WorldWideScience

Sample records for intelligent manufacturing processes

  1. Ramp Technology and Intelligent Processing in Small Manufacturing

    Science.gov (United States)

    Rentz, Richard E.

    1992-01-01

    To address the issues of excessive inventories and increasing procurement lead times, the Navy is actively pursuing flexible computer integrated manufacturing (FCIM) technologies, integrated by communication networks to respond rapidly to its requirements for parts. The Rapid Acquisition of Manufactured Parts (RAMP) program, initiated in 1986, is an integral part of this effort. The RAMP program's goal is to reduce the current average production lead times experienced by the Navy's inventory control points by a factor of 90 percent. The manufacturing engineering component of the RAMP architecture utilizes an intelligent processing technology built around a knowledge-based shell provided by ICAD, Inc. Rules and data bases in the software simulate an expert manufacturing planner's knowledge of shop processes and equipment. This expert system can use Product Data Exchange using STEP (PDES) data to determine what features the required part has, what material is required to manufacture it, what machines and tools are needed, and how the part should be held (fixtured) for machining, among other factors. The program's rule base then indicates, for example, how to make each feature, in what order to make it, and to which machines on the shop floor the part should be routed for processing. This information becomes part of the shop work order. The process planning function under RAMP greatly reduces the time and effort required to complete a process plan. Since the PDES file that drives the intelligent processing is 100 percent complete and accurate to start with, the potential for costly errors is greatly diminished.

  2. Process monitoring for intelligent manufacturing processes - Methodology and application to Robot Assisted Polishing

    DEFF Research Database (Denmark)

    Pilny, Lukas

    Process monitoring provides important information on the product, process and manufacturing system during part manufacturing. Such information can be used for process optimization and detection of undesired processing conditions to initiate timely actions for avoidance of defects, thereby improving...... quality assurance. This thesis is aimed at a systematic development of process monitoring solutions, constituting a key element of intelligent manufacturing systems towards zero defect manufacturing. A methodological approach of general applicability is presented in this concern.The approach consists...... of six consecutive steps for identification of product Vital Quality Characteristics (VQCs) and Key Process Variables (KPVs), selection and characterization of sensors, optimization of sensors placement, validation of the monitoring solutions, definition of the reference manufacturing performance...

  3. Intelligent Processing Equipment Developments Within the Navy's Manufacturing Technology Centers of Excellence

    Science.gov (United States)

    Nanzetta, Philip

    1992-01-01

    The U.S. Navy has had an active Manufacturing Technology (MANTECH) Program aimed at developing advanced production processes and equipment since the late-1960's. During the past decade, however, the resources of the MANTECH program were concentrated in Centers of Excellence. Today, the Navy sponsors four manufacturing technology Centers of Excellence: the Automated Manufacturing Research Facility (AMRF); the Electronics Manufacturing Productivity Facility (EMPF); the National Center for Excellence in Metalworking Technology (NCEMT); and the Center of Excellence for Composites Manufacturing Technology (CECMT). This paper briefly describes each of the centers and summarizes typical Intelligent Equipment Processing (IEP) projects that were undertaken.

  4. #%Applications of artificial intelligence in intelligent manufacturing: a review

    Institute of Scientific and Technical Information of China (English)

    #

    2017-01-01

    #%Based on research into the applications of artificial intelligence (AI) technology in the manufacturing industry in recent years, we analyze the rapid development of core technologies in the new era of 'Internet plus AI', which is triggering a great change in the models, means, and ecosystems of the manufacturing industry, as well as in the development of AI. We then propose new models, means, and forms of intelligent manufacturing, intelligent manufacturing system architecture, and intelligent man-ufacturing technology system, based on the integration of AI technology with information communications, manufacturing, and related product technology. Moreover, from the perspectives of intelligent manufacturing application technology, industry, and application demonstration, the current development in intelligent manufacturing is discussed. Finally, suggestions for the appli-cation of AI in intelligent manufacturing in China are presented.

  5. Toward New-Generation Intelligent Manufacturing

    Directory of Open Access Journals (Sweden)

    Ji Zhou

    2018-02-01

    Full Text Available Intelligent manufacturing is a general concept that is under continuous development. It can be categorized into three basic paradigms: digital manufacturing, digital-networked manufacturing, and new-generation intelligent manufacturing. New-generation intelligent manufacturing represents an in-depth integration of new-generation artificial intelligence (AI technology and advanced manufacturing technology. It runs through every link in the full life-cycle of design, production, product, and service. The concept also relates to the optimization and integration of corresponding systems; the continuous improvement of enterprises’ product quality, performance, and service levels; and reduction in resources consumption. New-generation intelligent manufacturing acts as the core driving force of the new industrial revolution and will continue to be the main pathway for the transformation and upgrading of the manufacturing industry in the decades to come. Human-cyber-physical systems (HCPSs reveal the technological mechanisms of new-generation intelligent manufacturing and can effectively guide related theoretical research and engineering practice. Given the sequential development, cross interaction, and iterative upgrading characteristics of the three basic paradigms of intelligent manufacturing, a technology roadmap for “parallel promotion and integrated development” should be developed in order to drive forward the intelligent transformation of the manufacturing industry in China. Keywords: Advanced manufacturing, New-generation intelligent manufacturing, Human-cyber-physical system, New-generation AI, Basic paradigms, Parallel promotion, Integrated development

  6. Crowd wisdom drives intelligent manufacturing

    Directory of Open Access Journals (Sweden)

    Jiaqi Lu

    2017-03-01

    Full Text Available Purpose – A fundamental problem for intelligent manufacturing is to equip the agents with the ability to automatically make judgments and decisions. This paper aims to introduce the basic principle for intelligent crowds in an attempt to show that crowd wisdom could help in making accurate judgments and proper decisions. This further shows the positive effects that crowd wisdom could bring to the entire manufacturing process. Design/methodology/approach – Efforts to support the critical role of crowd wisdom in intelligent manufacturing involve theoretical explanation, including a discussion of several prevailing concepts, such as consumer-to-business (C2B, crowdfunding and an interpretation of the contemporary Big Data mania. In addition, an empirical study with three business cases was conducted to prove the conclusion that our ideas could well explain the current business phenomena and guide the future of manufacturing. Findings – This paper shows that crowd wisdom could help make accurate judgments and proper decisions. It further shows the positive effects that crowd wisdom could bring to the entire manufacturing process. Originality/value – The paper highlights the importance of crowd wisdom in manufacturing with sufficient theoretical and empirical analysis, potentially providing a guideline for future industry.

  7. 23rd International Conference on Flexible Automation & Intelligent Manufacturing

    CERN Document Server

    2013-01-01

    The proceedings includes the set of revised papers from the 23rd International Conference on Flexible Automation and Intelligent Manufacturing (FAIM 2013). This conference aims to provide an international forum for the exchange of leading edge scientific knowledge and industrial experience regarding the development and integration of the various aspects of Flexible Automation and Intelligent Manufacturing Systems covering the complete life-cycle of a company’s Products and Processes. Contents will include topics such as: Product, Process and Factory Integrated Design, Manufacturing Technology and Intelligent Systems, Manufacturing Operations Management and Optimization and Manufacturing Networks and MicroFactories.

  8. [Chinese medicine industry 4.0:advancing digital pharmaceutical manufacture toward intelligent pharmaceutical manufacture].

    Science.gov (United States)

    Cheng, Yi-Yu; Qu, Hai-Bin; Zhang, Bo-Li

    2016-01-01

    A perspective analysis on the technological innovation in pharmaceutical engineering of Chinese medicine unveils a vision on "Future Factory" of Chinese medicine industry in mind. The strategy as well as the technical roadmap of "Chinese medicine industry 4.0" is proposed, with the projection of related core technology system. It is clarified that the technical development path of Chinese medicine industry from digital manufacture to intelligent manufacture. On the basis of precisely defining technical terms such as process control, on-line detection and process quality monitoring for Chinese medicine manufacture, the technical concepts and characteristics of intelligent pharmaceutical manufacture as well as digital pharmaceutical manufacture are elaborated. Promoting wide applications of digital manufacturing technology of Chinese medicine is strongly recommended. Through completely informationized manufacturing processes and multi-discipline cluster innovation, intelligent manufacturing technology of Chinese medicine should be developed, which would provide a new driving force for Chinese medicine industry in technology upgrade, product quality enhancement and efficiency improvement. Copyright© by the Chinese Pharmaceutical Association.

  9. Configurable intelligent optimization algorithm design and practice in manufacturing

    CERN Document Server

    Tao, Fei; Laili, Yuanjun

    2014-01-01

    Presenting the concept and design and implementation of configurable intelligent optimization algorithms in manufacturing systems, this book provides a new configuration method to optimize manufacturing processes. It provides a comprehensive elaboration of basic intelligent optimization algorithms, and demonstrates how their improvement, hybridization and parallelization can be applied to manufacturing. Furthermore, various applications of these intelligent optimization algorithms are exemplified in detail, chapter by chapter. The intelligent optimization algorithm is not just a single algorit

  10. Artificial intelligence in conceptual design of intelligent manufacturing systems: A state of the art review

    OpenAIRE

    Petrović, Milica M.; Miljković, Zoran Đ.; Babić, Bojan R.

    2013-01-01

    Intelligent manufacturing systems (IMS), as the highest class of flexible manufacturing systems, are able to adapt to market changes applying methods of artificial intelligence. This paper presents a detailed review of the following IMS functions: (i) process planning optimization, (ii) scheduling optimization, (iii) integrated process planning and scheduling, and (iv) mobile robot scheduling for internal material transport tasks. The research presented in this paper shows that improved perfo...

  11. Design of Intelligent Manufacturing Big Data Cloud Service Platform

    Directory of Open Access Journals (Sweden)

    Cai Danlin

    2018-01-01

    Full Text Available With the coming of the intelligent manufacturing, the technology and application of industrial big data will be popular in the future. The productivity, competitiveness and innovation of the manufacturing industries will be improved through the integrated innovation of big data technology and industries. Besides, products, production process, management, services, new form and new models will be more intellectualized. They will support the transformation and upgrading of manufacturing industry and the construction of an open, shared and collaborative ecological environment for intelligent manufacturing industry.

  12. Implementation of hierarchical design for manufacture rules in manufacturing processes

    OpenAIRE

    Parvez, Masud

    2008-01-01

    In order to shorten the product development cycle time, minimise overall cost and smooth transition into production, early consideration of manufacturing processes is important. Design for Manufacture (DFM) is the practice of designing products with manufacturing issues using an intelligent system, which translates 3D solid models into manufacturable features. Many existing and potential applications, particularly in the field of manufacturing, require various aspects of features technology. ...

  13. Intelligent manufacturing: the challenge for manufacturing strategy in China in the 21st century--what we will do

    Science.gov (United States)

    Yang, Shuzi; Lei, Ming; Guan, Zai-Lin; Xiong, Youlun

    1995-08-01

    This paper first introduces the project of intelligent manufacturing in China and the research state of the IIMRC (Intelligent and Integrated Manufacturing Research Centre) of HUST (Huazhong University of Science and Technology), then reviews the recent advances in object- oriented and distributed artificial intelligence and puts forth the view that these advances open up the prospect of systems that will enable the true integration of enterprises. In an attempt to identify domain requirements and match them with research achievements, the paper examines the current literature and distinguishes 14 features that are common. It argues that effective enterprise-wide support could be greatly facilitated by the existence of intelligent software entities with autonomous processing capabilities, that possess coordination and negotiation facilities and are organized in distributed hierarchical states.

  14. Intelligent technologies in process of highly-precise products manufacturing

    Science.gov (United States)

    Vakhidova, K. L.; Khakimov, Z. L.; Isaeva, M. R.; Shukhin, V. V.; Labazanov, M. A.; Ignatiev, S. A.

    2017-10-01

    One of the main control methods of the surface layer of bearing parts is the eddy current testing method. Surface layer defects of bearing parts, like burns, cracks and some others, are reflected in the results of the rolling surfaces scan. The previously developed method for detecting defects from the image of the raceway was quite effective, but the processing algorithm is complicated and lasts for about 12 ... 16 s. The real non-stationary signals from an eddy current transducer (ECT) consist of short-time high-frequency and long-time low-frequency components, therefore a transformation is used for their analysis, which provides different windows for different frequencies. The wavelet transform meets these conditions. Based on aforesaid, a methodology for automatically detecting and recognizing local defects in bearing parts surface layer has been developed on the basis of wavelet analysis using integral estimates. Some of the defects are recognized by the amplitude component, otherwise an automatic transition to recognition by the phase component of information signals (IS) is carried out. The use of intelligent technologies in the manufacture of bearing parts will, firstly, significantly improve the quality of bearings, and secondly, significantly improve production efficiency by reducing (eliminating) rejections in the manufacture of products, increasing the period of normal operation of the technological equipment (inter-adjustment period), the implementation of the system of Flexible facilities maintenance, as well as reducing production costs.

  15. A framework for development of an intelligent system for design and manufacturing of stamping dies

    International Nuclear Information System (INIS)

    Hussein, H M A; Kumar, S

    2014-01-01

    An integration of computer aided design (CAD), computer aided process planning (CAPP) and computer aided manufacturing (CAM) is required for development of an intelligent system to design and manufacture stamping dies in sheet metal industries. In this paper, a framework for development of an intelligent system for design and manufacturing of stamping dies is proposed. In the proposed framework, the intelligent system is structured in form of various expert system modules for different activities of design and manufacturing of dies. All system modules are integrated with each other. The proposed system takes its input in form of a CAD file of sheet metal part, and then system modules automate all tasks related to design and manufacturing of stamping dies. Modules are coded using Visual Basic (VB) and developed on the platform of AutoCAD software

  16. A framework for development of an intelligent system for design and manufacturing of stamping dies

    Science.gov (United States)

    Hussein, H. M. A.; Kumar, S.

    2014-07-01

    An integration of computer aided design (CAD), computer aided process planning (CAPP) and computer aided manufacturing (CAM) is required for development of an intelligent system to design and manufacture stamping dies in sheet metal industries. In this paper, a framework for development of an intelligent system for design and manufacturing of stamping dies is proposed. In the proposed framework, the intelligent system is structured in form of various expert system modules for different activities of design and manufacturing of dies. All system modules are integrated with each other. The proposed system takes its input in form of a CAD file of sheet metal part, and then system modules automate all tasks related to design and manufacturing of stamping dies. Modules are coded using Visual Basic (VB) and developed on the platform of AutoCAD software.

  17. Intelligent Manufacturing in the Context of Industry 4.0: A Review

    Directory of Open Access Journals (Sweden)

    Ray Y. Zhong

    2017-10-01

    Full Text Available Our next generation of industry—Industry 4.0—holds the promise of increased flexibility in manufacturing, along with mass customization, better quality, and improved productivity. It thus enables companies to cope with the challenges of producing increasingly individualized products with a short lead-time to market and higher quality. Intelligent manufacturing plays an important role in Industry 4.0. Typical resources are converted into intelligent objects so that they are able to sense, act, and behave within a smart environment. In order to fully understand intelligent manufacturing in the context of Industry 4.0, this paper provides a comprehensive review of associated topics such as intelligent manufacturing, Internet of Things (IoT-enabled manufacturing, and cloud manufacturing. Similarities and differences in these topics are highlighted based on our analysis. We also review key technologies such as the IoT, cyber-physical systems (CPSs, cloud computing, big data analytics (BDA, and information and communications technology (ICT that are used to enable intelligent manufacturing. Next, we describe worldwide movements in intelligent manufacturing, including governmental strategic plans from different countries and strategic plans from major international companies in the European Union, United States, Japan, and China. Finally, we present current challenges and future research directions. The concepts discussed in this paper will spark new ideas in the effort to realize the much-anticipated Fourth Industrial Revolution.

  18. [INVITED] Computational intelligence for smart laser materials processing

    Science.gov (United States)

    Casalino, Giuseppe

    2018-03-01

    Computational intelligence (CI) involves using a computer algorithm to capture hidden knowledge from data and to use them for training ;intelligent machine; to make complex decisions without human intervention. As simulation is becoming more prevalent from design and planning to manufacturing and operations, laser material processing can also benefit from computer generating knowledge through soft computing. This work is a review of the state-of-the-art on the methodology and applications of CI in laser materials processing (LMP), which is nowadays receiving increasing interest from world class manufacturers and 4.0 industry. The focus is on the methods that have been proven effective and robust in solving several problems in welding, cutting, drilling, surface treating and additive manufacturing using the laser beam. After a basic description of the most common computational intelligences employed in manufacturing, four sections, namely, laser joining, machining, surface, and additive covered the most recent applications in the already extensive literature regarding the CI in LMP. Eventually, emerging trends and future challenges were identified and discussed.

  19. New Concepts and Theories For Intelligent Control of Cellular Manufacturing Systems

    DEFF Research Database (Denmark)

    Langer, Gilad

    1996-01-01

    This paper will present some new theories such as biological manufacturing system, the fractal factory theory, holonic manufacturing systems, agile manufacturing, object orientation, multi-agent theory, artificial intelligence, and artificial life in the context of manufacturing systems....... The paper tries to encapsulate the main area of my Ph.D. thesis research which will evolve around the idea of integrating intelligent elements into the control systems of the manufacturing systems. Furthermore it intends to show how the curriculum and discussions of the IPS Ph.D. course will and have...... contributed to my research. The research will concentrate on integration of manufacturing units by use of intelligent control mechanisms, information technology and the material handling as the key integrators....

