WorldWideScience

Sample records for intelligent sensor design

  1. Smart Optoelectronic Sensors and Intelligent Sensor Systems

    Directory of Open Access Journals (Sweden)

    Sergey Y. YURISH

    2012-03-01

    Full Text Available Light-to-frequency converters are widely used in various optoelectronic sensor systems. However, a further frequency-to-digital conversion is a bottleneck in such systems due to a broad frequency range of light-to-frequency converters’ outputs. This paper describes an effective OEM design approach, which can be used for smart and intelligent sensor systems design. The design is based on novel, multifunctional integrated circuit of Universal Sensors & Transducers Interface especially designed for such sensor applications. Experimental results have confirmed an efficiency of this approach and high metrological performances.

  2. Self-Calibration and Optimal Response in Intelligent Sensors Design Based on Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Gilberto Bojorquez

    2007-08-01

    Full Text Available The development of smart sensors involves the design of reconfigurable systemscapable of working with different input sensors. Reconfigurable systems ideally shouldspend the least possible amount of time in their calibration. An autocalibration algorithmfor intelligent sensors should be able to fix major problems such as offset, variation of gainand lack of linearity, as accurately as possible. This paper describes a new autocalibrationmethodology for nonlinear intelligent sensors based on artificial neural networks, ANN.The methodology involves analysis of several network topologies and training algorithms.The proposed method was compared against the piecewise and polynomial linearizationmethods. Method comparison was achieved using different number of calibration points,and several nonlinear levels of the input signal. This paper also shows that the proposedmethod turned out to have a better overall accuracy than the other two methods. Besides,experimentation results and analysis of the complete study, the paper describes theimplementation of the ANN in a microcontroller unit, MCU. In order to illustrate themethod capability to build autocalibration and reconfigurable systems, a temperaturemeasurement system was designed and tested. The proposed method is an improvement over the classic autocalibration methodologies, because it impacts on the design process of intelligent sensors, autocalibration methodologies and their associated factors, like time and cost.

  3. Applications of artificial intelligence to space station: General purpose intelligent sensor interface

    Science.gov (United States)

    Mckee, James W.

    1988-01-01

    This final report describes the accomplishments of the General Purpose Intelligent Sensor Interface task of the Applications of Artificial Intelligence to Space Station grant for the period from October 1, 1987 through September 30, 1988. Portions of the First Biannual Report not revised will not be included but only referenced. The goal is to develop an intelligent sensor system that will simplify the design and development of expert systems using sensors of the physical phenomena as a source of data. This research will concentrate on the integration of image processing sensors and voice processing sensors with a computer designed for expert system development. The result of this research will be the design and documentation of a system in which the user will not need to be an expert in such areas as image processing algorithms, local area networks, image processor hardware selection or interfacing, television camera selection, voice recognition hardware selection, or analog signal processing. The user will be able to access data from video or voice sensors through standard LISP statements without any need to know about the sensor hardware or software.

  4. Methodology, Algorithms, and Emerging Tool for Automated Design of Intelligent Integrated Multi-Sensor Systems

    Directory of Open Access Journals (Sweden)

    Andreas König

    2009-11-01

    Full Text Available The emergence of novel sensing elements, computing nodes, wireless communication and integration technology provides unprecedented possibilities for the design and application of intelligent systems. Each new application system must be designed from scratch, employing sophisticated methods ranging from conventional signal processing to computational intelligence. Currently, a significant part of this overall algorithmic chain of the computational system model still has to be assembled manually by experienced designers in a time and labor consuming process. In this research work, this challenge is picked up and a methodology and algorithms for automated design of intelligent integrated and resource-aware multi-sensor systems employing multi-objective evolutionary computation are introduced. The proposed methodology tackles the challenge of rapid-prototyping of such systems under realization constraints and, additionally, includes features of system instance specific self-correction for sustained operation of a large volume and in a dynamically changing environment. The extension of these concepts to the reconfigurable hardware platform renders so called self-x sensor systems, which stands, e.g., for self-monitoring, -calibrating, -trimming, and -repairing/-healing systems. Selected experimental results prove the applicability and effectiveness of our proposed methodology and emerging tool. By our approach, competitive results were achieved with regard to classification accuracy, flexibility, and design speed under additional design constraints.

  5. Reconfigurable intelligent sensors for health monitoring: a case study of pulse oximeter sensor.

    Science.gov (United States)

    Jovanov, E; Milenkovic, A; Basham, S; Clark, D; Kelley, D

    2004-01-01

    Design of low-cost, miniature, lightweight, ultra low-power, intelligent sensors capable of customization and seamless integration into a body area network for health monitoring applications presents one of the most challenging tasks for system designers. To answer this challenge we propose a reconfigurable intelligent sensor platform featuring a low-power microcontroller, a low-power programmable logic device, a communication interface, and a signal conditioning circuit. The proposed solution promises a cost-effective, flexible platform that allows easy customization, run-time reconfiguration, and energy-efficient computation and communication. The development of a common platform for multiple physical sensors and a repository of both software procedures and soft intellectual property cores for hardware acceleration will increase reuse and alleviate costs of transition to a new generation of sensors. As a case study, we present an implementation of a reconfigurable pulse oximeter sensor.

  6. Sensor fusion for intelligent alarm analysis

    International Nuclear Information System (INIS)

    Nelson, C.L.; Fitzgerald, D.S.

    1996-01-01

    The purpose of an intelligent alarm analysis system is to provide complete and manageable information to a central alarm station operator by applying alarm processing and fusion techniques to sensor information. This paper discusses the sensor fusion approach taken to perform intelligent alarm analysis for the Advanced Exterior Sensor (AES). The AES is an intrusion detection and assessment system designed for wide-area coverage, quick deployment, low false/nuisance alarm operation, and immediate visual assessment. It combines three sensor technologies (visible, infrared, and millimeter wave radar) collocated on a compact and portable remote sensor module. The remote sensor module rotates at a rate of 1 revolution per second to detect and track motion and provide assessment in a continuous 360 degree field-of-regard. Sensor fusion techniques are used to correlate and integrate the track data from these three sensors into a single track for operator observation. Additional inputs to the fusion process include environmental data, knowledge of sensor performance under certain weather conditions, sensor priority, and recent operator feedback. A confidence value is assigned to the track as a result of the fusion process. This helps to reduce nuisance alarms and to increase operator confidence in the system while reducing the workload of the operator

  7. Intelligent lead: a novel HRI sensor for guide robots.

    Science.gov (United States)

    Cho, Keum-Bae; Lee, Beom-Hee

    2012-01-01

    This paper addresses the introduction of a new Human Robot Interaction (HRI) sensor for guide robots. Guide robots for geriatric patients or the visually impaired should follow user's control command, keeping a certain desired distance allowing the user to work freely. Therefore, it is necessary to acquire control commands and a user's position on a real-time basis. We suggest a new sensor fusion system to achieve this objective and we will call this sensor the "intelligent lead". The objective of the intelligent lead is to acquire a stable distance from the user to the robot, speed-control volume and turn-control volume, even when the robot platform with the intelligent lead is shaken on uneven ground. In this paper we explain a precise Extended Kalman Filter (EKF) procedure for this. The intelligent lead physically consists of a Kinect sensor, the serial linkage attached with eight rotary encoders, and an IMU (Inertial Measurement Unit) and their measurements are fused by the EKF. A mobile robot was designed to test the performance of the proposed sensor system. After installing the intelligent lead in the mobile robot, several tests are conducted to verify that the mobile robot with the intelligent lead is capable of achieving its goal points while maintaining the appropriate distance between the robot and the user. The results show that we can use the intelligent lead proposed in this paper as a new HRI sensor joined a joystick and a distance measure in the mobile environments such as the robot and the user are moving at the same time.

  8. Vision Guided Intelligent Robot Design And Experiments

    Science.gov (United States)

    Slutzky, G. D.; Hall, E. L.

    1988-02-01

    The concept of an intelligent robot is an important topic combining sensors, manipulators, and artificial intelligence to design a useful machine. Vision systems, tactile sensors, proximity switches and other sensors provide the elements necessary for simple game playing as well as industrial applications. These sensors permit adaption to a changing environment. The AI techniques permit advanced forms of decision making, adaptive responses, and learning while the manipulator provides the ability to perform various tasks. Computer languages such as LISP and OPS5, have been utilized to achieve expert systems approaches in solving real world problems. The purpose of this paper is to describe several examples of visually guided intelligent robots including both stationary and mobile robots. Demonstrations will be presented of a system for constructing and solving a popular peg game, a robot lawn mower, and a box stacking robot. The experience gained from these and other systems provide insight into what may be realistically expected from the next generation of intelligent machines.

  9. Intelligent sensor networks the integration of sensor networks, signal processing and machine learning

    CERN Document Server

    Hu, Fei

    2012-01-01

    Although governments worldwide have invested significantly in intelligent sensor network research and applications, few books cover intelligent sensor networks from a machine learning and signal processing perspective. Filling this void, Intelligent Sensor Networks: The Integration of Sensor Networks, Signal Processing and Machine Learning focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on the world-class research of award-winning authors, the book provides a firm grounding in the fundamentals of intelligent sensor networks, incl

  10. A new rechargeable intelligent vehicle detection sensor

    International Nuclear Information System (INIS)

    Lin, L; Han, X B; Ding, R; Li, G; Lu, Steven C-Y; Hong, Q

    2005-01-01

    Intelligent Transportation System (ITS) is a valid approach to solve the increasing transportation issue in cities. Vehicle detection is one of the key technologies in ITS. The ITS collects and processes traffic data (vehicle flow, vehicular speed, vehicle density and occupancy ratios) from vehicle detection sensors buried under the road or installed along the road. Inductive loop detector as one type of the vehicle detector is applied extensively, with the characters of stability, high value to cost ratio and feasibility. On the other hand, most of the existing inductive loop vehicle detection sensors have some weak points such as friability of detective loop, huge engineering for setting and traffic interruption during installing the sensor. The design and reality of a new rechargeable intelligent vehicle detection sensor is presented in this paper against these weak points existing now. The sensor consists of the inductive loop detector, the rechargeable batteries, the MCU (microcontroller) and the transmitter. In order to reduce the installing project amount, make the loop durable and easily maintained, the volume of the detective loop is reduced as much as we can. Communication in RF (radio frequency) brings on the advantages of getting rid of the feeder cable completely and reducing the installing project amount enormously. For saving the cable installation, the sensor is supplied by the rechargeable batteries. The purpose of the intelligent management of the energy and transmitter by means of MCU is to minimize the power consumption and prolong the working period of the sensor. In a word, the new sensor is more feasible with smaller volume, wireless communication, rechargeable batteries, low power consumption, low cost, high detector precision and easy maintenance and installation

  11. A new rechargeable intelligent vehicle detection sensor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, L [Inspiring Technology Research Laboratory, Tianjin University, Tianjin 300072 (China); Han, X B [Inspiring Technology Research Laboratory, Tianjin University, Tianjin 300072 (China); Ding, R [Tianjin University of Technology and Education, Tianjin 300222 (China); Li, G [Inspiring Technology Research Laboratory, Tianjin University, Tianjin 300072 (China); Lu, Steven C-Y [Inspiring Technology Research Laboratory, Tianjin University, Tianjin 300072 (China); Hong, Q [Inspiring Technology Research Laboratory, Tianjin University, Tianjin 300072 (China)

    2005-01-01

    Intelligent Transportation System (ITS) is a valid approach to solve the increasing transportation issue in cities. Vehicle detection is one of the key technologies in ITS. The ITS collects and processes traffic data (vehicle flow, vehicular speed, vehicle density and occupancy ratios) from vehicle detection sensors buried under the road or installed along the road. Inductive loop detector as one type of the vehicle detector is applied extensively, with the characters of stability, high value to cost ratio and feasibility. On the other hand, most of the existing inductive loop vehicle detection sensors have some weak points such as friability of detective loop, huge engineering for setting and traffic interruption during installing the sensor. The design and reality of a new rechargeable intelligent vehicle detection sensor is presented in this paper against these weak points existing now. The sensor consists of the inductive loop detector, the rechargeable batteries, the MCU (microcontroller) and the transmitter. In order to reduce the installing project amount, make the loop durable and easily maintained, the volume of the detective loop is reduced as much as we can. Communication in RF (radio frequency) brings on the advantages of getting rid of the feeder cable completely and reducing the installing project amount enormously. For saving the cable installation, the sensor is supplied by the rechargeable batteries. The purpose of the intelligent management of the energy and transmitter by means of MCU is to minimize the power consumption and prolong the working period of the sensor. In a word, the new sensor is more feasible with smaller volume, wireless communication, rechargeable batteries, low power consumption, low cost, high detector precision and easy maintenance and installation.

  12. Design, Fabrication, and Implementation of an Array-Type MEMS Piezoresistive Intelligent Pressure Sensor System

    Directory of Open Access Journals (Sweden)

    Jiahong Zhang

    2018-02-01

    Full Text Available To meet the radiosonde requirement of high sensitivity and linearity, this study designs and implements a monolithically integrated array-type piezoresistive intelligent pressure sensor system which is made up of two groups of four pressure sensors with the pressure range of 0–50 kPa and 0–100 kPa respectively. First, theoretical models and ANSYS (version 14.5, Canonsburg, PA, USA finite element method (FEM are adopted to optimize the parameters of array sensor structure. Combing with FEM stress distribution results, the size and material characteristics of the array-type sensor are determined according to the analysis of the sensitivity and the ratio of signal to noise (SNR. Based on the optimized parameters, the manufacture and packaging of array-type sensor chips are then realized by using the standard complementary metal-oxide-semiconductor (CMOS and microelectromechanical system (MEMS process. Furthermore, an intelligent acquisition and processing system for pressure and temperature signals is achieved. The S3C2440A microprocessor (Samsung, Seoul, Korea is regarded as the core part which can be applied to collect and process data. In particular, digital signal storage, display and transmission are realized by the application of a graphical user interface (GUI written in QT/E. Besides, for the sake of compensating the temperature drift and nonlinear error, the data fusion technique is proposed based on a wavelet neural network improved by genetic algorithm (GA-WNN for average measuring signal. The GA-WNN model is implemented in hardware by using a S3C2440A microprocessor. Finally, the results of calibration and test experiments achieved with the temperature ranges from −20 to 20 °C show that: (1 the nonlinear error and the sensitivity of the array-type pressure sensor are 8330 × 10−4 and 0.052 mV/V/kPa in the range of 0–50 kPa, respectively; (2 the nonlinear error and the sensitivity are 8129 × 10−4 and 0.020 mV/V/kPa in the

  13. Detection of Intelligent Intruders in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2016-01-01

    Full Text Available Most of the existing research works on the intrusion detection problem in a wireless sensor network (WSN assume linear or random mobility patterns in abstracting intruders’ models in traversing the WSN field. However, in real-life WSN applications, an intruder is usually an intelligent mobile robot with environment learning and detection avoidance capability (i.e., the capability to avoid surrounding sensors. Due to this, the literature results based on the linear or random mobility models may not be applied to the real-life WSN design and deployment for efficient and effective intrusion detection in practice. This motivates us to investigate the impact of intruder’s intelligence on the intrusion detection problem in a WSN for various applications. To be specific, we propose two intrusion algorithms, the pinball and flood-fill algorithms, to mimic the intelligent motion and behaviors of a mobile intruder in detecting and circumventing nearby sensors for detection avoidance while heading for its destination. The two proposed algorithms are integrated into a WSN framework for intrusion detection analysis in various circumstances. Monte Carlo simulations are conducted, and the results indicate that: (1 the performance of a WSN drastically changes as a result of the intruder’s intelligence in avoiding sensor detections and intrusion algorithms; (2 network parameters, including node density, sensing range and communication range, play a crucial part in the effectiveness of the intruder’s intrusion algorithms; and (3 it is imperative to integrate intruder’s intelligence in the WSN research for intruder detection problems under various application circumstances.

  14. Selected examples of intelligent (micro) sensor systems: state-of-the-art and tendencies

    Science.gov (United States)

    Hauptmann, Peter R.

    2006-03-01

    The capability of intelligent sensors to have more intelligence built into them continues to drive their application in areas including automotive, aerospace and defense, industrial, intelligent house and wear, medical and homeland security. In principle it is difficult to overestimate the importance of intelligent (micro) sensors or sensor systems within advanced societies but one characteristic feature is the global market for sensors, which is now about 20 billion annually. Therefore sensors or sensor systems play a dominant role in many fields from the macro sensor in manufacturing industry down to the miniaturized sensor for medical applications. The diversity of sensors precludes a complete description of the state-of-the-art; selected examples will illustrate the current situation. MEMS (microelectromechanical systems) devices are of special interest in the context of micro sensor systems. In past the main requirements of a sensor were in terms of metrological performance. The electrical (or optical) signal produced by the sensor needed to match the measure relatively accurately. Such basic functionality is no longer sufficient. Data processing near the sensor, the extraction of more information than just the direct sensor information by signal analysis, system aspects and multi-sensor information are the new demands. A shifting can be observed away from aiming to design perfect single-function transducers and towards the utilization of system-based sensors as system components. In the ideal case such systems contain sensors, actuators and electronics. They can be realized in monolithic, hybrid or discrete form—which kind is used depends on the application. In this article the state-of-the-art of intelligent sensors or sensor systems is reviewed using selected examples. Future trends are deduced.

  15. Intelligent Sensors for Integrated Systems Health Management (ISHM)

    Science.gov (United States)

    Schmalzel, John L.

    2008-01-01

    IEEE 1451 Smart Sensors contribute to a number of ISHM goals including cost reduction achieved through: a) Improved configuration management (TEDS); and b) Plug-and-play re-configuration. Intelligent Sensors are adaptation of Smart Sensors to include ISHM algorithms; this offers further benefits: a) Sensor validation. b) Confidence assessment of measurement, and c) Distributed ISHM processing. Space-qualified intelligent sensors are possible a) Size, mass, power constraints. b) Bus structure/protocol.

  16. Intelligent Wireless Sensor Networks for System Health Monitoring

    Science.gov (United States)

    Alena, Rick

    2011-01-01

    PAN configuration, providing the appropriate response for maintaining overall sensor system function, even when sensor modules fail or the WSN is reconfigured. The session will present the architecture and technical feasibility of creating fault-tolerant WSNs for aerospace applications based on our application of the technology to a Structural Health Monitoring testbed. The interim results of WSN development and testing including our software architecture for intelligent sensor management will be discussed in the context of the specific tradeoffs required for effective use. Initial certification measurement techniques and test results gauging WSN susceptibility to Radio Frequency interference are introduced as key challenges for technology adoption. A candidate Developmental and Flight Instrumentation implementation using intelligent sensor networks for wind tunnel and flight tests is developed as a guide to understanding key aspects of the aerospace vehicle design, test and operations life cycle.

  17. Design of an intelligent car

    Science.gov (United States)

    Na, Yongyi

    2017-03-01

    The design of simple intelligent car, using AT89S52 single chip microcomputer as the car detection and control core; The metal sensor TL - Q5MC induction to iron, to detect the way to send feedback to the signal of single chip microcomputer, make SCM according to the scheduled work mode to control the car in the area according to the predetermined speed, and the operation mode of the microcontroller choose different also can control the car driving along s-shaped iron; Use A44E hall element to detect the car speeds; Adopts 1602 LCD display time of car driving, driving the car to stop, take turns to show the car driving time, distance, average speed and the speed of time. This design has simple structure and is easy to implement, but are highly intelligent, humane, to a certain extent reflects the intelligence.

  18. Design and research of intelligent mobile robot environment detection system based on multi-sensor technology

    International Nuclear Information System (INIS)

    Chen Yu; Wen Xinling

    2007-01-01

    The intelligent mobile robot environment detection system is researched based on SCM MC68HC908GP3 as core of control system. The four groups of detection systems constituted by ultrasonic sensors and infrared sensors gather information of forward, behind, left and right different directions, solve the problem of blind spot, and make up each other shortage. The distance measurement precision is improved rapidly and the detection precision is less than ±1% through using the way of the pulse shooting, the signal chooses circuit, and the temperature compensation. The system design method and the hardware circuit are introduced in detail. Simultaneity, the system adopts the single chip control technology, it makes the system possess favorable expansibility and gains the practicability in engineering field. (authors)

  19. A Smart Sensor Data Transmission Technique for Logistics and Intelligent Transportation Systems

    OpenAIRE

    Kyunghee Sun; Intae Ryoo

    2018-01-01

    When it comes to Internet of Things systems that include both a logistics system and an intelligent transportation system, a smart sensor is one of the key elements to collect useful information whenever and wherever necessary. This study proposes the Smart Sensor Node Group Management Medium Access Control Scheme designed to group smart sensor devices and collect data from them efficiently. The proposed scheme performs grouping of portable sensor devices connected to a system depending on th...

  20. A systematic profile/feature-based intelligence for spectral sensors

    International Nuclear Information System (INIS)

    Vogt, M.C.

    2000-01-01

    Argonne National Laboratory (ANL) has been creating a special-purpose software-engineering tool to support research and development of spectrum-output-type [chemical] sensors. The modular software system is called SAGE, the Sensor Algorithm Generation Environment and includes general-purpose signal conditioning algorithms (GP/SAGE) as well as intelligent classifiers, pattern recognizes, response accelerators, and sensitivity analyzers. GP/SAGE is an implementation of an approach for delivering a level of encapsulated intelligence to a wide range of sensors and instruments. It capitalizes on the genene classification and analysis needed to process most profile-type data. The GP/SAGE native data format is a generalized one-dimensional vector, signature, or spectrum. GP/SAGE modules form a computer-aided software engineering (CASE) workbench where users can experiment with various conditioning, filtering, and pattern recognition stages, then automatically generate final algorithm source code for data acquisition and analysis systems. SAGE was designed to free the [chemical] sensor developer from the signal processing allowing them to focus on understanding and improving the basic sensing mechanisms. The SAGE system's strength is its creative application of advanced neural computing techniques to response-vector and response-surface data, affording new insight and perspectives with regard to phenomena being studied for sensor development

  1. Non-Contact Sensor for Long-Term Continuous Vital Signs Monitoring: A Review on Intelligent Phased-Array Doppler Sensor Design

    Science.gov (United States)

    Hall, Travis; Nguyen, Tam Q.; Mayeda, Jill C.; Lie, Paul E.; Lopez, Jerry; Banister, Ron E.

    2017-01-01

    It has been the dream of many scientists and engineers to realize a non-contact remote sensing system that can perform continuous, accurate and long-term monitoring of human vital signs as we have seen in many Sci-Fi movies. Having an intelligible sensor system that can measure and record key vital signs (such as heart rates and respiration rates) remotely and continuously without touching the patients, for example, can be an invaluable tool for physicians who need to make rapid life-and-death decisions. Such a sensor system can also effectively help physicians and patients making better informed decisions when patients’ long-term vital signs data is available. Therefore, there has been a lot of research activities on developing a non-contact sensor system that can monitor a patient’s vital signs and quickly transmit the information to healthcare professionals. Doppler-based radio-frequency (RF) non-contact vital signs (NCVS) monitoring system are particularly attractive for long term vital signs monitoring because there are no wires, electrodes, wearable devices, nor any contact-based sensors involved so the subjects may not be even aware of the ubiquitous monitoring. In this paper, we will provide a brief review on some latest development on NCVS sensors and compare them against a few novel and intelligent phased-array Doppler-based RF NCVS biosensors we have built in our labs. Some of our NCVS sensor tests were performed within a clutter-free anechoic chamber to mitigate the environmental clutters, while most tests were conducted within the typical Herman-Miller type office cubicle setting to mimic a more practical monitoring environment. Additionally, we will show the measurement data to demonstrate the feasibility of long-term NCVS monitoring. The measured data strongly suggests that our latest phased array NCVS system should be able to perform long-term vital signs monitoring intelligently and robustly, especially for situations where the subject is

  2. Non-Contact Sensor for Long-Term Continuous Vital Signs Monitoring: A Review on Intelligent Phased-Array Doppler Sensor Design.

    Science.gov (United States)

    Hall, Travis; Lie, Donald Y C; Nguyen, Tam Q; Mayeda, Jill C; Lie, Paul E; Lopez, Jerry; Banister, Ron E

    2017-11-15

    It has been the dream of many scientists and engineers to realize a non-contact remote sensing system that can perform continuous, accurate and long-term monitoring of human vital signs as we have seen in many Sci-Fi movies. Having an intelligible sensor system that can measure and record key vital signs (such as heart rates and respiration rates) remotely and continuously without touching the patients, for example, can be an invaluable tool for physicians who need to make rapid life-and-death decisions. Such a sensor system can also effectively help physicians and patients making better informed decisions when patients' long-term vital signs data is available. Therefore, there has been a lot of research activities on developing a non-contact sensor system that can monitor a patient's vital signs and quickly transmit the information to healthcare professionals. Doppler-based radio-frequency (RF) non-contact vital signs (NCVS) monitoring system are particularly attractive for long term vital signs monitoring because there are no wires, electrodes, wearable devices, nor any contact-based sensors involved so the subjects may not be even aware of the ubiquitous monitoring. In this paper, we will provide a brief review on some latest development on NCVS sensors and compare them against a few novel and intelligent phased-array Doppler-based RF NCVS biosensors we have built in our labs. Some of our NCVS sensor tests were performed within a clutter-free anechoic chamber to mitigate the environmental clutters, while most tests were conducted within the typical Herman-Miller type office cubicle setting to mimic a more practical monitoring environment. Additionally, we will show the measurement data to demonstrate the feasibility of long-term NCVS monitoring. The measured data strongly suggests that our latest phased array NCVS system should be able to perform long-term vital signs monitoring intelligently and robustly, especially for situations where the subject is sleeping

  3. Non-Contact Sensor for Long-Term Continuous Vital Signs Monitoring: A Review on Intelligent Phased-Array Doppler Sensor Design

    Directory of Open Access Journals (Sweden)

    Travis Hall

    2017-11-01

    Full Text Available It has been the dream of many scientists and engineers to realize a non-contact remote sensing system that can perform continuous, accurate and long-term monitoring of human vital signs as we have seen in many Sci-Fi movies. Having an intelligible sensor system that can measure and record key vital signs (such as heart rates and respiration rates remotely and continuously without touching the patients, for example, can be an invaluable tool for physicians who need to make rapid life-and-death decisions. Such a sensor system can also effectively help physicians and patients making better informed decisions when patients’ long-term vital signs data is available. Therefore, there has been a lot of research activities on developing a non-contact sensor system that can monitor a patient’s vital signs and quickly transmit the information to healthcare professionals. Doppler-based radio-frequency (RF non-contact vital signs (NCVS monitoring system are particularly attractive for long term vital signs monitoring because there are no wires, electrodes, wearable devices, nor any contact-based sensors involved so the subjects may not be even aware of the ubiquitous monitoring. In this paper, we will provide a brief review on some latest development on NCVS sensors and compare them against a few novel and intelligent phased-array Doppler-based RF NCVS biosensors we have built in our labs. Some of our NCVS sensor tests were performed within a clutter-free anechoic chamber to mitigate the environmental clutters, while most tests were conducted within the typical Herman-Miller type office cubicle setting to mimic a more practical monitoring environment. Additionally, we will show the measurement data to demonstrate the feasibility of long-term NCVS monitoring. The measured data strongly suggests that our latest phased array NCVS system should be able to perform long-term vital signs monitoring intelligently and robustly, especially for situations where the

  4. Sensor Technologies for Intelligent Transportation Systems.

    Science.gov (United States)

    Guerrero-Ibáñez, Juan; Zeadally, Sherali; Contreras-Castillo, Juan

    2018-04-16

    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment.

  5. Sensor Technologies for Intelligent Transportation Systems

    Science.gov (United States)

    Guerrero-Ibáñez, Juan; Zeadally, Sherali

    2018-01-01

    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment. PMID:29659524

  6. Sensor Technologies for Intelligent Transportation Systems

    Directory of Open Access Journals (Sweden)

    Juan Guerrero-Ibáñez

    2018-04-01

    Full Text Available Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment.

  7. Design and Implementation of a Wireless Sensor and Actuator Network to Support the Intelligent Control of Efficient Energy Usage.

    Science.gov (United States)

    Blanco, Jesús; García, Andrés; Morenas, Javier de Las

    2018-06-09

    Energy saving has become a major concern for the developed society of our days. This paper presents a Wireless Sensor and Actuator Network (WSAN) designed to provide support to an automatic intelligent system, based on the Internet of Things (IoT), which enables a responsible consumption of energy. The proposed overall system performs an efficient energetic management of devices, machines and processes, optimizing their operation to achieve a reduction in their overall energy usage at any given time. For this purpose, relevant data is collected from intelligent sensors, which are in-stalled at the required locations, as well as from the energy market through the Internet. This information is analysed to provide knowledge about energy utilization, and to improve efficiency. The system takes autonomous decisions automatically, based on the available information and the specific requirements in each case. The proposed system has been implanted and tested in a food factory. Results show a great optimization of energy efficiency and a substantial improvement on energy and costs savings.

  8. Intelligent structures and design of energy related facilities

    International Nuclear Information System (INIS)

    Namba, Haruyuki

    1994-01-01

    Possibility of applying intelligent structural concepts to civil design of energy plants is discussed. Intelligent structures, which are now common in aerospace engineering field, are also referred to as adaptive structures or smart structures depending on cases. Among various existing concepts, reconfigurable structures, precise shape control, structural monitoring using smart materials of optical fiber sensors, and relation with recent innovative communication technologies are focused from civil engineering point of view. Application of such new technologies will help to enhance design of energy related plants, which include multiplex functions which need to be very reliable and safe. (author)

  9. Design and Research of Intelligent Remote Control Fan Based on Single Chip Microcomputer and Bluetooth Technology

    Directory of Open Access Journals (Sweden)

    Zhang Xue-Xia

    2017-01-01

    Full Text Available This paper is designed for intelligent remote control fans. The design of the microcontroller as the core, the sensor, Bluetooth and Andrews system applied to the design of intelligent remote control fan. According to the temperature sensor to achieve the indoor temperature collection, to achieve and set the temperature comparison, thus affecting the fan speed. At the same time, the system according to the infrared sensor components to detect external factors, in order to achieve the running or stopping of the fan, that is, to achieve intelligent control of the fan. In addition, the system achieve the Bluetooth and mobile phone Andrews system of effective combination, and through the software program to complete the fan remote operation and wind speed control.

  10. Smart and Intelligent Sensors

    Science.gov (United States)

    Lansaw, John; Schmalzel, John; Figueroa, Jorge

    2009-01-01

    John C. Stennis Space Center (SSC) provides rocket engine propulsion testing for NASA's space programs. Since the development of the Space Shuttle, every Space Shuttle Main Engine (SSME) has undergone acceptance testing at SSC before going to Kennedy Space Center (KSC) for integration into the Space Shuttle. The SSME is a large cryogenic rocket engine that uses Liquid Hydrogen (LH2) as the fuel. As NASA moves to the new ARES V launch system, the main engines on the new vehicle, as well as the upper stage engine, are currently base lined to be cryogenic rocket engines that will also use LH2. The main rocket engines for the ARES V will be larger than the SSME, while the upper stage engine will be approximately half that size. As a result, significant quantities of hydrogen will be required during the development, testing, and operation of these rocket engines.Better approaches are needed to simplify sensor integration and help reduce life-cycle costs. 1.Smarter sensors. Sensor integration should be a matter of "plug-and-play" making sensors easier to add to a system. Sensors that implement new standards can help address this problem; for example, IEEE STD 1451.4 defines transducer electronic data sheet (TEDS) templates for commonly used sensors such as bridge elements and thermocouples. When a 1451.4 compliant smart sensor is connected to a system that can read the TEDS memory, all information needed to configure the data acquisition system can be uploaded. This reduces the amount of labor required and helps minimize configuration errors. 2.Intelligent sensors. Data received from a sensor be scaled, linearized; and converted to engineering units. Methods to reduce sensor processing overhead at the application node are needed. Smart sensors using low-cost microprocessors with integral data acquisition and communication support offer the means to add these capabilities. Once a processor is embedded, other features can be added; for example, intelligent sensors can make

  11. Molecular robots with sensors and intelligence.

    Science.gov (United States)

    Hagiya, Masami; Konagaya, Akihiko; Kobayashi, Satoshi; Saito, Hirohide; Murata, Satoshi

    2014-06-17

    CONSPECTUS: What we can call a molecular robot is a set of molecular devices such as sensors, logic gates, and actuators integrated into a consistent system. The molecular robot is supposed to react autonomously to its environment by receiving molecular signals and making decisions by molecular computation. Building such a system has long been a dream of scientists; however, despite extensive efforts, systems having all three functions (sensing, computation, and actuation) have not been realized yet. This Account introduces an ongoing research project that focuses on the development of molecular robotics funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan). This 5 year project started in July 2012 and is titled "Development of Molecular Robots Equipped with Sensors and Intelligence". The major issues in the field of molecular robotics all correspond to a feedback (i.e., plan-do-see) cycle of a robotic system. More specifically, these issues are (1) developing molecular sensors capable of handling a wide array of signals, (2) developing amplification methods of signals to drive molecular computing devices, (3) accelerating molecular computing, (4) developing actuators that are controllable by molecular computers, and (5) providing bodies of molecular robots encapsulating the above molecular devices, which implement the conformational changes and locomotion of the robots. In this Account, the latest contributions to the project are reported. There are four research teams in the project that specialize on sensing, intelligence, amoeba-like actuation, and slime-like actuation, respectively. The molecular sensor team is focusing on the development of molecular sensors that can handle a variety of signals. This team is also investigating methods to amplify signals from the molecular sensors. The molecular intelligence team is developing molecular computers and is currently focusing on a new photochemical technology for accelerating DNA

  12. Network-Capable Application Process and Wireless Intelligent Sensors for ISHM

    Science.gov (United States)

    Figueroa, Fernando; Morris, Jon; Turowski, Mark; Wang, Ray

    2011-01-01

    Intelligent sensor technology and systems are increasingly becoming attractive means to serve as frameworks for intelligent rocket test facilities with embedded intelligent sensor elements, distributed data acquisition elements, and onboard data acquisition elements. Networked intelligent processors enable users and systems integrators to automatically configure their measurement automation systems for analog sensors. NASA and leading sensor vendors are working together to apply the IEEE 1451 standard for adding plug-and-play capabilities for wireless analog transducers through the use of a Transducer Electronic Data Sheet (TEDS) in order to simplify sensor setup, use, and maintenance, to automatically obtain calibration data, and to eliminate manual data entry and error. A TEDS contains the critical information needed by an instrument or measurement system to identify, characterize, interface, and properly use the signal from an analog sensor. A TEDS is deployed for a sensor in one of two ways. First, the TEDS can reside in embedded, nonvolatile memory (typically flash memory) within the intelligent processor. Second, a virtual TEDS can exist as a separate file, downloadable from the Internet. This concept of virtual TEDS extends the benefits of the standardized TEDS to legacy sensors and applications where the embedded memory is not available. An HTML-based user interface provides a visual tool to interface with those distributed sensors that a TEDS is associated with, to automate the sensor management process. Implementing and deploying the IEEE 1451.1-based Network-Capable Application Process (NCAP) can achieve support for intelligent process in Integrated Systems Health Management (ISHM) for the purpose of monitoring, detection of anomalies, diagnosis of causes of anomalies, prediction of future anomalies, mitigation to maintain operability, and integrated awareness of system health by the operator. It can also support local data collection and storage. This

  13. From Smart to Intelligent Sensors: A Case Study

    Directory of Open Access Journals (Sweden)

    Vincenzo Di Lecce

    2012-03-01

    Full Text Available This paper showcases the opportunity of embedding intelligence in smart sensor devices with particular reference to air quality monitoring applications. The work bases upon recent findings attained and published by authors in the field of information extraction from measurements signals and smart sensor research. Smart sensors are commonly conceived as hardware/software transducers able to lift the source physical signal(s to the application target level. This entails an intricate twist of physical measurements and application-level bits of information. When measures are noisy or ambiguous, information extraction is demanding and thus requires artificial intelligence to intervene in the data interpretation process. Experience gained with handcrafted prototypes allowed us to harness the complexity of bringing artificial intelligence inside physical measurements. To provide a complete picture of the encountered criticalities, the chosen semantic model, the carried out and the obtained results are reported and discussed.

  14. Application of Swarm Intelligence Based Routingprotocols for Wireless Adhoc Sensor Network

    Directory of Open Access Journals (Sweden)

    Mrutyunjaya PANDA

    2011-07-01

    Full Text Available The enormous growth of wireless sensor network (WSN research has opined challenges about their ease in implementation and performance evaluation. Efficient swarm intelligence based routing protocols that can be used to obtain the application specific service guarantee are the key design issues in designing a WSN model. In this paper, an experimental testbed is designed with 100 sensor nodes deployed in a dense environment to address the scalability and performance issues of WSN. In this paper, we use Flooded Piggyback (FP and SC-MCBR ant colony based routing along with AODV and MCBR Tree in order to design an efficient WSN model. Finally, simulation results are presented with various performance measures to understand the efficacy of the proposed WSN design.

  15. Development of an Intelligent Capacitive Mass Sensor Based on Co-axial Cylindrical Capacitor

    Directory of Open Access Journals (Sweden)

    Amir ABU AL AISH

    2009-06-01

    Full Text Available The paper presents a linear, robust and intelligent capacitive mass sensor made of a co-axial cylindrical capacitor. It is designed such that the mass under measurement is directly proportional to the capacitance of the sensor. The average value of the output voltage of a capacitance to voltage converter is proportional to the capacitance of the sensor. The output of the converter is measured and displayed, as mass, with the help of microcontroller. The results are free from the effect of stray capacitances which cause errors at low values of capacitances. Developed sensor is linear, free from errors due to temperature and highly flexible in design. The proto-type of the mass sensor can weigh up to 4 kilogram only.

  16. A Multi-Agent-Based Intelligent Sensor and Actuator Network Design for Smart House and Home Automation

    Directory of Open Access Journals (Sweden)

    Fei Hu

    2013-08-01

    Full Text Available The smart-house technology aims to increase home automation and security with reduced energy consumption. A smart house consists of various intelligent sensors and actuators operating on different platforms with conflicting objectives. This paper proposes a multi-agent system (MAS design framework to achieve smart house automation. The novelties of this work include the developments of (1 belief, desire and intention (BDI agent behavior models; (2 a regulation policy-based multi-agent collaboration mechanism; and (3 a set of metrics for MAS performance evaluation. Simulations of case studies are performed using the Java Agent Development Environment (JADE to demonstrate the advantages of the proposed method.

  17. Collective intelligent wireless sensor networks

    NARCIS (Netherlands)

    Mihaylov, M.; Nowe, A.; Tuyls, K.P.; Nijholt, A.; Pantic, M.

    2008-01-01

    In this paper we apply the COllective INtelligence (COIN) framework ofWolpert et al. toWireless Sensor Networks (WSNs) with the aim to increase the autonomous lifetime of the network in a decentralized manner. COIN describes how selfish agents can learn to optimize their own performance, so that the

  18. Intelligent Design of Metal Oxide Gas Sensor Arrays Using Reciprocal Kernel Support Vector Regression

    Science.gov (United States)

    Dougherty, Andrew W.

    Metal oxides are a staple of the sensor industry. The combination of their sensitivity to a number of gases, and the electrical nature of their sensing mechanism, make the particularly attractive in solid state devices. The high temperature stability of the ceramic material also make them ideal for detecting combustion byproducts where exhaust temperatures can be high. However, problems do exist with metal oxide sensors. They are not very selective as they all tend to be sensitive to a number of reduction and oxidation reactions on the oxide's surface. This makes sensors with large numbers of sensors interesting to study as a method for introducing orthogonality to the system. Also, the sensors tend to suffer from long term drift for a number of reasons. In this thesis I will develop a system for intelligently modeling metal oxide sensors and determining their suitability for use in large arrays designed to analyze exhaust gas streams. It will introduce prior knowledge of the metal oxide sensors' response mechanisms in order to produce a response function for each sensor from sparse training data. The system will use the same technique to model and remove any long term drift from the sensor response. It will also provide an efficient means for determining the orthogonality of the sensor to determine whether they are useful in gas sensing arrays. The system is based on least squares support vector regression using the reciprocal kernel. The reciprocal kernel is introduced along with a method of optimizing the free parameters of the reciprocal kernel support vector machine. The reciprocal kernel is shown to be simpler and to perform better than an earlier kernel, the modified reciprocal kernel. Least squares support vector regression is chosen as it uses all of the training points and an emphasis was placed throughout this research for extracting the maximum information from very sparse data. The reciprocal kernel is shown to be effective in modeling the sensor

  19. Design and Simulation Test of an Open D-Dot Voltage Sensor

    Directory of Open Access Journals (Sweden)

    Yunjie Bai

    2015-09-01

    Full Text Available Nowadays, sensor development focuses on miniaturization and non-contact measurement. According to the D-dot principle, a D-dot voltage sensor with a new structure was designed based on the differential D-dot sensor with a symmetrical structure, called an asymmetric open D-dot voltage sensor. It is easier to install. The electric field distribution of the sensor was analyzed through Ansoft Maxwell and an open D-dot voltage sensor was designed. This open D-voltage sensor is characteristic of accessible insulating strength and small electric field distortion. The steady and transient performance test under 10 kV-voltage reported satisfying performances of the designed open D-dot voltage sensor. It conforms to requirements for a smart grid measuring sensor in intelligence, miniaturization and facilitation.

  20. Intelligent pressure measurement in multiple sensor arrays

    International Nuclear Information System (INIS)

    Matthews, C.A.

    1995-01-01

    Pressure data acquisition has typically consisted of a group of sensors scanned by an electronic or mechanical multiplexer. The data accuracy was dependent upon the temperature stability of the sensors. This paper describes a new method of pressure measurement that combines individual temperature compensated pressure sensors, a microprocessor, and an A/D converter in one module. Each sensor has its own temperature characteristics stored in a look-up table to minimize sensor thermal errors. The result is an intelligent pressure module that can output temperature compensated engineering units over an Ethernet interface. Calibration intervals can be dramatically extended depending upon system accuracy requirements and calibration techniques used

  1. Handbook of Modern Sensors Physics, Designs, and Applications

    CERN Document Server

    Fraden, Jacob

    2010-01-01

    This book is about devices commonly called sensors. Digital systems, however complex and intelligent they might be, must receive information from the outside world that is generally analog and not electrical. Sensors are interface devices between various physical values and the electronic circuits who "understand" only a language of moving electrical charges. In other words, sensors are the eyes, ears, and noses of silicon chips. Unlike other books on sensors, this book is organized according to the measured variables (temperature, pressure, position, etc.) that make it much more practical and easier to read. In this new edition recent ideas and developments have been added while less important and non-essential designs were dropped. Sections on practical designs and use of the modern micro-machining technologies have been revised substantially. This book is a reference text that can be used by students, researchers interested in modern instrumentation (applied physicists and engineers), sensor designers, app...

  2. Intelligent Design

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    2005-01-01

    Forestillingen om at naturen er designet af en guddommelig 'intelligens' er et smukt filosofisk princip. Teorier om Intelligent Design som en naturvidenskabeligt baseret teori er derimod helt forfærdelig.......Forestillingen om at naturen er designet af en guddommelig 'intelligens' er et smukt filosofisk princip. Teorier om Intelligent Design som en naturvidenskabeligt baseret teori er derimod helt forfærdelig....

  3. Swarm intelligence algorithms for integrated optimization of piezoelectric actuator and sensor placement and feedback gains

    International Nuclear Information System (INIS)

    Dutta, Rajdeep; Ganguli, Ranjan; Mani, V

    2011-01-01

    Swarm intelligence algorithms are applied for optimal control of flexible smart structures bonded with piezoelectric actuators and sensors. The optimal locations of actuators/sensors and feedback gain are obtained by maximizing the energy dissipated by the feedback control system. We provide a mathematical proof that this system is uncontrollable if the actuators and sensors are placed at the nodal points of the mode shapes. The optimal locations of actuators/sensors and feedback gain represent a constrained non-linear optimization problem. This problem is converted to an unconstrained optimization problem by using penalty functions. Two swarm intelligence algorithms, namely, Artificial bee colony (ABC) and glowworm swarm optimization (GSO) algorithms, are considered to obtain the optimal solution. In earlier published research, a cantilever beam with one and two collocated actuator(s)/sensor(s) was considered and the numerical results were obtained by using genetic algorithm and gradient based optimization methods. We consider the same problem and present the results obtained by using the swarm intelligence algorithms ABC and GSO. An extension of this cantilever beam problem with five collocated actuators/sensors is considered and the numerical results obtained by using the ABC and GSO algorithms are presented. The effect of increasing the number of design variables (locations of actuators and sensors and gain) on the optimization process is investigated. It is shown that the ABC and GSO algorithms are robust and are good choices for the optimization of smart structures

  4. Utilising artificial intelligence in software defined wireless sensor network

    CSIR Research Space (South Africa)

    Matlou, OG

    2017-10-01

    Full Text Available Software Defined Wireless Sensor Network (SDWSN) is realised by infusing Software Defined Network (SDN) model in Wireless Sensor Network (WSN), Reason for that is to overcome the challenges of WSN. Artificial Intelligence (AI) and machine learning...

  5. Sensor guided control and navigation with intelligent machines. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Bijoy K.

    2001-03-26

    This item constitutes the final report on ''Visionics: An integrated approach to analysis and design of intelligent machines.'' The report discusses dynamical systems approach to problems in robust control of possibly time-varying linear systems, problems in vision and visually guided control, and, finally, applications of these control techniques to intelligent navigation with a mobile platform. Robust design of a controller for a time-varying system essentially deals with the problem of synthesizing a controller that can adapt to sudden changes in the parameters of the plant and can maintain stability. The approach presented is to design a compensator that simultaneously stabilizes each and every possible mode of the plant as the parameters undergo sudden and unexpected changes. Such changes can in fact be detected by a visual sensor and, hence, visually guided control problems are studied as a natural consequence. The problem here is to detect parameters of the plant and maintain st ability in the closed loop using a ccd camera as a sensor. The main result discussed in the report is the role of perspective systems theory that was developed in order to analyze such a detection and control problem. The robust control algorithms and the visually guided control algorithms are applied in the context of a PUMA 560 robot arm control where the goal is to visually locate a moving part on a mobile turntable. Such problems are of paramount importance in manufacturing with a certain lack of structure. Sensor guided control problems are extended to problems in robot navigation using a NOMADIC mobile platform with a ccd and a laser range finder as sensors. The localization and map building problems are studied with the objective of navigation in an unstructured terrain.

  6. Design of intelligent house system based on Yeelink

    Directory of Open Access Journals (Sweden)

    Lin Zhi-Huang

    2016-01-01

    Full Text Available In order to monitor the security situation of house in real time, an intelligent house remote monitoring system is designed based on Yeelink cloud services and ZigBee wireless communication technology. This system includes three parts, ZigBee wireless sensor networks, intelligent house gateway and Yeelink Cloud Services. Users can access Yeelink website or APP to get real time information in the house, receiving information including gas concentration, temperature. Also, remote commands can be sent from mobile devices to control the household appliances. The user who can monitor and control the house effectively through a simple and convenient user interface, will feel much more safe and comfortable.

  7. Design And Implementation of Dsp-Based Intelligent Controller For Automobile Braking System

    Directory of Open Access Journals (Sweden)

    S.N. Sidek and M.J.E. Salami

    2012-08-01

    Full Text Available An intelligent braking system has great potential applications especially, in developed countries where research on smart vehicle and intelligent highways are receiving ample attention. The system when integrated with other subsystems like automatic traction control, intelligent throttle, and auto cruise systems, etc will result in smart vehicle maneuver. The driver at the end of the day will become the passenger, safety accorded the highest priority and the journey optimized in term of time duration, cost, efficiency and comfortability. The impact of such design and development will cater for the need of contemporary society that aspires to a quality drive as well as to accommodate the advancement of technology especially in the area of smart sensors and actuators.  The emergence of digital signal processor enhances the capacity and features of universal microcontroller.  This paper introduces the use of TI DSP, TMS320LF2407 as an engine of the system. The overall system is designed so that the value of inter-vehicle distance from infrared laser sensor and speed of follower car from speedometer are fed into the DSP for processing, resulting in the DSP issuing commands to the actuator to function appropriately.Key words:  Smart Vehicle, Digital Signal Processor, Fuzzy Controller, and Infra Red Laser Sensor

  8. An Intelligent Sensor for the Ultra-High-Frequency Partial Discharge Online Monitoring of Power Transformers

    Directory of Open Access Journals (Sweden)

    Jian Li

    2016-05-01

    Full Text Available Ultra-high-frequency (UHF partial discharge (PD online monitoring is an effective way to inspect potential faults and insulation defects in power transformers. The construction of UHF PD online monitoring system is a challenge because of the high-frequency and wide-frequency band of the UHF PD signal. This paper presents a novel, intelligent sensor for UHF PD online monitoring based on a new method, namely a level scanning method. The intelligent sensor can directly acquire the statistical characteristic quantities and is characterized by low cost, few data to output and transmit, Ethernet functionality, and small size for easy installation. The prototype of an intelligent sensor was made. Actual UHF PD experiments with three typical artificial defect models of power transformers were carried out in a laboratory, and the waveform recording method and intelligent sensor proposed were simultaneously used for UHF PD measurement for comparison. The results show that the proposed intelligent sensor is qualified for the UHF PD online monitoring of power transformers. Additionally, three methods to improve the performance of intelligent sensors were proposed according to the principle of the level scanning method.

  9. A Smart Sensor Data Transmission Technique for Logistics and Intelligent Transportation Systems

    Directory of Open Access Journals (Sweden)

    Kyunghee Sun

    2018-03-01

    Full Text Available When it comes to Internet of Things systems that include both a logistics system and an intelligent transportation system, a smart sensor is one of the key elements to collect useful information whenever and wherever necessary. This study proposes the Smart Sensor Node Group Management Medium Access Control Scheme designed to group smart sensor devices and collect data from them efficiently. The proposed scheme performs grouping of portable sensor devices connected to a system depending on the distance from the sink node and transmits data by setting different buffer thresholds to each group. This method reduces energy consumption of sensor devices located near the sink node and enhances the IoT system’s general energy efficiency. When a sensor device is moved and, thus, becomes unable to transmit data, it is allocated to a new group so that it can continue transmitting data to the sink node.

  10. Fuzzy Logic Controller Design for Intelligent Robots

    Directory of Open Access Journals (Sweden)

    Ching-Han Chen

    2017-01-01

    Full Text Available This paper presents a fuzzy logic controller by which a robot can imitate biological behaviors such as avoiding obstacles or following walls. The proposed structure is implemented by integrating multiple ultrasonic sensors into a robot to collect data from a real-world environment. The decisions that govern the robot’s behavior and autopilot navigation are driven by a field programmable gate array- (FPGA- based fuzzy logic controller. The validity of the proposed controller was demonstrated by simulating three real-world scenarios to test the bionic behavior of a custom-built robot. The results revealed satisfactorily intelligent performance of the proposed fuzzy logic controller. The controller enabled the robot to demonstrate intelligent behaviors in complex environments. Furthermore, the robot’s bionic functions satisfied its design objectives.

  11. Design and Development of Intelligent Electrodes for Future Digital Health Monitoring: A Review

    Science.gov (United States)

    Khairuddin, A. M.; Azir, K. N. F. Ku; Kan, P. Eh

    2018-03-01

    Electrodes are sensors used in electrocardiography (ECG) monitoring system to diagnose heart diseases. Over the years, diverse types of electrodes have been designed and developed to improve ECG monitoring system. However, more recently, with the technological advances and capabilities from the Internet of Things (IoT), cloud computing and data analytics in personalized healthcare, researchers are attempting to design and develop more effective as well as flexible ECG devices by using intelligent electrodes. This paper reviews previous works on electrodes used in electrocardiography (ECG) monitoring devices to identify the key ftures for designing and developing intelligent electrodes in digital health monitoring devices.

  12. A Wireless and Batteryless Intelligent Carbon Monoxide Sensor.

    Science.gov (United States)

    Chen, Chen-Chia; Sung, Gang-Neng; Chen, Wen-Ching; Kuo, Chih-Ting; Chue, Jin-Ju; Wu, Chieh-Ming; Huang, Chun-Ming

    2016-09-23

    Carbon monoxide (CO) poisoning from natural gas water heaters is a common household accident in Taiwan. We propose a wireless and batteryless intelligent CO sensor for improving the safety of operating natural gas water heaters. A micro-hydropower generator supplies power to a CO sensor without battery (COSWOB) (2.5 W at a flow rate of 4.2 L/min), and the power consumption of the COSWOB is only ~13 mW. The COSWOB monitors the CO concentration in ambient conditions around natural gas water heaters and transmits it to an intelligent gateway. When the CO level reaches a dangerous level, the COSWOB alarm sounds loudly. Meanwhile, the intelligent gateway also sends a trigger to activate Wi-Fi alarms and sends notifications to the mobile device through the Internet. Our strategy can warn people indoors and outdoors, thereby reducing CO poisoning accidents. We also believe that our technique not only can be used for home security but also can be used in industrial applications (for example, to monitor leak occurrence in a pipeline).

  13. Research of Intelligent Turbidity Sensor

    OpenAIRE

    Licai Zhang; Yaoguang Wei; Yingyi Chen; Daoliang Li; Lihua Zeng

    2014-01-01

    Turbidity is an important index to evaluate the water quality. Turbidity can reflect the effects of insoluble substances that contain bait and seston on water. Traditional methods of turbidity detection are complicated, they have low efficiency and poor reliability. To solve the turbidity detection problem in aquaculture, an intelligent optical turbidity sensor which is based on scattering theory has been proposed in this paper. After analyzing the quality characteristics of aquaculture water...

  14. 2nd International Conference on INformation Systems Design and Intelligent Applications

    CERN Document Server

    Satapathy, Suresh; Sanyal, Manas; Sarkar, Partha; Mukhopadhyay, Anirban

    2015-01-01

    The second international conference on INformation Systems Design and Intelligent Applications (INDIA – 2015) held in Kalyani, India during January 8-9, 2015. The book covers all aspects of information system design, computer science and technology, general sciences, and educational research. Upon a double blind review process, a number of high quality papers are selected and collected in the book, which is composed of two different volumes, and covers a variety of topics, including natural language processing, artificial intelligence, security and privacy, communications, wireless and sensor networks, microelectronics, circuit and systems, machine learning, soft computing, mobile computing and applications, cloud computing, software engineering, graphics and image processing, rural engineering, e-commerce, e-governance, business computing, molecular computing, nano computing, chemical computing, intelligent computing for GIS and remote sensing, bio-informatics and bio-computing. These fields are not only ...

  15. 3rd International Conference on INformation Systems Design and Intelligent Applications

    CERN Document Server

    Mandal, Jyotsna; Udgata, Siba; Bhateja, Vikrant

    2016-01-01

    The third international conference on INformation Systems Design and Intelligent Applications (INDIA – 2016) held in Visakhapatnam, India during January 8-9, 2016. The book covers all aspects of information system design, computer science and technology, general sciences, and educational research. Upon a double blind review process, a number of high quality papers are selected and collected in the book, which is composed of three different volumes, and covers a variety of topics, including natural language processing, artificial intelligence, security and privacy, communications, wireless and sensor networks, microelectronics, circuit and systems, machine learning, soft computing, mobile computing and applications, cloud computing, software engineering, graphics and image processing, rural engineering, e-commerce, e-governance, business computing, molecular computing, nano-computing, chemical computing, intelligent computing for GIS and remote sensing, bio-informatics and bio-computing. These fields are not...

  16. Handbook of modern sensors physics, designs, and applications

    CERN Document Server

    Fraden, Jacob

    2016-01-01

    This book presents a comprehensive and up-to-date account of the theory (physical principles), design, and practical implementations of various sensors for scientific, industrial, and consumer applications. This latest edition focuses on the sensing technologies driven by the expanding use of sensors in mobile devices. These new miniature sensors will be described, with an emphasis on smart sensors which have embedded processing systems. The chapter on chemical sensors has also been expanded to present the latest developments. Digital systems, however complex and intelligent they may be, must receive information from the outside world that is generally analog and not electrical. Sensors are interface devices between various physical values and the electronic circuits that "understand" only a language of moving electrical charges. In other words, sensors are the eyes, ears, and noses of silicon chips. Unlike other books on sensors, the Handbook of Modern Sensors is organized according to the measured variables...

  17. Smart and intelligent sensor payload project

    Science.gov (United States)

    2009-01-01

    Engineers working on the smart and intelligent sensor payload project include (l to r): Ed Conley (NASA), Mark Mitchell (Jacobs Technology), Luke Richards (NASA), Robert Drackett (Jacobs Technology), Mark Turowski (Jacobs Technology) , Richard Franzl (seated, Jacobs Technology), Greg McVay (Jacobs Technology), Brianne Guillot (Jacobs Technology), Jon Morris (Jacobs Technology), Stephen Rawls (NASA), John Schmalzel (NASA) and Andrew Bracey (NASA).

  18. Intelligent design som videnskab?

    DEFF Research Database (Denmark)

    Klausen, Søren Harnow

    2007-01-01

    Diskuterer hvorvidt intelligent design kan betegnes som videnskab; argumenterer for at dette grundet fraværet af klare demarkationskriterier næppe kan afvises.......Diskuterer hvorvidt intelligent design kan betegnes som videnskab; argumenterer for at dette grundet fraværet af klare demarkationskriterier næppe kan afvises....

