WorldWideScience

Sample records for intense green emission

  1. Modulating emission intensity of GaN-based green light emitting diodes on c-plane sapphire

    International Nuclear Information System (INIS)

    Du, Chunhua; Ma, Ziguang; Zhou, Junming; Lu, Taiping; Jiang, Yang; Jia, Haiqiang; Liu, Wuming; Chen, Hong

    2014-01-01

    The asymmetric dual-wavelength (green/blue) coupled InGaN/GaN multiple quantum wells were proposed to modulate the green emission intensity. Electroluminescent measurements demonstrate the conspicuous increment of the green light intensity by decreasing the coupled barrier thickness. This was partly attributed to capture of more carriers when holes tunnel across the thinner barrier from the blue quantum wells, as a hole reservoir, to the green quantum wells. While lower effective barrier height of the blue quantum wells benefits improved hole transportation from p-GaN to the active region. Efficiency droop of the green quantum wells was partially alleviated due to the enhanced injection efficiency of holes

  2. Intense green emission from Tb3+- doped Teo2-Wo3-Geo2 glasses

    Science.gov (United States)

    Subrahmanyam, Tallam; Gopal, Kotalo Rama; Suvarna, Reniguntla Padma; Jamalaiah, Bungala Chinna

    2018-04-01

    Tb3+ -doped oxyfluoro tellurite (TWGTb) glasses were prepared by conventional melt quenching technique. The Judd-Ofelt theory has been applied to evaluate the Ωλ (λ=2,4,6) intensity parameters. The TWGTb glasses exhibit 5D3 → 7F5-3 and 5D4 → 7F6-0 transitions when excited at 316 nm wavelength. The variation of intensity of 5D4 → 7F5 (Green) and 5D3 → 7F4 (Blue) transitions and the green to blue (IG/IB) intensity ratios were studied as a function of Tb3+ ions concentration. The laser characteristic parameters such as effective bandwidth (Δλeff), stimulated emission cross-section (σe), gain bandwidth (σe×Δλeff) and optical gain (σe×τR) were determined using the emission spectra and radiative parameters. The luminescence decay profiles exhibit single-exponential nature for all the samples. Based on the experimental results we suggest that the 1.0 mol% of Tb3+-doped TWGTb glass could be the suitable laser host materials to emit intense green luminescence at 545 nm.

  3. Green emission from ZnO–MgO nanocomposite due to Mg diffusion at the interface

    International Nuclear Information System (INIS)

    Sowri Babu, K.; Ramachandra Reddy, A.; Venugopal Reddy, K.

    2015-01-01

    The origin and electronic transitions responsible for green emission observed from ZnO–MgO nanocomposite are investigated. The photoluminescence (PL) spectrum of ZnO–MgO nanocomposite annealed at 600 °C showed only a sharp and intense UV emission peak centered at 396 nm. As the annealing temperature increased from 600 °C to 1000 °C, the green emission positioned at 503 nm is emerged and its intensity enhanced gradually and reached maximum value at 900 °C and then decreased at 1000 °C. It is observed that both UV and green emission intensities are enhanced with variation of atomic ratio (Zn/Mg=1.52, 0.50, 0.30, 0.21, 0.15). Our experiments confirmed that the enhancement of green emission intensity is due to the formation of oxygen vacancies (V o ) due to Mg doping at the interface of ZnO and MgO. This experimental observation is in good agreement with the recent theoretical predictions which states that Mg doping in ZnO lowers the formation energies of oxygen vacancies (V o ) and zinc interstitials (Zn i ) significantly. PL excitation and emission spectra analysis reveals that excited state for both UV and green emissions is same and lies 0.24 eV below the conduction band of ZnO. Hence, the green emission is attributed to the transition of an electron form the shallow donor (defect level of Zn i ) to the deep acceptor (defect level of V o ). - Highlights: • It is found that the UV emission intensity from ZnO–MgO nanocomposite enhanced with increase of Mg concentration. • The intensity of the green emission is enhanced gradually as the temperature increased from 600 °C to 900 °C and then decreased at 1000 °C. • The effect of Mg concentration, MgO, strain at the interface on green emission is investigated. • These experiments confirmed that green emission is due to the oxygen vacancies created in ZnO due to the Mg doping at the interface and it is in good agreement with the theoretical predictions. • The decrease of green emission intensity is

  4. SHI induced enhancement in green emission from nanocrystalline CdS thin films for photonic applications

    International Nuclear Information System (INIS)

    Kumar, Pragati; Saxena, Nupur; Chandra, Ramesh; Gao, Kun; Zhou, Shengqiang; Agarwal, Avinash; Singh, Fouran; Gupta, Vinay; Kanjilal, D.

    2014-01-01

    Intense green emission is reported from nanocrystalline CdS thin films grown by pulsed laser deposition. The effect of ion beam induced dense electronic excitation on luminescence property of CdS films is explored under irradiation using 70 MeV 58 Ni 6+ ions. It is found that swift heavy ion beam irradiation enhances the emission intensity by an order of 1 and broadens the emission range. This feature is extremely useful to enhance the performance of different photonic devices like light emitting diodes and lasers, as well as luminescence based sensors. To examine the role of energy relaxation process of swift heavy ions in creation/annihilation of different defect levels, multi-peaks are fitted in photoluminescence spectra using a Gaussian function. The variation of contribution of different emissions in green emission with ion fluence is studied. Origin of enhancement in green emission is supported by various characterization techniques like UV–visible absorption spectroscopy, glancing angle X-ray diffraction, micro-Raman spectroscopy and transmission electron microscopy. A possible mechanism of enhanced GE due to ion beam irradiation is proposed on the basis of existing models. -- Highlights: • Room temperature green luminescence nanocrystalline CdS thin films grown by pulsed laser deposition. • Enhanced green emission by means of swift heavy ion irradiation. • Multipeak fitting of photoluminescence spectra using a Gaussian function. • Variation of area contributed by different emissions in green emission is studied with respect to ion fluence. • Mechanism of enhanced green emission is discussed based on creation/annihilation of defects due to ion beam irradiation

  5. SHI induced enhancement in green emission from nanocrystalline CdS thin films for photonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pragati, E-mail: pkumar.phy@gmail.com [Department of Physics, Bareilly College, Shahmat Ganj Road, Bareilly 243005, Uttar Pradesh (India); Saxena, Nupur [Inter University Accelerator Centre, Aruna Asaf Ali Marg, P.O. Box 10502, New Delhi 110067 (India); Chandra, Ramesh [Institute Instrumentation Centre, Indian Institute of Technology, Roorkee 247667 (India); Gao, Kun; Zhou, Shengqiang [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), P.O. Box 510119, 01314 Dresden (Germany); Agarwal, Avinash [Department of Physics, Bareilly College, Shahmat Ganj Road, Bareilly 243005, Uttar Pradesh (India); Singh, Fouran [Inter University Accelerator Centre, Aruna Asaf Ali Marg, P.O. Box 10502, New Delhi 110067 (India); Gupta, Vinay [Department of Physics and Astrophysics, Delhi University, Delhi 110007 (India); Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, P.O. Box 10502, New Delhi 110067 (India)

    2014-03-15

    Intense green emission is reported from nanocrystalline CdS thin films grown by pulsed laser deposition. The effect of ion beam induced dense electronic excitation on luminescence property of CdS films is explored under irradiation using 70 MeV {sup 58}Ni{sup 6+} ions. It is found that swift heavy ion beam irradiation enhances the emission intensity by an order of 1 and broadens the emission range. This feature is extremely useful to enhance the performance of different photonic devices like light emitting diodes and lasers, as well as luminescence based sensors. To examine the role of energy relaxation process of swift heavy ions in creation/annihilation of different defect levels, multi-peaks are fitted in photoluminescence spectra using a Gaussian function. The variation of contribution of different emissions in green emission with ion fluence is studied. Origin of enhancement in green emission is supported by various characterization techniques like UV–visible absorption spectroscopy, glancing angle X-ray diffraction, micro-Raman spectroscopy and transmission electron microscopy. A possible mechanism of enhanced GE due to ion beam irradiation is proposed on the basis of existing models. -- Highlights: • Room temperature green luminescence nanocrystalline CdS thin films grown by pulsed laser deposition. • Enhanced green emission by means of swift heavy ion irradiation. • Multipeak fitting of photoluminescence spectra using a Gaussian function. • Variation of area contributed by different emissions in green emission is studied with respect to ion fluence. • Mechanism of enhanced green emission is discussed based on creation/annihilation of defects due to ion beam irradiation.

  6. Photoluminescence and cathodoluminescence of Mn doped zinc silicate nanophosphors for green and yellow field emissions displays

    Science.gov (United States)

    Omri, K.; Alyamani, A.; Mir, L. El

    2018-02-01

    Mn2+-doped Zn2SiO4 (ZSM2+) was synthesized by a facile sol-gel technique. The obtained samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, photoluminescence (PL) and cathodoluminescence (CL) techniques. Under UV excitation, spectra showed that the α-ZSM2+ phosphor exhibited a strong green emission around 525 nm and reached the highest luminescence intensity with the Mn doping concentration of 5 at.%. However, for the β-ZSM2+ phase, an interesting yellow emission band centered at 575 nm of Mn2+ at the Zn2+ tetrahedral sites was observed. In addition, an unusual red shift with increasing Mn2+ content was also found and attributed to an exchange interaction between Mn2+. Both PL and CL spectra exhibit an intense green and yellow emission centered at 525 and 573 nm, respectively, due to the 4T1 (4G)-6A1 (6S) transition of Mn2+. Furthermore, these results indicated that the Mn2+-doped zinc silicate phosphors may have potential applications in green and yellow emissions displays like field emission displays (FEDs).

  7. Self-trapped excitonic green emission from layered semiconductors

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2009-01-01

    Crystals of layered semiconductor are grown by Bridgman technique and are studied them under two-photon excitation by a Q-switched 20-ns pulse laser. The photoluminescence (PL) emission spectra of the crystals are measured at various pumping powers and temperatures. The PL spectra appear broad and structureless emissions with their peaks in the green spectral region. The characteristic emissions are from self-trapped excitons of the crystals. An analysis of the spectra measured at various pumping powers shows a quadratic dependence of the PL peak intensity on the power, confirming a biphotonic process of the two-photon pumping. The temperature dependence shows an enhancement of the nonlinear response at low temperatures. The activation energy is estimated and found to be 2.4 meV. The roles of the bound excitons in the observed PL are discussed briefly.

  8. Self-trapped excitonic green emission from layered semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2009-08-15

    Crystals of layered semiconductor are grown by Bridgman technique and are studied them under two-photon excitation by a Q-switched 20-ns pulse laser. The photoluminescence (PL) emission spectra of the crystals are measured at various pumping powers and temperatures. The PL spectra appear broad and structureless emissions with their peaks in the green spectral region. The characteristic emissions are from self-trapped excitons of the crystals. An analysis of the spectra measured at various pumping powers shows a quadratic dependence of the PL peak intensity on the power, confirming a biphotonic process of the two-photon pumping. The temperature dependence shows an enhancement of the nonlinear response at low temperatures. The activation energy is estimated and found to be 2.4 meV. The roles of the bound excitons in the observed PL are discussed briefly.

  9. The influencing factors of CO2 emission intensity of Chinese agriculture from 1997 to 2014.

    Science.gov (United States)

    Long, Xingle; Luo, Yusen; Wu, Chao; Zhang, Jijian

    2018-05-01

    In China, agriculture produces the greatest chemical oxygen demand (COD) emissions in wastewater and the most methane (CH 4 ) emissions. It is imperative that agricultural pollution in China be reduced. This study investigated the influencing factors of the CO 2 emission intensity of Chinese agriculture from 1997 to 2014. We analyzed the influencing factors of the CO 2 emission intensity through the first-stage least-square regression. We also analyzed determinants of innovation through the second-stage least-square regression. We found that innovation negatively affected the CO 2 emission intensity in the model of the nation. FDI positively affected innovation in China. It is important to enhance indigenous innovation for green agriculture through labor training and collaboration between agriculture and academia.

  10. CO2 emissions and economic activity: Short- and long-run economic determinants of scale, energy intensity and carbon intensity

    International Nuclear Information System (INIS)

    Andersson, Fredrik N.G.; Karpestam, Peter

    2013-01-01

    We analyze the short-term and the long-term determinants of energy intensity, carbon intensity and scale effects for eight developed economies and two emerging economies from 1973 to 2007. Our results show that there is a difference between the short-term and the long-term results and that climate policy are more likely to affect emission over the long-term than over the short-term. Climate policies should therefore be aimed at a time horizon of at least 8 years and year-on-year changes in emissions contains little information about the trend path of emissions. In the long-run capital accumulation is the main driver of emissions. Productivity growth reduces the energy intensity while the real oil price reduces both the energy intensity and the carbon intensity. The real oil price effect suggests that a global carbon tax is an important policy tool to reduce emissions, but our results also suggest that a carbon tax is likely to be insufficient decouple emission from economic growth. Such a decoupling is likely to require a structural transformation of the economy. The key policy challenge is thus to build new economic structures where investments in green technologies are more profitable. - Highlights: • We model determinants of scale, energy intensity and carbon intensity. • Using band spectrum regressions, we separate between short and long run effects. • Different economic variables affect emission in the short and long run. • CO 2 reducing policies should have a long run horizon of (at least 8 years). • A low carbon society requires a structural transformation of the economy

  11. Air quality and health effects of biogenic volatile organic compounds emissions from urban green spaces and the mitigation strategies

    International Nuclear Information System (INIS)

    Ren, Yuan; Qu, Zelong; Du, Yuanyuan; Xu, Ronghua; Ma, Danping; Yang, Guofu; Shi, Yan; Fan, Xing; Tani, Akira; Guo, Peipei; Ge, Ying; Chang, Jie

    2017-01-01

    Biogenic volatile organic compounds (BVOCs) emissions lead to fine particulate matter (PM 2.5 ) and ground-level ozone pollution, and are harmful to human health, especially in urban areas. However, most BVOCs estimations ignored the emissions from urban green spaces, causing inaccuracies in the understanding of regional BVOCs emissions and their environmental and health effects. In this study, we used the latest local vegetation datasets from our field survey and applied an estimation model to analyze the spatial-temporal patterns, air quality impacts, health damage and mitigating strategies of BVOCs emissions in the Greater Beijing Area. Results showed that: (1) the urban core was the hotspot of regional BVOCs emissions for the highest region-based emission intensity (3.0 g C m −2 yr −1 ) among the 11 sub-regions; (2) urban green spaces played much more important roles (account for 62% of total health damage) than rural forests in threating human health; (3) BVOCs emissions from green spaces will more than triple by 2050 due to urban area expansion, tree growth and environmental changes; and (4) adopting proactive management (e.g. adjusting tree species composition) can reduce 61% of the BVOCs emissions and 50% of the health damage related to BVOCs emissions by 2050. - Highlights: • Urban core is the hotspot of biogenic volatile organic compounds (BVOCs) emissions in the Greater Beijing Area. • Neglecting BVOCs emissions from urban green spaces leads to a 62% underestimation of the related health damage. • BVOCs contribute significantly to ozone pollution while make limited contribution to PM 2.5 pollution. • BVOCs emissions from urban green spaces will triple by 2050, and 61% of these emissions can be reduced through management. - Although BVOCs emissions from urban green spaces make limited contribution to regional emissions, their health impacts could be significant in urban areas.

  12. Effects of an Intensive Resistant Training Sessions and Green Tea

    Directory of Open Access Journals (Sweden)

    Mohammad Esmaeil Afzalpour

    2014-03-01

    Full Text Available Background: Intensive and acute exercise trainings may induce oxidative stress, but antioxidant supplements may attenuate its degenerative consequences. The aim of this research was to examine the effect of green tea supplementation on the oxidative stress indices after an intensive resistance training session. Materials and Methods: 40 non-athletes (without regular physical activity women were randomly divided into 4 equal (n=10 groups including green tea supplementation, green tea supplementation plus resistance training, resistance training, and control groups. After supplementation period (600 mg/day, 14 days, resistance training and green tea supplementation plus resistance training groups performed an intensive resistance training session at 75-85 % of one repetition maximum. The malondialdehyde and total thiol were measured as oxidative stress indices. Data were analyzed by using of repeated measure ANOVA and LSD tests at p<0.056T. Results: Results showed that after 14 days of green tea consumption, malondialdehyde significantly decreased in green tea supplementation (p=0.03 and green tea supplementation plus resistance training (p=0.01 groups, while total thiol increased significantly (p=0.01 in two green tea supplementation groups. However, an intensive resistance training session increased malondialdehyde (p=0.01 without any significantly changes in total thiol (p=0.426T. Conclusion: It seems that green tea supplementation can inhibit exercise-induced protein and lipid oxidation in non-athletes women via enhancement of antioxidant defense system of the body6T.6T

  13. Reducing the Livestock related green house gases emission

    Directory of Open Access Journals (Sweden)

    D Indira

    2012-08-01

    Full Text Available Cattle rearing generate more global warming green house gases than driving cars. These green house gases leads to changes in the climate. This climate change affects the livestock, man and natural environment continuously. For this reason it is important for livestock farmers to find the ways which minimize these gases emission. In this article the causes of climate change and effects, measures to be taken by farmers and their efficiency in reducing green house gases emission were reviewed briefly to make the farmers and students aware of the reduction of global warming green house gases and measures to be taken for reducing these gases. [Vet. World 2012; 5(4.000: 244-247

  14. Optical thermometry based on green upconversion emission in Er3+/Yb3+ codoped BaGdF5 glass ceramics

    Science.gov (United States)

    Wu, Ting; Zhao, Shilong; Lei, Ruoshan; Huang, Lihui; Xu, Shiqing

    2018-02-01

    Er3+/Yb3+ codoped BaGdF5 glass ceramics have been prepared and used to develop a portable all-fiber temperature sensor based on fluorescence intensity ratio technique. XRD and TEM results affirm the generation of BaGdF5 nanocrystals in the borosilicate glass. Eu3+ ions are used as spectral probe to investigate external environment around rare earth (RE) ions. Intense green upconversion emissions from Er3+ ions are detected in the BaGdF5 glass ceramics and their intensity are enhanced about three orders of magnitude after heat treatment, which is attributed to the enrichment of RE ions in the BaGdF5 phase. Based on green upconversion emission from Er3+ ions, the temperature sensing property of the portable all-fiber temperature sensor is studied. The maximum absolute sensitivity is 15.5 × 10-4 K-1 at 567 K and the relative sensitivity is 1.28% K-1 at 298 K, respectively.

  15. Green Driver: Travel Behaviors Revisited on Fuel Saving and Less Emission

    Directory of Open Access Journals (Sweden)

    Nurul Hidayah Muslim

    2018-01-01

    Full Text Available Road transportation is the main energy consumer and major contributor of ever-increasing hazardous emissions. Transportation professionals have raised the idea of applying the green concept in various areas of transportation, including green highways, green vehicles and transit-oriented designs, to tackle the negative impact of road transportation. This research generated a new dimension called the green driver to remediate urgently the existing driving assessment models that have intensified emissions and energy consumption. In this regard, this study aimed to establish the green driver’s behaviors related to fuel saving and emission reduction. The study has two phases. Phase one involves investigating the driving behaviors influencing fuel saving and emission reduction through a systematic literature review and content analysis, which identified twenty-one variables classified into four clusters. These clusters included the following: (i FEf1, which is driving style; (ii FEf2, which is driving behavior associated with vehicle transmission; (iii FEf3, which is driving behavior associated with road design and traffic rules; and (iv FEf4, which is driving behavior associated with vehicle operational characteristics. The second phase involves validating phase one findings by applying the Grounded Group Decision Making (GGDM method. The results of GGDM have established seventeen green driving behaviors. The study conducted the Green Value (GV analysis for each green behavior on fuel saving and emission reduction. The study found that aggressive driving (GV = 0.16 interferes with the association between fuel consumption, emission and driver’s personalities. The research concludes that driver’s personalities (including physical, psychological and psychosocial characteristics have to be integrated for advanced in-vehicle driver assistance system and particularly, for green driving accreditation.

  16. Air quality and health effects of biogenic volatile organic compounds emissions from urban green spaces and the mitigation strategies.

    Science.gov (United States)

    Ren, Yuan; Qu, Zelong; Du, Yuanyuan; Xu, Ronghua; Ma, Danping; Yang, Guofu; Shi, Yan; Fan, Xing; Tani, Akira; Guo, Peipei; Ge, Ying; Chang, Jie

    2017-11-01

    Biogenic volatile organic compounds (BVOCs) emissions lead to fine particulate matter (PM 2.5 ) and ground-level ozone pollution, and are harmful to human health, especially in urban areas. However, most BVOCs estimations ignored the emissions from urban green spaces, causing inaccuracies in the understanding of regional BVOCs emissions and their environmental and health effects. In this study, we used the latest local vegetation datasets from our field survey and applied an estimation model to analyze the spatial-temporal patterns, air quality impacts, health damage and mitigating strategies of BVOCs emissions in the Greater Beijing Area. Results showed that: (1) the urban core was the hotspot of regional BVOCs emissions for the highest region-based emission intensity (3.0 g C m -2 yr -1 ) among the 11 sub-regions; (2) urban green spaces played much more important roles (account for 62% of total health damage) than rural forests in threating human health; (3) BVOCs emissions from green spaces will more than triple by 2050 due to urban area expansion, tree growth and environmental changes; and (4) adopting proactive management (e.g. adjusting tree species composition) can reduce 61% of the BVOCs emissions and 50% of the health damage related to BVOCs emissions by 2050. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Rainwater runoff retention on an aged intensive green roof.

    Science.gov (United States)

    Speak, A F; Rothwell, J J; Lindley, S J; Smith, C L

    2013-09-01

    Urban areas are characterised by large proportions of impervious surfaces which increases rainwater runoff and the potential for surface water flooding. Increased precipitation is predicted under current climate change projections, which will put further pressure on urban populations and infrastructure. Roof greening can be used within flood mitigation schemes to restore the urban hydrological balance of cities. Intensive green roofs, with their deeper substrates and higher plant biomass, are able to retain greater quantities of runoff, and there is a need for more studies on this less common type of green roof which also investigate the effect of factors such as age and vegetation composition. Runoff quantities from an aged intensive green roof in Manchester, UK, were analysed for 69 rainfall events, and compared to those on an adjacent paved roof. Average retention was 65.7% on the green roof and 33.6% on the bare roof. A comprehensive soil classification revealed the substrate, a mineral soil, to be in good general condition and also high in organic matter content which can increase the water holding capacity of soils. Large variation in the retention data made the use of predictive regression models unfeasible. This variation arose from complex interactions between Antecedant Dry Weather Period (ADWP), season, monthly weather trends, and rainfall duration, quantity and peak intensity. However, significantly lower retention was seen for high rainfall events, and in autumn, which had above average rainfall. The study period only covers one unusually wet year, so a longer study may uncover relationships to factors which can be applied to intensive roofs elsewhere. Annual rainfall retention for Manchester city centre could be increased by 2.3% by a 10% increase in intensive green roof construction. The results of this study will be of particular interest to practitioners implementing greenspace adaptation in temperate and cool maritime climates. Copyright © 2013

  18. A COUPLED CHEMISTRY-EMISSION MODEL FOR ATOMIC OXYGEN GREEN AND RED-DOUBLET EMISSIONS IN THE COMET C/1996 B2 HYAKUTAKE

    International Nuclear Information System (INIS)

    Bhardwaj, Anil; Raghuram, Susarla

    2012-01-01

    The green (5577 Å) and red-doublet (6300, 6364 Å) lines are prompt emissions of metastable oxygen atoms in the 1 S and 1 D states, respectively, that have been observed in several comets. The value of the intensity ratio of green to red-doublet (G/R ratio) of 0.1 has been used as a benchmark to identify the parent molecule of oxygen lines as H 2 O. A coupled chemistry-emission model is developed to study the production and loss mechanisms of the O( 1 S) and O( 1 D) atoms and the generation of red and green lines in the coma of C/1996 B2 Hyakutake. The G/R ratio depends not only on photochemistry, but also on the projected area observed for cometary coma, which is a function of the dimension of the slit used and the geocentric distance of the comet. Calculations show that the contribution of photodissociation of H 2 O to the green (red) line emission is 30%-70% (60%-90%), while CO 2 and CO are the next potential sources contributing 25%-50% ( 1 S) to O( 1 D) would be around 0.03 (±0.01) if H 2 O is the main source of oxygen lines, whereas it is ∼0.6 if the parent is CO 2 . Our calculations suggest that the yield of O( 1 S) production in the photodissociation of H 2 O cannot be larger than 1%. The model-calculated radial brightness profiles of the red and green lines and G/R ratios are in good agreement with the observations made on the comet Hyakutake in 1996 March.

  19. Electron and positive ion emission accompanying fracture of Wint-o-Green Lifesavers and single-crystal sucrose

    International Nuclear Information System (INIS)

    Dickinson, J.T.; Brix, L.B.; Jensen, L.C.

    1984-01-01

    It is a well-known fact that, when Wint-o-Green Lifesavers (Lifesaver is a registered trademark of Lifesaver, Inc.) are broken in air, one observes intense triboluminescence. Measurements of the emission of electrons and positive ions from the fracture of these Lifesavers under vacuum, as well as from single-crystal sucrose are reported herein. The emission of photons and radio waves during fracture under vacuum is also presented for sucrose, indicating the occurrence of a gaseous discharge in the crack tip during crack growth. Comparisons of the various emission curves are presented and discussed in terms of stress-induced charge separation

  20. A COUPLED CHEMISTRY-EMISSION MODEL FOR ATOMIC OXYGEN GREEN AND RED-DOUBLET EMISSIONS IN THE COMET C/1996 B2 HYAKUTAKE

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Anil; Raghuram, Susarla, E-mail: bhardwaj_spl@yahoo.com, E-mail: anil_bhardwaj@vssc.gov.in, E-mail: raghuramsusarla@gmail.com [Space Physics Laboratory, Vikram Sarabhai Space Centre, Trivandrum 695022 (India)

    2012-03-20

    The green (5577 Angstrom-Sign ) and red-doublet (6300, 6364 Angstrom-Sign ) lines are prompt emissions of metastable oxygen atoms in the {sup 1}S and {sup 1}D states, respectively, that have been observed in several comets. The value of the intensity ratio of green to red-doublet (G/R ratio) of 0.1 has been used as a benchmark to identify the parent molecule of oxygen lines as H{sub 2}O. A coupled chemistry-emission model is developed to study the production and loss mechanisms of the O({sup 1}S) and O({sup 1}D) atoms and the generation of red and green lines in the coma of C/1996 B2 Hyakutake. The G/R ratio depends not only on photochemistry, but also on the projected area observed for cometary coma, which is a function of the dimension of the slit used and the geocentric distance of the comet. Calculations show that the contribution of photodissociation of H{sub 2}O to the green (red) line emission is 30%-70% (60%-90%), while CO{sub 2} and CO are the next potential sources contributing 25%-50% (<5%). The ratio of the photoproduction rate of O({sup 1} S) to O({sup 1} D) would be around 0.03 ({+-}0.01) if H{sub 2}O is the main source of oxygen lines, whereas it is {approx}0.6 if the parent is CO{sub 2}. Our calculations suggest that the yield of O({sup 1} S) production in the photodissociation of H{sub 2}O cannot be larger than 1%. The model-calculated radial brightness profiles of the red and green lines and G/R ratios are in good agreement with the observations made on the comet Hyakutake in 1996 March.

  1. Dependence of upconversion emission intensity on Yb3+ concentration in Er3+/Yb3+ co-doped flake shaped Y2(MoO4)3 phosphors

    International Nuclear Information System (INIS)

    Lu Weili; Cheng Lihong; Zhong Haiyang; Sun Jiashi; Wan Jing; Tian Yue; Chen Baojiu

    2010-01-01

    Yttrium molybdate phosphors with fixed Er 3+ and various Yb 3+ concentrations were synthesized via a co-precipitation method. The crystal structure and the morphology of the phosphor were characterized by means of x-ray diffraction and field-emission scanning electron microscopy. Under 980 nm excitation, red and green upconversion emissions centred at 660, 553 and 530 nm were observed. Quantitative analyses on the dependence of upconversion emission intensity on the working current of a laser diode (LD) indicated that two-photon processes are responsible for both red and green upconversion emissions in both cases of low and high Yb 3+ concentrations. The relationship between the emission intensity ratio of 2 H 11/2 → 4 I 15/2 to 4 S 3/2 → 4 I 15/2 and the working current of the LD was studied for the samples doped with low and high Yb 3+ concentrations. Finally, a set of rate equations was established based on the possible upconversion mechanism, and an empirical formula was proposed to describe the Yb 3+ concentration dependence of upconversion emission intensity; the empirical formula fits well with the experimental data.

  2. Metal and nutrient dynamics on an aged intensive green roof

    International Nuclear Information System (INIS)

    Speak, A.F.; Rothwell, J.J.; Lindley, S.J.; Smith, C.L.

    2014-01-01

    Runoff and rainfall quality was compared between an aged intensive green roof and an adjacent conventional roof surface. Nutrient concentrations in the runoff were generally below Environmental Quality Standard (EQS) values and the green roof exhibited NO 3 − retention. Cu, Pb and Zn concentrations were in excess of EQS values for the protection of surface water. Green roof runoff was also significantly higher in Fe and Pb than on the bare roof and in rainfall. Input–output fluxes revealed the green roof to be a potential source of Pb. High concentrations of Pb within the green roof soil and bare roof dusts provide a potential source of Pb in runoff. The origin of the Pb is likely from historic urban atmospheric deposition. Aged green roofs may therefore act as a source of legacy metal pollution. This needs to be considered when constructing green roofs with the aim of improving pollution remediation. -- Highlights: • Runoff from an aged intensive green roof was characterised. • Nutrient levels were not problematic for runoff quality. • High concentrations of Cu, Pb and Zn were found in the runoff. • Soil contamination was a likely source of metals in roof runoff. • Historic Pb atmospheric deposition may be the source of contamination. -- Aged green roofs may act as a store of legacy lead pollution

  3. Highly efficient green light harvesting from Mg doped ZnO nanoparticles: Structural and optical studies

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Sarla, E-mail: mail2sarlasharma@gmail.com [Department of Physics, University of Rajasthan, Jaipur 302055 (India); Vyas, Rishi [Department of Physics, Malaviya National Institute of Technology, Jaipur 302017 (India); Sharma, Neha [Department of Physics, University of Rajasthan, Jaipur 302055 (India); Singh, Vidyadhar [Okinawa Institute of Science and Technology, Graduate University, Okinawa 9040495 (Japan); Singh, Arvind [Department of Physics, Institute of Chemical Technology, Mumbai 400 019 (India); Kataria, Vanjula; Gupta, Bipin Kumar [National Physical Laboratory (CSIR), New Delhi 110012 (India); Vijay, Y.K. [Department of Physics, University of Rajasthan, Jaipur 302055 (India)

    2013-03-05

    Graphical abstract: Demonstration of highly efficient green light emission harvesting from Mg doped ZnO nanoparticles were synthesized via facile wet chemical route with an average particle size ∼15 nm. The resulted nanoparticles exhibit intense green emission peaking at 530 nm upon 325 nm excitation. The photoluminescence (PL) intensity of visible emission depends upon the doping concentration of Mg. The PL intensity was found maximum up to 4% doping of Mg and beyond it exhibits a decrees in emission. The obtained highly luminescent green emission of ZnO nanoparticle would be an ultimate choice for next generation optoelectronics device materials. Highlights: ► Zn{sub 1−x}Mg{sub x}O nanoparticles were prepared by mechanochemical processing. ► High blue emission intensity was observed contrary to previous reports. ► Blue emission is suggested to be originating from the high density of defects. ► Defect density in as-milled condition is very high resulting in high emission. ► Mg promoted non-radiative recombination and lowered intensities. -- Abstract: Highly efficient green light emission was observed from Mg doped ZnO nanoparticles synthesized via facile wet chemical route with an average particle size ∼15 nm. The XRD analysis confirmed the growth of wurtzite phase of ZnO nanoparticles. Moreover, the optical properties of these nanoparticles were investigated by different spectroscopic techniques. The resulted nanoparticles exhibit intense green emission peaking at 530 nm (2.34 eV) upon 325 nm (3.81 eV) excitation. The photoluminescence (PL) intensity of visible emission depends upon the doping concentration of Mg. The PL intensity was found maximum up to 4% doping of Mg, and beyond it exhibits a decrees in emission. Furthermore, by varying the band gap from 3.50 to 3.61 eV, the PL spectra showed a near band edge (NBE) emission at wavelength around 370 nm (3.35 eV) and a broad deep level emission in the visible region. The obtained highly

  4. Plasmon-Induced Selective Enhancement of Green Emission in Lanthanide-Doped Nanoparticles.

    Science.gov (United States)

    Zhang, Weina; Li, Juan; Lei, Hongxiang; Li, Baojun

    2017-12-13

    By introducing an 18 nm thick Au nanofilm, selective enhancement of green emission from lanthanide-doped (β-NaYF 4 :Yb 3+ /Er 3+ ) upconversion nanoparticles (UCNPs) is demonstrated. The Au nanofilm is deposited on a microfiber surface by the sputtering method and then covered with the UCNPs. The plasma on the surface of the Au nanofilm can be excited by launching a 980 nm wavelength laser beam into the microfiber, resulting in an enhancement of the local electric field and a strong thermal effect. A 36-fold luminescence intensity enhancement of the UCNPs at 523 nm is observed, with no obvious reduction in the photostability of the UCNPs. Further, the intensity ratios of the emissions at 523-545 nm and at 523-655 nm are enhanced with increasing pump power, which is attributed to the increasing plasmon-induced thermal effect. Therefore, the fabricated device is further demonstrated to exhibit an excellent ability in temperature sensing. By controlling the pump power and the UCNP concentration, a wide temperature range (325-811 K) and a high temperature resolution (0.035-0.046 K) are achieved in the fabricated device.

  5. Emissions trading and green power : profitability for buyers and sellers

    International Nuclear Information System (INIS)

    Haites, E.

    1998-01-01

    Proposed features of the competitive electricity market in Ontario were reviewed. The speaker predicted that demand for renewable energy in Ontario's competitive electricity market will be affected by green power, emissions trading, labelling, and renewables portfolio standard. Under current regulations retailers can charge customers a premium for purchasing electricity generated by 'green' sources. The existing limits on emissions of sulphur dioxide, nitrogen oxides and carbon dioxides will remain in place, but an emissions cap and trading program for all Ontario-based generation is an option to consider. Ontario's Market Design Committee (MDC) has recommended the implementation of emissions trading for electricity-related air pollutants for all generators located in Ontario. The complex mechanics of emission trading are explained. The MDC recommendation of the use of standard labels to disclose the mix of energy sources used by sellers of electricity and their associated pollution emissions are also summarized

  6. Red, green, blue and white light upconversion emission in Yb3+/Tm3+/Ho3+ co-doped tellurite glasses

    International Nuclear Information System (INIS)

    Desirena, H; De la Rosa, E; Meza, O; Salas, P

    2011-01-01

    Several Yb 3+ /Tm 3+ /Ho 3+ co-doped transparent TeO 2 -ZnO-Na 2 O-Yb 2 O 3 -Ho 2 O 3 -Tm 2 O 3 glasses were prepared and luminescence properties were characterized. Simultaneous red, green and blue (RGB) emission were obtained after excitation at 970 nm. Colour emission was tuned from multicolour to white light with colour coordinate (0.32, 0.33) matching very well with the white reference (0.33, 0.33). Changes in colour emission were obtained by varying the intensity ratios between RGB bands that are strongly concentration dependent because of the interaction of co-dopants. The colour tunability, high quality of white light and high intensity of the emitted signal make these transparent glasses excellent candidates for applications in solid-state lighting.

  7. Analysis of green luminescent Tb3+:Ca4GdO(BO3)3 powder phosphor

    International Nuclear Information System (INIS)

    Vengala Rao, B.; Rambabu, U.; Buddhudu, S.

    2007-01-01

    This paper reports on the emission analysis of a green luminescent Tb 3+ :Ca 4 GdO(BO 3 ) 3 powder phosphor based on the measurements of excitation, emission and lifetimes. Besides this, we have also observed an intense green emission from this powder phosphor under an UV source. The emission transitions of ( 5 D 4 →7 F 3,4,5,6 ) with λ exci =257 nm have been measured. Particularly, the green emission transition ( 5 D 4 →7 F 5 ) at 553 nm has been found to be more prominent and intense. Such green strong emission displaying powder phosphor will find applications in the development of coated screens in certain electronic systems. Apart from the emission analysis of this phosphor, XRD, SEM and FTIR studies have also been carried out in order to understand the structural details of it

  8. Reducing the Green House Gas Emissions from the Transportation Sector

    Directory of Open Access Journals (Sweden)

    Oyewande Akinnikawe

    2010-02-01

    Full Text Available In the United States, two thirds of the carbon monoxide and about one third of carbon dioxide emissions come from the transportation sector. Ways to reduce these emissions in the future include replacing gasoline and diesel by biofuels, or by blend of biofuels with conventional gasoline and diesel, or by compressed natural gas (CNG, or by replacing internal combustion engines by electric motors powered by hydrogen fuel cells or battery-powered electric vehicles recharged from the electric grid. This presentation will review these technologies the fuel production pathways, when they are likely to be available, and by what fraction transportation sector green house gas emissions could be reduced by each. A well-to-wheels (WTW analysis is performed on each vehicle/ fuel technology using the GREET model and the total energy use, the CO 2 emissions, NO x emissions, SO x emissions for the life cycle of the vehicle technologies are calculated. Prospects for reducing foreign oil dependence as well as mitigating green house gases emission from the transportation sector will be considered in the analysis.

  9. Simultaneous attainment of energy goals by means of green certificates and emission permits

    International Nuclear Information System (INIS)

    Jensen, Stine Grenaa; Skytte, Klaus

    2003-01-01

    We discuss the analytical effects of introducing emission permits and green certificates and the corresponding quotas as regulatory mechanisms to, respectively, reduce emissions from electricity production and ensure a certain deployment of renewable energy. The different case studies in this paper show that both instruments can be used in order to reach an emission goal or a goal of renewable energy. However, the combination of these instruments and the way they are used, is shown to be important for the price faced by consumers. It is shown that the effect on the consumer price is not an unambiguous increase with the introduction of a green quota. There is a choice between quotas leading to a lower consumer price and quotas leading to a higher consumer price. As a result of this it is shown that it is always optimal to reach a renewable energy deployment goal by the use of green certificates. However, to reach an emission goal it is sometimes most favourable, with respect to consumer prices, to use green certificates and sometimes to use emission permits

  10. The hydrological behaviour of extensive and intensive green roofs in a dry climate.

    Science.gov (United States)

    Razzaghmanesh, M; Beecham, S

    2014-11-15

    This paper presents the results of a hydrological investigation of four medium scale green roofs that were set up at the University of South Australia. In this study, the potential of green roofs as a source control device was investigated over a 2 year period using four medium size green roof beds comprised of two growth media types and two media depths. During the term of this study, 226 rainfall events were recorded and these were representative of the Adelaide climate. In general, there were no statistically significant differences between the rainfall and runoff parameters for the intensive and extensive beds except for peak attenuation and peak runoff delay, for which higher values were recorded in the intensive beds. Longer dry periods generally resulted in higher retention coefficients and higher retention was also recorded in warmer seasons. The average retention coefficient for intensive systems (89%) was higher than for extensive systems (74%). It was shown that rainfall depth, intensity, duration and also average dry weather period between events can change the retention performance and runoff volume of the green roofs. Comparison of green and simulated conventional roofs indicated that the former were able to mitigate the peak of runoff and could delay the start of runoff. These characteristics are important for most source control measures. The recorded rainfall and runoff data displayed a non-linear relationship. Also, the results indicated that continuous time series modelling would be a more appropriate technique than using peak rainfall intensity methods for green roof design and simulation. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Emission intensity in New Zealand manufacturing and the short-run impacts of emissions pricing

    International Nuclear Information System (INIS)

    Bartleet, Matthew; Iyer, Kris; Numan-Parsons, Elisabeth

    2010-01-01

    This paper reports the greenhouse gas (GHG) emission intensity of the New Zealand (NZ) manufacturing sector at a combination of industry group and class levels (sub-sectors). The short-run impacts of a price on emissions are investigated with a focus on exporting activities. Sub-sectors that could be materially impacted by an expected range of emissions prices accounted for slightly over 9% of national gross domestic product. It is found that there is much variability of emission intensity within manufacturing and even within sub-sectors. An assessment of trade intensities further indicates that several emissions-intensive activities are also export-intensive. These activities are at most risk of losing competitiveness in the short-run if they are subjected to a price on GHG emissions that their competitors in other countries are not. Emissions reduction policies must take account of trade competitiveness imperatives if NZ is to meet its international GHG emissions target while maintaining manufacturing sector competitiveness. - Research Highlights: →Estimates initial short-term competitiveness impacts of ETS on NZ manufacturing. →Materiality of impacts determined based on firm level emissions and export intensity. →Results suggest that food processing sub-sectors are likely to be most impacted. →Iron and steel processing, and paper and pulp manufacture are impacted as well. →Cumulative GDP share of materially affected sub-sectors slightly over 9%.

  12. Greenhouse gas emissions from green waste composting windrow.

    Science.gov (United States)

    Zhu-Barker, Xia; Bailey, Shannon K; Paw U, Kyaw Tha; Burger, Martin; Horwath, William R

    2017-01-01

    The process of composting is a source of greenhouse gases (GHG) that contribute to climate change. We monitored three field-scale green waste compost windrows over a one-year period to measure the seasonal variance of the GHG fluxes. The compost pile that experienced the wettest and coolest weather had the highest average CH 4 emission of 254±76gCday -1 dry weight (DW) Mg -1 and lowest average N 2 O emission of 152±21mgNday -1 DW Mg -1 compared to the other seasonal piles. The highest N 2 O emissions (342±41mgNday -1 DW Mg -1 ) came from the pile that underwent the driest and hottest weather. The compost windrow oxygen (O 2 ) concentration and moisture content were the most consistent factors predicting N 2 O and CH 4 emissions from all seasonal compost piles. Compared to N 2 O, CH 4 was a higher contributor to the overall global warming potential (GWP) expressed as CO 2 equivalents (CO 2 eq.). Therefore, CH 4 mitigation practices, such as increasing O 2 concentration in the compost windrows through moisture control, feedstock changes to increase porosity, and windrow turning, may reduce the overall GWP of composting. Based on the results of the present study, statewide total GHG emissions of green waste composting were estimated at 789,000Mg of CO 2 eq., representing 2.1% of total annual GHG emissions of the California agricultural sector and 0.18% of the total state emissions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Ho-doped SrBi{sub 2}Nb{sub 2}O{sub 9} multifunctional ceramics with bright green emission and good electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lei; Hao, Jigong; Li, Wei [College of Materials Science and Engineering, Liaocheng University, Liaocheng (China); Xu, Zhijun; Chu, Ruiqing [School of Environmental and Materials Engineering, Yantai University, Yantai (China)

    2017-10-15

    Ho{sup 3+}-doped SrBi{sub 2}Nb{sub 2}O{sub 9} multifunctional ferroelectric ceramics with bright green light emission and good electrical properties were fabricated in this work. Under blue light excitation, samples showed bright green light with two typical emission bands: a strong green emission centered at 545 nm corresponding to the intra f-f transition from the excited {sup 5}S{sub 2} to the ground state {sup 5}I{sub 8} and a relatively weak red emission located 653 nm induced by the {sup 5}F{sub 5} → {sup 5}I{sub 8} transition of Ho{sup 3+}. Due to the concentration quenching effect, the intensity of emission was strongly dependent on the doping concentration. Furthermore, the electrical properties have improved by Ho{sup 3+} doping. At x = 0.004, samples exhibit optimal electrical properties with high Curie temperature (T{sub c} = 441 C) and large 2P{sub r} and d{sub 33} values (2P{sub r} = 15.54 μC cm{sup -2}, d{sub 33} = 19 pC/N). These results demonstrate that the SBN-xHo ceramics possess excellent multifunctional properties to achieve a variety of applications. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Carbon Emission Reduction with Capital Constraint under Greening Financing and Cost Sharing Contract.

    Science.gov (United States)

    Qin, Juanjuan; Zhao, Yuhui; Xia, Liangjie

    2018-04-13

    Motivated by the industrial practices, this work explores the carbon emission reductions for the manufacturer, while taking into account the capital constraint and the cap-and-trade regulation. To alleviate the capital constraint, two contracts are analyzed: greening financing and cost sharing. We use the Stackelberg game to model four cases as follows: (1) in Case A1, the manufacturer has no greening financing and no cost sharing; (2) in Case A2, the manufacturer has greening financing, but no cost sharing; (3) in Case B1, the manufacturer has no greening financing but has cost sharing; and, (4) in Case B2, the manufacturer has greening financing and cost sharing. Then, using the backward induction method, we derive and compare the equilibrium decisions and profits of the participants in the four cases. We find that the interest rate of green finance does not always negatively affect the carbon emission reduction of the manufacturer. Meanwhile, the cost sharing from the retailer does not always positively affect the carbon emission reduction of the manufacturer. When the cost sharing is low, both of the participants' profits in Case B1 (under no greening finance) are not less than that in Case B2 (under greening finance). When the cost sharing is high, both of the participants' profits in Case B1 (under no greening finance) are less than that in Case B2 (under greening finance).

  15. Carbon Emission Reduction with Capital Constraint under Greening Financing and Cost Sharing Contract

    Science.gov (United States)

    Qin, Juanjuan; Zhao, Yuhui; Xia, Liangjie

    2018-01-01

    Motivated by the industrial practices, this work explores the carbon emission reductions for the manufacturer, while taking into account the capital constraint and the cap-and-trade regulation. To alleviate the capital constraint, two contracts are analyzed: greening financing and cost sharing. We use the Stackelberg game to model four cases as follows: (1) in Case A1, the manufacturer has no greening financing and no cost sharing; (2) in Case A2, the manufacturer has greening financing, but no cost sharing; (3) in Case B1, the manufacturer has no greening financing but has cost sharing; and, (4) in Case B2, the manufacturer has greening financing and cost sharing. Then, using the backward induction method, we derive and compare the equilibrium decisions and profits of the participants in the four cases. We find that the interest rate of green finance does not always negatively affect the carbon emission reduction of the manufacturer. Meanwhile, the cost sharing from the retailer does not always positively affect the carbon emission reduction of the manufacturer. When the cost sharing is low, both of the participants’ profits in Case B1 (under no greening finance) are not less than that in Case B2 (under greening finance). When the cost sharing is high, both of the participants’ profits in Case B1 (under no greening finance) are less than that in Case B2 (under greening finance). PMID:29652859

  16. Metal and nutrient dynamics on an aged intensive green roof.

    Science.gov (United States)

    Speak, A F; Rothwell, J J; Lindley, S J; Smith, C L

    2014-01-01

    Runoff and rainfall quality was compared between an aged intensive green roof and an adjacent conventional roof surface. Nutrient concentrations in the runoff were generally below Environmental Quality Standard (EQS) values and the green roof exhibited NO3(-) retention. Cu, Pb and Zn concentrations were in excess of EQS values for the protection of surface water. Green roof runoff was also significantly higher in Fe and Pb than on the bare roof and in rainfall. Input-output fluxes revealed the green roof to be a potential source of Pb. High concentrations of Pb within the green roof soil and bare roof dusts provide a potential source of Pb in runoff. The origin of the Pb is likely from historic urban atmospheric deposition. Aged green roofs may therefore act as a source of legacy metal pollution. This needs to be considered when constructing green roofs with the aim of improving pollution remediation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. The structure of mAG, a monomeric mutant of the green fluorescent protein Azami-Green, reveals the structural basis of its stable green emission

    International Nuclear Information System (INIS)

    Ebisawa, Tatsuki; Yamamura, Akihiro; Kameda, Yasuhiro; Hayakawa, Kou; Nagata, Koji; Tanokura, Masaru

    2010-01-01

    The crystal structure of a monomeric mutant of Azami-Green (mAG) from G. fascicularis was determined at 2.2 Å resolution. Monomeric Azami-Green (mAG) from the stony coral Galaxea fascicularis is the first known monomeric green-emitting fluorescent protein that is not a variant of Aequorea victoria green fluorescent protein (avGFP). These two green fluorescent proteins are only 27% identical in their amino-acid sequences. mAG is more similar in its amino-acid sequence to four fluorescent proteins: Dendra2 (a green-to-red irreversibly photoconverting fluorescent protein), Dronpa (a bright-and-dark reversibly photoswitchable fluorescent protein), KikG (a tetrameric green-emitting fluorescent protein) and Kaede (another green-to-red irreversibly photoconverting fluorescent protein). To reveal the structural basis of stable green emission by mAG, the 2.2 Å crystal structure of mAG has been determined and compared with the crystal structures of avGFP, Dronpa, Dendra2, Kaede and KikG. The structural comparison revealed that the chromophore formed by Gln62-Tyr63-Gly64 (QYG) and the fixing of the conformation of the imidazole ring of His193 by hydrogen bonds and van der Waals contacts involving His193, Arg66 and Thr69 are likely to be required for the stable green emission of mAG. The crystal structure of mAG will contribute to the design and development of new monomeric fluorescent proteins with faster maturation, brighter fluorescence, improved photostability, new colours and other preferable properties as alternatives to avGFP and its variants

  18. Blue and green emission from Ce3+ and Tb3+ co-doped Y2O3 nanoparticles

    International Nuclear Information System (INIS)

    Loitongbam, Romeo Singh; Singh, W. Rameshwor; Phaomei, Ganngam; Singh, N. Shanta

    2013-01-01

    Tb 3+ doped Y 2 O 3 nanoparticles of 4–10 nm size were synthesized from nitrate precursors by the urea hydrolysis method in ethylene glycol medium at a low temperature of 140 °C. Characteristic green emission of Tb 3+ corresponding to 5 D 4 → 7 F J is observed to be very strong, which is further enhanced with heat treatment temperature. Characteristic blue color emission of Ce 3+ ion originating from 5d→ 2 F 7/2 (424 nm) and 2 F 5/2 (486 nm) transitions are found to be very strong in as-synthesized Ce 0.02 Tb 0.06 Y 1.92 O 3 nanoparticles. However, its luminescence intensity decreases with increase in heating temperature or increase in the particle size/crystallinity, whereas a weak emission peak of Tb 3+ ion at 545 nm is witnessed. The polycrystalline nature of the as-prepared sample changed to highly crystalline state when heated at an elevated temperature (1200 °C). -- Highlights: • Y 2 O 3 nanoparticles doped with Tb 3+ and Ce 3+ of 4–10 nm are synthesized. • Strong green emission of Tb 3+ from 5 D 4 → 7 F J transition is observed. • Strong blue emission of Ce 3+ from 5d→ 2 F 7/2 and 2 F 5/2 transitions is observed. • Ce 3+ emission decreases with annealing or increase in particle size. • Such nanoparticles can be used in LEDs and bio-labeling

  19. Does Foreign Direct Investment Affect Green Growth? Evidence from China’s Experience

    Directory of Open Access Journals (Sweden)

    Shujing Yue

    2016-02-01

    Full Text Available Foreign Direct Investment (FDI not only affects the economic growth but also affects the environmental protection of the host country. With China’s background of pursuing green growth, we need to consider the performance of FDI from the economic and environmental benefit aspects. On this basis, using slacks-based measure directional distance function (SBMDDF to build up green growth efficiency, economic efficiency and environmental efficiency indexes, empirical research on FDI in 104 Chinese cities from 2004 to 2011 has shown that: (1 Different cities have differences in their green growth efficiency. Shenzhen city is always efficient in green economic growth. (2 Overall, FDI is positive on Chinese cities’ green growth. (3 When the green growth efficiency is broken down into economic efficiency and environmental efficiency, FDI promotes China’s economic green growth through both environmental benefits and economic benefits. (4 The effect of FDI differs in different sectors. FDI in the emission-intensive sector promotes green efficiency mainly through the improvement of economic efficiency. FDI in the non-emission-intensive sector promotes economic efficiency, environmental efficiency and green efficiency.

  20. Changes in CO2 emission intensities in the Mexican industry

    International Nuclear Information System (INIS)

    González, Domingo; Martínez, Manuel

    2012-01-01

    A CO 2 emission intensity analysis in the Mexican industry from 1965 to 2010 is carried out by taking into consideration four stages: 1965–1982, 1982–1994, 1994–2003, and 2004–2010. Based on the LMDI decomposition methodology, three influencing factors are analyzed: energy intensity, CO 2 coefficient, and structure in terms of their contributions of each individual attributes to the overall percent change of them as it was proposed in Choi and Ang (2011). The energy intensity effect was the driving factor behind the main decreases of CO 2 intensity, the CO 2 coefficient effect contributed to less extent to mitigate it, and the structure effect tended to increased it. It is observed that CO 2 intensity declined by 26.2% from 1965 to 2003, but it increased by 10.1% from 2004 to 2010. In addition, the move of Mexico from an economic model based on import-substitution to an export-oriented economy brought more importance to the Mexican industry intended to export, thus maintaining high levels of activity of industries such as cement, iron and steel, chemical, and petrochemical, while industries such as automotive, and ‘other’ industries grown significantly not only as far their energy consumptions and related CO 2 emissions but they also increased their contributions to the national economy. - Highlights: ► Industrial CO 2 emission intensity was reduced by 26.2% from 1965 to 2003. ► Industrial CO 2 emission intensity was increased by 10.1% from 2003 to 2010. ► 1965–2003: Intensity effect took down CO 2 emission intensity. ► 2003–2010: Export-oriented industries raised CO 2 emission intensity.

  1. Periodic Variations in the Coronal Green Line Intensity and their ...

    Indian Academy of Sciences (India)

    tribpo

    behaviour of data results as discussed by Tsubaki (1988) in the green corona line intensity. ... This work was partly supported by the Grant Agency (5017/98) of the Slovak. Academy of Sciences. One of us (M. M.) thanks IAU for travel support.

  2. LETTER TO THE EDITOR: Green emission and bandgap narrowing due to two-photon excitation in thin film CdS formed by spray pyrolysis

    Science.gov (United States)

    Ullrich, B.; Schroeder, R.

    2001-08-01

    Thin (10 µm) film CdS on Pyrex® formed by spray pyrolysis is excited below the gap at 804 nm with 200 fs laser pulses at room temperature. Excitation intensities up to 250 GW cm-2 evoke green bandgap emission due to two-photon transitions. This two-photon photoluminescence does not show a red emission contribution in contrast to the single-photon excited emission, which is dominated by broad emission in the red spectral range. It is demonstrated that two-photon excitation causes photo-induced bandgap narrowing due to Debye screening. At 250 GW cm-2 bandgap narrowing of 47 meV is observed, which corresponds to an excited electron density of 1.6×1018 cm-3.

  3. Using Fluorescence Intensity of Enhanced Green Fluorescent Protein to Quantify Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Erin Wilson

    2018-05-01

    Full Text Available A variety of direct and indirect methods have been used to quantify planktonic and biofilm bacterial cells. Direct counting methods to determine the total number of cells include plate counts, microscopic cell counts, Coulter cell counting, flow cytometry, and fluorescence microscopy. However, indirect methods are often used to supplement direct cell counting, as they are often more convenient, less time-consuming, and require less material, while providing a number that can be related to the direct cell count. Herein, an indirect method is presented that uses fluorescence emission intensity as a proxy marker for studying bacterial accumulation. A clinical strain of Pseudomonas aeruginosa was genetically modified to express a green fluorescent protein (PA14/EGFP. The fluorescence intensity of EGFP in live cells was used as an indirect measure of live cell density, and was compared with the traditional cell counting methods of optical density (OD600 and plate counting (colony-forming units (CFUs. While both OD600 and CFUs are well-established methods, the use of fluorescence spectroscopy to quantify bacteria is less common. This study demonstrates that EGFP intensity is a convenient reporter for bacterial quantification. In addition, we demonstrate the potential for fluorescence spectroscopy to be used to measure the quantity of PA14/EGFP biofilms, which have important human health implications due to their antimicrobial resistance. Therefore, fluorescence spectroscopy could serve as an alternative or complementary quick assay to quantify bacteria in planktonic cultures and biofilms.

  4. A modified GHG intensity indicator: Toward a sustainable global economy based on a carbon border tax and emissions trading

    International Nuclear Information System (INIS)

    Farrahi Moghaddam, Reza; Farrahi Moghaddam, Fereydoun; Cheriet, Mohamed

    2013-01-01

    It will be difficult to gain the agreement of all the actors on any proposal for climate change management, if universality and fairness are not considered. In this work, a universal measure of emissions to be applied at the international level is proposed, based on a modification of the Greenhouse Gas Intensity (GHG-INT) measure. It is hoped that the generality and low administrative cost of this measure, which we call the Modified Greenhouse Gas Intensity measure (MGHG-INT), will eliminate any need to classify nations. The core of the MGHG-INT is what we call the IHDI-adjusted Gross Domestic Product (IDHIGDP), based on the Inequality-adjusted Human Development Index (IHDI). The IDHIGDP makes it possible to propose universal measures, such as MGHG-INT. We also propose a carbon border tax applicable at national borders, based on MGHG-INT and IDHIGDP. This carbon tax is supported by a proposed global Emissions Trading System (ETS). The proposed carbon tax is analyzed in a short-term scenario, where it is shown that it can result in a significant reduction in global emissions while keeping the economy growing at a positive rate. In addition to annual GHG emissions, cumulative GHG emissions over two decades are considered with almost the same results. - Highlights: ► An IHDI-adjusted GDP (IHDIGDP) is introduced to universally account the activities of nations. ► A modified GHG emission intensity (MGHG-INT) is introduced based on the IHDIGDP. ► Based on green and red scenarios, admissible emissions and RED percentage are introduced. ► The RED percentage is used to define a border carbon tax (BCT) and emission trading system. ► The MGHG-INT can provide a universal control on emissions while allowing high economical growth

  5. Multiple Temperature-Sensing Behavior of Green and Red Upconversion Emissions from Stark Sublevels of Er3+

    Directory of Open Access Journals (Sweden)

    Baosheng Cao

    2015-12-01

    Full Text Available Upconversion luminescence properties from the emissions of Stark sublevels of Er3+ were investigated in Er3+-Yb3+-Mo6+-codoped TiO2 phosphors in this study. According to the energy levels split from Er3+, green and red emissions from the transitions of four coupled energy levels, 2H11/2(I/2H11/2(II, 4S3/2(I/4S3/2(II, 4F9/2(I/4F9/2(II, and 2H11/2(I + 2H11/2(II/4S3/2(I + 4S3/2(II, were observed under 976 nm laser diode excitation. By utilizing the fluorescence intensity ratio (FIR technique, temperature-dependent upconversion emissions from these four coupled energy levels were analyzed at length. The optical temperature-sensing behaviors of sensing sensitivity, measurement error, and operating temperature for the four coupled energy levels are discussed, all of which are closely related to the energy gap of the coupled energy levels, FIR value, and luminescence intensity. Experimental results suggest that Er3+-Yb3+-Mo6+-codoped TiO2 phosphor with four pairs of energy levels coupled by Stark sublevels provides a new and effective route to realize multiple optical temperature-sensing through a wide range of temperatures in an independent system.

  6. Accurate thermometry based on the red and green fluorescence intensity ratio in NaYF4: Yb, Er nanocrystals for bioapplication.

    Science.gov (United States)

    Liu, Lixin; Qin, Feng; Lv, Tianquan; Zhang, Zhiguo; Cao, Wenwu

    2016-10-15

    A biological temperature measurement method based on the fluorescence intensity ratio (FIR) was developed to reduce uncertainty. The upconversion luminescence of NaYF4:Yb, Er nanocrystals was studied as a function of temperature around the physiologically relevant range of 300-330 K. We found that the green-green FIR Fe and red-green FIR (I660/I540) varied linearly as temperature increased. The thermometric uncertainties using the two FIRs were discussed and were determined to be almost constant at 0.6 and 0.09 K for green-green and red-green, respectively. The lower thermometric uncertainty comes from the intense signal-to-noise ratio of the measured FIRs owing to their comparable fluorescence intensities.

  7. Generation of intensity covariations of the oxygen green and red lines in the nightglow

    Science.gov (United States)

    Misawa, K.; Takeuchi, I.; Kato, Y.; Aoyama, I.

    1984-02-01

    The cause of intensity covariations of the oxygen green and red lines is studied. Intensity covariations are compared with the auroral-electrojet-activity index AE, the substorm Pi2, and the magnetogram. It is suggested that intensity covariations or double-intensity maxima of the red line occur in association with intense auroral substorms, and that they are the direct experimental evidences of Testud's theory (1973).

  8. Preparation and luminescence of green-emitting ZnAl{sub 2}O{sub 4}:Mn{sup 2+} phosphor thin films

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ing-Bang [Department of Materials Science and Engineering, National Formosa University, Huwei, Yunlin 632, Taiwan (China); Chang, Yee-Shin [Department of Electronic Engineering, National Formosa University, Huwei, Yunlin 632, Taiwan (China); Chen, Hao-Long [Department of Electronic Engineering, Kao Yuan University, Lujhu, Kaohsiung 821, Taiwan (China); Hwang, Ching Chiang [Department of Biotechnology, Mingdao University, Chang-Hua 52345, Taiwan (China); Jian, Chen-Jhu; Chen, Yu-Shiang [Department of Materials Science and Engineering, National Formosa University, Huwei, Yunlin 632, Taiwan (China); Tsai, Mu-Tsun, E-mail: mttsai@ms23.hinet.net [Department of Materials Science and Engineering, National Formosa University, Huwei, Yunlin 632, Taiwan (China)

    2014-11-03

    Nanocrystalline Mn{sup 2+}-doped zinc spinel (ZnAl{sub 2}O{sub 4}:Mn{sup 2+}) green-emitting phosphor films were deposited on silicon substrate by sol–gel spin coating and subsequent heat treatment up to 1000 °C. The effects of dopant concentration and heat treatment on the optical and structural properties were investigated. The variations in sol viscosity with time, film thickness with number of layers were also examined. Thin films were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray microscopy, atomic force microscopy, and photoluminescence spectrum. Single-phase ZnAl{sub 2}O{sub 4} started to crystallize at around 600 °C, with a normal spinel structure. On annealing at 1000 °C, the films had smooth surfaces with a nanocrystalline structure. Under UV or visible light excitation, the phosphor films exhibited an intense green emission band peaking at around 512 nm, corresponding to the typical {sup 4}T{sub 1} → {sup 6}A{sub 1} transition of tetrahedral Mn{sup 2+} ions. The most intense green emission was obtained by exciting at 456 nm. The emission intensity of films was highly dependent upon the excitation wavelength, crystallinity, dopant content, and deposition conditions. The results show that the ZnAl{sub 2}O{sub 4}:Mn{sup 2+} films have good potential for use as a green phosphor for displays and/or white light-emitting diodes. - Highlights: • ZnAl2O4:Mn2 + thin film phosphors have been synthesized by a sol–gel process. • The most intense green emission was obtained by exciting at 456 nm. • Photoluminescence is highly dependent on the crystallinity and doping content. • Emission intensity can also be modulated by controlling the film thickness.

  9. Energy savings, emission reductions, and health co-benefits of the green building movement.

    Science.gov (United States)

    P, MacNaughton; X, Cao; J, Buonocore; J, Cedeno-Laurent; J, Spengler; A, Bernstein; J, Allen

    2018-06-01

    Buildings consume nearly 40% of primary energy production globally. Certified green buildings substantially reduce energy consumption on a per square foot basis and they also focus on indoor environmental quality. However, the co-benefits to health through reductions in energy and concomitant reductions in air pollution have not been examined.We calculated year by year LEED (Leadership in Energy and Environmental Design) certification rates in six countries (the United States, China, India, Brazil, Germany, and Turkey) and then used data from the Green Building Information Gateway (GBIG) to estimate energy savings in each country each year. Of the green building rating schemes, LEED accounts for 32% of green-certified floor space and publically reports energy efficiency data. We employed Harvard's Co-BE Calculator to determine pollutant emissions reductions by country accounting for transient energy mixes and baseline energy use intensities. Co-BE applies the social cost of carbon and the social cost of atmospheric release to translate these reductions into health benefits. Based on modeled energy use, LEED-certified buildings saved $7.5B in energy costs and averted 33MT of CO 2 , 51 kt of SO 2 , 38 kt of NO x , and 10 kt of PM 2.5 from entering the atmosphere, which amounts to $5.8B (lower limit = $2.3B, upper limit = $9.1B) in climate and health co-benefits from 2000 to 2016 in the six countries investigated. The U.S. health benefits derive from avoiding an estimated 172-405 premature deaths, 171 hospital admissions, 11,000 asthma exacerbations, 54,000 respiratory symptoms, 21,000 lost days of work, and 16,000 lost days of school. Because the climate and health benefits are nearly equivalent to the energy savings for green buildings in the United States, and up to 10 times higher in developing countries, they provide an important and previously unquantified societal value. Future analyses should consider these co-benefits when weighing policy

  10. Photoexcited emission efficiencies of zinc oxide

    Science.gov (United States)

    Foreman, John Vincent

    Optoelectronic properties of the II-VI semiconductor zinc oxide (ZnO) have been studied scientifically for almost 60 years; however, many fundamental questions remain unanswered about its two primary emission bands--the exciton-related luminescence in the ultraviolet and the defect-related emission band centered in the green portion of the visible spectrum. The work in this dissertation was motivated by the surprising optical properties of a ZnO nanowire sample grown by the group of Prof. Jie Liu, Department of Chemistry, Duke University. We found that this nanowire sample exhibited defect-related green/white emission of unprecedented intensity relative to near-band-edge luminescence. The experimental work comprising this dissertation was designed to explain the optical properties of this ZnO nanowire sample. Understanding the physics underlying such exceptional intensity of green emission addresses many of the open questions of ZnO research and assesses the possibility of using ZnO nanostructures as an ultraviolet-excited, broadband visible phosphor. The goal of this dissertation is to provide insight into what factors influence the radiative and nonradiative recombination efficiencies of ZnO by characterizing simultaneously the optical properties of the near-band-edge ultraviolet and the defect-related green emission bands. Specifically, we seek to understand the mechanisms of ultraviolet and green emission, the mechanism of energy transfer between them, and the evolution of their emission efficiencies with parameters such as excitation density and sample temperature. These fundamental but unanswered questions of ZnO emission are addressed here by using a novel combination of ultrafast spectroscopic techniques in conjunction with a systematic set of ZnO samples. Through this systematic investigation, ZnO may be realistically assessed as a potential green/white light phosphor. Photoluminescence techniques are used to characterize the thermal quenching behavior of

  11. Cigar burning under different smoking intensities and effects on emissions.

    Science.gov (United States)

    Dethloff, Ole; Mueller, Christian; Cahours, Xavier; Colard, Stéphane

    2017-12-01

    The effect of smoking intensity on cigar smoke emissions was assessed under a range of puff frequencies and puff volumes. In order to potentially reduce emissions variability and to identify patterns as accurately as possible, cigar weights and diameters were measured, and outliers were excluded prior to smoking. Portions corresponding to 25%, 50%, 75% and 100% of the cigar, measured down to the butt length, were smoked under several smoking conditions, to assess nicotine, CO and water yields. The remaining cigar butts were analysed for total alkaloids, nicotine, and moisture. Results showed accumulation effects during the burning process having a significant impact on smoke emission levels. Condensation and evaporation occur and lead to smoke emissions dependent on smoking intensity. Differences were observed for CO on one side as a gas phase compound and nicotine on the other side as a particulate phase compound. For a given intensity, while CO emission increases linearly as the cigar burns, nicotine and water emissions exhibited an exponential increase. Our investigations showed that a complex phenomena occurs during the course of cigar smoking which makes emission data: difficult to interpret, is potentially misleading to the consumer, and inappropriate for exposure assessment. The results indicate that, tobacco content and physical parameters may well be the most robust basis for product characterisation and comparison rather than smoke emission. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Synthesis and investigation of photo/cathodoluminescence properties of a novel green emission phosphor Sr{sub 8}ZnLu(PO{sub 4}){sub 7}:Eu{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Long, Qiang; Wang, Chuang; Li, Yanyan; Ding, Jianyan [Department of Materials Science, School of Physical Science and Technology, Lanzhou University (China); Key Laborary of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Tianshui South Road No. 222, Lanzhou, Gansu 730000 (China); Wang, Yuhua, E-mail: wyh@lzu.edu.cn [Department of Materials Science, School of Physical Science and Technology, Lanzhou University (China); Key Laborary of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Tianshui South Road No. 222, Lanzhou, Gansu 730000 (China)

    2016-06-25

    An Eu{sup 2+}-activated Sr{sub 8}ZnLu(PO{sub 4}){sub 7} (SZLP:Eu{sup 2+}) green emitting phosphor was synthesized and its crystal structure has been refined and determined from the XRD profiles by Rietveld refinement method. The excitation spectra of the SZLP:Eu{sup 2+} phosphors covered the range from 250 to 450 nm, which matches well with n-UV chips. SZLP:Eu{sup 2+} exhibited broad-band green emission centered at about 520 nm under 400 nm irradiation with a high quantum efficiency (QE) value of 67.4% and good thermal stability, its emission intensity remains 77% at 150 °C of that measured at room temperature. In addition, to investigate its application in field emission displays, the cathodoluminescence spectra of SZLP:Eu{sup 2+} as a function of the accelerating voltage, probe current and the electron radiation time were also measured and discussed in detail. Excellent degradation resistance properties with good color stability were obtained by continuous low-voltage electron-beam excitation of the phosphor. - Highlights: • An novel green emitting phosphor was firstly synthesized by solid state reaction. • The excitation spectra match well with n-UV chips and the quantum efficiency is 67.4%. • The thermal stability of the phosphor is superior to commercial phosphors.

  13. Band-limited Green's Functions for Quantitative Evaluation of Acoustic Emission Using the Finite Element Method

    Science.gov (United States)

    Leser, William P.; Yuan, Fuh-Gwo; Leser, William P.

    2013-01-01

    A method of numerically estimating dynamic Green's functions using the finite element method is proposed. These Green's functions are accurate in a limited frequency range dependent on the mesh size used to generate them. This range can often match or exceed the frequency sensitivity of the traditional acoustic emission sensors. An algorithm is also developed to characterize an acoustic emission source by obtaining information about its strength and temporal dependence. This information can then be used to reproduce the source in a finite element model for further analysis. Numerical examples are presented that demonstrate the ability of the band-limited Green's functions approach to determine the moment tensor coefficients of several reference signals to within seven percent, as well as accurately reproduce the source-time function.

  14. Does uncertainty justify intensity emission caps?

    International Nuclear Information System (INIS)

    Quirion, Philippe

    2005-01-01

    Environmental policies often set 'relative' or 'intensity' emission caps, i.e. emission limits proportional to the polluting firm's output. One of the arguments put forth in favour of relative caps is based on the uncertainty on business-as-usual output: if the firm's production level is higher than expected, so will be business-as-usual emissions, hence reaching a given level of emissions will be more costly than expected. As a consequence, it is argued, a higher emission level should be allowed if the production level is more important than expected. We assess this argument with a stochastic analytical model featuring two random variables: the business-as-usual emission level, proportional to output, and the slope of the marginal abatement cost curve. We compare the relative cap to an absolute cap and to a price instrument, in terms of welfare impact. It turns out that in most plausible cases, either a price instrument or an absolute cap yields a higher expected welfare than a relative cap. Quantitatively, the difference in expected welfare is typically very small between the absolute and the relative cap but may be significant between the relative cap and the price instrument. (author)

  15. European emissions trading and the international competitiveness of energy-intensive industries: a legal and political evaluation of possible supporting measures

    International Nuclear Information System (INIS)

    Asselt, H. van; Biermann, F.

