decade.

  2. REPORT OF THE SNOWMASS M6 WORKING GROUP ON HIGH INTENSITY PROTON SOURCES

    International Nuclear Information System (INIS)

    CHOU, W.; WEI, J.

    2001-01-01

    The M6 working group had more than 40 active participants (listed in Section 4). During the three weeks at Snowmass, there were about 50 presentations, covering a wide range of topics associated with high intensity proton sources. The talks are listed in Section 5. This group also had joint sessions with a number of other working groups, including E1 (Neutrino Factories and Muon Colliders), E5 (Fixed-Target Experiments), M1 (Muon Based Systems), T4 (Particle Sources), T5 (Beam dynamics), T7 (High Performance Computing) and T9 (Diagnostics). The M6 group performed a survey of the beam parameters of existing and proposed high intensity proton sources, in particular, of the proton drivers. The results are listed in Table 1. These parameters are compared with the requirements of high-energy physics users of secondary beams in Working Groups E1 and E5. According to the consensus reached in the E1 and E5 groups, the U.S. HEP program requires an intense proton source, a 1-4 MW Proton Driver, by the end of this decade

  3. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Directory of Open Access Journals (Sweden)

    H. W. Zhao

    2017-09-01

    Full Text Available The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24–28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of ^{40}Ar^{12+} and ^{129}Xe^{26+} have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL, China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24+18  GHz heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  4. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Science.gov (United States)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Lu, W.; Xie, D. Z.; Hitz, D.; Zhang, X. Z.; Yang, Y.

    2017-09-01

    The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24-28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of 40Ar+ and 129Xe26+ have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL), China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24 +18 GHz ) heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  5. Note: A new design for a low-temperature high-intensity helium beam source

    Science.gov (United States)

    Lechner, B. A. J.; Hedgeland, H.; Allison, W.; Ellis, J.; Jardine, A. P.

    2013-02-01

    A high-intensity supersonic beam source is a key component of any atom scattering instrument, affecting the sensitivity and energy resolution of the experiment. We present a new design for a source which can operate at temperatures as low as 11.8 K, corresponding to a beam energy of 2.5 meV. The new source improves the resolution of the Cambridge helium spin-echo spectrometer by a factor of 5.5, thus extending the accessible timescales into the nanosecond range. We describe the design of the new source and discuss experiments characterizing its performance. Spin-echo measurements of benzene/Cu(100) illustrate its merit in the study of a typical slow-moving molecular adsorbate species.

  6. The high intensity {gamma}-ray source (HI{gamma}S) and recent results

    Energy Technology Data Exchange (ETDEWEB)

    Tonchev, A.P. [Duke University and TUNL, Triangle University Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 0308 (United States)]. E-mail: tonchev@tunl.duke.edu; Boswell, M. [University of North Carolina at Chapel Hill and TUNL, Chapel Hill, NC 27599 (United States); Howell, C.R. [Duke University and TUNL, Triangle University Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 0308 (United States); Karwowski, H.J. [University of North Carolina at Chapel Hill and TUNL, Chapel Hill, NC 27599 (United States); Kelley, J.H. [North Carolina State University and TUNL, Raleigh, NC 27695 (United States); Tornow, W. [Duke University and TUNL, Triangle University Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 0308 (United States); Wu, Y.K. [Duke University and Duke Free Electron Laser Laboratory, Durham, NC 27708-0319 (United States)

    2005-12-15

    The high intensity {gamma}-ray source (HI{gamma}S) utilizes intra-cavity backscattering of free electron laser photons from the Duke electron storage ring to produce a unique monoenergetic beam of high-flux {gamma}-rays with high polarization and selectable energy resolution. At present, {gamma}-ray beams with energies from 2 to 58 MeV are available with intensities as high as 10{sup 5}-5 x 10{sup 6} {gamma}/s, energy spreads of 3% or better, and nearly 100% linear polarization. The quality and intensity of the {gamma}-ray beams at HI{gamma}S are responsible for the unprecedented performance of this facility in a broad range of research programs in nuclear structure, nuclear astrophysics and nuclear applications. Recent results from excitation of isomeric states in ({gamma}, n) reactions and parity assignments of dipole states determined via the ({gamma}, {gamma}') reaction are presented.

  7. New initiatives on lepton flavor violation and neutrino oscillation with high intense muon and neutrino sources

    CERN Document Server

    Kuno, Yoshitaka; Pakvasa, Sandip

    2002-01-01

    The area of physics involving muons and neutrinos has become exciting in particle physics. Using their high intensity sources, physicists undertake, in various ways, extensive searches for new physics beyond the Standard Model, such as tests of supersymmetric grand unification (SUSY-GUT) and precision measurements of the muon and neutrino properties, which will in future extend to ambitious studies such as determination of the three-generation neutrino mixing matrix elements and CP violation in the lepton sector. The physics of this field is advancing, with potential improvements of the source

  8. Proposed second harmonic acceleration system for the intense pulsed neutron source rapid cycling synchrotron

    International Nuclear Information System (INIS)

    Norem, J.; Brandeberry, F.; Rauchas, A.

    1983-01-01

    The Rapid Cycling Synchrotron (RCS) of the Intense Pulsed Neutron Source (IPNS) operating at Argonne National Laboratory is presently producing intensities of 2 to 2.5 x 10 12 protons per pulse (ppp) with the addition of a new ion source. This intensity is close to the space charge limit of the machine, estimated at approx.3 x 10 12 ppp, depending somewhat on the available aperture. With the present good performance in mind, accelerator improvements are being directed at: (1) increasing beam intensities for neutron science; (2) lowering acceleration losses to minimize activation; and (3) gaining better control of the beam so that losses can be made to occur when and where they can be most easily controlled. On the basis of preliminary measurements, we are now proposing a third cavity for the RF systems which would provide control of the longitudinal bunch shape during the cycle which would permit raising the effective space charge limit of the accelerator and reducing losses

  9. Preliminary tests of a second harmonic rf system for the intense pulsed neutron source synchrotron

    International Nuclear Information System (INIS)

    Norem, J.; Brandeberry, F.

    1983-01-01

    The Rapid Cycling Synchrotron (RCS) of the Intense Pulsed Neutron Source (IPNS) operating at Argonne National Laboratory is presently producing intensities of 2 to 2.5 x 10 12 protons per pulse (ppp) with the addition of a new ion source. This intensity is close to the space charge limit of the machine, estimated at approx. 3 x 10 12 ppp, depending somewhat on the available aperture. Accelerator improvements are being directed at (1) increasing beam intensities for neutron science, (2) lowering acceleration losses to minimize activation, and (3) gaining better control of the beam so that losses can be made to occur when and where they can be most easily controlled. We are now proposing a third cavity for the RF system which would provide control of the longitudinal bunch shape during the cycle which would permit raising the effective space charge limit of the accelerator and reducing losses by providing more RF voltage at maximum acceleration. This paper presents an outline of the expected benefits together with recent results obtained during low energy operation with one of the two existing cavities operating at the second harmonic

  10. High intensity metallic ion beams from an ecr ion source at GANIL

    International Nuclear Information System (INIS)

    Leherissier, P.; Barue, C.; Canet, C.; Dupuis, M.; Flambard, J.L.; Gaubert, G.; Gibouin, S.; Huguet, Y.; Jardin, P.; Lecesne, N.; Lemagnen, F.; Leroy, R.; Pacquet, J.Y.; Pellemoine-Landre, F.; Rataud, J.P.; Jaffres, P.A.

    2001-01-01

    In the recent years, progress concerning the production of high intensity of metallic ions beams ( 58 Ni, 48 Ca, 76 Ge) at Ganil have been performed. The MIV0C method has been successfully used to produce a high intensity nickel beam with the ECR4 ion source: 20 eμA of 58 Ni 11+ at 24 kV extraction voltage. This beam has been maintained for 8 days and accelerated up to 74.5 MeV/u by our cyclotrons with a mean intensity of 0.13 pμA on target. This high intensity, required for experiment, led to the discovery of the doubly magic 48 Ni isotope. The oven method has been first tested with natural metallic calcium on the ECR4 ion source, then used to produce a high power beam (740 W on target i.e. 0.13 pμA accelerated up to 60 MeV/u) of 48 Ca still keeping a low consumption (0.09 mg/h). A germanium beam is now under development, using the oven method with germanium oxide. The ionization efficiencies have been measured and compared. (authors)

  11. Measurements of neutron intensity from liquid deuterium moderator of the cold neutron source of KUR

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Ebisawa, Toru; Akiyoshi, Tsunekazu; Tasaki, Seiji

    1990-01-01

    The neutron spectra from the liquid deuterium moderator of the cold neutron source of KUR were measured by the time of flight (TOF) method similar to the previous measurements for the liquid hydrogen moderator. The cold neutron gain factor is found to be about 20 ∼ 28 times for the wavelength longer than 6 A. Cold neutron intensities from the liquid deuterium moderator and from the liquid hydrogen moderator are compared and discussed. (author)

  12. Ca-48 handling for a cyclotron ECR ion source to produce highly intense ion beams

    International Nuclear Information System (INIS)

    Lebedev, V.Ya.; Bogomolov, S.L.; Dmitriev, S.N.; Kutner, V.B.; Shamanin, A.N.; Yakushev, A.B.

    2002-01-01

    Production of highly intense ion beams of 48 Ca is one of the main tasks in experiments carried out within the framework of the synthesis of new superheavy elements. 48 Ca is very rare and expensive isotope, therefore there is necessity to reach the high intensity of ion beams of the isotope at a low consumption rate. Analysis and our preliminary experiments have showed that the best way of producing highly intense calcium ion beams is evaporation of metallic calcium in an ECR ion source. So we have developed a technique of metallic 48 Ca production by reducing CaO (this chemical form is available at the market with 40-80% of 48 Ca ) with aluminium powder. We used two tantalum crucibles: a larger, with a mixture of CaO + Al heated up to 1250 deg C, which was connected to the smaller (2 mm I.D. and 30 mm long) in which calcium vapour condensed. The temperature distribution in the small crucible was about 50 deg C at the bottom and about 500 deg C in the middle of the crucible. The pressure inside of the set-up was between 0.1 and 1 Pa. The production rate of metallic 48 Ca was 10-20 mg/h. The crucible with the condensed metallic Ca in argon atmosphere was transferred to the ECR-4M ion source, where it was inserted in a wired tubular oven and the calcium evaporation was controlled through the oven power supply. The application of metallic 48 Ca as the working substance for the ECR-4M ion source of the U-400 cyclotron of allowed us to approach a stable high intensity of 48 Ca ion beams: the intensities for the internal and external beams were 10 13 c -1 and 3.10 12 c -1 , respectively, at a consumption rate about 0.4 mg/h. A technique was developed for the reclamation of 48 Ca from the residue inside of the large crucible and from the inner parts of the ECR ion source. Extracting Ca from the inner parts of the ion source enabled us to save up to some 25% of the calcium used in the ECR ion source, so that the actual consumption rate was about 0.3 mg/h at the highest 48

  13. X-ray intensity and source size characterizations for the 25 kV upgraded Manson source at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Loisel, G., E-mail: gploise@sandia.gov; Lake, P.; Gard, P.; Dunham, G.; Nielsen-Weber, L.; Wu, M. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Norris, E. [Missouri University of Science and Technology, Rolla, Missouri 65409 (United States)

    2016-11-15

    At Sandia National Laboratories, the x-ray generator Manson source model 5 was upgraded from 10 to 25 kV. The purpose of the upgrade is to drive higher characteristics photon energies with higher throughput. In this work we present characterization studies for the source size and the x-ray intensity when varying the source voltage for a series of K-, L-, and M-shell lines emitted from Al, Y, and Au elements composing the anode. We used a 2-pinhole camera to measure the source size and an energy dispersive detector to monitor the spectral content and intensity of the x-ray source. As the voltage increases, the source size is significantly reduced and line intensity is increased for the three materials. We can take advantage of the smaller source size and higher source throughput to effectively calibrate the suite of Z Pulsed Power Facility crystal spectrometers.

  14. X-ray intensity and source size characterizations for the 25 kV upgraded Manson source at Sandia National Laboratories.

    Science.gov (United States)

    Loisel, G; Lake, P; Gard, P; Dunham, G; Nielsen-Weber, L; Wu, M; Norris, E

    2016-11-01

    At Sandia National Laboratories, the x-ray generator Manson source model 5 was upgraded from 10 to 25 kV. The purpose of the upgrade is to drive higher characteristics photon energies with higher throughput. In this work we present characterization studies for the source size and the x-ray intensity when varying the source voltage for a series of K-, L-, and M-shell lines emitted from Al, Y, and Au elements composing the anode. We used a 2-pinhole camera to measure the source size and an energy dispersive detector to monitor the spectral content and intensity of the x-ray source. As the voltage increases, the source size is significantly reduced and line intensity is increased for the three materials. We can take advantage of the smaller source size and higher source throughput to effectively calibrate the suite of Z Pulsed Power Facility crystal spectrometers.

  15. A tunable, linac based, intense, broad-band THz source forpump-probe experiments

    Energy Technology Data Exchange (ETDEWEB)

    Schmerge, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Adolphsen, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Corbett, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dolgashev, V. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Durr, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fazio, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fisher, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Frisch, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gaffney, K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Guehr, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hastings, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hettel, B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hoffmann, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hogan, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Holtkamp, N. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Huang, X. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Huang, Z. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Kirchmann, P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); LaRue, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Limborg, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lindenberg, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Loos, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Maxwell, T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nilsson, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Raubenheimer, T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Reis, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Ross, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Shen, Z. -X. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stupakov, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tantawi, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tian, K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wu, Z. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Xiang, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Yakimenko, V. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-02-02

    We propose an intense THz source with tunable frequency and bandwidth that can directly interact with the degrees of freedom that determine the properties of materials and thus provides a new tool for controlling and directing these ultrafast processes as well as aiding synthesis of new materials with new functional properties. This THz source will broadly impact our understanding of dynamical processes in matter at the atomic-scale and in real time. Established optical pumping schemes using femtosecond visible frequency laser pulses for excitation are extended into the THz frequency regime thereby enabling resonant excitation of bonds in correlated solid state materials (phonon pumping), to drive low energy electronic excitations, to trigger surface chemistry reactions, and to all-optically bias a material with ultrashort electric fields or magnetic fields. A linac-based THz source can supply stand-alone experiments with peak intensities two orders of magnitude stronger than existing laser-based sources, but when coupled with atomic-scale sensitive femtosecond x-ray probes it opens a new frontier in ultrafast science with broad applications to correlated materials, interfacial and liquid phase chemistry, and materials in extreme conditions.

  16. ASPUN: design for an Argonne super-intense pulsed neutron source

    International Nuclear Information System (INIS)

    Khoe, T.K.; Kustom, R.L.

    1983-01-01

    Argonne pioneered the pulsed spallation neutron source with the ZING-P and IPNS-I concepts. IPNS-I is now a reliable and actively used source for pulsed spallation neutrons. The accelerator is a 500-MeV, 8 to 9 μa, 30-Hz rapid-cycling proton synchrotron. Other proton spallation sources are now in operation or in construction. These include KENS-I at the National Laboratory for High Energy Physics in Japan, the WNR/PSR at Los Alamos National Laboratory in the USA, and the SNS at the Rutherford Appleton Laboratory in England. Newer and bolder concepts are being developed for more-intense pulsed spallation neutron sources. These include SNQ at the KFA Laboratory in Juelich, Germany, ASTOR at the Swiss Institute for Nuclear Physics in Switzerland, and ASPUN, the Argonne concept. ASPUN is based on the Fixed-Field Alternating Gradient concept. The design goal is to provide a time-averaged beam of 3.5 ma at 1100 MeV on a spallation target in intense bursts, 100 to 200 nanoseconds long, at a repetition rate of no more than 60 to 85 Hz

  17. A High-Intensity, RF Plasma-Sputter Negative Ion Source

    International Nuclear Information System (INIS)

    Alton, G.D.; Bao, Y.; Cui, B.; Lohwasser, R.; Reed, C.A.; Zhang, T.

    1999-01-01

    A high-intensity, plasma-sputter negative-ion source based on the use of RF power for plasma generation has been developed that can be operated in either pulsed or dc modes. The source utilizes a high-Q, self-igniting, inductively coupled antenna system, operating at 80 MHz that has been optimized to generate Cs-seeded plasmas at low pressures (typically, - (610 microA); F - (100 microA); Si - (500 microA); S - (500 microA); P - (125 microA); Cl - (200 microA); Ni - (150 microA); Cu - (230 microA); Ge - (125 microA); As - (100 microA); Se - (200 microA); Ag - (70 microA); Pt - (125 microA); Au - (250 microA). The normalized emittance var e psilon n of the source at the 80% contour is: var e psilon n = 7.5 mm.mrad.(MeV) 1/2 . The design principles of the source, operational parameters, ion optics, emittance and intensities for a number of negative-ion species will be presented in this report

  18. A modified high-intensity Cs sputter negative-ion source with multi-target mechanism

    International Nuclear Information System (INIS)

    Si Houzhi; Zhang Weizhong; Zhu Jinhau; Du Guangtian; Zhang Tiaorong; Gao Xiang

    1993-01-01

    The source is based on Middleton's high-intensity mode, but modified to a multi-target version. It is equipped with a spherical molybdenum ionizer, a 20-position target wheel and a vacuum lock for loading and unloading sample batches. A metal-ceramic bonded section protected by a specially designed labyrinth shielding system results in reliable insulation of the cathode and convenient control of cesium vapor. The latter is particularly important when an oversupply of cesium occurs. The source was developed for accelerator mass spectrometry (AMS) applications. Recently, three versions based on the prototype of the source have been successfully tested to meet different requirements: (a) Single target version, (b) multi-target version with manual sample change, and (c) multi-target version with remote control sample change. Some details of the technical and operational characteristics are presented. (orig.)

  19. KEK-IMSS Slow Positron Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hyodo, T; Wada, K; Yagishita, A; Kosuge, T; Saito, Y; Kurihara, T; Kikuchi, T; Shirakawa, A; Sanami, T; Ikeda, M; Ohsawa, S; Kakihara, K; Shidara, T, E-mail: toshio.hyodo@kek.jp [High Energy Accelerator Research Organization (KEK) 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan)

    2011-12-01

    The Slow Positron Facility at the Institute of Material Structure Science (IMSS) of High Energy Accelerator Research Organization (KEK) is a user dedicated facility with an energy tunable (0.1 - 35 keV) slow positron beam produced by a dedicated 55MeV linac. The present beam line branches have been used for the positronium time-of-flight (Ps-TOF) measurements, the transmission positron microscope (TPM) and the photo-detachment of Ps negative ions (Ps{sup -}). During the year 2010, a reflection high-energy positron diffraction (RHEPD) measurement station is going to be installed. The slow positron generator (converter/ moderator) system will be modified to get a higher slow positron intensity, and a new user-friendly beam line power-supply control and vacuum monitoring system is being developed. Another plan for this year is the transfer of a {sup 22}Na-based slow positron beam from RIKEN. This machine will be used for the continuous slow positron beam applications and for the orientation training of those who are interested in beginning researches with a slow positron beam.

  20. Tsunami Source Identification on the 1867 Tsunami Event Based on the Impact Intensity

    Science.gov (United States)

    Wu, T. R.

    2014-12-01

    The 1867 Keelung tsunami event has drawn significant attention from people in Taiwan. Not only because the location was very close to the 3 nuclear power plants which are only about 20km away from the Taipei city but also because of the ambiguous on the tsunami sources. This event is unique in terms of many aspects. First, it was documented on many literatures with many languages and with similar descriptions. Second, the tsunami deposit was discovered recently. Based on the literatures, earthquake, 7-meter tsunami height, volcanic smoke, and oceanic smoke were observed. Previous studies concluded that this tsunami was generated by an earthquake with a magnitude around Mw7.0 along the Shanchiao Fault. However, numerical results showed that even a Mw 8.0 earthquake was not able to generate a 7-meter tsunami. Considering the steep bathymetry and intense volcanic activities along the Keelung coast, one reasonable hypothesis is that different types of tsunami sources were existed, such as the submarine landslide or volcanic eruption. In order to confirm this scenario, last year we proposed the Tsunami Reverse Tracing Method (TRTM) to find the possible locations of the tsunami sources. This method helped us ruling out the impossible far-field tsunami sources. However, the near-field sources are still remain unclear. This year, we further developed a new method named 'Impact Intensity Analysis' (IIA). In the IIA method, the study area is divided into a sequence of tsunami sources, and the numerical simulations of each source is conducted by COMCOT (Cornell Multi-grid Coupled Tsunami Model) tsunami model. After that, the resulting wave height from each source to the study site is collected and plotted. This method successfully helped us to identify the impact factor from the near-field potential sources. The IIA result (Fig. 1) shows that the 1867 tsunami event was a multi-source event. A mild tsunami was trigged by a Mw7.0 earthquake, and then followed by the submarine

  1. Low preveance ion source bridges low and high intensities in ion implantation

    International Nuclear Information System (INIS)

    Orr, F.D.; Mayhall, D.

    1976-01-01

    The Low Perveance Ion Source developed by Accelerators, Inc. offers the Semiconductor Industry the advantage of processing medium to high intensity implants on a system which will also implant 200 to 300 wafers an hour at MOS doses. Stable source beam currents can be varied over three orders of magnitude by variation of a single source parameter. This source uses a new computer designed Low Perveance extraction optics which is completely new to the Ion Implantation Industry. Test data and calculations are shown which define the versatility of this system. Scanned currents from 1 microamp to 400 microamps allow for a variety of production processing. Beam characteristics feature low energy spread (less than 10 eV) and low divergence (less than 3 degrees). Beam control optics consist of a double focusing analyzing magnet and two triplet quadrupoles. The source may be fitted with an oven for feeding of solid materials and analyzed beam currents in the milliamp range for development purposes. The batch processing, hybrid scanning end station is most applicable for high current beams as well as high volume batch processings of MOS Implants. Results of development work toward increased currents using both solid and gas feed material with the Low Perveance source are presented. System improvements including Accel-Decel and a third extraction element are discussed

  2. Report of the Snowmass M6 Working Group on high intensity proton sources

    Energy Technology Data Exchange (ETDEWEB)

    Weiren Chou and J. Wei

    2002-08-20

    The U.S. high-energy physics program needs an intense proton source, a 1-4 MW Proton Driver (PD), by the end of this decade. This machine will serve as a stand-alone facility that will provide neutrino superbeams and other high intensity secondary beams such as kaons, muons, neutrons, and anti-protons (cf. E1 and E5 group reports) and also serve as the first stage of a neutrino factory (cf. M1 group report). It can also be a high brightness source for a VLHC. Based on present accelerator technology and project construction experience, it is both feasible and cost-effective to construct a 1-4 MW Proton Driver. Two recent PD design studies have been made, one at FNAL and the other at the BNL. Both designed PD's for 1 MW proton beams at a cost of about U.S. $200M (excluding contingency and overhead) and both designs were upgradeable to 4 MW. An international collaboration between FNAL, BNL and KEK on high intensity proton facilities is addressing a number of key design issues. The superconducting (sc) RF cavities, cryogenics, and RF controls developed for the SNS can be directly adopted to save R&D efforts, cost, and schedule. PD studies are also actively being pursued at Europe and Japan.

  3. Positron Transport and Annihilation in the Galactic Bulge

    Directory of Open Access Journals (Sweden)

    Fiona Helen Panther

    2018-03-01

    Full Text Available The annihilation of positrons in the Milky Way Galaxy has been observed for ∼50 years; however, the production sites of these positrons remains hard to identify. The observed morphology of positron annihilation gamma-rays provides information on the annihilation sites of these Galactic positrons. It is understood that the positrons responsible for the annihilation signal originate at MeV energies. The majority of sources of MeV positrons occupy the star-forming thin disk of the Milky Way. If positrons propagate far from their sources, we must develop accurate models of positron propagation through all interstellar medium (ISM phases in order to reveal the currently uncertain origin of these Galactic positrons. On the other hand, if positrons annihilate close to their sources, an alternative source of MeV positrons with a distribution that matches the annihilation morphology must be identified. In this work, I discuss the various models that have been developed to understand the origin of the 511 keV line from the direction of the Galactic bulge, and the propagation of positrons in the ISM.

  4. Transverse Beam Halo Measurements at High Intensity Neutrino Source (HINS) using Vibrating Wire Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, M.; Hanna, B.; Scarpine, V.; Shiltsev, V.; Steimel, J.; Artinian, S.; Arutunian, S.

    2015-02-26

    The measurement and control of beam halos will be critical for the applications of future high-intensity hadron linacs. In particular, beam profile monitors require a very high dynamic range when used for the transverse beam halo measurements. In this study, the Vibrating Wire Monitor (VWM) with aperture 60 mm was installed at the High Intensity Neutrino Source (HINS) front-end to measure the transverse beam halo. A vibrating wire is excited at its resonance frequency with the help of a magnetic feedback loop, and the vibrating and sensitive wires are connected through a balanced arm. The sensitive wire is moved into the beam halo region by a stepper motor controlled translational stage. We study the feasibility of the vibrating wire for the transverse beam halo measurements in the low-energy front-end of the proton linac.

  5. Production of intensive negative lithium beam with caesium sputter-type ion source

    Science.gov (United States)

    Lobanov, Nikolai R.

    2018-01-01

    Compounds of lithium oxide, hydroxide and carbonate, mixed with silver, were prepared for use as a cathode in caesium-sputter ion source. The intention was to determine the procedure which would produce the highest intensity negative lithium beams over extended period and with maximum stability. The chemical composition and properties of the samples were analysed using mass-spectrometry, optical microscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analyses (EDX) and Raman spectroscopy. These analyses showed that the chemical transformations with components resulted from pressing, storage and bake out were qualitatively in agreement with expectations. Intensive negative lithium ion beams >1 μA were delivered using cathodes fabricated from materials with multicomponent chemical composition when the following conditions were met: (i) use of components with moderate enthalpy of formation; (ii) low moisture content at final stage of cathode production and (iii) small concentration of water molecules in hydrate phase in the cathode mixture.

  6. High-intensity, thin-target He-jet production source

    International Nuclear Information System (INIS)

    Bai, Y.; Vieira, D.J.; Wouters, J.M.; Butler, G.W.; Rosenauer, Dk; Loebner, K.E.G.; Lind, V.G.; Phillips, D.R.

    1996-01-01

    A thin-target He-jet system suited to the production and rapid transport of non-volatile radioactive species has been successfully operated with proton beam intensities of up to 700 μA. The system consists of a water-cooled, thin-target chamber, capillary gas transport system, moving tape/Ge detection system, and an aerosol generator/gas recirculator. The yields for a wide variety of uranium fission and deep spallation products have been measured and robust operation of the system demonstrated for several weeks. He-jet transport and collection efficiencies ranged between 15 and 25% with collection rates of 10 7 to 10 8 atoms/sec/isotope. The high-intensity, thin-target He-jet approach represents a robust production source for nonvolatile radioactive heavy ion beams

  7. The study towards high intensity high charge state laser ion sources.

    Science.gov (United States)

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  8. Accelerator-based intense neutron source for materials R ampersand D

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1990-01-01

    Accelerator-based neutron sources for R ampersand D of materials in nuclear energy systems, including fusion reactors, can provide sufficient neutron flux, flux-volume, fluence and other attractive features for many aspects of materials research. The neutron spectrum produced from the D-Li reaction has been judged useful for many basic materials research problems, and to be a satisfactory approximation to that of the fusion process. The technology of high-intensity linear accelerators can readily be applied to provide the deuteron beam for the neutron source. Earlier applications included the Los Alamos Meson Physics Facility and the Fusion Materials Irradiation Test facility prototype. The key features of today's advanced accelerator technology are presented to illustrate the present state-of-the-art in terms of improved understanding of basic physical principles and engineering technique, and to show how these advances can be applied to present demands in a timely manner. These features include how to produce an intense beam current with the high quality required to minimize beam losses along the accelerator and transport system that could cause maintenance difficulties, by controlling the beam emittance through proper choice of the operating frequency, balancing of the forces acting on the beam, and realization in practical hardware. A most interesting aspect for materials researchers is the increased flexibility and opportunities for experimental configurations that a modern accelerator-based source could add to the set of available tools. 8 refs., 5 figs

  9. The influence of antioxidant on positron annihilation in polypropylene

    International Nuclear Information System (INIS)

    Djourelov, N.; He, C.; Suzuki, T.; Ito, Y; Kondo, K.; Ito, Y.; Shantarovich, V.P.

    2003-01-01

    The purpose of this report is to check the influence of the carbonyl groups (CG), created by oxygen naturally dissolved in a polymer matrix and by the source irradiation, on annihilation characteristics of free positrons using the positron annihilation lifetime spectroscopy (PALS) and coincidence Doppler-broadening spectroscopy (CDBS). Positron annihilation in a pure polypropylene (PP) and in an antioxidant-containing polypropylene (PPA) sample at room and low temperatures has been studied by CDBS. PALS has been used as an o-Ps (orth-positronium) formation monitor. The momentum density distributions of electrons obtained by CDBS at the beginning of measurements have been compared to that at the o-Ps intensity saturation level. It has been shown that the initial concentration of carbonyl groups in a PP sample is high, while for an antioxidant-containing sample, PPA, carbonyl groups are not detected by CDBS. CDBS spectra for a PP can be explained by annihilation of free positrons with the oxygen contained in the carbonyl groups. For a PPA sample, no significant contribution of annihilation with oxygen core electrons can be concluded. (Y. Kazumata)

  10. The biological shield of a high-intensity spallation source: a monte Carlo design study

    International Nuclear Information System (INIS)

    Koprivnikar, I.; Schachinger, E.

    2004-01-01

    The design of high-intensity spallation sources requires the best possible estimates for the biological shield. The applicability of three-dimensional Monte Carlo simulation in the design of the biological shield of a spallation source will be discussed. In order to achieve reasonable computing times along with acceptable accuracy, biasing techniques are to be employed and it was the main purpose of this work to develop a strategy for an effective Monte Carlo simulation in shielding design. The most prominent MC computer codes, namely MCNPX and FLUKA99, have been applied to the same model spallation source (the European Spallation Source) and on the basis of the derived strategies, the design and characteristics of the target station shield are discussed. It is also the purpose of the paper to demonstrate the application of the developed strategy for the design of beam lines with their shielding using as an example the target-moderator-reflector complex of the ESS as the primary particle source. (author)

  11. Data acquisition system for the neutron scattering instruments at the intense pulsed neutron source

    International Nuclear Information System (INIS)

    Crawford, R.K.; Daly, R.T.; Haumann, J.R.; Hitterman, R.L.; Morgan, C.B.; Ostrowski, G.E.; Worlton, T.G.

    1981-01-01

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a major new user-oriented facility which is now coming on line for basic research in neutron scattering and neutron radiation damage. This paper describes the data-acquisition system which will handle data acquisition and instrument control for the time-of-flight neutron-scattering instruments at IPNS. This discussion covers the scientific and operational requirements for this system, and the system architecture that was chosen to satisfy these requirements. It also provides an overview of the current system implementation including brief descriptions of the hardware and software which have been developed

  12. A fast chopper for the Fermilab High Intensity Neutrino Source (HINS)

    Energy Technology Data Exchange (ETDEWEB)

    Madrak, R.; Wildman, D.; /Fermilab; Dymokde-Bradshaw, A.; Hares, J.; Kellett, P.

    2008-10-01

    A fast chopper capable of kicking single 2.5 MeV H-bunches spaced at 325 MHz, at rates greater than 50 MHz is needed for the Fermilab High Intensity Neutrino Source (HINS) [1]. Four 1.2 kV fast pulsers, designed and manufactured by Kentech Instruments Ltd., will drive a 0.5 m long meander made from a copper plated ceramic composite. Test results showing pulses from the first 1.2 kV pulser and meander results will be presented.

  13. Recent developments in the theory of positrons at surfaces

    International Nuclear Information System (INIS)

    Walker, A.B.