  19. Unattended Ground Sensors for Expeditionary Force 21 Intelligence Collections

    Science.gov (United States)

    2015-06-01

    little impact on modern intelligence collections. This thesis analyzes and compares the units and individual Marine skillsets that employ UGS, and the...the sensor employment planning cycle, and the socialization of this plan through the proper chain-of-command [4]. Figure 8 depicts the Sensor...the use of newly developed cellphone based technologies and emerging UGS capabilities to assist in Listening Post/ Observation Post (LP/OP

  20. Hopfield neural network and optical fiber sensor as intelligent heart rate monitor

    Science.gov (United States)

    Mutter, Kussay Nugamesh

    2018-01-01

    This paper presents a design and fabrication of an intelligent fiber-optic sensor used for examining and monitoring heart rate activity. It is found in the literature that the use of fiber sensors as heart rate sensor is widely studied. However, the use of smart sensors based on Hopfield neural networks is very low. In this work, the sensor is a three fibers without cladding of about 1 cm, fed by laser light of 1550 nm of wavelength. The sensing portions are mounted with a micro sensitive diaphragm to transfer the pulse pressure on the left radial wrist. The influenced light intensity will be detected by a three photodetectors as inputs into the Hopfield neural network algorithm. The latter is a singlelayer auto-associative memory structure with a same input and output layers. The prior training weights are stored in the net memory for the standard recorded normal heart rate signals. The sensors' heads work on the reflection intensity basis. The novelty here is that the sensor uses a pulse pressure and Hopfield neural network in an integrity approach. The results showed a significant output measurements of heart rate and counting with a plausible error rate.

  1. Energy-efficient hierarchical processing in the network of wireless intelligent sensors (WISE)

    Science.gov (United States)

    Raskovic, Dejan

    Sensor network nodes have benefited from technological advances in the field of wireless communication, processing, and power sources. However, the processing power of microcontrollers is often not sufficient to perform sophisticated processing, while the power requirements of digital signal processing boards or handheld computers are usually too demanding for prolonged system use. We are matching the intrinsic hierarchical nature of many digital signal-processing applications with the natural hierarchy in distributed wireless networks, and building the hierarchical system of wireless intelligent sensors. Our goal is to build a system that will exploit the hierarchical organization to optimize the power consumption and extend battery life for the given time and memory constraints, while providing real-time processing of sensor signals. In addition, we are designing our system to be able to adapt to the current state of the environment, by dynamically changing the algorithm through procedure replacement. This dissertation presents the analysis of hierarchical environment and methods for energy profiling used to evaluate different system design strategies, and to optimize time-effective and energy-efficient processing.

  2. Intelligent Test Mechanism Design of Worn Big Gear

    Directory of Open Access Journals (Sweden)

    Hong-Yu LIU

    2014-10-01

    Full Text Available With the continuous development of national economy, big gear was widely applied in metallurgy and mine domains. So, big gear plays an important role in above domains. In practical production, big gear abrasion and breach take place often. It affects normal production and causes unnecessary economic loss. A kind of intelligent test method was put forward on worn big gear mainly aimed at the big gear restriction conditions of high production cost, long production cycle and high- intensity artificial repair welding work. The measure equations transformations were made on involute straight gear. Original polar coordinate equations were transformed into rectangular coordinate equations. Big gear abrasion measure principle was introduced. Detection principle diagram was given. Detection route realization method was introduced. OADM12 laser sensor was selected. Detection on big gear abrasion area was realized by detection mechanism. Tested data of unworn gear and worn gear were led in designed calculation program written by Visual Basic language. Big gear abrasion quantity can be obtained. It provides a feasible method for intelligent test and intelligent repair welding on worn big gear.

  3. Intelligent instrumentation principles and applications

    CERN Document Server

    Bhuyan, Manabendra

    2011-01-01

    With the advent of microprocessors and digital-processing technologies as catalyst, classical sensors capable of simple signal conditioning operations have evolved rapidly to take on higher and more specialized functions including validation, compensation, and classification. This new category of sensor expands the scope of incorporating intelligence into instrumentation systems, yet with such rapid changes, there has developed no universal standard for design, definition, or requirement with which to unify intelligent instrumentation. Explaining the underlying design methodologies of intelligent instrumentation, Intelligent Instrumentation: Principles and Applications provides a comprehensive and authoritative resource on the scientific foundations from which to coordinate and advance the field. Employing a textbook-like language, this book translates methodologies to more than 80 numerical examples, and provides applications in 14 case studies for a complete and working understanding of the material. Beginn...

  4. Intelligent Fiber Optic Sensor for Estimating the Concentration of a Mixture-Design and Working Principle

    Directory of Open Access Journals (Sweden)

    Michal Borecki

    2007-03-01

    Full Text Available This paper presents the construction and working principles of an intelligent fiber-optic intensity sensor used for examining the concentration of a mixture in conjunction with water. It can find applications e.g. in waste-water treatment plant for selection of a treatment process. The sensor head is the end of a large core polymer optical fiber, which constitutes one arm of an asymmetrical coupler. The head works on the reflection intensity basis. The reflected signal level depends on the Fresnel reflection from the air and from the mixture examined when the head is immersed in it. The sensor head is mounted on a lift. For detection purposes the signal can be measured on head submerging, submersion, emerging and emergence. Therefore, the measured signal depends on the surface tension, viscosity, turbidity and refraction coefficient of the solution. The signal coming from the head is processed electrically in an opto-electronic interface. Then it is fed to a neural network. The novelty of the proposed sensor lies in that it contains an asymmetrical coupler and a neural network that works in the generalization mode. The sensor resolution depends on the efficiency of the asymmetrical coupler, the precision of the opto-electronic signal conversion and the learning accuracy of the neural network. Therefore, the number and quality of the points used for the learning process is very important. By way of example, the paper describes a sensor intended for examining the concentration of liquid soap in water.

  5. Design of Sail-Assisted Unmanned Surface Vehicle Intelligent Control System

    Directory of Open Access Journals (Sweden)

    Yong Ma

    2016-01-01

    Full Text Available To achieve the wind sail-assisted function of the unmanned surface vehicle (USV, this work focuses on the design problems of the sail-assisted USV intelligent control systems (SUICS and illustrates the implementation process of the SUICS. The SUICS consists of the communication system, the sensor system, the PC platform, and the lower machine platform. To make full use of the wind energy, in the SUICS, we propose the sail angle of attack automatic adjustment (Sail_4A algorithm and present the realization flow for each subsystem of the SUICS. By using the test boat, the design and implementation of the SUICS are fulfilled systematically. Experiments verify the performance and effectiveness of our SUICS. The SUICS enhances the intelligent utility of sustainable wind energy for the sail-assisted USV significantly and plays a vital role in shipping energy-saving emission reduction requirements issued by International Maritime Organization (IMO.

  6. Improved chemical identification from sensor arrays using intelligent algorithms

    Science.gov (United States)

    Roppel, Thaddeus A.; Wilson, Denise M.

    2001-02-01

    Intelligent signal processing algorithms are shown to improve identification rates significantly in chemical sensor arrays. This paper focuses on the use of independently derived sensor status information to modify the processing of sensor array data by using a fast, easily-implemented "best-match" approach to filling in missing sensor data. Most fault conditions of interest (e.g., stuck high, stuck low, sudden jumps, excess noise, etc.) can be detected relatively simply by adjunct data processing, or by on-board circuitry. The objective then is to devise, implement, and test methods for using this information to improve the identification rates in the presence of faulted sensors. In one typical example studied, utilizing separately derived, a-priori knowledge about the health of the sensors in the array improved the chemical identification rate by an artificial neural network from below 10 percent correct to over 99 percent correct. While this study focuses experimentally on chemical sensor arrays, the results are readily extensible to other types of sensor platforms.

  7. Intelligent detection of cracks in metallic surfaces using a waveguide sensor loaded with metamaterial elements.

    Science.gov (United States)

    Ali, Abdulbaset; Hu, Bing; Ramahi, Omar

    2015-05-15

    This work presents a real life experiment of implementing an artificial intelligence model for detecting sub-millimeter cracks in metallic surfaces on a dataset obtained from a waveguide sensor loaded with metamaterial elements. Crack detection using microwave sensors is typically based on human observation of change in the sensor's signal (pattern) depicted on a high-resolution screen of the test equipment. However, as demonstrated in this work, implementing artificial intelligence to classify cracked from non-cracked surfaces has appreciable impact in terms of sensing sensitivity, cost, and automation. Furthermore, applying artificial intelligence for post-processing data collected from microwave sensors is a cornerstone for handheld test equipment that can outperform rack equipment with large screens and sophisticated plotting features. The proposed method was tested on a metallic plate with different cracks and the obtained experimental results showed good crack classification accuracy rates.

  8. An Intelligent Cooperative Visual Sensor Network for Urban Mobility.

    Science.gov (United States)

    Leone, Giuseppe Riccardo; Moroni, Davide; Pieri, Gabriele; Petracca, Matteo; Salvetti, Ovidio; Azzarà, Andrea; Marino, Francesco

    2017-11-10

    Smart cities are demanding solutions for improved traffic efficiency, in order to guarantee optimal access to mobility resources available in urban areas. Intelligent video analytics deployed directly on board embedded sensors offers great opportunities to gather highly informative data about traffic and transport, allowing reconstruction of a real-time neat picture of urban mobility patterns. In this paper, we present a visual sensor network in which each node embeds computer vision logics for analyzing in real time urban traffic. The nodes in the network share their perceptions and build a global and comprehensive interpretation of the analyzed scenes in a cooperative and adaptive fashion. This is possible thanks to an especially designed Internet of Things (IoT) compliant middleware which encompasses in-network event composition as well as full support of Machine-2-Machine (M2M) communication mechanism. The potential of the proposed cooperative visual sensor network is shown with two sample applications in urban mobility connected to the estimation of vehicular flows and parking management. Besides providing detailed results of each key component of the proposed solution, the validity of the approach is demonstrated by extensive field tests that proved the suitability of the system in providing a scalable, adaptable and extensible data collection layer for managing and understanding mobility in smart cities.

  9. Intelligent fiber optic sensor for solution concentration examination

    Science.gov (United States)

    Borecki, Michal; Kruszewski, Jerzy

    2003-09-01

    This paper presents the working principles of intelligent fiber-optic intensity sensor used for solution concentration examination. The sensor head is the ending of the large core polymer optical fiber. The head works on the reflection intensity basis. The reflected signal level depends on Fresnel reflection and reflection on suspended matter when the head is submersed in solution. The sensor head is mounted on a lift. For detection purposes the signal includes head submerging, submersion, emerging and emergence is measured. This way the viscosity turbidity and refraction coefficient has an effect on measured signal. The signal forthcoming from head is processed electrically in opto-electronic interface. Then it is feed to neural network. The novelty of presented sensor is implementation of neural network that works in generalization mode. The sensor resolution depends on opto-electronic signal conversion precision and neural network learning accuracy. Therefore, the number and quality of points used for learning process is very important. The example sensor application for examination of liquid soap concentration in water is presented in the paper.

  10. A basic system architecture for sensor data diffusion of environment sensors for intelligent cruise control systems; Eine Basis-Systemarchitektur zur Sensordatenfusion von Umfeldsensoren fuer Fahrerassistenzsysteme

    Energy Technology Data Exchange (ETDEWEB)

    Darms, M.

    2007-07-01

    The design of the system architecture for sensor data diffusion at the beginning of the development process has significant influence on the cost. With a view to intelligent cruise control systems, the author investigated general assumptions concerning data association and data filtering for sensor data diffusion of environment sensors which must be considered when designing an architecture or may be considered for optimisation. The validity of the assumption is illustrated by simulations of adaptive speed control and time-to-collision calculations as well as on the basis of available literature. A basic sytem architecture is presented as a precursor of the final architecture which is based on these assumptions. Their applicability is proved by implementation in the PRORETA project. The author's work provides a validated basis for architects of a serial system architecture enabling them to design and implement their ultimate systems. (orig.)

  11. Neurovision processor for designing intelligent sensors

    Science.gov (United States)

    Gupta, Madan M.; Knopf, George K.

    1992-03-01

    A programmable multi-task neuro-vision processor, called the Positive-Negative (PN) neural processor, is proposed as a plausible hardware mechanism for constructing robust multi-task vision sensors. The computational operations performed by the PN neural processor are loosely based on the neural activity fields exhibited by certain nervous tissue layers situated in the brain. The neuro-vision processor can be programmed to generate diverse dynamic behavior that may be used for spatio-temporal stabilization (STS), short-term visual memory (STVM), spatio-temporal filtering (STF) and pulse frequency modulation (PFM). A multi- functional vision sensor that performs a variety of information processing operations on time- varying two-dimensional sensory images can be constructed from a parallel and hierarchical structure of numerous individually programmed PN neural processors.

  12. Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System

    Science.gov (United States)

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521

  13. Design and evaluation of a wireless sensor network based aircraft strength testing system.

    Science.gov (United States)

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.

  14. Design of multi-function sensor detection system in coal mine based on ARM

    Science.gov (United States)

    Ge, Yan-Xiang; Zhang, Quan-Zhu; Deng, Yong-Hong

    2017-06-01

    The traditional coal mine sensor in the specific measurement points, the number and type of channel will be greater than or less than the number of monitoring points, resulting in a waste of resources or cannot meet the application requirements, in order to enable the sensor to adapt to the needs of different occasions and reduce the cost, a kind of multi-functional intelligent sensor multiple sensors and ARM11 the S3C6410 processor is used to design and realize the dust, gas, temperature and humidity sensor functions together, and has storage, display, voice, pictures, data query, alarm and other new functions.

  15. Design of Sail-Assisted Unmanned Surface Vehicle Intelligent Control System

    OpenAIRE

    Ma, Yong; Zhao, Yujiao; Diao, Jiantao; Gan, Langxiong; Bi, Huaxiong; Zhao, Jingming

    2016-01-01

    To achieve the wind sail-assisted function of the unmanned surface vehicle (USV), this work focuses on the design problems of the sail-assisted USV intelligent control systems (SUICS) and illustrates the implementation process of the SUICS. The SUICS consists of the communication system, the sensor system, the PC platform, and the lower machine platform. To make full use of the wind energy, in the SUICS, we propose the sail angle of attack automatic adjustment (Sail_4A) algorithm and present ...

  16. An Intelligent Cooperative Visual Sensor Network for Urban Mobility

    Science.gov (United States)

    Leone, Giuseppe Riccardo; Petracca, Matteo; Salvetti, Ovidio; Azzarà, Andrea

    2017-01-01

    Smart cities are demanding solutions for improved traffic efficiency, in order to guarantee optimal access to mobility resources available in urban areas. Intelligent video analytics deployed directly on board embedded sensors offers great opportunities to gather highly informative data about traffic and transport, allowing reconstruction of a real-time neat picture of urban mobility patterns. In this paper, we present a visual sensor network in which each node embeds computer vision logics for analyzing in real time urban traffic. The nodes in the network share their perceptions and build a global and comprehensive interpretation of the analyzed scenes in a cooperative and adaptive fashion. This is possible thanks to an especially designed Internet of Things (IoT) compliant middleware which encompasses in-network event composition as well as full support of Machine-2-Machine (M2M) communication mechanism. The potential of the proposed cooperative visual sensor network is shown with two sample applications in urban mobility connected to the estimation of vehicular flows and parking management. Besides providing detailed results of each key component of the proposed solution, the validity of the approach is demonstrated by extensive field tests that proved the suitability of the system in providing a scalable, adaptable and extensible data collection layer for managing and understanding mobility in smart cities. PMID:29125535

  17. An Intelligent Cooperative Visual Sensor Network for Urban Mobility

    Directory of Open Access Journals (Sweden)

    Giuseppe Riccardo Leone

    2017-11-01

    Full Text Available Smart cities are demanding solutions for improved traffic efficiency, in order to guarantee optimal access to mobility resources available in urban areas. Intelligent video analytics deployed directly on board embedded sensors offers great opportunities to gather highly informative data about traffic and transport, allowing reconstruction of a real-time neat picture of urban mobility patterns. In this paper, we present a visual sensor network in which each node embeds computer vision logics for analyzing in real time urban traffic. The nodes in the network share their perceptions and build a global and comprehensive interpretation of the analyzed scenes in a cooperative and adaptive fashion. This is possible thanks to an especially designed Internet of Things (IoT compliant middleware which encompasses in-network event composition as well as full support of Machine-2-Machine (M2M communication mechanism. The potential of the proposed cooperative visual sensor network is shown with two sample applications in urban mobility connected to the estimation of vehicular flows and parking management. Besides providing detailed results of each key component of the proposed solution, the validity of the approach is demonstrated by extensive field tests that proved the suitability of the system in providing a scalable, adaptable and extensible data collection layer for managing and understanding mobility in smart cities.

  18. A Low Energy Intelligent Clustering Protocol for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Li, Qiao; Cui, Lingguo; Zhang, Baihai

    2010-01-01

    LEACH (low-energy adaptive clustering hierarchy) is a well-known self-organizing, adaptive clustering protocol of wireless sensor networks. However it has some shortcomings when it faces such problems as the cluster construction and energy management. In this paper, LEICP (low energy intelligent...

  19. Intelligent Design, Neo Evangelicalism and Apologetics

    OpenAIRE

    Samuel, Asumadu-Sarkodie

    2015-01-01

    To begin with, there's a strange phenomenon popping up around the country. Scientists are stepping out of their laboratories and speaking to the media about something that has them quite concerned. It's not the threat of a new flu pandemic; it's not the threat of nuclear weapons proliferation, or even the possible threat of global warming. It's something called Intelligent Design. Intelligent design is the field of study that investigates signs of intelligence. It identifies those features of...

  20. Key issues for the successful design of an intelligent, interactive playground

    NARCIS (Netherlands)

    Sturm, J.A.; Bekker, M.M.; Groenendaal, B.; Wesselink, R.; Eggen, J.H.

    2008-01-01

    An Intelligent Playground is an environment with interactive objects that, using advanced technology such as sensors and actuators, react to the interaction with the children and actively encourage children to play. Thus, an intelligent playground stimulates children to move and play together. In

  1. Vehicle following controller design for autonomous intelligent vehicles

    Science.gov (United States)

    Chien, C. C.; Lai, M. C.; Mayr, R.

    1994-01-01

    A new vehicle following controller is proposed for autonomous intelligent vehicles. The proposed vehicle following controller not only provides smooth transient maneuvers for unavoidable nonzero initial conditions but also guarantees the asymptotic platoon stability without the availability of feedforward information. Furthermore, the achieved asymptotic platoon stability is shown to be robust to sensor delays and an upper bound for the allowable sensor delays is also provided in this paper.

  2. The Multidimensional Integrated Intelligent Imaging project (MI-3)

    International Nuclear Information System (INIS)

    Allinson, N.; Anaxagoras, T.; Aveyard, J.; Arvanitis, C.; Bates, R.; Blue, A.; Bohndiek, S.; Cabello, J.; Chen, L.; Chen, S.; Clark, A.; Clayton, C.; Cook, E.; Cossins, A.; Crooks, J.; El-Gomati, M.; Evans, P.M.; Faruqi, W.; French, M.; Gow, J.

    2009-01-01

    MI-3 is a consortium of 11 universities and research laboratories whose mission is to develop complementary metal-oxide semiconductor (CMOS) active pixel sensors (APS) and to apply these sensors to a range of imaging challenges. A range of sensors has been developed: On-Pixel Intelligent CMOS (OPIC)-designed for in-pixel intelligence; FPN-designed to develop novel techniques for reducing fixed pattern noise; HDR-designed to develop novel techniques for increasing dynamic range; Vanilla/PEAPS-with digital and analogue modes and regions of interest, which has also been back-thinned; Large Area Sensor (LAS)-a novel, stitched LAS; and eLeNA-which develops a range of low noise pixels. Applications being developed include autoradiography, a gamma camera system, radiotherapy verification, tissue diffraction imaging, X-ray phase-contrast imaging, DNA sequencing and electron microscopy.

  3. The Multidimensional Integrated Intelligent Imaging project (MI-3)

    Energy Technology Data Exchange (ETDEWEB)

    Allinson, N.; Anaxagoras, T. [Vision and Information Engineering, University of Sheffield (United Kingdom); Aveyard, J. [Laboratory for Environmental Gene Regulation, University of Liverpool (United Kingdom); Arvanitis, C. [Radiation Physics, University College, London (United Kingdom); Bates, R.; Blue, A. [Experimental Particle Physics, University of Glasgow (United Kingdom); Bohndiek, S. [Radiation Physics, University College, London (United Kingdom); Cabello, J. [Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford (United Kingdom); Chen, L. [Electron Optics, Applied Electromagnetics and Electron Optics, University of York (United Kingdom); Chen, S. [MRC Laboratory for Molecular Biology, Cambridge (United Kingdom); Clark, A. [STFC Rutherford Appleton Laboratories (United Kingdom); Clayton, C. [Vision and Information Engineering, University of Sheffield (United Kingdom); Cook, E. [Radiation Physics, University College, London (United Kingdom); Cossins, A. [Laboratory for Environmental Gene Regulation, University of Liverpool (United Kingdom); Crooks, J. [STFC Rutherford Appleton Laboratories (United Kingdom); El-Gomati, M. [Electron Optics, Applied Electromagnetics and Electron Optics, University of York (United Kingdom); Evans, P.M. [Institute of Cancer Research, Sutton, Surrey SM2 5PT (United Kingdom)], E-mail: phil.evans@icr.ac.uk; Faruqi, W. [MRC Laboratory for Molecular Biology, Cambridge (United Kingdom); French, M. [STFC Rutherford Appleton Laboratories (United Kingdom); Gow, J. [Imaging for Space and Terrestrial Applications, Brunel University, London (United Kingdom)] (and others)

    2009-06-01

    MI-3 is a consortium of 11 universities and research laboratories whose mission is to develop complementary metal-oxide semiconductor (CMOS) active pixel sensors (APS) and to apply these sensors to a range of imaging challenges. A range of sensors has been developed: On-Pixel Intelligent CMOS (OPIC)-designed for in-pixel intelligence; FPN-designed to develop novel techniques for reducing fixed pattern noise; HDR-designed to develop novel techniques for increasing dynamic range; Vanilla/PEAPS-with digital and analogue modes and regions of interest, which has also been back-thinned; Large Area Sensor (LAS)-a novel, stitched LAS; and eLeNA-which develops a range of low noise pixels. Applications being developed include autoradiography, a gamma camera system, radiotherapy verification, tissue diffraction imaging, X-ray phase-contrast imaging, DNA sequencing and electron microscopy.

  4. Intelligent Luminance Control of Lighting Systems Based on Imaging Sensor Feedback

    Directory of Open Access Journals (Sweden)

    Haoting Liu

    2017-02-01

    Full Text Available An imaging sensor-based intelligent Light Emitting Diode (LED lighting system for desk use is proposed. In contrast to the traditional intelligent lighting system, such as the photosensitive resistance sensor-based or the infrared sensor-based system, the imaging sensor can realize a finer perception of the environmental light; thus it can guide a more precise lighting control. Before this system works, first lots of typical imaging lighting data of the desk application are accumulated. Second, a series of subjective and objective Lighting Effect Evaluation Metrics (LEEMs are defined and assessed for these datasets above. Then the cluster benchmarks of these objective LEEMs can be obtained. Third, both a single LEEM-based control and a multiple LEEMs-based control are developed to realize a kind of optimal luminance tuning. When this system works, first it captures the lighting image using a wearable camera. Then it computes the objective LEEMs of the captured image and compares them with the cluster benchmarks of the objective LEEMs. Finally, the single LEEM-based or the multiple LEEMs-based control can be implemented to get a kind of optimal lighting effect. Many experiment results have shown the proposed system can tune the LED lamp automatically according to environment luminance changes.

  5. Design and Optimization of Intelligent Service Robot Suspension System Using Dynamic Model

    International Nuclear Information System (INIS)

    Choi, Seong Hoon; Park, Tae Won; Lee, Soo Ho; Jung, Sung Pil; Jun, Kab Jin; Yoon, J. W.

    2010-01-01

    Recently, an intelligent service robot is being developed for use in guiding and providing information to visitors about the building at public institutions. The intelligent robot has a sensor at the bottom to recognize its location. Four wheels, which are arranged in the form of a lozenge, support the robot. This robot cannot be operated on uneven ground because its driving parts are attached to its main body that contains the important internal components. Continuous impact with the ground can change the precise positions of the components and weaken the connection between each structural part. In this paper, the design of the suspension system for such a robot is described. The dynamic model of the robot is created, and the driving characteristics of the robot with the designed suspension system are simulated. Additionally, the suspension system is optimized to reduce the impact for the robot components

  6. Intelligent modular star and target tracker: a new generation of attitude sensors

    Science.gov (United States)

    Schmidt, Uwe; Strobel, Rainer; Wunder, Dietmar; Graf, Eberhart

    2018-04-01

    This paper, "Intelligent modular star and target tracker: a new generation of attitude sensors," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  7. Fault Reconnaissance Agent for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Elhadi M. Shakshuki

    2010-01-01

    Full Text Available One of the key prerequisite for a scalable, effective and efficient sensor network is the utilization of low-cost, low-overhead and high-resilient fault-inference techniques. To this end, we propose an intelligent agent system with a problem solving capability to address the issue of fault inference in sensor network environments. The intelligent agent system is designed and implemented at base-station side. The core of the agent system – problem solver – implements a fault-detection inference engine which harnesses Expectation Maximization (EM algorithm to estimate fault probabilities of sensor nodes. To validate the correctness and effectiveness of the intelligent agent system, a set of experiments in a wireless sensor testbed are conducted. The experimental results show that our intelligent agent system is able to precisely estimate the fault probability of sensor nodes.

  8. PIYAS-Proceeding to Intelligent Service Oriented Memory Allocation for Flash Based Data Centric Sensor Devices in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sanam Shahla Rizvi

    2009-12-01

    Full Text Available Flash memory has become a more widespread storage medium for modern wireless devices because of its effective characteristics like non-volatility, small size, light weight, fast access speed, shock resistance, high reliability and low power consumption. Sensor nodes are highly resource constrained in terms of limited processing speed, runtime memory, persistent storage, communication bandwidth and finite energy. Therefore, for wireless sensor networks supporting sense, store, merge and send schemes, an efficient and reliable file system is highly required with consideration of sensor node constraints. In this paper, we propose a novel log structured external NAND flash memory based file system, called Proceeding to Intelligent service oriented memorY Allocation for flash based data centric Sensor devices in wireless sensor networks (PIYAS. This is the extended version of our previously proposed PIYA [1]. The main goals of the PIYAS scheme are to achieve instant mounting and reduced SRAM space by keeping memory mapping information to a very low size of and to provide high query response throughput by allocation of memory to the sensor data by network business rules. The scheme intelligently samples and stores the raw data and provides high in-network data availability by keeping the aggregate data for a longer period of time than any other scheme has done before. We propose effective garbage collection and wear-leveling schemes as well. The experimental results show that PIYAS is an optimized memory management scheme allowing high performance for wireless sensor networks.

  9. PIYAS-proceeding to intelligent service oriented memory allocation for flash based data centric sensor devices in wireless sensor networks.

    Science.gov (United States)

    Rizvi, Sanam Shahla; Chung, Tae-Sun

    2010-01-01

    Flash memory has become a more widespread storage medium for modern wireless devices because of its effective characteristics like non-volatility, small size, light weight, fast access speed, shock resistance, high reliability and low power consumption. Sensor nodes are highly resource constrained in terms of limited processing speed, runtime memory, persistent storage, communication bandwidth and finite energy. Therefore, for wireless sensor networks supporting sense, store, merge and send schemes, an efficient and reliable file system is highly required with consideration of sensor node constraints. In this paper, we propose a novel log structured external NAND flash memory based file system, called Proceeding to Intelligent service oriented memorY Allocation for flash based data centric Sensor devices in wireless sensor networks (PIYAS). This is the extended version of our previously proposed PIYA [1]. The main goals of the PIYAS scheme are to achieve instant mounting and reduced SRAM space by keeping memory mapping information to a very low size of and to provide high query response throughput by allocation of memory to the sensor data by network business rules. The scheme intelligently samples and stores the raw data and provides high in-network data availability by keeping the aggregate data for a longer period of time than any other scheme has done before. We propose effective garbage collection and wear-leveling schemes as well. The experimental results show that PIYAS is an optimized memory management scheme allowing high performance for wireless sensor networks.

  10. Large Efficient Intelligent Heating Relay Station System

    Science.gov (United States)

    Wu, C. Z.; Wei, X. G.; Wu, M. Q.

    2017-12-01

    The design of large efficient intelligent heating relay station system aims at the improvement of the existing heating system in our country, such as low heating efficiency, waste of energy and serious pollution, and the control still depends on the artificial problem. In this design, we first improve the existing plate heat exchanger. Secondly, the ATM89C51 is used to control the whole system and realize the intelligent control. The detection part is using the PT100 temperature sensor, pressure sensor, turbine flowmeter, heating temperature, detection of user end liquid flow, hydraulic, and real-time feedback, feedback signal to the microcontroller through the heating for users to adjust, realize the whole system more efficient, intelligent and energy-saving.

  11. Scheduling policies of intelligent sensors and sensor/actuators in flexible structures

    Science.gov (United States)

    Demetriou, Michael A.; Potami, Raffaele

    2006-03-01

    In this note, we revisit the problem of actuator/sensor placement in large civil infrastructures and flexible space structures within the context of spatial robustness. The positioning of these devices becomes more important in systems employing wireless sensor and actuator networks (WSAN) for improved control performance and for rapid failure detection. The ability of the sensing and actuating devices to possess the property of spatial robustness results in reduced control energy and therefore the spatial distribution of disturbances is integrated into the location optimization measures. In our studies, the structure under consideration is a flexible plate clamped at all sides. First, we consider the case of sensor placement and the optimization scheme attempts to produce those locations that minimize the effects of the spatial distribution of disturbances on the state estimation error; thus the sensor locations produce state estimators with minimized disturbance-to-error transfer function norms. A two-stage optimization procedure is employed whereby one first considers the open loop system and the spatial distribution of disturbances is found that produces the maximal effects on the entire open loop state. Once this "worst" spatial distribution of disturbances is found, the optimization scheme subsequently finds the locations that produce state estimators with minimum transfer function norms. In the second part, we consider the collocated actuator/sensor pairs and the optimization scheme produces those locations that result in compensators with the smallest norms of the disturbance-to-state transfer functions. Going a step further, an intelligent control scheme is presented which, at each time interval, activates a subset of the actuator/sensor pairs in order provide robustness against spatiotemporally moving disturbances and minimize power consumption by keeping some sensor/actuators in sleep mode.

  12. Conception, design and development of a low-cost intelligent prosthesis for one-sided transfemoral amputees

    Directory of Open Access Journals (Sweden)

    Wilson Carlos da Silva Júnior

    Full Text Available Introduction Modern transfemoral knee prostheses are designed to offer comfort and self-confidence to amputees. These prostheses are mainly based upon either a passive concept, with a damping system, or an active computational intelligent design to control knee motion during the swing phase. In Brazil, most lower extremity amputees are unable to afford modern prostheses due to their high cost. In this work, we present the conception, design and development of a low-cost intelligent prosthesis for one-sided transfemoral amputees. Methods The concept of the prosthesis is based on a control system with sensors for loads, which are installed on the amputee’s preserved leg and used as a mirror for the movement of the prosthesis. Mechanical strength analysis, using the Finite Element Method, electromechanical tests for the sensors and actuators and verification of data acquisition, signal conditioning and data transferring to the knee prosthesis were performed. Results The laboratory tests performed showed the feasibility of the proposed design. The electromechanical concept that was used enabled a controlled activation of the knee prosthesis by the two load cells located on the shoe sole of the preserved leg. Conclusions The electromechanical design concept and the resulting knee prosthesis show promising results concerning prosthesis activation during walking tests, thereby showing the feasibility of a reduced manufacturing cost compared to the modern prostheses available on the market.

  13. Design of intelligent power consumption optimization and visualization management platform for large buildings based on internet of things

    Directory of Open Access Journals (Sweden)

    Gong Shulan

    2017-01-01

    Full Text Available The buildings provide a significant contribution to total energy consumption and CO2 emission. It has been estimated that the development of an intelligent power consumption monitor and control system will result in about 30% savings in energy consumption. This design innovatively integrates the advanced technologies such as the internet of things, the internet, intelligent buildings and intelligent electricity which can offer open, efficient, convenient energy consumption detection platform in demand side and visual management demonstration application platform in power enterprises side. The system was created to maximize the effective and efficient the use of energy resource. It was development around sensor networks and intelligent gateway and the monitoring center software. This will realize the highly integration and comprehensive application in energy and information to meet the needs with intelligent buildings

  14. Computational Intelligence Techniques for New Product Design

    CERN Document Server

    Chan, Kit Yan; Dillon, Tharam S

    2012-01-01

    Applying computational intelligence for product design is a fast-growing and promising research area in computer sciences and industrial engineering. However, there is currently a lack of books, which discuss this research area. This book discusses a wide range of computational intelligence techniques for implementation on product design. It covers common issues on product design from identification of customer requirements in product design, determination of importance of customer requirements, determination of optimal design attributes, relating design attributes and customer satisfaction, integration of marketing aspects into product design, affective product design, to quality control of new products. Approaches for refinement of computational intelligence are discussed, in order to address different issues on product design. Cases studies of product design in terms of development of real-world new products are included, in order to illustrate the design procedures, as well as the effectiveness of the com...

  15. Open source intelligence, open social intelligence and privacy by design

    OpenAIRE

    Casanovas, Pompeu; Royal Melbourne Institute of Technology (Austràlia). Centre for Applied Social Research

    2014-01-01

    Ponència presentada a European Conference on Social Intelligence (ECSI-2014) OSINT stands for Open Source Intelligence, (O)SI for (Open) Social Intelligence, PbD for Privacy by Design. The CAPER project has built an OSINT solution oriented to the prevention of organized crime. How to balance freedom and security? This position paper describes a way to embed the legal and ethical issues raised by the General Data Reform Package (GDRP) in Europe into this kind of surveillance platforms. It f...

  16. Sensor fusion: lane marking detection and autonomous intelligent cruise control system

    Science.gov (United States)

    Baret, Marc; Baillarin, S.; Calesse, C.; Martin, Lionel

    1995-12-01

    In the past few years MATRA and RENAULT have developed an Autonomous Intelligent Cruise Control (AICC) system based on a LIDAR sensor. This sensor incorporating a charge coupled device was designed to acquire pulsed laser diode emission reflected by standard car reflectors. The absence of moving mechanical parts, the large field of view, the high measurement rate and the very good accuracy for distance range and angular position of targets make this sensor very interesting. It provides the equipped car with the distance and the relative speed of other vehicles enabling the safety distance to be controlled by acting on the throttle and the automatic gear box. Experiments in various real traffic situations have shown the limitations of this kind of system especially on bends. All AICC sensors are unable to distinguish between a bend and a change of lane. This is easily understood if we consider a road without lane markings. This fact has led MATRA to improve its AICC system by providing the lane marking information. Also in the scope of the EUREKA PROMETHEUS project, MATRA and RENAULT have developed a lane keeping system in order to warn of the drivers lack of vigilance. Thus, MATRA have spread this system to far field lane marking detection and have coupled it with the AICC system. Experiments will be carried out on roads to estimate the gain in performance and comfort due to this fusion.

  17. Intelligence Control System for Landfills Based on Wireless Sensor Network

    Science.gov (United States)

    Zhang, Qian; Huang, Chuan; Gong, Jian

    2018-06-01

    This paper put forward an intelligence system for controlling the landfill gas in landfills to make the landfill gas (LFG) exhaust controllably and actively. The system, which is assigned by the wireless sensor network, were developed and supervised by remote applications in workshop instead of manual work. An automatic valve control depending on the sensor units embedded is installed in tube, the air pressure and concentration of LFG are detected to decide the level of the valve switch. The paper also proposed a modified algorithm to solve transmission problem, so that the system can keep a high efficiency and long service life.

  18. The Modular Design and Production of an Intelligent Robot Based on a Closed-Loop Control Strategy.

    Science.gov (United States)

    Zhang, Libo; Zhu, Junjie; Ren, Hao; Liu, Dongdong; Meng, Dan; Wu, Yanjun; Luo, Tiejian

    2017-10-14

    Intelligent robots are part of a new generation of robots that are able to sense the surrounding environment, plan their own actions and eventually reach their targets. In recent years, reliance upon robots in both daily life and industry has increased. The protocol proposed in this paper describes the design and production of a handling robot with an intelligent search algorithm and an autonomous identification function. First, the various working modules are mechanically assembled to complete the construction of the work platform and the installation of the robotic manipulator. Then, we design a closed-loop control system and a four-quadrant motor control strategy, with the aid of debugging software, as well as set steering gear identity (ID), baud rate and other working parameters to ensure that the robot achieves the desired dynamic performance and low energy consumption. Next, we debug the sensor to achieve multi-sensor fusion to accurately acquire environmental information. Finally, we implement the relevant algorithm, which can recognize the success of the robot's function for a given application. The advantage of this approach is its reliability and flexibility, as the users can develop a variety of hardware construction programs and utilize the comprehensive debugger to implement an intelligent control strategy. This allows users to set personalized requirements based on their needs with high efficiency and robustness.

  19. Intelligent Design and Intelligent Failure

    Science.gov (United States)

    Jerman, Gregory

    2015-01-01

    Good Evening, my name is Greg Jerman and for nearly a quarter century I have been performing failure analysis on NASA's aerospace hardware. During that time I had the distinct privilege of keeping the Space Shuttle flying for two thirds of its history. I have analyzed a wide variety of failed hardware from simple electrical cables to cryogenic fuel tanks to high temperature turbine blades. During this time I have found that for all the time we spend intelligently designing things, we need to be equally intelligent about understanding why things fail. The NASA Flight Director for Apollo 13, Gene Kranz, is best known for the expression "Failure is not an option." However, NASA history is filled with failures both large and small, so it might be more accurate to say failure is inevitable. It is how we react and learn from our failures that makes the difference.

  20. Social Intelligence Design in Ambient Intelligence

    NARCIS (Netherlands)

    Nijholt, Antinus; Stock, Oliviero; Stock, O.; Nishida, T.; Nishida, Toyoaki

    2009-01-01

    This Special Issue of AI and Society contains a selection of papers presented at the 6th Social Intelligence Design Workshop held at ITC-irst, Povo (Trento, Italy) in July 2007. Being the 6th in a series means that there now is a well-established and also a growing research area. The interest in

  1. Brain computer interfaces as intelligent sensors for enhancing human-computer interaction

    NARCIS (Netherlands)

    Poel, M.; Nijboer, F.; Broek, E.L. van den; Fairclough, S.; Nijholt, A.

    2012-01-01

    BCIs are traditionally conceived as a way to control apparatus, an interface that allows you to act on" external devices as a form of input control. We propose an alternative use of BCIs, that of monitoring users as an additional intelligent sensor to enrich traditional means of interaction. This

  2. Brain computer interfaces as intelligent sensors for enhancing human-computer interaction

    NARCIS (Netherlands)

    Poel, Mannes; Nijboer, Femke; van den Broek, Egon; Fairclough, Stephen; Morency, Louis-Philippe; Bohus, Dan; Aghajan, Hamid; Nijholt, Antinus; Cassell, Justine; Epps, Julien

    2012-01-01

    BCIs are traditionally conceived as a way to control apparatus, an interface that allows you to "act on" external devices as a form of input control. We propose an alternative use of BCIs, that of monitoring users as an additional intelligent sensor to enrich traditional means of interaction. This

  3. The DelFly design, aerodynamics, and artificial intelligence of a flapping wing robot

    CERN Document Server

    de Croon, G C H E; Remes, B D W; Ruijsink, R; De Wagter, C

    2016-01-01

    This book introduces the topics most relevant to autonomously flying flapping wing robots: flapping-wing design, aerodynamics, and artificial intelligence. Readers can explore these topics in the context of the "Delfly", a flapping wing robot designed at Delft University in The Netherlands. How are tiny fruit flies able to lift their weight, avoid obstacles and predators, and find food or shelter? The first step in emulating this is the creation of a micro flapping wing robot that flies by itself. The challenges are considerable: the design and aerodynamics of flapping wings are still active areas of scientific research, whilst artificial intelligence is subject to extreme limitations deriving from the few sensors and minimal processing onboard. This book conveys the essential insights that lie behind success such as the DelFly Micro and the DelFly Explorer. The DelFly Micro, with its 3.07 grams and 10 cm wing span, is still the smallest flapping wing MAV in the world carrying a camera, whilst the DelFly Expl...

  4. Intelligent Integrated System Health Management

    Science.gov (United States)

    Figueroa, Fernando

    2012-01-01

    Intelligent Integrated System Health Management (ISHM) is the management of data, information, and knowledge (DIaK) with the purposeful objective of determining the health of a system (Management: storage, distribution, sharing, maintenance, processing, reasoning, and presentation). Presentation discusses: (1) ISHM Capability Development. (1a) ISHM Knowledge Model. (1b) Standards for ISHM Implementation. (1c) ISHM Domain Models (ISHM-DM's). (1d) Intelligent Sensors and Components. (2) ISHM in Systems Design, Engineering, and Integration. (3) Intelligent Control for ISHM-Enabled Systems

  5. Automated waste canister docking and emplacement using a sensor-based intelligent controller

    International Nuclear Information System (INIS)

    Drotning, W.D.

    1992-08-01

    A sensor-based intelligent control system is described that utilizes a multiple degree-of-freedom robotic system for the automated remote manipulation and precision docking of large payloads such as waste canisters. Computer vision and ultrasonic proximity sensing are used to control the automated precision docking of a large object with a passive target cavity. Real-time sensor processing and model-based analysis are used to control payload position to a precision of ± 0.5 millimeter

  6. Recommendation in Motion: Intelligent Hypertouch Garment Design

    Directory of Open Access Journals (Sweden)

    Shuang Liang

    2013-01-01

    Full Text Available Intelligent CAD garment design becomes more and more popular by attracting the attentions from both manufacturers and professional stylists. The existing garment CAD systems and clothing simulation software fail to provide user-friendly interfaces as well as dynamic recommendation during the garment creation process. In this paper, we propose an intelligent hypertouch garment design system, which dynamically predicts the possible solutions along with the intelligent design procedure. User behavioral information and dynamic shape matching are used to learn and predict the desired garment patterns. We also propose a new hypertouch concept of gesture-based interaction for our system. We evaluate our system with a prototype platform. The results show that our system is effective, robust, and easy to use for quick garment design.

  7. Design and Implementation of Cloud Platform for Intelligent Logistics in the Trend of Intellectualization

    Institute of Scientific and Technical Information of China (English)

    Mengke Yang; Movahedipour Mahmood; Xiaoguang Zhou; Salam Shafaq; Latif Zahid

    2017-01-01

    Intellectualization has become a new trend for telecom industry, driven by in-telligent technology including cloud comput-ing, big data, and Internet of things. In order to satisfy the service demand of intelligent logistics, this paper designed an intelligent logistics platform containing the main ap-plications such as e-commerce, self-service transceiver, big data analysis, path location and distribution optimization. The intelligent logistics service platform has been built based on cloud computing to collect, store and han-dling multi-source heterogeneous mass data from sensors, RFID electronic tag, vehicle ter-minals and APP, so that the open-access cloud services including distribution, positioning, navigation, scheduling and other data services can be provided for the logistics distribution applications. And then the architecture of in-telligent logistics cloud platform containing software layer (SaaS), platform layer (PaaS) and infrastructure (IaaS) has been constructed accordance with the core technology relative high concurrent processing technique, hetero-geneous terminal data access, encapsulation and data mining. Therefore, intelligent logis-tics cloud platform can be carried out by the service mode for implementation to accelerate the construction of the symbiotic win-win logistics ecological system and the benign de-velopment of the ICT industry in the trend of intellectualization in China.

  8. Intelligent Support for a Computer Aided Design Optimisation Cycle

    OpenAIRE

    B. Dolšak; M. Novak; J. Kaljun

    2006-01-01

    It is becoming more and more evident that  adding intelligence  to existing computer aids, such as computer aided design systems, can lead to significant improvements in the effective and reliable performance of various engineering tasks, including design optimisation. This paper presents three different intelligent modules to be applied within a computer aided design optimisation cycle to enable more intelligent and less experience-dependent design performance. 

  9. Design a Smart Control Strategy to Implement an Intelligent Energy Safety and Management System

    OpenAIRE

    Jing-Min Wang; Ming-Ta Yang

    2014-01-01

    The energy saving and electricity safety are today a cause for increasing concern for homes and buildings. Integrating the radio frequency identification (RFID) and ZigBee wireless sensor network (WSN) mature technologies, the paper designs a smart control strategy to implement an intelligent energy safety and management system (IESMS) which performs energy measuring, controlling, monitoring, and saving of the power outlet system. The presented RFID and billing module is used to identify user...

  10. Intelligent environmental sensing

    CERN Document Server

    Mukhopadhyay, Subhas

    2015-01-01

    Developing environmental sensing and monitoring technologies become essential especially for industries that may cause severe contamination. Intelligent environmental sensing uses novel sensor techniques, intelligent signal and data processing algorithms, and wireless sensor networks to enhance environmental sensing and monitoring. It finds applications in many environmental problems such as oil and gas, water quality, and agriculture. This book addresses issues related to three main approaches to intelligent environmental sensing and discusses their latest technological developments. Key contents of the book include:   Agricultural monitoring Classification, detection, and estimation Data fusion Geological monitoring Motor monitoring Multi-sensor systems Oil reservoirs monitoring Sensor motes Water quality monitoring Wireless sensor network protocol  

  11. Intelligence Control System for Landfills Based on Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Zhang Qian

    2018-01-01

    Full Text Available This paper put forward an intelligence system for controlling the landfill gas in landfills to make the landfill gas (LFG exhaust controllably and actively. The system, which is assigned by the wireless sensor network, were developed and supervised by remote applications in workshop instead of manual work. An automatic valve control depending on the sensor units embedded is installed in tube, the air pressure and concentration of LFG are detected to decide the level of the valve switch. The paper also proposed a modified algorithm to solve transmission problem, so that the system can keep a high efficiency and long service life.

  12. Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors

    International Nuclear Information System (INIS)

    Liu, Dixin; Guan, Xiaohong; Du, Youtian; Zhao, Qianchuan

    2013-01-01

    In intelligent buildings, practical sensing systems designed to gather indoor occupancy information play an indispensable role in improving occupant comfort and energy efficiency. In this paper, we propose a novel method for occupancy measurement based on the video surveillance now widely used in buildings. In our method, we analyze occupant detection both at the entrance and inside the room. A two-stage static detector is presented based on both appearances and shapes to find the human heads in rooms, and motion-based technology is used for occupant detection at the entrance. To model the change of occupancy and combine the detection results from multiple vision sensors located at entrances and inside rooms for more accurate occupancy estimation, we propose a dynamic Bayesian network-based method. The detection results of each vision sensor play the role of evidence nodes of this network, and thus, we can estimate the true occupancy at time t using the evidence prior to (and including) time t. Experimental results demonstrate the effectiveness and efficiency of the proposed method. (paper)

  13. Raspberry Pi Based Intelligent Wireless Sensor Node for Localized Torrential Rain Monitoring

    Directory of Open Access Journals (Sweden)

    Zhaozhuo Xu

    2016-01-01

    Full Text Available Wireless sensor networks are proved to be effective in long-time localized torrential rain monitoring. However, the existing widely used architecture of wireless sensor networks for rain monitoring relies on network transportation and back-end calculation, which causes delay in response to heavy rain in localized areas. Our work improves the architecture by applying logistic regression and support vector machine classification to an intelligent wireless sensor node which is created by Raspberry Pi. The sensor nodes in front-end not only obtain data from sensors, but also can analyze the probabilities of upcoming heavy rain independently and give early warnings to local clients in time. When the sensor nodes send the probability to back-end server, the burdens of network transport are released. We demonstrate by simulation results that our sensor system architecture has potentiality to increase the local response to heavy rain. The monitoring capacity is also raised.

  14. A resonant electromagnetic vibration energy harvester for intelligent wireless sensor systems

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jing, E-mail: jingqiu@cqu.edu.cn; Wen, Yumei; Li, Ping; Liu, Xin; Chen, Hengjia; Yang, Jin [Sensors and Instruments Research Center, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2015-05-07

    Vibration energy harvesting is now receiving more interest as a means for powering intelligent wireless sensor systems. In this paper, a resonant electromagnetic vibration energy harvester (VEH) employing double cantilever to convert low-frequency vibration energy into electrical energy is presented. The VEH is made up of two cantilever beams, a coil, and magnetic circuits. The electric output performances of the proposed electromagnetic VEH have been investigated. With the enhancement of turns number N, the optimum peak power of electromagnetic VEH increases sharply and the resonance frequency deceases gradually. When the vibration acceleration is 0.5 g, we obtain the optimum output voltage and power of 9.04 V and 50.8 mW at frequency of 14.9 Hz, respectively. In a word, the prototype device was successfully developed and the experimental results exhibit a great enhancement in the output power and bandwidth compared with other traditional electromagnetic VEHs. Remarkably, the proposed resonant electromagnetic VEH have great potential for applying in intelligent wireless sensor systems.

  15. The “Wireless Sensor Networks for City-Wide Ambient Intelligence (WISE-WAI” Project

    Directory of Open Access Journals (Sweden)

    Michele Zorzi

    2009-05-01

    Full Text Available This paper gives a detailed technical overview of some of the activities carried out in the context of the “Wireless Sensor networks for city-Wide Ambient Intelligence (WISEWAI” project, funded by the Cassa di Risparmio di Padova e Rovigo Foundation, Italy. The main aim of the project is to demonstrate the feasibility of large-scale wireless sensor network deployments, whereby tiny objects integrating one or more environmental sensors (humidity, temperature, light intensity, a microcontroller and a wireless transceiver are deployed over a large area, which in this case involves the buildings of the Department of Information Engineering at the University of Padova. We will describe how the network is organized to provide full-scale automated functions, and which services and applications it is configured to provide. These applications include long-term environmental monitoring, alarm event detection and propagation, single-sensor interrogation, localization and tracking of objects, assisted navigation, as well as fast data dissemination services to be used, e.g., to rapidly re-program all sensors over-the-air. The organization of such a large testbed requires notable efforts in terms of communication protocols and strategies, whose design must pursue scalability, energy efficiency (while sensors are connected through USB cables for logging and debugging purposes, most of them will be battery-operated, as well as the capability to support applications with diverse requirements. These efforts, the description of a subset of the results obtained so far, and of the final objectives to be met are the scope of the present paper.

  16. Use of Local Intelligence to Reduce Energy Consumption of Wireless Sensor Nodes in Elderly Health Monitoring Systems

    Science.gov (United States)

    Lampoltshammer, Thomas J.; de Freitas, Edison Pignaton; Nowotny, Thomas; Plank, Stefan; da Costa, João Paulo Carvalho Lustosa; Larsson, Tony; Heistracher, Thomas

    2014-01-01

    The percentage of elderly people in European countries is increasing. Such conjuncture affects socio-economic structures and creates demands for resourceful solutions, such as Ambient Assisted Living (AAL), which is a possible methodology to foster health care for elderly people. In this context, sensor-based devices play a leading role in surveying, e.g., health conditions of elderly people, to alert care personnel in case of an incident. However, the adoption of such devices strongly depends on the comfort of wearing the devices. In most cases, the bottleneck is the battery lifetime, which impacts the effectiveness of the system. In this paper we propose an approach to reduce the energy consumption of sensors' by use of local sensors' intelligence. By increasing the intelligence of the sensor node, a substantial decrease in the necessary communication payload can be achieved. The results show a significant potential to preserve energy and decrease the actual size of the sensor device units. PMID:24618777

  17. Computational intelligence in wireless sensor networks recent advances and future challenges

    CERN Document Server

    Falcon, Rafael; Koeppen, Mario

    2017-01-01

    This book emphasizes the increasingly important role that Computational Intelligence (CI) methods are playing in solving a myriad of entangled Wireless Sensor Networks (WSN) related problems. The book serves as a guide for surveying several state-of-the-art WSN scenarios in which CI approaches have been employed. The reader finds in this book how CI has contributed to solve a wide range of challenging problems, ranging from balancing the cost and accuracy of heterogeneous sensor deployments to recovering from real-time sensor failures to detecting attacks launched by malicious sensor nodes and enacting CI-based security schemes. Network managers, industry experts, academicians and practitioners alike (mostly in computer engineering, computer science or applied mathematics) benefit from the spectrum of successful applications reported in this book. Senior undergraduate or graduate students may discover in this book some problems well suited for their own research endeavors. USP: Presents recent advances and fu...

  18. Ontology-Based Architecture for Intelligent Transportation Systems Using a Traffic Sensor Network

    Directory of Open Access Journals (Sweden)

    Susel Fernandez

    2016-08-01

    Full Text Available Intelligent transportation systems are a set of technological solutions used to improve the performance and safety of road transportation. A crucial element for the success of these systems is the exchange of information, not only between vehicles, but also among other components in the road infrastructure through different applications. One of the most important information sources in this kind of systems is sensors. Sensors can be within vehicles or as part of the infrastructure, such as bridges, roads or traffic signs. Sensors can provide information related to weather conditions and traffic situation, which is useful to improve the driving process. To facilitate the exchange of information between the different applications that use sensor data, a common framework of knowledge is needed to allow interoperability. In this paper an ontology-driven architecture to improve the driving environment through a traffic sensor network is proposed. The system performs different tasks automatically to increase driver safety and comfort using the information provided by the sensors.

  19. Hybrid Swarm Intelligence Optimization Approach for Optimal Data Storage Position Identification in Wireless Sensor Networks

    Science.gov (United States)

    Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam

    2015-01-01

    The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches. PMID:25734182

  20. Blindness in designing intelligent systems

    Science.gov (United States)

    Denning, Peter J.

    1988-01-01

    New investigations of the foundations of artificial intelligence are challenging the hypothesis that problem solving is the cornerstone of intelligence. New distinctions among three domains of concern for humans--description, action, and commitment--have revealed that the design process for programmable machines, such as expert systems, is based on descriptions of actions and induces blindness to nonanalytic action and commitment. Design processes focusing in the domain of description are likely to yield programs like burearcracies: rigid, obtuse, impersonal, and unable to adapt to changing circumstances. Systems that learn from their past actions, and systems that organize information for interpretation by human experts, are more likely to be successful in areas where expert systems have failed.

  1. Intelligent mobile sensor system for drum inspection and monitoring: Topical report, October 1, 1993--April 22, 1995

    International Nuclear Information System (INIS)

    1997-01-01

    The objective of the Intelligent Mobile Sensor System (IMSS) project is to develop an operational system for monitoring and inspection activities for waste storage facility operations at several DOE sites. Specifically, the product of this effort is a robotic device with enhanced intelligence and maneuverability capable of conducting routine inspection of stored waste drums. The system has an integrated sensor suite for problem-drum detection, and is linked to a site database both for inspection planning and for data correlation, updating, and report generation. The system is capable of departing on an assigned mission, collecting required data, recording which portions of its mission had to be aborted or modified due to environmental constraints, and reporting back when the mission is complete. Successful identification of more than 96% of drum defects has been demonstrated in a high fidelity waste storage facility mockup. Identified anomalies included rust spots, rust streaks, areas of corrosion, dents, and tilted drums. All drums were positively identified and correlated with the site database. This development effort is separated into three phases of which phase two is now complete. The second phase demonstrated a prototype system appropriate for operational use in an actual storage facility. The prototype provides an integrated design that considers operational requirements, hardware costs, maintenance, safety, and robustness. The final phase will demonstrate commercial viability using the prototype vehicle in a pilot waste operations and inspection project. This report summarizes the design and evaluation of the new IMSS Phase 2 system and vehicle. Several parts of the IMSS Phase 1 Topical (Final) Report, which describes the requirements, design guidelines, and detailed design of the Phase 1 IMSS vehicle, are incorporated here, with modifications to reflect the changes in the design and the new elements added during the Phase 2 work

  2. An Intelligent Robot Programing

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Yong

    2012-01-15

    This book introduces an intelligent robot programing with background of the begging, introduction of VPL, and SPL, building of environment for robot platform, starting of robot programing, design of simulation environment, robot autonomy drive control programing, simulation graphic. Such as SPL graphic programing graphical image and graphical shapes, and graphical method application, application of procedure for robot control, robot multiprogramming, robot bumper sensor programing, robot LRF sencor programing and robot color sensor programing.

  3. An Intelligent Robot Programing

    International Nuclear Information System (INIS)

    Hong, Seong Yong

    2012-01-01

    This book introduces an intelligent robot programing with background of the begging, introduction of VPL, and SPL, building of environment for robot platform, starting of robot programing, design of simulation environment, robot autonomy drive control programing, simulation graphic. Such as SPL graphic programing graphical image and graphical shapes, and graphical method application, application of procedure for robot control, robot multiprogramming, robot bumper sensor programing, robot LRF sencor programing and robot color sensor programing.

  4. Intelligent sensors and actuators. Autonomous solar input and wireless data transmission. Intelligente Sensoren und Aktoren. Autonome Solar-Versorgung und drahtlose Datenuebertragung

    Energy Technology Data Exchange (ETDEWEB)

    Kuntz, W; Mores, R [Transferzentrum Furtwangen (Germany)

    1991-09-03

    Sensors are referred to as intelligent if they evaluate the results immediately internally. A micro server as a rule is responsible for it. Sensors can be implemented with extremely low power dissipation. If they are supplied with energy over optical waveguide, they can even work potentialfree. Battery-fed or solar-fed intelligent sensors with data transmission viaer infrared light or UHF record measured values with standard time. They are bus-capable and allow a mobile application without interfering cables. (orig.).

  5. SMART CITIES INTELLIGENCE SYSTEM (SMACiSYS) INTEGRATING SENSOR WEB WITH SPATIAL DATA INFRASTRUCTURES (SENSDI)

    OpenAIRE

    D. Bhattacharya; M. Painho

    2017-01-01

    The paper endeavours to enhance the Sensor Web with crucial geospatial analysis capabilities through integration with Spatial Data Infrastructure. The objective is development of automated smart cities intelligence system (SMACiSYS) with sensor-web access (SENSDI) utilizing geomatics for sustainable societies. There has been a need to develop automated integrated system to categorize events and issue information that reaches users directly. At present, no web-enabled information system exists...

  6. Trends in ambient intelligent systems the role of computational intelligence

    CERN Document Server

    Khan, Mohammad; Abraham, Ajith

    2016-01-01

    This book demonstrates the success of Ambient Intelligence in providing possible solutions for the daily needs of humans. The book addresses implications of ambient intelligence in areas of domestic living, elderly care, robotics, communication, philosophy and others. The objective of this edited volume is to show that Ambient Intelligence is a boon to humanity with conceptual, philosophical, methodical and applicative understanding. The book also aims to schematically demonstrate developments in the direction of augmented sensors, embedded systems and behavioral intelligence towards Ambient Intelligent Networks or Smart Living Technology. It contains chapters in the field of Ambient Intelligent Networks, which received highly positive feedback during the review process. The book contains research work, with in-depth state of the art from augmented sensors, embedded technology and artificial intelligence along with cutting-edge research and development of technologies and applications of Ambient Intelligent N...