    2007-01-01

    The EU Emissions Trading Directive is expected by European energy-intensive industries to harm their competitiveness vis-a-vis non-European competitors. Many additional measures have thus been proposed to 'level the playing field' and to protect the competitiveness of European energy-intensive industries within the larger effort of reducing Europe's greenhouse gas emissions and of meeting its obligations under the 1997 Kyoto Protocol. This article evaluates a range of proposed measures based on a set of political and legal criteria, including environmental effectiveness; the need to consider differentiated commitments, responsibilities and capabilities; conformity with world trade law and European Union law; and Europe's overall political interests. We discuss measures that could be adopted by the European Union and its member states, such as direct support for energy-intensive industries, restrictions of energy-intensive imports into the European Union through border cost adjustments, quotas or technical regulations, and cost reimbursement for affected developing countries. We also analyse measures available to multilateral institutions such as the United Nations Framework Convention on Climate Change and its Kyoto Protocol and the World Trade Organisation. We conclude with a classification of the discussed measures with red (unfeasible), yellow (potentially feasible) or green (feasible) labels. (author)

  16. European emissions trading and the international competitiveness of energy-intensive industries: a legal and political evaluation of possible supporting measures

    International Nuclear Information System (INIS)

    Asselt, Harro van; Biermann, Frank

    2007-01-01

    The EU Emissions Trading Directive is expected by European energy-intensive industries to harm their competitiveness vis-a-vis non-European competitors. Many additional measures have thus been proposed to 'level the playing field' and to protect the competitiveness of European energy-intensive industries within the larger effort of reducing Europe's greenhouse gas emissions and of meeting its obligations under the 1997 Kyoto Protocol. This article evaluates a range of proposed measures based on a set of political and legal criteria, including environmental effectiveness; the need to consider differentiated commitments, responsibilities and capabilities; conformity with world trade law and European Union law; and Europe's overall political interests. We discuss measures that could be adopted by the European Union and its member states, such as direct support for energy-intensive industries, restrictions of energy-intensive imports into the European Union through border cost adjustments, quotas or technical regulations, and cost reimbursement for affected developing countries. We also analyse measures available to multilateral institutions such as the United Nations Framework Convention on Climate Change and its Kyoto Protocol and the World Trade Organisation. We conclude with a classification of the discussed measures with red (unfeasible), yellow (potentially feasible) or green (feasible) labels

  17. Technology for Intensive Poultry Production as a Source of Odour Emissions with Time-Varying Intensity

    Directory of Open Access Journals (Sweden)

    Kuneš Radim

    2017-12-01

    Full Text Available The technology for intensive broiler breeding using deep litter method provides convenient conditions for production of odour substances inside the barn. As a consequence, there are relatively high odour emissions in the breeding area and its surrounding, which has significant impacts on the life quality of both people and animals. The amount of produced emissions increases in time because it is closely related to the amount of poultry droppings accumulated in litter inside the barn. This paper deals with changes in odour intensity depending on time measured since the beginning of broiler fattening. Odour intensity was measured by methods of dynamic olfactometry. The estimated values gradually increased from 45 ouE·m-3 to the highest value of 259 ouE·m-3, which was determined in the final fattening phase (broilers’ age 33 days. The calculated odour substances emission values were in range from 0.02 ouE·s-1·bird-1 at the beginning of fattening up to 0.10 ouE·s-1·bird-1 in the final fattening phase. Odour emissions increased five times during the fattening period.

  18. Direct and Indirect Electron Emission from the Green Fluorescent Protein Chromophore

    Science.gov (United States)

    Toker, Y.; Rahbek, D. B.; Klærke, B.; Bochenkova, A. V.; Andersen, L. H.

    2012-09-01

    Photoelectron spectra of the deprotonated green fluorescent protein chromophore have been measured in the gas phase at several wavelengths within and beyond the S0-S1 photoabsorption band of the molecule. The vertical detachment energy (VDE) was determined to be 2.68±0.1eV. The data show that the first electronically excited state is bound in the Franck-Condon region, and that electron emission proceeds through an indirect (resonant) electron-emission channel within the corresponding absorption band.

  19. Highly Efficient Green-Emitting Phosphors Ba2Y5B5O17 with Low Thermal Quenching Due to Fast Energy Transfer from Ce3+ to Tb3.

    Science.gov (United States)

    Xiao, Yu; Hao, Zhendong; Zhang, Liangliang; Xiao, Wenge; Wu, Dan; Zhang, Xia; Pan, Guo-Hui; Luo, Yongshi; Zhang, Jiahua

    2017-04-17

    This paper demonstrates a highly thermally stable and efficient green-emitting Ba 2 Y 5 B 5 O 17 :Ce 3+ , Tb 3+ phosphor prepared by high-temperature solid-state reaction. The phosphor exhibits a blue emission band of Ce 3+ and green emission lines of Tb 3+ upon Ce 3+ excitation in the near-UV spectral region. The effect of Ce 3+ to Tb 3+ energy transfer on blue to green emission color tuning and on luminescence thermal stability is studied in the samples codoped with 1% Ce 3+ and various concentrations (0-40%) of Tb 3+ . The green emission of Tb 3+ upon Ce 3+ excitation at 150 °C can keep, on average, 92% of its intensity at room temperature, with the best one showing no intensity decreasing up to 210 °C for 30% Tb 3+ . Meanwhile, Ce 3+ emission intensity only keeps 42% on average at 150 °C. The high thermal stability of the green emission is attributed to suppression of Ce 3+ thermal de-excitation through fast energy transfer to Tb 3+ , which in the green-emitting excited states is highly thermally stable such that no lifetime shortening is observed with raising temperature to 210 °C. The predominant green emission is observed for Tb 3+ concentration of at least 10% due to efficient energy transfer with the transfer efficiency approaching 100% for 40% Tb 3+ . The internal and external quantum yield of the sample with Tb 3+ concentration of 20% can be as high as 76% and 55%, respectively. The green phosphor, thus, shows attractive performance for near-UV-based white-light-emitting diodes applications.

  20. Chinese Milk Vetch as Green Manure Mitigates Nitrous Oxide Emission from Monocropped Rice System in South China.

    Science.gov (United States)

    Xie, Zhijian; Shah, Farooq; Tu, Shuxin; Xu, Changxu; Cao, Weidong

    2016-01-01

    Monocropped rice system is an important intensive cropping system for food security in China. Green manure (GM) as an alternative to fertilizer N (FN) is useful for improving soil quality. However, few studies have examined the effect of Chinese milk vetch (CMV) as GM on nitrous oxide (N2O) emission from monocropped rice field in south China. Therefore, a pot-culture experiment with four treatments (control, no FN and CMV; CMV as GM alone, M; fertilizer N alone, FN; integrating fertilizer N with CMV, NM) was performed to investigate the effect of incorporating CMV as GM on N2O emission using a closed chamber-gas chromatography (GC) technique during the rice growing periods. Under the same N rate, incorporating CMV as GM (the treatments of M and NM) mitigated N2O emission during the growing periods of rice plant, reduced the NO3- content and activities of nitrate and nitrite reductase as well as the population of nitrifying bacteria in top soil at maturity stage of rice plant versus FN pots. The global warming potential (GWP) and greenhouse gas intensity (GHGI) of N2O from monocropped rice field was ranked as Mrice grain yield and soil NH4+ content, which were dramatically decreased in the M pots, over the treatment of FN. Hence, it can be concluded that integrating FN with CMV as GM is a feasible tactic for food security and N2O mitigation in the monocropped rice based system.

  1. N2O emission from organic barley cultivation as affected by green manure management

    Directory of Open Access Journals (Sweden)

    P. Dörsch

    2012-07-01

    Full Text Available Legumes are an important source of nitrogen in stockless organic cereal production. However, substantial amounts of N can be lost from legume-grass leys prior to or after incorporation as green manure (GM. Here we report N2O emissions from a field experiment in SE Norway exploring different green manure management strategies: mulching versus removal of grass-clover herbage during a whole growing season and return as biogas residue to a subsequent barley crop. Grass-clover ley had small but significantly higher N2O emissions as compared with a non-fertilised cereal reference during the year of green manure (GM production in 2009. Mulching of herbage induced significantly more N2O emission (+0.37 kg N2O-N ha−1 throughout the growing season than removing herbage. In spring 2010, all plots were ploughed (with and without GM and sown with barley, resulting in generally higher N2O emissions than during the previous year. Application of biogas residue (60 kg NH4+-N + 50 kg organic N ha−1 before sowing did not increase emissions neither when applied to previous ley plots nor when applied to previously unfertilised cereal plots. Ley management (mulching vs. removing biomass in 2009 had no effect on N2O emissions during barley production in 2010. In general, GM ley (mulched or harvested increased N2O emissions relative to a cereal reference with low mineral N fertilisation (80 kg N ha−1. Based on measurements covering the growing season 2010, organic cereal production emitted 95 g N2O-N kg−1 N yield in barley grain, which was substantially higher than in the cereal reference treatment with 80 kg mineral N fertilisation (47 g N2O-N kg−1 N yield in barley grain.

  2. K and L X-ray emission intensities of some radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Verma, H R; Pal, D [Punjabi Univ., Patiala (India). Dept. of Physics

    1985-01-01

    The K and L x-ray emission intensities per 100 disintegrations have been calculated for some radionuclides using the latest adopted data for gamma-ray intensities, electron capture and internal conversion coefficients for the parent nuclides, fluorescence yield values, Coster-Kronig transition probabilities, average total number of primary L shell vacancies produced in the decay of K shell vacancies and emission rates for various shells and subshells for the daughter nuclei. The results are in good agreement with theoretical and experimental values for the K x-ray intensities. There are no experimental results available to compare with the present calculations for the L x-ray intensities; however, there is a marked discrepancy in the L..cap alpha.. and L..beta.. intensities available on the basis of theoretical estimates.

  3. Emissions intensity targeting: From China's 12th Five Year Plan to its Copenhagen commitment

    International Nuclear Information System (INIS)

    Lu, Yingying; Stegman, Alison; Cai, Yiyong

    2013-01-01

    China is currently the world's largest single source of fossil fuel related CO 2 emissions. In response to pressure from the international community, and in recognition of its role in global climate change mitigation, the Chinese government has announced a series of climate policy commitments, in both the Copenhagen Accord and its domestic 12th 5 Year Plan, to gradually reduce emissions intensity by 2020. Emissions intensity reduction commitments differ significantly from emission level reduction commitments that are commonly adopted by developed economies. In this paper, we investigate the economic implications of China's recent commitments to reduce emissions intensity, and highlight the complexities involved in modelling intensity targets under uncertainty. Using G-Cubed, an intertemporal, computable general equilibrium model of the world economy, we show that China's emissions intensity targets could be achieved with a range of low and high growth emissions level trajectories corresponding to low and high growth GDP scenarios, which lead to different welfare consequences. - Highlights: • We investigate the economic implication of China's recent climate commitments. • We address the complexity of modelling reduction in emissions intensity. • The 2015 target gives China more flexibility towards its 2020 target. • The policy restriction is eased in high growth periods. • In low growth periods an intensity target places a further restriction on the economy

  4. A green-emitting CdSe/Poly(butyl acrylate) nanocomposite

    NARCIS (Netherlands)

    Peres, M.; Costa, L.C.; Neves, A.; Soares, M.J.; Monteiro, T.; Carvalho Esteves, de A.C.; Barros-Timmons, A.M.M.V.; Trindade, T.; Kholkin, A.; Alves, E.

    2005-01-01

    CdSe/poly(butyl acrylate) nanocomposites were synthesized by in situ miniemulsion polymerization. The hybrid nanomaterial is very stable and presents a bright green photoluminescence at 2.29 eV under ultraviolet excitation. With the excitation conditions used the intensity of the emission band keeps

  5. Green certificates and greenhouse gas emissions certificates - Instruments of the liberalized electricity market in Romania

    International Nuclear Information System (INIS)

    Matei, Magdalena; Salisteanu, Cornel; Enescu, Diana; Ene, Simona; Matei, Lucian; Marinescu, Mihai

    2006-01-01

    Governmental Decision No. 443/2003 and GD 1892 / 2004 aimed to the harmonization of the Romanian legislative framework with EU Directive 2001/77/EC which purposes to promote an increasing in the contribution of RES to electricity production in the internal market for electricity. In Romania's case green certificate system was adopted with mandatory quotas for suppliers as a national target for 2010 of 33 % of total consumption to be covered by electricity produced from renewable energy sources. The annual maximum and minimum value for Green Certificates trading is 24 Euro/certificate and 42 Euro/certificate, respectively. Suppliers are obliged to buy yearly a number of Green certificates equal with the mandatory quota multiplied with the amount of electricity sold yearly to their final consumers. The additional price received for the Green Certificates sold is determined on a parallel market, separated from the electricity market, where the environmental benefits of the 'clean' electricity production are traded. The regulator can modify these quotas established by Government Decision when the installed capacity in the power plants which use RES cannot secure the demand of Green Certificates; This system was introduced in November 2005. The number of issued green certificates in 2005 was only 345, so by ANRE Order no. 46 / 2005, the mandatory quota for 2005 was reduced at 2.6% from legal quota established for 2005. In the first month of 2006 5997 Green Certificates were sold at the price of 146 RON. Emissions trading is the most compatible flexible mechanisms of Kyoto Protocol with deregulated electricity markets. The Directive 2003/87/CE referring at CO 2 emission trading within Europe came into force and till 31 March 2004 all the countries had to present to the Commission their national plan to comply with Directive's rules. There is great uncertainty worldwide on how GHG emissions reduction and trading schemes will develop. Previous visions of a single (Kyoto

  6. Incorporation of electricity GHG emissions intensity variability into building environmental assessment

    International Nuclear Information System (INIS)

    Cubi, Eduard; Doluweera, Ganesh; Bergerson, Joule

    2015-01-01

    Highlights: • Current building assessment does not account for variability in the electric grid. • A new method incorporates hourly grid variability into building assessment. • The method is complementary with peak-shaving policies. • The assessment method can affect building design decisions. - Abstract: Current building energy and GHG emissions assessments do not account for the variable performance of the electric grid. Incorporating hourly grid variability into building assessment methods can help to better prioritize energy efficiency measures that result in the largest environmental benefits. This article proposes a method to incorporate GHG emissions intensity changes due to grid variability into building environmental assessment. The proposed method encourages building systems that reduce electricity use during peak periods while accounting for differences in grid GHG emissions intensity (i.e., peak shaving is more strongly encouraged in grids that have GHG intense peak generation). A set of energy saving building technologies are evaluated in a set of building variants (office, residential) and grid types (hydro/nuclear dominated, coal/gas dominated) to demonstrate the proposed method. Differences between total GHG emissions calculated with the new method compared with the standard (which assumes a constant GHG emissions intensity throughout the year) are in the 5–15% range when the contribution of electricity to total GHG emissions is more significant. The influence of the method on the assessment of the relative performance of some energy efficiency measures is much higher. For example, the estimated GHG emissions savings with heat pumps and photovoltaics can change by −40% and +20%, respectively, using the new assessment method instead of the standard. These differences in GHG emissions estimates can influence building design decisions. The new method could be implemented easily, and would lead to better decision making and more accurate

  7. Picosecond buildup and relaxation of intense stimulated emission in GaAs

    International Nuclear Information System (INIS)

    Ageeva, N. N.; Bronevoi, I. L.; Zabegaev, D. N.; Krivonosov, A. N.

    2013-01-01

    In support of the idea developed previously based on circumstantial evidence, we have found that stimulated emission emerges in GaAs and its intensity increases with a picosecond delay relative to the front of powerful picosecond optical pumping that produced a dense electron-hole plasma. The emission intensity relaxes with decreasing pumping with a characteristic time of ∼10 ps. We have derived the dependences of the delay time, the relaxation time, and the duration of the picosecond emission pulse on its photon energy. The estimates based on the fact that the relaxation of emission is determined by electron-hole plasma cooling correspond to the measured relaxation time.

  8. Gases emissions of Green house Effect in Colombia

    International Nuclear Information System (INIS)

    Gonzalez B, Fabio

    1999-01-01

    Colombia when signing the agreement mark of the united nations for the global change in 1992 and to ratify it in 1996 committed, together with the other signatory countries, to elaborate and to publish national inventories of anthropogenic emissions of green house gases and plans for its reduction and control. In this reference mark a group of professionals inside the Colombian academy of exact, physical and natural sciences, began in July of 1995, the national inventory of greenhouse gases for Colombia, having the approval of the ministry of the environment, the financial support of the organization of German technical cooperation GTZ and the technical consultantship of the work group that it is carrying out the study in the case of Venezuela. This article presents a summary of the results of the project, making emphasis in the main anthropogenic activities responsible for these emissions, especially those related with the energetic sector

  9. Life-cycle analysis on energy consumption and GHG emission intensities of alternative vehicle fuels in China

    International Nuclear Information System (INIS)

    Ou, Xunmin; Yan, Xiaoyu; Zhang, Xiliang; Liu, Zhen

    2012-01-01

    Highlights: ► We analyzed the life cycle energy intensity and GHG emissions of about 40 pathways of alternative vehicle fuels in China. ► Coal-based liquid fuel has higher life cycle energy intensities and first generation technology bio-fuel has relatively lower intensity. ► By 2020 electricity will have significantly lower GHG intensity and second generation technology bio-fuel will have near zero intensities. -- Abstract: Fossil energy consumption (FEC) and greenhouse gas (GHG) emission intensities of major alternative vehicle fuels (AVFs) in China are calculated and compared with conventional fuels by means of full life-cycle analysis. Currently most of the AVFs have not relatively obvious GHG emission reduction when compared to the gasoline pathway: (1) coal-based AVF has higher intensities in terms of both the FEC and GHG emissions; (2) electricity from the average Chinese grid has the GHG emission intensity similar to that of gasoline pathway although relatively lower FEC intensity; and (3) first generation technology bio-fuel has relatively lower GHG emission intensity and substantially lower FEC intensity. It is forecasted that by 2020 when still comparing to the gasoline pathway: (1) coal-based AVF will still have FEC and GHG emission intensities that are 1.5–1.8 and 1.8–2.5 time those of gasoline pathway, and the application of carbon capture and storage technology can reduce the GHG emission intensity of coal-based AVF; (2) electricity will have significantly lower GHG intensity; and (3) second generation technology bio-fuel will have near zero FEC and GHG intensities.

  10. Blue-green photoluminescence in MCM-41 mesoporous nanotubes

    CERN Document Server

    Shen, J L; Lui, Y L; Cheng, P W; Cheng, C F

    2003-01-01

    Different photoluminescence (PL) techniques have been used to study the blue-green emission from siliceous MCM-41 nanotubes. It was found that the intensity of the blue-green PL is enhanced by rapid thermal annealing (RTA). This enhancement is explained by the generation of twofold-coordinated Si centres and non-bridging oxygen hole centres, in line with the surface properties of MCM-41. On the basis of the analysis of the PL following RTA, polarized PL, and PL excitation, we suggest that the triplet-to-singlet transition of twofold-coordinated silicon centres is responsible for the blue-green PL in MCM-41 nanotubes. (letter to the editor)

  11. Chinese Milk Vetch as Green Manure Mitigates Nitrous Oxide Emission from Monocropped Rice System in South China.

    Directory of Open Access Journals (Sweden)

    Zhijian Xie

    Full Text Available Monocropped rice system is an important intensive cropping system for food security in China. Green manure (GM as an alternative to fertilizer N (FN is useful for improving soil quality. However, few studies have examined the effect of Chinese milk vetch (CMV as GM on nitrous oxide (N2O emission from monocropped rice field in south China. Therefore, a pot-culture experiment with four treatments (control, no FN and CMV; CMV as GM alone, M; fertilizer N alone, FN; integrating fertilizer N with CMV, NM was performed to investigate the effect of incorporating CMV as GM on N2O emission using a closed chamber-gas chromatography (GC technique during the rice growing periods. Under the same N rate, incorporating CMV as GM (the treatments of M and NM mitigated N2O emission during the growing periods of rice plant, reduced the NO3- content and activities of nitrate and nitrite reductase as well as the population of nitrifying bacteria in top soil at maturity stage of rice plant versus FN pots. The global warming potential (GWP and greenhouse gas intensity (GHGI of N2O from monocropped rice field was ranked as M

  12. Optimization of mNeonGreen for Homo sapiens increases its fluorescent intensity in mammalian cells.

    Science.gov (United States)

    Tanida-Miyake, Emiko; Koike, Masato; Uchiyama, Yasuo; Tanida, Isei

    2018-01-01

    Green fluorescent protein (GFP) is tremendously useful for investigating many cellular and intracellular events. The monomeric GFP mNeonGreen is about 3- to 5-times brighter than GFP and monomeric enhanced GFP and shows high photostability. The maturation half-time of mNeonGreen is about 3-fold faster than that of monomeric enhanced GFP. However, the cDNA sequence encoding mNeonGreen contains some codons that are rarely used in Homo sapiens. For better expression of mNeonGreen in human cells, we synthesized a human-optimized cDNA encoding mNeonGreen and generated an expression plasmid for humanized mNeonGreen under the control of the cytomegalovirus promoter. The resultant plasmid was introduced into HEK293 cells. The fluorescent intensity of humanized mNeonGreen was about 1.4-fold higher than that of the original mNeonGreen. The humanized mNeonGreen with a mitochondria-targeting signal showed mitochondrial distribution of mNeonGreen. We further generated an expression vector of humanized mNeonGreen with 3xFLAG tags at its carboxyl terminus as these tags are useful for immunological analyses. The 3xFLAG-tagged mNeonGreen was recognized well with an anti-FLAG-M2 antibody. These plasmids for the expression of humanized mNeonGreen and mNeonGreen-3xFLAG are useful tools for biological studies in mammalian cells using mNeonGreen.

  13. Green residues from Bangkok green space for renewable energy recovery, phosphorus recycling and greenhouse gases emission reduction.

    Science.gov (United States)

    Thitanuwat, Bussarakam; Polprasert, Chongchin; Englande, Andrew J

    2017-03-01

    Effective ways to integrate human life quality, environmental pollution mitigation and efficient waste management strategies are becoming a crisis challenge for sustainable urban development. The aims of this study are: (1) to evaluate and recommend an optimum Urban Green Space (UGS) area for the Bangkok Metropolitan Administration (BMA); and (2) to quantify potential renewable resources including electricity generation and potential nutrient recovery from generated ash. Green House Gases (GHGs) emissions from the management of Green Residues (GR) produced in a recommended UGS expansion are estimated and compared with those from the existing BMA waste management practice. Results obtained from this study indicate that an increase in UGS from its current 2.02% to 22.4% of the BMA urban area is recommended. This optimum value is primarily due to the area needed as living space for its population. At this scale, GR produced of about 334kt·y -1 may be used to generate electricity at the rate of 206GWh·y -1 by employing incineration technology. Additionally, instead of going to landfill, phosphorus (P) contained in the ash of 1077 t P·y -1 could be recovered to produce P fertilizer to be recycled for agricultural cultivation. Income earned from selling these products is found to offset all of the operational cost of the proposed GR management methodology itself plus 7% of the cost of BMA's Municipal Solid Waste (MSW) operations. About 70% of the current GHGs emission may be reduced based on incineration simulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Light Intensity and Carbon Dioxide Availability Impact Antioxidant Activity in Green Onions (Allium fistulosumm L)

    Science.gov (United States)

    Levine, Lanfang; Bisbee, Patricia; Pare, Paul

    The prospect of long-duration manned space missions poses many challenges, including the development of a sustainable life support system and effective methods of space-radiation protection. To mitigate the risk of increased space-radiation, functional foods rich in antioxidant properties such as green onions are of particular interest. However it has yet to be established whether antioxidant properties can be preserved or enhanced in space environment where carbon dioxide, lighting intensity, gravity and pressure differ from which plants have acclimated to on earth. In this study, green onions (Allium fistulosumm L. cultivar Kinka) rich in antioxidant flavonoids are used as a model system to investigate variations in antioxidant capacity with plants grown under varying light intensities and CO2 concentrations. The antioxidant potential is determined using both radical cation scavenging and oxygen radical absorbance assays. For all light intensities assayed, antioxidant potential in water extract of green onions per gram biomass declined with CO2 increases up to 1200 ppm, and then leveled off with further CO2 increase to 4000 ppm. This inverse carbon dioxide versus antioxidant activity correlation suggests lower accumulation rates for water soluble antioxidant compounds compared to total biomass under increasing CO2 concentrations. The effect of increasing atmospheric CO2 concentration on antioxidant activity of ethanol extracts were light intensity dependent. The implications of these findings are discussed in the context of traditional plant antioxidants including vitamin C and the major onion flavonoid quercetin.

  15. Theory of atomic spectral emission intensity

    International Nuclear Information System (INIS)

    Yngstroem, S.

    1989-02-01

    The theoretical derivation of a new spectral line intensity formula for atomic radiative emission is presented. The theory is based on first principles of quantum physics and statistical physics. It is argued that the formulation of the theory provides a very good example of the manner in which quantum logic transforms into common sense logic. The theory is strongly supported by experimental evidence. (author) (16 refs.)

  16. Polymorph-Dependent Green, Yellow, and Red Emissions of Organic Crystals for Laser Applications.

    Science.gov (United States)

    Xu, Zhenzhen; Zhang, Zhiwei; Jin, Xue; Liao, Qing; Fu, Hongbing

    2017-12-05

    Color tuning of organic solid-state luminescent materials remains difficult and time-consuming through conventional chemical synthesis. Herein, we reported highly efficient polymorph-dependent green (P1), yellow (P2), and red (P3) emissions of organic crystals made by the same molecular building blocks of 4-(2-{4-[2-(4-diphenylamino-phenyl)-vinyl]-phenyl}-vinyl)-benzonitrile (DOPVB). Single-crystal X-ray diffraction (XRD) and spectroscopic data reveal that all three polymorphs follow the herringbone packing motif in H-type aggregations. On the one hand, from P1, P2 to P3, the reduced pitch translation along π stacks increases the intermolecular interactions between adjacent molecules, therefore leading to gradually red-shifted emissions from 540, 570 to 614 nm. On the other hand, the edge-to-face arrangement and large roll translations avoid strong π-π overlap, making P1, P2 and P3 highly emissive with record-high solid-state fluorescence quantum yields of 0.60, 0.98, and 0.68, respectively. Furthermore, the optically allowed 0-1 transitions of herringbone H-aggregates of P1, P2 and P3 naturally provide a four-level scheme, enabling green and yellow amplified spontaneous emissions (ASE) with very low thresholds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Managing Traffic Flows for Cleaner Cities: The Role of Green Navigation Systems

    Directory of Open Access Journals (Sweden)

    Fiamma Perez-Prada

    2017-06-01

    Full Text Available Cities worldwide suffer from serious air pollution problems and are main contributors to climate change. Green Navigation systems have a great potential to reduce fuel consumption and exhaust emissions from traffic. This research evaluates the impacts of different percentages of green drivers on traffic, CO2, and NOx over the entire Madrid Region. A macroscopic traffic model was combined with an enhanced macroscopic emissions model and a GIS (Geographic Information Systems to simulate emissions on the basis of average vehicle speeds and traffic intensity at the link level. NOx emissions are evaluated, taking into account not only the exhaust emissions produced by transport activity, but also the amount of the population exposed to these air pollutants. Results show up to 10.4% CO2 and 13.8% NOx reductions in congested traffic conditions for a 90% penetration of green drivers; however, the population’s exposure to NOx increases up to 20.2%. Moreover, while traffic volumes decrease by 13.5% for the entire region, they increase by up to 16.4% downtown. Travel times also increase by 28.7%. Since green drivers tend to choose shorter routes through downtown areas, eco-routing systems are an effective tool for fighting climate change, but are ineffective to reduce air pollution in dense urban areas.

  18. Sol-Gel Synthesis and Luminescence of Green Light Emitting Phosphors Zn2SiO4/Mn2+

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Mn2+ doped Zn2SiO4 phosphors were synthesized by sol-gel method, and the influence of zinc source, Mn2+ dopant concentration and annealing temperature were investigated. Results show that zinc nitrate based precursor with strong green emission intensities is better than zinc acetate based precursor. The intensity of green light emission reaches a peak at 254 nm when the Mn2+ dopant concentration is about 5%( molar percentage). Structural details of the phosphors were examined through X-ray diffractometry, thermogravimetric and differential thermal analysis. The result indicates that they are both rhombohedral structures, which remain amorphous below 700 ℃and crystallize completely around 1 000℃. The luminescent properties of Zn2SiO4/Mn2+ phosphors were characterized by excitation and emission spectra.

  19. The odd couple: The relationship between state economic performance and carbon emissions economic intensity

    International Nuclear Information System (INIS)

    Davidsdottir, B.; Fisher, M.

    2011-01-01

    Historical time trends indicate that both carbon and energy intensity have declined in the United States over the last several decades, while economic performance, as measured by per capita GSP, has improved. This observation indicates that it may be possible to reduce carbon intensity without a reduction in economic performance. This paper assesses using panel analysis, the empirical relationship between carbon emissions intensity and economic performance, and examines the direction of causality between the two variables. Data for the analysis covered 48 states, excluding Hawaii, Alaska, and Washington DC, from 1980 to 2000. The results indicate significant bi-directional relationship between carbon emissions intensity and state economic performance, both using an aggregate indicator for carbon emissions intensity, decomposed using Laspeyres indexes and disaggregated by sector. This implies that it should be possible to implement statewide and sector-specific policies to reduce energy and carbon intensity and at the same time improve economic performance. - Highlights: → The empirical relationship between carbon emissions intensity and economic performance is assessed → The direction of causality between the two variables is examined. → Results indicate significant relationship between carbon emissions intensity and state economic performance. → Relationship is bi-directional, and holds for both aggregate analysis and by sector. → It is possible to implement policies to reduce carbon intensity and improve economic performance.

  20. How does green technology influence CO2 emission in China?--An empirical research based on provincial data of China.

    Science.gov (United States)

    Ding, Weina; Han, Botang; Zhao, Xin; Mazzanti, Massimiliano

    2015-07-01

    This paper investigates the role of green innovations aimed at reducing carbon dioxide emissions as a factor that compensates for growth and population effects. It has been shown from tests that the positive effect of green innovations on carbon emissions exists within a STIRPAT framework from a local perspective. The panel data is derived from China Statistical Yearbook and China Intellectual Property Office covered from 1999 to 2013. In addition,the static panel model was run to estimate the diversity among three typical regions of China. The main result shows that the green technology change has not played a dominant role yet in promoting environmental protection, while a scale effect (Affluence and Population)still prevails, although green patents show positive influences on the CO2 emission reduction inthe whole country as well as the East and West regions, except the Central region. Moreover, it turns out that the classical EKC hypothesis does stand in China, referring to the three regions with the inverted "U" shape. The analysis gives suggestions to the policy makers, which would support enlarging the investment scale on green patents and encourage international corporation with environmental related innovations.

  1. The “Green Jobs” Fantasy: Why the Economic and Environmental Reality Can Never Live Up to the Political Promise

    OpenAIRE

    Jennifer Winter; Michal C. Moore

    2013-01-01

    Agriculture is one of the least “green” — that is, the least environmentally friendly — sectors in Canada, based on its energy-use intensity and greenhouse gas emissions intensity. But agriculture is also the “greenest” sector in Canada, according to one measure that calculates the proportion of “green employment” in various industries. Welcome to the world of “green jobs,” where vague definitions often give energy-intensive, carbon-heavy industries a “green” stamp of approval. Examples inclu...

  2. (Zn, Mg)2GeO4:Mn2+ submicrorods as promising green phosphors for field emission displays: hydrothermal synthesis and luminescence properties.

    Science.gov (United States)

    Shang, Mengmeng; Li, Guogang; Yang, Dongmei; Kang, Xiaojiao; Peng, Chong; Cheng, Ziyong; Lin, Jun

    2011-10-07

    (Zn(1-x-y)Mg(y))(2)GeO(4): xMn(2+) (y = 0-0.30; x = 0-0.035) phosphors with uniform submicrorod morphology were synthesized through a facile hydrothermal process. X-Ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence (PL), and cathodoluminescence (CL) spectroscopy were utilized to characterize the samples. SEM and TEM images indicate that Zn(2)GeO(4):Mn(2+) samples consist of submicrorods with lengths around 1-2 μm and diameters around 200-250 nm, respectively. The possible formation mechanism for Zn(2)GeO(4) submicrorods has been presented. PL and CL spectroscopic characterizations show that pure Zn(2)GeO(4) sample shows a blue emission due to defects, while Zn(2)GeO(4):Mn(2+) phosphors exhibit a green emission corresponding to the characteristic transition of Mn(2+) ((4)T(1)→(6)A(1)) under the excitation of UV and low-voltage electron beam. Compared with Zn(2)GeO(4):Mn(2+) sample prepared by solid-state reaction, Zn(2)GeO(4):Mn(2+) phosphors obtained by hydrothermal process followed by high temperature annealing show better luminescence properties. In addition, codoping Mg(2+) ions into the lattice to substitute for Zn(2+) ions can enhance both the PL and CL intensity of Zn(2)GeO(4):Mn(2+) phosphors. Furthermore, Zn(2)GeO(4):Mn(2+) phosphors exhibit more saturated green emission than the commercial FEDs phosphor ZnO:Zn, and it is expected that these phosphors are promising for application in field-emission displays.

  3. A green emissive amorphous fac-Alq3 solid generated by grinding crystalline blue fac-Alq3 powder.

    Science.gov (United States)

    Bi, Hai; Chen, Dong; Li, Di; Yuan, Yang; Xia, Dandan; Zhang, Zuolun; Zhang, Hongyu; Wang, Yue

    2011-04-14

    A novel green emissive Alq(3) solid with a facial isomeric form has been obtained by grinding the typical blue luminescent fac-Alq(3) crystalline powder. This is the first report, to the best of our knowledge, that a fac-Alq(3) isomer emits green light.

  4. Luminescent properties and energy transfer in the green phosphors LaBSiO5:Tb3+, Ce3+.

    Science.gov (United States)

    Wang, Zhengliang; Cheng, Ping; He, Pei; Liu, Yong; Zhou, Yayun; Zhou, Qiang

    2015-09-01

    LaBSiO5 phosphors doped with Ce(3+) and Tb(3+) were synthesized using the conventional solid-state method at 1100 °C. The phase purity and luminescent properties of these phosphors are investigated. LaBSiO5:Tb(3+) phosphors show intense green emission, and LaBSiO5 phosphors doped with Ce(3+) show blue-violet emission under UV light excitation. LaBSiO5 phosphors co-doped with Ce(3+) and Tb(3+) exhibit blue-violet and green emission under excitation by UV light. The blue-violet emission is due to the 5d-4f transition of Ce(3+) and the green emission is ascribed to the (5) D4 → (7) F5 transition of Tb(3+). The spectral overlap between the excitation band of Tb(3+) and the emission band of Ce(3+) supports the occurrence of energy transfer from Ce(3+) to Tb(3+), and the energy transfer process was investigated. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Emission properties of Mn doped ZnO nanoparticles prepared by mechanochemical processing

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, Nurul Syahidah; Yahya, Ahmad Kamal [Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor 40450 (Malaysia); Talari, Mahesh Kumar, E-mail: talari@gmail.com [Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor 40450 (Malaysia)

    2012-07-15

    Mechanochemical processing was reported to introduce lot of crystal defects which can significantly influence emission properties. Nevertheless, to the best of our knowledge, there are no reports on effect of mechanochemical processing on emission properties of transition metal ion doped ZnO. In this study, Zn{sub 1-x}Mn{sub x}O nanoparticles with different Mn content (x=0, 0.02, 0.04, 0.06, 0.08, and 0.1) were prepared by mechanochemical processing to study the effect of Mn doping and processing on emission properties. Confirmation of nanoparticles size and nanocrystalline nature of hexagonal wurtzite ZnO structure is carried out using transmission electron microscopy (TEM) and selected area electron diffraction (SAED), respectively. The samples were also characterized using Fluorescence Spectroscope before and after heat-treatment. The emission studies revealed that blue emission intensity is stronger compared to UV and green emission in contrast to the earlier reports, where other synthesis routes were employed for the ZnO nanoparticles' preparation. The blue emission originates from the zinc interstitial (Zn{sub i}) and oxygen interstitial (O{sub i}) defects, which indicate that the mechanochemical route resulted in more interstitial defects compared to oxygen substitution (O{sub Zn}) and oxygen vacancy (V{sub o}) defects which otherwise would give green emission. Mn doping resulted in shifting of near-band-edge (NBE) emission and the reduction in the intensities of NBE, blue and green emissions. The initial red shift at lower Mn content could be due to s-d and p-d exchange interactions as well as band tailing effect where as the blue shift at higher Mn content can be attributed to the Burstein-Moss shift. The reduction in emission intensity could be due to non-radiative recombination processes promoted by Mn ions with increasing Mn content. - Highlights: Black-Right-Pointing-Pointer Zn{sub 1-x}Mn{sub x}O nanoparticles were prepared by mechanochemical

  6. Theory of atomic spectral emission intensity

    Science.gov (United States)

    Yngström, Sten

    1994-07-01

    The theoretical derivation of a new spectral line intensity formula for atomic radiative emission is presented. The theory is based on first principles of quantum physics, electrodynamics, and statistical physics. Quantum rules lead to revision of the conventional principle of local thermal equilibrium of matter and radiation. Study of electrodynamics suggests absence of spectral emission from fractions of the numbers of atoms and ions in a plasma due to radiative inhibition caused by electromagnetic force fields. Statistical probability methods are extended by the statement: A macroscopic physical system develops in the most probable of all conceivable ways consistent with the constraining conditions for the system. The crucial role of statistical physics in transforming quantum logic into common sense logic is stressed. The theory is strongly supported by experimental evidence.

  7. Infrequent blue and green emission transitions from Eu3+ in heavy metal tellurite glasses with low phonon energy

    International Nuclear Information System (INIS)

    Lin, H.; Tanabe, S.; Lin, L.; Yang, D.L.; Liu, K.; Wong, W.H.; Yu, J.Y.; Pun, E.Y.B.

    2006-01-01

    Eu 3+ doped alkali-barium-bismuth-tellurite (Eu 3+ :LKBBT) glasses were prepared by conventional melt quenching. Twelve emission bands including infrequent blue and green bands are observed and they almost cover whole visible spectral region under violet light radiation. The blue and green emissions of Eu 3+ rarely appeared in oxide glasses before, but they have been clearly recorded in Eu 3+ :LKBBT glasses even in the case of high concentration doping of Eu 3+ . The analysis based on spontaneous-radiative rate, energy gap and Raman scattering reveals that the obtaining of the abundant multichannel emissions of Eu 3+ is due to the higher refractive index and the lower phonon energy in LKBBT glass system

  8. Dual-emissive quantum dots for multispectral intraoperative fluorescence imaging.

    Science.gov (United States)

    Chin, Patrick T K; Buckle, Tessa; Aguirre de Miguel, Arantxa; Meskers, Stefan C J; Janssen, René A J; van Leeuwen, Fijs W B

    2010-09-01

    Fluorescence molecular imaging is rapidly increasing its popularity in image guided surgery applications. To help develop its full surgical potential it remains a challenge to generate dual-emissive imaging agents that allow for combined visible assessment and sensitive camera based imaging. To this end, we now describe multispectral InP/ZnS quantum dots (QDs) that exhibit a bright visible green/yellow exciton emission combined with a long-lived far red defect emission. The intensity of the latter emission was enhanced by X-ray irradiation and allows for: 1) inverted QD density dependent defect emission intensity, showing improved efficacies at lower QD densities, and 2) detection without direct illumination and interference from autofluorescence. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Synthesis and luminescent features of NaCaPO4:Tb3+ green phosphor for near UV-based LEDs

    International Nuclear Information System (INIS)

    Ratnam, B.V.; Jayasimhadri, M.; Bhaskar Kumar, G.; Jang, Kiwan; Kim, S.S.; Lee, Y.I.; Lim, J.M.; Shin, D.S.; Song, T.K.

    2013-01-01

    Highlights: ► Successfully synthesized orthorhombic phase of NaCaPO 4 (NCP) phosphors ► Structural and Luminescent properties have been investigated. ► In the excitation spectrum, 7 F 6 → 5 G 6 transition at 370 nm exhibit highest intensity. ► CIE coordinates of Tb 3+ : NCP phosphor indicate green light emission in CIE diagram. ► Hence, Tb 3+ doped NaCaPO 4 is suitable for UV based pc-LEDs. -- Abstract: An efficient green emitting Tb 3+ doped NaCaPO 4 (NCP) phosphor was synthesized by using conventional solid-state reaction for solid-state lighting applications. X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), FT-IR, emission and excitation properties were extensively investigated for NCP phosphors. X-ray diffraction analysis confirmed the formation of NaCaPO 4 with orthorhombic structure. The excitation spectrum consists of strong 4f–4f transition at around 370 nm, which has higher intensity than the f–d transition. Emission spectra indicated that this phosphor can be efficiently excited by UV light in the range from 250 to 400 nm, and shows strong emission band centered at 547 nm. Analysis of the emission spectra with different Tb 3+ concentrations revealed that the optimum dopant concentration for these NCP phosphors is about 5 mol% of Tb 3+ . Diminishing of 5 D 3 level and increasing of 5 D 4 level emission intensity with the Tb 3+ concentration explained successfully. The emission color was analyzed and confirmed with the help of chromaticity coordinates and color temperature. The excellent luminescent properties of NaCaPO 4 :Tb 3+ phosphor makes it as a potential green phosphor upon near-UV LED excitation

  10. Suppressing methane emission and global warming potential from rice fields through intermittent drainage and green biomass amendment

    NARCIS (Netherlands)

    Haque, Md. M.; Biswas, J. C.; Kim, S. Y.; Kim, P. J.

    Winter cover crops are recommended to improve soil quality and carbon sequestration, although their use as green manure can significantly increase methane (CH4) emission from paddy soils. Soil management practices can be used to reduce CH4 emission from paddy soils, but intermittent drainage is

  11. Defect controlled tuning of the ratio of ultraviolet to visible light emission in TiO2 thin films

    International Nuclear Information System (INIS)

    Mondal, S.; Basak, D.

    2016-01-01

    The photoluminescence (PL) of sol–gel TiO 2 thin film has been found to be largely dependent on the post-deposition processing such as annealing at 500 °C in air, vacuum and ultraviolet (UV) light curing at room temperature. A detailed analysis of room temperature PL spectra shows that the UV/VIS PL peak intensity ratio is maximum for the film which has been annealed at 500 °C in air. X-ray photoelectron spectroscopy confirms the presence of Ti 3+ type of point defects. The visible emission is deconvoluted to green and orange emissions. Analyses of the present experimental results indicate that V O and/or Ti 3+ causes the green emission and OH and/or excess O 2 adsorption on TiO 2 surface probably causes the orange emission. The time correlated single photon counting spectroscopy data of the UV PL indicates higher number defects in vacuum annealed and UV cured films as compared to the air annealed film. Correlation of the results altogether allows us to conclude that the surface defects those causing the visible emission are smaller in number in the air annealed film. The present results may be useful for tuning the relative PL intensities of UV, green and orange emissions. - Highlights: • Sol–gel TiO 2 films were treated both in air, vacuum at 500 °C and under UV light (room temperature). • UV/VIS PL intensity ratio is maximum for air annealed and minimum for UV cured films. • Both green and orange emission predominantly controls the visible emission of TiO 2 . • The visible emission exhibit a clear correlation with Ti 3+  defects on the surface.

  12. Variations in embodied energy and carbon emission intensities of construction materials

    Energy Technology Data Exchange (ETDEWEB)

    Wan Omar, Wan-Mohd-Sabki [Griffith School of Engineering, Griffith University, Gold Coast Campus, Queensland 4222 (Australia); School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis (Malaysia); Doh, Jeung-Hwan, E-mail: j.doh@griffith.edu.au [Griffith School of Engineering, Griffith University, Gold Coast Campus, Queensland 4222 (Australia); Panuwatwanich, Kriengsak [Griffith School of Engineering, Griffith University, Gold Coast Campus, Queensland 4222 (Australia)

    2014-11-15

    Identification of parameter variation allows us to conduct more detailed life cycle assessment (LCA) of energy and carbon emission material over their lifecycle. Previous research studies have demonstrated that hybrid LCA (HLCA) can generally overcome the problems of incompleteness and accuracy of embodied energy (EE) and carbon (EC) emission assessment. Unfortunately, the current interpretation and quantification procedure has not been extensively and empirically studied in a qualitative manner, especially in hybridising between the process LCA and I-O LCA. To determine this weakness, this study empirically demonstrates the changes in EE and EC intensities caused by variations to key parameters in material production. Using Australia and Malaysia as a case study, the results are compared with previous hybrid models to identify key parameters and issues. The parameters considered in this study are technological changes, energy tariffs, primary energy factors, disaggregation constant, emission factors, and material price fluctuation. It was found that changes in technological efficiency, energy tariffs and material prices caused significant variations in the model. Finally, the comparison of hybrid models revealed that non-energy intensive materials greatly influence the variations due to high indirect energy and carbon emission in upstream boundary of material production, and as such, any decision related to these materials should be considered carefully. - Highlights: • We investigate the EE and EC intensity variation in Australia and Malaysia. • The influences of parameter variations on hybrid LCA model were evaluated. • Key significant contribution to the EE and EC intensity variation were identified. • High indirect EE and EC content caused significant variation in hybrid LCA models. • Non-energy intensive material caused variation between hybrid LCA models.

  13. Variations in embodied energy and carbon emission intensities of construction materials

    International Nuclear Information System (INIS)

    Wan Omar, Wan-Mohd-Sabki; Doh, Jeung-Hwan; Panuwatwanich, Kriengsak

    2014-01-01

    Identification of parameter variation allows us to conduct more detailed life cycle assessment (LCA) of energy and carbon emission material over their lifecycle. Previous research studies have demonstrated that hybrid LCA (HLCA) can generally overcome the problems of incompleteness and accuracy of embodied energy (EE) and carbon (EC) emission assessment. Unfortunately, the current interpretation and quantification procedure has not been extensively and empirically studied in a qualitative manner, especially in hybridising between the process LCA and I-O LCA. To determine this weakness, this study empirically demonstrates the changes in EE and EC intensities caused by variations to key parameters in material production. Using Australia and Malaysia as a case study, the results are compared with previous hybrid models to identify key parameters and issues. The parameters considered in this study are technological changes, energy tariffs, primary energy factors, disaggregation constant, emission factors, and material price fluctuation. It was found that changes in technological efficiency, energy tariffs and material prices caused significant variations in the model. Finally, the comparison of hybrid models revealed that non-energy intensive materials greatly influence the variations due to high indirect energy and carbon emission in upstream boundary of material production, and as such, any decision related to these materials should be considered carefully. - Highlights: • We investigate the EE and EC intensity variation in Australia and Malaysia. • The influences of parameter variations on hybrid LCA model were evaluated. • Key significant contribution to the EE and EC intensity variation were identified. • High indirect EE and EC content caused significant variation in hybrid LCA models. • Non-energy intensive material caused variation between hybrid LCA models

  14. The “Green Jobs” Fantasy: Why the Economic and Environmental Reality Can Never Live Up to the Political Promise

    Directory of Open Access Journals (Sweden)

    Jennifer Winter

    2013-10-01

    Full Text Available Agriculture is one of the least “green” — that is, the least environmentally friendly — sectors in Canada, based on its energy-use intensity and greenhouse gas emissions intensity. But agriculture is also the “greenest” sector in Canada, according to one measure that calculates the proportion of “green employment” in various industries. Welcome to the world of “green jobs,” where vague definitions often give energy-intensive, carbon-heavy industries a “green” stamp of approval. Examples include companies making solar panels, but using large volumes of energy to do so or where an accountant preparing financial returns is counted as a “green” worker at one office, but turns instantly “dirty” should he cross the street to do the same accounting work at another office. It is also a world where inefficient power generation is considered positive, if it means employing more “green workers” per unit of power output, regardless of any negative effects that may have on the economy. The concept of “green jobs” has become immensely popular among policy planners looking to address the problem of global warming, yet are aware of the economic costs of anti-carbon measures. The promise that western economies can reduce carbon emissions while creating thousands, if not millions, of “green jobs” — which will more than compensate for the job losses that will occur in sectors reliant on fossil fuels — has been especially embraced by politicians, relieved to find a pro-climate policy that also doubles as a pro-economic policy. Unfortunately, there is scant agreement on what fairly qualifies as a “green job,” and much evidence that what policy-makers frequently consider “green jobs” are, in fact, existing jobs, belonging to the traditional economy, but simply reclassified as “green.” By emphasizing “green jobs,” policy-makers risk measuring environmental progress based on a concept that can often be

  15. Color tunability in green, red and infra-red upconversion emission in Tm{sup 3+}/Yb{sup 3+}/Ho{sup 3+} co-doped CeO{sub 2} with potential application for improvement of efficiency in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Luiz G.A.; Rocha, Leonardo A.; Buarque, Juliana M.M. [Laboratório de Materiais Inorgânicos Fotoluminescentes e Polímeros Biodegradáveis (LAFOP), Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João Del Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, 36301-160 São João Del Rei, MG (Brazil); Gonçalves, Rogéria Rocha [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Av. Bandeirantes, 3900, 14040-901 Ribeirão Preto, SP (Brazil); Nascimento Jr, Clébio S. [Laboratório de Química Teórica e Computacional – (LQTC), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, 36301-160 São João del-Rei, MG (Brazil); and others

    2015-03-15

    The preparation of Tm{sup 3+}/Yb{sup 3+}/Ho{sup 3+} co-doped CeO{sub 2} prepared by the precipitation method using ammonium hydroxide as a precursor is presented. By X-ray diffraction the materials show the phase-type of fluorite structure and the crystallite sizes were calculated by the Scherrer's equation. No other phase was observed evincing that the rare earth ions were inserted into the fluorite phase as substitutional or interstitial dopants. The microstrain calculated by the Williamson–Hall method do not show significant changes in their values, indicating that the inclusion of rare earths does not causes structural changes in the CeO{sub 2} used as a host matrix. All material showed intense upconversion emission at red and green region under excitation with diode laser at 980 nm. The color of emission changes from green to red with increasing excitation power pump. The materials showed suitable photoluminescent properties for applications as a laser source, solar cells, and great emitter at 800 nm. - Highlights: • Tm{sup 3+}/Yb{sup 3+}/Ho{sup 3+} co-doped CeO{sub 2} prepared by the simple way. • Intense upconversion emission regions and the tunability of emission color by the laser power pump. • The materials showed suitable photoluminescent properties for different applications.

  16. Decomposition of intensity of energy-related CO_2 emission in Chinese provinces using the LMDI method

    International Nuclear Information System (INIS)

    Zhang, Wei; Li, Ke; Zhou, Dequn; Zhang, Wenrui; Gao, Hui

    2016-01-01

    Uncovering the driving factors of CO_2 emission intensity declining is important for China. This paper improves the logarithmic mean Divisia index technique, which includes energy density and energy consumption intensity, to explore the driving factors of carbon emission intensity (CI) in 29 Chinese provinces from 1995–2012. The main results are: (1) energy consumption intensity plays a more important role than carbon emission density (CD) for a rapid decrease in CI during the research period, so a much room is left for a significant CD reduction through carbon emission reduction technology, energy structural reduction, and energy consumption proportional reduction. (2) The decrease in energy consumption technology and energy structure in secondary industries contributes the most reduction in energy consumption intensity. (3)The energy consumption proportions of secondary and tertiary industries are the two most important drivers to decrease CD. (4) During the research period, the energy consumption proportions of secondary industries result in the most decrease in CD, whereas the energy consumption proportions of tertiary industries cause the most increase in CD. - Highlights: •Carbon emission intensity decreased rapidly from 1995 to 2012. •Energy intensity is the more significant driver for decrease of carbon intensity. •The most contribution of EI's decrease came from secondary industries. •The most contribution of CD's decrease came from secondary and tertiary industries. •Several policies of reducing carbon emission intensity in China have been raised.

  17. Organic additives stabilize RNA aptamer binding of malachite green.

    Science.gov (United States)

    Zhou, Yubin; Chi, Hong; Wu, Yuanyuan; Marks, Robert S; Steele, Terry W J

    2016-11-01

    Aptamer-ligand binding has been utilized for biological applications due to its specific binding and synthetic nature. However, the applications will be limited if the binding or the ligand is unstable. Malachite green aptamer (MGA) and its labile ligand malachite green (MG) were found to have increasing apparent dissociation constants (Kd) as determined through the first order rate loss of emission intensity of the MGA-MG fluorescent complex. The fluorescent intensity loss was hypothesized to be from the hydrolysis of MG into malachite green carbinol base (MGOH). Random screening organic additives were found to reduce or retain the fluorescence emission and the calculated apparent Kd of MGA-MG binding. The protective effect became more apparent as the percentage of organic additives increased up to 10% v/v. The mechanism behind the organic additive protective effects was primarily from a ~5X increase in first order rate kinetics of MGOH→MG (kMGOH→MG), which significantly changed the equilibrium constant (Keq), favoring the generation of MG, versus MGOH without organic additives. A simple way has been developed to stabilize the apparent Kd of MGA-MG binding over 24h, which may be beneficial in stabilizing other triphenylmethane or carbocation ligand-aptamer interactions that are susceptible to SN1 hydrolysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Air Treatment Techniques for Abatement of Emissions from Intensive Livestock Production

    NARCIS (Netherlands)

    Melse, R.W.; Ogink, N.W.M.; Rulkens, W.H.

    2009-01-01

    Intensive livestock production is connected with a number of environmental effects, including emissions of ammonia (NH3), greenhouse gases (CH4 and N2O), odour, and particulate matter (PM10 and PM2.5). Possible strategies for emission reduction include feed management, adaptation of housing design,

  19. Intensities of the Venusian N2 electron-impact excited dayglow emissions

    Science.gov (United States)

    Fox, Jane L.; F. Hać, Nicholas E.

    2013-12-01

    Dayglow emissions are signatures of both the energy deposition into an atmosphere and the abundances of the species from which they arise. The first N2 dayglow emissions from Mars, the (0,5) and (0,6) bands of the N2 Vegard-Kaplan band system, were detected by the Spectroscopy for Investigations of the Characteristics of the Atmosphere of Mars (SPICAM) UV spectrometer on board the Mars Express spacecraft. The Vegard-Kaplan band system arises from the transition from the lowest N2 triplet state (A3Σu+;v') to the electronic ground state (X1Σg+;v″). It is populated by direct electron-impact excitation and by cascading from higher triplet states. The Venus UV dayglow is currently being probed by an instrument similar to SPICAM, the Spectroscopy for the Investigations of the Characteristics of the Atmosphere of Venus (SPICAV) UV spectrometer on Venus Express, but no N2 emissions have been detected. Because the N2 mixing ratios in the Venus thermosphere are larger than those in the thermosphere of Mars and the solar flux is greater at the orbit of Venus than that at Mars, we expect the Venus N2 emissions to be significantly more intense than those of Mars. A prediction of the intensities of various N2 emissions from Venus could be used to guide observations by the SPICAV and other instruments that are used to measure the Venus dayglow. Employing updated data, we here construct models of the low and high solar activity thermospheres of Venus, and we compute the integrated overhead intensities of 17 N2 band systems and limb profiles of the Vegard-Kaplan bands. The ratios of the predicted intensities of the various N2 bands at Venus to those at Mars are in the range 5.5-9.5.

  20. Optical spectroscopy and luminescence properties of Ho3+ doped zinc fluorophosphate (ZFP) glasses for green luminescent device applications

    Science.gov (United States)

    Reddy Prasad, V.; Damodaraiah, S.; Ratnakaram, Y. C.

    2018-04-01

    Ho3+ doped zinc fluorophosphate (ZFP) glasses with molar chemical compositions, (60-x) NH4H2PO4+20ZnO+10BaF2+10NaF+xHo2O3 (where x = 0.1, 0.3, 0.5, 1.0 and 1.5 mol%) were prepared by melt quenching technique. These glasses were characterized through physical, structural, optical, excitation, luminescence and decay curve analysis. From the absorption spectra, spectral intensities (fexp and fcal), Judd-Ofelt intensity parameters (Ω2, Ω4 and Ω6), radiative transition probabilities (AT), radiative lifetimes (τR) and branching ratios (βR) were evaluated for all Ho3+ doped ZFP glass matrices. From the photoluminescence spectra, peak stimulated emission cross-sections (σP) were calculated for all Ho3+ doped ZFP glasses. The Ho3+ doped ZFP glasses show strong green emission at 545 nm and red emission at 656 nm under excitation, 450 nm. The measured lifetimes (τmeas) of (5S2)5F4 level of Ho3+ doped ZFP glasses were obtained from decay profiles. The CIE color coordinates of Ho3+ doped ZFP glasses were calculated from emission spectra and 1.0 mol% of Ho3+ doped ZFP glass matrix gives green emission. Hence, these results confirm that the Ho3+ doped ZFP glasses could be considered as a promising candidate for visible green laser applications.

  1. Near UV-Blue Excitable Green-Emitting Nanocrystalline Oxide

    Directory of Open Access Journals (Sweden)

    C. E. Rodríguez-García

    2011-01-01

    Full Text Available Green-emitting Eu-activated powders were produced by a two-stage method consisting of pressure-assisted combustion synthesis and postannealing in ammonia. The as-synthesized powders exhibited a red photoluminescence (PL peak located at =616 nm when excited with =395 nm UV. This emission peak corresponds to the 5D0→7F2 transition in Eu3+. After annealing in ammonia, the PL emission changed to an intense broad-band peak centered at =500 nm, most likely produced by 4f65d1→4f7 electronic transitions in Eu2+. This green-emitting phosphor has excitation band in the near UV-blue region (=300–450 nm. X-ray diffraction analysis reveals mainly the orthorhombic EuAlO3 and Al2O3 phases. Transmission electron microscopy observations showed that the grains are formed by faceted nanocrystals (~4 nm of polygonal shape. The excellent excitation and emission properties make these powders very promising to be used as phosphors in UV solid-state diodes coupled to activate white-emitting lamps.

  2. Effect of a 10 week high intensity interval training supplemented with green tea on lipid profiles and body composition in overweight women

    Directory of Open Access Journals (Sweden)

    Elham Ghasemi

    2016-09-01

    Full Text Available Background and Aim: Increasing the intensity of physical activity along with regular consumption of green tea can be effective on energy metabolism, weight, and body fat content. The aim of the present study was to determine the effect of a 10 week. .high intensity interval training supplemented with consuming green tea .on lipid profiles and body composition in overweight women. Materials and Methods: In this quasi-experimental study, 30 overweight women were purposefully and randomly chosen and divided into 3 equal groups. Training group performed training programs including 3 sessions per week at maximum intensity of 85-95% heart rate and the supplement group consumed 3 tablets of green tea (500 mg daily for 10 weeks High intensity interval training and the supplement group both underwent intervention. Blood samples were collected before and after the intervention in fasting state. Finally,the obtained data was fed into SPSS software (V. 19 and analyzed using paired t test, covariance analysis, one way-variance analysis, and Bonferroni post- hoc tests at the significant level of P<0.05. Results: After the period of high intensity interval training and green tea supplementation triglycerides (P=0.001, LDL (P=0.02, weight (P=0.0001, body mass index (P=0.0001, and body fat percentage (P=0.0001 in all the groups and total cholesterol (P=0.01 decreased ,but  HDL (P=0.01 increased in high intensity interval training plus supplements and high intensity interval training plus placebo groups. However, these two indicators did not differ significantly in the supplement group (P=0.23 and P=0.06, respectively. Furthermore, systolic (P= 0.55 and diastolic (P= 0.15 blood pressure and waist-to-hip ratio (P= 0.08 did not change after intervention in all the groups. Conclusion: It was found that consumption of green tea along with performing of high intensity interval training can be effective in improving of cardiovascular risk factors in overweight women.

  3. Up-conversion monodispersed spheres of NaYF4:Yb3+/Er3+: green and red emission tailoring mediated by heating temperature, and greatly enhanced luminescence by Mn2+ doping.

    Science.gov (United States)

    Zhu, Qi; Song, Caiyun; Li, Xiaodong; Sun, Xudong; Li, Ji-Guang

    2018-04-09

    Submicron sized, monodispersed spheres of Mn2+, Yb3+/Er3+ and Mn2+/Yb3+/Er3+ doped α-NaYF4 were easily autoclaved from mixed solutions of the component nitrates and ammonium fluoride (NH4F), in the presence of EDTA-2Na. Detailed characterizations of the resultant phosphors were obtained using XRD, Raman spectroscopy, FE-SEM, HR-TEM, STEM, PLE/PL spectroscopy, and fluorescence decay analysis. Finer structure and better crystal perfection was observed at a higher calcination temperature, and the spherical shape and excellent dispersion of the original particles was retained at temperatures up to 600 °C. Under the 980 nm infrared excitation, the Yb3+/Er3+-doped sample (calcined at 400 °C) exhibits a stronger green emission centered at ∼524 nm (2H11/2 → 4I15/2 transition of Er3+) and a weaker red emission centered at ∼657 nm (4F9/2 → 4I15/2 transition of Er3+). A 200 °C increase in the temperature from 400 °C to 600 °C resulted in the dominant red emission originating from the 4F9/2 → 4I15/2 transition of Er3+, instead of the previously dominant green one. Mn2+ doping induced a remarkable more enhanced intensity at ∼657 nm and ∼667 nm (red emission area) than that at ∼524 nm and ∼546 nm (green emission area), because of the non-radiative energy transfer between Mn2+ and Er3+. However, a poor thermal stability was induced by Mn2+ doping. The observed upconversion luminescence of the samples calcined at 400 °C and 600 °C followed the two photon process and the four photon process, respectively.

  4. Thermal runaway of metal nano-tips during intense electron emission

    Science.gov (United States)

    Kyritsakis, A.; Veske, M.; Eimre, K.; Zadin, V.; Djurabekova, F.

    2018-06-01

    When an electron emitting tip is subjected to very high electric fields, plasma forms even under ultra high vacuum conditions. This phenomenon, known as vacuum arc, causes catastrophic surface modifications and constitutes a major limiting factor not only for modern electron sources, but also for many large-scale applications such as particle accelerators, fusion reactors etc. Although vacuum arcs have been studied thoroughly, the physical mechanisms that lead from intense electron emission to plasma ignition are still unclear. In this article, we give insights to the atomic scale processes taking place in metal nanotips under intense field emission conditions. We use multi-scale atomistic simulations that concurrently include field-induced forces, electron emission with finite-size and space-charge effects, Nottingham and Joule heating. We find that when a sufficiently high electric field is applied to the tip, the emission-generated heat partially melts it and the field-induced force elongates and sharpens it. This initiates a positive feedback thermal runaway process, which eventually causes evaporation of large fractions of the tip. The reported mechanism can explain the origin of neutral atoms necessary to initiate plasma, a missing key process required to explain the ignition of a vacuum arc. Our simulations provide a quantitative description of in the conditions leading to runaway, which shall be valuable for both field emission applications and vacuum arc studies.

  5. Emissions trading and green investments in Russia

    International Nuclear Information System (INIS)

    Moe, A.; Tangen, K.; Berdin, V.; Pluzhnikov, O.

    2003-01-01

    In simple terms a Green Investment Scheme entails connecting revenues from emissions trading to investments in environmental activities in Russia. This article presents insights derived from an international project on the GIS, focusing on issues that must be addressed if the concept is to become operational, on the background of the domestic, as well as international interests connected to a GIS. GIS is a worthwhile concept with the potential to bring real environmental benefits and meet profound concerns from several of the key actors in the Kyoto regime. However, establishing a well-functioning GIS means removing many of the current barriers that hold back investments in Russia. At the time of writing, Russia has still not decided whether it will ratify Kyoto Protocol. GIS illustrates that there will be substantial benefits for Russia from ratifying the Kyoto Protocol, which is a prerequisite for its entering into force. (Author)

  6. Structure dependent luminescence characterization of green-yellow emitting Sr{sub 2}SiO{sub 4}:Eu{sup 2+} phosphors for near UV LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Han, J.K. [University of California, San Diego, Materials Science and Engineering Program, La Jolla, CA 92093 (United States); Hannah, M.E.; Piquette, A. [Central Research, OSRAM SYLVANIA, 71 Cherry Hill Drive Beverly, MA 01915 (United States); Hirata, G.A. [Centro de Nanociencias y Nanotecnolgia, Universidad Nacional Autonoma de Mexico, Km. 107 Carretera Tijuana-Ensenada Apdo, Ensenada, MX CP 22860 (Mexico); Talbot, J.B. [University of California, San Diego, Materials Science and Engineering Program, La Jolla, CA 92093 (United States); Mishra, K.C. [Central Research, OSRAM SYLVANIA, 71 Cherry Hill Drive Beverly, MA 01915 (United States); McKittrick, J., E-mail: jmckittrick@ucsd.edu [University of California, San Diego, Materials Science and Engineering Program, La Jolla, CA 92093 (United States)

    2012-01-15

    This paper reports on the luminescence properties of mixtures of {alpha}- and {beta}-(Sr{sub 0.97}Eu{sub 0.03}){sub 2}SiO{sub 4} phosphors. These phosphors were prepared by 3 different synthesis techniques: a modified sol-gel/Pechini method, a co-precipitation method and a combustion method. The structural and optical properties of these phosphors were compared to those of solid state synthesized powders. The emission spectra consist of a weak broad blue band centered near 460 nm and a strong broad green-yellow band centered between 543 and 573 nm depending on the crystal structure. The green-yellow emission peak blue-shifts as the amount of {beta} phase increases and the photoluminescence emission intensity and quantum efficiency of the mixed phase powders is greater than those of predominant {alpha}-phase powders when excited between 370 and 410 nm. Thus, (Sr{sub 1-x}Eu{sub x}){sub 2}SiO{sub 4} with larger proportion of the {beta} phase are more promising candidates than single {alpha}-phase powders for use as a green-yellow emitting phosphor for near UV LED applications. Finally the phosphors prepared by the sol-gel/Pechini method, which have larger amount of {beta} phase, have a higher emission intensity and quantum efficiency than those prepared by co-precipitation or combustion synthesis. - Highlights: > Mixtures of {alpha}- and {beta}-Sr{sub 2}SiO{sub 4}:Eu{sup 2+} phosphors were prepared by 3 different synthesis methods. > Emission peak blue-shifts as the amount of {beta} phase increases. > Emission intensity and QE of the {alpha}+{beta} powders are greater than those of single {alpha} phase. > Phosphors prepared by sol-gel/Pechini have the highest emission intensity and QE.

  7. Air Treatment Techniques for Abatement of Emissions from Intensive Livestock Production

    OpenAIRE

    Melse, R.W.; Ogink, N.W.M.; Rulkens, W.H.

    2009-01-01

    Intensive livestock production is connected with a number of environmental effects, including emissions of ammonia (NH3), greenhouse gases (CH4 and N2O), odour, and particulate matter (PM10 and PM2.5). Possible strategies for emission reduction include feed management, adaptation of housing design, and, in case of mechanically ventilated animal houses, the application of end-of-pipe air treatment, viz acid scrubbers and bioscrubbers. Air treatment techniques can achieve very high emission red...

  8. Green Urbanism for the Greener Future of Metropolitan Areas

    Science.gov (United States)

    Zaręba, Anna; Krzemińska, Alicja; Widawski, Krzysztof

    2016-10-01

    Intensive urbanization is swallowing municipal green areas which causes intensification of erosion, decrease in biodiversity and permanent fragmentation of habitats. In the face of these changes, a risk of irreversible damages to urban ecosystems is growing. That is why planning of solutions within the framework of Green Urbanism in metropolitan areas inhabited by over 55% of the global population is of extraordinary importance. The task of the paper is to present patterns of the Green Urbanism using selected examples of metropolitan areas as case studies. The main goal of the research is to make comparison between GU practices in different countries, in various spatial settings. The principles of triple zero framework: zero fossil-fuel energy use, zero waste, zero emissions (from low-to-no-carbon emissions) introduce not only the contemporary trends in theoretical urban planning but are dictated by practical considerations to create a healthy environment for a healthy society with a minimized environmental footprint. The research results help to identify Green Urbanism techniques used for multiple functions, including ecological, recreational, cultural, aesthetic and other uses and present opportunities for implementation of Green Urbanism solutions in metropolitan areas. To achieve healthier society and environment, highly congested and polluted cities have to be recreated through working with the existing landscape, topography and natural resources particular to the site.

  9. Decomposition analysis of CO2 emission intensity between oil-producing and non-oil-producing sub-Saharan African countries

    International Nuclear Information System (INIS)

    Ebohon, Obas John; Ikeme, Anthony Jekwu

    2006-01-01

    The need to decompose CO 2 emission intensity is predicated upon the need for effective climate change mitigation and adaptation policies. Such analysis enables key variables that instigate CO 2 emission intensity to be identified while at the same time providing opportunities to verify the mitigation and adaptation capacities of countries. However, most CO 2 decomposition analysis has been conducted for the developed economies and little attention has been paid to sub-Saharan Africa. The need for such an analysis for SSA is overwhelming for several reasons. Firstly, the region is amongst the most vulnerable to climate change. Secondly, there are disparities in the amount and composition of energy consumption and the levels of economic growth and development in the region. Thus, a decomposition analysis of CO 2 emission intensity for SSA affords the opportunity to identify key influencing variables and to see how they compare among countries in the region. Also, attempts have been made to distinguish between oil and non-oil-producing SSA countries. To this effect a comparative static analysis of CO 2 emission intensity for oil-producing and non oil-producing SSA countries for the periods 1971-1998 has been undertaken, using the refined Laspeyres decomposition model. Our analysis confirms the findings for other regions that CO 2 emission intensity is attributable to energy consumption intensity, CO 2 emission coefficient of energy types and economic structure. Particularly, CO 2 emission coefficient of energy use was found to exercise the most influence on CO 2 emission intensity for both oil and non-oil-producing sub-Saharan African countries in the first sub-interval period of our investigation from 1971-1981. In the second subinterval of 1981-1991, energy intensity and structural effect were the two major influencing factors on emission intensity for the two groups of countries. However, energy intensity effect had the most pronounced impact on CO 2 emission

  10. Upconversion emission study of Er3+/Yb3+ doped barium titanate phosphor prepared by co-precipitation method

    International Nuclear Information System (INIS)

    Mahata, M.K.; Dey, R.; Kumar, K.; Rai, V.K.; Rai, S.B.