    1989-01-01

    Positron beams of ever brighter intensity are now establishing themselves as a novel surface probe enabling a wide variety of spectroscopies. The production of high positron intensities and exploitation of the beams depends critically on our understanding of the complex behaviour of positrons at and near surfaces. I will review progress on the theory of positron-surface interactions and of the implantation and diffusion of low energy positrons. Applications of this theory to a variety of experimental techniques such as ACAR (Angular Correlation by Annihilation Radiation) spectra, angle resolved positronium (Ps) spectroscopy, REPELS (Reemitted Positron Energy Loss Spectroscopy), LEPD (Low Energy Positron Diffraction) and measurements of defect profiles will be discussed. 24 refs. (author)

  14. Gamma-induced Positron Spectroscopy (GiPS) at a superconducting electron linear accelerator

    International Nuclear Information System (INIS)

    Butterling, Maik; Anwand, Wolfgang; Cowan, Thomas E.; Hartmann, Andreas; Jungmann, Marco; Krause-Rehberg, Reinhard; Krille, Arnold; Wagner, Andreas

    2011-01-01

    A new and unique setup for Positron Annihilation Spectroscopy has been established and optimized at the superconducting linear electron accelerator ELBE at Helmholtz-Zentrum Dresden-Rossendorf (Germany). The intense, pulsed (26 MHz) photon source (bremsstrahlung with energies up to 16 MeV) is used to generate positrons by means of pair production throughout the entire sample volume. Due to the very short gamma bunches (< 5 ps temporal length), the facility for Gamma-induced Positron Spectroscopy (GiPS) is suitable for positron lifetime spectroscopy using the accelerator's radiofrequency as time reference. Positron lifetime and Doppler broadening Spectroscopy are employed by a coincident measurement (Age-Momentum Correlation) of the time-of-arrival and energy of the annihilation photons which in turn significantly reduces the background of scattered photons resulting in spectra with high signal to background ratios. Simulations of the setup using the GEANT4 framework have been performed to yield optimum positron generation rates for various sample materials and improved background conditions.

  15. Gamma-induced Positron Spectroscopy (GiPS) at a superconducting electron linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Butterling, Maik, E-mail: maik.butterling@googlemail.com [Martin-Luther University, Dept. of Physics, 06099 Halle (Germany); Institute of Radiation Physics, Helmholtz-Zentrum, Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); Anwand, Wolfgang; Cowan, Thomas E.; Hartmann, Andreas [Institute of Radiation Physics, Helmholtz-Zentrum, Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); Jungmann, Marco; Krause-Rehberg, Reinhard [Martin-Luther University, Dept. of Physics, 06099 Halle (Germany); Krille, Arnold; Wagner, Andreas [Institute of Radiation Physics, Helmholtz-Zentrum, Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany)

    2011-11-15

    A new and unique setup for Positron Annihilation Spectroscopy has been established and optimized at the superconducting linear electron accelerator ELBE at Helmholtz-Zentrum Dresden-Rossendorf (Germany). The intense, pulsed (26 MHz) photon source (bremsstrahlung with energies up to 16 MeV) is used to generate positrons by means of pair production throughout the entire sample volume. Due to the very short gamma bunches (< 5 ps temporal length), the facility for Gamma-induced Positron Spectroscopy (GiPS) is suitable for positron lifetime spectroscopy using the accelerator's radiofrequency as time reference. Positron lifetime and Doppler broadening Spectroscopy are employed by a coincident measurement (Age-Momentum Correlation) of the time-of-arrival and energy of the annihilation photons which in turn significantly reduces the background of scattered photons resulting in spectra with high signal to background ratios. Simulations of the setup using the GEANT4 framework have been performed to yield optimum positron generation rates for various sample materials and improved background conditions.

  16. The Positronium Radiative Combination Spectrum: Calculation in the Limit of Thermal Positrons and Low Densities

    Science.gov (United States)

    Wallyn, P.; Mahoney, W. A.; Durouchoux, Ph.; Chapuis, C.

    1996-01-01

    We calculate the intensities of the positronium de-excitation lines for two processes: (1) the radiative combination of free thermal electrons and positrons for transitions with principal quantum number n less than 20, and (2) charge exchange between free positrons and hydrogen and helium atoms, restricting our evaluation to the Lyman-alpha line. We consider a low-density medium modeled by the case A assumption of Baker & Menzel and use the "nL method" of Pengelly to calculate the absolute intensities. We also evaluate the positronium fine and hyperfine intensities and show that these transitions are in all cases much weaker than positronium de-excitation lines in the same wavelength range. We also extrapolate our positronium de-excitation intensities to the submillimeter, millimeter, and centimeter wavelengths. Our results favor the search of infrared transitions of positronium lines for point sources when the visual extinction A, is greater than approx. 5.

  17. Preliminary Report on the Evaluation of an Electron-Positron Collider as a source of Monoenergetic Photons

    Energy Technology Data Exchange (ETDEWEB)

    Fast, James E.; Campbell, Luke W.

    2009-11-30

    Abstract Active interrogation methods are being investigated to detect shielded special nuclear material (SNM). These approaches utilize either neutron or photon beams to excite the SNM in concert with either neutron or gamma ray detectors to observe the stimulated emissions. The two primary methodologies with photon beams are photofission and nuclear resonance florescence (NRF). Photofission requires photons energies of 7-10 MeV while NRF requires photon energies around 2 MeV. For both techniques, photons that are not in the appropriate energy band, e.g. the low energy tail of a Bremsstrahlung photon beam, contribute unwanted additional radiation dose to cargo. Typically less than 10% of the photons are in the usable energy band. The additional photon production generates a commensurate amount of additional radiation dose in the source and target areas, impacting shielding requirements and/or dose to operators and equipment and at the expense of a similar increase in power consumption. Hence it is highly desirable to produce narrow energy (“monoenergetic”) photon beams with tunable energy in the range of ~2-20 MeV.

  18. Laser plasma as a source of intense attosecond pulses via high-order harmonic generation

    International Nuclear Information System (INIS)

    Ozaki, T.

    2013-01-01

    The incredible progress in ultrafast laser technology and Ti:sapphire lasers have lead to many important applications, one of them being high-order harmonic generation (HHG). HHG is a source of coherent extreme ultraviolet (XUV) radiation, which has opened new frontiers in science by extending nonlinear optics and time-resolved spectroscopy to the XUV region, and pushing ultrafast science to the attosecond domain. Progress in attosecond science has revealed many new phenomena that have not been seen with femtosecond pulses. Clearly, the next frontier is to study nonlinear effects at the attosecond timescale and in the XUV. However, a problem with present-day attosecond pulses is that they are just too weak to induce measurable nonlinearities, which severely limits the application of this source. While HHG from solid targets has shown promise for higher conversion efficiency, there is no experiment so far that demonstrates isolated attosecond pulse generation. The generation of isolated, several 100-as pulses with few-µJ energy will enable us to enter a completely new phase in attoscience. In past works, we have demonstrated that high-order harmonics from lowly ionized plasma is a highly efficient method to generate coherent XUV pulses. For example, indium plasma has been shown to generate intense 13th harmonic of the Ti:sapphire laser, with conversion efficiency of 10-4. However, the quasi-monochromatic nature of indium harmonics would make it difficult to generate attosecond pulses. We have also demonstrated that one could increase the harmonic yield by using nanoparticle targets. Specifically, we showed that by using indium oxide nanoparticles or C60 film, we could obtain intense harmonics between wavelengths of 50 to 90 nm. The energy in each of these harmonic orders was measured to be a few µJ, which is sufficient for many applications. However, the problem of using nanoparticle or film targets is the rapid decrease in the harmonic intensity, due to the rapid

  19. Design status of an intense 14 MeV neutron source for cancer therapy

    CERN Document Server

    Yao, Z E; Cheng, S W; Jia, W B

    2002-01-01

    Design and development of an intense 14 MeV neutron source for cancer therapy is in progress at the Institute of Nuclear Research of Lanzhou University. The neutrons from the T(d,n) sup 4 He reaction are produced by bombarding a rotating titanium tritide target with a 40 mA deuteron beam at 600 keV. The designed neutron yield is 8x10 sup 1 sup 2 n/s and the maximum dose rate at a 100 cm source-to-skin distance is 25 cGy/min. The HV terminal, accelerating column and HV power supply are enclosed inside a stainless steel pressure vessel containing 6 atm SF sub 6 gas to provide the electrical insulation.

  20. The upgrade of intense pulsed neutron source (IPNS) through the change of coolant and reflector

    CERN Document Server

    Baek, I C; Iverson, E B

    2002-01-01

    The current intense pulsed neutron source (IPNS) depleted uranium target is cooled by light water. The inner reflector material is graphite and the outer reflector material is beryllium. The presence of H sub 2 O in the target moderates neutrons and leads to a higher absorption loss in the target than is necessary. D sub 2 O coolant in the small quantities required minimizes this effect. We have studied the possible improvement in IPNS beam fluxes that would result from changing the coolant from H sub 2 O to D sub 2 O and the inner reflector from graphite to beryllium. Neutron intensities were calculated for directions normal to the viewed surface of each moderator for four different cases of combinations of target coolant and reflector materials. The simulations reported here were performed using the MCNPX (version 2.1.5) computer program. Our results show that substantial gains in neutron beam intensities can be achieved by appropriate combination of target coolant and reflector materials. The combination o...

  1. Intense, pulsed, ion-diode sources and their application to mirror machines

    International Nuclear Information System (INIS)

    Prono, D.S.; Shearer, J.W.; Briggs, R.J.

    1975-01-01

    Startup conditions for future mirror fusion experiments require a rapidly formed target plasma of approximately 0.5 coulomb of ions with energy of 50 to 100 keV. Theory suggests that very intense ion-flux emission satisfying these requirements can be extracted from a pulsed ion diode. Developing such sources would be an ideal CTR application of the high-power, single-shot capability of pulsed power technology. Recent experimental results are reviewed in which approximately 2 kA/cm 2 of D + at approximately 50 keV was extracted. In the experiment, an intense relativistic electron beam undergoes many transits through a solid but range-thin anode foil. With each transit the electrons lose energy, causing their trajectories to collapse toward the anode surface. In so doing, the increased space charge extracts an intense ion flux from the anode foil's plasma. Observations are reported on the importance of diode stability. The general agreement between theoretical scaling laws and experimental results are also presented

  2. Neutron beam design for low intensity neutron and gamma-ray radioscopy using small neutron sources

    CERN Document Server

    Matsumoto, T

    2003-01-01

    Two small neutron sources of sup 2 sup 5 sup 2 Cf and sup 2 sup 4 sup 1 Am-Be radioisotopes were used for design of neutron beams applicable to low intensity neutron and gamma ray radioscopy (LINGR). In the design, Monte Carlo code (MCNP) was employed to generate neutron and gamma ray beams suited to LINGR. With a view to variable neutron spectrum and neutron intensity, various arrangements were first examined, and neutron-filter, gamma-ray shield and beam collimator were verified. Monte Carlo calculations indicated that with a suitable filter-shield-collimator arrangement, thermal neutron beam of 3,900 ncm sup - sup 2 s sup - sup 1 with neutron/gamma ratio of 7x10 sup 7 , and 25 ncm sup - sup 2 s sup - sup 1 with very large neutron/gamma ratio, respectively, could be produced by using sup 2 sup 5 sup 2 Cf(122 mu g) and a sup 2 sup 4 sup 1 Am-Be(37GBq)radioisotopes at the irradiation port of 35 cm from the neutron sources.

  3. Positron spectroscopy for materials characterization

    International Nuclear Information System (INIS)

    Schultz, P.J.; Snead, C.L. Jr.

    1988-01-01

    One of the more active areas of research on materials involves the observation and characterization of defects. The discovery of positron localization in vacancy-type defects in solids in the 1960's initiated a vast number of experimental and theoretical investigations which continue to this day. Traditional positron annihilation spectroscopic techniques, including lifetime studies, angular correlation, and Doppler broadening of annihilation radiation, are still being applied to new problems in the bulk properties of simple metals and their alloys. In addition new techniques based on tunable sources of monoenergetic positron beams have, in the last 5 years, expanded the horizons to studies of surfaces, thin films, and interfaces. In the present paper we briefly review these experimental techniques, illustrating with some of the important accomplishments of the field. 40 refs., 19 figs

  4. Intense beams from gases generated by a permanent magnet ECR ion source at PKU

    Energy Technology Data Exchange (ETDEWEB)

    Ren, H. T.; Chen, J. E. [College of Physical Sciences, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); SKLNPT, Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China); Peng, S. X.; Lu, P. N.; Yan, S.; Zhou, Q. F.; Zhao, J.; Yuan, Z. X.; Guo, Z. Y. [SKLNPT, Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China)

    2012-02-15

    An electron cyclotron resonance (ECR) ion source is designed for the production of high-current ion beams of various gaseous elements. At the Peking University (PKU), the primary study is focused on developing suitable permanent magnet ECR ion sources (PMECRs) for separated function radio frequency quadrupole (SFRFQ) accelerator and for Peking University Neutron Imaging Facility. Recently, other kinds of high-intensity ion beams are required for new acceleration structure demonstration, simulation of fusion reactor material irradiation, aviation bearing modification, and other applications. So we expanded the ion beam category from O{sup +}, H{sup +}, and D{sup +} to N{sup +}, Ar{sup +}, and He{sup +}. Up to now, about 120 mA of H{sup +}, 83 mA of D{sup +}, 50 mA of O{sup +}, 63 mA of N{sup +}, 70 mA of Ar{sup +}, and 65 mA of He{sup +} extracted at 50 kV through a {phi} 6 mm aperture were produced by the PMECRs at PKU. Their rms emittances are less than 0.2 {pi} mm mrad. Tungsten samples were irradiated by H{sup +} or He{sup +} beam extracted from this ion source and H/He holes and bubbles have been observed on the samples. A method to produce a high intensity H/He mixed beam to study synergistic effect is developed for nuclear material irradiation. To design a He{sup +} beam injector for coupled radio frequency quadruple and SFRFQ cavity, He{sup +} beam transmission experiments were carried out on PKU low energy beam transport test bench and the transmission was less than 50%. It indicated that some electrode modifications must be done to decrease the divergence of He{sup +} beam.

  5. Overview of high intensity x-ray and gamma-ray sources

    International Nuclear Information System (INIS)

    Prestwich, K.R.; Lee, J.R.; Ramirez, J.J.; Sanford, T.W.L.; Agee, F.J.; Frazier, G.B.; Miller, A.R.

    1987-01-01

    The requirements for intense x-ray and gamma-ray sources to simulate the radiation effects from nuclear weapons has led to the development of several types of terawatt-pulsed power systems. One example of a major gamma-ray source is Aurora, a 10-MV, 1.6-MA, 120-ns four-module, electron-beam generator. Recent requirements to improve the dose rate has led to the Aurora upgrade program and to the development of the 20-MV, 800-kA, 40-ns Hermes-III electron-beam accelerator. The Aurora program includes improvements to the pulsed power system and research on techniques to improve the pulse shape of the electron beam. Hermes III will feature twenty 1-MV, 800-kA induction accelerator cavities supplying energy to a magnetically insulated transmission line adder. Hermes III will become operational in 1988. Intense x-ray sources consist of pulsed power systems that operate with 1-MV to 2-MV output voltages and up to 25-TW output powers. These high powers are achieved with either low impedance electron-beam generators or multimodular pulsed power systems. The low-impedance generators have high voltage Marx generators that store the energy and then sequentially transfer this energy to pulse-forming transmission lines with lower and lower impedance until the high currents are reached. In the multimode machines, each module produces 0.7-TW to 4-TW output pulses, and all of the modules are connected together to supply energy to a single diode

  6. Need for an intense polarized source at LAMPF. Report on a workshop held at Los Alamos, November 9, 1983

    International Nuclear Information System (INIS)

    McNaughton, M.W.; Silbar, R.R.; van Dyck, O.B.

    1984-04-01

    We report on a workshop to consider the need for an intense polarized source at LAMPF. The primary justification for such a source comes from the nucleon-nucleon program; neutron-proton scattering is seriously underdetermined and cannot be satisfactorily completed without such an intense source. Further justification comes from nuclear (vector n,p) and (vector p, vector n) reactions, as well as from traditional nuclear physics at the LAMPF high resolution spectrometer. We recommend that a source capable of providing a few μA beam on target be built as soon as possible

  7. An intense lithium ion beam source using vacuum baking and discharge cleaning techniques

    International Nuclear Information System (INIS)

    Moschella, J.J.; Kusse, B.R.; Longfellow, J.P.; Olson, J.C.

    1991-01-01

    We have developed a high-purity, intense, lithium ion beam source which operates at 500 kV and 120 A/cm 2 with pulse widths of 125 ns full width half maximum. The beams were generated using a lithium chloride anode in planar magnetically insulated geometry. We have found that the combination of vacuum baking of the anode at 250 degree C followed by the application of 100 W of pure argon, steady-state, glow discharge cleaning reduced the impurity concentration in the beam to approximately 10% (components other than chlorine or lithium were considered impurities). Although the impurities were low, the concentration of chlorine in the 1+ and 2+ charge states was significant (∼25%). The remaining 65% of the beam consisted of Li + ions. Without the special cleaning process, over half the beam particles were impurities. It was determined that these impurities entered the beam at the anode surface but came originally from material in the vacuum chamber. After the cleaning process, recontamination was observed to occur in approximately 6 min. This long recontamination time, which was much greater than the expected monolayer formation time, was attributed to the elevated temperature of the anode. We also compared the electrical characteristics of the beams produced by LiCl anodes to those generated by a standard polyethylene proton source. In contrast to the polyethylene anode, the LiCl source exhibited a higher impedance, produced beams of lower ion current efficiency and had longer turn on times

  8. Ion accumulation and space charge neutralization in intensive electron beams for ion sources and electron cooling

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1996-01-01

    The Electron Beam Ion Sources (EBIS), Electron Beam Ion Traps (EBIT) and electron beams for electron cooling application have the beam parameters in the same ranges of magnitudes. EBIS and EBIT produce and accumulate ions in the beam due to electron impact ionization. The cooling electron beam accumulates positive ions from the residual gas in the accelerator chamber during the cooling cycle. The space charge neutralization of cooling beam is also used to reduce the electron energy spread and enhance the cooling ability. The advanced results of experimental investigations and theoretical models of the EBIS electron beams are applied to analyze the problem of beam neutralization in the electron cooling techniques. The report presents the analysis of the most important processes connected with ion production, accumulation and losses in the intensive electron beams of ion sources and electron cooling systems for proton and ion colliders. The inelastic and elastic collision processes of charged particles in the electron beams are considered. The inelastic processes such as ionization, charge exchange and recombination change the charge states of ions and neutral atoms in the beam. The elastic Coulomb collisions change the energy of particles and cause the energy redistribution among components in the electron-ion beams. The characteristic times and specific features of ionization, beam neutralization, ion heating and loss in the ion sources and electron cooling beams are determined. The dependence of negative potential in the beam cross section on neutralization factor is studied. 17 refs., 5 figs., 1 tab

  9. Improved heating efficiency with High-Intensity Focused Ultrasound using a new ultrasound source excitation.

    Science.gov (United States)

    Bigelow, Timothy A

    2009-01-01

    High-Intensity Focused Ultrasound (HIFU) is quickly becoming one of the best methods to thermally ablate tissue noninvasively. Unlike RF or Laser ablation, the tissue can be destroyed without inserting any probes into the body minimizing the risk of secondary complications such as infections. In this study, the heating efficiency of HIFU sources is improved by altering the excitation of the ultrasound source to take advantage of nonlinear propagation. For ultrasound, the phase velocity of the ultrasound wave depends on the amplitude of the wave resulting in the generation of higher harmonics. These higher harmonics are more efficiently converted into heat in the body due to the frequency dependence of the ultrasound absorption in tissue. In our study, the generation of the higher harmonics by nonlinear propagation is enhanced by transmitting an ultrasound wave with both the fundamental and a higher harmonic component included. Computer simulations demonstrated up to a 300% increase in temperature increase compared to transmitting at only the fundamental for the same acoustic power transmitted by the source.

  10. Proposal of coherent Cherenkov radiation matched to circular plane wave for intense terahertz light source

    International Nuclear Information System (INIS)

    Sei, Norihiro; Sakai, Takeshi; Hayakawa, Ken; Tanaka, Toshinari; Hayakawa, Yasushi; Nakao, Keisuke; Nogami, Kyoko; Inagaki, Manabu

    2015-01-01

    Highlights: • We proposed a new intense terahertz-wave source based on coherent Cherenkov radiation (CCR). • A hollow conical dielectric is used to generate the CCR beam. • The wave front of the CCR beam can be matched to the basal plane. • The peak-power of the CCR beam is above 1 MW per micropulse with a short interval of 350 ps. - Abstract: We propose a high-peak-power terahertz-wave source based on an electron accelerator. By passing an electron beam through a hollow conical dielectric with apex facing the incident electron beam, the wave front of coherent Cherenkov radiation generated on the inner surface of the hollow conical dielectric matches the basal plane. Using the electron beam generated at the Laboratory for Electron Beam Research and Application at Nihon University, the calculated power of coherent Cherenkov radiation that matched the circular plane (CCR-MCP) was above 1 MW per micropulse with a short interval of 350 ps, for wavelengths ranging from 0.5 to 5 mm. The electron beam is not lost for generating the CCR-MCP beam by using the hollow conical dielectric. It is possible to combine the CCR-MCP beams with other light sources based on an accelerator

  11. Novel neutralized-beam intense neutron source for fusion technology development

    International Nuclear Information System (INIS)

    Osher, J.E.; Perkins, L.J.

    1983-01-01

    We describe a neutralized-beam intense neutron source (NBINS) as a relevant application of fusion technology for the type of high-current ion sources and neutral beamlines now being developed for heating and fueling of magnetic-fusion-energy confinement systems. This near-term application would support parallel development of highly reliable steady-state higher-voltage neutral D 0 and T 0 beams and provide a relatively inexpensive source of fusion neutrons for materials testing at up to reactor-like wall conditions. Beam-target examples described incude a 50-A mixed D-T total (ions plus neutrals) space-charge-neutralized beam at 120 keV incident on a liquid Li drive-in target, or a 50-A T 0 + T + space-charge-neutralized beam incident on either a LiD or gas D 2 target with calculated 14-MeV neutron yields of 2 x 10 15 /s, 7 x 10 15 /s, or 1.6 x 10 16 /s, respectively. The severe local heat loading on the target surface is expected to limit the allowed beam focus and minimum target size to greater than or equal to 25 cm 2

  12. Positron emission tomography

    International Nuclear Information System (INIS)

    Iio, Masahiro

    1982-01-01

    Utilization of positron emission tomography was reviewed in relation to construction and planned construction of small-size medical cyclotrons, planned construction of positron cameras and utilization of short-lived radionuclides. (Chiba, N.)

  13. Utilization of the intense pulsed neutron source (IPNS) at Argonne National Laboratory for neutron activation analysis

    International Nuclear Information System (INIS)

    Heinrich, R.R.; Greenwood, L.R.; Popek, R.J.; Schulke, A.W. Jr.

    1983-01-01

    The Intense Pulsed Neutron Source (IPNS) neutron scattering facility (NSF) has been investigated for its applicability to neutron activation analysis. A polyethylene insert has been added to the vertical hole VT3 which enhances the thermal neutron flux by a factor of two. The neutron spectral distribution at this position has been measured by the multiple-foil technique which utilized 28 activation reactions and the STAYSL computer code. The validity of this spectral measurement was tested by two irradiations of National Bureau of Standards SRM-1571 (orchard leaves), SRM-1575 (pine needles), and SRM-1645 (river sediment). The average thermal neutron flux for these irradiations normalized to 10 μamp proton beam is 4.0 x 10 11 n/cm 2 -s. Concentrations of nine trace elements in each of these SRMs have been determined by gamma-ray spectrometry. Agreement of measured values to certified values is demonstrated to be within experiment error

  14. High energy-intensity atomic oxygen beam source for low earth orbit materials degradation studies

    International Nuclear Information System (INIS)

    Cross, J.B.; Blais, N.C.

    1988-01-01

    A high intensity (10 19 O-atoms/s-sr) high energy (5 eV) source of oxygen atoms has been developed that produces a total fluence of 10 22 O-atoms/cm 2 in less than 100 hours of continuous operation at a distance of 15 cm from the source. The source employs a CW CO 2 laser sustained discharge to form a high temperature (15,000 K) plasma in the throat of a 0.3-mm diameter nozzle using 3--8 atmospheres of rare gas/O 2 mixtures. Visible and infrared photon flux levels of 1 watt/cm 2 have been measured 15 cm downstream of the source while vacuum UV (VUV) fluxes are comparable to that measured in low earth orbit. The reactions of atomic oxygen with kapton, Teflon, silver, and various coatings have been studied. The oxidation of kapton (reaction efficiency = 3 /times/ 10/sup /minus/24/ cm /+-/ 50%) has an activation energy of 0.8 Kcal/mole over the temperature range of 25/degree/C to 100/degree/C at a beam energy of 1.5 eV and produces low molecular weight gas phase reaction products (H 2 O, NO, CO 2 ). Teflon reacts with ∼0.1--0.2 efficiency to that of kapton at 25/degree/C and both surfaces show a rug-like texture after exposure to the O-atom beam. Angular scattering distribution measurements of O-atoms show a near cosine distribution from reactive surfaces indicating complete accommodation of the translational energy with the surface while a nonreactive surface (nickel oxide) shows specular-like scattering with 50% accommodation of the translational energy with the surface. A technique for simple on orbit chemical experiments using resistance measurements of coated silver strips is described. 9 figs

  15. Technical characterization of an ultrasound source for noninvasive thermoablation by high-intensity focused ultrasound.

    Science.gov (United States)

    Köhrmann, K U; Michel, M S; Steidler, A; Marlinghaus, E; Kraut, O; Alken, P

    2002-08-01

    To develop a generator for high-intensity focused ultrasound (HIFU, a method of delivering ultrasonic energy with resultant heat and tissue destruction to a tight focus at a selected depth within the body), designed for extracorporeal coupling to allow various parenchymal organs to be treated. The ultrasound generated by a cylindrical piezo-ceramic element is focused at a depth of 10 cm using a parabolic reflector with a diameter of 10 cm. A diagnostic B-mode ultrasonographic transducer is integrated into the source to allow the focus to be located in the target area. The field distribution of the sound pressure was measured in degassed water using a needle hydrophone. An ultrasound-force balance was used to determine the acoustic power. These measurements allowed the spatially averaged sound intensity to be calculated. The morphology and extent of tissue necrosis induced by HIFU was examined on an ex-vivo kidney model. The two-dimensional field distribution resulted in an approximately ellipsoidal focus of 32 x 4 mm (- 6 dB). The spatially maximum averaged sound intensity was 8591 W/cm2 at an electrical power of 400 W. The lesion caused to the ex-vivo kidney at this maximum generator power with a pulse duration of 2 s was a clearly delineated ellipsoidal coagulation necrosis up to 8.8 x 2.3 mm (length x width) and with central liquefied necrosis of 7.9 x 1.9 mm. This newly developed ultrasound generator with a focal length of 10 cm can induce clear necrosis in parenchymal tissue. Because of its specific configuration and the available power range of the ultrasound generator, there is potential for therapeutic noninvasive ablation of tissue deep within a patient's body.

  16. Efficient Cryosolid Positron Moderators

    Science.gov (United States)

    2012-08-01

    table layout Figure 21 shows the integration of the IR spectroscopy optics with the positron Moderation and Annihilation vacuum chambers on the...Characterization of Cryogenic Moderators The application of Matrix Isolation Spectroscopy (MIS) to characterizing cryogenic solid positron ...Matrix Isolation Spectroscopy capability into our Positron Moderation apparatus, which enables spectroscopic characterization of the cryogenic

  17. Positron emission tomography

    International Nuclear Information System (INIS)

    Reivich, M.; Alavi, A.

    1985-01-01

    This book contains 24 selections. Some of the titles are: Positron Emission Tomography Instrumentation, Generator Systems for Positron Emitters, Reconstruction Algorithms, Cerebral Glucose Consumption: Methodology and Validation, Cerebral Blood Flow Tomography Using Xenon-133 Inhalation: Methods and Clinical Applications, PET Studies of Stroke, Cardiac Positron Emission Tomography, and Use of PET in Oncology

  18. Spes: An intense source of Neutron-Rich Radioactive Beams at Legnaro

    Science.gov (United States)

    Andrighetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Monetti, A.; Rossignoli, M.; Ballan, M.; Borgna, F.; D'Agostini, F.; Gramegna, F.; Prete, G.; Meneghetti, G.; Ferrari, M.; Zenoni, A.

    2018-02-01

    The Isotope Separation On-Line (ISOL) method for the production of Radioactive Ion Beams (RIB) is attracting significant interest in the worldwide nuclear physics community. Within this context the SPES (Selective Production of Exotic Species) RIB facility is now under construction at INFN LNL (Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Legnaro). This technique is established as one of the main techniques for high intensity and high quality beams production. The SPES facility will produce n-rich isotopes by means of a 40 MeV proton beam, emitted by a cyclotron, impinging on a uranium carbide multi-foil fission target. The aim of this work is to describe the most important results obtained by the study of the on-line behavior of the SPES production target assembly. This target system will produce RIBs at a rate of about 1013 fissions per second, it will be able to dissipate a total power of up to 10 kW, and it is planned to work continuously for 2 week-runs of irradiation. ISOL beams of 24 different elements will be produced, therefore a target and ion source development is ongoing to ensure a great variety of produced isotopes and to improve the beam intensity and purity.

  19. Tagging moisture sources with Lagrangian and inertial tracers: application to intense atmospheric river events

    Directory of Open Access Journals (Sweden)

    V. Pérez-Muñuzuri

    2018-06-01

    Full Text Available Two Lagrangian tracer tools are evaluated for studies on atmospheric moisture sources and pathways. In these methods, a moisture volume is assigned to each particle, which is then advected by the wind flow. Usual Lagrangian methods consider this volume to remain constant and the particle to follow flow path lines exactly. In a different approach, the initial moisture volume can be considered to depend on time as it is advected by the flow due to thermodynamic processes. In this case, the tracer volume drag must be taken into account. Equations have been implemented and moisture convection was taken into account for both Lagrangian and inertial models. We apply these methods to evaluate the intense atmospheric rivers that devastated (i the Pacific Northwest region of the US and (ii the western Iberian Peninsula with flooding rains and intense winds in early November 2006 and 20 May 1994, respectively. We note that the usual Lagrangian method underestimates moisture availability in the continent, while active tracers achieve more realistic results.

  20. Open source electronic health record and patient data management system for intensive care.

    Science.gov (United States)

    Massaut, Jacques; Reper, Pascal

    2008-01-01

    In Intensive Care Units, the amount of data to be processed for patients care, the turn over of the patients, the necessity for reliability and for review processes indicate the use of Patient Data Management Systems (PDMS) and electronic health records (EHR). To respond to the needs of an Intensive Care Unit and not to be locked with proprietary software, we developed a PDMS and EHR based on open source software and components. The software was designed as a client-server architecture running on the Linux operating system and powered by the PostgreSQL data base system. The client software was developed in C using GTK interface library. The application offers to the users the following functions: medical notes captures, observations and treatments, nursing charts with administration of medications, scoring systems for classification, and possibilities to encode medical activities for billing processes. Since his deployment in February 2004, the PDMS was used to care more than three thousands patients with the expected software reliability and facilitated data management and review processes. Communications with other medical software were not developed from the start, and are realized by the use of the Mirth HL7 communication engine. Further upgrade of the system will include multi-platform support, use of typed language with static analysis, and configurable interface. The developed system based on open source software components was able to respond to the medical needs of the local ICU environment. The use of OSS for development allowed us to customize the software to the preexisting organization and contributed to the acceptability of the whole system.

  1. Investigation and realization of a slow-positron beam

    International Nuclear Information System (INIS)

    Ruiz, Nicolas

    2011-01-01

    This research thesis first proposes a presentation of the GBAR project (Gravitational Behaviour of Anti-hydrogen at Rest) within which this research took place, and which aims at performing the first direct test of the Weak Equivalence Principle on anti-matter by studying the free fall of anti-hydrogen atoms in the Earth gravitational field. The author presents different aspects of this project: scientific objective, experiment principle and structure, detailed structure (positron beam, positron trap, positron/positronium conversion, anti-proton beam, trapping, slowing down and neutralisation of anti-hydrogen ions). The author then reports the design of the positron beam: study of source technology, studies related to the fast positron source, design of the low positron line (approach, functions, simulations, technology). The two last chapters report the construction and the characterization of the slow-positron line [fr

  2. Astrophysical ionizing radiation and Earth: a brief review and census of intermittent intense sources.

    Science.gov (United States)

    Melott, Adrian L; Thomas, Brian C

    2011-05-01

    Cosmic radiation backgrounds are a constraint on life, and their distribution will affect the Galactic Habitable Zone. Life on Earth has developed in the context of these backgrounds, and characterizing event rates will elaborate the important influences. This in turn can be a base for comparison with other potential life-bearing planets. In this review, we estimate the intensities and rates of occurrence of many kinds of strong radiation bursts by astrophysical entities, ranging from gamma-ray bursts at cosmological distances to the Sun itself. Many of these present potential hazards to the biosphere; on timescales long compared with human history, the probability of an event intense enough to disrupt life on the land surface or in the oceans becomes large. Both photons (e.g., X-rays) and high-energy protons and other nuclei (often called "cosmic rays") constitute hazards. For either species, one of the mechanisms that comes into play even at moderate intensities is the ionization of Earth's atmosphere, which leads through chemical changes (specifically, depletion of stratospheric ozone) to increased ultraviolet B flux from the Sun reaching the surface. UVB is extremely hazardous to most life due to its strong absorption by the genetic material DNA and subsequent breaking of chemical bonds. This often leads to mutation or cell death. It is easily lethal to the microorganisms that lie at the base of the food chain in the ocean. We enumerate the known sources of radiation and characterize their intensities at Earth and rates or upper limits on these quantities. When possible, we estimate a "lethal interval," our best estimate of how often a major extinction-level event is probable given the current state of knowledge; we base these estimates on computed or expected depletion of stratospheric ozone. In general, moderate-level events are dominated by the Sun, but the far more severe infrequent events are probably dominated by gamma-ray bursts and supernovae. We note

  3. Astrophysical Ionizing Radiation and Earth: A Brief Review and Census of Intermittent Intense Sources

    Science.gov (United States)

    Melott, Adrian L.; Thomas, Brian C.