  20. Modeling of Agile Intelligent Manufacturing-oriented Production Scheduling System

    Institute of Scientific and Technical Information of China (English)

    Zhong-Qi Sheng; Chang-Ping Tang; Ci-Xing Lv

    2010-01-01

    Agile intelligent manufacturing is one of the new manufacturing paradigms that adapt to the fierce globalizing market competition and meet the survival needs of the enterprises, in which the management and control of the production system have surpassed the scope of individual enterprise and embodied some new features including complexity, dynamicity, distributivity, and compatibility. The agile intelligent manufacturing paradigm calls for a production scheduling system that can support the cooperation among various production sectors, the distribution of various resources to achieve rational organization, scheduling and management of production activities. This paper uses multi-agents technology to build an agile intelligent manufacturing-oriented production scheduling system. Using the hybrid modeling method, the resources and functions of production system are encapsulated, and the agent-based production system model is established. A production scheduling-oriented multi-agents architecture is constructed and a multi-agents reference model is given in this paper.

  1. Integrated and Intelligent Manufacturing: Perspectives and Enablers

    Directory of Open Access Journals (Sweden)

    Yubao Chen

    2017-10-01

    Full Text Available With ever-increasing market competition and advances in technology, more and more countries are prioritizing advanced manufacturing technology as their top priority for economic growth. Germany announced the Industry 4.0 strategy in 2013. The US government launched the Advanced Manufacturing Partnership (AMP in 2011 and the National Network for Manufacturing Innovation (NNMI in 2014. Most recently, the Manufacturing USA initiative was officially rolled out to further “leverage existing resources... to nurture manufacturing innovation and accelerate commercialization” by fostering close collaboration between industry, academia, and government partners. In 2015, the Chinese government officially published a 10-year plan and roadmap toward manufacturing: Made in China 2025. In all these national initiatives, the core technology development and implementation is in the area of advanced manufacturing systems. A new manufacturing paradigm is emerging, which can be characterized by two unique features: integrated manufacturing and intelligent manufacturing. This trend is in line with the progress of industrial revolutions, in which higher efficiency in production systems is being continuously pursued. To this end, 10 major technologies can be identified for the new manufacturing paradigm. This paper describes the rationales and needs for integrated and intelligent manufacturing (i2M systems. Related technologies from different fields are also described. In particular, key technological enablers, such as the Internet of Things and Services (IoTS, cyber-physical systems (CPSs, and cloud computing are discussed. Challenges are addressed with applications that are based on commercially available platforms such as General Electric (GE’s Predix and PTC’s ThingWorx.

  2. Computational Intelligence in Image Processing

    CERN Document Server

    Siarry, Patrick

    2013-01-01

    Computational intelligence based techniques have firmly established themselves as viable, alternate, mathematical tools for more than a decade. They have been extensively employed in many systems and application domains, among these signal processing, automatic control, industrial and consumer electronics, robotics, finance, manufacturing systems, electric power systems, and power electronics. Image processing is also an extremely potent area which has attracted the atten­tion of many researchers who are interested in the development of new computational intelligence-based techniques and their suitable applications, in both research prob­lems and in real-world problems. Part I of the book discusses several image preprocessing algorithms; Part II broadly covers image compression algorithms; Part III demonstrates how computational intelligence-based techniques can be effectively utilized for image analysis purposes; and Part IV shows how pattern recognition, classification and clustering-based techniques can ...

  3. Tool path strategy and cutting process monitoring in intelligent machining

    Science.gov (United States)

    Chen, Ming; Wang, Chengdong; An, Qinglong; Ming, Weiwei

    2018-06-01

    Intelligent machining is a current focus in advanced manufacturing technology, and is characterized by high accuracy and efficiency. A central technology of intelligent machining—the cutting process online monitoring and optimization—is urgently needed for mass production. In this research, the cutting process online monitoring and optimization in jet engine impeller machining, cranio-maxillofacial surgery, and hydraulic servo valve deburring are introduced as examples of intelligent machining. Results show that intelligent tool path optimization and cutting process online monitoring are efficient techniques for improving the efficiency, quality, and reliability of machining.

  4. Human-directed local autonomy for motion guidance and coordination in an intelligent manufacturing system

    Science.gov (United States)

    Alford, W. A.; Kawamura, Kazuhiko; Wilkes, Don M.

    1997-12-01

    This paper discusses the problem of integrating human intelligence and skills into an intelligent manufacturing system. Our center has jointed the Holonic Manufacturing Systems (HMS) Project, an international consortium dedicated to developing holonic systems technologies. One of our contributions to this effort is in Work Package 6: flexible human integration. This paper focuses on one activity, namely, human integration into motion guidance and coordination. Much research on intelligent systems focuses on creating totally autonomous agents. At the Center for Intelligent Systems (CIS), we design robots that interact directly with a human user. We focus on using the natural intelligence of the user to simplify the design of a robotic system. The problem is finding ways for the user to interact with the robot that are efficient and comfortable for the user. Manufacturing applications impose the additional constraint that the manufacturing process should not be disturbed; that is, frequent interacting with the user could degrade real-time performance. Our research in human-robot interaction is based on a concept called human directed local autonomy (HuDL). Under this paradigm, the intelligent agent selects and executes a behavior or skill, based upon directions from a human user. The user interacts with the robot via speech, gestures, or other media. Our control software is based on the intelligent machine architecture (IMA), an object-oriented architecture which facilitates cooperation and communication among intelligent agents. In this paper we describe our research testbed, a dual-arm humanoid robot and human user, and the use of this testbed for a human directed sorting task. We also discuss some proposed experiments for evaluating the integration of the human into the robot system. At the time of this writing, the experiments have not been completed.

  5. Simulation research on the process of large scale ship plane segmentation intelligent workshop

    Science.gov (United States)

    Xu, Peng; Liao, Liangchuang; Zhou, Chao; Xue, Rui; Fu, Wei

    2017-04-01

    Large scale ship plane segmentation intelligent workshop is a new thing, and there is no research work in related fields at home and abroad. The mode of production should be transformed by the existing industry 2.0 or part of industry 3.0, also transformed from "human brain analysis and judgment + machine manufacturing" to "machine analysis and judgment + machine manufacturing". In this transforming process, there are a great deal of tasks need to be determined on the aspects of management and technology, such as workshop structure evolution, development of intelligent equipment and changes in business model. Along with them is the reformation of the whole workshop. Process simulation in this project would verify general layout and process flow of large scale ship plane section intelligent workshop, also would analyze intelligent workshop working efficiency, which is significant to the next step of the transformation of plane segmentation intelligent workshop.

  6. Hybrid Modeling and Optimization of Manufacturing Combining Artificial Intelligence and Finite Element Method

    CERN Document Server

    Quiza, Ramón; Davim, J Paulo

    2012-01-01

    Artificial intelligence (AI) techniques and the finite element method (FEM) are both powerful computing tools, which are extensively used for modeling and optimizing manufacturing processes. The combination of these tools has resulted in a new flexible and robust approach as several recent studies have shown. This book aims to review the work already done in this field as well as to expose the new possibilities and foreseen trends. The book is expected to be useful for postgraduate students and researchers, working in the area of modeling and optimization of manufacturing processes.

  7. MANAGEMENT OPTIMISATION OF MASS CUSTOMISATION MANUFACTURING USING COMPUTATIONAL INTELLIGENCE

    Directory of Open Access Journals (Sweden)

    Louwrens Butler

    2018-05-01

    Full Text Available Computational intelligence paradigms can be used for advanced manufacturing system optimisation. A static simulation model of an advanced manufacturing system was developed in order to simulate a manufacturing system. The purpose of this advanced manufacturing system was to mass-produce a customisable product range at a competitive cost. The aim of this study was to determine whether this new algorithm could produce a better performance than traditional optimisation methods. The algorithm produced a lower cost plan than that for a simulated annealing algorithm, and had a lower impact on the workforce.

  8. Intelligent manufacturing through participation : a participative simulation environment for integral manufacturing enterprise renewal

    NARCIS (Netherlands)

    Eijnatten, F.M. van

    2002-01-01

    This book deals with a 'Participative Simulation environment for Intelligent Manufacturing' (PSIM). PSIM is a software environment for use in assembly operations and it is developed and pilot-demonstrated in five companies: Volvo (Sweden), Finland Post, Fiat (Italy), Yamatake (Japan), Ford (USA).

  9. Decision-making of selectable process plans based on petri net with manufacturing constraints

    DEFF Research Database (Denmark)

    Xiao, Weiyue; Jones, Richard William; Yu, Fei

    2016-01-01

    Intelligent Computer-Aided process planning and decision making for manufacturing systems is a critical subject, that some might argue, has not received the attention it should have from the research community. Despite the progress made in the area of artificial intelligence, there has not been a...

  10. Integrating artificial and human intelligence into tablet production process.

    Science.gov (United States)

    Gams, Matjaž; Horvat, Matej; Ožek, Matej; Luštrek, Mitja; Gradišek, Anton

    2014-12-01

    We developed a new machine learning-based method in order to facilitate the manufacturing processes of pharmaceutical products, such as tablets, in accordance with the Process Analytical Technology (PAT) and Quality by Design (QbD) initiatives. Our approach combines the data, available from prior production runs, with machine learning algorithms that are assisted by a human operator with expert knowledge of the production process. The process parameters encompass those that relate to the attributes of the precursor raw materials and those that relate to the manufacturing process itself. During manufacturing, our method allows production operator to inspect the impacts of various settings of process parameters within their proven acceptable range with the purpose of choosing the most promising values in advance of the actual batch manufacture. The interaction between the human operator and the artificial intelligence system provides improved performance and quality. We successfully implemented the method on data provided by a pharmaceutical company for a particular product, a tablet, under development. We tested the accuracy of the method in comparison with some other machine learning approaches. The method is especially suitable for analyzing manufacturing processes characterized by a limited amount of data.

  11. SmartWeld/SmartProcess - intelligent model based system for the design and validation of welding processes

    Energy Technology Data Exchange (ETDEWEB)

    Mitchner, J.

    1996-04-01

    Diagrams are presented on an intelligent model based system for the design and validation of welding processes. Key capabilities identified include `right the first time` manufacturing, continuous improvement, and on-line quality assurance.

  12. An Integrated Open Approach to Capturing Systematic Knowledge for Manufacturing Process Innovation Based on Collective Intelligence

    Directory of Open Access Journals (Sweden)

    Gangfeng Wang

    2018-02-01

    Full Text Available Process innovation plays a vital role in the manufacture realization of increasingly complex new products, especially in the context of sustainable development and cleaner production. Knowledge-based innovation design can inspire designers’ creative thinking; however, the existing scattered knowledge has not yet been properly captured and organized according to Computer-Aided Process Innovation (CAPI. Therefore, this paper proposes an integrated approach to tackle this non-trivial issue. By analyzing the design process of CAPI and technical features of open innovation, a novel holistic paradigm of process innovation knowledge capture based on collective intelligence (PIKC-CI is constructed from the perspective of the knowledge life cycle. Then, a multi-source innovation knowledge fusion algorithm based on semantic elements reconfiguration is applied to form new public knowledge. To ensure the credibility and orderliness of innovation knowledge refinement, a collaborative editing strategy based on knowledge lock and knowledge–social trust degree is explored. Finally, a knowledge management system MPI-OKCS integrating the proposed techniques is implemented into the pre-built CAPI general platform, and a welding process innovation example is provided to illustrate the feasibility of the proposed approach. It is expected that our work would lay the foundation for the future knowledge-inspired CAPI and smart process planning.

  13. United States Department of Energy Integrated Manufacturing & Processing Predoctoral Fellowships. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Petrochenkov, M.

    2003-03-31

    The objective of the program was threefold: to create a pool of PhDs trained in the integrated approach to manufacturing and processing, to promote academic interest in the field, and to attract talented professionals to this challenging area of engineering. It was anticipated that the program would result in the creation of new manufacturing methods that would contribute to improved energy efficiency, to better utilization of scarce resources, and to less degradation of the environment. Emphasis in the competition was on integrated systems of manufacturing and the integration of product design with manufacturing processes. Research addressed such related areas as aspects of unit operations, tooling and equipment, intelligent sensors, and manufacturing systems as they related to product design.

  14. Immersive Technology for Human-Centric Cyberphysical Systems in Complex Manufacturing Processes: A Comprehensive Overview of the Global Patent Profile Using Collective Intelligence

    Directory of Open Access Journals (Sweden)

    Usharani Hareesh Govindarajan

    2018-01-01

    Full Text Available Immersive technology for human-centric cyberphysical systems includes broad concepts that enable users in the physical world to connect with the cyberworld with a sense of immersion. Complex systems such as virtual reality, augmented reality, brain-computer interfaces, and brain-machine interfaces are emerging as immersive technologies that have the potential for improving manufacturing systems. Industry 4.0 includes all technologies, standards, and frameworks for the fourth industrial revolution to facilitate intelligent manufacturing. Industrial immersive technologies will be used for smart manufacturing innovation in the context of Industry 4.0’s human machine interfaces. This research provides a thorough review of the literature, construction of a domain ontology, presentation of patent metatrend statistical analysis, and data mining analysis using a technology function matrix and highlights technical and functional development trends using latent Dirichlet allocation (LDA models. A total of 179 references from the IEEE and IET databases and 2,672 patents are systematically analyzed to identify current trends. The paper establishes an essential foundation for the development of advanced human-centric cyberphysical systems in complex manufacturing processes.

  15. Optimization of chemical composition in the manufacturing process of flotation balls based on intelligent soft sensing

    Directory of Open Access Journals (Sweden)

    Dučić Nedeljko

    2016-01-01

    Full Text Available This paper presents an application of computational intelligence in modeling and optimization of parameters of two related production processes - ore flotation and production of balls for ore flotation. It is proposed that desired chemical composition of flotation balls (Mn=0.69%; Cr=2.247%; C=3.79%; Si=0.5%, which ensures minimum wear rate (0.47 g/kg during copper milling is determined by combining artificial neural network (ANN and genetic algorithm (GA. Based on the results provided by neuro-genetic combination, a second neural network was derived as an ‘intelligent soft sensor’ in the process of white cast iron production. The proposed ANN 12-16-12-4 model demonstrated favourable prediction capacity, and can be recommended as a ‘intelligent soft sensor’ in the alloying process intended for obtaining favourable chemical composition of white cast iron for production of flotation balls. In the development of intelligent soft sensor data from the two real production processes was used. [Projekat Ministarstva nauke Republike Srbije, br. TR35037 i br. TR35015

  16. Global R&D through the Intelligent Manufacturing Systems (IMS) program

    Science.gov (United States)

    Huray, Paul G.

    1997-01-01

    The industry-led, international intelligent manufacturing systems (IMS) program provides a special vehicle for joint research and development between government, industry and academia in the United States, Canada, Japan, Australia, and Europe. Since its beginning in 1989, the IMS program has progressed through a feasibility phase which demonstrated that international legal barriers, trade issues, and intellectual property problems could be overcome. The program is constructed to provide higher quality design, customized products, shorter delivery cycles and lower costs. Interactions between partner companies have led to new business opportunities for mutual profit and some claim to have learned strategic information about their international competitors. The IMS program is growing through the participation of hundreds of corporate and university partners who share responsibilities in specific projects and jointly reap benefits for their manufacturing products and processes. The logic for choosing or not choosing the IMS mechanisms will be discussed and R and D projects will be identified.

  17. An Introduction to Intelligent Processing Programs Developed by the Air Force Manufacturing Technology Directorate

    Science.gov (United States)

    Sampson, Paul G.; Sny, Linda C.

    1992-01-01

    The Air Force has numerous on-going manufacturing and integration development programs (machine tools, composites, metals, assembly, and electronics) which are instrumental in improving productivity in the aerospace industry, but more importantly, have identified strategies and technologies required for the integration of advanced processing equipment. An introduction to four current Air Force Manufacturing Technology Directorate (ManTech) manufacturing areas is provided. Research is being carried out in the following areas: (1) machining initiatives for aerospace subcontractors which provide for advanced technology and innovative manufacturing strategies to increase the capabilities of small shops; (2) innovative approaches to advance machine tool products and manufacturing processes; (3) innovative approaches to advance sensors for process control in machine tools; and (4) efforts currently underway to develop, with the support of industry, the Next Generation Workstation/Machine Controller (Low-End Controller Task).

  18. U.S. Department of Energy integrated manufacturing & processing predoctoral fellowships. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Petrochenkov, Margaret

    2003-03-31

    The objective of this program was threefold: to create a pool of PhDs trained in the integrated approach to manufacturing and processing, to promote academic interest in the field, and to attract talented professionals to this challenging area of engineering. It was anticipated that the program would result in the creation of new manufacturing methods that would contribute to improved energy efficiency, to better utilization of scarce resources, and to less degradation of the environment. Emphasis in the competition was on integrated systems of manufacturing and the integration of product design with manufacturing processes. Research addressed such related areas as aspects of unit operations, tooling and equipment, intelligent sensors, and manufacturing systems as they related to product design. This is the final report to close out the contract.

  19. Fundamental Theories and Key Technologies for Smart and Optimal Manufacturing in the Process Industry

    Directory of Open Access Journals (Sweden)

    Feng Qian

    2017-04-01

    Full Text Available Given the significant requirements for transforming and promoting the process industry, we present the major limitations of current petrochemical enterprises, including limitations in decision-making, production operation, efficiency and security, information integration, and so forth. To promote a vision of the process industry with efficient, green, and smart production, modern information technology should be utilized throughout the entire optimization process for production, management, and marketing. To focus on smart equipment in manufacturing processes, as well as on the adaptive intelligent optimization of the manufacturing process, operating mode, and supply chain management, we put forward several key scientific problems in engineering in a demand-driven and application-oriented manner, namely: ① intelligent sensing and integration of all process information, including production and management information; ② collaborative decision-making in the supply chain, industry chain, and value chain, driven by knowledge; ③ cooperative control and optimization of plant-wide production processes via human-cyber-physical interaction; and ④ life-cycle assessments for safety and environmental footprint monitoring, in addition to tracing analysis and risk control. In order to solve these limitations and core scientific problems, we further present fundamental theories and key technologies for smart and optimal manufacturing in the process industry. Although this paper discusses the process industry in China, the conclusions in this paper can be extended to the process industry around the world.