    2012-01-01

    In the present work we have successfully synthesized the Er 3+ , Yb 3+ doped barium titanate phosphor via co-precipitation synthesis method. Under 980 nm excitation, tri-color upconversion fluorescence has been observed. The Fourier Transform Infrared measurement was done to check the presence of organic impurities. In order to find out how many photons are involved in each emission band, the variation of UC emission intensity of the codoped phosphor is studied with increase in excitation power. Upconversion emission spectra show that as the annealing temperature of the powder is increased, intensity of red emission decreases and intensity of green emission increases due to the decrease in maximum phonon frequency of the host material. (author)

  11. A modified energy transfer model for determination of upconversion emission of β-NaYF{sub 4}:Yb,Er: Role of self-quenching effect

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hongyuan [The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi' an Jiaotong University, Xi’an 710049 (China); Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049 (China); Lin, Min, E-mail: minlin@mail.xjtu.edu.cn [The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi' an Jiaotong University, Xi’an 710049 (China); Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049 (China); Jin, Guorui [The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi' an Jiaotong University, Xi’an 710049 (China); Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049 (China); Lu, Tian Jian [Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049 (China); Xu, Feng [The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi' an Jiaotong University, Xi’an 710049 (China); Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049 (China)

    2017-05-15

    A modified energy transfer model by incorporating self-quenching effect is introduced to determine upconversion emission of β-NaYF{sub 4}:Yb,Er. The simulation results agree well with existing experimental results, demonstrating the critical role of self-quenching effect in upconversion emission. Our results confirm that a 4.4-fold increase of green upconversion and 86-fold increase in the intensity of red upconversion emission could be realized by suppressing self-quenching. In addition, the optimal doping concentrations for integral emission intensity are found to be independent of excitation power, while the green to red ratio is found to rely significantly on excitation power. Our model offers mechanistic insight into upconversion emission processes and provides inspirations in improving upconversion emission efficiency through optimization of energy transfer pathways in different types of matrix sub-lattice.

  12. Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest.

    Science.gov (United States)

    Jardine, Kolby J; Chambers, Jeffrey Q; Holm, Jennifer; Jardine, Angela B; Fontes, Clarissa G; Zorzanelli, Raquel F; Meyers, Kimberly T; de Souza, Vinicius Fernadez; Garcia, Sabrina; Gimenez, Bruno O; Piva, Luani R de O; Higuchi, Niro; Artaxo, Paulo; Martin, Scot; Manzi, Antônio O

    2015-09-15

    Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxidation processes associated with the combined effects of high leaf temperatures and drought-induced leaf senescence from individual detached leaves and a rainforest ecosystem in the central Amazon. Temperature-dependent leaf emissions of volatile terpenoids were observed during the morning, and together with transpiration and net photosynthesis, showed a post-midday depression. This post-midday depression was associated with a stimulation of C₅ and C₆ GLV emissions, which continued to increase throughout the late afternoon in a temperature-independent fashion. During the 2010 drought in the Amazon Basin, which resulted in widespread tree mortality, green leaf volatile emissions (C₆ GLVs) were observed to build up within the forest canopy atmosphere, likely associated with high leaf temperatures and enhanced drought-induced leaf senescence processes. The results suggest that observations of GLVs in the tropical boundary layer could be used as a chemical sensor of reduced ecosystem productivity associated with drought stress.

  13. Effects of alcohols on fluorescence intensity and color of a discharged-obelin-based biomarker.

    Science.gov (United States)

    Alieva, Roza R; Belogurova, Nadezhda V; Petrova, Alena S; Kudryasheva, Nadezhda S

    2014-05-01

    Photoproteins are responsible for bioluminescence of marine coelenterates; bioluminescent and fluorescent biomarkers based on photoproteins are useful for monitoring of calcium-dependent processes in medical investigations. Here, we present the analysis of intensity and color of light-induced fluorescence of Ca(2+)-discharged photoprotein obelin in the presence of alcohols (ethanol and glycerol). Complex obelin spectra obtained at different concentrations of the alcohols at 350- and 280-nm excitation (corresponding to polypeptide-bound coelenteramide and tryptophan absorption regions) were deconvoluted into Gaussian components; fluorescent intensity and contributions of the components to experimental spectra were analyzed. Five Gaussian components were found in different spectral regions-ultraviolet (tryptophan emission), blue-green (coelenteramide emission), and red (hypothetical indole-coelenteramide exciplex emission). Inhibition coefficients and contributions of the components to experimental fluorescent spectra showed that presence of alcohols increased contributions of ultraviolet, violet, and red components, but decreased contributions of components in the blue-green region. The effects were related to (1) changes of proton transfer efficiency in fluorescent S*1 state of coelenteramide in the obelin active center and (2) formation of indole-coelenteramide exciplex at 280-nm photoexcitation. The data show that variation of fluorescence color and intensity in the presence of alcohols and dependence of emission spectra on excitation wavelength should be considered while applying the discharged obelin as a fluorescence biomarker.

  14. Evaluation of three common green building materials for ozone removal, and primary and secondary emissions of aldehydes

    Science.gov (United States)

    Gall, Elliott; Darling, Erin; Siegel, Jeffrey A.; Morrison, Glenn C.; Corsi, Richard L.

    2013-10-01

    Ozone reactions that occur on material surfaces can lead to elevated concentrations of oxidized products in the occupied space of buildings. However, there is little information on the impact of materials at full scale, especially for green building materials. Experiments were completed in a 68 m3 climate-controlled test chamber with three certified green building materials that can cover large areas in buildings: (1) recycled carpet, (2) perlite-based ceiling tile and (3) low-VOC paint and primer on recycled drywall. Ozone deposition velocity and primary and secondary emission rates of C1 to C10 saturated carbonyls were determined for two chamber mixing conditions and three values of relative humidity. A direct comparison was made between ozone deposition velocities and carbonyl yields observed for the same materials analyzed in small (10 L) chambers. Total primary carbonyl emission rates from carpet, ceiling tile and painted drywall ranged from 27 to 120 μg m-2 h-1, 13 to 40 μg m-2 h-1, 3.9 to 42 μg m-2 h-1, respectively. Ozone deposition velocity to these three materials averaged 6.1 m h-1, 2.3 m h-1 and 0.32 m h-1, respectively. Total secondary carbonyl emissions from these materials ranged from 70 to 276 μg m-2 h-1, 0 to 12 μg m-2 h-1, and 0 to 30 μg m-2 h-1, respectively. Carbonyl emissions were determined with a transient approximation, and were found to be in general agreement with those found in the literature. These results suggest that care should be taken when selecting green building materials due to potentially large differences in primary and secondary emissions.

  15. CO_2 emissions and energy intensity reduction allocation over provincial industrial sectors in China

    International Nuclear Information System (INIS)

    Wu, Jie; Zhu, Qingyuan; Liang, Liang

    2016-01-01

    Highlights: • DEA is used to evaluate the energy and environmental efficiency of 30 provincial industrial sector in China. • A new DEA-based model is proposed to allocate the CO_2 emissions and energy intensity reduction targets. • The context-dependent DEA is used to characterize the production plans. - Abstract: High energy consumption by the industry of developing countries has led to the problems of increasing emission of greenhouse gases (GHG) (primarily CO_2) and worsening energy shortages. To address these problems, many mitigation measures have been utilized. One major measure is to mandate fixed reductions of GHG emission and energy consumption. Therefore, it is important for each developing country to disaggregate their national reduction targets into targets for various geographical parts of the country. In this paper, we propose a DEA-based approach to allocate China’s national CO_2 emissions and energy intensity reduction targets over Chinese provincial industrial sectors. We firstly evaluate the energy and environmental efficiency of Chinese industry considering energy consumption and GHG emissions. Then, considering the necessity of mitigating GHG emission and energy consumption, we develop a context-dependent DEA technique which can better characterize the changeable production with reductions of CO_2 emission and energy intensity, to help allocate the national reduction targets over provincial industrial sectors. Our empirical study of 30 Chinese regions for the period 2005–2010 shows that the industry of China had poor energy and environmental efficiency. Considering three major geographical areas, eastern China’s industrial sector had the highest efficiency scores while in this aspect central and western China were similar to each other at a lower level. Our study shows that the most effective allocation of the national reduction target requires most of the 30 regional industrial to reduce CO_2 emission and energy intensity, while a

  16. US biofuels subsidies and CO2 emissions: An empirical test for a weak and a strong green paradox

    International Nuclear Information System (INIS)

    Grafton, R. Quentin; Kompas, Tom; Long, Ngo Van; To, Hang

    2014-01-01

    Using energy data over the period 1981–2011 we find that US biofuels subsidies and production have provided a perverse incentive for US fossil fuel producers to increase their rate of extraction that has generated a weak green paradox. Further, in the short-run if the reduction in the CO 2 emissions from a one-to-one substitution between biofuels and fossil fuels is less than 26 percent, or less than 57 percent if long run effect is taken into account, then US biofuels production is likely to have resulted in a strong green paradox. These results indicate that subsidies for first generation biofuels, which yield a low level of per unit CO 2 emission reduction compared to fossil fuels, might have contributed to additional net CO 2 emissions over the study period. - Highlights: • US biofuels subsidies increased fossil fuel extraction from 1981 to 2011. • US biofuels subsidies likely increased carbon emissions from 1981 to 2011. • Governments must consider effects of biofuel subsidies on fossil fuel extraction

  17. A market for green certificates may cause less green electricity to be produced

    International Nuclear Information System (INIS)

    Haugneland, Petter

    2004-01-01

    The Norwegian government wants to establish in 2006 a market for trading with green certificates which will be issued to producers of new renewable electricity. These certificates will be sold to the consumers, which will be instructed to by a certain amount of green electricity. In 2005 a market will be established for trading with emission quotas of greenhouse gases; in this market, power producers and other industry that emits greenhouse gases must buy emission permits. Some experts, however, say that a market for trading with green certificates may at worst give less production of green electricity, counter to the intention. But a quota system may indirectly increase the production of green electricity, and at the same time one avoids many of the inconveniences involved in a green certificate market

  18. Origins of efficient green light emission in phase-separated InGaN quantum wells

    International Nuclear Information System (INIS)

    Lai, Y-L; Liu, C-P; Lin, Y-H; Hsueh, T-H; Lin, R-M; Lyu, D-Y; Peng, Z-X; Lin, T-Y

    2006-01-01

    Green-light-emitting InGaN/GaN multiple quantum wells (MQWs) with high luminescent efficiency were grown by metalorganic chemical vapour deposition (MOCVD). The microstructure of the sample was studied by high-resolution transmission electron microscopy (HRTEM) and high-resolution x-ray diffraction, while its optical behaviour was analysed in great detail by a variety of photoluminescence methods. Two InGaN-related peaks that were clearly found in the photoluminescence (PL) spectrum are assigned to quasi-quantum dots (516 nm) and the InGaN matrix (450 nm), respectively, due to a strong phase separation observed by HRTEM. Except for the strong indium aggregation regions (511 meV of Stokes shift), slight composition fluctuations were also observed in the InGaN matrix, which were speculated from an 'S-shaped' transition and a Stokes shift of 341 meV. Stronger carrier localization and an internal quantum efficiency of the dot-related emission (21.5%), higher than the InGaN-matrix related emission (7.5%), was demonstrated. Additionally, a shorter lifetime and 'two-component' PL decay were found for the low-indium-content regions (matrix). Thus, the carrier transport process within quantum wells is suggested to drift from the low-In-content matrix to the high-In-content dots, resulting in the enhanced luminescence efficiency of the green light emission

  19. Improved photoluminescence properties of a new green SrB2O4:Tb3+ phosphor by charge compensation

    International Nuclear Information System (INIS)

    Wu, Zhan-Chao; Wang, Ping; Liu, Jie; Li, Chao; Zhou, Wen-Hui; Kuang, Shao-Ping

    2012-01-01

    Highlights: ► New green-emitting SrB 2 O 4 :Tb 3+ phosphor was synthesized by solid-state reaction. ► Li + , Na + , and K + can all increase luminescent intensity of SrB 2 O 4 :Tb 3+ . ► Na + is the optimal charge compensator among Li + , Na + and K + . ► SrB 2 O 4 :Tb 3+ is a promising green phosphor for fabricating WLED. -- Abstract: A new green-emitting SrB 2 O 4 :Tb 3+ phosphor was synthesized by solid-state reaction. X-ray powder diffraction (XRD) analysis confirmed all the samples with orthorhombic formation of SrB 2 O 4 . The excitation spectra indicate the phosphor can be effectively excited by near ultraviolet (NUV) light, making it attractive as conversion phosphor for LED applications. The phosphor exhibits a bright green emission with the highest photoluminescence (PL) intensity at 544 nm excited by 378 nm light. The critical quenching concentration of Tb 3+ in SrB 2 O 4 :Tb 3+ is about 10 mol%. The effects of charge compensators (Li + , Na + , and K + ) on photoluminescence of SrB 2 O 4 :Tb 3+ were also studied. The results show that the emission intensity can be improved by all the three charge compensators and Na + is the optimal one for SrB 2 O 4 :Tb 3+ . All properties show that the phosphor is a promising green phosphor pumped by NUV InGaN chip for fabricating white light-emitting diodes (WLEDs).

  20. Sky-distribution of intensity of synchrotron radio emission of relativistic electrons trapped in Earth’s magnetic field

    Directory of Open Access Journals (Sweden)

    Klimenko V.V.

    2017-12-01

    Full Text Available This paper presents the calculations of synchrotron radio emission intensity from Van Allen belts with Gaussian space distribution of electron density across L-shells of a dipole magnetic field, and with Maxwell’s relativistic electron energy distribution. The results of these calculations come to a good agreement with measurements of the synchrotron emission intensity of the artificial radiation belt’s electrons during the Starfish nuclear test. We have obtained two-dimensional distributions of radio brightness in azimuth — zenith angle coordinates for an observer on Earth’s surface. The westside and eastside intensity maxima exceed several times the maximum level of emission in the meridian plane. We have also constructed two-dimensional distributions of the radio emission intensity in decibels related to the background galactic radio noise level. Isotropic fluxes of relativistic electrons (Е~1 MeV should be more than 107 cm–2s–1 for the synchrotron emission intensity in the meridian plane to exceed the cosmic noise level by 0.1 dB (riometer sensitivity threshold.

  1. Green roofs; Les toitures vegetalisees

    Energy Technology Data Exchange (ETDEWEB)

    Seghier, C.

    2006-03-15

    Impervious surface coverage keeps spreading in cities. Streets, sidewalks, parking lots and roofs are waterproof, meaning greater amounts of water to channel and treat and higher flood risks during heavy rainfalls. Green roofing can play a key part in addressing this alarming issue. There are three types of green roofs: extensive, semi-intensive and intensive. The extensive green roof technique uses a thin soil covering with a variety of species providing year-round plant coverage. The plants are not necessarily horticultural in which case routine maintenance is minimal. No watering is needed. Usually extensive green roofs create an ecosystem. The semi-intensive green roof technique uses a soil covering of average thickness and serves to create decorative roofing. Although maintenance is moderate, watering is essential. The intensive green roof technique produces a terrace roof garden. Another advantage of green roofs is they increase the life cycle of the sealing. Roof sealing protection may see the span of its life cycle, now at about fifteen years, doubled if the building has a green roof. planning professionals still know very little about green roofing solutions. Yet, green roofing provides unquestionable ecological qualities and thermal and acoustic performance that have proven to be environmentally friendly. Yet France lags behind northern European countries in green roofing. The Germans, Swiss, Austrians, Scandinavians and Dutch have been using the technique for more than twenty years. (A.L.B.)

  2. Synthesis and characterization of pure and Li⁺ activated Alq₃ complexes for green and blue organic light emitting diodes and display devices.

    Science.gov (United States)

    Bhagat, S A; Borghate, S V; Kalyani, N Thejo; Dhoble, S J

    2014-08-01

    Pure and Li(+)-doped Alq3 complexes were synthesized by simple precipitation method at room temperature, maintaining the stoichiometric ratio. These complexes were characterized by X-ray diffraction, ultraviolet-visible absorption and Fourier transform infrared and photoluminescence (PL) spectra. X-ray diffraction analysis reveals the crystalline nature of the synthesized complexes, while Fourier transform infrared spectroscopy confirm the molecular structure, the completion of quinoline ring formation and presence of quinoline structure in the metal complex. Ultraviolet-visible and PL spectra revealed that Li(+) activated Alq3 complexes exhibit the highest intensity in comparison to pure Alq3 phosphor. Thus, Li(+) enhances PL emission intensity when doped into Alq3 phosphor. The excitation spectra lie in the range of 383-456 nm. All the synthesized complexes other than Liq give green emission, while Liq gives blue emission with enhanced intensity. Thus, he synthesized phosphors are the best suitable candidates for green- and blue-emitting organic light emitting diode, PL liquid-crystal display and solid-state lighting applications. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Observation of atomic oxygen O(1S) green-line emission in the summer polar upper mesosphere associated with high-energy (≥30 keV) electron precipitation during high-speed solar wind streams

    Science.gov (United States)

    Lee, Young-Sook; Kwak, Young-Sil; Kim, Kyung-Chan; Solheim, Brian; Lee, Regina; Lee, Jaejin

    2017-01-01

    The auroral green-line emission at 557.7 nm wavelength as arising from the atomic oxygen O(1S → 1D) transition typically peaks at an altitude of 100 km specifically in the nightside oval, induced by auroral electrons within an energy range of 100 eV-30 keV. Intense aurora is known as being suppressed by sunlight in summer daytime but usually occurs in low electrical background conductivity. However, in the present study in summer (July) sunlit condition, enhancements of O(1S) emission rates observed by using the Wind Imaging Interferometer/UARS were frequently observed at low altitudes below 90 km, where ice particles are created initially as subvisible and detected as polar mesosphere summer echoes, emerging to be an optical phenomenon of polar mesospheric clouds. The intense O(1S) emission occurring in summer exceeds those occurring in the daytime in other seasons both in occurrence and in intensity, frequently accompanied by occurrences of supersonic neutral velocity (300-1500 m s-1). In the mesosphere, ion motion is controlled by electric field and the momentum is transferred to neutrals. The intense O(1S) emission is well associated with high-energy electron precipitation as observed during an event of high-speed solar wind streams. Meanwhile, since the minimum occurrences of O(1S) emission and supersonic velocity are maintained even in the low precipitation flux, the mechanism responsible is not only related to high-energy electron precipitation but also presumably to the local conditions, including the composition of meteoric-charged ice particles and charge separation expected in extremely low temperatures (<150 K).

  4. Green growth in the Netherlands

    International Nuclear Information System (INIS)

    Balde, K.; Boelens, A.; Brinksma, E.; Edens, B.; Hiethaar, S.; Klein, P.; Schenau, S.

    2011-04-01

    In 2009 the Ministerial Council Meeting of the Organisation for Economic Co-operation and Development (OECD) committed itself to a green growth strategy. Such a strategy fosters economic growth and development while ensuring that natural resources can continue to provide the ecosystem services on which our well-being relies. It also endorses investment, competition and innovation which will underpin sustained growth and give rise to new economic opportunities. Green growth provides both a policy strategy for implementing this economic transformation and a monitoring framework with a proposed set of indicators. This report presents an overview of the state of green growth in the Netherlands. It should be regarded as a benchmark for a more thorough and comprehensive assessment of green growth in the future. It is based on the set of indicators proposed by the OECD in their intermediate report of February 2011. Data relevant to the Dutch situation are presented for twenty of these indicators, illustrating the observed trends. The indicators are grouped in four themes. For the first theme, environmental efficiency of production, on the whole the indicators show increased efficiency. However, indicators such as greenhouse gas intensity, energy efficiency and material intensity show only relative decoupling, which on its own is not enough to ensure green growth. In addition, the increase in environmental efficiency is partly explained by substitution of imports for domestic production, which is not conducive to green growth on a global scale: the efficiency gains in domestic production, for example, are offset by increases in foreign greenhouse gas emissions. Water use and agricultural nutrient surpluses are the only indicators where absolute decoupling has occurred. The second theme contains indicators regarding the natural assets base. This group of indicators provides a mixed picture. Natural gas reserves are decreasing and the overall level of threat to animal

  5. Estimation of 557.7 nm Emission Altitude using Co-located Lidars and Photometers over Arecibo

    Science.gov (United States)

    Franco, E.; Raizada, S.; Lautenbach, J.; Brum, C. G. M.

    2017-12-01

    Airglow at 557.7 nm (green line emission) is generated through the Barth mechanism in the E-region altitude and is sometimes associated with red line (630.0 nm) originating at F-region altitudes. Photons at 557.7 nm are produced through the quenching of excited atomic oxygen atoms, O(1S), while 630.0 nm results through the de-excitation of O(1D) atoms. Even though, the contribution of the green line from F-region is negligible and the significant component comes from the mesosphere, this uncertainty gives rise to a question related to its precise altitude. Previous studies have shown that perturbations generated by atmospheric gravity Waves (GWs) alter the airglow intensity and can be used for studying dynamics of the region where it originates. The uncertainty in the emission altitude of green line can be resolved by using co-located lidars, which provide altitude resolved metal densities. At Arecibo, the resonance lidars tuned to Na and K resonance wavelengths at 589 nm and 770 nm can be used in conjunction with simultaneous measurements from green line photometer to resolve this issue. Both photometer and lidars have narrow field of view as compared to airglow imagers, and hence provide an added advantage that these instruments sample same GW spectrum. Hence, correlation between density perturbations inferred from lidars and airglow intensity perturbations can shed light on the exact altitude of green line emission.

  6. Markets for renewable energy and pollution emissions: Environmental claims, emission-reduction accounting, and product decoupling

    International Nuclear Information System (INIS)

    Moore, Michael R.; Lewis, Geoffrey McD.; Cepela, Daniel J.

    2010-01-01

    Green electricity generation can provide an indirect route to cleaner air: by displacing generation from fossil fuels, green electricity can reduce emissions of CO 2 and conventional air pollutants. Several types of voluntary markets have emerged in the United States to take advantage of this relationship, including green electricity programs, carbon offsets, and renewable energy certificates. At the same time, regulators are favoring cap-and-trade mechanisms for regulating emissions. This paper describes the appropriate framing of environmental claims for green electricity products. We apply an accounting framework for evaluating claims made for capped pollutants, with entries for emissions, avoided emissions due to green electricity, and unused emission permits. This framework is applied in case studies of two major electric utilities that operate with green electricity programs and capped pollutants. The cases demonstrate that the relative magnitude of 'unused permits' and 'emissions avoided' is a key relationship for evaluating an emissions reduction claim. Lastly, we consider the evolution of the green electricity marketplace given the reliance on cap-and-trade. In this setting, pollution-emission products could be decoupled from one another and from the various green electricity products. Several positive consequences could transpire, including better transparency of products, lower certification costs, and more product choices.

  7. Markets for renewable energy and pollution emissions. Environmental claims, emission-reduction accounting, and product decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Michael R.; Cepela, Daniel J. [University of Michigan, MI (United States); Lewis, Geoffrey McD. [University of Waterloo, ON (Canada)

    2010-10-15

    Green electricity generation can provide an indirect route to cleaner air: by displacing generation from fossil fuels, green electricity can reduce emissions of CO{sub 2} and conventional air pollutants. Several types of voluntary markets have emerged in the United States to take advantage of this relationship, including green electricity programs, carbon offsets, and renewable energy certificates. At the same time, regulators are favoring cap-and-trade mechanisms for regulating emissions. This paper describes the appropriate framing of environmental claims for green electricity products. We apply an accounting framework for evaluating claims made for capped pollutants, with entries for emissions, avoided emissions due to green electricity, and unused emission permits. This framework is applied in case studies of two major electric utilities that operate with green electricity programs and capped pollutants. The cases demonstrate that the relative magnitude of 'unused permits' and 'emissions avoided' is a key relationship for evaluating an emissions reduction claim. Lastly, we consider the evolution of the green electricity marketplace given the reliance on cap-and-trade. In this setting, pollution-emission products could be decoupled from one another and from the various green electricity products. Several positive consequences could transpire, including better transparency of products, lower certification costs, and more product choices. (author)

  8. Markets for renewable energy and pollution emissions: Environmental claims, emission-reduction accounting, and product decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Michael R., E-mail: micmoore@umich.ed [University of Michigan, MI (United States); Lewis, Geoffrey McD. [University of Waterloo, ON (Canada); Cepela, Daniel J. [University of Michigan, MI (United States)

    2010-10-15

    Green electricity generation can provide an indirect route to cleaner air: by displacing generation from fossil fuels, green electricity can reduce emissions of CO{sub 2} and conventional air pollutants. Several types of voluntary markets have emerged in the United States to take advantage of this relationship, including green electricity programs, carbon offsets, and renewable energy certificates. At the same time, regulators are favoring cap-and-trade mechanisms for regulating emissions. This paper describes the appropriate framing of environmental claims for green electricity products. We apply an accounting framework for evaluating claims made for capped pollutants, with entries for emissions, avoided emissions due to green electricity, and unused emission permits. This framework is applied in case studies of two major electric utilities that operate with green electricity programs and capped pollutants. The cases demonstrate that the relative magnitude of 'unused permits' and 'emissions avoided' is a key relationship for evaluating an emissions reduction claim. Lastly, we consider the evolution of the green electricity marketplace given the reliance on cap-and-trade. In this setting, pollution-emission products could be decoupled from one another and from the various green electricity products. Several positive consequences could transpire, including better transparency of products, lower certification costs, and more product choices.

  9. Violet and visible up-conversion emission in Yb{sup 3+}-Ho{sup 3+} co-doped germanium-borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yanmin, E-mail: mihuyym@163.co [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Zhang Meixin [Forensic Science Lab, Hebei University, Baoding 071002 (China); Yang Zhiping [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Fu Zuoling [Key Laboratory of Coherent Light, Atomic and Molecular Spectroscopy, College of physics, Jilin University, Ministry of Education, Changchun 130023 (China)

    2010-10-15

    The up-conversion emission properties of Yb{sup 3+}-Ho{sup 3+} co-doped germanium-borate glasses have been investigated with 980 nm excitation. The violet, blue, green and red emission bands at about 350, 485, 544 and 653 nm can be identified, respectively. Experimental results indicated that the relative intensity ratios of the peaks I{sub Red}/I{sub Green} increased with increasing B{sub 2}O{sub 3} concentration, which led to changing color of up-conversion emission from green at x=0 to yellow at x=40, to red at x=60. The violet emission at 350 nm was first reported in germanium-borate glass host and up-conversion mechanisms of the emissions were discussed. The Yb{sup 3+}-Ho{sup 3+} co-doped germanium-borate glasses could be an alternative for the generation of violet and primary colors for application in solid-state displays.

  10. Green cheese: partial life cycle assessment of greenhouse gas emissions and energy intensity of integrated dairy production and bioenergy systems.

    Science.gov (United States)

    Aguirre-Villegas, H A; Passos-Fonseca, T H; Reinemann, D J; Armentano, L E; Wattiaux, M A; Cabrera, V E; Norman, J M; Larson, R

    2015-03-01

    The objective of this study was to evaluate the effect of integrating dairy and bioenergy systems on land use, net energy intensity (NEI), and greenhouse gas (GHG) emissions. A reference dairy farm system representative of Wisconsin was compared with a system that produces dairy and bioenergy products. This integrated system investigates the effects at the farm level when the cow diet and manure management practices are varied. The diets evaluated were supplemented with varying amounts of dry distillers grains with solubles and soybean meal and were balanced with different types of forages. The manure-management scenarios included manure land application, which is the most common manure disposal method in Wisconsin, and manure anaerobic digestion (AD) to produce biogas. A partial life cycle assessment from cradle to farm gate was conducted, where the system boundaries were expanded to include the production of biofuels in the analysis and the environmental burdens between milk and bioenergy products were partitioned by system expansion. Milk was considered the primary product and the functional unit, with ethanol, biodiesel, and biogas considered co-products. The production of the co-products was scaled according to milk production to meet the dietary requirements of each selected dairy ration. Results indicated that land use was 1.6 m2, NEI was 3.86 MJ, and GHG emissions were 1.02 kg of CO2-equivalents per kilogram of fat- and protein-corrected milk (FPCM) for the reference system. Within the integrated dairy and bioenergy system, diet scenarios that maximize dry distillers grains with solubles and implement AD had the largest reduction of GHG emissions and NEI, but the greatest increase in land use compared with the reference system. Average land use ranged from 1.68 to 2.01 m2/kg of FPCM; NEI ranged from -5.62 to -0.73 MJ/kg of FPCM; and GHG emissions ranged from 0.63 to 0.77 kg of CO2-equivalents/kg of FPCM. The AD contributed 65% of the NEI and 77% of the GHG

  11. Prominent blue emission through Tb3+ doped La2O3 nano-phosphors for white LEDs

    Science.gov (United States)

    Jain, Neha; Singh, Rajan Kr; Srivastava, Amit; Mishra, S. K.; Singh, Jai

    2018-06-01

    In this article, we report the tunable luminescence emission of Tb3+ doped La2O3 nanophosphors synthesized by a facile and effective Polyol method. The structural and surface morphological studies have been carried out by employing X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The XRD studies elucidate the proper phase formation and the results emanate from Raman spectroscopy of the as synthesized nanophosphor affirms it. The optical properties of the as fabricated nanoparticles have been investigated by Raman and photoluminescence (PL) spectroscopy. The PL spectroscopy shows the occurrence of excitation peaks at 305, 350 and 375 nm for 543 nm emissions, correspond to transition 5D4 →7F5. Emission spectra with 305 nm excitation exhibits characteristic emission peaks of Tb3+ion at 472, 487, 543 and 580 nm. The intensity of emission increases with Tb3+ concentration and is most prominent for 7 at% Tb3+ ion. The characteristic emissions of Tb3+ ion owes to the transition in which intensities of blue and green emission are prominent. The dominant intensity has been found for 472 nm (for blue emission). Commission international d 'Eclairage (CIE) co-ordinates have found in the light blue to green region. The research work provides a new interesting insight dealing with tunable properties with Tb3+ doping in La2O3 nanophosphors, to be useful for display devices, solar cells, LEDs and optoelectronic devices.

  12. Broadened band C-telecom and intense upconversion emission of Er{sup 3+}/Yb{sup 3+} co-doped CaYAlO{sub 4} luminescent material obtained by an easy route

    Energy Technology Data Exchange (ETDEWEB)

    Perrella, R.V.; Schiavon, M.A. [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del Rei (UFSJ), Campus Dom Bosco, Praça Dom Helvécio, 74, 36301-160 São João del Rei, MG (Brazil); Pecoraro, E.; Ribeiro, S.J.L. [UNESP, Institute of Chemistry, P.O. Box 355, 14800-970 Araraquara, SP (Brazil); Ferrari, J.L., E-mail: ferrari@ufsj.edu.br [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del Rei (UFSJ), Campus Dom Bosco, Praça Dom Helvécio, 74, 36301-160 São João del Rei, MG (Brazil)

    2016-10-15

    This work reports on photoluminescence properties of Er{sup 3+}/Yb{sup 3+} co-doped CaYAlO{sub 4} in powder form, synthesized by an easy route using citric acid as ligand to form complex precursor. The 1.2 mol% of Yb{sup 3+} was fixed, while the amount of Er{sup 3+} changed in 0.5, 1.5 and 3 mol% in order to evaluate the photoluminescence properties as a function of the Er{sup 3+} concentration. The structural and thermal properties of the viscous solutions and powder materials obtained after the heat-treatment at 1000, 1100 and 1200 °C for 4 h were evaluated by XRD, FTIR and TG/DTA analysis. The results showed the formation of pure CaYAlO{sub 4} tetragonal crystalline phase after heat-treatment at 1100 °C and 1200 °C. Intense emission in the visible region under excitation at 980 nm was attributed to upconversion process, from Er{sup 3+} intra-configurational f–f transitions. The emissions were assigned to the transitions {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2} and {sup 4}S{sub 3/2}→{sup 4}I{sub 15/2} (green region), and {sup 4}F{sub 9/2}→{sup 4}I{sub 15/2} (red region) energy levels. The ratio between emission band integrated areas assigned to the red and green emissions increased as a function of Er{sup 3+} concentration. Under excitation at 980 nm with 100 mW of power pump, the materials also showed intense and broadening emission with maximum at 1520 nm with FWHM of 84.74 nm for the sample CaYAlO{sub 4}:1.5% Er{sup 3+}/1.2% Yb{sup 3+} heat-treated at 1000 °C for 4 h. The photoluminescence properties showed that these materials are promising for use in C-telecom band as optical amplifier biological marker or/and solid-state laser devices under excitation at 980 nm.

  13. Limiting the emission of green-house gases: objectives and results in EU and non-EU countries

    Directory of Open Access Journals (Sweden)

    Hellrigl B

    2008-06-01

    Full Text Available Based on UNFCCC and EEA (European Environmental Agency data, changes in the emissions (no LULUCF considered of green-house gases in the period 1990-2004 either in the Annex 1 as well in the UE-27 countries are summarized and commented.

  14. Distributions of emissions intensity for individual beef cattle reared on pasture-based production systems.

    Science.gov (United States)

    McAuliffe, G A; Takahashi, T; Orr, R J; Harris, P; Lee, M R F

    2018-01-10

    Life Cycle Assessment (LCA) of livestock production systems is often based on inventory data for farms typical of a study region. As information on individual animals is often unavailable, livestock data may already be aggregated at the time of inventory analysis, both across individual animals and across seasons. Even though various computational tools exist to consider the effect of genetic and seasonal variabilities in livestock-originated emissions intensity, the degree to which these methods can address the bias suffered by representative animal approaches is not well-understood. Using detailed on-farm data collected on the North Wyke Farm Platform (NWFP) in Devon, UK, this paper proposes a novel approach of life cycle impact assessment that complements the existing LCA methodology. Field data, such as forage quality and animal performance, were measured at high spatial and temporal resolutions and directly transferred into LCA processes. This approach has enabled derivation of emissions intensity for each individual animal and, by extension, its intra-farm distribution, providing a step towards reducing uncertainty related to agricultural production inherent in LCA studies for food. Depending on pasture management strategies, the total emissions intensity estimated by the proposed method was higher than the equivalent value recalculated using a representative animal approach by 0.9-1.7 kg CO 2 -eq/kg liveweight gain, or up to 10% of system-wide emissions. This finding suggests that emissions intensity values derived by the latter technique may be underestimated due to insufficient consideration given to poorly performing animals, whose emissions becomes exponentially greater as average daily gain decreases. Strategies to mitigate life-cycle environmental impacts of pasture-based beef productions systems are also discussed.

  15. Blue Emission in Proteins

    OpenAIRE

    Sarkar, Sohini; Sengupta, Abhigyan; Hazra, Partha; Mandal, Pankaj

    2014-01-01

    Recent literatures reported blue-green emission from amyloid fibril as exclusive signature of fibril formation. This unusual visible luminescence is regularly used to monitor fibril growth. Blue-green emission has also been observed in crystalline protein and in solution. However, the origin of this emission is not known exactly. Our spectroscopic study of serum proteins reveals that the blue-green emission is a property of protein monomer. Evidences suggest that semiconductor-like band struc...

  16. Fabrication and performance of ACTFEL display devices using manganese-doped zinc germanate as a green-emitting electroluminescent layer

    International Nuclear Information System (INIS)

    Kim, Joo Han; Yoon, Kyung Ho

    2010-01-01

    Alternating-current thin-film electroluminescent (ACTFEL) display devices fabricated using manganese-doped zinc germanate (Zn 2 GeO 4 :Mn) as a green-emitting electroluminescent layer material are described. The ACTFEL display devices were fabricated with a standard bottom emission structure having a multilayer stack of thin films in the metal/semiconductor/insulator/ metal (MSIM) configuration. The device was constructed on a transparent Corning glass substrate through which the emitted EL light passed. The Zn 2 GeO 4 :Mn emission layer was synthesized by using a RF magnetron sputter deposition method, followed by post-annealing at 700 .deg. C in air ambient for 1 hour. The obtained Zn 2 GeO 4 :Mn films were found to be polycrystalline with a rhombohedral crystal structure. A green emission spectrum with a maximum at approximately 538 nm was produced from the fabricated device. The chromaticity color coordinates of the EL emission were measured to be x = 0.308 and y = 0.657. The device demonstrated a sharp increase in the intensity of green EL emission upon increasing the AC peak voltage applied to the device above a threshold of 148 V.

  17. Air treatment techniques for abatement of emissions from intensive livestock production

    OpenAIRE

    Melse, R.W.

    2009-01-01

    Keywords: Air treatment; Scrubber; Bioscrubber; Biofilter; Biotrickling filter; Ammonia; NH3; Odour; Livestock production; Animal husbandry; Pig; Poultry. Intensive livestock production is connected with a number of environmental effects, including emissions of ammonia (NH3), greenhouse gases (CH4 and N2O), odour, and particulate matter (PM10 and PM2.5). Possible strategies for emission reduction from animal houses include feed management, adaptation of housing design, and the application o...

  18. Environmental Regulation, Foreign Direct Investment and Green Technological Progress—Evidence from Chinese Manufacturing Industries

    Science.gov (United States)

    Hu, Jiangfeng; Wang, Zhao; Lian, Yuehan; Huang, Qinghua

    2018-01-01

    This study examines the spillover effects of foreign direct investment (FDI) on green technology progress rate (as measured by the green total factor productivity). The analysis utilizes two measures of FDI, labor-based FDI and capital-based FDI, and separately investigates four sets of industry classifications—high/low discharge regulation and high/low emission standard regulation. The results indicate that in the low discharge regulation and low emission standard regulation industry, labor-based FDI has a significant negative spillover effect, and capital-based FDI has a significant positive spillover effect. However, in the high-intensity environmental regulation industry, the negative influence of labor-based FDI is completely restrained, and capital-based FDI continues to play a significant positive green technological spillover effects. These findings have clear policy implications: the government should be gradually reducing the labor-based FDI inflow or increasing stringency of environmental regulation in order to reduce or eliminate the negative spillover effect of the labor-based FDI. PMID:29382112

  19. Environmental Regulation, Foreign Direct Investment and Green Technological Progress—Evidence from Chinese Manufacturing Industries

    Directory of Open Access Journals (Sweden)

    Jiangfeng Hu

    2018-01-01

    Full Text Available This study examines the spillover effects of foreign direct investment (FDI on green technology progress rate (as measured by the green total factor productivity. The analysis utilizes two measures of FDI, labor-based FDI and capital-based FDI, and separately investigates four sets of industry classifications—high/low discharge regulation and high/low emission standard regulation. The results indicate that in the low discharge regulation and low emission standard regulation industry, labor-based FDI has a significant negative spillover effect, and capital-based FDI has a significant positive spillover effect. However, in the high-intensity environmental regulation industry, the negative influence of labor-based FDI is completely restrained, and capital-based FDI continues to play a significant positive green technological spillover effects. These findings have clear policy implications: the government should be gradually reducing the labor-based FDI inflow or increasing stringency of environmental regulation in order to reduce or eliminate the negative spillover effect of the labor-based FDI.

  20. Environmental Regulation, Foreign Direct Investment and Green Technological Progress-Evidence from Chinese Manufacturing Industries.

    Science.gov (United States)

    Hu, Jiangfeng; Wang, Zhao; Lian, Yuehan; Huang, Qinghua

    2018-01-29

    This study examines the spillover effects of foreign direct investment (FDI) on green technology progress rate (as measured by the green total factor productivity). The analysis utilizes two measures of FDI, labor-based FDI and capital-based FDI, and separately investigates four sets of industry classifications-high/low discharge regulation and high/low emission standard regulation. The results indicate that in the low discharge regulation and low emission standard regulation industry, labor-based FDI has a significant negative spillover effect, and capital-based FDI has a significant positive spillover effect. However, in the high-intensity environmental regulation industry, the negative influence of labor-based FDI is completely restrained, and capital-based FDI continues to play a significant positive green technological spillover effects. These findings have clear policy implications: the government should be gradually reducing the labor-based FDI inflow or increasing stringency of environmental regulation in order to reduce or eliminate the negative spillover effect of the labor-based FDI.

  1. Atmospheric stabilization of CO2 emissions: Near-term reductions and absolute versus intensity-based targets

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.

    2008-01-01

    This study analyzes CO 2 emissions reduction targets for various countries and geopolitical regions by the year 2030 to stabilize atmospheric concentrations of CO 2 at 450 ppm (550 ppm including non-CO 2 greenhouse gases) level. It also determines CO 2 intensity cuts that would be required in those countries and regions if the emission reductions were to be achieved through intensity-based targets without curtailing their expected economic growth. Considering that the stabilization of CO 2 concentrations at 450 ppm requires the global trend of CO 2 emissions to be reversed before 2030, this study develops two scenarios: reversing the global CO 2 trend in (i) 2020 and (ii) 2025. The study shows that global CO 2 emissions would be limited at 42 percent above 1990 level in 2030 if the increasing trend of global CO 2 emissions were to be reversed by 2020. If reversing the trend is delayed by 5 years, global CO 2 emissions in 2030 would be 52 percent higher than the 1990 level. The study also finds that to achieve these targets while maintaining expected economic growth, the global average CO 2 intensity would require a 68 percent drop from the 1990 level or a 60 percent drop from the 2004 level by 2030

  2. CO2-emission trading and green markets for renewable electricity. Wilmar - deliverable 4.1

    DEFF Research Database (Denmark)

    Azuma-Dicke, N.; Morthorst, Poul Erik; Ravn, H.F.

    2004-01-01

    This report is Deliverable 4.1 of the EU project “Wind Power Integration in Liberalised Electricity Markets” (WILMAR) and describes the application of two policy instruments, Tradable Emissions Permits (TEP’s) and Tradable Green Certificates (TGC’s) forelectricity produced from renewable energy...... sources in the European Union and the implications for implementation in the Wilmar model. The introduction of a common emission-trading system in the EU is expected to have an upward effect on the spot pricesat the electricity market. The variations of the spot price imply that some types of power...... generation may change the situation from earning money to losing money despite the increasing spot price. Heavy restrictions on emissions penalise thefossil-fuelled technologies significantly, and the associated increase in the spot price need not compensate for this. Therefore, a market of TEP’s is expected...

  3. Enhancement of single particle rare earth doped NaYF4: Yb, Er emission with a gold shell

    International Nuclear Information System (INIS)

    Li, Ling; Green, Kory; Hallen, Hans; Lim, Shuang Fang

    2015-01-01

    Upconversion of infrared light to visible light has important implications for bioimaging. However, the small absorption cross-section of rare earth dopants has limited the efficiency of these anti-Stokes nanomaterials. We present enhanced excitation absorption and single particle fluorescent emission of sodium yttrium fluoride, NaYF 4 : Yb, Er based upconverting nanoparticles coated with a gold nanoshell through surface plasmon resonance. The single gold-shell coated nanoparticles show enhanced absorption in the near infrared, enhanced total emission intensity, and increased green relative to red emission. We also show differences in enhancement between single and aggregated gold shell nanoparticles. The surface plasmon resonance of the gold-shell coated nanoparticle is shown to be dependent on the shell thickness. In contrast to other reported results, our single particle experimental observations are corroborated by finite element calculations that show where the green/red emission enhancement occurs, and what portion of the enhancement is due to electromagnetic effects. We find that the excitation enhancement and green/red emission ratio enhancement occurs at the corners and edges of the doped emissive core. (paper)

  4. Positron emission intensities in the decay of 64Cu, 76Br and 124I

    International Nuclear Information System (INIS)

    Qaim, S.M.; Bisinger, T.; Hilgers, K.; Nayak, D.; Coenen, H.H.

    2007-01-01

    The relatively long-lived positron emitters 64 Cu (t 1/2 = 12.7 h), 76 Br (t 1/2 = 16.2 h) and 124 I (t 1/2 = 4.18 d) are finding increasing applications in positron emission tomography (PET). For precise determination of their positron emission intensities, each radionuclide was prepared via a charged particle induced reaction in a ''no-carrier-added'' form and with high radionuclidic purity. It was then subjected to γ-ray and X-ray spectroscopy as well as to anticoincidence beta and γγ-coincidence counting. The positron emission intensities measured were: 64 Cu (17.8 ± 0.4)%, 76 Br (58.2 ± 1.9)% and 124 I (22.0 ± 0.5)%. The intensity of the weak 1346 keV γ-ray emitted in the decay of 64 Cu was determined as (0.54 ± 0.03)%. Some implications of the precisely determined nuclear data are discussed. (orig.)

  5. Air treatment techniques for abatement of emissions from intensive livestock production

    NARCIS (Netherlands)

    Melse, R.W.

    2009-01-01

    Keywords: Air treatment; Scrubber; Bioscrubber; Biofilter; Biotrickling filter; Ammonia; NH3; Odour; Livestock production; Animal husbandry; Pig; Poultry.

    Intensive livestock production is connected with a number of environmental effects, including emissions of ammonia (NH3), greenhouse

  6. Impact of subclinical mastitis on greenhouse gas emissions intensity and profitability of dairy cows in Norway.

    Science.gov (United States)

    Özkan Gülzari, Şeyda; Vosough Ahmadi, Bouda; Stott, Alistair W

    2018-02-01

    Impaired animal health causes both productivity and profitability losses on dairy farms, resulting in inefficient use of inputs and increase in greenhouse gas (GHG) emissions produced per unit of product (i.e. emissions intensity). Here, we used subclinical mastitis as an exemplar to benchmark alternative scenarios against an economic optimum and adjusted herd structure to estimate the GHG emissions intensity associated with varying levels of disease. Five levels of somatic cell count (SCC) classes were considered namely 50,000 (i.e. SCC50), 200,000, 400,000, 600,000 and 800,000cells/mL (milliliter) of milk. The effects of varying levels of SCC on milk yield reduction and consequential milk price penalties were used in a dynamic programming (DP) model that maximizes the profit per cow, represented as expected net present value, by choosing optimal animal replacement rates. The GHG emissions intensities associated with different levels of SCC were then computed using a farm-scale model (HolosNor). The total culling rates of both primiparous (PP) and multiparous (MP) cows for the five levels of SCC scenarios estimated by the model varied from a minimum of 30.9% to a maximum of 43.7%. The expected profit was the highest for cows with SCC200 due to declining margin over feed, which influenced the DP model to cull and replace more animals and generate higher profit under this scenario compared to SCC50. The GHG emission intensities for the PP and MP cows with SCC50 were 1.01kg (kilogram) and 0.95kg carbon dioxide equivalents (CO 2 e) per kg fat and protein corrected milk (FPCM), respectively, with the lowest emissions being achieved in SCC50. Our results show that there is a potential to reduce the farm GHG emissions intensity by 3.7% if the milk production was improved through reducing the level of SCC to 50,000cells/mL in relation to SCC level 800,000cells/mL. It was concluded that preventing and/or controlling subclinical mastitis consequently reduces the GHG

  7. Role of Eu"2"+ on the blue‐green photoluminescence of In_2O_3:Eu"2"+ nanocrystals

    International Nuclear Information System (INIS)

    Devi, Konsam Reenabati; Meetei, Sanoujam Dhiren; Singh, Shougaijam Dorendrajit

    2016-01-01

    Blue‐green light emitting undoped and europium doped indium oxide nanocrystal were synthesized by simple precipitation method. X-ray diffraction (XRD) pattern confirmed the cubic phase of undoped and europium doped samples. Further, transmission electron microscopy (TEM), scanning electron microscopy (SEM) , energy dispersive analysis of X-rays (EDAX), Fourier transform infra-red (FT-IR), photoluminescence (PL), electron paramagnetic resonance (EPR) studies were performed to characterise the samples. PL analysis of the samples is the core of the present research. It includes excitation, emission and CIE (Commission Internationale de l’e´ clairage) studies of the samples. On doping europium to In_2O_3 lattice, ln"3"+ site is substituted by Eu"2"+ thereby increasing the concentration of singly ionized oxygen vacancy and hence blue–green emission from the host is found to increase. Further, this increase in blue–green emission after doping may also be attributed to 4f → 5d transitions of Eu"2"+. However, the blue–green PL emission is found to decrease after an optimum dopant concentration (Eu"2"+ = 4%) due to luminescence and size quenching. CIE co-ordinates of the samples are calculated to know colour of light emitted from the samples. It suggests that this blue–green light emitting In_2O_3: Eu"2"+ nanocrystals may find application in lighting such as in generation of white light. - Highlight: • XRD and TEM study confirms the synthesis of cubic doped and europium doped nanocrystals. • EPR study reveals the doped europium is in + 2 oxidation state. • Enhance PL emission intensity of host material due to increase in singly ionized oxygen vacancy and 4f–5d transitions of Eu"2"+ • CIE co-ordinates suggest the blue–green colour of the samples.

  8. Inventory of Green House Gas Emissions from the Energy Sector

    International Nuclear Information System (INIS)

    Mbuthi, P.N

    1998-01-01

    The presentation highlighted two features of Kenya's energy sector namely: imported petroleum fuel for modern sector and wood fuel for domestic and informal sectors. The main objectives was to evaluate the amount and type of Green House emitted between 1989 and 1992 from the total national fuel wood consumption, the charcoal production, total charcoal consumption and the generation of possible recommendations on possible options available in the energy sector to mitigate against adverse effects of human induced climate change impacts. Under fossil fuels, the paper looked at emissions resulting from combustion of liquid fossil fuels, burning coal for energy, crude oil refining, storage and handling, whilst under traditional biomass fuels, fuel wood burned from energy, charcoal production and consumption, Nitrous Oxides were targeted

  9. The Recombination Mechanism and True Green Amplified Spontaneous Emission in CH3NH3PbBr3 Perovskite

    KAUST Repository

    Priante, Davide

    2015-01-01

    . M. Bakr, and B. S. Ooi, "The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites", Applied Physics Letters, 106, 081902, 2015. DOI: 10.1063/1.4913463

  10. EU energy-intensive industries and emissions trading: losers becoming winners?

    Energy Technology Data Exchange (ETDEWEB)

    Wettestad, Joergen

    2008-11-15

    The EU Emissions Trading System (ETS) initially treated power producers and energy-intensive industries similarly, despite clear structural differences between these industries regarding pass through of costs and vulnerability to global competition. Hence, the energy-intensive industries could be seen as losing out in the internal distribution. In the January 2008 proposal for a reformed ETS post-2012, a differentiated system was proposed where the energy-intensive industries come out relatively much better. What is the explanation for the change taking place? Although power producers still have a dominant position in the system, the increasing consensus about windfall profits has weakened their standing. Conversely, the energy-intensive industries have become better organised and more active. This balance shift is first and foremost noticeable in several important EU-level stake holder consultation processes. Energy-intensive industries have, however, also successfully utilised the national pathway to exert influence on Brussels policy-making. Finally, growing fear of lax global climate policies and related carbon leakage has strengthened the case of these industries further. The latter dimension indicates that although energy-intensive industries have managed to reduce internal distribution anomalies, external challenges remain. (author). 9 refs

  11. Simulations of bremsstrahlung emission in ultra-intense laser interactions with foil targets

    Science.gov (United States)

    Vyskočil, Jiří; Klimo, Ondřej; Weber, Stefan

    2018-05-01

    Bremsstrahlung emission from interactions of short ultra-intense laser pulses with solid foils is studied using particle-in-cell (PIC) simulations. A module for simulating bremsstrahlung has been implemented in the PIC loop to self-consistently account for the dynamics of the laser–plasma interaction, plasma expansion, and the emission of gamma ray photons. This module made it possible to study emission from thin targets, where refluxing of hot electrons plays an important role. It is shown that the angular distribution of the emitted photons exhibits a four-directional structure with the angle of emission decreasing with the increase of the width of the target. Additionally, a collimated forward flash consisting of high energy photons has been identified in thin targets. The conversion efficiency of the energy of the laser pulse to the energy of the gamma rays rises with both the driving pulse intensity, and the thickness of the target. The amount of gamma rays also increases with the atomic number of the target material, despite a lower absorption of the driving laser pulse. The angular spectrum of the emitted gamma rays is directly related to the increase of hot electron divergence during their refluxing and its measurement can be used in experiments to study this process.

  12. A novel approach to obtain highly intense self-activated photoluminescence emissions in hydroxyapatite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Thales R. [CDMF-UFSCar, Universidade Federal de São Carlos, P.O. Box 676, 13565-905 São Carlos, São Paulo (Brazil); QIO-UJI, Universitat Jaume I, 12071 Castellón (Spain); Sczancoski, Júlio C. [CDMF-UFSCar, Universidade Federal de São Carlos, P.O. Box 676, 13565-905 São Carlos, São Paulo (Brazil); Beltrán-Mir, Héctor [QIO-UJI, Universitat Jaume I, 12071 Castellón (Spain); Nogueira, Içamira C. [PPGEM-IFMA, Instituto Federal de Educação, Ciência e Tecnologia do Maranhão, 65030-005 São Luís, MA (Brazil); Li, Máximo S. [IFSC-USP, Universidade de São Paulo, P.O. Box 369, 13560-970 São Carlos, SP (Brazil); Andrés, Juan [QFA-UJI, Universitat Jaume I, 12071 Castellón (Spain); Cordoncillo, Eloisa [QIO-UJI, Universitat Jaume I, 12071 Castellón (Spain); Longo, Elson, E-mail: elson.liec@gmail.com [CDMF-UFSCar, Universidade Federal de São Carlos, P.O. Box 676, 13565-905 São Carlos, São Paulo (Brazil)

    2017-05-15

    Defect-related photoluminescence (PL) in materials have attracted interest for applications including near ultraviolet (NUV) excitable light-emitting diodes and in biomedical field. In this paper, hydroxyapatite [Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}] nanorods with intense PL bands (bluish- and yellowish-white emissions) were obtained when excited under NUV radiation at room temperature. These nanoparticles were synthesized via chemical precipitation at 90 °C followed by distinct heat treatments temperatures (200–800 °C). Intense and broad emission profiles were achieved at 350 °C (380–750 nm) and 400 °C (380–800 nm). UV–Vis spectroscopy revealed band gap energies (5.58–5.78 eV) higher than the excitation energies (~3.54 and ~2.98 eV at 350 and 415 nm, respectively), confirming the contribution of defect energy levels within the forbidden zone for PL emissions. The structural features were characterized by X-ray diffraction, Rietveld refinement, thermogravimetric analysis, and Fourier transform infrared spectroscopy. By means of these techniques, the relation between structural order-disorder induced by defects, chemical reactions at both lattice and surface of the materials as well as the PL, without activator centers, was discussed in details. - Graphical abstract: The self-activated photoluminescence emissions of chemically precipitated hydroxyapatite nanorods were improved by different heat treatment temperatures. - Highlights: • HA nanorods were synthesized with improved self-activated PL at room temperature. • PL profile and intensity dependents on the temperature of posterior heat treatments. • Bluish- and yellowish-white emissions under NUV excitation (350 and 415 nm). • Broad and intense profiles achieved at 350 °C (380–750 nm) and 400 °C (380–800 nm). • PL from the e′–h{sup •} recombination between defect energy levels within the band gap.

  13. Luminescent properties of Tb3+- doped TeO2-WO3-GeO2 glasses for green laser applications

    Science.gov (United States)

    Subrahmanyam, T.; Rama Gopal, K.; Padma Suvarna, R.; Jamalaiah, B. C.; Vijaya Kumar, M. V.

    2018-06-01

    Different concentrations of Tb3+ -doped oxyfluoro tellurite (TWGTb) glasses were prepared by conventional melt quenching technique and characterized for green laser applications. The Judd-Ofelt theory was applied to evaluate various spectroscopic and radiative parameters. The TWGTb glasses exhibit 5D3 → 7F5-3 and 5D4 → 7F6-0 transitions when excited at 316 nm radiation. The variation of intensity of 5D4 → 7F5 (Green) and 5D3 → 7F4 (Blue) transitions and the green to blue (IG/IB) intensity ratios were studied as a function of Tb3+ ions concentration. The laser characteristic parameters such as effective bandwidth (Δλeff), stimulated emission cross-section (σe), gain bandwidth (σe × Δλeff) and optical gain (σe × τR) were determined using the three phenomenological Judd-Ofelt intensity parameters. The fluorescence decay profiles of 5D4 metastable level exhibit single-exponential nature for all the samples. Based on the experimental results we suggest that the 1.0 mol% of Tb3+ -doped TWGTb glass could be a suitable laser host material to emit intense green luminescence at 545 nm.

  14. Top-down Estimates of Greenhouse Gas Intensities and Emissions for Individual Oil Sands Facilities in Alberta Canada

    Science.gov (United States)

    Liggio, J.; Li, S. M.; Staebler, R. M.; Hayden, K. L.; Mittermeier, R. L.; McLaren, R.; Baray, S.; Darlington, A.; Worthy, D.; O'Brien, J.

    2017-12-01

    The oil sands (OS) region of Alberta contributes approximately 10% to Canada's overall anthropogenic greenhouse gas (GHG) emissions. Such emissions have traditionally been estimated through "bottom-up" methods which seek to account for all individual sources of GHGs within a given facility. However, it is recognized that bottom-up approaches for complex industrial facilities can be subject to uncertainties associated with incomplete or inaccurate emission factor and/or activity data. In order to quantify air pollutant emissions from oil sands activities an aircraft-based measurement campaign was performed in the summer of 2013. The aircraft measurements could also be used to quantify GHG emissions for comparison to the bottom up emissions estimates. Utilizing specific flight patterns, together with an emissions estimation algorithm and measurements of CO2 and methane, a "top-down" estimate of GHG intensities for several large surface mining operations was obtained. The results demonstrate that there is a wide variation in emissions intensities (≈80 - 220 kg CO2/barrel oil) across OS facilities, which in some cases agree with calculated intensities, and in other cases are larger than that estimated using industry reported GHG emission and oil production data. When translated to annual GHG emissions, the "top-down" approach results in a CO2 emission of approximately 41 Mega Tonnes (MT) CO2/year for the 4 OS facilities investigated, in contrast to the ≈26 MT CO2/year reported by industry. The results presented here highlight the importance of using "top-down" approaches as a complimentary method in evaluating GHG emissions from large industrial sources.

  15. Electron transfer in silicon-bridged adjacent chromophores: the source for blue-green emission.

    Science.gov (United States)

    Bayda, Malgorzata; Angulo, Gonzalo; Hug, Gordon L; Ludwiczak, Monika; Karolczak, Jerzy; Koput, Jacek; Dobkowski, Jacek; Marciniak, Bronislaw

    2017-05-10

    Si-Bridged chromophores have been proposed as sources for blue-green emission in several technological applications. The origin of this dual emission is to be found in an internal charge transfer reaction. The current work is an attempt to describe the details of these processes in these kinds of substances, and to design a molecular architecture to improve their performance. Nuclear motions essential for intramolecular charge transfer (ICT) can involve processes from twisted internal moieties to dielectric relaxation of the solvent. To address these issues, we studied ICT between adjacent chromophores in a molecular compound containing N-isopropylcarbazole (CBL) and 1,4-divinylbenzene (DVB) linked by a dimethylsilylene bridge. In nonpolar solvents emission arises from the local excited state (LE) of carbazole whereas in solvents of higher polarity dual emission was detected (LE + ICT). The CT character of the additional emission band was concluded from the linear dependence of the fluorescence maxima on solvent polarity. Electron transfer from CBL to DVB resulted in a large excited-state dipole moment (37.3 D) as determined from a solvatochromic plot and DFT calculations. Steady-state and picosecond time-resolved fluorescence experiments in butyronitrile (293-173 K) showed that the ICT excited state arises from the LE state of carbazole. These results were analyzed and found to be in accordance with an adiabatic version of Marcus theory including solvent relaxation.

  16. A green profitability framework to quantify the impact of green supply chain management in South Africa

    Directory of Open Access Journals (Sweden)

    Nandie Coetzee

    2016-10-01

    Full Text Available Background: The greenhouse gas emissions of South Africa are the largest contribution by a country in the African continent. If the carbon emissions are not reduced, they will continue to grow exponentially. South Africa’s emissions are placed in the top 20 in the world when considering per capita emissions. Objectives: The aim of the research article was to investigate how the impact of implementing environmental initiatives on business profitability and sustainability can best be quantified in a South African business. Method: Various methods, theories and best practices were researched to aid in the development of the green business profitability framework. This framework was applied to two case studies in different areas of the supply chain of a South African fast-moving consumer goods business. Results: Results indicated that the green profitability framework can be used successfully to quantify both the environmental and profitability impact of green supply chain initiatives. The framework is therefore more suitable for the South African company than other existing frameworks in the literature because of its ability to quantify both profitability and sustainability in short- and long-term planning scenarios. Conclusion: The results from the case studies indicated that the green business profitability framework enabled the tracking of environmental initiatives back to logistics operations and profitability, which makes it easier to understand and implement. The developed framework also helped to link the carbon emissions to source, and to translate green supply chain actions into goals.

  17. Efficient green and red up-conversion emissions in Er/Yb co-doped TiO{sub 2} nanopowders prepared by hydrothermal-assisted sol–gel process

    Energy Technology Data Exchange (ETDEWEB)

    Salhi, Rached, E-mail: salhi_rached@yahoo.fr [Laboratoire de chimie industrielle, Ecole Nationale d’ingénieurs de Sfax, Université de Sfax, 3018 Sfax (Tunisia); Deschanvres, Jean-Luc [Laboratoire des Matériaux et du Génie Physique, 3 Parvis Louis Néel, BP 257, 38016 Grenoble (France)

    2016-08-15

    In this work, erbium and ytterbium co-doped titanium dioxide (Er–Yb:TiO{sub 2}) nanopowders have been successfully prepared by hydrothermal-assisted sol–gel method using supercritical drying of ethyl alcohol and annealing at 500 °C for 1 h. Nanopowders were prepared with fixed 5 mol% Erbium concentration and various Ytterbium concentrations of 5 and 10 mol%. The powders were characterized by studying their structural, morphology and photo-luminescent properties. The annealing treatment at 500 °C was found to enhance the crystallinity of the TiO{sub 2} anatase structure and the upconversion (UC) emission of the nanopowders. UC emissions were investigated under 980 nm excitation, and the Er–Yb:TiO{sub 2} nanopowders exhibited the intense green (520–570 nm) and red (640–690 nm) upconverted emissions of Er ions originating from an efficient Yb–Er energy transfer process. The absolute upconversion quantum yield (UC-QY) of each nanopowders was measured for the UC emissions centered at 525, 550 and 655 nm at varying excitation power densities. UC-QY analysis has revealed that 5 mol% Er–5 mol% Yb:TiO{sub 2} nanopowders possess the highest total quantum yield of 2.8±0.1% with a power density of 16.7 W/cm{sup 2}. These results make these nanopowders promising materials for efficient upconversion in photonic applications.

  18. White light emission and effect of annealing on the Ho3+–Yb3+ codoped BaCa2Al8O15 phosphor

    International Nuclear Information System (INIS)

    Kumari, Astha; Rai, Vineet Kumar

    2015-01-01

    Graphical abstract: The upconversion emission spectra of the Ho 3+ /Yb 3+ doped/codoped BaCa 2 Al 8 O 15 phosphors with different doping concentrations of Ho 3+ /Yb 3+ ions along with UC emission spectrum of the white light emitting phosphor annealed at 800 °C. - Highlights: • BaCa 2 Al 8 O 15 phosphors codoped with Ho 3+ –Yb 3+ have been prepared by combustion method. • Phosphor annealed at 800 °C, illuminate an intense white light upon NIR excitation. • The sample annealed at higher temperatures emits in the pure green region. • The colour emitted persists in the white region even at high pump power density. • Developed phosphor is suitable for making upconverters and WLEDs. - Abstract: The BaCa 2 Al 8 O 15 (BCAO) phosphors codoped with suitable Ho 3+ –Yb 3+ dopant concentration prepared by combustion method illuminate an intense white light upon near infrared diode laser excitation. The structural analysis of the phosphors and the detection of impurity contents have been performed by using the X-Ray Diffraction, FESEM and FTIR analysis. The purity of white light emitted from the sample has been confirmed by the CIE chromaticity diagram. Also, the white light emitted from the sample persists with the variation of pump power density. The phosphors emit upconversion (UC) emission bands in the blue, green and red region (three primary colours required for white light emission) along with one more band in the near infrared region of the electromagnetic spectrum. On annealing the white light emitting sample at higher temperatures, the sample starts to emit green colour and also the intensity of green and red UC emission bands get enhanced largely.

  19. Formation and emission of linalool in tea (Camellia sinensis) leaves infested by tea green leafhopper (Empoasca (Matsumurasca) onukii Matsuda).

    Science.gov (United States)

    Mei, Xin; Liu, Xiaoyu; Zhou, Ying; Wang, Xiaoqin; Zeng, Lanting; Fu, Xiumin; Li, Jianlong; Tang, Jinchi; Dong, Fang; Yang, Ziyin

    2017-12-15

    Famous oolong tea (Oriental Beauty), which is manufactured by tea leaves (Camellia sinensis) infected with tea green leafhoppers, contains characteristic volatile monoterpenes derived from linalool. This study aimed to determine the formation mechanism of linalool in tea exposed to tea green leafhopper attack. The tea green leafhopper responsible for inducing the production of characteristic volatiles was identified as Empoasca (Matsumurasca) onukii Matsuda. E. (M.) onukii attack significantly induced the emission of linalool from tea leaves (ptea leaves exposed to E. (M.) onukii attack. This information should prove helpful for the future use of stress responses of plant secondary metabolism to improve quality components of agricultural products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Intensive up-conversion photoluminescence of Er3+-doped Bi7Ti4NbO21 ferroelectric ceramics and its temperature sensing

    Directory of Open Access Journals (Sweden)

    Hua Zou

    2014-10-01

    Full Text Available The intensive up-conversion (UC photoluminescence and temperature sensing behavior of Er3+-doped Bi7Ti4NbO21(BTN ferroelectric ceramics prepared by a conventional solid-state reaction technique have been investigated. The X-ray diffraction and field emission scanning electron microscope analyses demonstrated that the Er3+-doped BTN ceramics are single phase and uniform flake-like structure. With the Er3+ ions doping, the intensive UC emission was observed without obviously changing the properties of ferroelectric. The optimal emission intensity was obtained when Er doping level was 15 mol.%. The temperature sensing behavior was studied by fluorescence intensity ratio (FIR technique of two green UC emission bands, and the experimental data fitted very well with the function of temperature in a range of 133–573 K. It suggested that the Er3+-doped BTN ferroelectric ceramics are very good candidates for applications such as optical thermometry, electro-optical devices and bio-imaging ceramics.

  1. Upcoversion performance improvement of NaYF4:Yb, Er by Sn codoping: Enhanced emission intensity and reduced decay time

    International Nuclear Information System (INIS)

    Yu, Han; Cao, Wenbing; Huang, Qingming; Ma, En; Zhang, Xinqi; Yu, Jianchang

    2013-01-01

    In this manuscript we report a phenomenon that upconversion emission intensity of Er 3+ was enhanced while decay time constant was decreased obviously by Sn codoping with Yb/Er into hexagonal NaYF 4 synchronously. X-ray powder diffiraction, field emission scanning electron microscope, transmission electron microscopy, X-ray photoelectron spectroscopy, electron spin-resonance spectroscopy and upconversion emission spectra were employed to explore the relation of crystal structure and properties. From these characterizations we found that symmetry of the rare earth ion local crystal field could be tuned by different Sn codoping concentration. For the variable valence property of Sn the local crystal field asymmetry and emission intensity of NaYF 4 :Yb, Er arrived to the maximum when 3 mol% Sn was codoped, while decay time was reduced. The study of this changing tends of upconversion emission intensity and decay time constant may be helpful for design and fabrication of high performance upconversion materials. - Graphical abstract: Variable-valenced Sn is introduced with Yb/Er into NaFY 4 to tune structure and local crystal field. Upconversion emission intensity of Er 3+ was enhanced while decay time constant was decreased. Display Omitted - Highlights: • NaYF 4 : Yb, Er was codoped with different concentration Sn. • Upconversion emission intensity was enhanced while decay time constant was decreased. • Introduction of variable-valenced Sn is effective to tune structure and crystal field of NaFY 4

  2. Relative emissions intensity of dairy production systems: employing different functional units in life-cycle assessment.

    Science.gov (United States)

    Ross, S A; Topp, C F E; Ennos, R A; Chagunda, M G G

    2017-08-01

    This study aimed to assess the merit and suitability of individual functional units (FU) in expressing greenhouse gas emissions intensity in different dairy production systems. An FU provides a clearly defined and measurable reference to which input and output data are normalised. This enables the results from life-cycle assessment (LCA) of different systems to be treated as functionally equivalent. Although the methodological framework of LCA has been standardised, selection of an appropriate FU remains ultimately at the discretion of the individual study. The aim of the present analysis was to examine the effect of different FU on the emissions intensities of different dairy production systems. Analysis was based on 7 years of data (2004 to 2010) from four Holstein-Friesian dairy systems at Scotland's Rural College's long-term genetic and management systems project, the Langhill herd. Implementation of LCA accounted for the environmental impacts of the whole-farm systems and their production of milk from 'cradle to farm gate'. Emissions intensity was determined as kilograms of carbon dioxide equivalents referenced to six FU: UK livestock units, energy-corrected milk yield, total combined milk solids yield, on-farm land used for production, total combined on- and off-farm land used for production, and the proposed new FU-energy-corrected milk yield per hectare of total land used. Energy-corrected milk was the FU most effective for reflecting differences between the systems. Functional unit that incorporated a land-related aspect did not find difference between systems which were managed under the same forage regime, despite their comprising different genetic lines. Employing on-farm land as the FU favoured grazing systems. The proposed dual FU combining both productivity and land use did not differentiate between emissions intensity of systems as effectively as the productivity-based units. However, this dual unit displayed potential to quantify in a simple way

  3. A new method of organizing spectral line intensity ratio fluctuations of nightglow emissions

    International Nuclear Information System (INIS)

    Thelin, B.

    1986-02-01

    In this paper a new kind of linearization effect between the atmospheric night airglow emissions is presented. The same kind of linearization effect has previously been studied with spectrochemical light sources together with a spectrometer. A linear graph was obtained for atomic spectral lines and vibrational bandspectra when the spectral line intensity ratio fluctuations were plotted versus the photon energies of these emissions. To study this effect data from a number of different photometer investigations of night airglow emissions at different times and places have been used. (author)

  4. Manufacturing sector carbon dioxide emissions in nine OECD countries 1973--87: A Divisia index decomposition to changes in fuel mix, emission coefficients, industry structure, energy intensities, and international structure

    International Nuclear Information System (INIS)

    Torvanger, A.

    1990-11-01

    In this paper the reduction in energy-related manufacturing carbon dioxide emissions for nine OECD countries in the period 1973 to 1987 is analyzed. Carbon dioxide emissions are estimated from energy use data. The emphasis is on carbon dioxide intensities, defined as emissions divided by value added. The overall manufacturing carbon dioxide intensity for the nine OECD countries was reduced by 42% in the period 1973--1987. Five fuels are specified together with six subsectors of manufacturing. Carbon dioxide emissions are estimated from fossil fuel consumption, employing emissions coefficients for gas, oil and solids. In addition, electricity consumption is specified. For electricity use an emission coefficient index is calculated from the shares of fossil fuels, nuclear power and hydro power used to generate electricity, and the efficiency in electricity generation from these energy sources. A Divisia index approach is used to sort out the contribution to reduced carbon dioxide intensity from different components. The major finding is that the main contribution to reduced carbon dioxide intensity is from the general reduction in manufacturing energy intensity, most likely driven by economic growth and increased energy prices, giving incentives to invest in new technology and new industrial processes. There is also a significant contribution from reduced production in the most carbon dioxide intensive subsectors, and a contribution from higher efficiency in electricity generation together with a larger nuclear power share at the expense of oil. 19 refs., 5 figs., 11 tabs

  5. A green fluorescent protein with photoswitchable emission from the deep sea.

    Directory of Open Access Journals (Sweden)

    Alexander Vogt

    Full Text Available A colorful variety of fluorescent proteins (FPs from marine invertebrates are utilized as genetically encoded markers for live cell imaging. The increased demand for advanced imaging techniques drives a continuous search for FPs with new and improved properties. Many useful FPs have been isolated from species adapted to sun-flooded habitats such as tropical coral reefs. It has yet remained unknown if species expressing green fluorescent protein (GFP-like proteins also exist in the darkness of the deep sea. Using a submarine-based and -operated fluorescence detection system in the Gulf of Mexico, we discovered ceriantharians emitting bright green fluorescence in depths between 500 and 600 m and identified a GFP, named cerFP505, with bright fluorescence emission peaking at 505 nm. Spectroscopic studies showed that approximately 15% of the protein bulk feature reversible ON/OFF photoswitching that can be induced by alternating irradiation with blue und near-UV light. Despite being derived from an animal adapted to essentially complete darkness and low temperatures, cerFP505 maturation in living mammalian cells at 37 degrees C, its brightness and photostability are comparable to those of EGFP and cmFP512 from shallow water species. Therefore, our findings disclose the deep sea as a potential source of GFP-like molecular marker proteins.