    2011-05-01

    Cosmic radiation backgrounds are a constraint on life, and their distribution will affect the Galactic Habitable Zone. Life on Earth has developed in the context of these backgrounds, and characterizing event rates will elaborate the important influences. This in turn can be a base for comparison with other potential life-bearing planets. In this review, we estimate the intensities and rates of occurrence of many kinds of strong radiation bursts by astrophysical entities, ranging from gamma-ray bursts at cosmological distances to the Sun itself. Many of these present potential hazards to the biosphere; on timescales long compared with human history, the probability of an event intense enough to disrupt life on the land surface or in the oceans becomes large. Both photons (e.g., X-rays) and high-energy protons and other nuclei (often called "cosmic rays") constitute hazards. For either species, one of the mechanisms that comes into play even at moderate intensities is the ionization of Earth's atmosphere, which leads through chemical changes (specifically, depletion of stratospheric ozone) to increased ultraviolet B flux from the Sun reaching the surface. UVB is extremely hazardous to most life due to its strong absorption by the genetic material DNA and subsequent breaking of chemical bonds. This often leads to mutation or cell death. It is easily lethal to the microorganisms that lie at the base of the food chain in the ocean. We enumerate the known sources of radiation and characterize their intensities at Earth and rates or upper limits on these quantities. When possible, we estimate a "lethal interval," our best estimate of how often a major extinction-level event is probable given the current state of knowledge; we base these estimates on computed or expected depletion of stratospheric ozone. In general, moderate-level events are dominated by the Sun, but the far more severe infrequent events are probably dominated by gamma-ray bursts and supernovae. We note

  4. Direct intensity calibration of X-ray grazing-incidence microscopes with home-lab source

    Science.gov (United States)

    Li, Yaran; Xie, Qing; Chen, Zhiqiang; Xin, Qiuqi; Wang, Xin; Mu, Baozhong; Wang, Zhanshan; Liu, Shenye; Ding, Yongkun

    2018-01-01

    Direct intensity calibration of X-ray grazing-incidence microscopes is urgently needed in quantitative studies of X-ray emission from laser plasma sources in inertial confinement fusion. The existing calibration methods for single reflecting mirrors, crystals, gratings, filters, and X-ray detectors are not applicable for such X-ray microscopes due to the specific optical structure and the restrictions of object-image relation. This article presents a reliable and efficient method that can be performed using a divergent X-ray source and an energy dispersive Si-PIN (silicon positive-intrinsic-negative) detector in an ordinary X-ray laboratory. The transmission theory of X-ray flux in imaging diagnostics is introduced, and the quantities to be measured are defined. The calibration method is verified by a W/Si multilayer-coated Kirkpatrick-Baez microscope with a field of view of ˜95 μm at 17.48 keV. The mirror reflectance curve in the 1D coordinate is drawn with a peak value of 20.9% and an uncertainty of ˜6.0%.

  5. Development of intense pulsed heavy ion beam diode using gas puff plasma gun as ion source

    International Nuclear Information System (INIS)

    Ito, H.; Higashiyama, M.; Takata, S.; Kitamura, I.; Masugata, K.

    2006-01-01

    A magnetically insulated ion diode with an active ion source of a gas puff plasma gun has been developed in order to generate a high-intensity pulsed heavy ion beam for the implantation process of semiconductors and the surface modification of materials. The nitrogen plasma produced by the plasma gun is injected into the acceleration gap of the diode with the external magnetic field system. The ion diode is operated at diode voltage approx. =200 kV, diode current approx. =2 kA and pulse duration approx. =150 ns. A new acceleration gap configuration for focusing ion beam has been designed in order to enhance the ion current density. The experimental results show that the ion current density is enhanced by a factor of 2 and the ion beam has the ion current density of 27 A/cm 2 . In addition, the coaxial type Marx generator with voltage 200 kV and current 15 kA has been developed and installed in the focus type ion diode. The ion beam of ion current density approx. =54 A/cm 2 is obtained. To produce metallic ion beams, an ion source by aluminum wire discharge has been developed and the aluminum plasma of ion current density ∼70 A/cm 2 is measured. (author)

  6. Detection of pulmonary nodules at paediatric CT: maximum intensity projections and axial source images are complementary

    International Nuclear Information System (INIS)

    Kilburn-Toppin, Fleur; Arthurs, Owen J.; Tasker, Angela D.; Set, Patricia A.K.

    2013-01-01

    Maximum intensity projection (MIP) images might be useful in helping to differentiate small pulmonary nodules from adjacent vessels on thoracic multidetector CT (MDCT). The aim was to evaluate the benefits of axial MIP images over axial source images for the paediatric chest in an interobserver variability study. We included 46 children with extra-pulmonary solid organ malignancy who had undergone thoracic MDCT. Three radiologists independently read 2-mm axial and 10-mm MIP image datasets, recording the number of nodules, size and location, overall time taken and confidence. There were 83 nodules (249 total reads among three readers) in 46 children (mean age 10.4 ± 4.98 years, range 0.3-15.9 years; 24 boys). Consensus read was used as the reference standard. Overall, three readers recorded significantly more nodules on MIP images (228 vs. 174; P < 0.05), improving sensitivity from 67% to 77.5% (P < 0.05) but with lower positive predictive value (96% vs. 85%, P < 0.005). MIP images took significantly less time to read (71.6 ± 43.7 s vs. 92.9 ± 48.7 s; P < 0.005) but did not improve confidence levels. Using 10-mm axial MIP images for nodule detection in the paediatric chest enhances diagnostic performance, improving sensitivity and reducing reading time when compared with conventional axial thin-slice images. Axial MIP and axial source images are complementary in thoracic nodule detection. (orig.)

  7. Intense Pulsed Neutron Source: Progress report 1991--1996. 15. Anniversary edition -- Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Marzec, B. [ed.

    1996-05-01

    The 15th Anniversary Edition of the IPNS Progress Report is being published in recognition of the Intense Pulsed Neutron Source`s first 15 years of successful operation as a user facility. To emphasize the importance of this milestone, the authors have made the design and organization of the report significantly different from previous IPNS Progress Reports. This report consists of two volumes. For Volume 1, authors were asked to prepare articles that highlighted recent scientific accomplishments at IPNS, from 1991 to present; to focus on and illustrate the scientific advances achieved through the unique capabilities of neutron studies performed by IPNS users; to report on specific activities or results from an instrument; or to focus on a body of work encompassing different neutron-scattering techniques. Articles were also included on the accelerator system, instrumentation, computing, target, and moderators. A list of published and ``in press` articles in journals, books, and conference proceedings, resulting from work done at IPNS since 1991, was compiled. This list is arranged alphabetically according to first author. Publication references in the articles are listed by last name of first author and year of publication. The IPNS experimental reports received since 1991 are compiled in Volume 2. Experimental reports referenced in the articles are listed by last name of first author, instrument designation, and experiment number.

  8. Development of exploding wire ion source for intense pulsed heavy ion beam accelerator

    International Nuclear Information System (INIS)

    Ochiai, Y.; Murata, T.; Ito, H.; Masugata, K.

    2012-01-01

    A Novel exploding wire type ion source device is proposed as a metallic ion source of intense pulsed heavy ion beam (PHIB) accelerator. In the device multiple shot operations is realized without breaking the vacuum. The basic characteristics of the device are evaluated experimentally with an aluminum wire of diameter 0.2 mm, length 25 mm. Capacitor bank of capacitance 3 μF, charging voltage 30 kV was used and the wire was successfully exploded by a discharge current of 15 kA, rise time 5.3 μs. Plasma flux of ion current density around 70 A/cm 2 was obtained at 150 mm downstream from the device. The drift velocity of ions evaluated by a time-of-flight method was 2.7x10 4 m/sec, which corresponds to the kinetic energy of 100 eV for aluminum ions. From the measurement of ion current density distribution ion flow is found to be concentrated to the direction where ion acceleration gap is placed. From the experiment the device is found to be acceptable for applying PHIB accelerator. (author)

  9. Surviving to tell the tale: Argonne's Intense Pulsed Neutron Source from an ecosystem perspective

    International Nuclear Information System (INIS)

    Westfall, C.

    2010-01-01

    At first glance the story of the Intense Pulsed Neutron Source (IPNS), an accelerator-driven neutron source for exploring the structure of materials through neutron scattering, seems to be one of puzzling ups and downs. For example, Argonne management, Department of Energy officials, and materials science reviewers continued to offer, then withdraw, votes of confidence even though the middling-sized IPNS produced high-profile research, including work that made the cover of Nature in 1987. In the midst of this period of shifting opinion and impressive research results, some Argonne materials scientists were unenthusiastic, members of the laboratory's energy physics group were key supporters, and materials scientists at another laboratory provided, almost fortuitously, a new lease on life. What forces shaped the puzzling life cycle of the IPNS? And what role - if any - did the moderate price tag and the development of scientific and technological ideas play in the course it took? To answer these questions this paper looks to an ecosystem metaphor for inspiration, exploring how opinions, ideas, and machinery emerged from the interrelated resource economies of Argonne, the DOE, and the materials science community by way of a tangled web of shifting group interactions. The paper will conclude with reflections about what the resulting focus on relationality explains about the IPNS story as well as the underlying dynamic that animates knowledge production at U.S. national laboratories.

  10. Intense Pulsed Neutron Source: Progress report 1991--1996. 15. Anniversary edition -- Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The 15th Anniversary Edition of the IPNS Progress Report is being published in recognition of the Intense Pulsed Neutron Source`s first 15 years of successful operation as a user facility. To emphasize the importance of this milestone, the author shave made the design and organization of the report significantly different from previous IPNS Progress Reports. This report consists of two volumes. For Volume 1, authors were asked to prepare articles that highlighted recent scientific accomplishments at IPNS, from 1991 to present; to focus on and illustrate the scientific advances achieved through the unique capabilities of neutron studies performed by IPNS users; to report on specific activities or results from an instrument; or to focus on a body of work encompassing different neutron-scattering techniques. Articles were also included on the accelerator system, instrumentation, computing, target, and moderators. A list of published and ``in press` articles in journals, books, and conference proceedings, resulting from work done at IPNS since 1991, was compiled. This list is arranged alphabetically according to first author. Publication references in the articles are listed by last name of first author and year of publication. The IPNS experimental reports received since 1991 are compiled in Volume 2. Experimental reports referenced in the articles are listed by last name of first author, instrument designation, and experiment number.

  11. Positronium formation in NaY-zeolites studied by lifetime, positron beam Doppler broadening and 3-gamma detection techniques

    CERN Document Server

    Schut, H; Kolar, Z I; Veen, A V; Clet, G

    2000-01-01

    Results of positron annihilation measurements on NaY pressed powders and deposited thin films using slow positron beam and conventional fast positron techniques are presented. In lifetime experiments using an external sup sup 2 sup sup 2 Na source an averaged long lifetime of 1.8 ns with a sum intensity of 27% was observed in pressed powders in the presence of air at room temperature (RT). In literature this lifetime is ascribed to positrons annihilating in water filled alpha or beta cages Habrowska, A.M., Popiel, E.S., 1987. Positron annihilation in zeolite 13X. J. Appl. Phys. 62, 2419. By means of isotopic exchange some of the Na was replaced by sup sup 2 sup sup 2 Na. These powders showed a long lifetime component of 7-8 ns with an intensity increasing from 1 to 12% when heated under normal atmosphere from RT to 200 deg. C. No significant increase of the shorter (1.5 ns) lifetime was observed, while its intensity dropped from 13.4 to 6.6%. Both effects are ascribed to the loss of water from alpha cages onl...

  12. The influence of external source intensity in accelerator/target/blanket system on conversion ratio and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Kochurov, B.P. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation)

    1995-10-01

    The analysis of neutron balance relation for a subcritical system with external source shows that a high ratio of neutron utilization (conversion ratio, breeding ratio) much exceeding similar values for nuclear reactors (both thermal or fast spectrum) is reachable in accelerator/target/blanket system with high external neutron source intensity. An accelerator/target/blanket systems with thermal power in blanket about 1850 Mwt and operating during 30 years have been investigated. Continual feed up by plutonium (fissile material) and Tc-99 (transmuted material) was assumed. Accelerator beam intensity differed 6.3 times (16 mA - Case 1, and 100 mA-Case 2). Conversion ratio (CR) was defined as the ratio of Tc-99 nuclei transmuted to the number of Pu nuclei consumed. High value of conversion ratio considerably exceeding 1 (CR=1.66) was obtained in the system with high source intensity as compared with low source system (CR=0.77). Net output of electric power of high source intensity system is about twice lower due to consumption of electric power for accelerator feed up. The loss of energy for Tc-99 transmutation is estimated as 40 Mev(el)/nuclei. Yet high conversion ratio (or breeding ratio) achievable in electronuclear installations with high intensity of external source can effectively be used to close fuel cycle (including incineration of wastes) or to develop growing nuclear power production system.

  13. Production of an intense source of micro-second proton pulses; Recherche d'une intense source de protons pulsee a la micro-seconde

    Energy Technology Data Exchange (ETDEWEB)

    Belmont, J L [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1965-02-01

    In order to obtain micro-second proton pulses of 100 mA, we have built a duoplasmatron ion source and beam focusing equipment. The pulses of the ion-source were produced by a load discharge. The source operates as a hydrogen-thyratron. The particular geometry of the duoplasmatron was chosen in order that the ion emission be stable with a 10 A arc and with a gas-flow lower than 10 cm{sup 3}/h T.P.N. Studies of the beam showed preponderance of protons and the presence of heavy ions. The beam density is higher on the optic axis. (author) [French] Pour obtenir des impulsions d'une microseconde de 100 mA de protons, on a ete amene a construire une source 'duoplasmatron' et son optique de focalisation. La pulsation de la source a ete faite par decharge d'une ligne, la source fonctionnant elle-meme comme un thyratron a hydrogene. La geometrie de la source a ete etudiee pour que l'emission d'ions soit stable avec un arc de 10 amperes de crete et un debit de gaz de 10 cm{sup 3}/h T.P.N. Une analyse du faisceau a revele la preponderance des protons et l'existence d'ions lourds. La densite du faisceau est plus grande sur l'axe de l'optique.

  14. High efficiency cyclotron trap assisted positron moderator

    OpenAIRE

    Gerchow, L.; Cooke, D. A.; Braccini, S.; Döbeli, M.; Kirch, K.; Köster, U.; Müller, A.; Van Der Meulen, N. P.; Vermeulen, C.; Rubbia, A.; Crivelli, P.

    2017-01-01

    We report the realisation of a cyclotron trap assisted positron tungsten moderator for the conversion of positrons with a broad keV- few MeV energy spectrum to a mono-energetic eV beam with an efficiency of 1.8(2)% defined as the ratio of the slow positrons divided by the $\\beta^+$ activity of the radioactive source. This is an improvement of almost two orders of magnitude compared to the state of the art of tungsten moderators. The simulation validated with this measurement suggests that usi...

  15. Present status of positron factory project

    International Nuclear Information System (INIS)

    Okada, S.; Sunaga, H.; Kaneko, H.; Tachibana, H.; Yotsumoto, K.; Okamoto, J.

    1992-01-01

    The Japan Atomic Energy Research Institute, JAERI, has been promoting design studies for the 'Positron Factory', in which linac-based intense monoenergetic positron beams are planned to be applied to advanced materials characterization and new fields of basic research. A tentative goal of the beam intensity is 10 10 s -1 , which is assumed to be realized with an electron linac of 100 kW class with a beam energy around 100 to 150 MeV. We performed a technical survey on the dedicated linac. It confirmed technical feasibility of manufacturing the state-of-the-art machine. We have been carrying out a design study of the target. A new concept of the target design is proposed, which is expected to supply intense slow positron beams simultaneously for multiple beam channels, on the basis of Monte Carlo simulations. (author)

  16. Development of positron diffraction and holography at LLNL

    International Nuclear Information System (INIS)

    Hamza, A.; Asoka-Kumar, P.; Stoeffl, W.; Howell, R.; Miller, D.; Denison, A.

    2003-01-01

    A low-energy positron diffraction and holography spectrometer is currently being constructed at the Lawrence Livermore National Laboratory (LLNL) to study surfaces and adsorbed structures. This instrument will operate in conjunction with the LLNL intense positron beam produced by the 100 MeV LINAC allowing data to be acquired in minutes rather than days. Positron diffraction possesses certain advantages over electron diffraction which are discussed. Details of the instrument based on that of low-energy electron diffraction are described

  17. Status and Perspectives for a Slow Positron Beam Facility at the HH-NIPNE Bucharest

    Science.gov (United States)

    Straticiuc, Mihai; Craciun, Liviu Stefan; Constantinescu, Olimpiu; Ghita, Ionica Alina; Ionescu, Cristina; Racolta, Petru Mihai; Vasilescu, Angela; Braic, Viorel; Zoita, Catalin; Kiss, Adrian; Bojin, Dionezie

    2009-03-01

    The development of a positron annihilation spectroscopy laboratory at the HH-NIPNE Bucharest-to be used for material studies and applications was started in the last 10 years. In the framework of a national research project extended over the last 3 years, was designed a low energy positron accelerator, as a high-vacuum dedicated beam line with two options: a 25 mCi 22NaCl source and in line with the NIPNE-cyclotron or a new intense compact cyclotron. The construction of the beam line was planned as a sequence of modules: source- moderator system; magnetical filter for fast positrons in order to select the positrons energies in the range 0.8-1 keV; a modular system for focusing, transport and acceleration of monoenergetic positrons in the energy range 0.8-50 keV and a CDBS analysis chamber. The moderator proposed-is tungsten as a foil of about 3 μm prepared at the Optoelectronics Institute were put into a thermal treatment vacuum chamber and bombarded with electrons from a 100 W electron gun After the treatment, they were tested for changes of elemental composition of the surface and structure at the Polytechnic University. The structure tests were performed on a DRON 3 M diffractometer, with a Co tube (λKα = 1.7903 A)-the angular regions studied were around 34° (1 0 0) and 69° (2 0 0). In the present time, the trajectories of the positron are going to be simulated with dedicated software (an ion and electron optics simulator). For the coincidence measurements (CDBS) set-up we used a home-made 22NaCl source, by separation without carrier from a metallic Mg target irradiated with 12 MeV protons and separated by columnar cation exchange. A home- made biparametric system for CDBS measurements will be reported, also.

  18. Status and Perspectives for a Slow Positron Beam Facility at the HH—NIPNE Bucharest

    Science.gov (United States)

    Constantin, Florin; Craciun, Liviu Stefan; Constantinescu, Olimpiu; Ghita, Ionica Alina; Ionescu, Cristina; Racolta, Petru Mihai; Straticiuc, Mihai; Vasilescu, Angela; Braic, Viorel; Zoita, Catalin; Kiss, Adrian; Bojin, Dionezie

    2009-03-01

    The development of a positron annihilation spectroscopy laboratory at the HH-NIPNE Bucharest-to be used for material studies and applications was started in the last 10 years. In the framework of a national research project extended over the last 3 years, was designed a low energy positron accelerator, as a high-vacuum dedicated beam line with two options: a 25 mCi 22NaCl source and in line with the NIPNE-cyclotron or a new intense compact cyclotron. The construction of the beam line was planned as a sequence of modules: source- moderator system; magnetical filter for fast positrons in order to select the positrons energies in the range 0.8-1 keV; a modular system for focusing, transport and acceleration of monoenergetic positrons in the energy range 0.8-50 keV and a CDBS analysis chamber. The moderator proposed—is tungsten as a foil of about 3 μm prepared at the Optoelectronics Institute were put into a thermal treatment vacuum chamber and bombarded with electrons from a 100 W electron gun After the treatment, they were tested for changes of elemental composition of the surface and structure at the Polytechnic University. The structure tests were performed on a DRON 3 M diffractometer, with a Co tube (λKα = 1.7903 A)—the angular regions studied were around 34° (1 0 0) and 69° (2 0 0). In the present time, the trajectories of the positron are going to be simulated with dedicated software (an ion and electron optics simulator). For the coincidence measurements (CDBS) set-up we used a home-made 22NaCl source, by separation without carrier from a metallic Mg target irradiated with 12 MeV protons and separated by columnar cation exchange. A home- made biparametric system for CDBS measurements will be reported, also.

  19. New Possibilities of Positron-Emission Tomography

    Science.gov (United States)

    Volobuev, A. N.

    2018-01-01

    The reasons for the emergence of the angular distribution of photons generated as a result of annihilation of an electron and a positron in a positron-emission tomograph are investigated. It is shown that the angular distribution of the radiation intensity (i.e., the probability of photon emission at different angles) is a consequence of the Doppler effect in the center-of-mass reference system of the electron and the positron. In the reference frame attached to the electron, the angular distribution of the number of emitted photons does not exists but is replaced by the Doppler shift of the frequency of photons. The results obtained in this study make it possible to extend the potentialities of the positron-emission tomograph in the diagnostics of diseases and to obtain additional mechanical characteristics of human tissues, such as density and viscosity.

  20. Investigation of positron moderator materials for electron-linac-based slow positron beamlines

    International Nuclear Information System (INIS)

    Suzuki, Ryoichi; Ohdaira, Toshiyuki; Uedono, Akira

    1998-01-01

    Positron re-emission properties were studied on moderator materials in order to improve the positron moderation system of electron-linac-based intense slow positron beamlines. The re-emitted positron fraction was measured on tungsten, SiC, GaN, SrTiO 3 , and hydrogen-terminated Si with a variable-energy pulsed positron beam. The results suggested that tungsten is the best material for the primary moderator of the positron beamlines while epitaxially grown n-type 6H-SiC is the best material for the secondary moderator. Defect characterization by monoenergetic positron beams and surface characterization by Auger electron spectroscopy were carried out to clarify the mechanism of tungsten moderator degradation induced by high-energy electron irradiation. The characterization experiments revealed that the degradation is due to both radiation-induced vacancy clusters and surface carbon impurities. For the restoration of degraded tungsten moderators, oxygen treatment at ∼900degC is effective. Furthermore, it was found that oxygen at the tungsten surface inhibits positronium formation; as a result, it can increase the positron re-emission fraction. (author)

  1. Positron lifetime technique with applications in materials science

    International Nuclear Information System (INIS)

    Vries, J. de.

    1987-01-01

    This thesis deals with the positron lifetime technique as a method to measure extremely low concentrations of extremely small cavities in materials. The method is based upon the fact that the positron lieftime decreases as the electron density increases and upon the fact that a positron preferably annihilates in cavity-like defects in lattices. The theory of positron behaviour in materials and technical aspects of measuring positron liefetimes are described in ch.'s 2 and 3 respectively. Three methods for increasing the time resolution are discussed and some positron sources are described (ch.4). Some applications of the positron lifetime technique and experimental results are shown in chapter 5. 125 refs.; 61 figs.; 18 tabs

  2. Electron-Positron Accumulator (EPA)

    CERN Multimedia

    Photographic Service

    1986-01-01

    After acceleration in the low-current linac LIL-W, the electrons and positrons are accumulated in EPA to obtain a sufficient intensity and a suitable time-structure, before being passed on to the PS for further acceleration to 3.5 GeV. Electrons circulate from right to left, positrons in the other direction. Dipole bending magnets are red, focusing quadrupoles blue, sextupoles for chromaticity-control orange. The vertical tube at the left of the picture belongs to an optical transport system carrying the synchrotron radiation to detectors for beam size measurement. Construction of EPA was completed in spring 1986. LIL-W and EPA were conceived for an energy of 600 MeV, but operation was limited to 500 MeV.

  3. Measurement of relative intensities of L-shell X-rays of some heavy elements using Cd-109 radioisotope source

    International Nuclear Information System (INIS)

    Darko, J.B.; Tetteh, G.K.

    1992-01-01

    The relative L-shell x-ray intensities of Sm, W, Ir, Au, Hg, Pb and U were measured using a Cd-109 radioisotope source and a Si(Li) detector. The measured relative intensities were compared with the theoretically calculated values due to Scofield, computed for the present excitation energy of 22.6 keV. The experimental results were found to agree with theory in most cases. (author)

  4. Measurement of relative intensities of L-shell X-rays of some heavy elements using Cd-109 radioisotope source

    Energy Technology Data Exchange (ETDEWEB)

    Darko, J.B.; Tetteh, G.K. (Ghana Univ., Legon (Ghana). Dept. of Physics)

    The relative L-shell x-ray intensities of Sm, W, Ir, Au, Hg, Pb and U were measured using a Cd-109 radioisotope source and a Si(Li) detector. The measured relative intensities were compared with the theoretically calculated values due to Scofield, computed for the present excitation energy of 22.6 keV. The experimental results were found to agree with theory in most cases. (author).

  5. Rational design of biophysical imaging protocols to measure the level of intensity of massive delocalized infections under severe HIV-induced immunodeficiency: configuration of novel radioimmunoscintigraphy modalities with single-photon emission tomography (SPECT) and positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Nazarea, A.D.

    1996-01-01

    Severe immunosupression brought about by critical depletion of CD4 + -lymphocytes in individuals suffering from HIV infection leads inevitably to the onset of multiple-agent opportunistic infections (ARC: the AIDS-related complex). Such opportunistic infections eventually become heterogeneously delocalized (disseminated) and an idea f their variety and number can be gleaned from the listing under clinical category C of the 1993 CDC Revised Classification System for HIV infections. This causes widespread oxygen free radical (principally superoxide and hydroxyl free radical) burst due to the up-switching of the hexose monophosphate (HMP) shunt as a result of the generalized activation, by the massive infection load, of NADPH oxidase, a constitutive enzyme that is present in the cell membranes of all granulocytes and mononuclear phagocytic cells. However the very short (reactive) lifetimes of superoxide and hydroxyl free radicals in the cellular milieu preclude their use as a convenient in vivo biomarkers if the level of phagocytosis (or HMP up-switching) were to be utilized as a correlative measure of the level of intensity of delocalized infections in ARC in any non-invasive whole-body imaging protocol. In the present contribution, we report a rational schema for a molecularly specific an self-consistent correlative measure of the intensity of multiple-agent, delocalized infections arising from severe HIV-induced immunodeficiency. The schema is based on the quantitative parametrization of the level of on-going degranulation activity of neutrophils in the granulocyte population. The rationally designed modalities rest on specificity inherent in radioimmunoscintigraphy, in particular on the ligand of radionuclide-tagged antibodies to the neutrophil proteinases HLE (human leukocytic elastase: EC.3.4.21.37) and cat G (cathepsin G: EC.3.4.21.20). In this work, these molecular probes are specifically configured to lend themselves as convenient in vivo biomarkers both in

  6. Does the intensity of diffuse thyroid gland uptake on F-18 fluorodeoxyglucose positron emission tomography/computed tomography scan predict the severity of hypothyroidism? Correlation between maximal standardized uptake value and serum thyroid stimulating hormone levels

    International Nuclear Information System (INIS)

    Pruthi, Ankur; Choudhury, Partha Sarathi; Gupta, Manoj; Taywade, Sameer

    2015-01-01

    F-18 fluorodeoxyglucose (F-18 FDG) positron emission tomography/computed tomography (PET/CT) scan and hypothyroidism. The aim was to determine whether the intensity of diffuse thyroid gland uptake on F-18 FDG PET/CT scans predicts the severity of hypothyroidism. A retrospective analysis of 3868 patients who underwent F-18 FDG PET/CT scans, between October 2012 and June 2013 in our institution for various oncological indications was done. Out of them, 106 (2.7%) patients (79 females, 27 males) presented with bilateral diffuse thyroid gland uptake as an incidental finding. These patients were investigated retrospectively and various parameters such as age, sex, primary cancer site, maximal standardized uptake value (SUVmax), results of thyroid function tests (TFTs) and fine-needle aspiration cytology results were noted. The SUVmax values were correlated with serum thyroid stimulating hormone (S. TSH) levels using Pearson's correlation analysis. Pearson's correlation analysis. Clinical information and TFT (serum FT3, FT4 and TSH levels) results were available for 31 of the 106 patients (27 females, 4 males; mean age 51.5 years). Twenty-six out of 31 patients (84%) were having abnormal TFTs with abnormal TSH levels in 24/31 patients (mean S. TSH: 22.35 μIU/ml, median: 7.37 μIU/ml, range: 0.074-211 μIU/ml). Among 7 patients with normal TSH levels, 2 patients demonstrated low FT3 and FT4 levels. No significant correlation was found between maximum standardized uptake value and TSH levels (r = 0.115, P > 0.05). Incidentally detected diffuse thyroid gland uptake on F-18 FDG PET/CT scan was usually associated with hypothyroidism probably caused by autoimmune thyroiditis. Patients should be investigated promptly irrespective of the intensity of FDG uptake with TFTs to initiate replacement therapy and a USG examination to look for any suspicious nodules

  7. Positron-containing systems and positron diagnostics

    International Nuclear Information System (INIS)

    1978-01-01

    The results of the experimental and theoretical investigations are presented. Considered are quantum-mechanical calculations of wave functions describing the states of positron-containing atomic systems and of cross-sections of the processes characterizing different interactions, and also the calculations of the behaviour of positrons in gases in the presence of an electric field. The results of experimental tests are presented by the data describing the behaviour of positrons and positronium in liquids, polymers and elastomers, complex oxides and in different solids. New equipment and systems developed on the basis of current studies are described. Examined is a possibility of applying the methods of model and effective potentials for studying the bound states of positron systems and for calculating cross-sections of elementary processes of elastic and inelastic collisions with a positron involved. The experimental works described indicate new possibilities of the positron diagnosis method: investigation of thin layers and films of semiconductor materials, defining the nature of chemical bonds in semiconductors, determination of the dislocation density in deformed semiconductors, derivation of important quantitative information of the energy states of radiation defects in them

  8. Aerogel Cherenkov detector for characterizing the intense flash x-ray source, Cygnus, spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y., E-mail: yhkim@lanl.gov; Herrmann, H. W.; McEvoy, A. M.; Young, C. S.; Hamilton, C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Schwellenbach, D. D.; Malone, R. M.; Kaufman, M. I.; Smith, A. S. [National Security Technologies, LLC, Los Alamos, New Mexico 87544 (United States)

    2016-11-15

    An aerogel Cherenkov detector is proposed to measure the X-ray energy spectrum from the Cygnus—intense flash X-ray source operated at the Nevada National Security Site. An array of aerogels set at a variety of thresholds between 1 and 3 MeV will be adequate to map out the bremsstrahlung X-ray production of the Cygnus, where the maximum energy of the spectrum is normally around 2.5 MeV. In addition to the Cherenkov radiation from aerogels, one possible competing light-production mechanism is optical transition radiation (OTR), which may be significant in aerogels due to the large number of transitions from SiO{sub 2} clusters to vacuum voids. To examine whether OTR is a problem, four aerogel samples were tested using a mono-energetic electron beam (varied in the range of 1–3 MeV) at NSTec Los Alamos Operations. It was demonstrated that aerogels can be used as a Cherenkov medium, where the rate of the light production is about two orders magnitude higher when the electron beam energy is above threshold.

  9. A new blanket tritium recovery experiment with intense DT neutron source at JAEA/FNS

    Energy Technology Data Exchange (ETDEWEB)

    Ochiai, Kentaro, E-mail: ochiai.kentaro@jaea.go.jp [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan); Edao, Yuki [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan); Hoshino, Tsuyoshi [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan); Kawamura, Yoshinori [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Ohta, Masayuki; Kwon, Saerom; Konno, Chikara [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan)

    2016-11-01

    Highlights: • For detail investigation of the tritium recovery performance on the fusion reactor blanket, we have started a new blanket tritium recovery experiment with ionization chamber at JAEA/FNS. • A new improved container was provided for the appropriate tritium measurement by IC and also utilized for the enhancement of TPR in the new container. The TPR was calculated with a calculation code MCNP5 and some typical nuclear data libraries and then the radioactivity of the tritium recovery with LSC corresponded with that of calculation. • The tritium release curves by the IC outputs are similar to those by the LSC output. However, it was indicated that the quantitative measurement by IC needed further improvement for the tritium recovery. - Abstract: We have performed the tritium release experiment on the fusion reactor blanket at JAEA/FNS since 2009, and then clarified the ratio of tritium release and the recovered tritium chemical form. In order to acquire the detailed tritium recovery performances, we have started a new blanket tritium recovery experiment with ionization chamber (IC) at JAEA/FNS. For the appropriate tritium measurement with IC, we improved the experimental container and carried out with an intense DT neutron source at JAEA/FNS. From our new experiment, the tritium recovery radioactivity from the LSC measurement corresponds with the calculation within 6%. However, it was pointed out that further improvement in the quantitative tritium measurement by IC method was needed.