  20. Data quality and processing for decision making: divergence between corporate strategy and manufacturing processes

    Science.gov (United States)

    McNeil, Ronald D.; Miele, Renato; Shaul, Dennis

    2000-10-01

    Information technology is driving improvements in manufacturing systems. Results are higher productivity and quality. However, corporate strategy is driven by a number of factors and includes data and pressure from multiple stakeholders, which includes employees, managers, executives, stockholders, boards, suppliers and customers. It is also driven by information about competitors and emerging technology. Much information is based on processing of data and the resulting biases of the processors. Thus, stakeholders can base inputs on faulty perceptions, which are not reality based. Prior to processing, data used may be inaccurate. Sources of data and information may include demographic reports, statistical analyses, intelligence reports (e.g., marketing data), technology and primary data collection. The reliability and validity of data as well as the management of sources and information is critical element to strategy formulation. The paper explores data collection, processing and analyses from secondary and primary sources, information generation and report presentation for strategy formulation and contrast this with data and information utilized to drive internal process such as manufacturing. The hypothesis is that internal process, such as manufacturing, are subordinate to corporate strategies. The impact of possible divergence in quality of decisions at the corporate level on IT driven, quality-manufacturing processes based on measurable outcomes is significant. Recommendations for IT improvements at the corporate strategy level are given.

  1. Artificial Intelligence Based Selection of Optimal Cutting Tool and Process Parameters for Effective Turning and Milling Operations

    Science.gov (United States)

    Saranya, Kunaparaju; John Rozario Jegaraj, J.; Ramesh Kumar, Katta; Venkateshwara Rao, Ghanta

    2016-06-01

    With the increased trend in automation of modern manufacturing industry, the human intervention in routine, repetitive and data specific activities of manufacturing is greatly reduced. In this paper, an attempt has been made to reduce the human intervention in selection of optimal cutting tool and process parameters for metal cutting applications, using Artificial Intelligence techniques. Generally, the selection of appropriate cutting tool and parameters in metal cutting is carried out by experienced technician/cutting tool expert based on his knowledge base or extensive search from huge cutting tool database. The present proposed approach replaces the existing practice of physical search for tools from the databooks/tool catalogues with intelligent knowledge-based selection system. This system employs artificial intelligence based techniques such as artificial neural networks, fuzzy logic and genetic algorithm for decision making and optimization. This intelligence based optimal tool selection strategy is developed using Mathworks Matlab Version 7.11.0 and implemented. The cutting tool database was obtained from the tool catalogues of different tool manufacturers. This paper discusses in detail, the methodology and strategies employed for selection of appropriate cutting tool and optimization of process parameters based on multi-objective optimization criteria considering material removal rate, tool life and tool cost.

  2. Adoption of business intelligence insights towards inaugurate business performance of Malaysian halal food manufacturing

    Directory of Open Access Journals (Sweden)

    Mailasan Jayakrishnan

    2018-07-01

    Full Text Available Information System (IS is a strife to exploit Business Intelligence (BI in an organization. In the Malaysian Halal Food Manufacturing, a league of Information Technology (IT professional and decision makers is the architect of the perspective in IT. There are numerous research studies on utilizing and investigating strategic effects of environmental factors augmentation on the organizations, but compact information is acknowledged prevailing how the subjective conception for the strategic source of deci-sions is transformed into the objective principle. Hence, general interpretation of the IT professional and the decision makers is crucial for a comprehensive and collaborative decision-making process. Therefore, prosper stimulate assimilation of the environmental factors that persuade the knowledge integration between IT professionals and decision makers is compulsory. BI and Big Data (BD help organizations derive enhance decision-making process and knowledge creation. The objective of this research study is to emerge knowledge from organizing BD and to utilize BI together with perceiving MIT90s framework and environmental factors for the analysis of decision-making process of halal food manufacturers in Malaysia. The study applied regression analysis to predicted 103 responses to determine decision making of business performance. The results indicate that halal market demand played important role in predicting business performance of halal manufactures. This study provides some insights into decision making perspectives of business performance management among halal food manufacturers in Malaysia.

  3. Research contributions to the modelling and design of Intelligent Manufacturing Systems

    DEFF Research Database (Denmark)

    Langer, Gilad; Sørensen, Christian; Stylios, C.

    1999-01-01

    This joint paper is the result of the work of cluster 3-4 within the Esprit WG no. 21955 on Intelligent Manufacturing Systems (IMS) working group. The paper conveys the results of a co-operative research effort between LAR Patras (Greece), DTU (Denmark), CRAN/GSIP (France) and Aachen WZL (Germany...

  4. Application of artificial intelligence (AI) methods for designing and analysis of reconfigurable cellular manufacturing system (RCMS)

    CSIR Research Space (South Africa)

    Xing, B

    2009-12-01

    Full Text Available This work focuses on the design and control of a novel hybrid manufacturing system: Reconfigurable Cellular Manufacturing System (RCMS) by using Artificial Intelligence (AI) approach. It is hybrid as it combines the advantages of Cellular...

  5. Fuzzy process control and knowledge engineering in petrochemical and robotic manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, R. (Azerbaijan Industrial Univ., Dept. of Automatic Control Systems, Baku (Russia)); Aliev, F. (Azerbaijan Polytechnique Institute, Dept. of Automation and Computer Science, Baku (Russia)); Babaev, M. (Azerbaijan Industrial Univ., Laboratory of Intelligent Control Systems, Baku (Russia))

    1991-01-01

    This book presents the methodology, the functionality and the pragmatics of implementing and applying AI (Artificial Intelligence) techniques enhanced by the new mathematical discipline of fuzzy sets. Emphasis is put on the design and modelling of fuzzy controllers and intelligent control equipment for the oil processing and chemical industries, as well as on robotics and CAM (Computer-Aided Manufacturing), including the development of appropriate algorithms and computer programs. The content is strongly application-oriented in order to explain the main features of the theory of fuzzy systems using different real examples from concrete engineering projects. It excels over the present literature available on this subject by its descriptions new classes of industrial systems to be controlled with fuzzy logic, as well as by its descriptive introduction to intelligent control systems and fuzzy controllers developed and successfully implemented by the authors in working industrial plants. (orig.).

  6. The manufacturing blueprint environment : Bringing intelligence into manufacturing

    NARCIS (Netherlands)

    Papazoglou, Mike; Elgammal, Amal

    Manufacturers today are rapidly moving into a business climate that is characterized by the ability to fulfill orders on demand by doing business through short-term networks where they negotiate value-adding processes dynamically – taking into account quality, time, price, viability, sustainability,

  7. Clinical Process Intelligence

    DEFF Research Database (Denmark)

    Vilstrup Pedersen, Klaus

    2006-01-01

    .e. local guidelines. From a knowledge management point of view, this externalization of generalized processes, gives the opportunity to learn from, evaluate and optimize the processes. "Clinical Process Intelligence" (CPI), will denote the goal of getting generalized insight into patient centered health...

  8. Artificial intelligence implementation in the APS process diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Guessasma, Sofiane; Salhi, Zahir; Montavon, Ghislain; Gougeon, Patrick; Coddet, Christian

    2004-07-25

    Thermal spray process is a technique of coating manufacturing implementing a wide variety of materials and processes. This technique is characterized by up to 150 processing parameters influencing the coating properties. The control of the coating quality is needed through the consideration of a robust methodology that takes into account the parameter interdependencies, the process variability and offers the ability to quantify the processing parameter-process response relationships. The aim of this work is to introduce a new approach based on artificial intelligence responding to these requirements. A detailed procedure is presented considering an artificial neural network (ANN) structure which encodes implicitly the physical phenomena governing the process. The implementation of such a structure was coupled to experimental results of an optic sensor controlling the powder particle fusion state before the coating formation. The optimization steps were discussed and the predicted results were compared to the experimental ones allowing the identification of the control factors.

  9. Artificial intelligence implementation in the APS process diagnostic

    International Nuclear Information System (INIS)

    Guessasma, Sofiane; Salhi, Zahir; Montavon, Ghislain; Gougeon, Patrick; Coddet, Christian

    2004-01-01

    Thermal spray process is a technique of coating manufacturing implementing a wide variety of materials and processes. This technique is characterized by up to 150 processing parameters influencing the coating properties. The control of the coating quality is needed through the consideration of a robust methodology that takes into account the parameter interdependencies, the process variability and offers the ability to quantify the processing parameter-process response relationships. The aim of this work is to introduce a new approach based on artificial intelligence responding to these requirements. A detailed procedure is presented considering an artificial neural network (ANN) structure which encodes implicitly the physical phenomena governing the process. The implementation of such a structure was coupled to experimental results of an optic sensor controlling the powder particle fusion state before the coating formation. The optimization steps were discussed and the predicted results were compared to the experimental ones allowing the identification of the control factors

  10. THE POTENTIAL OF ARTIFICIAL INTELLIGENCE IN SOUTH AFRICAN MANUFACTURING

    Directory of Open Access Journals (Sweden)

    A.R. Greef

    2012-01-01

    Full Text Available This paper provides an introduction to the most commonly used Knowledge Based Systems (KBS's called Rule Based Systems, presents some benefits of using these systems if the application warrants their attention and provides an over-view of current R&D as well as industrial systems already implemented. Areas of manUfacturing that could use KES's within the South African context are suggested. A research programme investigating the use of KBS's in robotics in progress at the University of Stellenbosch demonstrating a number of useful properties associated with programming Artificial Intelligence (AI techniques using logic programming, is discussed.

  11. Business process intelligence

    NARCIS (Netherlands)

    Castellanos, M.; Alves De Medeiros, A.K.; Mendling, J.; Weber, B.; Weijters, A.J.M.M.; Cardoso, J.; Aalst, van der W.M.P.

    2009-01-01

    Business Process Intelligence (BPI,) is an emerging area that is getting increasingly popularfor enterprises. The need to improve business process efficiency, to react quickly to changes and to meet regulatory compliance is among the main drivers for BPI. BPI refers to the application of Business

  12. SDIO Producibility and Manufacturing Intelligent Processing Programs

    Science.gov (United States)

    Stottlemyer, Greg

    1992-01-01

    SDIO has to fashion a comprehensive strategy to insert the capability of an industrial base into ongoing design tradeoffs. This means that there is not only a need to determine if something can be made to the precision needed to meet system performance, but also what changes need to be made in that industry sector to develop a deterministic approach to fabrication precision components. Developing and introducing advanced production and quality control systems is part of this success. To address this situation, SDIO has developed the MODIL (Manufacturing Operations Development and Integration Labs) program. MODILs were developed into three areas: Survivable Optics, Electronics and Sensors, and Spacecraft Fabrication and Test.

  13. Report : business process intelligence challenge 2013

    NARCIS (Netherlands)

    Dongen, van B.F.; Weber, B.; Ferreira, D.R.; De Weerdt, J.; Lohmann, N.; Song, M.; Wohed, P.

    2014-01-01

    For the third time, the Business Process Intelligence workshop hosted the Business Process Intelligence Challenge. The goal of this challenge is twofold. On the one hand, the challenge allows researchers and practitioners in the field to show their analytical capabilities to a broader audience. On

  14. Future Role of Application of New Technologies in Small-and Medium Scale Manufacturing Systems - Regarding Intelligent and Advanced Manufacturing Systems in Northern Peripheral Area

    OpenAIRE

    Somlò, Kinga; Sziebig, Gabor

    2017-01-01

    Accepted manuscript version. Link to publishers version: http://doi.org/10.1109/ISIE.2017.8001510 Nowadays the concept of Industry 4.0. and the relating intelligent manufacturing system are getting more and more current and well-known. In the past years the outstanding development of different areas such as information technology computer science, machining, robotics and so on, made possible a comprehensive transformation of the manufacturing systems. Present paper aims to give a gener...

  15. The Predictive Aspect of Business Process Intelligence

    DEFF Research Database (Denmark)

    Pérez, Moisés Lima; Møller, Charles

    2007-01-01

    This paper presents the arguments for a research proposal on predicting business events in a Business Process Intelligence (BPI) context. The paper argues that BPI holds a potential for leveraging enterprise benefits by supporting real-time processes. However, based on the experiences from past...... business intelligence projects the paper argues that it is necessary to establish a new methodology to mine and extract the intelligence on the business level which is different from that, which will improve a business process in an enterprise. In conclusion the paper proposes a new research project aimed...

  16. Emotional Intelligence and Organisational Citizenship Behaviour of Manufacturing Sector Employees: An Analysis

    Directory of Open Access Journals (Sweden)

    Susan Tee Suan Chin

    2011-06-01

    Full Text Available As with diversity, collaboration, co-operation and teamwork havebecome increasingly important issues for management to handle.The purpose of this study is to analyse the level of Emotional Intelligenceand Organisational Citizenship Behaviour among middlemanagement employees in the Malaysian manufacturing sector.A total of 536 employees from different organisations and industriestook part in this survey. Based on the descriptive analysis,employees in some industries tended to have a lower level ofemotional intelligence and organisational citizenship behaviour.

  17. More Exact Approaches to Modernization and Renewal of the Manufacturing Base

    Directory of Open Access Journals (Sweden)

    Naqib Daneshjo

    2017-08-01

    Full Text Available Globalized development strategies in industry are currently focused on developing intelligent manufacturing concepts called Industry 4.0. Companies around the world will be forced to adopt this concept, especially in terms of maintaining competitiveness. One of the most serious obstacles of developing the concept of intelligent production is physical and moral obsolescence of the manufacturing base in general. Despite the fact that companies have historically renewed their manufacturing base, automated and robotized manufacturing processes and systems, nowadays highly current question of determining the form and timing of further modernization and renewal of the manufacturing base for intelligent production purposes. The authors present a model to determine optimal time to start upgrading and renewing the production base based on formulating and comparing costs of means of production throughout their lifecycle, including consideration of their moral obsolescence.

  18. A Perspective on Smart Process Manufacturing Research Challenges for Process Systems Engineers

    Directory of Open Access Journals (Sweden)

    Ian David Lockhart Bogle

    2017-04-01

    Full Text Available The challenges posed by smart manufacturing for the process industries and for process systems engineering (PSE researchers are discussed in this article. Much progress has been made in achieving plant- and site-wide optimization, but benchmarking would give greater confidence. Technical challenges confronting process systems engineers in developing enabling tools and techniques are discussed regarding flexibility and uncertainty, responsiveness and agility, robustness and security, the prediction of mixture properties and function, and new modeling and mathematics paradigms. Exploiting intelligence from big data to drive agility will require tackling new challenges, such as how to ensure the consistency and confidentiality of data through long and complex supply chains. Modeling challenges also exist, and involve ensuring that all key aspects are properly modeled, particularly where health, safety, and environmental concerns require accurate predictions of small but critical amounts at specific locations. Environmental concerns will require us to keep a closer track on all molecular species so that they are optimally used to create sustainable solutions. Disruptive business models may result, particularly from new personalized products, but that is difficult to predict.

  19. Feature-based tolerancing for intelligent inspection process definition

    International Nuclear Information System (INIS)

    Brown, C.W.

    1993-07-01

    This paper describes a feature-based tolerancing capability that complements a geometric solid model with an explicit representation of conventional and geometric tolerances. This capability is focused on supporting an intelligent inspection process definition system. The feature-based tolerance model's benefits include advancing complete product definition initiatives (e.g., STEP -- Standard for Exchange of Product model dam), suppling computer-integrated manufacturing applications (e.g., generative process planning and automated part programming) with product definition information, and assisting in the solution of measurement performance issues. A feature-based tolerance information model was developed based upon the notion of a feature's toleranceable aspects and describes an object-oriented scheme for representing and relating tolerance features, tolerances, and datum reference frames. For easy incorporation, the tolerance feature entities are interconnected with STEP solid model entities. This schema will explicitly represent the tolerance specification for mechanical products, support advanced dimensional measurement applications, and assist in tolerance-related methods divergence issues

  20. Examining the Role of Emotional Intelligence between Organizational Learning and Adaptive Performance in Indian Manufacturing Industries

    Science.gov (United States)

    Pradhan, Rabindra Kumar; Jena, Lalatendu Kesari; Singh, Sanjay Kumar

    2017-01-01

    Purpose: The purpose of this study is to examine the relationship between organisational learning and adaptive performance. Furthermore, the study investigates the moderating role of emotional intelligence in the perspective of organisational learning for addressing adaptive performance of executives employed in manufacturing organisations.…

  1. On Intelligent Design and Planning Method of Process Route Based on Gun Breech Machining Process

    Science.gov (United States)

    Hongzhi, Zhao; Jian, Zhang

    2018-03-01

    The paper states an approach of intelligent design and planning of process route based on gun breech machining process, against several problems, such as complex machining process of gun breech, tedious route design and long period of its traditional unmanageable process route. Based on gun breech machining process, intelligent design and planning system of process route are developed by virtue of DEST and VC++. The system includes two functional modules--process route intelligent design and its planning. The process route intelligent design module, through the analysis of gun breech machining process, summarizes breech process knowledge so as to complete the design of knowledge base and inference engine. And then gun breech process route intelligently output. On the basis of intelligent route design module, the final process route is made, edited and managed in the process route planning module.

  2. Gaussian process based intelligent sampling for measuring nano-structure surfaces

    Science.gov (United States)

    Sun, L. J.; Ren, M. J.; Yin, Y. H.