  7. Fuzzy mobile-robot positioning in intelligent spaces using wireless sensor networks.

    Science.gov (United States)

    Herrero, David; Martínez, Humberto

    2011-01-01

    This work presents the development and experimental evaluation of a method based on fuzzy logic to locate mobile robots in an Intelligent Space using wireless sensor networks (WSNs). The problem consists of locating a mobile node using only inter-node range measurements, which are estimated by radio frequency signal strength attenuation. The sensor model of these measurements is very noisy and unreliable. The proposed method makes use of fuzzy logic for modeling and dealing with such uncertain information. Besides, the proposed approach is compared with a probabilistic technique showing that the fuzzy approach is able to handle highly uncertain situations that are difficult to manage by well-known localization methods.

  8. Intelligent Chemical Sensor Systems for In-space Safety Applications

    Science.gov (United States)

    Hunter, G. W.; Xu, J. C.; Neudeck, P. G.; Makel, D. B.; Ward, B.; Liu, C. C.

    2006-01-01

    Future in-space and lunar operations will require significantly improved monitoring and Integrated System Health Management (ISHM) throughout the mission. In particular, the monitoring of chemical species is an important component of an overall monitoring system for space vehicles and operations. For example, in leak monitoring of propulsion systems during launch, inspace, and on lunar surfaces, detection of low concentrations of hydrogen and other fuels is important to avoid explosive conditions that could harm personnel and damage the vehicle. Dependable vehicle operation also depends on the timely and accurate measurement of these leaks. Thus, the development of a sensor array to determine the concentration of fuels such as hydrogen, hydrocarbons, or hydrazine as well as oxygen is necessary. Work has been on-going to develop an integrated smart leak detection system based on miniaturized sensors to detect hydrogen, hydrocarbons, or hydrazine, and oxygen. The approach is to implement Microelectromechanical Systems (MEMS) based sensors incorporated with signal conditioning electronics, power, data storage, and telemetry enabling intelligent systems. The final sensor system will be self-contained with a surface area comparable to a postage stamp. This paper discusses the development of this "Lick and Stick" leak detection system and it s application to In-Space Transportation and other Exploration applications.

  9. A Novel Optical Sensor Platform Designed for Wireless Sensor Networks

    International Nuclear Information System (INIS)

    Yang, Shuo; Zhou, Bochao; Sun, Tong; Grattan, Kenneth T V

    2013-01-01

    This paper presents a novel design of an optical sensor platform, enabling effective integration of a number of optical fibre ('wired') sensors with wireless sensor networks (WSNs). In this work, a fibre Bragg grating-based temperature sensor with low power consumption is specially designed as a sensing module and integrated successfully into a WSN, making full use of the advantages arising from both the advanced optical sensor designs and the powerful network functionalities resident in WSNs. The platform is expected to make an important impact on many applications, where either the conventional optical sensor designs or WSNs alone cannot meet the requirements.

  10. Intelligent Design and Earth History

    Science.gov (United States)

    Elders, W. A.

    2001-05-01

    Intelligent Design (ID), the idea that the Earth's biota was intelligently designed and created, is not a new species recently evolved by allopatric speciation at the fringes of the creationist gene pool. In spite of its new veneer of sophistication, ID is a variant of an already extant species of religious polemics. In the western world, arguments about causative relationships between the complexity of nature and the supernatural can be traced from the fifth century St. Augustine, to the eighteenth century David Hume and the nineteenth century William Paley. Along this descent tree some argued from the existence of supernatural agencies to the creation of nature with its complexities, while others argued from the complexities of nature to the existence of supernatural agencies. Today, Phillip Johnson promotes ID by attacking evolution rather than by presenting evidence for ID. He argues that the evidence for macroevolution is either absent, misinterpreted or fraudulent. His "Wedge Strategy" attempts to separate his "objective science" from the "philosophical mechanistic naturalism" which he posits is responsible for the survival of Darwinism. To make his appeal as wide as possible he tries not to offend anyone (except evolutionists) by deliberately avoiding discussion of biblical literalism or the age of the Earth. Although in 1859 Darwin admitted that the geological evidence was "the most obvious and gravest objection which can be urged against my theory", subsequently geological evidence has become one of the chief supports of his theory. However, the fossil record is now seen to be not simply one of slow gradual descent with modification. Rates of divergence and disappearance of organisms have varied enormously through time. Repeated mass extinctions indicate a strong element of contingency in evolution. Accepting the postulate of an intelligent designer also requires the postulate of an intelligent destroyer. Darwin hinted at this when he referred to, "The

  11. The “Wireless Sensor Networks for City-Wide Ambient Intelligence (WISE-WAI)” Project

    Science.gov (United States)

    Casari, Paolo; Castellani, Angelo P.; Cenedese, Angelo; Lora, Claudio; Rossi, Michele; Schenato, Luca; Zorzi, Michele

    2009-01-01

    This paper gives a detailed technical overview of some of the activities carried out in the context of the “Wireless Sensor networks for city-Wide Ambient Intelligence (WISE-WAI)” project, funded by the Cassa di Risparmio di Padova e Rovigo Foundation, Italy. The main aim of the project is to demonstrate the feasibility of large-scale wireless sensor network deployments, whereby tiny objects integrating one or more environmental sensors (humidity, temperature, light intensity), a microcontroller and a wireless transceiver are deployed over a large area, which in this case involves the buildings of the Department of Information Engineering at the University of Padova. We will describe how the network is organized to provide full-scale automated functions, and which services and applications it is configured to provide. These applications include long-term environmental monitoring, alarm event detection and propagation, single-sensor interrogation, localization and tracking of objects, assisted navigation, as well as fast data dissemination services to be used, e.g., to rapidly re-program all sensors over-the-air. The organization of such a large testbed requires notable efforts in terms of communication protocols and strategies, whose design must pursue scalability, energy efficiency (while sensors are connected through USB cables for logging and debugging purposes, most of them will be battery-operated), as well as the capability to support applications with diverse requirements. These efforts, the description of a subset of the results obtained so far, and of the final objectives to be met are the scope of the present paper. PMID:22408513

  12. The potential of artificial intelligence toys

    DEFF Research Database (Denmark)

    Dai, Zheng

    2008-01-01

    Artificial intelligence is moving to a next step of development and application areas. From electronic games to human-like robots, AI toy is a good choice for next step during this process. Technology-based design is fit to the development of AI toy. It can exert the advantages and explore more...... value for existing resources. It combines AI programs and common sensors to realize the function of intelligence input and output. Designers can use technology-based criteria to design and need to consider the possible issues in this new field. All of these aspects can be referenced from electronic game...

  13. Mechatronical Aided Concept (MAC) in Intelligent Transport Vehicles Design

    OpenAIRE

    Pavel Pavlasek

    2003-01-01

    This article deals with the principles of synergy effect of mechatronical aided concept (MAC) to the design of intelligent transport vehicles products applying CA technologies and virtual reality design methods. Also includes presentation of intelligent railway vehicle development.

  14. Information for the user in design of intelligent systems

    Science.gov (United States)

    Malin, Jane T.; Schreckenghost, Debra L.

    1993-01-01

    Recommendations are made for improving intelligent system reliability and usability based on the use of information requirements in system development. Information requirements define the task-relevant messages exchanged between the intelligent system and the user by means of the user interface medium. Thus, these requirements affect the design of both the intelligent system and its user interface. Many difficulties that users have in interacting with intelligent systems are caused by information problems. These information problems result from the following: (1) not providing the right information to support domain tasks; and (2) not recognizing that using an intelligent system introduces new user supervisory tasks that require new types of information. These problems are especially prevalent in intelligent systems used for real-time space operations, where data problems and unexpected situations are common. Information problems can be solved by deriving information requirements from a description of user tasks. Using information requirements embeds human-computer interaction design into intelligent system prototyping, resulting in intelligent systems that are more robust and easier to use.

  15. Mechatronical Aided Concept (MAC in Intelligent Transport Vehicles Design

    Directory of Open Access Journals (Sweden)

    Pavel Pavlasek

    2003-01-01

    Full Text Available This article deals with the principles of synergy effect of mechatronical aided concept (MAC to the design of intelligent transport vehicles products applying CA technologies and virtual reality design methods. Also includes presentation of intelligent railway vehicle development.

  16. Overnight non-contact continuous vital signs monitoring using an intelligent automatic beam-steering Doppler sensor at 2.4 GHz.

    Science.gov (United States)

    Batchu, S; Narasimhachar, H; Mayeda, J C; Hall, T; Lopez, J; Nguyen, T; Banister, R E; Lie, D Y C

    2017-07-01

    Doppler-based non-contact vital signs (NCVS) sensors can monitor heart rates, respiration rates, and motions of patients without physically touching them. We have developed a novel single-board Doppler-based phased-array antenna NCVS biosensor system that can perform robust overnight continuous NCVS monitoring with intelligent automatic subject tracking and optimal beam steering algorithms. Our NCVS sensor achieved overnight continuous vital signs monitoring with an impressive heart-rate monitoring accuracy of over 94% (i.e., within ±5 Beats-Per-Minute vs. a reference sensor), analyzed from over 400,000 data points collected during each overnight monitoring period of ~ 6 hours at a distance of 1.75 meters. The data suggests our intelligent phased-array NCVS sensor can be very attractive for continuous monitoring of low-acuity patients.

  17. An Intelligent and Secure Health Monitoring Scheme Using IoT Sensor Based on Cloud Computing

    Directory of Open Access Journals (Sweden)

    Jin-Xin Hu

    2017-01-01

    Full Text Available Internet of Things (IoT is the network of physical objects where information and communication technology connect multiple embedded devices to the Internet for collecting and exchanging data. An important advancement is the ability to connect such devices to large resource pools such as cloud. The integration of embedded devices and cloud servers offers wide applicability of IoT to many areas of our life. With the aging population increasing every day, embedded devices with cloud server can provide the elderly with more flexible service without the need to visit hospitals. Despite the advantages of the sensor-cloud model, it still has various security threats. Therefore, the design and integration of security issues, like authentication and data confidentiality for ensuring the elderly’s privacy, need to be taken into consideration. In this paper, an intelligent and secure health monitoring scheme using IoT sensor based on cloud computing and cryptography is proposed. The proposed scheme achieves authentication and provides essential security requirements.

  18. Fuzzy Mobile-Robot Positioning in Intelligent Spaces Using Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    David Herrero

    2011-11-01

    Full Text Available This work presents the development and experimental evaluation of a method based on fuzzy logic to locate mobile robots in an Intelligent Space using Wireless Sensor Networks (WSNs. The problem consists of locating a mobile node using only inter-node range measurements, which are estimated by radio frequency signal strength attenuation. The sensor model of these measurements is very noisy and unreliable. The proposed method makes use of fuzzy logic for modeling and dealing with such uncertain information. Besides, the proposed approach is compared with a probabilistic technique showing that the fuzzy approach is able to handle highly uncertain situations that are difficult to manage by well-known localization methods.

  19. Energy scavenging using piezoelectric sensors to power in pavement intelligent vehicle detection systems

    Science.gov (United States)

    Parhad, Ashutosh

    Intelligent transportation systems use in-pavement inductive loop sensors to collect real time traffic data. This method is very expensive in terms of installation and maintenance. Our research is focused on developing advanced algorithms capable of generating high amounts of energy that can charge a battery. This electromechanical energy conversion is an optimal way of energy scavenging that makes use of piezoelectric sensors. The power generated is sufficient to run the vehicle detection module that has several sensors embedded together. To achieve these goals, we have developed a simulation module using software's like LabVIEW and Multisim. The simulation module recreates a practical scenario that takes into consideration vehicle weight, speed, wheel width and frequency of the traffic.

  20. Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm

    Directory of Open Access Journals (Sweden)

    Daniel H. De La Iglesia

    2017-10-01

    Full Text Available The use of electric bikes (e-bikes has grown in popularity, especially in large cities where overcrowding and traffic congestion are common. This paper proposes an intelligent engine management system for e-bikes which uses the information collected from sensors to optimize battery energy and time. The intelligent engine management system consists of a built-in network of sensors in the e-bike, which is used for multi-sensor data fusion; the collected data is analysed and fused and on the basis of this information the system can provide the user with optimal and personalized assistance. The user is given recommendations related to battery consumption, sensors, and other parameters associated with the route travelled, such as duration, speed, or variation in altitude. To provide a user with these recommendations, artificial neural networks are used to estimate speed and consumption for each of the segments of a route. These estimates are incorporated into evolutionary algorithms in order to make the optimizations. A comparative analysis of the results obtained has been conducted for when routes were travelled with and without the optimization system. From the experiments, it is evident that the use of an engine management system results in significant energy and time savings. Moreover, user satisfaction increases as the level of assistance adapts to user behavior and the characteristics of the route.

  1. Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm

    Science.gov (United States)

    Villarubia, Gabriel; De Paz, Juan F.; Bajo, Javier

    2017-01-01

    The use of electric bikes (e-bikes) has grown in popularity, especially in large cities where overcrowding and traffic congestion are common. This paper proposes an intelligent engine management system for e-bikes which uses the information collected from sensors to optimize battery energy and time. The intelligent engine management system consists of a built-in network of sensors in the e-bike, which is used for multi-sensor data fusion; the collected data is analysed and fused and on the basis of this information the system can provide the user with optimal and personalized assistance. The user is given recommendations related to battery consumption, sensors, and other parameters associated with the route travelled, such as duration, speed, or variation in altitude. To provide a user with these recommendations, artificial neural networks are used to estimate speed and consumption for each of the segments of a route. These estimates are incorporated into evolutionary algorithms in order to make the optimizations. A comparative analysis of the results obtained has been conducted for when routes were travelled with and without the optimization system. From the experiments, it is evident that the use of an engine management system results in significant energy and time savings. Moreover, user satisfaction increases as the level of assistance adapts to user behavior and the characteristics of the route. PMID:29088087

  2. Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm.

    Science.gov (United States)

    De La Iglesia, Daniel H; Villarrubia, Gabriel; De Paz, Juan F; Bajo, Javier

    2017-10-31

    The use of electric bikes (e-bikes) has grown in popularity, especially in large cities where overcrowding and traffic congestion are common. This paper proposes an intelligent engine management system for e-bikes which uses the information collected from sensors to optimize battery energy and time. The intelligent engine management system consists of a built-in network of sensors in the e-bike, which is used for multi-sensor data fusion; the collected data is analysed and fused and on the basis of this information the system can provide the user with optimal and personalized assistance. The user is given recommendations related to battery consumption, sensors, and other parameters associated with the route travelled, such as duration, speed, or variation in altitude. To provide a user with these recommendations, artificial neural networks are used to estimate speed and consumption for each of the segments of a route. These estimates are incorporated into evolutionary algorithms in order to make the optimizations. A comparative analysis of the results obtained has been conducted for when routes were travelled with and without the optimization system. From the experiments, it is evident that the use of an engine management system results in significant energy and time savings. Moreover, user satisfaction increases as the level of assistance adapts to user behavior and the characteristics of the route.

  3. Intelligent Smoke Alarm System with Wireless Sensor Network Using ZigBee

    Directory of Open Access Journals (Sweden)

    Qin Wu

    2018-01-01

    Full Text Available The conflagration of fire is still a serious problem caused by humans, and houses are at a high risk of fire. Recently, people have used smoke alarms which only have one sensor to detect fire. Smoke is emitted in several forms in daily life. A single sensor is not a reliable way to detect fire. With the rapid advancement in Internet technology, people can monitor their houses remotely to determine the current condition of the house. This paper introduces an intelligent smoke alarm system that uses ZigBee transmission technology to build a wireless network, uses random forest to identify smoke, and uses E-charts for data visualization. By combining the real-time dynamic changes of various environmental factors, compared to the traditional smoke alarm, the accuracy and controllability of the fire warning are increased, and the visualization of the data enables users to monitor the room environment more intuitively. The proposed system consists of a smoke detection module, a wireless communication module, and intelligent identification and data visualization module. At present, the collected environmental data can be classified into four statuses, that is, normal air, water mist, kitchen cooking, and fire smoke. Reducing the frequency of miscalculations also means improving the safety of the person and property of the user.

  4. The design of electric vehicle intelligent charger

    Science.gov (United States)

    Xu, Yangyang; Wang, Ying

    2018-05-01

    As the situation of the lack of energy and environment pollution deteriorates rapidly, electric vehicle, a new type of traffic tool, is being researched worldwide. As the core components of electric vehicle, the battery and charger's performance play an important roles in the quality of electric vehicle. So the design of the Electric Vehicle Intelligent Charger based on language-C is designed in this paper. The hardware system is used to produce the input signals of Electric Vehicle Intelligent Charger. The software system adopts the language-C software as development environment. The design can accomplish the test of the parametric such as voltage-current and temperature.

  5. 基于激光传感器的智能车路径识别系统设计%The Design of Intelligent Vehicle Path Identification System Based on Laser Sensor

    Institute of Scientific and Technical Information of China (English)

    罗强; 徐文城; 刘尧

    2012-01-01

    The self - tracking intelligent vehicle path identification system is achieved in this paper. The system is based on laser sensors. The hardware and algorithm of the system is designed in this paper. The capability of Previem and Immunity of the Intelligent Vehicle is improved. Experiment shows that this system is much more stable and accurate, can make the Intelligent Vehicle run steadily by 2. 7m/s . By using the system, we have a better result in the race.%实现了一种自主式循迹智能车路径识别系统,设计了基于激光传感器的路径识别系统的硬件和控制算法,提高了光电式智能车的前瞻和抗干扰能力.实践表明,具有较高的稳定性和准确性,可使智能车以2.7 m/s的平均速度稳定运行,已在竞赛中取得了良好的成绩.

  6. Optical gateway for intelligent buildings: a new open-up window to the optical fibre sensors market?

    Science.gov (United States)

    Fernandez-Valdivielso, Carlos; Matias, Ignacio R.; Arregui, Francisco J.; Bariain, Candido; Lopez-Amo, Manuel

    2004-06-01

    This paper presents the first optical fiber sensor gateway for integrating these special measurement devices in Home Automation Systems, concretely in those buildings that use the KNX European Intelligent Buildings Standard.

  7. INTELLIGENT TRAFFIC-SAFETY MIRROR BY USING WIRELESS SENSOR NETWORK

    Directory of Open Access Journals (Sweden)

    Peter Danišovič

    2014-03-01

    Full Text Available This article is focused on the problematic of traffic safety, dealing with the problem of car intersections with blocked view crossing by a special wireless sensor network (WSN proposed for the traffic monitoring, concretely for vehicle’s detection at places, where it is necessary. Some ultra-low-power TI products were developed due to this reason: microcontroller MSP430F2232, 868MHz RF transceiver CC1101 and LDO voltage regulator TPS7033. The WSN consist of four network nodes supplied with the special safety lightings which serve the function of intelligent traffic safety mirror.

  8. The implementation of intelligent home controller

    Science.gov (United States)

    Li, Biqing; Li, Zhao

    2018-04-01

    This paper mainly talks about the working way of smart home terminal controller and the design of hardware and software. Controlling the lights and by simulating the lamp and the test of the curtain, destroy the light of lamp ON-OFF and the curtain's UP-DOWN by simulating the lamp and the test of the cuetain. Through the sensor collects the ambient information and sends to the network, such as light, temperature and humidity. Besides, it can realise the control of intelligent home control by PCS. Terminal controller of intelligent home which is based on ZiBee technology has into the intelligent home system, it provides people with convenient, safe and intelligent household experience.

  9. Artificial intelligence and information-control systems of robots - 87

    International Nuclear Information System (INIS)

    Plander, I.

    1987-01-01

    Independent research areas of artificial intelligence represent the following problems: automatic problem solving and new knowledge discovering, automatic program synthesis, natural language, picture and scene recognition and understanding, intelligent control systems of robots equipped with sensoric subsystems, dialogue of two knowledge systems, as well as studying and modelling higher artificial intelligence attributes, such as emotionality and personality. The 4th Conference draws on the problems treated at the preceding Conferences, and presents the most recent knowledge on the following topics: theoretical problems of artificial intelligence, knowledge-based systems, expert systems, perception and pattern recognition, robotics, intelligent computer-aided design, special-purpose computer systems for artificial intelligence and robotics

  10. HIGH: A Hexagon-based Intelligent Grouping Approach in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    FAN, C.-S.

    2016-02-01

    Full Text Available In a random deployment or uniform deployment strategy, sensor nodes are scattered randomly or uniformly in the sensing field, respectively. Hence, the coverage ratio cannot be guaranteed. The coverage ratio of uniform deployment, in general, is larger than that of the random deployment strategy. However, a random deployment or uniform deployment strategy may cause unbalanced traffic pattern in wireless sensor networks (WSNs. Therefore, cluster heads (CHs around the sink have larger loads than those farther away from the sink. That is, CHs close to the sink exhaust their energy earlier. In order to overcome the above problem, we propose a Hexagon-based Intelligent Grouping approacH in WSNs (called HIGH. The coverage, energy consumption and data routing issues are well investigated and taken into consideration in the proposed HIGH scheme. The simulation results validate our theoretical analysis and show that the proposed HIGH scheme achieves a satisfactory coverage ratio, balances the energy consumption among sensor nodes, and extends network lifetime significantly.

  11. Games and Agents: Designing Intelligent Gameplay

    Directory of Open Access Journals (Sweden)

    F. Dignum

    2009-01-01

    Full Text Available There is an attention shift within the gaming industry toward more natural (long-term behavior of nonplaying characters (NPCs. Multiagent system research offers a promising technology to implement cognitive intelligent NPCs. However, the technologies used in game engines and multiagent platforms are not readily compatible due to some inherent differences of concerns. Where game engines focus on real-time aspects and thus propagate efficiency and central control, multiagent platforms assume autonomy of the agents. Increased autonomy and intelligence may offer benefits for a more compelling gameplay and may even be necessary for serious games. However, it raises problems when current game design techniques are used to incorporate state-of-the-art multiagent system technology. In this paper, we will focus on three specific problem areas that arise from this difference of view: synchronization, information representation, and communication. We argue that the current attempts for integration still fall short on some of these aspects. We show that to fully integrate intelligent agents in games, one should not only use a technical solution, but also a design methodology that is amenable to agents. The game design should be adjusted to incorporate the possibilities of agents early on in the process.

  12. Scalable sensor management for automated fusion and tactical reconnaissance

    Science.gov (United States)

    Walls, Thomas J.; Wilson, Michael L.; Partridge, Darin C.; Haws, Jonathan R.; Jensen, Mark D.; Johnson, Troy R.; Petersen, Brad D.; Sullivan, Stephanie W.

    2013-05-01

    The capabilities of tactical intelligence, surveillance, and reconnaissance (ISR) payloads are expanding from single sensor imagers to integrated systems-of-systems architectures. Increasingly, these systems-of-systems include multiple sensing modalities that can act as force multipliers for the intelligence analyst. Currently, the separate sensing modalities operate largely independent of one another, providing a selection of operating modes but not an integrated intelligence product. We describe here a Sensor Management System (SMS) designed to provide a small, compact processing unit capable of managing multiple collaborative sensor systems on-board an aircraft. Its purpose is to increase sensor cooperation and collaboration to achieve intelligent data collection and exploitation. The SMS architecture is designed to be largely sensor and data agnostic and provide flexible networked access for both data providers and data consumers. It supports pre-planned and ad-hoc missions, with provisions for on-demand tasking and updates from users connected via data links. Management of sensors and user agents takes place over standard network protocols such that any number and combination of sensors and user agents, either on the local network or connected via data link, can register with the SMS at any time during the mission. The SMS provides control over sensor data collection to handle logging and routing of data products to subscribing user agents. It also supports the addition of algorithmic data processing agents for feature/target extraction and provides for subsequent cueing from one sensor to another. The SMS architecture was designed to scale from a small UAV carrying a limited number of payloads to an aircraft carrying a large number of payloads. The SMS system is STANAG 4575 compliant as a removable memory module (RMM) and can act as a vehicle specific module (VSM) to provide STANAG 4586 compliance (level-3 interoperability) to a non-compliant sensor system

  13. Configurable intelligent optimization algorithm design and practice in manufacturing

    CERN Document Server

    Tao, Fei; Laili, Yuanjun

    2014-01-01

    Presenting the concept and design and implementation of configurable intelligent optimization algorithms in manufacturing systems, this book provides a new configuration method to optimize manufacturing processes. It provides a comprehensive elaboration of basic intelligent optimization algorithms, and demonstrates how their improvement, hybridization and parallelization can be applied to manufacturing. Furthermore, various applications of these intelligent optimization algorithms are exemplified in detail, chapter by chapter. The intelligent optimization algorithm is not just a single algorit

  14. Study on robot motion control for intelligent welding processes based on the laser tracking sensor

    Science.gov (United States)

    Zhang, Bin; Wang, Qian; Tang, Chen; Wang, Ju

    2017-06-01

    A robot motion control method is presented for intelligent welding processes of complex spatial free-form curve seams based on the laser tracking sensor. First, calculate the tip position of the welding torch according to the velocity of the torch and the seam trajectory detected by the sensor. Then, search the optimal pose of the torch under constraints using genetic algorithms. As a result, the intersection point of the weld seam and the laser plane of the sensor is within the detectable range of the sensor. Meanwhile, the angle between the axis of the welding torch and the tangent of the weld seam meets the requirements. The feasibility of the control method is proved by simulation.

  15. Intelligent self-organization methods for wireless ad hoc sensor networks based on limited resources

    Science.gov (United States)

    Hortos, William S.

    2006-05-01

    A wireless ad hoc sensor network (WSN) is a configuration for area surveillance that affords rapid, flexible deployment in arbitrary threat environments. There is no infrastructure support and sensor nodes communicate with each other only when they are in transmission range. To a greater degree than the terminals found in mobile ad hoc networks (MANETs) for communications, sensor nodes are resource-constrained, with limited computational processing, bandwidth, memory, and power, and are typically unattended once in operation. Consequently, the level of information exchange among nodes, to support any complex adaptive algorithms to establish network connectivity and optimize throughput, not only deplete those limited resources and creates high overhead in narrowband communications, but also increase network vulnerability to eavesdropping by malicious nodes. Cooperation among nodes, critical to the mission of sensor networks, can thus be disrupted by the inappropriate choice of the method for self-organization. Recent published contributions to the self-configuration of ad hoc sensor networks, e.g., self-organizing mapping and swarm intelligence techniques, have been based on the adaptive control of the cross-layer interactions found in MANET protocols to achieve one or more performance objectives: connectivity, intrusion resistance, power control, throughput, and delay. However, few studies have examined the performance of these algorithms when implemented with the limited resources of WSNs. In this paper, self-organization algorithms for the initiation, operation and maintenance of a network topology from a collection of wireless sensor nodes are proposed that improve the performance metrics significant to WSNs. The intelligent algorithm approach emphasizes low computational complexity, energy efficiency and robust adaptation to change, allowing distributed implementation with the actual limited resources of the cooperative nodes of the network. Extensions of the

  16. Low-Cost Wireless Temperature Measurement: Design, Manufacture, and Testing of a PCB-Based Wireless Passive Temperature Sensor.

    Science.gov (United States)

    Yan, Dan; Yang, Yong; Hong, Yingping; Liang, Ting; Yao, Zong; Chen, Xiaoyong; Xiong, Jijun

    2018-02-10

    Low-cost wireless temperature measurement has significant value in the food industry, logistics, agriculture, portable medical equipment, intelligent wireless health monitoring, and many areas in everyday life. A wireless passive temperature sensor based on PCB (Printed Circuit Board) materials is reported in this paper. The advantages of the sensor include simple mechanical structure, convenient processing, low-cost, and easiness in integration. The temperature-sensitive structure of the sensor is a dielectric-loaded resonant cavity, consisting of the PCB substrate. The sensitive structure also integrates a patch antenna for the transmission of temperature signals. The temperature sensing mechanism of the sensor is the dielectric constant of the PCB substrate changes with temperature, which causes the resonant frequency variation of the resonator. Then the temperature can be measured by detecting the changes in the sensor's working frequency. The PCB-based wireless passive temperature sensor prototype is prepared through theoretical design, parameter analysis, software simulation, and experimental testing. The high- and low-temperature sensing performance of the sensor is tested, respectively. The resonant frequency decreases from 2.434 GHz to 2.379 GHz as the temperature increases from -40 °C to 125 °C. The fitting curve proves that the experimental data have good linearity. Three repetitive tests proved that the sensor possess well repeatability. The average sensitivity is 347.45 KHz / ℃ from repetitive measurements conducted three times. This study demonstrates the feasibility of the PCB-based wireless passive sensor, which provides a low-cost temperature sensing solution for everyday life, modern agriculture, thriving intelligent health devices, and so on, and also enriches PCB product lines and applications.

  17. A Novel Intelligent Transportation Control Supported by Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Zhe Qian

    2013-05-01

    Full Text Available With the development of wireless sensor unit, and improvement of real-time and quality of wireless communication, the intelligent transportation control system employ these technologies to realize sensing, positioning, computing, and communication for voiding collisions. This paper discusses the framework of transportation control system, and emphases TDOA positioning algorithm and the new weighted least square optimization method. The simulation result shows that, our method achieves high-accuracy of positioning, which can satisfy the need of transportation control. Finally, we outline the urgent work need to address in the future.

  18. Intelligent Frameworks for Instructional Design.

    Science.gov (United States)

    Spector, J. Michael; And Others

    1992-01-01

    Presents a taxonomy describing various uses of artificial intelligence techniques in automated instructional development systems. Instructional systems development is discussed in relation to the design of computer-based instructional courseware; two systems being developed at the Air Force Armstrong Laboratory are reviewed; and further research…

  19. Use of Local Intelligence to Reduce Energy Consumption of Wireless Sensor Nodes in Elderly Health Monitoring Systems

    Directory of Open Access Journals (Sweden)

    Thomas J. Lampoltshammer

    2014-03-01

    Full Text Available The percentage of elderly people in European countries is increasing. Such conjuncture affects socio-economic structures and creates demands for resourceful solutions, such as Ambient Assisted Living (AAL, which is a possible methodology to foster health care for elderly people. In this context, sensor-based devices play a leading role in surveying, e.g., health conditions of elderly people, to alert care personnel in case of an incident. However, the adoption of such devices strongly depends on the comfort of wearing the devices. In most cases, the bottleneck is the battery lifetime, which impacts the effectiveness of the system. In this paper we propose an approach to reduce the energy consumption of sensors’ by use of local sensors’ intelligence. By increasing the intelligence of the sensor node, a substantial decrease in the necessary communication payload can be achieved. The results show a significant potential to preserve energy and decrease the actual size of the sensor device units.

  20. Hybrid Swarm Intelligence Energy Efficient Clustered Routing Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar

    2016-01-01

    Full Text Available Currently, wireless sensor networks (WSNs are used in many applications, namely, environment monitoring, disaster management, industrial automation, and medical electronics. Sensor nodes carry many limitations like low battery life, small memory space, and limited computing capability. To create a wireless sensor network more energy efficient, swarm intelligence technique has been applied to resolve many optimization issues in WSNs. In many existing clustering techniques an artificial bee colony (ABC algorithm is utilized to collect information from the field periodically. Nevertheless, in the event based applications, an ant colony optimization (ACO is a good solution to enhance the network lifespan. In this paper, we combine both algorithms (i.e., ABC and ACO and propose a new hybrid ABCACO algorithm to solve a Nondeterministic Polynomial (NP hard and finite problem of WSNs. ABCACO algorithm is divided into three main parts: (i selection of optimal number of subregions and further subregion parts, (ii cluster head selection using ABC algorithm, and (iii efficient data transmission using ACO algorithm. We use a hierarchical clustering technique for data transmission; the data is transmitted from member nodes to the subcluster heads and then from subcluster heads to the elected cluster heads based on some threshold value. Cluster heads use an ACO algorithm to discover the best route for data transmission to the base station (BS. The proposed approach is very useful in designing the framework for forest fire detection and monitoring. The simulation results show that the ABCACO algorithm enhances the stability period by 60% and also improves the goodput by 31% against LEACH and WSNCABC, respectively.

  1. Improving designer productivity. [artificial intelligence

    Science.gov (United States)

    Hill, Gary C.

    1992-01-01

    Designer and design team productivity improves with skill, experience, and the tools available. The design process involves numerous trials and errors, analyses, refinements, and addition of details. Computerized tools have greatly speeded the analysis, and now new theories and methods, emerging under the label Artificial Intelligence (AI), are being used to automate skill and experience. These tools improve designer productivity by capturing experience, emulating recognized skillful designers, and making the essence of complex programs easier to grasp. This paper outlines the aircraft design process in today's technology and business climate, presenting some of the challenges ahead and some of the promising AI methods for meeting these challenges.

  2. The conceptual design of the sensing system for patrolling and inspecting a nuclear facility by the intelligent robot

    International Nuclear Information System (INIS)

    Ebihara, Ken-ichi

    1993-11-01

    Supposing that an intelligent robot, instead of a human worker, patrols and inspects nuclear facilities, it is indispensable for such robot to be capable of moving with avoiding obstacles and recognizing various abnormal conditions, carrying out some ordered works based on information from sensors mounted on the robot. The present robots being practically used in nuclear facilities, however, have the limited capability such as identifying a few specific abnormal conditions using data detected by specific sensors on them. Hence, a conceptual design of a sensor-fusion-based system, which is named 'sensing system', has been performed to collect various kinds of information required for patrol and inspection. This sensing system combines a visual sensor, which consists of a monocular camera and a range finder by the active stereopsis method, an olfactory, acoustic and dose sensors. This report describes the hardware configuration and the software function for processing sensed data. An idea of sensor fusion and the preliminary consideration in respect of applying the neural network to image data processing are also described. (author)

  3. Design and implementation of the standards-based personal intelligent self-management system (PICS).

    Science.gov (United States)

    von Bargen, Tobias; Gietzelt, Matthias; Britten, Matthias; Song, Bianying; Wolf, Klaus-Hendrik; Kohlmann, Martin; Marschollek, Michael; Haux, Reinhold

    2013-01-01

    Against the background of demographic change and a diminishing care workforce there is a growing need for personalized decision support. The aim of this paper is to describe the design and implementation of the standards-based personal intelligent care systems (PICS). PICS makes consistent use of internationally accepted standards such as the Health Level 7 (HL7) Arden syntax for the representation of the decision logic, HL7 Clinical Document Architecture for information representation and is based on a open-source service-oriented architecture framework and a business process management system. Its functionality is exemplified for the application scenario of a patient suffering from congestive heart failure. Several vital signs sensors provide data for the decision support system, and a number of flexible communication channels are available for interaction with patient or caregiver. PICS is a standards-based, open and flexible system enabling personalized decision support. Further development will include the implementation of components on small computers and sensor nodes.

  4. Distributed sensor architecture for intelligent control that supports quality of control and quality of service.

    Science.gov (United States)

    Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Simarro, Raúl; Benet, Ginés

    2015-02-25

    This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS) parameters and the optimization of control using Quality of Control (QoC) parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS) communication standard as proposed by the Object Management Group (OMG). As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl) has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC) system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems.

  5. Distributed Sensor Architecture for Intelligent Control that Supports Quality of Control and Quality of Service

    Directory of Open Access Journals (Sweden)

    Jose-Luis Poza-Lujan

    2015-02-01

    Full Text Available This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS parameters and the optimization of control using Quality of Control (QoC parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS communication standard as proposed by the Object Management Group (OMG. As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems.

  6. Intelligent Design in the Public School Science Classroom

    Science.gov (United States)

    Hickey, Wesley D.

    2013-01-01

    The ongoing battle to insert intelligent causes into the science classrooms has been met with political approval and scientific rejection. Administrators in the United States need to be aware of the law related to creationism and intelligent design in order to lead in local curricular battles. Although unlikely to appease the ID proponents, there…

  7. New Type Multielectrode Capacitance Sensor for Liquid Level

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y R [China University of Petroleum (Huadong), Qingdao (China); Shi, A P [Shandong University of Science and Technology, Qingdao (China); Chen, G Q [Shandong University of Science and Technology, Qingdao (China); Chang, Y Y [Shandong University of Science and Technology, Qingdao (China); Hang, Z [Shandong University of Science and Technology, Qingdao (China); Liu, B M [Binzhou University, Binzhou (China)

    2006-10-15

    This paper introduces the design of a new type multielectrode capacitance sensor for liquid level. The system regards electric field sensor MC33794 as the core and applies microcontroller MC9S12DJ128 to realize intelligent liquid level monitoring system, which overcomes the disadvantages of the traditional capacitance sensor, improves on the anti-jamming ability and the measurement precision and simplifies the system structure. Finally, the paper sums up the design of the system.

  8. Should Intelligent Design Be Included in Today's Public School Curriculums?

    Science.gov (United States)

    Costley, Kevin C.; Killins, Pam

    2010-01-01

    The controversial concept of evolution makes up only a small part of the science curriculum stated in Arkansas. During the past few years, the curriculum topic of "Intelligent Design" has caught the attention of many science teachers in the public schools. The Intelligent Design Movement has been successful in attracting the attention of…

  9. Polymer temperature sensor for textronic applications

    International Nuclear Information System (INIS)

    Bielska, Sylwia; Sibinski, Maciej; Lukasik, Andrzej

    2009-01-01

    The aim of this paper is to present research work of designing prototype textile sensors dedicated to human body temperature measurements. The sensor construction was especially elaborated to be integrated into protective clothing as a practical realization of intelligent e-textile concept. These types of sensors should be easily incorporable in clothing structures without disturbance of fabric flexibility (Carpi and De Rossi). The construction of the new type functional sensor testing is presented and illustrated by its parameters and thermal characteristics.

  10. Using Wireless Sensor Networks to Achieve Intelligent Monitoring for High-Temperature Gas-Cooled Reactor

    Directory of Open Access Journals (Sweden)

    Jianghai Li

    2017-01-01

    Full Text Available High-temperature gas-cooled reactors (HTGR can incorporate wireless sensor network (WSN technology to improve safety and economic competitiveness. WSN has great potential in monitoring the equipment and processes within nuclear power plants (NPPs. This technology not only reduces the cost of regular monitoring but also enables intelligent monitoring. In intelligent monitoring, large sets of heterogeneous data collected by the WSN can be used to optimize the operation and maintenance of the HTGR. In this paper, WSN-based intelligent monitoring schemes that are specific for applications of HTGR are proposed. Three major concerns regarding wireless technology in HTGR are addressed: wireless devices interference, cybersecurity of wireless networks, and wireless standards selected for wireless platform. To process nonlinear and non-Gaussian data obtained by WSN for fault diagnosis, novel algorithms combining Kernel Entropy Component Analysis (KECA and support vector machine (SVM are developed.

  11. An Occupancy Based Cyber-Physical System Design for Intelligent Building Automation

    Directory of Open Access Journals (Sweden)

    Kottarathil Eashy Mary Reena

    2015-01-01

    Full Text Available Cyber-physical system (CPS includes the class of Intelligent Building Automation System (IBAS which increasingly utilizes advanced technologies for long term stability, economy, longevity, and user comfort. However, there are diverse issues associated with wireless interconnection of the sensors, controllers, and power consuming physical end devices. In this paper, a novel architecture of CPS for wireless networked IBAS with priority-based access mechanism is proposed for zones in a large building with dynamically varying occupancy. Priority status of zones based on occupancy is determined using fuzzy inference engine. Nondominated Sorting Genetic Algorithm-II (NSGA-II is used to solve the optimization problem involving conflicting demands of minimizing total energy consumption and maximizing occupant comfort levels in building. An algorithm is proposed for power scheduling in sensor nodes to reduce their energy consumption. Wi-Fi with Elimination-Yield Nonpreemptive Multiple Access (EY-NPMA scheme is used for assigning priority among nodes for wireless channel access. Controller design techniques are also proposed for ensuring the stability of the closed loop control of IBAS in the presence of packet dropouts due to unreliable network links.

  12. An Intelligent Automation Platform for Rapid Bioprocess Design.

    Science.gov (United States)

    Wu, Tianyi; Zhou, Yuhong

    2014-08-01

    Bioprocess development is very labor intensive, requiring many experiments to characterize each unit operation in the process sequence to achieve product safety and process efficiency. Recent advances in microscale biochemical engineering have led to automated experimentation. A process design workflow is implemented sequentially in which (1) a liquid-handling system performs high-throughput wet lab experiments, (2) standalone analysis devices detect the data, and (3) specific software is used for data analysis and experiment design given the user's inputs. We report an intelligent automation platform that integrates these three activities to enhance the efficiency of such a workflow. A multiagent intelligent architecture has been developed incorporating agent communication to perform the tasks automatically. The key contribution of this work is the automation of data analysis and experiment design and also the ability to generate scripts to run the experiments automatically, allowing the elimination of human involvement. A first-generation prototype has been established and demonstrated through lysozyme precipitation process design. All procedures in the case study have been fully automated through an intelligent automation platform. The realization of automated data analysis and experiment design, and automated script programming for experimental procedures has the potential to increase lab productivity. © 2013 Society for Laboratory Automation and Screening.

  13. An Intelligent Automation Platform for Rapid Bioprocess Design

    Science.gov (United States)

    Wu, Tianyi

    2014-01-01

    Bioprocess development is very labor intensive, requiring many experiments to characterize each unit operation in the process sequence to achieve product safety and process efficiency. Recent advances in microscale biochemical engineering have led to automated experimentation. A process design workflow is implemented sequentially in which (1) a liquid-handling system performs high-throughput wet lab experiments, (2) standalone analysis devices detect the data, and (3) specific software is used for data analysis and experiment design given the user’s inputs. We report an intelligent automation platform that integrates these three activities to enhance the efficiency of such a workflow. A multiagent intelligent architecture has been developed incorporating agent communication to perform the tasks automatically. The key contribution of this work is the automation of data analysis and experiment design and also the ability to generate scripts to run the experiments automatically, allowing the elimination of human involvement. A first-generation prototype has been established and demonstrated through lysozyme precipitation process design. All procedures in the case study have been fully automated through an intelligent automation platform. The realization of automated data analysis and experiment design, and automated script programming for experimental procedures has the potential to increase lab productivity. PMID:24088579

  14. Intelligent Balanced Device and its Sensing System for Beam Pumping Units

    Directory of Open Access Journals (Sweden)

    Hangxin WEI

    2014-11-01

    Full Text Available In order to save the energy of the beam pumping unit, the intelligent balanced device was developed. The device can adjust the position of the balanced-block automatically by the single chip microcomputer controller, and the fuzzy PD control algorithm was used to control the servo motor of the device. Since some signals should be inputted into the intelligent balanced device to calculate the balanced index of the pumping unit, the signals sensing system were designed. The sensing system includes the electric current sensor and voltage sensor of the main motor, the displacement sensor and the force sensor of the horse head. The sensing network has three layers: slave station, relay station and master station. The data transmission between them is based on ZigBee and GPRS method which can adapt the environment of the oil field. The results of application show that the intelligent balanced device and its sensing system can have the effect of reducing the power consumption, working reliability and communication efficiently.

  15. Process sensors characterization based on noise analysis technique and artificial intelligence

    International Nuclear Information System (INIS)

    Mesquita, Roberto N. de; Perillo, Sergio R.P.; Santos, Roberto C. dos

    2005-01-01

    The time response of pressure and temperature sensors from the Reactor Protection System (RPS) is a requirement that must be satisfied in nuclear power plants, furthermore is an indicative of its degradation and its remaining life. The nuclear power industry and others have been eager to implement smart sensor technologies and digital instrumentation concepts to reduce manpower and effort currently spent on testing and calibration. Process parameters fluctuations during normal operation of a reactor are caused by random variations in neutron flux, heat transfer and other sources. The output sensor noise can be considered as the response of the system to an input representing the statistical nature of the underlying process which can be modeled using a time series model. Since the noise signal measurements are influenced by many factors, such as location of sensors, extraneous noise interference, and randomness in temperature and pressure fluctuation - the quantitative estimate of the time response using autoregressive noise modeling is subject to error. This technique has been used as means of sensor monitoring. In this work a set of pressure sensors installed in one experimental loop adapted from a flow calibration setup is used to test and analyze signals in a new approach using artificial intelligence techniques. A set of measurements of dynamic signals in different experimental conditions is used to distinguish and identify underlying process sources. A methodology that uses Blind Separation of Sources with a neural networks scheme is being developed to improve time response estimate reliability in noise analysis. (author)

  16. Process sensors characterization based on noise analysis technique and artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Roberto N. de; Perillo, Sergio R.P.; Santos, Roberto C. dos [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: rnavarro@ipen.br; sperillo@ipen.br; rcsantos@ipen.br

    2005-07-01

    The time response of pressure and temperature sensors from the Reactor Protection System (RPS) is a requirement that must be satisfied in nuclear power plants, furthermore is an indicative of its degradation and its remaining life. The nuclear power industry and others have been eager to implement smart sensor technologies and digital instrumentation concepts to reduce manpower and effort currently spent on testing and calibration. Process parameters fluctuations during normal operation of a reactor are caused by random variations in neutron flux, heat transfer and other sources. The output sensor noise can be considered as the response of the system to an input representing the statistical nature of the underlying process which can be modeled using a time series model. Since the noise signal measurements are influenced by many factors, such as location of sensors, extraneous noise interference, and randomness in temperature and pressure fluctuation - the quantitative estimate of the time response using autoregressive noise modeling is subject to error. This technique has been used as means of sensor monitoring. In this work a set of pressure sensors installed in one experimental loop adapted from a flow calibration setup is used to test and analyze signals in a new approach using artificial intelligence techniques. A set of measurements of dynamic signals in different experimental conditions is used to distinguish and identify underlying process sources. A methodology that uses Blind Separation of Sources with a neural networks scheme is being developed to improve time response estimate reliability in noise analysis. (author)

  17. Search for design intelligence: A field study on the role of emotional intelligence in architectural design studios

    OpenAIRE

    Nazidizaji, Sajjad; Tomé, Ana; Regateiro, Francisco

    2017-01-01

    The design studio is the core of the architecture curriculum. Interpersonal interactions have a key role during the processes of design and critique. The influence of emotional intelligence (EQ) on interpersonal communication skills has been widely proven. This study examines the correlation between EQ and architectural design competence. To achieve this, 78 architecture students were selected via a simple random sampling method and tested using an EQ test questionnaire developed by Bradbury ...

  18. Intelligent Hardware-Enabled Sensor and Software Safety and Health Management for Autonomous UAS

    Science.gov (United States)

    Rozier, Kristin Y.; Schumann, Johann; Ippolito, Corey

    2015-01-01

    Unmanned Aerial Systems (UAS) can only be deployed if they can effectively complete their mission and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. We propose to design a real-time, onboard system health management (SHM) capability to continuously monitor essential system components such as sensors, software, and hardware systems for detection and diagnosis of failures and violations of safety or performance rules during the ight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and software signals; (2) signal analysis, preprocessing, and advanced on-the- y temporal and Bayesian probabilistic fault diagnosis; (3) an unobtrusive, lightweight, read-only, low-power hardware realization using Field Programmable Gate Arrays (FPGAs) in order to avoid overburdening limited computing resources or costly re-certi cation of ight software due to instrumentation. No currently available SHM capabilities (or combinations of currently existing SHM capabilities) come anywhere close to satisfying these three criteria yet NASA will require such intelligent, hardwareenabled sensor and software safety and health management for introducing autonomous UAS into the National Airspace System (NAS). We propose a novel approach of creating modular building blocks for combining responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. Our proposed research program includes both developing this novel approach and demonstrating its capabilities using the NASA Swift UAS as a demonstration platform.

  19. 基于红外光电传感器的智能寻迹小车设计%Design of intelligent-searching-track race car based on infrared photoelectric sensor

    Institute of Scientific and Technical Information of China (English)

    胡媛媛; 邓世建; 王书婧

    2011-01-01

    寻迹小车可以看作是缩小化的智能汽车,对智能汽车的研究有一定的借鉴意义.采用飞思卡尔公司的MC9S12DG128B作为核心控制芯片,设计了通过红外光电传惠器检测路径信息的智能寻迹小车.该系统由处理器模块、路径识别模块、电机驱动模块、舵机驱动模块、车速检测模块、液晶显示模块与电源模块等组成.实际应用表明,该小车可以在专门设计的跑道上快速平稳地实现寻迹功能.%The tracing car can be regarded as the contractible intelligent vehicle. Its research has a certain significance for the intelligent car. By using Freescale company's devices MC9S12DG128B as the core control chip, this paper designed the intelligent tracing car to detection route information through the infrared photoelectric sensor. The system includes processor module, path recognition module, motor driver module, servo driver module, speed detection module, LCD module,power supply module and so on. The practical application shows that the car can rapidly and smoothly realize the tracing function in the runway of the special design.

  20. A Research Review on the Key Technologies of Intelligent Design for Customized Products

    Directory of Open Access Journals (Sweden)

    Shuyou Zhang

    2017-10-01

    Full Text Available The development of technologies such as big data and cyber-physical systems (CPSs has increased the demand for product design. Product digital design involves completing the product design process using advanced digital technologies such as geometry modeling, kinematic and dynamic simulation, multi-disciplinary coupling, virtual assembly, virtual reality (VR, multi-objective optimization (MOO, and human-computer interaction. The key technologies of intelligent design for customized products include: a description and analysis of customer requirements (CRs, product family design (PFD for the customer base, configuration and modular design for customized products, variant design for customized products, and a knowledge push for product intelligent design. The development trends in intelligent design for customized products include big-data-driven intelligent design technology for customized products and customized design tools and applications. The proposed method is verified by the design of precision computer numerical control (CNC machine tools.

  1. Intelligent Furniture Design in the Elderly Based on the Cognitive Situation

    Directory of Open Access Journals (Sweden)

    Lu Xinhui

    2017-01-01

    Full Text Available This paper analyzes the present situation of Chinese elderly furniture and the elderly has cognitive characteristics that consciousness experiences and recognitions recede, cognitive fuzzy from Information processing. Expounds the elderly intelligent furniture design elements: functional elements required the elderly furniture is easy and simple to handle; Size and shape elements should be biased towards low, light type, reduce multifunction or fold function; colour collocation should use low lightness and low purity natural materials; Emotional elements design should meet the demand of the elderly social emotion. Introduction of intelligent furniture make up the cognitive decline in the elderly, Furniture judge the elderly demand by the inductor, Supplement by hardware control module to solve the special needs of the elderly life. Build design thinking based on the cognitive process and explore the elderly intelligent furniture design. This paper discusses the design process, for example and concludes the design rules: 1.The Operating Experience Pleasure. It is the height matching of user expectation and furniture function. Pleasure in the design of the operating parts mainly embodies in two aspects. Firstly, the Fitts Law; Secondly, it’s The Movement Optimization. 2.”Unconscious” Design. Intelligent furniture need to delete unnecessary operation module, make it easy to understand, furniture function and cognitive scene match with each other. 3. Modularity Design. Modularization can indirectly regulate the scale and specification of the design. Under the premise of individual character, customization, the compression of the cost, Designer should make the elderly intelligent furniture consistent with the user action.4.Design Consistency. The consistency principle reflected in the appearance, color and operation way consistency.

  2. The awareness of Privacy issues in Ambient Intelligence

    Directory of Open Access Journals (Sweden)

    Mar LÓPEZ

    2015-03-01

    Full Text Available Ambient Intelligence (AmI involves extensive and invisible integration of computer technologies in people´s daily lives: Smart Sensors, Smart Phones, Tablets, Wireless Sensor Network (Wi-Fi, Bluetooth, NFC, RFID, etc., Internet (Facebook, WhatsApp, Twitter, You Tube, Blogs, Cloud Computing, etc.. The Intelligent Environments (IE collect and process a massive amount of person-related and sensitive information.The aim of this work is to show the awareness of privacy issues in AmI and to identify the relevant design issues that should be addressed in order to provide privacy in the design of Ambient Intelligence’s applications focused in the user´s domain and involved technologies. We propose a conceptual framework in order to enforce privacy that takes care of interaction between technologies and devices, users and application´s domain with different modules that contain different steps relating to the privacy policies.

  3. Computer-Aided Sensor Development Focused on Security Issues.

    Science.gov (United States)

    Bialas, Andrzej

    2016-05-26

    The paper examines intelligent sensor and sensor system development according to the Common Criteria methodology, which is the basic security assurance methodology for IT products and systems. The paper presents how the development process can be supported by software tools, design patterns and knowledge engineering. The automation of this process brings cost-, quality-, and time-related advantages, because the most difficult and most laborious activities are software-supported and the design reusability is growing. The paper includes a short introduction to the Common Criteria methodology and its sensor-related applications. In the experimental section the computer-supported and patterns-based IT security development process is presented using the example of an intelligent methane detection sensor. This process is supported by an ontology-based tool for security modeling and analyses. The verified and justified models are transferred straight to the security target specification representing security requirements for the IT product. The novelty of the paper is to provide a patterns-based and computer-aided methodology for the sensors development with a view to achieving their IT security assurance. The paper summarizes the validation experiment focused on this methodology adapted for the sensors system development, and presents directions of future research.

  4. 16th International Conference on Intelligent Systems Design and Applications

    CERN Document Server

    Abraham, Ajith; Gamboa, Dorabela; Novais, Paulo

    2017-01-01

    This book comprises selected papers from the 16th International Conference on Intelligent Systems Design and Applications (ISDA’16), which was held in Porto, Portugal from December 1 to16, 2016. ISDA 2016 was jointly organized by the Portugual-based Instituto Superior de Engenharia do Porto and the US-based Machine Intelligence Research Labs (MIR Labs) to serve as a forum for the dissemination of state-of-the-art research and development of intelligent systems, intelligent technologies, and applications. The papers included address a wide variety of themes ranging from theories to applications of intelligent systems and computational intelligence area and provide a valuable resource for students and researchers in academia and industry alike. .

  5. A Survey on Optimal Signal Processing Techniques Applied to Improve the Performance of Mechanical Sensors in Automotive Applications

    Science.gov (United States)

    Hernandez, Wilmar

    2007-01-01

    In this paper a survey on recent applications of optimal signal processing techniques to improve the performance of mechanical sensors is made. Here, a comparison between classical filters and optimal filters for automotive sensors is made, and the current state of the art of the application of robust and optimal control and signal processing techniques to the design of the intelligent (or smart) sensors that today's cars need is presented through several experimental results that show that the fusion of intelligent sensors and optimal signal processing techniques is the clear way to go. However, the switch between the traditional methods of designing automotive sensors and the new ones cannot be done overnight because there are some open research issues that have to be solved. This paper draws attention to one of the open research issues and tries to arouse researcher's interest in the fusion of intelligent sensors and optimal signal processing techniques.

  6. Attitude Determination Method by Fusing Single Antenna GPS and Low Cost MEMS Sensors Using Intelligent Kalman Filter Algorithm

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2017-01-01

    Full Text Available For meeting the demands of cost and size for micronavigation system, a combined attitude determination approach with sensor fusion algorithm and intelligent Kalman filter (IKF on low cost Micro-Electro-Mechanical System (MEMS gyroscope, accelerometer, and magnetometer and single antenna Global Positioning System (GPS is proposed. The effective calibration method is performed to compensate the effect of errors in low cost MEMS Inertial Measurement Unit (IMU. The different control strategies fusing the MEMS multisensors are designed. The yaw angle fusing gyroscope, accelerometer, and magnetometer algorithm is estimated accurately under GPS failure and unavailable sideslip situations. For resolving robust control and characters of the uncertain noise statistics influence, the high gain scale of IKF is adjusted by fuzzy controller in the transition process and steady state to achieve faster convergence and accurate estimation. The experiments comparing different MEMS sensors and fusion algorithms are implemented to verify the validity of the proposed approach.

  7. Coupling artificial intelligence and numerical computation for engineering design (Invited paper)

    Science.gov (United States)

    Tong, S. S.

    1986-01-01

    The possibility of combining artificial intelligence (AI) systems and numerical computation methods for engineering designs is considered. Attention is given to three possible areas of application involving fan design, controlled vortex design of turbine stage blade angles, and preliminary design of turbine cascade profiles. Among the AI techniques discussed are: knowledge-based systems; intelligent search; and pattern recognition systems. The potential cost and performance advantages of an AI-based design-generation system are discussed in detail.

  8. Design of electrical capacitance tomography sensors

    International Nuclear Information System (INIS)

    Yang, Wuqiang

    2010-01-01

    Electrical capacitance tomography (ECT) has been developed since the late 1980s for visualization and measurement of a permittivity distribution in a cross section using a multi-electrode capacitance sensor. While the hardware and image reconstruction algorithms for ECT have been published extensively and the topics have been reviewed, few papers have been published to discuss ECT sensors and the design issues, which are crucial for a specific application. This paper will briefly discuss the principles of ECT sensors, but mostly will address key issues for ECT sensor design, with reference to some existing ECT sensors as a good understanding of the key issues would help optimization of the design of ECT sensors. The key issues to be discussed include the number and length of electrodes, the use of external and internal electrodes, implications of wall thickness, earthed screens (including the outer screen, axial end screens and radial screens), driven guard electrodes, dealing with high temperature and high pressure, twin planes for velocity measurement by cross correlation and limitations in sensor diameter. While conventional ECT sensors are circular with the electrodes in a single plane or in twin planes, some non-conventional ECT sensors, such as square, conical and 3D sensors, will also be discussed. As a practical guidance, the procedure to fabricate an ECT sensor will be given. In the end are summary and discussion on future challenges, including re-engineering of ECT sensors. (topical review)

  9. Design of a sensor network system with a self-maintenance function for homeland security applications

    International Nuclear Information System (INIS)

    Fujiwara, Takeshi; Takahashi, Hiroyuki; Iyomoto, Naoko

    2008-01-01

    In this study, we develop a new concept of a robust wireless sensor network for homeland security applications. The sensor system consists of intelligent radiation sensors that can communicate each other through the wireless network. This structure can cover a wide area with a flexible geometry which is suitable for detecting a moving object with a detectable radiation source. Also, it has a tolerance against both the partial node's failure and packet errors; realized by a Self-Maintenance function. The Self-maintenance function is a function that enables an artifact to find, diagnosis and fix the trouble automatically and maintain itself. So far some approaches have been tried to realize robust monitoring system by applying the idea of multiplex system, based on ''2 out of 3'', but this requires a large amount of the hardware and is not suitable for sensor network systems. We designed a sensor network system with Self-Maintenance function based on qualitative reasoning technique for robust wireless sensor network system, and an instrument network based on ZigBee has been set up for investigations. CsI(Tl) gamma-ray detectors are used as sensors. The network system picks up correlation signals from sensors even some of sensors send false signals, which can be used as a reliable detection system for practical use. (author)

  10. Sherlock Holmes and intelligent design.

    Science.gov (United States)

    McCuskey, Brian

    2012-09-01

    This article examines how both scientists and creationists, as they argue over intelligent design, invoke and quote the fictional character of Sherlock Holmes to support their opposed positions. Rhetorical analysis ofHolmes's repeated contributions to the debate reveals not only how the argument for design falls apart, but also how the argument for Darwin compromises itself when following the detective onto shaky logical ground. The sciences and the humanities must work together to combat the corrosive influence ofpseudoscientific reasoning on our students and the general public; this article contributes to that joint enterprise.