  10. Intense Pulsed Neutron Source: Progress report 1991--1996. 15. Anniversary edition -- Volume 2

    International Nuclear Information System (INIS)

    1996-01-01

    The 15th Anniversary Edition of the IPNS Progress Report is being published in recognition of the Intense Pulsed Neutron Source's first 15 years of successful operation as a user facility. To emphasize the importance of this milestone, the author shave made the design and organization of the report significantly different from previous IPNS Progress Reports. This report consists of two volumes. For Volume 1, authors were asked to prepare articles that highlighted recent scientific accomplishments at IPNS, from 1991 to present; to focus on and illustrate the scientific advances achieved through the unique capabilities of neutron studies performed by IPNS users; to report on specific activities or results from an instrument; or to focus on a body of work encompassing different neutron-scattering techniques. Articles were also included on the accelerator system, instrumentation, computing, target, and moderators. A list of published and ''in press' articles in journals, books, and conference proceedings, resulting from work done at IPNS since 1991, was compiled. This list is arranged alphabetically according to first author. Publication references in the articles are listed by last name of first author and year of publication. The IPNS experimental reports received since 1991 are compiled in Volume 2. Experimental reports referenced in the articles are listed by last name of first author, instrument designation, and experiment number

  11. Nitrogen capillary plasma as a source of intense monochromatic radiation at 2.88 nm

    Energy Technology Data Exchange (ETDEWEB)

    Vrba, P., E-mail: vrbovmir@fbmi.cvut.cz [Institute of Plasma Physics, Academy of Sciences, Za Slovankou 3, Prague 8 (Czech Republic); Vrbova, M. [Faculty of Biomedical Engineering, CTU in Prague, Sitna 3105, Kladno 2 (Czech Republic); Zakharov, S.V. [EPPRA sas, Villebon/Yvette (France); Zakharov, V.S. [EPPRA sas, Villebon/Yvette (France); KIAM RAS, Moscow (Russian Federation); Jancarek, A.; Nevrkla, M. [Faculty of Nuclear Science and Physical Engineering, CTU in Prague, Brehova 7, Prague 1 (Czech Republic)

    2014-10-15

    Highlights: • Pinching capillary discharge is studied as a source of monochromatic SXR. • Modeling of the laboratory device was performed by RMHD Z* code. • Results of computer and laboratory experiments are presented. - Abstract: Capillary discharge plasma related to our laboratory device is modeled and the results are compared with experimental data. Time dependences of selected plasma quantities (e.g. plasma mass density, electron temperature and density and emission intensities) evaluated by 2D Radiation-Magneto-Hydro-Dynamic code Z* describe plasma evolution. The highest output pulse energy at 2.88 nm wavelength is achieved for nitrogen filling pressure ∼100 Pa. The estimated output energy of monochromatic radiation 5.5 mJ sr{sup −1} (∼10{sup 14} photons sr{sup −1}) corresponds properly to observe experimental value ∼3 × 10{sup 13} photons sr{sup −1}. Ray tracing inspection along the capillary axis proves an influence of radiation self-absorption for the investigated wavelength. The spectra, evaluated using the FLY code, agree to the measured ones.

  12. Intense Pulsed Neutron Source: Progress report 1991--1996. 15. Anniversary edition -- Volume 1

    International Nuclear Information System (INIS)

    Marzec, B.

    1996-01-01

    The 15th Anniversary Edition of the IPNS Progress Report is being published in recognition of the Intense Pulsed Neutron Source's first 15 years of successful operation as a user facility. To emphasize the importance of this milestone, the authors have made the design and organization of the report significantly different from previous IPNS Progress Reports. This report consists of two volumes. For Volume 1, authors were asked to prepare articles that highlighted recent scientific accomplishments at IPNS, from 1991 to present; to focus on and illustrate the scientific advances achieved through the unique capabilities of neutron studies performed by IPNS users; to report on specific activities or results from an instrument; or to focus on a body of work encompassing different neutron-scattering techniques. Articles were also included on the accelerator system, instrumentation, computing, target, and moderators. A list of published and ''in press' articles in journals, books, and conference proceedings, resulting from work done at IPNS since 1991, was compiled. This list is arranged alphabetically according to first author. Publication references in the articles are listed by last name of first author and year of publication. The IPNS experimental reports received since 1991 are compiled in Volume 2. Experimental reports referenced in the articles are listed by last name of first author, instrument designation, and experiment number

  13. Intensity enhancement of cold neutrons from a coupled liquid-hydrogen moderator for pulsed cold neutron sources

    International Nuclear Information System (INIS)

    Ogawa, Y.; Kiyanagi, Y.; Kosugi, N.; Iwasa, H.; Furusaka, M.; Watanabe, N.

    1999-01-01

    In order to obtain higher cold neutron intensity from a coupled liquid-hydrogen moderator with a premoderator for pulsed cold neutron sources, we examined a partial enhancement method, namely, narrow beam extraction for both a flat liquid-hydrogen moderator and a single-groove one. Combined with the narrow beam extraction, which is especially suitable for small-angle scattering and neutron reflectometry experiments, a single-groove moderator provides higher intensity, by about 30%, than a flat-surface moderator at the region of interest on a viewed surface. The effect of double-side beam extraction from such moderators on the intensity gain factor is also discussed. (author)

  14. Influence of Different Light Sources, Illumination Intensities and Storage Times on the Vitamin C Content in Pasteurized Milk

    OpenAIRE

    ÇAKMAKÇI, Songül; TURGUT, Tamer

    2005-01-01

    The effect of various light sources and illumination intensities on the destruction of vitamin C was determined during the storage of pasteurized milk. For this purpose, raw cow's milk was pasteurized at 72 oC for 15 s, and then stored in 2 different refrigerators (4 ± 1oC) illuminated by fluorescent and tungsten light (normal light) sources with intensities of 1100, 2400 and 5800 lux. As a control group, a pasteurized milk sample was stored at the same temperature under dark conditi...

  15. Compressive effect of the magnetic field on the positron range in commonly used positron emitters simulated using Geant4

    Science.gov (United States)

    Li, Chong; Cao, Xingzhong; Liu, Fuyan; Tang, Haohui; Zhang, Zhiming; Wang, Baoyi; Wei, Long

    2017-11-01

    The compressive effect of a magnetic field on the positron range from commonly used positron emitters in PET (Positron Emission Tomography) was simulated using the Geant4 toolkit with H2O as the environmental material. The compression of the positron range, which was different in the directions parallel and perpendicular to the magnetic field, showed finite final variation of relative change rate versus the magnetic field. The variation greatly depended on the positron-emission energy spectrum in the same medium. Furthermore, the volume of the positron annihilation point was dramatically compressed as the magnetic field was set in the range of 3-6T. It was more prominent for 82Rb , which is generally used as a positron source in PET technology.

  16. Cardiac positron emission tomography

    International Nuclear Information System (INIS)

    Eftekhari, M.; Ejmalian, G.

    2003-01-01

    Positron emission tomography is an intrinsically tool that provide a unique and unparalleled approach for clinicians and researchers to interrogate the heart noninvasively. The ability to label substances of physiological interest with positron-emitting radioisotopes has permitted insight into normal blood flow and metabolism and the alterations that occur with disease states. Positron emission tomography of the heart has evolved as a unique, noninvasive approach for the assessment of myocardial perfusion, metabolism, and function. Because of the intrinsic quantitative nature of positron emission tomography measurements as well as the diverse compounds that can be labeled with positron- emitting radioisotopes, studies with positron emission tomography have provided rich insight into the physiology of the heart under diverse conditions

  17. Positron emission computed tomography

    International Nuclear Information System (INIS)

    Grover, M.; Schelbert, H.R.

    1985-01-01

    Regional mycardial blood flow and substrate metabolism can be non-invasively evaluated and quantified with positron emission computed tomography (Positron-CT). Tracers of exogenous glucose utilization and fatty acid metabolism are available and have been extensively tested. Specific tracer kinetic models have been developed or are being tested so that glucose and fatty acid metabolism can be measured quantitatively by Positron-CT. Tracers of amino acid and oxygen metabolism are utilized in Positron-CT studies of the brain and development of such tracers for cardiac studies are in progress. Methods to quantify regional myocardial blood flow are also being developed. Previous studies have demonstrated the ability of Positron-/CT to document myocardial infarction. Experimental and clinical studies have begun to identify metabolic markers of reversibly ischemic myocardium. The potential of Positron-CT to reliably detect potentially salvageable myocardium and, hence, to identify appropriate therapeutic interventions is one of the most exciting applications of the technique

  18. Positron-annihilation studies of cyclic fatigue damage in metals and aging in polymers

    International Nuclear Information System (INIS)

    Panigrahi, N.

    1987-01-01

    Positron-lifetime measurements were performed on fatigued nickel samples. Both ex-situ type of source ( 22 Na source deposited on a nickel foil in a sandwich geometry) and in-situ source ( 58 Co) (produced by proton irradiation of the nickel sample through the reaction 61 Ni(p,α) 58 Co) were used. Specimens were both flexurally and axially fatigued. Spectra were analyzed by resolving into three and four exponentials. In contrast to other studies, positrons are found to be sensitive to defects formed during the cyclic fatiguing. These data were analyzed in terms of various trapping models. The results could be explained by assuming the detrapping of positrons from defect sites. In both types of fatigued specimens the lifetimes of the defect clusters decreased with increasing intensities, showing either the proliferation of smaller clusters or the formation of the new relaxed microstructures. Advantage of using in-situ source for the study of fatigue cycling is stressed. Quenching experiments were performed on polystyrene and polyvinyl acetate samples. In the former the long lifetime (tau 3 ) increased with aging, while the intensity decreased. These indicate that the cavities in the polymers getting bigger while becoming fewer in number

  19. High resolution positron tomography

    International Nuclear Information System (INIS)

    Brownell, G.L.; Burnham, C.A.

    1982-01-01

    The limits of spatial resolution in practical positron tomography are examined. The four factors that limit spatial resolution are: positron range; small angle deviation; detector dimensions and properties; statistics. Of these factors, positron range may be considered the fundamental physical limitation since it is independent of instrument properties. The other factors are to a greater or lesser extent dependent on the design of the tomograph

  20. High energy positron imaging

    International Nuclear Information System (INIS)

    Chen Shengzu

    2003-01-01

    The technique of High Energy Positron Imaging (HEPI) is the new development and extension of Positron Emission Tomography (PET). It consists of High Energy Collimation Imaging (HECI), Dual Head Coincidence Detection Imaging (DHCDI) and Positron Emission Tomography (PET). We describe the history of the development and the basic principle of the imaging methods of HEPI in details in this paper. Finally, the new technique of the imaging fusion, which combined the anatomical image and the functional image together are also introduced briefly

  1. Positron emission tomography

    International Nuclear Information System (INIS)

    Paans, A.M.J.

    1981-01-01

    Positron emitting radiopharmaceuticals have special applications in in-vivo studies of biochemical processes. The combination of a cyclotron for the production of radionuclides and a positron emission tomograph for the registration of the distribution of radioactivity in the body enables the measurement of local radioactivity concentration in tissues, and opens up new possibilities in the diagnosis and examination of abnormalities in the metabolism. The principles and procedures of positron emission tomography are described and the necessary apparatus considered, with emphasis on the positron camera. The first clinical applications using 55 Co bloemycine for tumor detection are presented. (C.F.)

  2. Positrons and positronium

    International Nuclear Information System (INIS)

    Jean, Y.C.; Lambrecht, R.M.

    1988-01-01

    This bibliography includes articles, proceedings, abstracts, reports and patents published between 1930 and 1984 on the subject of positrons, positron annihilation and positronium. The subject covers experimental and theoretical results in the areas of physics and chemistry of low and intermediate energy (< 0.6 MeV) positrons and positronium. The topics of interest are: fundamental properties, interactions with matter, nuclear technology, the history and philosophy of antimatter, the theory of the universe, and the applications of positrons in the chemical, physical, and biomedical sciences

  3. High energy resolution and first time-dependent positron annihilation induced Auger electron spectroscopty

    International Nuclear Information System (INIS)

    Mayer, Jakob

    2010-01-01

    It was the aim of this thesis to improve the existing positron annihilation induced Auger spectrometer at the highly intense positron source NEPOMUC (NEutron induced POsitron source MUniCh) in several ways: Firstly, the measurement time for a single spectrum should be reduced from typically 12 h to roughly 1 h or even less. Secondly, the energy resolution, which amounted to ΔE/E∼10%, should be increased by at least one order of magnitude in order to make high resolution positron annihilation induced Auger spectroscopy (PAES)-measurements of Auger transitions possible and thus deliver more information about the nature of the Auger process. In order to achieve these objectives, the PAES spectrometer was equipped with a new electron energy analyzer. For its ideal operation all other components of the Auger analysis chamber had to be adapted. Particularly the sample manipulation and the positron beam guidance had to be renewed. Simulations with SIMION registered ensured the optimal positron lens parameters. After the adjustment of the new analyzer and its components, first measurements illustrated the improved performance of the PAES setup: Firstly, the measurement time for short overview measurements was reduced from 3 h to 420 s. The measurement time for more detailed Auger spectra was shortened from 12 h to 80 min. Secondly, even with the reduced measurement time, the signal to noise ratio was also enhanced by one order of magnitude. Finally, the energy resolution was improved to ΔE/E 2,3 VV-transition with PAES. Thus, within this thesis two objectives were achieved: Firstly, the PAES spectrometer was renewed and improved by at least one order of magnitude with respect to the signal to noise ratio, the measurement time and the energy resolution. Secondly, several measurements have been carried out, demonstrating the high performance of the spectrometer. Amongst them are first dynamic PAES measurements and a high resolution measurement of the CuM 2,3 VV

  4. Concentrations and Sources of Airborne Particles in a Neonatal Intensive Care Unit

    Science.gov (United States)

    Licina, Dusan; Bhangar, Seema; Brooks, Brandon; Baker, Robyn; Firek, Brian; Tang, Xiaochen; Morowitz, Michael J.; Banfield, Jillian F.; Nazaroff, William W.

    2016-01-01

    Premature infants in neonatal intensive care units (NICUs) have underdeveloped immune systems, making them susceptible to adverse health consequences from air pollutant exposure. Little is known about the sources of indoor airborne particles that contribute to the exposure of premature infants in the NICU environment. In this study, we monitored the spatial and temporal variations of airborne particulate matter concentrations along with other indoor environmental parameters and human occupancy. The experiments were conducted over one year in a private-style NICU. The NICU was served by a central heating, ventilation and air-conditioning (HVAC) system equipped with an economizer and a high-efficiency particle filtration system. The following parameters were measured continuously during weekdays with 1-min resolution: particles larger than 0.3 μm resolved into 6 size groups, CO2 level, dry-bulb temperature and relative humidity, and presence or absence of occupants. Altogether, over sixteen periods of a few weeks each, measurements were conducted in rooms occupied with premature infants. In parallel, a second monitoring station was operated in a nearby hallway or at the local nurses’ station. The monitoring data suggest a strong link between indoor particle concentrations and human occupancy. Detected particle peaks from occupancy were clearly discernible among larger particles and imperceptible for submicron (0.3–1 μm) particles. The mean indoor particle mass concentrations averaged across the size range 0.3–10 μm during occupied periods was 1.9 μg/m3, approximately 2.5 times the concentration during unoccupied periods (0.8 μg/m3). Contributions of within-room emissions to total PM10 mass in the baby rooms averaged 37–81%. Near-room indoor emissions and outdoor sources contributed 18–59% and 1–5%, respectively. Airborne particle levels in the size range 1–10 μm showed strong dependence on human activities, indicating the importance of indoor

  5. Concentrations and Sources of Airborne Particles in a Neonatal Intensive Care Unit.

    Directory of Open Access Journals (Sweden)

    Dusan Licina

    Full Text Available Premature infants in neonatal intensive care units (NICUs have underdeveloped immune systems, making them susceptible to adverse health consequences from air pollutant exposure. Little is known about the sources of indoor airborne particles that contribute to the exposure of premature infants in the NICU environment. In this study, we monitored the spatial and temporal variations of airborne particulate matter concentrations along with other indoor environmental parameters and human occupancy. The experiments were conducted over one year in a private-style NICU. The NICU was served by a central heating, ventilation and air-conditioning (HVAC system equipped with an economizer and a high-efficiency particle filtration system. The following parameters were measured continuously during weekdays with 1-min resolution: particles larger than 0.3 μm resolved into 6 size groups, CO2 level, dry-bulb temperature and relative humidity, and presence or absence of occupants. Altogether, over sixteen periods of a few weeks each, measurements were conducted in rooms occupied with premature infants. In parallel, a second monitoring station was operated in a nearby hallway or at the local nurses' station. The monitoring data suggest a strong link between indoor particle concentrations and human occupancy. Detected particle peaks from occupancy were clearly discernible among larger particles and imperceptible for submicron (0.3-1 μm particles. The mean indoor particle mass concentrations averaged across the size range 0.3-10 μm during occupied periods was 1.9 μg/m3, approximately 2.5 times the concentration during unoccupied periods (0.8 μg/m3. Contributions of within-room emissions to total PM10 mass in the baby rooms averaged 37-81%. Near-room indoor emissions and outdoor sources contributed 18-59% and 1-5%, respectively. Airborne particle levels in the size range 1-10 μm showed strong dependence on human activities, indicating the importance of indoor

  6. Patient examinations using electrical impedance tomography—sources of interference in the intensive care unit

    International Nuclear Information System (INIS)

    Frerichs, Inéz; Pulletz, Sven; Elke, Gunnar; Gawelczyk, Barbara; Frerichs, Alexander; Weiler, Norbert

    2011-01-01

    Electrical impedance tomography (EIT) is expected to become a valuable tool for monitoring mechanically ventilated patients due to its ability to continuously assess regional lung ventilation and aeration. Several sources of interference with EIT examinations exist in intensive care units (ICU). Our objectives are to demonstrate how some medical nursing and monitoring devices interfere with EIT measurements and modify the EIT scans and waveforms, which approaches can be applied to minimize these effects and how possible misinterpretation can be avoided. We present four cases of EIT examinations of adult ICU patients. Two of the patients were subjected to pulsation therapy using a pulsating air suspension mattress while being ventilated by high-frequency oscillatory or conventional pressure-controlled ventilation, respectively. The EIT signal modulation synchronous with the occurrence of the pulsating wave was 2.3 times larger than the periodic modulation synchronous with heart rate and high-frequency oscillations. During conventional ventilation, the pulsating mattress induced an EIT signal fluctuation with a magnitude corresponding to about 20% of the patient's tidal volume. In the third patient, interference with EIT examination was caused by continuous cardiac output monitoring. The last patient's examination was disturbed by impedance pneumography when excitation currents of similar frequency to EIT were used. In all subjects, the generation of functional EIT scans was compromised and interpretation of regional ventilation impossible. Discontinuation of pulsation therapy and of continuous cardiac output and impedance respiration monitoring immediately improved the EIT signal and scan quality. Offline processing of the disturbed data using frequency filtering enabled partial retrieval of relevant information. We conclude that thoracic EIT examinations in the ICU require cautious interpretation because of possible mechanical and electromagnetic

  7. A Highly intense DC muon source, MuSIC and muon CLFV search

    Energy Technology Data Exchange (ETDEWEB)

    Hino, Y.; Kuno, Y.; Sato, A. [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Sakamoto, H. [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Research Center of Nuclear Physics, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Matsumoto, Y.; Tran, N.H.; Hashim, I.H. [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Fukuda, M.; Hayashida, Y. [Research Center of Nuclear Physics, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Ogitsu, T.; Yamamoto, A.; Yoshida, M. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2014-08-15

    MuSIC is a new muon facility, which provides the world's highest intense muon beam with continuous time structure at Research Center of Nuclear Physics (RCNP), Osaka University. It's intensity is designed to be 10{sup 8} muons per second with only 0.4 kW proton beam. Such a high intense muon beam is very important for searches of rare decay processes, for example search for the muon to electron conversion.

  8. A Highly intense DC muon source, MuSIC and muon CLFV search

    International Nuclear Information System (INIS)

    Hino, Y.; Kuno, Y.; Sato, A.; Sakamoto, H.; Matsumoto, Y.; Tran, N.H.; Hashim, I.H.; Fukuda, M.; Hayashida, Y.; Ogitsu, T.; Yamamoto, A.; Yoshida, M.

    2014-01-01

    MuSIC is a new muon facility, which provides the world's highest intense muon beam with continuous time structure at Research Center of Nuclear Physics (RCNP), Osaka University. It's intensity is designed to be 10 8 muons per second with only 0.4 kW proton beam. Such a high intense muon beam is very important for searches of rare decay processes, for example search for the muon to electron conversion

  9. Characterization of lacunar defects by positrons annihilation

    CERN Document Server

    Barthe, M F; Blondiaux, G

    2003-01-01

    Among the nondestructive methods for the study of matter, the positrons annihilation method allows to sound the electronic structure of materials by measuring the annihilation characteristics. These characteristics depend on the electronic density as seen by the positon, and on the electron momentums distribution which annihilate with the positon. The positon is sensible to the coulombian potential variations inside a material and sounds preferentially the regions away from nuclei which represent potential wells. The lacunar-type defects (lack of nuclei) represent deep potential wells which can trap the positon up to temperatures close to the melting. This article describes the principles of this method and its application to the characterization of lacunar defects: 1 - positrons: matter probes (annihilation of electron-positon pairs, annihilation characteristics, positrons sources); 2 - positrons interactions in solids (implantation profiles, annihilation states, diffusion and trapping, positon lifetime spec...

  10. A Magnetic Transport Middle Eastern Positron Beam

    International Nuclear Information System (INIS)

    Al-Qaradawi, I.Y.; Britton, D.T.; Rajaraman, R.; Abdulmalik, D.

    2008-01-01

    A magnetically guided slow positron beam is being constructed at Qatar University and is currently being optimised for regular operation. This is the first positron beam in the Middle East, as well as being the first Arabic positron beam. Novel features in the design include a purely magnetic in-line deflector, working in the solenoid guiding field, to eliminate un-moderated positrons and block the direct line of sight to the source. The impact of this all-magnetic transport on the Larmor radius and resultant beam characteristics are studied by SIMION simulations for both ideal and real life magnetic field variations. These results are discussed in light of the coupled effect arising from electrostatic beam extraction

  11. Positron kinetics in an idealized PET environment

    Science.gov (United States)

    Robson, R. E.; Brunger, M. J.; Buckman, S. J.; Garcia, G.; Petrović, Z. Lj.; White, R. D.

    2015-08-01

    The kinetic theory of non-relativistic positrons in an idealized positron emission tomography PET environment is developed by solving the Boltzmann equation, allowing for coherent and incoherent elastic, inelastic, ionizing and annihilating collisions through positronium formation. An analytic expression is obtained for the positronium formation rate, as a function of distance from a spherical source, in terms of the solutions of the general kinetic eigenvalue problem. Numerical estimates of the positron range - a fundamental limitation on the accuracy of PET, are given for positrons in a model of liquid water, a surrogate for human tissue. Comparisons are made with the ‘gas-phase’ assumption used in current models in which coherent scattering is suppressed. Our results show that this assumption leads to an error of the order of a factor of approximately 2, emphasizing the need to accurately account for the structure of the medium in PET simulations.

  12. Laser generation of proton beams for the production of short-lived positron emitting radioisotopes

    International Nuclear Information System (INIS)

    Spencer, I.; Ledingham, K.W.D.; Singhal, R.P.; McCanny, T.; McKenna, P.; Clark, E.L.; Krushelnick, K.; Zepf, M.; Beg, F.N.; Tatarakis, M.; Dangor, A.E.; Norreys, P.A.; Clarke, R.J.; Allott, R.M.; Ross, I.N.

    2001-01-01

    Protons of energies up to 37 MeV have been generated when ultra-intense lasers (up to 10 20 W cm -2 ) interact with hydrogen containing solid targets. These protons can be used to induce nuclear reactions in secondary targets to produce β + -emitting nuclei of relevance to the nuclear medicine community, namely 11 C and 13 N via (p, n) and (p,α) reactions. Activities of the order of 200 kBq have been measured from a single laser pulse interacting with a thin solid target. The possibility of using ultra-intense lasers to produce commercial amounts of short-lived positron emitting sources for positron emission tomography (PET) is discussed

  13. Radiation from planar channeled 5-55 GeV/c positrons and electrons

    International Nuclear Information System (INIS)

    Atkinson, M.; Sharp, P.H.; Giddings, D.; Bussey, P.J.

    1982-01-01

    The emission of radiation from 5 to 55 GeV/c planar channeled positrons and electrons passing through a 135 μ thick silicon-crystal has been investigated. The intensity of the channeling-radiation is found to be 10 to 30 times the intensity of normal bremsstrahlung. For channeled electrons no structure is found in the spectrum, whereas strong and sharp peaks are found for positrons. This peak structure is extremely sharp at 5 GeV/c and for momenta above 20 GeV/c the structure disappears. For a classical description of channeling, but using an anharmonic potential, certain energies are found for which the maximum energy of the channeling radiation is practically independent of transverse energy. The possibility of making a monoenergetic γ-source in the range of 10-100 MeV is mentioned. (orig.)

  14. Techniques for slow positron beam generation and the applications

    International Nuclear Information System (INIS)

    Okada, Sohei

    1994-01-01

    Slow positron beams have been expected to be a powerful tool for observation of nature in wide range of research fields from materials science to basic physics, chemistry and biology. In this paper, at first, the beam technology is reviewed, which includes the positron generation, the transformation to slow positron beams and the beam manipulation such as beam stretching, bunching and brightness enhancement. Next, the present status of the slow positron beam applications to a variety of fields is demonstrated in terms of special characteristics of positron, that is, depth controllability, surface sensitivity, unique ionization channels and elemental anti-particle properties. Finally, prospects to produce intense slow positron beams are described. (author) 65 refs

  15. Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source

    Directory of Open Access Journals (Sweden)

    S. Busold

    2013-10-01

    Full Text Available Laser ion acceleration provides for compact, high-intensity ion sources in the multi-MeV range. Using a pulsed high-field solenoid, for the first time high-intensity laser-accelerated proton bunches could be selected from the continuous exponential spectrum and delivered to large distances, containing more than 10^{9} particles in a narrow energy interval around a central energy of 9.4 MeV and showing ≤30  mrad envelope divergence. The bunches of only a few nanoseconds bunch duration were characterized 2.2 m behind the laser-plasma source with respect to arrival time, energy width, and intensity as well as spatial and temporal bunch profile.

  16. Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source

    Science.gov (United States)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Frydrych, S.; Kroll, F.; Joost, M.; Al-Omari, H.; Blažević, A.; Zielbauer, B.; Hofmann, I.; Bagnoud, V.; Cowan, T. E.; Roth, M.

    2013-10-01

    Laser ion acceleration provides for compact, high-intensity ion sources in the multi-MeV range. Using a pulsed high-field solenoid, for the first time high-intensity laser-accelerated proton bunches could be selected from the continuous exponential spectrum and delivered to large distances, containing more than 109 particles in a narrow energy interval around a central energy of 9.4 MeV and showing ≤30mrad envelope divergence. The bunches of only a few nanoseconds bunch duration were characterized 2.2 m behind the laser-plasma source with respect to arrival time, energy width, and intensity as well as spatial and temporal bunch profile.

  17. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL.

    Science.gov (United States)

    Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  18. Comparison of primary tumour volumes delineated on four-dimensional computed tomography maximum intensity projection and 18F-fluorodeoxyglucose positron emission tomography computed tomography images of non-small cell lung cancer

    International Nuclear Information System (INIS)

    Duan, Yili; Li, Jianbin; Zhang, Yingjie; Wang, Wei; Fan, Tingyong; Shao, Qian; Xu, Min; Guo, Yanluan; Sun, Xiaorong; Shang, Dongping

    2015-01-01

    The study aims to compare the positional and volumetric differences of tumour volumes based on the maximum intensity projection (MIP) of four-dimensional CT (4DCT) and 18 F-fluorodexyglucose ( 18 F-FDG) positron emission tomography CT (PET/CT) images for the primary tumour of non-small cell lung cancer (NSCLC). Ten patients with NSCLC underwent 4DCT and 18 F-FDG PET/CT scans of the thorax on the same day. Internal gross target volumes (IGTVs) of the primary tumours were contoured on the MIP images of 4DCT to generate IGTV MIP . Gross target volumes (GTVs) based on PET (GTV PET ) were determined with nine different threshold methods using the auto-contouring function. The differences in the volume, position, matching index (MI) and degree of inclusion (DI) of the GTV PET and IGTV MIP were investigated. In volume terms, GTV PET2.0 and GTV PET20% approximated closely to IGTV MIP with mean volume ratio of 0.93 ± 0.45 and 1.06 ± 0.43, respectively. The best MI was between IGTV MIP and GTV PET20% (0.45 ± 0.23). The best DI of IGTV MIP in GTV PET was IGTV MIP in GTV PET20% (0.61 ± 0.26). In 3D PET images, the GTVPET contoured by standardised uptake value (SUV) 2.0 or 20% of maximal SUV (SUV max ) approximate closely to the IGTV MIP in target size, while the spatial mismatch is apparent between them. Therefore, neither of them could replace IGTV MIP in spatial position and form. The advent of 4D PET/CT may improve the accuracy of contouring the perimeter for moving targets.

  19. New Evidence That Nonlinear Source-Filter Coupling Affects Harmonic Intensity and fo Stability During Instances of Harmonics Crossing Formants.

    Science.gov (United States)

    Maxfield, Lynn; Palaparthi, Anil; Titze, Ingo

    2017-03-01

    The traditional source-filter theory of voice production describes a linear relationship between the source (glottal flow pulse) and the filter (vocal tract). Such a linear relationship does not allow for nor explain how changes in the filter may impact the stability and regularity of the source. The objective of this experiment was to examine what effect unpredictable changes to vocal tract dimensions could have on fo stability and individual harmonic intensities in situations in which low frequency harmonics cross formants in a fundamental frequency glide. To determine these effects, eight human subjects (five male, three female) were recorded producing fo glides while their vocal tracts were artificially lengthened by a section of vinyl tubing inserted into the mouth. It was hypothesized that if the source and filter operated as a purely linear system, harmonic intensities would increase and decrease at nearly the same rates as they passed through a formant bandwidth, resulting in a relatively symmetric peak on an intensity-time contour. Additionally, fo stability should not be predictably perturbed by formant/harmonic crossings in a linear system. Acoustic analysis of these recordings, however, revealed that harmonic intensity peaks were asymmetric in 76% of cases, and that 85% of fo instabilities aligned with a crossing of one of the first four harmonics with the first three formants. These results provide further evidence that nonlinear dynamics in the source-filter relationship can impact fo stability as well as harmonic intensities as harmonics cross through formant bandwidths. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  20. Positron annihilation microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Canter, K F [Brandeis Univ., Waltham, MA (United States)

    1997-03-01

    Advances in positron annihilation microprobe development are reviewed. The present resolution achievable is 3 {mu}m. The ultimate resolution is expected to be 0.1 {mu}m which will enable the positron microprobe to be a valuable tool in the development of 0.1 {mu}m scale electronic devices in the future. (author)

  1. Positrons in ionic crystals

    International Nuclear Information System (INIS)

    Pareja, R.

    1988-01-01

    Positron annihilation experiments in ionic crystals are reviewed and their results are arranged. A discussion about the positron states in these materials is made in the light of these results and the different proposed models. The positronium in alkali halides is specially considered. (Author)

  2. Positron emission tomography

    NARCIS (Netherlands)

    Paans, AMJ

    Positron Emission Tomography (PET) is a method for determining biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labelled with positron emitting radionuclides as C-11, N-13, O-15 and F-18 and by measuring the annihilation radiation using a

  3. The MIT/OSO 7 catalog of X-ray sources - Intensities, spectra, and long-term variability

    Science.gov (United States)

    Markert, T. H.; Laird, F. N.; Clark, G. W.; Hearn, D. R.; Sprott, G. F.; Li, F. K.; Bradt, H. V.; Lewin, W. H. G.; Schnopper, H. W.; Winkler, P. F.