  6. Effective tuning of the ratio of red to green emission of Ho"3"+ ions in single LiLuF_4 microparticle via codoping Ce"3"+ ions

    International Nuclear Information System (INIS)

    Gao, Wei; Dong, Jun; Liu, Jihong; Yan, Xuewen

    2016-01-01

    Yb"3"+/Ho"3"+ codoped LiLuF_4 microparticles have been successfully prepared via a facile hydrothermal method. The crystal phase and morphology of LiLuF_4 microparticles were inspected by x-ray diffraction and scanning electron microscope, respectively. The upconversion emission of single LiLuF_4: Yb"3"+/Ho"3"+ microparticle was carefully studied by a confocal microscopy setup under NIR 980 nm excitation. With the increase of Ce"3"+ ion concentrations of 12%, the ratio of red to green emission of the Ho"3"+ ions of single LiLuF_4 microparticle was boosted about 17-fold, and the output colors were tuned from green to red, which is due to the two efficient cross-relaxation between Ho"3"+ and Ce"3"+ ions enhances the red and suppresses the green in the emission processes. To investigate the optical properties of the single microparticle or nanoparticle through the confocal microscopy setup can effectively avoid the influence of surrounding particle or environment, and could provide more precise information for better exploring the emission mechanisms of rare earth ions. The tunable upconversion emission of Ho"3"+ in single LiLuF_4 microparticle in this work will have great potential applications in the micro optoelectronic devices and color display applications. - Highlights: • The optical properties of the single LiLuF4: Yb3+/Ho3+/Ce3+ microparticle were studied. • The output colors of single LiLuF4 microparticle were tuned from green to red. • The upconversion mechanisms between Ho3+ and Ce3+ ions were discussed based on emission spectrum.

  7. Green Roofs

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-08-01

    A New Technology Demonstration Publication Green roofs can improve the energy performance of federal buildings, help manage stormwater, reduce airborne emissions, and mitigate the effects of urban heat islands.

  8. Greenhouse Gas Emissions from Green Infrastructure vs. Conventional Wastewater Treatment Plants

    Science.gov (United States)

    Morse, N.; Walter, T.

    2017-12-01

    The need for resilient infrastructure and cities in the face of climate change has prompted an expansion of green infrastructure (GI) in suburban and urban areas. However, some researchers have begun to question if these engineered and vegetated systems could be contributing excess greenhouse gas (GHG) emissions. They theorize that the often inundated GI practices may be hot-spots for biogeochemical processes emitting GHGs. However, no studies have compared passive GI to the only available alternative for water treatment: conventional wastewater treatment plants (WWTPs). This study monitored the nitrous oxide (N2O) and methane (CH4) emissions from two GI detention basins in Ithaca, NY and compared these emissions with reported and modeled on-site emissions from WWTPs. One basin was often saturated ("Wet Basin"), while the other drained quickly and was rarely saturated ("Dry Basin"). The Wet Basin emitted more GHGs than nearby reference turfgrass (92 vs. 5 mg CO2 eq m-2 hr-), while the Dry Basin emitted less than reference turfgrass (0.9 vs 4 mg CO2 eq m-2 hr-). However, both basins emitted far less GHGs than conventional WWTPs. According to EPA calculations, aerobic WWTPs emit approximately 1,079 mg CO2 eq L-1, and the Wet and Dry Basin emitted roughly 117-516 and 0.28-2.56 mg CO2 eq L-1, respectively. Thus, on a per volume of water treated basis, conventional WWTPs are emitting approximately 3 and 750 times more GHGs than GI Wet and Dry Basins, respectively. This study highlights how passive GI provides a valuable ecosystem service (i.e., stormwater treatment) while producing less GHGs than WWTPs.

  9. Full-profile fitting of emission spectrum to determine transition intensity parameters of Yb3+:GdTaO4

    International Nuclear Information System (INIS)

    Zhang Qingli; Sun Guihua; Ning Kaijie; Liu Wenpeng; Sun Dunlu; Yin Shaotang; Shi Chaoshu

    2016-01-01

    The Judd–Ofelt theoretic transition intensity parameters of luminescence of rare-earth ions in solids are important for the quantitative analysis of luminescence. It is very difficult to determine them with emission or absorption spectra for a long time. A “full profile fitting” method to obtain in solids with its emission spectrum is proposed, in which the contribution of a radiative transition to the emission spectrum is expressed as the product of transition probability, line profile function, instrument measurement constant and transition center frequency or wavelength, and the whole experimental emission spectrum is the sum of all transitions. In this way, the emission spectrum is expressed as a function with the independent variables intensity parameters , full width at half maximum (FWHM) of profile functions, instrument measurement constant, wavelength, and the Huang–Rhys factor S if the lattice vibronic peaks in the emission spectrum should be considered. The ratios of the experimental to the calculated energy lifetimes are incorporated into the fitting function to remove the arbitrariness during fitting and other parameters. Employing this method obviates measurement of the absolute emission spectrum intensity. It also eliminates dependence upon the number of emission transition peaks. Every experiment point in emission spectra, which usually have at least hundreds of data points, is the function with variables and other parameters, so it is usually viable to determine and other parameters using a large number of experimental values. We applied this method to determine twenty-five of Yb 3+ in GdTaO 4 . The calculated and experiment energy lifetimes, experimental and calculated emission spectrum are very consistent, indicating that it is viable to obtain the transition intensity parameters of rare-earth ions in solids by a full profile fitting to the ions’ emission spectrum. The calculated emission cross sections of Yb 3+ :GdTaO 4 also indicate

  10. Intense Non-Linear Soft X-Ray Emission from a Hydride Target during Pulsed D Bombardment

    Science.gov (United States)

    Miley, George H.; Yang, Yang; Lipson, Andrei; Haque, Munima; Percel, Ian; Romer, Michael

    Radiation emission from low-energy nuclear radiation (LENR) electrodes (both charged-particle and X-rays) represents an important feature of LENR in general. Here, calibration, measurement techniques, and soft X-ray emission results from deuterium bombardment of a Pd target (cathode) placed in a pulsed deuterium glow discharge (PGD) are described. An X-ray intensity of 13.4 mW/cm2 and a dose of 3.3 μJ/cm2 were calculated over a 0.5 ms pulse time from AXUV photodiode radiation detector measurements. A most striking feature is that X-ray energies >600 V are observed with a discharge voltage only about half of that value. To further investigate this phenomenon, emission during room temperature D-desorption from electrolytically loaded Pd:Dx cathodes was also studied. The X-ray emission energy observed was quite similar to the PGD case. However, the intensity in this case was almost 13 orders of magnitude lower due to the much lower deuterium fluxes involved.

  11. Intense non-linear soft X-ray emission from a hydride target during pulsed D bombardment

    International Nuclear Information System (INIS)

    Miley, George H.; Yang, Yang; Lipson, Andrei; Haque, Munima; Percel, Ian; Romer, Michael

    2006-01-01

    Radiation emission from low-energy nuclear radiation (LENR) electrodes (both charged-particle and X-rays) represents an important feature of LENR in general. Here, calibration, measurement techniques, and soft X-ray emission results from deuterium bombardment of a Pd target (cathode) placed in a pulsed deuterium glow discharge (PGD) are described. An X-ray intensity of 13.4 mW/cm 2 and a dose of 3.3 μJ/cm 2 were calculated over a 0.5 ms pulse time from AXUV photodiode radiation detector measurements. A most striking feature is that X-ray energies >600 V are observed with a discharge voltage only about half of that value. To further investigate this phenomenon, emission during room temperature D-desorption from electrolytically loaded Pd:Dx cathodes was also studied. The X-ray emission energy observed was quite similar to the PGD case. However, the intensity in this case was almost 13 orders of magnitude lower due to the much lower deuterium fluxes involved. (author)

  12. Energy intensity, CO{sub 2} emissions and the environmental Kuznets curve. The Spanish case

    Energy Technology Data Exchange (ETDEWEB)

    Roca, J. [Universitat de Barcelona (Spain). Dpt. Teoria Economica; Alcantara, V. [Universitat Autonoma de Barcelona (Spain). Dpt. Economia Aplicada

    2001-06-01

    This article analyses the role of energy intensity and the relationship between CO{sub 2} emissions and primary energy in order to explain the evolution of CO{sub 2} emissions by unit of real GDP. It also distinguishes two different meanings of CO{sub 2} emissions Kuznets curve hypothesis: the weak and the strong sense. It considers the case of Spain in the period 1972-1997 as an example in which there is not any evidence supporting this hypothesis in either sense. (author)

  13. Proceedings of the 14. Annual national conference of the Canadian Wind Energy Association: emissions trading and green power : profitability for buyers and sellers

    International Nuclear Information System (INIS)

    1998-01-01

    Renewable energy sources are gaining significance in the newly deregulated electricity markets. While much emphasis was placed on wind energy, this conference also presented the advantages of other renewables including solar, small hydro, and the capturing of methane gas from landfills. Consumers have become aware that, compared to fossil fuels, renewables provide many advantages including reduced atmospheric emissions and improved air quality. Renewable energy sources are regarded as a means to reduce greenhouse gas emissions and a response to the threat of climate change. The Conference addressed customer attitudes towards green energy, government initiatives in promoting renewable energy sources, and the mechanics and marketing of green power. refs., tabs., figs

  14. Greenhouse Gas Emission Intensities for the Livestock Sector in Indonesia, Based on the National Specific Data

    Directory of Open Access Journals (Sweden)

    Eska Nugrahaeningtyas

    2018-06-01

    Full Text Available The aims of this study were to calculate greenhouse gas (GHG emissions and to identify the trends of GHG emission intensity, based on meat production from the livestock sector in Indonesia, which had not been done before. The total emissions from the livestock sector from 2000 to 2015 in Indonesia were calculated using the 2006 Intergovernmental Panel on Climate Change Guideline (2006 IPCC GL using Tier 1 and Tier 2, with its default values and some of the country specific data that were found in the grey literature. During 2000 to 2015, the change from the Tier 1 to Tier 2 methods resulted in an approximately 7.39% emission decrease from enteric fermentation and a 4.24% increase from manure management, which resulted in a 4.98% decrease in the total emissions. The shared emission from manure management increased by about 9% and 6% using Tier 1 and Tier 2, respectively. In contrast with the total emissions, the overall emission intensity in Indonesia decreased (up to 60.77% for swine, showing that the livestock productivity in Indonesia has become more efficient. In order to meet the meat demand with less GHG emissions, chicken farming is one option to be developed. The increased emission and share from manure management indicated that manure management system needs to be of concern, especially for beef cattle and swine.

  15. Global market integration increases likelihood that a future African Green Revolution could increase crop land use and CO2 emissions.

    Science.gov (United States)

    Hertel, Thomas W; Ramankutty, Navin; Baldos, Uris Lantz C

    2014-09-23

    There has been a resurgence of interest in the impacts of agricultural productivity on land use and the environment. At the center of this debate is the assertion that agricultural innovation is land sparing. However, numerous case studies and global empirical studies have found little evidence of higher yields being accompanied by reduced area. We find that these studies overlook two crucial factors: estimation of a true counterfactual scenario and a tendency to adopt a regional, rather than a global, perspective. This paper introduces a general framework for analyzing the impacts of regional and global innovation on long run crop output, prices, land rents, land use, and associated CO2 emissions. In so doing, it facilitates a reconciliation of the apparently conflicting views of the impacts of agricultural productivity growth on global land use and environmental quality. Our historical analysis demonstrates that the Green Revolution in Asia, Latin America, and the Middle East was unambiguously land and emissions sparing, compared with a counterfactual world without these innovations. In contrast, we find that the environmental impacts of a prospective African Green Revolution are potentially ambiguous. We trace these divergent outcomes to relative differences between the innovating region and the rest of the world in yields, emissions efficiencies, cropland supply response, and intensification potential. Globalization of agriculture raises the potential for adverse environmental consequences. However, if sustained for several decades, an African Green Revolution will eventually become land sparing.

  16. Global market integration increases likelihood that a future African Green Revolution could increase crop land use and CO2 emissions

    Science.gov (United States)

    Hertel, Thomas W.; Ramankutty, Navin; Baldos, Uris Lantz C.

    2014-01-01

    There has been a resurgence of interest in the impacts of agricultural productivity on land use and the environment. At the center of this debate is the assertion that agricultural innovation is land sparing. However, numerous case studies and global empirical studies have found little evidence of higher yields being accompanied by reduced area. We find that these studies overlook two crucial factors: estimation of a true counterfactual scenario and a tendency to adopt a regional, rather than a global, perspective. This paper introduces a general framework for analyzing the impacts of regional and global innovation on long run crop output, prices, land rents, land use, and associated CO2 emissions. In so doing, it facilitates a reconciliation of the apparently conflicting views of the impacts of agricultural productivity growth on global land use and environmental quality. Our historical analysis demonstrates that the Green Revolution in Asia, Latin America, and the Middle East was unambiguously land and emissions sparing, compared with a counterfactual world without these innovations. In contrast, we find that the environmental impacts of a prospective African Green Revolution are potentially ambiguous. We trace these divergent outcomes to relative differences between the innovating region and the rest of the world in yields, emissions efficiencies, cropland supply response, and intensification potential. Globalization of agriculture raises the potential for adverse environmental consequences. However, if sustained for several decades, an African Green Revolution will eventually become land sparing. PMID:25201962

  17. Upcoversion performance improvement of NaYF{sub 4}:Yb, Er by Sn codoping: Enhanced emission intensity and reduced decay time

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Han, E-mail: fjfzyh@fzu.edu.cn [College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 (China); Cao, Wenbing [College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 (China); Huang, Qingming [Instrumentation Analysis and Research Center, Fuzhou University, Fuzhou, Fujian 350002 (China); Ma, En [Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Zhang, Xinqi [Instrumentation Analysis and Research Center, Fuzhou University, Fuzhou, Fujian 350002 (China); Yu, Jianchang [College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 (China)

    2013-11-15

    In this manuscript we report a phenomenon that upconversion emission intensity of Er{sup 3+} was enhanced while decay time constant was decreased obviously by Sn codoping with Yb/Er into hexagonal NaYF{sub 4} synchronously. X-ray powder diffiraction, field emission scanning electron microscope, transmission electron microscopy, X-ray photoelectron spectroscopy, electron spin-resonance spectroscopy and upconversion emission spectra were employed to explore the relation of crystal structure and properties. From these characterizations we found that symmetry of the rare earth ion local crystal field could be tuned by different Sn codoping concentration. For the variable valence property of Sn the local crystal field asymmetry and emission intensity of NaYF{sub 4}:Yb, Er arrived to the maximum when 3 mol% Sn was codoped, while decay time was reduced. The study of this changing tends of upconversion emission intensity and decay time constant may be helpful for design and fabrication of high performance upconversion materials. - Graphical abstract: Variable-valenced Sn is introduced with Yb/Er into NaFY{sub 4} to tune structure and local crystal field. Upconversion emission intensity of Er{sup 3+} was enhanced while decay time constant was decreased. Display Omitted - Highlights: • NaYF{sub 4}: Yb, Er was codoped with different concentration Sn. • Upconversion emission intensity was enhanced while decay time constant was decreased. • Introduction of variable-valenced Sn is effective to tune structure and crystal field of NaFY{sub 4}.

  18. Green roof systems: a study of public attitudes and preferences in southern Spain.

    Science.gov (United States)

    Fernandez-Cañero, Rafael; Emilsson, Tobias; Fernandez-Barba, Carolina; Herrera Machuca, Miguel Ángel

    2013-10-15

    This study investigates people's preconceptions of green roofs and their visual preference for different green roof design alternatives in relation to behavioral, social and demographical variables. The investigation was performed as a visual preference study using digital images created to represent eight different alternatives: gravel roof, extensive green roof with Sedums not in flower, extensive green roof with sedums in bloom, semi-intensive green roof with sedums and ornamental grasses, semi-intensive green roof with shrubs, intensive green roof planted with a lawn, intensive green roof with succulent and trees and intensive green roof with shrubs and trees. Using a Likert-type scale, 450 respondents were asked to indicate their preference for each digital image. Results indicated that respondents' sociodemographic characteristics and childhood environmental background influenced their preferences toward different green roof types. Results also showed that green roofs with a more careful design, greater variety of vegetation structure, and more variety of colors were preferred over alternatives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Red and Green Fluorescence from Oral Biofilms.

    Science.gov (United States)

    Volgenant, Catherine M C; Hoogenkamp, Michel A; Krom, Bastiaan P; Janus, Marleen M; Ten Cate, Jacob M; de Soet, Johannes J; Crielaard, Wim; van der Veen, Monique H

    2016-01-01

    Red and green autofluorescence have been observed from dental plaque after excitation by blue light. It has been suggested that this red fluorescence is related to caries and the cariogenic potential of dental plaque. Recently, it was suggested that red fluorescence may be related to gingivitis. Little is known about green fluorescence from biofilms. Therefore, we assessed the dynamics of red and green fluorescence in real-time during biofilm formation. In addition, the fluorescence patterns of biofilm formed from saliva of eight different donors are described under simulated gingivitis and caries conditions. Biofilm formation was analysed for 12 hours under flow conditions in a microfluidic BioFlux flow system with high performance microscopy using a camera to allow live cell imaging. For fluorescence images dedicated excitation and emission filters were used. Both green and red fluorescence were linearly related with the total biomass of the biofilms. All biofilms displayed to some extent green and red fluorescence, with higher red and green fluorescence intensities from biofilms grown in the presence of serum (gingivitis simulation) as compared to the sucrose grown biofilms (cariogenic simulation). Remarkably, cocci with long chain lengths, presumably streptococci, were observed in the biofilms. Green and red fluorescence were not found homogeneously distributed within the biofilms: highly fluorescent spots (both green and red) were visible throughout the biomass. An increase in red fluorescence from the in vitro biofilms appeared to be related to the clinical inflammatory response of the respective saliva donors, which was previously assessed during an in vivo period of performing no-oral hygiene. The BioFlux model proved to be a reliable model to assess biofilm fluorescence. With this model, a prediction can be made whether a patient will be prone to the development of gingivitis or caries.

  20. Red and Green Fluorescence from Oral Biofilms.

    Directory of Open Access Journals (Sweden)

    Catherine M C Volgenant

    Full Text Available Red and green autofluorescence have been observed from dental plaque after excitation by blue light. It has been suggested that this red fluorescence is related to caries and the cariogenic potential of dental plaque. Recently, it was suggested that red fluorescence may be related to gingivitis. Little is known about green fluorescence from biofilms. Therefore, we assessed the dynamics of red and green fluorescence in real-time during biofilm formation. In addition, the fluorescence patterns of biofilm formed from saliva of eight different donors are described under simulated gingivitis and caries conditions. Biofilm formation was analysed for 12 hours under flow conditions in a microfluidic BioFlux flow system with high performance microscopy using a camera to allow live cell imaging. For fluorescence images dedicated excitation and emission filters were used. Both green and red fluorescence were linearly related with the total biomass of the biofilms. All biofilms displayed to some extent green and red fluorescence, with higher red and green fluorescence intensities from biofilms grown in the presence of serum (gingivitis simulation as compared to the sucrose grown biofilms (cariogenic simulation. Remarkably, cocci with long chain lengths, presumably streptococci, were observed in the biofilms. Green and red fluorescence were not found homogeneously distributed within the biofilms: highly fluorescent spots (both green and red were visible throughout the biomass. An increase in red fluorescence from the in vitro biofilms appeared to be related to the clinical inflammatory response of the respective saliva donors, which was previously assessed during an in vivo period of performing no-oral hygiene. The BioFlux model proved to be a reliable model to assess biofilm fluorescence. With this model, a prediction can be made whether a patient will be prone to the development of gingivitis or caries.

  1. OSPF-TE Extensions for Green Routing in Optical Networks

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Ricciardi, S.; Fagertun, Anna Manolova

    2012-01-01

    This paper proposes extensions to the OSPF-TE protocol to enable green routing in GMPLS-controlled optical networks. Simulation results show a remarkable reduction in CO2 emissions by preferring network elements powered by green energy sources in the connection routing.......This paper proposes extensions to the OSPF-TE protocol to enable green routing in GMPLS-controlled optical networks. Simulation results show a remarkable reduction in CO2 emissions by preferring network elements powered by green energy sources in the connection routing....

  2. Carbon emission intensity in electricity production: A global analysis

    International Nuclear Information System (INIS)

    Ang, B.W.; Su, Bin

    2016-01-01

    We study changes in the aggregate carbon intensity (ACI) for electricity at the global and country levels. The ACI is defined as the energy-related CO_2 emissions in electricity production divided by the electricity produced. It is a performance indicator since a decrease in its value is a desirable outcome from the environmental and climate change viewpoints. From 1990 to 2013, the ACI computed at the global level decreased only marginally. However, fairly substantial decreases were observed in many countries. This apparent anomaly arises from a geographical shift in global electricity production with countries having a high ACI increasingly taking up a larger electricity production share. It is found that globally and in most major electricity producing countries, reduction in their ACI was due mainly to improvements in the thermal efficiency of electricity generation rather than to fuel switching. Estimates of the above-mentioned effects are made using LMDI decomposition analysis. Our study reveals several challenges in reducing global CO_2 emissions from the electricity production sector although technically the reduction potential for the sector is known to be great. - Highlights: •Variations of aggregate carbon intensity (ACI) for electricity of world countries are analysed. •Main drivers of changes in ACI of major electricity producing countries are studied using index decomposition analysis. •Geographical shift in electricity production had a significant impact on global ACI. •Improvements in the thermal efficiency of generation were the main driver of reduction in ACI.

  3. The Recombination Mechanism and True Green Amplified Spontaneous Emission in CH3NH3PbBr3 Perovskite

    KAUST Repository

    Priante, Davide

    2015-08-01

    True-green wavelength emitters at 555 nm are currently dominated by III-V semiconductor-based inorganic materials. Nevertheless, due to high lattice- and thermal-mismatch, the overall power efficiency in this range tends to decline for high current density showing the so-called efficiency droop in the green region (“green gap”). In order to fill the research green gap, this thesis examines the low cost solution-processability of organometal halide perovskites, which presents a unique opportunity for light-emitting devices in the green-yellow region owing to their superior photophysic properties such as high photoluminescence quantum efficiency, small capture cross section of defect states as well as optical bandgap tunability across the visible light regime. Specifically, the mechanisms of radiative recombination in a CH3NH3PbBr3 hybrid perovskite material were investigated using low-temperature, power-dependent (77 K), temperature-dependent photoluminescence (PL) measurements. We noted three recombination peaks at 77K, one of which originated from bulk defect states, and other two from surface defect states. The latter were identified as bound-excitonic (BE) radiative transitions related to particle size inhomogeneity or grain size induced surface state in the sample. Both transitions led to PL spectra broadening as a result of concurrent blue- and red-shifts of these excitonic peaks. The blue-shift is most likely due to the Burstein-Moss (band filling) effect. Interestingly, the red-shift of the second excitonic peak becomes pronounced with increasing temperature leading to a true-green wavelength of 553 nm for CH3NH3PbBr3. On the other hand, red-shifted peak originates from the strong absorption in the second excitonic peak owed to the high density of surface states and carrier filling of these states due to the excitation from the first excitonic recombination. We also achieved amplified spontaneous emission around excitation threshold energy of 350 μJ/cm2

  4. Green light emitting curcumin dye in organic solvents

    Science.gov (United States)

    Mubeen, Mohammad; Deshmukh, Abhay D.; Dhoble, S. J.

    2018-05-01

    In this modern world, the demand for the white light emission has increased because of its wide applications in various display and lighting devices, sensors etc. This white light can be produced by mixing red, green and blue lights. Thus this green light can be produced from the plant extract i.e., Turmeric. Curcumin is the essential element present in turmeric to generate the green light. The Photoluminescence (PL) emission is observed at 540 nm at 380nm excitation. This method of generating green light is very simple, cost effective and efficient when compared to other methods.

  5. The dynamic intensity of CO 2 emissions: empirical evidence for the 20 th century

    Directory of Open Access Journals (Sweden)

    DIEGO CARNEIRO

    Full Text Available ABSTRACT The debate around the economic growth and environmental degradation is the hot topic among academics. However, up to a point, all of them embrace the uncontroversial view that tells us that anthropic factors have leverage on global climate. It happens that the so-called greenhouse effect is closely related to the accumulation of certain gases in the atmosphere, e.g., carbon dioxide, whose original source comes from productive sectors. Thus, our purpose in this article is to estimate the rate of emission intensity - here we mean the ratio between CO2 emissions and GDP - which has increased since the early part of the 20th century. To support that idea, this study reports on data from 24 different countries. In terms of C02 emission, the results undoubtedly show that United Kingdom and the United States highlight a negative picture, particularly when both are compared to India. It should be noted the presence of structural changes, which coincide with three major historical events: the World War I (1914-1918, the Great Depression in the 1930s, and finally the Oil-price shocks in the 1970s. As the result of the analysis demonstrates, the amount of emission produced by developing countries is surprisingly low. That the technology reveals its relative merit for reducing the overall emission intensity is transparently obvious.

  6. Upconversion emission and cathodoluminescence of Er"3"+-doped NaYbF_4 nanoparticles for low-temperature thermometry and field emission displays

    International Nuclear Information System (INIS)

    Du, Peng; Yu, Jae Su; Luo, Laihui

    2017-01-01

    The Er"3"+-doped NaYbF_4 nanoparticles were fabricated by a hydrothermal method. The green and red emissions located at around 525, 542 and 657 nm corresponding to the "2H_1_1_/_2 → "4I_1_5_/_2, "4S_3_/_2 → "4I_1_5_/_2 and "4F_9_/_2 → "4I_1_5_/_2 transitions of Er"3"+ ions, respectively, were observed when pumped at 980 nm light. Furthermore, with the help of the fluorescence intensity ratio technique, the thermometric properties of as-prepared products from the thermally coupled "2H_1_1_/_2 and "4S_3_/_2 levels of Er"3"+ ions were studied by analyzing temperature-dependent upconversion (UC) emission spectra. The maximum sensitivity for the Er"3"+-doped NaYbF_4 nanoparticles was found to be around 0.0043 K"- "1 with a temperature range of 93-293 K. In addition, the cathodoluminescence (CL) spectrum of the synthesized nanoparticles was nearly the same as the UC emission spectrum and the CL emission intensity did not exhibit saturation with the increase of accelerating voltage and filament current. (orig.)

  7. White light emission and effect of annealing on the Ho{sup 3+}–Yb{sup 3+} codoped BaCa{sub 2}Al{sub 8}O{sub 15} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Astha; Rai, Vineet Kumar, E-mail: vineetkrrai@yahoo.co.in

    2015-12-15

    Graphical abstract: The upconversion emission spectra of the Ho{sup 3+}/Yb{sup 3+} doped/codoped BaCa{sub 2}Al{sub 8}O{sub 15} phosphors with different doping concentrations of Ho{sup 3+}/Yb{sup 3+} ions along with UC emission spectrum of the white light emitting phosphor annealed at 800 °C. - Highlights: • BaCa{sub 2}Al{sub 8}O{sub 15} phosphors codoped with Ho{sup 3+}–Yb{sup 3+} have been prepared by combustion method. • Phosphor annealed at 800 °C, illuminate an intense white light upon NIR excitation. • The sample annealed at higher temperatures emits in the pure green region. • The colour emitted persists in the white region even at high pump power density. • Developed phosphor is suitable for making upconverters and WLEDs. - Abstract: The BaCa{sub 2}Al{sub 8}O{sub 15} (BCAO) phosphors codoped with suitable Ho{sup 3+}–Yb{sup 3+} dopant concentration prepared by combustion method illuminate an intense white light upon near infrared diode laser excitation. The structural analysis of the phosphors and the detection of impurity contents have been performed by using the X-Ray Diffraction, FESEM and FTIR analysis. The purity of white light emitted from the sample has been confirmed by the CIE chromaticity diagram. Also, the white light emitted from the sample persists with the variation of pump power density. The phosphors emit upconversion (UC) emission bands in the blue, green and red region (three primary colours required for white light emission) along with one more band in the near infrared region of the electromagnetic spectrum. On annealing the white light emitting sample at higher temperatures, the sample starts to emit green colour and also the intensity of green and red UC emission bands get enhanced largely.

  8. Growth mechanisms of plasma-assisted molecular beam epitaxy of green emission InGaN/GaN single quantum wells at high growth temperatures

    International Nuclear Information System (INIS)

    Yang, W. C.; Wu, C. H.; Tseng, Y. T.; Chiu, S. Y.; Cheng, K. Y.

    2015-01-01

    The results of the growth of thin (∼3 nm) InGaN/GaN single quantum wells (SQWs) with emission wavelengths in the green region by plasma-assisted molecular beam epitaxy are present. An improved two-step growth method using a high growth temperature up to 650 °C is developed to increase the In content of the InGaN SQW to 30% while maintaining a strong luminescence intensity near a wavelength of 506 nm. The indium composition in InGaN/GaN SQW grown under group-III-rich condition increases with increasing growth temperature following the growth model of liquid phase epitaxy. Further increase in the growth temperature to 670 °C does not improve the photoluminescence property of the material due to rapid loss of indium from the surface and, under certain growth conditions, the onset of phase separation

  9. Modeling of energy consumption and related GHG (greenhouse gas) intensity and emissions in Europe using general regression neural networks

    International Nuclear Information System (INIS)

    Antanasijević, Davor; Pocajt, Viktor; Ristić, Mirjana; Perić-Grujić, Aleksandra

    2015-01-01

    This paper presents a new approach for the estimation of energy-related GHG (greenhouse gas) emissions at the national level that combines the simplicity of the concept of GHG intensity and the generalization capabilities of ANNs (artificial neural networks). The main objectives of this work includes the determination of the accuracy of a GRNN (general regression neural network) model applied for the prediction of EC (energy consumption) and GHG intensity of energy consumption, utilizing general country statistics as inputs, as well as analysis of the accuracy of energy-related GHG emissions obtained by multiplying the two aforementioned outputs. The models were developed using historical data from the period 2004–2012, for a set of 26 European countries (EU Members). The obtained results demonstrate that the GRNN GHG intensity model provides a more accurate prediction, with the MAPE (mean absolute percentage error) of 4.5%, than tested MLR (multiple linear regression) and second-order and third-order non-linear MPR (multiple polynomial regression) models. Also, the GRNN EC model has high accuracy (MAPE = 3.6%), and therefore both GRNN models and the proposed approach can be considered as suitable for the calculation of GHG emissions. The energy-related predicted GHG emissions were very similar to the actual GHG emissions of EU Members (MAPE = 6.4%). - Highlights: • ANN modeling of GHG intensity of energy consumption is presented. • ANN modeling of energy consumption at the national level is presented. • GHG intensity concept was used for the estimation of energy-related GHG emissions. • The ANN models provide better results in comparison with conventional models. • Forecast of GHG emissions for 26 countries was made successfully with MAPE of 6.4%

  10. ACCURATE POLARIZATION CALIBRATION AT 800 MHz WITH THE GREEN BANK TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Yu-Wei; Chang, Tzu-Ching; Kuo, Cheng-Yu [Institute of Astronomy and Astrophysics, Academia Sinica, 11F of Astro-Math Building, AS/NTU, 1 Roosevelt Road Sec. 4, Taipei 10617, Taiwan (China); Masui, Kiyoshi Wesley [Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, V6T 1Z1 (Canada); Oppermann, Niels; Pen, Ue-Li [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto ON, M5S 3H8 (Canada); Peterson, Jeffrey B., E-mail: ywliao@asiaa.sinica.edu.tw [McWilliams Center for Cosmology, Carnegie Mellon University, Department of Physics, 5000 Forbes Avenue, Pittsburgh PA 15213 (United States)

    2016-12-20

    Polarization leakage of foreground synchrotron emission is a critical issue in H i intensity mapping experiments. While the sought-after H i emission is unpolarized, polarized foregrounds such as Galactic and extragalactic synchrotron radiation, if coupled with instrumental impurity, can mimic or overwhelm the H i signals. In this paper, we present the methodology for polarization calibration at 700–900 MHz, applied on data obtained from the Green Bank Telescope (GBT). We use astrophysical sources, both polarized and unpolarized sources including quasars and pulsars, as calibrators to characterize the polarization leakage and control systematic effects in our GBT H i intensity mapping project. The resulting fractional errors on polarization measurements on boresight are well controlled to within 0.6%–0.8% of their total intensity. The polarized beam patterns are measured by performing spider scans across both polarized quasars and pulsars. A dominant Stokes I to V leakage feature and secondary features of Stokes I to Q and I to U leakages in the 700–900 MHz frequency range are identified. These characterizations are important for separating foreground polarization leakage from the H i 21 cm signal.

  11. ACCURATE POLARIZATION CALIBRATION AT 800 MHz WITH THE GREEN BANK TELESCOPE

    International Nuclear Information System (INIS)

    Liao, Yu-Wei; Chang, Tzu-Ching; Kuo, Cheng-Yu; Masui, Kiyoshi Wesley; Oppermann, Niels; Pen, Ue-Li; Peterson, Jeffrey B.

    2016-01-01

    Polarization leakage of foreground synchrotron emission is a critical issue in H i intensity mapping experiments. While the sought-after H i emission is unpolarized, polarized foregrounds such as Galactic and extragalactic synchrotron radiation, if coupled with instrumental impurity, can mimic or overwhelm the H i signals. In this paper, we present the methodology for polarization calibration at 700–900 MHz, applied on data obtained from the Green Bank Telescope (GBT). We use astrophysical sources, both polarized and unpolarized sources including quasars and pulsars, as calibrators to characterize the polarization leakage and control systematic effects in our GBT H i intensity mapping project. The resulting fractional errors on polarization measurements on boresight are well controlled to within 0.6%–0.8% of their total intensity. The polarized beam patterns are measured by performing spider scans across both polarized quasars and pulsars. A dominant Stokes I to V leakage feature and secondary features of Stokes I to Q and I to U leakages in the 700–900 MHz frequency range are identified. These characterizations are important for separating foreground polarization leakage from the H i 21 cm signal.

  12. Green power programs in Canada : 2002 : Overview of Government green power policies, utility green power development programs, green power and certificate marketing initiatives, and their benefits

    International Nuclear Information System (INIS)

    Bramley, M.; Boustie, S.; Vadgama, J.; Wieler, C.; Pape-Salmon, A.; Holmes, R.

    2003-11-01

    Green power is generally defined as electricity produced from renewable sources, and whose production has low adverse impacts on the environment, human health and communities. Green power has near-zero greenhouse gas (GHG) emissions and includes sources such as wind, hydro, and solar power. Green power offers several environmental benefits, as well as the enhancement of energy security, regional development, economic diversification and the creation of skilled jobs. There are four categories of programs related to green power development in Canada: government green power policies, utility green power development programs, green power marketing initiatives, and green power certificate marketing initiatives. Most of the activities associated with these four categories in 2002 were discussed in this report. However, difficulties with quantification prevented the inclusion of some green power activities in the report, such as (1) the generation of green power not certified or identified by the generator as green power, (2) industry or residential self-generation, (3) net metering, and (4) small government programs. Each category was presented in detail. The information included in the report was based on surveys sent to each program proponent. Follow-up communications and other publicly available information was also included. New programs operating in 2003 or currently under development were listed. refs., 8 tabs

  13. Green transportation logistics: the quest for win-win solutions

    DEFF Research Database (Denmark)

    measures and speed and route optimization; Sulphur emissions; Lifecycle emissions; Green rail transportation; Green air transportation; Green inland navigation and possible areas for further research. Throughout, the book pursues the goal of “win-win” solutions and analyzes the phenomenon of “push......This book examines the state of the art in green transportation logistics from the perspective of balancing environmental performance in the transportation supply chain while also satisfying traditional economic performance criteria. Part of the book is drawn from the recently completed European...... Union project Super Green, a three-year project intended to promote the development of European freight corridors in an environmentally friendly manner. Additional chapters cover both the methodological base and the application context of green transportation logistics. Individual chapters look...

  14. Theoretical study of amplified spontaneous emission intensity and bandwidth reduction in polymer

    International Nuclear Information System (INIS)

    Hariri, A.; Sarikhani, S.

    2015-01-01

    Amplified spontaneous emission (ASE), including intensity and bandwidth, in a typical example of BuEH-PPV is calculated. For this purpose, the intensity rate equation is used to explain the reported experimental measurements of a BuEH-PPV sample pumped at different pump intensities from I p = 0.61 MW/cm 2 to 5.2 MW/cm 2 . Both homogeneously and inhomogeneously broadened transition lines along with a model based on the geometrically dependent gain coefficient (GDGC) are examined and it is confirmed that for the reported measurements the homogeneously broadened line is responsible for the light–matter interaction. The calculation explains the frequency spectrum of the ASE output intensity extracted from the sample at different pump intensities, unsaturated and saturated gain coefficients, and ASE bandwidth reduction along the propagation direction. Both analytical and numerical calculations for verifying the GDGC model are presented in this paper. Although the introduced model has shown its potential for explaining the ASE behavior in a specific sample it can be universally used for the ASE study in different active media. (paper)

  15. Green gold. 15 tax proposals for a green and innovative economy

    International Nuclear Information System (INIS)

    Van Engelen, D.; Wit, R.; Blaauw, K.; Winckers, J.

    2010-06-01

    This publication contains 15 proposals for green taxes in the Dutch economy. The benefit of these 15 proposals is over 11 billion euros per year and leads to a reduction of CO2 emissions of at least 12.5 megatons per year. Greening taxes involves a budget neutral shift from taxing labor and profits to taxing environmental pollution and the depletion of natural resources. The proposals reward businesses and citizens which invest in the development and application of innovative green solutions. This leads to an improvement of climate, environment and nature as well as the competitiveness of the Dutch economy. [nl

  16. Green power programs in Canada : 2003 : overview of Government green power policies, utility green power implementation initiatives, green power and certificate marketing programs, and their benefits

    International Nuclear Information System (INIS)

    Whitmore, J.; Bramley, M.; Holmes, R.

    2004-09-01

    Green power is defined as electricity produced from renewable sources, and whose production has low adverse impacts on the environment, human health and communities. Green power has near-zero greenhouse gas (GHG) emissions and includes sources such as wind, hydro, and solar power. It offers several environmental benefits, as well as the enhancement of energy security, regional development, economic diversification and the creation of skilled jobs. There are four categories of programs related to green power development in Canada: government green power policies, utility green power development programs, green power marketing initiatives, and green power certificate marketing initiatives. Most of the activities in Canada associated with these four categories in 2003 were discussed in this report. However, difficulties with quantification prevented the inclusion of some green power activities such as (1) the generation of green power not certified or identified by the generator as green power, (2) industry or residential self-generation, (3) net metering, and (4) small government programs. Green power generation facilities in 2003 totaled 775 MW of capacity compared to 539 MW in 2002. Hydro capacity represented 41 per cent, followed by wind capacity at 40 per cent and wood waste at 17 per cent. Most of the green power generation facilities in 2003 were located in Alberta, followed by British Columbia, Ontario and Quebec. 230 refs., 8 tabs., 1 fig

  17. Uncovering China’s greenhouse gas emission from regional and sectoral perspectives

    International Nuclear Information System (INIS)

    Liu, Zhu; Geng, Yong; Lindner, Soeren; Guan, Dabo

    2012-01-01

    Understanding China’s GHG (greenhouse gas) emission status is critical for achieving the national mitigation plan. While much attention has addressed China’s national level GHG emission, less is known about its regional and sectoral emission features. In this paper China’s regional and sectoral GHG emission patterns and their driving forces were explored by using upgraded energy consumption data. We constructed a detailed GHG inventory for each province in the year 2009 which covering 28 sectors and further expanded time-serious inventories during 1997–2009. We then conducted variation and index decomposition analysis to explore its sectoral/regional disparity and features. Results showed significant differences of sectoral emission intensity among different provinces, implying a huge disparity of technology level. Since less developed provinces still apply energy intensive technologies, they had contributed to most of national emission increment during 1997–2009 and made the whole country towards carbon intensive direction. Our research outcomes indicate that the inequity of technology level among regions has already become a main barrier for China’s CO 2 mitigation. Such a reality deserves more attention from both researchers and policy makers so that appropriate carbon reduction policies can be raised. -- Highlights: ► We present spacial and sectoral disparity and drivers on green house gas (GHG) emission in 30 Chinese provinces. ► We indicated a huge difference of technology level among regions. ► Different industrial structure and development stage further result in GHG intensive in China's poor regions. ► Inequity of technology level among regions has already become a main barrier for China's GHG mitigation.

  18. High-efficiency green phosphorescent organic light-emitting diodes with double-emission layer and thick N-doped electron transport layer

    Energy Technology Data Exchange (ETDEWEB)

    Nobuki, Shunichiro, E-mail: shunichiro.nobuki.nb@hitachi.com [Hitachi Research Laboratory, Hitachi Ltd., 7-1-1 Omika-cho, Hitachi-city, Ibaraki 319-1292 (Japan); Wakana, Hironori; Ishihara, Shingo [Hitachi Research Laboratory, Hitachi Ltd., 7-1-1 Omika-cho, Hitachi-city, Ibaraki 319-1292 (Japan); Mikami, Akiyoshi [Dept. of Electrical Engineering, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichimachi, Ishikawa 921-8501 (Japan)

    2014-03-03

    We have developed green phosphorescent organic light-emitting diodes (OLEDs) with high external quantum efficiency of 59.7% and power efficiency of 243 lm/W at 2.73 V at 0.053 mA/cm{sup 2}. A double emission layer and a thick n-doped electron transport layer were adopted to improve the exciton recombination factor. A high refractive index hemispherical lens was attached to a high refractive index substrate for extracting light trapped inside the substrate and the multiple-layers of OLEDs to air. Additionally, we analyzed an energy loss mechanism to clarify room for the improvement of our OLEDs including the charge balance factor. - Highlights: • We developed high efficiency green phosphorescent organic light-emitting diode (OLED). • Our OLED had external quantum efficiency of 59.7% and power efficiency of 243 lm/W. • A double emission layer and thick n-doped electron transport layer were adopted. • High refractive index media (hemispherical lens and substrate) were also used. • We analyzed an energy loss mechanism to clarify the charge balance factor of our OLED.

  19. Modelling the impacts of a carbon emission-differentiated vehicle tax system on CO2 emissions intensity from new vehicle purchases in Ireland

    International Nuclear Information System (INIS)

    Giblin, S.; McNabola, A.

    2009-01-01

    The increasing awareness of the effects of climate change on the environment and the economic pressure on oil supply has focused international attention on reducing CO 2 emissions and energy usage across all sectors. In order to meet their Kyoto protocol commitments and in line with European Union policy, the Irish government has introduced a carbon-based tax system for new vehicles purchased from the 1st of July 2008. This new legislation aims to reduce carbon emissions in the transport sector, a sector which is responsible for a significant proportion of both. This paper presents the results of the development, calibration, and application of a car choice model which predicts the changes in CO 2 emissions intensity from new vehicle purchases as a result of the changes in vehicle tax policy and fuel price in Ireland. The model also predicts the impact of such changes on tax revenue for the Irish government and the changes in the split between the number of diesel and petrol vehicles purchased. The investigation found that the introduction of these new carbon-based taxes in Ireland will result in a reduction of 3.6-3.8% in CO 2 emissions intensity and a reduction in annual tax revenue of EUR191 M. (author)

  20. Influence of Green, Red and Blue Light Emitting Diodes on Multiprotein Complex Proteins and Photosynthetic Activity under Different Light Intensities in Lettuce Leaves (Lactuca sativa L.

    Directory of Open Access Journals (Sweden)

    Sowbiya Muneer

    2014-03-01

    Full Text Available The objective of this study was to investigate the response of light emitting diodes (LEDs at different light intensities (70 and 80 for green LEDs, 88 and 238 for red LEDs and 80 and 238 μmol m−2 s−1 for blue LEDs at three wavelengths in lettuce leaves. Lettuce leaves were exposed to (522 nm, red (639 nm and blue (470 nm LEDs of different light intensities. Thylakoid multiprotein complex proteins and photosynthetic metabolism were then investigated. Biomass and photosynthetic parameters increased with an increasing light intensity under blue LED illumination and decreased when illuminated with red and green LEDs with decreased light intensity. The expression of multiprotein complex proteins including PSII-core dimer and PSII-core monomer using blue LEDs illumination was higher at higher light intensity (238 μmol m−2 s−1 and was lowered with decreased light intensity (70–80 μmol m−2 s−1. The responses of chloroplast sub-compartment proteins, including those active in stomatal opening and closing, and leaf physiological responses at different light intensities, indicated induced growth enhancement upon illumination with blue LEDs. High intensity blue LEDs promote plant growth by controlling the integrity of chloroplast proteins that optimize photosynthetic performance in the natural environment.

  1. A potential green emitting citrate gel synthesized NaSrBO3:Tb3+ phosphor for display application

    Science.gov (United States)

    Bedyal, A. K.; Kumar, Vinay; Swart, H. C.

    2018-04-01

    A potential green emitting NaSrBO3:Tb3+ (1-9 mol%) phosphor was synthesized by a citrate gel combustion method. X-ray diffraction patterns confirmed the monoclinic phase of the phosphor. The phosphor emitted intense green emission under near-UV and electron excitation due to the characteristic transitions 5D4→7F6(488 nm),5D4→7F5(544 nm),5D4→7F4(586 nm) and 5D4→7F3(622 nm) of Tb3+ ions. The optimal molar concentration of Tb3+ ions was found to be 6 mol%, after that concentration quenching occurred. The dipole-dipole interaction was found to be accountable for energy transfer between the Tb3+ ions. X-ray photoelectron spectroscopy was carried out to analyze the chemical states of the elements and suggest that terbium was mostly presented in the (+3) valance state in the phosphor. The approximated Commission Internationale de l‧Eclairage coordinates for the PL (0.31, 0.61) and CL (0.33, 0.57) were found to be very close to the well-known green emitting phosphor. The obtained results suggest that the studied phosphor could be an ultimate choice for green emission in display applications.

  2. On the interpretation of the intense emission of tungsten ions at about 5

    International Nuclear Information System (INIS)

    Jonauskas, V; Kucas, S; Karazija, R

    2007-01-01

    The origin of the intense emission band at about 5 nm, dominating the emission spectra of tungsten ions in the ASDEX Upgrade tokamak and EBIT, is discussed. It is shown that the emission spectra of various ions calculated taking into account only the excitations from the ground level agree fairly well with the results obtained in the collisional-radiative model; thus, the contribution of the excitations from the other levels is small. Though the excitation spectrum for all sequence of ions W 29+ -W 37+ corresponds to the same transitions 4p 6 4d N → 4p 5 4d N+1 + 4p 6 4d N-1 4f, its energetic width essentially changes going on from the charge of ion q = 34 to q = 35. It is caused by the appearance of the excitations 4p 1/2 -4d 3/2 to the open 4d N 3/2 subshell, which are not quenched by configuration mixing. The satellite line at about 4.5 nm is explained by the transitions of the same type, although between configurations with one spectator 5s electron. The existence of one more group of intense lines in the region of 2 nm, corresponding to 5s-4p transitions, is predicted

  3. Green LED as an Effective Light Source for Curing Acrylate-Based Dental Resins in Combination with Irgacure 784

    Directory of Open Access Journals (Sweden)

    Katalin Bukovinszky

    2018-01-01

    Full Text Available Low intensity green light emitting diodes (LED were shown to be an effective light source to induce the photopolymerization of an acrylate-based photocurable dental restorative resin mixture of bisphenol A glycerolate dimethacrylate (BisGMA, triethylene glycol dimethacrylate (TEGDMA, and diurethane dimethacrylate (UDMA, in combination with fluorinated diaryl titanocene (Irgacure 784. Dental matrices were prepared by the LED light source at different intensities. The mechanical properties, such as Vickers microhardness, compressive strength, diametric tensile strength, flexural strength, and E-modulus of the created samples, were investigated. The kinetics of the photopolymerization was followed by Raman spectroscopy and conversion values were determined. It was found that, despite its narrow-emission range centered at a wavelength of 531 nm, the green LED light source is suitable for the preparation of dental matrices with good mechanical properties and high conversion values.

  4. Changes of the laser-induced blue, green and red fluorescence signatures during greening of etiolated leaves of wheat

    International Nuclear Information System (INIS)

    Stober, F.; Lichtenthaler, H.K.

    1992-01-01

    The UV-laser-induced blue, green and red fluorescence-emission spectra were used to characterize the pigment status of etiolated leaves of wheat (Triticum aestivum L.) during a 48 h greening period under white light conditions. Upon UV-light excitation (337 nm) leaves not only show a fluorescence emission in the red spectral region between 650 and 800nm (chlorophyll fluorescence with maxima near 690nm and 735 nm), but also in the blue and green regions between 400 to 570 nm with maxima or shoulders near 450 nm (blue) and 530 nm (green). During greening of etiolated leaves the chlorophyll-fluorescence ratio F690/F735 strongly correlated with the total chlorophyll content and the ratio of the chlorophylls to the carotenoids (a+b/x+c). The ratio of the blue to the green fluorescence F450/F530 was also correlated with the total chlorophyll content and the ratio of chlorophylls to total carotenoids (a+b/x+c). Consequently, there also existed a correlation between the chlorophyll-fluorescence ratio F690/F735 and the ratio of the blue to green fluorescence F450/F530. In contrast, the ratios of the blue to red fluorescences F450/F690 and F450/F735 did not show clear relations to the pigment content of the investigated plants. The particular shape of the UV-laser-induced-fluorescence emission spectra of wheat leaves as well as the dependencies of the fluorescence ratios on the pigment content are due to a partial and differential reabsorption of the emitted fluorescences by the photosynthetic pigments

  5. The impact of fiscal and other measures on new passenger car sales and CO2 emissions intensity. Evidence from Europe

    International Nuclear Information System (INIS)

    Ryan, Lisa; Convery, Frank; Ferreira, Susana

    2009-01-01

    This paper examines the impact of national fiscal measures in the EU (EU15) on passenger car sales and the CO 2 emissions intensity of the new car fleet over the period 1995-2004. CO 2 emissions and energy consumption from road transport have been increasing in the EU and as a result since 1999 the EU has attempted to implement a high profile policy strategy to address this problem at European level. Less prominent is the fact that Member States apply vehicle and fuel taxes, which may also be having an impact on the quantity of passenger cars sold and their CO 2 emissions intensity. Diesel vehicle sales have increased appreciably in many countries over the same period and this study makes a first attempt to examine whether Member State fiscal measures have influenced this phenomenon. This work uses a panel dataset to investigate the relationship between national vehicle and fuel taxes on new passenger car sales and the fleet CO 2 emissions intensity in EU15 over a 10-year period. Our results show that national vehicle and fuel taxes have had an impact on passenger car sales and fleet CO 2 emissions intensity and that different taxes have disparate effects. (author)

  6. The origin of the near-infrared emission in Palomar Green Quasars - The case for hot dust

    International Nuclear Information System (INIS)

    Berriman, G.

    1990-01-01

    This paper uses the variation with redshift of the near-infrared colors of the Palomar Green Bright Quasars as the basis for an analysis of the origin of their infrared light. Comparison of the data with simple models of the continuum, appropriately redshifted, show that the flux ratios start to decline when blue optical emission is redshifted into the infrared bandpasses. The rise in vFv(2.2 microns)/vFv(1.65 microns) is attributable to the declining importance of starlight. The range of vFv(2.2 microns)/vFv(1.65 microns) at maximum is attributable to a nonthermal emission only if it has an unusually steep range of spectra, with alpha = -1.7 on average and alpha = -2.2 in the extreme. At the same time, this emission does not vary and is unpolarized. Such a combination of properties has not been seen in any known nonthermal source. Emission from hot dust, probably from a broad range of temperatures centered near 1000 K, is a much simpler interpretation. It supplies on average 25 percent of the total 2.2 microns light at z = 0 and 35 percent in the extreme. 42 refs

  7. Effects of temperature on nitrous oxide (N2O) emission from intensive aquaculture system.

    Science.gov (United States)

    Paudel, Shukra Raj; Choi, Ohkyung; Khanal, Samir Kumar; Chandran, Kartik; Kim, Sungpyo; Lee, Jae Woo

    2015-06-15

    This study examines the effects of temperature on nitrous oxide (N2O) emissions in a bench-scale intensive aquaculture system rearing Koi fish. The water temperature varied from 15 to 24 °C at interval of 3 °C. Both volumetric and specific rate for nitrification and denitrification declined as the temperature decreased. The concentrations of ammonia and nitrite, however, were lower than the inhibitory level for Koi fish regardless of temperature. The effects of temperature on N2O emissions were significant, with the emission rate and emission factor increasing from 1.11 to 1.82 mg N2O-N/d and 0.49 to 0.94 mg N2O-N/kg fish as the temperature decreased from 24 to 15 °C. A global map of N2O emission from aquaculture was established by using the N2O emission factor depending on temperature. This study demonstrates that N2O emission from aquaculture is strongly dependent on regional water temperatures as well as on fish production. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Substantial enhancement of red emission intensity by embedding Eu-doped GaN into a microcavity

    Directory of Open Access Journals (Sweden)

    Tomohiro Inaba

    2016-04-01

    Full Text Available We investigate resonantly excited photoluminescence from a Eu,O-codoped GaN layer embedded into a microcavity, consisting of an AlGaN/GaN distributed Bragg reflector and a Ag reflecting mirror. The microcavity is responsible for a 18.6-fold increase of the Eu emission intensity at ∼10K, and a 21-fold increase at room temperature. We systematically investigate the origin of this enhancement, and we conclude that it is due to the combination of several effects including, the lifetime shortening of the Eu emission, the strain-induced piezoelectric effect, and the increased extraction and excitation field efficiencies. This study paves the way for an alternative method to enhance the photoluminescence intensity in rare-earth doped semiconductor structures.

  9. Cooperative emission in ion implanted Yb:YAG waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, G V; Desirena, H; De la Rosa, E [Centro de Investigaciones en Optica, Loma del Bosque 115, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Flores-Romero, E; Rickards, J; Trejo-Luna, R [Instituto de Fisica, UNAM, Apartado Postal 20364, 01000 Mexico, D. F. (Mexico); Marquez, H, E-mail: gvvazquez@cio.mx [Departamento de Optica, CICESE, Km 107 Carr. Tijuana-Ensenada, 22860 Ensenada, B. C. (Mexico)

    2011-01-01

    In this work, we report the analysis of spectroscopic properties of waveguides fabricated by ion implantation in YAG doped with Yb{sup 3+} ions. Three emission bands were detected in the blue, green and red regions under 970-nm excitation. The strong blue-green emission can be explained by a cooperative process between ytterbium ion pairs, leading to emission centered at 514 nm. The additional blue bands as well as green and red emission bands are attributed to the presence of Tm{sup 3+} and Er{sup 3+} traces. The results include absorption and emission curves as well as decay time rates.

  10. Cooperative emission in ion implanted Yb:YAG waveguides

    International Nuclear Information System (INIS)

    Vazquez, G V; Desirena, H; De la Rosa, E; Flores-Romero, E; Rickards, J; Trejo-Luna, R; Marquez, H

    2011-01-01

    In this work, we report the analysis of spectroscopic properties of waveguides fabricated by ion implantation in YAG doped with Yb 3+ ions. Three emission bands were detected in the blue, green and red regions under 970-nm excitation. The strong blue-green emission can be explained by a cooperative process between ytterbium ion pairs, leading to emission centered at 514 nm. The additional blue bands as well as green and red emission bands are attributed to the presence of Tm 3+ and Er 3+ traces. The results include absorption and emission curves as well as decay time rates.

  11. Effect of ranibizumab on high-speed indocyanine green angiography and minimum intensity projection optical coherence tomography findings in neovascular age-related macular degeneration.

    Science.gov (United States)

    Nicholson, Benjamin P; Nigam, Divya; Toy, Brian; Stetson, Paul F; Agrón, Elvira; Jacobs-El, Naima; Cunningham, Denise; Cukras, Catherine; Wong, Wai; Wiley, Henry; Chew, Emily; Ferris, Frederick; Meyerle, Catherine B

    2015-01-01

    The purpose of this 1-year prospective study was to investigate how induction/pro re nata ranibizumab intravitreal treatment of eyes with neovascular age-related macular degeneration affects the anatomy of choroidal neovascularization (CNV) and the overlying outer retinal tissue. High-speed indocyanine green (HS-ICG) angiography measurements provided quantification of the CNV size in 60 patients followed for 1 year. Minimum intensity projection optical coherence tomography (MinIP OCT), a novel algorithm assessing minimum optical intensity between the internal limiting membrane and retinal pigment epithelium, measured the area of outer retinal disruption overlying the CNV. Fluorescein angiography was also assessed to evaluate late retinal leakage. After 1 year, the mean area of CNV measured with indocyanine green angiography decreased by 5.8%. The mean area of MinIP OCT of outer retinal disruption overlying the CNV decreased by 4.2%. Mean area of fluorescein angiography leakage decreased by 6.3%. Both the area of outer retinal disruption measured with MinIP OCT and the area of leakage on fluorescein angiography typically exceeded the area of CNV on indocyanine green angiography at baseline and 1 year. Choroidal neovascularization treated with induction/pro re nata intravitreal ranibizumab for 1 year essentially remained static. Minimum intensity projection optical coherence tomography suggests that the area of outer retinal disruption overlying the CNV may be greater than the CNV itself and often correlates with the leakage area on fluorescein angiography. Additionally, there was minimal change in the area of outer retinal disruption on MinIP OCT even when fluid resolved. Measurements of the extent of CNV lesions based on indocyanine green angiography and MinIP OCT may provide useful outcome variables to help assess the CNV complex longitudinally and warrant further validation.

  12. Customer value in green power purchases

    International Nuclear Information System (INIS)

    Welsh, L.

    1998-01-01

    A discussion about generating electricity from renewable energy sources was presented. The Environment Canada/ENMAX green power contract stipulates that in order for electricity to quality as green power it must be generated by renewable energy sources such as wind, solar, combustion of sustainably produced biomass, or run-of-the-river hydroelectricity. The contract also includes emissions reduction credit (ERC) ownership for greenhouse gases, sulphur dioxide, nitrogen oxides, particulates, and toxics. By using green power in some of its own facilities the government demonstrates its support for renewable energy sources, and provides the initial market for the industry to build up its capacity to service larger markets. The emission reduction credits 'earned' could be added to the government inventories as environmental assets

  13. Design and Development of Low P-Emission Substrate for the Protection of Urban Water Bodies Collecting Green Roof Runoff

    Directory of Open Access Journals (Sweden)

    Agnieszka Karczmarczyk

    2017-10-01

    Full Text Available Urbanization leads to higher phosphorus (P concentration in urban catchments. Among different stormwater retention measures, green roofs are the least efficient in phosphorus retention. Moreover, much research has shown that green roofs act as sources of phosphorus, and they can emit P in significant loads. In this study low P emission green roof substrate was developed based on the proposed step by step procedure for the selection of materials including laboratory tests, column experiments, and the monitoring of the open air green roof model. Developed substrate is the mixture of crushed red brick (35% of volume, crushed limestone (20% of volume, and sand (45% of volume, and is characterized by a bulk density of 1.52 g/cm3, water permeability of 9 mm/min, water capacity of 24.6% of volume, and granulometric composition that meets the Landscaping and Landscape Development Research Society (FLL guidelines. Limestone was added to limit the potential P leaching from crushed red brick and vegetated mate consisted of Sedum album, Sedum acre, Sedum kamtschaticum, Sedum spurium, Sedum reflexum, Sedum sexangulare, Dianthus deltoides, Dianthus carthusianorum, and Thymus vulgaris. The open air model experiment was run for 319 days, from March 2015 to February 2016. The total water runoff from the green roof model amounted to 43.3% of runoff from the reference roof. The only one runoff event polluted with phosphorus was connected with the outflow of melted snow from an unfreezing green roof model.

  14. Green roofs as a means of pollution abatement

    International Nuclear Information System (INIS)

    Rowe, D. Bradley

    2011-01-01

    Green roofs involve growing vegetation on rooftops and are one tool that can help mitigate the negative effects of pollution. This review encompasses published research to date on how green roofs can help mitigate pollution, how green roof materials influence the magnitude of these benefits, and suggests future research directions. The discussion concentrates on how green roofs influence air pollution, carbon dioxide emissions, carbon sequestration, longevity of roofing membranes that result in fewer roofing materials in landfills, water quality of stormwater runoff, and noise pollution. Suggestions for future directions for research include plant selection, development of improved growing substrates, urban rooftop agriculture, water quality of runoff, supplemental irrigation, the use of grey water, air pollution, carbon sequestration, effects on human health, combining green roofs with complementary related technologies, and economics and policy issues. - Green roofs can help mitigate air pollution, carbon dioxide emissions, sequester carbon, conserve energy, reduce the urban heat island, and improve water quality.

  15. Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea

    International Nuclear Information System (INIS)

    Lu, I.J.; Lin, Sue J.; Lewis, Charles

    2007-01-01

    We adopted the Divisia index approach to explore the impacts of five factors on the total carbon dioxide emissions from highway vehicles in Germany, Japan, South Korea and Taiwan during 1990-2002. CO 2 emission was decomposed into emission coefficient, vehicle fuel intensity, vehicle ownership, population intensity and economic growth. In addition, the decoupling effects among economic growth, transport energy demand and CO 2 emission were analyzed to better understand the fuel performance and CO 2 mitigation strategies for each country. From our results, we suggest that the rapid growths of economy and vehicle ownership were the most important factors for the increased CO 2 emissions , whereas population intensity contributed significantly to emission decrease. Energy conservation performance and CO 2 mitigation in each country are strongly correlated with environmental pressure and economic driving force, except for Germany in 1993 and Taiwan during 1992-1996. To decouple the economic growth and environmental pressure, proponents of sustainable transport policy in Taiwan should focus on improving the operation and energy use of its highway transportation system by implementing an intelligent transportation system (ITS) with demand management, constructing an integrated feeder system, and encouraging the use of green transport modes

  16. Scintillation-based Search for Off-pulse Radio Emission from Pulsars

    Science.gov (United States)

    Ravi, Kumar; Deshpande, Avinash A.

    2018-05-01

    We propose a new method to detect off-pulse (unpulsed and/or continuous) emission from pulsars using the intensity modulations associated with interstellar scintillation. Our technique involves obtaining the dynamic spectra, separately for on-pulse window and off-pulse region, with time and frequency resolutions to properly sample the intensity variations due to diffractive scintillation and then estimating their mutual correlation as a measure of off-pulse emission, if any. We describe and illustrate the essential details of this technique with the help of simulations, as well as real data. We also discuss the advantages of this method over earlier approaches to detect off-pulse emission. In particular, we point out how certain nonidealities inherent to measurement setups could potentially affect estimations in earlier approaches and argue that the present technique is immune to such nonidealities. We verify both of the above situations with relevant simulations. We apply this method to the observation of PSR B0329+54 at frequencies of 730 and 810 MHz made with the Green Bank Telescope and present upper limits for the off-pulse intensity at the two frequencies. We expect this technique to pave the way for extensive investigations of off-pulse emission with the help of existing dynamic spectral data on pulsars and, of course, with more sensitive long-duration data from new observations.

  17. Effective tuning of the ratio of red to green emission of Ho{sup 3+} ions in single LiLuF{sub 4} microparticle via codoping Ce{sup 3+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wei, E-mail: gaowei@xupt.edu.cn; Dong, Jun; Liu, Jihong; Yan, Xuewen

    2016-09-15

    Yb{sup 3+}/Ho{sup 3+} codoped LiLuF{sub 4} microparticles have been successfully prepared via a facile hydrothermal method. The crystal phase and morphology of LiLuF{sub 4} microparticles were inspected by x-ray diffraction and scanning electron microscope, respectively. The upconversion emission of single LiLuF{sub 4}: Yb{sup 3+}/Ho{sup 3+} microparticle was carefully studied by a confocal microscopy setup under NIR 980 nm excitation. With the increase of Ce{sup 3+} ion concentrations of 12%, the ratio of red to green emission of the Ho{sup 3+} ions of single LiLuF{sub 4} microparticle was boosted about 17-fold, and the output colors were tuned from green to red, which is due to the two efficient cross-relaxation between Ho{sup 3+} and Ce{sup 3+} ions enhances the red and suppresses the green in the emission processes. To investigate the optical properties of the single microparticle or nanoparticle through the confocal microscopy setup can effectively avoid the influence of surrounding particle or environment, and could provide more precise information for better exploring the emission mechanisms of rare earth ions. The tunable upconversion emission of Ho{sup 3+} in single LiLuF{sub 4} microparticle in this work will have great potential applications in the micro optoelectronic devices and color display applications. - Highlights: • The optical properties of the single LiLuF4: Yb3+/Ho3+/Ce3+ microparticle were studied. • The output colors of single LiLuF4 microparticle were tuned from green to red. • The upconversion mechanisms between Ho3+ and Ce3+ ions were discussed based on emission spectrum.

  18. A model of greenhouse gas emissions from the management of turf on two golf courses

    International Nuclear Information System (INIS)

    Bartlett, Mark D.; James, Iain T.

    2011-01-01

    An estimated 32,000 golf courses worldwide (approximately 25,600 km 2 ), provide ecosystem goods and services and support an industry contributing over $124 billion globally. Golf courses can impact positively on local biodiversity however their role in the global carbon cycle is not clearly understood. To explore this relationship, the balance between plant-soil system sequestration and greenhouse gas emissions from turf management on golf courses was modelled. Input data were derived from published studies of emissions from agriculture and turfgrass management. Two UK case studies of golf course type were used, a Links course (coastal, medium intensity management, within coastal dune grasses) and a Parkland course (inland, high intensity management, within woodland). Playing surfaces of both golf courses were marginal net sources of greenhouse gas emissions due to maintenance (Links 0.4 ± 0.1 Mg CO 2 e ha -1 y -1 ; Parkland 0.7 ± 0.2 Mg CO 2 e ha -1 y -1 ). A significant proportion of emissions were from the use of nitrogen fertiliser, especially on tees and greens such that 3% of the golf course area contributed 16% of total greenhouse gas emissions. The area of trees on a golf course was important in determining whole-course emission balance. On the Parkland course, emissions from maintenance were offset by sequestration from trees which comprised 48% of total area, resulting in a net balance of -4.3 ± 0.9 Mg CO 2e ha -1 y -1 . On the Links course, the proportion of trees was much lower (2%) and sequestration from links grassland resulted in a net balance of 0.0 ± 0.2 Mg CO 2e ha -1 y -1 . Recommendations for golf course management and design include the reduction of nitrogen fertiliser, improved operational efficiency when mowing, the inclusion of appropriate tree-planting and the scaling of component areas to maximise golf course sequestration capacity. The findings are transferrable to the management and design of urban parks and gardens, which range

  19. A model of greenhouse gas emissions from the management of turf on two golf courses

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, Mark D., E-mail: m.d.bartlett@cranfield.ac.uk; James, Iain T., E-mail: i.t.james@cranfield.ac.uk

    2011-03-15

    An estimated 32,000 golf courses worldwide (approximately 25,600 km{sup 2}), provide ecosystem goods and services and support an industry contributing over $124 billion globally. Golf courses can impact positively on local biodiversity however their role in the global carbon cycle is not clearly understood. To explore this relationship, the balance between plant-soil system sequestration and greenhouse gas emissions from turf management on golf courses was modelled. Input data were derived from published studies of emissions from agriculture and turfgrass management. Two UK case studies of golf course type were used, a Links course (coastal, medium intensity management, within coastal dune grasses) and a Parkland course (inland, high intensity management, within woodland). Playing surfaces of both golf courses were marginal net sources of greenhouse gas emissions due to maintenance (Links 0.4 {+-} 0.1 Mg CO{sub 2}e ha{sup -1} y{sup -1}; Parkland 0.7 {+-} 0.2 Mg CO{sub 2}e ha{sup -1} y{sup -1}). A significant proportion of emissions were from the use of nitrogen fertiliser, especially on tees and greens such that 3% of the golf course area contributed 16% of total greenhouse gas emissions. The area of trees on a golf course was important in determining whole-course emission balance. On the Parkland course, emissions from maintenance were offset by sequestration from trees which comprised 48% of total area, resulting in a net balance of -4.3 {+-} 0.9 Mg CO{sub 2e} ha{sup -1} y{sup -1}. On the Links course, the proportion of trees was much lower (2%) and sequestration from links grassland resulted in a net balance of 0.0 {+-} 0.2 Mg CO{sub 2e} ha{sup -1} y{sup -1}. Recommendations for golf course management and design include the reduction of nitrogen fertiliser, improved operational efficiency when mowing, the inclusion of appropriate tree-planting and the scaling of component areas to maximise golf course sequestration capacity. The findings are transferrable to the

  20. A methodology framework for weighting genetic traits that impact greenhouse gas emission intensities in selection indexes.

    Science.gov (United States)

    Amer, P R; Hely, F S; Quinton, C D; Cromie, A R

    2018-01-01

    A methodological framework was presented for deriving weightings to be applied in selection indexes to account for the impact genetic change in traits will have on greenhouse gas emissions intensities (EIs). Although the emission component of the breeding goal was defined as the ratio of total emissions relative to a weighted combination of farm outputs, the resulting trait-weighting factors can be applied as linear weightings in a way that augments any existing breeding objective before consideration of EI. Calculus was used to define the parameters and assumptions required to link each trait change to the expected changes in EI for an animal production system. Four key components were identified. The potential impact of the trait on relative numbers of emitting animals per breeding female first has a direct effect on emission output but, second, also has a dilution effect from the extra output associated with the extra animals. Third, each genetic trait can potentially change the amount of emissions generated per animal and, finally, the potential impact of the trait on product output is accounted for. Emission intensity weightings derived from this equation require further modifications to integrate them into an existing breeding objective. These include accounting for different timing and frequency of trait expressions as well as a weighting factor to determine the degree of selection emphasis that is diverted away from improving farm profitability in order to achieve gains in EI. The methodology was demonstrated using a simple application to dairy cattle breeding in Ireland to quantify gains in EI reduction from existing genetic trends in milk production as well as in fertility and survival traits. Most gains were identified as coming through the dilution effect of genetic increases in milk protein per cow, although gains from genetic improvements in survival by reducing emissions from herd replacements were also significant. Emission intensities in the Irish

  1. The Influence of Green Marketing on Green Satisfaction Mediated By Perceived Quality and Its Impact to Green Trust in Injection Motorcycle

    Directory of Open Access Journals (Sweden)

    Shelvy Kurniawan

    2014-09-01

    Full Text Available Currently, motorcycle manufacturers are increasingly motivated to replace their motorcycle into fuel injection products. The growing concern from the consumers to the environment and the regulations of emission standards, that is Euro 3, for motorcycle industry is being finalized in the Ministry of Environment in order to be implemented in Indonesia. Through this research, the writer will examine the effect of green marketing on perceived quality, green satisfaction, and green trust, the effect of perceived quality on green satisfaction, and the effect of green satisfaction on green trust. Those effects needs to be investigated in order to know how far the effects of green marketing and to ensure whether green marketing is well accepted or not by the market in motorcycle industry. Scope of this research is also limited to the user of fuel injection motorcycle in Jakarta for Honda and Yamaha who involved as decision maker when the motorcycle is purchased. Sampling technique used in this research is quota sampling and the analysis method is structural equation modeling (SEM. The findings of this research are: green marketing has a significant direct effect on perceived quality, perceived quality has a significant direct effect on green satisfaction, green satisfaction has a significant direct effect on green trust, green marketing has a significant direct and indirect effect on green satisfaction, and green marketing has a significant direct and indirect effect on green trust. All of those effects are found to be positive effects.