  11. On Intelligent Design and Planning Method of Process Route Based on Gun Breech Machining Process

    Science.gov (United States)

    Hongzhi, Zhao; Jian, Zhang

    2018-03-01

    The paper states an approach of intelligent design and planning of process route based on gun breech machining process, against several problems, such as complex machining process of gun breech, tedious route design and long period of its traditional unmanageable process route. Based on gun breech machining process, intelligent design and planning system of process route are developed by virtue of DEST and VC++. The system includes two functional modules--process route intelligent design and its planning. The process route intelligent design module, through the analysis of gun breech machining process, summarizes breech process knowledge so as to complete the design of knowledge base and inference engine. And then gun breech process route intelligently output. On the basis of intelligent route design module, the final process route is made, edited and managed in the process route planning module.

  12. Fiscal 2000 achievement report on the venture business assisting type regional consortium - Minor business creation base type. Development of 1-chip multifunctional motion sensor and its application to intelligent module; 2000 nendo chiiki consortium kenkyu kaihatsu jigyo seika hokokusho. 1 chip gata takino undo sensor no kaihatsu to intelligent module eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The aim is to embody an intelligent micromodule for sensing bodily motions. For this purpose, technologies were established for high accuracy/high aspect ratio etching of crystals and for detecting angular velocity and acceleration, and a 1-chip multifunctional motion sensor was developed. The results of the efforts are briefly described below. A 1-chip multifunctional motion sensor (device size: 16 times 6 times 0.3mm) was developed, capable of simultaneously detecting uniaxial acceleration and uniaxial angular velocity, and an operating circuit was established for the detection. Using the 1-chip multifunctional motion sensor, a wrist watch type intelligent module was developed, capable of discriminating between various patterns of human behavior (walking, jogging, desk work, etc.). An intelligent module and the host computer were connected by wire or radio enabling the real-time observation of a patient's kinetic behavior, and this helped develop an application program allowing the quantification of the rate of recovery of patients undergoing rehabilitation. Using an intelligent module, an application program was developed enabling a laryngeal patient to establish communication by a physical action in case of emergency. (NEDO)

  13. An intelligent interlock design support system

    International Nuclear Information System (INIS)

    Hayashi, Toshifumi; Kamiyama, Masahiko

    1990-01-01

    This paper presents an intelligent interlock design support system, called Handy. BWR plant interlocks have been designed on a conventional CAD system operating on a mini-computer based time sharing system. However, its ability to support interlock designers is limited, mainly due to the system not being capable of manipulating the interlock logic. Handy improves the design efficiency with consistent manipulation of the logic and drawings, interlock simulation, versatile database management, object oriented user interface, high resolution high speed graphics, and automatic interlock outlining with a design support expert system. Handy is now being tested by designers, and is expected to greatly contribute to their efficiency. (author)

  14. Wearable sensors in intelligent clothing for measuring human body temperature based on optical fiber Bragg grating.

    Science.gov (United States)

    Li, Hongqiang; Yang, Haijing; Li, Enbang; Liu, Zhihui; Wei, Kejia

    2012-05-21

    Measuring body temperature is considerably important to physiological studies as well as clinical investigations. In recent years, numerous observations have been reported and various methods of measurement have been employed. The present paper introduces a novel wearable sensor in intelligent clothing for human body temperature measurement. The objective is the integration of optical fiber Bragg grating (FBG)-based sensors into functional textiles to extend the capabilities of wearable solutions for body temperature monitoring. In addition, the temperature sensitivity is 150 pm/°C, which is almost 15 times higher than that of a bare FBG. This study combines large and small pipes during fabrication to implant FBG sensors into the fabric. The law of energy conservation of the human body is considered in determining heat transfer between the body and its clothing. The mathematical model of heat transmission between the body and clothed FBG sensors is studied, and the steady-state thermal analysis is presented. The simulation results show the capability of the material to correct the actual body temperature. Based on the skin temperature obtained by the weighted average method, this paper presents the five points weighted coefficients model using both sides of the chest, armpits, and the upper back for the intelligent clothing. The weighted coefficients of 0.0826 for the left chest, 0.3706 for the left armpit, 0.3706 for the right armpit, 0.0936 for the upper back, and 0.0826 for the right chest were obtained using Cramer's Rule. Using the weighting coefficient, the deviation of the experimental result was ± 0.18 °C, which favors the use for clinical armpit temperature monitoring. Moreover, in special cases when several FBG sensors are broken, the weighted coefficients of the other sensors could be changed to obtain accurate body temperature.

  15. APPROACH ON INTELLIGENT OPTIMIZATION DESIGN BASED ON COMPOUND KNOWLEDGE

    Institute of Scientific and Technical Information of China (English)

    Yao Jianchu; Zhou Ji; Yu Jun

    2003-01-01

    A concept of an intelligent optimal design approach is proposed, which is organized by a kind of compound knowledge model. The compound knowledge consists of modularized quantitative knowledge, inclusive experience knowledge and case-based sample knowledge. By using this compound knowledge model, the abundant quantity information of mathematical programming and the symbolic knowledge of artificial intelligence can be united together in this model. The intelligent optimal design model based on such a compound knowledge and the automatically generated decomposition principles based on it are also presented. Practically, it is applied to the production planning, process schedule and optimization of production process of a refining & chemical work and a great profit is achieved. Specially, the methods and principles are adaptable not only to continuous process industry, but also to discrete manufacturing one.

  16. Design, experiments and simulation of voltage transformers on the basis of a differential input D-dot sensor.

    Science.gov (United States)

    Wang, Jingang; Gao, Can; Yang, Jie

    2014-07-17

    Currently available traditional electromagnetic voltage sensors fail to meet the measurement requirements of the smart grid, because of low accuracy in the static and dynamic ranges and the occurrence of ferromagnetic resonance attributed to overvoltage and output short circuit. This work develops a new non-contact high-bandwidth voltage measurement system for power equipment. This system aims at the miniaturization and non-contact measurement of the smart grid. After traditional D-dot voltage probe analysis, an improved method is proposed. For the sensor to work in a self-integrating pattern, the differential input pattern is adopted for circuit design, and grounding is removed. To prove the structure design, circuit component parameters, and insulation characteristics, Ansoft Maxwell software is used for the simulation. Moreover, the new probe was tested on a 10 kV high-voltage test platform for steady-state error and transient behavior. Experimental results ascertain that the root mean square values of measured voltage are precise and that the phase error is small. The D-dot voltage sensor not only meets the requirement of high accuracy but also exhibits satisfactory transient response. This sensor can meet the intelligence, miniaturization, and convenience requirements of the smart grid.

  17. Games and Entertainment in Ambient Intelligence Environments

    NARCIS (Netherlands)

    Nijholt, Antinus; Reidsma, Dennis; Poppe, Ronald Walter; Aghajan, H.; López-Cózar Delgado, R.; Augusto, J.C.

    2009-01-01

    In future ambient intelligence (AmI) environments we assume intelligence embedded in the environment and its objects (floors, furniture, mobile robots). These environments support their human inhabitants in their activities and interactions by perceiving them through sensors (proximity sensors,

  18. Designing with computational intelligence

    CERN Document Server

    Lopes, Heitor; Mourelle, Luiza

    2017-01-01

    This book discusses a number of real-world applications of computational intelligence approaches. Using various examples, it demonstrates that computational intelligence has become a consolidated methodology for automatically creating new competitive solutions to complex real-world problems. It also presents a concise and efficient synthesis of different systems using computationally intelligent techniques.

  19. Sensor Systems for Vehicle Environment Perception in a Highway Intelligent Space System

    Science.gov (United States)

    Tang, Xiaofeng; Gao, Feng; Xu, Guoyan; Ding, Nenggen; Cai, Yao; Ma, Mingming; Liu, Jianxing

    2014-01-01

    A Highway Intelligent Space System (HISS) is proposed to study vehicle environment perception in this paper. The nature of HISS is that a space sensors system using laser, ultrasonic or radar sensors are installed in a highway environment and communication technology is used to realize the information exchange between the HISS server and vehicles, which provides vehicles with the surrounding road information. Considering the high-speed feature of vehicles on highways, when vehicles will be passing a road ahead that is prone to accidents, the vehicle driving state should be predicted to ensure drivers have road environment perception information in advance, thereby ensuring vehicle driving safety and stability. In order to verify the accuracy and feasibility of the HISS, a traditional vehicle-mounted sensor system for environment perception is used to obtain the relative driving state. Furthermore, an inter-vehicle dynamics model is built and model predictive control approach is used to predict the driving state in the following period. Finally, the simulation results shows that using the HISS for environment perception can arrive at the same results detected by a traditional vehicle-mounted sensors system. Meanwhile, we can further draw the conclusion that using HISS to realize vehicle environment perception can ensure system stability, thereby demonstrating the method's feasibility. PMID:24834907

  20. Conceptual design of 3D integrated pixel sensors for the innermost layer of the ILC vertex detector

    International Nuclear Information System (INIS)

    Fu, Y; Hu-Guo, C; Dorokhov, A; Zhao, W; Hu, Y; Torheim, O

    2011-01-01

    The paper presents a design of CMOS Pixel Sensor (CPS) using the vertical integration technology (3DIT), expected to alleviate the most essential limitations of 2D-CPS. Our objective is to develop an intelligent architecture in order to meet the requirements of the innermost layer of the International Linear Collider (ILC) vertex detectors, which are particularly demanding in spatial resolution of less than 3 μm and associated frame readout time of 10 μs. The sensor, with a pixel pitch of 23 μm, will be composed of 3-tiers Integrated Circuits (IC) with different functionalities: detection with in pixel analogue processing, pixel-level 3-bit Analogue to Digital Conversion (ADC) and fast parallel sparse readout.

  1. Intelligent Monitoring System with High Temperature Distributed Fiberoptic Sensor for Power Plant Combustion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Kwang Y. Lee; Stuart S. Yin; Andre Boehman

    2006-09-26

    The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, we have set up a dedicated high power, ultrafast laser system for fabricating in-fiber gratings in harsh environment optical fibers, successfully fabricated gratings in single crystal sapphire fibers by the high power laser system, and developed highly sensitive long period gratings (lpg) by electric arc. Under Task 2, relevant mathematical modeling studies of NOx formation in practical combustors have been completed. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we have investigated a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. Given a set of empirical data with no analytic expression, we first developed an analytic description and then extended that model along a single axis.

  2. Networked sensors for the combat forces

    Science.gov (United States)

    Klager, Gene

    2004-11-01

    Real-time and detailed information is critical to the success of ground combat forces. Current manned reconnaissance, surveillance, and target acquisition (RSTA) capabilities are not sufficient to cover battlefield intelligence gaps, provide Beyond-Line-of-Sight (BLOS) targeting, and the ambush avoidance information necessary for combat forces operating in hostile situations, complex terrain, and conducting military operations in urban terrain. This paper describes a current US Army program developing advanced networked unmanned/unattended sensor systems to survey these gaps and provide the Commander with real-time, pertinent information. Networked Sensors for the Combat Forces plans to develop and demonstrate a new generation of low cost distributed unmanned sensor systems organic to the RSTA Element. Networked unmanned sensors will provide remote monitoring of gaps, will increase a unit"s area of coverage, and will provide the commander organic assets to complete his Battlefield Situational Awareness (BSA) picture for direct and indirect fire weapons, early warning, and threat avoidance. Current efforts include developing sensor packages for unmanned ground vehicles, small unmanned aerial vehicles, and unattended ground sensors using advanced sensor technologies. These sensors will be integrated with robust networked communications and Battle Command tools for mission planning, intelligence "reachback", and sensor data management. The network architecture design is based on a model that identifies a three-part modular design: 1) standardized sensor message protocols, 2) Sensor Data Management, and 3) Service Oriented Architecture. This simple model provides maximum flexibility for data exchange, information management and distribution. Products include: Sensor suites optimized for unmanned platforms, stationary and mobile versions of the Sensor Data Management Center, Battle Command planning tools, networked communications, and sensor management software. Details

  3. Designing User Centred Intelligent Classroom Lighting

    DEFF Research Database (Denmark)

    Georgieva, Diana Zdravkova; Schledermann, Kathrine Marie; Nielsen, Stine Maria Louring

    2018-01-01

    Through a case study, this paper presents a new way of designing intelligent classroom lighting to meet the users’ needs. A mix of ethnographic methods (field observations and interviews) were used to investigate the everyday learning activities at a middle school in Copenhagen in order...... to determine how lighting can support the learning environment. Based on the investigations, lighting design criteria and three predefined lighting scenes are proposed as a new design for meeting the needs of students and teachers during three types of activities. The scenes focus on smartboard visibility...

  4. The Design of Artificial Intelligence Robot Based on Fuzzy Logic Controller Algorithm

    Science.gov (United States)

    Zuhrie, M. S.; Munoto; Hariadi, E.; Muslim, S.

    2018-04-01

    Artificial Intelligence Robot is a wheeled robot driven by a DC motor that moves along the wall using an ultrasonic sensor as a detector of obstacles. This study uses ultrasonic sensors HC-SR04 to measure the distance between the robot with the wall based ultrasonic wave. This robot uses Fuzzy Logic Controller to adjust the speed of DC motor. When the ultrasonic sensor detects a certain distance, sensor data is processed on ATmega8 then the data goes to ATmega16. From ATmega16, sensor data is calculated based on Fuzzy rules to drive DC motor speed. The program used to adjust the speed of a DC motor is CVAVR program (Code Vision AVR). The readable distance of ultrasonic sensor is 3 cm to 250 cm with response time 0.5 s. Testing of robots on walls with a setpoint value of 9 cm to 10 cm produce an average error value of -12% on the wall of L, -8% on T walls, -8% on U wall, and -1% in square wall.

  5. Computer-Aided Sensor Development Focused on Security Issues

    Directory of Open Access Journals (Sweden)

    Andrzej Bialas

    2016-05-01

    Full Text Available The paper examines intelligent sensor and sensor system development according to the Common Criteria methodology, which is the basic security assurance methodology for IT products and systems. The paper presents how the development process can be supported by software tools, design patterns and knowledge engineering. The automation of this process brings cost-, quality-, and time-related advantages, because the most difficult and most laborious activities are software-supported and the design reusability is growing. The paper includes a short introduction to the Common Criteria methodology and its sensor-related applications. In the experimental section the computer-supported and patterns-based IT security development process is presented using the example of an intelligent methane detection sensor. This process is supported by an ontology-based tool for security modeling and analyses. The verified and justified models are transferred straight to the security target specification representing security requirements for the IT product. The novelty of the paper is to provide a patterns-based and computer-aided methodology for the sensors development with a view to achieving their IT security assurance. The paper summarizes the validation experiment focused on this methodology adapted for the sensors system development, and presents directions of future research.

  6. A Survey on Optimal Signal Processing Techniques Applied to Improve the Performance of Mechanical Sensors in Automotive Applications

    Directory of Open Access Journals (Sweden)

    Wilmar Hernandez

    2007-01-01

    Full Text Available In this paper a survey on recent applications of optimal signal processing techniques to improve the performance of mechanical sensors is made. Here, a comparison between classical filters and optimal filters for automotive sensors is made, and the current state of the art of the application of robust and optimal control and signal processing techniques to the design of the intelligent (or smart sensors that today’s cars need is presented through several experimental results that show that the fusion of intelligent sensors and optimal signal processing techniques is the clear way to go. However, the switch between the traditional methods of designing automotive sensors and the new ones cannot be done overnight because there are some open research issues that have to be solved. This paper draws attention to one of the open research issues and tries to arouse researcher’s interest in the fusion of intelligent sensors and optimal signal processing techniques.

  7. Intelligent design af fokusgrupper - om metodisk design af fokusgrupper og menneskets forskellige intelligenser

    Directory of Open Access Journals (Sweden)

    Lene Heiselberg

    2008-09-01

    Full Text Available Når man arbejder professionelt med at gennemføre kvalitative mini- og fokusgruppeanalyser, kan det ikke undgås, at man som moderator indimellem tænker: Hvorfor deltager hun ikke? Hvad kan jeg gøre for at inkludere hende i diskussionen? Ofte skyldes nogle deltageres manglende engagement, at mini- eller fokusgruppens metodiske design favoriserer de deltagere, som har en fremtrædende verbalsproglig intelligens, og samtidig ekskluderes de, der har andre fremtrædende intelligenser, fra at yde det maksimale. En sådan situation er meget uheldig og kan i værste fald give en undersøgelse bias. Derfor har vi i DR Medieforskning arbejdet med en pragmatisk tilgang til problemet, hvor vi har afprøvet et metodisk design, som inkluderer kvalitative interviewteknikker og procesværktøjer, som appellerer til samtlige intelligenser. Som et resultat af en målrettet indsats for at inkludere flere intelligenser i det metodiske design, oplever vi, at deltagerne har mere lyst til at engagere sig og gør det med større selvsikkerhed. Desuden oplever vi i mindre grad fænomenet “cognitive tuning” , og derfor kan vi arbejde med flere og bedre data i analyse- og fortolkningsfasen. Intelligent design of focus groups - article about methodological design of focus groups and the different intelligences When you work professionally with the conducting and moderating of qualitative mini- and focus groups, you can't avoid sometimes thinking: Why isn’t she participating? What can I do to include her in the discussion? A participant's apparent lack of enthusiasm is often caused by the methodological design of the focus group giving preference to participants who have an explicit verbal intelligence, and as a consequence excludes participants with other explicit intelligences from contributing. A situation like the one described above is very undesirable and in a worst-case scenario it can cause a study to be biased. In order to try to solve this problem DR

  8. Benefits of metering and intelligent control in energy savings of public street lighting - UA Smart Campus use case

    OpenAIRE

    Alves, Luis Nero; Barraca, João Paulo; Aguiar, Rui L.

    2015-01-01

    We describe an intelligent lighting solution suitable for public spaces. The proposed design optimally combines sensor information, LED based lighting, and dynamic control. Departing from this set of starting objectives, project LITES (funded by the EC CIP-ICT-PSP framework) proposed the development of an intelligent lighting solution suitable for public street lighting. This solution was based on the usage of motion sensors as means to control the luminous flow. Following t...

  9. New Perspectives on Intelligence Collection and Processing

    Science.gov (United States)

    2016-06-01

    MASINT Measurement and Signature Intelligence NPS Naval Postgraduate School OSINT Open Source Intelligence pdf Probability Density Function SIGINT...MASINT): different types of sensors • Open Source Intelligence ( OSINT ): from all open sources • Signals Intelligence (SIGINT): intercepting the

  10. The Anti-RFI Design of Intelligent Electric Energy Meters with UHF RFID

    Science.gov (United States)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng

    2018-03-01

    In order to solve the existing artificial meter reading watt-hour meter industry is still slow and inventory of common problems, using the uhf radio frequency identification (RFID) technology and intelligent watt-hour meter depth fusion, which has a one-time read multiple tags, identification distance, high transmission rate, high reliability, etc, while retaining the original asset management functions, in order to ensure the uhf RFID and minimum impact on the operation of the intelligent watt-hour meter, proposed to improve the stability of the electric meter system while working at the same time, this paper designs the uhf RFID intelligent watt-hour meter radio frequency interference resistance, put forward to improve intelligent watt-hour meter electromagnetic compatibility design train of thought, and introduced its power and the hardware circuit design of printed circuit board, etc.

  11. Economic Impact of Intelligent Dynamic Control in Urban Outdoor Lighting

    Directory of Open Access Journals (Sweden)

    Igor Wojnicki

    2016-04-01

    Full Text Available This paper presents and compares the possible energy savings in various approaches to outdoor lighting modernization. Several solutions implementable using currently-available systems are presented and discussed. An innovative approach using real-time sensor data is also presented in detail, along with its formal background, based on Artificial Intelligence methods (rule-based systems and graph transformations. The efficiency of all approaches has been estimated and compared using real-life data recorded at an urban setting. The article also presents other aspects which influence the efficiency and feasibility of intelligent lighting projects, including design quality, design workload and conformance to standards.

  12. Intelligent Mobile Sensor System for drum inspection and monitoring - Volume 1. Final report, October 1, 1993 - April 22, 1995

    International Nuclear Information System (INIS)

    1995-01-01

    The objective of the Intelligent Mobile Sensor System (IMSS) project is to develop an operational system for monitoring and inspection activities for waste storage facility operations at several DOE sites. Specifically, the product of this effort is a robotic device with enhanced intelligence and maneuverability capable of conducting routine inspection of stored waste drums. The device is capable of operating in the narrow free aisle space between rows of stacked drums. The system has an integrated sensor suite for problem-drum detection, and is linked to a site database both for inspection planning and for data correlation, updating, and report generation. The system is capable of departing on an assigned mission, collecting required data, recording which portions of its mission had to be aborted or modified due to environmental constraints, and reporting back when the mission is complete. Successful identification of more than 96% of drum defects has been demonstrated in a high fidelity waste storage facility mockup. Identified anomalies included rust spots, rust streaks, areas of corrosion, dents, and tilted drums. All drums were positively identified and correlated with the site database. This development effort is separated into three phases of which phase two is now complete. The first phase demonstrated an integrated system (maturity level IVa) for monitoring and inspection activities for waste storage facility operations. The second phase demonstrated a prototype system appropriate for operational use in an actual storage facility. The prototype provides an integrated design that considers operational requirements, hardware costs, maintenance, safety, and robustness. The final phase will demonstrate commercial viability using the prototype vehicle in a pilot waste operations and inspection project. This report summarizes the design and evaluation of the new IMSS Phase 2 system and vehicle

  13. Smart Cities Intelligence System (SMACiSYS) Integrating Sensor Web with Spatial Data Infrastructures (sensdi)

    Science.gov (United States)

    Bhattacharya, D.; Painho, M.

    2017-09-01

    The paper endeavours to enhance the Sensor Web with crucial geospatial analysis capabilities through integration with Spatial Data Infrastructure. The objective is development of automated smart cities intelligence system (SMACiSYS) with sensor-web access (SENSDI) utilizing geomatics for sustainable societies. There has been a need to develop automated integrated system to categorize events and issue information that reaches users directly. At present, no web-enabled information system exists which can disseminate messages after events evaluation in real time. Research work formalizes a notion of an integrated, independent, generalized, and automated geo-event analysing system making use of geo-spatial data under popular usage platform. Integrating Sensor Web With Spatial Data Infrastructures (SENSDI) aims to extend SDIs with sensor web enablement, converging geospatial and built infrastructure, and implement test cases with sensor data and SDI. The other benefit, conversely, is the expansion of spatial data infrastructure to utilize sensor web, dynamically and in real time for smart applications that smarter cities demand nowadays. Hence, SENSDI augments existing smart cities platforms utilizing sensor web and spatial information achieved by coupling pairs of otherwise disjoint interfaces and APIs formulated by Open Geospatial Consortium (OGC) keeping entire platform open access and open source. SENSDI is based on Geonode, QGIS and Java, that bind most of the functionalities of Internet, sensor web and nowadays Internet of Things superseding Internet of Sensors as well. In a nutshell, the project delivers a generalized real-time accessible and analysable platform for sensing the environment and mapping the captured information for optimal decision-making and societal benefit.

  14. SMART CITIES INTELLIGENCE SYSTEM (SMACiSYS INTEGRATING SENSOR WEB WITH SPATIAL DATA INFRASTRUCTURES (SENSDI

    Directory of Open Access Journals (Sweden)

    D. Bhattacharya

    2017-09-01

    Full Text Available The paper endeavours to enhance the Sensor Web with crucial geospatial analysis capabilities through integration with Spatial Data Infrastructure. The objective is development of automated smart cities intelligence system (SMACiSYS with sensor-web access (SENSDI utilizing geomatics for sustainable societies. There has been a need to develop automated integrated system to categorize events and issue information that reaches users directly. At present, no web-enabled information system exists which can disseminate messages after events evaluation in real time. Research work formalizes a notion of an integrated, independent, generalized, and automated geo-event analysing system making use of geo-spatial data under popular usage platform. Integrating Sensor Web With Spatial Data Infrastructures (SENSDI aims to extend SDIs with sensor web enablement, converging geospatial and built infrastructure, and implement test cases with sensor data and SDI. The other benefit, conversely, is the expansion of spatial data infrastructure to utilize sensor web, dynamically and in real time for smart applications that smarter cities demand nowadays. Hence, SENSDI augments existing smart cities platforms utilizing sensor web and spatial information achieved by coupling pairs of otherwise disjoint interfaces and APIs formulated by Open Geospatial Consortium (OGC keeping entire platform open access and open source. SENSDI is based on Geonode, QGIS and Java, that bind most of the functionalities of Internet, sensor web and nowadays Internet of Things superseding Internet of Sensors as well. In a nutshell, the project delivers a generalized real-time accessible and analysable platform for sensing the environment and mapping the captured information for optimal decision-making and societal benefit.

  15. Open-source intelligence and privacy by design

    NARCIS (Netherlands)

    Koops, B.J.; Hoepman, J.H.; Leenes, R.

    2013-01-01

    As demonstrated by other papers on this issue, open-source intelligence (OSINT) by state authorities poses challenges for privacy protection and intellectual-property enforcement. A possible strategy to address these challenges is to adapt the design of OSINT tools to embed normative requirements,

  16. Design, Experiments and Simulation of Voltage Transformers on the Basis of a Differential Input D-dot Sensor

    Directory of Open Access Journals (Sweden)

    Jingang Wang

    2014-07-01

    Full Text Available Currently available traditional electromagnetic voltage sensors fail to meet the measurement requirements of the smart grid, because of low accuracy in the static and dynamic ranges and the occurrence of ferromagnetic resonance attributed to overvoltage and output short circuit. This work develops a new non-contact high-bandwidth voltage measurement system for power equipment. This system aims at the miniaturization and non-contact measurement of the smart grid. After traditional D-dot voltage probe analysis, an improved method is proposed. For the sensor to work in a self-integrating pattern, the differential input pattern is adopted for circuit design, and grounding is removed. To prove the structure design, circuit component parameters, and insulation characteristics, Ansoft Maxwell software is used for the simulation. Moreover, the new probe was tested on a 10 kV high-voltage test platform for steady-state error and transient behavior. Experimental results ascertain that the root mean square values of measured voltage are precise and that the phase error is small. The D-dot voltage sensor not only meets the requirement of high accuracy but also exhibits satisfactory transient response. This sensor can meet the intelligence, miniaturization, and convenience requirements of the smart grid.

  17. Energy modelling in sensor networks

    Science.gov (United States)

    Schmidt, D.; Krämer, M.; Kuhn, T.; Wehn, N.

    2007-06-01

    Wireless sensor networks are one of the key enabling technologies for the vision of ambient intelligence. Energy resources for sensor nodes are very scarce. A key challenge is the design of energy efficient communication protocols. Models of the energy consumption are needed to accurately simulate the efficiency of a protocol or application design, and can also be used for automatic energy optimizations in a model driven design process. We propose a novel methodology to create models for sensor nodes based on few simple measurements. In a case study the methodology was used to create models for MICAz nodes. The models were integrated in a simulation environment as well as in a SDL runtime framework of a model driven design process. Measurements on a test application that was created automatically from an SDL specification showed an 80% reduction in energy consumption compared to an implementation without power saving strategies.

  18. Design of vehicle intelligent anti-collision warning system

    Science.gov (United States)

    Xu, Yangyang; Wang, Ying

    2018-05-01

    This paper mainly designs a low cost, high-accuracy, micro-miniaturization, and digital display and acousto-optic alarm features of the vehicle intelligent anti-collision warning system that based on MCU AT89C51. The vehicle intelligent anti-collision warning system includes forward anti-collision warning system, auto parking systems and reversing anti-collision radar system. It mainly develops on the basis of ultrasonic distance measurement, its performance is reliable, thus the driving safety is greatly improved and the parking security and efficiency enhance enormously.

  19. Smart Rocks for Bridge Scour Monitoring: Design and Localization Using Electromagnetic Techniques and Embedded Orientation Sensors

    Science.gov (United States)

    Radchenko, Andro

    River bridge scour is an erosion process in which flowing water removes sediment materials (such as sand, rocks) from a bridge foundation, river beds and banks. As a result, the level of the river bed near a bridge pier is lowering such that the bridge foundation stability can be compromised, and the bridge can collapse. The scour is a dynamic process, which can accelerate rapidly during a flood event. Thus, regular monitoring of the scour progress is necessary to be performed at most river bridges. Present techniques are usually expensive, require large man/hour efforts, and often lack the real-time monitoring capabilities. In this dissertation a new method--'Smart Rocks Network for bridge scour monitoring' is introduced. The method is based on distributed wireless sensors embedded in ground underwater nearby the bridge pillars. The sensor nodes are unconstrained in movement, are equipped with years-lasting batteries and intelligent custom designed electronics, which minimizes power consumption during operation and communication. The electronic part consists of a microcontroller, communication interfaces, orientation and environment sensors (such as are accelerometer, magnetometer, temperature and pressure sensors), supporting power supplies and circuitries. Embedded in the soil nearby a bridge pillar the Smart Rocks can move/drift together with the sediments, and act as the free agent probes transmitting the unique signature signals to the base-station monitors. Individual movement of a Smart Rock can be remotely detected processing the orientation sensors reading. This can give an indication of the on-going scour progress, and set a flag for the on-site inspection. The map of the deployed Smart Rocks Network can be obtained utilizing the custom developed in-network communication protocol with signals intensity (RSSI) analysis. Particle Swarm Optimization (PSO) is applied for map reconstruction. Analysis of the map can provide detailed insight into the scour

  20. Automatic identification of otological drilling faults: an intelligent recognition algorithm.

    Science.gov (United States)

    Cao, Tianyang; Li, Xisheng; Gao, Zhiqiang; Feng, Guodong; Shen, Peng

    2010-06-01

    This article presents an intelligent recognition algorithm that can recognize milling states of the otological drill by fusing multi-sensor information. An otological drill was modified by the addition of sensors. The algorithm was designed according to features of the milling process and is composed of a characteristic curve, an adaptive filter and a rule base. The characteristic curve can weaken the impact of the unstable normal milling process and reserve the features of drilling faults. The adaptive filter is capable of suppressing interference in the characteristic curve by fusing multi-sensor information. The rule base can identify drilling faults through the filtering result data. The experiments were repeated on fresh porcine scapulas, including normal milling and two drilling faults. The algorithm has high rates of identification. This study shows that the intelligent recognition algorithm can identify drilling faults under interference conditions. (c) 2010 John Wiley & Sons, Ltd.

  1. The design of remote intelligent terminal based on ARM

    International Nuclear Information System (INIS)

    Zhang Bin; Liu Zixin

    2014-01-01

    This paper introduces the function and principle of the remote intelligent terminal. It was designed on SmartARM 2200, uses uC/OS-II operating system and MiniGUI. And then,it gives a method to realize it. Introduces the work flow of remote intelligent terminal, and the function module of the system are analyzed in detail, and then the terminal of the principle has carried on the preliminary study. (authors)

  2. The Design and Development of an Omni-Directional Mobile Robot Oriented to an Intelligent Manufacturing System.

    Science.gov (United States)

    Qian, Jun; Zi, Bin; Wang, Daoming; Ma, Yangang; Zhang, Dan

    2017-09-10

    In order to transport materials flexibly and smoothly in a tight plant environment, an omni-directional mobile robot based on four Mecanum wheels was designed. The mechanical system of the mobile robot is made up of three separable layers so as to simplify its combination and reorganization. Each modularized wheel was installed on a vertical suspension mechanism, which ensures the moving stability and keeps the distances of four wheels invariable. The control system consists of two-level controllers that implement motion control and multi-sensor data processing, respectively. In order to make the mobile robot navigate in an unknown semi-structured indoor environment, the data from a Kinect visual sensor and four wheel encoders were fused to localize the mobile robot using an extended Kalman filter with specific processing. Finally, the mobile robot was integrated in an intelligent manufacturing system for material conveying. Experimental results show that the omni-directional mobile robot can move stably and autonomously in an indoor environment and in industrial fields.

  3. Coupled sensor/platform control design for low-level chemical detection with position-adaptive micro-UAVs

    Science.gov (United States)

    Goodwin, Thomas; Carr, Ryan; Mitra, Atindra K.; Selmic, Rastko R.

    2009-05-01

    We discuss the development of Position-Adaptive Sensors [1] for purposes for detecting embedded chemical substances in challenging environments. This concept is a generalization of patented Position-Adaptive Radar Concepts developed at AFRL for challenging conditions such as urban environments. For purposes of investigating the detection of chemical substances using multiple MAV (Micro-UAV) platforms, we have designed and implemented an experimental testbed with sample structures such as wooden carts that contain controlled leakage points. Under this general concept, some of the members of a MAV swarm can serve as external position-adaptive "transmitters" by blowing air over the cart and some of the members of a MAV swarm can serve as external position-adaptive "receivers" that are equipped with chemical or biological (chem/bio) sensors that function as "electronic noses". The objective can be defined as improving the particle count of chem/bio concentrations that impinge on a MAV-based position-adaptive sensor that surrounds a chemical repository, such as a cart, via the development of intelligent position-adaptive control algorithms. The overall effect is to improve the detection and false-alarm statistics of the overall system. Within the major sections of this paper, we discuss a number of different aspects of developing our initial MAV-Based Sensor Testbed. This testbed includes blowers to simulate position-adaptive excitations and a MAV from Draganfly Innovations Inc. with stable design modifications to accommodate our chem/bio sensor boom design. We include details with respect to several critical phases of the development effort including development of the wireless sensor network and experimental apparatus, development of the stable sensor boom for the MAV, integration of chem/bio sensors and sensor node onto the MAV and boom, development of position-adaptive control algorithms and initial tests at IDCAST (Institute for the Development and

  4. Biomimetics in Intelligent Sensor and Actuator Automation Systems

    Science.gov (United States)

    Bruckner, Dietmar; Dietrich, Dietmar; Zucker, Gerhard; Müller, Brit

    Intelligent machines are really an old mankind's dream. With increasing technological development, the requirements for intelligent devices also increased. However, up to know, artificial intelligence (AI) lacks solutions to the demands of truly intelligent machines that have no problems to integrate themselves into daily human environments. Current hardware with a processing power of billions of operations per second (but without any model of human-like intelligence) could not substantially contribute to the intelligence of machines when compared with that of the early AI times. There are great results, of course. Machines are able to find the shortest path between far apart cities on the map; algorithms let you find information described only by few key words. But no machine is able to get us a cup of coffee from the kitchen yet.

  5. Intelligent Design and the Creationism/Evolution Controversy

    Science.gov (United States)

    Scott, E. C.

    2004-12-01

    "Intelligent Design" (ID) is a new form of creationism that emerged after legal decisions in the 1980s hampered the inclusion of "creation science" in the public school curriculum. To avoid legal challenge, proponents claim agnosticism regarding the identity of the intelligent agent, which could be material (such as highly intelligent terrestrials) or transcendental (God). ID consists of a scientific/scholarly effort, and a politico-religious movement of "cultural renewal." Intelligent design is supposedly detectable through the application of Michael Behe's "irreducible complexity" concept and/or William Dembski's concept of "complex specified information". ID's claims amount to, first, that "Darwinism" (vaguely defined) is incapable of providing an adequate mechanism for evolution, and second (subsequently), that evolution did not occur. Although scientific ideas not infrequently are slow to be accepted, in the 20 years since ID appeared, there is no evidence of it being used to solve problems in biology. Even if the scientific/scholarly part of ID has been a failure, the "cultural renewal" part of ID has been a success. This social and political aspect of ID seeks "restoration" of a theistic sensibility in American culture to replace what supporters consider an overemphasis on secularism. In the last few years, in several states, legislators have introduced legislation promoting ID (to date, unsuccessfully) and an addendum to the 2001 federal education bill conference committee report (the "Santorum amendment") is being used to promote the teaching of ID in public schools. Perhaps because ID has no actual content other than antievolutionism, ID proponents contend that pre-college teachers should teach wweaknesses of evolutionw or "evidence against evolutionw - largely warmed-over arguments from creation science - even though professional scientists do not recognize these as valid scientific claims.

  6. Using Appreciative Intelligence for Ice-Breaking: A New Design

    Science.gov (United States)

    Verma, Neena; Pathak, Anil Anand

    2011-01-01

    Purpose: The purpose of this paper is to highlight the importance of applying appreciative intelligence and appreciative inquiry concepts to design a possibly new model of ice-breaking, which is strengths-based and very often used in any training in general and team building training in particular. Design/methodology/approach: The design has…

  7. Theory, analysis and design of RF interferometric sensors

    CERN Document Server

    Nguyen, Cam

    2012-01-01

    Theory, Analysis and Design of RF Interferometric Sensors presents the theory, analysis and design of RF interferometric sensors. RF interferometric sensors are attractive for various sensing applications that require every fine resolution and accuracy as well as fast speed. The book also presents two millimeter-wave interferometric sensors realized using RF integrated circuits. The developed millimeter-wave homodyne sensor shows sub-millimeter resolution in the order of 0.05 mm without correction for the non-linear phase response of the sensor's quadrature mixer. The designed millimeter-wave double-channel homodyne sensor provides a resolution of only 0.01 mm, or 1/840th of the operating wavelength, and can inherently suppress the non-linearity of the sensor's quadrature mixer. The experimental results of displacement and velocity measurement are presented as a way to demonstrate the sensing ability of the RF interferometry and to illustrate its many possible applications in sensing. The book is succinct, ye...

  8. Proceedings of the International Conference on Information Systems Design and Intelligent Applications 2012

    CERN Document Server

    Avadhani, P; Abraham, Ajith

    2012-01-01

    This volume contains the papers presented at INDIA-2012: International conference on  Information system Design and Intelligent Applications held on January 5-7, 2012 in Vishakhapatnam, India. This conference was organized by Computer Society of India (CSI), Vishakhapatnam chapter well supported by Vishakhapatnam Steel, RINL, Govt of India. It contains 108 papers contributed by authors from six different countries across four continents. These research papers mainly focused on intelligent applications and various system design issues. The papers cover a wide range of topics of computer science and information technology discipline ranging from image processing, data base application, data mining, grid and cloud computing, bioinformatics among many others. The various intelligent tools like swarm intelligence, artificial intelligence, evolutionary algorithms, bio-inspired algorithms have been applied in different papers for solving various challenging IT related problems.

  9. Integrating GPS, GYRO, vehicle speed sensor, and digital map to provide accurate and real-time position in an intelligent navigation system

    Science.gov (United States)

    Li, Qingquan; Fang, Zhixiang; Li, Hanwu; Xiao, Hui

    2005-10-01

    The global positioning system (GPS) has become the most extensively used positioning and navigation tool in the world. Applications of GPS abound in surveying, mapping, transportation, agriculture, military planning, GIS, and the geosciences. However, the positional and elevation accuracy of any given GPS location is prone to error, due to a number of factors. The applications of Global Positioning System (GPS) positioning is more and more popular, especially the intelligent navigation system which relies on GPS and Dead Reckoning technology is developing quickly for future huge market in China. In this paper a practical combined positioning model of GPS/DR/MM is put forward, which integrates GPS, Gyro, Vehicle Speed Sensor (VSS) and digital navigation maps to provide accurate and real-time position for intelligent navigation system. This model is designed for automotive navigation system making use of Kalman filter to improve position and map matching veracity by means of filtering raw GPS and DR signals, and then map-matching technology is used to provide map coordinates for map displaying. In practical examples, for illustrating the validity of the model, several experiments and their results of integrated GPS/DR positioning in intelligent navigation system will be shown for the conclusion that Kalman Filter based GPS/DR integrating position approach is necessary, feasible and efficient for intelligent navigation application. Certainly, this combined positioning model, similar to other model, can not resolve all situation issues. Finally, some suggestions are given for further improving integrated GPS/DR/MM application.

  10. Flood early warning system: sensors and internet

    NARCIS (Netherlands)

    Pengel, B.E.; Krzhizhanovskaya, V.V.; Melnikova, N.B.; Shirshov, G.S.; Koelewijn, A.R.; Pyayt, A.L.; Mokhov, I.I.; Chavoshian, A.; Takeuchi, K.

    2013-01-01

    The UrbanFlood early warning system (EWS) is designed to monitor data from very large sensornetworks in flood defences such as embankments, dikes, levees, and dams. The EWS, based on the internet, uses real-time sensor information and Artificial Intelligence (AI) to immediately calculate the

  11. Intelligent mechatronics; Intelligent mechatronics

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, H. [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science

    1995-10-01

    Intelligent mechatronics (IM) was explained as follows: a study of IM essentially targets realization of a robot namely, but in the present stage the target is a creation of new values by intellectualization of machine, that is, a combination of the information infrastructure and the intelligent machine system. IM is also thought to be constituted of computers positively used and micromechatronics. The paper next introduces examples of IM study, mainly those the author is concerned with as shown below: sensor gloves, robot hands, robot eyes, tele operation, three-dimensional object recognition, mobile robot, magnetic bearing, construction of remote controlled unmanned dam, robot network, sensitivity communication using neuro baby, etc. 27 figs.

  12. Creationism and intelligent design.

    Science.gov (United States)

    Pennock, Robert T

    2003-01-01

    Creationism, the rejection of evolution in favor of supernatural design, comes in many varieties besides the common young-earth Genesis version. Creationist attacks on science education have been evolving in the last few years through the alliance of different varieties. Instead of calls to teach "creation science," one now finds lobbying for "intelligent design" (ID). Guided by the Discovery Institute's "Wedge strategy," the ID movement aims to overturn evolution and what it sees as a pernicious materialist worldview and to renew a theistic foundation to Western culture, in which human beings are recognized as being created in the image of God. Common ID arguments involving scientific naturalism, "irreducible complexity," "complex specified information," and "icons of evolution," have been thoroughly examined and refuted. Nevertheless, from Kansas to Ohio to the U.S. Congress, ID continues lobbying to teach the controversy, and scientists need to be ready to defend good evolution education.

  13. Jupiter energetic particle experiment ESAD proton sensor design

    International Nuclear Information System (INIS)

    Gruhn, C.R.; Higbie, P.R.

    1977-12-01

    A proton sensor design for the Jupiter Energetic Particle Experiment is described. The sensor design uses avalanche multiplication in order to lower the effective energy threshold. A complete signal-to-noise analysis is given for this design

  14. Applications Of Artificial Intelligence In Control System Analysis And Design

    Science.gov (United States)

    Birdwell, J. D.

    1987-10-01

    To date, applications of artificial intelligence in control system analysis and design are primarily associated with the design process. These applications take the form of knowledge bases incorporating expertise on a design method, such as multivariable linear controller design, or on a field such as identification. My experience has demonstrated that, while such expert systems are useful, perhaps a greater benefit will come from applications in the maintenance of technical databases, as are found in real-time data acquisition systems, and of modeling and design databases, which represent the status of a computer-aided design process for a human user. This reflects the observation that computers are best at maintaining relations about large sets of objects, whereas humans are best at maintaining knowledge of depth, as occurs when a design option involving a sequence of steps is explored. This paper will discuss some of these issues, and will provide some examples which illustrate the potential of artificial intelligence.

  15. Matrix Completion Optimization for Localization in Wireless Sensor Networks for Intelligent IoT

    Directory of Open Access Journals (Sweden)

    Thu L. N. Nguyen

    2016-05-01

    Full Text Available Localization in wireless sensor networks (WSNs is one of the primary functions of the intelligent Internet of Things (IoT that offers automatically discoverable services, while the localization accuracy is a key issue to evaluate the quality of those services. In this paper, we develop a framework to solve the Euclidean distance matrix completion problem, which is an important technical problem for distance-based localization in WSNs. The sensor network localization problem is described as a low-rank dimensional Euclidean distance completion problem with known nodes. The task is to find the sensor locations through recovery of missing entries of a squared distance matrix when the dimension of the data is small compared to the number of data points. We solve a relaxation optimization problem using a modification of Newton’s method, where the cost function depends on the squared distance matrix. The solution obtained in our scheme achieves a lower complexity and can perform better if we use it as an initial guess for an interactive local search of other higher precision localization scheme. Simulation results show the effectiveness of our approach.

  16. William Paley's lost "intelligent design".

    Science.gov (United States)

    Shapiro, Adam R

    2009-01-01

    William Paley's Natural Theology has experienced a resurgence in popularity in recent decades with the continuing controversies over the teaching of evolution and the emergence of a new "intelligent design" movement. But while both the movement's supporters and detractors agree that Paley is an intellectual forefather of the present-day movement, this agreement is forged at the expense of historical accuracy. Paley's intelligent design has almost nothing in common with the present day movement and, in fact, suggests theological arguments against the type of reasoning used by the modern movement. Paley wrote in reaction to Hume and in response to the evolutionary theories of Buffon and Erasmus Darwin. In this light, the Natural Theology suggests a different reading than it is usually given. Paley's narrowly-argued theology relies upon the ability to detect the presence of "purpose" in nature without relying upon knowing what those purposes are. His empirically-argued theology leads him to a God who operates through natural law, not in its contravention, and his concern goes far beyond proving the existence of a deity to undertaking the theological project of determining the attributes and characteristics of the deity. Though not himself an evolutionist, Paley put forth a theological worldview consistent with evolution. In fact, given his arguments that the observation of great contrivance increases the testimony of nature to God's power, Paley's philosophy might be more consistent with a theistic Darwinian evolution than with special creation.

  17. Intelligent gas-mixture flow sensor

    NARCIS (Netherlands)

    Lammerink, Theodorus S.J.; Dijkstra, Fred; Houkes, Z.; van Kuijk, J.C.C.; van Kuijk, Joost

    A simple way to realize a gas-mixture flow sensor is presented. The sensor is capable of measuring two parameters from a gas flow. Both the flow rate and the helium content of a helium-nitrogen gas mixture are measured. The sensor exploits two measurement principles in combination with (local)

  18. An intelligent FFR with a self-adjustable ventilation fan.

    Science.gov (United States)

    Zhou, Song; Li, Hui; Shen, Shengnan; Li, Siyu; Wang, Wei; Zhang, Xiaotie; Yang, James

    2017-11-01

    This article presents an intelligent Filtering Facepiece Respirator (FFR) with a self-adjustable ventilation fan for improved comfort. The ventilation fan with an intelligent control aims to reduce temperature, relative humidity, and CO 2 concentrations inside the facepiece. Compared with a previous version of the FFR, the advantage of this new FFR is the intelligent control of the fan's rotation speed based on the change in temperature and relative humidity in the FFR dead space. The design of the control system utilizes an 8-bit, ultra-low power STC15W404AS microcontroller (HongJin technology, Shenzhen, China), and adopts a high-precision AM2320 device (AoSong electronic, Guangzhou, China) as temperature and relative humidity sensor so that control of temperature and relative humidity is realized in real time within the FFR dead space. The ventilation fan is intelligently driven and runs on a rechargeable lithium battery with a power-save mode that provides a correspondingly longer operational time. Meanwhile, the design is simplistic. Two experiments were performed to determine the best location to place the fan.

  19. Is intelligent design science, and does it matter?

    Directory of Open Access Journals (Sweden)

    P W Bateman

    2007-09-01

    Full Text Available The debate between evolution and intelligent design is usually presented by evolutionary biologists as a clash between science and non-science (creationism and religion and therefore as a sterile argument which science wins by default. Countering this is intelligent design (ID and irreducible complexity (IC which posit that the diversity and complexity of life on earth indicates the hand of a designer, although the nature of that designer is not speculated on. In doing so, proponents of� ID and IC bring the argument squarely into the scientific camp and fulfil the requirements of being science, although this is difficult� to define. Here, we discuss the claims of ID and IC to provide an alternative to evolution and propose that science can adequately deal with and refute these claims. At the same time, ID and IC fulfil an important role as foils to �scientism�� � the belief that science is the best way of answering all questions. In the final analysis, however , despite their value in the debate, ID and IC are not found to be robust or reliable enough to replace evolution as the best way of explaining the diversity of life on earth.

  20. Intelligent distributed computing

    CERN Document Server

    Thampi, Sabu

    2015-01-01

    This book contains a selection of refereed and revised papers of the Intelligent Distributed Computing Track originally presented at the third International Symposium on Intelligent Informatics (ISI-2014), September 24-27, 2014, Delhi, India.  The papers selected for this Track cover several Distributed Computing and related topics including Peer-to-Peer Networks, Cloud Computing, Mobile Clouds, Wireless Sensor Networks, and their applications.

  1. Design and Delivery of Technical Module for the Business Intelligence Course

    Science.gov (United States)

    Wang, Shouhong; Wang, Hai

    2013-01-01

    IS programs are increasingly being called on to offer courses in business intelligence. This article presents the pedagogical design and the delivery method of a practicable technical module for a non-technically oriented Business Intelligence course. It is a tutorial for the instructors who wish to incorporate a practical technical element in…

  2. Sensor fusion in smart camera networks for ambient Intelligence

    NARCIS (Netherlands)

    Maatta, T.T.

    2013-01-01

    This short report introduces the topics of PhD research that was conducted on 2008-2013 and was defended on July 2013. The PhD thesis covers sensor fusion theory, gathers it into a framework with design rules for fusion-friendly design of vision networks, and elaborates on the rules through fusion

  3. Design of a temperature control system using incremental PID algorithm for a special homemade shortwave infrared spatial remote sensor based on FPGA

    Science.gov (United States)

    Xu, Zhipeng; Wei, Jun; Li, Jianwei; Zhou, Qianting

    2010-11-01

    An image spectrometer of a spatial remote sensing satellite requires shortwave band range from 2.1μm to 3μm which is one of the most important bands in remote sensing. We designed an infrared sub-system of the image spectrometer using a homemade 640x1 InGaAs shortwave infrared sensor working on FPA system which requires high uniformity and low level of dark current. The working temperature should be -15+/-0.2 Degree Celsius. This paper studies the model of noise for focal plane array (FPA) system, investigated the relationship with temperature and dark current noise, and adopts Incremental PID algorithm to generate PWM wave in order to control the temperature of the sensor. There are four modules compose of the FPGA module design. All of the modules are coded by VHDL and implemented in FPGA device APA300. Experiment shows the intelligent temperature control system succeeds in controlling the temperature of the sensor.

  4. Design of smart home sensor visualizations for older adults.

    Science.gov (United States)

    Le, Thai; Reeder, Blaine; Chung, Jane; Thompson, Hilaire; Demiris, George

    2014-07-24

    Smart home sensor systems provide a valuable opportunity to continuously and unobtrusively monitor older adult wellness. However, the density of sensor data can be challenging to visualize, especially for an older adult consumer with distinct user needs. We describe the design of sensor visualizations informed by interviews with older adults. The goal of the visualizations is to present sensor activity data to an older adult consumer audience that supports both longitudinal detection of trends and on-demand display of activity details for any chosen day. The design process is grounded through participatory design with older adult interviews during a six-month pilot sensor study. Through a secondary analysis of interviews, we identified the visualization needs of older adults. We incorporated these needs with cognitive perceptual visualization guidelines and the emotional design principles of Norman to develop sensor visualizations. We present a design of sensor visualization that integrate both temporal and spatial components of information. The visualization supports longitudinal detection of trends while allowing the viewer to view activity within a specific date.CONCLUSIONS: Appropriately designed visualizations for older adults not only provide insight into health and wellness, but also are a valuable resource to promote engagement within care.

  5. Design of smart home sensor visualizations for older adults.

    Science.gov (United States)

    Le, Thai; Reeder, Blaine; Chung, Jane; Thompson, Hilaire; Demiris, George

    2014-01-01

    Smart home sensor systems provide a valuable opportunity to continuously and unobtrusively monitor older adult wellness. However, the density of sensor data can be challenging to visualize, especially for an older adult consumer with distinct user needs. We describe the design of sensor visualizations informed by interviews with older adults. The goal of the visualizations is to present sensor activity data to an older adult consumer audience that supports both longitudinal detection of trends and on-demand display of activity details for any chosen day. The design process is grounded through participatory design with older adult interviews during a six-month pilot sensor study. Through a secondary analysis of interviews, we identified the visualization needs of older adults. We incorporated these needs with cognitive perceptual visualization guidelines and the emotional design principles of Norman to develop sensor visualizations. We present a design of sensor visualization that integrate both temporal and spatial components of information. The visualization supports longitudinal detection of trends while allowing the viewer to view activity within a specific date. Appropriately designed visualizations for older adults not only provide insight into health and wellness, but also are a valuable resource to promote engagement within care.

  6. Bio-inspired approach for intelligent unattended ground sensors

    Science.gov (United States)

    Hueber, Nicolas; Raymond, Pierre; Hennequin, Christophe; Pichler, Alexander; Perrot, Maxime; Voisin, Philippe; Moeglin, Jean-Pierre

    2015-05-01

    Improving the surveillance capacity over wide zones requires a set of smart battery-powered Unattended Ground Sensors capable of issuing an alarm to a decision-making center. Only high-level information has to be sent when a relevant suspicious situation occurs. In this paper we propose an innovative bio-inspired approach that mimics the human bi-modal vision mechanism and the parallel processing ability of the human brain. The designed prototype exploits two levels of analysis: a low-level panoramic motion analysis, the peripheral vision, and a high-level event-focused analysis, the foveal vision. By tracking moving objects and fusing multiple criteria (size, speed, trajectory, etc.), the peripheral vision module acts as a fast relevant event detector. The foveal vision module focuses on the detected events to extract more detailed features (texture, color, shape, etc.) in order to improve the recognition efficiency. The implemented recognition core is able to acquire human knowledge and to classify in real-time a huge amount of heterogeneous data thanks to its natively parallel hardware structure. This UGS prototype validates our system approach under laboratory tests. The peripheral analysis module demonstrates a low false alarm rate whereas the foveal vision correctly focuses on the detected events. A parallel FPGA implementation of the recognition core succeeds in fulfilling the embedded application requirements. These results are paving the way of future reconfigurable virtual field agents. By locally processing the data and sending only high-level information, their energy requirements and electromagnetic signature are optimized. Moreover, the embedded Artificial Intelligence core enables these bio-inspired systems to recognize and learn new significant events. By duplicating human expertise in potentially hazardous places, our miniature visual event detector will allow early warning and contribute to better human decision making.

  7. Design, Modelling, and Implementation of a Fuzzy Controller for an Intelligent Road Signaling System

    Directory of Open Access Journals (Sweden)

    José Manuel Lozano Domínguez

    2018-01-01

    Full Text Available Crossing points are not always 100% visible for drivers due to different factors (e.g., poor road maintenance, occlusion of vertical signs, and adverse weather conditions. USA estimated in 2015 the number of traffic accidents involving pedestrians and vehicles in 70,000 of whom 5,376 resulted in deceased people. To contribute in this field, this paper presents the design, implementation, and testing of a smart prototype system applied to pedestrian crossings—not regulated by semaphores—which try to reduce the accident rate on roads. The hardware and software system consists of a set of autonomous, intelligent, and wireless low-cost devices that generate a visual warning barrier perceived by drivers from a suitable distance when pedestrians traverse a crosswalk. In this way, drivers can reduce the speed of their vehicles and stop safely. The system’s intelligence is carried out by a fuzzy controller that performs sensory fusion at both low level and high level with various types of sensors from local and neighboring devices. The tests conducted have determined an average success of 94.64% and a precision of 100%, thus corresponding with a very good test according to a ROC analysis. As a result, the system proposed has been patented and extended to international PCT.

  8. Learning robots : teaching design students in integrating intelligence

    NARCIS (Netherlands)

    Barakova, E.I.; Hu, J.

    2011-01-01

    The present day society requires specialists with multidisciplinary knowledge and skills. We discuss the possibilities to educate professionals that design intelligent products and systems as a result of a competency based education. In particular this paper features a teaching method that makes the

  9. Intelligent Data Storage and Retrieval for Design Optimisation – an Overview

    Directory of Open Access Journals (Sweden)

    C. Peebles

    2005-01-01

    Full Text Available This paper documents the findings of a literature review conducted by the Sir Lawrence Wackett Centre for Aerospace Design Technology at RMIT University. The review investigates aspects of a proposed system for intelligent design optimisation. Such a system would be capable of efficiently storing (and compressing if required a range of types of design data into an intelligent database. This database would be accessed by the system during subsequent design processes, allowing for search of relevant design data for re-use in later designs, allowing it to become very efficient in reducing the time for later designs as the database grows in size. Extensive research has been performed, in both theoretical aspects of the project, and practical examples of current similar systems. This research covers the areas of database systems, database queries, representation and compression of design data, geometric representation and heuristic methods for design applications. 

  10. Cognitive Connected Vehicle Information System Design Requirement for Safety: Role of Bayesian Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Ata Khan

    2013-04-01

    Full Text Available Intelligent transportation systems (ITS are gaining acceptance around the world and the connected vehicle component of ITS is recognized as a high priority research and development area in many technologically advanced countries. Connected vehicles are expected to have the capability of safe, efficient and eco-driving operations whether these are under human control or in the adaptive machine control mode of operations. The race is on to design the capability to operate in connected traffic environment. The operational requirements can be met with cognitive vehicle design features made possible by advances in artificial intelligence-supported methodology, improved understanding of human factors, and advances in communication technology. This paper describes cognitive features and their information system requirements. The architecture of an information system is presented that supports the features of the cognitive connected vehicle. For better focus, information processing capabilities are specified and the role of Bayesian artificial intelligence is defined for data fusion. Example applications illustrate the role of information systems in integrating intelligent technology, Bayesian artificial intelligence, and abstracted human factors. Concluding remarks highlight the role of the information system and Bayesian artificial intelligence in the design of a new generation of cognitive connected vehicle.