    1979-01-01

    This paper is a summary of the observations of the cosmic X-ray sky performed by the MIT 1-40-keV X-ray detectors on OSO 7 between October 1971 and May 1973. Specifically, mean intensities or upper limits of all third Uhuru or OSO 7 cataloged sources (185 sources) in the 3-10-keV range are computed. For those sources for which a statistically significant (greater than 20) intensity was found in the 3-10-keV band (138 sources), further intensity determinations were made in the 1-15-keV, 1-6-keV, and 15-40-keV energy bands. Graphs and other simple techniques are provided to aid the user in converting the observed counting rates to convenient units and in determining spectral parameters. Long-term light curves (counting rates in one or more energy bands as a function of time) are plotted for 86 of the brighter sources.

  4. MIT/OSO 7 catalog of x-ray sources: intensities, spectra, and long-term variability

    International Nuclear Information System (INIS)

    Markert, T.H.; Winkler, P.F.; Laird, F.N.; Clark, G.W.; Hearn, D.R.; Sprott, G.F.; Li, F.K.; Bradt, H.V.; Lewin, W.H.G.; Schnopper, H.W.

    1979-01-01

    This paper is a summary of the observations of the cosmic X-ray sky performed by the MIT 1--40 KeV X-ray detectors on the OSO 7 between 1971 October and 1973 May. Specifically, we have computed the mean intensities or upper limits of all third Uhuru or OSO 7 cataloged sources (185 sources) in the 3--10 KeV range. For those sources for which a statistically significant (>20) intensity was found in the 3--10 KeV band (138 sources), further intensity determinations were made in the 1--15 KeV, 1--6 KeV, and 15--40 KeV energy bands. We have provided graphs and other simple techniques to aid the user in converting the observed counting rates to convenient units and in determining spectral parameters. Finally, we have plotted long-term light curves (counting rates in one or more energy bands as a function of time) for 86 of the brighter sources

  5. Design and Characterization of a Three-Dimensional Positron Annihilation Spectroscopy System Using a Low-Energy Positron Beam

    Science.gov (United States)

    2012-03-22

    Technique Applied to Measure Oxygen -Atom Defects in 6H Silicon Carbide”. 2010. [31] Y. C. Jean , P. E. Mallon and D. M. Schrader. Principles and Applications...that result in β+ emission, by photon interactions with nuclei and subsequent pair production, or by β+ decays from radioactive isotopes made by...reactions for creating positrons [7], some of which are used to to create radioactive isotopes that β+ decay. Regardless of the positron source, positrons

  6. A positron annihilation study of hydrated DNA

    DEFF Research Database (Denmark)

    Warman, J. M.; Eldrup, Morten Mostgaard

    1986-01-01

    Positron annihilation measurements are reported for hydrated DNA as a function of water content and as a function of temperature (20 to -180.degree. C) for samples containing 10 and 50% wt of water. The ortho-positronium mean lifetime and its intensity show distinct variations with the degree...

  7. Positron-Induced Luminescence

    Science.gov (United States)

    Stenson, E. V.; Hergenhahn, U.; Stoneking, M. R.; Pedersen, T. Sunn

    2018-04-01

    We report on the observation that low-energy positrons incident on a phosphor screen produce significantly more luminescence than electrons do. For two different wide-band-gap semiconductor phosphors (ZnS:Ag and ZnO:Zn), we compare the luminescent response to a positron beam with the response to an electron beam. For both phosphors, the positron response is significantly brighter than the electron response, by a factor that depends strongly on incident energy (0-5 keV). Positrons with just a few tens of electron-volts of energy (for ZnS:Ag) or less (for ZnO:Zn) produce as much luminescence as is produced by electrons with several kilo-electron-volts. We attribute this effect to valence band holes and excited electrons produced by positron annihilation and subsequent Auger processes. These results demonstrate a valuable approach for addressing long-standing questions about luminescent materials.

  8. Positrons from supernova and the origin of the galactic-center positron-annihilation radiation

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1983-01-01

    The emission of positrons from supernova ejecta is dicussed in terms of the galactic-center annihilation radiation. The positrons from the radioactive sequences 56 Ni→ 56 Co→ 56 Fe are the most numerous source from supernova. Only type I supernova will allow a significant fraction to escape the expanding ejecta. For a neutron star model of a type I SN a fraction 4 x 10 -3 of the escaped positron is enough to create the observed several year fluctuation of the annihilation radiation. The likelihood of this model is discussed in terms of other astrophysical evidence as well as the type I SN light curve

  9. Positron annihilation characteristics in multi-wall carbon nanotubes with different average diameters

    International Nuclear Information System (INIS)

    Tuyen, L A; Khiem, D D; Phuc, P T; Kajcsos, Zs; Lázár, K; Tap, T D

    2013-01-01

    Positron lifetime spectroscopy was used to study multi-wall carbon nanotubes. The measurements were performed in vacuum on the samples having different average diameters. The positron lifetime values depend on the nanotube diameter. The results also show an influence of the nanotube diameter on the positron annihilation intensity on the nanotube surface. The change in the annihilation probability is described and interpreted by the modified diffusion model introducing the positron escape rate from the nanotubes to their external surface.

  10. Compressed air as a source of inhaled oxidants in intensive care units.

    Science.gov (United States)

    Thibeault, D W; Rezaiekhaligh, M H; Ekekezie, I; Truog, W E

    1999-01-01

    Exhaled gas from mechanically ventilated preterm infants was found to have similar oxidant concentrations, regardless of lung disease, leading to the hypothesis that wall outlet gases were an oxidant source. Oxidants in compressed room air and oxygen from wall outlets were assessed in three hospitals. Samples were collected by flowing wall outlet gas through a heated humidifier and an ice-packed condenser. Nitric oxide (NO) was measured in intensive care room air and in compressed air with and without a charcoal filter using a Sievers NOA280 nitric oxide analyzer (Boulder, CO). Oxidants were measured by spectrophotometry and expressed as nMol equivalents of H2O2/mL. The quantity of oxidant was also expressed as amount of Vitamin C (nMol/mL) added until the oxidant was nondetectable. This quantity of Vitamin C was also expressed in Trolox Equivalent Antioxidant Capacity (TEAC) units (mMol/L). Free and total chlorine were measured with a Chlorine Photometer. Oxidants were not found in compressed oxygen and were only found in compressed air when the compression method used tap water. At a compressed room air gas flow of 1.5 L/min, the total volume of condensate was 20.2 +/- 1 mL/hr. The oxidant concentration was 1.52 +/- 0.09 nMol/mL equivalents of H2O2/mL of sample and 30.8 +/- 1.2 nMol/hr; 17.9% of that found in tap water. Oxidant reduction required 2.05 +/-0.12 nMol/mL vitamin C, (1.78 +/- 0.1 x 10(-3) TEAC units). Free and total chlorine in tap water were 0.3 +/- 0.02 mg/mL and 2.9 +/- 0.002 mg/mL, respectively. Outlet gas contained 0.4 +/- 0.06 mg/mL and 0.07 + 0.01 mg/mL total and free chlorine, respectively; both 14% of tap water. When a charcoal filter was installed in the hospital with oxidants in compressed air, oxidants were completely removed. Nursery room air contained 12.4 +/- 0.5 ppb NO; compressed wall air without a charcoal filter, 8.1 +/- 0.1 ppb and compressed air with a charcoal filter 12.5 +/- 0.5 ppb. A charcoal filter does not remove NO. (Table

  11. From Intensity Profile to Surface Normal: Photometric Stereo for Unknown Light Sources and Isotropic Reflectances.

    Science.gov (United States)

    Lu, Feng; Matsushita, Yasuyuki; Sato, Imari; Okabe, Takahiro; Sato, Yoichi

    2015-10-01

    We propose an uncalibrated photometric stereo method that works with general and unknown isotropic reflectances. Our method uses a pixel intensity profile, which is a sequence of radiance intensities recorded at a pixel under unknown varying directional illumination. We show that for general isotropic materials and uniformly distributed light directions, the geodesic distance between intensity profiles is linearly related to the angular difference of their corresponding surface normals, and that the intensity distribution of the intensity profile reveals reflectance properties. Based on these observations, we develop two methods for surface normal estimation; one for a general setting that uses only the recorded intensity profiles, the other for the case where a BRDF database is available while the exact BRDF of the target scene is still unknown. Quantitative and qualitative evaluations are conducted using both synthetic and real-world scenes, which show the state-of-the-art accuracy of smaller than 10 degree without using reference data and 5 degree with reference data for all 100 materials in MERL database.

  12. Electron Cloud induced instabilities in the Fermilab Main Injector(MI) for the High Intensity Neutrino Source (HINS) project

    International Nuclear Information System (INIS)

    Sonnad, Kiran G.; Furman, Miguel A.; Vay, Jean-Luc; Venturini, Marco; Celata, Christine; Grote, David

    2006-01-01

    The electrostatic particle-in-cell codeWARP is currently being expanded in order to study electron cloud effects on the dynamics of the beam in storage rings. Results for the Fermilab main injector (MI) show the existence of a threshold in the electron density beyond which there is rapid emittance growth. The Fermilab MI is being considered for an upgrade as part of the high intensity neutrino source (HINS) effort, which will result in a significant increasing of the bunch intensity relative to its present value, placing it in a regime where electron-cloud effects are expected to become important. Various results from the simulations using WARP are discussed here

  13. The oxygen minimum zone (OMZ) off Chile as intense source of CO 2 and N 2O

    Science.gov (United States)

    Paulmier, A.; Ruiz-Pino, D.; Garcon, V.

    2008-12-01

    The oxygen minimum zones (OMZs) are recognized as intense sources of N 2O greenhouse gas (GHG) and could also be potential sources of CO 2, the most important GHG for the present climate change. This study evaluates, for one of the most intense and shallow OMZ, the Chilean East South Pacific OMZ, the simultaneous N 2O and CO 2 fluxes at the air-sea interface. Four cruises (2000-2002) and 1 year of monitoring (21°-30°-36°S) off Chile allowed the determination of the CO 2 and N 2O concentrations at the sea surface and the analysis of fluxes variations associated with different OMZ configurations. The Chilean OMZ area can be an intense GHG oceanic local source of both N 2O and CO 2. The mean N 2O fluxes are 5-10 times higher than the maximal previous historical source in an OMZ open area as in the Pacific and Indian Oceans. For CO 2, the mean fluxes are also positive and correspond to very high oceanic sources. Even if different coupling and decoupling between N 2O and CO 2 are observed along the Chilean OMZ, 65% of the situations represent high CO 2 and/or N 2O sources. The high GHG sources are associated with coastal upwelling transport of OMZ waters rich in N 2O and probably also in CO 2, located at a shallow depth. The integrated OMZ role on GHG should be better considered to improve our understanding of the past and future atmospheric CO 2 and N 2O evolutions.

  14. Theory, development, and applications of the scanning positron microbeam and positron reemission microscope

    International Nuclear Information System (INIS)

    Brandes, G.R.

    1990-01-01

    The theory, design, development, and applications of two new imaging instruments, the scanning positron microbeam (SPM) and positron reemission microscope (PRM), are discussed. The SPM consists of a sectored lens which focuses and rasters the positrons from the beam across the sample. The results of rastering the 10μm x 50μm beam across a test grid demonstrate the SPM's ability to scan a 500μm diameter region and to resolve features with ∼ 5μm resolution. The SPM was used to examine the location of defects in a Si-on-SiO 2 sample. Possible applications to three dimensional defect spectroscopy and the observation of small samples are considered. In the PRM, the positrons from the brightness-enhanced beam are focused at 5keV to an 8/Am diameter spot (FWHM) onto a thin metal single crystal. An image of the opposing side of the film is formed by accelerating and focusing the reemitted thermalized positrons with a cathode lens objective and a projector lens. The final image (real) is a record of the thermal positron emission intensity versus position. Images of surface and subsurface defect structures, taken at magnifications up to 4400x and with a resolution up to 80nm, are presented and discussed. The ultimate resolution capabilities and possible applications of the PRM are examined. The implantation and diffusion process of positrons was studied with the PRM by examining the positron emission profile of 3-9keV positrons implanted into a 2200 angstrom thick Ni single crystal

  15. High-intensity positive beams extracted from a compact double-chamber ion source

    International Nuclear Information System (INIS)

    Huck, H.; Somacal, H.; Di Gregorio, D.E.; Fernandez Niello, J.O.; Igarzabal, M.; Di Paolo, H.; Reinoso, M.

    2005-01-01

    This work presents the design and development of a simple ion source, the associated ion extraction optics, and the beam transport of a low-energy and high-current proton accelerator. In its actual version, the ion source can deliver positive proton currents up to 100 mA. This rather high beam current is achieved by adding a small ionization chamber between the discharge chamber containing the filament and the extraction electrode of the ion source. Different parameters of the ion source and the injection beam line are evaluated by means of computer simulations to optimize the beam production and transmission

  16. Prospects for the creation of positron-electron plasmas in a non-neutral stellarator

    International Nuclear Information System (INIS)

    Pedersen, T Sunn; Boozer, A H; Dorland, W; Kremer, J P; Schmitt, R

    2003-01-01

    The prospects of creating positron-electron plasmas confined in a stellarator are discussed. A pure electron plasma would be created before the positrons are introduced, to facilitate efficient injection and a long confinement time of the positrons. Gyrokinetic simulations are presented suggesting that a positron-electron plasma may be stable to low-frequency microturbulence if operated well below the Brillouin limit, and transport may be neoclassical. If this is the case, significant positron-electron plasma densities can be reached with positron sources that exist today

  17. Dispel4py: An Open-Source Python library for Data-Intensive Seismology

    Science.gov (United States)

    Filgueira, Rosa; Krause, Amrey; Spinuso, Alessandro; Klampanos, Iraklis; Danecek, Peter; Atkinson, Malcolm

    2015-04-01

    Scientific workflows are a necessary tool for many scientific communities as they enable easy composition and execution of applications on computing resources while scientists can focus on their research without being distracted by the computation management. Nowadays, scientific communities (e.g. Seismology) have access to a large variety of computing resources and their computational problems are best addressed using parallel computing technology. However, successful use of these technologies requires a lot of additional machinery whose use is not straightforward for non-experts: different parallel frameworks (MPI, Storm, multiprocessing, etc.) must be used depending on the computing resources (local machines, grids, clouds, clusters) where applications are run. This implies that for achieving the best applications' performance, users usually have to change their codes depending on the features of the platform selected for running them. This work presents dispel4py, a new open-source Python library for describing abstract stream-based workflows for distributed data-intensive applications. Special care has been taken to provide dispel4py with the ability to map abstract workflows to different platforms dynamically at run-time. Currently dispel4py has four mappings: Apache Storm, MPI, multi-threading and sequential. The main goal of dispel4py is to provide an easy-to-use tool to develop and test workflows in local resources by using the sequential mode with a small dataset. Later, once a workflow is ready for long runs, it can be automatically executed on different parallel resources. dispel4py takes care of the underlying mappings by performing an efficient parallelisation. Processing Elements (PE) represent the basic computational activities of any dispel4Py workflow, which can be a seismologic algorithm, or a data transformation process. For creating a dispel4py workflow, users only have to write very few lines of code to describe their PEs and how they are

  18. Positron emission tomography

    International Nuclear Information System (INIS)

    Wienhard, K.; Heiss, W.D.

    1984-01-01

    The principles and selected clinical applications of positron emission tomography are described. In this technique a chemical compound is labeled with a positron emitting isotope and its biochemical pathway is traced by coincidence detection of the two annihilation photons. The application of the techniques of computed tomography allows to reconstruct the spatial distribution of the radioactivity within a subject. The 18 F-deoxyglucose method for quantitative measurement of local glucose metabolism is discussed in order to illustrate the possibilities of positron emission tomography to record physiological processes in vivo. (orig.) [de

  19. Floodplains as a source of fine sediment in grazed landscapes: Tracing the source of suspended sediment in the headwaters of an intensively managed agricultural landscape

    Science.gov (United States)

    Yu, Mingjing; Rhoads, Bruce L.

    2018-05-01

    The flux of fine sediment within agricultural watersheds is an important factor determining the environmental quality of streams and rivers. Despite this importance, the contributions of sediment sources to suspended sediment loads within intensively managed agricultural watersheds remain poorly understood. This study assesses the provenance of fine suspended sediment in the headwater portion of a river flowing through an agricultural landscape in Illinois. Sediment source samples were collected from five sources: croplands, forested floodplains, grasslands, upper grazed floodplains, and lower grazed floodplains. Event-based and aggregated suspended sediment samples were collected from the stream at the watershed outlet. Quantitative geochemical fingerprinting techniques and a mixing model were employed to estimate the relative contributions of sediment from the five sources to the suspended sediment loads. To account for possible effects of small sample sizes, the analysis was repeated with only two sources: grazed floodplains and croplands/grasslands/forested floodplains. Results based on mean values of tracers indicate that the vast majority of suspended sediment within the stream (>95%) is derived from erosion of channel banks and the soil surface within areas of grazed floodplains. Uncertainty analysis based on Monte Carlo simulations indicates that mean values of tracer properties, which do not account for sampling variability in these properties, probably overestimate contributions from the two major sources. Nevertheless, this analysis still supports the conclusion that floodplain erosion accounts for the largest percentage of instream sediment (≈55-75%). Although grazing occurs over only a small portion of the total watershed area, grazed floodplains, which lie in close proximity to the stream channel, are an important source of sediment in this headwater steam system. Efforts to reduce fluxes of fine sediment in this intensively managed landscape should

  20. Status of intense permanent magnet proton source for China-accelerator driven sub-critical system Linac.

    Science.gov (United States)

    Wu, Q; Ma, H Y; Yang, Y; Sun, L T; Zhang, X Z; Zhang, Z M; Zhao, H Y; He, Y; Zhao, H W

    2016-02-01

    Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.

  1. Status of intense permanent magnet proton source for China-accelerator driven sub-critical system Linac

    Science.gov (United States)

    Wu, Q.; Ma, H. Y.; Yang, Y.; Sun, L. T.; Zhang, X. Z.; Zhang, Z. M.; Zhao, H. Y.; He, Y.; Zhao, H. W.

    2016-02-01

    Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.

  2. Status of intense permanent magnet proton source for China-accelerator driven sub-critical system Linac

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q., E-mail: wuq@impcas.ac.cn; Ma, H. Y.; Yang, Y.; Sun, L. T.; Zhang, X. Z.; Zhang, Z. M.; Zhao, H. Y.; He, Y.; Zhao, H. W. [Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-02-15

    Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.

  3. Basic design of shield blocks for a spallation neutron source under the high-intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Katsuhiko; Maekawa, Fujio; Takada, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project (J-PARC), a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed as a main part of the Materials and Life Science Facility. Overall dimensions of a biological shield of the neutron source had been determined by evaluation of shielding performance by Monte Carlo calculations. This report describes results of design studies on an optimum dividing scheme in terms of cost and treatment and mechanical strength of shield blocks for the biological shield. As for mechanical strength, it was studied whether the shield blocks would be stable, fall down or move to a horizontal direction in case of an earthquake of seismic intensity of 5.5 (250 Gal) as an abnormal load. For ceiling shielding blocks being supported by both ends of the long blocks, maximum bending moment and an amount of maximum deflection of their center were evaluated. (author)

  4. Basic design of shield blocks for a spallation neutron source under the high-intensity proton accelerator project

    CERN Document Server

    Yoshida, K; Takada, H

    2003-01-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project (J-PARC), a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed as a main part of the Materials and Life Science Facility. Overall dimensions of a biological shield of the neutron source had been determined by evaluation of shielding performance by Monte Carlo calculations. This report describes results of design studies on an optimum dividing scheme in terms of cost and treatment and mechanical strength of shield blocks for the biological shield. As for mechanical strength, it was studied whether the shield blocks would be stable, fall down or move to a horizontal direction in case of an earthquake of seismic intensity of 5.5 (250 Gal) as an abnormal load. For ceiling shielding blocks being supported by both ends of the long blocks, maximum bending moment and an amount of maximum deflection of their center were evaluated.

  5. Positron lifetime measurements and positron-annihilation induced auger electron spectroscpy using slow positron beams; Teisoku yodenshi bimu wo mochiita yodenshi jumyo sokutei oyobi yodenshi shometsu reiki oje denshi bunko

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, R. [Electrotechnical Lab., Tsukuba (Japan)

    1996-02-20

    Slow positron beam with less than several eV can be controlled freely such as accelerating, throttling the beam size, shortening the pulse or making pulse with short time width and so forth. These low positron beams are applied to various measurements like Doppler broadening measurement of annihilation {gamma} rays or lifetime measurement of positron, and secondary particle measurements using positron microscope, positron electron ray diffraction, flight time method and so forth. In particular, these recent years, high intensity slow positron beams were possible using accelerators like electron linac and its application is increasing. In this report, pulse shortening method for high intensity slow positron beam, and incidence energy variable positron lifetime measurement method using this slow pulsed beam and flight time type positron-annihilation-induced auger electron spectroscopy are outlined. In future, these measurements can be possible to carry out with high resolution and also with high counting rate if higher intensity monochromatic excellent positron beam than present one is produced. 31 refs., 5 figs.

  6. Direct reconstruction of the source intensity distribution of a clinical linear accelerator using a maximum likelihood expectation maximization algorithm.

    Science.gov (United States)

    Papaconstadopoulos, P; Levesque, I R; Maglieri, R; Seuntjens, J

    2016-02-07

    Direct determination of the source intensity distribution of clinical linear accelerators is still a challenging problem for small field beam modeling. Current techniques most often involve special equipment and are difficult to implement in the clinic. In this work we present a maximum-likelihood expectation-maximization (MLEM) approach to the source reconstruction problem utilizing small fields and a simple experimental set-up. The MLEM algorithm iteratively ray-traces photons from the source plane to the exit plane and extracts corrections based on photon fluence profile measurements. The photon fluence profiles were determined by dose profile film measurements in air using a high density thin foil as build-up material and an appropriate point spread function (PSF). The effect of other beam parameters and scatter sources was minimized by using the smallest field size ([Formula: see text] cm(2)). The source occlusion effect was reproduced by estimating the position of the collimating jaws during this process. The method was first benchmarked against simulations for a range of typical accelerator source sizes. The sources were reconstructed with an accuracy better than 0.12 mm in the full width at half maximum (FWHM) to the respective electron sources incident on the target. The estimated jaw positions agreed within 0.2 mm with the expected values. The reconstruction technique was also tested against measurements on a Varian Novalis Tx linear accelerator and compared to a previously commissioned Monte Carlo model. The reconstructed FWHM of the source agreed within 0.03 mm and 0.11 mm to the commissioned electron source in the crossplane and inplane orientations respectively. The impact of the jaw positioning, experimental and PSF uncertainties on the reconstructed source distribution was evaluated with the former presenting the dominant effect.

  7. Positron reemission microscopy

    International Nuclear Information System (INIS)

    Brandes, G.F.; Canter, K.F.; Mills, A.P. Jr.

    1991-01-01

    The positron reemission microscope (PRM), originally proposed by Hulett, Dale and Pendyala, operates on principles fundamentally different from those utilized in existing microscopes and offers sensitivity and contrast not available in conventional microscopes

  8. Solvated Positron Chemistry. II

    DEFF Research Database (Denmark)

    Mogensen, O. E.

    1979-01-01

    The reaction of the hydrated positron, eaq+ with Cl−, Br−, and I− ions in aqueous solutions was studied by means of positron The measured angular correlation curves for [Cl−, e+], [Br−, e+, and [I−, e+] bound states were in good agreement with th Because of this agreement and the fact...... that the calculated positron wavefunctions penetrate far outside the X− ions in the [X−, e+] sta propose that a bubble is formed around the [X−, e+] state, similar to the Ps bubble found in nearly all liquids. F−ions did not react w Preliminary results showed that CN− ions react with eaq+ while OH−ions are non...... in the Cl− case) at higher concentrations. This saturation and the high-concentration effects-in the angular correlation results were interpreted as caused by rather complicated spur effects, wh It is proposed that spur electrons may pick off the positron from the [X−, e+ states with an efficiency which...

  9. Production of an intense source of micro-second proton pulses

    International Nuclear Information System (INIS)

    Belmont, J.L.

    1965-02-01

    In order to obtain micro-second proton pulses of 100 mA, we have built a duoplasmatron ion source and beam focusing equipment. The pulses of the ion-source were produced by a load discharge. The source operates as a hydrogen-thyratron. The particular geometry of the duoplasmatron was chosen in order that the ion emission be stable with a 10 A arc and with a gas-flow lower than 10 cm 3 /h T.P.N. Studies of the beam showed preponderance of protons and the presence of heavy ions. The beam density is higher on the optic axis. (author) [fr

  10. Floodplains as a source of fine sediment in grazed landscapes: tracing the source of suspended sediment in the headwaters of an intensively managed agricultural landscape

    Science.gov (United States)

    Yu, M.; Rhoads, B. L.; Stumpf, A.

    2017-12-01

    The flux of fine sediment within agricultural watersheds is an important factor determining the environmental quality of streams and rivers. Despite this importance, the contributions of sediment sources to suspended sediment loads within intensively managed agricultural watersheds remain poorly understood. This study assesses the provenance of fine suspended sediment in the headwater portion of a river flowing through an agricultural landscape in Illinois. Sediment source samples were collected from five potential sources: streambanks, forested floodplain, grassland, and grazed floodplains. Event-based and aggregated suspended sediment samples were collected from the stream at the watershed outlet. Quantitative geochemical fingerprinting techniques and a mixing model were employed to estimate the relative contributions of sediment from five potential sources to the suspended sediment loads. Organic matter content, trace elements, and fallout radionuclides were used as potential tracers. Principal Component analysis was employed to complement the results and Monte Carlo random sampling routine was used to test the uncertainty in estimated contributions of sources to in-stream sediment loads. Results indicate that the majority of suspended sediment is derived from streambanks and grazed floodplains. Erosion of the floodplain both by surface runoff and by streambank erosion from lateral channel migration contributes to the production of fine sediment within the stream system. These results suggest that human activities, in this case grazing, have converted portions of floodplains, normally net depositional environments, into sources of fine sediments. Efforts to reduce fluxes of fine sediment in this intensively managed landscape should focus on degraded floodplain surfaces and eroding channel banks within heavily grazed reaches of the stream.

  11. Geometrical differences in target volumes based on 18F-fluorodeoxyglucose positron emission tomography/computed tomography and four-dimensional computed tomography maximum intensity projection images of primary thoracic esophageal cancer.

    Science.gov (United States)

    Guo, Y; Li, J; Wang, W; Zhang, Y; Wang, J; Duan, Y; Shang, D; Fu, Z

    2014-01-01

    The objective of the study was to compare geometrical differences of target volumes based on four-dimensional computed tomography (4DCT) maximum intensity projection (MIP) and 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) images of primary thoracic esophageal cancer for radiation treatment. Twenty-one patients with thoracic esophageal cancer sequentially underwent contrast-enhanced three-dimensional computed tomography (3DCT), 4DCT, and 18F-FDG PET/CT thoracic simulation scans during normal free breathing. The internal gross target volume defined as IGTVMIP was obtained by contouring on MIP images. The gross target volumes based on PET/CT images (GTVPET ) were determined with nine different standardized uptake value (SUV) thresholds and manual contouring: SUV≥2.0, 2.5, 3.0, 3.5 (SUVn); ≥20%, 25%, 30%, 35%, 40% of the maximum (percentages of SUVmax, SUVn%). The differences in volume ratio (VR), conformity index (CI), and degree of inclusion (DI) between IGTVMIP and GTVPET were investigated. The mean centroid distance between GTVPET and IGTVMIP ranged from 4.98 mm to 6.53 mm. The VR ranged from 0.37 to 1.34, being significantly (P<0.05) closest to 1 at SUV2.5 (0.94), SUV20% (1.07), or manual contouring (1.10). The mean CI ranged from 0.34 to 0.58, being significantly closest to 1 (P<0.05) at SUV2.0 (0.55), SUV2.5 (0.56), SUV20% (0.56), SUV25% (0.53), or manual contouring (0.58). The mean DI of GTVPET in IGTVMIP ranged from 0.61 to 0.91, and the mean DI of IGTVMIP in GTVPET ranged from 0.34 to 0.86. The SUV threshold setting of SUV2.5, SUV20% or manual contouring yields the best tumor VR and CI with internal-gross target volume contoured on MIP of 4DCT dataset, but 3DPET/CT and 4DCT MIP could not replace each other for motion encompassing target volume delineation for radiation treatment. © 2014 International Society for Diseases of the Esophagus.

  12. Extended Field Intensity Modulated Radiation Therapy With Concomitant Boost for Lymph Node–Positive Cervical Cancer: Analysis of Regional Control and Recurrence Patterns in the Positron Emission Tomography/Computed Tomography Era

    Energy Technology Data Exchange (ETDEWEB)

    Vargo, John A.; Kim, Hayeon; Choi, Serah [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States); Sukumvanich, Paniti; Olawaiye, Alexander B.; Kelley, Joseph L.; Edwards, Robert P.; Comerci, John T. [Department of Gynecologic Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States); Beriwal, Sushil, E-mail: beriwals@upmc.edu [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States)

    2014-12-01

    Purpose: Positron emission tomography/computed tomography (PET/CT) is commonly used for nodal staging in locally advanced cervical cancer; however the false negative rate for para-aortic disease are 20% to 25% in PET-positive pelvic nodal disease. Unless surgically staged, pelvis-only treatment may undertreat para-aortic disease. We have treated patients with PET-positive nodes with extended field intensity modulated radiation therapy (IMRT) to address the para-aortic region prophylactically with concomitant boost to involved nodes. The purpose of this study was to assess regional control rates and recurrence patterns. Methods and Materials: Sixty-one patients with cervical cancer (stage IBI-IVA) diagnosed from 2003 to 2012 with PET-avid pelvic nodes treated with extended field IMRT (45 Gy in 25 fractions with concomitant boost to involved nodes to a median of 55 Gy in 25 fractions) with concurrent cisplatin and brachytherapy were retrospectively analyzed. The nodal location was pelvis-only in 41 patients (67%) and pelvis + para-aortic in 20 patients (33%). There were a total of 179 nodes, with a median number of positive nodes of 2 (range, 1-16 nodes) per patient and a median nodal size of 1.8 cm (range, 0.7-4.5 cm). Response was assessed by PET/CT at 12 to 16 weeks. Results: Complete clinical and imaging response at the first follow-up visit was seen in 77% of patients. At a mean follow-up time of 29 months (range, 3-116 months), 8 patients experienced recurrence. The sites of persistent/recurrent disease were as follows: cervix 10 (16.3%), regional nodes 3 (4.9%), and distant 14 (23%). The rate of para-aortic failure in patients with pelvic-only nodes was 2.5%. There were no significant differences in recurrence patterns by the number/location of nodes, largest node size, or maximum node standardized uptake value. The rate of late grade 3+ adverse events was 4%. Conclusions: Extended field IMRT was well tolerated and resulted in low regional recurrence

  13. Cervical Gross Tumor Volume Dose Predicts Local Control Using Magnetic Resonance Imaging/Diffusion-Weighted Imaging—Guided High-Dose-Rate and Positron Emission Tomography/Computed Tomography—Guided Intensity Modulated Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Dyk, Pawel; Jiang, Naomi; Sun, Baozhou; DeWees, Todd A. [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Fowler, Kathryn J.; Narra, Vamsi [Department of Diagnostic Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri (United States); Garcia-Ramirez, Jose L.; Schwarz, Julie K. [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Grigsby, Perry W., E-mail: pgrigsby@wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri (United States); Division of Gynecologic Oncology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri (United States); Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri (United States)

    2014-11-15

    Purpose: Magnetic resonance imaging/diffusion weighted-imaging (MRI/DWI)-guided high-dose-rate (HDR) brachytherapy and {sup 18}F-fluorodeoxyglucose (FDG) — positron emission tomography/computed tomography (PET/CT)-guided intensity modulated radiation therapy (IMRT) for the definitive treatment of cervical cancer is a novel treatment technique. The purpose of this study was to report our analysis of dose-volume parameters predicting gross tumor volume (GTV) control. Methods and Materials: We analyzed the records of 134 patients with International Federation of Gynecology and Obstetrics stages IB1-IVB cervical cancer treated with combined MRI-guided HDR and IMRT from July 2009 to July 2011. IMRT was targeted to the metabolic tumor volume and lymph nodes by use of FDG-PET/CT simulation. The GTV for each HDR fraction was delineated by use of T2-weighted or apparent diffusion coefficient maps from diffusion-weighted sequences. The D100, D90, and Dmean delivered to the GTV from HDR and IMRT were summed to EQD2. Results: One hundred twenty-five patients received all irradiation treatment as planned, and 9 did not complete treatment. All 134 patients are included in this analysis. Treatment failure in the cervix occurred in 24 patients (18.0%). Patients with cervix failures had a lower D100, D90, and Dmean than those who did not experience failure in the cervix. The respective doses to the GTV were 41, 58, and 136 Gy for failures compared with 67, 99, and 236 Gy for those who did not experience failure (P<.001). Probit analysis estimated the minimum D100, D90, and Dmean doses required for ≥90% local control to be 69, 98, and 260 Gy (P<.001). Conclusions: Total dose delivered to the GTV from combined MRI-guided HDR and PET/CT-guided IMRT is highly correlated with local tumor control. The findings can be directly applied in the clinic for dose adaptation to maximize local control.