  2. Synthesis, Photoluminescence Behavior of Green Light Emitting Tb(III) Complexes and Mechanistic Investigation of Energy Transfer Process.

    Science.gov (United States)

    Bala, Manju; Kumar, Satish; Devi, Rekha; Khatkar, Avni; Taxak, V B; Boora, Priti; Khatkar, S P

    2018-06-04

    A series of five new terbium(III) ion complexes with 4,4-difluoro-1-phenylbutane-1,3-dione (HDPBD) and anciliary ligands was synthesized. The composition and properties of complexes were analyzed by elemental analysis, IR, NMR, powder X-ray diffaraction, TG-DTG and photoluminescence spectroscopy. These complexes exhibited ligand sensitized green emission at 546 nm associated with 5 D 4  →  7 F 5 transitions of terbium ion in the emission spectra. The photoluminescence study manifested that the organic ligands act as antenna and facilitate the absorbed energy to emitting levels of Tb(III) ion efficiently. The enhanced luminescence intensity and decay time of ternary C2-C5 complexes observed due to synergistic effect of anciliary ligands. The CIE color coordinates of complexes came under the green region of chromaticity diagram. The mechanistic investigation of intramolecular energy transfer in the complexes was discussed in detail. These terbium(III) complexes can be thrivingly used as one of the green component in light emitting material and in display devices. Graphical Abstract Illustrate the sensitization process of the Tb ion and intramolecular energy transfer process in the Tb 3+ complex.

  3. Er{sup 3+}-doped Y{sub 2}O{sub 3} obtained by polymeric precursor: Synthesis, structure and upconversion emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Perrella, Rafael V.; Santos, Daniela P. dos [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, 36301-160 São João del-Rei, MG (Brazil); Poirier, Gael Y. [Instituto de Ciência e Tecnologia, Universidade Federal de Alfenas, Cidade Universitária, 37715400 Poços de Caldas, MG (Brazil); Góes, Márcio S. [Universidade Federal da Integração Latino-Americana (UNILA), Av. Tancredo Neves, 6731 – Bloco 4, Cx P. 2044, CEP: 85867-970 Foz do Iguaçu, PR (Brazil); Ribeiro, Sidney José L. [Instituto de Química, UNESP, P.O. Box 355, 14800-970 Araraquara, SP (Brazil); Schiavon, Marco A. [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, 36301-160 São João del-Rei, MG (Brazil); and others

    2014-05-01

    The relentless pursuit for materials containing rare earth ions with photoluminescent properties has led to several studies with applications in the development of new technologies. The main focus of this work is the preparation of Er{sup 3+}-doped polycrystalline Y{sub 2}O{sub 3} with photoluminescent properties using PEG as an organic precursor and heat-treated at different temperatures. The methodology used in this synthesis is highly attractive due to its high feasibility for improved technology and low cost for preparing materials. The behavior of the viscous resin has been evaluated and the final compounds exhibited the formation of a cubic polycrystalline phase, which is able to support variations in Er{sup 3+} doping concentrations up to 10 mol%, without significant changes in the polycrystalline parameters. The values of the nanocrystallite size calculated by Scherrer's equation showed direct dependence on the heat-treatment temperature as well as the Er{sup 3+} concentration. Intense emission in the visible region under excitation at 980 nm was attributed to an upconversion phenomenon assigned to the intraconfigurational f–f transitions of Er{sup 3+} ions. The upconversion mechanism was investigated and it was demonstrated that the higher intense emission in the red region in comparison to the emission in the green region is related to the crystallite size. The studies about the intensity showed the dependence of upconversion emission of power source, indicating that two-photon are responsible for the green and red photoluminescence. These polycrystalline materials exhibit properties that make them promising for use in solar energy systems, C-telecom band or solid-state laser devices. - Highlights: • Intense red upconversion emission. • Very easy way to prepare the material. • Potential application in solar cells. • Application for C-telecom band.

  4. Relationship Study on Land Use Spatial Distribution Structure and Energy-Related Carbon Emission Intensity in Different Land Use Types of Guangdong, China, 1996–2008

    Directory of Open Access Journals (Sweden)

    Yi Huang

    2013-01-01

    Full Text Available This study attempts to discuss the relationship between land use spatial distribution structure and energy-related carbon emission intensity in Guangdong during 1996–2008. We quantized the spatial distribution structure of five land use types including agricultural land, industrial land, residential and commercial land, traffic land, and other land through applying spatial Lorenz curve and Gini coefficient. Then the corresponding energy-related carbon emissions in each type of land were calculated in the study period. Through building the reasonable regression models, we found that the concentration degree of industrial land is negatively correlated with carbon emission intensity in the long term, whereas the concentration degree is positively correlated with carbon emission intensity in agricultural land, residential and commercial land, traffic land, and other land. The results also indicate that land use spatial distribution structure affects carbon emission intensity more intensively than energy efficiency and production efficiency do. These conclusions provide valuable reference to develop comprehensive policies for energy conservation and carbon emission reduction in a new perspective.

  5. Green business will remain green

    International Nuclear Information System (INIS)

    Marcan, P.

    2008-01-01

    It all started with two words. Climate change. The carbon dioxide trading scheme, which was the politicians' idea on solving the number one global problem, followed. Four years ago, when the project was begun, there was no data for project initiation. Quotas for polluters mainly from energy production and other energy demanding industries were distributed based on spreadsheets, maximum output and expected future development of economies. Slovak companies have had a chance to profit from these arrangements since 2005. Many of them took advantage of the situation and turned the excessive quotas into an extraordinary profit which often reached hundreds of million Sk. The fact that the price of free quotas offered for sale dropped basically to 0 in 2006 only proved that the initial distribution was too generous. And the market reacted to the first official measurements of emissions. Slovak companies also contributed to this development. However, when planning the maximum emission volumes for 2008-2012 period, in spite of the fact that actual data were available, their expectations were not realistic. A glance at the figures in the proposal of the Ministry of Environment is sufficient to realize that there will be no major change in the future. And so for many Slovak companies business with a green future will remain green for the next five years. The state decided to give to selected companies even more free space as far as emissions are concerned. The most privileged companies can expect quotas increased by tens of percent. (author)

  6. Intensity of emission lines of the quiescent solar corona: comparison between calculated and observed values

    Science.gov (United States)

    Krissinel, Boris

    2018-03-01

    The paper reports the results of calculations of the center-to-limb intensity of optically thin line emission in EUV and FUV wavelength ranges. The calculations employ a multicomponent model for the quiescent solar corona. The model includes a collection of loops of various sizes, spicules, and free (inter-loop) matter. Theoretical intensity values are found from probabilities of encountering parts of loops in the line of sight with respect to the probability of absence of other coronal components. The model uses 12 loops with sizes from 3200 to 210000 km with different values of rarefaction index and pressure at the loop base and apex. The temperature at loop apices is 1 400 000 K. The calculations utilize the CHIANTI database. The comparison between theoretical and observed emission intensity values for coronal and transition region lines obtained by the SUMER, CDS, and EIS telescopes shows quite satisfactory agreement between them, particularly for the solar disk center. For the data acquired above the limb, the enhanced discrepancies after the analysis refer to errors in EIS measurements.

  7. X-mode artificial optical emissions and attendant phenomena at EISCAT/Heating

    Science.gov (United States)

    Blagoveshchenskaya, Nataly; Sergienko, Tima; Rietveld, Michael; Brandstrom, Urban; Senior, Andrew; Haggstrom, Ingemar; Kosch, Michael; Borisova, Tatiana; Yeoman, Tim

    We present the experimental evidence for the formation of the artificial optical emissions induced by the X-mode powerful HF radio waves injected towards the magnetic zenith (MZ) into the high latitude F region of the ionosphere. The experiments were conducted in the course of Russian EISCAT heating campaigns in October 2012 and October 2013 at the Heating facility at Tromsø, Norway. The HF pump wave with the X-mode polarization was radiated at 7.1 or 6.2 MHz. The phased array 1, resulting in an ERP = 430 - 600 MW was used. Optical emissions at red (630 nm) and green (557 nm) lines were imaged from Tromsø site by the digital All-Sky Imager mark 2 (DASI - 2) and from a remote site at Abisco by the Auroral Large Imaging System (ALIS) in Scandinavia. The intensities of X-mode emissions at red and green lines varied between about of 150 - 1000 R and 50 - 300 R above the background respectively in different experiments. The artificial optical emissions were accompanied by very strong HF-enhanced ion lines and HF induced plasma lines from the EISCAT UHF incoherent scatter radar measurements and artificial small-scale field-aligned irregularities from CUTLASS (SuperDARN) HF coherent radar in Finland. The results obtained are discussed.

  8. Cost-benefit analysis of a green electricity system in Japan considering the indirect economic impacts of tropical cyclones

    International Nuclear Information System (INIS)

    Esteban, Miguel; Zhang, Qi; Longarte-Galnares, Gorka

    2012-01-01

    Global warming is likely to profoundly influence future weather patterns, and one consequence of this is the likelihood of an increase in tropical cyclone intensity. The present paper presents a cost-benefit analysis of introducing significant amounts of green energy in the electricity system in Japan in the light of the economic damage that an increase in tropical cyclone intensity could have on GDP growth between 2010 and 2085. Essentially the passage of a tropical cyclone will result not only in physical damage but also on a decrease in economic productivity due to precautionary cessation of the economic activity, which has an effect on GDP growth. By comparing the economic performance of different electricity system scenarios with the indirect economic damage of tropical cyclones from 2010 to 2085, based on the yearly economic data of green electricity, fossil fuel, GDP and population, it can be seen that the green scenarios are generally a cost-effective way of mitigating the effects of these weather systems, despite the large amount of initial investments necessary. - Highlights: ► Climate change is likely to increase the future strength of tropical cyclones. ► An increase in tropical cyclone strength would reduce GDP growth in Japan. ► Reducing green-house gas emissions is a cost-effective mitigation strategy.

  9. Ca²⁺ signal contributing to the synthesis and emission of monoterpenes regulated by light intensity in Lilium 'siberia'.

    Science.gov (United States)

    Hu, Zenghui; Li, Tianjiao; Zheng, Jian; Yang, Kai; He, Xiangfeng; Leng, Pingsheng

    2015-06-01

    The floral scent is an important part of plant volatile compounds, and is influenced by environmental factors. The emission of monoterpenes of Lilium 'siberia' is regulated by light intensity, but the mechanism is large unknown. In this study, the expression of Li-mTPS, a monoterpene synthase gene in the tepals of Lilium 'siberia', and net Ca(2+) flux were investigated after exposure to different levels of light intensity (0, 100, 300, 600, 1000, and 1500 μmol m(-2) s(-1)). Moreover the effect of LaCl3 and ethylene glycol-bis-(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) on the Li-mTPS expression, monoterpene emission, and net Ca(2+) flux were examined at 600 μmol m(-2) s(-1). The results showed that along with the enhancement of light intensity, the expression level of Li-mTPS increased gradually, and the net Ca(2+) influx was also enhanced showing a similar pattern. It was found that LaCl3 and EGTA effectively inhibited the increase in expression of Li-mTPS and the net Ca(2+) influx induced by light treatment. Moreover, the release amounts of monoterpenes decreased significantly after treatment with LaCl3 and EGTA. So it can be concluded that Ca(2+) signal contributed to the biosynthesis and emission of monoterpenes regulated by light intensity in Lilium 'siberia' tepals. The increased light intensity firstly triggered the Ca(2+) influx to cytoplasm, and then the gene expression of monoterpene synthases downstream was activated to regulate the biosynthesis and emission of monoterpenes. But in the signaling pathway other mechanisms were thought to be involved in the emission of monoterpenes regulated by light intensity, which need to be investigated in future research. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. The decrease of CO2 emission intensity is decarbonization at national and global levels

    International Nuclear Information System (INIS)

    Sun, J.W.

    2005-01-01

    This viewpoint proposes the definition: 'Decarbonization refers to a decrease of CO 2 emission intensity in a trend'. This viewpoint then argues that an analysis of decarbonization at national and global levels based on that definition would lead to the correct calculation of decarbonization

  11. ENHANCED WARM H2 EMISSION IN THE COMPACT GROUP MID-INFRARED ''GREEN VALLEY''

    International Nuclear Information System (INIS)

    Cluver, M. E.; Ogle, P.; Guillard, P.; Appleton, P. N.; Jarrett, T. H.; Rasmussen, J.; Lisenfeld, U.; Verdes-Montenegro, L.; Antonucci, R.; Bitsakis, T.; Charmandaris, V.; Boulanger, F.; Egami, E.; Xu, C. K.; Yun, M. S.

    2013-01-01

    We present results from a Spitzer mid-infrared spectroscopy study of a sample of 74 galaxies located in 23 Hickson Compact Groups (HCGs), chosen to be at a dynamically active stage of H I depletion. We find evidence for enhanced warm H 2 emission (i.e., above that associated with UV excitation in star-forming regions) in 14 galaxies (∼20%), with 8 galaxies having extreme values of L(H 2 S(0)-S(3))/L(7.7 μm polycyclic aromatic hydrocarbon), in excess of 0.07. Such emission has been seen previously in the compact group HCG 92 (Stephan's Quintet), and was shown to be associated with the dissipation of mechanical energy associated with a large-scale shock caused when one group member collided, at high velocity, with tidal debris in the intragroup medium. Similarly, shock excitation or turbulent heating is likely responsible for the enhanced H 2 emission in the compact group galaxies, since other sources of heating (UV or X-ray excitation from star formation or active galactic nuclei) are insufficient to account for the observed emission. The group galaxies fall predominantly in a region of mid-infrared color-color space identified by previous studies as being connected to rapid transformations in HCG galaxy evolution. Furthermore, the majority of H 2 -enhanced galaxies lie in the optical ''green valley'' between the blue cloud and red sequence, and are primarily early-type disk systems. We suggest that H 2 -enhanced systems may represent a specific phase in the evolution of galaxies in dense environments and provide new insight into mechanisms which transform galaxies onto the optical red sequence.

  12. Dust-deficient Palomar-Green Quasars and the Diversity of AGN Intrinsic IR Emission

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Jianwei; Rieke, G. H. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Shi, Yong, E-mail: jianwei@email.arizona.edu [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2017-02-01

    To elucidate the intrinsic broadband infrared (IR) emission properties of active galactic nuclei (AGNs), we analyze the spectral energy distributions (SEDs) of 87 z ≲ 0.5 Palomar-Green (PG) quasars. While the Elvis AGN template with a moderate far-IR correction can reasonably match the SEDs of the AGN components in ∼60% of the sample (and is superior to alternatives such as that by Assef), it fails on two quasar populations: (1) hot-dust-deficient (HDD) quasars that show very weak emission thoroughly from the near-IR to the far-IR, and (2) warm-dust-deficient (WDD) quasars that have similar hot dust emission as normal quasars but are relatively faint in the mid- and far-IR. After building composite AGN templates for these dust-deficient quasars, we successfully fit the 0.3–500 μm SEDs of the PG sample with the appropriate AGN template, an infrared template of a star-forming galaxy, and a host galaxy stellar template. 20 HDD and 12 WDD quasars are identified from the SED decomposition, including seven ambiguous cases. Compared with normal quasars, the HDD quasars have AGNs with relatively low Eddington ratios and the fraction of WDD quasars increases with AGN luminosity. Moreover, both the HDD and WDD quasar populations show relatively stronger mid-IR silicate emission. Virtually identical SED properties are also found in some quasars from z = 0.5 to 6. We propose a conceptual model to demonstrate that the observed dust deficiency of quasars can result from a change of structures of the circumnuclear tori that can occur at any cosmic epoch.

  13. An inventory of the first round of Green Deals

    International Nuclear Information System (INIS)

    Wetzels, W.; Hekkenberg, M.; Daniels, B.W.; Ybema, J.R.

    2012-01-01

    By means of the Green Deal, the Dutch government aims to accelerate the sustainability of the economy by supporting initiatives in the field of energy, water, feedstocks and mobility. Businesses, organizations and authorities have submitted over 200 proposals, of which 59 have been selected and elaborated into Green Deals. A previous note has mapped the additional effects of the Green Deals on the share of renewable energy and the emission of non-ETS greenhouse gases. This note addressed questions such as: Which positive effects may occur?; Do the Green Deals lead to additional activities?; Can the results be scaled up?; Can the effects be measured?; Which effects can be observed for renewable energy and emissions in 2020? The note subsequently discusses in which ways the positive effects of the Green Deals could be enhanced. [nl

  14. Intensities of the Martian N2 electron-impact excited dayglow emissions

    Science.gov (United States)

    Fox, Jane L.; Hać, Nicholas E. F.

    2013-06-01

    The first N2 emissions in the Martian dayglow were detected by the SPICAM UV spectrograph on board the Mars Express spacecraft. Intensities of the (0,5) and (0,6) Vegard-Kaplan bands were found to be about one third of those predicted more than 35 years ago. The Vegard-Kaplan band system arises from the transition from the lowest N2 triplet state (A3Σu+;v') to the electronic ground state (X1Σg+;v″). It is excited in the Martian dayglow by direct electron-impact excitation of the ground N2(X) state to the A state and by excitation to higher triplet states that populate the A state by cascading. Using revised data, we compute here updated intensities of several of the bands in the N2 triplet systems and those involving the a1Πg state, the upper state of the Lyman-Birge-Hopfield bands. We find that the predicted limb intensities for the (0,5) and (0,6) Vegard-Kaplan bands are consistent with the measured values.

  15. Green business opportunities on the rise

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    By treating tougher environmental regulations as business opportunities rather than constraints, Finnish companies are finding new niches in the growing markets for environmental technologies around the world. The global market for environmental technologies is estimated at around euro 550 billion, so green business is truly big business. What's more, this market is growing by about 10 per cent a year as energy savings and reductions in emissions become evermore urgent. Renewable energy technologies are increasingly in demand as the world wakes up to the threat of climate change. The energy expertise is the result of factors including the cold climate, long distances, energy-intensive industry and the lack of fossil fuel resources. About 300 Finnish companies operate in the field of environmental technology, with a total turnover of some euro 3,4 billion

  16. Ly α and UV Sizes of Green Pea Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Huan; Wang, Junxian [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China (China); Malhotra, Sangeeta; Rhoads, James E.; Jiang, Tianxing [Arizona State University, School of Earth and Space Exploration (United States); Leitherer, Claus [Space Telescope Science Institute, 3700 San Martin Dr, Baltimore, MD 21218 (United States); Wofford, Aida, E-mail: huan.y@asu.edu [National Autonomous University of Mexico, Institute of Astronomy (Mexico)

    2017-03-20

    Green Peas are nearby analogs of high-redshift Ly α -emitting galaxies (LAEs). To probe their Ly α escape, we study the spatial profiles of Ly α and UV continuum emission of 24 Green Pea galaxies using the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope . We extract the spatial profiles of Ly α emission from their 2D COS spectra, and of the UV continuum from both 2D spectra and NUV images. The Ly α emission shows more extended spatial profiles than the UV continuum, in most Green Peas. The deconvolved full width at half maximum of the Ly α spatial profile is about 2–4 times that of the UV continuum, in most cases. Because Green Peas are analogs of high z LAEs, our results suggest that most high- z LAEs probably have larger Ly α sizes than UV sizes. We also compare the spatial profiles of Ly α photons at blueshifted and redshifted velocities in eight Green Peas with sufficient data quality, and find that the blue wing of the Ly α line has a larger spatial extent than the red wing in four Green Peas with comparatively weak blue Ly α line wings. We show that Green Peas and MUSE z = 3–6 LAEs have similar Ly α and UV continuum sizes, which probably suggests that starbursts in both low- z and high- z LAEs drive similar gas outflows illuminated by Ly α light. Five Lyman continuum (LyC) leakers in this sample have similar Ly α to UV continuum size ratios (∼1.4–4.3) to the other Green Peas, indicating that their LyC emissions escape through ionized holes in the interstellar medium.

  17. Color tunable emission in Ce3+ and Tb3+ co-doped Ba2Ln(BO3)2Cl (Ln=Gd and Y) phosphors for white light-emitting diodes.

    Science.gov (United States)

    Zhang, Niumiao; Guo, Chongfeng; Jing, Heng; Jeong, Jung Hyun

    2013-12-01

    Ce(3+) and Tb(3+) co-doped Ba2Ln(BO3)2Cl (Ln=Y and Gd) green emitting phosphors were prepared by solid state reaction in reductive atmosphere. The emission and excitation spectra as well as luminescence decays were investigated, showing the occurrence of efficient energy transfer from Ce(3+) to Tb(3+) in this system. The phosphors exhibit both a blue emission from Ce(3+) and a green emission from Tb(3+) under near ultraviolet light excitation with 325-375 nm wavelength. Emission colors of phosphors could be tuned from deep blue through cyan to green by adjusting the Tb(3+) concentrations. The energy transfer efficiency and emission intensity of Ba2Y(BO3)2Cl:Ce(3+), Tb(3+) precede those of Ba2Gd(BO3)2Cl:Ce(3+), Tb(3+), and the sample Ba2Y(BO3)2Cl:0.03Ce(3+), 0.10Tb(3+) is the best candidate for n-UV LEDs. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Lead-free/rare earth-free Green-light-emitting crystal based on organic-inorganic hybrid [(C10H16N)2][MnBr4] with high emissive quantum yields and large crystal size

    Science.gov (United States)

    Cai, Xing-Wei; Zhao, Yu-Yuan; Li, Hong; Huang, Cui-Ping; Zhou, Zhen

    2018-06-01

    With the flourishing development of emitting materials, tremendous technological progress has been accomplished. However, they still face great challenges in convenient economical environmental-friendly large-scale commercial production. Herein we designed this organic-inorganic hybrid lead-free compound, an emerging class of high-efficiency emitting materials, [(C10H16N)2][MnBr4] (1), which emits intense greenish photoluminescence with a high emissive quantum yields of 72.26%, was prepared through the convenient economical solution method. What's more, compared with rare earth fluorescent materials (especially green-emitting Tb), Mn material is rich in natural resources and low commercial cost, which would possess an increasingly predominant advantage in the preparation of luminescent materials. Additionally, the exceptional thermal stability as well as the low-cost/convenient preparation process makes crystal 1 with the large size of more than 1 cm to be an ideal technologically important green-emitting material and it would open up a new route towards the commercialization process of lead-free/rare earth-free hybrid emitting materials in display and sensing.

  19. Experimental and numerical analysis for high intensity swirl based ultra-low emission flameless combustor operating with liquid fuels

    KAUST Repository

    Vanteru, Mahendra Reddy; Katoch, Amit; Roberts, William L.; Kumar, Sudarshan

    2014-01-01

    Flameless combustion offers many advantages over conventional combustion, particularly uniform temperature distribution and lower emissions. In this paper, a new strategy is proposed and adopted to scale up a burner operating in flameless combustion mode from a heat release density of 5.4-21 MW/m(3) (thermal input 21.5-84.7 kW) with kerosene fuel. A swirl flow based configuration was adopted for air injection and pressure swirl type nozzle with an SMD 35-37 lm was used to inject the fuel. Initially, flameless combustion was stabilized for a thermal input of 21.5 kW ((Q) over dot '''= 5.37 MW/m(3)). Attempts were made to scale this combustor to higher intensities i.e. 10.2, 16.3 and 21.1 MW/m(3). However, an increase in fuel flow rate led to incomplete combustion and accumulation of unburned fuel in the combustor. Two major difficulties were identified as possible reasons for unsustainable flameless combustion at the higher intensities. (i) A constant spray cone angle and SMD increases the droplet number density. (ii) Reactants dilution ratio (R-dil) decreased with increased thermal input. To solve these issues, a modified combustor configuration, aided by numerical computations was adopted, providing a chamfer near the outlet to increase the R-dil. Detailed experimental investigations showed that flameless combustion mode was achieved at high intensities with an evenly distributed reaction zone and temperature in the combustor at all heat intensities. The emissions of CO, NOx and HC for all heat intensities (Phi = 1-0.6) varied between 11-41, 6-19 and 0-9 ppm, respectively. These emissions are well within the range of emissions from other flameless combustion systems reported in the literature. The acoustic emission levels were also observed to be reduced by 8-9 dB at all conditions. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  20. Experimental and numerical analysis for high intensity swirl based ultra-low emission flameless combustor operating with liquid fuels

    KAUST Repository

    Vanteru, Mahendra Reddy

    2014-06-21

    Flameless combustion offers many advantages over conventional combustion, particularly uniform temperature distribution and lower emissions. In this paper, a new strategy is proposed and adopted to scale up a burner operating in flameless combustion mode from a heat release density of 5.4-21 MW/m(3) (thermal input 21.5-84.7 kW) with kerosene fuel. A swirl flow based configuration was adopted for air injection and pressure swirl type nozzle with an SMD 35-37 lm was used to inject the fuel. Initially, flameless combustion was stabilized for a thermal input of 21.5 kW ((Q) over dot \\'\\'\\'= 5.37 MW/m(3)). Attempts were made to scale this combustor to higher intensities i.e. 10.2, 16.3 and 21.1 MW/m(3). However, an increase in fuel flow rate led to incomplete combustion and accumulation of unburned fuel in the combustor. Two major difficulties were identified as possible reasons for unsustainable flameless combustion at the higher intensities. (i) A constant spray cone angle and SMD increases the droplet number density. (ii) Reactants dilution ratio (R-dil) decreased with increased thermal input. To solve these issues, a modified combustor configuration, aided by numerical computations was adopted, providing a chamfer near the outlet to increase the R-dil. Detailed experimental investigations showed that flameless combustion mode was achieved at high intensities with an evenly distributed reaction zone and temperature in the combustor at all heat intensities. The emissions of CO, NOx and HC for all heat intensities (Phi = 1-0.6) varied between 11-41, 6-19 and 0-9 ppm, respectively. These emissions are well within the range of emissions from other flameless combustion systems reported in the literature. The acoustic emission levels were also observed to be reduced by 8-9 dB at all conditions. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  1. Tomographic intensity mapping versus galaxy surveys: observing the Universe in H α emission with new generation instruments

    Science.gov (United States)

    Silva, B. Marta; Zaroubi, Saleem; Kooistra, Robin; Cooray, Asantha

    2018-04-01

    The H α line emission is an important probe for a number of fundamental quantities in galaxies, including their number density, star formation rate (SFR), and overall gas content. A new generation of low-resolution intensity mapping (IM) probes, e.g. SPHEREx and CDIM, will observe galaxies in H α emission over a large fraction of the sky from the local Universe till a redshift of z ˜ 6 - 10, respectively. This will also be the target line for observations by the high-resolution Euclid and WFIRST instruments in the z ˜ 0.7-2 redshift range. In this paper, we estimate the intensity and power spectra of the H α line in the z ˜ 0-5 redshift range using observed line luminosity functions (LFs), when possible, and simulations, otherwise. We estimate the significance of our predictions by accounting for the modelling uncertainties (e.g. SFR, extinction, etc.) and observational contamination. We find that IM surveys can make a statistical detection of the full H α emission between z ˜ 0.8 and 5. Moreover, we find that the high-frequency resolution and the sensitivity of the planned CDIM surveys allow for the separation of H α emission from several interloping lines. We explore ways to use the combination of these line intensities to probe galaxy properties. As expected, our study indicates that galaxy surveys will only detect bright galaxies that contribute up to a few per cent of the overall H α intensity. However, these surveys will provide important constraints on the high end of the H α LF and put strong constraints on the active galactic nucleus LF.

  2. Double pulse laser induced breakdown spectroscopy: Experimental study of lead emission intensity dependence on the wavelengths and sample matrix

    Energy Technology Data Exchange (ETDEWEB)

    Piscitelli S, V; Martinez L, M A; Fernandez C, A J [Laboratorio de Espectroscopia Laser, Escuela de Quimica, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, DC 1020 (Venezuela, Bolivarian Republic of); Gonzalez, J J; Mao, X L [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Russo, R.E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)], E-mail: RERusso@lbl.gov

    2009-02-15

    Lead (Pb) emission intensity (atomic line 405.78 nm) dependence on the sample matrix (metal alloy) was studied by means of collinear double pulse (DP)-laser induced breakdown spectroscopy (LIBS). The measurement of the emission intensity produced by three different wavelength combinations (i.e. I:532 nm-II:1064 nm, I:532 nm-II:532 nm, and I:532 nm-II:355 nm) from three series of standard reference materials showed that the lead atomic line 405.78 nm emission intensity was dependent on the sample matrix for all the combination of wavelengths, however reduced dependency was found for the wavelength combination I:532 nm-II:355 nm. Two series of standard reference materials from the National Institute of Standards and Technology (NIST) and one series from the British Chemical Standards (BCS) were used for these experiments. Calibration curves for lead ablated from NIST 626-630 ('Zn{sub 95}Al{sub 4}Cu{sub 1}') provided higher sensitivity (slope) than those calibration curves produced from NIST 1737-1741 ('Zn{sub 99.5}Al{sub 0.5}') and with the series BCS 551-556 ('Cu{sub 87}Sn{sub 11}'). Similar trends between lead emission intensity (calibration curve sensitivities) and reported variations in plasma temperatures caused by the differing ionization potentials of the major and minor elements in these samples were established.

  3. Potential for reducing GHG emissions and energy consumption from implementing the aluminum intensive vehicle fleet in China

    International Nuclear Information System (INIS)

    Du, J.D.; Han, W.J.; Peng, Y.H.; Gu, C.C.

    2010-01-01

    The automobile industry in China has rapidly developed in recent years which resulted in an increase in gasoline usage and greenhouse gas (GHG) emissions. Focus on climate change has also accelerated to grow pressure on reducing vehicle weight and improving fuel efficiency. Aluminum (Al) as a light metal has demonstrated a great potential for weight savings in applications such as engine blocks, cylinder heads, wheels, hoods, tailgates etc. However, primary Al production requires intensive energy and the cost of Al is more than traditional steel, which may affect the total benefits realized from using Al in automobiles. Therefore, it is very essential to conduct a study to quantify the life cycle GHG emissions and energy consumption if the plan is to achieve fleet-wide Al intensive vehicles. This paper describes a life cycle assessment (LCA) methodology and the general modeling assumptions used to evaluate the impact of Al intensive vehicle on GHG emissions and energy consumption. The results indicated that the reductions in life cycle GHG emissions and energy consumption were not significant when the maximum Al content in an automobile is 145 kg, which is the average level of Al usage in automobiles in North America. A neural network methodology was used to forecast the vehicle stock in China from 2010 to 2020 and a vehicle fleet model was established to track GHG emissions and energy consumption of the vehicle fleet. A material availability factor was also introduced into the LCA methodology to further assist decision makers in providing rational proposals for a widespread implementation of Al in automobiles. A sensitivity analysis was also conducted to study the impact of the Al content in a vehicle on the final outcomes. The GHG emissions and energy consumption could be further reduced when the Al content in an automobile increases.

  4. National environmental targets and international emission reduction instruments

    International Nuclear Information System (INIS)

    Morthorst, P.E.

    2003-01-01

    According to the agreed burden sharing within the European Union the overall EU emission reduction target as agreed by in the Kyoto protocol is converted into national greenhouse gas reduction-targets for each of the member states. In parallel with national emission reduction initiatives common EU policies for emission reductions are considered. Currently discussed is the introduction of a market for tradable permits for CO 2 -emissions to achieve emission reductions within the power industry and other energy intensive industries. In parallel with this markets for green certificates to deploy renewable energy technologies seem to be appearing in a number of countries, among these Denmark, Italy, Sweden, Belgium (Flanders), England and Australia. Although these national initiatives for a green certificate market are fairly different, they could be a starting point for establishing a common EU certificate market. But interactions between national targets for greenhouse gas emissions and these international instruments for emission reduction are not a trivial matter, especially not seen in relation to the possible contributions of these instruments in achieving national GHG-reduction targets. The paper is split into three parts all taking a liberalised power market as starting point: The first part discusses the consequences of a general deployment of renewable energy technologies, using planning initiatives or national promotion schemes (feed-in tariffs). In the second part an international green certificate market is introduced into the liberalised power market context, substituting other national promotion schemes. Finally, in the third part a combination of an international green certificate market (TGC) and an international emission-trading scheme for CO 2 is analysed within the liberalised international power market set-up. The main conclusion is that neither the use of national renewable support schemes nor the introduction of a TGC-market into a liberalised

  5. Green power marketing in Canada: the state of the industry

    International Nuclear Information System (INIS)

    Dogterom, J.J.; McCulloch, M.; Pape-Salmon, A.

    2002-12-01

    The introduction of low-impact renewable energy in Canada's electricity supply is being accomplished using a relatively new, market-based initiative called green power marketing. Consumers now have the option of choosing their electricity supplier in two provinces, as a result of electricity market restructuring in those provinces. In some jurisdictions, green power is being offered at a premium price. Green power options are also available in other jurisdictions through the existing vertically integrated power companies. Green power programs are available to residential and commercial sector consumers in Alberta by ENMAX Energy and EPCOR Energy Services Inc. Prince Edward Island (Maritime Electric Company Ltd.) and Saskatchewan (SaskPower) both offer green power programs. The basis for those programs is specific amounts of electricity purchased. The success of the various programs was examined by the Pembina Institute for Appropriate Development, based on installed capacity of green power, consumer enrolment, product design, and environmental benefits. This report presented the results of this evaluation. For the purpose of this report, only those programs in place by the end of 2001 were considered. The environmental impacts of new generation technologies that were implemented as a result of green power marketing programs were analyzed. Historical emission data of the primary generation sources was used as a basis for the investigation and the quantification of the benefits in each province, since different types of power generation are used in the provinces. Greenhouse gases, acid deposition precursors, ground-level ozone precursors, particulate matter, and carbon monoxide are the significant emissions avoided through the use of green power. Included in the emissions reduction analysis in each province considered were life cycle emissions from conventional power sources and green power sources. Alberta, Saskatchewan and Prince Edward Island were the provinces

  6. 'Green' preferences as regulatory policy instrument

    International Nuclear Information System (INIS)

    Brennan, Timothy J.

    2006-01-01

    We examine here the suggestion that if consumers in sufficient numbers are willing to pay the premium to have power generated using low-emission technologies, tax or permit policies become less necessary or stringent. While there are implementation difficulties with this proposal, our purpose is more fundamental: Can economics make sense of using preferences as a regulatory instrument? If 'green' preferences are exogenously given, to what extent can or should they be regarded as a substitute for other policies? Even with 'green' preferences, production and consumption of polluting goods continue to impose social costs not borne in the market. Moreover, if green preferences are regarded as a policy instrument, the 'no policy' baseline would require a problematic specification of counterfactual 'non-green' preferences. Viewing green preferences as a regulatory policy instrument is conceptually sensible if the benchmark for optimal emissions is based on value judgments apart from the preferences consumers happen to have. If so, optimal environmental protection would be defined by reference to ethical theory, or, even less favorably, by prescriptions from policy advocates who give their own preferences great weight while giving those of the public at large (and the costs they bear) very little consideration. (author)

  7. Upconversion emission and cathodoluminescence of Er{sup 3+}-doped NaYbF{sub 4} nanoparticles for low-temperature thermometry and field emission displays

    Energy Technology Data Exchange (ETDEWEB)

    Du, Peng; Yu, Jae Su [Kyung Hee University, Department of Electronics and Radio Engineering, Yongin (Korea, Republic of); Luo, Laihui [Ningbo University, Department of Microelectronic Science and Engineering, Ningbo (China)

    2017-03-15

    The Er{sup 3+}-doped NaYbF{sub 4} nanoparticles were fabricated by a hydrothermal method. The green and red emissions located at around 525, 542 and 657 nm corresponding to the {sup 2}H{sub 11/2} → {sup 4}I{sub 15/2}, {sup 4}S{sub 3/2} → {sup 4}I{sub 15/2} and {sup 4}F{sub 9/2} → {sup 4}I{sub 15/2} transitions of Er{sup 3+} ions, respectively, were observed when pumped at 980 nm light. Furthermore, with the help of the fluorescence intensity ratio technique, the thermometric properties of as-prepared products from the thermally coupled {sup 2}H{sub 11/2} and {sup 4}S{sub 3/2} levels of Er{sup 3+} ions were studied by analyzing temperature-dependent upconversion (UC) emission spectra. The maximum sensitivity for the Er{sup 3+}-doped NaYbF{sub 4} nanoparticles was found to be around 0.0043 K{sup -} {sup 1} with a temperature range of 93-293 K. In addition, the cathodoluminescence (CL) spectrum of the synthesized nanoparticles was nearly the same as the UC emission spectrum and the CL emission intensity did not exhibit saturation with the increase of accelerating voltage and filament current. (orig.)

  8. Novel Organic Phototransistor-Based Nonvolatile Memory Integrated with UV-Sensing/Green-Emissive Aggregation Enhanced Emission (AEE)-Active Aromatic Polyamide Electret Layer.

    Science.gov (United States)

    Cheng, Shun-Wen; Han, Ting; Huang, Teng-Yung; Chang Chien, Yu-Hsin; Liu, Cheng-Liang; Tang, Ben Zhong; Liou, Guey-Sheng

    2018-05-30

    A novel aggregation enhanced emission (AEE)-active polyamide TPA-CN-TPE with a high photoluminesence characteristic was successfully synthesized by the direct polymerization of 4-cyanotriphenyl diamine (TPA-CN) and tetraphenylethene (TPE)-containing dicarboxylic acid. The obtained luminescent polyamide plays a significant role as the polymer electret layer in organic field-effect transistors (OFETs)-type memory. The strong green emission of TPA-CN-TPE under ultraviolet (UV) irradiation can be directly absorbed by the pentacene channel, displaying a light-induced programming and voltage-driven erasing organic phototransistor-based nonvolatile memory. Memory window can be effectively manipulated between the programming and erasing states by applying UV light illumination and electrical field, respectively. The photoinduced memory behavior can be maintained for over 10 4 s between these two states with an on/off ratio of 10 4 , and the memory switching can be steadily operated for many cycles. With high photoresponsivity ( R) and photosensitivity ( S), this organic phototransistor integrated with AEE-active polyamide electret layer could serve as an excellent candidate for UV photodetectors in optical applications. For comparison, an AEE-inactive aromatic polyimide TPA-PIS electret with much weaker solid-state emission was also applied in the same OFETs device architecture, but this device did not show any UV-sensitive and UV-induced memory characteristics, which further confirmed the significance of the light-emitting capability of the electret layer.

  9. Bulk energy storage increases United States electricity system emissions.

    Science.gov (United States)

    Hittinger, Eric S; Azevedo, Inês M L

    2015-03-03

    Bulk energy storage is generally considered an important contributor for the transition toward a more flexible and sustainable electricity system. Although economically valuable, storage is not fundamentally a "green" technology, leading to reductions in emissions. We model the economic and emissions effects of bulk energy storage providing an energy arbitrage service. We calculate the profits under two scenarios (perfect and imperfect information about future electricity prices), and estimate the effect of bulk storage on net emissions of CO2, SO2, and NOx for 20 eGRID subregions in the United States. We find that net system CO2 emissions resulting from storage operation are nontrivial when compared to the emissions from electricity generation, ranging from 104 to 407 kg/MWh of delivered energy depending on location, storage operation mode, and assumptions regarding carbon intensity. Net NOx emissions range from -0.16 (i.e., producing net savings) to 0.49 kg/MWh, and are generally small when compared to average generation-related emissions. Net SO2 emissions from storage operation range from -0.01 to 1.7 kg/MWh, depending on location and storage operation mode.

  10. Green economy and green jobs; Vihreae talous ja vihreaet tyoet

    Energy Technology Data Exchange (ETDEWEB)

    Honkasalo, A.

    2012-05-15

    This report looks at discussions on a green economy and green jobs in international organizations such as the OECD, EU and UNEP. It also studies the structural change in the green economy in Finland and how this change will be brought forward by the year 2050 through low carbon technology and innovations. It draws special attention to how citizens' perception of risks and their development impact the approval and acceptance of climate policies and measures. Finland will continue to be a country that utilises natural resources, and where a large part of its industrial sector will be energy- and material-intensive forest, mining and basic metal industries. The following factors will have an impact on work: Energy production is mainly based on renewable energy sources such as bio-, wind and solar power. Energy and material efficiency are important targets; emissions will decrease also in work places. Repairs and wood-based building will increase; new houses will produce energy. Reuse will increase; former waste disposal sites will function as mines. Organic and GMO foodstuffs will become popular. Electric and hybrid cars will take over the markets. Environmental applications of gene- and nanotechnology will become widely used. Physical workplaces and strictly controlled working times will lose their importance; virtual offices and remote work become popular. Products will be produced to last, with renewable usage in mind, and repair and maintenance of products will become more common. Occupational health and safety issues are of paramount importance especially in bio-energy production, repair and maintenance work, as well as waste management. Especially nano- and biotechnology and hazardous chemicals require careful risk management; the precautionary principle is applied to them. Studies on a green economy and green jobs usually look very positively at the possibilities of creating new jobs through environmental policies. Employment estimates done in the past may

  11. Green Maritime Logistics

    DEFF Research Database (Denmark)

    Psaraftis, Harilaos N.

    2016-01-01

    By green maritime logistics we mean achieving an acceptable environmental performance of the maritime transport logistical supply chain while at the same time respecting traditional economic criteria. In this paper the environmental focus is on maritime emissions. Achieving such goal may involve ...

  12. Green heterogeneous wireless networks

    CERN Document Server

    Ismail, Muhammad; Nee, Hans-Peter; Qaraqe, Khalid A; Serpedin, Erchin

    2016-01-01

    This book focuses on the emerging research topic "green (energy efficient) wireless networks" which has drawn huge attention recently from both academia and industry. This topic is highly motivated due to important environmental, financial, and quality-of-experience (QoE) considerations. Specifically, the high energy consumption of the wireless networks manifests in approximately 2% of all CO2 emissions worldwide. This book presents the authors’ visions and solutions for deployment of energy efficient (green) heterogeneous wireless communication networks. The book consists of three major parts. The first part provides an introduction to the "green networks" concept, the second part targets the green multi-homing resource allocation problem, and the third chapter presents a novel deployment of device-to-device (D2D) communications and its successful integration in Heterogeneous Networks (HetNets). The book is novel in that it specifically targets green networking in a heterogeneous wireless medium, which re...

  13. CO2-emission trading and green markets for renewable electricity. WILMAR - deliverable 4.1

    International Nuclear Information System (INIS)

    Azuma-Dicke, N.; Weber, C.; Morthorst, P.E.; Ravn, H.F.; Schmidt, R.

    2004-06-01

    This report is Deliverable 4.1 of the EU project 'Wind Power Integration in Liberalised Electricity Markets' (WILMAR) and de-scribes the application of two policy instruments, Tradable Emissions Permits (TEPs) and Tradable Green Certificates (TGCs) for electricity produced from renewable energy sources in the European Union and the implications for implementation in the Wilmar model. The introduction of a common emission-trading system in the EU is expected to have an upward effect on the spot prices at the electric-ity market. The variations of the spot price imply that some types of power generation may change the situation from earning money to losing money despite the increasing spot price. Heavy restrictions on emissions penalise the fossil-fuelled technologies significantly, and the associated increase in the spot price need not compensate for this. Therefore, a market of TEPs is expected to have a significant influence on the electricity spot price. However, the expected price level of TEPs are met with great uncertainty and a study of a number of economical studies shows a price span between zero and 270 USD per ton of CO 2 depending on the participation or non-participation of countries in the scheme. The price-determination at the TGC market is expected to be closely related to the price at the power spot market as the RE-producers of electricity will have expectations to the total price paid for the energy produced, i.e., for the price of electricity at the spot market plus the price per kWh obtained at the green certificate mar-ket. In the Wilmar model, the TGC market can either be handled exogenously, i.e., the increase in renewable capacity and an average annual TGC price are determined outside the model, or a simple TGC module is developed, including the long-term supply functions for the most relevant renewable technologies and an overall TGC quota. Both solutions are rather simple, but to develop a more advanced model for the TGC market seems to be

  14. Identifying key factors and strategies for reducing industrial CO2 emissions from a non-Kyoto protocol member's (Taiwan) perspective

    International Nuclear Information System (INIS)

    Lin, Sue J.; Lu, I.J.; Lewis, Charles

    2006-01-01

    In this study we use Divisia index approach to identify key factors affecting CO 2 emission changes of industrial sectors in Taiwan. The changes of CO 2 emission are decomposed into emission coefficient, energy intensity, industrial structure and economic growth. Furthermore, comparisons with USA, Japan, Germany, the Netherlands and South Korea are made to have a better understanding of emission tendency in these countries and to help formulate our CO 2 reduction strategies for responding to the international calls for CO 2 cuts. The results show that economic growth and high energy intensity were two key factors for the rapid increase of industrial CO 2 emission in Taiwan, while adjustment of industrial structure was the main component for the decrease. Although economic development is important, Taiwan must keep pace with the international trends for CO 2 reduction. Among the most important strategies are continuous efforts to improve energy intensity, fuel mix toward lower carbon, setting targets for industrial CO 2 cuts, and advancing green technology through technology transfer. Also, the clean development mechanism (CDM) is expected to play an important role in the future

  15. An intensity map of hydrogen 21-cm emission at redshift z approximately 0.8.

    Science.gov (United States)

    Chang, Tzu-Ching; Pen, Ue-Li; Bandura, Kevin; Peterson, Jeffrey B

    2010-07-22

    Observations of 21-cm radio emission by neutral hydrogen at redshifts z approximately 0.5 to approximately 2.5 are expected to provide a sensitive probe of cosmic dark energy. This is particularly true around the onset of acceleration at z approximately 1, where traditional optical cosmology becomes very difficult because of the infrared opacity of the atmosphere. Hitherto, 21-cm emission has been detected only to z = 0.24. More distant galaxies generally are too faint for individual detections but it is possible to measure the aggregate emission from many unresolved galaxies in the 'cosmic web'. Here we report a three-dimensional 21-cm intensity field at z = 0.53 to 1.12. We then co-add neutral-hydrogen (H i) emission from the volumes surrounding about 10,000 galaxies (from the DEEP2 optical galaxy redshift survey). We detect the aggregate 21-cm glow at a significance of approximately 4sigma.

  16. Novel green-emitting Na2CaPO4F:Eu2+ phosphors for near-ultraviolet white light-emitting diodes

    International Nuclear Information System (INIS)

    Huang, Chien-Hao; Chen, Yen-Chi; Kuo, Te-Wen; Chen, Teng-Ming

    2011-01-01

    In this study, green-emitting Na 2 CaPO 4 F:Eu 2+ phosphors were synthesized by solid-state reactions. The excitation spectra of the phosphors showed a broad hump between 250 and 450 nm; the spectra match well with the near-ultraviolet (NUV) emission spectra of light-emitting diodes (LEDs). The emission spectrum showed an intense broad emission band centered at 506 nm. White LEDs were fabricated by integrating a 390 nm NUV chip comprising blue-emitting BaMgAl 10 O 17 :Eu 2+ , green-emitting Na 2 CaPO 4 F:0.02 Eu 2+ , and red-emitting CaAlSiN 3 :Eu 2+ phosphors into a single package; the white LEDs exhibited white light with a correlated color temperature of 5540 K, a color-rendering index of 90.75, and color coordinates (0.332, 0.365) close to those of ideal white light. - Highlights: → Novel green-emitting Na 2 CaPO 4 F:Eu 2+ phosphors were synthesized by solid-state reactions in this research. → White LEDs were fabricated by integrating a 390 nm NUV chip comprising blue-emitting BaMgAl 10 O 17 :Eu 2+ , green-emitting Na 2 CaPO 4 F:0.02Eu 2+ , and red-emitting CaAlSiN 3 :Eu 2+ phosphors into a single package. → The white LEDs exhibited white light with a correlated color temperature of 5540 K, a color-rendering index of 90.75, and color coordinates (0.332, 0.365) close to those of ideal white light.

  17. Interactions of a tradable green certificate market with a tradable permits market

    DEFF Research Database (Denmark)

    Morthorst, Poul Erik

    2001-01-01

    certificate market to promote the development of renewables. If these two instruments are brought into play at the same time, two separate markets with two individual targets will co-exist in a number of countries. With a focus on the green certificate market, this paper discusses how these two markets may...... to achieve this emission reduction. More policy instruments are on hand to pursue this objective. Frequently discussed currently is the establishing of a market for tradable permits for CO2-emissions to achieve emission reductions in the power industry. In parallel with this is the introduction of a green...... interact with each other in international trade. Three different cases are analysed: (1) A green certificate market without any tradable permits scheme, (2) a green certificate market in combination with a tradable permits scheme, based on grandfathering and, finally, (3) a green certificate market...

  18. Synthesis of green emission upconversion phosphor nanosheets (LaNb{sub 2}O{sub 7}) doped with Er{sup 3+} and Yb{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Takasugi, Soichi [Course of Science and Technology, Graduate School of Science and Technology, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Iida, Riku [Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Tomita, Koji, E-mail: tomita@keyaki.cc.u-tokai.ac.jp [Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Iwaoka, Michio [Course of Science and Technology, Graduate School of Science and Technology, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Katagiri, Kiyofumi [Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan); Osada, Minoru [International Center for Materials Nano architectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Kakihana, Masato [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2016-05-15

    LaNb{sub 2}O{sub 7}:Er{sup 3+},Yb{sup 3+} upconversion (UPC) phosphor nanosheets were prepared by exfoliating a KLaNb{sub 2}O{sub 7}:Er{sup 3+},Yb{sup 3+} layered compound. Highly crystalline nanosheets with a thickness and lateral size of 3.91 nm and approximately 300 nm, respectively, were obtained. The UPC emission intensity of the nanosheets was 7.6 times greater than that of mechanically milled particles (100–500 nm) of bulk KLaNb{sub 2}O{sub 7}:Er{sup 3+},Yb{sup 3+}. The UPC emission intensities of the nanosheets dispersed in different solvents (H{sub 2}O, D{sub 2}O, CH{sub 3}OH, CH{sub 2}Cl{sub 2}, and CCl{sub 4}) were measured, and the intensities were observed to decrease in the order CCl{sub 4}>CH{sub 2}Cl{sub 2}>D{sub 2}O>CH{sub 3}OH>H{sub 2}O. Because of the large surface area of the nanosheets, their emission intensity was decreased depending on the solvent's vibrational energy. - Highlights: • La{sub 0.45}Er{sub 0.05}Yb{sub 0.5}Nb{sub 2}O{sub 7} nanosheets were synthesized by a soft breakdown method (exfoliation). • The lateral size and thickness of the nanosheets were approximately 300 nm and approximately 3.91 nm, respectively. • The exfoliated nanosheets exhibited bright upconversion emission 7.6 times more intense than that of the milled sample (100–500 nm). • The nanosheets dispersed in solvents exhibited greatly different upconversion emission intensities depending on the solvent's vibrational energy.

  19. Near infrared emission and multicolor tunability of enhanced upconversion emission from Er{sup 3+}–Yb{sup 3+} co-doped Nb{sub 2}O{sub 5} nanocrystals embedded in silica-based nanocomposite and planar waveguides for photonics

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, Felipe Thomaz [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Av. Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, SP (Brazil); Ferrari, Jefferson Luis [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Av. Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, SP (Brazil); Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João Del Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, 36301-160 São João Del Rei, MG (Brazil); Maia, Lauro June Queiroz [Grupo Física de Materiais, Instituto de Física, Universidade Federal de Goiás, Campus II, C.P. 131, CEP 74001-970, Goiânia, GO (Brazil); Ribeiro, Sidney José Lima [Institute of Chemistry- São Paulo State University- UNESP, Araraquara, SP 14800-900 (Brazil); Ferrier, Alban [PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie Paris, 75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris (France); and others

    2016-02-15

    This work reports on the Yb{sup 3+} ion addition effect on the near infrared emission and infrared-to-visible up conversion from planar waveguides based on Er{sup 3+}–Yb{sup 3+} co-doped Nb{sub 2}O{sub 5} nanocrystals embedded in SiO{sub 2}-based nanocomposite prepared by a sol–gel process with controlled crystallization in situ. Planar waveguides and xerogels containing Si/Nb molar ratio of 90:10 up to 50:50 were prepared. Spherical-like orthorhombic or monoclinic Nb{sub 2}O{sub 5} nanocrystals were grown in the amorphous SiO{sub 2}-based host depending on the niobium content and annealing temperature, resulting in transparent glass ceramics. Crystallization process was intensely affected by rare earth content increase. Enhancement and broadening of the NIR emission has been achieved depending on the rare earth content, niobium content and annealing temperature. Effective Yb{sup 3+}→Er{sup 3+} energy transfer and a high-intensity broad band emission in the near infrared region assigned to the Er{sup 3+} ions {sup 4}I{sub 13/2}→{sup 4}I{sub 15/2} transition, and longer {sup 4}I{sub 13/2} lifetimes were observed for samples containing orthorhombic Nb{sub 2}O{sub 5} nanocrystals. Intense green and red emissions were registered for all Er{sup 3+}–Yb{sup 3+} co-doped waveguides under 980 nm excitation, assigned to {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2} (525 nm),{sup 4}S{sub 3/2}→{sup 4}I{sub 15/2} (545nm) and {sup 4}F{sub 9/2}→{sup 4}I{sub 15/2} (670 nm) transitions, respectively. Different relative green and red intensities emissions were observed, depending upon niobium oxide content and the laser power. Upconversion dynamics were determined by the photons number, evidencing that ESA or ETU mechanisms are probably occurring. The 1931 CIE chromaticity diagrams indicated interesting color tunability based on the waveguides composition and pump power. The nanocomposite waveguides are promising materials for photonic applications as optical amplifiers and

  20. Why Green Taxation

    DEFF Research Database (Denmark)

    Hjøllund, Lene; Svendsen, Gert Tinggaard

    2001-01-01

    According to economists solving environmental problems is simple. Politicians should simply impose a uniform tax on harmful emissions. However, the actual design of such green taxation shows that politicians do not follow their advice. CO2 taxation in OECD, for example, is highly differentiated...

  1. Retrofitting Housing with Lightweight Green Roof Technology in Sydney, Australia, and Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Sara Wilkinson

    2015-01-01

    Full Text Available The built environment contributes around half of total greenhouse gas emissions and with 87% of residential buildings that we will have by 2050 already built, it is vital to adopt sustainable retrofitting practices. The question is: what are the viable solutions? One answer may be green roof retrofitting. The environmental benefits include reduced operational carbon emissions, reduced urban heat island effect, increased bio-diversity, housing temperature attenuation and reduced stormwater run-off. The economic benefits are the reduced maintenance costs and lower running costs. The social gain is the creation of spaces where people have access to green areas. However, the barriers to retrofitting include the perceptions of structural adequacy, the risk of water damage, high installation and maintenance costs, as well as access and security issues. Many Australian and Brazilian residential buildings have metal sheet roofs, a lightweight material with poor thermal performance. During the summer, temperatures in Sydney and Rio de Janeiro reach 45 degrees Celsius, and in both cities, rainfall patterns are changing, with more intense downpours. Furthermore, many residential buildings are leased, and currently, tenants are restricted by the modifications that they can perform to reduce running costs and carbon emissions. This research reports on an experiment on two small-scale metal roofs in Sydney and Rio de Janeiro to assess the thermal performance of portable small-scale modules. The findings are that considerable variation in temperature was found in both countries, indicating that green roof retrofitting could lower the cooling energy demand considerably.

  2. Bluish-green BMes2-functionalized Pt(II) complexes for high efficiency PhOLEDs: impact of the BMes2 location on emission color.

    Science.gov (United States)

    Rao, Ying-Li; Schoenmakers, Dylan; Chang, Yi-Lu; Lu, Jia-Sheng; Lu, Zheng-Hong; Kang, Youngjin; Wang, Suning

    2012-09-03

    New phosphorescent Pt(II) compounds based on dimesitylboron (BMes(2))-functionalized 2-phenylpyridyl (ppy) N,C-chelate ligands and an acetylacetonato ancillary ligand have been achieved. We have found that BMes(2) substitution at the 4'-position of the phenyl ring can blue-shift the phosphorescent emission energy of the Pt(II) compound by approximately 50 nm, compared to the 5'-BMes(2) substituted analogue, without substantial loss of luminescent quantum efficiencies. The emission color of the 4'-BMes(2) substituted Pt(II) compound, Pt(Bppy)(acac) (1) can be further tuned by the introduction of a substituent group at the 3'-position of the phenyl ring. A methyl substituent red-shifts the emission energy of 1 by approximately 10 nm whereas a fluoro substituent blue-shifts the emission energy by about 6 nm. Using this strategy, three bright blue-green phosphorescent Pt(II) compounds 1, 2 and 3 with emission energy at 481, 492, and 475 nm and Φ(PL)=0.43, 0.26 and 0.25, respectively, have been achieved. In addition, we have examined the impact of BMes(2) substitution on 3,5-dipyridylbenzene (dpb) N,C,N-chelate Pt(II) compounds by synthesizing compound 4, Pt(Bdpb)Cl, which has a BMes(2) group at the 4'-position of the benzene ring. Compound 4 has a phosphorescent emission band at 485 nm and Φ(PL)=0.70. Highly efficient blue-green electroluminescent (EL) devices with a double-layer structure and compounds 1, 3 or 4 as the phosphorescent dopant have been fabricated. At 100 cd m(-2) luminance, EL devices based on 1, 3 and 4 with an external quantum efficiency of 4.7, 6.5 and 13.4%, respectively, have been achieved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. An expression for the atomic fluorescence and thermal-emission intensity under conditions of near saturation and arbitrary self-absorption

    NARCIS (Netherlands)

    Omenetto, N.; Winefordner, J.D.; Alkemade, C.T.J.

    An expression for the effect of self-absorption on the fluorescence and thermal emission intensities is derived by taking into account stimulated emission. A simple, idealized case is considered, consisting of a two level atomic system, in a flame, homogeneous with respect to temperature and

  4. Impacts of EU carbon emission trade directive on energy-intensive industries. Indicative micro-economic analyses

    International Nuclear Information System (INIS)

    Lund, Peter

    2007-01-01

    The cost impacts from the European emission trading system (ETS) on energy-intensive manufacturing industries have been investigated. The effects consist of direct costs associated to the CO 2 reduction requirements stated in the EU Directive, and of indirect costs of comparable magnitude that originate from a higher electricity price triggered by the ETS in the power sector. The total cost impacts remain below 2% of the production value for most industries within the ETS in the Kyoto period. In the post-Kyoto phase assuming a 30% CO 2 reduction, the total cost impact may raise up to 8% of production value in the heaviest industry sectors. In steel and cement industries the cost impacts are 3-4 fold compared to the least affected pulp and paper and oil refining. Electricity-intensive industries outside the ETS will also be affected, for example in aluminum and chlorine production the indirect cost impacts from ETS could come up to 10% of production value already in the Kyoto period. As industry sectors are affected differently by the ETS some correcting mechanisms may be worthwhile to consider in securing the operation of the most electricity-intensive sectors, e.g. balancing taxation schemes that may include as income source a levy on the wind-fall profits of the power sector due to ETS. A future improvement in ETS for industries within the scheme could be scaling of the emission reduction requirement so that the relative total emission reduction costs are at about the same level. (author)

  5. Impact of heat stress on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species

    Science.gov (United States)

    Kleist, E.; Mentel, T. F.; Andres, S.; Bohne, A.; Folkers, A.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Wildt, J.

    2012-07-01

    Changes in the biogenic volatile organic compound (BVOC) emissions from European beech, Palestine oak, Scots pine, and Norway spruce exposed to heat stress were measured in a laboratory setup. In general, heat stress decreased the de novo emissions of monoterpenes, sesquiterpenes and phenolic BVOC. Decreasing emission strength with heat stress was independent of the tree species and whether the de novo emissions being constitutive or induced by biotic stress. In contrast, heat stress induced emissions of green leaf volatiles. It also amplified the release of monoterpenes stored in resin ducts of conifers probably due to heat-induced damage of these resin ducts. The increased release of monoterpenes could be strong and long lasting. But, despite of such strong monoterpene emission pulses, the net effect of heat stress on BVOC emissions from conifers can be an overall decrease. In particular during insect attack on conifers the plants showed de novo emissions of sesquiterpenes and phenolic BVOC which exceeded constitutive monoterpene emissions from pools. The heat stress induced decrease of these de novo emissions was larger than the increased release caused by damage of resin ducts. We project that global change induced heat waves may cause increased BVOC emissions only in cases where the respective areas are predominantly covered with conifers that do not emit high amounts of sesquiterpenes and phenolic BVOC. Otherwise the overall effect of heat stress will be a decrease in BVOC emissions.

  6. The implications of the historical decline in US energy intensity for long-run CO2 emission projections

    International Nuclear Information System (INIS)

    Sue Wing, Ian; Eckaus, Richard S.

    2007-01-01

    This paper analyzes the influence of the long-run decline in US energy intensity on projections of energy use and carbon emissions to the year 2050. We build on our own recent work which decomposes changes in the aggregate US energy-GDP ratio into shifts in sectoral composition (structural change) and adjustments in the energy demand of individual industries (intensity change), and identifies the impact on the latter of price-induced substitution of variable inputs, shifts in the composition of capital and embodied and disembodied technical progress. We employ a recursive-dynamic computable general equilibrium (CGE) model of the US economy to analyze the implications of these findings for future energy use and carbon emissions. Comparison of the simulation results against projections of historical trends in GDP, energy use and emissions reveals that the range of values for the rate of autonomous energy efficiency improvement (AEEI) conventionally used in CGE models is consistent with the effects of structural changes at the sub-sector level, rather than disembodied technological change. Even so, our results suggest that US emissions may well grow faster in the future than in the recent past

  7. Investigating trade-offs between the operating cost and green house gas emissions from water distribution systems

    NARCIS (Netherlands)

    Menke, Ruben; Kadehjian, K; Abraham, E.; Stoianov, Ivan

    2017-01-01

    For electricity grids with an increasing share of intermittent renewables, the power generation mix can have significant daily variations. This leads to time-dependent emission intensities and volatile electricity prices in the day-ahead and spot market tariffs that can be better utilised by energy

  8. Photoluminescence characteristics of Pb-doped, molecular-beam-epitaxy grown ZnSe crystal layers

    International Nuclear Information System (INIS)

    Mita, Yoh; Kuronuma, Ryoichi; Inoue, Masanori; Sasaki, Shoichiro; Miyamoto, Yoshinobu

    2004-01-01

    The characteristic green photoluminescence emission and related phenomena in Pb-doped, molecular-beam-epitaxy (MBE)-grown ZnSe crystal layers were investigated to explore the nature of the center responsible for the green emission. The intensity of the green emission showed a distinct nonlinear dependence on excitation intensity. Pb-diffused polycrystalline ZnSe was similarly examined for comparison. The characteristic green emission has been observed only in MBE-grown ZnSe crystal layers with moderate Pb doping. The results of the investigations on the growth conditions, luminescence, and related properties of the ZnSe crystal layers suggest that the green emission is due to isolated Pb replacing Zn and surrounded with regular ZnSe lattice with a high perfection

  9. Tuning from green to red the upconversion emission of Y{sub 2}O{sub 3}:Er{sup 3+}-Yb{sup 3+} nanophosphors

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Torres, L.A. [Centro de Investigaciones en Optica, Grupo de Espectroscopia de Materiales Avanzados y Nanoestructurados (GEMANA), A. P. 1-948, Leon, GTO (Mexico); Salas, P.; Resendiz-L, E.; Rodriguez-Gonzalez, C. [Universidad Nacional Autonoma de Mexico, Centro de Fisica Aplicada y Tecnologia Avanzada, Apartado Postal 1-1010, Queretaro, QRO (Mexico); Oliva, J. [Conacyt-Facultad Ciencias Quimicas Universidad Autonoma de Coahuila, Saltillo, Coahuila (Mexico); Meza, O. [Benemerita Universidad Autonoma de Puebla, Instituto de Fisica, A.P. J-48, Centro Historico, PUE (Mexico)

    2017-01-15

    In this work, the structural, morphological and luminescent properties of Y{sub 2}O{sub 3} nanophosphors doped with Er{sup 3+} (1 mol%) and different Yb{sup 3+} concentrations (2-12 mol%) have been studied. Those nanophosphors were synthesized using a simple hydrothermal method. XRD analysis indicates that all the samples presented a pure cubic phase even for Yb concentrations as high as 12 mol%. In addition, SEM images show nanoparticles with quasi-spherical shapes with average sizes in the range of 300-340 nm. Photoluminescence measurements obtained after excitation at 967 nm revealed that our samples have strong green (563 nm) and red emissions (660 nm) corresponding to {sup 2}H{sub 11/2} + {sup 4}S{sub 3/2} → {sup 4}I{sub 15/2} and {sup 4}F{sub 9/2} → {sup 4}I{sub 15/2} transitions of Er{sup 3+} ions, respectively. We also observed that the green band is quenched and the red emission enhanced as the Yb concentration increases. In consequence, the CIE coordinates changed from (0.35, 0.64) in the green region to (0.59, 0.39) in the red region. Thus, the tuning properties of Y{sub 2}O{sub 3} nanophosphors suggest that they are good candidates for applications in lighting. (orig.)

  10. Sourcewise represented green's function of the circular waveguide

    International Nuclear Information System (INIS)

    Prijmenko, S.D.; Bondarenko, L.A.

    2007-01-01

    Singular part of the Green's function of unbounded space is singled out in explicit form and contains all singularities, including a delta-shaped singularity. The problem of construction of Green's function for a field is solved, as a problem for diffraction of potential and rotational components electric field intensity of a point current source on the circular waveguide walls. The singling out of the electric field intensity singularity in an explicit form about a source enables to develop an effective algorithm of Green's function calculation at any distance between the source point and observation point in a circular waveguide

  11. Build green and conventional materials off-gassing tests: A final report

    Energy Technology Data Exchange (ETDEWEB)

    Piersol, P.

    1995-12-31

    Build Green is a certification program that will identify and label building products with a known recycled content. The introduction of these recycled materials has raised the concern that they may emit more indoor pollutants than conventional materials. This study addresses that concern by analyzing Build Green and conventional materials to assess their potential for off-gassing. The study involved emission tests of 37 materials including carpets, carpet undercushions, structural lumber, foundation material, insulation, drywall, fiberboard, counter tops, and cabinetry. The results presented in this report include comparisons of Build Green and conventional materials in terms of emissions of volatile organic compounds and formaldehyde, the material loading ratio, and discussion of the specific sources of the emissions.

  12. A model of greenhouse gas emissions from the management of turf on two golf courses.

    Science.gov (United States)

    Bartlett, Mark D; James, Iain T

    2011-11-01

    An estimated 32,000 golf courses worldwide (approximately 25,600 km2), provide ecosystem goods and services and support an industry contributing over $124 billion globally. Golf courses can impact positively on local biodiversity however their role in the global carbon cycle is not clearly understood. To explore this relationship, the balance between plant–soil system sequestration and greenhouse gas emissions from turf management on golf courses was modelled. Input data were derived from published studies of emissions from agriculture and turfgrass management. Two UK case studies of golf course type were used, a Links course (coastal, medium intensity management, within coastal dune grasses) and a Parkland course (inland, high intensity management, within woodland).Playing surfaces of both golf courses were marginal net sources of greenhouse gas emissions due to maintenance (Links −2.2 ± 0.4 Mg CO2e ha(−1) y(−1); Parkland − 2.0 ± 0.4 Mg CO2e ha(−1) y(−1)). A significant proportion of emissions were from the use of nitrogen fertiliser, especially on tees and greens such that 3% of the golf course area contributed 16% of total greenhouse gas emissions. The area of trees on a golf course was important in determining whole-course emission balance. On the Parkland course, emissions from maintenance were offset by sequestration from turfgrass, and trees which comprised 48% of total area, resulting in a net balance of −5.4 ± 0.9 Mg CO2e ha(−1) y(−1). On the Links course, the proportion of trees was much lower (2%) and sequestration from links grassland resulted in a net balance of −1.6 ± 0.3 Mg CO2e ha(−1) y(−1). Recommendations for golf course management and design include the reduction of nitrogen fertiliser, improved operational efficiency when mowing, the inclusion of appropriate tree-planting and the scaling of component areas to maximise golf course sequestration capacity. The findings are transferrable to the management and design of

  13. Plasma ion emission from high intensity picosecond laser pulse interactions with solid targets

    International Nuclear Information System (INIS)

    Fews, A.P.; Norreys, P.A.; Beg, F.N.; Bell, A.R.; Dangor, A.E.; Danson, C.N.; Lee, P.; Rose, S.J.

    1994-01-01

    The fast ion emission from high intensity, picosecond laser plasmas has been measured to give the characteristic ion energy and the amount of laser energy transferred to ions with energies ≥100 keV/nucleon as a function of incident intensity. The characteristic ion energy varies from 0.2 to 1.3 MeV over the range 2.0x10 17 --2.0x10 18 W cm -2 . Ten percent of the laser energy is transferred into MeV ions at 2.0x10 18 W cm -2 . Calculations of stopping power in high density materials are presented that show that fast ions cannot be ignored in modeling fast ignitor schemes

  14. Blue and green emissions with high color purity from nanocrystalline Ca2Gd8Si6O26:Ln (Ln = Tm or Er) phosphors

    International Nuclear Information System (INIS)

    Seeta Rama Raju, G.; Park, Jin Young; Jung, Hong Chae; Pavitra, E.; Moon, Byung Kee; Jeong, Jung Hyun; Yu, Jae Su; Kim, Jung Hwan; Choi, Haeyoung

    2011-01-01

    Graphical abstract: Highlights: → Nanocrystalline Ca 2 Gd 8 Si 6 O 26 (CGS):Tm 3+ and CGS:Er 3+ phosphors were prepared by solvothermal reaction method. → The visible luminescence properties of phosphors were investigated by exciting with ultraviolet (UV) or near-UV light and low voltage electron beam (0.5-5 kV). → The photoluminescence spectra of CGS:Tm 3+ under 359 nm excitation and CGS:Er 3+ under 380 nm excitation showed the strong blue ( 1 D 2 → 3 F 4 at 456 nm) and green ( 4 S 3/2 → 4 I 15/2 at 550 nm) colors with the color purity 87% and 96%, respectively → The low accelerating voltage cathodoluminescence spectra of CGS:Tm 3+ and CGS:Er 3+ showed the strong blue and green emissions with the high color purity 95% and 96%, respectively. → The obtained results are hint at the promising applications to produce high quality LEDs and FED devices. - Abstract: Blue and green light emissive nanocrystalline Ca 2 Gd 8 Si 6 O 26 (CGS):Tm 3+ and CGS:Er 3+ phosphors with high color purity were prepared by solvothermal reaction method. The structural and morphological properties of these phosphors were evaluated by the powder X-ray diffraction (XRD) and scanning electron microscopy, respectively. From the XRD results, Tm 3+ :CGS and Er 3+ :CGS phosphors had the characteristic peaks of oxyapatite in the hexagonal lattice structure. The visible luminescence properties of phosphors were obtained by ultraviolet (UV) or near-UV light and low voltage electron beam (0.5-5 kV) excitation. The photoluminescence and cathodoluminescence properties were investigated by changing the variation of Tm 3+ or Er 3+ concentrations and the acceleration voltage, respectively. The CGS:Tm 3+ phosphors exhibited the blue emission due to 1 D 2 → 3 F 4 transition, while the CGS:Er 3+ phosphors showed the green emission due to 4 S 3/2 → 4 I 15/2 transition. The color purity and chromaticity coordinates of the fabricated phosphors are comparable to or better than those of standard

  15. Review of plants to mitigate particulate matter, ozone as well as nitrogen dioxide air pollutants and applicable recommendations for green roofs in Montreal, Quebec.