    2016-09-01

    Nanotechnology is the science and engineering that manipulate matters at nano scale, which can be used to create many new materials and devices with a vast range of applications. As the nanotech product increasingly enters the commercial marketplace, nanometrology becomes a stringent and enabling technology for the manipulation and the quality control of the nanotechnology. However, many measuring instruments, for instance scanning probe microscopy, are limited to relatively small area of hundreds of micrometers with very low efficiency. Therefore some intelligent sampling strategies should be required to improve the scanning efficiency for measuring large area. This paper presents a Gaussian process based intelligent sampling method to address this problem. The method makes use of Gaussian process based Bayesian regression as a mathematical foundation to represent the surface geometry, and the posterior estimation of Gaussian process is computed by combining the prior probability distribution with the maximum likelihood function. Then each sampling point is adaptively selected by determining the position which is the most likely outside of the required tolerance zone among the candidates and then inserted to update the model iteratively. Both simulationson the nominal surface and manufactured surface have been conducted on nano-structure surfaces to verify the validity of the proposed method. The results imply that the proposed method significantly improves the measurement efficiency in measuring large area structured surfaces.

  3. Intelligent medical image processing by simulated annealing

    International Nuclear Information System (INIS)

    Ohyama, Nagaaki

    1992-01-01

    Image processing is being widely used in the medical field and already has become very important, especially when used for image reconstruction purposes. In this paper, it is shown that image processing can be classified into 4 categories; passive, active, intelligent and visual image processing. These 4 classes are explained at first through the use of several examples. The results show that the passive image processing does not give better results than the others. Intelligent image processing, then, is addressed, and the simulated annealing method is introduced. Due to the flexibility of the simulated annealing, formulated intelligence is shown to be easily introduced in an image reconstruction problem. As a practical example, 3D blood vessel reconstruction from a small number of projections, which is insufficient for conventional method to give good reconstruction, is proposed, and computer simulation clearly shows the effectiveness of simulated annealing method. Prior to the conclusion, medical file systems such as IS and C (Image Save and Carry) is pointed out to have potential for formulating knowledge, which is indispensable for intelligent image processing. This paper concludes by summarizing the advantages of simulated annealing. (author)

  4. DECOMPOSITION OF MANUFACTURING PROCESSES: A REVIEW

    Directory of Open Access Journals (Sweden)

    N.M.Z.N. Mohamed

    2012-06-01

    Full Text Available Manufacturing is a global activity that started during the industrial revolution in the late 19th century to cater for the large-scale production of products. Since then, manufacturing has changed tremendously through the innovations of technology, processes, materials, communication and transportation. The major challenge facing manufacturing is to produce more products using less material, less energy and less involvement of labour. To face these challenges, manufacturing companies must have a strategy and competitive priority in order for them to compete in a dynamic market. A review of the literature on the decomposition of manufacturing processes outlines three main processes, namely: high volume, medium volume and low volume. The decomposition shows that each sub process has its own characteristics and depends on the nature of the firm’s business. Two extreme processes are continuous line production (fast extreme and project shop (slow extreme. Other processes are in between these two extremes of the manufacturing spectrum. Process flow patterns become less complex with cellular, line and continuous flow compared with jobbing and project. The review also indicates that when the product is high variety and low volume, project or functional production is applied.

  5. Unified Controller Design for Intelligent Manufacturing Automation

    National Research Council Canada - National Science Library

    Kosut, Robert

    1997-01-01

    .... The demonstration system selected was rapid thermal processing (RTP) of semiconductor wafers. This novel approach in integrated circuit manufacturing demands fast tracking control laws that achieve near uniform spatial temperature distributions...

  6. Improved Methods for Production Manufacturing Processes in Environmentally Benign Manufacturing

    Directory of Open Access Journals (Sweden)

    Yan-Yan Wang

    2011-09-01

    Full Text Available How to design a production process with low carbon emissions and low environmental impact as well as high manufacturing performance is a key factor in the success of low-carbon production. It is important to address concerns about climate change for the large carbon emission source manufacturing industries because of their high energy consumption and environmental impact during the manufacturing stage of the production life cycle. In this paper, methodology for determining a production process is developed. This methodology integrates process determination from three different levels: new production processing, selected production processing and batch production processing. This approach is taken within a manufacturing enterprise based on prior research. The methodology is aimed at providing decision support for implementing Environmentally Benign Manufacturing (EBM and low-carbon production to improve the environmental performance of the manufacturing industry. At the first level, a decision-making model for new production processes based on the Genetic Simulated Annealing Algorithm (GSAA is presented. The decision-making model considers not only the traditional factors, such as time, quality and cost, but also energy and resource consumption and environmental impact, which are different from the traditional methods. At the second level, a methodology is developed based on an IPO (Input-Process-Output model that integrates assessments of resource consumption and environmental impact in terms of a materials balance principle for batch production processes. At the third level, based on the above two levels, a method for determining production processes that focus on low-carbon production is developed based on case-based reasoning, expert systems and feature technology for designing the process flow of a new component. Through the above three levels, a method for determining the production process to identify, quantify, assess, and optimize the

  7. Green manufacturing processes and systems

    Energy Technology Data Exchange (ETDEWEB)

    Davim, J. Paulo (ed.) [Aveiro Univ. (Portugal). Dept. of Mechanical Engineering, Campus Universitario de Santiago

    2013-02-01

    This book provides the recent advances on green manufacturing processes and systems for modern industry. Chapter 1 provides information on sustainable manufacturing through environmentally-friendly machining. Chapter 2 is dedicated to environmentally-friendly machining: vegetable based cutting fluids. Chapter 3 describes environmental-friendly joining of tubes. Chapter 4 contains information on concepts, methods and strategies for zero-waste in manufacturing. Finally, chapter 5 is dedicated to the application of hybrid MCDM approach for selecting the best tyre recycling process.

  8. Towards a universal competitive intelligence process model

    Directory of Open Access Journals (Sweden)

    Rene Pellissier

    2013-08-01

    Full Text Available Background: Competitive intelligence (CI provides actionable intelligence, which provides a competitive edge in enterprises. However, without proper process, it is difficult to develop actionable intelligence. There are disagreements about how the CI process should be structured. For CI professionals to focus on producing actionable intelligence, and to do so with simplicity, they need a common CI process model.Objectives: The purpose of this research is to review the current literature on CI, to look at the aims of identifying and analysing CI process models, and finally to propose a universal CI process model.Method: The study was qualitative in nature and content analysis was conducted on all identified sources establishing and analysing CI process models. To identify relevant literature, academic databases and search engines were used. Moreover, a review of references in related studies led to more relevant sources, the references of which were further reviewed and analysed. To ensure reliability, only peer-reviewed articles were used.Results: The findings reveal that the majority of scholars view the CI process as a cycle of interrelated phases. The output of one phase is the input of the next phase.Conclusion: The CI process is a cycle of interrelated phases. The output of one phase is the input of the next phase. These phases are influenced by the following factors: decision makers, process and structure, organisational awareness and culture, and feedback.

  9. MapReduce Based Parallel Bayesian Network for Manufacturing Quality Control

    Science.gov (United States)

    Zheng, Mao-Kuan; Ming, Xin-Guo; Zhang, Xian-Yu; Li, Guo-Ming

    2017-09-01

    Increasing complexity of industrial products and manufacturing processes have challenged conventional statistics based quality management approaches in the circumstances of dynamic production. A Bayesian network and big data analytics integrated approach for manufacturing process quality analysis and control is proposed. Based on Hadoop distributed architecture and MapReduce parallel computing model, big volume and variety quality related data generated during the manufacturing process could be dealt with. Artificial intelligent algorithms, including Bayesian network learning, classification and reasoning, are embedded into the Reduce process. Relying on the ability of the Bayesian network in dealing with dynamic and uncertain problem and the parallel computing power of MapReduce, Bayesian network of impact factors on quality are built based on prior probability distribution and modified with posterior probability distribution. A case study on hull segment manufacturing precision management for ship and offshore platform building shows that computing speed accelerates almost directly proportionally to the increase of computing nodes. It is also proved that the proposed model is feasible for locating and reasoning of root causes, forecasting of manufacturing outcome, and intelligent decision for precision problem solving. The integration of bigdata analytics and BN method offers a whole new perspective in manufacturing quality control.

  10. The brain as a distributed intelligent processing system: an EEG study.

    Science.gov (United States)

    da Rocha, Armando Freitas; Rocha, Fábio Theoto; Massad, Eduardo

    2011-03-15

    Various neuroimaging studies, both structural and functional, have provided support for the proposal that a distributed brain network is likely to be the neural basis of intelligence. The theory of Distributed Intelligent Processing Systems (DIPS), first developed in the field of Artificial Intelligence, was proposed to adequately model distributed neural intelligent processing. In addition, the neural efficiency hypothesis suggests that individuals with higher intelligence display more focused cortical activation during cognitive performance, resulting in lower total brain activation when compared with individuals who have lower intelligence. This may be understood as a property of the DIPS. In our study, a new EEG brain mapping technique, based on the neural efficiency hypothesis and the notion of the brain as a Distributed Intelligence Processing System, was used to investigate the correlations between IQ evaluated with WAIS (Wechsler Adult Intelligence Scale) and WISC (Wechsler Intelligence Scale for Children), and the brain activity associated with visual and verbal processing, in order to test the validity of a distributed neural basis for intelligence. The present results support these claims and the neural efficiency hypothesis.

  11. Intelligence amplification framework for enhancing scheduling processes

    NARCIS (Netherlands)

    Dobrkovic, Andrej; Liu, Luyao; Iacob, Maria Eugenia; van Hillegersberg, Jos

    2016-01-01

    The scheduling process in a typical business environment consists of predominantly repetitive tasks that have to be completed in limited time and often containing some form of uncertainty. The intelligence amplification is a symbiotic relationship between a human and an intelligent agent. This

  12. Editorial: "Business process intelligence : connecting data and processes"

    NARCIS (Netherlands)

    Aalst, van der W.M.P.; Zhao, J.L.; Wang, H.; Wang, Harry Jiannan

    2015-01-01

    This introduction to the special issue on Business Process Intelligence (BPI) discusses the relation between data and processes. The recent attention for Big Data illustrates that organizations are aware of the potential of the torrents of data generated by today's information systems. However, at

  13. Improved Manufacturing Process for Pyronaridine Tetraphosphate

    International Nuclear Information System (INIS)

    Lee, Dong Won; Lee, Seung Kyu; Cho, Jun Ho; Yoon, Seung Soo

    2014-01-01

    Pyronaridine tetraphosphate (1) is a well-known antimalarial drug. However, it required a carefully optimized production process for the manufacture of pyronaridine tetraphosphate. Each step of its manufacturing process was reinvestigated. For the cyclization of 4-chloro-2-(6-methoxy-pyridin-3-yl-amino)-benzoic acid 6 to 7,10-dichloro-2-methoxybenzo[b]-1,5-naphthyridine 5, an improved process was developed to eliminated critical process impurity (BIA). By the redesign of the formation of triphosphate salt, the purity as API grade was increased. Thus, a robust manufacturing process with an acceptable process performance has been developed to produce high quality pyronaridine tetraphosphate

  14. A Process Management System for Networked Manufacturing

    Science.gov (United States)

    Liu, Tingting; Wang, Huifen; Liu, Linyan

    With the development of computer, communication and network, networked manufacturing has become one of the main manufacturing paradigms in the 21st century. Under the networked manufacturing environment, there exist a large number of cooperative tasks susceptible to alterations, conflicts caused by resources and problems of cost and quality. This increases the complexity of administration. Process management is a technology used to design, enact, control, and analyze networked manufacturing processes. It supports efficient execution, effective management, conflict resolution, cost containment and quality control. In this paper we propose an integrated process management system for networked manufacturing. Requirements of process management are analyzed and architecture of the system is presented. And a process model considering process cost and quality is developed. Finally a case study is provided to explain how the system runs efficiently.

  15. CIPSS [computer-integrated process and safeguards system]: The integration of computer-integrated manufacturing and robotics with safeguards, security, and process operations

    International Nuclear Information System (INIS)

    Leonard, R.S.; Evans, J.C.

    1987-01-01

    This poster session describes the computer-integrated process and safeguards system (CIPSS). The CIPSS combines systems developed for factory automation and automated mechanical functions (robots) with varying degrees of intelligence (expert systems) to create an integrated system that would satisfy current and emerging security and safeguards requirements. Specifically, CIPSS is an extension of the automated physical security functions concepts. The CIPSS also incorporates the concepts of computer-integrated manufacturing (CIM) with integrated safeguards concepts, and draws upon the Defense Advance Research Project Agency's (DARPA's) strategic computing program

  16. Fundamentals of semiconductor manufacturing and process control

    CERN Document Server

    May, Gary S

    2006-01-01

    A practical guide to semiconductor manufacturing from process control to yield modeling and experimental design Fundamentals of Semiconductor Manufacturing and Process Control covers all issues involved in manufacturing microelectronic devices and circuits, including fabrication sequences, process control, experimental design, process modeling, yield modeling, and CIM/CAM systems. Readers are introduced to both the theory and practice of all basic manufacturing concepts. Following an overview of manufacturing and technology, the text explores process monitoring methods, including those that focus on product wafers and those that focus on the equipment used to produce wafers. Next, the text sets forth some fundamentals of statistics and yield modeling, which set the foundation for a detailed discussion of how statistical process control is used to analyze quality and improve yields. The discussion of statistical experimental design offers readers a powerful approach for systematically varying controllable p...

  17. The brain as a distributed intelligent processing system: an EEG study.

    Directory of Open Access Journals (Sweden)

    Armando Freitas da Rocha

    Full Text Available BACKGROUND: Various neuroimaging studies, both structural and functional, have provided support for the proposal that a distributed brain network is likely to be the neural basis of intelligence. The theory of Distributed Intelligent Processing Systems (DIPS, first developed in the field of Artificial Intelligence, was proposed to adequately model distributed neural intelligent processing. In addition, the neural efficiency hypothesis suggests that individuals with higher intelligence display more focused cortical activation during cognitive performance, resulting in lower total brain activation when compared with individuals who have lower intelligence. This may be understood as a property of the DIPS. METHODOLOGY AND PRINCIPAL FINDINGS: In our study, a new EEG brain mapping technique, based on the neural efficiency hypothesis and the notion of the brain as a Distributed Intelligence Processing System, was used to investigate the correlations between IQ evaluated with WAIS (Wechsler Adult Intelligence Scale and WISC (Wechsler Intelligence Scale for Children, and the brain activity associated with visual and verbal processing, in order to test the validity of a distributed neural basis for intelligence. CONCLUSION: The present results support these claims and the neural efficiency hypothesis.

  18. The Brain as a Distributed Intelligent Processing System: An EEG Study

    Science.gov (United States)

    da Rocha, Armando Freitas; Rocha, Fábio Theoto; Massad, Eduardo

    2011-01-01

    Background Various neuroimaging studies, both structural and functional, have provided support for the proposal that a distributed brain network is likely to be the neural basis of intelligence. The theory of Distributed Intelligent Processing Systems (DIPS), first developed in the field of Artificial Intelligence, was proposed to adequately model distributed neural intelligent processing. In addition, the neural efficiency hypothesis suggests that individuals with higher intelligence display more focused cortical activation during cognitive performance, resulting in lower total brain activation when compared with individuals who have lower intelligence. This may be understood as a property of the DIPS. Methodology and Principal Findings In our study, a new EEG brain mapping technique, based on the neural efficiency hypothesis and the notion of the brain as a Distributed Intelligence Processing System, was used to investigate the correlations between IQ evaluated with WAIS (Whechsler Adult Intelligence Scale) and WISC (Wechsler Intelligence Scale for Children), and the brain activity associated with visual and verbal processing, in order to test the validity of a distributed neural basis for intelligence. Conclusion The present results support these claims and the neural efficiency hypothesis. PMID:21423657

  19. Designing and implementation of an intelligent manufacturing system

    Directory of Open Access Journals (Sweden)

    Michael Peschl

    2011-12-01

    Full Text Available Purpose: The goal of XPRESS is to establish a breakthrough for the factory of the future with a new flexible production concept based on the generic idea of “specialized intelligent process units” (“Manufactrons” integrated in cross-sectoral learning networks for a customized production. XPRESS meets the challenge to integrate intelligence and flexibility at the “highest” level of the production control system as well as at the “lowest” level of the singular machine.Design/methodology/approach: Architecture of a manufactronic networked factory is presented, making it possible to generate particular manufactrons for the specific tasks, based on the automatic analysis of its required features.Findings: The manufactronic factory concept meets the challenge to integrate intelligence and flexibility at the “highest” level of the production control system as well as at the “lowest” level of the singular machine. The quality assurance system provided a 100% inline quality monitoring, destructive costs reduced 30%-49%, the ramp-up time for the set-up of production lines decreased up to 50% and the changeover time decreased up to 80%.Research limitations/implications: Specific features of the designed manufactronic architecture, namely the transport manufactrons, have been tested as separate mechanisms which can be merged into the final comprehensive at a later stage.Practical implications: This concept is demonstrated in the automotive and aeronautics industries, but can be easily transferred to nearly all production processes. Using the manufactronic approach, industrial players will be able to anticipate and to respond to rapidly changing consumer needs, producing high-quality products in adequate quantities while reducing costs.Originality/value: Assembly units composed of manufactrons can flexibly perform varying types of complex tasks, whereas today this is limited to a few pre-defined tasks. Additionally, radical

  20. Innovative applications of artificial intelligence

    Science.gov (United States)

    Schorr, Herbert; Rappaport, Alain

    Papers concerning applications of artificial intelligence are presented, covering applications in aerospace technology, banking and finance, biotechnology, emergency services, law, media planning, music, the military, operations management, personnel management, retail packaging, and manufacturing assembly and design. Specific topics include Space Shuttle telemetry monitoring, an intelligent training system for Space Shuttle flight controllers, an expert system for the diagnostics of manufacturing equipment, a logistics management system, a cooling systems design assistant, and a knowledge-based integrated circuit design critic. Additional topics include a hydraulic circuit design assistant, the use of a connector assembly specification expert system to harness detailed assembly process knowledge, a mixed initiative approach to airlift planning, naval battle management decision aids, an inventory simulation tool, a peptide synthesis expert system, and a system for planning the discharging and loading of container ships.