  14. A "looming bias" in spatial hearing? Effects of acoustic intensity and spectrum on categorical sound source localization.

    Science.gov (United States)

    McCarthy, Lisa; Olsen, Kirk N

    2017-01-01

    Continuous increases of acoustic intensity (up-ramps) can indicate a looming (approaching) sound source in the environment, whereas continuous decreases of intensity (down-ramps) can indicate a receding sound source. From psychoacoustic experiments, an "adaptive perceptual bias" for up-ramp looming tonal stimuli has been proposed (Neuhoff, 1998). This theory postulates that (1) up-ramps are perceptually salient because of their association with looming and potentially threatening stimuli in the environment; (2) tonal stimuli are perceptually salient because of an association with single and potentially threatening biological sound sources in the environment, relative to white noise, which is more likely to arise from dispersed signals and nonthreatening/nonbiological sources (wind/ocean). In the present study, we extrapolated the "adaptive perceptual bias" theory and investigated its assumptions by measuring sound source localization in response to acoustic stimuli presented in azimuth to imply looming, stationary, and receding motion in depth. Participants (N = 26) heard three directions of intensity change (up-ramps, down-ramps, and steady state, associated with looming, receding, and stationary motion, respectively) and three levels of acoustic spectrum (a 1-kHz pure tone, the tonal vowel /ә/, and white noise) in a within-subjects design. We first hypothesized that if up-ramps are "perceptually salient" and capable of eliciting adaptive responses, then they would be localized faster and more accurately than down-ramps. This hypothesis was supported. However, the results did not support the second hypothesis. Rather, the white-noise and vowel conditions were localized faster and more accurately than the pure-tone conditions. These results are discussed in the context of auditory and visual theories of motion perception, auditory attentional capture, and the spectral causes of spatial ambiguity.

  15. Positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Sundar, C.S.; Viswanathan, B.

    1996-01-01

    An overview of positron annihilation spectroscopy, the experimental techniques and its application to studies on defects and electronic structure of materials is presented. The scope of this paper is to present the requisite introductory material, that will enable a better appreciation of the subsequent specialized articles on the applications of positron annihilation spectroscopy to investigate various problems in materials science. (author). 31 refs., 3 figs

  16. Positron emission tomography

    International Nuclear Information System (INIS)

    Chandrasekhar, Preethi; Himabindu, Pucha

    2000-01-01

    Positron Emission Tomography (PET) is a non-invasive nuclear imaging technique used to study different molecular pathways and anatomical structures. PET has found extensive applications in various fields of medicine viz. cardiology, oncology, psychiatry/psychology, neuro science and pulmonology. This study paper basically deals with the physics, chemistry and biology behind the PET technique. It discusses the methodology for generation of the radiotracers responsible for emission of positrons and the annihilation and detection techniques. (author)

  17. Positron emission tomography

    International Nuclear Information System (INIS)

    Dvorak, O.

    1989-01-01

    The principle is briefly described of positron emission tomography, and its benefits and constraints are listed. It is emphasized that positron emission tomography (PET) provides valuable information on metabolic changes in the organism that are otherwise only very difficult to obtain, such as brain diagnosis including relationships between mental disorders and the physiology and pathophysiology of the brain. A PET machine is to be installed in Czechoslovakia in the near future. (L.O.)

  18. Analysis of defects near the surface and the interface of semiconductors by monoenergetic positron beam

    International Nuclear Information System (INIS)

    Uedono, Akira; Tanigawa, Shoichiro

    1989-01-01

    A monoenergetic low-speed positron beam line is constructed and a study is made on defects near the surface and the interface of semiconductors by using the beam line. Sodium-22 is used as beam source. Ion implantation, though being an essential technique for semiconductor integrated circuit production, can introduce lattice defects, affecting the yield and reliability of the resultant semiconductor devices. Some observations are made on the dependence of the Doppler broadening on the depth, and the ΔS-E relationship in P + -ion implanted SiO 2 (43nm)-Si. These observations demonstrate that monoenergetic positron beam is useful to detect hole-type defects resulting from ion implantation over a very wide range of defect density. Another study is made for the detection of defects near an interface. Positrons are expected to drift when left in an electric field with a gradient. Observations made here show that positrons can be concentrated at any desired interface by introducing an electric field intensity gradient in the oxide. This process also serves for accurate measurement of the electronic structure at the interface, and the effect of ion implantation and radiations on the interface. (N.K.)

  19. QuakeSim: Multi-Source Synergistic Data Intensive Computing for Earth Science

    Data.gov (United States)

    National Aeronautics and Space Administration — Update QuakeSim services to integrate and rapidly fuse data from multiple sources to support comprehensive efforts in data mining, analysis, simulation, and...

  20. Design of an intense ion source and LEBT for Jinping Underground Nuclear Astrophysics experiments

    International Nuclear Information System (INIS)

    Wu, Q.; Sun, L.T.; Cui, B.Q.; Lian, G.; Yang, Y.; Ma, H.Y.; Tang, X.D.; Zhang, X.Z.; Zhang, Z.M.; Liu, W.P.

    2016-01-01

    The ongoing Jinping Underground Nuclear Astrophysics experiment (JUNA) will take the advantage of the ultralow background in China Jinping Underground Laboratory (CJPL), high current accelerator driven by on an ECR source and highly sensitive detector to study directly a number of important reactions for the first time within their relevant stellar energy range. A 2.45 GHz ECR ion source is one of its key components to provide 10 emA H + , 10 emA He + and 2.0 emA He 2+ beams for the study of (p,γ), (p,α), (α,p) and (α,γ) reactions in the first phase of the JUNA project. Ion beam is extracted from the source with energies up to 50 kV/q. The following low energy beam transport (LEBT) system transports and matches the ion beam from the exit of ion source to the acceleration tube (AT). The design status of the ECR ion source and LEBT system for the JUNA project are presented. The potential risks of the ion source are also discussed and analysed.

  1. Study and development of a new ECR source creating an intense light ions beam

    International Nuclear Information System (INIS)

    Nyckees, S.

    2012-01-01

    This thesis is in the context of study and design of a new ECR light ion source on LEDA (Laboratory of Research and Development of Accelerators - CEA Saclay), named ALISES (Advanced Light Ions Source Extraction System). As a first step, the magnetic, electrical and mechanical design of the new source is described. Then, simulations were performed to determine the reduction of emittance growth taking into account the reduction of the length of the LBE (Low Energy Beam Line) provided by the source ALISES. With this source, it's also possible to realize a study on the dimensions of the cylindrical plasma chamber. Simulations were performed to better understand the interaction between radiofrequency wave and plasma. Subsequently, experiments on the source ALISES helped highlight, understand and solve problems in the Penning discharges inside the accelerator column. Measurements performed on the plasma have yielded the assumption that the electrons are heated at the entrance of the plasma chamber and thermalized along its entire length to achieve an energy corresponding to the maximum of the ionization cross section for hydrogen. (author) [fr

  2. Design of an intense ion source and LEBT for Jinping Underground Nuclear Astrophysics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q., E-mail: wuq@impcas.ac.cn [Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou 730000 (China); Sun, L.T., E-mail: sunlt@impcas.ac.cn [Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou 730000 (China); Cui, B.Q.; Lian, G. [China Institute of Atomic Energy, Beijing 102413 (China); Yang, Y.; Ma, H.Y.; Tang, X.D.; Zhang, X.Z.; Zhang, Z.M. [Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou 730000 (China); Liu, W.P. [China Institute of Atomic Energy, Beijing 102413 (China)

    2016-09-11

    The ongoing Jinping Underground Nuclear Astrophysics experiment (JUNA) will take the advantage of the ultralow background in China Jinping Underground Laboratory (CJPL), high current accelerator driven by on an ECR source and highly sensitive detector to study directly a number of important reactions for the first time within their relevant stellar energy range. A 2.45 GHz ECR ion source is one of its key components to provide 10 emA H{sup +}, 10 emA He{sup +} and 2.0 emA He{sup 2+} beams for the study of (p,γ), (p,α), (α,p) and (α,γ) reactions in the first phase of the JUNA project. Ion beam is extracted from the source with energies up to 50 kV/q. The following low energy beam transport (LEBT) system transports and matches the ion beam from the exit of ion source to the acceleration tube (AT). The design status of the ECR ion source and LEBT system for the JUNA project are presented. The potential risks of the ion source are also discussed and analysed.

  3. Trapping and accumulation of positrons from a pulsed beam produced by a linear accelerator for gravitational interaction of antimatter study

    International Nuclear Information System (INIS)

    Grandemange, Pierre

    2013-01-01

    The Gravitational Behaviour of Anti-hydrogen at Rest experiment - GBAR - is designed to perform a direct measurement of the weak equivalence principle on antimatter by measuring the acceleration (g-bar) of anti-hydrogen atoms in free fall. Its originality is to produce H-bar + ions and use sympathetic cooling to achieve μK temperature. H-bar + ions are produced by the reactions: p-bar + Ps → H-bar + e - , and H-bar + Ps → H-bar + + e - , where p-bar is an antiproton, Ps stands for positronium (the bound-state of a positron and an electron), H-bar is the anti-hydrogen and H-bar + the anti-ion associated. To produce enough Ps atoms, 2*10 10 positrons must be impinged on a porous SiO 2 target within 100 ns. Such an intense flux requires the accumulation (collection and cooling) of the positrons in a particle trap. This thesis describes the injector being commissioned at CEA Saclay for GBAR. It consists of a Penning-Malmberg trap (moved from RIKEN) fed by a slow positron beam. A 4.3 MeV linear accelerator shooting electrons on a tungsten target produces the pulsed positron beam, which is moderated by a multi-grid tungsten moderator. The slow positron flux is 10 4 e + /pulse, or 2*10 6 e + /s at 200 Hz. This work presents the first ever accumulation of low-energy positrons produced by an accelerator (rather than a radioactive source) and their cooling by a prepared reservoir of 2*10 10 cold electrons. (author) [fr

  4. Application of FEL technique for constructing high-intensity, monochromatic, polarized gamma-sources at storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N. [Automatic Systems Corporation, Samara (Russian Federation)] [and others

    1995-12-31

    A possibility to construct high-intensity tunable monochromatic{gamma}-source at high energy storage rings is discussed. It is proposed to produce {gamma}-quanta by means of Compton backscattering of laser photons on electrons circulating in the storage. The laser light wavelength is chosen in such a way that after the scattering, the electron does not leave the separatrix. So as the probability of the scattering is rather small, energy oscillations are damped prior the next scattering. As a result, the proposed source can operate in {open_quotes}parasitic{close_quote} mode not interfering with the main mode of the storage ring operation. Analysis of parameters of existent storage rings (PETRA, ESRF, Spring-8, etc) shows that the laser light wavelength should be in infrared, {lambda}{approximately} 10 - 400 {mu}m, wavelength band. Installation at storage rings of tunable free-electron lasers with the peak and average output power {approximately} 10 MW and {approximately} 1 kW, respectively, will result in the intensity of the {gamma}-source up to {approximately} 10{sup 14}s{sup -1} with tunable {gamma}-quanta energy from several MeV up to several hundreds MeV. Such a {gamma}-source will reveal unique possibilities for precision investigations in nuclear physics.

  5. Neutron-irradiation facilities at the Intense Pulsed Neutron Source-I for fusion magnet materials studies

    International Nuclear Information System (INIS)

    Brown, B.S.; Blewitt, T.H.

    1982-01-01

    The decommissioning of reactor-based neutron sources in the USA has led to the development of a new generation of neutron sources that employ high-energy accelerators. Among the accelerator-based neutron sources presently in operation, the highest-flux source is the Intense Pulsed Neutron Source (IPNS), a user facility at Argonne National Laboratory. Neutrons in this source are produced by the interaction of 400 to 500 MeV protons with either of two 238 U target systems. In the Radiation Effects Facility (REF), the 238 U target is surrounded by Pb for neutron generatjion and reflection. The REF has three separate irradiation thimbles. Two thimbles provide irradiation temperatures between that of liquid He and several hundred degrees centigrade. The third thimble operates at ambient temperature. The large irradiation volume, the neutron spectrum and flux, the ability to transfer samples without warm up, and the dedication of the facilities during the irradiation make this ideally suited for radiation damage studies on components for superconducting fusion magnets. Possible experiments for fusion magnet materials are discussed on cyclic irradiation and annealing of stabilizers in a high magnetic field, mechanical tests on organic insulation irradiated at 4 K, and superconductors measured in high fields after irradiation

  6. High-power, photofission-inducing bremsstrahlung source for intense pulsed active detection of fissile material

    Directory of Open Access Journals (Sweden)

    J. C. Zier

    2014-06-01

    Full Text Available Intense pulsed active detection (IPAD is a promising technique for detecting fissile material to prevent the proliferation of special nuclear materials. With IPAD, fissions are induced in a brief, intense radiation burst and the resulting gamma ray or neutron signals are acquired during a short period of elevated signal-to-noise ratio. The 8 MV, 200 kA Mercury pulsed-power generator at the Naval Research Laboratory coupled to a high-power vacuum diode produces an intense 30 ns bremsstrahlung beam to study this approach. The work presented here reports on Mercury experiments designed to maximize the photofission yield in a depleted-uranium (DU object in the bremsstrahlung far field by varying the anode-cathode (AK diode gap spacing and by adding an inner-diameter-reducing insert in the outer conductor wall. An extensive suite of diagnostics was fielded to measure the bremsstrahlung beam and DU fission yield as functions of diode geometry. Delayed fission neutrons from the DU proved to be a valuable diagnostic for measuring bremsstrahlung photons above 5 MeV. The measurements are in broad agreement with particle-in-cell and Monte Carlo simulations of electron dynamics and radiation transport. These show that with increasing AK gap, electron losses to the insert and outer conductor wall increase and that the electron angles impacting the bremsstrahlung converter approach normal incidence. The diode conditions for maximum fission yield occur when the gap is large enough to produce electron angles close to normal, yet small enough to limit electron losses.

  7. High-power, photofission-inducing bremsstrahlung source for intense pulsed active detection of fissile material

    Science.gov (United States)

    Zier, J. C.; Mosher, D.; Allen, R. J.; Commisso, R. J.; Cooperstein, G.; Hinshelwood, D. D.; Jackson, S. L.; Murphy, D. P.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Swanekamp, S. B.; Weber, B. V.

    2014-06-01

    Intense pulsed active detection (IPAD) is a promising technique for detecting fissile material to prevent the proliferation of special nuclear materials. With IPAD, fissions are induced in a brief, intense radiation burst and the resulting gamma ray or neutron signals are acquired during a short period of elevated signal-to-noise ratio. The 8 MV, 200 kA Mercury pulsed-power generator at the Naval Research Laboratory coupled to a high-power vacuum diode produces an intense 30 ns bremsstrahlung beam to study this approach. The work presented here reports on Mercury experiments designed to maximize the photofission yield in a depleted-uranium (DU) object in the bremsstrahlung far field by varying the anode-cathode (AK) diode gap spacing and by adding an inner-diameter-reducing insert in the outer conductor wall. An extensive suite of diagnostics was fielded to measure the bremsstrahlung beam and DU fission yield as functions of diode geometry. Delayed fission neutrons from the DU proved to be a valuable diagnostic for measuring bremsstrahlung photons above 5 MeV. The measurements are in broad agreement with particle-in-cell and Monte Carlo simulations of electron dynamics and radiation transport. These show that with increasing AK gap, electron losses to the insert and outer conductor wall increase and that the electron angles impacting the bremsstrahlung converter approach normal incidence. The diode conditions for maximum fission yield occur when the gap is large enough to produce electron angles close to normal, yet small enough to limit electron losses.

  8. Computer aided extractor design for the RIG 10 high intensity ion source

    International Nuclear Information System (INIS)

    Tanzer, F.; Haeuser, J.; Eppel, D.

    1980-01-01

    The paper discusses recent progress of the rf-ion source RIG 10, and describes a computer code for the simulation of the ion trajectories. The RIG 10 is designed for current densities of some 300 mA/cm 2 , and will be used for the production of neutral. (orig.)

  9. Positron studies in catalysis research

    International Nuclear Information System (INIS)

    1994-01-01

    During the past eight months, the authors have made progress in several areas relevant to the eventual use of positron techniques in catalysis research. They have come closer to the completion of their positron microscope, and at the same time have performed several studies in their non-microscopic positron spectrometer which should ultimately be applicable to catalysis. The current status of the efforts in each of these areas is summarized in the following sections: Construction of the positron microscope (optical element construction, data collection software, and electronic sub-assemblies); Doppler broadening spectroscopy of metal silicide; Positron lifetime spectroscopy of glassy polymers; and Positron lifetime measurements of pore-sizes in zeolites

  10. Intense source of spin-polarized electrons using laser-induced optical pumping

    International Nuclear Information System (INIS)

    Gray, L.G.; Giberson, K.W.; Cheng, C.; Keiffer, R.S.; Dunning, F.B.; Walters, G.K.

    1983-01-01

    A source of spin-polarized electrons based on a laser-pumped flowing helium afterglow is described. He(2 3 S) atoms contained in the afterglow are optically pumped using circularly polarized 1.08-μm (2 3 S→2 3 P) radiation provided by a NaF (F 2+ )( color-center laser. Spin angular momentum conservation in subsequent chemi-ionization reactions with CO 2 produces polarized electrons that are extracted from the afterglow. At low currents, < or approx. =1 μA, polarizations of approx.70%--80% are achieved. At higher currents the polarization decreases, falling to approx.40% at 50 μA. The spin polarization can be simply reversed (P→-P) and the source is suitable for use in the majority of low-energy spin-dependent scattering experiments proposed to date

  11. Medium pressure mercury discharge for use as an intense white light source

    International Nuclear Information System (INIS)

    Kitsinelis, S; Devonshire, R; Stone, D A; Tozer, R C

    2005-01-01

    In this paper, we demonstrate the possibilities that exist in developing a high brightness white light source. The lamp employs mercury at a few Torr and is operated with short pulses of the order of 1 μs at a frequency of 10 kHz. The emission spectrum is atomic in nature and the white light is the outcome of a relative enhancement of the mercury yellow lines at 577 and 579 nm with respect to the rest of the visible lines, which shifts the colour coordinates of the source towards the black body locus of the chromaticity diagram. The pulse operation of a lamp containing mercury at a vapour pressure of 20 Torr offers a greater near-UV and visible output compared to a phosphor-uncoated, low-pressure pulsed compact mercury discharge

  12. Proposal for a slow positron facility at Jefferson National Laboratory

    Science.gov (United States)

    Mills, Allen P.

    2018-05-01

    One goal of the JPos-17 International Workshop on Physics with Positrons was to ascertain whether it would be a good idea to expand the mission of the Thomas Jefferson National Accelerator Facility (JLab) to include science with low energy (i.e. "slow") spin polarized positrons. It is probably true that experimentation with slow positrons would potentially have wide-ranging benefits comparable to those obtained with neutron and x-ray scattering, but it is certain that the full range of these benefits will never be fully available without an infrastructure comparable to that of existing neutron and x-ray facilities. The role for Jefferson Laboratory would therefore be to provide and maintain (1) a dedicated set of machines for making and manipulating high intensity, high brightness beams of polarized slow positrons; (2) a suite of unique and easily used instruments of wide utility that will make efficient use of the positrons; and (3) a group of on-site positron scientists to provide scientific leadership, instrument development, and user support. In this note some examples will be given of the science that might make a serious investment in a positron facility worthwhile. At the same time, the lessons learned from various proposed and successful positron facilities will be presented for consideration.

  13. Studies of Oxidation of the Cu(100) Surface Using Low Energy Positrons

    International Nuclear Information System (INIS)

    Fazleev, N. G.; Maddox, W. B.; Nadesalingam, M.; Rajeshwar, K.; Weiss, A. H.

    2009-01-01

    Changes in the surface of an oxidized Cu(100) single crystal resulting from vacuum annealing have been investigated using positron annihilation induced Auger electron spectroscopy (PAES). PAES measurements show a large increase in the intensity of the positron annihilation induced Cu M 2,3 VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 deg. C. The intensity then decreases monotonically as the annealing temperature is increased to ∼600 deg. C. Experimental PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface, surface reconstructions, and electron-positron correlations effects. Possible explanation for the observed behavior of the intensity of positron annihilation induced Cu M 2,3 VV Auger peak with changes of the annealing temperature is proposed.

  14. Impedance of an intense plasma-cathode electron source for tokamak startup

    Science.gov (United States)

    Hinson, E. T.; Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Perry, J. M.

    2016-05-01

    An impedance model is formulated and tested for the ˜1 kV , 1 kA/cm2 , arc-plasma cathode electron source used for local helicity injection tokamak startup. A double layer sheath is established between the high-density arc plasma ( narc≈1021 m-3 ) within the electron source, and the less dense external tokamak edge plasma ( nedge≈1018 m-3 ) into which current is injected at the applied injector voltage, Vinj . Experiments on the Pegasus spherical tokamak show that the injected current, Iinj , increases with Vinj according to the standard double layer scaling Iinj˜Vinj3 /2 at low current and transitions to Iinj˜Vinj1 /2 at high currents. In this high current regime, sheath expansion and/or space charge neutralization impose limits on the beam density nb˜Iinj/Vinj1 /2 . For low tokamak edge density nedge and high Iinj , the inferred beam density nb is consistent with the requirement nb≤nedge imposed by space-charge neutralization of the beam in the tokamak edge plasma. At sufficient edge density, nb˜narc is observed, consistent with a limit to nb imposed by expansion of the double layer sheath. These results suggest that narc is a viable control actuator for the source impedance.

  15. Liquid lithium target as a high intensity, high energy neutron source

    Science.gov (United States)

    Parkin, Don M.; Dudey, Norman D.

    1976-01-01

    This invention provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then "boil off" or evaporate a neutron.

  16. Liquid lithium target as a high intensity, high energy neutron source

    International Nuclear Information System (INIS)

    Parkin, D.M.; Dudey, N.D.

    1976-01-01

    The invention described provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then ''boil off'' or evaporate a neutron

  17. Development and application of high power and high intensity ion beam sources at NPI, Tomsk, Russia

    International Nuclear Information System (INIS)

    Ryabchikov, A.I.

    2007-01-01

    High - current ion beams have become a powerful tool for improving the surface properties of different materials. The prospects of wide commercial use of such beams for material treatment is not only due to the possibility of improving their properties, but, also for economic expediency. To achieve a high throughput and reduce the cost on ion beam material treatment, ion beams of high average and pulsed power are necessary. This paper gives an overview of work on generation of pulsed and repetitively pulsed beams of ion beams with currents ranging from fractions of an ampere to several tens of kA and with pulse duration from several tens of nanoseconds to several hundreds of microseconds. A number of different methods of materials surface properties modification using high power and intense ion beam and plasma are considered. (author)

  18. UCN up-scattering as a source of highly intense monochromatic pulsed beams

    International Nuclear Information System (INIS)

    Rauch, H.; Geltenborg, P.; Zimmer, O.

    2011-01-01

    The present proposal opens new possibilities to increase the usable neutron flux by advanced neutron cooling and phase space transformation methods. Thus a new instrument should be installed where the available neutron flux is used more efficiently. The essential point is an increase of phase space density and brilliance due to a more effective production of ultra-cold neutrons and a following transformation of these neutrons to higher energies. Recently reported progresses in the production of UCN's and in the up-scattering of such neutrons make the time mature to step towards a new method to produce high intense pulsed neutron beams. The up-scattering is made by fast moving Bragg crystals

  19. Linear surface photoelectric effect of gold in intense laser field as a possible high-current electron source

    International Nuclear Information System (INIS)

    Farkas, G.; Horvath, Z.G.; Toth, C.; Fotakis, C.; Hontzopoulos, E.

    1987-01-01

    Investigations were conducted on radiation-induced electron emission processes on a gold target surface with a high-intensity (2 MW/cm 2 ) KrF laser (λ = 248 nm). The single photon surface photoelectric emission obtained can be used for high-current density electron sources. The measured polarization dependence of electron current shows the dominance of the surface-type effect over that of the volume type, thereby making it possible to optimize the short, high-density electron current creation conditions. The advantage of the grazing light incidence and the multiphoton photoeffect giving rise to a 500 A/cm 2 electron current has been demonstrated

  20. Positron-trapping mechanism at dislocations in Zn

    DEFF Research Database (Denmark)

    Hidalgo, Carlos; Linderoth, Søren; Diego, Nieves de

    1987-01-01

    the average lifetime and the intensity of the long component decrease with increasing temperature. The experimental results are very well described in terms of a generalized trapping model where it is assumed that positrons become trapped in deep traps (jogs) via shallow traps (dislocation lines......). The temperature dependence of the positron-lifetime spectra below 120 K is attributed to the temperature dependence of the trapping rate to the dislocation line. The experimental results have demonstrated that detrapping processes from the dislocation line take place above 120 K. The positron binding energy...

  1. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1996-11-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power CO 2 laser may be used as prototype LSS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps CO 2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 angstrom) x-rays of 10-ps pulse duration, with a flux of ∼ 10 19 photons/sec, will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to the e-beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 10 22 photons/sec level, after the ongoing ATF CO 2 laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact ''table-top'' LSS of monochromatic gamma radiation may become feasible

  2. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1997-01-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high- brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high- brightness electron beam and the high-power C0 2 laser may be used as prototype LSS brick stones. In a feasible demonstration experiment, 10 GW, 100 ps C0 2 laser beam will be brought to a head-on collision with a 10 ps, 0.5 nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 A) x-rays of 10-ps pulse duration, with a flux of ∼10 19 photons/sec, will be produced via linear Compton backscattering. The x-ray spectra is tunable proportionally to the e- beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 10 22 photon/sec level, after the ongoing ATF C0 2 laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact ''table- top'' LSS of monochromatic gamma radiation may become feasible

  3. Nitrogen capillary plasma as a source of intense monochromatic radiation at 2.88 nm

    Czech Academy of Sciences Publication Activity Database

    Vrba, Pavel; Vrbová, M.; Zakharov, S.V.; Zakharov, V.S.; Jančárek, A.; Nevrkla, M.

    2014-01-01

    Roč. 196, October (2014), s. 24-30 ISSN 0368-2048 R&D Projects: GA ČR GAP102/12/2043; GA MŠk(CZ) LG13029 Grant - others:GA MŠk(CZ) CZ.1.07/2.3.00/20.0092 Institutional support: RVO:61389021 Keywords : Capillary Z-pinch * Water window radiation source * RHMD Code Z* Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.436, year: 2014 http://dx.doi.org/10.1016/j.elspec.2013.12.015

  4. Characterization and application of a laser-driven intense pulsed neutron source using Trident

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-25

    A team of Los Alamos researchers supported a final campaign to use the Trident laser to produce neutrons, contributed their multidisciplinary expertise to experimentally assess if laser-driven neutron sources can be useful for MaRIE. MaRIE is the Laboratory’s proposed experimental facility for the study of matter-radiation interactions in extremes. Neutrons provide a radiographic probe that is complementary to x-rays and protons, and can address imaging challenges not amenable to those beams. The team's efforts characterize the Laboratory’s responsiveness, flexibility, and ability to apply diverse expertise where needed to perform successful complex experiments.

  5. Investigation of electronic lattice structure by positron annihilation in some insulators

    International Nuclear Information System (INIS)

    Coussot, Gerard

    1970-01-01

    The angular distribution of gamma quanta resulting from positron annihilation in single insulator crystals was measured with long slit geometry apparatus for intense positron sources ( 64 Cu ≅ 1 Ci). Two new phenomena were observed in the angular correlation curves. In the f. c. c. MgO, UO 2 , CaF 2 crystals, modulations appeared at angles corresponding to the limit of the first Brillouin zone in relation to the crystallographic direction studied. In SiO 2 , F 2 Mg, F 2 Mn crystals, a narrow peak at 0 mrad and a fine structure superimposed on the broad distribution, were resolved. The fine structure which is correlated with the narrow component is characterized by modulations appearing at angles corresponding to the projection of reciprocal lattice vectors along the crystallographic direction investigated. The narrow peak at p ≅ 0 suggests the formation of a bound state (positron-electron). If this bound state is described by a Bloch wave, the modulations observed correspond to the Fourier components which contribute to every reciprocal lattice vector p = G ('Umklapp' process). This model predicts that the 'Umklapp' process in polycrystals must produce a change in slope which can be experimentally observed. A systematic research of optimal observation conditions shows that the intensity of the narrow component is closely correlated with the purity and the perfection of the crystal where p-Ps is presumably formed as suggested by magnetic experiments. (author) [fr

  6. Novel time-of-flight spectrometer for the analysis of positron annihilation induced Auger electrons

    International Nuclear Information System (INIS)

    Hugenschmidt, Christoph; Legl, Stefan

    2006-01-01

    Positron annihilation induced Auger-electron spectroscopy (PAES) has several advantages over conventional Auger-electron spectroscopy such as extremely high surface sensitivity and outstanding signal-to-noise ratio at the Auger-transition energy. In order to benefit from these prominent features a low-energy positron beam of high intensity is required for surface sensitive PAES studies. In addition, an electron energy analyzer is required, which efficiently detects the Auger electrons with acceptable energy resolution. For this reason a novel time-of-flight (TOF) spectrometer has been developed at the intense positron source NEPOMUC that allows PAES studies within short measurement time. This TOF-PAES setup combines a trochoidal filter and a flight tube in a Faraday cage in order to achieve an improved energy resolution of about 1 eV at high electron energies up to E≅1000 eV. The electron flight time is the time between the annihilation radiation at the sample and when the electron hits a microchannel plate detector at the end of the flight tube

  7. Positron emission tomography

    International Nuclear Information System (INIS)

    Yamamoto, Y.L.; Thompson, C.J.; Diksic, M.; Meyer, E.; Feindel, W.H.

    1984-01-01

    One of the most exciting new technologies introduced in the last 10 yr is positron emission tomography (PET). PET provides quantitative, three-dimensional images for the study of specific biochemical and physiological processes in the human body. This approach is analogous to quantitative in-vivo autoradiography but has the added advantage of permitting non-invasive in vivo studies. PET scanning requires a small cyclotron to produce short-lived positron emitting isotopes such as oxygen-15, carbon-11, nitrogen-13 and fluorine-18. Proper radiochemical facilities and advanced computer equipment are also needed. Most important, PET requires a multidisciplinary scientific team of physicists, radiochemists, mathematicians, biochemists and physicians. The most recent trends are reviewed in the imaging technology, radiochemistry, methodology and clinical applications of positron emission tomography. (author)

  8. Digital positron annihilation spectrometer

    International Nuclear Information System (INIS)

    Cheng Bin; Weng Huimin; Han Rongdian; Ye Bangjiao

    2010-01-01

    With the high speed development of digital signal process, the technique of the digitization and processing of signals was applied in the domain of a broad class of nuclear technique. The development of digital positron lifetime spectrometer (DPLS) is more promising than the conventional positron lifetime spectrometer equipped with nuclear instrument modules. And digital lifetime spectrometer has many advantages, such as low noise, long term stability, flexible online or offline digital processing, simple setup, low expense, easy to setting, and more physical information. Digital constant fraction discrimination is for timing. And a new method of optimizing energy windows setting for digital positron lifetime spectrometer is also developed employing the simulated annealing for the convenient use. The time resolution is 220ps and the count rate is 200cps. (authors)

  9. 50 years of positrons

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    This year marks the 50th anniversary of one of the major landmarks of modern physics - the discovery of the positron, the antimatter counterpart of the electron. This provided the first evidence for antimatter, and it was also unprecedented for the existence of a new particle to have been predicted by theory. The positron and the concepts behind it were to radically change our picture of Nature. It led to the rapid advancement or our understanding, culminating some fifteen years later with the formulation of quantum electrodynamics as we now know it. (orig./HSI).

  10. Positron emission tomography

    CERN Document Server

    Paans, A M J

    2006-01-01

    Positron Emission Tomography (PET) is a method for measuring biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labelled with positron emitting radionuclides such as 11C, 13N, 15O and 18F and by measuring the annihilation radiation using a coincidence technique. This includes also the measurement of the pharmacokinetics of labelled drugs and the measurement of the effects of drugs on metabolism. Also deviations of normal metabolism can be measured and insight into biological processes responsible for diseases can be obtained. At present the combined PET/CT scanner is the most frequently used scanner for whole-body scanning in the field of oncology.