    Science.gov (United States)

    Gourdji, Shannon

    2018-05-28

    In urbanized regions with expansive impervious surfaces and often low vegetation cover, air pollution due to motor vehicles and other combustion sources, is a problem. The poor air quality days in Montreal, Quebec are mainly due to fine particulate matter and ozone. Businesses using wood ovens are a source of particulates. Careful vegetation selection and increased green roof usage can improve air quality. This paper reviews different green roofs and the capability of plants in particulate matter (PM), ozone (O 3 ) as well as nitrogen dioxide (NO 2 ) level reductions. Both the recommended green roof category and plants to reduce these pollutants in Montreal's zone 5 hardiness region are provided. Green roofs with larger vegetation including shrubs and trees, or intensive green roofs, remove air pollutants to a greater extent and are advisable to implement on existing, retrofitted or new buildings. PM is most effectively captured by pines. The small Pinus strobus 'Nana', Pinus mugho var. pumilio, Pinus mugho 'Slowmound' and Pinus pumila 'Dwarf Blue' are good candidates for intensive green roofs. Drought tolerant, deciduous broadleaved trees with low biogenic volatile organic compound emissions including Japanese Maple or Acer palmatum 'Shaina' and 'Mikawa-Yatsubusa' are options to reduce O 3 levels. Magnolias are tolerant to NO 2 and it is important in their metabolic pathways. The small cold-tolerant Magnolia 'Genie' is a good option to remove NO 2 in urban settings and to indirectly reduce O 3 formation. Given the emissions by Montreal businesses' wood ovens, calculations performed based on their respective complex roof areas obtained via Google Earth Pro indicates 88% Pinus mugho var. pumilio roof coverage can annually remove 92.37 kg of PM 10 of which 35.10 kg is PM 2.5 . The removal rates are 4.00 g/m 2 and 1.52 g/m 2 for PM 10 and PM 2.5 , respectively. This paper provides insight to addressing air pollution through urban rooftop greening. Copyright

  16. Discussion Tourism Industry on Energy of Green Tourism and Green Hotel

    Directory of Open Access Journals (Sweden)

    Wang Zeyung

    2016-01-01

    Full Text Available Tourism industry is closely linked with the natural environment but with a highly indivisibility of symbiotic relationship. Green tourism and green tourism hotel are not only the spindle stage of development industry. The environmental protection is also an environmental conservation and sustainable development of substantive liability demonstration. The study is also belong to the substance RDF itself, so we can call “clean energy”. The raw materials came from agricultural waste through proper blending ratio and control technology, after PP14 adhesive extruded through the fluidized bed pyrolysis cracking process to burn stability. The recovery can also be used as fuel volatile process of drying and gasification. However, in the actual economic cost of the test running the hotel industry can reduce the cost per MJ USD $ 0.0082, more economical than coal expenses 23.17% of the fuel. Therefore, green hotel through biomass fuels RDF as clean fuels can further reduce carbon emissions to reach the green hotel of expectations.

  17. Urban greening: environmentalism or marketable aesthetics

    Directory of Open Access Journals (Sweden)

    Dominic Bowd

    2015-11-01

    Full Text Available In recent decades, urban greening has been conceptualized, and subsequently marketed, as a way of making cities more sustainable. Urban greening has been actualized in large global cities, regional centers, and also in many cities in the Global South, where it has been touted as a potential solution to the urban heat island (UHI effect and as a way of reducing carbon dioxide (CO2 emissions. This involves planting street trees and installing curbside gardens, bioswales, green walls, green roofs, and the redevelopment of former industrial zones into urban parklands. This paper questions the assumption that this “greening” of the city must necessarily lead to positive environmental impacts. While such infrastructure itself might be constructed with environmental principles in mind, wider questions concerning the production of such landscapes, and the consumption-orientated lifestyles of those who inhabit these urban landscapes, are seldom considered. Moreover, green aesthetics and environmental sustainability are not always as mutually inclusive as the concepts might suggest, as aesthetics are often a dominating influence in the process of planning green urban environments. This review reorients the focus on the way in which the UHI effect and CO2 emissions have been framed by utilizing Foucault's (1980 “regimes of truth,” where environmental issues are contextualized within the “colonised lifeworld” of free-market forces. This review suggests that for sustainability to be achieved in urban contexts, the process of urban greening must move beyond quick techno-fixes through engagement in the co-production of knowledge.

  18. Introduction: Green Building Handbook

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-08-01

    Full Text Available By recognising the specific environmental challenges facing South Africa, mindful of the government‘s commitment to reducing South Africa‘s Greenhouse gas emissions, and acknowledging the need to build social cohesion, the Green Building Handbook...

  19. IMF control of cusp proton emission intensity and dayside convection: implications for component and anti-parallel reconnection

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    2003-04-01

    Full Text Available We study a brightening of the Lyman-a emission in the cusp which occurred in response to a short-lived south-ward turning of the interplanetary magnetic field (IMF during a period of strongly enhanced solar wind plasma concentration. The cusp proton emission is detected using the SI-12 channel of the FUV imager on the IMAGE spacecraft. Analysis of the IMF observations recorded by the ACE and Wind spacecraft reveals that the assumption of a constant propagation lag from the upstream spacecraft to the Earth is not adequate for these high time-resolution studies. The variations of the southward IMF component observed by ACE and Wind allow for the calculation of the ACE-to-Earth lag as a function of time. Application of the derived propagation delays reveals that the intensity of the cusp emission varied systematically with the IMF clock angle, the relationship being particularly striking when the intensity is normalised to allow for the variation in the upstream solar wind proton concentration. The latitude of the cusp migrated equatorward while the lagged IMF pointed southward, confirming the lag calculation and indicating ongoing magnetopause reconnection. Dayside convection, as monitored by the SuperDARN network of radars, responded rapidly to the IMF changes but lagged behind the cusp proton emission response: this is shown to be as predicted by the model of flow excitation by Cowley and Lockwood (1992. We use the numerical cusp ion precipitation model of Lockwood and Davis (1996, along with modelled Lyman-a emission efficiency and the SI-12 instrument response, to investigate the effect of the sheath field clock angle on the acceleration of ions on crossing the dayside magnetopause. This modelling reveals that the emission commences on each reconnected field line 2–2.5 min after it is opened and peaks 3–5 min after it is opened. We discuss how comparison of the Lyman-a intensities with oxygen emissions observed simultaneously by the SI-13

  20. Asymmetries in angular distributions of nucleon emission intensity in high energy hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1982-01-01

    Asymmetry in nucleon emission intensity angular distributions relatively to the hadron deflection plane and to two planes normal to it and related to it uniquely is analyzed, using appropriate experimental data on pion-xenon nucleus collisions at 3.5 GeV/c momentum. Quantative characteristics of the asymmetries found are presented in tables and on figures

  1. Tunable emission and the systematic study on energy-transfer properties of Ce3+- and Tb3+-co-doped Sr3(PO4)2 phosphors

    International Nuclear Information System (INIS)

    Liu, Zhijun

    2015-01-01

    An emitting color tunable phosphor Sr 3 (PO 4 ) 2 :Ce 3+ , Tb 3+ was synthesized by the traditional high-temperature solid-state reaction method. The photoluminescence and energy-transfer (ET) properties of Ce 3+ - and Tb 3+ -doped Sr 3 (PO 4 ) 2 host were studied in detail. The obtained phosphors show both a blue emission from Ce 3+ and a yellowish green emission from Tb 3+ with considerable intensity under ultraviolet (UV) excitation (∝311 nm). When the content of Ce 3+ was fixed at 0.03, the emission chromaticity coordinates could be adjusted from blue to green region by tuning the contents of Tb 3+ ions with the aid of ET process. The critical distance between Ce 3+ and Tb 3+ is 14.69 A. The ET mechanism from Ce 3+ to Tb 3+ ions was identified with dipole-dipole interaction. The obtained phosphor exhibits a strong excitation in UV spectral region and high-efficient ET from Ce 3+ to Tb 3+ ions. It may find applications as a green light-emitting UV-convertible phosphor in white LED devices. (orig.)

  2. Radio Emissions from Magnetopause Reconnection Events

    Science.gov (United States)

    Fung, S. F.; Kunze, J.

    2017-12-01

    A new terrestrial radio emission has recently been identified and attributed to a source connected to the magnetopause magnetic reconnection process [Fung et al., 2013]. Known as the terrestrial myriametric radio burst (TMRB), the new emission was observed by both the IMAGE and Geotail spacecraft during a period of northward interplanetary magnetic field (IMF Bz >0) as a temporal and isolated burst of emission with perhaps well-defined or directed emission cones. Spectral and spin-modulation analyses showed that both the intensity and source direction of the emission are sensitive to the variability of the IMF. The strong control of the emission by the IMF suggests that the emission is connected to the magnetopause reconnection process. A number of potential TMRB events have now been identified by surveying all the dynamic spectrogram data obtained by the IMAGE, Geotail, Cluster, and Wind spacecraft in 5/2000-12/2005. This paper will present our analyses of how the spectral signatures and beaming characteristics of the emissions might depend on the IMF orientations, and thus their likelihood of being TMRBs. Special emphasis will be on events associated with northward and southward IMF in order to determine if TMRBs might be generally produced from magnetopause reconnection processes. Fung, S. F., K. Hashimoto, H. Kojima, S. A. Boardsen, L. N. Garcia, H. Matsumoto, J. L. Green, and B. W. Reinisch (2013), Terrestrial myriametric radio burst observed by IMAGE and Geotail satellites, J. Geophys. Res. Space Physics, 118, doi:10.1002/jgra.50149.

  3. CO2 emissions abatement in the Nordic carbon-intensive industry – An end-game in sight?

    International Nuclear Information System (INIS)

    Rootzén, Johan; Johnsson, Filip

    2015-01-01

    Analysing different future trajectories of technological developments we assess the prospects for Nordic carbon-intensive industries to significantly reduce direct CO 2 emissions in the period 2010–2050. This analysis covers petroleum refining, integrated iron and steel production, and cement manufacturing in the four largest Nordic countries of Denmark, Finland, Norway, and Sweden. Our results show that the implementation of currently available abatement measures will not be enough to meet the ambitious emissions reduction targets envisaged for the Year 2050. We show how an extensive deployment of CCS (carbon capture and storage) could result in emissions reductions that are in line with such targets. However, large-scale introduction of CCS would come at a significant price in terms of energy use and the associated flows of captured CO 2 would place high requirements on timely planning of infrastructure for the transportation and storage of CO 2 . Further the assessment highlights the importance of, especially in the absence of successful deployment of CO 2 capture, encouraging increased use of biomass in the cement and integrated iron and steel industries, and of promoting the utilisation of alternative raw materials in cement manufacturing to complement efforts to improve energy efficiency. - Highlights: • Scenarios exploring the potential for reducing CO 2 emissions in Nordic industry. • Current measures not sufficient to comply with stringent emission reduction targets. • CCS enables carbon-intensive industries to comply with stringent reduction targets. • CCS would come at a high price in terms of energy use. • Without CO 2 capture increased use of biomass and alternative raw materials vital

  4. Preliminary results of rocket attitude and auroral green line emission rate in the DELTA campaign

    Science.gov (United States)

    Iwagami, Naomoto; Komada, Sayaka; Takahashi, Takao

    2006-09-01

    The attitude of a sounding rocket launched in the DELTA (Dynamics and Energetics of the Lower Thermosphere in Aurora) campaign was determined with IR horizon sensors and geomagnetic sensors. Since the payload was separated into two portions, two sets of attitude sensors were needed. A new IR sensor was developed for the present experiment, and found the zenith-angle of the spin-axis of the rocket with an accuracy of 2°. By combining information obtained by both type of sensors, the absolute attitudes were determined. The auroral green line emission rate was measured by a photometer on board the same rocket launched under active auroral conditions, and the energy flux of the auroral particle precipitation was estimated.

  5. Advanced technology development reducing CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sup

    2010-09-15

    Responding to Korean government policies on green growth and global energy/ environmental challenges, SK energy has been developing new technologies to reduce CO2 emissions by 1) CO2 capture and utilization, 2) efficiency improvement, and 3) Li-ion batteries. The paper introduces three advanced technologies developed by SK energy; GreenPol, ACO, and Li-ion battery. Contributing to company vision, a more energy and less CO2, the three technologies are characterized as follows. GreenPol utilizes CO2 as a feedstock for making polymer. Advanced Catalytic Olefin (ACO) reduces CO2 emission by 20% and increase olefin production by 17%. Li-ion Batteries for automotive industries improves CO2 emission.

  6. Conversion of green emission into white light in Gd{sub 2}O{sub 3} nanophosphors

    Energy Technology Data Exchange (ETDEWEB)

    Jayasimhadri, M.; Ratnam, B.V. [Department of Physics, Changwon National University, Changwon, 641-773 (Korea, Republic of); Jang, Kiwan, E-mail: kwjang@changwon.ac.k [Department of Physics, Changwon National University, Changwon, 641-773 (Korea, Republic of); Lee, Ho Sueb [Department of Physics, Changwon National University, Changwon, 641-773 (Korea, Republic of); Yi, Soung-Soo [Department of Photonics, Silla University, Busan (Korea, Republic of); Jeong, Jung-Hyun [Department of Physics, Pukyong National University, Busan (Korea, Republic of)

    2010-09-01

    Gd{sub 2}O{sub 3} nanophosphors were prepared by combustion synthesis with and without doping of Dy{sup 3+} ions. The X-ray powder diffraction patterns indicate that as-prepared Gd{sub 2}O{sub 3} and 0.1 mol% Dy{sub 2}O{sub 3} doped Gd{sub 2}O{sub 3} nanophosphors have monoclinic structures. The transmission electron microscope (TEM) studies revealed that the as-prepared phosphors had an average crystallite sizes around 37 nm. The excitation and emission properties have been investigated for Dy{sup 3+} doped and undoped Gd{sub 2}O{sub 3} nanophosphors. New emission bands were observed in the visible region for Gd{sub 2}O{sub 3} nanophosphors without any rare earth ion doping under different excitations. A tentative mechanism for the origin of luminescence from Gd{sub 2}O{sub 3} host was discussed. Emission properties also measured for 0.1 mol% Dy{sup 3+} doped Gd{sub 2}O{sub 3} nanophosphors and found the characteristic Dy{sup 3+} visible emissions at 489 and 580 nm due to {sup 4}F{sub 9/2} {yields} {sup 6}H{sub 15/2} and {sup 4}F{sub 9/2} {yields} {sup 6}H{sub 13/2} transitions, respectively. The chromaticity coordinates were calculated based on the emission spectra of Dy{sup 3+} doped and undoped Gd{sub 2}O{sub 3} nanophosphors and analyzed with Commission Internationale de l'Eclairage (CIE) chromaticity diagram. These nanophosphors exhibit green color in undoped Gd{sub 2}O{sub 3} and white color after adding 0.1 mol% Dy{sub 2}O{sub 3} to Gd{sub 2}O{sub 3} nanophosphors under UV excitation. These phosphors could be a promising phosphor for applications in flat panel displays.

  7. The Little Green Data Book 2014

    OpenAIRE

    World Bank

    2014-01-01

    The Little Green Data Book is a pocket-sized ready reference on key environmental data for over 200 countries. Key indicators are organized under the headings of agriculture, forestry, biodiversity, oceans, energy, emission and pollution, and water and sanitation. For the second year, The Little Green Data Book presents a new set of ocean-related indicators, highlighting the role of oceans in economic development.

  8. The Little Green Data Book 2015

    OpenAIRE

    World Bank

    2015-01-01

    The Little Green Data Book 2015 is a pocket-sized ready reference on key environmental data for over 200 countries. Key indicators are organized under the headings of agriculture, forestry, biodiversity, oceans, energy, emission and pollution, and water and sanitation. For the third year, The Little Green Data Book presents a new set of ocean-related indicators, highlighting the role of oceans in economic development.

  9. The Little Green Data Book 2013

    OpenAIRE

    World Bank

    2013-01-01

    The Little Green Data Book is a pocket-sized ready reference on key environmental data for over 200 countries. Key indicators are organized under the headings of agriculture, forestry, biodiversity, oceans, energy, emission and pollution, and water and sanitation. The 2013 edition of The Little Green Data Book introduces a new set of ocean-related indicators, highlighting the role of oceans in economic development.

  10. Why Green Taxation

    DEFF Research Database (Denmark)

    Hjøllund, Lene; Svendsen, Gert Tinggaard

    2001-01-01

    According to economists solving environmental problems is simple. Politicians should simply impose a uniform tax on harmful emissions. However, the actual design of such green taxation shows that politicians do not follow their advice. CO2 taxation in OECD, for example, is highly differentiated...... and much in favour of industry. In fact, CO2 tax rates for industry are, on average, six times lower than those for households. We argue that the reason for this tax differentiation is that industry, in contrast to households, has a strong capability to lobby. Therefore, green taxation is effectively...... blocked and the desired environmental results are not being achieved. Why then is green taxation persistently applied in relation to industry? We argue that strong fiscal incentives drive this policy choice at the expense of environmental concerns because it allows environmental bureaucracies to budget-maximize....

  11. Ultra-violet emission in Ho:ZBLAN fiber

    International Nuclear Information System (INIS)

    Kowalska, M.; Klocek, G.; Piramidowicz, R.; Malinowski, M.

    2004-01-01

    We report on the short wavelength (green, blue, and ultra-violet (UV)) emission in trivalent holmium doped fluoro-zirconate fiber (Ho 3+ :ZBLAN) under direct and upconversion pumping. Efficient red to UV upconversion has been observed using 647 nm cw pumping by krypton ion laser. A close to cubic UV signal intensity dependence on incident red pump power was determined, confirming the three-photon character of the observed process. The responsible upconversion mechanisms were investigated and shown to be excited state absorption (ESA) via low-lying 5 I 7 and 5 I 6 sates. Dynamics of the involved excited states have been studied under pulsed laser excitation

  12. Planck intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization

    DEFF Research Database (Denmark)

    Cardoso, J. F.; Delabrouille, J.; Ganga, K.

    2015-01-01

    )% from 353 to 70 GHz. We discuss this result within the context of existing dust models. The decrease in p could indicate differences in polarization efficiency among components of interstellar dust (e.g., carbon versus silicate grains). Our observational results provide inputs to quantify and optimize......Planck has mapped the intensity and polarization of the sky at microwave frequencies with unprecedented sensitivity. We use these data to characterize the frequency dependence of dust emission. We make use of the Planck 353 GHz I, Q, and U Stokes maps as dust templates, and cross-correlate them...... of the cosmic microwave background. We use a mask that focuses our analysis on the diffuse interstellar medium at intermediate Galactic latitudes. We determine the spectral indices of dust emission in intensity and polarization between 100 and 353 GHz, for each sky patch. Both indices are found to be remarkably...

  13. Plasmon mediated enhancement and tuning of optical emission properties of two dimensional graphitic carbon nitride nanosheets.

    Science.gov (United States)

    Bayan, Sayan; Gogurla, Narendar; Midya, Anupam; Singha, Achintya; Ray, Samit K

    2017-12-01

    We demonstrate surface plasmon induced enhancement and tunablilty in optical emission properties of two dimensional graphitic carbon nitride (g-C 3 N 4 ) nanosheets through the attachment of gold (Au) nanoparticles. Raman spectroscopy has revealed surface enhanced Raman scattering that arises due to the combined effect of the charge transfer process and localized surface plasmon induced enhancement in electromagnetic field, both occurring at the nanoparticle-nanosheet interface. Photoluminescence studies suggest that at an optimal concentration of nanoparticles, the emission intensity can be enhanced, which is maximum within the 500-525 nm region. Further, the fabricated electroluminescent devices reveal that the emission feature can be tuned from bluish-green to red (∼160 nm shift) upon attaching Au nanoparticles. We propose that the π*→π transition in g-C 3 N 4 can trigger surface plasmon oscillation in Au, which subsequently increases the excitation process in the nanosheets and results in enhanced emission in the green region of the photoluminescence spectrum. On the other hand, electroluminescence of g-C 3 N 4 can induce plasmon oscillation more efficiently and thus can lead to red emission from Au nanoparticles through the radiative damping of particle plasmons. The influence of nanoparticle size and coverage on the emission properties of two dimensional g-C 3 N 4 , nanosheets has also been studied in detail.

  14. Systems scale assessment of the sustainability implications of emerging green initiatives

    International Nuclear Information System (INIS)

    Tiwary, Abhishek; Namdeo, Anil; Fuentes, Jose; Dore, Anthony; Hu, Xiao-Ming; Bell, Margaret

    2013-01-01

    This paper demonstrates a systems framework for assessment of environmental impacts from ‘green initiatives’, through a case study of meso-scale, anthropogenic–biogenic interactions. The following cross-sectoral green initiatives, combining the emerging trends in the North East region of the United Kingdom, have been considered – increasing the vegetation cover; decarbonising road transport; decentralising energy production through biomass plants. Two future scenarios are assessed – Baseline 2 020 (projected emissions from realisation of policy instruments); Aggressive 2 020 (additional emissions from realisation of green initiatives). Resulting trends from the Aggressive 2 020 scenario suggest an increase in emissions of pollutant precursors, including biogenic volatile organic compounds and nitrogen dioxide over the base case by up to 20% and 5% respectively. This has implications for enhanced daytime ozone and secondary aerosols formation by up to 15% and over 5% respectively. Associated land cover changes show marginal decrease of ambient temperature but modest reductions in ammonia and ambient particulates. -- Highlights: • A systems scale assessment framework for emerging green initiatives is proposed. • Interactions between urban greenspace, greener vehicles and bioenergy system examined. • Altering future emissions profile enhances synthesis of photochemical precursors. • Incorporating whole-system evaluation deemed vital for well-rounded sustainability. -- Systems scale implication for air pollution was assessed across three sectors of emerging green initiatives-energy, transport and ecosystem

  15. Emission spectra from super-critical rippled plasma density profiles illuminated by intense laser pulses

    International Nuclear Information System (INIS)

    Ondarza R, R.; Boyd, T.J.M.

    2000-01-01

    High-order harmonic emission from the interaction of intense femtosecond laser pulses with super-critical plasmas characterized by a rippled density profile at the vacuum-plasma interface has been observed from particle-in-cell (PIC) simulations. A plasma simulation box several laser wavelengths in extent was prepared with a rippled density of a fraction of a laser wavelength. Emission spectra at the very initial stage of the interaction were recorded with spectral characteristics dissimilar to those previously reported in the literature. The reflected light spectra were characterized by a strong emission at the plasma line and by a series of harmonics at multiples of the ripple frequency. Harmonic spectra were obtained for different values of the plasma ripple frequency. In all cases the harmonics were emitted at the precise multiple harmonic number of the ripple frequency. Another important feature apparent from the simulations was that the emission peaks appeared to havea complex structure as compared with those for unrippled plasmas. For the cases when the plasma was rippled the peaks that corresponded to the multiples of the rippled density typically showed a double peak for the first few harmonics. The reflected emission plots for the main laser pulse showed strong emission at the plasma frequency and at multiples of that frequency as reported by the authors in the literature. (Author)

  16. Evaluation of green house gas emissions models.

    Science.gov (United States)

    2014-11-01

    The objective of the project is to evaluate the GHG emissions models used by transportation agencies and industry leaders. Factors in the vehicle : operating environment that may affect modal emissions, such as, external conditions, : vehicle fleet c...

  17. Sputtering and emission intensity of cast irons with different metallurgical structures in a Grimm glow lamp

    International Nuclear Information System (INIS)

    Fujita, M.; Kashima, J.; Naganuma, K.

    1981-01-01

    The cathodic sputtering and emission intensities for the white, gray and malleable cast irons in the Grimm glow lamp are discussed. The intensities of the Fe 247.98-nm line for the samples of the three types depend linearly on the electrical power but the slopes of the plots differ. The intensity of the carbon line at 247.86 nm for malleable cast iron is weaker than those for the others. Sputtering is influenced by the form of the graphite, which can lead to distortion of the electrical field. Graphite on malleable cast iron is sputtered not only as atomic carbon but also as moieties containing several carbon atoms. The higher the supplied voltage, the shorter the time for the intensities of the Fe I and C I lines to reach constant values. (Auth.)

  18. Scenarios for the use of GHG-reduction instruments - how can policy-instruments as carbon emission trading and tradable green certificates be used simultaneously to reach a common GHG-reduction target?

    International Nuclear Information System (INIS)

    Morthorst, P.E.

    2000-01-01

    According to the agreed burden sharing in the EU, a number of member states have to reduce their emissions of greenhouse gases substantially. To achieve these reductions various policy-instruments - national as well as international - are on hand. Two international instruments are emphasized in this paper: tradable quotas for limiting carbon emissions and tradable green certificates for promoting the deployment of renewable energy technologies. In the analyses of these two instruments two main questions are considered: (1) Will there be any international trade in green certificates, if no GHG-credits are attached to them? (2) Will it make any difference if the EU sets the targets to be achieved by the two instruments or alternatively the individual member countries do? An incentive-analysis in which four scenarios are set up and discussed is performed for the EU member states. The main conclusion is that if no GHG-credits are attached to the green certificates there seems to be limited of no incentives for a permanent international trade in certificates. On the other hand, if GHG-credits are attached to the certificates an efficient international trade will take place regardless of whether the EU or the member countries fix the quotas. Thus, the use of international instruments as tradable green certificates and tradable emissions permits will not lead to an optimal GHG-reduction strategy unless GHG-credits are attached to the certificates. (author)

  19. Intensity dependence and transient dynamics of donor-acceptor pair recombination in ZnO thin films grown on (001) silicon

    Science.gov (United States)

    Guo, Bing; Qiu, Z. R.; Wong, K. S.

    2003-04-01

    We report room-temperature time-integrated and time-resolved photoluminescence (PL) measurements on a nominally undoped wurtzite ZnO thin film grown on (001) silicon. A linear and sublinear excitation intensity Iex dependence of the PL intensity were observed for the 379.48-nm exciton line and the weak broad green band (˜510 nm), respectively. The green luminescence was found to decay as hyperbolic t-1, and its peak energy was observed to increase nearly logarithmically with increased Iex. These results are in an excellent agreement with the tunnel-assisted donor-deep-acceptor pair (DAP) model so that its large blueshifts of about 25 meV per decade increase in Iex can be accounted for by the screening of the fluctuating impurity potential. Also, the 30-ps fast decay of the exciton emission was attributed to the rapid trapping of carriers at luminescent impurities, while the short lifetime of τ1/e=200 ps for the green luminescence may be due to an alternative trapping by deeper centers in the ZnO. Finally, singly ionized oxygen and zinc vacancies have been tentatively invoked to act as donor-deep-acceptor candidates for the DAP luminescence, respectively.

  20. Substantial enhancement of red emission intensity by embedding Eu-doped GaN into a microcavity

    NARCIS (Netherlands)

    Inaba, T.; Lee, D.-G.; Wakamatsu, R.; Kojima, T.; Mitchell, B.; Capretti, A.; Gregorkiewicz, T.; Koizumi, A.; Fujiwara, Y.

    2016-01-01

    We investigate resonantly excited photoluminescence from a Eu,O-codoped GaN layer embedded into a microcavity, consisting of an AlGaN/GaN distributed Bragg reflector and a Ag reflecting mirror. The microcavity is responsible for a 18.6-fold increase of the Eu emission intensity at ∼10K, and a

  1. IMF control of cusp proton emission intensity and dayside convection: implications for component and anti-parallel reconnection

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    Full Text Available We study a brightening of the Lyman-a emission in the cusp which occurred in response to a short-lived south-ward turning of the interplanetary magnetic field (IMF during a period of strongly enhanced solar wind plasma concentration. The cusp proton emission is detected using the SI-12 channel of the FUV imager on the IMAGE spacecraft. Analysis of the IMF observations recorded by the ACE and Wind spacecraft reveals that the assumption of a constant propagation lag from the upstream spacecraft to the Earth is not adequate for these high time-resolution studies. The variations of the southward IMF component observed by ACE and Wind allow for the calculation of the ACE-to-Earth lag as a function of time. Application of the derived propagation delays reveals that the intensity of the cusp emission varied systematically with the IMF clock angle, the relationship being particularly striking when the intensity is normalised to allow for the variation in the upstream solar wind proton concentration. The latitude of the cusp migrated equatorward while the lagged IMF pointed southward, confirming the lag calculation and indicating ongoing magnetopause reconnection. Dayside convection, as monitored by the SuperDARN network of radars, responded rapidly to the IMF changes but lagged behind the cusp proton emission response: this is shown to be as predicted by the model of flow excitation by Cowley and Lockwood (1992. We use the numerical cusp ion precipitation model of Lockwood and Davis (1996, along with modelled Lyman-a emission efficiency and the SI-12 instrument response, to investigate the effect of the sheath field clock angle on the acceleration of ions on crossing the dayside magnetopause. This modelling reveals that the emission commences on each reconnected field line 2–2.5 min after it is opened and peaks 3–5 min after it is opened. We discuss how comparison of the Lyman-

  2. Irreversible impacts of heat on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species

    Directory of Open Access Journals (Sweden)

    E. Kleist

    2012-12-01

    Full Text Available Climate change will induce extended heat waves to parts of the vegetation more frequently. High temperatures may act as stress (thermal stress on plants changing emissions of biogenic volatile organic compounds (BVOCs. As BVOCs impact the atmospheric oxidation cycle and aerosol formation, it is important to explore possible alterations of BVOC emissions under high temperature conditions. Applying heat to European beech, Palestine oak, Scots pine, and Norway spruce in a laboratory setup either caused the well-known exponential increases of BVOC emissions or induced irreversible changes of BVOC emissions. Considering only irreversible changes of BVOC emissions as stress impacts, we found that high temperatures decreased the de novo emissions of monoterpenes, sesquiterpenes and phenolic BVOC. This behaviour was independent of the tree species and whether the de novo emissions were constitutive or induced by biotic stress.

    In contrast, application of thermal stress to conifers amplified the release of monoterpenes stored in resin ducts of conifers and induced emissions of green leaf volatiles. In particular during insect attack on conifers, the plants showed de novo emissions of sesquiterpenes and phenolic BVOCs, which exceeded constitutive monoterpene emissions from pools. The heat-induced decrease of de novo emissions was larger than the increased monoterpene release caused by damage of resin ducts. For insect-infested conifers the net effect of thermal stress on BVOC emissions could be an overall decrease.

    Global change-induced heat waves may put hard thermal stress on plants. If so, we project that BVOC emissions increase is more than predicted by models only in areas predominantly covered with conifers that do not emit high amounts of sesquiterpenes and phenolic BVOCs. Otherwise overall effects of high temperature stress will be lower increases of BVOC emissions than predicted by algorithms that do

  3. Structural, morphological, and optical properties of tin(IV) oxide nanoparticles synthesized using Camellia sinensis extract: a green approach

    Science.gov (United States)

    Selvakumari, J. Celina; Ahila, M.; Malligavathy, M.; Padiyan, D. Pathinettam

    2017-09-01

    Tin oxide (SnO2) nanoparticles were cost-effectively synthesized using nontoxic chemicals and green tea ( Camellia sinensis) extract via a green synthesis method. The structural properties of the obtained nanoparticles were studied using X-ray diffraction, which indicated that the crystallite size was less than 20 nm. The particle size and morphology of the nanoparticles were analyzed using scanning electron microscopy and transmission electron microscopy. The morphological analysis revealed agglomerated spherical nanoparticles with sizes varying from 5 to 30 nm. The optical properties of the nanoparticles' band gap were characterized using diffuse reflectance spectroscopy. The band gap was found to decrease with increasing annealing temperature. The O vacancy defects were analyzed using photoluminescence spectroscopy. The increase in the crystallite size, decreasing band gap, and the increasing intensities of the UV and visible emission peaks indicated that the green-synthesized SnO2 may play future important roles in catalysis and optoelectronic devices.

  4. Utilising green and bluespace to mitigate urban heat island intensity.

    Science.gov (United States)

    Gunawardena, K R; Wells, M J; Kershaw, T

    2017-04-15

    It has long been recognised that cities exhibit their own microclimate and are typically warmer than the surrounding rural areas. This 'mesoscale' influence is known as the urban heat island (UHI) effect and results largely from modification of surface properties leading to greater absorption of solar radiation, reduced convective cooling and lower water evaporation rates. Cities typically contain less vegetation and bodies of water than rural areas, and existing green and bluespace is often under threat from increasing population densities. This paper presents a meta-analysis of the key ways in which green and bluespace affect both urban canopy- and boundary-layer temperatures, examined from the perspectives of city-planning, urban climatology and climate science. The analysis suggests that the evapotranspiration-based cooling influence of both green and bluespace is primarily relevant for urban canopy-layer conditions, and that tree-dominated greenspace offers the greatest heat stress relief when it is most needed. However, the magnitude and transport of cooling experienced depends on size, spread, and geometry of greenspaces, with some solitary large parks found to offer minimal boundary-layer cooling. Contribution to cooling at the scale of the urban boundary-layer climate is attributed mainly to greenspace increasing surface roughness and thereby improving convection efficiency rather than evaporation. Although bluespace cooling and transport during the day can be substantial, nocturnal warming is highlighted as likely when conditions are most oppressive. However, when both features are employed together they can offer many synergistic ecosystem benefits including cooling. The ways in which green and bluespace infrastructure is applied in future urban growth strategies, particularly in countries expected to experience rapid urbanisation, warrants greater consideration in urban planning policy to mitigate the adverse effects of the UHI and enhance climate

  5. Use green taxes and market instruments to reduce greenhouse gas emissions

    International Nuclear Information System (INIS)

    Hodgson, G.; Rheaume, G.; Coad, L.

    2008-01-01

    This briefing is part of the Conference Board of Canada's CanCompete program, which was designed to help leading decision makers advance Canada on a path of national competitiveness. Many members of the scientific community have concluded that anthropogenic greenhouse gas (GHG) emissions are responsible for the current pace of global warming. It is widely believed that the changing climate will have a negative impact on the economy and the environment. This briefing considered a set of reforms to the Canadian tax system designed to ensure sustainable growth within a changing climate. The briefing was prepared in response to an earlier paper calling for a market-based policy on climate change. Tax incentives were examined, as well as price signalling systems to ensure successful climate change adjustment for Canadian businesses. It was concluded that a combination of efficient regulations, market forces, and tax measures will be needed to set accurate and effective prices for GHGs. Green taxes and tax credits will also be necessary in order to accelerate technological adaptation to a carbon pricing system, along with a complementary cap and trade system. 1 fig

  6. Quantifying the effects of green waste compost application, water content and nitrogen fertilization on nitrous oxide emissions in 10 agricultural soils.

    Science.gov (United States)

    Zhu, Xia; Silva, Lucas C R; Doane, Timothy A; Wu, Ning; Horwath, William R

    2013-01-01

    Common management practices, such as the application of green waste compost, soil moisture manipulation, and nitrogen fertilization, affect nitrous oxide (NO) emissions from agricultural soils. To expand our understanding of how soils interact with these controls, we studied their effects in 10 agricultural soils. Application of compost slightly increased NO emissions in soils with low initial levels of inorganic N and low background emission. For soils in which compost caused a decrease in emission, this decrease was larger than any of the observed increases in the other soils. The five most important factors driving emission across all soils, in order of increasing importance, were native dissolved organic carbon (DOC), treatment-induced change in DOC, native inorganic N, change in pH, and soil iron (Fe). Notable was the prominence of Fe as a regulator of NO emission. In general, compost is a viable amendment, considering the agronomic benefits it provides against the risk of producing a small increase in NO emissions. However, if soil properties and conditions are taken into account, management can recognize the potential effect of compost and thereby reduce NO emissions from susceptible soils, particularly by avoiding application of compost under wet conditions and together with ammonium fertilizer. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Greenhouse gas emissions from high demand, natural gas-intensive energy scenarios

    International Nuclear Information System (INIS)

    Victor, D.G.

    1990-01-01

    Since coal and oil emit 70% and 30% more CO 2 per unit of energy than natural gas (methane), fuel switching to natural gas is an obvious pathway to lower CO 2 emissions and reduced theorized greenhouse warming. However, methane is, itself, a strong greenhouse gas so the CO 2 advantages of natural gas may be offset by leaks in the natural gas recovery and supply system. Simple models of atmospheric CO 2 and methane are used to test this hypothesis for several natural gas-intensive energy scenarios, including the work of Ausubel et al (1988). It is found that the methane leaks are significant and may increase the total 'greenhouse effect' from natural gas-intensive energy scenarios by 10%. Furthermore, because methane is short-lived in the atmosphere, leaking methane from natural gas-intensive, high energy growth scenarios effectively recharges the concentration of atmospheric methane continuously. For such scenarios, the problem of methane leaks is even more serious. A second objective is to explore some high demand scenarios that describe the role of methane leaks in the greenhouse tradeoff between gas and coal as energy sources. It is found that the uncertainty in the methane leaks from the natural gas system are large enough to consume the CO 2 advantages from using natural gas instead of coal for 20% of the market share. (author)

  8. Data to calculate emissions intensity for individual beef cattle reared on pasture-based production systems

    Directory of Open Access Journals (Sweden)

    G.A. McAuliffe

    2018-04-01

    Full Text Available With increasing concern about environmental burdens originating from livestock production, the importance of farming system evaluation has never been greater. In order to form a basis for trade-off analysis of pasture-based cattle production systems, liveweight data from 90 Charolais × Hereford-Friesian calves were collected at a high temporal resolution at the North Wyke Farm Platform (NWFP in Devon, UK. These data were then applied to the Intergovernmental Panel on Climate Change (IPCC modelling framework to estimate on-farm methane emissions under three different pasture management strategies, completing a foreground dataset required to calculate emissions intensity of individual beef cattle.

  9. To Green or Not to Green: A Political, Economic and Social Analysis for the Past Failure of Green Logistics

    Directory of Open Access Journals (Sweden)

    Matthias Klumpp

    2016-05-01

    Full Text Available The objective of green logistics has thus far failed. For example, the share of greenhouse gas emissions by the transportation and logistics sector in Europe rose from 16.6% in 1990 to 24.3% in 2012. This article analyzes the reasons behind this failure by drawing on political, economic and business as well as social motivations and examples. At the core of this analysis are the established theorems of the Jevons paradox and the median voter (Black, Downs in combination with time-distorted preferences of voters and consumers. Adding to the hurdles of green logistics are the problems of short-term political programs and decisions versus long-term business investments in transportation and logistics. Two cases from Germany are outlined regarding this political “meddling through” with a recent 2015 truck toll decision and the support for electric trucks and vehicles. Finally, the article proposes two ways forward: public control and restriction of carbon raw materials (coal, oil, as well as public investment in low-emission transport infrastructure or biofuels as the more feasible and likely alternative.

  10. Intense, stable and excitation wavelength-independent photoluminescence emission in the blue-violet region from phosphorene quantum dots

    Science.gov (United States)

    Ge, Shuaipeng; Zhang, Lisheng; Wang, Peijie; Fang, Yan

    2016-01-01

    Nanoscale phosphorene quantum dots (PQDs) with few-layer structures were fabricated by pulsed laser ablation of a bulk black phosphorus target in diethyl ether. An intense and stable photoluminescence (PL) emission of the PQDs in the blue-violet wavelength region is clearly observed for the first time, which is attributed to electronic transitions from the lowest unoccupied molecular orbital (LUMO) to the highest occupied molecular orbital (HOMO) and occupied molecular orbitals below the HOMO (H-1, H-2), respectively. Surprisingly, the PL emission peak positions of the PQDs are not red-shifted with progressively longer excitation wavelengths, which is in contrast to the cases of graphene and molybdenum disulphide quantum dots. This excitation wavelength-independence is derived from the saturated passivation on the periphery and surfaces of the PQDs by large numbers of electron-donating functional groups which cause the electron density on the PQDs to be dramatically increased and the band gap to be insensitive to the quantum size effect in the PQDs. This work suggests that PQDs with intense, stable and excitation wavelength-independent PL emission in the blue-violet region have a potential application as semiconductor-based blue-violet light irradiation sources. PMID:27265198

  11. Blue and green emitting Ce3+ and Tb3+ codoped Gd2O3 nanophosphors

    International Nuclear Information System (INIS)

    Loitongbam, Romeo Singh; Singh, W. Rameshwor

    2013-01-01

    Tb 3+ doped Gd 2 O 3 nanoparticles of 4-10 nm in size were synthesized from nitrate precursors by urea hydrolysis method in ethylene glycol medium at low temperature of 140 ℃. Characteristic Tb 3+ ion green emission corresponding to 5 D 4 ’! 7 F J was observed to be very strong, which further increases with heat treatment temperature. Characteristic blue color emission of Ce 3+ ion transitions for 5 d’! 2 F 7/2 and 2 F 5/2 (at 422 nm and 485 nm respectively) was found to be very strong in as-synthesized Ce 0.06 Tb 0.14 Gd 0.8 O 3 nanoparticles. However, its luminescence intensity decreases with increase in heating temperature or increase in the particle size/crystallinity, whereas there was a weak emission peak of Tb 3+ ion at 545 nm. The polycrystalline nature of as-prepared sample change to highly crystalline state when heated at elevated temperature (900 ℃). (author)

  12. Development of a high energy resolution magnetic bolometer for the determination of photon emission intensities by gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Rodrigues, M.

    2007-12-01

    In this research thesis, a first chapter describes the metrological difficulties for the determination of radionuclide photon emission intensities. Then, it discusses the understanding and the required tools for the computing of a magnetic bolometer signal with respect to the different operation parameters and to the sensor geometry. The author describes the implementation of the experimental device and its validation with a first sensor. The new sensor is then optimised for the measurement of photon emission intensities with a good efficiency and a theoretical energy resolution less than 100 eV up to 200 keV. The sensor's detection efficiency and operation have been characterized with a 133 Ba source. The author finally presents the obtained results

  13. Evaluation of green roof as green technology for urban stormwater quantity and quality controls

    International Nuclear Information System (INIS)

    Kok, K H; Sidek, L M; Basri, H; Muda, Z C; Beddu, S; Abidin, M R Z

    2013-01-01

    Promoting green design, construction, reconstruction and operation of buildings has never been more critical than now due to the ever increasing greenhouse gas emissions and rapid urbanizations that are fuelling climate change more quickly. Driven by environmental needs, Green Building Index (GBI) was founded in Malaysia to drive initiative to lead the property industry towards becoming more environment-friendly. Green roof system is one of the assessment criteria of this rating system which is under category of sustainable site planning and management. An extensive green roof was constructed in Humid Tropics Center (HTC) Kuala Lumpur as one of the components for Stormwater Management Ecohydrology (SME) in order to obtain scientific data of the system. This paper evaluates the performance of extensive green roof at Humid Tropics Center with respect to urban heat island mitigation and stormwater quantity and quality controls. Findings indicate that there was a reduction of around 1.5°C for indoor temperature of the building after installation of green roof. Simulations showed that the peak discharge was reduced up to 24% relative to impervious brown roof. The results show an increment of pH and high concentration of phosphate for the runoff generated from the green roof and the runoff water quality ranged between class I and II under INWQS.

  14. Evaluation of green roof as green technology for urban stormwater quantity and quality controls

    Science.gov (United States)

    Kok, K. H.; Sidek, L. M.; Abidin, M. R. Z.; Basri, H.; Muda, Z. C.; Beddu, S.

    2013-06-01

    Promoting green design, construction, reconstruction and operation of buildings has never been more critical than now due to the ever increasing greenhouse gas emissions and rapid urbanizations that are fuelling climate change more quickly. Driven by environmental needs, Green Building Index (GBI) was founded in Malaysia to drive initiative to lead the property industry towards becoming more environment-friendly. Green roof system is one of the assessment criteria of this rating system which is under category of sustainable site planning and management. An extensive green roof was constructed in Humid Tropics Center (HTC) Kuala Lumpur as one of the components for Stormwater Management Ecohydrology (SME) in order to obtain scientific data of the system. This paper evaluates the performance of extensive green roof at Humid Tropics Center with respect to urban heat island mitigation and stormwater quantity and quality controls. Findings indicate that there was a reduction of around 1.5°C for indoor temperature of the building after installation of green roof. Simulations showed that the peak discharge was reduced up to 24% relative to impervious brown roof. The results show an increment of pH and high concentration of phosphate for the runoff generated from the green roof and the runoff water quality ranged between class I and II under INWQS.

  15. Towards green loyalty: the influences of green perceived risk, green image, green trust and green satisfaction

    Science.gov (United States)

    Chrisjatmiko, K.

    2018-01-01

    The paper aims to present a comprehensive framework for the influences of green perceived risk, green image, green trust and green satisfaction to green loyalty. The paper also seeks to account explicitly for the differences in green perceived risk, green image, green trust, green satisfaction and green loyalty found among green products customers. Data were obtained from 155 green products customers. Structural equation modeling was used in order to test the proposed hypotheses. The findings show that green image, green trust and green satisfaction has positive effects to green loyalty. But green perceived risk has negative effects to green image, green trust and green satisfaction. However, green perceived risk, green image, green trust and green satisfaction also seems to be a good device to gain green products customers from competitors. The contributions of the paper are, firstly, a more complete framework of the influences of green perceived risk, green image, green trust and green satisfaction to green loyalty analyses simultaneously. Secondly, the study allows a direct comparison of the difference in green perceived risk, green image, green trust, green satisfaction and green loyalty between green products customers.

  16. Chinese green product standards: international experience and pathway for a unified system

    Science.gov (United States)

    Yun, Fu; Ling, Lin; Dongfeng, Gao; Shuo, Yang

    2017-11-01

    The establishment of a unified green product standard system is of great importance regarding the effective supply of green products and meeting trend of the consumption upgrade. It also is helpful to reduce the cost of green information disclosure of enterprises, and facilitate the supply-side structural reform. Based on the experience of developing and implementing green product standards in the EU, Germany, America, Japan and so on, combined with current Chinese standard systems including environmental protection, energy conservation, water conservation, low carbon, recycling, regeneration and organic, with the adoption of the life cycle thinking, this paper brings forward basic requirements on organizations including pollutant emissions, establishment of management system, energy conservation and emission reduction technology and green supply chain management, and proposes indicator requirements on product including resource attributes, energy attributes, environmental attributes and quality attributes, so as to guide the establishment of green product evaluation standards in the context of China.

  17. On cost benefit rules for green taxes

    International Nuclear Information System (INIS)

    Aronsson, T.

    1999-01-01

    This paper concerns the welfare effects of a green tax reform in a dynamic general equilibrium model with preexisting taxes on labor income and capital income. In comparison with previous studies on green taxes in dynamic models, which have focused their main attention on long run effects of such reforms, I derive cost benefit rules for a change in the tax mix by using the properties of the value function in optimal control theory. This enables me to relate the welfare effect of a change in the tax mic to responses in employment, the capital stock, (flow) emissions and the stock of pollution along the whole general equilibrium path. Another contribution of the paper is to examine under what conditions an emission tax, which is set permanently below the marginal damage of pollution, is welfare superior to an emission tax path that fully internalizes the external effect. 22 refs

  18. Nitrification inhibitors mitigated reactive gaseous nitrogen intensity in intensive vegetable soils from China.

    Science.gov (United States)

    Fan, Changhua; Li, Bo; Xiong, Zhengqin

    2018-01-15

    Nitrification inhibitors, a promising tool for reducing nitrous oxide (N 2 O) losses and promoting nitrogen use efficiency by slowing nitrification, have gained extensive attention worldwide. However, there have been few attempts to explore the broad responses of multiple reactive gaseous nitrogen emissions of N 2 O, nitric oxide (NO) and ammonia (NH 3 ) and vegetable yield to nitrification inhibitor applications across intensive vegetable soils in China. A greenhouse pot experiment with five consecutive vegetable crops was performed to assess the efficacies of two nitrification inhibitors, namely, nitrapyrin and dicyandiamide on reactive gaseous nitrogen emissions, vegetable yield and reactive gaseous nitrogen intensity in four typical vegetable soils representing the intensive vegetable cropping systems across mainland China: an Acrisol from Hunan Province, an Anthrosol from Shanxi Province, a Cambisol from Shandong Province and a Phaeozem from Heilongjiang Province. The results showed soil type had significant influences on reactive gaseous nitrogen intensity, with reactive gaseous nitrogen emissions and yield mainly driven by soil factors: pH, nitrate, C:N ratio, cation exchange capacity and microbial biomass carbon. The highest reactive gaseous nitrogen emissions and reactive gaseous nitrogen intensity were in Acrisol while the highest vegetable yield occurred in Phaeozem. Nitrification inhibitor applications decreased N 2 O and NO emissions by 1.8-61.0% and 0.8-79.5%, respectively, but promoted NH 3 volatilization by 3.2-44.6% across all soils. Furthermore, significant positive correlations were observed between inhibited N 2 O+NO and stimulated NH 3 emissions with nitrification inhibitor additions across all soils, indicating that reduced nitrification posed the threat of NH 3 losses. Additionally, reactive gaseous nitrogen intensity was significantly reduced in the Anthrosol and Cambisol due to the reduced reactive gaseous nitrogen emissions and increased

  19. A comparative analysis of the greenhouse gas emissions intensity of wheat and beef in the United States

    International Nuclear Information System (INIS)

    Sanders, Kelly Twomey; Webber, Michael E

    2014-01-01

    The US food system utilizes large quantities of liquid fuels, electricity, and chemicals yielding significant greenhouse gas (GHG) emissions that are not considered in current retail prices, especially when the contribution of biogenic emissions is considered. However, because GHG emissions might be assigned a price in prospective climate policy frameworks, it would be useful to know the extent to which those policies would increase the incremental production costs to food within the US food system. This analysis uses lifecycle assessment (LCA) to (1) estimate the magnitude of carbon dioxide equivalent (CO 2 e) emissions from typical US food production practices, using wheat and beef as examples, and (2) quantify the cost of those emissions in the context of a GHG-pricing regime over a range of policy constructs. Wheat and beef were chosen as benchmark staples to provide a representative range of less intensive and more intensive agricultural goods, respectively. Results suggest that 1.1 ± 0.13 and 31 ± 8.1 kg of lifecycle CO 2 e emissions are embedded in 1 kg of wheat and beef production, respectively. Consequently, the cost of lifecycle CO 2 e emissions for wheat (i.e. cultivation, processing, transportation, storage, and end-use preparation) over an emissions price range of $10 and $85 per tonne CO 2 e is estimated to be between $0.01 and $0.09 per kg of wheat, respectively, which would increase total wheat production costs by approximately 0.3–2% per kg. By comparison, the estimated lifecycle CO 2 e price of beef over the same range of CO 2 e prices is between $0.31 and $2.60 per kg of beef, representing a total production cost increase of approximately 5–40% per kg based on average 2010 food prices. This range indicates that the incremental cost to total US food production might be anywhere between $0.63–5.4 Billion per year for grain and $3.70 and $32 Billion per year for beef based on CO 2 e emissions assuming that total production

  20. Electroluminescence from ZnO/Si heterojunctions fabricated by PLD with bias voltage application

    Science.gov (United States)

    Seno, Yuuki; Konno, Daisuke; Komiyama, Takao; Chonan, Yasunori; Yamaguchi, Hiroyuki; Aoyama, Takashi

    2014-02-01

    Electroluminescence (EL) for ZnO films has been investigated by fabricating n-ZnO/p-Si heterojunctions and changing the VI/II (O/Zn) ratio of the films. In the photoluminescence (PL) spectra, both the near band edge (NBE) emission and the defect-related emission were observed, while in the EL spectra only defect-related emission was observed. The EL spectra were divided into three components: green (550 nm), yellow (618 nm) and red (700 nm) bands; and their intensities were compared. As the VI/II (O/Zn) ratio was increased, the red band emission intensity decreased and the green band emission intensity increased. This implies that the oxygen and the zinc vacancies are related to the red and the green band emissions, respectively. Electron transitions from the conduction band minimum (Ec) to the deep energy levels of these vacancies are suggested to cause the red and the green luminescences while the energy levels of the Zn interstitials are close to the Ec in the band gap and no NBE emission is observed.

  1. Electroluminescence from ZnO/Si heterojunctions fabricated by PLD with bias voltage application

    International Nuclear Information System (INIS)

    Seno, Yuuki; Konno, Daisuke; Komiyama, Takao; Chonan, Yasunori; Yamaguchi, Hiroyuki; Aoyama, Takashi

    2014-01-01

    Electroluminescence (EL) for ZnO films has been investigated by fabricating n-ZnO/p-Si heterojunctions and changing the VI/II (O/Zn) ratio of the films. In the photoluminescence (PL) spectra, both the near band edge (NBE) emission and the defect-related emission were observed, while in the EL spectra only defect-related emission was observed. The EL spectra were divided into three components: green (550 nm), yellow (618 nm) and red (700 nm) bands; and their intensities were compared. As the VI/II (O/Zn) ratio was increased, the red band emission intensity decreased and the green band emission intensity increased. This implies that the oxygen and the zinc vacancies are related to the red and the green band emissions, respectively. Electron transitions from the conduction band minimum (Ec) to the deep energy levels of these vacancies are suggested to cause the red and the green luminescences while the energy levels of the Zn interstitials are close to the Ec in the band gap and no NBE emission is observed

  2. Overview of European and Netherlands' regulations on airborne emissions from intensive livestock production with a focus on the application of air scrubbers

    NARCIS (Netherlands)

    Melse, R.W.; Ogink, N.W.M.; Rulkens, W.H.

    2009-01-01

    Intensive livestock production is of major importance to the economies of many countries but is also connected with a number of environmental effects, including airborne emissions. Currently emission standards are becoming increasingly stringent in European countries and the livestock industry is

  3. Hydroxyl (6−2 airglow emission intensity ratios for rotational temperature determination

    Directory of Open Access Journals (Sweden)

    R. P. Lowe

    Full Text Available OH(6–2 Q1/P1 and R1/P1 airglow emission intensity ratios, for rotational states up to j' = 4.5, are measured to be lower than implied by transition probabilities published by various authors including Mies, Langhoff et al. and Turnbull and Lowe. Experimentally determined relative values of j' transitions yield OH(6–2 rotational temperatures 2 K lower than Langhoff et al., 7 K lower than Mies and 13 K lower than Turnbull and Lowe.Key words: Atmospheric composition and structure (airglow and aurora; pressure, density and temperature

  4. Influence of barrier layer indium on efficiency and wavelength of InGaN multiple quantum well (MQW) with and without semi-bulk InGaN buffer for blue to green regime emission

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Saiful [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA (United States); Georgia Tech-CNRS, UMI 2958, Metz (France); CEA-LETI, Minatec Campus, Grenoble (France); Sundaram, Suresh; Li, Xin; El Gmili, Youssef [Georgia Tech-CNRS, UMI 2958, Metz (France); Jamroz, Miryam E.; Robin, Ivan C. [CEA-LETI, Minatec Campus, Grenoble (France); Voss, Paul L.; Ougazzaden, Abdallah [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA (United States); Georgia Tech-CNRS, UMI 2958, Metz (France); Salvestrini, Jean-Paul [Georgia Tech-CNRS, UMI 2958, Metz (France); LMOPS, University of Lorraine, EA4423, Metz (France)

    2017-08-15

    The effect of indium (In) in the barrier of InGaN/GaN multiple quantum well (MQW) has been studied for MQWs with and without semi-bulk InGaN buffer. From simulation, the optimum In content in the barrier with 3-5 nm width is 5-7% to get the optimal material quality and internal quantum efficiency (IQE) of ∝65% for 450-480 nm emission range. Simulation shows a reduction of the potential barrier due to band flattening, a more homogeneous distribution of electrons and holes in the active region and subsequently, a more radiative recombination rate with InGaN as barrier layer. Both cathodoluminescence (CL) and photoluminescence (PL) experimental results show a blue-shift of emission wavelength along with an enhancement in the emission intensity when GaN barrier is replaced with InGaN barrier, for a MQW structure both with and without the semi-bulk InGaN buffer. We attribute this blue shift to the reduced polarization mismatch and increased effective bandgap. This InGaN barrier-related improvement in IQE and efficiency droop could be useful for the realization of longer wavelength ''green-gap'' range LEDs where poor IQE and efficiency droop are more prominent due to high indium (In) in the active region. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Aggregation-Induced Emission Enhancement from Disilane-Bridged Donor-Acceptor-Donor Luminogens Based on the Triarylamine Functionality.

    Science.gov (United States)

    Usuki, Tsukasa; Shimada, Masaki; Yamanoi, Yoshinori; Ohto, Tatsuhiko; Tada, Hirokazu; Kasai, Hidetaka; Nishibori, Eiji; Nishihara, Hiroshi

    2018-04-18

    Six novel donor-acceptor-donor organic dyes containing a Si-Si moiety based on triarylamine functionalities as donor units were prepared by Pd-catalyzed arylation of hydrosilanes. Their photophysical, electrochemical, and structural properties were studied in detail. Most of the compounds showed attractive photoluminescence (PL) and electrochemical properties both in solution and in the solid state because of intramolecular charge transfer (ICT), suggesting these compounds could be useful for electroluminescence (EL) applications. The aggregation-induced emission enhancement (AIEE) characteristics of 1 and 3 were examined in mixed water/THF solutions. The fluorescence intensity in THF/water was stronger in the solution with the highest ratio of water because of the suppression of molecular vibration and rotation in the aggregated state. Single-crystal X-ray diffraction of 4 showed that the reduction of intermolecular π-π interaction led to intense emission in the solid state and restricted intramolecular rotation of the donor and acceptor moieties, thereby indicating that the intense emission in the solid state is due to AIEE. An electroluminescence device employing 1 as an emitter exhibited an external quantum efficiency of up to 0.65% with green light emission. The emission comes solely from 1 because the EL spectrum is identical to that of the PL of 1. The observed luminescence was sufficiently bright for application in practical devices. Theoretical calculations and electrochemical measurements were carried out to aid in understanding the optical and electrochemical properties of these molecules.

  6. Influence of carbohydrate addition on nitrogen transformations and greenhouse gas emissions of intensive aquaculture system.

    Science.gov (United States)

    Hu, Zhen; Lee, Jae Woo; Chandran, Kartik; Kim, Sungpyo; Sharma, Keshab; Khanal, Samir Kumar

    2014-02-01

    Aquaculture is one of the fastest-growing segments of the food economy in modern times. It is also being considered as an important source of greenhouse gas (GHG) emissions. To date, limited studies have been conducted on GHG emissions from aquaculture system. In this study, daily addition of fish feed and soluble starch at a carbon-to-nitrogen (C/N) ratio of 16:1 (w/w) was used to examine the effects of carbohydrate addition on nitrogen transformations and GHG emissions in a zero-water exchange intensive aquaculture system. The addition of soluble starch stimulated heterotrophic bacterial growth and denitrification, which led to lower total ammonia nitrogen, nitrite and nitrate concentrations in aqueous phase. About 76.2% of the nitrogen output was emitted in the form of gaseous nitrogen (i.e., N2 and N2O) in the treatment tank (i.e., aquaculture tank with soluble starch addition), while gaseous nitrogen accounted for 33.3% of the nitrogen output in the control tank (i.e., aquaculture tank without soluble starch addition). Although soluble starch addition reduced daily N2O emissions by 83.4%, it resulted in an increase of daily carbon dioxide (CO2) emissions by 91.1%. Overall, starch addition did not contribute to controlling the GHG emissions from the aquaculture system. © 2013.

  7. Topical Review: Development of overgrown semi-polar GaN for high efficiency green/yellow emission

    Science.gov (United States)

    Wang, T.

    2016-09-01

    The most successful example of large lattice-mismatched epitaxial growth of semiconductors is the growth of III-nitrides on sapphire, leading to the award of the Nobel Prize in 2014 and great success in developing InGaN-based blue emitters. However, the majority of achievements in the field of III-nitride optoelectronics are mainly limited to polar GaN grown on c-plane (0001) sapphire. This polar orientation poses a number of fundamental issues, such as reduced quantum efficiency, efficiency droop, green and yellow gap in wavelength coverage, etc. To date, it is still a great challenge to develop longer wavelength devices such as green and yellow emitters. One clear way forward would be to grow III-nitride device structures along a semi-/non-polar direction, in particular, a semi-polar orientation, which potentially leads to both enhanced indium incorporation into GaN and reduced quantum confined Stark effects. This review presents recent progress on developing semi-polar GaN overgrowth technologies on sapphire or Si substrates, the two kinds of major substrates which are cost-effective and thus industry-compatible, and also demonstrates the latest achievements on electrically injected InGaN emitters with long emission wavelengths up to and including amber on overgrown semi-polar GaN. Finally, this review presents a summary and outlook on further developments for semi-polar GaN based optoelectronics.

  8. Green telecom technology (GCT): think green - a step to achieve improved techno-environmental and socio-economic effects in Pakistan

    International Nuclear Information System (INIS)

    Anwar, C.M.

    2010-01-01

    The purpose of this research is development of know-how about the worldwide techno- environmental effects of telecom/lCT industry and proposal of a strategy to cope with this hazardous issue. Our main focus is to develop a strategy to minimize the pollution-level (Energy-consumption, Waste, Green-House Gases (GHG) emission, including CO/sub 2/) in the environment produced by telecom/lCT industry of Pakistan. We want to save our environment by introducing not only environment-friendly Green Telecom Technology (GTT), but our main theme is to convert the thinking of our carriers and public from black to green technologies. We shall analyze the socio-economic effects of going green. This research also suggests the concept of green-tax to government, which could be helpful to increase government equity. (author)

  9. Phosphate Leaching from Green Roof Substrates—Can Green Roofs Pollute Urban Water Bodies?

    Directory of Open Access Journals (Sweden)

    Agnieszka Karczmarczyk

    2018-02-01

    Full Text Available Green roofs are an effective stormwater measure due to high water retention capacity and the ability of delaying stormwater runoff. However, low importance is still given to the pollutant leaching potential of substrates used in green roof construction. The aim of the study is to estimate the concentrations and loads of P-PO43− in runoff from extensive and intensive substrates. To achieve this goal, several commonly-used fresh substrates were analyzed for P-PO43− leaching potential in different scale experiments, from laboratory batch tests, leaching column experiments, and long-term monitoring of open air green roof containers. The results of the study confirmed that fresh green roof substrates contain phosphorus in significant amounts of 17–145 mg∙P-PO43−/kg and, thus, can contribute to eutrophication of freshwater ecosystems. High correlation between phosphate content estimated by HCl extraction and cumulative load in leachate tests suggests that the batch HCl extraction test can be recommended for the comparison and selection of substrates with low potential P leaching. Volume-weighted mean concentrations and UALs of P-PO43− leaching from fresh substrates were higher in cases of intensive substrates, but there was no clear relationship between substrate type and the observed P-PO43− concentration range. To avoid increasing eutrophication of urban receivers the implementation of P reduction measures is strongly recommended.

  10. Energy intensity, life-cycle greenhouse gas emissions, and economic assessment of liquid biofuel pipelines.

    Science.gov (United States)

    Strogen, Bret; Horvath, Arpad; Zilberman, David

    2013-12-01

    Petroleum fuels are predominantly transported domestically by pipelines, whereas biofuels are almost exclusively transported by rail, barge, and truck. As biofuel production increases, new pipelines may become economically attractive. Location-specific variables impacting pipeline viability include construction costs, availability and costs of alternative transportation modes, electricity prices and emissions (if priced), throughput, and subsurface temperature. When transporting alcohol or diesel-like fuels, pipelines have a lower direct energy intensity than rail, barge, and trucks if fluid velocity is under 1 m/s for 4-inch diameter pipelines and 2 m/s for 8-inch or larger pipelines. Across multiple hypothetical state-specific scenarios, profit-maximizing design velocities range from 1.2 to 1.9 m/s. In costs and GHG emissions, optimized pipelines outperform trucks in each state and rail and barge in most states, if projected throughput exceeds four billion liters/year. If emissions are priced, optimum design diameters typically increase to reduce pumping energy demands, increasing the cost-effectiveness of pipeline projects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Impact of green roofs on stormwater quality in a South Australian urban environment.

    Science.gov (United States)

    Razzaghmanesh, M; Beecham, S; Kazemi, F

    2014-02-01

    Green roofs are an increasingly important component of water sensitive urban design systems and can potentially improve the quality of urban runoff. However, there is evidence that they can occasionally act as a source rather than a sink for pollutants. In this study, the water quality of the outflow from both intensive and extensive green roof systems were studied in the city of Adelaide, South Australia over a period of nine months. The aim was to examine the effects of different green roof configurations on stormwater quality and to compare this with runoff from aluminium and asphalt roofs as control surfaces. The contaminant concentrations in runoff from both intensive and extensive green roofs generally decreased during the study period. A comparison between the two types of green roof showed that except for some events for EC, TDS and chloride, the values of the parameters such as pH, turbidity, nitrate, phosphate and potassium in intensive green roof outflows were higher than in the outflows from the extensive green roofs. These concentrations were compared to local, state, national and international water quality guidelines in order to investigate the potential for outflow runoff from green roofs to be reused for potable and non-potable purposes. The study found that green roof outflow can provide an alternative water source for non-potable purposes such as urban landscape irrigation and toilet flushing. © 2013.

  12. Borrowing green. Economic and environmental effects of green fiscal policy in The Netherlands

    International Nuclear Information System (INIS)

    Scholtens, B.

    2001-01-01

    This paper analyzes the economic and environmental impact of a policy instrument that is related to the tax deductibility of interest returns and dividend yields from specified 'green' projects. We investigate this so-called 'Green Project Facility' (Regeling Groenprojecten) in the Netherlands during 1995-1999. We analyze the effect on tax income, economic growth, employment, as well as on the emission of a number of gases and on solid waste production. We find that the economic effects in general are positive. This policy instrument increases growth, employment, and net tax income. However, the environmental effects are quite mixed. This especially results from the fact that a lot of projects would have been undertaken anyhow. Furthermore, we find that this green fiscal policy instrument is skewed towards energy and building. It appears to neglect environmental problems with consumer households, industry, and transport. 8 refs

  13. Catalytic and antibacterial properties of silver nanoparticles green biosynthesized using soluble green tea powder

    Science.gov (United States)

    Xu, Wei; Fan, Yapei; Liu, Xinfang; Luo, Denglin; Liu, Huan; Yang, Ningning

    2018-04-01

    Silver nanoparticles (Ag NPs) were green fabricated using soluble green tea powder (SGTP) as stabilizer and reducing agent. The properties and morphology of Ag NPs were investigated through UV–visible spectroscopy, field emission transmission electron microscope (FE-TEM) and fourier transform infrared (FT-IR). The spectroscopy showed surface plasmon resonance around at 420 nm revealing the synthesis of Ag NPs. FE-TEM results confirmed that the Ag NPs are spherical and face-centered cubic structure. FT-IR spectroscopy identified the role of various functional groups in the nanoparticle synthesis. The one spot biosynthesized Ag NPs showed favourable antibacterial properties on Escherichia coli and Staphyloccocus aureus, and excellent catalytic reduction of 4-nitrophenol. This work provided a feasible, green method to fabricate Ag NPs with promising photocatalytic and antimicrobial activities.

  14. Greenbacks from green roofs: forging a new industry in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Peck, S. W.; Callaghan, C. [Peck and Associates, Toronto, ON (Canada); Bass, B. [Environment Canada, Toronto, ON (Canada); Kuhn, M. [Toronto, ON (Canada)

    1999-03-01

    This report provides a comprehensive review of the qualitative and quantitative benefits of green roof and vertical garden technologies, explains the nature of roof greening and green roof systems, examines the barriers to their more rapid diffusion into Canadian markets, and makes recommendations as to how how these barriers may be overcome. Two basic types of green roof systems, extensive and intensive, are identified. Extensive green roofs are characterized by their low weight, low capital cost and low maintenance. Intensive green roofs, by contrast, are heavier, more costly to establish, require intensive planting and higher maintenance. Both types of green roofs may be further subdivided into accessible or inaccessible. Accessible green roofs are flat, outdoor open spaces intended for use as gardens or terraces, while inaccessible roofs are only accessible for periodic maintenance. 'Vertical gardens' are a type of extensive green roof, characterized by the growing of plants on or up against the facade of buildings. The many benefits of green roof or vertical garden technologies include energy cost savings due to increased insulation and improved protection of the roof membrane, air quality improvements, new employment opportunities for a wide range of people including suppliers of roof membranes and related products, and social benefits such as improved aesthetics, health and horticultural therapy. Barriers to diffusion in Canada have been identified as lack of awareness, lack of incentives to implement, cost implications, lack of technical standards, few existing examples and risks associated with uncertainty. The recommendations to overcome market barriers are intended to address these barriers, i.e. they call for increased efforts to generate awareness through addressing the knowledge availability issue, and through high profile demonstration projects, government-sponsored technology diffusion, financial incentives to overcome cost-based barriers

  15. Revealing discriminating power of the elements in edible sea salts: Line-intensity correlation analysis from laser-induced plasma emission spectra

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yonghoon, E-mail: yhlee@mokpo.ac.kr [Department of Chemistry, Mokpo National University, Jeonnam 534-729 (Korea, Republic of); Ham, Kyung-Sik [Department of Food Engineering, Mokpo National University, Jeonnam 534-729 (Korea, Republic of); Han, Song-Hee [Division of Maritime Transportation System, Mokpo National Maritime University, Jeonnam 530-729 (Korea, Republic of); Yoo, Jonghyun, E-mail: jyoo@appliedspectra.com [Applied Spectra, Inc., 46665 Fremont Boulevard, Fremont, CA 94538 (United States); Jeong, Sungho [School of Mechatronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-11-01

    We have investigated the discriminating power of the elements in edible sea salts using Laser-Induced Breakdown Spectroscopy (LIBS). For the ten different sea salts from South Korea, China, Japan, France, Mexico and New Zealand, LIBS spectra were recorded in the spectral range between 190 and 1040 nm, identifying the presence of Na, Cl, K, Ca, Mg, Li, Sr, Al, Si, Ti, Fe, C, O, N, and H. Intensity correlation analysis of the observed emission lines provided a valuable insight into the discriminating power of the different elements in the sea salts. The correlation analysis suggests that the elements with independent discrimination power can be categorized into three groups; those that represent dissolved ions in seawater (K, Li, and Mg), those that are associated with calcified particles (Ca and Sr), and those that are present in soils contained in the sea salts (Al, Si, Ti, and Fe). Classification models using a few emission lines selected based on the results from intensity correlation analysis and full broadband LIBS spectra were developed based on Principal Component Analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-DA) and their performances were compared. Our results indicate that effective combination of a few emission lines can provide a dependable model for discriminating the edible sea salts and the performance is not much degraded from that based on the full broadband spectra. This can be rationalized by the intensity correlation results. - Highlights: • Broadband LIBS spectra of various edible sea salts were obtained. • Intensity correlation of emission lines of the elements in edible sea salts was analyzed. • The elements were categorized into three groups with independent discriminating power. • The effective combination of a few lines can provide dependable classification models.