  11. Computational intelligence in nuclear engineering

    International Nuclear Information System (INIS)

    Uhrig, Robert E.; Hines, J. Wesley

    2005-01-01

    Approaches to several recent issues in the operation of nuclear power plants using computational intelligence are discussed. These issues include 1) noise analysis techniques, 2) on-line monitoring and sensor validation, 3) regularization of ill-posed surveillance and diagnostic measurements, 4) transient identification, 5) artificial intelligence-based core monitoring and diagnostic system, 6) continuous efficiency improvement of nuclear power plants, and 7) autonomous anticipatory control and intelligent-agents. Several Changes to the focus of Computational Intelligence in Nuclear Engineering have occurred in the past few years. With earlier activities focusing on the development of condition monitoring and diagnostic techniques for current nuclear power plants, recent activities have focused on the implementation of those methods and the development of methods for next generation plants and space reactors. These advanced techniques are expected to become increasingly important as current generation nuclear power plants have their licenses extended to 60 years and next generation reactors are being designed to operate for extended fuel cycles (up to 25 years), with less operator oversight, and especially for nuclear plants operating in severe environments such as space or ice-bound locations

  12. Construction of a Piezoresistive Neural Sensor Array

    Science.gov (United States)

    Carlson, W. B.; Schulze, W. A.; Pilgrim, P. M.

    1996-01-01

    The construction of a piezoresistive - piezoelectric sensor (or actuator) array is proposed using 'neural' connectivity for signal recognition and possible actuation functions. A closer integration of the sensor and decision functions is necessary in order to achieve intrinsic identification within the sensor. A neural sensor is the next logical step in development of truly 'intelligent' arrays. This proposal will integrate 1-3 polymer piezoresistors and MLC electroceramic devices for applications involving acoustic identification. The 'intelligent' piezoresistor -piezoelectric system incorporates printed resistors, composite resistors, and a feedback for the resetting of resistances. A model of a design is proposed in order to simulate electromechanical resistor interactions. The goal of optimizing a sensor geometry for improving device reliability, training, & signal identification capabilities is the goal of this work. At present, studies predict performance of a 'smart' device with a significant control of 'effective' compliance over a narrow pressure range due to a piezoresistor percolation threshold. An interesting possibility may be to use an array of control elements to shift the threshold function in order to change the level of resistance in a neural sensor array for identification, or, actuation applications. The proposed design employs elements of: (1) conductor loaded polymers for a 'fast' RC time constant response; and (2) multilayer ceramics for actuation or sensing and shifting of resistance in the polymer. Other material possibilities also exist using magnetoresistive layered systems for shifting the resistance. It is proposed to use a neural net configuration to test and to help study the possible changes required in the materials design of these devices. Numerical design models utilize electromechanical elements, in conjunction with structural elements in order to simulate piezoresistively controlled actuators and changes in resistance of sensors

  13. Integrating Sensor-Collected Intelligence

    Science.gov (United States)

    2008-11-01

    APPENDIX H: ACRONYMS & GLOSSARY OF TERMS______________________________________________ KML Keyhole Markup Language L LADAR Laser Radar LAN Local... close to the sensor as possible. I endorse the Task Force’s findings and recommendations and encourage you to review the report. Dr. William...deeply-buried targets – require that the relevant sensors be in close proximity to the target. The task force discussed the requirements of close -in

  14. Mechatronic System Design and Intelligent Motion Control of Hydraulic Robots and Machines

    DEFF Research Database (Denmark)

    Conrad, Finn; Sørensen, Torben

    2003-01-01

    The paper presents an approach and concept to mechatronic system design and intelligent motion control. The Information Technology (IT) offers software and hardware for improvement of R&D Mechatronic Teams to create products and solutions for industrial applications. The latest progress in IT makes...... integration of an overall design and manufacturing IT- concept feasible and commercially attractive. An IT-tool concept for modelling, simulation and design of mechatronic products and systems is proposed in this paper. It built on results from a Danish mechatronic research program on intelligent motion...

  15. VLSI Design of Trusted Virtual Sensors

    Directory of Open Access Journals (Sweden)

    Macarena C. Martínez-Rodríguez

    2018-01-01

    Full Text Available This work presents a Very Large Scale Integration (VLSI design of trusted virtual sensors providing a minimum unitary cost and very good figures of size, speed and power consumption. The sensed variable is estimated by a virtual sensor based on a configurable and programmable PieceWise-Affine hyper-Rectangular (PWAR model. An algorithm is presented to find the best values of the programmable parameters given a set of (empirical or simulated input-output data. The VLSI design of the trusted virtual sensor uses the fast authenticated encryption algorithm, AEGIS, to ensure the integrity of the provided virtual measurement and to encrypt it, and a Physical Unclonable Function (PUF based on a Static Random Access Memory (SRAM to ensure the integrity of the sensor itself. Implementation results of a prototype designed in a 90-nm Complementary Metal Oxide Semiconductor (CMOS technology show that the active silicon area of the trusted virtual sensor is 0.86 mm 2 and its power consumption when trusted sensing at 50 MHz is 7.12 mW. The maximum operation frequency is 85 MHz, which allows response times lower than 0.25 μ s. As application example, the designed prototype was programmed to estimate the yaw rate in a vehicle, obtaining root mean square errors lower than 1.1%. Experimental results of the employed PUF show the robustness of the trusted sensing against aging and variations of the operation conditions, namely, temperature and power supply voltage (final value as well as ramp-up time.

  16. VLSI Design of Trusted Virtual Sensors.

    Science.gov (United States)

    Martínez-Rodríguez, Macarena C; Prada-Delgado, Miguel A; Brox, Piedad; Baturone, Iluminada

    2018-01-25

    This work presents a Very Large Scale Integration (VLSI) design of trusted virtual sensors providing a minimum unitary cost and very good figures of size, speed and power consumption. The sensed variable is estimated by a virtual sensor based on a configurable and programmable PieceWise-Affine hyper-Rectangular (PWAR) model. An algorithm is presented to find the best values of the programmable parameters given a set of (empirical or simulated) input-output data. The VLSI design of the trusted virtual sensor uses the fast authenticated encryption algorithm, AEGIS, to ensure the integrity of the provided virtual measurement and to encrypt it, and a Physical Unclonable Function (PUF) based on a Static Random Access Memory (SRAM) to ensure the integrity of the sensor itself. Implementation results of a prototype designed in a 90-nm Complementary Metal Oxide Semiconductor (CMOS) technology show that the active silicon area of the trusted virtual sensor is 0.86 mm 2 and its power consumption when trusted sensing at 50 MHz is 7.12 mW. The maximum operation frequency is 85 MHz, which allows response times lower than 0.25 μ s. As application example, the designed prototype was programmed to estimate the yaw rate in a vehicle, obtaining root mean square errors lower than 1.1%. Experimental results of the employed PUF show the robustness of the trusted sensing against aging and variations of the operation conditions, namely, temperature and power supply voltage (final value as well as ramp-up time).

  17. Design for interaction between humans and intelligent systems during real-time fault management

    Science.gov (United States)

    Malin, Jane T.; Schreckenghost, Debra L.; Thronesbery, Carroll G.

    1992-01-01

    Initial results are reported to provide guidance and assistance for designers of intelligent systems and their human interfaces. The objective is to achieve more effective human-computer interaction (HCI) for real time fault management support systems. Studies of the development of intelligent fault management systems within NASA have resulted in a new perspective of the user. If the user is viewed as one of the subsystems in a heterogeneous, distributed system, system design becomes the design of a flexible architecture for accomplishing system tasks with both human and computer agents. HCI requirements and design should be distinguished from user interface (displays and controls) requirements and design. Effective HCI design for multi-agent systems requires explicit identification of activities and information that support coordination and communication between agents. The effects are characterized of HCI design on overall system design and approaches are identified to addressing HCI requirements in system design. The results include definition of (1) guidance based on information level requirements analysis of HCI, (2) high level requirements for a design methodology that integrates the HCI perspective into system design, and (3) requirements for embedding HCI design tools into intelligent system development environments.

  18. Instrumental intelligent test of food sensory quality as mimic of human panel test combining multiple cross-perception sensors and data fusion

    International Nuclear Information System (INIS)

    Ouyang, Qin; Zhao, Jiewen; Chen, Quansheng

    2014-01-01

    Highlights: • To develop a novel instrumental intelligent test methodology for food sensory analysis. • A novel data fusion was used in instrumental intelligent test methodology. • Linear and nonlinear tools were comparatively used for modeling. • The instrumental test methodology can be imitative of human test behavior. - Abstract: Instrumental test of food quality using perception sensors instead of human panel test is attracting massive attention recently. A novel cross-perception multi-sensors data fusion imitating multiple mammal perception was proposed for the instrumental test in this work. First, three mimic sensors of electronic eye, electronic nose and electronic tongue were used in sequence for data acquisition of rice wine samples. Then all data from the three different sensors were preprocessed and merged. Next, three cross-perception variables i.e., color, aroma and taste, were constructed using principal components analysis (PCA) and multiple linear regression (MLR) which were used as the input of models. MLR, back-propagation artificial neural network (BPANN) and support vector machine (SVM) were comparatively used for modeling, and the instrumental test was achieved for the comprehensive quality of samples. Results showed the proposed cross-perception multi-sensors data fusion presented obvious superiority to the traditional data fusion methodologies, also achieved a high correlation coefficient (>90%) with the human panel test results. This work demonstrated that the instrumental test based on the cross-perception multi-sensors data fusion can actually mimic the human test behavior, therefore is of great significance to ensure the quality of products and decrease the loss of the manufacturers

  19. Instrumental intelligent test of food sensory quality as mimic of human panel test combining multiple cross-perception sensors and data fusion

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Qin; Zhao, Jiewen; Chen, Quansheng, E-mail: qschen@ujs.edu.cn

    2014-09-02

    Highlights: • To develop a novel instrumental intelligent test methodology for food sensory analysis. • A novel data fusion was used in instrumental intelligent test methodology. • Linear and nonlinear tools were comparatively used for modeling. • The instrumental test methodology can be imitative of human test behavior. - Abstract: Instrumental test of food quality using perception sensors instead of human panel test is attracting massive attention recently. A novel cross-perception multi-sensors data fusion imitating multiple mammal perception was proposed for the instrumental test in this work. First, three mimic sensors of electronic eye, electronic nose and electronic tongue were used in sequence for data acquisition of rice wine samples. Then all data from the three different sensors were preprocessed and merged. Next, three cross-perception variables i.e., color, aroma and taste, were constructed using principal components analysis (PCA) and multiple linear regression (MLR) which were used as the input of models. MLR, back-propagation artificial neural network (BPANN) and support vector machine (SVM) were comparatively used for modeling, and the instrumental test was achieved for the comprehensive quality of samples. Results showed the proposed cross-perception multi-sensors data fusion presented obvious superiority to the traditional data fusion methodologies, also achieved a high correlation coefficient (>90%) with the human panel test results. This work demonstrated that the instrumental test based on the cross-perception multi-sensors data fusion can actually mimic the human test behavior, therefore is of great significance to ensure the quality of products and decrease the loss of the manufacturers.

  20. Design and Test of a Soil Profile Moisture Sensor Based on Sensitive Soil Layers

    Science.gov (United States)

    Liu, Cheng; Qian, Hongzhou; Cao, Weixing; Ni, Jun

    2018-01-01

    To meet the demand of intelligent irrigation for accurate moisture sensing in the soil vertical profile, a soil profile moisture sensor was designed based on the principle of high-frequency capacitance. The sensor consists of five groups of sensing probes, a data processor, and some accessory components. Low-resistivity copper rings were used as components of the sensing probes. Composable simulation of the sensor’s sensing probes was carried out using a high-frequency structure simulator. According to the effective radiation range of electric field intensity, width and spacing of copper ring were set to 30 mm and 40 mm, respectively. A parallel resonance circuit of voltage-controlled oscillator and high-frequency inductance-capacitance (LC) was designed for signal frequency division and conditioning. A data processor was used to process moisture-related frequency signals for soil profile moisture sensing. The sensor was able to detect real-time soil moisture at the depths of 20, 30, and 50 cm and conduct online inversion of moisture in the soil layer between 0–100 cm. According to the calibration results, the degree of fitting (R2) between the sensor’s measuring frequency and the volumetric moisture content of soil sample was 0.99 and the relative error of the sensor consistency test was 0–1.17%. Field tests in different loam soils showed that measured soil moisture from our sensor reproduced the observed soil moisture dynamic well, with an R2 of 0.96 and a root mean square error of 0.04. In a sensor accuracy test, the R2 between the measured value of the proposed sensor and that of the Diviner2000 portable soil moisture monitoring system was higher than 0.85, with a relative error smaller than 5%. The R2 between measured values and inversed soil moisture values for other soil layers were consistently higher than 0.8. According to calibration test and field test, this sensor, which features low cost, good operability, and high integration, is qualified for

  1. Search for design intelligence: A field study on the role of emotional intelligence in architectural design studios

    Directory of Open Access Journals (Sweden)

    Sajjad Nazidizaji

    2014-12-01

    Full Text Available The design studio is the core of the architecture curriculum. Interpersonal interactions have a key role during the processes of design and critique. The influence of emotional intelligence (EQ on interpersonal communication skills has been widely proven. This study examines the correlation between EQ and architectural design competence. To achieve this, 78 architecture students were selected via a simple random sampling method and tested using an EQ test questionnaire developed by Bradbury and Greaves (2006. The scores of five architectural design studio courses (ADS-1, ADS-2, ADS-3, ADS-4, and ADS-5 were used as indicators of the progress in design of the students. Descriptive and inferential statistics methods were both employed to analyze the research data. The methods included correlation analysis, mean comparison t-test for independent samples, and single sample t-test. Findings showed no significant relationship between EQ and any of the indicators.

  2. Design of an Automatic Path Finding Wheelchair with Intelligent Guidance System

    Directory of Open Access Journals (Sweden)

    Apratim MAJUMDER

    2011-03-01

    Full Text Available A conventional motorized wheelchair has been fitted with sensors and programmed with an intelligent guidance system to efficiently maneuver itself automatically from one point to another in a facility equipped with a grid of sensors that provide the wheelchair with the basic map of its course. The device described in this paper has been conceptualized such that once the wheelchair is given information regarding the starting and stopping point in a controlled facility, the wheelchair with this pre programmed information can efficiently construct a path towards its destination and automatically drive to that point from its present position while avoiding obstacles in its path and negotiating any turns and bends that it encounters in its course. This is achieved by means of sensors (IR and sonic located at strategic points on the chair, circuits that control the speed of the motors, and a set of microcontrollers programmed to execute the different functions of the wheelchair. The facility in which the wheelchair works has been fitted with a set of sensors that form the basis of the network which is used by the program governing the wheelchair’s automated movement to provide guidance to it by means of a course map.

  3. Stepped-frequency radar sensors theory, analysis and design

    CERN Document Server

    Nguyen, Cam

    2016-01-01

    This book presents the theory, analysis and design of microwave stepped-frequency radar sensors. Stepped-frequency radar sensors are attractive for various sensing applications that require fine resolution. The book consists of five chapters. The first chapter describes the fundamentals of radar sensors including applications followed by a review of ultra-wideband pulsed, frequency-modulated continuous-wave (FMCW), and stepped-frequency radar sensors. The second chapter discusses a general analysis of radar sensors including wave propagation in media and scattering on targets, as well as the radar equation. The third chapter addresses the analysis of stepped-frequency radar sensors including their principles and design parameters. Chapter 4 presents the development of two stepped-frequency radar sensors at microwave and millimeter-wave frequencies based on microwave integrated circuits (MICs), microwave monolithic integrated circuits (MMICs) and printed-circuit antennas, and discusses their signal processing....

  4. Distributed intelligent sensor network for the rehabilitation of Parkinson's patients.

    Science.gov (United States)

    Ying, Hong; Schlösser, Mario; Schnitzer, Andreas; Schäfer, Thorsten; Schläfke, Marianne E; Leonhardt, Steffen; Schiek, Michael

    2011-03-01

    The coordination between locomotion and respiration of Parkinson's disease (PD) patients is reduced or even absent. The degree of this disturbance is assumed to be associated with the disease severity [S. Schiermeier, D. Schäfer, T. Schäfer, W. Greulich, and M. E. Schläfke, "Breathing and locomotion in patients with Parkinson's disease," Eur. J. Physiol., vol. 443, No. 1, pp. 67-71, Jul. 2001]. To enable a long-term and online analysis of the locomotion-respiration coordination for scientific purpose, we have developed a distributed wireless communicating network. We aim to integrate biofeedback protocols with the real-time analysis of the locomotion-respiration coordination in the system to aid rehabilitation of PD patients. The network of sensor nodes is composed of intelligent network operating devices (iNODEs). The miniaturized iNODE contains a continuous data acquisition system based on microcontroller, local data storage, capability of on-sensor digital signal processing in real time, and wireless communication based on IEEE 802.15.4. Force sensing resistors and respiratory inductive plethysmography are applied for motion and respiration sensing, respectively. A number of experiments have been undertaken in clinic and laboratory to test the system. It shall facilitate identification of therapeutic effects on PD, allowing to measure the patients' health status, and to aid in the rehabilitation of PD patients.

  5. Intelligent Human Machine Interface Design for Advanced Product Life Cycle Management Systems

    OpenAIRE

    Ahmed, Zeeshan

    2010-01-01

    Designing and implementing an intelligent and user friendly human machine interface for any kind of software or hardware oriented application is always be a challenging task for the designers and developers because it is very difficult to understand the psychology of the user, nature of the work and best suit of the environment. This research paper is basically about to propose an intelligent, flexible and user friendly machine interface for Product Life Cycle Management products or PDM Syste...

  6. An intelligent detecting system for permeability prediction of MBR.

    Science.gov (United States)

    Han, Honggui; Zhang, Shuo; Qiao, Junfei; Wang, Xiaoshuang

    2018-01-01

    The membrane bioreactor (MBR) has been widely used to purify wastewater in wastewater treatment plants. However, a critical difficulty of the MBR is membrane fouling. To reduce membrane fouling, in this work, an intelligent detecting system is developed to evaluate the performance of MBR by predicting the membrane permeability. This intelligent detecting system consists of two main parts. First, a soft computing method, based on the partial least squares method and the recurrent fuzzy neural network, is designed to find the nonlinear relations between the membrane permeability and the other variables. Second, a complete new platform connecting the sensors and the software is built, in order to enable the intelligent detecting system to handle complex algorithms. Finally, the simulation and experimental results demonstrate the reliability and effectiveness of the proposed intelligent detecting system, underlying the potential of this system for the online membrane permeability for detecting membrane fouling of MBR.

  7. Self-Learning Embedded System for Object Identification in Intelligent Infrastructure Sensors.

    Science.gov (United States)

    Villaverde, Monica; Perez, David; Moreno, Felix

    2015-11-17

    The emergence of new horizons in the field of travel assistant management leads to the development of cutting-edge systems focused on improving the existing ones. Moreover, new opportunities are being also presented since systems trend to be more reliable and autonomous. In this paper, a self-learning embedded system for object identification based on adaptive-cooperative dynamic approaches is presented for intelligent sensor's infrastructures. The proposed system is able to detect and identify moving objects using a dynamic decision tree. Consequently, it combines machine learning algorithms and cooperative strategies in order to make the system more adaptive to changing environments. Therefore, the proposed system may be very useful for many applications like shadow tolls since several types of vehicles may be distinguished, parking optimization systems, improved traffic conditions systems, etc.

  8. Piezoelectric power generation for sensor applications: design of a battery-less wireless tire pressure sensor

    Science.gov (United States)

    Makki, Noaman; Pop-Iliev, Remon

    2011-06-01

    An in-wheel wireless and battery-less piezo-powered tire pressure sensor is developed. Where conventional battery powered Tire Pressure Monitoring Systems (TPMS) are marred by the limited battery life, TPMS based on power harvesting modules provide virtually unlimited sensor life. Furthermore, the elimination of a permanent energy reservoir simplifies the overall sensor design through the exclusion of extra circuitry required to sense vehicle motion and conserve precious battery capacity during vehicle idling periods. In this paper, two design solutions are presented, 1) with very low cost highly flexible piezoceramic (PZT) bender elements bonded directly to the tire to generate power required to run the sensor and, 2) a novel rim mounted PZT harvesting unit that can be used to power pressure sensors incorporated into the valve stem requiring minimal change to the presently used sensors. While both the designs eliminate the use of environmentally unfriendly battery from the TPMS design, they offer advantages of being very low cost, service free and easily replaceable during tire repair and replacement.

  9. The Design and Implementation of an Intelligent Apparel Recommend Expert System

    Directory of Open Access Journals (Sweden)

    A. H. Dong

    2013-01-01

    Full Text Available Now with the rapid development of information science and technology, intelligent apparel recommend has drawn wide attention in apparel retail industry. Intelligent management and effective recommend are two issues of crucial importance for the retail store to enhance its corporate influence and increase its economic benefits. This paper proposes an intelligent recommend system design scheme for apparel retail which is based on expert system. By comprehensive utilization of database management and expert system technology, the proposed system provides a solid solution in improving the customer shopping experience. This paper presents a kind of object-oriented blackboard structure, which is applied in the apparel recommend expert system and establishes expert rule on the basis of apparel characteristic elements. Through the establishment of the rule base, the system generates personal recommend list by positive rule reasoning mechanism engine. The proposed method thus gives dress collocation scheme for the customer through the human-machine interaction from the point of view of the apparel experts. This design scheme avails the customers to experience targeted service with intellectualization, and personalization and it has certain reference significance for promoting apparel retail intelligence development.

  10. Design of Power Cable UAV Intelligent Patrol System Based on Adaptive Kalman Filter Fuzzy PID Control

    Directory of Open Access Journals (Sweden)

    Chen Siyu

    2017-01-01

    Full Text Available Patrol UAV has poor aerial posture stability and is largely affected by anthropic factors, which lead to some shortages such as low power cable tracking precision, captured image loss and inconvenient temperature measurement, etc. In order to solve these disadvantages, this article puts forward a power cable intelligent patrol system. The core innovation of the system is a 360° platform. This collects the position information of power cables by using far infrared sensors and carries out real-time all-direction adjustment of UAV lifting platform through the adaptive Kalman filter fuzzy PID control algorithm, so that the precise tracking of power cables is achieved. An intelligent patrol system is established to detect the faults more accurately, so that a high intelligence degree of power cable patrol system is realized.

  11. Design of an intelligent materials data base for the IFR

    International Nuclear Information System (INIS)

    Mikaili, R.; Lambert, J.D.B.; Orth, T.D.

    1992-01-01

    In the development of the integral fast reactor (IFR) concept, there is a consensus that materials considerations are an important part of the reactor design, operation, and maintenance and that materials performance is central to liquid-metal reactor reliability and safety. In the design of the IRF materials data base, artificial intelligence techniques are being used to ensure efficient control of information. Intelligent control will provide for the selection of menus to be displayed, efficient data-base searches, and application-dependent guidance through the data base. The development of the IRF data base has progressed to the point of (a) completing the design of the data-base architecture and tables, (b) installing computer hardware for storing large amounts of data, (c) outlining strategies for data transferal, and (d) identifying ways to validate and secure the integrity of data

  12. Optical beam deflection sensor: design and experiments.

    Science.gov (United States)

    Sakamoto, João M S; Marques, Renan B; Kitano, Cláudio; Rodrigues, Nicolau A S; Riva, Rudimar

    2017-10-01

    In this work, we present a double-pass optical beam deflection sensor and its optical design method. To accomplish that, a mathematical model was proposed and computational simulations were performed, in order to obtain the sensor's characteristic curves and to analyze its behavior as function of design parameters. The mathematical model was validated by comparison with the characteristic curves acquired experimentally. The sensor was employed to detect acoustic pulses generated by a pulsed laser in a sample surface, in order to show its potential for monitoring applications handling high energy input as laser welding or laser ablation.

  13. Intelligence for embedded systems a methodological approach

    CERN Document Server

    Alippi, Cesare

    2014-01-01

    Addressing current issues of which any engineer or computer scientist should be aware, this monograph is a response to the need to adopt a new computational paradigm as the methodological basis for designing pervasive embedded systems with sensor capabilities. The requirements of this paradigm are to control complexity, to limit cost and energy consumption, and to provide adaptation and cognition abilities allowing the embedded system to interact proactively with the real world. The quest for such intelligence requires the formalization of a new generation of intelligent systems able to exploit advances in digital architectures and in sensing technologies. The book sheds light on the theory behind intelligence for embedded systems with specific focus on: ·        robustness (the robustness of a computational flow and its evaluation); ·        intelligence (how to mimic the adaptation and cognition abilities of the human brain), ·        the capacity to learn in non-stationary and evolv...

  14. De Novo Design of Bioactive Small Molecules by Artificial Intelligence.

    Science.gov (United States)

    Merk, Daniel; Friedrich, Lukas; Grisoni, Francesca; Schneider, Gisbert

    2018-01-01

    Generative artificial intelligence offers a fresh view on molecular design. We present the first-time prospective application of a deep learning model for designing new druglike compounds with desired activities. For this purpose, we trained a recurrent neural network to capture the constitution of a large set of known bioactive compounds represented as SMILES strings. By transfer learning, this general model was fine-tuned on recognizing retinoid X and peroxisome proliferator-activated receptor agonists. We synthesized five top-ranking compounds designed by the generative model. Four of the compounds revealed nanomolar to low-micromolar receptor modulatory activity in cell-based assays. Apparently, the computational model intrinsically captured relevant chemical and biological knowledge without the need for explicit rules. The results of this study advocate generative artificial intelligence for prospective de novo molecular design, and demonstrate the potential of these methods for future medicinal chemistry. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  15. An intelligent vehicular traffic signal control system with state flow chart design and fpga prototyping

    International Nuclear Information System (INIS)

    Solangi, U.S.; Memon, T.D.; Noonari, A.S.; Ansari, O.A.

    2017-01-01

    The problem of vehicular traffic congestion is a persistent constraint in the socio-economic development of Pakistan. This paper presents design and implementation of an intelligent traffic controller based on FPGA (Field Programmable Gate Array) to provide an efficient traffic management by optimizing functioning of traffic lights which will result in minimizing traffic congestion at intersections. The existent Traffic Signal system in Pakistan is fixed-time based and offers only Open Loop method for Traffic Control. The Intelligent Traffic Controller presented here uses feedback sensors to read the Traffic density present at a four way intersection to provide an efficient alternative for better supervisory Control of Traffic flow. The traffic density based control logic has been developed in a State Flow Chart for improved visualization of State Machine based operation, and implemented as a Subsystem in Simulink and transferred into VHDL (Hardware Description Language) code using HDL Coder for reducing development time and time to market, which are essential to capitalize Embedded Systems Market. The VHDL code is synthesized with Altera QUARTUS, simulated timing waveform is obtained to verify correctness of the algorithm for different Traffic Scenarios. For implementation purpose estimations were obtained for Cyclone-III and Stratix-III. (author)

  16. An Intelligent Vehicular Traffic Signal Control System with State Flow Chart Design and FPGA Prototyping

    Directory of Open Access Journals (Sweden)

    UMAIR SAEEDSOLANGI

    2017-04-01

    Full Text Available The problem of vehicular traffic congestion is a persistent constraint in the socio-economic development of Pakistan. This paper presents design and implementation of an intelligent traffic controller based on FPGA (Field Programmable Gate Array to provide an efficient traffic management by optimizing functioning of traffic lights which will result in minimizing traffic congestion at intersections. The existent Traffic Signal system in Pakistan is fixed-time based and offers only Open Loop method for Traffic Control. The Intelligent Traffic Controller presented here uses feedback sensors to read the Traffic density present at a four way intersection to provide an efficient alternative for better supervisory Control of Traffic flow. The traffic density based control logic has been developed in a State Flow Chart for improved visualization of State Machine based operation, and implemented as a Subsystem in Simulink and transferred into VHDL (Hardware Description Language code using HDL Coder for reducing development time and time to market, which are essential to capitalize Embedded Systems Market. The VHDL code is synthesized with Altera QUARTUS, simulated timing waveform is obtained to verify correctness of the algorithm for different Traffic Scenarios. For implementation purpose estimations were obtained for Cyclone-III and Stratix-III.

  17. IVHM Framework for Intelligent Integration for Vehicle Health Management

    Science.gov (United States)

    Paris, Deidre; Trevino, Luis C.; Watson, Michael D.

    2005-01-01

    Integrated Vehicle Health Management (IVHM) systems for aerospace vehicles, is the process of assessing, preserving, and restoring system functionality across flight and techniques with sensor and communication technologies for spacecraft that can generate responses through detection, diagnosis, reasoning, and adapt to system faults in support of Integrated Intelligent Vehicle Management (IIVM). These real-time responses allow the IIVM to modify the affected vehicle subsystem(s) prior to a catastrophic event. Furthermore, this framework integrates technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Recent investments in avionics, health management, and controls have been directed towards IIVM. As this concept has matured, it has become clear that IIVM requires the same sensors and processing capabilities as the real-time avionics functions to support diagnosis of subsystem problems. New sensors have been proposed, in addition to augment the avionics sensors to support better system monitoring and diagnostics. As the designs have been considered, a synergy has been realized where the real-time avionics can utilize sensors proposed for diagnostics and prognostics to make better real-time decisions in response to detected failures. IIVM provides for a single system allowing modularity of functions and hardware across the vehicle. The framework that supports IIVM consists of 11 major on-board functions necessary to fully manage a space vehicle maintaining crew safety and mission objectives. These systems include the following: Guidance and Navigation; Communications and Tracking; Vehicle Monitoring; Information Transport and Integration; Vehicle Diagnostics; Vehicle Prognostics; Vehicle Mission Planning, Automated Repair and Replacement; Vehicle Control; Human Computer Interface; and Onboard Verification and Validation. Furthermore, the presented

  18. Thermal design and analysis of high power star sensors

    Directory of Open Access Journals (Sweden)

    Fan Jiang

    2015-09-01

    Full Text Available The requirement for the temperature stability is very high in the star sensors as the high precision needs for the altitude information. Thermal design and analysis thus is important for the high power star sensors and their supporters. CCD, normally with Peltier thermoelectric cooler (PTC, is the most important sensor component in the star sensors, which is also the main heat source in the star sensors suite. The major objective for the thermal design in this paper is to design a radiator to optimize the heat diffusion for CCD and PTC. The structural configuration of star sensors, the heat sources and orbit parameters were firstly introduced in this paper. The influences of the geometrical parameters and coating material characteristics of radiators on the heat diffusion were investigated by heat flux analysis. Carbon–carbon composites were then chosen to improve the thermal conductivity for the sensor supporters by studying the heat transfer path. The design is validated by simulation analysis and experiments on orbit. The satellite data show that the temperatures of three star sensors are from 17.8 °C to 19.6 °C, while the simulation results are from 18.1 °C to 20.1 °C. The temperatures of radiator are from 16.1 °C to 16.8 °C and the corresponding simulation results are from 16.0 °C to 16.5 °C. The temperature variety of each star sensor is less than 2 °C, which satisfies the design objectives.

  19. 2015 Chinese Intelligent Automation Conference

    CERN Document Server

    Li, Hongbo

    2015-01-01

    Proceedings of the 2015 Chinese Intelligent Automation Conference presents selected research papers from the CIAC’15, held in Fuzhou, China. The topics include adaptive control, fuzzy control, neural network based control, knowledge based control, hybrid intelligent control, learning control, evolutionary mechanism based control, multi-sensor integration, failure diagnosis, reconfigurable control, etc. Engineers and researchers from academia, industry and the government can gain valuable insights into interdisciplinary solutions in the field of intelligent automation.

  20. [An object-oriented intelligent engineering design approach for lake pollution control].

    Science.gov (United States)

    Zou, Rui; Zhou, Jing; Liu, Yong; Zhu, Xiang; Zhao, Lei; Yang, Ping-Jian; Guo, Huai-Cheng

    2013-03-01

    Regarding the shortage and deficiency of traditional lake pollution control engineering techniques, a new lake pollution control engineering approach was proposed in this study, based on object-oriented intelligent design (OOID) from the perspective of intelligence. It can provide a new methodology and framework for effectively controlling lake pollution and improving water quality. The differences between the traditional engineering techniques and the OOID approach were compared. The key points for OOID were described as object perspective, cause and effect foundation, set points into surface, and temporal and spatial optimization. The blue algae control in lake was taken as an example in this study. The effect of algae control and water quality improvement were analyzed in details from the perspective of object-oriented intelligent design based on two engineering techniques (vertical hydrodynamic mixer and pumping algaecide recharge). The modeling results showed that the traditional engineering design paradigm cannot provide scientific and effective guidance for engineering design and decision-making regarding lake pollution. Intelligent design approach is based on the object perspective and quantitative causal analysis in this case. This approach identified that the efficiency of mixers was much higher than pumps in achieving the goal of low to moderate water quality improvement. However, when the objective of water quality exceeded a certain value (such as the control objective of peak Chla concentration exceeded 100 microg x L(-1) in this experimental water), the mixer cannot achieve this goal. The pump technique can achieve the goal but with higher cost. The efficiency of combining the two techniques was higher than using one of the two techniques alone. Moreover, the quantitative scale control of the two engineering techniques has a significant impact on the actual project benefits and costs.

  1. Reaction of North American neo-Thomism against the «Intelligent Design»

    Directory of Open Access Journals (Sweden)

    Desiderio Parrilla Martínez

    2017-08-01

    Full Text Available The doctrine of «Intelligent Design» formulated by Phillip E. Johnson, Michael Behe, William A. Dembski and Stephen C. Meyer is presented as a scientific alternative to neo-Darwinism. For philosophical naturalism or atheism is only a pseudo-science dependent of «Protestant creationism» and the literal biblical interpretation. The best philosophical critiques, however, come from American neo-Thomism. This paper presents the main arguments used by the Thomism in his polemic against the doctrine of «Intelligent Design».

  2. Integrated environmental control and monitoring in the intelligent workplace. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This project involved the design and engineering of the control and monitoring of environmental quality - visual, thermal, air - in the Intelligent Workplace. The research objectives were to study the performance of the individual systems, to study the integration issues related to each system, to develop a control plan, and to implement and test the integrated systems in a real setting. In this project, a control strategy with related algorithms for distributed sensors, actuators, and controllers for negotiating central and individual control of HVAC, lighting, and enclosure was developed in order to maximize user comfort, and energy and environmental effectiveness. The goal of the control system design in the Intelligent Workplace is the integration of building systems for optimization of occupant satisfaction, organizational flexibility, energy efficiency and environmental effectiveness. The task of designing this control system involves not only the research, development and demonstration of state-of-the-art mechanical and electrical systems, but also their integration. The ABSIC research team developed functional requirements for the environmental systems considering the needs of both facility manager and the user. There are three levels of control for the environmental systems: scheduled control, sensor control, and user control. The challenges are to achieve the highest possible levels of energy effectiveness simultaneously with the highest levels of user satisfaction. The report describes the components of each system, their implementation in the Intelligent Workplace and related control and monitoring issues.

  3. FR4-based electromagnetic energy harvester for wireless sensor nodes

    Science.gov (United States)

    Hatipoglu, G.; Ürey, H.

    2010-01-01

    Electromagnetic (EM) energy harvesting seems to be one of the most promising ways to power wireless sensors in a wireless sensor network. In this paper, FR4, the most commonly used PCB material, is utilized as a mechanical vibrating structure for EM energy harvesting for body-worn sensors and intelligent tire sensors, which involve impact loadings. FR4 can be a better material for such applications compared to silicon MEMS devices due to lower stiffness and broadband response. In order to demonstrate FR4 performance and broadband response, three moving magnet type EM generator designs are developed and investigated throughout the paper. A velocity-damped harvester simulation model is first developed, including a detailed magnetic model and the magnetic damping effects. The numerical results agree well with the experimental results. Human running acceleration at the hip area that is obtained experimentally is simulated in order to demonstrate system performance, which results in a scavenged power of about 40 µW with 15 m s-2 acceleration input. The designed FR4 energy scavengers with mechanical stoppers implemented are particularly well suited for nearly periodic and non-sinusoidal high- g excitations with rich harmonic content. For the intelligent tire applications, a special compact FR4 scavenger is designed that is able to withstand large shocks and vibrations due to mechanical shock stoppers built into the structure. Using our design, 0.4 mW power across a load resistance at off-resonance operation is obtained in shaker experiments. In the actual operation, the tangential accelerations as a result of the tire-road contact are estimated to supply power around 1 mW with our design, which is sufficient for powering wireless tire sensors. The normalized power density (NPD) of the designed actuators compares favorably with most actuators reported in the literature.

  4. FR4-based electromagnetic energy harvester for wireless sensor nodes

    International Nuclear Information System (INIS)

    Hatipoglu, G; Ürey, H

    2010-01-01

    Electromagnetic (EM) energy harvesting seems to be one of the most promising ways to power wireless sensors in a wireless sensor network. In this paper, FR4, the most commonly used PCB material, is utilized as a mechanical vibrating structure for EM energy harvesting for body-worn sensors and intelligent tire sensors, which involve impact loadings. FR4 can be a better material for such applications compared to silicon MEMS devices due to lower stiffness and broadband response. In order to demonstrate FR4 performance and broadband response, three moving magnet type EM generator designs are developed and investigated throughout the paper. A velocity-damped harvester simulation model is first developed, including a detailed magnetic model and the magnetic damping effects. The numerical results agree well with the experimental results. Human running acceleration at the hip area that is obtained experimentally is simulated in order to demonstrate system performance, which results in a scavenged power of about 40 µW with 15 m s −2 acceleration input. The designed FR4 energy scavengers with mechanical stoppers implemented are particularly well suited for nearly periodic and non-sinusoidal high- g excitations with rich harmonic content. For the intelligent tire applications, a special compact FR4 scavenger is designed that is able to withstand large shocks and vibrations due to mechanical shock stoppers built into the structure. Using our design, 0.4 mW power across a load resistance at off-resonance operation is obtained in shaker experiments. In the actual operation, the tangential accelerations as a result of the tire–road contact are estimated to supply power around 1 mW with our design, which is sufficient for powering wireless tire sensors. The normalized power density (NPD) of the designed actuators compares favorably with most actuators reported in the literature

  5. An intelligent service matching method for mechanical equipment condition monitoring using the fibre Bragg grating sensor network

    Science.gov (United States)

    Zhang, Fan; Zhou, Zude; Liu, Quan; Xu, Wenjun

    2017-02-01

    Due to the advantages of being able to function under harsh environmental conditions and serving as a distributed condition information source in a networked monitoring system, the fibre Bragg grating (FBG) sensor network has attracted considerable attention for equipment online condition monitoring. To provide an overall conditional view of the mechanical equipment operation, a networked service-oriented condition monitoring framework based on FBG sensing is proposed, together with an intelligent matching method for supporting monitoring service management. In the novel framework, three classes of progressive service matching approaches, including service-chain knowledge database service matching, multi-objective constrained service matching and workflow-driven human-interactive service matching, are developed and integrated with an enhanced particle swarm optimisation (PSO) algorithm as well as a workflow-driven mechanism. Moreover, the manufacturing domain ontology, FBG sensor network structure and monitoring object are considered to facilitate the automatic matching of condition monitoring services to overcome the limitations of traditional service processing methods. The experimental results demonstrate that FBG monitoring services can be selected intelligently, and the developed condition monitoring system can be re-built rapidly as new equipment joins the framework. The effectiveness of the service matching method is also verified by implementing a prototype system together with its performance analysis.

  6. SENSORS FAULT DIAGNOSIS ALGORITHM DESIGN OF A HYDRAULIC SYSTEM

    Directory of Open Access Journals (Sweden)

    Matej ORAVEC

    2017-06-01

    Full Text Available This article presents the sensors fault diagnosis system design for the hydraulic system, which is based on the group of the three fault estimation filters. These filters are used for estimation of the system states and sensors fault magnitude. Also, this article briefly stated the hydraulic system state control design with integrator, which is important assumption for the fault diagnosis system design. The sensors fault diagnosis system is implemented into the Matlab/Simulink environment and it is verified using the controlled hydraulic system simulation model. Verification of the designed fault diagnosis system is realized by series of experiments, which simulates sensors faults. The results of the experiments are briefly presented in the last part of this article.

  7. Intelligent Mobile Sensor System for drum inspection and monitoring - Volume 2. Final report, October 1, 1993 - April 22, 1995

    International Nuclear Information System (INIS)

    1995-01-01

    The objective of the Intelligent Mobile Sensor System (IMSS) project was to develop an operational system for monitoring and inspection activities for waste storage facility operations at several DOE sites. Specifically, the product of this effort was a robotic device with enhanced intelligence and maneuverability capable of conducting routine inspection of stored waste drums. The system has an integrated sensor suite for problem-drum detection, and creates and maintains a site database both for inspection planning and for data correlation, updating, and report generation. The system is capable of departing on an assigned mission, collecting required data, recording which portions of its mission had to be aborted or modified due to environmental constraints, and reporting back when the mission is complete. Successful identification of more than 96% of drum defects has been demonstrated in a high fidelity waste storage facility mockup. Identified anomalies included rust spots, rust streaks, areas of corrosion, dents, and tilted drums. All drums were positively identified and correlated with the site database. This development effort was separated into three phases of which phase three is now complete. The first phase demonstrated an integrated system (maturity level IVa) for monitoring and inspection activities for waste storage facility operations. The second phase demonstrated a prototype system appropriate for operational use in an actual storage facility. The prototype employed an integrated design that considered operational requirements, hardware costs, maintenance, safety, and robustness. The final phase has demonstrated the commercial viability of the vehicle in operating waste storage facilities at Fernald, Ohio and the Idaho National Engineering Laboratory (INEL). This report summarizes the system upgrades performed in phase 3 and the evaluation of the IMSS Phase 3 system and vehicle

  8. Anti-Runaway Prevention System with Wireless Sensors for Intelligent Track Skates at Railway Stations

    Directory of Open Access Journals (Sweden)

    Chaozhe Jiang

    2017-12-01

    Full Text Available Anti-runaway prevention of rolling stocks at a railway station is essential in railway safety management. The traditional track skates for anti-runaway prevention of rolling stocks have some disadvantages since they are operated and monitored completely manually. This paper describes an anti-runaway prevention system (ARPS based on intelligent track skates equipped with sensors and real-time monitoring and management system. This system, which has been updated from the traditional track skates, comprises four parts: intelligent track skates, a signal reader, a database station, and a monitoring system. This system can monitor the real-time situation of track skates without changing their workflow for anti-runaway prevention, and thus realize the integration of anti-runaway prevention information management. This system was successfully tested and practiced at Sunjia station in Harbin Railway Bureau in 2014, and the results confirmed that the system showed 100% accuracy in reflecting the usage status of the track skates. The system could meet practical demands, as it is highly reliable and supports long-distance communication.

  9. Anti-Runaway Prevention System with Wireless Sensors for Intelligent Track Skates at Railway Stations.

    Science.gov (United States)

    Jiang, Chaozhe; Xu, Yibo; Wen, Chao; Chen, Dilin

    2017-12-19

    Anti-runaway prevention of rolling stocks at a railway station is essential in railway safety management. The traditional track skates for anti-runaway prevention of rolling stocks have some disadvantages since they are operated and monitored completely manually. This paper describes an anti-runaway prevention system (ARPS) based on intelligent track skates equipped with sensors and real-time monitoring and management system. This system, which has been updated from the traditional track skates, comprises four parts: intelligent track skates, a signal reader, a database station, and a monitoring system. This system can monitor the real-time situation of track skates without changing their workflow for anti-runaway prevention, and thus realize the integration of anti-runaway prevention information management. This system was successfully tested and practiced at Sunjia station in Harbin Railway Bureau in 2014, and the results confirmed that the system showed 100% accuracy in reflecting the usage status of the track skates. The system could meet practical demands, as it is highly reliable and supports long-distance communication.

  10. Nature-inspired design of hybrid intelligent systems

    CERN Document Server

    Castillo, Oscar; Kacprzyk, Janusz

    2017-01-01

    This book highlights recent advances in the design of hybrid intelligent systems based on nature-inspired optimization and their application in areas such as intelligent control and robotics, pattern recognition, time series prediction, and optimization of complex problems. The book is divided into seven main parts, the first of which addresses theoretical aspects of and new concepts and algorithms based on type-2 and intuitionistic fuzzy logic systems. The second part focuses on neural network theory, and explores the applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The book’s third part presents enhancements to meta-heuristics based on fuzzy logic techniques and describes new nature-inspired optimization algorithms that employ fuzzy dynamic adaptation of parameters, while the fourth part presents diverse applications of nature-inspired optimization algorithms. In turn, the fifth part investigates applications of fuzzy logic in diverse areas, such as...

  11. Designing Intelligent Tutoring Systems: A Personalization Strategy using Case-Based Reasoning and Multi-Agent Systems

    Directory of Open Access Journals (Sweden)

    Rosalía LAZA

    2013-05-01

    Full Text Available Intelligent Tutoring Systems (ITSs are educational systems that use artificial intelligence techniques for representing the knowledge. ITSs design is often criticized for being a complex and challenging process. In this article, we propose a framework for the ITSs design using Case Based Reasoning (CBR and Multiagent systems (MAS. The major advantage of using CBR is to allow the intelligent system to propose smart and quick solutions to problems, even in complex domains, avoiding the time necessary to derive those solutions from scratch. The use of intelligent agents and MAS architectures supports the retrieval of similar students models and the adaptation of teaching strategies according to the student profile. We describe deeply how the combination of both technologies helps to simplify the design of new ITSs and personalize the e-learning process for each student

  12. A framework for development of an intelligent system for design and manufacturing of stamping dies

    International Nuclear Information System (INIS)

    Hussein, H M A; Kumar, S

    2014-01-01

    An integration of computer aided design (CAD), computer aided process planning (CAPP) and computer aided manufacturing (CAM) is required for development of an intelligent system to design and manufacture stamping dies in sheet metal industries. In this paper, a framework for development of an intelligent system for design and manufacturing of stamping dies is proposed. In the proposed framework, the intelligent system is structured in form of various expert system modules for different activities of design and manufacturing of dies. All system modules are integrated with each other. The proposed system takes its input in form of a CAD file of sheet metal part, and then system modules automate all tasks related to design and manufacturing of stamping dies. Modules are coded using Visual Basic (VB) and developed on the platform of AutoCAD software

  13. A framework for development of an intelligent system for design and manufacturing of stamping dies

    Science.gov (United States)

    Hussein, H. M. A.; Kumar, S.

    2014-07-01

    An integration of computer aided design (CAD), computer aided process planning (CAPP) and computer aided manufacturing (CAM) is required for development of an intelligent system to design and manufacture stamping dies in sheet metal industries. In this paper, a framework for development of an intelligent system for design and manufacturing of stamping dies is proposed. In the proposed framework, the intelligent system is structured in form of various expert system modules for different activities of design and manufacturing of dies. All system modules are integrated with each other. The proposed system takes its input in form of a CAD file of sheet metal part, and then system modules automate all tasks related to design and manufacturing of stamping dies. Modules are coded using Visual Basic (VB) and developed on the platform of AutoCAD software.

  14. Wireless sensor networks principles, design and applications

    CERN Document Server

    Yang, Shuang-Hua

    2014-01-01

    Wireless Sensor Networks presents the latest practical solutions to the design issues presented in wireless-sensor-network-based systems. Novel features of the text, distributed throughout, include workable solutions, demonstration systems and case studies of the design and application of wireless sensor networks (WSNs) based on the first-hand research and development experience of the author, and the chapters on real applications: building fire safety protection; smart home automation; and logistics resource management. Case studies and applications illustrate the practical perspectives of: ·         sensor node design; ·         embedded software design; ·         routing algorithms; ·         sink node positioning; ·         co-existence with other wireless systems; ·         data fusion; ·         security; ·         indoor location tracking; ·         integrating with radio-frequency identification; and ·         In...

  15. Automation of fusion first wall design using artificial intelligence technique

    International Nuclear Information System (INIS)

    Yoshimura, Shinobu; Yagawa, Genki; Mochizuki, Yoshihiko

    1990-01-01

    This paper describes the application of artificial intelligence techniques to a design automation of the fusion first wall to be operated in the complex environment where huge electromagnetic and thermal loading as well as heavy neutron irradiation occur. As a basic strategy of designing structure shape considering many coupled phenomena, an ordinary design procedure based on the generate and test strategy is adopted because of its simplicity and broad applicability. To automate the design procedure with maintaining its flexibility, extensibility and efficiency, artificial intelligence techniques are utilized in the following. An object-oriented knowledge representation technique is adopted to store knowledge modules, that is, objects, related to the first wall design, while a data-flow processing technique is utilized as an inference mechanism among the knowledge modules. These techniques realize the flexibility and extensibility of the system. Moreover, as an efficient design modification mechanism, which is essential in a design process, an empirical approach based on experts' empirical knowledge and a mathematical approach based on a kind of numerical sensitivity analysis are introduced. The developed system is applied to a simple example of the design of a two-dimensional model of the first wall with a cooling channel, and its fundamental performance is clearly demonstrated. (author)

  16. A Mixed-Signal Embedded Platform for Automotive Sensor Conditioning

    OpenAIRE

    Emilio Volpi; Luca Fanucci; Adolfo Giambastiani; Alessandro Rocchi; Francesco D'Ascoli; Marco Tonarelli; Massimiliano Melani; Corrado Marino

    2010-01-01

    Abstract A mixed-signal embedded system called Intelligent Sensor InterFace (ISIF) suited to fast identify, trim, and verify an architecture to interface a given sensor is presented. This system has been developed according to a platform-based design approach, a methodology that has proved to be efficient for building complex mixed-signal embedded systems with short time-to-market. Such platform consists in a wide set of optimized high-performance analog, digital, and software intellectual pr...

  17. How Biology Teachers Can Respond to Intelligent Design

    Science.gov (United States)

    Mackenzie, Jim

    2010-01-01

    Teachers of biology and related subjects are increasingly meeting objections from students and their parents to the teaching of evolution and the exclusion of what is called the theory of Intelligent Design. This paper attempts to draw together arguments and evidence which may be used by such teachers. Four lessons are drawn from the 1982…

  18. Design of external sensors board based on Bluetooth interface of smart phones for structural health monitoring system

    Science.gov (United States)

    Yu, Yan; Zhou, Yaping; Zhao, Xuefeng; Li, Dongsheng; Ou, Jinping

    2016-04-01

    As an important part of new information technology, the Internet of Things(IoT) is based on intelligent perception, recognition technology, ubiquitous computing, ubiquitous network integration, and it is known as the third wave of the development of information industry in the world after the computer and the Internet. And Smart Phones are the general term for a class of mobile phones with a separate operating system and operational memory, in which the third-party service programs including software, games, navigation, et.al, can be installed. Smart Phones, with not only sensors but also actuators, are widely used in the IoT world. As the current hot issues in the engineering area, Structural health monitoring (SHM) is also facing new problems about design ideas in the IoT environment. The development of IoT, wireless sensor network and mobile communication technology, provides a good technical platform for SHM. Based on these facts, this paper introduces a kind of new idea for Structural Health Monitoring using Smart Phones Technique. The system is described in detail, and the external sensor board based on Bluetooth interface is designed, the test based on Smart Phones is finished to validate the implementation and feasibility. The research is preliminary and more tests need to be carried out before it can be of practical use.

  19. Heuristic decision model for intelligent nuclear power systems design

    International Nuclear Information System (INIS)

    Nassersharif, B.; Portal, M.G.; Gaeta, M.J.

    1989-01-01

    The objective of this project was to investigate intelligent nuclear power systems design. A theoretical model of the design process has been developed. A fundamental process in this model is the heuristic decision making for design (i.e., selection of methods, components, materials, etc.). Rule-based expert systems do not provide the completeness that is necessary to generate good design. A new method, based on the fuzzy set theory, has been developed and is presented here. A feedwater system knowledge base (KB) was developed for a prototype software experiment to benchmark the theory

  20. A comprehensive review on intelligent surveillance systems

    Directory of Open Access Journals (Sweden)

    Sutrisno Warsono Ibrahim

    2016-05-01

    Full Text Available Intelligent surveillance system (ISS has received growing attention due to the increasing demand on security and safety. ISS is able to automatically analyze image, video, audio or other type of surveillance data without or with limited human intervention. The recent developments in sensor devices, computer vision, and machine learning have an important role in enabling such intelligent system. This paper aims to provide general overview of intelligent surveillance system and discuss some possible sensor modalities and their fusion scenarios such as visible camera (CCTV, infrared camera, thermal camera and radar. This paper also discusses main processing steps in ISS: background-foreground segmentation, object detection and classification, tracking, and behavioral analysis.

  1. Circuit Design of Surface Acoustic Wave Based Micro Force Sensor

    Directory of Open Access Journals (Sweden)

    Yuanyuan Li

    2014-01-01

    Full Text Available Pressure sensors are commonly used in industrial production and mechanical system. However, resistance strain, piezoresistive sensor, and ceramic capacitive pressure sensors possess limitations, especially in micro force measurement. A surface acoustic wave (SAW based micro force sensor is designed in this paper, which is based on the theories of wavelet transform, SAW detection, and pierce oscillator circuits. Using lithium niobate as the basal material, a mathematical model is established to analyze the frequency, and a peripheral circuit is designed to measure the micro force. The SAW based micro force sensor is tested to show the reasonable design of detection circuit and the stability of frequency and amplitude.

  2. Priority design parameters of industrialized optical fiber sensors in civil engineering

    Science.gov (United States)

    Wang, Huaping; Jiang, Lizhong; Xiang, Ping

    2018-03-01

    Considering the mechanical effects and the different paths for transferring deformation, optical fiber sensors commonly used in civil engineering have been systematically classified. Based on the strain transfer theory, the relationship between the strain transfer coefficient and allowable testing error is established. The proposed relationship is regarded as the optimal control equation to obtain the optimal value of sensors that satisfy the requirement of measurement precision. Furthermore, specific optimization design methods and priority design parameters of the classified sensors are presented. This research indicates that (1) strain transfer theory-based optimization design method is much suitable for the sensor that depends on the interfacial shear stress to transfer the deformation; (2) the priority design parameters are bonded (sensing) length, interfacial bonded strength, elastic modulus and radius of protective layer and thickness of adhesive layer; (3) the optimization design of sensors with two anchor pieces at two ends is independent of strain transfer theory as the strain transfer coefficient can be conveniently calibrated by test, and this kind of sensors has no obvious priority design parameters. Improved calibration test is put forward to enhance the accuracy of the calibration coefficient of end-expanding sensors. By considering the practical state of sensors and the testing accuracy, comprehensive and systematic analyses on optical fiber sensors are provided from the perspective of mechanical actions, which could scientifically instruct the application design and calibration test of industrialized optical fiber sensors.

  3. Intelligent Transportation Systems (ITS) plan for Canada : en route to intelligent mobility

    Science.gov (United States)

    1999-11-01

    Intelligent Transportation Systems (ITS) include the application of advanced information processing, communications, sensor and control technologies and management strategies in an integrated manner to improve the functioning of the transportation sy...

  4. Application of Wireless Sensor and Actuator Networks to Achieve Intelligent Microgrids: A Promising Approach towards a Global Smart Grid Deployment

    Directory of Open Access Journals (Sweden)

    Alvaro Llaria

    2016-02-01

    Full Text Available Smart Grids (SGs constitute the evolution of the traditional electrical grid towards a new paradigm, which should increase the reliability, the security and, at the same time, reduce the costs of energy generation, distribution and consumption. Electrical microgrids (MGs can be considered the first stage of this evolution of the grid, because of the intelligent management techniques that must be applied to assure their correct operation. To accomplish this task, sensors and actuators will be necessary, along with wireless communication technologies to transmit the measured data and the command messages. Wireless Sensor and Actuator Networks (WSANs are therefore a promising solution to achieve an intelligent management of MGs and, by extension, the SG. In this frame, this paper surveys several aspects concerning the application of WSANs to manage MGs and the electrical grid, as well as the communication protocols that could be applied. The main concerns regarding the SG deployment are also presented, including future scenarios where the interoperability of different generation technologies must be assured.

  5. Intelligent adaptive systems an interaction-centered design perspective

    CERN Document Server

    Hou, Ming; Burns, Catherine

    2014-01-01

    A synthesis of recent research and developments on intelligent adaptive systems from the HF (human factors) and HCI (human-computer interaction) domains, this book provides integrated design guidance and recommendations for researchers and system developers. It addresses a recognized lack of integration between the HF and HCI research communities, which has led to inconsistencies between the research approaches adopted, and a lack of exploitation of research from one field by the other. The book establishes design guidance through the review of conceptual frameworks, analytical methodologies,

  6. Functional Testing of Wireless Sensor Node Designs

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Madsen, Jan

    2007-01-01

    Wireless sensor networks are networked embedded computer systems with stringent power, performance, cost and form-factor requirements along with numerous other constraints related to their pervasiveness and ubiquitousness. Therefore, only a systematic design methdology coupled with an efficient...... test approach can enable their conformance to design and deployment specifications. We discuss off-line, hierarchical, functional testing of complete wireless sensor nodes containing configurable logic through a combination of FPGA-based board test and Software-Based Self-Test (SBST) techniques...

  7. The implementation of CMOS sensors within a real time digital mammography intelligent imaging system: The I-ImaS System

    Science.gov (United States)

    Esbrand, C.; Royle, G.; Griffiths, J.; Speller, R.