  11. The MEG positron spectrometer

    International Nuclear Information System (INIS)

    Nishiguchi, Hajime

    2007-01-01

    We have been developing an innovative spectrometer for the MEG experiment at the Paul Scherrer Institute (PSI) in Switzerland. This experiment searches for a lepton flavour violating decay μ + →e + γ with a sensitivity of 10 -13 in order to explore the region predicted by supersymmetric extensions of the standard model. The MEG positron spectrometer consists of a specially designed superconducting solenoidal magnet with a highly graded field, an ultimate low-mass drift chamber system, and a precise time measuring counter system. This innovative positron spectrometer is described here focusing on the drift chamber system

  12. Z-pinches as intense x-ray sources for high energy density physics application

    International Nuclear Information System (INIS)

    Matzen, M.K.

    1997-01-01

    Fast z-pinch implosions can convert more than 10% of the stored electrical energy in a pulsed-power accelerator into x rays. These x rays are produced when an imploding cylindrical plasma, driven by the magnetic field pressure associated with very large axial currents, stagnates upon the cylindrical axis of symmetry. On the Saturn pulsed-power accelerator at Sandia National Laboratories, for example, currents of 6 to 8 MA with a risetime of less than 50 ns are driven through cylindrically-symmetric loads, producing implosions velocities as high as 100 cm/μs and x-ray energies as high as 500 kJ. The keV component of the resulting x-ray spectrum has been used for many years 8 a radiation source for material response studies. Alternatively, the x-ray output can be thermalized into a near-Planckian x-ray source by containing it within a large cylindrical radiation case. These large volume, long-lived radiation sources have recently been used for ICF-relevant ablator physics experiments as well as astrophysical opacity and radiation-material interaction experiments. Hydromagnetic Rayleigh-Taylor instabilities and cylindrical load symmetry are critical, limiting factors in determining the assembled plasma densities and temperatures, and thus in the x-ray pulse widths that can be produced on these accelerators. In recent experiments on the Saturn accelerator, these implosion nonuniformities have been minimized by using uniform-fill gas puff loads or by using wire arrays with as many a 192 wires. These techniques produced significant improvements in the pinched plasma quality, Zn reproducibility, and x-ray output power. X-ray pulse widths of less than 5 ns and peak powers of 75±10 TW have been achieved with arrays of 120 tungsten wires. These powers represent greater than a factor of three in power amplification over the electrical power of the Saturn n accelerator, and are a record for x-ray powers in the laboratory

  13. An adiabatic matching device for the Orsay linear positron accelerator

    International Nuclear Information System (INIS)

    Chehab, R.; Le Meur, G.; Mouton, B.; Renard, M.

    1983-03-01

    An adiabatically tapered solenoidal magnetic field is used to match positron beam source emittance to accelerating section acceptance. Such a matching system improves the accepted energy band which has been accurately computed and compared with analytical determination. The tapered field is provided by stacked pancakes and solenoids of various radii; total lens length is about 0.75m. The adiabatic matching system took place of a quarter wave transformer system and has been in operation for two years. Positron conversion ratio is 3.3% for a 1 GeV incident beam and presents a factor of nearly two of improvement for the positron yield. Energy bandwidth of positron beam has also been increased by a factor of nearly 2.5; the output positron beam energy is of 1.2 GeV

  14. Search for positron anisotropies in cosmic rays with AMS

    Energy Technology Data Exchange (ETDEWEB)

    Machate, Fabian [1. Physikalisches Institut B, RWTH Aachen University (Germany)

    2016-07-01

    The Alpha Magnetic Spectrometer (AMS-02) on the International Space Station has observed a significant excess of cosmic ray positrons over the background expected from secondary production at energies above 10 GeV. Nearby pulsars and annihilating dark matter particles as a primary source of electrons and positrons have been discussed as an explanation. A possible way of distinguishing between pulsar and dark matter origin is the measurement of dipole anisotropies in the positron flux or the positron to electron ratio. Any anisotropy will be reduced by diffusion in galactic magnetic fields to below the percent level. AMS-02 is the leading space-based experiment for cosmic ray detection and well suited for this search. A new analysis procedure for anisotropies using an event sample with large acceptance is presented. It relies on the ability of the Transition Radiation Detector (TRD) to separate positrons from the proton background.

  15. Electron-positron pair creation in heavy ion collisions

    International Nuclear Information System (INIS)

    Kienle, P.

    1987-08-01

    We review here the status of experiments to study the electron positron pair creation in heavy ion atom collisions at bombarding energies close to the Coulomb barrier. The disentanglement and characterisation of various sources of positrons observed in such collisions are described with a focus on the monoenergetic electron positron pairs observed. They seem to originate from the two-body decay of a family of neutral particles with masses of about 3 m e and life times in the range of 6x10 -14 s -10 s, produced by high Coulomb fields. First attempts were made to create these particles by resonant Bhabha scattering. First we present some experimental methods for high efficiency positron spectroscopy in heavy ion collisions. Then we describe the discovery of positron creation induced by strong time changing Coulomb fields. (orig./HSI)

  16. Irradiation damage of alkali halide crystals during positron bombardment

    International Nuclear Information System (INIS)

    Arefiev, K.P.; Arefiev, V.P.; Vorobiev, S.A.

    1978-01-01

    The bleaching effect of positron irradiation of KCl and KBr single crystals previously coloured with electrons or protons was investigated. Positrons injection in the coloured alkali halide samples reduced the F-centres concentration considerably. For KCl crystals thicker than the positrons range the appearance of additional bands in the absorption spectra is noticeable. The experimental data show that the bleaching phenomenon should be observed merely throughout the positron exposure both for irradiated and non-irradiated regions of the sample. Irradiation effects, due to positron source, on the peak counting rate of (γ-γ) angular correlation in KCl crystals under applied magnetic field were also investigated. The growth of peak counting rate shows the increase of positronium-like states formation near defects of cation sublattice. (author)

  17. Pulsed plasma sources for the production of intense ion beams based on catalytic resonance ionization

    International Nuclear Information System (INIS)

    Knyazev, B.A.; Mel'nikov, P.I.; Bluhm, H.

    1994-01-01

    In this paper we describe a technique to produce planar and volumetric ion sources of nearly every element. This technique is based on a generalization of the LIBORS-process (Laser Ionization Based On Resonant Saturation) which because of its similarity to chemical catalytic reactions has been called CATRION (CATalytic Resonance IONization). A vapor containing the desired atomic species is doped with a suitable element processing resonance transitions that can be pumped ro saturation with a laser. By superelastic collisions with the excited atoms and by simulated bremsstrahlung absorption seed electrons are heated. It is the heated electron component which then by collisional processes ionizes the desired atomic species and are multiplied. 41 refs.; 4 figs.; 3 tabs

  18. Positron studies of defected metals, metallic surfaces

    International Nuclear Information System (INIS)

    Bansil, A.

    1991-01-01

    Specific problems proposed under this project included the treatment of electronic structure and momentum density in various disordered and defected systems. Since 1987, when the new high-temperature superconductors were discovered, the project focused extensively on questions concerning the electronic structure and Fermiology of high-T c superconductors, in particular, (i) momentum density and positron experiments, (ii) angle-resolved photoemission intensities, (iii) effects of disorder and substitutions in the high-T c 's

  19. Positron lifetime studies on thorium oxide powders

    International Nuclear Information System (INIS)

    Upadhyaya, D.D.; Muraleedharan, R.V.; Sharma, B.D.

    1982-01-01

    Positron lifetime spectra have been studied for ThO 2 powders, calcined at different temperatures and having different particle sizes. Three lifetime components could be resolved, the longest component being of low intensity. An observed strong dependence on the particle size of the annihilation process and the variation of positronium diffusion constant is explained on the basis of defect density variations in these powders. (author)

  20. Accelerator-based intense neutron source for materials R and D

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1990-01-01

    Accelerator-based neutron sources for R and D of materials in nuclear energy systems, including fusion reactors, can provide sufficient neutron flux, flux-volume, fluence and other attractive features for many aspects of materials research. The neutron spectrum produced from the D-Li reaction has been judged useful for many basic materials research problems, and satisfactory as an approximation of the fusion process. A most interesting aspect for materials researchers is the increased flexibility and opportunities for experimental configurations that a modern accelerator-based source could add to the set of available tools. First, of course, is a high flux of neutrons. Four other tools are described: 1. The output energy of the deuteron beam can be varied to provide energy selectivity for the materials researcher. The energy would typically be varied in discrete steps; the number of steps can be adjusted depending on actual needs and costs. 2. The materials sample target chamber could be irradiated by more than one beam, from different angles. This would provide many possibilities for tailoring the flux distribution. 3. Advanced techniques in magnetic optics systems allow the density distribution of the deuteron beam at the target to be tailored. Controlled distributions from Gaussian to uniform to hollow can be provided. This affords further control of the distribution in the target chamber. 4. The accelerator and associated beam transport elements are all essentially electronic systems and, therefore, can be controlled and modulated on a time cycle basis. Therefore, all of the above tools could be varied in possibly complex patterns under computer control; this may open further experimental approaches for studying various rate-dependent effects. These considerations will be described in the context of the Energy Selective Neutron Irradiation Test (ESNIT) facility which is conceived at JAERI. (author)

  1. LLNL pure positron plasma program

    International Nuclear Information System (INIS)

    Hartley, J.H.; Beck, B.R.; Cowan, T.E.; Howell, R.H.; McDonald, J.L.; Rohatgi, R.R.; Fajans, J.; Gopalan, R.

    1995-01-01

    Assembly and initial testing of the Positron Time-of-Flight Trap at the Lawrence Livermore National Laboratory (LLNL) Increase Pulsed Positron Facility has been completed. The goal of the project is to accumulate at high-density positron plasma in only a few seconds., in order to facilitate study that may require destructive diagnostics. To date, densities of at least 6 x 10 6 positrons per cm 3 have been achieved

  2. Production and application of pulsed slow-positron beam using an electron LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Tetsuo; Suzuki, Ryoichi; Ohdaira, Toshiyuki; Mikado, Tomohisa [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Kobayashi, Yoshinori

    1997-03-01

    Slow-positron beam is quite useful for non-destructive material research. At the Electrotechnical Laboratory (ETL), an intense slow positron beam line by exploiting an electron linac has been constructed in order to carry out various experiments on material analysis. The beam line can generates pulsed positron beams of variable energy and of variable pulse period. Many experiments have been carried out so far with the beam line. In this paper, various capability of the intense pulsed positron beam is presented, based on the experience at the ETL, and the prospect for the future is discussed. (author)

  3. Differences in staining intensities affect reported occurrences and concentrations of Giardia spp. in surface drinking water sources.

    Science.gov (United States)

    Alderisio, K A; Villegas, L F; Ware, M W; McDonald, L A; Xiao, L; Villegas, E N

    2017-12-01

    USEPA Method 1623, or its equivalent, is currently used to monitor for protozoan contamination of surface drinking water sources worldwide. At least three approved staining kits used for detecting Cryptosporidium and Giardia are commercially available. This study focuses on understanding the differences among staining kits used for Method 1623. Merifluor and EasyStain labelling kits were used to monitor Cryptosporidium oocyst and Giardia cyst densities in New York City's raw surface water sources. In the year following a change to the approved staining kits for use with Method 1623, an anomaly was noted in the occurrence of Giardia cysts in New York City's raw surface water. Specifically, Merifluor-stained samples had higher Giardia cyst densities as compared with those stained with EasyStain. Side by side comparison revealed significantly lower fluorescence intensities of Giardia muris as compared with Giardia duodenalis cysts when labelled with EasyStain. This study showed very poor fluorescence intensity signals by EasyStain on G. muris cysts resulting in lower cyst counts, while Merifluor, with its broader Giardia cyst staining specificity, resulted in higher cyst counts, when using Methods 1623. These results suggest that detected Giardia cyst concentrations are dependent on the staining kits used, which can result in a more or less conservative estimation of occurrences and densities of zoonotic Giardia cysts by detecting a broader range of Giardia species/Assemblages. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  4. Positron annihilation near fractal surfaces

    International Nuclear Information System (INIS)

    Lung, C.W.; Deng, K.M.; Xiong, L.Y.

    1991-07-01

    A model for positron annihilation in the sub-surface region near a fractal surface is proposed. It is found that the power law relationship between the mean positron implantation depth and incident positron energy can be used to measure the fractal dimension of the fractal surface in materials. (author). 10 refs, 2 figs

  5. Simulation of the annihilation emission of galactic positrons

    International Nuclear Information System (INIS)

    Gillard, W.

    2008-01-01

    Positrons annihilate in the central region of our Galaxy. This has been known since the detection of a strong emission line centered on an energy of 511 keV in the direction of the Galactic center. This gamma-ray line is emitted during the annihilation of positrons with electrons from the interstellar medium. The spectrometer SPI, onboard the INTEGRAL observatory, performed spatial and spectral analyses of the positron annihilation emission. This thesis presents a study of the Galactic positron annihilation emission based on models of the different interactions undergone by positrons in the interstellar medium. The models are relied on our present knowledge of the properties of the interstellar medium in the Galactic bulge, where most of the positrons annihilate, and of the physics of positrons (production, propagation and annihilation processes). In order to obtain constraints on the positrons sources and physical characteristics of the annihilation medium, we compared the results of the models to measurements provided by the SPI spectrometer. (author)

  6. Potential role of intense ionising radiation sources in municipal sludge management and environmental protection

    International Nuclear Information System (INIS)

    Krishnamurthy, K.

    1980-01-01

    Magnitude of the problem of safe disposal of sewage and sludge is explained. With rapid increase in the quantum of generated municipal and industrial wastes, their disposal on land or in sea is becoming harmful to public health, hazardous to aquatic life and disturbing to ecological balance. These wastes can be recycled, but to make this recycling beneficial and at the same time harmless to public health, the wastes must be disinfected. Radiation disinfection of sewage and sludge is examined as one of the ways of disinfection. Irradiation can be carried out with gamma radiation or energised electrons. Techniques of radiation disinfection and radiation doses required for disinfection are discussed. Case studies of a few radiation plants for sludge disinfection are presented. They include the Palmdale Plant in Florida, Sandia Irradiator at Albuqurque, New Mexico, Energised Electron Facility at Deer Island, Boston - all these in U.S.A., and the Munich Plant in West Germany. Mention has been made to the work in progress in India on the design of irradiators. Reference has been made to the proposed electron irradiation system for destruction of toxic chemicals such as PCB in drinking water and for disinfection of secondary water. Economics of radiation disinfection is also discussed and it is noted that the radiation process can become economically competitive when cheap sources of radiation become available. (M.G.B.)

  7. New developments and applications of intense pulsed radiation sources at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Cook, D.

    1998-02-01

    In the past thirty-six months, tremendous strides have been made in x-ray production using high-current z-pinches. Today, the x-ray energy (1.9 MJ) and power (200 TW) output of the Z accelerator (formerly PBFA-II) is the largest available in the laboratory. These z-pinch x-ray sources are being developed for research into the physics of high energy density plasmas of interest in weapon behavior and in inertial confinement fusion. Beyond the Z accelerator current of 20 MA, an extrapolation to the X-1 accelerator level of 60 MA may have the potential to drive high-yield ICF reactions at affordable cost if several challenging technical problems can be overcome. New developments have also taken place at Sandia in the area of high current, mm-diameter electron beams for advanced hydrodynamic radiography. On SABRE, x-ray spot diameters were less than 2 mm with a dose of 100 R at 1 meter in a 40 ns pulse.

  8. GLAD: The IPNS (Intense Pulsed Neutron Source) Glass, Liquid, and Amorphous materials Diffractometer

    International Nuclear Information System (INIS)

    Crawford, R.K.; Price, D.L.; Haumann, J.R.; Kleb, R.; Montague, D.G.; Carpenter, J.M.; Susman, S.; Dejus, R.J.

    1989-01-01

    A number of years of experience in diffraction from amorphous materials has now been accumulated at various pulsed neutron sources. Workshops t IPNS and elsewhere have distilled some of this experience to provide a set of criteria for a new diffractometer dedicated to an optimized for structural studies of amorphous materials. This paper discusses the instrument GLAD (Glass, Liquid, and Amorphous Materials Diffractometer) which has been designed to meet these criteria and is now being built at IPNS. This instrument involves the use of relatively short-wavelength neutrons and a sophisticated neutron detection and acquisition system. A preliminary, simplified version of the instrument has been constructed while the final version is still under design, in order to develop the data acquisition and analysis techniques and to develop methods for collection of data with adequate quality (low background) at short wavelengths. This paper will briefly outline the final instrument envisioned and its calculated performance, but will focus mostly on the details of the detection/acquisition system and the calibration and data collection procedures which have been developed. The brief operating experience which has been gained to data with the preliminary instrument version will also be summarized. 6 refs., 12 figs

  9. Positron depth profiling

    International Nuclear Information System (INIS)

    Coleman, P.

    2001-01-01

    Wide-ranging studies of defects below the surface of semiconductor structures have been performed at the University of Bath, in collaboration with the University of Surrey Centre for Ion Beam Applications and with members of research teams at a number of UK universities. Positron implantation has been used in conjunction with other spectroscopies such as RBS-channeling and SIMS, and electrical characterisation methods. Research has ranged from the development of a positron-based technique to monitor the in situ annealing of near-surface open-volume defects to the provision of information on defects to comprehensive diagnostic investigations of specific device structures. We have studied Si primarily but not exclusively; e.g., we have investigated ion-implanted SiC and SiO 2 /GaAs structures. Of particular interest are the applications of positron annihilation spectroscopy to ion-implanted semiconductors, where by linking ion dose to vacancy-type defect concentration one can obtain information on ion dose and uniformity with a sensitivity not achievable by standard techniques. A compact, user-friendly positron beam system is currently being developed at Bath, in collaboration with SCRIBA, with the intention of application in an industrial environment. (orig.)

  10. Positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lindback, Stig [GEMS PET Systems AB, Uppsala (Sweden)

    1995-07-15

    Positron Emission Tomography (PET) is an advanced nuclear medicine technique used for research at major centres. Unique diagnostic information is obtained from tomographic measurements of the biochemistry and physiology of tissues and organs. In theory, diseases are related to biochemical changes and these can be observed with PET long before any anatomical changes are detectable. In PET the radioactive component is a positron-emitting isotope or 'tracer'. The positrons annihilate with electrons in the body to produce two gamma rays 180° apart; coincidence detection of these gammas provides a very efficient method of determining the spatial distribution of the radioisotope tracer. Because physiological measurements are usually required in a single imaging session, very short-lived isotopes are used to label the tracer molecules; isotope production and labelling is usually carried out in situ. The most commonly used radionuclides are carbon- 11 (half-life 20 minutes), nitrogen-13 (10 minutes), oxygen-15 (2 minutes), and fluorine-18 (110 minutes). A PET system has three major components: - a particle accelerator with targets for production of the positron-emitting isotopes; - chemistry modules for synthesis and labelling of the desired tracers; - and a PET camera for in-vivo measurements of the distribution of the tracer in the body.

  11. Positron emission tomography

    International Nuclear Information System (INIS)

    Pavuk, M.

    2003-12-01

    The aim of this project is to provide a simple summary of new trends in positron emission tomography and its basic physical principles. It provides thereby compendious introduction of the trends of the present development in diagnostics using PET systems. A review of available literature was performed. (author)

  12. Positron emission tomography. Positronemisionstomografi

    Energy Technology Data Exchange (ETDEWEB)

    Bolwig, T G; Haunsoe, S; Dahlgaard Hove, J; Hesse, B; Hoejgard, L; Jensen, M; Paulson, O B; Hastrup Svendsen, J; Soelvsten Soerensen, S

    1994-10-01

    Positron emission tomography (PET) is a method for quantitative imaging of regional physiological and biochemical parameters. Positron emitting radioactive isotopes can be produced by a cyclotron, eg. the biologically important carbon ([sup 11]C), oxygen ([sup 15]O), and nitrogen ([sup 13]N) elements. With the tomographic principles of the PET scanner the quantitative distribution of the administered isotopes can be determined and images can be provided as well as dynamic information on blood flow, metabolism and receptor function. In neurology PET has been used for investigations on numerous physiological processes in the brain: circulation, metabolism and receptor studies. In Parkinson's disease PET studies have been able to localize the pathology specifically, and in early stroke PET technique can outline focal areas with living but non-functioning cells, and this could make it possible to intervene in this early state. With positron emission tomography a quantitative evaluation of myocardial blood flow, glucose and fatty acid metabolism can be made as well as combined assessments of blood flow and metabolism. Combined studies of blood flow and metabolism can determine whether myocardial segments with abnormal motility consist of necrotic or viable tissue, thereby delineating effects of revascularisation. In the future it will probably be possible to characterize the myocardial receptor status in different cardiac diseases. The PET technique is used in oncology for clinical as well as more basic research on tumor perfusion and metabolism. Further, tumor uptake of positron labelled cytotoxic drugs might predict the clinical benefit of treatment. (au) (19 refs.).

  13. Cardiac positron tomography

    International Nuclear Information System (INIS)

    Geltmann, E.M.; Roberts, R.; Sobel, B.E.

    1980-01-01

    Positron emission tomography (PET) performed after the administration of the positron-emitting radionuclides carbon-11 ( 11 C), nitrogen-13 ( 13 N), oxygen-15 ( 15 O) and fluorine-18 ( 18 F) has permitted the improved noninvasive assessment of the regional myocardial metabolism of normal physiologic substrates and intermediates and their cogeners. In experimental animals, the rate of oxidation of 11 C-palmitate correlates closely with other indexes of oxygen consumption, and the extraction of 11 C-palmitate (like that of 18 F-fatty acids and 18 F-fluoredoxyglucose) ist markedly diminished in regions of myocardial ischemia. In both experimental animals and in patients, myocardial infarct site and size, determined by positron emission tomography after the intravenous injection of 11 C-palmitate, correlate closely with the electrocardiographic infarct locus and enzymatically estimated infarct size as well as with the location and extent of regional left ventricular wall motion abnormalities. PET offers promise for assessment of flow as well despite the complexities involved. PET with 13 NH 3 appears to provide one useful qualitative index, although this tracer ist actively metabolized. Because of the quantitative capabilities of positron emission tomography and the rapid progress which is being made in the development of fast scan, multi-slice, and gated instrumentation, this technique is likely to facilitate improved understanding and characterization of regional myocardial metabolism and blood flow in man under physiological and pathophysiological conditions. (orig.) [de

  14. Positron emission tomography

    International Nuclear Information System (INIS)

    Lindback, Stig

    1995-01-01

    Positron Emission Tomography (PET) is an advanced nuclear medicine technique used for research at major centres. Unique diagnostic information is obtained from tomographic measurements of the biochemistry and physiology of tissues and organs. In theory, diseases are related to biochemical changes and these can be observed with PET long before any anatomical changes are detectable. In PET the radioactive component is a positron-emitting isotope or 'tracer'. The positrons annihilate with electrons in the body to produce two gamma rays 180° apart; coincidence detection of these gammas provides a very efficient method of determining the spatial distribution of the radioisotope tracer. Because physiological measurements are usually required in a single imaging session, very short-lived isotopes are used to label the tracer molecules; isotope production and labelling is usually carried out in situ. The most commonly used radionuclides are carbon- 11 (half-life 20 minutes), nitrogen-13 (10 minutes), oxygen-15 (2 minutes), and fluorine-18 (110 minutes). A PET system has three major components: - a particle accelerator with targets for production of the positron-emitting isotopes; - chemistry modules for synthesis and labelling of the desired tracers; - and a PET camera for in-vivo measurements of the distribution of the tracer in the body

  15. Positron emission tomography

    International Nuclear Information System (INIS)

    Bolwig, T.G.; Haunsoe, S.; Dahlgaard Hove, J.; Hesse, B.; Hoejgard, L.; Jensen, M.; Paulson, O.B.; Hastrup Svendsen, J.; Soelvsten Soerensen, S.

    1994-01-01

    Positron emission tomography (PET) is a method for quantitative imaging of regional physiological and biochemical parameters. Positron emitting radioactive isotopes can be produced by a cyclotron, eg. the biologically important carbon ( 11 C), oxygen ( 15 O), and nitrogen ( 13 N) elements. With the tomographic principles of the PET scanner the quantitative distribution of the administered isotopes can be determined and images can be provided as well as dynamic information on blood flow, metabolism and receptor function. In neurology PET has been used for investigations on numerous physiological processes in the brain: circulation, metabolism and receptor studies. In Parkinson's disease PET studies have been able to localize the pathology specifically, and in early stroke PET technique can outline focal areas with living but non-functioning cells, and this could make it possible to intervene in this early state. With positron emission tomography a quantitative evaluation of myocardial blood flow, glucose and fatty acid metabolism can be made as well as combined assessments of blood flow and metabolism. Combined studies of blood flow and metabolism can determine whether myocardial segments with abnormal motility consist of necrotic or viable tissue, thereby delineating effects of revascularisation. In the future it will probably be possible to characterize the myocardial receptor status in different cardiac diseases. The PET technique is used in oncology for clinical as well as more basic research on tumor perfusion and metabolism. Further, tumor uptake of positron labelled cytotoxic drugs might predict the clinical benefit of treatment. (au) (19 refs.)

  16. Positron annihilation in superconducting 123 compounds

    International Nuclear Information System (INIS)

    Peter, M.; Manuel, A.A.; Erb, A.

    1998-01-01

    After a brief review of the theory of angular correlation of positron annihilation radiation (ACAR), the authors illustrate experimental principles and give examples of successful determination of electron momentum density (EMD) and of positron lifetime in solids. The central question which the authors try to answer concerns the contribution of positron spectroscopy to the knowledge and understanding of the new high temperature superconducting oxides. They find that in these oxides also, partially filled bands exist and they can observe parts of their Fermi surface and measure lifetimes in accordance with band theoretical calculations. There are characteristic differences, however. The intensity of the anisotropy of the ACAR signal is below theoretical expectation and signals depend on sample preparation. Recent studies by the Geneva group have concerned dependence of the signals on impurities, on oxygen content and on the thermal history of preparation. Of particular interest are correlations between the variations of these signals and between the variations of structural and transport properties in these substances. Besides deliberate additions of impurities, the Geneva group also reports progress in the preparations of samples of highest purity (barium zirconate crucibles). The alloy series Pr x Y 1-x Ba 2 Cu 3 O 7-δ is of special interest because of exceptional transport properties. The recent positron results on these materials will be presented and commented in the light of theoretical models and in the light of the reported superconductivity of the Pr-compound

  17. Positron lifetime studies of electron irradiated copper

    International Nuclear Information System (INIS)

    Hadnagy, T.D.

    1976-01-01

    Single-crystal copper was irradiated with 4.5-MeV electrons producing simple Frenkel defects as well as a significant concentration of divacancies. Mean positron lifetime characteristics, which are sensitive to the presence of vacancies and multivacancies in copper, was monitored after isochronal anneals between 80 and 800 0 K to determine the relative change of characteristic mean lifetimes and their associated intensities. Also a study of the dependence of the mean positron lifetime on the total electron fluence was made and compared with existing theories relating these lifetimes to vacancy or multivacancy concentrations. Numerical data from curve fitting procedures using a conventional trapping model for defect-induced changes in positron lifetimes indicate that upon irradiation with 4.5-MeV electrons at 80 0 K, about 8 percent of the defects produced are divacancy units. Divacancy units appear to be several times more effective in trapping positrons than are monovacancies. Further, the experimental data suggest that the stage III annealing processes in electron-irradiated copper most probably involve the motion and removal of both monovacancies and divacancies. A conglomerate (multivacancy) unit appears to exist as a stable entity even after annealing procedures are carried out at temperatures slightly above the stage III region. Such a stable unit could serve as a nucleation center for the appearance of voids

  18. A proton-driven, intense, subcritical, fission neutron source for radioisotope production

    Energy Technology Data Exchange (ETDEWEB)

    Jongen, Y. [Chemin du Cyclotron, Louvain-la-Neuve (Belgium)

    1995-10-01

    {sup 99m}Tc, the most frequently used radioisotope in nuclear medicine, is distributed as {sup 99}Mo=>{sup 99m}Tc generators. {sup 99}Mo is a fission product of {sup 235}U. To replace the aging nuclear reactors used today for this production, the author proposes to use a spallation neutron source, with neutron multiplication by fission. A 150 MeV, H{sup {minus}} cyclotron can produce a 225 kW proton beam with 50% total system energy efficiency. The proton beam would hit a molten lead target, surrounded by a water moderator and a graphite reflector, producing around 0.96 primary neutron per proton. The primary spallation neutrons, moderated, would strike secondary targets containing a subcritical amount of {sup 235}U. The assembly would show a k{sub eff} of 0.8, yielding a fivefold neutron multiplication. The thermal neutron flux at the targets location would be 2 {times} 10{sup 14} n/cm{sup 2}.s, resulting in a fission power of 500 to 750 kW. One such system could supply the world demand in {sup 99}Mo, as well as other radioisotopes. Preliminary indications show that the cost would be lower than the cost of a commercial 10 MW isotope production reactor. The cost of operation, of disposal of radiowaste and of decommissioning should be significantly lower as well. Finally, the non-critical nature of the system would make it more acceptable for the public than a nuclear reactor and should simplify the licensing process.

  19. Simulation of the annihilation emission of galactic positrons; Modelisation de l'emission d'annihilation des positrons Galactiques

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, W

    2008-01-15

    Positrons annihilate in the central region of our Galaxy. This has been known since the detection of a strong emission line centered on an energy of 511 keV in the direction of the Galactic center. This gamma-ray line is emitted during the annihilation of positrons with electrons from the interstellar medium. The spectrometer SPI, onboard the INTEGRAL observatory, performed spatial and spectral analyses of the positron annihilation emission. This thesis presents a study of the Galactic positron annihilation emission based on models of the different interactions undergone by positrons in the interstellar medium. The models are relied on our present knowledge of the properties of the interstellar medium in the Galactic bulge, where most of the positrons annihilate, and of the physics of positrons (production, propagation and annihilation processes). In order to obtain constraints on the positrons sources and physical characteristics of the annihilation medium, we compared the results of the models to measurements provided by the SPI spectrometer. (author)

  20. Positron effective mass in silicon

    International Nuclear Information System (INIS)

    Panda, B.K.; Shan, Y.Y.; Fung, S.; Beling, C.D.

    1995-01-01

    The positron effective mass in Si is obtained from the first-principles calculations along various crystallographic directions. The effect of electron-positron correlation on the band mass is examined in this work. A positron pseudopotential scheme is worked out to calculate the isotropic band mass without explicitly solving the band energy. The effective mass 1.46m obtained as a sum of band mass and the positron-plasmon interaction compares very well with 1.5m obtained from the positron mobility data

  1. High current pulsed positron microprobe

    International Nuclear Information System (INIS)

    Howell, R.H.; Stoeffl, W.; Kumar, A.; Sterne, P.A.; Cowan, T.E.; Hartley, J.

    1997-01-01

    We are developing a low energy, microscopically focused, pulsed positron beam for defect analysis by positron lifetime spectroscopy to provide a new defect analysis capability at the 10 10 e + s -l beam at the Lawrence Livermore National Laboratory electron linac. When completed, the pulsed positron microprobe will enable defect specific, 3-dimensional maps of defect concentrations with sub-micron resolution of defect location. By coupling these data with first principles calculations of defect specific positron lifetimes and positron implantation profiles we will both map the identity and concentration of defect distributions

  2. Experimental studies of 2.45 GHz ECR ion sources for the production of high intensity currents

    International Nuclear Information System (INIS)

    Coly, A.

    2010-12-01

    This thesis is the result of a collaboration between the Pantechnik company and the LPSC (Laboratory of subatomic physics and cosmology of Grenoble). It consisted in the development of a new test bench dedicated to the characterization of a 2.45 GHz ECR ion sources with the aim of the production of high currents beams for industrial purposes. Two ECR ions sources with different magnetic structures have been tested around the same RF injection system. A new 2.45 GHz ECRIS, named SPEED, featuring a dipolar magnetic field at the extraction has been designed and tested. A study of the beam extraction in the dipolar magnetic field is proposed. First tests have shown a total ionic current density of about 10 mA/cm 2 with a 900 W RF power. Tests with hydrogen plasma have shown a maximum of current on the H 2 + species. Recommendations are given to modify the magnetic structure to improve the H + production yield. The MONO1000 ion source has been tested at high RF power with a wave guide type injection system. Intense total ionic current densities have been measured up to about 95 mA/cm 2 with a diode extraction system. First results using an improved 5 electrode extraction system are presented. (author)

  3. Assessment of the gas dynamic trap mirror facility as intense neutron source for fusion material test irradiations

    International Nuclear Information System (INIS)

    Fischer, U.; Moeslang, A.; Ivanov, A.A.