  1. The Design and Development of an Omni-Directional Mobile Robot Oriented to an Intelligent Manufacturing System.

    Science.gov (United States)

    Qian, Jun; Zi, Bin; Wang, Daoming; Ma, Yangang; Zhang, Dan

    2017-09-10

    In order to transport materials flexibly and smoothly in a tight plant environment, an omni-directional mobile robot based on four Mecanum wheels was designed. The mechanical system of the mobile robot is made up of three separable layers so as to simplify its combination and reorganization. Each modularized wheel was installed on a vertical suspension mechanism, which ensures the moving stability and keeps the distances of four wheels invariable. The control system consists of two-level controllers that implement motion control and multi-sensor data processing, respectively. In order to make the mobile robot navigate in an unknown semi-structured indoor environment, the data from a Kinect visual sensor and four wheel encoders were fused to localize the mobile robot using an extended Kalman filter with specific processing. Finally, the mobile robot was integrated in an intelligent manufacturing system for material conveying. Experimental results show that the omni-directional mobile robot can move stably and autonomously in an indoor environment and in industrial fields.

  2. Manufacturing Process Simulation of Large-Scale Cryotanks

    Science.gov (United States)

    Babai, Majid; Phillips, Steven; Griffin, Brian

    2003-01-01

    NASA's Space Launch Initiative (SLI) is an effort to research and develop the technologies needed to build a second-generation reusable launch vehicle. It is required that this new launch vehicle be 100 times safer and 10 times cheaper to operate than current launch vehicles. Part of the SLI includes the development of reusable composite and metallic cryotanks. The size of these reusable tanks is far greater than anything ever developed and exceeds the design limits of current manufacturing tools. Several design and manufacturing approaches have been formulated, but many factors must be weighed during the selection process. Among these factors are tooling reachability, cycle times, feasibility, and facility impacts. The manufacturing process simulation capabilities available at NASA.s Marshall Space Flight Center have played a key role in down selecting between the various manufacturing approaches. By creating 3-D manufacturing process simulations, the varying approaches can be analyzed in a virtual world before any hardware or infrastructure is built. This analysis can detect and eliminate costly flaws in the various manufacturing approaches. The simulations check for collisions between devices, verify that design limits on joints are not exceeded, and provide cycle times which aide in the development of an optimized process flow. In addition, new ideas and concerns are often raised after seeing the visual representation of a manufacturing process flow. The output of the manufacturing process simulations allows for cost and safety comparisons to be performed between the various manufacturing approaches. This output helps determine which manufacturing process options reach the safety and cost goals of the SLI. As part of the SLI, The Boeing Company was awarded a basic period contract to research and propose options for both a metallic and a composite cryotank. Boeing then entered into a task agreement with the Marshall Space Flight Center to provide manufacturing

  3. Employing the intelligence cycle process model within the Homeland Security Enterprise

    OpenAIRE

    Stokes, Roger L.

    2013-01-01

    CHDS State/Local The purpose of this thesis was to examine the employment and adherence of the intelligence cycle process model within the National Network of Fusion Centers and the greater Homeland Security Enterprise by exploring the customary intelligence cycle process model established by the United States Intelligence Community (USIC). This thesis revealed there are various intelligence cycle process models used by the USIC and taught to the National Network. Given the numerous differ...

  4. Current manufacturing processes of drug-eluting sutures.

    Science.gov (United States)

    Champeau, Mathilde; Thomassin, Jean-Michel; Tassaing, Thierry; Jérôme, Christine

    2017-11-01

    Drug-eluting sutures represent the next generation of surgical sutures since they fulfill their mechanical functions but also deliver the drug in their vicinity after implantation. These implants are produced by a variety of manufacturing processes. Drug-eluting sutures represent the next generation of surgical sutures since they fulfill their mechanical functions but also deliver the drug in their vicinity after implantation. These implants are produced by a variety of manufacturing processes. Two general approaches can be followed: (i) the ones that add the API into the material during the manufacturing process of the suture and (ii) the ones that load the API to an already manufactured suture. Areas covered: This review provides an overview of the current manufacturing processes for drug-eluting suture production and discusses their benefits and drawbacks depending on the type of drugs. The mechanical properties and the drug delivery profile of drug-eluting sutures are highlighted since these implants must fulfill both criteria. Expert opinion: For limited drug contents, melt extrusion and electrospinning are the emerging processes since the drug is added during the suture manufacture process. Advantageously, the drug release profile can be tuned by controlling the processing parameters specific to each process and the composition of the drug-containing polymer. If high drug content is targeted, the coating or grafting of a drug layer on a pre-manufactured suture allows for preservation of the tensile strength requirements of the suture.

  5. The Role of Intelligence Quotient and Emotional Intelligence in Cognitive Control Processes

    Science.gov (United States)

    Checa, Purificación; Fernández-Berrocal, Pablo

    2015-01-01

    The relationship between intelligence quotient (IQ) and cognitive control processes has been extensively established. Several studies have shown that IQ correlates with cognitive control abilities, such as interference suppression, as measured with experimental tasks like the Stroop and Flanker tasks. By contrast, there is a debate about the role of Emotional Intelligence (EI) in individuals' cognitive control abilities. The aim of this study is to examine the relation between IQ and EI, and cognitive control abilities evaluated by a typical laboratory control cognitive task, the Stroop task. Results show a negative correlation between IQ and the interference suppression index, the ability to inhibit processing of irrelevant information. However, the Managing Emotions dimension of EI measured by the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT), but not self-reported of EI, negatively correlates with the impulsivity index, the premature execution of the response. These results suggest that not only is IQ crucial, but also competences related to EI are essential to human cognitive control processes. Limitations and implications of these results are also discussed. PMID:26648901

  6. The role of Intelligence Quotient and Emotional Intelligence in cognitive control processes

    Directory of Open Access Journals (Sweden)

    Purificación eCheca

    2015-12-01

    Full Text Available The relationship between intelligence quotient (IQ and cognitive control processes has been extensively established. Several studies have shown that IQ correlates with cognitive control abilities, such as interference suppression, as measured with experimental tasks like the Stroop and Flanker tasks. By contrast, there is a debate about the role of Emotional Intelligence (EI in individuals’ cognitive control abilities. The aim of this study is to examine the relation between IQ and EI, and cognitive control abilities evaluated by a typical laboratory control cognitive task, the Stroop task. Results show a negative correlation between IQ and the interference suppression index, the ability to inhibit processing of irrelevant information. However, the Managing Emotions dimension of EI measured by the Mayer-Salovey-Caruso Emotional Intelligence Test, but not self-reported of EI, negatively correlates with the impulsivity index, the premature execution of the response. These results suggest that not only is IQ crucial, but also competences related to EI are essential to human cognitive control processes. Limitations and implications of these results are also discussed

  7. Quality assurance of manufactures by means of intelligent tomographic processing

    International Nuclear Information System (INIS)

    Castano, A.; Paggi, P.; Barbuzza, R.; Venere, Marcelo J.; Clausse, Alejandro

    2003-01-01

    Quality standards in industry require inspection tools to optimize the production. In this paper we present a non destructive test method that allows the inspection of defects as well as the 3D visualization of the piece. Previous knowledge of the material and geometry of the components are applied to improve the inspection system, classifying by position, dimension and orientation of defects, to verify manufacture quality standards. (author)

  8. Advances in intelligent process-aware information systems concepts, methods, and technologies

    CERN Document Server

    Oberhauser, Roy; Reichert, Manfred

    2017-01-01

    This book provides a state-of-the-art perspective on intelligent process-aware information systems and presents chapters on specific facets and approaches applicable to such systems. Further, it highlights novel advances and developments in various aspects of intelligent process-aware information systems and business process management systems. Intelligence capabilities are increasingly being integrated into or created in many of today’s software products and services. Process-aware information systems provide critical computing infrastructure to support the various processes involved in the creation and delivery of business products and services. Yet the integration of intelligence capabilities into process-aware information systems is a non-trivial yet necessary evolution of these complex systems. The book’s individual chapters address adaptive process management, case management processes, autonomically-capable processes, process-oriented information logistics, process recommendations, reasoning over ...

  9. Business Intelligence in Process Control

    Science.gov (United States)

    Kopčeková, Alena; Kopček, Michal; Tanuška, Pavol

    2013-12-01

    The Business Intelligence technology, which represents a strong tool not only for decision making support, but also has a big potential in other fields of application, is discussed in this paper. Necessary fundamental definitions are offered and explained to better understand the basic principles and the role of this technology for company management. Article is logically divided into five main parts. In the first part, there is the definition of the technology and the list of main advantages. In the second part, an overview of the system architecture with the brief description of separate building blocks is presented. Also, the hierarchical nature of the system architecture is shown. The technology life cycle consisting of four steps, which are mutually interconnected into a ring, is described in the third part. In the fourth part, analytical methods incorporated in the online analytical processing and data mining used within the business intelligence as well as the related data mining methodologies are summarised. Also, some typical applications of the above-mentioned particular methods are introduced. In the final part, a proposal of the knowledge discovery system for hierarchical process control is outlined. The focus of this paper is to provide a comprehensive view and to familiarize the reader with the Business Intelligence technology and its utilisation.

  10. Features of the Manufacturing Vision Development Process

    DEFF Research Database (Denmark)

    Dukovska-Popovska, Iskra; Riis, Jens Ove; Boer, Harry

    2005-01-01

    of action research. The methodology recommends wide participation of people from different hierarchical and functional positions, who engage in a relatively short, playful and creative process and come up with a vision (concept) for the future manufacturing system in the company. Based on three case studies......This paper discusses the key features of the process of Manufacturing Vision Development, a process that enables companies to develop their future manufacturing concept. The basis for the process is a generic five-phase methodology (Riis and Johansen, 2003) developed as a result of ten years...... of companies going through the initial phases of the methodology, this research identified the key features of the Manufacturing Vision Development process. The paper elaborates the key features by defining them, discussing how and when they can appear, and how they influence the process....

  11. Aktuelles Schlagwort: Business Process Intelligence

    NARCIS (Netherlands)

    Mutschler, B.B.; Reichert, M.U.

    In jüngerer Vergangenheit rückt vermehrt die Erfassung und Analyse von Prozessechtdaten (z.B. zum Start und Ende von Prozessaktivitäten) in den Blickpunkt. Solche Daten werden von den meisten prozessorientierten Informationssystemen geliefert. Das Schlagwort Business Process Intelligence (BPI)

  12. Intelligent systems for KSC ground processing

    Science.gov (United States)

    Heard, Astrid E.

    1992-01-01

    The ground processing and launch of Shuttle vehicles and their payloads is the primary task of Kennedy Space Center. It is a process which is largely manual and contains little inherent automation. Business is conducted today much as it was during previous NASA programs such as Apollo. In light of new programs and decreasing budgets, NASA must find more cost effective ways in which to do business while retaining the quality and safety of activities. Advanced technologies including artificial intelligence could cut manpower and processing time. This paper is an overview of the research and development in Al technology at KSC with descriptions of the systems which have been implemented, as well as a few under development which are promising additions to ground processing software. Projects discussed cover many facets of ground processing activities, including computer sustaining engineering, subsystem monitor and diagnosis tools and launch team assistants. The deployed Al applications have proven an effectiveness which has helped to demonstrate the benefits of utilizing intelligent software in the ground processing task.

  13. 21 CFR 1005.25 - Service of process on manufacturers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Service of process on manufacturers. 1005.25....25 Service of process on manufacturers. (a) Every manufacturer of electronic products, prior to... United States as the manufacturer's agent upon whom service of all processes, notices, orders, decisions...

  14. Artificial Intelligence Tools for Scaling Up of High Shear Wet Granulation Process.

    Science.gov (United States)

    Landin, Mariana

    2017-01-01

    The results presented in this article demonstrate the potential of artificial intelligence tools for predicting the endpoint of the granulation process in high-speed mixer granulators of different scales from 25L to 600L. The combination of neurofuzzy logic and gene expression programing technologies allowed the modeling of the impeller power as a function of operation conditions and wet granule properties, establishing the critical variables that affect the response and obtaining a unique experimental polynomial equation (transparent model) of high predictability (R 2 > 86.78%) for all size equipment. Gene expression programing allowed the modeling of the granulation process for granulators of similar and dissimilar geometries and can be improved by implementing additional characteristics of the process, as composition variables or operation parameters (e.g., batch size, chopper speed). The principles and the methodology proposed here can be applied to understand and control manufacturing process, using any other granulation equipment, including continuous granulation processes. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. Intelligent Processing Equipment Research and Development Programs of the Department of Commerce

    Science.gov (United States)

    Simpson, J. A.

    1992-01-01

    The intelligence processing equipment (IPE) research and development (R&D) programs of the Department of Commerce are carried out within the National Institute of Standards and Technology (NIST). This institute has had work in support of industrial productivity as part of its mission since its founding in 1901. With the advent of factory automation these efforts have increasingly turned to R&D in IPE. The Manufacturing Engineering Laboratory (MEL) of NIST devotes a major fraction of its efforts to this end while other elements within the organization, notably the Material Science and Engineering Laboratory, have smaller but significant programs. An inventory of all such programs at NIST and a representative selection of projects that at least demonstrate the scope of the efforts are presented.

  16. Multiphysics modelling of manufacturing processes: A review

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Baran, Ismet; Mohanty, Sankhya

    2018-01-01

    Numerical modelling is increasingly supporting the analysis and optimization of manufacturing processes in the production industry. Even if being mostly applied to multistep processes, single process steps may be so complex by nature that the needed models to describe them must include multiphysics...... the diversity in the field of modelling of manufacturing processes as regards process, materials, generic disciplines as well as length scales: (1) modelling of tape casting for thin ceramic layers, (2) modelling the flow of polymers in extrusion, (3) modelling the deformation process of flexible stamps...... for nanoimprint lithography, (4) modelling manufacturing of composite parts and (5) modelling the selective laser melting process. For all five examples, the emphasis is on modelling results as well as describing the models in brief mathematical details. Alongside with relevant references to the original work...

  17. Comparing Binaural Pre-processing Strategies II: Speech Intelligibility of Bilateral Cochlear Implant Users.

    Science.gov (United States)

    Baumgärtel, Regina M; Hu, Hongmei; Krawczyk-Becker, Martin; Marquardt, Daniel; Herzke, Tobias; Coleman, Graham; Adiloğlu, Kamil; Bomke, Katrin; Plotz, Karsten; Gerkmann, Timo; Doclo, Simon; Kollmeier, Birger; Hohmann, Volker; Dietz, Mathias

    2015-12-30

    Several binaural audio signal enhancement algorithms were evaluated with respect to their potential to improve speech intelligibility in noise for users of bilateral cochlear implants (CIs). 50% speech reception thresholds (SRT50) were assessed using an adaptive procedure in three distinct, realistic noise scenarios. All scenarios were highly nonstationary, complex, and included a significant amount of reverberation. Other aspects, such as the perfectly frontal target position, were idealized laboratory settings, allowing the algorithms to perform better than in corresponding real-world conditions. Eight bilaterally implanted CI users, wearing devices from three manufacturers, participated in the study. In all noise conditions, a substantial improvement in SRT50 compared to the unprocessed signal was observed for most of the algorithms tested, with the largest improvements generally provided by binaural minimum variance distortionless response (MVDR) beamforming algorithms. The largest overall improvement in speech intelligibility was achieved by an adaptive binaural MVDR in a spatially separated, single competing talker noise scenario. A no-pre-processing condition and adaptive differential microphones without a binaural link served as the two baseline conditions. SRT50 improvements provided by the binaural MVDR beamformers surpassed the performance of the adaptive differential microphones in most cases. Speech intelligibility improvements predicted by instrumental measures were shown to account for some but not all aspects of the perceptually obtained SRT50 improvements measured in bilaterally implanted CI users. © The Author(s) 2015.

  18. Space station automation study: Automation requriements derived from space manufacturing concepts,volume 2

    Science.gov (United States)

    1984-01-01

    Automation reuirements were developed for two manufacturing concepts: (1) Gallium Arsenide Electroepitaxial Crystal Production and Wafer Manufacturing Facility, and (2) Gallium Arsenide VLSI Microelectronics Chip Processing Facility. A functional overview of the ultimate design concept incoporating the two manufacturing facilities on the space station are provided. The concepts were selected to facilitate an in-depth analysis of manufacturing automation requirements in the form of process mechanization, teleoperation and robotics, sensors, and artificial intelligence. While the cost-effectiveness of these facilities was not analyzed, both appear entirely feasible for the year 2000 timeframe.

  19. Building the competitive intelligence knowledge: processes and activities in a corporate organisation

    OpenAIRE

    Sreenivasulu, V.

    1999-01-01

    This paper discusses the process of building and developing comprehensive tools, techniques, support systems, and better methods of harnessing the competitive intelligence knowledge processes. The author stresses the need for building sophisticated methodological competitive intelligence knowledge acquisition, systematic collection of competitive intelligence knowledge from various sources for critical analysis, process, organization, synthesis, assessment, screening, filtering and interpreta...