    2009-07-01

    The integration of technology with healthcare has undoubtedly propelled the medical imaging sector well into the twenty first century. The concept of digital imaging introduced during the 1970s has since paved the way for established imaging techniques where digital mammography, phase contrast imaging and CT imaging are just a few examples. This paper presents a prototype intelligent digital mammography system designed and developed by a European consortium. The final system, the I-ImaS system, utilises CMOS monolithic active pixel sensor (MAPS) technology promoting on-chip data processing, enabling the acts of data processing and image acquisition to be achieved simultaneously; consequently, statistical analysis of tissue is achievable in real-time for the purpose of x-ray beam modulation via a feedback mechanism during the image acquisition procedure. The imager implements a dual array of twenty 520 pixel × 40 pixel CMOS MAPS sensing devices with a 32μm pixel size, each individually coupled to a 100μm thick thallium doped structured CsI scintillator. This paper presents the first intelligent images of real breast tissue obtained from the prototype system of real excised breast tissue where the x-ray exposure was modulated via the statistical information extracted from the breast tissue itself. Conventional images were experimentally acquired where the statistical analysis of the data was done off-line, resulting in the production of simulated real-time intelligently optimised images. The results obtained indicate real-time image optimisation using the statistical information extracted from the breast as a means of a feedback mechanisms is beneficial and foreseeable in the near future.

  8. Intelligent Digitized Design Systems for the Management of Design Knowledge Related to Nuclear R&D Institutes

    International Nuclear Information System (INIS)

    Zheng, M.; Minglu, W.

    2016-01-01

    Full text: Nuclear R&D is highly knowledge-intensive. With the rapid advent and development of modern information technology, knowledge management in nuclear industry has been provided with new approaches and possibilities. This article introduces a framework of intelligent digitized design system in nuclear R&D phase and finds answer to knowledge application, internal process optimization, experience feedback and further innovation. This framework utilizing digitalization and informatization finds a way to incorporate the process of the “Socialization, Externalization, Combination, Internalization” (SECI) model which include intelligent design process, integrated design software, smart verification and validation simulation platform, experiment data management platform, online monitoring platform and digital twin nuclear power plant, etc. The following case study gives a clear picture of what and how knowledge management has been performed under this framework. Furthermore, important lessons have been summarized. (author

  9. Intelligent Vehicle Health Management

    Science.gov (United States)

    Paris, Deidre E.; Trevino, Luis; Watson, Michael D.

    2005-01-01

    As a part of the overall goal of developing Integrated Vehicle Health Management systems for aerospace vehicles, the NASA Faculty Fellowship Program (NFFP) at Marshall Space Flight Center has performed a pilot study on IVHM principals which integrates researched IVHM technologies in support of Integrated Intelligent Vehicle Management (IIVM). IVHM is the process of assessing, preserving, and restoring system functionality across flight and ground systems (NASA NGLT 2004). The framework presented in this paper integrates advanced computational techniques with sensor and communication technologies for spacecraft that can generate responses through detection, diagnosis, reasoning, and adapt to system faults in support of INM. These real-time responses allow the IIVM to modify the affected vehicle subsystem(s) prior to a catastrophic event. Furthermore, the objective of this pilot program is to develop and integrate technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Recent investments in avionics, health management, and controls have been directed towards IIVM. As this concept has matured, it has become clear the INM requires the same sensors and processing capabilities as the real-time avionics functions to support diagnosis of subsystem problems. New sensors have been proposed, in addition, to augment the avionics sensors to support better system monitoring and diagnostics. As the designs have been considered, a synergy has been realized where the real-time avionics can utilize sensors proposed for diagnostics and prognostics to make better real-time decisions in response to detected failures. IIVM provides for a single system allowing modularity of functions and hardware across the vehicle. The framework that supports IIVM consists of 11 major on-board functions necessary to fully manage a space vehicle maintaining crew safety and mission

  10. Design of an intelligent flight instrumentation unit using embedded RTOS

    Science.gov (United States)

    Estrada-Marmolejo, R.; García-Torales, G.; Torres-Ortega, H. H.; Flores, J. L.

    2011-09-01

    Micro Unmanned Aerial Vehicles (MUAV) must calculate its spatial position to control the flight dynamics, which is done by Inertial Measurement Units (IMUs). MEMS Inertial sensors have made possible to reduce the size and power consumption of such units. Commonly the flight instrumentation operates independently of the main processor. This work presents an instrumentation block design, which reduces size and power consumption of the complete system of a MUAV. This is done by coupling the inertial sensors to the main processor without considering any intermediate level of processing aside. Using Real Time Operating Systems (RTOS) reduces the number of intermediate components, increasing MUAV reliability. One advantage is the possibility to control several different sensors with a single communication bus. This feature of the MEMS sensors makes a smaller and less complex MUAV design possible.

  11. Virtual Diagnostic Sensors Design for an Automated Guided Vehicle

    Directory of Open Access Journals (Sweden)

    Ralf Stetter

    2018-05-01

    Full Text Available In recent years, Automated Guided Vehicles (AGVs have been playing an increasingly important role in producing industry and infrastructure and will soon arrive to other areas of human life such as the transportation of goods and people. However, several challenges still aggravate the operation of AGVs, which limit the amount of implementation. One major challenge is the realization of reliable sensors that can capture the different aspects of the state of an AGV as well as its surroundings. One promising approach towards more reliable sensors is the supplementary application of virtual sensors, which are able to generate virtual measurements by using other sources of information such as actuator states and already existing sensors together with appropriate mathematical models. The focus of the research described in this paper is the design of virtual sensors determining forces and torques acting on an AGV. The proposed novel approach is using a quadratic boundedness approach, which makes it possible to include bounded disturbances acting on the AGV. One major advantage of the presented approach is that the use of complex tire models can be avoided. Information from acceleration and yaw rate sensors is processed in order to realize reliable virtual force and torque sensors. The resulting force and torque information can be used for several diagnostic purposes such as fault detection or fault prevention. The presented approach is explained and verified on the basis of an innovative design of an AGV. This innovative design addresses another major challenge for AGVs, which is the limited maneuvering possibilities of many AGV designs. The innovative design allows nearly unlimited maneuvering possibilities but requires reliable sensor data. The application of the approach in the AGV resulted in the insight that the generated estimates are consistent with the longitudinal forces and torques obtained by a proven reference model.

  12. Hybrid intelligent control concepts for optimal data fusion

    Science.gov (United States)

    Llinas, James

    1994-02-01

    In the post-Cold War era, Naval surface ship operations will be largely conducted in littoral waters to support regional military missions of all types, including humanitarian and evacuation activities, and amphibious mission execution. Under these conditions, surface ships will be much more isolated and vulnerable to a variety of threats, including maneuvering antiship missiles. To deal with these threats, the optimal employment of multiple shipborne sensors for maximum vigilance is paramount. This paper characterizes the sensor management problem as one of intelligent control, identifies some of the key issues in controller design, and presents one approach to controller design which is soon to be implemented and evaluated. It is argued that the complexity and hierarchical nature of problem formulation demands a hybrid combination of knowledge-based methods and scheduling techniques from 'hard' real-time systems theory for its solution.

  13. HTR-10GT AMBs displacement sensor design

    International Nuclear Information System (INIS)

    Shi Zhengang; Zha Meisheng; Zhao Lei; Sun Zhuo

    2005-01-01

    The 10 MW high temperature gas-cooled test module reactor (HTR-10GT) with the core made of spherical fuel elements was designed and constructed by the Institute of Nuclear and New Energy Technology of Tsinghua University in China. In the HTR-10GT, turbo-compressor and generator rotors are connected by a flexible coupling. The rotors, restricted by actual instruments and working environment, must be supported without any contact and lubrication. Active magnetic bearing (AMB), known as its advantages over the conventional bearings., such as contact-free, no-lubricating and active damping vibration, is the best way to suspend and stabilize the position of rotors of HTR-10GT. Each rotor is suspended by two radial and one axial AMBs. The radial AMB's radial gap is 0.15 mm considering the gap of 0.4 mm between the compressor stator and blades in order to protect the compressor. The control system controls the rotor position to meet the required gaps between rotor and stator through windings current. All the position information concerning radial and axial AMB is generated by sensors for measuring the displacement of the levitated body. Some typical sensors, i.e. eddy current displacement sensor, capacitive displacement sensor, can provide position information, but, quite often, unsatisfactory anti-jamming, which is a key issue for AMB systems near generator and other electric devices in HTR-10GT. Therefore, a kind of new type sensor is designed to measure the radial and axial displacements and the vibration of the rotors. This paper focuses on the design characteristics of the HTR-10GT AMBs displacement sensors and introduction of the related experiments to demonstrate its performance. (authors)

  14. Design considerations for TES and QET sensors

    International Nuclear Information System (INIS)

    Cabrera, B.

    2000-01-01

    We summarize some of the effects that must be taken into account in the design of superconducting Transition Edge Sensors (TES) and Quasiparticle-trap-assisted Electrothermal-feedback Transition-edge-sensors (QET). For the TES these include determining time constants, maintaining voltage bias, avoid electrothermal oscillations, critical current limitations, and saturation. For QET phonon sensors, voltage bias was conceived to allow the simultaneous biasing of parallel TESs with different transition temperatures, and preventing normal-superconducting phase separation

  15. The design and results of an algorithm for intelligent ground vehicles

    Science.gov (United States)

    Duncan, Matthew; Milam, Justin; Tote, Caleb; Riggins, Robert N.

    2010-01-01

    This paper addresses the design, design method, test platform, and test results of an algorithm used in autonomous navigation for intelligent vehicles. The Bluefield State College (BSC) team created this algorithm for its 2009 Intelligent Ground Vehicle Competition (IGVC) robot called Anassa V. The BSC robotics team is comprised of undergraduate computer science, engineering technology, marketing students, and one robotics faculty advisor. The team has participated in IGVC since the year 2000. A major part of the design process that the BSC team uses each year for IGVC is a fully documented "Post-IGVC Analysis." Over the nine years since 2000, the lessons the students learned from these analyses have resulted in an ever-improving, highly successful autonomous algorithm. The algorithm employed in Anassa V is a culmination of past successes and new ideas, resulting in Anassa V earning several excellent IGVC 2009 performance awards, including third place overall. The paper will discuss all aspects of the design of this autonomous robotic system, beginning with the design process and ending with test results for both simulation and real environments.

  16. Greenhouse intelligent control system based on microcontroller

    Science.gov (United States)

    Zhang, Congwei

    2018-04-01

    As one of the hallmarks of agricultural modernization, intelligent greenhouse has the advantages of high yield, excellent quality, no pollution and continuous planting. Taking AT89S52 microcontroller as the main controller, the greenhouse intelligent control system uses soil moisture sensor, temperature and humidity sensors, light intensity sensor and CO2 concentration sensor to collect measurements and display them on the 12864 LCD screen real-time. Meantime, climate parameter values can be manually set online. The collected measured values are compared with the set standard values, and then the lighting, ventilation fans, warming lamps, water pumps and other facilities automatically start to adjust the climate such as light intensity, CO2 concentration, temperature, air humidity and soil moisture of the greenhouse parameter. So, the state of the environment in the greenhouse Stabilizes and the crop grows in a suitable environment.

  17. Recent Progress in Technologies for Tactile Sensors

    Science.gov (United States)

    Sun, Xuguang; Xue, Ning; Li, Tong; Liu, Chang

    2018-01-01

    Over the last two decades, considerable scientific and technological efforts have been devoted to developing tactile sensing based on a variety of transducing mechanisms, with prospective applications in many fields such as human–machine interaction, intelligent robot tactile control and feedback, and tactile sensorized minimally invasive surgery. This paper starts with an introduction of human tactile systems, followed by a presentation of the basic demands of tactile sensors. State-of-the-art tactile sensors are reviewed in terms of their diverse sensing mechanisms, design consideration, and material selection. Subsequently, typical performances of the sensors, along with their advantages and disadvantages, are compared and analyzed. Two major potential applications of tactile sensing systems are discussed in detail. Lastly, we propose prospective research directions and market trends of tactile sensing systems. PMID:29565835

  18. The Sensor Irony: How Reliance on Sensor Technology is Limiting Our View of the Battlefield

    Science.gov (United States)

    2010-05-10

    operations; quite the contrary. “History is littered with prophesies of technical and scientific inadequacy, such as Lord Kelvin’s famous retort , ‘Heavier...U.S. Air Force, Factsheets, RQ-4 Global Hawk. designed with the potential to carry a Signals Intelligence (SIGINT) package in lieu of its SAR...discussed in the Predator sensor package , and adds an additional image-intensifying TV camera.4 The Reapers’ GTMI/SAR capability is best represented

  19. Smart Home Wireless Sensor Nodes

    DEFF Research Database (Denmark)

    Lynggaard, Per

    . This paper introduces an approach that considerably lowers the wireless sensor node power consumption and the amount of transmitted sensor events. It uses smart objects that include artificial intelligence to efficiently process the sensor event on location and thereby saves the costly wireless...

  20. Design and characterization of in-plane MEMS yaw rate sensor

    Indian Academy of Sciences (India)

    In this paper, we present the design and characterization of a vibratory yaw rate MEMS sensor that uses in-plane motion for both actuation and sensing. The design criterion for the rate sensor is based on a high sensitivity and low bandwidth. The required sensitivity of the yaw rate sensor is attained by using the inplane ...

  1. Interated Intelligent Industrial Process Sensing and Control: Applied to and Demonstrated on Cupola Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed Abdelrahman; roger Haggard; Wagdy Mahmoud; Kevin Moore; Denis Clark; Eric Larsen; Paul King

    2003-02-12

    The final goal of this project was the development of a system that is capable of controlling an industrial process effectively through the integration of information obtained through intelligent sensor fusion and intelligent control technologies. The industry of interest in this project was the metal casting industry as represented by cupola iron-melting furnaces. However, the developed technology is of generic type and hence applicable to several other industries. The system was divided into the following four major interacting components: 1. An object oriented generic architecture to integrate the developed software and hardware components @. Generic algorithms for intelligent signal analysis and sensor and model fusion 3. Development of supervisory structure for integration of intelligent sensor fusion data into the controller 4. Hardware implementation of intelligent signal analysis and fusion algorithms

  2. Open Standards for Sensor Information Processing

    Energy Technology Data Exchange (ETDEWEB)

    Pouchard, Line Catherine [ORNL; Poole, Stephen W [ORNL; Lothian, Josh [ORNL

    2009-07-01

    This document explores sensor standards, sensor data models, and computer sensor software in order to determine the specifications and data representation best suited for analyzing and monitoring computer system health using embedded sensor data. We review IEEE 1451, OGC Sensor Model Language and Transducer Model Language (TML), lm-sensors and Intelligent Platform Management Inititative (IPMI).

  3. Intelligent Navigation for a Solar Powered Unmanned Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Francisco García-Córdova

    2013-04-01

    Full Text Available In this paper, an intelligent navigation system for an unmanned underwater vehicle powered by renewable energy and designed for shadow water inspection in missions of a long duration is proposed. The system is composed of an underwater vehicle, which tows a surface vehicle. The surface vehicle is a small boat with photovoltaic panels, a methanol fuel cell and communication equipment, which provides energy and communication to the underwater vehicle. The underwater vehicle has sensors to monitor the underwater environment such as sidescan sonar and a video camera in a flexible configuration and sensors to measure the physical and chemical parameters of water quality on predefined paths for long distances. The underwater vehicle implements a biologically inspired neural architecture for autonomous intelligent navigation. Navigation is carried out by integrating a kinematic adaptive neuro-controller for trajectory tracking and an obstacle avoidance adaptive neuro- controller. The autonomous underwater vehicle is capable of operating during long periods of observation and monitoring. This autonomous vehicle is a good tool for observing large areas of sea, since it operates for long periods of time due to the contribution of renewable energy. It correlates all sensor data for time and geodetic position. This vehicle has been used for monitoring the Mar Menor lagoon.

  4. A fuzzy logic intelligent diagnostic system for spacecraft integrated vehicle health management

    Science.gov (United States)

    Wu, G. Gordon

    1995-01-01

    Due to the complexity of future space missions and the large amount of data involved, greater autonomy in data processing is demanded for mission operations, training, and vehicle health management. In this paper, we develop a fuzzy logic intelligent diagnostic system to perform data reduction, data analysis, and fault diagnosis for spacecraft vehicle health management applications. The diagnostic system contains a data filter and an inference engine. The data filter is designed to intelligently select only the necessary data for analysis, while the inference engine is designed for failure detection, warning, and decision on corrective actions using fuzzy logic synthesis. Due to its adaptive nature and on-line learning ability, the diagnostic system is capable of dealing with environmental noise, uncertainties, conflict information, and sensor faults.

  5. Interactive analysis of geodata based intelligence

    Science.gov (United States)

    Wagner, Boris; Eck, Ralf; Unmüessig, Gabriel; Peinsipp-Byma, Elisabeth

    2016-05-01

    When a spatiotemporal events happens, multi-source intelligence data is gathered to understand the problem, and strategies for solving the problem are investigated. The difficulties arising from handling spatial and temporal intelligence data represent the main problem. The map might be the bridge to visualize the data and to get the most understand model for all stakeholders. For the analysis of geodata based intelligence data, a software was developed as a working environment that combines geodata with optimized ergonomics. The interaction with the common operational picture (COP) is so essentially facilitated. The composition of the COP is based on geodata services, which are normalized by international standards of the Open Geospatial Consortium (OGC). The basic geodata are combined with intelligence data from images (IMINT) and humans (HUMINT), stored in a NATO Coalition Shared Data Server (CSD). These intelligence data can be combined with further information sources, i.e., live sensors. As a result a COP is generated and an interaction suitable for the specific workspace is added. This allows the users to work interactively with the COP, i.e., searching with an on board CSD client for suitable intelligence data and integrate them into the COP. Furthermore, users can enrich the scenario with findings out of the data of interactive live sensors and add data from other sources. This allows intelligence services to contribute effectively to the process by what military and disaster management are organized.

  6. Autonomous Mission Operations for Sensor Webs

    Science.gov (United States)

    Underbrink, A.; Witt, K.; Stanley, J.; Mandl, D.

    2008-12-01

    We present interim results of a 2005 ROSES AIST project entitled, "Using Intelligent Agents to Form a Sensor Web for Autonomous Mission Operations", or SWAMO. The goal of the SWAMO project is to shift the control of spacecraft missions from a ground-based, centrally controlled architecture to a collaborative, distributed set of intelligent agents. The network of intelligent agents intends to reduce management requirements by utilizing model-based system prediction and autonomic model/agent collaboration. SWAMO agents are distributed throughout the Sensor Web environment, which may include multiple spacecraft, aircraft, ground systems, and ocean systems, as well as manned operations centers. The agents monitor and manage sensor platforms, Earth sensing systems, and Earth sensing models and processes. The SWAMO agents form a Sensor Web of agents via peer-to-peer coordination. Some of the intelligent agents are mobile and able to traverse between on-orbit and ground-based systems. Other agents in the network are responsible for encapsulating system models to perform prediction of future behavior of the modeled subsystems and components to which they are assigned. The software agents use semantic web technologies to enable improved information sharing among the operational entities of the Sensor Web. The semantics include ontological conceptualizations of the Sensor Web environment, plus conceptualizations of the SWAMO agents themselves. By conceptualizations of the agents, we mean knowledge of their state, operational capabilities, current operational capacities, Web Service search and discovery results, agent collaboration rules, etc. The need for ontological conceptualizations over the agents is to enable autonomous and autonomic operations of the Sensor Web. The SWAMO ontology enables automated decision making and responses to the dynamic Sensor Web environment and to end user science requests. The current ontology is compatible with Open Geospatial Consortium (OGC

  7. Automated information-analytical system for thunderstorm monitoring and early warning alarms using modern physical sensors and information technologies with elements of artificial intelligence

    Science.gov (United States)

    Boldyreff, Anton S.; Bespalov, Dmitry A.; Adzhiev, Anatoly Kh.

    2017-05-01

    Methods of artificial intelligence are a good solution for weather phenomena forecasting. They allow to process a large amount of diverse data. Recirculation Neural Networks is implemented in the paper for the system of thunderstorm events prediction. Large amounts of experimental data from lightning sensors and electric field mills networks are received and analyzed. The average recognition accuracy of sensor signals is calculated. It is shown that Recirculation Neural Networks is a promising solution in the forecasting of thunderstorms and weather phenomena, characterized by the high efficiency of the recognition elements of the sensor signals, allows to compress images and highlight their characteristic features for subsequent recognition.

  8. Expert System for 3D Collar Intelligent Design

    Institute of Scientific and Technical Information of China (English)

    LIU Yan; GENG Zhao-feng

    2004-01-01

    A method to set up 3D collar prototype is developed in this paper by using the technique of cubic spline and bicubic surface patch. Then the relationship between the parameters of 3D collar prototype and different collar styles are studied. Based on the relationship, we can develop some algorithms of transferring style requirements to the parameters value of the collar prototype, and obtain some generation rules for the design of 3D collar style. As such, the knowledge base can be constructed, and the intelligent design system of 3D collar style is built. Using the system, various 3D collar styles can be designed automatically to satisfy various style requirements.

  9. Optical and mechanical design of beam-target coupling sensor

    International Nuclear Information System (INIS)

    Wang Liquan; Li Tian'en; Feng Bin; Xiang Yong; Li Keyu; Zhong Wei; Liu Guodong

    2012-01-01

    A sensor based on conjugate principle has been designed for matching the light beams and the target in inertial confinement fusion. It can avoid the direct illumination of the simulation collimating light on the target under test in targeting processes. This paper introduces the optical and mechanical design of the sensor, according to its design functions and working principle. The resolution of the optical images obtained in experiments reaches 6 μm and the beam-target matching accuracy is 8.8 μm. The sensor has been successfully applied to the Shenguang-Ⅲ facility. Statistical analyses of the four-hole CH target images derived with pinhole camera shows that the targeting accuracy of the facility is better than 25 μm, satisfying the design requirements. (authors)

  10. Designing and testing a laser-based vibratory sensor

    Science.gov (United States)

    Nath, G.

    2018-04-01

    Sensor technology has proved its importance, not only in the range of few-meter applications in different fields, but in micro, nano, atomic and sub-atomic-sized objects. The present work describes the designing of a laser-based vibratory sensor using a He-Ne laser as the signal source. The received characteristics of the signal are mainly the frequency and amplitude of the vibration from which the physical parameters such as energy, power and absorption coefficients of the material are determined, which enables us to provide information of the hidden target or object. This laboratory-designed sensor finds application in different local phenomena as well as laboratory practical activity for students.

  11. CATO: a CAD tool for intelligent design of optical networks and interconnects

    Science.gov (United States)

    Chlamtac, Imrich; Ciesielski, Maciej; Fumagalli, Andrea F.; Ruszczyk, Chester; Wedzinga, Gosse

    1997-10-01

    Increasing communication speed requirements have created a great interest in very high speed optical and all-optical networks and interconnects. The design of these optical systems is a highly complex task, requiring the simultaneous optimization of various parts of the system, ranging from optical components' characteristics to access protocol techniques. Currently there are no computer aided design (CAD) tools on the market to support the interrelated design of all parts of optical communication systems, thus the designer has to rely on costly and time consuming testbed evaluations. The objective of the CATO (CAD tool for optical networks and interconnects) project is to develop a prototype of an intelligent CAD tool for the specification, design, simulation and optimization of optical communication networks. CATO allows the user to build an abstract, possible incomplete, model of the system, and determine its expected performance. Based on design constraints provided by the user, CATO will automatically complete an optimum design, using mathematical programming techniques, intelligent search methods and artificial intelligence (AI). Initial design and testing of a CATO prototype (CATO-1) has been completed recently. The objective was to prove the feasibility of combining AI techniques, simulation techniques, an optical device library and a graphical user interface into a flexible CAD tool for obtaining optimal communication network designs in terms of system cost and performance. CATO-1 is an experimental tool for designing packet-switching wavelength division multiplexing all-optical communication systems using a LAN/MAN ring topology as the underlying network. The two specific AI algorithms incorporated are simulated annealing and a genetic algorithm. CATO-1 finds the optimal number of transceivers for each network node, using an objective function that includes the cost of the devices and the overall system performance.

  12. Forewarning of Debris flows using Intelligent Geophones

    Science.gov (United States)

    PK, I.; Ramesh, M. V.

    2017-12-01

    Landslides are one of the major catastrophic disasters that cause significant damage to human life and civil structures. Heavy rainfall on landslide prone areas can lead to most dangerous debris flow, where the materials such as mud, sand, soil, rock, water and air will move with greater velocity down the mountain. This sudden slope instability can lead to loss of human life and infrastructure. According to our knowledge, till now no one could identify the minutest factors that lead to initiation of the landslide. In this work, we aim to study the landslide phenomena deeply, using the landslide laboratory set up in our university. This unique mechanical simulator for landslide initiation is equipped with the capability to generate rainfall, seepage, etc., in the laboratory setup. Using this setup, we aim to study several landslide initiation scenarios generated by varying different parameters. The complete setup will be equipped with heterogeneous sensors such as rain gauge, moisture sensor, pore pressure sensor, strain gauges, tiltmeter, inclinometer, extensometer, and geophones. Our work will focus on the signals received from the intelligent geophone system for identifying the underground vibrations during a debris flow. Using the large amount of signals derived from the laboratory set up, we have performed detailed signal processing and data analysis to determine the fore warning signals captured by these heterogeneous sensors. Detailed study of these heterogeneous signals has provided the insights to forewarning the community based on the signals generated during the laboratory tests. In this work we will describe the details of the design, development, methodology, results, inferences and the suggestion for the next step to detect and forewarn the students. The response of intelligent geophone sensors at the time of failure, failure style and subsequent debris flow for heterogeneous soil layers were studied, thus helping in the development of fore warning

  13. AGSM Intelligent Devices/Smart Sensors Project

    Science.gov (United States)

    Harp, Janicce Leshay

    2014-01-01

    This project provides development and qualification of Smart Sensors capable of self-diagnosis and assessment of their capability/readiness to support operations. These sensors will provide pressure and temperature measurements to use in ground systems.

  14. Research on human physiological parameters intelligent clothing based on distributed Fiber Bragg Grating

    Science.gov (United States)

    Miao, Changyun; Shi, Boya; Li, Hongqiang

    2008-12-01

    A human physiological parameters intelligent clothing is researched with FBG sensor technology. In this paper, the principles and methods of measuring human physiological parameters including body temperature and heart rate in intelligent clothing with distributed FBG are studied, the mathematical models of human physiological parameters measurement are built; the processing method of body temperature and heart rate detection signals is presented; human physiological parameters detection module is designed, the interference signals are filtered out, and the measurement accuracy is improved; the integration of the intelligent clothing is given. The intelligent clothing can implement real-time measurement, processing, storage and output of body temperature and heart rate. It has accurate measurement, portability, low cost, real-time monitoring, and other advantages. The intelligent clothing can realize the non-contact monitoring between doctors and patients, timely find the diseases such as cancer and infectious diseases, and make patients get timely treatment. It has great significance and value for ensuring the health of the elders and the children with language dysfunction.

  15. IC design challenges for ambient intelligence

    NARCIS (Netherlands)

    Aarts, E.H.L.; Roovers, R.L.J.

    2003-01-01

    The vision of ambient intelligence opens a world of unprecedented experiences: the interaction of people with electronic devices is changed as contextual awareness, natural interfaces and ubiquitous availability of information are realized. We analyze the consequences of the ambient intelligence

  16. The design of intelligent support systems for nuclear reactor operators

    International Nuclear Information System (INIS)

    Bernard, J.A.

    1992-01-01

    This paper identifies factors relevant to the design of intelligent support systems and their use for the provision of real-time diagnostic information. As such, it constitutes a followup to the state-of-the-art review that was previously published by Bernard and Washio on the utilization of expert systems within the nuclear industry. Some major differences between intelligent-support tools and conventional expert systems are enumerated. In summary, conventional expert systems that encode experimental knowledge in production rules are not suitable vehicle for the creation of operator support systems. The principal difficulty is the need for real-time operation. This in turn means that intelligent support systems will have knowledge bases derived from temporally accurate plant models, inference engines that permit revisions in the search process to accommodate revised data, and man-machine interfaces that do not require any human input. Such systems will be heavily instrumented, and the associated knowledge bases will require a hierarchical organization to emulate human approaches to analysis

  17. Design Methodology for Magnetic Field-Based Soft Tri-Axis Tactile Sensors.

    Science.gov (United States)

    Wang, Hongbo; de Boer, Greg; Kow, Junwai; Alazmani, Ali; Ghajari, Mazdak; Hewson, Robert; Culmer, Peter

    2016-08-24

    Tactile sensors are essential if robots are to safely interact with the external world and to dexterously manipulate objects. Current tactile sensors have limitations restricting their use, notably being too fragile or having limited performance. Magnetic field-based soft tactile sensors offer a potential improvement, being durable, low cost, accurate and high bandwidth, but they are relatively undeveloped because of the complexities involved in design and calibration. This paper presents a general design methodology for magnetic field-based three-axis soft tactile sensors, enabling researchers to easily develop specific tactile sensors for a variety of applications. All aspects (design, fabrication, calibration and evaluation) of the development of tri-axis soft tactile sensors are presented and discussed. A moving least square approach is used to decouple and convert the magnetic field signal to force output to eliminate non-linearity and cross-talk effects. A case study of a tactile sensor prototype, MagOne, was developed. This achieved a resolution of 1.42 mN in normal force measurement (0.71 mN in shear force), good output repeatability and has a maximum hysteresis error of 3.4%. These results outperform comparable sensors reported previously, highlighting the efficacy of our methodology for sensor design.

  18. Wearable Sensors; Applications, design and implementation

    Science.gov (United States)

    Mukhopadhyay, Subhas Chandra; Islam, Tarikul

    2017-12-01

    With the ability to monitor a vast range of physiological parameters, combined with wireless technology, wireless sensor networks and the Internet of Things, wearable sensors are revolutionising the field of digital health monitoring. In addition to applications in health monitoring, such technology is being used to monitor the state of our living environment and even the quality of our foods and the wellbeing of livestock. Written for scientists, engineers and practitioners by an international collection of authors, this book reviews the fundamentals of wearable sensors, their function, design, fabrication and implementation. Their application and advanced aspects including interface electronics and signal processing for easy interpretation of data, data transmission, data networking, data security, and privacy are also included.

  19. Model based, sensor directed remediation of underground storage tanks

    International Nuclear Information System (INIS)

    Christensen, B.; Drotning, W.; Thunborg, S.

    1991-01-01

    Sensor rich, intelligent robots which function with respect to models of their environment have significant potential to reduce the time and cost for the cleanup of hazardous waste while increasing operator safety. Sandia National Laboratories is performing experimental investigations into the application of intelligent robot control technology to the problem of removing waste stored tanks. This paper describes the experimental environment employed at Saudi with particular attention to the computing and software control environment. Intelligent system control is achieved though the integration of extensive geometric and kinematic world models with real-time sensor based control. All operator interactions with the system are validate all operator commands before execution to provide a safe operation. Sensing is used to add information to the robot system's world model and to allow sensor based sensor control during selected operations. The results of a first Critical Feature Test are reported and the potential for applying advanced intelligent control concepts to the removal of waste in storage tanks is discussed

  20. Ecological Design of Cooperative Human-Machine Interfaces for Safety of Intelligent Transport Systems

    Directory of Open Access Journals (Sweden)

    Orekhov Aleksandr

    2016-01-01

    Full Text Available The paper describes research results in the domain of cooperative intelligent transport systems. The requirements for human-machine interface considering safety issue of for intelligent transport systems (ITSare analyzed. Profiling of the requirements to cooperative human-machine interface (CHMI for such systems including requirements to usability and safety is based on a set of standards for ITSs. An approach and design technique of cooperative human-machine interface for ITSs are suggested. The architecture of cloud-based CHMI for intelligent transport systems has been developed. The prototype of software system CHMI4ITSis described.

  1. Optimal sensor placement for large structures using the nearest neighbour index and a hybrid swarm intelligence algorithm

    International Nuclear Information System (INIS)

    Lian, Jijian; He, Longjun; Ma, Bin; Peng, Wenxiang; Li, Huokun

    2013-01-01

    Research on optimal sensor placement (OSP) has become very important due to the need to obtain effective testing results with limited testing resources in health monitoring. In this study, a new methodology is proposed to select the best sensor locations for large structures. First, a novel fitness function derived from the nearest neighbour index is proposed to overcome the drawbacks of the effective independence method for OSP for large structures. This method maximizes the contribution of each sensor to modal observability and simultaneously avoids the redundancy of information between the selected degrees of freedom. A hybrid algorithm combining the improved discrete particle swarm optimization (DPSO) with the clonal selection algorithm is then implemented to optimize the proposed fitness function effectively. Finally, the proposed method is applied to an arch dam for performance verification. The results show that the proposed hybrid swarm intelligence algorithm outperforms a genetic algorithm with decimal two-dimension array encoding and DPSO in the capability of global optimization. The new fitness function is advantageous in terms of sensor distribution and ensuring a well-conditioned information matrix and orthogonality of modes, indicating that this method may be used to provide guidance for OSP in various large structures. (paper)

  2. Design and implementation of smart web sensors

    Directory of Open Access Journals (Sweden)

    Jevtić Nenad J.

    2015-01-01

    Full Text Available This paper presents the design and implementation of the smart web sensors. The paper briefly describes the concept of automatic configuration based on electronic specifications in industrial measurement and control systems as well as in distributed systems based on the OGC SWE family of standards. The model for the implementation of Plug and Play sensor in accordance with the IEEE 1451 family of standards is analyzed in detail. Special attention is paid to the network connectivity of analog sensors in accordance with IEEE 1451.4. The practical implementation of the 1451.4 compatible network processor for RTD temperature sensors and adequate software support for 1451.4 TEDS generation, are included in the paper.

  3. A Review of Fuzzy Logic and Neural Network Based Intelligent Control Design for Discrete-Time Systems

    Directory of Open Access Journals (Sweden)

    Yiming Jiang

    2016-01-01

    Full Text Available Over the last few decades, the intelligent control methods such as fuzzy logic control (FLC and neural network (NN control have been successfully used in various applications. The rapid development of digital computer based control systems requires control signals to be calculated in a digital or discrete-time form. In this background, the intelligent control methods developed for discrete-time systems have drawn great attentions. This survey aims to present a summary of the state of the art of the design of FLC and NN-based intelligent control for discrete-time systems. For discrete-time FLC systems, numerous remarkable design approaches are introduced and a series of efficient methods to deal with the robustness, stability, and time delay of FLC discrete-time systems are recommended. Techniques for NN-based intelligent control for discrete-time systems, such as adaptive methods and adaptive dynamic programming approaches, are also reviewed. Overall, this paper is devoted to make a brief summary for recent progresses in FLC and NN-based intelligent control design for discrete-time systems as well as to present our thoughts and considerations of recent trends and potential research directions in this area.

  4. Design Principles for Rapid Prototyping Forces Sensors using 3D Printing.

    Science.gov (United States)

    Kesner, Samuel B; Howe, Robert D

    2011-07-21

    Force sensors provide critical information for robot manipulators, manufacturing processes, and haptic interfaces. Commercial force sensors, however, are generally not adapted to specific system requirements, resulting in sensors with excess size, cost, and fragility. To overcome these issues, 3D printers can be used to create components for the quick and inexpensive development of force sensors. Limitations of this rapid prototyping technology, however, require specialized design principles. In this paper, we discuss techniques for rapidly developing simple force sensors, including selecting and attaching metal flexures, using inexpensive and simple displacement transducers, and 3D printing features to aid in assembly. These design methods are illustrated through the design and fabrication of a miniature force sensor for the tip of a robotic catheter system. The resulting force sensor prototype can measure forces with an accuracy of as low as 2% of the 10 N measurement range.

  5. Implications of intelligent, integrated microsystems for product design and development

    International Nuclear Information System (INIS)

    MYERS, DAVID R.; MCWHORTER, PAUL J.

    2000-01-01

    Intelligent, integrated microsystems combine some or all of the functions of sensing, processing information, actuation, and communication within a single integrated package, and preferably upon a single silicon chip. As the elements of these highly integrated solutions interact strongly with each other, the microsystem can be neither designed nor fabricated piecemeal, in contrast to the more familiar assembled products. Driven by technological imperatives, microsystems will best be developed by multi-disciplinary teams, most likely within the flatter, less hierarchical organizations. Standardization of design and process tools around a single, dominant technology will expedite economically viable operation under a common production infrastructure. The production base for intelligent, integrated microsystems has elements in common with the mathematical theory of chaos. Similar to chaos theory, the development of microsystems technology will be strongly dependent on, and optimized to, the initial product requirements that will drive standardization--thereby further rewarding early entrants to integrated microsystem technology

  6. 2013 Chinese Intelligent Automation Conference

    CERN Document Server

    Deng, Zhidong

    2013-01-01

    Proceedings of the 2013 Chinese Intelligent Automation Conference presents selected research papers from the CIAC’13, held in Yangzhou, China. The topics include e.g. adaptive control, fuzzy control, neural network based control, knowledge based control, hybrid intelligent control, learning control, evolutionary mechanism based control, multi-sensor integration, failure diagnosis, and reconfigurable control. Engineers and researchers from academia, industry, and government can gain an inside view of new solutions combining ideas from multiple disciplines in the field of intelligent automation.   Zengqi Sun and Zhidong Deng are professors at the Department of Computer Science, Tsinghua University, China.

  7. 2013 Chinese Intelligent Automation Conference

    CERN Document Server

    Deng, Zhidong

    2013-01-01

    Proceedings of the 2013 Chinese Intelligent Automation Conference presents selected research papers from the CIAC’13, held in Yangzhou, China. The topics include e.g. adaptive control, fuzzy control, neural network based control, knowledge based control, hybrid intelligent control, learning control, evolutionary mechanism based control, multi-sensor integration, failure diagnosis, and reconfigurable control. Engineers and researchers from academia, industry, and government can gain an inside view of new solutions combining ideas from multiple disciplines in the field of intelligent automation. Zengqi Sun and Zhidong Deng are professors at the Department of Computer Science, Tsinghua University, China.

  8. A Framework for Function Allocation in Intelligent Driver Interface Design for Comfort and Safety

    Directory of Open Access Journals (Sweden)

    Wuhong Wang

    2010-11-01

    Full Text Available This paper presents a conceptual framework for ecological function allocation and optimization matching solution for a human-machine interface with intelligent characteristics by lwho does what and when and howr consideration. As a highlighted example in nature-social system, intelligent transportation system has been playing increasingly role in keeping traffic safety, our research is concerned with identifying human factors problem of In-vehicle Support Systems (ISSs and revealing the consequence of the effects of ISSs on driver cognitive interface. The primary objective is to explore some new ergonomics principals that will be able to use to design an intelligent driver interface for comfort and safety, which will address the impact of driver interfaces layouts, traffic information types, and driving behavioral factors on the advanced vehicles safety design.

  9. Practical Consideration Factors to Design Array Configuration of Direction Finding System for Airborne Signal Intelligence

    Directory of Open Access Journals (Sweden)

    Jong-Hwan Lee

    2018-01-01

    Full Text Available Airborne signal intelligence (SIGINT systems must be capable of locating radio signal sources. Direction finding (DF to support this capability is an important factor. There are some practical considerations to be taken when designing the array configuration of a DF system for airborne SIGINT systems. This paper summarizes the practical factors when designing the array configuration of the DF system for airborne SIGINT. In particular, it focuses on four areas: antenna consideration factors when installing the DF system for airborne SIGINT from a practical point of view, array configuration methods for airborne communications intelligence and electronic intelligence, and a numerical analysis to select the optimum antenna position for airborne SIGINT.

  10. An Intelligent Weather Station

    Science.gov (United States)

    Mestre, Gonçalo; Ruano, Antonio; Duarte, Helder; Silva, Sergio; Khosravani, Hamid; Pesteh, Shabnam; Ferreira, Pedro M.; Horta, Ricardo

    2015-01-01

    Accurate measurements of global solar radiation, atmospheric temperature and relative humidity, as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight, self-powered and portable sensor was developed, using a nearest-neighbors (NEN) algorithm and artificial neural network (ANN) models as the time-series predictor mechanisms. The hardware and software design of the implemented prototype are described, as well as the forecasting performance related to the three atmospheric variables, using both approaches, over a prediction horizon of 48-steps-ahead. PMID:26690433

  11. An Intelligent Weather Station

    Directory of Open Access Journals (Sweden)

    Gonçalo Mestre

    2015-12-01

    Full Text Available Accurate measurements of global solar radiation, atmospheric temperature and relative humidity, as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight, self-powered and portable sensor was developed, using a nearest-neighbors (NEN algorithm and artificial neural network (ANN models as the time-series predictor mechanisms. The hardware and software design of the implemented prototype are described, as well as the forecasting performance related to the three atmospheric variables, using both approaches, over a prediction horizon of 48-steps-ahead.

  12. Controls and Health Management Technologies for Intelligent Aerospace Propulsion Systems

    Science.gov (United States)

    Garg, Sanjay

    2004-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Technology Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of an Intelligent Engine. The key enabling technologies for an Intelligent Engine are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This paper describes the current activities of the Controls and Dynamics Technology Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  13. Using generic tool kits to build intelligent systems

    Science.gov (United States)

    Miller, David J.

    1994-01-01

    The Intelligent Systems and Robots Center at Sandia National Laboratories is developing technologies for the automation of processes associated with environmental remediation and information-driven manufacturing. These technologies, which focus on automated planning and programming and sensor-based and model-based control, are used to build intelligent systems which are able to generate plans of action, program the necessary devices, and use sensors to react to changes in the environment. By automating tasks through the use of programmable devices tied to computer models which are augmented by sensing, requirements for faster, safer, and cheaper systems are being satisfied. However, because of the need for rapid cost-effect prototyping and multi-laboratory teaming, it is also necessary to define a consistent approach to the construction of controllers for such systems. As a result, the Generic Intelligent System Controller (GISC) concept has been developed. This concept promotes the philosophy of producing generic tool kits which can be used and reused to build intelligent control systems.

  14. Design of data sampler in intelligent physical start-up system for nuclear reactor

    International Nuclear Information System (INIS)

    Wang Yinli; Ling Qiu

    2007-01-01

    It introduces the design of data sampler in intelligent physical start-up system for nuclear reactor. The hardware frame taking STμPSD3234A as the core and the firmware design based on USB interface are discussed. (authors)

  15. Designing a robust high-speed CMOS-MEMS capacitive humidity sensor

    International Nuclear Information System (INIS)

    Lazarus, N; Fedder, G K

    2012-01-01

    In our previous work (Lazarus and Fedder 2011 J. Micromech. Microeng. 21 0650281), we demonstrated a CMOS-MEMS capacitive humidity sensor with a 72% improvement in sensitivity over the highest previously integrated on a CMOS die. This paper explores a series of methods for creating a faster and more manufacturable high-sensitivity capacitive humidity sensor. These techniques include adding oxide pillars to hold the plates apart, spin coating polymer to allow sensors to be fabricated more cheaply, adding a polysilicon heater and etching away excess polymer in the release holes. In most cases a tradeoff was found between sensitivity and other factors such as response time or robustness. A robust high-speed sensor was designed with a sensitivity of 0.21% change in capacitance per per cent relative humidity, while dropping the response time constant from 70 to 4s. Although less sensitive than our design, the sensor remains 17% more sensitive than the most sensitive interdigitated designs successfully integrated with CMOS. (paper)

  16. Virtual Sensors for Designing Irrigation Controllers in Greenhouses

    Directory of Open Access Journals (Sweden)

    Manuel R. Arahal

    2012-11-01

    Full Text Available Monitoring the greenhouse transpiration for control purposes is currently a difficult task. The absence of affordable sensors that provide continuous transpiration measurements motivates the use of estimators. In the case of tomato crops, the availability of estimators allows the design of automatic fertirrigation (irrigation + fertilization schemes in greenhouses, minimizing the dispensed water while fulfilling crop needs. This paper shows how system identification techniques can be applied to obtain nonlinear virtual sensors for estimating transpiration. The greenhouse used for this study is equipped with a microlysimeter, which allows one to continuously sample the transpiration values. While the microlysimeter is an advantageous piece of equipment for research, it is also expensive and requires maintenance. This paper presents the design and development of a virtual sensor to model the crop transpiration, hence avoiding the use of this kind of expensive sensor. The resulting virtual sensor is obtained by dynamical system identification techniques based on regressors taken from variables typically found in a greenhouse, such as global radiation and vapor pressure deficit. The virtual sensor is thus based on empirical data. In this paper, some effort has been made to eliminate some problems associated with grey-box models: advance phenomenon and overestimation. The results are tested with real data and compared with other approaches. Better results are obtained with the use of nonlinear Black-box virtual sensors. This sensor is based on global radiation and vapor pressure deficit (VPD measurements. Predictive results for the three models are developed for comparative purposes.

  17. Novel designs for application specific MEMS pressure sensors.

    Science.gov (United States)

    Fragiacomo, Giulio; Reck, Kasper; Lorenzen, Lasse; Thomsen, Erik V

    2010-01-01

    In the framework of developing innovative microfabricated pressure sensors, we present here three designs based on different readout principles, each one tailored for a specific application. A touch mode capacitive pressure sensor with high sensitivity (14 pF/bar), low temperature dependence and high capacitive output signal (more than 100 pF) is depicted. An optical pressure sensor intrinsically immune to electromagnetic interference, with large pressure range (0-350 bar) and a sensitivity of 1 pm/bar is presented. Finally, a resonating wireless pressure sensor power source free with a sensitivity of 650 KHz/mmHg is described. These sensors will be related with their applications in harsh environment, distributed systems and medical environment, respectively. For many aspects, commercially available sensors, which in vast majority are piezoresistive, are not suited for the applications proposed.

  18. EDITORIAL Wireless sensor networks: design for real-life deployment and deployment experiences Wireless sensor networks: design for real-life deployment and deployment experiences

    Science.gov (United States)

    Gaura, Elena; Roedig, Utz; Brusey, James

    2010-12-01

    Wireless sensor networks (WSNs) are among the most promising technologies of the new millennium. The opportunities afforded by being able to program networks of small, lightweight, low-power, computation- and bandwidth-limited nodes have attracted a large community of researchers and developers. However, the unique set of capabilities offered by the technology produces an exciting but complex design space, which is often difficult to negotiate in an application context. Deploying sensing physical environments produces its own set of challenges, and can push systems into failure modes, thus revealing problems that can be difficult to discover or reproduce in simulation or the laboratory. Sustained efforts in the area of wireless networked sensing over the last 15 years have resulted in a large number of theoretical developments, substantial practical achievements, and a wealth of lessons for the future. It is clear that in order to bridge the gap between (on the one hand) visions of very large scale, autonomous, randomly deployed networks and (on the other) the actual performance of fielded systems, we need to view deployment as an essential component in the process of developing sensor networks: a process that includes hardware and software solutions that serve specific applications and end-user needs. Incorporating deployment into the design process reveals a new and different set of requirements and considerations, whose solutions require innovative thinking, multidisciplinary teams and strong involvement from end-user communities. This special feature uncovers and documents some of the hurdles encountered and solutions offered by experimental scientists when deploying and evaluating wireless sensor networks in situ, in a variety of well specified application scenarios. The papers specifically address issues of generic importance for WSN system designers: (i) data quality, (ii) communications availability and quality, (iii) alternative, low-energy sensing

  19. Design and Fabrication of Vertically-Integrated CMOS Image Sensors

    Science.gov (United States)

    Skorka, Orit; Joseph, Dileepan

    2011-01-01

    Technologies to fabricate integrated circuits (IC) with 3D structures are an emerging trend in IC design. They are based on vertical stacking of active components to form heterogeneous microsystems. Electronic image sensors will benefit from these technologies because they allow increased pixel-level data processing and device optimization. This paper covers general principles in the design of vertically-integrated (VI) CMOS image sensors that are fabricated by flip-chip bonding. These sensors are composed of a CMOS die and a photodetector die. As a specific example, the paper presents a VI-CMOS image sensor that was designed at the University of Alberta, and fabricated with the help of CMC Microsystems and Micralyne Inc. To realize prototypes, CMOS dies with logarithmic active pixels were prepared in a commercial process, and photodetector dies with metal-semiconductor-metal devices were prepared in a custom process using hydrogenated amorphous silicon. The paper also describes a digital camera that was developed to test the prototype. In this camera, scenes captured by the image sensor are read using an FPGA board, and sent in real time to a PC over USB for data processing and display. Experimental results show that the VI-CMOS prototype has a higher dynamic range and a lower dark limit than conventional electronic image sensors. PMID:22163860

  20. Cognitive Process as a Basis for Intelligent Retrieval Systems Design.

    Science.gov (United States)

    Chen, Hsinchun; Dhar, Vasant

    1991-01-01

    Two studies of the cognitive processes involved in online document-based information retrieval were conducted. These studies led to the development of five computational models of online document retrieval which were incorporated into the design of an "intelligent" document-based retrieval system. Both the system and the broader implications of…

  1. Development of core thermal-hydraulics module for intelligent reactor design system (IRDS)

    International Nuclear Information System (INIS)

    Kugo, Teruhiko; Nakagawa, Masayuki; Fujii, Sadao.

    1994-08-01

    We have developed an innovative reactor core thermal-hydraulics module where a designer can easily and efficiently evaluate his design concept of a new type reactor in the thermal-hydraulics field. The main purpose of this module is to decide a feasible range of basic design parameters of a reactor core in a conceptual design stage of a new type reactor. The module is to be implemented in Intelligent Reactor Design System (IRDS). The module has the following characteristics; 1) to deal with several reactor types, 2) four thermal hydraulics and fuel behavior analysis codes are installed to treat different type of reactors and design detail, 3) to follow flexibly modification of a reactor concept, 4) to provide analysis results in an understandable way so that a designer can easily evaluate feasibility of his concept, and so on. The module runs on an engineering workstation (EWS) and has a user-friendly man-machine interface on a pre- and post-processing. And it is equipped with a function to search a feasible range called as Design Window, for two design parameters by artificial intelligence (AI) technique and knowledge engineering. In this report, structure, guidance for users of an usage of the module and instruction of input data for analysis modules are presented. (author)

  2. MLED_BI: a new BI Design Approach to Support Multilingualism in Business Intelligence

    Directory of Open Access Journals (Sweden)

    Nedim Dedić

    2017-11-01

    Full Text Available Existing approaches to support Multilingualism (ML in Business Intelligence (BI create problems for business users, present a number of challenges from the technical perspective, and lead to issues with logical dependence in the star schema. In this paper, we propose MLED_BI (Multilingual Enabled Design for Business Intelligence, a novel BI design approach to support the application of ML in BI Environment, which overcomes the issues and problems found with existing approaches. The approach is based on a revision of the data warehouse dimensional modelling approach and treats the Star Schema as a higher level entity. This paper describes MLED_BI and the validation and evaluation approach used.

  3. A Mixed-Signal Embedded Platform for Automotive Sensor Conditioning

    Directory of Open Access Journals (Sweden)

    Emilio Volpi

    2010-01-01

    Full Text Available A mixed-signal embedded system called Intelligent Sensor InterFace (ISIF suited to fast identify, trim, and verify an architecture to interface a given sensor is presented. This system has been developed according to a platform-based design approach, a methodology that has proved to be efficient for building complex mixed-signal embedded systems with short time-to-market. Such platform consists in a wide set of optimized high-performance analog, digital, and software intellectual property (IP modules for various kinds of sensors. These IPs can be easily defined for fast prototyping of the interface circuit for the given sensor. Final ASIC implementation for the given sensor conditioning can be easily derived with reduced risk and short development time. Some case examples are presented to demonstrate the effectiveness and flexibility of this system.

  4. A Mixed-Signal Embedded Platform for Automotive Sensor Conditioning

    Directory of Open Access Journals (Sweden)

    Giambastiani Adolfo

    2010-01-01

    Full Text Available Abstract A mixed-signal embedded system called Intelligent Sensor InterFace (ISIF suited to fast identify, trim, and verify an architecture to interface a given sensor is presented. This system has been developed according to a platform-based design approach, a methodology that has proved to be efficient for building complex mixed-signal embedded systems with short time-to-market. Such platform consists in a wide set of optimized high-performance analog, digital, and software intellectual property (IP modules for various kinds of sensors. These IPs can be easily defined for fast prototyping of the interface circuit for the given sensor. Final ASIC implementation for the given sensor conditioning can be easily derived with reduced risk and short development time. Some case examples are presented to demonstrate the effectiveness and flexibility of this system.

  5. Intelligent hand-portable proliferation sensing system

    International Nuclear Information System (INIS)

    Dieckman, S.L.; Bostrom, G.A.; Waterfield, L.G.; Jendrzejczyk, J.A.; Ahuja, S.; Raptis, A.C.

    1997-01-01

    Argonne National Laboratory, with support from DOE's Office of Nonproliferation and National Security, is currently developing an intelligent hand-portable sensor system. This system is designed specifically to support the intelligence community with the task of in-field sensing of nuclear proliferation and related activities. Based upon pulsed laser photo-ionization time-of-flight mass spectrometry technology, this novel sensing system is capable of quickly providing a molecular or atomic analysis of specimens. The system is capable of analyzing virtually any gas phase molecule, or molecule that can be induced into the gas phase by (for example) sample heating. This system has the unique advantages of providing unprecedented portability, excellent sensitivity, tremendous fieldability, and a high performance/cost ratio. The system will be capable of operating in a highly automated manner for on-site inspections, and easily modified for other applications such as perimeter monitoring aboard a plane or drone. The paper describes the sensing system

  6. Bioinspired Sensor Systems

    Directory of Open Access Journals (Sweden)

    Manel del Valle

    2011-10-01

    Full Text Available This editorial summarizes and classifies the contributions presented by different authors to the special issue of the journal Sensors dedicated to Bioinspired Sensor Systems. From the coupling of sensor arrays or networks, plus computer processing abilities, new applications to mimic or to complement human senses are arising in the context of ambient intelligence. Principles used, and illustrative study cases have been presented permitting readers to grasp the current status of the field.

  7. Design and Realization of Intelligent Flow Controller

    Directory of Open Access Journals (Sweden)

    Jianxiong Ye

    2014-09-01

    Full Text Available According to accurate flow rate control requirements in large irrigation zone, a fuzzy controller with dead-band is designed on the characteristics analysis and comparison of PID and Fuzzy. The setting values of water flow for gates are determined by real-time water level detection sensors, and the realistic value of discharged water and gate opening are detected out with relative sensors, simulation manifest that the specific control strategy can adjust the gate swiftly in circumstance of huge offset, and regulate the gate slightly in time of small bias, it is realized with Siemens S315 PLC (Programmable Logical Controller and has being working steadily for 2 years, the aim of regulation is performed properly.

  8. Intelligent Design versus Evolution

    Directory of Open Access Journals (Sweden)

    Nathan Aviezer

    2010-07-01

    Full Text Available Intelligent Design (ID burst onto the scene in 1996, with the publication of Darwin’s Black Box by Michael Behe. Since then, there has been a plethora of articles written about ID, both pro and con. However, most of the articles critical of ID deal with peripheral issues, such as whether ID is just another form of creationism or whether ID qualifies as science or whether ID should be taught in public schools. It is our view that the central issue is whether the basic claim of ID is correct. Our goal is fourfold: (I to show that most of the proposed refutations of ID are unconvincing and/or incorrect, (II to describe the single fundamental error of ID, (III to discuss the historic tradition surrounding the ID controversy, showing that ID is an example of a “god-of-the-gaps” argument, and (IV to place the ID controversy in the larger context of proposed proofs for the existence of God, with the emphasis on Jewish tradition.

  9. A Biologically Inspired CMOS Image Sensor

    CERN Document Server

    Sarkar, Mukul

    2013-01-01

    Biological systems are a source of inspiration in the development of small autonomous sensor nodes. The two major types of optical vision systems found in nature are the single aperture human eye and the compound eye of insects. The latter are among the most compact and smallest vision sensors. The eye is a compound of individual lenses with their own photoreceptor arrays.  The visual system of insects allows them to fly with a limited intelligence and brain processing power. A CMOS image sensor replicating the perception of vision in insects is discussed and designed in this book for industrial (machine vision) and medical applications. The CMOS metal layer is used to create an embedded micro-polarizer able to sense polarization information. This polarization information is shown to be useful in applications like real time material classification and autonomous agent navigation. Further the sensor is equipped with in pixel analog and digital memories which allow variation of the dynamic range and in-pixel b...

  10. Research-through-design for considering ethical implications in Ambient Intelligence system design: The Growth Plan approach

    NARCIS (Netherlands)

    Ross, P.R.; Tomico, O.

    2009-01-01

    The technologies we use transform our behaviours and experiences. Particularly Ambient Intelligent (AmI) systems, envisioned to integrate extensively, will have a profound influence on our everyday lives. Design of these systems requires considering what kind of influence is desirable. This brings

  11. IT-tool Concept for Design and Intelligent Motion Control

    DEFF Research Database (Denmark)

    Conrad, Finn; Hansen, Poul Erik; Sørensen, Torben

    2000-01-01

    The paper presents results obtained from a Danish mechatronic research program focusing on intelligent motion control as well as results from the Esprit project SWING on IT-tools for rapid prototyping of fluid power components and systems. A mechatronic test facility with digital controllers for ....... Furthermore, a developed IT-tool concept for controller and system design utilising the ISO 10303 STEP Standard is proposed....

  12. Design of Intelligent Hydraulic Excavator Control System Based on PID Method

    Science.gov (United States)

    Zhang, Jun; Jiao, Shengjie; Liao, Xiaoming; Yin, Penglong; Wang, Yulin; Si, Kuimao; Zhang, Yi; Gu, Hairong

    Most of the domestic designed hydraulic excavators adopt the constant power design method and set 85%~90% of engine power as the hydraulic system adoption power, it causes high energy loss due to mismatching of power between the engine and the pump. While the variation of the rotational speed of engine could sense the power shift of the load, it provides a new method to adjust the power matching between engine and pump through engine speed. Based on negative flux hydraulic system, an intelligent hydraulic excavator control system was designed based on rotational speed sensing method to improve energy efficiency. The control system was consisted of engine control module, pump power adjusted module, engine idle module and system fault diagnosis module. Special PLC with CAN bus was used to acquired the sensors and adjusts the pump absorption power according to load variation. Four energy saving control strategies with constant power method were employed to improve the fuel utilization. Three power modes (H, S and L mode) were designed to meet different working status; Auto idle function was employed to save energy through two work status detected pressure switches, 1300rpm was setting as the idle speed according to the engine consumption fuel curve. Transient overload function was designed for deep digging within short time without spending extra fuel. An increasing PID method was employed to realize power matching between engine and pump, the rotational speed's variation was taken as the PID algorithm's input; the current of proportional valve of variable displacement pump was the PID's output. The result indicated that the auto idle could decrease fuel consumption by 33.33% compared to work in maximum speed of H mode, the PID control method could take full use of maximum engine power at each power mode and keep the engine speed at stable range. Application of rotational speed sensing method provides a reliable method to improve the excavator's energy efficiency and

  13. Sound transmission reduction with intelligent panel systems

    Science.gov (United States)

    Fuller, Chris R.; Clark, Robert L.