  16. Procurement of green electricity. Guideline for a Europe-wide tender of the supply of green electricity in an open procedure; Beschaffung von Oekostrom. Arbeitshilfe fuer eine europaweite Ausschreibung der Lieferung von Oekostrom im offenen Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, Christian; Schnutenhaus, Joern [Schnutenhaus und Kollegen, Berlin (Germany)

    2013-05-02

    The power generation from fossil fuels causes high emissions of greenhouse gases. The reduction of the power consumption and the purchase of green power pertain to the politically effective climate protection measures. These emissions can be reduced immediately by means of the purchase of green power. The brochure under consideration details the procurement law and technical foundations of this concept for the procurement of green electricity. Part I of this brochure presents the procurement legal framework and the key points of the concept. In part II concrete assistance for the purchase of green power is given. In Part III, further links are compiled.

  17. Does climate policy lead to relocation with adverse effects for GHG emissions or not? A first assessment of the spillovers of climate policy for energy intensive industry

    International Nuclear Information System (INIS)

    Oikonomou, V.; Patel, M.; Worrell, E.

    2004-12-01

    Energy-intensive industries play a special role in climate policy. World-wide, industry is responsible for about 50% of greenhouse gas emissions. The emission intensity makes these industries an important target for climate policy. At the same time these industries are particularly vulnerable if climate policy would lead to higher energy costs, and if they would be unable to offset these increased costs. The side effects of climate policy on GHG emissions in foreign countries are typically referred to as 'spillovers'. Negative spillovers reduce the effectiveness of a climate policy, while positive spillovers increase its effectiveness. This paper provides a review of the literature on the spillover effects of climate policy for carbon intensive industries. Reviews of past trends in production location of energy-intensive industries show an increased share of non-Annex 1 countries. However, this trend is primarily driven by demand growth, and there is no empirical evidence for a role of environmental policy in these development patterns. In contrast, climate models do show a strong carbon leakage of emissions from these industries. Even though that climate policy may have a more profound impact than previous environmental policies, the results of the modelling are ambiguous. The energy and carbon intensity of energy-intensive industries is rapidly declining in most developing countries, and reducing the 'gap' between industrialized and developing countries. Still, considerable potential for emission reduction exists, both in developing and industrialized countries. Technology development is likely to deliver further reductions in energy use and CO2 emissions. Despite the potential for positive spillovers in the energy-intensive industries, none of the models used in the analysis of spillovers of climate policies has an endogenous representation of technological change for the energy-intensive industries. This underlines the need for a better understanding of

  18. Spectroscopic investigations of hard x-ray emission from 120 ps laser-produced plasmas at intensities near 1017 W cm-2

    International Nuclear Information System (INIS)

    Dunn, J.; Young, B.K.F.; Osterheld, A.L.; Foord, M.E.; Walling, R.S.; Stewart, R.E.; Faenov, A.Y.

    1995-11-01

    Spectroscopic investigations of the x-ray emission of plasmas heated by 120 ps, frequency doubled pulses from the JANUS Nd: glass laser are presented. High Z K-shell spectra emitted from slab targets heated to near 10 17 W cm -2 intensity are investigated. High resolution (γ/Δγ>5000) x-ray spectra of multicharged ions of H-like Ti, Co, Ni, Cu, and also H-like Sc in the spectral range 1.5--3.0 angstrom are obtained in single laser shots using a spherically bent Mica crystal spectrograph with a 186 mm radius of curvature. The spectra- have one dimensional spatial resolution of about 25μm and indicate that the size of the emission zone of the resonance, transitions is 2 keV and density∼10 22 cm -3 . These experiments demonstrate that with modest laser energy, plasmas heated by high-intensity 120 ps lasers provide a very bright source of hard ∼8 keV x-ray emission

  19. Tea green leafhopper, Empoasca vitis, chooses suitable host plants by detecting the emission level of (3Z)-hexenyl acetate.

    Science.gov (United States)

    Xin, Z-J; Li, X-W; Bian, L; Sun, X-L

    2017-02-01

    Green leaf volatiles (GLVs) have been reported to play an important role in the host-locating behavior of several folivores that feed on angiosperms. However, next to nothing is known about how the green leafhopper, Empoasca vitis, chooses suitable host plants and whether it detects differing emission levels of GLV components among genetically different tea varieties. Here we found that the constitutive transcript level of the tea hydroperoxide lyase (HPL) gene CsiHPL1, and the amounts of (Z)-3-hexenyl acetate and of total GLV components are significantly higher in tea varieties that are susceptible to E. vitis (Enbiao (EB) and Banzhuyuan (BZY)) than in varieties that are resistant to E. vitis (Changxingzisun (CX) and Juyan (JY)). Moreover, the results of a Y-tube olfactometer bioassay and an oviposition preference assay suggest that (Z)-3-hexenyl acetate and (Z)-3-hexenol offer host and oviposition cues for E. vitis female adults. Taken together, the two GLV components, (Z)-3-hexenol and especially (Z)-3-hexenyl acetate, provide a plausible mechanism by which tea green leafhoppers distinguish among resistant and susceptible varieties. Future research should be carried out to obtain the threshold of the above indices and then assess their reasonableness. The development of practical detection indices would greatly improve our ability to screen and develop tea varieties that are resistant to E. vitis.

  20. Temperature dependence of electroluminescent emission from (ZnS : Cu, Mn(H)) type luminophors

    International Nuclear Information System (INIS)

    Singh, L.K.

    1986-04-01

    The dependence of electroluminescent yield on temperature for hydrogen coactivated (ZnS : Cu, Mn) type triple band emitting phosphors has been investigated at various temperatures under varied operating conditions of excitations. The influence of the excitation frequency, voltage and of emission wavelengths for the electroluminescent characteristics has also been observed on temperature variations. The results have also been studied for temperature dependences of emitting brightness under the excitation by UV-radiations of 3650 A.U. and a comparison is made between temperature dependent characteristics of E.L. and PL-brightness of emissions. It was observed that, as usual, brightness maxima on temperature scale varied with alteration of operating electric fields regarding frequency and voltage both for blue, green and yellow orange emissions of attempted samples. The important thing which is observed here, is that with regards the temperature EL-intensities vary respectively for all respective emissions but emission peaks are not shifted on wave-length scale. This no shift is due to the narrowly and compactly distributed coactivator levels of hydrogen. (author)

  1. Green light emitting nanostructures of Tb3+ doped LaOF prepared via ultrasound route applicable in display devices

    Science.gov (United States)

    Suresh, C.; Nagabhushana, H.; Basavaraj, R. B.; Prasad, B. Daruka

    2017-05-01

    For the first time Tb3+ (1-5 mol %) doped LaOF nanophosphors using Aloe vera (AV) leaves extract as bio-surfactant were synthesized by facile ultrasound supported sonochemical route at relatively high temperature (700°C) and short duration of 3h. The powder X-ray diffraction (PXRD) profiles of LaOF nanophosphors showed tetragonal structure. The morphological features of LaOF with effect of Sonication time and concentration of bio-surfactant were studied by scanning electron microscope (SEM). The particle size were estimated from transmission electron microscope (TEM) image was found to be in the range of 20-30 nm. The characteristic photoluminescence emission peaks at 487, 541, 586 and 620 nm in green region corresponding to 5D4→7Fj (j=6, 5, 4, 3) transitions of Tb3+ were observed. The LaOF: Tb3+ nanophosphors exhibit green luminescence with better chromaticity coordinates, colour purity and higher intensity under low-voltage electron beam excitation were observed by Commission International De I'Eclairage (CIE) along with colour correlated temperature (CCT). All results indicate that these obtained nanophosphors have potential applications in field emission display device.

  2. White light emission from engineered silicon carbide

    DEFF Research Database (Denmark)

    Ou, Haiyan

    Silicon carbide (SiC) is a wide indirect bandgap semiconductor. The light emission efficiency is low in nature. But this material has very unique physical properties like good thermal conductivity, high break down field etc in addition to its abundance. Therefore it is interesting to engineer its...... light emission property so that to take fully potential applications of this material. In this talk, two methods, i.e. doping SiC heavily by donor-acceptor pairs and making SiC porous are introduced to make light emission from SiC. By co-doping SiC with nitrogen and boron heavily, strong yellow emission...... is demonstrated. After optimizing the passivation conditions, strong blue-green emission from porous SiC is demonstrated as well. When combining the yellow emission from co-doped SiC and blue-green from porous SiC, a high color rendering index white light source is achieved....

  3. Aqueous based synthesis of N-acetyl-L-cysteine capped ZnSe nanocrystals with intense blue emission

    Science.gov (United States)

    Soheyli, Ehsan; Sahraei, Reza; Nabiyouni, Gholamreza

    2016-10-01

    In this work a very simple reflux route for preparation of ZnSe nanocrystals with minor modification and faster preparation over conventional ones is introduced. X-ray diffraction analysis indicated that the ZnSe nanocrystals have a cubic structure. The complete disappearance of the S-H band in FT-IR spectrum of N-acetyl-L-cysteine capped ZnSe nanocrystals was an indication over formation of Zn-thiol covalent bonds at the surface of the nanocrystals which results in passivation of small nanocrystals. The strong size-quantization regime was responsible of significant blue shift in absorption/emission spectra. Using the well-known calculations, band gap and Urbach energy of the ZnSe nanocrystals were measured and their average size was estimated optically to be around 4.6 nm along with the TEM image. A dark blue emission with higher relative intensity of excitonic to trap emissions (compared to conventional method), very narrow excitonic emission peak of about 16 nm and remarkable stability was obtained from the ZnSe nanocrystals.

  4. Green entrepreneurship: EU experience and Ukraine perspective

    Directory of Open Access Journals (Sweden)

    Olena CHYGRYN

    2017-09-01

    Full Text Available These days the environmental challenges begin to play crucial role in sustainable development of the countries and regions. European environmental policy aims in the creation of a favorable framework for the development of green entrepreneurship. The paper deals with the analysis of EU experience in supporting and promoting the green entrepreneurship. The author analyzed and systematized the EU trends in GHG emission. The main features and parts of the green economy are described. The author emphasizes that EU has the huge experience in the sphere of developing and providing relevant green activities, which can be used by Ukraine for implementation green entrepreneurship projects on the different levels of the economy. Thus, the green positive practices in Austria, Hungary, Ireland and Spain were described. The author underlines that green entrepreneurship for Ukraine is one of the necessary conditions for improving the environmental status, solving the problems with the rational use of natural resources, increasing the welfare of the citizen, integration into the European Union and to ensure the green of innovative development. The activities which are necessary for mainstreaming for Ukraine’s integrating to the European sustainable entrepreneurship space were considered.

  5. The Little Green Data Book 2016

    OpenAIRE

    World Bank

    2016-01-01

    The Little Green Data Book 2016 is a pocket-sized ready reference on key environmental data for over 200 countries. Key indicators are organized under the headings of agriculture, forestry, biodiversity, oceans, energy, emission and pollution, and water and sanitation.

  6. Is it efficient to co-compost and co-vermicompost green waste with biochar and/or clay to reduce CO2 emissions? A short-term laboratory experiment on (vermi)composts with additives.

    Science.gov (United States)

    Barthod, Justine; Rumpel, Cornélia; Paradelo, Remigio; Dignac, Marie-France

    2016-04-01

    Intensive farming practices can lead to a depletion of soil organic matter, negatively impacting important soil properties such as structural stability, fertility and C storage. The addition of organic amendments such as compost and vermicompost, rich in carbon, helps maintaining soil organic matter levels or restoring degraded soils. Composting and vermicomposting are based on stabilization of organic matter through the mineralization of easily decomposable organic matter compounds, therefore releasing greenhouse gases, including CO2. The aim of this study was to evaluate the global potential reduction of such emissions by the use of additives (2:1 clay and/or biochar): during (vermi)composting processes and after use of the final products as soil amendments. We hypothesized that the interactions between the additives and organic matter may lead to carbon stabilization and that such interactions may be enhanced by the presence of worms (Eisenia). We added in different proportions clay (25% or 50%), biochar (10%) and a mixture of biochar (10%) with clay (25%) to pre-composted green waste. The CO2 emissions of the composting and vermicomposting processes were measured during 21 days. After that, the amendments were added to a loamy cambisol soil and the CO2 emissions were monitored during 30 days of a laboratory experiment. The most efficient treatments in terms of reducing global CO2 emissions were the co-vermicomposting process with 25% clay followed by co-composting with 50% clay and with 10% biochar plus 25% clay. In this treatment (vermicompost with 25% clay), the carbon emissions were decreased by up to 44% compared to regular compost. Addition of biochar reduced CO2 emissions only during composting. Co-composting with biochar could be a promising avenue to limit global CO2 emissions whereas in presence of worms clay additions are better suited. These findings suggest that the presence of worms increased the formation of organo-mineral associations and thus C

  7. Comparing wildlife habitat and biodiversity across green roof type

    Energy Technology Data Exchange (ETDEWEB)

    Coffman, R.R. [Oklahoma Univ., Tulsa, OK (United States). Dept. of Landscape Architecture

    2007-07-01

    Green roofs represent restorative practices within human dominated ecosystems. They create habitat, increase local biodiversity, and restore ecosystem function. Cities are now promoting this technology as a part of mitigation for the loss of local habitat, making the green roof necessary in sustainable development. While most green roofs create some form of habitat for local and migratory fauna, some systems are designed to provide specific habitat for species of concern. Despite this, little is actually known about the wildlife communities inhabiting green roofs. Only a few studies have provided broad taxa descriptions across a range of green roof habitats, and none have attempted to measure the biodiversity across green roof class. Therefore, this study examined two different vegetated roof systems representative of North America. They were constructed under alternative priorities such as energy, stormwater and aesthetics. The wildlife community appears to be a result of the green roof's physical composition. Wildlife community composition and biodiversity is expected be different yet comparable between the two general types of green roofs, known as extensive and intensive. This study recorded the community composition found in the two classes of ecoroofs and assessed biodiversity and similarity at the community and group taxa levels of insects, spiders and birds. Renyi family of diversity indices were used to compare the communities. They were further described through indices and ratios such as Shannon's, Simpson's, Sorenson and Morsita's. In general, community biodiversity was found to be slightly higher in the intensive green roof than the extensive green roof. 26 refs., 4 tabs., 4 figs.

  8. Comparison of real-time BTEX flux measurements to reported emission inventories in the Upper Green River Basin, Wyoming.

    Science.gov (United States)

    Edie, R.; Robertson, A.; Murphy, S. M.; Soltis, J.; Field, R. A.; Zimmerle, D.; Bell, C.

    2017-12-01

    Other Test Method 33a (OTM-33a) is an EPA-developed near-source measurement technique that utilizes a Gaussian plume inversion to calculate the flux of a point source 20 to 200 meters away. In 2014, the University of Wyoming mobile laboratory—equipped with a Picarro methane analyzer and an Ionicon Proton Transfer Reaction Time of Flight Mass Spectrometer—measured methane and BTEX fluxes from oil and gas operations in the Upper Green River Basin (UGRB), Wyoming. In this study, OTM-33a BTEX flux measurements are compared to BTEX emissions reported by operators in the Wyoming Department of Environmental Quality (WY-DEQ) emission inventory. On average, OTM-33a measured BTEX fluxes are almost twice as high as those reported in the emission inventory. To further constrain errors in the OTM-33a method, methane test releases were performed at the Colorado State University Methane Emissions Test and Evaluation Center (METEC) in June of 2017. The METEC facility contains decommissioned oil and gas equipment arranged in realistic well pad layouts. Each piece of equipment has a multitude of possible emission points. A Gaussian fit of measurement error from these 29 test releases indicate the median OTM-33a measurement quantified 55% of the metered flowrate. BTEX results from the UGRB campaign and inventory analysis will be presented, along with a discussion of errors associated with the OTM-33a measurement technique. Real-time BTEX and methane mixing ratios at the measurement locations (which show a lack of correlation between VOC and methane sources in 20% of sites sampled) will also be discussed.

  9. The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites

    Science.gov (United States)

    Priante, D.; Dursun, I.; Alias, M. S.; Shi, D.; Melnikov, V. A.; Ng, T. K.; Mohammed, O. F.; Bakr, O. M.; Ooi, B. S.

    2015-02-01

    We investigated the mechanisms of radiative recombination in a CH3NH3PbBr3 hybrid perovskite material using low-temperature, power-dependent (77 K), and temperature-dependent photoluminescence (PL) measurements. Two bound-excitonic radiative transitions related to grain size inhomogeneity were identified. Both transitions led to PL spectra broadening as a result of concurrent blue and red shifts of these excitonic peaks. The red-shifted bound-excitonic peak dominated at high PL excitation led to a true-green wavelength of 553 nm for CH3NH3PbBr3 powders that are encapsulated in polydimethylsiloxane. Amplified spontaneous emission was eventually achieved for an excitation threshold energy of approximately 350 μJ/cm2. Our results provide a platform for potential extension towards a true-green light-emitting device for solid-state lighting and display applications.

  10. The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites

    KAUST Repository

    Priante, Davide

    2015-02-23

    We investigated the mechanisms of radiative recombination in a CH3NH3PbBr3 hybrid perovskite material using low-temperature, power-dependent (77K), and temperature-dependent photoluminescence (PL) measurements. Two bound-excitonic radiative transitions related to grain size inhomogeneity were identified. Both transitions led to PL spectra broadening as a result of concurrent blue and red shifts of these excitonic peaks. The red-shifted bound-excitonic peak dominated at high PL excitation led to a true-green wavelength of 553nm for CH3NH3PbBr3 powders that are encapsulated in polydimethylsiloxane. Amplified spontaneous emission was eventually achieved for an excitation threshold energy of approximately 350μJ/cm2. Our results provide a platform for potential extension towards a true-green light-emitting device for solid-state lighting and display applications.

  11. Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Heo, Y.W.; Norton, D.P.; Pearton, S.J.

    2005-01-01

    The properties of ZnO films grown by molecular-beam epitaxy are reported. The primary focus was on understanding the origin of deep-level luminescence. A shift in deep-level emission from green to yellow is observed with reduced Zn pressure during the growth. Photoluminescence and Hall measurements were employed to study correlations between deep-level/near-band-edge emission and carrier density. With these results, we suggest that the green emission is related to donor-deep acceptor (Zn vacancy V Zn - ) and the yellow to donor-deep acceptor (oxygen vacancy, O i - )

  12. Growth and characterization of red-green-blue cathodoluminescent ceramic films

    Science.gov (United States)

    Gozzi, Daniele; Latini, Alessandro; Salviati, Giancarlo; Armani, Nicola

    2006-06-01

    Gd2O3 and Y2O3 films, respectively, doped with Eu3+, Tb3+, and Tm3+ have been grown by the electron beam physical vapor codeposition technique on optically polished quartz substrates. The film samples have been doped at different concentrations by the corresponding rare-earth oxides. The concentration range explored is from 0.9% to 9.8% on 18 samples. For each film sample an extended characterization has been performed by thin film-x-ray diffraction, scanning electron microscopy, energy dispersion spectroscopy, cathodoluminescence spectroscopy, and color coordinate analysis. Y2O3 films display the most intense red-green-blue (RGB) emission and their film morphology and structure are more compact and crystalline with respect to Gd2O3 monoclinic films. Eu3+ and Tb3+ doped Y2O3 films grow oriented along the (222) direction. The ratios between the intensities of the electric dipole and magnetic dipole transitions have been also evaluated. The blue emission of Tm3+ doped Gd2O3 is lacking in the dopant concentration range from 1.6% to 7.6%, whereas it is present in Tm3+ doped Y2O3 films, at approximately the same dopant concentration range (1.9%-9.8%). Commission Internationale de l'Eclairage plot of the color coordinates of all the RGB film samples has been reported together with the RGB phosphor standard used in cathodic ray tube TV screens.

  13. Green Roofs: Federal Energy Management Program (FEMP) Federal Technology Alert

    Energy Technology Data Exchange (ETDEWEB)

    Scholz-Barth, K.; Tanner, S.

    2004-09-01

    In a ''green roof,'' a layer of vegetation (e.g., a roof garden) covers the surface of a roof to provide shade, cooler indoor and outdoor temperatures, and effective storm-water management to reduce runoff. The main components are waterproofing, soil, and plants. There are two basic kinds: intensive and extensive. An intensive green roof often features large shrubs and trees, and it can be expensive to install and maintain. An extensive green roof features shallow soil and low-growing, horizontally spreading plants that can thrive in the alpine conditions of many rooftops. These plants do not require a lot of water or soil, and they can tolerate a significant amount of exposure to the sun and wind. This Federal Technology Alert focuses on the benefits, design, and implementation of extensive green roofs and includes criteria for their use on federal facilities.

  14. Blue-green luminescent CdZnSeS nanocrystals synthesized with activated alkyl thiol

    International Nuclear Information System (INIS)

    Xia Xing; Liu Zuli; Du Guihuan; Li Yuebin; Ma Ming; Yao Kailun

    2012-01-01

    Semiconductor nanocrystals with blue-green luminescence are potentially useful in various applications, but the preparation has not been easy compared to regular semiconductor nanocrystals with emission in the orange-red range. In this research alloyed CdZnSeS nanocrystals with luminescence covering the wavelength range from 430 to 560 nm are obtained by a one-step method with the assistance of alkyl thiol compound 1-dodecanethiol, which serves both as the sulfur source and surface ligand. The luminescence of CdZnSeS nanocrystals can be tuned from blue to green by altering the Cd:Zn molar ratio. Besides, the amount of 1-dodecanethiol in the reaction mixture can influence the emission wavelength by restricting the growth of nanocrystals. The dual control of both particle composition and size has enabled the tuning of luminescence to cover the blue-green spectral window. This research presents a convenient method to synthesize nanocrystals with tunable blue-green emission; these materials can be useful in advanced technologies such as photovoltaics, lighting and display. - Highlights: → Obtained blue-green luminescent nanocrystals by a one-step process. → Alkyl thiol used as a sulfur source and a surface stabilizer to control particle size. → Luminescence color of NCs could be easily tuned by changing their composition and particle size simultaneously.

  15. On-line depth measurement for laser-drilled holes based on the intensity of plasma emission

    Science.gov (United States)

    Ho, Chao-Ching; Chiu, Chih-Mu; Chang, Yuan-Jen; Hsu, Jin-Chen; Kuo, Chia-Lung

    2014-09-01

    The direct time-resolved depth measurement of blind holes is extremely difficult due to the short time interval and the limited space inside the hole. This work presents a method that involves on-line plasma emission acquisition and analysis to obtain correlations between the machining processes and the optical signal output. Given that the depths of laser-machined holes can be estimated on-line using a coaxial photodiode, this was employed in our inspection system. Our experiments were conducted in air under normal atmospheric conditions without gas assist. The intensity of radiation emitted from the vaporized material was found to correlate with the depth of the hole. The results indicate that the estimated depths of the laser-drilled holes were inversely proportional to the maximum plasma light emission measured for a given laser pulse number.

  16. Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems.

    Science.gov (United States)

    Kanawade, Rajesh; Mahari, Fanuel; Klämpfl, Florian; Rohde, Maximilian; Knipfer, Christian; Tangermann-Gerk, Katja; Adler, Werner; Schmidt, Michael; Stelzle, Florian

    2015-01-01

    The research work presented in this paper focuses on qualitative tissue differentiation by monitoring the intensity ratios of atomic emissions using 'Laser Induced Breakdown Spectroscopy' (LIBS) on the plasma plume created during laser tissue ablation. The background of this study is to establish a real time feedback control mechanism for clinical laser surgery systems during the laser ablation process. Ex-vivo domestic pig tissue samples (muscle, fat, nerve and skin) were used in this experiment. Atomic emission intensity ratios were analyzed to find a characteristic spectral line for each tissue. The results showed characteristic elemental emission intensity ratios for the respective tissues. The spectral lines and intensity ratios of these specific elements varied among the different tissue types. The main goal of this study is to qualitatively and precisely identify different tissue types for tissue specific laser surgery. © 2015 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag.

  17. Quenching and blue shift of UV emission intensity of hydrothermally grown ZnO:Mn nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Vinod, R. [Department of Physics, Cochin University of Science and Technology, Kochi 682022, Kerala (India); Junaid Bushiri, M., E-mail: junaidbushiri@gmail.com [Department of Physics, Cochin University of Science and Technology, Kochi 682022, Kerala (India); Achary, Sreekumar Rajappan; Muñoz-Sanjosé, Vicente [Departamento de FisicaAplicada y Electromagnetismo, Universitat de Valencia, c/Dr. Moliner 50, Burjassot, Valencia 46100 (Spain)

    2015-01-15

    Highlights: • Single crystalline ZnO:Mn nanorods. • Reduced optical active defects. • Quenching and blue shift of UV emission. - Abstract: ZnO:Mn alloyed nanorods (Mn nominal concentration – 3–5 wt%) were synthesized by using hydrothermal process at an optimized growth temperature of 200 °C and a growth time of 3 h. The XRD, SEM and Raman, FTIR investigations reveal that ZnO:Mn (Mn – 3–5 wt%) retained hexagonal wurtzite crystal structure with nanorod morphology. The HRTEM and SAED analysis confirm the single crystalline nature of hydrothermally grown ZnO and ZnO:Mn (5 wt%) nanorods. The ZnO:Mn nanorods (Mn – 0–5 wt%) displayed optical band gap in the range 3.23–3.28 eV. The blue shift of UV emission peak (PL) from 393 (ZnO) to 386 nm and quenching of photoluminescence emission in ZnO:Mn is due to the Mn incorporation in ZnO lattice. Relative increase in intensity of Raman band at 660 cm{sup −1} with nominal doping of Mn 3–5 wt% in ZnO indicate that defects are introduced in ZnO:Mn system as a result of doping that leads to the quenching of photoluminescence emission at 393 nm.

  18. Presidential Green Chemistry Challenge: 2016 Academic Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2016 award winner, Professor Chirik, discovered a class of catalysts used to produce silicones for consumer goods without using hard-to-mine platinum (less mining, reduces costs, greenhouse gas emissions, and waste).

  19. Simple luminosity normalization of greenness, yellowness and redness/greenness for comparison of leaf spectral profiles in multi-temporally acquired remote sensing images.

    Science.gov (United States)

    Doi, Ryoichi

    2012-09-01

    Observation of leaf colour (spectral profiles) through remote sensing is an effective method of identifying the spatial distribution patterns of abnormalities in leaf colour, which enables appropriate plant management measures to be taken. However, because the brightness of remote sensing images varies with acquisition time, in the observation of leaf spectral profiles in multi-temporally acquired remote sensing images, changes in brightness must be taken into account. This study identified a simple luminosity normalization technique that enables leaf colours to be compared in remote sensing images over time. The intensity values of green and yellow (green+red) exhibited strong linear relationships with luminosity (R2 greater than 0.926) when various invariant rooftops in Bangkok or Tokyo were spectralprofiled using remote sensing images acquired at different time points. The values of the coefficient and constant or the coefficient of the formulae describing the intensity of green or yellow were comparable among the single Bangkok site and the two Tokyo sites, indicating the technique's general applicability. For single rooftops, the values of the coefficient of variation for green, yellow, and red/green were 16% or less (n=6-11), indicating an accuracy not less than those of well-established remote sensing measures such as the normalized difference vegetation index. After obtaining the above linear relationships, raw intensity values were normalized and a temporal comparison of the spectral profiles of the canopies of evergreen and deciduous tree species in Tokyo was made to highlight the changes in the canopies' spectral profiles. Future aspects of this technique are discussed herein.

  20. Green vessel scheduling in liner shipping: Modeling carbon dioxide emission costs in sea and at ports of call

    Directory of Open Access Journals (Sweden)

    Maxim A. Dulebenets

    2018-03-01

    Full Text Available Considering a substantial increase in volumes of the international seaborne trade and drastic climate changes due to carbon dioxide emissions, liner shipping companies have to improve planning of their vessel schedules and improve energy efficiency. This paper presents a novel mixed integer non-linear mathematical model for the green vessel scheduling problem, which directly accounts for the carbon dioxide emission costs in sea and at ports of call. The original non-linear model is linearized and then solved using CPLEX. A set of numerical experiments are conducted for a real-life liner shipping route to reveal managerial insights that can be of importance to liner shipping companies. Results indicate that the proposed mathematical model can serve as an efficient planning tool for liner shipping companies and may assist with evaluation of various carbon dioxide taxation schemes. Increasing carbon dioxide tax may substantially change the design of vessel schedules, incur additional route service costs, and improve the environmental sustainability. However, the effects from increasing carbon dioxide tax on the marine container terminal operations are found to be very limited.

  1. ATRF Earns Three Green Globes, Exceeds NIH Building Standards | Poster

    Science.gov (United States)

    By Ashley DeVine, Staff Writer From project management and energy and water efficiency to emissions and the indoor environment, the Advanced Technology Research Facility (ATRF) was built with sustainability in mind, exceeding the National Institutes of Health’s (NIH’s) building standards and earning three Green Globes from the Green Building Initiative (GBI).

  2. Different shades of green on small islands

    Directory of Open Access Journals (Sweden)

    Teresa Tiago

    2016-11-01

    Full Text Available Many small islands exist as tourism destinations worldwide. In the 1990s, the growth of environmental consciousness led some small islands to question their mass tourism offers and to refocus on more sustainable propositions. However, it remains unclear whether hospitality firms see these sustainability related efforts as drivers of success and whether tourists value this dimension when choosing or recommending a destination. This study chose a small island destination to address these questions using data covering firm and tourism perceptions of green products. The results show that tourists tend to value green efforts with different intensities, corresponding to three segments: Light Green, Green, and Super Green. These findings should help hotels adjust their communication strategies and develop new services. Further, destination marketing organizations can devise a consistent destination strategy, integrating all stakeholders by including their most valued concepts.

  3. Estimation of leaf area index in cereal crops using red-green images

    DEFF Research Database (Denmark)

    Kirk, Kristian; Andersen, Hans Jørgen; Thomsen, Anton G

    2009-01-01

    A new method for estimating the leaf area index (LAI) in cereal crops based on red-green images taken from above the crop canopy is introduced. The proposed method labels pixels into vegetation and soil classes using a combination of greenness and intensity derived from the red and green colour b...

  4. Positron Emission Tomography/Computed Tomography-Guided Intensity-Modulated Radiotherapy for Limited-Stage Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Shirvani, Shervin M.; Komaki, Ritsuko; Heymach, John V.; Fossella, Frank V.; Chang, Joe Y.

    2012-01-01

    Purpose: Omitting elective nodal irradiation from planning target volumes does not compromise outcomes in patients with non–small-cell lung cancer, but whether the same is true for those with limited-stage small-cell lung cancer (LS-SCLC) is unknown. Therefore, in the present study, we sought to determine the clinical outcomes and the frequency of elective nodal failure in patients with LS-SCLC staged using positron emission tomography/computed tomography and treated with involved-field intensity-modulated radiotherapy. Methods and Materials: Between 2005 and 2008, 60 patients with LS-SCLC at our institution underwent disease staging using positron emission tomography/computed tomography before treatment using an intensity-modulated radiotherapy plan in which elective nodal irradiation was intentionally omitted from the planning target volume (mode and median dose, 45 Gy in 30 fractions; range, 40.5 Gy in 27 fractions to 63.8 Gy in 35 fractions). In most cases, concurrent platinum-based chemotherapy was administered. We retrospectively reviewed the clinical outcomes to determine the overall survival, relapse-free survival, and failure patterns. Elective nodal failure was defined as recurrence in initially uninvolved hilar, mediastinal, or supraclavicular nodes. Survival was assessed using the Kaplan-Meier method. Results: The median age of the study patients at diagnosis was 63 years (range, 39–86). The median follow-up duration was 21 months (range, 4–58) in all patients and 26 months (range, 4–58) in the survivors. The 2-year actuarial overall survival and relapse-free survival rate were 58% and 43%, respectively. Of the 30 patients with recurrence, 23 had metastatic disease and 7 had locoregional failure. We observed only one isolated elective nodal failure. Conclusions: To our knowledge, this is the first study to examine the outcomes in patients with LS-SCLC staged with positron emission tomography/computed tomography and treated with definitive

  5. Positron Emission Tomography/Computed Tomography-Guided Intensity-Modulated Radiotherapy for Limited-Stage Small-Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Shirvani, Shervin M.; Komaki, Ritsuko [Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Heymach, John V.; Fossella, Frank V. [Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Chang, Joe Y., E-mail: jychang@mdanderson.org [Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States)

    2012-01-01

    Purpose: Omitting elective nodal irradiation from planning target volumes does not compromise outcomes in patients with non-small-cell lung cancer, but whether the same is true for those with limited-stage small-cell lung cancer (LS-SCLC) is unknown. Therefore, in the present study, we sought to determine the clinical outcomes and the frequency of elective nodal failure in patients with LS-SCLC staged using positron emission tomography/computed tomography and treated with involved-field intensity-modulated radiotherapy. Methods and Materials: Between 2005 and 2008, 60 patients with LS-SCLC at our institution underwent disease staging using positron emission tomography/computed tomography before treatment using an intensity-modulated radiotherapy plan in which elective nodal irradiation was intentionally omitted from the planning target volume (mode and median dose, 45 Gy in 30 fractions; range, 40.5 Gy in 27 fractions to 63.8 Gy in 35 fractions). In most cases, concurrent platinum-based chemotherapy was administered. We retrospectively reviewed the clinical outcomes to determine the overall survival, relapse-free survival, and failure patterns. Elective nodal failure was defined as recurrence in initially uninvolved hilar, mediastinal, or supraclavicular nodes. Survival was assessed using the Kaplan-Meier method. Results: The median age of the study patients at diagnosis was 63 years (range, 39-86). The median follow-up duration was 21 months (range, 4-58) in all patients and 26 months (range, 4-58) in the survivors. The 2-year actuarial overall survival and relapse-free survival rate were 58% and 43%, respectively. Of the 30 patients with recurrence, 23 had metastatic disease and 7 had locoregional failure. We observed only one isolated elective nodal failure. Conclusions: To our knowledge, this is the first study to examine the outcomes in patients with LS-SCLC staged with positron emission tomography/computed tomography and treated with definitive intensity

  6. Delivering energy efficiency and carbon reduction schemes in England: Lessons from Green Deal Pioneer Places

    International Nuclear Information System (INIS)

    Marchand, Robert D.; Koh, S.C. Lenny; Morris, Jonathan C.

    2015-01-01

    Against a background of growing international and national carbon reduction legislation, the UK government introduced the “Green Deal” to deliver a significant increase in housing energy efficiency and reduction in carbon emissions. This paper reflects on one English local authority's experience delivering a programme intended to foster local interest in the Green Deal. Drawing on social surveys and pre and post Green Deal intervention interviews with five demonstrator homes (households that applied to receive a Green Deal package fully funded by the scheme, providing a test bed for the Green Deal recruitment and installation process), this paper shows that awareness and understanding of the Green Deal scheme is low. There is opposition to the cost of finance offered but a strong interest in improving household warmth and for funding improvements through payments added to the electricity bill. Demonstrator home residents perceived Green Deals had improved the warmth and quality of their home, but saving money was the primary motivator for their involvement, not increasing warmth. Whilst Green Deal has not delivered the level of success that was hoped, much can be learned from the scheme to improve future energy efficiency schemes that will be necessary to deliver emission reduction commitments. -- Highlights: •Resident awareness and understanding of the Green Deal is low. •Green Deal assessment costs and loan interest rates are biggest barriers to uptake. •Funding energy improvements via a charge on electricity bill welcomed by residents. •Saving money rather than increasing warmth main motivator for scheme involvement. •Insights from this work should be used to inform future emission reduction schemes

  7. Familiarization and Detection of Green Monopropellants Project

    Science.gov (United States)

    Coan, Mary Rachel (Compiler)

    2014-01-01

    Ammonium dinitramide (ADN) and hydroxyl ammonium nitrate (HAN) are green monopropellants which will be appearing at Kennedy Space Center (KSC) for processing in the next few years. These are relatively safe replacements for hydrazine as a monopropellant; however, little is known about methods of leak detection, vapor scrubbing, air emissions, or cleanup that will be required for safe and environmentally benign operations at KSC. The goal of this work is to develop leak detection and related technologies for the two new green monopropellants.

  8. Familiarization and Detection of Green Monopropellants Image

    Science.gov (United States)

    Coan, Mary R.

    2015-01-01

    Ammonium dinitramide (ADN) and hydroxyl ammonium nitrate (HAN) are green monopropellants which will be appearing at Kennedy Space Center (KSC) for processing in the next few years. These are relatively safe replacements for hydrazine as a monopropellant; however, little is known about methods of leak detection, vapor scrubbing, air emissions, or cleanup that will be required for safe and environmentally benign operations at KSC. The goal of this work is to develop leak detection and related technologies for the two new green monopropellants.

  9. NEW MASER EMISSION FROM NONMETASTABLE AMMONIA IN NGC 7538. II. GREEN BANK TELESCOPE OBSERVATIONS INCLUDING WATER MASERS

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Ian M. [St. Paul' s School, Concord, NH 03301 (United States); Seojin Kim, Stella, E-mail: ihoffman@sps.edu [Current address: Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2011-12-15

    We present new maser emission from {sup 14}NH{sub 3} (9,6) in NGC 7538. Our observations include the known spectral features near v{sub LSR} = -60 km s{sup -1} and -57 km s{sup -1} and several more features extending to -46 km s{sup -1}. In three epochs of observation spanning two months we do not detect any variability in the ammonia masers, in contrast to the >10-fold variability observed in other {sup 14}NH{sub 3} (9,6) masers in the Galaxy over comparable timescales. We also present observations of water masers in all three epochs for which emission is observed over the velocity range -105 km s{sup -1} < v{sub LSR} < -4 km s{sup -1}, including the highest velocity water emission yet observed from NGC 7538. Of the remarkable number of maser species in IRS 1, H{sub 2}O and, now, {sup 14}NH{sub 3} are the only masers known to exhibit emission outside of the velocity range -62 km s{sup -1} < v{sub LSR} < -51 km s{sup -1}. However, we find no significant intensity or velocity correlations between the water emission and ammonia emission. We also present a non-detection in the most sensitive search to date toward any source for emission from the CC{sup 32}S and CC{sup 34}S molecules, indicating an age greater than Almost-Equal-To 10{sup 4} yr for IRS 1-3. We discuss these findings in the context of embedded stellar cores and recent models of the region.

  10. Effect of structure, size and copper doping on the luminescence properties of ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, Ch. Satya [Crystal Growth and Nanoscience Research Centre, Government College (A), Rajahmundry, Andhra Pradesh 533 105 (India); Mishra, R.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Patel, Dinesh K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, 9190401 (Israel); Rao, K. Ramachandra, E-mail: drkrcr@gmail.com [Crystal Growth and Nanoscience Research Centre, Government College (A), Rajahmundry, Andhra Pradesh 533 105 (India); Sudarsan, V., E-mail: vsudar@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Vatsa, R.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-09-15

    Highlights: • Blue and green emission intensity form ZnS is sensitive to crystallographic form. • For ZnS nanoparticles, emission characteristics are not affected by copper doping. • Cu solubility poor in ZnS nanoparticles compared to corresponding bulk. - Abstract: Luminescence properties of wurtzite and cubic forms of bulk ZnS have been investigated in detail and compared with that of ZnS nanoparticles. Blue emission observed in both hexagonal and cubic forms of undoped bulk ZnS is explained based on electron–hole recombination involving electron in conduction band and hole trapped in Zn{sup 2+} vacancies where as green emission arises due to electron hole recombination from Zn{sup 2+} and S{sup 2−} vacancies. Conversion of wurtzite form to cubic form is associated with relative increase in intensity of green emission due to increased defect concentration brought about by high temperature heat treatment. Copper doping in ZnS, initially leads to formation of both Cu{sub Zn} and Cu{sub i} (interstitial copper) centers, and latter to mainly Cu{sub Zn} centers as revealed by variation in relative intensities of blue and green emission from the samples.

  11. Coupling biogeochemical cycles in urban environments: Ecosystemservices, green solutions, and misconceptions

    Science.gov (United States)

    Diane Pataki; Margaret Carreiro; Jennifer Cherrier; Nancy Grulke; Viniece Jennings; Stephanie Pincetl; Richard Pouyat; Thomas Whitlow; Wayne. Zipperer

    2011-01-01

    Urban green space is purported to offset greenhouse-gas (GHG) emissions, remove air and water pollutants, cool local climate, and improve public health. To use these services, municipalities have focused efforts on designing and implementing ecosystem-services-based "green infrastructure" in urban environments. In some cases the environmental benefits of this...

  12. Green brand awareness and customer purchase intention

    Directory of Open Access Journals (Sweden)

    Mahama Braimah

    2015-10-01

    Full Text Available Green environmental issues have been of topical interest to both researchers and industrialists for some time now. Research on green brands is relatively limited, especially in developing countries, such as Ghana. This study is therefore designed to determine the relationship between customer awareness of green brand issues and their everyday purchase intentions. Using quantitative techniques, the study interviewed 316 people, conveniently selected from various shopping points in Accra. The study found that, the overwhelming majority of respondents though familiar with green issues did not concern themselves with green issues in their everyday purchase decisions. Again, majority of respondents (54% familiar with environmental issues confirmed they would not switch from their preferred brands to less fancied brands even if the less fancied brands were more environmentally friendly. It was also confirmed in the study that price, brand name and convenience, performed better than customer concerns for green issues, in influencing respondents’ purchase decisions. It would therefore be strategically significance if advocates, policy makers and business leaders reduce the cost of green products to the final consumer, intensive public education campaigns, coupled with strategic brand building efforts to enhance the level of green brand consumption.

  13. Blue to bluish-green tunable phosphor Sr2LiSiO4F:Ce3+,Tb3+ and efficient energy transfer for near-ultraviolet light-emitting diodes

    International Nuclear Information System (INIS)

    Xie, Mubiao; Zeng, Lihua; Ye, TingLi; Yang, Xi; Zhu, Xianmei; Peng, Siyun; Lei, Lei

    2014-01-01

    Ce 3+ and Tb 3+ activated Sr 2 LiSiO 4 F phosphors were prepared by a solid state reaction technique at high temperature, and their ultraviolet (UV)-visible spectroscopic properties were investigated. Under ultraviolet light excitation, Ce 3+ -doped Sr 2 LiSiO 4 F phosphors emit blue light (420 nm), while Tb 3+ -doped phosphors show yellowish green emission. Efficient energy transfer from Ce 3+ to Tb 3+ ions in co-doped samples was confirmed in terms of corresponding excitation and emission spectra. The energy transfer mechanism between Ce 3+ and Tb 3+ was discussed and demonstrated to be dipole–dipole interaction in Sr 2 LiSiO 4 F:Ce 3+ ,Tb 3+ phosphors. Due to energy transfer from Ce 3+ to Tb 3+ , Ce 3+ and Tb 3+ co-doped Sr 2 LiSiO 4 F phosphors show intense absorption in near-UV region, and present tunable emission from blue to bluish green under 360 nm light excitation. The results indicate that these phosphors can be considered as candidates for white LEDs pumped by n-UV chips. (paper)

  14. Green–white electroluminescence and green photoluminescence of zinc complexes

    Energy Technology Data Exchange (ETDEWEB)

    Janghouri, Mohammad; Mohajerani, Ezeddin [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran 1983963113 (Iran, Islamic Republic of); Amini, Mostafa M.; Najafi, Ezzatollah [Department of Chemistry, Shahid Beheshti University, G.C., Tehran 1983963113 (Iran, Islamic Republic of)

    2014-10-15

    A series of zinc complexes has been synthesized and utilized as fluorescent materials in organic light-emitting diodes (OLEDs). All prepared complexes were characterized by elemental analysis (CHN), UV–vis, FT-IR and {sup 1}H NMR spectroscopy. The energy levels of zinc complexes were determined by cyclic voltammetry measurements. Devices with fundamental structure of ITO/PVK:PBD (50 nm)/zinc complexes/BCP (5 nm)/Alq{sub 3} (25 nm)/Al (180 nm) were fabricated. A green electroluminescence was obtained from thin film complexes at 25 nm thickness. When thickness of the complex bis(2-methylquinolin-8-olato)-bis[(acetato)-(methanol)zinc(II)] (B) in thin film decreased from 25 nm to 20, 18, and 12 nm, a white electroluminescence obtained. The white emission which was composed of blue and green attributed to the PVK:PBD blend and thickness of complex, respectively. With 12 nm thickness of complex, a maximum luminance of 4530 cd/m{sup 2} at a current density 398.32 mA/cm{sup 2} with CIE coordinates of 0.22 and 0.36 at 20 V was achieved. - Highlights: • Several new zinc complexes have been synthesized and utilized as fluorescent materials in OLEDs. • Photoluminescence emission of zinc complexes showed a red shift in respect to PVK:PBD blend. • Green electroluminescence emission from zinc complexes was achieved. • White emission has been obtained for an OLED by changing thickness of the zinc complex.

  15. Green–white electroluminescence and green photoluminescence of zinc complexes

    International Nuclear Information System (INIS)

    Janghouri, Mohammad; Mohajerani, Ezeddin; Amini, Mostafa M.; Najafi, Ezzatollah

    2014-01-01

    A series of zinc complexes has been synthesized and utilized as fluorescent materials in organic light-emitting diodes (OLEDs). All prepared complexes were characterized by elemental analysis (CHN), UV–vis, FT-IR and 1 H NMR spectroscopy. The energy levels of zinc complexes were determined by cyclic voltammetry measurements. Devices with fundamental structure of ITO/PVK:PBD (50 nm)/zinc complexes/BCP (5 nm)/Alq 3 (25 nm)/Al (180 nm) were fabricated. A green electroluminescence was obtained from thin film complexes at 25 nm thickness. When thickness of the complex bis(2-methylquinolin-8-olato)-bis[(acetato)-(methanol)zinc(II)] (B) in thin film decreased from 25 nm to 20, 18, and 12 nm, a white electroluminescence obtained. The white emission which was composed of blue and green attributed to the PVK:PBD blend and thickness of complex, respectively. With 12 nm thickness of complex, a maximum luminance of 4530 cd/m 2 at a current density 398.32 mA/cm 2 with CIE coordinates of 0.22 and 0.36 at 20 V was achieved. - Highlights: • Several new zinc complexes have been synthesized and utilized as fluorescent materials in OLEDs. • Photoluminescence emission of zinc complexes showed a red shift in respect to PVK:PBD blend. • Green electroluminescence emission from zinc complexes was achieved. • White emission has been obtained for an OLED by changing thickness of the zinc complex

  16. White light emission from fluorescent SiC with porous surface

    DEFF Research Database (Denmark)

    Lu, Weifang; Ou, Yiyu; Fiordaliso, Elisabetta Maria

    2017-01-01

    We report for the frst time a NUV light to white light conversion in a N-B co-doped 6H-SiC (fuorescent SiC) layer containing a hybrid structure. The surface of fuorescent SiC sample contains porous structures fabricated by anodic oxidation method. After passivation by 20nm thick Al2O3, the photol......We report for the frst time a NUV light to white light conversion in a N-B co-doped 6H-SiC (fuorescent SiC) layer containing a hybrid structure. The surface of fuorescent SiC sample contains porous structures fabricated by anodic oxidation method. After passivation by 20nm thick Al2O3...... the bulk fuorescent SiC layer. A high color rendering index of 81.1 has been achieved. Photoluminescence spectra in porous layers fabricated in both commercial n-type and lab grown N-B co-doped 6H-SiC show two emission peaks centered approximately at 460nm and 530nm. Such bluegreen emission phenomenon can......, the photoluminescence intensity from the porous layer was signifcant enhanced by a factor of more than 12. Using a porous layer of moderate thickness (~10µm), high-quality white light emission was realized by combining the independent emissions of blue-green emission from the porous layer and yellow emission from...

  17. Multi-pulsed intense electron beam emission from velvet, carbon fibers, carbon nano-tubes and dispenser cathodes

    International Nuclear Information System (INIS)

    Xia Liansheng; Yang Anmin; Chen Yi; Zhang Huang; Liu Xingguang; Li Jin; Jiang Xiaoguo; Zhang Kaizhi; Shi Jinshui; Deng Jianjun; Zhang Linwen

    2010-01-01

    The experimental results of studies of four kinds of cathode emitting intense electron beams are demonstrated under multi-pulsed mode based on an experimental setup including two multi-pulse high voltage sources. The tested cathodes include velvet, carbon fibers, carbon nano-tubes (CNTs) and dispenser cathodes. The results indicate that all four are able to emit multi-pulsed beams. For velvet, carbon fiber and CNTs, the electron induced cathode plasma emission may be the main process and this means that there are differences in beam parameters from pulse to pulse. For dispenser cathodes tested in the experiment, although there is a little difference from pulse to pulse for some reason, thermal-electric field emission may be the main process. (authors)

  18. The Influence of Climate, Soil and Pasture Type on Productivity and Greenhouse Gas Emissions Intensity of Modeled Beef Cow-Calf Grazing Systems in Southern Australia

    Directory of Open Access Journals (Sweden)

    Richard J. Eckard

    2012-10-01

    Full Text Available A biophysical whole farm system model was used to simulate the interaction between the historical climate, soil and pasture type at sites in southern Australia and assess the balance between productivity and greenhouse gas emissions (expressed in carbon dioxide equivalents, CO2-eq. intensity of beef cow-calf grazing systems. Four sites were chosen to represent a range of climatic zones, soil and pasture types. Poorer feed quality and supply limited the annual carrying capacity of the kikuyu pasture compared to phalaris pastures, with an average long-term carrying capacity across sites estimated to be 0.6 to 0.9 cows/ha. A relative reduction in level of feed intake to productivity of calf live weight/ha at weaning by feeding supplementary feed reduced the average CO2-eq. emissions/kg calf live weight at weaning of cows on the kikuyu pasture (18.4 and 18.9 kg/kg with and without supplementation, respectively, whereas at the other sites studied an increase in intake level to productivity and emission intensity was seen (between 10.4 to 12.5 kg/kg without and with supplementary feed, respectively. Enteric fermentation and nitrous oxide emissions from denitrification were the main sources of annual variability in emissions intensity, particularly at the lower rainfall sites. Emissions per unit product of low input systems can be minimized by efficient utilization of pasture to maximize the annual turnoff of weaned calves and diluting resource input per unit product.

  19. Linkage between N2O emission and functional gene abundance in an intensively managed calcareous fluvo-aquic soil

    Science.gov (United States)

    Yang, Liuqing; Zhang, Xiaojun; Ju, Xiaotang

    2017-02-01

    The linkage between N2O emissions and the abundance of nitrifier and denitrifier genes is unclear in the intensively managed calcareous fluvo-aquic soils of the North China Plain. We investigated the abundance of bacterial amoA for nitrification and narG, nirS, nirK, and nosZ for denitrification by in situ soil sampling to determine how the abundance of these genes changes instantly during N fertilization events and is related to high N2O emission peaks. We also investigated how long-term incorporated straw and/or manure affect(s) the abundance of these genes based on a seven-year field experiment. The overall results demonstrate that the long-term application of urea-based fertilizer and/or manure significantly enhanced the number of bacterial amoA gene copies leading to high N2O emission peaks after N fertilizer applications. These peaks contributed greatly to the annual N2O emissions in the crop rotation. A significant correlation between annual N2O emissions and narG, nirS, and nirK gene numbers indicates that the abundance of these genes is related to N2O emission under conditions for denitrification, thus partly contributing to the annual N2O emissions. These findings will help to draw up appropriate measures for mitigation of N2O emissions in this ‘hotspot’ region.

  20. Green leaf volatiles and oxygenated metabolite emission bursts from mesquite branches following light-dark transitions.

    Science.gov (United States)

    Jardine, K; Barron-Gafford, G A; Norman, J P; Abrell, L; Monson, R K; Meyers, K T; Pavao-Zuckerman, M; Dontsova, K; Kleist, E; Werner, C; Huxman, T E

    2012-09-01

    Green leaf volatiles (GLVs) are a diverse group of fatty acid-derived compounds emitted by all plants and are involved in a wide variety of developmental and stress-related biological functions. Recently, GLV emission bursts from leaves were reported following light-dark transitions and hypothesized to be related to the stress response while acetaldehyde bursts were hypothesized to be due to the 'pyruvate overflow' mechanism. In this study, branch emissions of GLVs and a group of oxygenated metabolites (acetaldehyde, ethanol, acetic acid, and acetone) derived from the pyruvate dehydrogenase (PDH) bypass pathway were quantified from mesquite plants following light-dark transitions using a coupled GC-MS, PTR-MS, and photosynthesis system. Within the first minute after darkening following a light period, large emission bursts of both C(5) and C(6) GLVs dominated by (Z)-3-hexen-1-yl acetate together with the PDH bypass metabolites are reported for the first time. We found that branches exposed to CO(2)-free air lacked significant GLV and PDH bypass bursts while O(2)-free atmospheres eliminated the GLV burst but stimulated the PDH bypass burst. A positive relationship was observed between photosynthetic activity prior to darkening and the magnitude of the GLV and PDH bursts. Photosynthesis under (13)CO(2) resulted in bursts with extensive labeling of acetaldehyde, ethanol, and the acetate but not the C(6)-alcohol moiety of (Z)-3-hexen-1-yl acetate. Our observations are consistent with (1) the "pyruvate overflow" mechanism with a fast turnover time (3 h) responsible for the C(6) alcohol moiety of (Z)-3-hexen-1-yl acetate via the 13-lipoxygenase pathway. We conclude that our non-invasive method may provide a new valuable in vivo tool for studies of acetyl-CoA and fatty acid metabolism in plants at a variety of spatial scales.

  1. Being green on sulphur: Targets, measures and side-effects

    DEFF Research Database (Denmark)

    Kontovas, Christos A.; Panagakos, George; Psaraftis, Harilaos N.

    2016-01-01

    to sea to reduce congestion, and might ultimately (under certain circumstances) increase the overall level of CO2 emissions along the entire supply chain. The purpose of this chapter is to investigate the potential effect of sulphur regulations on the share of cargo transported by the waterborne mode vis......Green House Gas (GHG) emissions are not the only emissions of concern to the international transport community. SOx emissions are non-GHG emissions that are caused by the presence of sulphur in the fuel. As the maximum percentage of sulphur in automotive and aviation fuels is strictly regulated...

  2. Life cycle implications of urban green infrastructure

    International Nuclear Information System (INIS)

    Spatari, Sabrina; Yu Ziwen; Montalto, Franco A.

    2011-01-01

    Low Impact Development (LID) is part of a new paradigm in urban water management that aims to decentralize water storage and movement functions within urban watersheds. LID strategies can restore ecosystem functions and reduce runoff loadings to municipal water pollution control facilities (WPCF). This research examines the avoided energy and greenhouse gas (GHG) emissions of select LID strategies using life cycle assessment (LCA) and a stochastic urban watershed model. We estimate annual energy savings and avoided GHG emissions of 7.3 GJ and 0.4 metric tons, respectively, for a LID strategy implemented in a neighborhood in New York City. Annual savings are small compared to the energy and GHG intensity of the LID materials, resulting in slow environmental payback times. This preliminary analysis suggests that if implemented throughout an urban watershed, LID strategies may have important energy cost savings to WPCF, and can make progress towards reducing their carbon footprint. - Highlights: → LCA methods can identify environmental tradeoffs for urban low impact development. → Energy and GHG payback time is sensitive to LID construction material choice. → LCA of LID upscaled from street to watershed level is expected to be nonlinear. - The benefits of low impact development and green infrastructure in cities can be modeled using life cycle assessment to understand and guide decisions for meeting sustainability goals.

  3. CFD Modelling and Experimental Testing of Thermal Calcination of Kaolinite Rich Clay Particles - An Effort towards Green Concrete

    DEFF Research Database (Denmark)

    Gebremariam, Abraham Teklay

    Cement industry is one of the major industrial emitters of greenhouse gases, generating 5-7% of the total anthropogenic CO2 emissions. Consequently, use of supplementary cementitious materials (SCM) to replace part of the CO2-intensive cement clinker is an attractive way to mitigate CO2 emissions...... from cement industry. SCMs based on industrial byproducts like fly ashes and slags are subject to availability problems. Yet clays are the most ubiquitous material on earth's crust. Thus, properly calcined clays are a very promising candidate for SCMs to produce green cements. Calcination...... property of the calcined clay material, among which is the density of calcines. By using the variation in density of calcines, an optimum residence time has been marked. At this time the calcines display a minimum density that corresponds to the most dehydroxylated calcines. The behavior of flash calcined...

  4. MARKETING STRATEGY FOR START UP BUSINESS OF BROILER PEKING DUCK FARM WITH ECO-GREEN INTEGRATED

    OpenAIRE

    Silitonga N.; Syah T.Y.R.; Erni N.

    2018-01-01

    The increasing number and the rate of Banten population growth from year to year make it as a potential market which is quite large for the development of broiler duck farming business in the future. In this case, intensive system broiler Peking duck farming which is integrated, economic, and eco-green intensive, eco-green commonly utilizes Azolla microphylla and flour of pluchea leaves and other germ plasmas as the feed supplements. As a company in Peking duck farming with Eco Green concept,...

  5. Presenting a Multi Objective Model for Supplier Selection in Order to Reduce Green House Gas Emission under Uncertion Demand

    Directory of Open Access Journals (Sweden)

    Habibollah Mohamadi

    2014-08-01

    Full Text Available Recently, much attention has been given to Stochastic demand due to uncertainty in the real -world. In the literature, decision-making models and suppliers' selection do not often consider inventory management as part of shopping problems. On the other hand, the environmental sustainability of a supply chain depends on the shopping strategy of the supply chain members. The supplier selection plays an important role in the green chain. In this paper, a multi-objective nonlinear integer programming model for selecting a set of supplier considering Stochastic demand is proposed. while the cost of purchasing include the total cost, holding and stock out costs, rejected units, units have been delivered sooner, and total green house gas emissions are minimized, while the obtained total score from the supplier assessment process is maximized. It is assumed, the purchaser provides the different products from the number predetermined supplier to a with Stochastic demand and the uniform probability distribution function. The product price depends on the order quantity for each product line is intended. Multi-objective models using known methods, such as Lp-metric has become an objective function and then uses genetic algorithms and simulated annealing meta-heuristic is solved.

  6. Blue-green fluorescence and visible-infrared reflectance of corn (Zea mays L.) grain for in situ field detection of nitrogen supply

    International Nuclear Information System (INIS)

    McMurtrey, J.E. III; Chappelle, E.W.; Kim, M.S.; Corp, L.A.; Daughtry, C.S.T.

    1996-01-01

    The sensing of spectral attributes of corn (Zea mays L.) grain from site specific areas of the field during the harvest process may be useful in managing agronomic inputs and production practices on those areas of the field in subsequent growing seasons. Eight levels of nitrogen (N) fertilization were applied to field grown corn at Beltsville, Maryland. These N treatments produced a range of chlorophyll levels, biomass and physiological condition in the live plant canopies. After harvest, spectra were obtained in the laboratory on whole grain samples. Fluorescence emissions were acquired from 400 to 600 nm and percent reflectance were measured in the visible (VIS) near infrared (NIR) and mid-infrared (MIR) regions from 400 nm to 2400 nm. A ultraviolet (UV) excitation band centered at 385 nm was the most effective in producing fluorescence emission differences in the blue-green region of the fluorescence spectrum with maxima centered from 430-470nm in the blue and with an intense shoulder centered at around 530-560 nm in the green region. Reflectance showed the most spectral differences in the NIR and MIR (970-2330 nm) regions

  7. A proposal for a green supply chain strategy

    Directory of Open Access Journals (Sweden)

    Carola Pinto Taborga

    2018-05-01

    Findings: The paper identifies some specific steps for developing a Green Supply Chain Strategy. The case study developed, demonstrates the importance of following a proper methodology based on a set of steps, it also demonstrates that some alternatives focus on improving the supply chain, such as the facilities location, can also improve the key performance indicator related with carbon emission.  Originality/value: The study provides guidance for manufacturing companies in implementing their Green Supply Chain Strategy.

  8. Estimation of leaf area index in cereal crops using red–green images

    DEFF Research Database (Denmark)

    Nielsen, Kristian Kirk; Andersen, Hans Jørgen; Thomsen, Anton

    2009-01-01

    A new method for estimating the leaf area index (LAI) in cereal crops based on red–green images taken from above the crop canopy is introduced. The proposed method labels pixels into vegetation and soil classes using a combination of greenness and intensity derived from the red and green colour b....... Conclusions Acknowledgements Appendix. Modelling the correlation between greenness and brightness References   Fig. 1. Simulated image of a vegetation canopy (left), with distribution of pixel greenness and brightness (right). View Within Article...

  9. Electroactive subwavelength gratings (ESWGs) from conjugated polymers for color and intensity modulation

    Science.gov (United States)

    Bhuvana, Thiruvelu; Kim, Byeonggwan; Yang, Xu; Shin, Haijin; Kim, Eunkyoung

    2012-05-01

    Subwavelength gratings with electroactive polymers such as poly(3-hexylthiophene) (P3HT) and poly(3,4-propylenedioxythiophene-phenylene) (P(ProDOT-Ph)) controlled the color intensity for various visible colors of diffracted light in a single device. Under the illumination of a white light, at a fixed angle of incidence, the color intensity of the diffracted light was reversibly switched from the maximum value down to 15% (85% decrease) by applying -2 to 2 V due to electrochemical (EC) reaction. All spectral colors including red, green, and blue were generated by changing the angle of incidence, and the intensity of each color was modulated electrochemically at a single EC device. With electroactive subwavelength gratings (ESWGs) of P3HT, the maximum modulation of the color intensity was observed in the red-yellow quadrant in the CIE color plot, whereas for the ESWGs of P(ProDOT-Ph), the maximum modulation of the color intensity was observed in the yellow-green and green-blue quadrants. Both ESWGs showed a memory effect, keeping their color and intensity even after power was turned off for longer than 40 hours.Subwavelength gratings with electroactive polymers such as poly(3-hexylthiophene) (P3HT) and poly(3,4-propylenedioxythiophene-phenylene) (P(ProDOT-Ph)) controlled the color intensity for various visible colors of diffracted light in a single device. Under the illumination of a white light, at a fixed angle of incidence, the color intensity of the diffracted light was reversibly switched from the maximum value down to 15% (85% decrease) by applying -2 to 2 V due to electrochemical (EC) reaction. All spectral colors including red, green, and blue were generated by changing the angle of incidence, and the intensity of each color was modulated electrochemically at a single EC device. With electroactive subwavelength gratings (ESWGs) of P3HT, the maximum modulation of the color intensity was observed in the red-yellow quadrant in the CIE color plot, whereas for the

  10. GREEN GALAXIES IN THE COSMOS FIELD

    International Nuclear Information System (INIS)

    Pan, Zhizheng; Kong, Xu; Fan, Lulu

    2013-01-01

    We present research on the morphologies, spectra, and environments of ≈2350 'green valley' galaxies at 0.2 + color is used to define 'green valley'; it removes dusty star-forming galaxies from galaxies that are truly transitioning between the blue cloud and the red sequence. Morphological parameters of green galaxies are intermediate between those of blue and red galaxy populations, both on the Gini-asymmetry and the Gini-M 20 planes. Approximately 60%-70% of green disk galaxies have intermediate or big bulges, and only 5%-10% are pure disk systems, based on morphological classification using the Zurich Estimator of Structural Types. The obtained average spectra of green galaxies are intermediate between blue and red ones in terms of [O II], Hα, and Hβ emission lines. Stellar population synthesis on the average spectra shows that green galaxies are on average older than blue galaxies but younger than red galaxies. Green galaxies and blue galaxies have similar projected galaxy density (Σ 10 ) distributions at z > 0.7. At z * 10.0 M ☉ green galaxies located in a dense environment are found to be significantly larger than those of blue galaxies. The morphological and spectral properties of green galaxies are consistent with the transitioning population between the blue cloud and the red sequence. The possible mechanisms for quenching star formation activities in green galaxies are discussed. The importance of active galactic nucleus feedback cannot be well constrained in our study. Finally, our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M * 10.0 M ☉ blue galaxies into red galaxies, especially at z < 0.5

  11. [Multiplayer white organic light-emitting diodes with different order and thickness of emission layers].

    Science.gov (United States)

    Xu, Wei; Lu, Fu-Han; Cao, Jin; Zhu, Wen-Qing; Jiang, Xue-Yin; Zhang, Zhi-Lin; Xu, Shao-Hong

    2008-02-01

    In multilayer OLED devices, the order and thickness of the emission layers have great effect on their spectrum. Based on the three basic colours of red, blue and green, a series of white organic light-emitting diodes(WOLEDS)with the structure of ITO/CuPc(12 nm)/NPB(50 nm)/EML/LiF(1 nm)/Al(100 nm) and a variety of emission layer's orders and thicknesses were fabricated. The blue emission material: 2-t-butyl-9,10-di-(2-naphthyl)anthracene (TBADN) doped with p-bis(p-N, N-diphenyl-amono-styryl)benzene(DSA-Ph), the green emission material: tris-[8-hydroxyquinoline]aluminum(Alq3) doped with C545, and the red emission material: tris-[8-hydroxyquinoline]aluminum( Alq3) doped with 4-(dicyanomethylene)-2-t-butyl-6-(1, 1, 7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) were used. By adjusting the order and thickness of each emission layer in the RBG structure, we got a white OLED with current efficiency of 5.60 cd x A(-1) and Commission Internationale De L'Eclairage (CIE) coordinates of (0. 34, 0.34) at 200 mA x cm(-2). Its maximum luminance reached 20 700 cd x m(-2) at current density of 400 mA x cm(-2). The results were analyzed on the basis of the theory of excitons' generation and diffusion. According to the theory, an equation was set up which relates EL spectra to the luminance efficiency, the thickness of each layer and the exciton diffusion length. In addition, in RBG structure with different thickness of red layer, the ratio of th e spectral intensity of red to that of blue was calculated. It was found that the experimental results are in agreement with the theoretical values.

  12. Retention performance of green roofs in representative climates worldwide

    Science.gov (United States)

    Viola, F.; Hellies, M.; Deidda, R.

    2017-10-01

    The ongoing process of global urbanization contributes to an increase in stormwater runoff from impervious surfaces, threatening also water quality. Green roofs have been proved to be innovative stormwater management measures to partially restore natural states, enhancing interception, infiltration and evapotranspiration fluxes. The amount of water that is retained within green roofs depends not only on their depth, but also on the climate, which drives the stochastic soil moisture dynamic. In this context, a simple tool for assessing performance of green roofs worldwide in terms of retained water is still missing and highly desirable for practical assessments. The aim of this work is to explore retention performance of green roofs as a function of their depth and in different climate regimes. Two soil depths are investigated, one representing the intensive configuration and another representing the extensive one. The role of the climate in driving water retention has been represented by rainfall and potential evapotranspiration dynamics. A simple conceptual weather generator has been implemented and used for stochastic simulation of daily rainfall and potential evapotranspiration. Stochastic forcing is used as an input of a simple conceptual hydrological model for estimating long-term water partitioning between rainfall, runoff and actual evapotranspiration. Coupling the stochastic weather generator with the conceptual hydrological model, we assessed the amount of rainfall diverted into evapotranspiration for different combinations of annual rainfall and potential evapotranspiration in five representative climatic regimes. Results quantified the capabilities of green roofs in retaining rainfall and consequently in reducing discharges into sewer systems at an annual time scale. The role of substrate depth has been recognized to be crucial in determining green roofs retention performance, which in general increase from extensive to intensive settings. Looking at the

  13. Green Transformational Leadership and Green Performance: The Mediation Effects of Green Mindfulness and Green Self-Efficacy

    Directory of Open Access Journals (Sweden)

    Yu-Shan Chen

    2014-09-01

    Full Text Available No prior literature explores the influence of green transformational leadership on green performance, thus, this study develops a novel research framework to fill the research gap. This study investigates the influence of green transformational leadership on green performance and discusses the mediation effects of green mindfulness and green self-efficacy by means of structural equation modeling (SEM. The results indicate that green transformational leadership positively influences green mindfulness, green self-efficacy, and green performance. Moreover, this study demonstrates that the positive relationship between green transformational leadership and green performance is partially mediated by the two mediators: green mindfulness and green self-efficacy. It means that green transformational leadership can not only directly affect green performance positively but also indirectly affect it positively through green mindfulness and green self-efficacy. Therefore, firms need to raise their green transformational leadership, green mindfulness, and green self-efficacy to increase their green performance.

  14. Luminescent sensitization and blue shift emission of Ir(ppy){sub 2}(VPHD) by copolymerization with MMA

    Energy Technology Data Exchange (ETDEWEB)

    An Baoli, E-mail: blan@staff.shu.edu.cn [Department of Chemistry, College of Science, Shanghai University, Shanghai 200444 (China); Dai Fanzeng; Zhang Yanling; Song Jian; Huang, Xiao-Di [Department of Chemistry, College of Science, Shanghai University, Shanghai 200444 (China); Xu, Jia-Qiang, E-mail: xujiaqiang@shu.edu.cn [Department of Chemistry, College of Science, Shanghai University, Shanghai 200444 (China); State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2011-08-15

    Ir(ppy){sub 2}(VPHD) (ppy=2-phenyl pyridine, VPHD=6-(4-vinylphenyl)-2,4-hexanedione) was copolymerized with methyl methacrylate (MMA). The copolymer had high quantum yield of 52.3{+-}0.5% in dilute ethyl acetate solution, and the yield increased around 45% than that of the iridium monomer. The maximum emission peaks for the copolymers shifted from 515 to 489 nm while the iridium complex content was less than 0.005 mol% in the feed. The blue emission at 489 nm and the green emission at 520 nm were analyzed by Lorenz function. They are attributed to {sup 1}MLCT and {sup 3}MLCT emissions, respectively. - Highlights: > PMMA-Ir(ppy){sub 2}(VPHD) as luminescent material with high yield of 53%. > The blue color emission at 489 nm from {sup 1}MLCT in conformity with Lorenz function. > The quantum yield for the copolymer increases 45% than that of the iridium monomer. > The {sup 3}MLCT Ex. intensity versus the monomer concentration is in conformity with Boltzmann function.

  15. Comparison of neighborhood-scale residential wood smoke emissions inventories using limited and intensive survey data

    International Nuclear Information System (INIS)

    Baxter, T.E.