  20. SME Internationalization Intelligence Information and Knowledge on International Opportunities

    Directory of Open Access Journals (Sweden)

    Zizah Che Senik

    2014-12-01

    Full Text Available Small and medium enterprises (SMEs internationalization intelligence, referring to the process of gathering information and knowledge on international opportunities, is crucial to initiate SMEs’ internationalization. The literature has stressed organizational resources, networks and information sharing as means to acquire internationalization intelligence, suggesting that the resource-based, network and social capital perspectives can be adopted to explore this issue. However, previous literature still lacks evidence on how SMEs acquire relevant intelligence, and who or what are involved with the process. To address this lack of evidence, we interviewed 54 SME owners/key personnel in the manufacturing sector to: identify sources of internationalization intelligence; examine how those sources assist SMEs to internationalize; and develop propositions on internationalization intelligence. Analyzing the data using NVivo, four themes emerged including institutions, business associates, personal efforts, and other means. The analysis suggests internationalization intelligence occurs mainly through the networks of the SME owners/key personnel, built on their firm’s resources through their internal and external information sharing activities, indicating the need of the SMEs to position themselves in their environments. These findings are developed into propositions. The study indicates multiple perspectives in conceptualizing the process of internationalization intelligence. This study advances a conceptualization of internationalization intelligence, and offers avenues for future research.

  1. Rapsodie first core manufacture. 1. part: processing plant

    International Nuclear Information System (INIS)

    Masselot, Y.; Bataller, S.; Ganivet, M.; Guillet, H.; Robillard, A.; Stosskopf, F.

    1968-01-01

    This report is the first in a series of three describing the processes, results and peculiar technical problems related to the manufacture of the first core of the fast reactor Rapsodie. A detailed study of manufacturing processes(pellets, pins, fissile sub-assemblies), the associated testings (raw materials, processed pellets and pins, sub-assemblies before delivery), manufacturing facilities and improvements for a second campaign are described. (author) [fr

  2. The big data processing platform for intelligent agriculture

    Science.gov (United States)

    Huang, Jintao; Zhang, Lichen

    2017-08-01

    Big data technology is another popular technology after the Internet of Things and cloud computing. Big data is widely used in many fields such as social platform, e-commerce, and financial analysis and so on. Intelligent agriculture in the course of the operation will produce large amounts of data of complex structure, fully mining the value of these data for the development of agriculture will be very meaningful. This paper proposes an intelligent data processing platform based on Storm and Cassandra to realize the storage and management of big data of intelligent agriculture.

  3. Intelligent Transportation Control based on Proactive Complex Event Processing

    Directory of Open Access Journals (Sweden)

    Wang Yongheng

    2016-01-01

    Full Text Available Complex Event Processing (CEP has become the key part of Internet of Things (IoT. Proactive CEP can predict future system states and execute some actions to avoid unwanted states which brings new hope to intelligent transportation control. In this paper, we propose a proactive CEP architecture and method for intelligent transportation control. Based on basic CEP technology and predictive analytic technology, a networked distributed Markov decision processes model with predicting states is proposed as sequential decision model. A Q-learning method is proposed for this model. The experimental evaluations show that this method works well when used to control congestion in in intelligent transportation systems.

  4. APPROACH ON INTELLIGENT OPTIMIZATION DESIGN BASED ON COMPOUND KNOWLEDGE

    Institute of Scientific and Technical Information of China (English)

    Yao Jianchu; Zhou Ji; Yu Jun

    2003-01-01

    A concept of an intelligent optimal design approach is proposed, which is organized by a kind of compound knowledge model. The compound knowledge consists of modularized quantitative knowledge, inclusive experience knowledge and case-based sample knowledge. By using this compound knowledge model, the abundant quantity information of mathematical programming and the symbolic knowledge of artificial intelligence can be united together in this model. The intelligent optimal design model based on such a compound knowledge and the automatically generated decomposition principles based on it are also presented. Practically, it is applied to the production planning, process schedule and optimization of production process of a refining & chemical work and a great profit is achieved. Specially, the methods and principles are adaptable not only to continuous process industry, but also to discrete manufacturing one.

  5. Predicting speech intelligibility in conditions with nonlinearly processed noisy speech

    DEFF Research Database (Denmark)

    Jørgensen, Søren; Dau, Torsten

    2013-01-01

    The speech-based envelope power spectrum model (sEPSM; [1]) was proposed in order to overcome the limitations of the classical speech transmission index (STI) and speech intelligibility index (SII). The sEPSM applies the signal-tonoise ratio in the envelope domain (SNRenv), which was demonstrated...... to successfully predict speech intelligibility in conditions with nonlinearly processed noisy speech, such as processing with spectral subtraction. Moreover, a multiresolution version (mr-sEPSM) was demonstrated to account for speech intelligibility in various conditions with stationary and fluctuating...

  6. QUALITY IMPROVEMENT MODEL AT THE MANUFACTURING PROCESS PREPARATION LEVEL

    Directory of Open Access Journals (Sweden)

    Dusko Pavletic

    2009-12-01

    Full Text Available The paper expresses base for an operational quality improvement model at the manufacturing process preparation level. A numerous appropriate related quality assurance and improvement methods and tools are identified. Main manufacturing process principles are investigated in order to scrutinize one general model of manufacturing process and to define a manufacturing process preparation level. Development and introduction of the operational quality improvement model is based on a research conducted and results of methods and tools application possibilities in real manufacturing processes shipbuilding and automotive industry. Basic model structure is described and presented by appropriate general algorithm. Operational quality improvement model developed lays down main guidelines for practical and systematic application of quality improvements methods and tools.

  7. Key Features of the Manufacturing Vision Development Process

    DEFF Research Database (Denmark)

    Dukovska-Popovska, Iskra; Riis, Jens Ove; Boer, Harry

    2005-01-01

    of action research. The methodology recommends wide participation of people from different hierarchical and functional positions, who engage in a relatively short, playful and creative process and come up with a vision (concept) for the future manufacturing system in the company. Based on three case studies......This paper discusses the key features of the process of Manufacturing Vision Development, a process that enables companies to develop their future manufacturing concept. The basis for the process is a generic five-phase methodology (Riis and Johansen 2003) developed as a result of ten years...... of companies going through the initial phases of the methodology, this research identified the key features of the Manufacturing Vision Development process. The paper elaborates the key features by defining them, discussing how and when they can appear, and how they influence the process....

  8. 2nd International Conference on Intelligent Technologies and Engineering Systems

    CERN Document Server

    Chen, Cheng-Yi; Yang, Cheng-Fu

    2014-01-01

    This book includes the original, peer reviewed research papers from the 2nd International Conference on Intelligent Technologies and Engineering Systems (ICITES2013), which took place on December 12-14, 2013 at Cheng Shiu University in Kaohsiung, Taiwan. Topics covered include: laser technology, wireless and mobile networking, lean and agile manufacturing, speech processing, microwave dielectrics, intelligent circuits and systems, 3D graphics, communications, and structure dynamics and control.

  9. Manufacturing Process Selection of Composite Bicycle’s Crank Arm using Analytical Hierarchy Process (AHP)

    Science.gov (United States)

    Luqman, M.; Rosli, M. U.; Khor, C. Y.; Zambree, Shayfull; Jahidi, H.

    2018-03-01

    Crank arm is one of the important parts in a bicycle that is an expensive product due to the high cost of material and production process. This research is aimed to investigate the potential type of manufacturing process to fabricate composite bicycle crank arm and to describe an approach based on analytical hierarchy process (AHP) that assists decision makers or manufacturing engineers in determining the most suitable process to be employed in manufacturing of composite bicycle crank arm at the early stage of the product development process to reduce the production cost. There are four types of processes were considered, namely resin transfer molding (RTM), compression molding (CM), vacuum bag molding and filament winding (FW). The analysis ranks these four types of process for its suitability in the manufacturing of bicycle crank arm based on five main selection factors and 10 sub factors. Determining the right manufacturing process was performed based on AHP process steps. Consistency test was performed to make sure the judgements are consistent during the comparison. The results indicated that the compression molding was the most appropriate manufacturing process because it has the highest value (33.6%) among the other manufacturing processes.

  10. A risk-based auditing process for pharmaceutical manufacturers.

    Science.gov (United States)

    Vargo, Susan; Dana, Bob; Rangavajhula, Vijaya; Rönninger, Stephan

    2014-01-01

    The purpose of this article is to share ideas on developing a risk-based model for the scheduling of audits (both internal and external). Audits are a key element of a manufacturer's quality system and provide an independent means of evaluating the manufacturer's or the supplier/vendor's compliance status. Suggestions for risk-based scheduling approaches are discussed in the article. Pharmaceutical manufacturers are required to establish and implement a quality system. The quality system is an organizational structure defining responsibilities, procedures, processes, and resources that the manufacturer has established to ensure quality throughout the manufacturing process. Audits are a component of the manufacturer's quality system and provide a systematic and an independent means of evaluating the manufacturer's overall quality system and compliance status. Audits are performed at defined intervals for a specified duration. The intention of the audit process is to focus on key areas within the quality system and may not cover all relevant areas during each audit. In this article, the authors provide suggestions for risk-based scheduling approaches to aid pharmaceutical manufacturers in identifying the key focus areas for an audit.

  11. 31 CFR 500.412 - Process vs. manufacture.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Process vs. manufacture. 500.412 Section 500.412 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE... Interpretations § 500.412 Process vs. manufacture. A commodity subject to § 500.204 remains subject howsoever it...

  12. Intelligent decision-making models for production and retail operations

    CERN Document Server

    Guo, Zhaoxia

    2016-01-01

    This book provides an overview of intelligent decision-making techniques and discusses their application in production and retail operations. Manufacturing and retail enterprises have stringent standards for using advanced and reliable techniques to improve decision-making processes, since these processes have significant effects on the performance of relevant operations and the entire supply chain. In recent years, researchers have been increasingly focusing attention on using intelligent techniques to solve various decision-making problems. The opening chapters provide an introduction to several commonly used intelligent techniques, such as genetic algorithm, harmony search, neural network and extreme learning machine. The book then explores the use of these techniques for handling various production and retail decision-making problems, such as production planning and scheduling, assembly line balancing, and sales forecasting.

  13. INTELLIGENT SUPPORT OF EDUCATIONAL PROCESSES AT LEVEL OF SPECIALITY

    Directory of Open Access Journals (Sweden)

    Irina I. Kazmina

    2013-01-01

    Full Text Available The article is devoted to intelligent support of educational processes at level of speciality with the help of information system. In this paper intelligent information system of Modern Humanitarian Academy is considered and three directions of development of intelligent support within the scope of developed information system are offered. These directions include: development of model of student, data mining of quality of teaching and prediction of quality of teaching in the future. 

  14. 15 CFR 400.33 - Restrictions on manufacturing and processing activity.

    Science.gov (United States)

    2010-01-01

    ...-TRADE ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.33 Restrictions on manufacturing and processing activity. (a) In general. In approving manufacturing or processing activity for a zone... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Restrictions on manufacturing and...

  15. The process of implementing Competitive Intelligence in a company

    Directory of Open Access Journals (Sweden)

    František Bartes

    2013-01-01

    Full Text Available It is a common occurrence in business practice that the management of a company, in an effort to jump-start the function of the Competitive Intelligence unit, makes a number of mistakes and errors. Yet it is not difficult to avoid these missteps and achieve the desired level of Competitive Intelligence activities in a purposeful and effective manner. The author believes that a resolution of this problem lies in his concept of Competitive Intelligence viewed as a system application discipline (like value analysis or value engineering, which is why he approaches the problem of actual implementation of Competitive Intelligence in a company by referring to standards ČSN EN 12 973 and ČSN EN 1325-2. The author then proposes his own procedure for implementing Competitive Intelligence in a company. He first describes the various ways of securing the Competitive Intelligence services. Depending on the manner of securing these services, it is necessary to choose the actual method of bringing Competitive Intelligence into the company. The author goes on to lists the essentials that every program of Competitive Intelligence implementation should have. The process of Competitive Intelligence implementation unfolds in three stages, those being: 1. Managerial preparation for the introduction of Competitive Intelligence. 2. Personnel-oriented and professional preparation for applying Competitive Intelligence. 3. Organizational preparation for the implementation and practice of Competitive Intelligence. In Discussion, the author points out the most common mistakes he encountered in practice when implementing the Competitive Intelligence function.

  16. Intelligent Transportation Control based on Proactive Complex Event Processing

    OpenAIRE

    Wang Yongheng; Geng Shaofeng; Li Qian

    2016-01-01

    Complex Event Processing (CEP) has become the key part of Internet of Things (IoT). Proactive CEP can predict future system states and execute some actions to avoid unwanted states which brings new hope to intelligent transportation control. In this paper, we propose a proactive CEP architecture and method for intelligent transportation control. Based on basic CEP technology and predictive analytic technology, a networked distributed Markov decision processes model with predicting states is p...

  17. Manufacturing processes 2 grinding, honing, lapping

    CERN Document Server

    Klocke, Fritz

    2009-01-01

    Presents a view of the most common machining and non-machining manufacturing processes. This volume describes the characteristics of abrasive tools, their design and manufacturing, followed by the fundamentals of grinding fluids. It also discusses grinding of different materials (steel, cast iron, hard and brittle materials, nickel and titanium).

  18. Parallel processing for artificial intelligence 1

    CERN Document Server

    Kanal, LN; Kumar, V; Suttner, CB

    1994-01-01

    Parallel processing for AI problems is of great current interest because of its potential for alleviating the computational demands of AI procedures. The articles in this book consider parallel processing for problems in several areas of artificial intelligence: image processing, knowledge representation in semantic networks, production rules, mechanization of logic, constraint satisfaction, parsing of natural language, data filtering and data mining. The publication is divided into six sections. The first addresses parallel computing for processing and understanding images. The second discus

  19. Intelligent sensor networks the integration of sensor networks, signal processing and machine learning

    CERN Document Server

    Hu, Fei

    2012-01-01

    Although governments worldwide have invested significantly in intelligent sensor network research and applications, few books cover intelligent sensor networks from a machine learning and signal processing perspective. Filling this void, Intelligent Sensor Networks: The Integration of Sensor Networks, Signal Processing and Machine Learning focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on the world-class research of award-winning authors, the book provides a firm grounding in the fundamentals of intelligent sensor networks, incl

  20. Development of 3D online contact measurement system for intelligent manufacturing based on stereo vision

    Science.gov (United States)

    Li, Peng; Chong, Wenyan; Ma, Yongjun

    2017-10-01

    In order to avoid shortcomings of low efficiency and restricted measuring range exsited in traditional 3D on-line contact measurement method for workpiece size, the development of a novel 3D contact measurement system is introduced, which is designed for intelligent manufacturing based on stereo vision. The developed contact measurement system is characterized with an intergarted use of a handy probe, a binocular stereo vision system, and advanced measurement software.The handy probe consists of six track markers, a touch probe and the associated elcetronics. In the process of contact measurement, the hand probe can be located by the use of the stereo vision system and track markers, and 3D coordinates of a space point on the workpiece can be mearsured by calculating the tip position of a touch probe. With the flexibility of the hand probe, the orientation, range, density of the 3D contact measurenent can be adptable to different needs. Applications of the developed contact measurement system to high-precision measurement and rapid surface digitization are experimentally demonstrated.

  1. The ethical intelligence: a tool guidance in the process of the negotiation

    Directory of Open Access Journals (Sweden)

    Cristina Seijo

    2014-08-01

    Full Text Available The present article is the result of a research, which has as object present a theoretical contrast that invites to the reflection on the ethical intelligence as a tool guidance in the negotiation. In the same one there are approached the different types of ethical intelligence; spatial intelligence, rational intelligence, emotional intelligence among others, equally one refers associative intelligence to the processes of negotiation and to the tactics of negotiation. In this respect, it is possible to deal to the ethical intelligence as the aptitude to examine the moral standards of the individual and of the society to decide between what this one correct or incorrect and to be able like that to solve the different problematic ones for which an individual or a society cross. For this reason, one invites to start mechanisms of transparency and participation by virtue of which the ethical intelligence is born in mind as the threshold that orientates this process of negotiation. 

  2. Application of artificial intelligence in process control

    CERN Document Server

    Krijgsman, A

    1993-01-01

    This book is the result of a united effort of six European universities to create an overall course on the appplication of artificial intelligence (AI) in process control. The book includes an introduction to key areas including; knowledge representation, expert, logic, fuzzy logic, neural network, and object oriented-based approaches in AI. Part two covers the application to control engineering, part three: Real-Time Issues, part four: CAD Systems and Expert Systems, part five: Intelligent Control and part six: Supervisory Control, Monitoring and Optimization.

  3. The Relationship between Multiple Intelligences with Preferred Science Teaching and Science Process Skills

    Directory of Open Access Journals (Sweden)

    Mohd Ali Samsudin

    2015-02-01

    Full Text Available This study was undertaken to identify the relationship between multiple intelligences with preferred science teaching and science process skills. The design of the study is a survey using three questionnaires reported in the literature: Multiple Intelligences Questionnaire, Preferred Science Teaching Questionnaire and Science Process Skills Questionnaire. The study selected 300 primary school students from five (5 primary schools in Penang, Malaysia. The findings showed a relationship between kinesthetic, logical-mathematical, visual-spatial and naturalistic intelligences with the preferred science teaching. In addition there was a correlation between kinesthetic and visual-spatial intelligences with science process skills, implying that multiple intelligences are related to science learning.

  4. Cleaning Process Development for Metallic Additively Manufactured Parts

    Science.gov (United States)

    Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark

    2014-01-01

    Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.

  5. Intelligent process control operator aid -- An artificial intelligence approach

    International Nuclear Information System (INIS)

    Sharma, D.D.; Miller, D.D.; Hajek, B.; Chandrasekaran, B.