    1992-01-01

    Experimental and theoretical investigations are performed of the use of intelligent panel systems to control the sound transmission and radiation. An intelligent structure is defined as a structural system with integrated actuators and sensors under the guidance of an adaptive, learning type controller. The system configuration is based on the Active Structural Acoustic Control (ASAC) concept where control inputs are applied directly to the structure to minimize an error quantity related to the radiated sound field. In this case multiple piezoelectric elements are employed as sensors. The importance of optimal shape and location is demonstrated to be of the same order of influence as increasing the number of channels of control.

  14. Design and Characterization of a Built-In CMOS TID Smart Sensor

    Science.gov (United States)

    Agustin, Javier; Gil, Carlos; Lopez-Vallejo, Marisa; Ituero, Pablo

    2015-04-01

    This paper describes a total ionization dose (TID) sensor that presents the following advantages: it is a digital sensor able to be integrated in CMOS circuits; it has a configurable sensitivity that allows radiation doses ranging from very low to high levels; its interface helps to integrate this design in a multidisciplinary sensor network; and it is self-timed, hence it does not need a clock signal. We designed, implemented and manufactured the sensor in a 0.35 μm CMOS commercial technology. It was irradiated with a 60Co source. This test was used to characterize the sensor in terms of the radiation response up to 575 krad. After irradiation, we monitored the sensor to control charge redistribution and annealing effects for 80 hours. We also exposed our design to meticulous temperature analysis from 0 to 50°C and we studied the acceleration on the annealing phenomena due to high temperatures. Sensor calibration takes into account the results of all tests. Finally we propose to use this sensor in a self-recovery system. The sensor manufactured in this work has an area of 0.047 mm 2, of which 22% is dedicated to measuring radiation. Its energy per conversion is 463 pJ.

  15. Novel Designs for Application Specific MEMS Pressure Sensors

    Directory of Open Access Journals (Sweden)

    Erik V. Thomsen

    2010-10-01

    Full Text Available In the framework of developing innovative microfabricated pressure sensors, we present here three designs based on different readout principles, each one tailored for a specific application. A touch mode capacitive pressure sensor with high sensitivity (14 pF/bar, low temperature dependence and high capacitive output signal (more than 100 pF is depicted. An optical pressure sensor intrinsically immune to electromagnetic interference, with large pressure range (0–350 bar and a sensitivity of 1 pm/bar is presented. Finally, a resonating wireless pressure sensor power source free with a sensitivity of 650 KHz/mmHg is described. These sensors will be related with their applications in  harsh environment, distributed systems and medical environment, respectively. For many aspects, commercially available sensors, which in vast majority are piezoresistive, are not suited for the applications proposed.

  16. Routes for GMR-Sensor Design in Non-Destructive Testing

    Directory of Open Access Journals (Sweden)

    Andreas Schütze

    2012-09-01

    Full Text Available GMR sensors are widely used in many industrial segments such as information technology, automotive, automation and production, and safety applications. Each area requires an adaption of the sensor arrangement in terms of size adaption and alignment with respect to the field source involved. This paper deals with an analysis of geometric sensor parameters and the arrangement of GMR sensors providing a design roadmap for non-destructive testing (NDT applications. For this purpose we use an analytical model simulating the magnetic flux leakage (MFL distribution of surface breaking defects and investigate the flux leakage signal as a function of various sensor parameters. Our calculations show both the influence of sensor length and height and that when detecting the magnetic flux leakage of µm sized defects a gradiometer base line of 250 µm leads to a signal strength loss of less than 10% in comparison with a magnetometer response. To validate the simulation results we finally performed measurements with a GMR magnetometer sensor on a test plate with artificial µm-range cracks. The differences between simulation and measurement are below 6%. We report on the routes for a GMR gradiometer design as a basis for the fabrication of NDT-adapted sensor arrays. The results are also helpful for the use of GMR in other application when it comes to measure positions, lengths, angles or electrical currents.

  17. Intelligent sensor in control systems for objects with changing thermophysical properties

    Science.gov (United States)

    Belousov, O. A.; Muromtsev, D. Yu; Belyaev, M. P.

    2018-04-01

    The control of heat devices in a wide temperature range given thermophysical properties of an object is a topical issue. Optimal control systems of electric furnaces have to meet strict requirements in terms of accuracy of production procedures and efficiency of energy consumption. The fulfillment of these requirements is possible only if the dynamics model describing adequately the processes occurring in the furnaces is used to calculate the optimal control actions. One of the types of electric furnaces is the electric chamber furnace intended for heat treatment of various materials at temperatures from thousands of degrees Celsius and above. To solve the above-mentioned problem and to determine its place in the system of energy-efficient control of dynamic modes in the electric furnace, we propose the concept of an intelligent sensor and a method of synthesizing variables on sets of functioning states. The use of synthesis algorithms for optimal control in real time ensures the required accuracy when operating under different conditions and operating modes of the electric chamber furnace.

  18. Evaluating nanoparticle sensor design for intracellular pH measurements.

    Science.gov (United States)

    Benjaminsen, Rikke V; Sun, Honghao; Henriksen, Jonas R; Christensen, Nynne M; Almdal, Kristoffer; Andresen, Thomas L

    2011-07-26

    Particle-based nanosensors have over the past decade been designed for optical fluorescent-based ratiometric measurements of pH in living cells. However, quantitative and time-resolved intracellular measurements of pH in endosomes and lysosomes using particle nanosensors are challenging, and there is a need to improve measurement methodology. In the present paper, we have successfully carried out time-resolved pH measurements in endosomes and lyosomes in living cells using nanoparticle sensors and show the importance of sensor choice for successful quantification. We have studied two nanoparticle-based sensor systems that are internalized by endocytosis and elucidated important factors in nanosensor design that should be considered in future development of new sensors. From our experiments it is clear that it is highly important to use sensors that have a broad measurement range, as erroneous quantification of pH is an unfortunate result when measuring pH too close to the limit of the sensitive range of the sensors. Triple-labeled nanosensors with a pH measurement range of 3.2-7.0, which was synthesized by adding two pH-sensitive fluorophores with different pK(a) to each sensor, seem to be a solution to some of the earlier problems found when measuring pH in the endosome-lysosome pathway.

  19. Design and development of an IoT-based web application for an intelligent remote SCADA system

    Science.gov (United States)

    Kao, Kuang-Chi; Chieng, Wei-Hua; Jeng, Shyr-Long

    2018-03-01

    This paper presents a design of an intelligent remote electrical power supervisory control and data acquisition (SCADA) system based on the Internet of Things (IoT), with Internet Information Services (IIS) for setting up web servers, an ASP.NET model-view- controller (MVC) for establishing a remote electrical power monitoring and control system by using responsive web design (RWD), and a Microsoft SQL Server as the database. With the web browser connected to the Internet, the sensing data is sent to the client by using the TCP/IP protocol, which supports mobile devices with different screen sizes. The users can provide instructions immediately without being present to check the conditions, which considerably reduces labor and time costs. The developed system incorporates a remote measuring function by using a wireless sensor network and utilizes a visual interface to make the human-machine interface (HMI) more instinctive. Moreover, it contains an analog input/output and a basic digital input/output that can be applied to a motor driver and an inverter for integration with a remote SCADA system based on IoT, and thus achieve efficient power management.

  20. Design and development of ITER high-frequency magnetic sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y., E-mail: Yunxing.Ma@iter.org [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Fircroft Engineering, Lingley House, 120 Birchwood Point, Birchwood Boulevard, Warrington, WA3 7QH (United Kingdom); Vayakis, G. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Begrambekov, L.B. [National Research Nuclear University (MEPhI), 115409, Moscow, Kashirskoe shosse 31 (Russian Federation); Cooper, J.-J. [Culham Centre for Fusion Energy (CCFE), Abingdon, Oxfordshire OX14 3DB (United Kingdom); Duran, I. [IPP Prague, Za Slovankou 1782/3, 182 00 Prague 8 (Czech Republic); Hirsch, M.; Laqua, H.P. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Moreau, Ph. [CEA Cadarache, 13108 Saint Paul lez Durance Cedex (France); Oosterbeek, J.W. [Eindhoven University of Technology (TU/e), PO Box 513, 5600 MB Eindhoven (Netherlands); Spuig, P. [CEA Cadarache, 13108 Saint Paul lez Durance Cedex (France); Stange, T. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Walsh, M. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2016-11-15

    Highlights: • ITER high-frequency magnetic sensor system has been designed. • Prototypes have been successfully manufactured. • Manufactured prototypes have been tested in various labs. • Test results experimentally validated the design. - Abstract: High-frequency (HF) inductive magnetic sensors are the primary ITER diagnostic set for Toroidal Alfvén Eigenmodes (TAE) detection, while they also supplement low-frequency MHD and plasma equilibrium measurements. These sensors will be installed on the inner surface of ITER vacuum vessel, operated in a harsh environment with considerable neutron/nuclear radiation and high thermal load. Essential components of the HF sensor system, including inductive coil, electron cyclotron heating (ECH) shield, electrical cabling and termination load, have been designed to meet ITER measurement requirements. System performance (e.g. frequency response, thermal conduction) has been assessed. A prototyping campaign was initiated to demonstrate the manufacturability of the designed components. Prototypes have been produced according to the specifications. A series of lab tests have been performed to examine assembly issues and validate electrical and thermo-mechanical aspects of the design. In-situ microwave radiation test has been conducted in the MISTRAL test facility at IPP-Greifswald to experimentally examine the microwave shielding efficiency and structural integrity of the ECH shield. Low-power microwave attenuation measurement and scanning electron microscopic inspection were conducted to probe and examine the quality of the metal coating on the ECH shield.

  1. System for intelligent teleoperation research

    International Nuclear Information System (INIS)

    Orlando, N.E.

    1983-01-01

    The Automation Technology Branch of NASA Langley Research Center is developing a research capability in the field of artificial intelligence, particularly as applicable in teleoperator/robotics development for remote space operations. As a testbed for experimentation in these areas, a system concept has been developed and is being implemented. This system, termed DAISIE (Distributed Artificially Intelligent System for Interacting with the Environment), interfaces the key processes of perception, reasoning, and manipulation by linking hardware sensors and manipulators to a modular artificial intelligence (AI) software system in a hierarchical control structure. Verification experiments have been performed: one experiment used a blocksworld database and planner embedded in the DAISIE system to intelligently manipulate a simple physical environment; the other experiment implemented a joint-space collision avoidance algorithm. Continued system development is planned

  2. Phototype design and testing of two fiber-optic spectrochemical emission sensors

    International Nuclear Information System (INIS)

    Olsen, K.B.; Nelson, D.A.; Griffin, J.W.; Matson, B.S.; Eschbach, P.A.

    1988-09-01

    A unique radio frequency-induced helium plasma (RFIHP) sensor and a spark discharge (SD) sensor were designed, and prototype units were developed and tested. Both sensors use an atomic excitation source coupled to a fiber-optic cable and optical spectrometer to monitor in situ the emission intensity of selected elements of interest in the ambient air. Potential applications include vadose zone monitoring of volatile species. The RFIHP sensor was designed to measure the total chlorine concentration from carbon tetrachloride (and other volatile chlorinated hydrocarbons), and the SD sensor was designed to measure in situ concentrations of chlorine-containing compounds. The results of this research demonstrate proof of concept of the theory, but suggest further refinements are necessary to achieve detection sensitivities sufficiently low to be useful for monitoring concentrations of selected elements in vadose zone air. 9 refs., 10 figs

  3. Multiobjective Design of Wearable Sensor Systems for Electrocardiogram Monitoring

    Directory of Open Access Journals (Sweden)

    F. J. Martinez-Tabares

    2016-01-01

    Full Text Available Wearable sensor systems will soon become part of the available medical tools for remote and long term physiological monitoring. However, the set of variables involved in the performance of these systems are usually antagonistic, and therefore the design of usable wearable systems in real clinical applications entails a number of challenges that have to be addressed first. This paper describes a method to optimise the design of these systems for the specific application of cardiac monitoring. The method proposed is based on the selection of a subset of 5 design variables, sensor contact, location, and rotation, signal correlation, and patient comfort, and 2 objective functions, functionality and wearability. These variables are optimised using linear and nonlinear models to maximise those objective functions simultaneously. The methodology described and the results achieved demonstrate that it is possible to find an optimal solution and therefore overcome most of the design barriers that prevent wearable sensor systems from being used in normal clinical practice.

  4. 77 FR 30016 - Clinical Study Design and Performance of Hospital Glucose Sensors

    Science.gov (United States)

    2012-05-21

    ...] Clinical Study Design and Performance of Hospital Glucose Sensors AGENCY: Food and Drug Administration, HHS... Sensors.'' The purpose of this public meeting is to discuss clinical study design considerations and performance metrics for innovative glucose sensors intended to be used in hospital point of care settings...

  5. Should Intelligent Design Be Taught in Public School Science Classrooms?

    Science.gov (United States)

    Plutynski, Anya

    2010-01-01

    A variety of different arguments have been offered for teaching "both sides" of the evolution/ID debate in public schools. This article reviews five of the most common types of arguments advanced by proponents of Intelligent Design and demonstrates how and why they are founded on confusion and misunderstanding. It argues on behalf of teaching…

  6. Design and evaluation of a pressure sensor for high temperature nuclear application

    International Nuclear Information System (INIS)

    Yancey, M.E.

    1981-11-01

    The goal of this technical development task was the development of a small eddy-current pressure sensor for use within a high temperature nuclear environment. The sensor is designed for use at pressures and temperatures of up to 17.23 MPa and 650 0 F. The design of the sensor incorporated features to minimize possible errors due to temperature transients present in nuclear applications. This report describes a prototype pressure sensor that was designed, the associated 100 kHz signal conditioning electronics, and the evaluation tests which were conducted

  7. The application of artificial intelligence technology to aeronautical system design

    Science.gov (United States)

    Bouchard, E. E.; Kidwell, G. H.; Rogan, J. E.

    1988-01-01

    This paper describes the automation of one class of aeronautical design activity using artificial intelligence and advanced software techniques. Its purpose is to suggest concepts, terminology, and approaches that may be useful in enhancing design automation. By understanding the basic concepts and tasks in design, and the technologies that are available, it will be possible to produce, in the future, systems whose capabilities far exceed those of today's methods. Some of the tasks that will be discussed have already been automated and are in production use, resulting in significant productivity benefits. The concepts and techniques discussed are applicable to all design activity, though aeronautical applications are specifically presented.

  8. Using protistan examples to dispel the myths of intelligent design.

    Science.gov (United States)

    Farmer, Mark A; Habura, Andrea

    2010-01-01

    In recent years the teaching of the religiously based philosophy of intelligent design (ID) has been proposed as an alternative to modern evolutionary theory. Advocates of ID are largely motivated by their opposition to naturalistic explanations of biological diversity, in accordance with their goal of challenging the philosophy of scientific materialism. Intelligent design has been embraced by a wide variety of creationists who promote highly questionable claims that purport to show the inadequacy of evolutionary theory, which they consider to be a threat to a theistic worldview. We find that examples from protistan biology are well suited for providing evidence of many key evolutionary concepts, and have often been misrepresented or roundly ignored by ID advocates. These include examples of adaptations and radiations that are said to be statistically impossible, as well as examples of speciation both in the laboratory and as documented in the fossil record. Because many biologists may not be familiar with the richness of the protist evolution dataset or with ID-based criticisms of evolution, we provide examples of current ID arguments and specific protistan counter-examples.

  9. An intelligent and interactive carpet role of design in a textile innovation project

    NARCIS (Netherlands)

    Deckers, E.J.L.; Stouw, van der B.; Peutz, J.

    2012-01-01

    This paper presents an ongoing innovation project on the development of an intelligent and interactive carpet called PeR+, short for Perception Rug Plus. This design-research project is a collaboration between an international flooring company, DESSO, and the Department of Industrial Design at the

  10. Wireless Intelligent Sensors Management Application Protocol-WISMAP

    Directory of Open Access Journals (Sweden)

    Antonio Jesus Yuste-Delgado

    2010-09-01

    Full Text Available Although many recent studies have focused on the development of new applications for wireless sensor networks, less attention has been paid to knowledge-based sensor nodes. The objective of this work is the development in a real network of a new distributed system in which every sensor node can execute a set of applications, such as fuzzy ruled-base systems, measures, and actions. The sensor software is based on a multi-agent structure that is composed of three components: management, application control, and communication agents; a service interface, which provides applications the abstraction of sensor hardware and other components; and an application layer protocol. The results show the effectiveness of the communication protocol and that the proposed system is suitable for a wide range of applications. As real world applications, this work presents an example of a fuzzy rule-based system and a noise pollution monitoring application that obtains a fuzzy noise indicator.

  11. Motion Sensors and Transducers to Navigate an Intelligent Mechatronic Platform for Outdoor Applications

    Directory of Open Access Journals (Sweden)

    Michail G. PAPOUTSIDAKIS

    2016-03-01

    Full Text Available The initial goal of this project is to investigate if different sensor types and their attached transducers can support everyday human needs. Nowadays, there is a constant need to automate many time consuming applications not only in industrial environments but also in smaller scale applications, therefore robotics is a field that continuously tracks research interest. The area of human assistance by machines in everyday needs, continues to grow and to keep users interest very high. "Mechatronics" differ from Robotics in terms of integrated electronics, the advantage of being easily re-programmable and more over the versatility of hosting all kind of sensor types, sensor networks, transducers and actuators. In this research project, such an integrated autonomous device will be presented, focusing around the use of sensors and their feedback signals for proximity, position, motion, distance, placement and finally navigation. The ultimate sensor type choice for the task as well as all transducers signals management will also be highlighted. An up-to-date technology microcontroller will host all the above information and moreover move the mechatronic platform via motor actuators. The control algorithm which will be designed for the application is responsible for receiving all feedback signals, processing them and safely navigate the system in order to undertake its mission. The project scenario, the necessary electronic equipment and the controller design method will be highlighted in the following paragraphs of this document. Conclusions and results of sensor usage, platform's performance and problems solutions, forms the rest of this paper body.

  12. Designing and implementation of an intelligent manufacturing system

    Directory of Open Access Journals (Sweden)

    Michael Peschl

    2011-12-01

    Full Text Available Purpose: The goal of XPRESS is to establish a breakthrough for the factory of the future with a new flexible production concept based on the generic idea of “specialized intelligent process units” (“Manufactrons” integrated in cross-sectoral learning networks for a customized production. XPRESS meets the challenge to integrate intelligence and flexibility at the “highest” level of the production control system as well as at the “lowest” level of the singular machine.Design/methodology/approach: Architecture of a manufactronic networked factory is presented, making it possible to generate particular manufactrons for the specific tasks, based on the automatic analysis of its required features.Findings: The manufactronic factory concept meets the challenge to integrate intelligence and flexibility at the “highest” level of the production control system as well as at the “lowest” level of the singular machine. The quality assurance system provided a 100% inline quality monitoring, destructive costs reduced 30%-49%, the ramp-up time for the set-up of production lines decreased up to 50% and the changeover time decreased up to 80%.Research limitations/implications: Specific features of the designed manufactronic architecture, namely the transport manufactrons, have been tested as separate mechanisms which can be merged into the final comprehensive at a later stage.Practical implications: This concept is demonstrated in the automotive and aeronautics industries, but can be easily transferred to nearly all production processes. Using the manufactronic approach, industrial players will be able to anticipate and to respond to rapidly changing consumer needs, producing high-quality products in adequate quantities while reducing costs.Originality/value: Assembly units composed of manufactrons can flexibly perform varying types of complex tasks, whereas today this is limited to a few pre-defined tasks. Additionally, radical

  13. Sensors

    CERN Document Server

    Pigorsch, Enrico

    1997-01-01

    This is the 5th edition of the Metra Martech Directory "EUROPEAN CENTRES OF EXPERTISE - SENSORS." The entries represent a survey of European sensors development. The new edition contains 425 detailed profiles of companies and research institutions in 22 countries. This is reflected in the diversity of sensors development programmes described, from sensors for physical parameters to biosensors and intelligent sensor systems. We do not claim that all European organisations developing sensors are included, but this is a good cross section from an invited list of participants. If you see gaps or omissions, or would like your organisation to be included, please send details. The data base invites the formation of effective joint ventures by identifying and providing access to specific areas in which organisations offer collaboration. This issue is recognised to be of great importance and most entrants include details of collaboration offered and sought. We hope the directory on Sensors will help you to find the ri...

  14. Intelligent Membranes: Dream or Reality?

    Directory of Open Access Journals (Sweden)

    Annarosa Gugliuzza

    2013-07-01

    Full Text Available Intelligent materials are claimed to overcome current drawbacks associated with the attainment of high standards of life, health, security and defense. Membrane-based sensors represent a category of smart systems capable of providing a large number of benefits to different markets of textiles, biomedicine, environment, chemistry, agriculture, architecture, transport and energy. Intelligent membranes can be characterized by superior sensitivity, broader dynamic range and highly sophisticated mechanisms of autorecovery. These prerogatives are regarded as the result of multi-compartment arrays, where complementary functions can be accommodated and well-integrated. Based on the mechanism of “sense to act”, stimuli-responsive membranes adapt themselves to surrounding environments, producing desired effects such as smart regulation of transport, wetting, transcription, hydrodynamics, separation, and chemical or energy conversion. Hopefully, the design of new smart devices easier to manufacture and assemble can be realized through the integration of sensing membranes with wireless networks, looking at the ambitious challenge to establish long-distance communications. Thus, the transfer of signals to collecting systems could allow continuous and real-time monitoring of data, events and/or processes.

  15. Version II of the ISACS Intelligent Coordinator: object-oriented design and implementation

    International Nuclear Information System (INIS)

    Liholt, V.; Miazza, P.

    1993-03-01

    Within the Integrated Surveillance And Control System (ISACS-1)prototype coupled to the NORS PWR simulator, the Intelligent Coordinator (IC) is a central software module. It provides for example the operators with high-level knowledge on the overall plant status. This is performed through the integration of information fetched from the process and different Computerised Operator Support Systems. In 1991, the first version of ISACS and its associated Intelligent Information Coordinator came into operation. During initial ISACS-1 test runs, minor malfunctions were evidently detected in the IC software. At the same time, new reasoning capabilities were also required. A careful analysis of the IC software, implemented with the software shell G2, revealed that its software structure did not allow any easy extension. This report presents in detail the object-oriented redesign of the Intelligent Coordinator of ISACS-1 Firstly, the main capabilities of the Intelligent Coordinator are recalled. Then, the different object classes composing the application are commented in detail The implementation of this new design with the G2 software shell is illustrated through examples. This allows us at the same time to comment our experiences made with the G2 tool. Finally, a quantitative comparison between the successive versions of the Intelligent Coordinator shows clearly the improvements achieved by this object-oriented redesign. A drastic reduction of the number of production rules attests that a better representation of the plant expert knowledge embedded in the Intelligent Coordinator has been achieved. (author)

  16. Artificial intelligence in process design and operation

    International Nuclear Information System (INIS)

    Sudduth, A.L.

    1988-01-01

    Artificial Intelligence (AI) has recently become prominent in the discussion of computer applications in the utility business. In order to assess this technology, a research project was performed to determine whether software development techniques based on AI could be used to facilitate management of information associated with the design of a generating station. The approach taken was the development of an expert system, using a relatively simple set of rules acting on a more complex knowledge base. A successful prototype for the application was developed and its potential extension to a production environment demonstrated. During the course of prototype development, other possible applications of AI in design engineering were discovered, and areas of particular interest selected for further investigation. A plan for AI R and D was formulated. That plan and other possible future work in AI are discussed

  17. Concept of object-oriented intelligent support for nuclear reactor designing

    International Nuclear Information System (INIS)

    Yoshikawa, H.; Gofuku, A.

    1991-01-01

    A concept of object-oriented intelligent CAD/CAE environment is proposed for the conceptual designing of advanced nuclear reactor system. It is composed of (i) object-oriented frame-structure database which represents the hierarchical relationship of the composite elements of reactor core and the physical properties, and (ii) object-oriented modularization of the elementary calculation processes, which are needed for reactor core design analysis. As an example practise, an object-oriented frame structure is constructed for representing a 3D configuration of a special fuel element of a space reactor design, by using a general-purpose expert system shell ESHELL/X. (author)

  18. Intelligent stochastic optimization routine for in-core fuel cycle design

    International Nuclear Information System (INIS)

    Parks, G.T.

    1988-01-01

    Any reactor fuel management strategy must specify the fuel design, batch sizes, loading configurations, and operational procedures for each cycle. To permit detailed design studies, the complex core characteristics must necessarily be computer modeled. Thus, the identification of an optimal fuel cycle design represents an optimization problem with a nonlinear objective function (OF), nonlinear safety constraints, many control variables, and no direct derivative information. Most available library routines cannot tackle such problems; this paper introduces an intelligent stochastic optimization routine that can. There has been considerable interest recently in the application of stochastic methods to difficult optimization problems, based on the statistical mechanics algorithms originally attributed to Metropolis. Previous work showed that, in optimizing the performance of a British advanced gas-cooled reactor fuel stringer, a rudimentary version of the Metropolis algorithm performed as efficiently as the only suitable routine in the Numerical Algorithms Group library. Since then the performance of the Metropolis algorithm has been considerably enhanced by the introduction of self-tuning capabilities by which the routine adjusts its control parameters and search pattern as it progresses. Both features can be viewed as examples of artificial intelligence, in which the routine uses the accumulation of data, or experience, to guide its future actions

  19. A controllable sensor management algorithm capable of learning

    Science.gov (United States)

    Osadciw, Lisa A.; Veeramacheneni, Kalyan K.

    2005-03-01

    Sensor management technology progress is challenged by the geographic space it spans, the heterogeneity of the sensors, and the real-time timeframes within which plans controlling the assets are executed. This paper presents a new sensor management paradigm and demonstrates its application in a sensor management algorithm designed for a biometric access control system. This approach consists of an artificial intelligence (AI) algorithm focused on uncertainty measures, which makes the high level decisions to reduce uncertainties and interfaces with the user, integrated cohesively with a bottom up evolutionary algorithm, which optimizes the sensor network"s operation as determined by the AI algorithm. The sensor management algorithm presented is composed of a Bayesian network, the AI algorithm component, and a swarm optimization algorithm, the evolutionary algorithm. Thus, the algorithm can change its own performance goals in real-time and will modify its own decisions based on observed measures within the sensor network. The definition of the measures as well as the Bayesian network determine the robustness of the algorithm and its utility in reacting dynamically to changes in the global system.

  20. Combined Intelligent Control (CIC an Intelligent Decision Making Algorithm

    Directory of Open Access Journals (Sweden)

    Moteaal Asadi Shirzi

    2007-03-01

    Full Text Available The focus of this research is to introduce the concept of combined intelligent control (CIC as an effective architecture for decision-making and control of intelligent agents and multi-robot sets. Basically, the CIC is a combination of various architectures and methods from fields such as artificial intelligence, Distributed Artificial Intelligence (DAI, control and biological computing. Although any intelligent architecture may be very effective for some specific applications, it could be less for others. Therefore, CIC combines and arranges them in a way that the strengths of any approach cover the weaknesses of others. In this paper first, we introduce some intelligent architectures from a new aspect. Afterward, we offer the CIC by combining them. CIC has been executed in a multi-agent set. In this set, robots must cooperate to perform some various tasks in a complex and nondeterministic environment with a low sensory feedback and relationship. In order to investigate, improve, and correct the combined intelligent control method, simulation software has been designed which will be presented and considered. To show the ability of the CIC algorithm as a distributed architecture, a central algorithm is designed and compared with the CIC.

  1. Intelligent mobile sensor system for drum inspection and monitoring: Phase 1

    International Nuclear Information System (INIS)

    1993-06-01

    The objective of this project was to develop an operational system for monitoring and inspection activities for waste storage facility operations at several DOE sites. Specifically, the product of this effort is a robotic device with enhanced intelligence and maneuverability capable of conducting routine inspection of stored waste drums. The device is capable of operating in narrow aisles and interpolating the free aisle space between rows of stacked drums. The system has an integrated sensor suite for leak detection, and is interfaced with a site database both for inspection planning and for data correlation, updating, and report generation. The system is capable of departing on an assigned mission, collecting required data, recording which positions of its mission had to be aborted or modified due to environmental constraints, and reporting back when the mission is complete. Successful identification of more than 90% of all drum defects has been demonstrated in a high fidelity waste storage facility mockup. Identified anomalies included rust spots, rust streaks, areas of corrosion, dents, and tilted drums. All drums were positively identified and correlated with the site database. This development effort is separated into three phases of which phase one is now complete. The first phase has demonstrated an integrated system for monitoring and inspection activities for waste storage facility operations. This demonstration system was quickly fielded and evaluated by leveraging technologies developed from previous NASA and DARPA contracts and internal research. The second phase will demonstrate a prototype system appropriate for operational use in an actual storage facility. The prototype provides an integrated design that considers operational requirements, hardware costs, maintenance, safety, and robustness. The final phase will demonstrate commercial viability using the prototype vehicle in a pilot waste operations and inspection project

  2. Interface Design Concepts in the Development of ELSA, an Intelligent Electronic Library Search Assistant.

    Science.gov (United States)

    Denning, Rebecca; Smith, Philip J.

    1994-01-01

    Describes issues and advances in the design of appropriate inference engines and knowledge structures needed by commercially feasible intelligent intermediary systems for information retrieval. Issues associated with the design of interfaces to such functions are discussed in detail. Design principles for guiding implementation of these interfaces…

  3. A constraint-based approach to intelligent support of nuclear reactor design

    International Nuclear Information System (INIS)

    Furuta, Kazuo

    1993-01-01

    Constraint is a powerful representation to formulate and solve problems in design; a constraint-based approach to intelligent support of nuclear reactor design is proposed. We first discuss the features of the approach, and then present the architecture of a nuclear reactor design support system under development. In this design support system, the knowledge base contains constraints useful to structure the design space as object class definitions, and several types of constraint resolvers are provided as design support subsystems. The adopted method of constraint resolution are explained in detail. The usefulness of the approach is demonstrated using two design problems: Design window search and multiobjective optimization in nuclear reactor design. (orig./HP)

  4. Design and Implementation of an Intelligent Windowsill System Using Smart Handheld Device and Fuzzy Microcontroller.

    Science.gov (United States)

    Wang, Jing-Min; Yang, Ming-Ta; Chen, Po-Lin

    2017-04-11

    With the advance of science and technology, people have a desire for convenient and comfortable living. Creating comfortable and healthy indoor environments is a major consideration for designing smart homes. As handheld devices become increasingly powerful and ubiquitous, this paper proposes an innovative use of smart handheld devices (SHD), using MIT App Inventor and fuzzy control, to perform the real-time monitoring and smart control of the designed intelligent windowsill system (IWS) in a smart home. A compact weather station that consists of environment sensors was constructed in the IWS for measuring of indoor illuminance, temperature-humidity, carbon dioxide (CO₂) concentration and outdoor rain and wind direction. According to the measured environment information, the proposed system can automatically send a command to a fuzzy microcontroller performed by Arduino UNO to fully or partly open the electric curtain and electric window for adapting to climate changes in the indoor and outdoor environment. Moreover, the IWS can automatically close windows for rain splashing on the window. The presented novel control method for the windowsill not only expands the SHD applications, but greatly enhances convenience to users. To validate the feasibility and effectiveness of the IWS, a laboratory prototype was built and confirmed experimentally.

  5. Intelligent Network-Centric Sensors Development Program

    Science.gov (United States)

    2012-07-31

    Vasconcelos , W.; Sleeman, D.; Colley, S.; Porta, T.L. An ontology-based approach to sensor-mission assignment. In Proceedings of First Annual Conference of...the International Technology Alliance, Washington, DC, USA, September 2007. 12. Preece, A.; Gomez, M.; Mel, G.D.; Vasconcelos , W.; Sleeman, D.; Colley...13. Preece, A.; Gomez, M.; Mel, G.D.; Vasconcelos , W.; Sleeman, D.; Colley, S.; Porta, T.L. An ontology-based approach to sensor-mission assignment

  6. A Computationally Intelligent Approach to the Detection of Wormhole Attacks in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mohammad Nurul Afsar Shaon

    2017-05-01

    Full Text Available A wormhole attack is one of the most critical and challenging security threats for wireless sensor networks because of its nature and ability to perform concealed malicious activities. This paper proposes an innovative wormhole detection scheme to detect wormhole attacks using computational intelligence and an artificial neural network (ANN. Most wormhole detection schemes reported in the literature assume the sensors are uniformly distributed in a network, and, furthermore, they use statistical and topological information and special hardware for their detection. However, these schemes may perform poorly in non-uniformly distributed networks, and, moreover, they may fail to defend against “out of band” and “in band” wormhole attacks. The aim of the proposed research is to develop a detection scheme that is able to detect all kinds of wormhole attacks in both uniformly and non-uniformly distributed sensor networks. Furthermore, the proposed research does not require any special hardware and causes no significant network overhead throughout the network. Most importantly, the probable location of the malicious nodes can be identified by the proposed ANN based detection scheme. We evaluate the efficacy of the proposed detection scheme in terms of detection accuracy, false positive rate, and false negative rate. The performance of the proposed algorithm is also compared with other machine learning techniques (i.e. SVM and regularized nonlinear logistic regression (LR based detection models. The simulation results show that proposed ANN based algorithm outperforms the SVM or LR based detection schemes in terms of detection accuracy, false positive rate, and false negative rates.

  7. Low-complexity piecewise-affine virtual sensors: theory and design

    Science.gov (United States)

    Rubagotti, Matteo; Poggi, Tomaso; Oliveri, Alberto; Pascucci, Carlo Alberto; Bemporad, Alberto; Storace, Marco

    2014-03-01

    This paper is focused on the theoretical development and the hardware implementation of low-complexity piecewise-affine direct virtual sensors for the estimation of unmeasured variables of interest of nonlinear systems. The direct virtual sensor is designed directly from measured inputs and outputs of the system and does not require a dynamical model. The proposed approach allows one to design estimators which mitigate the effect of the so-called 'curse of dimensionality' of simplicial piecewise-affine functions, and can be therefore applied to relatively high-order systems, enjoying convergence and optimality properties. An automatic toolchain is also presented to generate the VHDL code describing the digital circuit implementing the virtual sensor, starting from the set of measured input and output data. The proposed methodology is applied to generate an FPGA implementation of the virtual sensor for the estimation of vehicle lateral velocity, using a hardware-in-the-loop setting.

  8. Embedded systems design issues in ambient intelligence

    NARCIS (Netherlands)

    Aarts, E.H.L.; Roovers, R.L.J.; Basten, A.A.; Geilen, M.C.W.; Groot, de H.W.H.

    2003-01-01

    The vision of ambient intelligence opens a world of unprecedented ex.periences: the interaction of people with electronic devices is changed as context awareness, natural interfaces and ubiquitous availability of information are realized. We analyze the consequences of the ambient intelligence

  9. Intelligent spaces the application of pervasive ICT

    CERN Document Server

    Steventon, Alan

    2010-01-01

    This book sets out a vision of 'intelligent spaces' and describes the progress that has been made towards realisation. The context for Intelligent Spaces (or iSpaces) is the world where ICT (Information and Communication Technology) and sensor systems disappear as they become embedded into physical objects and the spaces in which we live, work and play. The ultimate vision is that this embedded technology provides us with intelligent and contextually relevant support, augmenting our lives and experience of the physical world in a benign and non-intrusive manner. The ultimate vision is challeng

  10. A Multi-Resolution Mode CMOS Image Sensor with a Novel Two-Step Single-Slope ADC for Intelligent Surveillance Systems

    Directory of Open Access Journals (Sweden)

    Daehyeok Kim

    2017-06-01

    Full Text Available In this paper, we present a multi-resolution mode CMOS image sensor (CIS for intelligent surveillance system (ISS applications. A low column fixed-pattern noise (CFPN comparator is proposed in 8-bit two-step single-slope analog-to-digital converter (TSSS ADC for the CIS that supports normal, 1/2, 1/4, 1/8, 1/16, 1/32, and 1/64 mode of pixel resolution. We show that the scaled-resolution images enable CIS to reduce total power consumption while images hold steady without events. A prototype sensor of 176 × 144 pixels has been fabricated with a 0.18 μm 1-poly 4-metal CMOS process. The area of 4-shared 4T-active pixel sensor (APS is 4.4 μm × 4.4 μm and the total chip size is 2.35 mm × 2.35 mm. The maximum power consumption is 10 mW (with full resolution with supply voltages of 3.3 V (analog and 1.8 V (digital and 14 frame/s of frame rates.

  11. A Multi-Resolution Mode CMOS Image Sensor with a Novel Two-Step Single-Slope ADC for Intelligent Surveillance Systems.

    Science.gov (United States)

    Kim, Daehyeok; Song, Minkyu; Choe, Byeongseong; Kim, Soo Youn

    2017-06-25

    In this paper, we present a multi-resolution mode CMOS image sensor (CIS) for intelligent surveillance system (ISS) applications. A low column fixed-pattern noise (CFPN) comparator is proposed in 8-bit two-step single-slope analog-to-digital converter (TSSS ADC) for the CIS that supports normal, 1/2, 1/4, 1/8, 1/16, 1/32, and 1/64 mode of pixel resolution. We show that the scaled-resolution images enable CIS to reduce total power consumption while images hold steady without events. A prototype sensor of 176 × 144 pixels has been fabricated with a 0.18 μm 1-poly 4-metal CMOS process. The area of 4-shared 4T-active pixel sensor (APS) is 4.4 μm × 4.4 μm and the total chip size is 2.35 mm × 2.35 mm. The maximum power consumption is 10 mW (with full resolution) with supply voltages of 3.3 V (analog) and 1.8 V (digital) and 14 frame/s of frame rates.

  12. A Synchronous Multi-Body Sensor Platform in a Wireless Body Sensor Network: Design and Implementation

    Science.gov (United States)

    Gil, Yeongjoon; Wu, Wanqing; Lee, Jungtae

    2012-01-01

    Background Human life can be further improved if diseases and disorders can be predicted before they become dangerous, by correctly recognizing signals from the human body, so in order to make disease detection more precise, various body-signals need to be measured simultaneously in a synchronized manner. Object This research aims at developing an integrated system for measuring four signals (EEG, ECG, respiration, and PPG) and simultaneously producing synchronous signals on a Wireless Body Sensor Network. Design We designed and implemented a platform for multiple bio-signals using Bluetooth communication. Results First, we developed a prototype board and verified the signals from the sensor platform using frequency responses and quantities. Next, we designed and implemented a lightweight, ultra-compact, low cost, low power-consumption Printed Circuit Board. Conclusion A synchronous multi-body sensor platform is expected to be very useful in telemedicine and emergency rescue scenarios. Furthermore, this system is expected to be able to analyze the mutual effects among body signals. PMID:23112605

  13. A Synchronous Multi-Body Sensor Platform in a Wireless Body Sensor Network: Design and Implementation

    Directory of Open Access Journals (Sweden)

    Jungtae Lee

    2012-07-01

    Full Text Available Background: Human life can be further improved if diseases and disorders can be predicted before they become dangerous, by correctly recognizing signals from the human body, so in order to make disease detection more precise, various body-signals need to be measured simultaneously in a synchronized manner. Object: This research aims at developing an integrated system for measuring four signals (EEG, ECG, respiration, and PPG and simultaneously producing synchronous signals on a Wireless Body Sensor Network. Design: We designed and implemented a platform for multiple bio-signals using Bluetooth communication. Results: First, we developed a prototype board and verified the signals from the sensor platform using frequency responses and quantities. Next, we designed and implemented a lightweight, ultra-compact, low cost, low power-consumption Printed Circuit Board. Conclusion: A synchronous multi-body sensor platform is expected to be very useful in telemedicine and emergency rescue scenarios. Furthermore, this system is expected to be able to analyze the mutual effects among body signals.

  14. Mobile platform sampling for designing environmental sensor networks.

    Science.gov (United States)

    Budi, Setia; de Souza, Paulo; Timms, Greg; Susanto, Ferry; Malhotra, Vishv; Turner, Paul

    2018-02-09

    This paper proposes a method to design the deployment of sensor nodes in a new region where historical data is not available. A number of mobile platforms are simulated to build initial knowledge of the region. Further, an evolutionary algorithm is employed to find the optimum placement of a given number of sensor nodes that best represents the region of interest.

  15. A conceptual framework for intelligent real-time information processing

    Science.gov (United States)

    Schudy, Robert

    1987-01-01

    By combining artificial intelligence concepts with the human information processing model of Rasmussen, a conceptual framework was developed for real time artificial intelligence systems which provides a foundation for system organization, control and validation. The approach is based on the description of system processing terms of an abstraction hierarchy of states of knowledge. The states of knowledge are organized along one dimension which corresponds to the extent to which the concepts are expressed in terms of the system inouts or in terms of the system response. Thus organized, the useful states form a generally triangular shape with the sensors and effectors forming the lower two vertices and the full evaluated set of courses of action the apex. Within the triangle boundaries are numerous processing paths which shortcut the detailed processing, by connecting incomplete levels of analysis to partially defined responses. Shortcuts at different levels of abstraction include reflexes, sensory motor control, rule based behavior, and satisficing. This approach was used in the design of a real time tactical decision aiding system, and in defining an intelligent aiding system for transport pilots.

  16. Optimisation in the Design of Environmental Sensor Networks with Robustness Consideration

    Science.gov (United States)

    Budi, Setia; de Souza, Paulo; Timms, Greg; Malhotra, Vishv; Turner, Paul

    2015-01-01

    This work proposes the design of Environmental Sensor Networks (ESN) through balancing robustness and redundancy. An Evolutionary Algorithm (EA) is employed to find the optimal placement of sensor nodes in the Region of Interest (RoI). Data quality issues are introduced to simulate their impact on the performance of the ESN. Spatial Regression Test (SRT) is also utilised to promote robustness in data quality of the designed ESN. The proposed method provides high network representativeness (fit for purpose) with minimum sensor redundancy (cost), and ensures robustness by enabling the network to continue to achieve its objectives when some sensors fail. PMID:26633392

  17. Intelligent Wireless Sensor Network

    OpenAIRE

    Saeed, Bakhtiar I.; Mehrdadi, Bruce

    2010-01-01

    In recent years, there has been significant increase in utilisation of embedded-microcontrollers in broad range of applications extending from commercial products to industrial process system monitoring. Furthermore, improvements in speed, size and power consumption of microcontrollers with added wireless capabilities has provided new generation of applications. These include versatile and\\ud low cost solutions in wireless sensor networking applications such as wireless system monitoring and ...

  18. Wireless sensor network

    Science.gov (United States)

    Perotti, Jose M.; Lucena, Angel R.; Mullenix, Pamela A.; Mata, Carlos T.

    2006-05-01

    Current and future requirements of aerospace sensors and transducers demand the design and development of a new family of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors and transducers will possess a certain degree of intelligence in order to provide the end user with critical data in a more efficient manner. Communication between networks of traditional or next-generation sensors can be accomplished by a Wireless Sensor Network (WSN) developed by NASA's Instrumentation Branch and ASRC Aerospace Corporation at Kennedy Space Center (KSC), consisting of at least one central station and several remote stations and their associated software. The central station is application-dependent and can be implemented on different computer hardware, including industrial, handheld, or PC-104 single-board computers, on a variety of operating systems: embedded Windows, Linux, VxWorks, etc. The central stations and remote stations share a similar radio frequency (RF) core module hardware that is modular in design. The main components of the remote stations are an RF core module, a sensor interface module, batteries, and a power management module. These modules are stackable, and a common bus provides the flexibility to stack other modules for additional memory, increased processing, etc. WSN can automatically reconfigure to an alternate frequency if interference is encountered during operation. In addition, the base station will autonomously search for a remote station that was perceived to be lost, using relay stations and alternate frequencies. Several wireless remote-station types were developed and tested in the laboratory to support different sensing technologies, such as resistive temperature devices, silicon diodes, strain gauges, pressure transducers, and hydrogen leak detectors.

  19. DESIGN AND DEVELOPMENT OF AN INTELLIGENT INSTRUCTIVE SYSTEM: Scholastic Tutor (St*

    Directory of Open Access Journals (Sweden)

    Adebiyi MARION O.

    2011-10-01

    Full Text Available Intelligent Tutoring Systems (ITS is an act of impacting knowledge while computer teaches or acts as the tutors which is a supplement to human teachers. The ability to teach each student based on their individual abilities a major advantage posed by ITS and that is why it is being embraced in this work. This work describes the design of an Intelligent Tutoring System that was tagged Scholastic tutor (St*, which has the individual learning and collaborative problem-solving modules. The individual tutoring module was designed to provide appropriate lessons to individuals based on his/her background knowledge level, interest, and learning style and assimilation rate prior to using the tutoring system. A software agent is used to monitor and process these parameters, arrange the learning topic, and exercises, for each individual. The collaborative problem-based tutoring module was designed to present tutorial problems and provides facilities to assist learners with some useful information and advice for problem solving. This is because the present lecturing methodology which is the conventional teaching methodology provides an interactive classroom setting that promotes the open exchange of ideas and allows for the lecturer to communicate directly with the students but has a great disadvantage of not teaching all the students according to their own learning rate and pace. The intelligent tutor solves this problem by providing individualised learning for each student where they can learn according to their own pace and learning abilities it will provide remedy and advice when learners encounter difficulties during learning session. The classical model of ITS architecture has four main modules; domain model, student model, tutoring model and the user interface model.

  20. A novel design of an automatic lighting control system for a wireless sensor network with increased sensor lifetime and reduced sensor numbers.

    Science.gov (United States)

    Mohamaddoust, Reza; Haghighat, Abolfazl Toroghi; Sharif, Mohamad Javad Motahari; Capanni, Niccolo

    2011-01-01

    Wireless sensor networks (WSN) are currently being applied to energy conservation applications such as light control. We propose a design for such a system called a lighting automatic control system (LACS). The LACS system contains a centralized or distributed architecture determined by application requirements and space usage. The system optimizes the calculations and communications for lighting intensity, incorporates user illumination requirements according to their activities and performs adjustments based on external lighting effects in external sensor and external sensor-less architectures. Methods are proposed for reducing the number of sensors required and increasing the lifetime of those used, for considerably reduced energy consumption. Additionally we suggest methods for improving uniformity of illuminance distribution on a workplane's surface, which improves user satisfaction. Finally simulation results are presented to verify the effectiveness of our design.

  1. Unmanned air vehicles - real time intelligence without the risk

    OpenAIRE

    Miller, James Bryan.

    1988-01-01

    Unmanned Air Vehicles (UAVs) are capable of supporting the officer in tactical command (OTC) by gathering intelligence in real- or near real-time. UAVs now under development will be able to collect high-resolution imagery, and thus provide the OTC with the option of gathering tactical intelligence without using manned reconnaissance platforms. This thesis asserts that UAVs should be used to supplement existing intelligence sensors, particularly in those cases where current sources are too amb...

  2. Affordable and personalized lighting using inverse modeling and virtual sensors

    Science.gov (United States)

    Basu, Chandrayee; Chen, Benjamin; Richards, Jacob; Dhinakaran, Aparna; Agogino, Alice; Martin, Rodney

    2014-03-01

    Wireless sensor networks (WSN) have great potential to enable personalized intelligent lighting systems while reducing building energy use by 50%-70%. As a result WSN systems are being increasingly integrated in state-ofart intelligent lighting systems. In the future these systems will enable participation of lighting loads as ancillary services. However, such systems can be expensive to install and lack the plug-and-play quality necessary for user-friendly commissioning. In this paper we present an integrated system of wireless sensor platforms and modeling software to enable affordable and user-friendly intelligent lighting. It requires ⇠ 60% fewer sensor deployments compared to current commercial systems. Reduction in sensor deployments has been achieved by optimally replacing the actual photo-sensors with real-time discrete predictive inverse models. Spatially sparse and clustered sub-hourly photo-sensor data captured by the WSN platforms are used to develop and validate a piece-wise linear regression of indoor light distribution. This deterministic data-driven model accounts for sky conditions and solar position. The optimal placement of photo-sensors is performed iteratively to achieve the best predictability of the light field desired for indoor lighting control. Using two weeks of daylight and artificial light training data acquired at the Sustainability Base at NASA Ames, the model was able to predict the light level at seven monitored workstations with 80%-95% accuracy. We estimate that 10% adoption of this intelligent wireless sensor system in commercial buildings could save 0.2-0.25 quads BTU of energy nationwide.

  3. Design studies on sensors for the ATLAS Pixel Detector

    CERN Document Server

    Hügging, F G

    2002-01-01

    For the ATLAS Pixel Detector, prototype sensors have been successfully developed. For the sensors design, attention was given to survivability of the harsh LHC radiation environment leading to the need to operate them at several hundreds of volts, while maintaining a good charge collection efficiency, small cell size and minimal multiple scattering. For a cost effective mass production, a bias grid is implemented to test the sensors before assembly under full bias. (6 refs).

  4. Intelligent microchip networks: an agent-on-chip synthesis framework for the design of smart and robust sensor networks

    Science.gov (United States)

    Bosse, Stefan

    2013-05-01

    Sensorial materials consisting of high-density, miniaturized, and embedded sensor networks require new robust and reliable data processing and communication approaches. Structural health monitoring is one major field of application for sensorial materials. Each sensor node provides some kind of sensor, electronics, data processing, and communication with a strong focus on microchip-level implementation to meet the goals of miniaturization and low-power energy environments, a prerequisite for autonomous behaviour and operation. Reliability requires robustness of the entire system in the presence of node, link, data processing, and communication failures. Interaction between nodes is required to manage and distribute information. One common interaction model is the mobile agent. An agent approach provides stronger autonomy than a traditional object or remote-procedure-call based approach. Agents can decide for themselves, which actions are performed, and they are capable of flexible behaviour, reacting on the environment and other agents, providing some degree of robustness. Traditionally multi-agent systems are abstract programming models which are implemented in software and executed on program controlled computer architectures. This approach does not well scale to micro-chip level and requires full equipped computers and communication structures, and the hardware architecture does not consider and reflect the requirements for agent processing and interaction. We propose and demonstrate a novel design paradigm for reliable distributed data processing systems and a synthesis methodology and framework for multi-agent systems implementable entirely on microchip-level with resource and power constrained digital logic supporting Agent-On-Chip architectures (AoC). The agent behaviour and mobility is fully integrated on the micro-chip using pipelined communicating processes implemented with finite-state machines and register-transfer logic. The agent behaviour

  5. Six-Degree-of-Freedom Sensor Fish Design and Instrumentation

    Directory of Open Access Journals (Sweden)

    Marshall C. Richmond

    2007-11-01

    Full Text Available Fish passing through dams may be injured or killed despite advances in turbinedesign, project operations and other fish bypass systems. The six-degree-of-freedom (6DOFSensor Fish device is an autonomous sensor package that characterizes the physical conditionsand physical stresses to which fish are exposed when they pass through complex hydraulicenvironments. It has been used to identify the locations and operations where conditions aresevere enough to injure or kill fish. During the design process, a set of governing equationsof motion for the Sensor Fish was derived and simulated to understand the design implica-tions of instrument selection and placement within the body of the device. The Sensor Fishpackage includes three rotation sensors, three acceleration sensors, a pressure sensor, and atemperature sensor with a sampling frequency of 2,000 Hz. Its housing is constructed of clearpolycarbonate plastic. It is 24.5 mm in diameter and 90 mm in length and weighs about 43 g,similar to the size and density of a yearling salmon smolt. The accuracy of the pressure sensorwas determined to be within 0.2 psi. In laboratory acceptance tests, the relative errors of boththe linear acceleration and angular velocity measurements were determined to be less than5%. An exposure is defined as a significant event when the acceleration reaches predefinedthresholds. Based on the different characteristic of acceleration and rotation velocities, theexposure event is categorized as either a collision between the Sensor Fish and a solid struc-ture or shear caused by turbulence. Since its development in 2005, the 6DOF Sensor Fish hasbeen deployed successfully at many major dams in the United States.

  6. Advanced interfacing techniques for sensors measurement circuits and systems for intelligent sensors

    CERN Document Server

    Roy, Joyanta; Kumar, V; Mukhopadhyay, Subhas

    2017-01-01

    This book presents ways of interfacing sensors to the digital world, and discusses the marriage between sensor systems and the IoT: the opportunities and challenges. As sensor output is often affected by noise and interference, the book presents effective schemes for recovering the data from a signal that is buried in noise. It also explores interesting applications in the area of health care, un-obstructive monitoring and the electronic nose and tongue. It is a valuable resource for engineers and scientists in the area of sensors and interfacing wanting to update their knowledge of the latest developments in the field and learn more about sensing applications and challenges.

  7. Design and Implementation of a Digital Angular Rate Sensor

    Directory of Open Access Journals (Sweden)

    Zhen Peng

    2010-10-01

    Full Text Available With the aim of detecting the attitude of a rotating carrier, the paper presents a novel, digital angular rate sensor. The sensor consists of micro-sensing elements (gyroscope and accelerometer, signal processing circuit and micro-processor (DSP2812. The sensor has the feature of detecting three angular rates of a rotating carrier at the same time. The key techniques of the sensor, including sensing construction, sensing principles, and signal processing circuit design are presented. The test results show that the sensor can sense rolling, pitch and yaw angular rate at the same time and the measurement error of yaw (or pitch angular rate and rolling rate of the rotating carrier is less than 0.5%.

  8. Research on sensor design for internet of things and laser manufacturing

    Science.gov (United States)

    Wang, Tao; Yao, Jianquan; Guo, Ling; Zhang, Yanchun

    2010-12-01

    In this paper, we will introduce the research on sensor design for IOT (Internet of Things) and laser manufacturing, and supporting the establishment of local area IOT. The main contents include studying on the structure designing of silicon micro tilt sensor, data acquisition and processing, addressing implanted and building Local Area IOT with wireless sensor network technology. At last, it is discussed the status and trends of the Internet of Things from the promoters, watchers, pessimists and doers.

  9. Design of Electric Field Sensors for Measurement of Electromagnetic Pulse

    Directory of Open Access Journals (Sweden)

    Hui ZHANG

    2014-01-01

    Full Text Available In this paper, a D-dot electric field sensor and a fiber-optic transmission electric field sensor are developed for measurement of electromagnetic pulse. The D-dot sensor is a differential model sensor without source and has a simple structure. The fiber-optic transmission sensor is in the type of small dipole antenna, which uses its outside shielding layer as a pair of antennas. Design of the sensor circuit and the test system are introduced in this paper. A calibration system for these pulsed field sensors is established and the test results verified the ability of the developed sensors for measurement of the standard electromagnetic pulse field (the half peak width is 25 ns and the rising time is 2.5 ns.

  10. An Intelligent System for Modelling, Design and Analysis of Chemical Processes

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    ICAS, Integrated Computer Aided System, is a software that consists of a number of intelligent tools, which are very suitable, among others, for computer aided modelling, sustainable design of chemical and biochemical processes, and design-analysis of product-process monitoring systems. Each...... the computer aided modelling tool will illustrate how to generate a desired process model, how to analyze the model equations, how to extract data and identify the model and make it ready for various types of application. In sustainable process design, the example will highlight the issue of integration...

  11. Open architecture of smart sensor suites

    Science.gov (United States)

    Müller, Wilmuth; Kuwertz, Achim; Grönwall, Christina; Petersson, Henrik; Dekker, Rob; Reinert, Frank; Ditzel, Maarten

    2017-10-01

    Experiences from recent conflicts show the strong need for smart sensor suites comprising different multi-spectral imaging sensors as core elements as well as additional non-imaging sensors. Smart sensor suites should be part of a smart sensor network - a network of sensors, databases, evaluation stations and user terminals. Its goal is to optimize the use of various information sources for military operations such as situation assessment, intelligence, surveillance, reconnaissance, target recognition and tracking. Such a smart sensor network will enable commanders to achieve higher levels of situational awareness. Within the study at hand, an open system architecture was developed in order to increase the efficiency of sensor suites. The open system architecture for smart sensor suites, based on a system-of-systems approach, enables combining different sensors in multiple physical configurations, such as distributed sensors, co-located sensors combined in a single package, tower-mounted sensors, sensors integrated in a mobile platform, and trigger sensors. The architecture was derived from a set of system requirements and relevant scenarios. Its mode of operation is adaptable to a series of scenarios with respect to relevant objects of interest, activities to be observed, available transmission bandwidth, etc. The presented open architecture is designed in accordance with the NATO Architecture Framework (NAF). The architecture allows smart sensor suites to be part of a surveillance network, linked e.g. to a sensor planning system and a C4ISR center, and to be used in combination with future RPAS (Remotely Piloted Aircraft Systems) for supporting a more flexible dynamic configuration of RPAS payloads.

  12. Inter-cooperative collective intelligence techniques and applications

    CERN Document Server

    Bessis, Nik

    2014-01-01

    This book covers the latest advances in the rapid growing field of inter-cooperative collective intelligence aiming the integration and cooperation of various computational resources, networks and intelligent processing paradigms to collectively build intelligence and advanced decision support and interfaces for end-users. The book brings a comprehensive view of the state-of-the-art in the field of integration of sensor networks, IoT and Cloud computing, massive and intelligent querying and processing of data. As a result, the book presents lessons learned so far and identifies new research issues, challenges and opportunities for further research and development agendas. Emerging areas of applications are also identified and usefulness of inter-cooperative collective intelligence is envisaged.   Researchers, software developers, practitioners and students interested in the field of inter-cooperative collective intelligence will find the comprehensive coverage of this book useful for their research, academic...

  13. DESIGN AN INTELLIGENT CONTROLLER FOR FULL VEHICLE NONLINEAR ACTIVE SUSPENSION SYSTEMS

    OpenAIRE

    Aldair, A. A.; Wang, W. J.