    1998-01-01

    Emission inventory based estimations of pollutants resulting from residential combustion of wood are typically determined by collecting survey data that represent a single but relatively large area. While the pollutants in wood smoke emissions may represent a relatively low fraction (<10%) of an area's total annual emissions mass inventory, they can concentrate within the specific neighborhood areas where emitted. Thus, while the representativeness of a large-area survey approach is valid and useful, its application for estimating wood smoke pollutant levels within any particular neighborhood may be limited. The ability to obtain a better estimation of pollutant levels for evaluating potential health-related impacts within neighborhoods where wood smoke pollutants can concentrate requires survey data more representative of the particular area. This study compares residential wood combustion survey data collected from six residential neighborhoods in the metropolitan area of Flagstaff, Arizona. The primary purpose of this study is to determine the ability of data collected from a limited neighborhood-scale survey effort to represent that neighborhood's wood fuel consumption characteristics and wood smoke emissions. In addition, the variation that occurs between different neighborhoods regarding residential consumption of wood is also evaluated. Residential wood combustion survey data were collected compare wood burning device distribution, wood types and quantities burned, and emission rates. One neighborhood was surveyed once at approximately a 10% distribution rate and again at a 100% distribution rate providing data for evaluating the ability of a limited-effort survey to represent a more intensive survey. Survey methodology, results and recommendations are presented

  16. The influence of defect drift in external electric field on green luminescence of ZnO single crystals

    International Nuclear Information System (INIS)

    Korsunska, N.O.; Borkovska, L.V.; Bulakh, B.M.; Khomenkova, L.Yu.; Kushnirenko, V.I.; Markevich, I.V.

    2003-01-01

    In nominally undoped Zn O single crystals, the influence of electric field on photoluminescence in visible wavelength range was investigated. A well-known broad unstructured band consisting of green and orange ones was observed. It was found that the action of direct electric field of about 100 V/cm at 600-700 deg. C resulted in the increase of green band intensity near the cathode and its decrease near the anode, while orange band intensity was not influenced by this treatment. The redistribution of green band intensity along the sample under electric field is accounted for by drift of zinc interstitials from the anode to the cathode. It is supposed that emitting centres responsible for green luminescence are complex defects including zinc interstitials

  17. Environmental Concerns, Environmental Policy and Green Investment.

    Science.gov (United States)

    Gao, Xuexian; Zheng, Haidong

    2017-12-13

    Environmental regulators often use environmental policy to induce green investment by firms. However, if an environmental policy fails to exert a long-run effect on regulating the economic agents' behavior, it may be more reasonable to think of the firm as the leader in the game, since the investment in green technology is usually a strategic decision. In this paper, we consider a three-stage Stackelberg game to address the interaction between a profit-maximizing firm (Stackelberg leader) facing emission-dependent demand, and the environmental regulator (Stackelberg follower). The firm decides on the green technology level in the first stage of the game based on its understanding of the regulator's profits function, especially an environmental concern that is introduced as an exogenous variable. In the current research, we show that high levels of the regulator's environmental concerns do not necessarily lead to the choice of green technology by the firm, and green investment level depends on the combined effects of the market and operational factors for a given level of the regulator's environmental concerns. The result also shows that increasing environmental awareness amongst the consumers is an effective way to drive the firm's green investment.

  18. Analyzing the driving forces behind CO2 emissions and reduction strategies for energy-intensive sectors in Taiwan, 1996–2006

    International Nuclear Information System (INIS)

    Huang, Yun-Hsun; Wu, Jung-Hua

    2013-01-01

    Between 1996 and 2006, CO 2 emissions in Taiwan increased by approximately 60%, with the industrial sector accounting for 50% of that increase. Among all industrial sectors, iron and steel, petrochemicals, electronics, textiles, pulp and paper and cement accounted for approximately three-quarters of the total industrial CO 2 emissions. Identifying the driving forces behind increased CO 2 emissions in these six sectors could be valuable for the development of effective environmental policy. This study used two-tier KLEM input–output structural decomposition analysis (I-O SDA) to analyze the factors that lead to changes in CO 2 emissions. Empirical results obtained in Taiwan reveal that increased exports level and elevated domestic autonomous final demand level were the main reasons for increases in CO 2 emissions. Technological changes in materials and labor tended to decrease CO 2 emissions, while the power generation mix contributed significantly to the increase. Relevant strategies for reducing CO 2 emissions from energy-intensive sectors are also highlighted. - Highlights: • Identifying the driving forces behind increased CO 2 emissions is important. • This study uses two-tier KLEM I-O SDA to analyze the changes in CO 2 emissions. • Three issues are identified to achieve future CO 2 emissions reduction in Taiwan

  19. Impact of the intensity of milk production on ammonia and greenhouse gas emissions in Portuguese cattle farms

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, J.; Trindade, H.

    2015-07-01

    The aim of this study was evaluate the relationship between the intensity of milk production for a wide range of Portuguese commercial cattle farms and NH3 and greenhouse gas (GHG) emissions from manure management and enteric fermentation. A survey was carried out at 1471 commercial dairy cattle farms (Holstein-Friesian) and the NH3, N2O and CH4 emissions at each stage of manure management were estimated as well as CH4 losses from enteric fermentation. Gaseous emissions were estimated by a mass flow approach and following the recommendations of IPCC guidelines. The manure management and enteric fermentation in a typical Portuguese cattle farm contributes with 7.5±0.15 g N/L milk produced as NH3 and 1.2±0.22 kg CO2 equivalent per litre of milk as GHG. Increasing milk production will significantly reduce NH3 and GHG emissions per litre of milk produced. It can be concluded that a win-win strategy for reducing NH3 and GHG emissions from dairy cattle farms will be the increase of milk production on these farms. This goal can be achieved by implementing animal breeding programs and improving feed efficiency in order to increase productivity. (Author)

  20. The concentration effect of upconversion luminescence properties in Er3+/Yb3+-codoped Y2(MoO4)3 phosphors

    International Nuclear Information System (INIS)

    Lu Weili; Cheng Lihong; Sun Jiashi; Zhong Haiyang; Li Xiangping; Tian Yue; Wan Jing; Zheng Yanfeng; Huang Libo; Yu Tingting; Yu Hongquan; Chen Baojiu

    2010-01-01

    Y 2 (MoO 4 ) 3 :Er 3+ /Yb 3+ phosphors with fixed (varied) Er 3+ and varied (fixed) Yb 3+ concentrations were synthesized by a conventional solid-state reaction. The crystal structure of the phosphors was characterized by means of X-ray diffraction (XRD). Upon 980 nm excitation, very weak blue emission, and strong green and red upconversion emissions centered at 485, 525, 545 and 656 nm were observed. The two-photon process was confirmed to be responsible for both the green and red upconversion emissions. The effects of green upconversion emission intensity ratio ( 2 H 11/2 → 4 I 15/2 versus 4 S 3/2 → 4 I 15/2 ) and the integrated upconversion emission intensity on the Yb 3+ and Er 3+ concentrations were studied.

  1. Strong white light emission from a processed porous silicon and its photoluminescence mechanism

    International Nuclear Information System (INIS)

    Karacali, T.; Cicek, K.

    2011-01-01

    We have prepared various porous silicon (PS) structures with different surface conditions (any combination of oxidation, carbonization as well as thermal annealing) to increase the intensity of photoluminescence (PL) spectrum in the visible range. Strong white light (similar to day-light) emission was achieved by carrying out thermal annealing at 1100 deg. C after surface modification with 1-decene of anodic oxidized PS structures. Temperature-dependent PL measurements were first performed by gradually increasing the sample temperature from 10 to 300 K inside a cryostat. Then, we analyzed the measured spectrum of all prepared samples. After the analysis, we note that throughout entire measured spectrum, only two main peaks corresponding to blue and green-orange emission lines (which can be interpreted by quantum size effect and/or configuration coordinate model) were seem to be predominant for all temperature range. To further reveal and analysis these peaks, finally, measured data were inputted into the formula of activation energy of thermal excitation. We found that activation energies of blue and green-orange lines were approximately 49.3 and 44.6 meV, respectively. - Highlights: →Light emitting devices based on silicon technology are of great interest in illumination and display applications. → We have achieved strong white light (similar to day-light) emission from porous silicon. → The most important impact of carbonization on porous silicon and post annealing is the enhancement of room temperature luminescence.

  2. EMISSION HEIGHT AND TEMPERATURE DISTRIBUTION OF WHITE-LIGHT EMISSION OBSERVED BY HINODE/SOT FROM THE 2012 JANUARY 27 X-CLASS SOLAR FLARE

    International Nuclear Information System (INIS)

    Watanabe, Kyoko; Shimizu, Toshifumi; Masuda, Satoshi; Ichimoto, Kiyoshi; Ohno, Masanori

    2013-01-01

    White-light emissions were observed from an X1.7 class solar flare on 2012 January 27, using three continuum bands (red, green, and blue) of the Solar Optical Telescope on board the Hinode satellite. This event occurred near the solar limb, and so differences in the locations of the various emissions are consistent with differences in heights above the photosphere of the various emission sources. Under this interpretation, our observations are consistent with the white-light emissions occurring at the lowest levels of where the Ca II H emission occurs. Moreover, the centers of the source regions of the red, green, and blue wavelengths of the white-light emissions are significantly displaced from each other, suggesting that those respective emissions are emanating from progressively lower heights in the solar atmosphere. The temperature distribution was also calculated from the white-light data, and we found the lower-layer emission to have a higher temperature. This indicates that high-energy particles penetrated down to near the photosphere, and deposited heat into the ambient lower layers of the atmosphere

  3. Green4sure. The Green Energy Plan. Background report; Green4sure. Het Groene Energieplan. Achtergrondrapport

    Energy Technology Data Exchange (ETDEWEB)

    Rooijers, F.J. (ed.) (and others)

    2007-05-15

    The Green Energy Plan indicates how the ambitious climate targets of the cabinet can be achieved at the lowest cost. Main issue is that all energy consumers individually (industry, electricity production, aviation) or collectively (built environment, transport) are placed in an emission credits system with climate budget. The effort and costs are differentiated in order to ensure a largest possible acceptance. Moreover, new standards will be introduced for vehicles, buildings (existing and new) and appliances. The effects of the plan have been calculated and will lead to the desired halving of greenhouse gas emissions, an annual efficiency improvement of 2.1%. In 2030 the annual cost will amount to over 4 billion euro, but there are also substantial social benefits. This background report focuses on households, utilities and SME, greenhouse farming, traffic, industry, electricity, renewable energy, biomass and biodiversity, CO2 storage, external costs and benefits of Green4Sure, employment and socio-economic effects as well as the climate act. [mk]. [Dutch] Het Groene Energieplan geeft aan hoe de ambitieuze klimaatdoelen van het kabinet gehaald kunnen worden tegen de laagste kosten. Belangrijkste punten zijn dat alle energiegebruikers individueel (industrie, elektriciteitsproductie, luchtvaart) of collectief (gebouwde omgeving, transport) onder een emissierechtensysteem met klimaatbudget komen te vallen. De inspanningen, en daarmee de kosten zijn gedifferentieerd om de acceptatie zo groot mogelijk te laten zijn. Daarnaast komen er normen voor voertuigen, gebouwen (nieuw en bestaand) en apparaten. De effecten van het plan zijn doorgerekend en leiden tot de gewenste halvering van de broeikasgassen, een jaarlijkse efficiencyverbetering van 2,1%. De kosten bedragen in 2030 jaarlijks ruim 4 miljard euro, maar er zijn ook forse maatschappelijke baten. In dit achtergrondrapport wordt aandacht besteed aan huishoudens, utiliteiten en MKB, glastuinbouw, verkeer, industrie

  4. A Study on Consumer Perspective towards Green Products in Bengaluru City, India

    OpenAIRE

    Pusarla Lakshmi Padmaja; Vaddadi Krishna Mohan

    2016-01-01

    Sustainability is a trending concept of the 21st century. With an increase in global warming and carbon emissions, green marketing gained importance and subsequently encouraging green products, which can further contribute to sustainable environment. The consumer play a major role in determining the demand for any product and since green products are eco-friendly, they have created niche for those environmental consciousness customers. In this context, a study on consumer perspective and atti...

  5. Decoupling of industrial energy consumption and CO2-emissions in energy-intensive industries in Scandinavia

    International Nuclear Information System (INIS)

    Enevoldsen, Martin K.; Ryelund, Anders V.; Andersen, Mikael Skou

    2007-01-01

    As methodology the ex-post analysis deserves more attention as a device to calibrate energy sector models. This paper studies the impact of energy prices and taxes on energy efficiency and carbon emissions of ten industrial sectors in the three Scandinavian countries. A database with sector-specific energy prices and taxes has been established, which allows the analysis to take various price reductions and tax exemptions better into account. A translog factor demand system estimation for a cross industry pooled model is explored and fixed effects across industries and time is estimated. The findings here confirm recent analyses which indicate higher long-term elasticities for industries than normally assumed in Scandinavian energy-sector models. With the observations on differences in energy-intensities among sectors and countries the findings allow for some optimism as to the opportunities for further decoupling between trends in gross value added, carbon emissions and energy consumption

  6. Tailoring the Energy Landscape in Quasi-2D Halide Perovskites Enables Efficient Green-Light Emission

    KAUST Repository

    Quan, Li Na; Zhao, Yongbiao; Garcí a de Arquer, F. Pelayo; Sabatini, Randy; Walters, Grant; Voznyy, Oleksandr; Comin, Riccardo; Li, Yiying; Fan, James Z.; Tan, Hairen; Pan, Jun; Yuan, Mingjian; Bakr, Osman; Lu, Zhenghong; Kim, Dong Ha; Sargent, Edward H.

    2017-01-01

    Organo-metal halide perovskites are a promising platform for optoelectronic applications in view of their excellent charge-transport and bandgap tunability. However, their low photoluminescence quantum efficiencies, especially in low-excitation regimes, limit their efficiency for light emission. Consequently, perovskite light-emitting devices are operated under high injection, a regime under which the materials have so far been unstable. Here we show that, by concentrating photoexcited states into a small subpopulation of radiative domains, one can achieve a high quantum yield, even at low excitation intensities. We tailor the composition of quasi-2D perovskites to direct the energy transfer into the lowest-bandgap minority phase and to do so faster than it is lost to nonradiative centers. The new material exhibits 60% photoluminescence quantum yield at excitation intensities as low as 1.8 mW/cm2, yielding a ratio of quantum yield to excitation intensity of 0.3 cm2/mW; this represents a decrease of 2 orders of magnitude in the excitation power required to reach high efficiency compared with the best prior reports. Using this strategy, we report light-emitting diodes with external quantum efficiencies of 7.4% and a high luminescence of 8400 cd/m2.

  7. Tailoring the Energy Landscape in Quasi-2D Halide Perovskites Enables Efficient Green-Light Emission

    KAUST Repository

    Quan, Li Na

    2017-05-10

    Organo-metal halide perovskites are a promising platform for optoelectronic applications in view of their excellent charge-transport and bandgap tunability. However, their low photoluminescence quantum efficiencies, especially in low-excitation regimes, limit their efficiency for light emission. Consequently, perovskite light-emitting devices are operated under high injection, a regime under which the materials have so far been unstable. Here we show that, by concentrating photoexcited states into a small subpopulation of radiative domains, one can achieve a high quantum yield, even at low excitation intensities. We tailor the composition of quasi-2D perovskites to direct the energy transfer into the lowest-bandgap minority phase and to do so faster than it is lost to nonradiative centers. The new material exhibits 60% photoluminescence quantum yield at excitation intensities as low as 1.8 mW/cm2, yielding a ratio of quantum yield to excitation intensity of 0.3 cm2/mW; this represents a decrease of 2 orders of magnitude in the excitation power required to reach high efficiency compared with the best prior reports. Using this strategy, we report light-emitting diodes with external quantum efficiencies of 7.4% and a high luminescence of 8400 cd/m2.

  8. Presidential Green Chemistry Challenge: 2016 Small Business Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2016 award winner, Verdezyne, developed a yeast to produce USDA Certified Biobased dodecanedioic acid (DDDA) used to make high performance nylon 6,12. Lower greenhouse gas emissions, no high temperature or nitric acid

  9. Free allocations in EU ETS Phase 3: The impact of emissions performance benchmarking for carbon-intensive industry - Working Paper No. 2013-14

    International Nuclear Information System (INIS)

    Lecourt, S.; Palliere, C.; Sartor, O.

    2013-02-01

    From Phase 3 (2013-20) of the European Union Emissions Trading Scheme, carbon-intensive industrial emitters will receive free allocations based on harmonised, EU-wide benchmarks. This paper analyses the impacts of these new rules on allocations to key energy-intensive sectors across Europe. It explores an original dataset that combines recent data from the National Implementing Measures of 20 EU Member States with the Community Independent Transaction Log and other EU documents. The analysis reveals that free allocations to benchmarked sectors will be reduced significantly compared to Phase 2 (2008-12). This reduction should both increase public revenues from carbon auctions and has the potential to enhance the economic efficiency of the carbon market. The analysis also shows that changes in allocation vary mostly across installations within countries, raising the possibility that the carbon-cost competitiveness impacts may be more intense within rather than across countries. Lastly, the analysis finds evidence that the new benchmarking rules will, as intended, reward installations with better emissions performance and will improve harmonisation of free allocations in the EU ETS by reducing differences in allocation levels across countries with similar carbon intensities of production. (authors)

  10. A Study on Consumer Perspective towards Green Products in Bengaluru City, India

    Directory of Open Access Journals (Sweden)

    Pusarla Lakshmi Padmaja

    2016-01-01

    Full Text Available Sustainability is a trending concept of the 21st century. With an increase in global warming and carbon emissions, green marketing gained importance and subsequently encouraging green products, which can further contribute to sustainable environment. The consumer play a major role in determining the demand for any product and since green products are eco-friendly, they have created niche for those environmental consciousness customers. In this context, a study on consumer perspective and attitude towards green products will be quite useful for marketers, to understand both, consumers and market. This study focus on the consumer awareness, attitude and purchase intention towards green products.

  11. Luminescence investigation of Yb3+/Er3+ codoped single LiYF4 microparticle

    International Nuclear Information System (INIS)

    Gao, Wei; Zheng, Hairong; He, Enjie; Lu, Ying; Gao, Fangqi

    2014-01-01

    Tetragonal phase LiYF 4 :Yb 3+ /Er 3+ microparticles are synthesized via facile hydrothermal method. Single LiYF 4 microparticle is excited with IR laser at 980 nm in a confocal setup, and strong green and weak red emissions are observed. It is found that single LiYF 4 :Yb 3+ /Er 3+ microparticle with sub-structure presents stronger upconversion luminescence emission and smaller intensity ratio of red to green emission than that from LiYF 4 :Yb 3+ /Er 3+ microparticle with no sub-structure. The possible mechanism, the influence of particle size and the existence of EDTA on the upconversion luminescence emission are investigated. The current study suggests that the luminescence observation with single micropaticle can effectively avoid the influence of environment and neighbor particles, which is important for investigating the luminescence properties of micro- or nano-crystals and for extending their application. - Highlights: • Single LiYF 4 microparticle is excited with IR laser at 980 nm in a confocal setup, and strong green and weak red emissions are observed. • Single LiYF 4 microparticle with different morphology exhibits different fluorescence emission intensity and intensity ratio of red to green emission. • The possible mechanism, the influence of particle size and the existence of EDTA on the upconversion emission are investigated

  12. Luminescence investigation of Yb{sup 3+}/Er{sup 3+} codoped single LiYF{sub 4} microparticle

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wei; Zheng, Hairong, E-mail: hrzheng@snnu.edu.cn; He, Enjie; Lu, Ying; Gao, Fangqi

    2014-08-01

    Tetragonal phase LiYF{sub 4}:Yb{sup 3+}/Er{sup 3+} microparticles are synthesized via facile hydrothermal method. Single LiYF{sub 4} microparticle is excited with IR laser at 980 nm in a confocal setup, and strong green and weak red emissions are observed. It is found that single LiYF{sub 4}:Yb{sup 3+}/Er{sup 3+} microparticle with sub-structure presents stronger upconversion luminescence emission and smaller intensity ratio of red to green emission than that from LiYF{sub 4}:Yb{sup 3+}/Er{sup 3+} microparticle with no sub-structure. The possible mechanism, the influence of particle size and the existence of EDTA on the upconversion luminescence emission are investigated. The current study suggests that the luminescence observation with single micropaticle can effectively avoid the influence of environment and neighbor particles, which is important for investigating the luminescence properties of micro- or nano-crystals and for extending their application. - Highlights: • Single LiYF{sub 4} microparticle is excited with IR laser at 980 nm in a confocal setup, and strong green and weak red emissions are observed. • Single LiYF{sub 4} microparticle with different morphology exhibits different fluorescence emission intensity and intensity ratio of red to green emission. • The possible mechanism, the influence of particle size and the existence of EDTA on the upconversion emission are investigated.

  13. Gasoline-powered series hybrid cars cause lower life cycle carbon emissions than battery cars

    Science.gov (United States)

    Meinrenken, Christoph; Lackner, Klaus S.

    2012-02-01

    Battery cars powered by grid electricity promise reduced life cycle green house gas (GHG) emissions from the automotive sector. Such scenarios usually point to the much higher emissions from conventional, internal combustion engine cars. However, today's commercially available series hybrid technology achieves the well known efficiency gains in electric drivetrains (regenerative breaking, lack of gearbox) even if the electricity is generated onboard, from conventional fuels. Here, we analyze life cycle GHG emissions for commercially available, state-of the-art plug-in battery cars (e.g. Nissan Leaf) and those of commercially available series hybrid cars (e.g., GM Volt, at same size and performance). Crucially, we find that series hybrid cars driven on (fossil) gasoline cause fewer emissions (126g CO2eq per km) than battery cars driven on current US grid electricity (142g CO2eq per km). We attribute this novel finding to the significant incremental emissions from plug-in battery cars due to losses during grid transmission and battery dis-/charging, and manufacturing larger batteries. We discuss crucial implications for strategic policy decisions towards a low carbon automotive sector as well as relative land intensity when powering cars by biofuel vs. bioelectricity.

  14. Gasoline-powered serial hybrid cars cause lower life cycle carbon emissions than battery cars

    Science.gov (United States)

    Meinrenken, Christoph J.; Lackner, Klaus S.

    2011-04-01

    Battery cars powered by grid electricity promise reduced life cycle green house gas (GHG) emissions from the automotive sector. Such scenarios usually point to the much higher emissions from conventional, internal combustion engine cars. However, today's commercially available serial hybrid technology achieves the well known efficiency gains from regenerative breaking, lack of gearbox, and light weighting - even if the electricity is generated onboard, from conventional fuels. Here, we analyze emissions for commercially available, state-of the-art battery cars (e.g. Nissan Leaf) and those of commercially available serial hybrid cars (e.g., GM Volt, at same size and performance). Crucially, we find that serial hybrid cars driven on (fossil) gasoline cause fewer life cycle GHG emissions (126g CO2e per km) than battery cars driven on current US grid electricity (142g CO2e per km). We attribute this novel finding to the significant incremental life cycle emissions from battery cars from losses during grid transmission, battery dis-/charging, and larger batteries. We discuss crucial implications for strategic policy decisions towards a low carbon automotive sector as well as relative land intensity when powering cars by biofuel vs. bioelectricity.

  15. Strategies for Low-Carbon Green Growth and Urban Management in Korea

    Directory of Open Access Journals (Sweden)

    Jichung Yang

    Full Text Available ABSTRACT: National policies and strategies for low-carbon green growth in Korea are reviewed in this study. Providing standards and guidelines for urban comprehensive planning and management plans is necessary so that the series of plans can deal with possible effects from climate changes. Urban planning guidelines for management and improvements to achieve low carbon green growth were set up and implemented, focusing on institutional and regulatory foundations. These deal with climate change influences on urban planning, reduction of green house gas emissions and elevation of energy efficiency based on plans of land use units. In the case of Seoul city, transit-oriented compact development, public transportation-oriented structure, green space expansion, and pleasant living spaces are implemented in relation to urban structure and land use. We should suggest systematic and comprehensive countermeasures against greenhouse gas emissions and climate changes in terms of spatial structure, transportation systems, natural resource conservation, environment management, energy and open spaces. For the Seoul mega-city, plans show the capabilities of the policy department including many policy tools. Reflecting smart city, ubiquitous city, and U-Eco city concepts and human behavior, we should move towards increasing efficiency and maintaining sustainable economic growth. KEYWORDS: Low-carbon green growth, urban management, Korea, Seoul

  16. Tunable emission and the systematic study on energy-transfer properties of Ce{sup 3+}- and Tb{sup 3+}-co-doped Sr{sub 3}(PO{sub 4}){sub 2} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhijun [Guangzhou Maritime Institute, Department of Shipping Engineering, Guangzhou (China)

    2015-09-15

    An emitting color tunable phosphor Sr{sub 3}(PO{sub 4}){sub 2}:Ce{sup 3+}, Tb{sup 3+} was synthesized by the traditional high-temperature solid-state reaction method. The photoluminescence and energy-transfer (ET) properties of Ce{sup 3+}- and Tb{sup 3+}-doped Sr{sub 3}(PO{sub 4}){sub 2} host were studied in detail. The obtained phosphors show both a blue emission from Ce{sup 3+} and a yellowish green emission from Tb{sup 3+} with considerable intensity under ultraviolet (UV) excitation (∝311 nm). When the content of Ce{sup 3+} was fixed at 0.03, the emission chromaticity coordinates could be adjusted from blue to green region by tuning the contents of Tb{sup 3+} ions with the aid of ET process. The critical distance between Ce{sup 3+} and Tb{sup 3+} is 14.69 A. The ET mechanism from Ce{sup 3+} to Tb{sup 3+} ions was identified with dipole-dipole interaction. The obtained phosphor exhibits a strong excitation in UV spectral region and high-efficient ET from Ce{sup 3+} to Tb{sup 3+} ions. It may find applications as a green light-emitting UV-convertible phosphor in white LED devices. (orig.)

  17. Emission line relative intensity variations in the symbiotic stars: CI Cygni, BF Cygni, AX Persei and V1016 Cygni

    International Nuclear Information System (INIS)

    Oliversen, N.A.

    1982-01-01

    Low resolution spectra (lambda 3800 to lambda 5900) are presented of the symbiotic stars CI Cygni, BF Cygni, AX Persei and V1016 Cygni, which were obtained with the Washburn Observatory Boller and Chivens cassegrain spectrograph and intensified Reticon. The spectra were obtained as part of a monitoring program covering 36 months since November 1978. The nebular electron temperature and density are derived from the [O III] lambda 5007 and lambda 4363 emission lines and the uv intercombination lines of lambda 1661 and lambda 1667. Relative emission line intensity variations were observed in all four stars. The relative emission line changes correlated with photometric minima for CI Cyg, AX Per and possibly BF Cyg. These changes are interpreted as due to a red giant eclipsing a nebula surrounding the exciting source. Based on the [O III] line ratio change, the nebular density of V1016 Cyg has continued to decline since 1978. The thesis also contains a discussion of the use of the emision lines of [Ne III] lambda 3869, [O III] lambda 5007, lambda 4363 and He lambda 5876 to derive nebular electron temperature and density. A decline in the intensity ratios of I(lambda 3869)/(lambda 5007) and I(lambda 5876)/I(lambda 5007) were observed during the 1980 minimum of CI Cyg. The observed I(lambda 3869)/I(lambda 5007) decline was too large to be explained by temperature or density changes. The [Ne III] and He II regions in CI Cyg are therefore closer to the hot source than the more extended (o III] emission region. Contained within the appendix is a discussion of a graphical method of solution ot the nebular temperature and density, which is based on the emission lines of [Ne III], [O III] and He I

  18. Standardized Full-Field Electroretinography in the Green Monkey (Chlorocebus sabaeus)

    DEFF Research Database (Denmark)

    Bouskila, Joseph; Javadi, Pasha; Palmour, Roberta M

    2014-01-01

    Full-field electroretinography is an objective measure of retinal function, serving as an important diagnostic clinical tool in ophthalmology for evaluating the integrity of the retina. Given the similarity between the anatomy and physiology of the human and Green Monkey eyes, this species has......). Photopic and scotopic ERG recordings were obtained by full-field stimulation over a range of 6 log units of intensity in dark-adapted or light-adapted eyes of adult Green Monkeys (Chlorocebus sabaeus). Intensity, duration, and interval of light stimuli were varied separately. Reproducible values...... of amplitude and latency were obtained for the a- and b-waves, under well-controlled adaptation and stimulus conditions; the i-wave was also easily identifiable and separated from the a-b-wave complex in the photopic ERG. The recordings obtained in the healthy Green Monkey matched very well with those...

  19. A Comparison of the Green Building’s Criteria

    Directory of Open Access Journals (Sweden)

    Bahaudin A.Y.

    2014-01-01

    Full Text Available Designers and clients alike are now emphasising on how to make their buildings green. Currently a lot of green councils worldwide are dealing with innovative ways to implement energy efficient new buildings. They have adopted various criteria and rating systems in an endeavour to classify buildings that contribute to environment sustainability, efficiency and users health. The aim of the paper is to present an overview of the criteria adopted by selected green building councils. This paper discusses five of the rating systems available in terms of their similarities and differences and proposes a new framework based on the project life cycle for the development of the green building criteria. Criteria during the construction phase of the building is certainly lacking such as pollution control in terms of CO2 emission, dust, and other pollutants.

  20. The Greenness of Cities: Carbon Dioxide Emissions and Urban Development

    OpenAIRE

    Glaeser, Edward L.; Kahn, Matthew E.

    2008-01-01

    Carbon dioxide emissions may create significant social harm because of global warming, yet American urban development tends to be in low density areas with very hot summers. In this paper, we attempt to quantify the carbon dioxide emissions associated with new construction in different locations across the country. We look at emissions from driving, public transit, home heating, and household electricity usage. We find that the lowest emissions areas are generally in California and that the h...

  1. How realistic is green growth? Sectoral-level carbon intensity versus productivity

    NARCIS (Netherlands)

    Gazheli, A.; van den Bergh, J.C.J.M.; Antal, M.

    2016-01-01

    This study considers the potential conflict between economic growth and climate change mitigation. Some believe green growth is an option, while others think climate goals are incompatible with growth. It does so by developing a sector-based approach to analyze the relation between on the one hand

  2. Youths’ Green Information and Communications Technology Acceptance and Implications for the Innovation Decision Process

    OpenAIRE

    Thongmak, Mathupayas

    2016-01-01

    ‘Green’ is the trendy word that people pay attention to it. Green ICT is currently highlighted to be an important strategic technology due to its various benefits in terms of reducing greenhouse gas emissions, lowering electricity costs, nurturing corporate images, etc. However, the adoption of green ICT products or services is not prevalent, especially in developing countries. Green consumers, particularly young people, are the key to build the success of the green ICT adoption. Thus, applyi...

  3. Interactive influence of leaf age, light intensity, and girdling on green ash foliar chemistry and emerald ash borer development.

    Science.gov (United States)

    Chen, Yigen; Poland, Therese M

    2009-07-01

    Biotic and abiotic environmental factors affect plant nutritional quality and defensive compounds that confer plant resistance to herbivory. Influence of leaf age, light availability, and girdling on foliar nutrition and defense of green ash (Fraxinus pennsylvanica Marsh) was examined in this study. Longevity of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), adults reared on green ash foliage subjected to these factors was assayed. Mature leaves generally were more nutritious with greater amino acids and a greater ratio of protein to non-structural carbohydrate (P:C) than young leaves, in particular when trees were grown in shade. On the other hand, mature leaves had lower amounts of trypsin and chymotrypsin inhibitors, and total phenolics compared to young leaves. Lower defense of mature leaves alone, or along with higher nutritional quality may lead to increased survival and longevity of emerald ash borer feeding on mature leaves. Sunlight reduced amino acids and P:C ratio, irrespective of leaf age and girdling, and elevated total protein of young foliage, but not protein of mature leaves. Sunlight also dramatically increased all investigated defensive compounds of young, but not mature leaves. Girdling reduced green ash foliar nutrition, especially, of young leaves grown in shade and of mature leaves grown in sun. However emerald ash borer performance did not differ when fed leaves from trees grown in sun or shade, or from girdled or control trees. One explanation is that emerald ash borer reared on lower nutritional quality food may compensate for nutrient deficiency by increasing its consumption rate. The strong interactions among leaf age, light intensity, and girdling on nutrition and defense highlight the need for caution when interpreting data without considering possible interactions.

  4. GREEN GALAXIES IN THE COSMOS FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Zhizheng; Kong, Xu; Fan, Lulu, E-mail: panzz@mail.ustc.edu.cn, E-mail: xkong@ustc.edu.cn [Center of Astrophysics, University of Science and Technology of China, Hefei 230026 (China)

    2013-10-10

    We present research on the morphologies, spectra, and environments of ≈2350 'green valley' galaxies at 0.2 < z < 1.0 in the COSMOS field. The bimodality of dust-corrected NUV–r {sup +} color is used to define 'green valley'; it removes dusty star-forming galaxies from galaxies that are truly transitioning between the blue cloud and the red sequence. Morphological parameters of green galaxies are intermediate between those of blue and red galaxy populations, both on the Gini-asymmetry and the Gini-M{sub 20} planes. Approximately 60%-70% of green disk galaxies have intermediate or big bulges, and only 5%-10% are pure disk systems, based on morphological classification using the Zurich Estimator of Structural Types. The obtained average spectra of green galaxies are intermediate between blue and red ones in terms of [O II], Hα, and Hβ emission lines. Stellar population synthesis on the average spectra shows that green galaxies are on average older than blue galaxies but younger than red galaxies. Green galaxies and blue galaxies have similar projected galaxy density (Σ{sub 10}) distributions at z > 0.7. At z < 0.7, the fractions of M{sub *} < 10{sup 10.0} M{sub ☉} green galaxies located in a dense environment are found to be significantly larger than those of blue galaxies. The morphological and spectral properties of green galaxies are consistent with the transitioning population between the blue cloud and the red sequence. The possible mechanisms for quenching star formation activities in green galaxies are discussed. The importance of active galactic nucleus feedback cannot be well constrained in our study. Finally, our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M{sub *} < 10{sup 10.0} M{sub ☉} blue galaxies into red galaxies, especially at z < 0.5.

  5. Strong blue emission from ZnO nanocrystals synthesized in acetone-based solvent

    International Nuclear Information System (INIS)

    Efafi, B.; Majles Ara, M.H.; Mousavi, S.S.

    2016-01-01

    In this research, ZnO nanocrystals were synthesized by an improved sol–gel method. UV–vis, FTIR and photoluminescence spectra of the ZnO solution synthesized by this route indicated different properties compared to the other preparation methods. It was observed from FTIR that the sol (prepared using acetone) with the low concentration contains a noticeable amount of the Zn–O bond. The PL spectrum with a strong blue emission confirmed that these nanocrystals are good candidate for use in applications where a monochromatic emission is required. To the best of our knowledge, monochromatic emission ZnO devices have been fabricated through high technology instruments but this paper introduces a simple method for preparation of ZnO with the high intensity blue peak. The size and morphology of ZnO nanocrystals have been studied using FESEM. The nanocrystal size was estimated about 70 nm which was in good agreement with XRD data. - Highlights: • Preparation of ZnO nanocrystals through a novel method by the use of acetone as the solvent. • Observation of the strong blue emission peak from the ZnO prepared solution. • Reduction of green emission in the synthesized sample compared to the other methods of preparation.

  6. Strong blue emission from ZnO nanocrystals synthesized in acetone-based solvent

    Energy Technology Data Exchange (ETDEWEB)

    Efafi, B. [NanoPhotonics Lab., Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of); Departments of Physics, Iran University of Science & Technology, Tehran (Iran, Islamic Republic of); Majles Ara, M.H., E-mail: majlesara@gmail.com [NanoPhotonics Lab., Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of); Mousavi, S.S. [NanoPhotonics Lab., Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of)

    2016-10-15

    In this research, ZnO nanocrystals were synthesized by an improved sol–gel method. UV–vis, FTIR and photoluminescence spectra of the ZnO solution synthesized by this route indicated different properties compared to the other preparation methods. It was observed from FTIR that the sol (prepared using acetone) with the low concentration contains a noticeable amount of the Zn–O bond. The PL spectrum with a strong blue emission confirmed that these nanocrystals are good candidate for use in applications where a monochromatic emission is required. To the best of our knowledge, monochromatic emission ZnO devices have been fabricated through high technology instruments but this paper introduces a simple method for preparation of ZnO with the high intensity blue peak. The size and morphology of ZnO nanocrystals have been studied using FESEM. The nanocrystal size was estimated about 70 nm which was in good agreement with XRD data. - Highlights: • Preparation of ZnO nanocrystals through a novel method by the use of acetone as the solvent. • Observation of the strong blue emission peak from the ZnO prepared solution. • Reduction of green emission in the synthesized sample compared to the other methods of preparation.

  7. 2001-2002 carbon dioxide emissions in OECD

    International Nuclear Information System (INIS)

    2004-11-01

    This document provides carbon dioxide emissions data, from energy uses and production, from 2001 to 2002 in the OECD. It concerns the climate corrected CO 2 emissions in France, the non corrected CO 2 emissions (M tons), the emissions intensity / the Gross Domestic Product and the emissions intensity / the population (tons per inhabitant). (A.L.B.)

  8. Turkey Run Landfill Emissions Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — landfill emissions measurements for the Turkey run landfill in Georgia. This dataset is associated with the following publication: De la Cruz, F., R. Green, G....

  9. How to Turn an Industry Green: Taxes versus Subsidies

    DEFF Research Database (Denmark)

    Dröge, Susanne; Schröder, Philipp

    2003-01-01

    welfare effects. For a strong green policy (a severe reduction of the dirty sector) a tax is the dominant instrument. For moderate policy targets, a subsidy will be superior (inferior) if the initial situation features a large (small) share of dirty output. These findings have implications for policies......Environmental policies frequently target the ratio of dirty to green output within the same industry. To achieve such targets the green sector may be subsidised or the dirty sector be taxed. This paper shows that in a monopolistic competition setting the two policy instruments have different...... such as the Californian Zero Emission Bill or the EU Action Plan for Renewable Energy Sources....

  10. Performance evaluation on cool roofs for green remodeling

    Science.gov (United States)

    Yun, Yosun; Cho, Dongwoo; Cho, Kyungjoo

    2018-06-01

    Cool roofs refer that maximize heat emission, and minimize the absorption of solar radiation energy, by applying high solar reflectance paints, or materials to roofs or rooftops. The application of cool roofs to existing buildings does not need to take structural issues into consideration, as rooftop greening, is an alternative that can be applied to existing buildings easily. This study installed a cool roofs on existing buildings, and evaluated the performances, using the results to propose certification standards for green remodeling, considering the cool roof-related standards.

  11. Green Deal Sustainability of Solid Biomass. Report 1 - 2012; Green Deal Duurzaamheid Vaste Biomassa. Rapportage 1 - 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    In the title Green Deal, Dutch energy producers agreed late 2012 to report annually on the sustainability of the currently used solid biomass for energy production. This report provides insight over 2012 in the nature and origin of biomass, applied certification systems to demonstrate the sustainability, and the reduction of greenhouse gas emission [Dutch] In de titel Green Deal hebben Nederlandse energieproducenten eind 2012 afgesproken jaarlijks te rapporteren over de duurzaamheid van de gebuikte vaste biomassa voor de energieproductie. Deze rapportage over 2012 biedt inzicht in onder meer de aard en herkomst van de biomassa, gehanteerde certificeringssystemen om de duurzaamheid aan te tonen en de reductie in broeikasgasemissies.

  12. Evaluation System and Implementation Countermeasure of Automobile Green Maintenance

    Science.gov (United States)

    Zhang, Fei; Xie, Xinxin; Yan, Chaoyong

    2018-01-01

    Green maintenance research is in the beginning of our country, the work is being explored. Based on the existing research results at home and abroad, this paper learns and draws lessons from the experiences and lessons of foreign advanced countries and domestic advanced enterprises. In the face of the challenges brought by economic development and energy saving and emission reduction, this paper discusses the green maintenance theory and security system, And the research status of green maintenance content and system at home and abroad, through the deletion and selection of green maintenance index, through the AHP method to determine the green evaluation criteria, and the introduction of C equivalent evaluation system, the use of fuzzy synthesis Evaluation method to build a green maintenance evaluation model, and the actual validation, put forward the implementation of green maintenance feasibility programs and related security recommendations, vehicle maintenance enterprises to carry out green maintenance, improve business efficiency and reduce environmental management costs to provide theoretical basis. And to achieve effective reduction of environmental pollution, reduce maintenance costs of the target, a reasonable promotion of maintenance and environmental protection and sustainable development. Promote green maintenance from research to practice, from the laboratory to the maintenance of enterprises, from the pilot to the overall development and transformation.

  13. Towards Global De-Carbonization: Examining the Role of Freight Forwarders in Green Logistics in Ghana

    DEFF Research Database (Denmark)

    Kofi Wireko, Joseph; Owusu, Mavis

    2015-01-01

    The problem of carbon emission is a global phenomenon and cross-border in nature. There is almost a dearth of literature on the practice of green logistics by freight forwarders in Ghana and for that matter in most countries within the West African sub-region. This paper examines the role...... of freight forwarders in reducing carbon emissions by adopting “green logistics” as part of the global efforts in addressing global warming. The study employs a pre-test and case study method, to ensure sufficient collection of relevant material, taking into account the lack of research in this subject...... in Ghana. Materials obtained from the interviews and the questionnaires were used to explore the knowledge of employees regarding green logistics, examine the challenges in implementing green logistics, and assess the internal and external pressures that impact on freight forwarders and the needed...

  14. Investigation of intrinsic and extrinsic defects effective role on producing intense red emission in ZnO:Eu nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, Mehrdad, E-mail: najafi@shahroodut.ac.ir; Haratizadeh, Hamid

    2015-05-15

    Highlights: • Effective role of defects on producing red emission at indirect excitation. • V{sub Zn} and V{sub O} defects have important role on energy transfer. • Mg related defects and Zn{sub i} defects were responsible for blue emission. • Extrinsic and intrinsic defects mediated energy transfer to sensitize Eu{sup 3+} ions. • Decrease of red emission because of diminishing in oxygen vacancy. - Abstract: Europium doped ZnO nanorads and nanosheets were synthesized by hydrothermal method. Effects of Mg doping, morphology and annealing in oxygen ambient on structural and optical properties of ZnO nanostructures were investigated using X-ray diffraction (XRD), particle size analysis (PSA), thermo gravimetric analysis (TGA), differential thermal analysis (DTA), differential thermo gravimetry (DTG), scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL). This study recommends that both of intrinsic and extrinsic defects facilitate energy transfer (ET) from the ZnO host to Eu{sup 3+} ions and consequently have efficient role on producing intense red emission at indirect excitation. The results also showed that annealing process improved the crystal structure of ZnO nanosheets due to decrease of surface defects; however decreased ET and red emission because of diminishing in oxygen vacancy. In addition in ZnO nanorods sample with more surface area in comparison with ZnO nanosheets sample deep level emissions are enhanced.

  15. Environmental Concerns, Environmental Policy and Green Investment

    Directory of Open Access Journals (Sweden)

    Xuexian Gao

    2017-12-01

    Full Text Available Environmental regulators often use environmental policy to induce green investment by firms. However, if an environmental policy fails to exert a long-run effect on regulating the economic agents’ behavior, it may be more reasonable to think of the firm as the leader in the game, since the investment in green technology is usually a strategic decision. In this paper, we consider a three-stage Stackelberg game to address the interaction between a profit-maximizing firm (Stackelberg leader facing emission-dependent demand, and the environmental regulator (Stackelberg follower. The firm decides on the green technology level in the first stage of the game based on its understanding of the regulator’s profits function, especially an environmental concern that is introduced as an exogenous variable. In the current research, we show that high levels of the regulator’s environmental concerns do not necessarily lead to the choice of green technology by the firm, and green investment level depends on the combined effects of the market and operational factors for a given level of the regulator’s environmental concerns. The result also shows that increasing environmental awareness amongst the consumers is an effective way to drive the firm’s green investment.

  16. Developing green energy resources - a case study in B.C

    International Nuclear Information System (INIS)

    McKenna, J.; Thompson, P.

    2001-01-01

    British Columbia Hydro, a Crown Corporation embarked on a strategy to become a sustainable energy company in 2001. An integral part of that strategy was to include reliable green and alternative energy sources in its power generation mix. In this framework, green and alternative energy contributes substantially to future investment decisions, revenue and competitive positioning in the market place. This paper presents a case study for green energy resources in the context of British Columbia Hydro. It discusses methods to quantify Greenhouse Emissions and ways to reduce Greenhouse Gases by choosing cleaner power with examples from a demonstration project on Vancouver Island

  17. Impacts of GDP, Fossil Fuel Energy Consumption, Energy Consumption Intensity, and Economic Structure on SO2 Emissions: A Multi-Variate Panel Data Model Analysis on Selected Chinese Provinces

    Directory of Open Access Journals (Sweden)

    Haoran Zhao

    2018-03-01

    Full Text Available Atmospheric pollution gradually become a focus of concern all over the world owing to its detrimental influence on human health as well as long range impact on global ecosystem. This paper investigated the relationship among SO2 emissions, GDP, fossil fuel energy consumption, energy consumption intensity, and economic structure of five provinces in China with the highest SO2 emissions spanning from 2002–2015 based on panel data model. Through comparatively analyzing the coefficients in the established panel data model for Hebei, Henan, Inner Mongolia, Shandong, and Shanxi, we can obtain that: (1 fossil fuel energy consumption made the most devotion to SO2 discharge compared with GDP, energy consumption intensity, and economic structure. And the more the fossil fuel energy consumption, the more the devotion made by it to SO2 discharge. (2 GDP devoted less to SO2 emissions than fossil fuel energy consumption, and the larger the scale of the economy, the greater the contribution made by it to SO2 emissions. (3 The higher the proportion of the secondary industry added value accounted in GDP, the more the devotion made by the economic structure and energy consumption intensity to SO2 emissions. Through analyzing the Granger causality examination results, it can be concluded that: (1 there existed a bi-directional causal relationship between fossil fuel energy consumption and SO2 emissions among five selected provinces. (2 There existed uni-directional causal nexus running from GDP to SO2 emissions, from energy consumption intensity to SO2 emissions, and from economic structure to SO2 emissions among five chosen provinces. Based on the empirical analysis, several policy implications were proposed to provide references for policy makers, which were (1 Giving full play to the guiding role of price signals, and improving the price policy for desulfurization. (2 Formulating a new comprehensive evaluation system to measure the regional development level

  18. Implementing the Green City Policy in Municipal Spatial Planning: The Case of Buffalo City Metropolitan Municipality

    Directory of Open Access Journals (Sweden)

    Abongile Dlani

    2015-06-01

    Full Text Available The term “eco-city,” and similar concepts such as “green” and “sustainable” cities, has evolved overtime concurrent to the development of the understanding of social change and mankind’s impact on environmental and economic health. With the advent of climate change impacts, modern economies developed the green city policy to create sustainable urban development, low emission, and environmentally friendly cities. In South Africa municipalities, including Buffalo City Metropolitan Municipality (BCMM have been tasked to and implement the green city policy. However, BCMM is yet to develop the green city policy that clearly articulate how the municipality will combat climate change and reduce its Green House Gases (GHG emissions in its spatial planning designs. Against this background, this article reviews and analyses green policy landscape in Metropolitan Municipalities. It is envisaged that the research will provide the basis for the development of a comprehensive green policy strategies and programmes for the local transition to action in Buffalo City Metropolitan Municipality, in the Eastern Cape Province.

  19. Green Transformational Leadership and Green Performance: The Mediation Effects of Green Mindfulness and Green Self-Efficacy

    OpenAIRE

    Yu-Shan Chen; Ching-Hsun Chang; Yu-Hsien Lin

    2014-01-01

    No prior literature explores the influence of green transformational leadership on green performance, thus, this study develops a novel research framework to fill the research gap. This study investigates the influence of green transformational leadership on green performance and discusses the mediation effects of green mindfulness and green self-efficacy by means of structural equation modeling (SEM). The results indicate that green transformational leadership positively influences green min...

  20. Presidential Green Chemistry Challenge: 2016 Greener Reaction Conditions Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2016 award winner, Dow Agrosciences LLC, developed Instinct®, a technology that reduces fertilizer nitrate leaching to ground and surface waters and atmospheric nitrous oxide emissions. More corn and reduces CO2.

  1. Effects of building roof greening on air quality in street canyons

    Science.gov (United States)

    Baik, Jong-Jin; Kwak, Kyung-Hwan; Park, Seung-Bu; Ryu, Young-Hee

    2012-12-01

    Building roof greening is a successful strategy for improving urban thermal environment. It is of theoretical interest and practical importance to study the effects of building roof greening on urban air quality in a systematic and quantitative way. In this study, we examine the effects of building roof greening on air quality in street canyons using a computational fluid dynamics (CFD) model that includes the thermodynamic energy equation and the transport equation of passive, non-reactive pollutants. For simplicity, building roof greening is represented by specified cooling. Results for a simple building configuration with a street canyon aspect ratio of one show that the cool air produced due to building roof greening flows into the street canyon, giving rise to strengthened street canyon flow. The strengthened street canyon flow enhances pollutant dispersion near the road, which decreases pollutant concentration there. Thus, building roof greening improves air quality near the road. The degree of air quality improvement near the road increases as the cooling intensity increases. In the middle region of the street canyon, the air quality can worsen when the cooling intensity is not too strong. Results for a real urban morphology also show that building roof greening improves air quality near roads. The degree of air quality improvement near roads due to building roof greening depends on the ambient wind direction. These findings provide a theoretical foundation for constructing green roofs for the purpose of improving air quality near roads or at a pedestrian level as well as urban thermal environment. Further studies using a CFD model coupled with a photochemistry model and a surface energy balance model are required to evaluate the effects of building roof greening on air quality in street canyons in a more realistic framework.

  2. A Review of Green Building Development in China from the Perspective of Energy Saving

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2018-02-01

    Full Text Available This paper reviews the history of green building development and assessment standards in China, particularly from the perspective of energy saving. It is divided into four parts: (1 the development of policies of green building in China that have been proposed for meeting energy-conservation and emission-reduction targets; (2 the scientific research on green building by the Chinese government, including the promotion of maximum resource sustainability, environmental protection, and the reduction of pollution; (3 the development of assessment standards for green building in China; and (4 the development of green building technologies in China.

  3. Being green and export intensity of SMEs. The moderating influence of perceived uncertainty

    International Nuclear Information System (INIS)

    Martin-Tapia, Inmaculada; Aragon-Correa, Juan Alberto; Senise-Barrio, Maria Eugenia

    2008-01-01

    Although the literature has already begun to look at the relationship between pursuing an environmental strategy and undertaking export activities, studies so far have focused on large multinationals rather than on small- and medium-sized enterprises (SMEs). Yet SMEs account for around half of the GDP in both the US and the EU, and are responsible worldwide for 60% of carbon emissions. Moreover, the literature until now has paid very little attention to the influence that uncertainty has on the relationship between international trade and environmental strategies. The authors tackle this relationship here. Using direct interviews with the CEOs of 145 export firms operating in Spain's food industry, the results show that a proactive environmental strategy is positively related to a company's export performance. In addition, the authors also find that general uncertainty imposes a moderating effect on the relationship between proactive environmental strategies and export intensity for SMEs. The final results suggest some appealing differences in the role of perceived uncertainty for SMEs and large firms. (author)

  4. Green Color Purification in Tb(3+) Ions through Silica Inverse Opal Heterostructure.

    Science.gov (United States)

    Shrivastava, Vishnu Prasad; Sivakumar, Sri; Kumar, Jitendra

    2015-06-10

    The ordered SiO2:Tb(3+) inverse opal heterostructure films are fabricated through polystyrene spheres hetero-opal template using the convective self-assembly method to examine their potential for color purification. Their optical properties and photoluminescence have been investigated and compared with individual single inverse opals and reference (SiO2:Tb(3+) powder). The heterostructures are shown to possess two broad photonic stop bands separated by an effective pass band, causing suppression of blue, orange, and red emission bands corresponding to (5)D4 → (7)F(j); j = 6, 4, 3 transitions, respectively and an enhancement of green emission (i.e., (5)D4 → (7)F5). Although the suppression of various emission occurs because of its overlap with the photonic band gaps (PSBs), the enhancement of green radiation is observed because of its location matching with the pass band region. The Commission International de l'Eclairage (CIE) chromaticity coordinates of the emission spectrum of the heterostructure based on polystyrene sphere of 390 and 500 nm diameter are x = 0.2936, y = 0.6512 and lie closest to those of standard green color (wavelength 545 nm). In addition, a significant increase observed in luminescence lifetime for (5)D4 level of terbium in inverse opal heterostructures vis-à-vis reference (SiO2:Tb(3+) powder) is attributed to the change in the effective refractive index.

  5. Greening in sunflower butter cookies as a function of egg replacers and baking temperature.

    Science.gov (United States)

    Rogers, Amanda; Hahn, Lan; Pham, Vu; Were, Lilian

    2018-04-01

    Chlorogenic acid (CGA) binding to proteins in alkaline conditions results in the production of green trihydroxy benzacradine (TBA) derivatives. The formation of TBA derivatives could decrease product quality due to the potential losses in soluble protein and antioxidants and the production of an undesirable green color. To determine how cookie formulation affected the formation of TBA derivatives in sunflower butter cookies, two egg replacers (chia and banana) and two baking temperatures (162.8 and 190.6 °C) were used. Moisture, greening intensity, CGA content and antioxidant capacity were measured. Cookies made with egg and baked at 162.8 °C had the highest moisture, internal greening intensity, and TBA derivative formation, in addition to lower CGA content and antioxidant capacity. Cookies made with banana baked at 190.6 °C produced the opposite outcome with 35, 4, and 23% less internal greening, moisture, and TBA derivatives, respectively, and 90 and 76% higher CGA and antioxidant capacity. Internal greening was positively correlated with moisture and adduct concentration, and negatively correlated with spread factor and CGA content. Moisture had a significant impact on greening, which indicates that baking temperature and cookie dough formulation can be modified to produce a less green cookie with more unreacted antioxidants and protein.

  6. The public choice problem of green taxation: The case of CO2 taxation in OECD

    International Nuclear Information System (INIS)

    Hjoellund, L.; Tinggaard Svendsen, G.

    1998-01-01

    Economists have traditionally suggested that politicians should simply impose a uniform tax on harmful emissions, as the first-best solution prescribes. However, a closer look at the actual design of green taxes in the OECD reveals that they are differentiated and far from this first-best optimal design. Public choice theory suggests that this is so because the industry is, in contrast to households, capable of lobbying against green taxation. When organized interests are considered, taxation either with or without a full refund of the revenue turns out to be problematic due to the energy-intensive firms' ability to organize and form stable interest groups. The paper presents empirical findings on CO 2 taxation within the OECD countries, which confirm this theoretical prediction. Taxes are not uniform, and households pay a tax rate which is five times higher than that paid by the industry on average. Finally, it is suggested that a CO 2 tax may successfully be applied to non-organized interests, such as households and the transportation sector, because these are large and non-organized groups. As such, a mix of green taxes (in relation to non-organized interests) and grand-fathered permit markets (in relation to organized interests) should b considered in the search for cost-effective and politically feasible instruments. (au) 35 refs

  7. Intrinsic Lead Ion Emissions in Zero-Dimensional Cs4PbBr6 Nanocrystals

    KAUST Repository

    Yin, Jun

    2017-11-07

    We investigate the intrinsic lead ion (Pb2+) emissions in zero-dimensional (0D) perovskite nanocrystals (NCs) using a combination of experimental and theoretical approaches. The temperature-dependent photoluminescence experiments for both “nonemissive” (highly suppressed green emission) and emissive (bright green emission) Cs4PbBr6 NCs show a splitting of emission spectra into high- and low-energy transitions in the ultraviolet (UV) spectral range. In the nonemissive case, we attribute the high-energy UV emission at approximately 350 nm to the allowed optical transition of 3P1 to 1S0 in Pb2+ ions and the low-energy UV emission at approximately 400 nm to the charge-transfer state involved in the 0D NC host lattice (D-state). In the emissive Cs4PbBr6 NCs, in addition to the broad UV emission, we demonstrate that energy transfer occurs from Pb2+ ions to green luminescent centers. The optical phonon modes in Cs4PbBr6 NCs can be assigned to both Pb–Br stretching and rocking motions from density functional theory calculations. Our results address the origin of the dual broadband Pb2+ ion emissions observed in Cs4PbBr6 NCs and provide insights into the mechanism of ionic exciton–optical phonon interactions in these 0D perovskites.

  8. GREEN PACKAGING, GREEN PRODUCT, GREEN ADVERTISING, PERSEPSI, DAN MINAT BELI KONSUMEN

    Directory of Open Access Journals (Sweden)

    Imam Santoso

    2016-12-01

    Full Text Available Environmental problems become one of the strategic issues in achieving global competitiveness. One of the issues is products that are made from environmental friendly materials or known as green product. Furthermore, in green products marketing, the company also uses green packaging and green advertising concept. This study aimed to analyze the effect of green packaging, green products, and green advertising on consumer perception and purchasing intention. The study was conducted in Ketawanggede Village, Lowokwaru Sub-district, Malang City. The sampling method used nonprobability accidential sampling techniques. The numbers of respondents were 113 consumers in study site. Data were collected by interview using questionnaires. The method of analysis used Generalized Structured Component Analysis (GSCA. The analysis showed that the green packaging, green products, and green advertising had positive significant influence on consumer perceptions. Meanwhile, green product and consumer perception had positive significant influence on purchasing interest, but the green packaging and green advertising has not found sufficient evidence in influencing purchasing intention.

  9. Scaling of economic benefits from green roof implementation in Washington, DC.

    Science.gov (United States)

    Niu, Hao; Clark, Corrie; Zhou, Jiti; Adriaens, Peter

    2010-06-01

    Green roof technology is recognized for mitigating stormwater runoff and energy consumption. Methods to overcome the cost gap between green roofs and conventional roofs were recently quantified by incorporating air quality benefits. This study investigates the impact of scaling on these benefits at the city-wide scale using Washington, DC as a test bed because of the proposed targets in the 20-20-20 vision (20 million ft(2) by 2020) articulated by Casey Trees, a nonprofit organization. Building-specific stormwater benefits were analyzed assuming two proposed policy scenarios for stormwater fees ranging from 35 to 50% reduction for green roof implementation. Heat flux calculations were used to estimate building-specific energy savings for commercial buildings. To assess benefits at the city scale, stormwater infrastructure savings were based on operational savings and size reduction due to reduced stormwater volume generation. Scaled energy infrastructure benefits were calculated using two size reductions methods for air conditioners. Avoided carbon dioxide, nitrogen oxide (NO(x)), and sulfur dioxide emissions were based on reductions in electricity and natural gas consumption. Lastly, experimental and fugacity-based estimates were used to quantify the NO(x) uptake by green roofs, which was translated to health benefits using U.S. Environmental Protection Agency models. The results of the net present value (NPV) analysis showed that stormwater infrastructure benefits totaled $1.04 million (M), while fee-based stormwater benefits were $0.22-0.32 M/y. Energy savings were $0.87 M/y, while air conditioner resizing benefits were estimated at $0.02 to $0.04 M/y and avoided emissions benefits (based on current emission trading values) were $0.09 M-0.41 M/y. Over the lifetime of the green roof (40 years), the NPV is about 30-40% less than that of conventional roofs (not including green roof maintenance costs). These considerable benefits, in concert with current and

  10. Color tunable emission through energy transfer from Yb3+ co-doped SrSnO3: Ho3+ perovskite nano-phosphor

    Science.gov (United States)

    Jain, Neha; Singh, Rajan Kr.; Sinha, Shriya; Singh, R. A.; Singh, Jai

    2018-04-01

    First time color tunable lighting observed from Ho3+ and Yb3+ co-doped SrSnO3 perovskite. Down-conversion and up-conversion (UC) photoluminescence emission spectra were recorded to understand the whole mechanism of energy migration between Ho3+ and Yb3+ ions. The intensity of green and red emission varies with Yb3+ doping which causes multicolour emissions from nano-phosphor. The intensity of UC red emission (654 nm) obtained from 1 at.% Ho3+ and 3 at.% Yb3+ co-doped nano-phosphor is nine times higher than from 1 at.% Ho3+ doped SrSnO3 nano-phosphor. Enhanced brightness of 654 nm in UC process belongs in biological transparency window so that it might be a promising phosphor in the bio-medical field. Moreover, for the other Yb3+ co-doped nano-phosphor, Commission Internationale de l'Éclairage chromaticity co-ordinates were found near the white region and their CCT values lie in the range 4900-5100 K indicating cool white. Decay time was measured for 545 nm emission of Ho3+ ion found in 7.652 and 8.734 µs at 355 nm excitation. The variation in lifetime was observed in ascending order with increasing Yb3+ concentration which supports PL emission spectra observation that with increasing Yb3+ concentration, rate of transition has changed. These studies reveal that Ho3+ and Yb3+ co-doped phosphor is useful for fabrication of white LEDs.

  11. AN XMM-NEWTON SURVEY OF THE SOFT X-RAY BACKGROUND. II. AN ALL-SKY CATALOG OF DIFFUSE O VII AND O VIII EMISSION INTENSITIES

    International Nuclear Information System (INIS)

    Henley, David B.; Shelton, Robin L.

    2012-01-01

    We present an all-sky catalog of diffuse O VII and O VIII line intensities, extracted from archival XMM-Newton observations. This catalog supersedes our previous catalog, which covered the sky between l = 120° and l = 240°. We attempted to reduce the contamination from near-Earth solar wind charge exchange (SWCX) emission by excluding times of high solar wind proton flux from the data. Without this filtering, we were able to extract measurements from 1868 observations. With this filtering, nearly half of the observations became unusable, and only 1003 observations yielded measurements. The O VII and O VIII intensities are typically ∼2-11 and ∼ –2 s –1 sr –1 (line unit, L.U.), respectively, although much brighter intensities were also recorded. Our data set includes 217 directions that have been observed multiple times by XMM-Newton. The time variation of the intensities from such directions may be used to constrain SWCX models. The O VII and O VIII intensities typically vary by ∼ 10 L.U. were observed. We compared our measurements with models of the heliospheric and geocoronal SWCX. The heliospheric SWCX intensity is expected to vary with ecliptic latitude and solar cycle. We found that the observed oxygen intensities generally decrease from solar maximum to solar minimum, both at high ecliptic latitudes (which is as expected) and at low ecliptic latitudes (which is not as expected). The geocoronal SWCX intensity is expected to depend on the solar wind proton flux incident on the Earth and on the sightline's path through the magnetosheath. The intensity variations seen in directions that have been observed multiple times are in poor agreement with the predictions of a geocoronal SWCX model. We found that the oxygen lines account for ∼40%-50% of the 3/4 keV X-ray background that is not due to unresolved active galactic nuclei, in good agreement with a previous measurement. However, we found that this fraction is not easily explainable by a

  12. Green-emissive transparent BaSi 2O 5:Eu 2 + film phosphor on quartz glass created by a sputtering thermal diffusion process

    Science.gov (United States)

    Seo, K. I.; Park, J. H.; Kim, J. S.; Na, Y. H.; Choi, J. C.; Bae, J. S.

    2009-10-01

    Eu 2+-doped BaSi 2O 5 film phosphors on quartz substrates are fabricated by radio-frequency magnetron sputtering thermal diffusion. The BaSi 2O 5: Eu 2+ phosphor crystals have some preferred orientations that are lattice-spacing matched with the crystallized β- SiO 2 crystals, and they show pore and grain boundary-free morphology with a rod-like shape fused into the crystallized β- SiO 2 crystals. The BaSi 2O 5: Eu 2+ film phosphor has a high transparency, with a transmittance of about 30% in visible light. The BaSi 2O 5: Eu 2+ film phosphor shows 510 nm green emission from the f-d transition of the Eu 2+ ions, and in particular the best sample shows a green photoluminescence brightness of about 5% of a BaSi 2O 5: Eu 2+ powder phosphor screen. These excellences in optical properties can be explained by less optical scattering at pores or grain boundaries, and less reflection at the continuously index-changed interface.

  13. Acoustic emission intensity analysis of corrosion in prestressed concrete piles

    Science.gov (United States)

    Vélez, William; Matta, Fabio; Ziehl, Paul

    2014-02-01

    Corrosion of steel strands in prestressed concrete (PC) bridges may lead to substantial damage or collapse well before the end of the design life. Acoustic Emission (AE) is a suitable nondestructive technique to detect and locate corrosion in reinforced and prestressed concrete, which is key to prioritize inspection and maintenance. An effective tool to analyze damage-related AE data is intensity analysis (IA), which is based on two data trends, namely Severity (average signal strength of high amplitude hits) and Historic Index (ratio of the average signal strength of the most recent hits to the average of all hits). IA criteria for corrosion assessment in PC were recently proposed based on empirical evidence from accelerated corrosion tests. In this paper, AE data from prestressed and non-prestressed concrete pile specimens exposed to salt water wet-dry cycling for over 600 days are used to analyze the relation between Severity and Historic Index and actual corrosion. Evidence of corrosion is gained from the inspection of decommissioned specimens. The selection of suitable J and K parameters for IA is discussed, and an IA chart with updated corrosion criteria for PC piles is presented.

  14. The regulatory role of endogenous iron on greenhouse gas emissions under intensive nitrogen fertilization in subtropical soils of China.

    Science.gov (United States)

    Han, Jiangpei; Shi, Liangsheng; Wang, Yakun; Chen, Zhuowei; Wu, Laosheng

    2018-05-01

    Anaerobic batch experiments were conducted to study the regulatory role of endogenous iron in greenhouse gas emissions under intensive nitrogen fertilization in subtropical soils of China. Fe 2+ , Fe 3+ , and NO 3 - -N dynamics and N 2 O, CH 4 , and CO 2 emissions, as well as the relationships between N fertilizer, endogenous iron, and greenhouse gas emissions were investigated. The emissions of N 2 O increased to different extents from all the test soils by N1 (260 mg N kg -1 ) application compared with N0. After 24 days of anaerobic incubation, the cumulative emissions of N 2 O from red soils in De'an (DR) were significantly higher than that from paddy soils in De'an (DP) and Qujialing (QP) under N1. However, N application enhanced CH 4 and CO 2 emissions from the red soils slightly but inhibited the emissions from paddy soils. The maximal CH 4 and CO 2 emission fluxes occurred in DP soil without N input. Pearson's correlation analysis showed that there were significant correlations (P greenhouse gas emissions mainly through the involvement in denitrification. The proportion of the electrons donated by Fe 2+ used for N 2 O production in denitrification in DP soil was approximately 37.53%. Moreover, positive correlations between Fe 2+ and CH 4 , CO 2 were found in both DR and QP soils, suggesting that endogenous iron might regulate the anaerobic decomposition of organic carbon to CH 4 and CO 2 in the two soils. Soil pH was also an important factor controlling greenhouse gas emissions by affecting endogenous iron availability and C and N transformation processes.

  15. The development of new phosphors of Tb3+/Eu3+ co-doped Gd3Al5O12 with tunable emission

    Science.gov (United States)

    Teng, Xin; Wang, Wenzhi; Cao, Zhentao; Li, Jinkai; Duan, Guangbin; Liu, Zongming

    2017-07-01

    The gadolinium aluminum garnets Gd3Al5O12 (GdAG) activated with Tb3+/Eu3+ were successfully prepared via co-precipitation method at 1500 °C in this work. The crystal structure stabilization, elements analysis, microphotograph, PL/PLE spectra, decay behavior and quantum efficiency were discussed in detail. The metastable GdAG compounds been effectively stabilized by doping with smaller 10 at.% Tb3+, which then allows the development of new phosphors of (Gd0.9-xTb0.1Eux)3Al5O12 (GdAG:Tb3+/Eu3+, x = 0-0.03) for opto-functionality explorations. The PLE/PL spectra displays that the strongest PLE peak was located at ∼276 nm, which overlaps the 8S7/2 → 6IJ transition of Gd3+. Under 276 nm excitation, the phosphors exhibited both Tb3+ and Eu3+ emissions at 548 nm (green, 5D4 → 7F5 transition of Tb3+) and 592 nm (orange-red, 5D0 → 7F1 transition of Eu3+), respectively. The emission intensities of Tb3+ and Eu3+ remarkably varied with the Eu3+ incorporation. As a consequence, the emission color can be readily tuned from approximately green to orange-red. Fluorescence decay analysis found that the lifetime for the Tb3+ emission rapidly decreased conforming to the Tb3+ → Eu3+ energy transfer, and the energy transfer efficiency was calculated. Owing to the Gd3+ → Eu3+ and Gd3+ → Tb3+ energy transfer, the emission intensities of Tb3+ and Eu3+ in (Gd0.9-xTb0.1Eux)AG phosphor were higher than (Y0.87Tb0.1Eu0.03)AG and (Lu0.87Tb0.1Eu0.03)AG system. The (Gd0.9-xTb0.1Eux)AG garnet phosphors developed in this work may serve as a new type of phosphor which hopefully meets the requirements of various lighting and optical display applications.

  16. Development of Advanced High Strength Steel for Improved Vehicle Safety, Fuel Efficiency and CO2 Emission

    Science.gov (United States)

    Kumar, Satendra; Singhai, Mrigandra; Desai, Rahul; Sam, Srimanta; Patra, Pradip Kumar

    2016-10-01

    Global warming and green house gas emissions are the major issues worldwide and their impacts are clearly visible as a record high temperatures, rising sea, and severe `flooding and droughts'. Motor vehicles considered as a major contributor on global warming due to its green house gas emissions. Hence, the automobile industries are under tremendous pressure from government and society to reduce green house gas emission to maximum possible extent. In present work, Dual Phase steel with boron as microalloying is manufactured using thermo-mechanical treatment during hot rolling. Dual phase steel with boron microalloying improved strength by near about 200 MPa than dual phase steel without boron. The boron added dual phase steel can be used for manufacturing stronger and a lighter vehicle which is expected to perform positively on green house gas emissions. The corrosion resistance behavior is also improved with boron addition which would further increase the life cycle of the vehicle even under corrosive atmosphere.

  17. Green Building Premium Cost Analysis in Indonesia Using Work Breakdown Structure Method

    Science.gov (United States)

    Basten, V.; Latief, Y.; Berawi, M. A.; Riswanto; Muliarto, H.

    2018-03-01

    The concept of green building in the construction industry is indispensable for mitigating environmental issues such as waste, pollution, and carbon emissions. There are some countries that have Green Building rating tools. Indonesia particularly is the country which has Greenship rating tools but the number of Green Building is relatively low. Development of building construction is depended on building investors or owner initiation, so this research is conducted to get the building aspects that have significant effect on the attractiveness using The Green Building Concept. The method in this research is work breakdown structure method that detailing the green building activities. The particular activities will be processed to get the cost elements for the green building achievement that it was targeted to improve better than conventional building. The final result of the study was a very significant work package on green building construction in the city of Indonesia case study.

  18. Opportunities for green growth; Vihreaen kasvun mahdollisuudet

    Energy Technology Data Exchange (ETDEWEB)

    Antikainen, R.; Mickwitz, P.; Seppaelae, J. [and others

    2013-03-15

    The report seeks an answer to the question as to the kind of policy decisions (steps) by which preconditions for green growth may be created in Finland. The proposed steps are based on a review of earlier research and studies relating to Finland's key consumption and production systems (food, housing, transport and energy) and to certain path finding countries in terms of the green economy (the Netherlands, Germany, Sweden, Brazil). In addition, the report examines various models by which systemic change towards a green economy may be supported. The report also highlights successful examples of green business activity and measures to promote green growth. Green Growth is defined as low-carbon, resource-efficient economic growth based on safeguarding the functional capacity of ecosystems while promoting wellbeing and soc