    1986-01-01

    This paper describes an approach for designing intelligent process and power plant control operator aids. It is argued that one of the key aspects of an intelligent operator aid is the capability for dynamic procedure synthesis with incomplete definition of initial state, unknown goal states, and the dynamic world situation. The dynamic world state is used to determine the goal, select appropriate plan steps from prespecified procedures to achieve the goal, control the execution of the synthesized plan, and provide for dynamic recovery from failure often using a goal hierarchy. The dynamic synthesis of a plan requires integration of various problems solving capabilities such as plan generation, plan synthesis, plan modification, and failure recovery from a plan. The programming language for implementing the DPS framework provides a convenient tool for developing applications. An application of the DPS approach to a Nuclear Power Plant emergency procedure synthesis is also described. Initial test results indicate that the approach is successful in dynamically synthesizing the procedures. The authors realize that the DPS framework is not a solution for all control tasks. However, many existing process and plant control problems satisfy the requirements discussed in the paper and should be able to benefit from the framework described

  6. Advances in Reasoning-Based Image Processing Intelligent Systems Conventional and Intelligent Paradigms

    CERN Document Server

    Nakamatsu, Kazumi

    2012-01-01

    The book puts special stress on the contemporary techniques for reasoning-based image processing and analysis: learning based image representation and advanced video coding; intelligent image processing and analysis in medical vision systems; similarity learning models for image reconstruction; visual perception for mobile robot motion control, simulation of human brain activity in the analysis of video sequences; shape-based invariant features extraction; essential of paraconsistent neural networks, creativity and intelligent representation in computational systems. The book comprises 14 chapters. Each chapter is a small monograph, representing resent investigations of authors in the area. The topics of the chapters cover wide scientific and application areas and complement each-other very well. The chapters’ content is based on fundamental theoretical presentations, followed by experimental results and comparison with similar techniques. The size of the chapters is well-ballanced which permits a thorough ...

  7. 77 FR 16158 - Current Good Manufacturing Practice in Manufacturing, Processing, Packing, or Holding of Drugs...

    Science.gov (United States)

    2012-03-20

    .... FDA-1997-N-0518] (formerly 97N-0300) Current Good Manufacturing Practice in Manufacturing, Processing... labeling control provisions of the current good manufacturing practice (CGMP) regulations for human and... GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS 0 1. The authority citation for 21 CFR part...

  8. Is general intelligence little more than the speed of higher-order processing?

    Science.gov (United States)

    Schubert, Anna-Lena; Hagemann, Dirk; Frischkorn, Gidon T

    2017-10-01

    Individual differences in the speed of information processing have been hypothesized to give rise to individual differences in general intelligence. Consistent with this hypothesis, reaction times (RTs) and latencies of event-related potential have been shown to be moderately associated with intelligence. These associations have been explained either in terms of individual differences in some brain-wide property such as myelination, the speed of neural oscillations, or white-matter tract integrity, or in terms of individual differences in specific processes such as the signal-to-noise ratio in evidence accumulation, executive control, or the cholinergic system. Here we show in a sample of 122 participants, who completed a battery of RT tasks at 2 laboratory sessions while an EEG was recorded, that more intelligent individuals have a higher speed of higher-order information processing that explains about 80% of the variance in general intelligence. Our results do not support the notion that individuals with higher levels of general intelligence show advantages in some brain-wide property. Instead, they suggest that more intelligent individuals benefit from a more efficient transmission of information from frontal attention and working memory processes to temporal-parietal processes of memory storage. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Risk calculations in the manufacturing technology selection process

    DEFF Research Database (Denmark)

    Farooq, S.; O'Brien, C.

    2010-01-01

    Purpose - The purpose of this paper is to present result obtained from a developed technology selection framework and provide a detailed insight into the risk calculations and their implications in manufacturing technology selection process. Design/methodology/approach - The results illustrated...... in the paper are the outcome of an action research study that was conducted in an aerospace company. Findings - The paper highlights the role of risk calculations in manufacturing technology selection process by elaborating the contribution of risk associated with manufacturing technology alternatives...... in the shape of opportunities and threats in different decision-making environments. Practical implications - The research quantifies the risk associated with different available manufacturing technology alternatives. This quantification of risk crystallises the process of technology selection decision making...

  10. Printing Processes Used to Manufacture Photovoltaic Solar Cells

    Science.gov (United States)

    Rardin, Tina E.; Xu, Renmei

    2011-01-01

    There is a growing need for renewable energy sources, and solar power is a good option in many instances. Photovoltaic solar panels are now being manufactured via various methods, and different printing processes are being incorporated into the manufacturing process. Screen printing has been used most prevalently in the printing process to make…

  11. Recent Developments in Abrasive Hybrid Manufacturing Processes

    Directory of Open Access Journals (Sweden)

    Ruszaj Adam

    2017-06-01

    Full Text Available Recent dynamic development of abrasive hybrid manufacturing processes results from application of a new difficult for machining materials and improvement of technological indicators of manufacturing processes already applied in practice. This tendency also occurs in abrasive machining processes which are often supported by ultrasonic vibrations, electrochemical dissolution or by electrical discharges. In the paper we present the review of new results of investigations and new practical applications of Abrasive Electrodischarge (AEDM and Electrochemical (AECM Machining.

  12. Recommendation in Motion: Intelligent Hypertouch Garment Design

    Directory of Open Access Journals (Sweden)

    Shuang Liang

    2013-01-01

    Full Text Available Intelligent CAD garment design becomes more and more popular by attracting the attentions from both manufacturers and professional stylists. The existing garment CAD systems and clothing simulation software fail to provide user-friendly interfaces as well as dynamic recommendation during the garment creation process. In this paper, we propose an intelligent hypertouch garment design system, which dynamically predicts the possible solutions along with the intelligent design procedure. User behavioral information and dynamic shape matching are used to learn and predict the desired garment patterns. We also propose a new hypertouch concept of gesture-based interaction for our system. We evaluate our system with a prototype platform. The results show that our system is effective, robust, and easy to use for quick garment design.

  13. Making technology work in intelligent manufacturing by participative simulation

    NARCIS (Netherlands)

    Vink, P.; Eijnatten, F. van; Goossenaerts, J.; Grote, G.; Stahre, J.; Berg, R. van der

    2000-01-01

    Nowadays it is essential to anticipate on fast changes in production due to turbulent and demanding markets. The manufacturing workforce, e.g. specialized staff, management and production personnel, plays a crucial role in this process. Therefore, the EU-project 'PSIM' is started. PSIM is

  14. A conceptual framework for intelligent real-time information processing

    Science.gov (United States)

    Schudy, Robert

    1987-01-01

    By combining artificial intelligence concepts with the human information processing model of Rasmussen, a conceptual framework was developed for real time artificial intelligence systems which provides a foundation for system organization, control and validation. The approach is based on the description of system processing terms of an abstraction hierarchy of states of knowledge. The states of knowledge are organized along one dimension which corresponds to the extent to which the concepts are expressed in terms of the system inouts or in terms of the system response. Thus organized, the useful states form a generally triangular shape with the sensors and effectors forming the lower two vertices and the full evaluated set of courses of action the apex. Within the triangle boundaries are numerous processing paths which shortcut the detailed processing, by connecting incomplete levels of analysis to partially defined responses. Shortcuts at different levels of abstraction include reflexes, sensory motor control, rule based behavior, and satisficing. This approach was used in the design of a real time tactical decision aiding system, and in defining an intelligent aiding system for transport pilots.

  15. Uranium manufacturing process employing the electrolytic reduction method

    International Nuclear Information System (INIS)

    Oda, Yoshio; Kazuhare, Manabu; Morimoto, Takeshi.

    1986-01-01

    The present invention related to a uranium manufacturing process that employs the electrolytic reduction method, but particularly to a uranium manufacturing process that employs an electrolytic reduction method requiring low voltage. The process, in which uranium is obtained by means of the electrolytic method and with uranyl acid as the raw material, is prior art

  16. Multiple multichannel spectra acquisition and processing system with intelligent interface

    International Nuclear Information System (INIS)

    Chen Ying; Wei Yixiang; Qu Jianshi; Zheng Futang; Xu Shengkui; Xie Yuanming; Qu Xing; Ji Weitong; Qiu Xuehua

    1986-01-01

    A Multiple multichannel spectra acquisition and processing system with intelligent interface is described. Sixteen spectra measured with various lengths, channel widths, back biases and acquisition times can be identified and collected by the intelligent interface simultaneously while the connected computer is doing data processing. The execution time for the Ge(Li) gamma-ray spectrum analysis software on IBM PC-XT is about 55 seconds

  17. Artificial intelligence and process management

    International Nuclear Information System (INIS)

    Epton, J.B.A.

    1989-01-01

    Techniques derived from work in artificial intelligence over the past few decades are beginning to change the approach in applying computers to process management. To explore this new approach and gain real practical experience of its potential a programme of experimental applications was initiated by Sira in collaboration with the process industry. This programme encompassed a family of experimental applications ranging from process monitoring, through supervisory control and troubleshooting to planning and scheduling. The experience gained has led to a number of conclusions regarding the present level of maturity of the technology, the potential for further developments and the measures required to secure the levels of system integrity necessary in on-line applications to critical processes. (author)

  18. Intelligent Production Monitoring and Control based on Three Main Modules for Automated Manufacturing Cells in the Automotive Industry

    International Nuclear Information System (INIS)

    Berger, Ulrich; Kretzschmann, Ralf; Algebra, A. Vargas Veronica

    2008-01-01

    The automotive industry is distinguished by regionalization and customization of products. As consequence, the diversity of products will increase while the lot sizes will decrease. Thus, more product types will be handled along the process chain and common production paradigms will fail. Although Rapid Manufacturing (RM) methodology will be used for producing small individual lot sizes, new solution for joining and assembling these components are needed. On the other hand, the non-availability of existing operational knowledge and the absence of dynamic and explicit knowledge retrieval minimize the achievement of on-demand capabilities. Thus, in this paper, an approach for an Intelligent Production System will be introduced. The concept is based on three interlinked main modules: a Technology Data Catalogue (TDC) based on an ontology system, an Automated Scheduling Processor (ASP) based on graph theory and a central Programmable Automation Controller (PAC) for real-time sensor/actor communication. The concept is being implemented in a laboratory set-up with several assembly and joining processes and will be experimentally validated in some research and development projects

  19. Microeconomics of process control in semiconductor manufacturing

    Science.gov (United States)

    Monahan, Kevin M.

    2003-06-01

    Process window control enables accelerated design-rule shrinks for both logic and memory manufacturers, but simple microeconomic models that directly link the effects of process window control to maximum profitability are rare. In this work, we derive these links using a simplified model for the maximum rate of profit generated by the semiconductor manufacturing process. We show that the ability of process window control to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process variation at the lot, wafer, x-wafer, x-field, and x-chip levels. We conclude that x-wafer and x-field CD control strategies will be critical enablers of density, performance and optimum profitability at the 90 and 65nm technology nodes. These analyses correlate well with actual factory data and often identify millions of dollars in potential incremental revenue and cost savings. As an example, we show that a scatterometry-based CD Process Window Monitor is an economically justified, enabling technology for the 65nm node.

  20. Aggregates in monoclonal antibody manufacturing processes.

    Science.gov (United States)

    Vázquez-Rey, María; Lang, Dietmar A

    2011-07-01

    Monoclonal antibodies have proved to be a highly successful class of therapeutic products. Large-scale manufacturing of pharmaceutical antibodies is a complex activity that requires considerable effort in both process and analytical development. If a therapeutic protein cannot be stabilized adequately, it will lose partially or totally its therapeutic properties or even cause immunogenic reactions thus potentially further endangering the patients' health. The phenomenon of protein aggregation is a common issue that compromises the quality, safety, and efficacy of antibodies and can happen at different steps of the manufacturing process, including fermentation, purification, final formulation, and storage. Aggregate levels in drug substance and final drug product are a key factor when assessing quality attributes of the molecule, since aggregation might impact biological activity of the biopharmaceutical. In this review it is analyzed how aggregates are formed during monoclonal antibody industrial production, why they have to be removed and the manufacturing process steps that are designed to either minimize or remove aggregates in the final product. Copyright © 2011 Wiley Periodicals, Inc.

  1. Intelligent nesting system

    Directory of Open Access Journals (Sweden)

    Đuričić Zoran

    2003-01-01

    Full Text Available The economy of the process for the manufacture of parts from sheet metal plates depends on successful solution of the process of cutting various parts from sheet metal plates. Essentially, the problem is to arrange contours within a defined space so that they take up minimal surface. When taken in this way, the considered problem assumes a more general nature; it refers to the utilization of a flat surface, and it can represent a general principle of arranging 2D contours on a certain surface. The paper presents a conceptual solution and a prototypal intelligent nesting system for optimal cutting. The problem of nesting can generally be divided into two intellectual phases: recognition and classification of shapes, and arrangement of recognized shapes on a given surface. In solving these problems, methods of artificial intelligence are applied. In the paper, trained neural network is used for recognition of shapes; on the basis of raster record of a part's drawing, it recognizes the part's shape and which class it belongs to. By means of the expert system, based on rules defined on the basis of acquisition of knowledge from manufacturing sections, as well as on the basis of certain mathematical algorithms, parts are arranged on the arrangement surface. Both systems can also work independently, having been built on the modular principle. The system uses various product models as elements of integration for the entire system. .

  2. Process chain modeling and selection in an additive manufacturing context

    DEFF Research Database (Denmark)

    Thompson, Mary Kathryn; Stolfi, Alessandro; Mischkot, Michael

    2016-01-01

    This paper introduces a new two-dimensional approach to modeling manufacturing process chains. This approach is used to consider the role of additive manufacturing technologies in process chains for a part with micro scale features and no internal geometry. It is shown that additive manufacturing...... evolving fields like additive manufacturing....

  3. Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-04-01

    This factsheet describes a project that developed and demonstrated a new manufacturing-informed design framework that utilizes advanced multi-scale, physics-based process modeling to dramatically improve manufacturing productivity and quality in machining operations while reducing the cost of machined components.

  4. An Overview of Cloud Implementation in the Manufacturing Process Life Cycle

    Science.gov (United States)

    Kassim, Noordiana; Yusof, Yusri; Hakim Mohamad, Mahmod Abd; Omar, Abdul Halim; Roslan, Rosfuzah; Aryanie Bahrudin, Ida; Ali, Mohd Hatta Mohamed

    2017-08-01

    The advancement of information and communication technology (ICT) has changed the structure and functions of various sectors and it has also started to play a significant role in modern manufacturing in terms of computerized machining and cloud manufacturing. It is important for industries to keep up with the current trend of ICT for them to be able survive and be competitive. Cloud manufacturing is an approach that wanted to realize a real-world manufacturing processes that will apply the basic concept from the field of Cloud computing to the manufacturing domain called Cloud-based manufacturing (CBM) or cloud manufacturing (CM). Cloud manufacturing has been recognized as a new paradigm for manufacturing businesses. In cloud manufacturing, manufacturing companies need to support flexible and scalable business processes in the shop floor as well as the software itself. This paper provides an insight or overview on the implementation of cloud manufacturing in the modern manufacturing processes and at the same times analyses the requirements needed regarding process enactment for Cloud manufacturing and at the same time proposing a STEP-NC concept that can function as a tool to support the cloud manufacturing concept.

  5. WWER-1000 nuclear fuel manufacturing process at PJSC MSZ

    International Nuclear Information System (INIS)

    Morylev, A.; Bagdatyeva, E.; Aksenov, P.

    2015-01-01

    In this report a brief description of WWER-1000 fuel manufacturing process steps at PJSC MSZ as: uranium dioxide powder fabrication; fuel pellet manufacture fuel rod manufacture working assembly and fuel assembly manufacture is given. The implemented innovations are also presented

  6. Additive Manufacturing: Multi Material Processing and Part Quality Control

    DEFF Research Database (Denmark)

    Pedersen, David Bue

    This Ph.D dissertation,ffAdditive Manufacturing: Multi Material Processing and Part Quality Controlff, deal with Additive Manufacturing technologies which is a common name for a series of processes that are recognized by being computer controlled, highly automated, and manufacture objects...... by a layered deposition of material. Two areas of particular interest is addressed. They are rooted in two very different areas, yet is intended to fuel the same goal. To help Additive Manufacturing technologies one step closer to becoming the autonomous, digital manufacturing method of tomorrow. Vision...... systems A paradox exist in the field of Additive Manufacturing. The technologies allow for close-to unrestrained and integral geometrical freedom. Almost any geometry can be manufactured fast, e"ciently and cheap. Something that has been missing fundamental capability since the entering of the industrial...

  7. Efficiency of manufacturing processes energy and ecological perspectives

    CERN Document Server

    Li, Wen

    2015-01-01

     This monograph presents a reliable methodology for characterising the energy and eco-efficiency of unit manufacturing processes. The Specific Energy Consumption, SEC, will be identified as the key indicator for the energy efficiency of unit processes.  An empirical approach will be validated on different machine tools and manufacturing processes to depict the relationship between process parameters and energy consumptions. Statistical results and additional validation runs will corroborate the high level of accuracy in predicting the energy consumption. In relation to the eco-efficiency, the value and the associated environmental impacts of  manufacturing processes will also be discussed. The interrelationship between process parameters, process value and the associated environmental impact will be integrated in the evaluation of eco-efficiency. The book concludes with a further investigation of the results in order to develop strategies for further efficiency improvement. The target audience primarily co...

  8. 21 CFR 201.122 - Drugs for processing, repacking, or manufacturing.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Drugs for processing, repacking, or manufacturing... for processing, repacking, or manufacturing. A drug in a bulk package, except tablets, capsules, or... manufacturing, processing, or repacking”; and if in substantially all dosage forms in which it may be dispensed...