    2011-01-01

    The main objective of designed the controller for a vehicle suspension system is to reduce the discomfort sensed by passengers which arises from road roughness and to increase the ride handling associated with the pitching and rolling movements. This necessitates a very fast and accurate controller to meet as much control objectives, as possible. Therefore, this paper deals with an artificial intelligence Neuro-Fuzzy (NF) technique to design a robust controller to meet the control objectives....

  14. Novel Damage Detection Techniques for Structural Health Monitoring Using a Hybrid Sensor

    Directory of Open Access Journals (Sweden)

    Dengjiang Wang

    2016-01-01

    Full Text Available This study presents a technique for detecting fatigue cracks based on a hybrid sensor monitoring system consisting of a combination of intelligent coating monitoring (ICM and piezoelectric transducer (PZT sensors. An experimental procedure using this hybrid sensor system was designed to monitor the cracks generated by fatigue testing in plate structures. A probability of detection (POD model that quantifies the reliability of damage detection for a specific sensor or the nondestructive testing (NDT method was used to evaluate the weight factor for the ICM and PZT sensors. To estimate the uncertainty of model parameters in this study, the Bayesian method was employed. Realistic data from fatigue testing was used to validate the overall method, and the results show that the novel damage detection technique using a hybrid sensor can quantify fatigue cracks more accurately than results obtained by conventional sensor methods.

  15. A Novel Design of an Automatic Lighting Control System for a Wireless Sensor Network with Increased Sensor Lifetime and Reduced Sensor Numbers

    Science.gov (United States)

    Mohamaddoust, Reza; Haghighat, Abolfazl Toroghi; Sharif, Mohamad Javad Motahari; Capanni, Niccolo

    2011-01-01

    Wireless sensor networks (WSN) are currently being applied to energy conservation applications such as light control. We propose a design for such a system called a Lighting Automatic Control System (LACS). The LACS system contains a centralized or distributed architecture determined by application requirements and space usage. The system optimizes the calculations and communications for lighting intensity, incorporates user illumination requirements according to their activities and performs adjustments based on external lighting effects in external sensor and external sensor-less architectures. Methods are proposed for reducing the number of sensors required and increasing the lifetime of those used, for considerably reduced energy consumption. Additionally we suggest methods for improving uniformity of illuminance distribution on a workplane’s surface, which improves user satisfaction. Finally simulation results are presented to verify the effectiveness of our design. PMID:22164114

  16. Smart sensors and systems

    CERN Document Server

    Kyung, Chong-Min; Yasuura, Hiroto; Liu, Yongpan

    2015-01-01

     This book describes for readers technology used for effective sensing of our physical world and intelligent processing techniques for sensed information, which are essential to the success of Internet of Things (IoTs).  The authors provide a multidisciplinary view of sensor technology from MEMS, biological, chemical, and electrical domains and showcase smart sensor systems in real applications including smart home, transportation, medical, environmental, agricultural, etc.  Unlike earlier books on sensors, this book will provide a “global” view on smart sensors covering abstraction levels from device, circuit, systems, and algorithms.  .

  17. Comparison of sensor systems designed using multizone, zonal, and CFD data for protection of indoor environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y. Lisa; Wen, Jin [Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, PA 19104 (United States)

    2010-04-15

    Sensors that detect chemical and biological warfare agents can offer early warning of dangerous contaminants. However, current sensor system design is mostly by intuition and experience rather than by systematic design. To develop a sensor system design methodology, the proper selection of an indoor airflow model is needed. Various indoor airflow models exist in the literature, from complex computational fluid dynamics (CFD) to simpler approaches such as multizone and zonal models. Airflow models provide the contaminant concentration data, to which an optimization method can be applied to design sensor systems. The authors utilized a subzonal modeling approach when using a multizone model and were the first to utilize a zonal model for systematic sensor system design. The objective of the study was to examine whether or not data from a simpler airflow model could be used to design sensor systems capable of performing just as well as those designed using data from more complex CFD models. Three test environments, a small office, a large hall, and an office suite were examined. Results showed that when a unique sensor system design was not needed, sensor systems designed using data from simpler airflow models could perform just as well as those designed using CFD data. Further, only for the small office did the common engineering sensor system design practice of placing a sensor at the exhaust result in sensor system performance that was equivalent to one designed using CFD data. (author)

  18. Hyperspectral Sensors Final Report CRADA No. TC02173.0

    Energy Technology Data Exchange (ETDEWEB)

    Priest, R. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sauvageau, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-30

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Science Applications International Corporation (SAIC), National Security Space Operations/SRBU, to develop longwave infrared (LWIR) hyperspectral imaging (HSI) sensors for airborne and potentially ground and space, platforms. LLNL has designed and developed LWIR HSI sensors since 1995. The current generation of these sensors has applications to users within the U.S. Department of Defense and the Intelligence Community. User needs are for multiple copies provided by commercial industry. To gain the most benefit from the U.S. Government’s prior investments in LWIR HSI sensors developed at LLNL, transfer of technology and know-how from LLNL HSI experts to commercial industry was needed. The overarching purpose of the CRADA project was to facilitate the transfer of the necessary technology from LLNL to SAIC thereby allowing the U.S. Government to procure LWIR HSI sensors from this company.

  19. Methodology, Birth Order, Intelligence, and Personality.

    Science.gov (United States)

    Michalski, Richard L.; Shackelford, Todd K.

    2001-01-01

    Critiques recent research on the effects of birth order on intelligence and personality, which found that the between-family design revealed that birth order negatively related to intelligence, while the within-family design revealed that birth order was unrelated to intelligence. Suggests that it may not be intelligence that co-varies with birth…

  20. Issues regarding the design and acceptance of intelligent support systems for reactor operators

    International Nuclear Information System (INIS)

    Bernard, J.A.

    1992-01-01

    In this paper, factors relevant to the design and acceptance of intelligent support systems for the operation of nuclear power plants are enumerated and discussed. The central premise is that conventional expert systems which encode experiential knowledge in production rules are not a suitable vehicle for the creation of practical operator support systems. The principal difficulty is the need for real-time operation. This in turn means that intelligent support systems will have knowledge bases derived from temporally accurate plant models, inference engines that permit revisions in the search process so as to accommodate revised or new data, and man-machine interfaces that do not require any human input. Such systems will have to be heavily instrumented and the associated knowledge bases will require a hierarchical organization so as to emulate human approaches to analysis. Issues related to operator acceptance of intelligent support tools are then reviewed. Possible applications are described and the relative merits of the machine- and human-centered approaches to the implementation of intelligent support systems are enumerated. The paper concludes with a plea for additional experimental evaluations

  1. Design factors of sensors for the optical tracking systems of solar concentrators

    International Nuclear Information System (INIS)

    Klychev, Sh. I.; Fazylov, A. K.; Orlov, S. A.; Burbo, A. V.

    2011-01-01

    Basic diagrams for the sensors of the optical tracking systems of solar concentrators are considered, the design factors that determine their accuracy are analyzed, a new sensor design is suggested, and its optimal parameters are determined. (authors)

  2. Learning for intelligent mobile robots

    Science.gov (United States)

    Hall, Ernest L.; Liao, Xiaoqun; Alhaj Ali, Souma M.

    2003-10-01

    Unlike intelligent industrial robots which often work in a structured factory setting, intelligent mobile robots must often operate in an unstructured environment cluttered with obstacles and with many possible action paths. However, such machines have many potential applications in medicine, defense, industry and even the home that make their study important. Sensors such as vision are needed. However, in many applications some form of learning is also required. The purpose of this paper is to present a discussion of recent technical advances in learning for intelligent mobile robots. During the past 20 years, the use of intelligent industrial robots that are equipped not only with motion control systems but also with sensors such as cameras, laser scanners, or tactile sensors that permit adaptation to a changing environment has increased dramatically. However, relatively little has been done concerning learning. Adaptive and robust control permits one to achieve point to point and controlled path operation in a changing environment. This problem can be solved with a learning control. In the unstructured environment, the terrain and consequently the load on the robot"s motors are constantly changing. Learning the parameters of a proportional, integral and derivative controller (PID) and artificial neural network provides an adaptive and robust control. Learning may also be used for path following. Simulations that include learning may be conducted to see if a robot can learn its way through a cluttered array of obstacles. If a situation is performed repetitively, then learning can also be used in the actual application. To reach an even higher degree of autonomous operation, a new level of learning is required. Recently learning theories such as the adaptive critic have been proposed. In this type of learning a critic provides a grade to the controller of an action module such as a robot. The creative control process is used that is "beyond the adaptive critic." A

  3. Acoustic Sensor Design for Dark Matter Bubble Chamber Detectors.

    Science.gov (United States)

    Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-06-10

    Dark matter bubble chamber detectors use piezoelectric sensors in order to detect and discriminate the acoustic signals emitted by the bubbles grown within the superheated fluid from a nuclear recoil produced by a particle interaction. These sensors are attached to the outside walls of the vessel containing the fluid. The acoustic discrimination depends strongly on the properties of the sensor attached to the outer wall of the vessel that has to meet the requirements of radiopurity and size. With the aim of optimizing the sensor system, a test bench for the characterization of the sensors has been developed. The sensor response for different piezoelectric materials, geometries, matching layers, and backing layers have been measured and contrasted with FEM simulations and analytical models. The results of these studies lead us to have a design criterion for the construction of specific sensors for the next generation of dark matter bubble chamber detectors (250 L).

  4. Acoustic Sensor Design for Dark Matter Bubble Chamber Detectors

    Directory of Open Access Journals (Sweden)

    Ivan Felis

    2016-06-01

    Full Text Available Dark matter bubble chamber detectors use piezoelectric sensors in order to detect and discriminate the acoustic signals emitted by the bubbles grown within the superheated fluid from a nuclear recoil produced by a particle interaction. These sensors are attached to the outside walls of the vessel containing the fluid. The acoustic discrimination depends strongly on the properties of the sensor attached to the outer wall of the vessel that has to meet the requirements of radiopurity and size. With the aim of optimizing the sensor system, a test bench for the characterization of the sensors has been developed. The sensor response for different piezoelectric materials, geometries, matching layers, and backing layers have been measured and contrasted with FEM simulations and analytical models. The results of these studies lead us to have a design criterion for the construction of specific sensors for the next generation of dark matter bubble chamber detectors (250 L.

  5. Open hardware: a role to play in wireless sensor networks?

    Science.gov (United States)

    Fisher, Roy; Ledwaba, Lehlogonolo; Hancke, Gerhard; Kruger, Carel

    2015-03-20

    The concept of the Internet of Things is rapidly becoming a reality, with many applications being deployed within industrial and consumer sectors. At the 'thing' level-devices and inter-device network communication-the core technical building blocks are generally the same as those found in wireless sensor network implementations. For the Internet of Things to continue growing, we need more plentiful resources for building intelligent devices and sensor networks. Unfortunately, current commercial devices, e.g., sensor nodes and network gateways, tend to be expensive and proprietary, which presents a barrier to entry and arguably slows down further development. There are, however, an increasing number of open embedded platforms available and also a wide selection of off-the-shelf components that can quickly and easily be built into device and network gateway solutions. The question is whether these solutions measure up to built-for-purpose devices. In the paper, we provide a comparison of existing built-for-purpose devices against open source devices. For comparison, we have also designed and rapidly prototyped a sensor node based on off-the-shelf components. We show that these devices compare favorably to built-for-purpose devices in terms of performance, power and cost. Using open platforms and off-the-shelf components would allow more developers to build intelligent devices and sensor networks, which could result in a better overall development ecosystem, lower barriers to entry and rapid growth in the number of IoT applications.

  6. Open Hardware: A Role to Play in Wireless Sensor Networks?

    Directory of Open Access Journals (Sweden)

    Roy Fisher

    2015-03-01

    Full Text Available The concept of the Internet of Things is rapidly becoming a reality, with many applications being deployed within industrial and consumer sectors. At the ‘thing’ level—devices and inter-device network communication—the core technical building blocks are generally the same as those found in wireless sensor network implementations. For the Internet of Things to continue growing, we need more plentiful resources for building intelligent devices and sensor networks. Unfortunately, current commercial devices, e.g., sensor nodes and network gateways, tend to be expensive and proprietary, which presents a barrier to entry and arguably slows down further development. There are, however, an increasing number of open embedded platforms available and also a wide selection of off-the-shelf components that can quickly and easily be built into device and network gateway solutions. The question is whether these solutions measure up to built-for-purpose devices. In the paper, we provide a comparison of existing built-for-purpose devices against open source devices. For comparison, we have also designed and rapidly prototyped a sensor node based on off-the-shelf components. We show that these devices compare favorably to built-for-purpose devices in terms of performance, power and cost. Using open platforms and off-the-shelf components would allow more developers to build intelligent devices and sensor networks, which could result in a better overall development ecosystem, lower barriers to entry and rapid growth in the number of IoT applications.

  7. Data analysis and integration of environmental sensors to meet human needs

    Science.gov (United States)

    Santamaria, Amilcare Francesco; De Rango, Floriano; Barletta, Domenico; Falbo, Domenico; Imbrogno, Alessandro

    2014-05-01

    Nowadays one of the main task of technology is to make people's life simpler and easier. Ambient intelligence is an emerging discipline that brings intelligence to environments making them sensitive to us. This discipline has developed following the spread of sensors devices, sensor networks, pervasive computing and artificial intelligence. In this work, we attempt to enhance the Internet Of Things (loT) with intelligence and environments exploring various interactions between humans' beings and the environment they live in. In particular, the core of the system is composed of an automation system, which is made up with a domotic control unit and several sensors installed in the environment. The task of the sensors is to collect information from the environment and to send them to the control unit. Once the information is collected, the core combines them in order to infer the most accurate human needs. The knowledge of human needs and the current environment status compose the inputs of the intelligence block whose main goal is to find the right automations to satisfy human needs in a real time way. The system also provides a Speech Recognition service which allow users to interact with the system by their voice so human speech can be considered as additional input for smart automatisms.

  8. Relational adaptivity - enacting human-centric systems design

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve

    2016-01-01

    Human centered design approaches places the experiencing human at the center of concern, situated in relation to the dynamics of the environmental condition and the variables of the system of control and sensing. Taking the approach of enacted design methods to enforce the experience...... of the inhabitant as core in human-centered design solutions, the intelligence of the connected sensors is suggested to be developed as an actual learning and self-adjusting adaptive environment, where the adaptive system is part of a negotiation with users on the qualities of the environment. We will present...... a fully functional sketching environment for adaptive sensor-control systems, which enable integration of the complex situation of everyday activities and human well-being. The proposed sketching environment allows for the development of sensor systems related to lighting conditions and human occupancy...

  9. Development of intelligent photomultipliers for the JUNO detector

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, Florian; Meloni, Marta; Soiron, Michael; Stahl, Achim; Steinmann, Jochen; Wiebusch, Christopher [III. Physikalisches Institut B, RWTH Aachen University, 52056 Aachen (Germany)

    2016-07-01

    The JUNO experiment will be a 20kt liquid scintillator neutrino detector near Kaiping, China, 50km from two nuclear power plants. Its main goal is the determination of the neutrino mass hierarchy from a precise measurement of the energy spectrum of neutrinos. Due to the detector size it is not possible to digitize the signal outside the detector cavern. Therefore FPGAs with a low-level reconstruction combined with a fast ADC mounted on the base will convert the PMTs into intelligent sensors. Advantages and disadvantages of this design are be discussed,and first measurements are shown.

  10. Does the design of a robot influence its animacy and perceived intelligence?

    NARCIS (Netherlands)

    Bartneck, C.; Kanda, T.; Mubin, O.; Al Mahmud, A.

    2009-01-01

    Robots exhibit life-like behavior by performing intelligent actions. To enhance human-robot interaction it is necessary to investigate and understand how end-users perceive such animate behavior. In this paper, we report an experiment to investigate how people perceived different designs of robot

  11. Empirical versus Random Item Selection in the Design of Intelligence Test Short Forms--The WISC-R Example.

    Science.gov (United States)

    Goh, David S.

    1979-01-01

    The advantages of using psychometric thoery to design short forms of intelligence tests are demonstrated by comparing such usage to a systematic random procedure that has previously been used. The Wechsler Intelligence Scale for Children Revised (WISC-R) Short Form is presented as an example. (JKS)

  12. SOA enabled ELTA: approach in designing business intelligence solutions in Era of Big Data

    Directory of Open Access Journals (Sweden)

    Viktor Dmitriyev

    2015-01-01

    Full Text Available The current work presents a new approach for designing business intelligence solutions. In the Era of Big Data, former and robust analytical concepts and utilities need to adapt themselves to the changed market circumstances. The main focus of this work is to address the acceleration of building process of a “data-centric” Business Intelligence (BI solution besides preparing BI solutions for Big Data utilization. This research addresses the following goals: reducing the time spent during business intelligence solution’s design phase; achieving flexibility of BI solution by adding new data sources; and preparing BI solution for utilizing Big Data concepts. This research proposes an extension of the existing Extract, Load and Transform (ELT approach to the new one Extract, Load, Transform and Analyze (ELTA supported by service-orientation concept. Additionally, the proposed model incorporates Service-Oriented Architecture concept as a mediator for the transformation phase. On one side, such incorporation brings flexibility to the BI solution and on the other side; it reduces the complexity of the whole system by moving some responsibilities to external authorities.

  13. Symmetry-Breaking as a Paradigm to Design Highly-Sensitive Sensor Systems

    Directory of Open Access Journals (Sweden)

    Antonio Palacios

    2015-06-01

    Full Text Available A large class of dynamic sensors have nonlinear input-output characteristics, often corresponding to a bistable potential energy function that controls the evolution of the sensor dynamics. These sensors include magnetic field sensors, e.g., the simple fluxgate magnetometer and the superconducting quantum interference device (SQUID, ferroelectric sensors and mechanical sensors, e.g., acoustic transducers, made with piezoelectric materials. Recently, the possibilities offered by new technologies and materials in realizing miniaturized devices with improved performance have led to renewed interest in a new generation of inexpensive, compact and low-power fluxgate magnetometers and electric-field sensors. In this article, we review the analysis of an alternative approach: a symmetry-based design for highly-sensitive sensor systems. The design incorporates a network architecture that produces collective oscillations induced by the coupling topology, i.e., which sensors are coupled to each other. Under certain symmetry groups, the oscillations in the network emerge via an infinite-period bifurcation, so that at birth, they exhibit a very large period of oscillation. This characteristic renders the oscillatory wave highly sensitive to symmetry-breaking effects, thus leading to a new detection mechanism. Model equations and bifurcation analysis are discussed in great detail. Results from experimental works on networks of fluxgate magnetometers are also included.

  14. Smart Sensors for Launch Vehicles

    Science.gov (United States)

    Ray, Sabooj; Mathews, Sheeja; Abraham, Sheena; Pradeep, N.; Vinod, P.

    2017-12-01

    Smart Sensors bring a paradigm shift in the data acquisition mechanism adopted for launch vehicle telemetry system. The sensors integrate signal conditioners, digitizers and communication systems to give digital output from the measurement location. Multiple sensors communicate with a centralized node over a common digital data bus. An in-built microcontroller gives the sensor embedded intelligence to carry out corrective action for sensor inaccuracies. A smart pressure sensor has been realized and flight-proven to increase the reliability as well as simplicity in integration so as to obtain improved data output. Miniaturization is achieved by innovative packaging. This work discusses the construction, working and flight performance of such a sensor.

  15. Low-cost failure sensor design and development for water pipeline distribution systems.

    Science.gov (United States)

    Khan, K; Widdop, P D; Day, A J; Wood, A S; Mounce, S R; Machell, J

    2002-01-01

    This paper describes the design and development of a new sensor which is low cost to manufacture and install and is reliable in operation with sufficient accuracy, resolution and repeatability for use in newly developed systems for pipeline monitoring and leakage detection. To provide an appropriate signal, the concept of a "failure" sensor is introduced, in which the output is not necessarily proportional to the input, but is unmistakably affected when an unusual event occurs. The design of this failure sensor is based on the water opacity which can be indicative of an unusual event in a water distribution network. The laboratory work and field trials necessary to design and prove out this type of failure sensor are described here. It is concluded that a low-cost failure sensor of this type has good potential for use in a comprehensive water monitoring and management system based on Artificial Neural Networks (ANN).

  16. Towards Intelligent Supply Chains

    DEFF Research Database (Denmark)

    Siurdyban, Artur; Møller, Charles

    2012-01-01

    applied to the context of organizational processes can increase the success rate of business operations. The framework is created using a set of theoretical based constructs grounded in a discussion across several streams of research including psychology, pedagogy, artificial intelligence, learning...... of deploying inapt operations leading to deterioration of profits. To address this problem, we propose a unified business process design framework based on the paradigm of intelligence. Intelligence allows humans and human-designed systems cope with environmental volatility, and we argue that its principles......, business process management and supply chain management. It outlines a number of system tasks combined in four integrated management perspectives: build, execute, grow and innovate, put forward as business process design propositions for Intelligent Supply Chains....

  17. Artificial intelligence for Space Station automation: Crew safety, productivity, autonomy, augmented capability

    Science.gov (United States)

    Firschein, O.; Georgeff, M. P.; Park, W.; Cheeseman, P. C.; Geldberg, J.

    1986-01-01

    Artificial intelligence (AI) R&D projects for the successful and efficient operation of the Space Station are described. The book explores the most advanced AI-based technologies, reviews the results of concept design studies to determine required AI capabilities, details demonstrations that would indicate the existence of these capabilities, and develops an R&D plan leading to such demonstrations. Particular attention is given to teleoperation and robotics, sensors, expert systems, computers, planning, and man-machine interface.

  18. Designing cellulosic and nanocellulosic sensors for interface with a protease sequestrant wound-dressing prototype: implications of material selection for dressing and protease sensor design

    Science.gov (United States)

    An intelligent dressing is a self-adjusting material with multifunctional properties and/or a biosensor-interface designed to treat specific pathological issues of wounds at a molecular or cellular level. The ability to detect and treat excessive protease levels in wounds, one indicator of chronic w...

  19. Limited Scope Design Study for Multi-Sensor Towbody

    Science.gov (United States)

    2016-06-01

    ports 2 Leak sensors 1 Electrical Surface supply voltage 300 V nominal (250–425 Vdc) Towbody output voltages 48/24/12 Vdc Load power...shallow water (អ m) at thousands of current and former Department of Defense (DoD) sites encompassing millions of acres. This design study...addresses the munitions remediation in shallow water problem with a system that uses a Multi-Sensor Towbody (MuST) and surface vessel with support

  20. Design of Zigbee-Based Wireless Sensor suitable for Radiation Detection and Monitoring

    International Nuclear Information System (INIS)

    Madian, A.A.

    2012-01-01

    This paper presents a design for a wireless sensor nuclear radiation monitoring and detection based on Zigbee. The system consists of transmitter and receiver modules. The wireless sensor installed at transmitter whiles the receiver processing data. The communication between Tx and Rx done through Zigbee module using the protocol of CSMA/CA. The Zigbee has the advantages of reliable, power-efficient, and low-latency communications between low-cost Tx/Rx.The wireless sensor implementation can easily be deployed to discover unusual or abnormal radioactivity. The sensors are convenient to be installed indoors or outdoors, as well as to be mounted on mobile equipment's. All wireless nuclear detection sensors are designed using micro controller and other integrated systems

  1. 2nd International Conference on Robot Intelligence Technology and Applications

    CERN Document Server

    Matson, Eric; Myung, Hyun; Xu, Peter; Karray, Fakhri

    2014-01-01

    We are facing a new technological challenge on how to store and retrieve knowledge and manipulate intelligence for autonomous services by intelligent systems which should be capable of carrying out real world tasks autonomously. To address this issue, robot researchers have been developing intelligence technology (InT) for “robots that think” which is in the focus of this book. The book covers all aspects of intelligence from perception at sensor level and reasoning at cognitive level to behavior planning at execution level for each low level segment of the machine. It also presents the technologies for cognitive reasoning, social interaction with humans, behavior generation, ability to cooperate with other robots, ambience awareness, and an artificial genome that can be passed on to other robots. These technologies are to materialize cognitive intelligence, social intelligence, behavioral intelligence, collective intelligence, ambient intelligence and genetic intelligence. The book aims at serving resear...

  2. An Intelligent Sensor Array Distributed System for Vibration Analysis and Acoustic Noise Characterization of a Linear Switched Reluctance Actuator

    Directory of Open Access Journals (Sweden)

    Maria Calado

    2012-06-01

    Full Text Available This paper proposes a distributed system for analysis and monitoring (DSAM of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs. The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications.

  3. An intelligent sensor array distributed system for vibration analysis and acoustic noise characterization of a linear switched reluctance actuator.

    Science.gov (United States)

    Salvado, José; Espírito-Santo, António; Calado, Maria

    2012-01-01

    This paper proposes a distributed system for analysis and monitoring (DSAM) of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs). The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications.

  4. Design of a lightweight, cost effective thimble-like sensor for haptic applications based on contact force sensors.

    Science.gov (United States)

    Ferre, Manuel; Galiana, Ignacio; Aracil, Rafael

    2011-01-01

    This paper describes the design and calibration of a thimble that measures the forces applied by a user during manipulation of virtual and real objects. Haptic devices benefit from force measurement capabilities at their end-point. However, the heavy weight and cost of force sensors prevent their widespread incorporation in these applications. The design of a lightweight, user-adaptable, and cost-effective thimble with four contact force sensors is described in this paper. The sensors are calibrated before being placed in the thimble to provide normal and tangential forces. Normal forces are exerted directly by the fingertip and thus can be properly measured. Tangential forces are estimated by sensors strategically placed in the thimble sides. Two applications are provided in order to facilitate an evaluation of sensorized thimble performance. These applications focus on: (i) force signal edge detection, which determines task segmentation of virtual object manipulation, and (ii) the development of complex object manipulation models, wherein the mechanical features of a real object are obtained and these features are then reproduced for training by means of virtual object manipulation.

  5. Design of a Lightweight, Cost Effective Thimble-Like Sensor for Haptic Applications Based on Contact Force Sensors

    Directory of Open Access Journals (Sweden)

    Ignacio Galiana

    2011-12-01

    Full Text Available This paper describes the design and calibration of a thimble that measures the forces applied by a user during manipulation of virtual and real objects. Haptic devices benefit from force measurement capabilities at their end-point. However, the heavy weight and cost of force sensors prevent their widespread incorporation in these applications. The design of a lightweight, user-adaptable, and cost-effective thimble with four contact force sensors is described in this paper. The sensors are calibrated before being placed in the thimble to provide normal and tangential forces. Normal forces are exerted directly by the fingertip and thus can be properly measured. Tangential forces are estimated by sensors strategically placed in the thimble sides. Two applications are provided in order to facilitate an evaluation of sensorized thimble performance. These applications focus on: (i force signal edge detection, which determines task segmentation of virtual object manipulation, and (ii the development of complex object manipulation models, wherein the mechanical features of a real object are obtained and these features are then reproduced for training by means of virtual object manipulation.

  6. Laboratory sensor design for fiber-optic detection of 85Kr

    International Nuclear Information System (INIS)

    Geelhood, B.D.; Knopf, M.A.

    1994-06-01

    The goal of the fiber-optic detection of 85 Kr project is to produce a sensor to detect 85 Kr in real-time from either an airborne or ground-based platform. The 85 Kr gas is a fission product which is released in large quantities during fuel reprocessing and in minor quantities during nuclear reactor operations. Thus an airborne plume of 85 Kr is a radioactive signature of proliferation. Since 85 Kr has a 10.72 year half life, it is difficult for a proliferator to contain the gas for several half lives to avoid releasing the radioactive signature of proliferation. The long half life also results in a plume that can extend several kilometers from the source, which allows initial proliferation monitoring from large distances. The sensor can be used to make stand-alone, real-time measurements of 85 Kr that can be used as direct evidence for proliferation and/or as a screening sensor to determine when to collect air samples for further laboratory analysis. This report provides a summary of the 85 Kr beta sensor design that PNL will use in the laboratory to: (1) demonstrate the measurement technique, (2) establish minimum detection limits, and (3) optimize the sensor design for the final airborne sensor package. The goal of the final airborne sensor package will be to measure 85 Kr at activity levels as low as or as close to ambient background levels as possible with a reasonably sized sensor

  7. Design of intelligent comfort control system with human learning and minimum power control strategies

    International Nuclear Information System (INIS)

    Liang, J.; Du, R.

    2008-01-01

    This paper presents the design of an intelligent comfort control system by combining the human learning and minimum power control strategies for the heating, ventilating and air conditioning (HVAC) system. In the system, the predicted mean vote (PMV) is adopted as the control objective to improve indoor comfort level by considering six comfort related variables, whilst a direct neural network controller is designed to overcome the nonlinear feature of the PMV calculation for better performance. To achieve the highest comfort level for the specific user, a human learning strategy is designed to tune the user's comfort zone, and then, a VAV and minimum power control strategy is proposed to minimize the energy consumption further. In order to validate the system design, a series of computer simulations are performed based on a derived HVAC and thermal space model. The simulation results confirm the design of the intelligent comfort control system. In comparison to the conventional temperature controller, this system can provide a higher comfort level and better system performance, so it has great potential for HVAC applications in the future

  8. SNMS: an intelligent transportation system network architecture based on WSN and P2P network

    Institute of Scientific and Technical Information of China (English)

    LI Li; LIU Yuan-an; TANG Bi-hua

    2007-01-01

    With the development of city road networks, the question of how to obtain information about the roads is becoming more and more important. In this article, sensor network with mobile station (SNMS), a novel two-tiered intelligent transportation system (ITS) network architecture based on wireless sensor network (WSN) and peer-to-peer (P2P) network, is proposed to provide significant traffic information about the road and thereby, assist travelers to take optimum decisions when they are driving. A detailed explanation with regard to the strategy of each level as well as the design of two main components in the network, sensor unit (SU) and mobile station (MS), is presented. Finally, a representative scenario is described to display the operation of the system.

  9. Design of embedded hardware platform in intelligent γ-spectrometry instrument based on ARM9

    International Nuclear Information System (INIS)

    Hong Tianqi; Fang Fang

    2008-01-01

    This paper described the design of embedded hardware platform based on ARM9 S3C2410A, emphases are focused on analyzing the methods of design the circuits of memory, LCD and keyboard ports. It presented a new solution of hardware platform in intelligent portable instrument for γ measurement. (authors)

  10. Design of Secure ECG-Based Biometric Authentication in Body Area Sensor Networks.

    Science.gov (United States)

    Peter, Steffen; Reddy, Bhanu Pratap; Momtaz, Farshad; Givargis, Tony

    2016-04-22

    Body area sensor networks (BANs) utilize wireless communicating sensor nodes attached to a human body for convenience, safety, and health applications. Physiological characteristics of the body, such as the heart rate or Electrocardiogram (ECG) signals, are promising means to simplify the setup process and to improve security of BANs. This paper describes the design and implementation steps required to realize an ECG-based authentication protocol to identify sensor nodes attached to the same human body. Therefore, the first part of the paper addresses the design of a body-area sensor system, including the hardware setup, analogue and digital signal processing, and required ECG feature detection techniques. A model-based design flow is applied, and strengths and limitations of each design step are discussed. Real-world measured data originating from the implemented sensor system are then used to set up and parametrize a novel physiological authentication protocol for BANs. The authentication protocol utilizes statistical properties of expected and detected deviations to limit the number of false positive and false negative authentication attempts. The result of the described holistic design effort is the first practical implementation of biometric authentication in BANs that reflects timing and data uncertainties in the physical and cyber parts of the system.

  11. Design of Secure ECG-Based Biometric Authentication in Body Area Sensor Networks

    Science.gov (United States)

    Peter, Steffen; Pratap Reddy, Bhanu; Momtaz, Farshad; Givargis, Tony

    2016-01-01

    Body area sensor networks (BANs) utilize wireless communicating sensor nodes attached to a human body for convenience, safety, and health applications. Physiological characteristics of the body, such as the heart rate or Electrocardiogram (ECG) signals, are promising means to simplify the setup process and to improve security of BANs. This paper describes the design and implementation steps required to realize an ECG-based authentication protocol to identify sensor nodes attached to the same human body. Therefore, the first part of the paper addresses the design of a body-area sensor system, including the hardware setup, analogue and digital signal processing, and required ECG feature detection techniques. A model-based design flow is applied, and strengths and limitations of each design step are discussed. Real-world measured data originating from the implemented sensor system are then used to set up and parametrize a novel physiological authentication protocol for BANs. The authentication protocol utilizes statistical properties of expected and detected deviations to limit the number of false positive and false negative authentication attempts. The result of the described holistic design effort is the first practical implementation of biometric authentication in BANs that reflects timing and data uncertainties in the physical and cyber parts of the system. PMID:27110785

  12. Design of Secure ECG-Based Biometric Authentication in Body Area Sensor Networks

    Directory of Open Access Journals (Sweden)

    Steffen Peter

    2016-04-01

    Full Text Available Body area sensor networks (BANs utilize wireless communicating sensor nodes attached to a human body for convenience, safety, and health applications. Physiological characteristics of the body, such as the heart rate or Electrocardiogram (ECG signals, are promising means to simplify the setup process and to improve security of BANs. This paper describes the design and implementation steps required to realize an ECG-based authentication protocol to identify sensor nodes attached to the same human body. Therefore, the first part of the paper addresses the design of a body-area sensor system, including the hardware setup, analogue and digital signal processing, and required ECG feature detection techniques. A model-based design flow is applied, and strengths and limitations of each design step are discussed. Real-world measured data originating from the implemented sensor system are then used to set up and parametrize a novel physiological authentication protocol for BANs. The authentication protocol utilizes statistical properties of expected and detected deviations to limit the number of false positive and false negative authentication attempts. The result of the described holistic design effort is the first practical implementation of biometric authentication in BANs that reflects timing and data uncertainties in the physical and cyber parts of the system.

  13. Artificial Consciousness or Artificial Intelligence

    OpenAIRE

    Spanache Florin

    2017-01-01

    Artificial intelligence is a tool designed by people for the gratification of their own creative ego, so we can not confuse conscience with intelligence and not even intelligence in its human representation with conscience. They are all different concepts and they have different uses. Philosophically, there are differences between autonomous people and automatic artificial intelligence. This is the difference between intelligence and artificial intelligence, autonomous versus a...

  14. Intelligent buildings vs. bioclimatic design; Edificios inteligentes vs. diseno bioclimatico

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo Gonzalez, Ricardo [Tecnologico de Monterrey (Mexico)

    2006-10-15

    Present the form of intelligent buildings designing is the article purpose. Those kinds of edifications take advantage of climatic conditions which allow the users comfort and the efficient electric power use, avoiding the polluting agents. It also shows the four next following stages to design an intelligent building to know: the dry weather and relative dampness schedule variations during a year in the building location; the predominant winds direction, intensity and schedule frequency; the cloudiness, rain, etc and how to use the Givoni diagram to obtain the natural air-conditioning strategies and reach the thermal comfort. [Spanish] El proposito de este articulo es presentar la forma de disenar edificios Inteligentes, los cuales aprovechan las condiciones climaticas que permiten el confort de los usuarios y el uso eficiente de la energia electrica, evitando asi la emision de agentes contaminantes. Tambien menciona los siguientes cuatro pasos para el diseno de un edificio inteligente: conocer las variaciones horarias de temperatura seca y humedad relativa durante un ano en el lugar donde estara el edificio, saber la direccion, intensidad y frecuencia horaria de los vientos dominantes, tener conocimiento de la nubosidad, lluvia, etc. y utilizar el diagrama de Givoni para obtener las estrategias de climatizacion natural para obtener el confort termico.

  15. Piezoresistive Composite Silicon Dioxide Nanocantilever Surface Stress Sensor: Design and Optimization.

    Science.gov (United States)

    Mathew, Ribu; Sankar, A Ravi

    2018-05-01

    In this paper, we present the design and optimization of a rectangular piezoresistive composite silicon dioxide nanocantilever sensor. Unlike the conventional design approach, we perform the sensor optimization by not only considering its electro-mechanical response but also incorporating the impact of self-heating induced thermal drift in its terminal characteristics. Through extensive simulations first we comprehend and quantify the inaccuracies due to self-heating effect induced by the geometrical and intrinsic parameters of the piezoresistor. Then, by optimizing the ratio of electrical sensitivity to thermal sensitivity defined as the sensitivity ratio (υ) we improve the sensor performance and measurement reliability. Results show that to ensure υ ≥ 1, shorter and wider piezoresistors are better. In addition, it is observed that unlike the general belief that high doping concentration of piezoresistor reduces thermal sensitivity in piezoresistive sensors, to ensure υ ≥ 1 doping concentration (p) should be in the range: 1E18 cm-3 ≤ p ≤ 1E19 cm-3. Finally, we provide a set of design guidelines that will help NEMS engineers to optimize the performance of such sensors for chemical and biological sensing applications.

  16. Seventh Scandinavian Conference on Artificial Intelligence

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Mayoh, Brian Henry; Perram, John

    2001-01-01

    The book covers the seventh Scandinavian Conference on Artificial Intelligence, held at the Maersk Mc-Kinney Moller Institute for Production Technology at the University of Southern Denmark during the period 20-21 February, 2001. It continues the tradition established by SCAI of being one...... of the most important regional AI conferences in Europe, attracting high quality submissions from Scandinavia and the rest of the world, including the Baltic countries. The contents include robotics, sensor/motor intelligence, evolutionary robotics, behaviour-based systems, multi-agent systems, applications...

  17. 1st International Conference on Intelligent Computing, Communication and Devices

    CERN Document Server

    Patnaik, Srikanta; Ichalkaranje, Nikhil

    2015-01-01

    In the history of mankind, three revolutions which impact the human life are the tool-making revolution, agricultural revolution and industrial revolution. They have transformed not only the economy and civilization but the overall development of the society. Probably, intelligence revolution is the next revolution, which the society will perceive in the next 10 years. ICCD-2014 covers all dimensions of intelligent sciences, i.e. Intelligent Computing, Intelligent Communication and Intelligent Devices. This volume covers contributions from Intelligent Communication which are from the areas such as Communications and Wireless Ad Hoc & Sensor Networks, Speech & Natural Language Processing, including Signal, Image and Video Processing and Mobile broadband and Optical networks, which are the key to the ground-breaking inventions to intelligent communication technologies. Secondly, Intelligent Device is any type of equipment, instrument, or machine that has its own computing capability. Contributions from ...

  18. Design and application of star map simulation system for star sensors

    Science.gov (United States)

    Wu, Feng; Shen, Weimin; Zhu, Xifang; Chen, Yuheng; Xu, Qinquan

    2013-12-01

    Modern star sensors are powerful to measure attitude automatically which assure a perfect performance of spacecrafts. They achieve very accurate attitudes by applying algorithms to process star maps obtained by the star camera mounted on them. Therefore, star maps play an important role in designing star cameras and developing procession algorithms. Furthermore, star maps supply significant supports to exam the performance of star sensors completely before their launch. However, it is not always convenient to supply abundant star maps by taking pictures of the sky. Thus, star map simulation with the aid of computer attracts a lot of interests by virtue of its low price and good convenience. A method to simulate star maps by programming and extending the function of the optical design program ZEMAX is proposed. The star map simulation system is established. Firstly, based on analyzing the working procedures of star sensors to measure attitudes and the basic method to design optical system by ZEMAX, the principle of simulating star sensor imaging is given out in detail. The theory about adding false stars and noises, and outputting maps is discussed and the corresponding approaches are proposed. Then, by external programming, the star map simulation program is designed and produced. Its user interference and operation are introduced. Applications of star map simulation method in evaluating optical system, star image extraction algorithm and star identification algorithm, and calibrating system errors are presented completely. It was proved that the proposed simulation method provides magnificent supports to the study on star sensors, and improves the performance of star sensors efficiently.

  19. Design of flexible thermoelectric generator as human body sensor

    DEFF Research Database (Denmark)

    Qing, Shaowei; Rezaniakolaei, Alireza; Rosendahl, Lasse Aistrup

    2018-01-01

    Flexible thermoelectric generator (TEG) became an attractive technology that has been widely used especially for curved surfaces applications. This study aims an optimal design of a flexible TEG for human body application. The flexible TEG is part of a sensor and supplies required electrical power...... for data transmission by the sensor. The TEG module includes ink based thermoelements made of nano-carbon bismuth telluride materials. One flexible fin conducts the body heat to the TEG module and there are two fins that exchange the heat from the cold side of the TEG to the ambient. The proposed design...

  20. Modeling, design, fabrication and characterization of a micro Coriolis mass flow sensor

    International Nuclear Information System (INIS)

    Haneveld, J; Lammerink, T S J; De Boer, M J; Sanders, R G P; Mehendale, A; Lötters, J C; Dijkstra, M; Wiegerink, R J

    2010-01-01

    This paper discusses the modeling, design and realization of micromachined Coriolis mass flow sensors. A lumped element model is used to analyze and predict the sensor performance. The model is used to design a sensor for a flow range of 0–1.2 g h −1 with a maximum pressure drop of 1 bar. The sensor was realized using semi-circular channels just beneath the surface of a silicon wafer. The channels have thin silicon nitride walls to minimize the channel mass with respect to the mass of the moving fluid. Special comb-shaped electrodes are integrated on the channels for capacitive readout of the extremely small Coriolis displacements. The comb-shaped electrode design eliminates the need for multiple metal layers and sacrificial layer etching methods. Furthermore, it prevents squeezed film damping due to a thin layer of air between the capacitor electrodes. As a result, the sensor operates at atmospheric pressure with a quality factor in the order of 40 and does not require vacuum packaging like other micro Coriolis flow sensors. Measurement results using water, ethanol, white gas and argon are presented, showing that the sensor measures true mass flow. The measurement error is currently in the order of 1% of the full scale of 1.2 g h −1

  1. 4th International Conference on Robot Intelligence Technology and Applications

    CERN Document Server

    Karray, Fakhri; Jo, Jun; Sincak, Peter; Myung, Hyun

    2017-01-01

    This book covers all aspects of robot intelligence from perception at sensor level and reasoning at cognitive level to behavior planning at execution level for each low level segment of the machine. It also presents the technologies for cognitive reasoning, social interaction with humans, behavior generation, ability to cooperate with other robots, ambience awareness, and an artificial genome that can be passed on to other robots. These technologies are to materialize cognitive intelligence, social intelligence, behavioral intelligence, collective intelligence, ambient intelligence and genetic intelligence. The book aims at serving researchers and practitioners with a timely dissemination of the recent progress on robot intelligence technology and its applications, based on a collection of papers presented at the 4th International Conference on Robot Intelligence Technology and Applications (RiTA), held in Bucheon, Korea, December 14 - 16, 2015. For better readability, this edition has the total of 49 article...

  2. 3rd International Conference on Robot Intelligence Technology and Applications

    CERN Document Server

    Yang, Weimin; Jo, Jun; Sincak, Peter; Myung, Hyun

    2015-01-01

    This book covers all aspects of robot intelligence from perception at sensor level and reasoning at cognitive level to behavior planning at execution level for each low level segment of the machine. It also presents the technologies for cognitive reasoning, social interaction with humans, behavior generation, ability to cooperate with other robots, ambience awareness, and an artificial genome that can be passed on to other robots. These technologies are to materialize cognitive intelligence, social intelligence, behavioral intelligence, collective intelligence, ambient intelligence and genetic intelligence. The book aims at serving researchers and practitioners with a timely dissemination of the recent progress on robot intelligence technology and its applications, based on a collection of papers presented at the 3rd International Conference on Robot Intelligence Technology and Applications (RiTA), held in Beijing, China, November 6 - 8, 2014. For better readability, this edition has the total 74 papers group...

  3. Design of the first full size ATLAS ITk Strip sensor for the endcap region

    CERN Document Server

    Lacasta, Carlos; The ATLAS collaboration

    2017-01-01

    The ATLAS collaboration is designing the full silicon tracker (ITk) that will operate in the HL-LHC replacing the current design. The silicon microstrip sensors for the barrel and the endcap regions in the ITk are fabricated in 6 inch, p-type, float-zone wafers, where large-area strip sensor designs are laid out together with a number of miniature sensors. The radiation tolerance and specific system issues like the need for slim edge of 450 µm have been tested with square shaped sensors intended for the barrel part of the tracker. This work presents the design of the first full size silicon microstrip sensor for the endcap region with a slim edge of 450 µm. The strip endcaps will consist of several wheels with two layers of silicon strip sensors each. The strips have to lie along the azimuthal direction, apart from a small stereo angle rotation (20 mrad on each side, giving 40 mrad total) for measuring the second coordinate of tracks. This stereo angle is built into the strip layout of the sensor and, in or...

  4. Design of the first full size ATLAS ITk Strip sensor for the endcap region

    CERN Document Server

    Lacasta, Carlos; The ATLAS collaboration

    2018-01-01

    The ATLAS collaboration is designing the full silicon tracker (ITk) that will operate in the HL-LHC replacing the current design. The silicon microstrip sensors for the barrel and the endcap regions in the ITk are fabricated in 6 inch, p-type, float-zone wafers, where large-area strip sensor designs are laid out together with a number of miniature sensors. The radiation tolerance and specific system issues like the need for slim edge of 450 μm have been tested with square shaped sensors intended for the barrel part of the tracker. This work presents the design of the first full size silicon microstrip sensor for the endcap region with a slim edge of 450 μm. The strip endcaps will consist of several wheels with two layers of silicon strip sensors each. The strips have to lie along the azimuthal direction, apart from a small stereo angle rotation (20 mrad on each side, giving 40 mrad total) for measuring the second coordinate of tracks. This stereo angle is built into the strip layout of the sensor and, in or...

  5. An Intelligent Four-Electrode Conductivity Sensor for Aquaculture

    OpenAIRE

    Zhang , Jiaran; Li , Daoliang; Wang , Cong; Ding , Qisheng

    2012-01-01

    International audience; Conductivity is regard as a key technical parameter in modern intensive fish farming management. The water conductivity sensors are sophisticated devices used in the aquaculture monitoring field to understand the effects of climate changes on fish ponds. In this paper a new four-electrode smart sensor is proposed for water conductivity measurements of aquaculture monitoring.The main advantages of these sensors include a high precision, a good stability and an intrinsic...

  6. Design of Operation Parameters to Resolve Two Targets using Proximity Sensors

    Science.gov (United States)

    2010-07-01

    network,” in MOBIHOC, EPF Lausanne, Switzerland, 2002. [12] V. Cevher and L. Kaplan, “Acoustic sensor net- work design for position estimation,” ACM Trans- actions on Sensor Networks, vol. 4, 2009.

  7. Virtual sensors for active noise control in acoustic-structural coupled enclosures using structural sensing: robust virtual sensor design.

    Science.gov (United States)

    Halim, Dunant; Cheng, Li; Su, Zhongqing

    2011-03-01

    The work was aimed to develop a robust virtual sensing design methodology for sensing and active control applications of vibro-acoustic systems. The proposed virtual sensor was designed to estimate a broadband acoustic interior sound pressure using structural sensors, with robustness against certain dynamic uncertainties occurring in an acoustic-structural coupled enclosure. A convex combination of Kalman sub-filters was used during the design, accommodating different sets of perturbed dynamic model of the vibro-acoustic enclosure. A minimax optimization problem was set up to determine an optimal convex combination of Kalman sub-filters, ensuring an optimal worst-case virtual sensing performance. The virtual sensing and active noise control performance was numerically investigated on a rectangular panel-cavity system. It was demonstrated that the proposed virtual sensor could accurately estimate the interior sound pressure, particularly the one dominated by cavity-controlled modes, by using a structural sensor. With such a virtual sensing technique, effective active noise control performance was also obtained even for the worst-case dynamics. © 2011 Acoustical Society of America

  8. Semantically-Enabled Sensor Plug & Play for the Sensor Web

    Science.gov (United States)

    Bröring, Arne; Maúe, Patrick; Janowicz, Krzysztof; Nüst, Daniel; Malewski, Christian

    2011-01-01

    Environmental sensors have continuously improved by becoming smaller, cheaper, and more intelligent over the past years. As consequence of these technological advancements, sensors are increasingly deployed to monitor our environment. The large variety of available sensor types with often incompatible protocols complicates the integration of sensors into observing systems. The standardized Web service interfaces and data encodings defined within OGC’s Sensor Web Enablement (SWE) framework make sensors available over the Web and hide the heterogeneous sensor protocols from applications. So far, the SWE framework does not describe how to integrate sensors on-the-fly with minimal human intervention. The driver software which enables access to sensors has to be implemented and the measured sensor data has to be manually mapped to the SWE models. In this article we introduce a Sensor Plug & Play infrastructure for the Sensor Web by combining (1) semantic matchmaking functionality, (2) a publish/subscribe mechanism underlying the SensorWeb, as well as (3) a model for the declarative description of sensor interfaces which serves as a generic driver mechanism. We implement and evaluate our approach by applying it to an oil spill scenario. The matchmaking is realized using existing ontologies and reasoning engines and provides a strong case for the semantic integration capabilities provided by Semantic Web research. PMID:22164033

  9. Intelligent Systems and Advanced User Interfaces for Design, Operation, and Maintenance of Command Management Systems

    Science.gov (United States)

    Mitchell, Christine M.

    1998-01-01

    Historically Command Management Systems (CMS) have been large, expensive, spacecraft-specific software systems that were costly to build, operate, and maintain. Current and emerging hardware, software, and user interface technologies may offer an opportunity to facilitate the initial formulation and design of a spacecraft-specific CMS as well as a to develop a more generic or a set of core components for CMS systems. Current MOC (mission operations center) hardware and software include Unix workstations, the C/C++ and Java programming languages, and X and Java window interfaces representations. This configuration provides the power and flexibility to support sophisticated systems and intelligent user interfaces that exploit state-of-the-art technologies in human-machine systems engineering, decision making, artificial intelligence, and software engineering. One of the goals of this research is to explore the extent to which technologies developed in the research laboratory can be productively applied in a complex system such as spacecraft command management. Initial examination of some of the issues in CMS design and operation suggests that application of technologies such as intelligent planning, case-based reasoning, design and analysis tools from a human-machine systems engineering point of view (e.g., operator and designer models) and human-computer interaction tools, (e.g., graphics, visualization, and animation), may provide significant savings in the design, operation, and maintenance of a spacecraft-specific CMS as well as continuity for CMS design and development across spacecraft with varying needs. The savings in this case is in software reuse at all stages of the software engineering process.

  10. Design of A Development Platform for HW/SW Codesign of Wireless IOntegrated Sensor Nodes

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Leopold, Martin; Madsen, Jan

    2005-01-01

    Wireless integrated sensor networks are a new class of embedded computer systems which have been made possible mainly by the recent advances in the micro and the nano technology. In order to efficiently utilize the limited resources available on a sensor node, we need to optimize its key design...... parameters which is only possible by making system-level design decisions about its hardware and software (operating system and applications) architecture. In this paper, we present the design of a sensor node development platform in relation to an application of wireless integrated sensor networks for sow...

  11. Game Theory for Wireless Sensor Networks: A Survey

    Science.gov (United States)

    Shi, Hai-Yan; Wang, Wan-Liang; Kwok, Ngai-Ming; Chen, Sheng-Yong

    2012-01-01

    Game theory (GT) is a mathematical method that describes the phenomenon of conflict and cooperation between intelligent rational decision-makers. In particular, the theory has been proven very useful in the design of wireless sensor networks (WSNs). This article surveys the recent developments and findings of GT, its applications in WSNs, and provides the community a general view of this vibrant research area. We first introduce the typical formulation of GT in the WSN application domain. The roles of GT are described that include routing protocol design, topology control, power control and energy saving, packet forwarding, data collection, spectrum allocation, bandwidth allocation, quality of service control, coverage optimization, WSN security, and other sensor management tasks. Then, three variations of game theory are described, namely, the cooperative, non-cooperative, and repeated schemes. Finally, existing problems and future trends are identified for researchers and engineers in the field. PMID:23012533

  12. Game Theory for Wireless Sensor Networks: A Survey

    Directory of Open Access Journals (Sweden)

    Ngai-Ming Kwok

    2012-07-01

    Full Text Available Game theory (GT is a mathematical method that describes the phenomenon of conflict and cooperation between intelligent rational decision-makers. In particular, the theory has been proven very useful in the design of wireless sensor networks (WSNs. This article surveys the recent developments and findings of GT, its applications in WSNs, and provides the community a general view of this vibrant research area. We first introduce the typical formulation of GT in the WSN application domain. The roles of GT are described that include routing protocol design, topology control, power control and energy saving, packet forwarding, data collection, spectrum allocation, bandwidth allocation, quality of service control, coverage optimization, WSN security, and other sensor management tasks. Then, three variations of game theory are described, namely, the cooperative, non-cooperative, and repeated schemes. Finally, existing problems and future trends are identified for researchers and engineers in the field.

  13. Bioinspired polarization navigation sensor for autonomous munitions systems

    Science.gov (United States)

    Giakos, G. C.; Quang, T.; Farrahi, T.; Deshpande, A.; Narayan, C.; Shrestha, S.; Li, Y.; Agarwal, M.

    2013-05-01

    Small unmanned aerial vehicles UAVs (SUAVs), micro air vehicles (MAVs), Automated Target Recognition (ATR), and munitions guidance, require extreme operational agility and robustness which can be partially offset by efficient bioinspired imaging sensor designs capable to provide enhanced guidance, navigation and control capabilities (GNC). Bioinspired-based imaging technology can be proved useful either for long-distance surveillance of targets in a cluttered environment, or at close distances limited by space surroundings and obstructions. The purpose of this study is to explore the phenomenology of image formation by different insect eye architectures, which would directly benefit the areas of defense and security, on the following four distinct areas: a) fabrication of the bioinspired sensor b) optical architecture, c) topology, and d) artificial intelligence. The outcome of this study indicates that bioinspired imaging can impact the areas of defense and security significantly by dedicated designs fitting into different combat scenarios and applications.

  14. Low-Power Low-Noise CMOS Imager Design : In Micro-Digital Sun Sensor Application

    NARCIS (Netherlands)

    Xie, N.

    2012-01-01

    A digital sun sensor is superior to an analog sun sensor in aspects of resolution, albedo immunity, and integration. The proposed Micro-Digital Sun Sensor (µDSS) is an autonomous digital sun sensor which is implemented by means of a CMOS image sensor, which is named APS+. The µDSS is designed

  15. Sensor-driven, fault-tolerant control of a maintenance robot

    International Nuclear Information System (INIS)

    Moy, M.M.; Davidson, W.M.

    1987-01-01

    A robot system has been designed to do routine maintenance tasks on the Sandia Pulsed Reactor (SPR). The use of this Remote Maintenance Robot (RMR) is expected to significantly reduce the occupational radiation exposure of the reactor operators. Reactor safety was a key issue in the design of the robot maintenance system. Using sensors to detect error conditions and intelligent control to recover from the errors, the RMR is capable of responding to error conditions without creating a hazard. This paper describes the design and implementation of a sensor-driven, fault-tolerant control for the RMR. Recovery from errors is not automatic; it does rely on operator assistance. However, a key feature of the error recovery procedure is that the operator is allowed to reenter the programmed operation after the error has been corrected. The recovery procedure guarantees that the moving components of the system will not collide with the reactor during recovery

  16. Bio-inspired smart sensors for a hexapod robot

    DEFF Research Database (Denmark)

    Bilberg, Arne

    2011-01-01

    EMICAB (Embodied Motion Intelligence for Cognitive, Autonomous Robots) is an EU founded project where a consortium of 4 Universities is working together to integrate smart body mechanics and sensors with intelligent planning and motor behavior in order to make a holistic approach to artificial...

  17. Design and development of self-powered sensors on wireless sensor network for standalone plant critical data management during SBO and beyond design basis events

    International Nuclear Information System (INIS)

    Aparna, J.; Dulera, I.V.; Rama Rao, A.; Vijayan, P.K.

    2015-01-01

    Advanced reactors are designed with an aim of maximum safety, optimized fuel utilization and effective system design. Safety aspects in reactor designs are being viewed for all possible vulnerabilities, and as a result, robust self-regulating passive safety features have been favored in Gen IV and advanced reactor designs. In addition to passive systems, the accidents scenarios at Fukushima indicate the dire need of reliable and stand-alone self-powered sensors, for monitoring plant critical parameters for effective damage control actions. There is a strong need for plant critical data management and situation awareness during the unavailability of all conventional power sources in a nuclear power plant, during extended station blackout (SBO) conditions. These self-powered sensors would assist the operators in managing events like SBO and help in containing any Beyond Design Basis Events (BDBE) conditions, well away from the public domain

  18. Intelligent Design-theorieën zijn geen wetenschappelijke alternatieven voor de neodarwinistische evolutietheorie

    NARCIS (Netherlands)

    H. Dooremale

    2005-01-01

    textabstractDe minister van onderwijs – Maria van der Hoeven – meent dat Intelligent Design (ID) serieus als alternatief voor de neodarwiniaanse evolutietheorie moet worden bekeken. De discussie richt zich voornamelijk op de verdediging van de evolutietheorie tegen de aantijgingen van de

  19. System Design and Implementation of Intelligent Fire Engine Path Planning based on SAT Algorithm

    Institute of Scientific and Technical Information of China (English)

    CAI Li-sha[1; ZENG Wei-peng[1; HAN Bao-ru[1

    2016-01-01

    In this paper, in order to make intelligent fi re car complete autonomy path planning in simulation map. Proposed system design of intelligent fi re car path planning based on SAT. The system includes a planning module, a communication module, a control module. Control module via the communication module upload the initial state and the goal state to planning module. Planning module solve this planning solution,and then download planning solution to control module, control the movement of the car fi re. Experiments show this the system is tracking short time, higher planning effi ciency.

  20. Ubiquitous and Ambient Intelligence Assisted Learning Environment Infrastructures Development--A Review

    Science.gov (United States)

    Kanagarajan, Sujith; Ramakrishnan, Sivakumar

    2018-01-01

    Ubiquitous Learning Environment (ULE) has been becoming a mobile and sensor based technology equipped environment that suits the modern world education discipline requirements for the past few years. Ambient Intelligence (AmI) makes much smarter the ULE by the support of optimization and intelligent techniques. Various efforts have been so far…