    2000-01-01

    The gas dynamic trap (GDT) mirror machine has been proposed by the Budker Institute of nuclear physics, Novosibirsk, as a volumetric neutron source for fusion material test irradiations. On the basis of the GDT plasma confinement concept, 14 MeV neutrons are generated at high production rates in the two end sections of the axially symmetrical central mirror cell, serving as suitable irradiation test regions. In this paper, we present an assessment of the GDT as intense neutron source for fusion material test irradiations. This includes comparisons to irradiation conditions in fusion reactor systems (ITER, Demo) and the International Fusion Material Irradiation Facility (IFMIF), as well as a conceptual design for a helium-cooled tubular test assembly elaborated for the largest of the two test zones taking proper account of neutronics, thermal-hydraulic and mechanical aspects. This tubular test assembly incorporates ten rigs of about 200 cm length used for inserting instrumented test capsules with miniaturized specimens taking advantage of the 'small specimen test technology'. The proposed design allows individual temperatures in each of the rigs, and active heating systems inside the capsules ensures specimen temperature stability even during beam-off periods. The major concern is about the maximum achievable dpa accumulation of less than 15 dpa per full power year on the basis of the present design parameters of the GDT neutron source. A design upgrading is proposed to allow for higher neutron wall loadings in the material test regions

  4. A combined matrix isolation spectroscopy and cryosolid positron moderation apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Molek, Christopher D.; Michael Lindsay, C.; Fajardo, Mario E. [Air Force Research Laboratory, Munitions Directorate, Ordnance Division, Energetic Materials Branch, AFRL/RWME, 2306 Perimeter Road, Eglin AFB, Florida 32542-5910 (United States)

    2013-03-15

    We describe the design, construction, and operation of a novel apparatus for investigating efficiency improvements in thin-film cryogenic solid positron moderators. We report results from solid neon, argon, krypton, and xenon positron moderators which illustrate the capabilities and limitations of our apparatus. We integrate a matrix isolation spectroscopy diagnostic within a reflection-geometry positron moderation system. We report the optical thickness, impurity content, and impurity trapping site structures within our moderators determined from infrared absorption spectra. We use a retarding potential analyzer to modulate the flow of slow positrons, and report positron currents vs. retarding potential for the different moderators. We identify vacuum ultraviolet emissions from irradiated Ne moderators as the source of spurious signals in our channel electron multiplier slow positron detection channel. Our design is also unusual in that it employs a sealed radioactive Na-22 positron source which can be translated relative to, and isolated from, the cryogenic moderator deposition substrate. This allows us to separate the influences on moderator efficiency of surface contamination by residual gases from those of accumulated radiation damage.

  5. New positron annihilation spectroscopy techniques for thick materials

    International Nuclear Information System (INIS)

    Selim, F.A.; Wells, D.P.; Harmon, J.F.; Kwofie, J.; Erikson, G.; Roney, T.

    2003-01-01

    The Idaho Accelerator Center (IAC) has developed new techniques for positron annihilation spectroscopy (PAS) by using highly penetrating γ-rays to create positrons inside the material via pair production. Two sources of γ-rays have been employed. Bremsstrahlung beams from small-electron linacs (6 MeV) were used to generate positrons inside the material to perform Doppler-broadening spectroscopy. A 2 MeV proton beam was used to obtain coincident γ-rays from 27 Al target and enable lifetime and Doppler-broadening spectroscopy. This technique successfully measured stress/strain in thick samples, and showed promise to extend PAS into a variety of applications

  6. Electron-positron pair creation in heavy ion collisions

    International Nuclear Information System (INIS)

    Kienle, P.

    1987-01-01

    The authors review the status of experiments to study the electron positron pair creation in heavy ion atom collisions at bombarding energies close to the Coulomb barrier. The disentanglement and characterization of various sources of positrons observed in such collisions are described with a focus on the monoenergetic electron positron pairs observed. They seem to originate from the two-body decay of a family of neutral particles with masses of about 3m and lifetimes in the range of 6 x 10 - 14 s, produced by high Coulomb fields. First attempts were made to create these particles by resonant Bhabha scattering

  7. Positron production using a 1.7 MV pelletron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Alcantara, K. F.; Santos, A. C. F. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil); Crivelli, P. [Institute for Particle Physics, ETH Zurich (Switzerland)

    2013-04-19

    We report the foremost phase of a fourth generation positron source, being constructed at the Federal University of Rio de Janeiro. Positron yields are reported by making use of the {sup 19}F(p,{alpha}e{sup +}e{sup -}){sup 16}O reaction, where the fluorine target is in the form of a CaF{sub 2} pellet. Positron production has been observed by detecting 511 keV annihilation gamma rays emerging from the irradiated CaF{sub 2} target.

  8. Quantitative x-ray absorption imaging with a broadband source: application to high-intensity discharge lamps

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J J [National Institute of Standards and Technology, Gaithersburg, MD 20899-8422 (United States)], E-mail: jjcurry@nist.gov

    2008-07-21

    The case of x-ray absorption imaging in which the x-ray source is broadband and the detector does not provide spectral resolution is analysed. The specific motivation is observation of the Hg vapour distribution in high-intensity discharge (HID) lamps. When absorption by the vapour is small, the problem can be couched accurately in terms of a mean absorption cross section averaged over the x-ray spectral distribution, weighted by the energy-dependent response of the detector. The method is tested against a Au foil standard and then applied to Hg. The mean absorption cross section for Hg is calculated for a Ag-anode x-ray tube at accelerating voltages of 25, 30 and 35 kV, and for HIDs in fused silica or polycrystalline alumina arc tubes.

  9. Positron annihilation study of mechanochemical reaction between Zn+Se and Zn+S

    International Nuclear Information System (INIS)

    Kajcsos, Zs.; Horvath, D.; Tshakarov, C.G.; Gospodinov, G.G.; Vertes, A.

    1981-01-01

    Positron lifetime spectra were recorded and evaluated in mixtures of Zn+S and Zn+Se powders for various periods. The intensity of the long-lived positron lifetime component is shown to increase with grinding time until an abrupt decrease takes place at a specific grinding time, indicating the onset of the effective chemical reaction. The suitability of positron annihilation for investigating mechanochemical reactions is clearly demonstrated. (author)

  10. On the Possibility of Accelerating Positron on an Electron Wake at SABER

    International Nuclear Information System (INIS)

    Ischebeck, R.; Joshi, C.; Katsouleas, T.C.; Muggli, P.; Wang, X.

    2008-01-01

    A new approach for positron acceleration in non-linear plasma wakefields driven by electron beams is presented. Positrons can be produced by colliding an electron beam with a thin foil target embedded in the plasma. Integration of positron production and acceleration in one stage is realized by a single relativistic, intense electron beam. Simulations with the parameters of the proposed SABER facility [1] at SLAC suggest that this concept could be tested there

  11. Positron annihilation lifetime spectroscopy study of Kapton thin foils

    Science.gov (United States)

    Kanda, G. S.; Ravelli, L.; Löwe, B.; Egger, W.; Keeble, D. J.

    2016-01-01

    Variable energy positron annihilation lifetime spectroscopy (VE-PALS) experiments on polyimide material Kapton are reported. Thin Kapton foils are widely used in a variety of mechanical, electronic applications. PALS provides a sensitive probe of vacancy-related defects in a wide range of materials, including open volume in polymers. Varying the positron implantation energy enables direct measurement of thin foils. Thin Kapton foils are also commonly used to enclose the positron source material in conventional PALS measurements performed with unmoderated radionuclide sources. The results of depth-profiled positron lifetime measurements on 7.6 μm and 25 μm Kapton foils are reported and determine a dominant 385(1) ps lifetime component. The absence of significant nanosecond lifetime component due to positronium formation is confirmed.

  12. Origin and annihilation physics of positrons in the Galaxy

    International Nuclear Information System (INIS)

    Alexis, Anthony

    2014-01-01

    A gamma radiation at 511 keV is observed since the early 1970's toward the Galactic bulge region. This emission is the signature of a large number of electron-positron annihilations, the positron being the electron's antiparticle. Unfortunately, the origin of the positrons responsible for this emission is still a mystery. Many positron-source candidates have been suggested but none of them can account for the galactic annihilation emission. The spatial distribution of this emission is indeed very atypical. Since 2002, the SPI spectrometer onboard the INTEGRAL space laboratory revealed an emission strongly concentrated toward the galactic bulge and a weaker emission from the galactic disk. This morphology is unusual because it does not correspond to any of the known galactic astrophysical-object or interstellar-matter distributions. The assumption that positrons annihilate close to their sources (i.e. the spatial distribution of the annihilation emission reflects the spatial distribution of the sources) has consequently been called into question. Recent studies suggest that positrons could propagate far away from their sources before annihilating. This physical aspect could be the key point to solve the riddle of the galactic positron origin. This thesis is devoted to the modelling of the propagation and annihilation of positrons in the Galaxy, in order to compare simulated spatial models of the annihilation emission with recent measurements provided by SPI/INTEGRAL. This method allows to put constraints on the origin of galactic positrons. We therefore developed a propagation Monte-Carlo code of positrons within the Galaxy in which we implemented all the theoretical and observational knowledge about positron physics (sources, transport modes, energy losses, annihilation modes) and the interstellar medium of our Galaxy (interstellar gas distributions, galactic magnetic fields, structures of the gaseous phases). Due to uncertainties in several physical parameters

  13. Bremsstrahlung pair-production of positrons with low neutron background

    International Nuclear Information System (INIS)

    Lessner, E.

    1998-01-01

    Minimization of component activation is highly desirable at accelerator-based positron sources. Electrons in the 8- to 14-MeV energy range impinging on a target produce photons energetic enough to create electron-positron pairs; however, few of the photons are energetic enough to produce photoneutrons. Slow positron production by low-energy electrons impinging on a multilayer tungsten target with and without electromagnetic extraction between the layers was studied by simulation. The neutron background from 14-MeV electrons is expected to be significantly lower than that encountered with higher-energy electron beams. Numerical results are presented and some ideas for a low-activation slow-positron source are discussed

  14. Positron radiography of ignition-relevant ICF capsules

    Science.gov (United States)

    Williams, G. J.; Chen, Hui; Field, J. E.; Landen, O. L.; Strozzi, D. J.

    2017-12-01

    Laser-generated positrons are evaluated as a probe source to radiograph in-flight ignition-relevant inertial confinement fusion capsules. Current ultraintense laser facilities are capable of producing 2 × 1012 relativistic positrons in a narrow energy bandwidth and short time duration. Monte Carlo simulations suggest that the unique characteristics of such positrons allow for the reconstruction of both capsule shell radius and areal density between 0.002 and 2 g/cm2. The energy-downshifted positron spectrum and angular scattering of the source particles are sufficient to constrain the conditions of the capsule between preshot and stagnation. We evaluate the effects of magnetic fields near the capsule surface using analytic estimates where it is shown that this diagnostic can tolerate line integrated field strengths of 100 T mm.

  15. Characterization of lacunar defects by positrons annihilation

    International Nuclear Information System (INIS)

    Barthe, M.F.; Corbel, C.; Blondiaux, G.

    2003-01-01

    Among the nondestructive methods for the study of matter, the positrons annihilation method allows to sound the electronic structure of materials by measuring the annihilation characteristics. These characteristics depend on the electronic density as seen by the positon, and on the electron momentums distribution which annihilate with the positon. The positon is sensible to the coulombian potential variations inside a material and sounds preferentially the regions away from nuclei which represent potential wells. The lacunar-type defects (lack of nuclei) represent deep potential wells which can trap the positon up to temperatures close to the melting. This article describes the principles of this method and its application to the characterization of lacunar defects: 1 - positrons: matter probes (annihilation of electron-positon pairs, annihilation characteristics, positrons sources); 2 - positrons interactions in solids (implantation profiles, annihilation states, diffusion and trapping, positon lifetime spectrum: evolution with the concentration of defects); 3 - measurement of annihilation characteristics with two gamma photons (lifetime spectroscopy with the β + 22 Na isotope, spectroscopy of Doppler enlargement of the annihilation line); 4 - determination of the free volume of defects inside or at the surface of materials (annihilation signature in lacunar defects, lacuna, lacunar clusters and cavities, acceptors nature in semiconductors: ionic or lacunar, interface defects, precipitates in alloys); 5 - conclusions. (J.S.)

  16. Positron emission tomography of the lung

    International Nuclear Information System (INIS)

    Wollmer, P.

    1984-01-01

    Positron emission tomography enables the distribution of positron emitting isotopes to be imaged in a transverse plane through the body and the regional concentration of the isotope to be measured quantitatively. This thesis reports some applications of positron emission tomography to studies of pulmonary pathophysiology. Measurements in lung phantoms showed that regional lung density could be measured from a transmission tomogram obtained with an external source of positron emitting isotope. The regional, fractional blood volume was measured after labelling the blood with carbon-11-monoxide. Regional extravascular lung density (lung tissue and interstitial water per unit thoracic volume) was obtained by subtracting fractional blood volume from lung density. Measurements in normal subjects revealed large regional variations in lung density and fractional blood volume in the supine posture. Extravascular lung density showed a more uniform distribution. The technique has been used to study patients with chronic interstitial pulmonary oedema, pulmonary sarcoidosis and fibrosis, pulmonary arterial hypertension and patients with intracardiac, left-to-right shunt. Tomographic measurements of pulmonary tissue concentration of radionuclides are difficult, since corrections for the blood content and the inflation of the lung must be applied. A simultaneous measurement of lung density and fractional blood volume allows such corrections to be made and the extravascular tracer concentration to be calculated. This has been applied to measurements of the tissue penetration of carbon-11-labelled erythromycin in patients with lobar pneumonia. (author)

  17. Positron-molecule interactions and corresponding positron attachment to molecules. As a basis for positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Tachikawa, Masanori; Kimura, Mineo; Pichl, Lukas

    2007-01-01

    Through positron and electron interactions, they annihilate emitting primarily two gamma rays with 180-degree opposite directions. Positron spectroscopy using the characteristics of these gamma rays has been employed for analyzing various properties of material as well as for positron emission tomography (PET). However, its fundamental physics of positron-electron interactions and resulting features of emitting gamma rays are not well understood. By obtaining better understanding of positron interactions, it should become possible to provide the firm bases for positron spectroscopy in finer accuracy and quality. Here, we propose a significant mechanism for positron annihilation through positron attachment process, which may help increase the quality of positron spectroscopy. (author)

  18. Construction of a pulsed MeV positron beam line

    Energy Technology Data Exchange (ETDEWEB)

    Masuno, Shin-ichi; Okada, Sohei; Kawasuso, Atsuo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    To develop a fast (1 MeV) and short pulsed (100 ps) positron beam which enables defect behavior analysis of bulk states of materials even at high temperatures where a usual positron source would melt, we have been performing design study and construction of the beam line in a three-year program since 1994. This report describes the components, design study results and experimental results of the completed parts until now. (author)

  19. Electron-positron interactions

    International Nuclear Information System (INIS)

    Wiik, B.; Wolf, G.

    1979-01-01

    This book is an introduction into the physics of electron-positron interactions. After a description of electron-positron storage rings pure electromagnetic e + e - interactions, and the total cross section are considered. Then low energy processes, the production of the J/psi and psi' particles including their radiative decay as well as the search for other narrow vector states are described. Then after the quark model interpretation of J/psi and psi' charmed mesons, the heavy lepton t, and the upsilon resonances are described. Thereafter inclusive hadron production and jet formation is discussed. Finally the next generation of e + e - colliding rings is described, and the first results from PETRA are presented. This book is suited for all physicists, who want to get a general review about e + e - physics. (HSI) 891 HSI/HSI 892 RKD

  20. Tomography by positrons emission

    International Nuclear Information System (INIS)

    Mosconi, Sergio L.

    1999-01-01

    The tomography by positrons emission is a technology that allows to measure the concentration of positrons emission in a tri dimensional body through external measurements. Among the isotope emissions have carbon isotopes are ( 11 C), of the oxygen ( 15 O), of the nitrogen ( 13 N) that are three the element that constitute the base of the organic chemistry. Theses have on of the PET's most important advantages, since many biological interesting organic molecules can be tracer with these isotopes for the metabolism studies 'in vivo' through PET, without using organic tracers that modify the metabolism. The mentioned isotopes, also possess the characteristic of having short lifetime, that constitute on of PET's advantages from the dosimetric point of view. Among 11 C, 15 O, and 13 N, other isotopes that can be obtained of a generator as the 68 Ga and 82 Rb

  1. Positron emission tomography camera

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    A positron emission tomography camera having a plurality of detector rings positioned side-by-side or offset by one-half of the detector cross section around a patient area to detect radiation therefrom. Each ring contains a plurality of scintillation detectors which are positioned around an inner circumference with a septum ring extending inwardly from the inner circumference along each outer edge of each ring. An additional septum ring is positioned in the middle of each ring of detectors and parallel to the other septa rings, whereby the inward extent of all the septa rings may be reduced by one-half and the number of detectors required in each ring is reduced. The additional septa reduces the costs of the positron camera and improves its performance

  2. Positron emission tomography camera

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    A positron emission tomography camera having a plurality of detector rings positioned side-by-side or offset by one-half of the detector cross section around a patient area to detect radiation therefrom. Each detector ring or offset ring includes a plurality of photomultiplier tubes and a plurality of scintillation crystals are positioned relative to the photomultiplier tubes whereby each tube is responsive to more than one crystal. Each alternate crystal in the ring is offset by one-half or less of the thickness of the crystal such that the staggered crystals are seen by more than one photomultiplier tube. This sharing of crystals and photomultiplier tubes allows identification of the staggered crystal and the use of smaller detectors shared by larger photomultiplier tubes thereby requiring less photomultiplier tubes, creating more scanning slices, providing better data sampling, and reducing the cost of the camera. The offset detector ring geometry reduces the costs of the positron camera and improves its performance

  3. Positron probes of the Ge(1 0 0) surface: The effects of surface reconstructions and electron-positron correlations on positron trapping and annihilation characteristics

    International Nuclear Information System (INIS)

    Fazleev, N.G.; Jung, E.; Weiss, A.H.

    2007-01-01

    Positron annihilation induced Auger electron spectroscopy (PAES) has been applied to study the Ge(1 0 0) surface. The high-resolution PAES spectrum from the Ge(1 0 0) surface displays several strong Auger peaks corresponding to M 4,5 N 1 N 2,3 , M 2,3 M 4,5 M 4,5 , M 2,3 M 4,5 V and M 1 M 4,5 M 4,5 Auger transitions. The integrated peak intensities of Auger transitions are used to obtain experimental annihilation probabilities for the Ge 3d and 3p core level electrons. These experimental results are analyzed by performing calculations of positron surface states and annihilation characteristics of surface trapped positrons with relevant Ge core-level electrons for the non-reconstructed and reconstructed Ge(1 0 0)-p(2 x 1), Ge(1 0 0)-p(2 x 2) and Ge(1 0 0)-c(4 x 2) surfaces. It is found that the positron surface state wave function extends into the Ge lattice in the regions where atoms are displaced from their ideal terminated positions due to reconstructions. Estimates of the positron binding energy and the positron annihilation characteristics reveal their sensitivity to the specific atomic structure of the topmost layers of Ge(1 0 0). A comparison with PAES data reveals an agreement with theoretical core annihilation probabilities for the Auger transitions considered

  4. New techniques of positron annihilation

    International Nuclear Information System (INIS)

    1983-02-01

    Studies on new techniques of positron annihilation and its application to various fields are presented. First, production of slow positron and its characteristic features are described. The slow positron can be obtained from radioisotopes by using a positron moderator, proton beam bombardment on a boron target, and pair production by using an electron linear accelerator. Bright enhancement of the slow positron beam is studied. Polarized positron beam can be used for the study of the momentum distribution of an electron in ferromagnetic substances. Production of polarized positrons and measurements of polarization are discussed. Various phases of interaction between slow positrons and atoms (or molecules) are described. A comparative study of electron scavenging effects on luminescence and on positronium formation in cyclohexane is presented. The positron annihilation phenomena are applicable for the surface study. The microscopic information on the surface of porous material may be obtained. The slow positrons are also useful for the surface study. Production and application of slow muon (positive and negative) are presented in this report. (Kato, T.)

  5. Forward-planned intensity modulated radiation therapy using a cobalt source: A dosimetric study in breast cancer

    Directory of Open Access Journals (Sweden)

    Savino Cilla

    2013-01-01

    Full Text Available This analysis evaluates the feasibility and dosimetric results of a simplified intensity-modulated radiotherapy (IMRT treatment using a cobalt-therapy unit for post-operative breast cancer. Fourteen patients were included. Three plans per patient were produced by a cobalt-60 source: A standard plan with two wedged tangential beams, a standard tangential plan optimized without the use of wedges and a plan based on the forward-planned "field-in-field" IMRT technique (Co-FinF where the dose on each of the two tangential beams was split into two different segments and the two segments weight was determined with an iterative process. For comparison purposes, a 6-MV photon standard wedged tangential treatment plan was generated. D mean , D 98% , D 2% , V 95% , V 107%, homogeneity, and conformity indices were chosen as parameters for comparison. Co-FinF technique improved the planning target volume dose homogeneity compared to other cobalt-based techniques and reduced maximum doses (D 2% and high-dose volume (V 110% . Moreover, it showed a better lung and heart dose sparing with respect to the standard approach. The higher dose homogeneity may encourage the adoption of accelerated-hypofractionated treatments also with the cobalt sources. This approach can promote the spread of breast conservative treatment in developing countries.

  6. First experiments with a liquid-lithium based high-intensity 25-keV neutron source

    International Nuclear Information System (INIS)

    Paul, M.

    2014-01-01

    A high-intensity neutron source based on a Liquid-Lithium Target (LiLiT) and the 7 Li(p,n) reaction was developed at SARAF (Soreq Applied Research Accelerator Facility, Israel) and is used for nuclear astrophysics experiments. The setup was commissioned with a 1.3 mA proton beam at 1.91 MeV, producing a neutron yield of ~ 2 ×10 10 n/s, more than one order of magnitude larger than conventional 7 Li(p,n)-based neutron sources and peaked at ~25 keV. The LiLiT device consists of a high-velocity (> 4 m/s) vertical jet of liquid lithium (~200 °C) whose free surface is bombarded by the proton beam. The lithium jet acts both as the neutron-producing target and as a power beam dump. The target dissipates a peak power areal density of 2.5 kW/cm 2 and peak volume density of 0.5 MW/cm 3 with no change of temperature or vacuum regime in the vacuum chamber. Preliminary results of Maxwellian-averaged cross section measurements for stable isotopes of Zr and Ce, performed by activation in the neutron flux of LiLiT, and nuclear-astrophysics experiments in planning will be described. (author)

  7. Study on bulk shielding for a spallation neutron source facility in the high-intensity proton accelerator project

    CERN Document Server

    Maekawa, F; Takada, H; Teshigawara, M; Watanabe, N

    2002-01-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project, a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed in a main part of the Materials and Life Science Facility. This report describes results of a study on bulk shielding performance of a biological shield for the spallation neutron source by means of a Monte Carlo calculation method, that is important in terms of radiation safety and cost reduction. A shielding configuration was determined as a reference case by considering preliminary studies and interaction with other components, then shielding thickness that was required to achieve a target dose rate of 1 mu Sv/h was derived. Effects of calculation conditions such as shielding materials and dimensions on the shielding performance was investigated by changing those parameters. By taking all the results and design margins into account, a shielding configuration that was identified as the most appropriate was finally determined as follows. An iron shield regi...

  8. Positron emission tomography

    International Nuclear Information System (INIS)

    Marchenkov, N.S.

    2000-01-01

    The foundations of the positron emission tomography (PET), widely used for the medical diagnostics, are considered. The brief description of the cyclotron for production of radionuclides, applied in the PET, the target devices for manufacturing the position emitters, the moduli for the radiopharmaceuticals synthesis (RPS) for the PET is presented. The necessity and concept of complete automation of the RPS for the PET are discussed [ru

  9. Positron beam lifetime spectroscopy of atomic scale defect distributions in bulk and microscopic volumes

    International Nuclear Information System (INIS)

    Howell, R.H.; Cowan, T.E.; Hartley, J.; Sterne, P.; Brown, B.

    1996-05-01

    We are developing a defect analysis capability based on two positron beam lifetime spectrometers: the first is based on a 3 MeV electrostatic accelerator and the second on our high current linac beam. The high energy beam lifetime spectrometer is operational and positron lifetime analysis is performed with a 3 MeV positron beam on thick samples. It is being used for bulk sample analysis and analysis of samples encapsulated in controlled environments for insitu measurements. A second, low energy, microscopically focused, pulsed positron beam for defect analysis by positron lifetime spectroscopies is under development at the LLNL high current positron source. This beam will enable defect specific, 3-D maps of defect concentration with sub-micron location resolution and when coupled with first principles calculations of defect specific positron lifetimes it will enable new levels of defect concentration mapping and defect identification

  10. Positron annihilation spectroscopy study of porous silicon

    International Nuclear Information System (INIS)

    Britkov, O.M.; Gavrilov, S.A.; Kalugin, V.V.; Timoshenkov, S.P.; Grafutin, V.I.; Ilyukhina, O.V.; Myasishcheva, G.G.; Prokop'ev, E.P.; Funtikov, Yu.V.

    2007-01-01

    Experimental studies of porous silicon by means of a standard positron annihilation technique based on measuring the angular distribution of annihilation photons, are reported. It was shown that the spectra of angular correlation of annihilation radiation in porous silicon are approximated well by a parabola (I p ) and two Gaussians (I g1 , I g2 ). The narrow Gaussian component I g1 is most likely due to the annihilation of localized para-positronium in pores. The full width at half maximum is on the order of 0.8 mrad, a value that corresponds to the kinetic energy of an annihilating positron-electron pair (0.079 ± 0.012 eV), and its intensity is about 1.5%. The total positronium yield in porous silicon reaches 6% in this case. The particle radius determined in the study is about 10-20 A [ru

  11. Status of the advanced photon source

    International Nuclear Information System (INIS)

    Galayda, J.

    1996-01-01

    This report presents general information on the Advanced Photon Source (APS) and then breaks down the APS project into three categories: accelerator systems, experimental facilities, and conventional facilities. The accelerator systems consist of the 7 GeV APS positron storage ring and a 7 GeV positron injector. The experimental facilities include 20 undulator radiation sources and the x-ray beamline components necessary to transport their extraordinarily intense x-ray beams outside the accelerator enclosure. Also included are x-ray beamline components for 20 bending magnet radiation sources. The conventional facilities consist of the accelerator enclosures, a 35,300 m 2 experimental hall to house the x-ray beamlines, an office building for the APS staff and lab/office facilities for the research groups which will construct and operate the first 40 beamlines. APS users are described, and the properties of synchrotron radiation are discussed

  12. Low-energy positron interactions with atoms and molecules

    International Nuclear Information System (INIS)

    Surko, C M; Gribakin, G F; Buckman, S J

    2005-01-01

    This paper is a review of low-energy positron interactions with atoms and molecules. Processes of interest include elastic scattering, electronic and vibrational excitation, ionization, positronium formation and annihilation. An overview is presented of the currently available theoretical and experimental techniques to study these phenomena, including the use of trap-based positron beam sources to study collision processes with improved energy resolution. State-resolved measurements of electronic and vibrational excitation cross sections and measurement of annihilation rates in atoms and molecules as a function of incident positron energy are discussed. Where data are available, comparisons are made with analogous electron scattering cross sections. Resonance phenomena, common in electron scattering, appear to be less common in positron scattering. Possible exceptions include the sharp onsets of positron-impact electronic and vibrational excitation of selected molecules. Recent energy-resolved studies of positron annihilation in hydrocarbons containing more than a few carbon atoms provide direct evidence that vibrational Feshbach resonances underpin the anomalously large annihilation rates observed for many polyatomic species. We discuss open questions regarding this process in larger molecules, as well as positron annihilation in smaller molecules where the theoretical picture is less clear. (topical review)

  13. Positron Annihilation in Insulating Materials

    International Nuclear Information System (INIS)

    Asoka-Kumar, P; Sterne, PA

    2002-01-01

    We describe positron results from a wide range of insulating materials. We have completed positron experiments on a range of zeolite-y samples, KDP crystals, alkali halides and laser damaged SiO 2 . Present theoretical understanding of positron behavior in insulators is incomplete and our combined theoretical and experimental approach is aimed at developing a predictive understanding of positrons and positronium annihilation characteristics in insulators. Results from alkali halides and alkaline-earth halides show that positrons annihilate with only the halide ions, with no apparent contribution from the alkali or alkaline-earth cations. This contradicts the results of our existing theory for metals, which predicts roughly equal annihilation contributions from cation and anion. We also present result obtained using Munich positron microprobe on laser damaged SiO 2 samples

  14. Temperature and time dependence of free volume in bisphenol A polycarbonate studied by positron lifetime spectroscopy

    NARCIS (Netherlands)

    Kluin, J.E.; Yu, Z.; Vleeshouwers, S.M.; McGervey, J.D.; Jamieson, A.M.; Simha, R.

    1992-01-01

    New positron lifetime expts. were carried out for Bisphenol-A polycarbonate. The influence of unavoidable pos. charged positron irradn. on the lifetime and intensity of o-positronium (o-Ps) annihilation was studied. Results obtained using a state-of-the-art lifetime spectrometer (count rate 670 cps

  15. Comment on AMS02 results support the secondary origin of cosmic ray positrons

    OpenAIRE

    Dado, Shlomo; Dar, Arnon

    2015-01-01

    We present a simple calculation of the flux of secondary positrons produced in the ISM that is based only on priors. Our calculated ISM flux agrees very well with that calculated with the elaborate GALPROP code. It confirms that secondary production of positrons in the ISM by the primary cosmic rays cannot explain the observed sub-TeV flux of CR positrons. Moreover, we show that once energy loss of positrons in source and in the ISM are included, secondary production inside the CR sources plu...

  16. Applications of positron depth profiling

    International Nuclear Information System (INIS)

    Hakvoort, R.A.

    1993-01-01

    In this thesis some contributions of the positron-depth profiling technique to materials science have been described. Following studies are carried out: Positron-annihilation measurements on neon-implanted steel; Void creation in silicon by helium implantation; Density of vacancy-type defects present in amorphous silicon prepared by ion implantation; Measurements of other types of amorphous silicon; Epitaxial cobalt disilicide prepared by cobalt outdiffusion. Positron-annihilation experiments on low-pressure CVD silicon-nitride films. (orig./MM)

  17. Applications of positron depth profiling

    Energy Technology Data Exchange (ETDEWEB)

    Hakvoort, R A

    1993-12-23

    In this thesis some contributions of the positron-depth profiling technique to materials science have been described. Following studies are carried out: Positron-annihilation measurements on neon-implanted steel; Void creation in silicon by helium implantation; Density of vacancy-type defects present in amorphous silicon prepared by ion implantation; Measurements of other types of amorphous silicon; Epitaxial cobalt disilicide prepared by cobalt outdiffusion. Positron-annihilation experiments on low-pressure CVD silicon-nitride films. (orig./MM).

  18. Positron emission tomography. Basic principles

    International Nuclear Information System (INIS)

    Rodriguez, Jose Luis; Massardo, Teresa; Gonzalez, Patricio

    2001-01-01

    The basic principles of positron emission tomography (PET) technique are reviewed. lt allows to obtain functional images from gamma rays produced by annihilation of a positron, a positive beta particle. This paper analyzes positron emitters production in a cyclotron, its general mechanisms, and the various detection systems. The most important clinical applications are also mentioned, related to oncological uses of fluor-l8-deoxyglucose

  19. Total spectrum of photon emission by an ultra-relativistic positron channelling in a periodically bent crystal

    International Nuclear Information System (INIS)

    Krause, W.; Korol, A.V.; Department of Physics, St Petersburg State Maritime Technical University, Leninskii prospect 101, St Petersburg 198262; Solov'yov, A.V.; AF Ioffe Physical-Technical Institute of the Academy of Sciences of Russia, Polytechnicheskaya 26, St Petersburg 194021; Greiner, W.

    2000-01-01

    We present the results of numerical calculations of the channelling and undulator radiation generated by ultra-relativistic positron channelling along a crystal plane, which is periodically bent. The bending might be due to either the propagation of a transverse acoustic wave through the crystal, or the static strain as it occurs in superlattices. The periodically bent crystal serves as an undulator. We investigate the dependence of the intensities of both the ordinary channelling and the undulator radiations on the parameters of the periodically bent channel with simultaneous account for the de-channelling effect of the positrons. We demonstrate that there is a range of parameters in which the undulator radiation dominates over the channelling one and the characteristic frequencies of both types of radiation are well separated. This result is important, because the undulator radiation can be used to create a tunable source of x-ray and γ-radiation. (author). Letter-to-the-editor

  20. Mining the bulk positron lifetime

    International Nuclear Information System (INIS)

    Aourag, H.; Guittom, A.

    2009-01-01

    We introduce a new approach to investigate the bulk positron lifetimes of new systems based on data-mining techniques. Through data mining of bulk positron lifetimes, we demonstrate the ability to predict the positron lifetimes of new semiconductors on the basis of available semiconductor data already studied. Informatics techniques have been applied to bulk positron lifetimes for different tetrahedrally bounded semiconductors in order to discover computational design rules. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)