  9. Intelligent multivariate process supervision

    International Nuclear Information System (INIS)

    Visuri, Pertti.

    1986-01-01

    This thesis addresses the difficulties encountered in managing large amounts of data in supervisory control of complex systems. Some previous alarm and disturbance analysis concepts are reviewed and a method for improving the supervision of complex systems is presented. The method, called multivariate supervision, is based on adding low level intelligence to the process control system. By using several measured variables linked together by means of deductive logic, the system can take into account the overall state of the supervised system. Thus, it can present to the operators fewer messages with higher information content than the conventional control systems which are based on independent processing of each variable. In addition, the multivariate method contains a special information presentation concept for improving the man-machine interface. (author)

  10. Big Data Analysis of Manufacturing Processes

    Science.gov (United States)

    Windmann, Stefan; Maier, Alexander; Niggemann, Oliver; Frey, Christian; Bernardi, Ansgar; Gu, Ying; Pfrommer, Holger; Steckel, Thilo; Krüger, Michael; Kraus, Robert

    2015-11-01

    The high complexity of manufacturing processes and the continuously growing amount of data lead to excessive demands on the users with respect to process monitoring, data analysis and fault detection. For these reasons, problems and faults are often detected too late, maintenance intervals are chosen too short and optimization potential for higher output and increased energy efficiency is not sufficiently used. A possibility to cope with these challenges is the development of self-learning assistance systems, which identify relevant relationships by observation of complex manufacturing processes so that failures, anomalies and need for optimization are automatically detected. The assistance system developed in the present work accomplishes data acquisition, process monitoring and anomaly detection in industrial and agricultural processes. The assistance system is evaluated in three application cases: Large distillation columns, agricultural harvesting processes and large-scale sorting plants. In this paper, the developed infrastructures for data acquisition in these application cases are described as well as the developed algorithms and initial evaluation results.

  11. Big Data Analysis of Manufacturing Processes

    International Nuclear Information System (INIS)

    Windmann, Stefan; Maier, Alexander; Niggemann, Oliver; Frey, Christian; Bernardi, Ansgar; Gu, Ying; Pfrommer, Holger; Steckel, Thilo; Krüger, Michael; Kraus, Robert

    2015-01-01

    The high complexity of manufacturing processes and the continuously growing amount of data lead to excessive demands on the users with respect to process monitoring, data analysis and fault detection. For these reasons, problems and faults are often detected too late, maintenance intervals are chosen too short and optimization potential for higher output and increased energy efficiency is not sufficiently used. A possibility to cope with these challenges is the development of self-learning assistance systems, which identify relevant relationships by observation of complex manufacturing processes so that failures, anomalies and need for optimization are automatically detected. The assistance system developed in the present work accomplishes data acquisition, process monitoring and anomaly detection in industrial and agricultural processes. The assistance system is evaluated in three application cases: Large distillation columns, agricultural harvesting processes and large-scale sorting plants. In this paper, the developed infrastructures for data acquisition in these application cases are described as well as the developed algorithms and initial evaluation results. (paper)

  12. Post Processing Methods used to Improve Surface Finish of Products which are Manufactured by Additive Manufacturing Technologies: A Review

    Science.gov (United States)

    Kumbhar, N. N.; Mulay, A. V.

    2016-08-01

    The Additive Manufacturing (AM) processes open the possibility to go directly from Computer-Aided Design (CAD) to a physical prototype. These prototypes are used as test models before it is finalized as well as sometimes as a final product. Additive Manufacturing has many advantages over the traditional process used to develop a product such as allowing early customer involvement in product development, complex shape generation and also save time as well as money. Additive manufacturing also possess some special challenges that are usually worth overcoming such as Poor Surface quality, Physical Properties and use of specific raw material for manufacturing. To improve the surface quality several attempts had been made by controlling various process parameters of Additive manufacturing and also applying different post processing techniques on components manufactured by Additive manufacturing. The main objective of this work is to document an extensive literature review in the general area of post processing techniques which are used in Additive manufacturing.

  13. Network-Capable Application Process and Wireless Intelligent Sensors for ISHM

    Science.gov (United States)

    Figueroa, Fernando; Morris, Jon; Turowski, Mark; Wang, Ray

    2011-01-01

    Intelligent sensor technology and systems are increasingly becoming attractive means to serve as frameworks for intelligent rocket test facilities with embedded intelligent sensor elements, distributed data acquisition elements, and onboard data acquisition elements. Networked intelligent processors enable users and systems integrators to automatically configure their measurement automation systems for analog sensors. NASA and leading sensor vendors are working together to apply the IEEE 1451 standard for adding plug-and-play capabilities for wireless analog transducers through the use of a Transducer Electronic Data Sheet (TEDS) in order to simplify sensor setup, use, and maintenance, to automatically obtain calibration data, and to eliminate manual data entry and error. A TEDS contains the critical information needed by an instrument or measurement system to identify, characterize, interface, and properly use the signal from an analog sensor. A TEDS is deployed for a sensor in one of two ways. First, the TEDS can reside in embedded, nonvolatile memory (typically flash memory) within the intelligent processor. Second, a virtual TEDS can exist as a separate file, downloadable from the Internet. This concept of virtual TEDS extends the benefits of the standardized TEDS to legacy sensors and applications where the embedded memory is not available. An HTML-based user interface provides a visual tool to interface with those distributed sensors that a TEDS is associated with, to automate the sensor management process. Implementing and deploying the IEEE 1451.1-based Network-Capable Application Process (NCAP) can achieve support for intelligent process in Integrated Systems Health Management (ISHM) for the purpose of monitoring, detection of anomalies, diagnosis of causes of anomalies, prediction of future anomalies, mitigation to maintain operability, and integrated awareness of system health by the operator. It can also support local data collection and storage. This

  14. The role of across-frequency envelope processing for speech intelligibility

    DEFF Research Database (Denmark)

    Chabot-Leclerc, Alexandre; Jørgensen, Søren; Dau, Torsten

    2013-01-01

    Speech intelligibility models consist of a preprocessing part that transforms the stimuli into some internal (auditory) representation, and a decision metric that quantifies effects of transmission channel, speech interferers, and auditory processing on the speech intelligibility. Here, two recent...... speech intelligibility models, the spectro-temporal modulation index [STMI; Elhilali et al. (2003)] and the speech-based envelope power spectrum model [sEPSM; Jørgensen and Dau (2011)] were evaluated in conditions of noisy speech subjected to reverberation, and to nonlinear distortions through either...

  15. The role of across-frequency envelope processing for speech intelligibility

    DEFF Research Database (Denmark)

    Chabot-Leclerc, Alexandre; Jørgensen, Søren; Dau, Torsten

    2013-01-01

    Speech intelligibility models consist of a preprocessing part that transforms the stimuli into some internal (auditory) representation, and a decision metric that quantifies effects of transmission channel, speech interferers, and auditory processing on the speech intelligibility. Here, two recent...... speech intelligibility models, the spectro-temporal modulation index (STMI; Elhilali et al., 2003) and the speech-based envelope power spectrum model (sEPSM; Jørgensen and Dau, 2011) were evaluated in conditions of noisy speech subjected to reverberation, and to nonlinear distortions through either...

  16. 40 CFR 761.80 - Manufacturing, processing and distribution in commerce exemptions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Manufacturing, processing and..., PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Exemptions § 761.80 Manufacturing, processing and... any change in the manner of processing and distributing, importing (manufacturing), or exporting of...

  17. Machine intelligence and signal processing

    CERN Document Server

    Vatsa, Mayank; Majumdar, Angshul; Kumar, Ajay

    2016-01-01

    This book comprises chapters on key problems in machine learning and signal processing arenas. The contents of the book are a result of a 2014 Workshop on Machine Intelligence and Signal Processing held at the Indraprastha Institute of Information Technology. Traditionally, signal processing and machine learning were considered to be separate areas of research. However in recent times the two communities are getting closer. In a very abstract fashion, signal processing is the study of operator design. The contributions of signal processing had been to device operators for restoration, compression, etc. Applied Mathematicians were more interested in operator analysis. Nowadays signal processing research is gravitating towards operator learning – instead of designing operators based on heuristics (for example wavelets), the trend is to learn these operators (for example dictionary learning). And thus, the gap between signal processing and machine learning is fast converging. The 2014 Workshop on Machine Intel...

  18. Introduction to powder metallurgy processes for titanium manufacturing

    International Nuclear Information System (INIS)

    Esteban, P. G.; Bolzoni, L.; Ruiz-Navas, E. M.; Gordo, E.

    2011-01-01

    The development of new extraction processes to produce titanium in powder form leads Powder Metallurgy to an advantage position among the manufacturing processes for titanium. The cost reduction of base material, coupled with the economy of the powder metallurgy processes, give titanium industry the chance to diversify its products, which could lead to production volumes able to stabilise the price of the metal. This work reviews some of the Powder Metallurgy techniques for the manufacturing of titanium parts, and describes the two typical approaches for titanium manufacturing: Blending Elemental and Prealloyed Powders. Among others, conventional pressing and sintering are described, which are compared with cold and hot isostatic pressing techniques. Real and potential applications are described. (Author) 71 refs.

  19. Manufacturing Vision Development – Process and Dialogue

    DEFF Research Database (Denmark)

    Dukovska-Popovska, Iskra

    This Ph.D. project has been conducted in the context of PRODUCTION+5 methodology for devel¬oping manufacturing visions for companies, and related to Experimental Laboratory for Production. Both have been established in the Center for Industrial Production. The empirical parts of the research invo...... involve case studies of three companies that are part of the MCD-process. The cases primarily are focusing on the process and the dialogue dur¬ing the manufacturing vision development.......This Ph.D. project has been conducted in the context of PRODUCTION+5 methodology for devel¬oping manufacturing visions for companies, and related to Experimental Laboratory for Production. Both have been established in the Center for Industrial Production. The empirical parts of the research...

  20. Manufacturing Demonstration Facility: Roll-to-Roll Processing

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, Panos G [ORNL; Joshi, Pooran C [ORNL; List III, Frederick Alyious [ORNL; Duty, Chad E [ORNL; Armstrong, Beth L [ORNL; Ivanov, Ilia N [ORNL; Jacobs, Christopher B [ORNL; Graham, David E [ORNL; Moon, Ji Won [ORNL

    2015-08-01

    This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean room facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.

  1. Manufacturing technology and process for BWR fuel

    International Nuclear Information System (INIS)

    Kato, Shigeru

    1996-01-01

    Following recent advanced technologies, processes and requests of the design changes of BWR fuel, Nuclear Fuel Industries, Ltd. (NFI) has upgraded the manufacturing technology and honed its own skills to complete its brand-new automated facility in Tokai in the latter half of 1980's. The plant uses various forms of automation throughout the manufacturing process: the acceptance of uranium dioxide powder, pelletizing, fuel rod assembling, fuel bundle assembling and shipment. All processes are well computerized and linked together to establish the integrated control system with three levels of Production and Quality Control, Process Control and Process Automation. This multi-level system plays an important role in the quality assurance system which generates the highest quality of fuels and other benefits. (author)

  2. A Review of Current Machine Learning Techniques Used in Manufacturing Diagnosis

    OpenAIRE

    Ademujimi , Toyosi ,; Brundage , Michael ,; Prabhu , Vittaldas ,

    2017-01-01

    Part 6: Intelligent Diagnostics and Maintenance Solutions; International audience; Artificial intelligence applications are increasing due to advances in data collection systems, algorithms, and affordability of computing power. Within the manufacturing industry, machine learning algorithms are often used for improving manufacturing system fault diagnosis. This study focuses on a review of recent fault diagnosis applications in manufacturing that are based on several prominent machine learnin...

  3. Space station automation study. Automation requirements derived from space manufacturing concepts. Volume 1: Executive summary

    Science.gov (United States)

    1984-01-01

    The two manufacturing concepts developed represent innovative, technologically advanced manufacturing schemes. The concepts were selected to facilitate an in depth analysis of manufacturing automation requirements in the form of process mechanization, teleoperation and robotics, and artificial intelligence. While the cost effectiveness of these facilities has not been analyzed as part of this study, both appear entirely feasible for the year 2000 timeframe. The growing demand for high quality gallium arsenide microelectronics may warrant the ventures.

  4. Using Intelligent Agents to Manage Business Processes

    OpenAIRE

    Jennings, N. R.; Faratin, P.; Johnson, M. J.; O'Brien, P.; Wiegand, M. E.

    1996-01-01

    Management of the business process requires pertinent, consistent and up-to-date information gathering and information dissemination. These complex and time consuming tasks prompt organizations to develop an Information Technology system to assist with the management of various aspects of their business processes. Intelligent agents are the strongest solution candidates because of their many advantages, namely: autonomy, social ability, responsiveness and proactiveness. Given these characteri...

  5. Application of Contact Mode AFM to Manufacturing Processes

    Science.gov (United States)

    Giordano, Michael A.; Schmid, Steven R.

    A review of the application of contact mode atomic force microscopy (AFM) to manufacturing processes is presented. A brief introduction to common experimental techniques including hardness, scratch, and wear testing is presented, with a discussion of challenges in the extension of manufacturing scale investigations to the AFM. Differences between the macro- and nanoscales tests are discussed, including indentation size effects and their importance in the simulation of processes such as grinding. The basics of lubrication theory are presented and friction force microscopy is introduced as a method of investigating metal forming lubrication on the nano- and microscales that directly simulates tooling/workpiece asperity interactions. These concepts are followed by a discussion of their application to macroscale industrial manufacturing processes and direct correlations are made.

  6. UOE Pipe Manufacturing Process Simulation: Equipment Designing and Construction

    Science.gov (United States)

    Delistoian, Dmitri; Chirchor, Mihael

    2017-12-01

    UOE pipe manufacturing process influence directly on pipeline resilience and operation capacity. At present most spreaded pipe manufacturing method is UOE. This method is based on cold forming. After each technological step appears a certain stress and strain level. For pipe stress strain study is designed and constructed special equipment that simulate entire technological process.UOE pipe equipment is dedicated for manufacturing of longitudinally submerged arc welded DN 400 (16 inch) steel pipe.

  7. Financial intelligence of business process outsourcing professional in Davao City Philippines

    Directory of Open Access Journals (Sweden)

    Samantha Ferraren

    2016-12-01

    Full Text Available This research determined the financial intelligence using the Kiyosaki Cashflow Quadrant. The study employed the Kiyosaki Cashflow Quadrant to classify employees financial intelligence as likely to be an investor, big business owner, self-employed and employed. The Ordinal Regression was employed in determining the parameters of the chosen variables through Maximum Likelihood Estimation (MLE. The results showed that income is a significant factor in the financial intelligence of the Business Process Outsourcing (BPO employees; the higher the income the better is the financial intelligence. The type of BPO employer is a significantly determined by the degree of financial intelligence in the BPO employees in financial services had higher financial intelligence than that of non-financial services. There is a significant relationship between financial literacy and financial intelligence.Although, there were some rank and file employees who earned less, and they may be classified as investor because of their behavior towards money. Financial wellness program for BPO employees in financial and non-financial services alike was recommended to improve financial intelligence to be able to achieve financial freedom .

  8. In-situ acoustic signature monitoring in additive manufacturing processes

    Science.gov (United States)

    Koester, Lucas W.; Taheri, Hossein; Bigelow, Timothy A.; Bond, Leonard J.; Faierson, Eric J.

    2018-04-01

    Additive manufacturing is a rapidly maturing process for the production of complex metallic, ceramic, polymeric, and composite components. The processes used are numerous, and with the complex geometries involved this can make quality control and standardization of the process and inspection difficult. Acoustic emission measurements have been used previously to monitor a number of processes including machining and welding. The authors have identified acoustic signature measurement as a potential means of monitoring metal additive manufacturing processes using process noise characteristics and those discrete acoustic emission events characteristic of defect growth, including cracks and delamination. Results of acoustic monitoring for a metal additive manufacturing process (directed energy deposition) are reported. The work investigated correlations between acoustic emissions and process noise with variations in machine state and deposition parameters, and provided proof of concept data that such correlations do exist.

  9. Introducing a Novel Hybrid Artificial Intelligence Algorithm to Optimize Network of Industrial Applications in Modern Manufacturing

    Directory of Open Access Journals (Sweden)

    Aydin Azizi

    2017-01-01

    Full Text Available Recent advances in modern manufacturing industries have created a great need to track and identify objects and parts by obtaining real-time information. One of the main technologies which has been utilized for this need is the Radio Frequency Identification (RFID system. As a result of adopting this technology to the manufacturing industry environment, RFID Network Planning (RNP has become a challenge. Mainly RNP deals with calculating the number and position of antennas which should be deployed in the RFID network to achieve full coverage of the tags that need to be read. The ultimate goal of this paper is to present and evaluate a way of modelling and optimizing nonlinear RNP problems utilizing artificial intelligence (AI techniques. This effort has led the author to propose a novel AI algorithm, which has been named “hybrid AI optimization technique,” to perform optimization of RNP as a hard learning problem. The proposed algorithm is composed of two different optimization algorithms: Redundant Antenna Elimination (RAE and Ring Probabilistic Logic Neural Networks (RPLNN. The proposed hybrid paradigm has been explored using a flexible manufacturing system (FMS, and results have been compared with Genetic Algorithm (GA that demonstrates the feasibility of the proposed architecture successfully.

  10. The roles of communication process for an effective lean manufacturing implementation

    OpenAIRE

    Puvanasvaran, Perumal; Megat, Hamdan; Hong, Tang Sai; Razali, Muhamad Mohd.

    2009-01-01

    Many companies are implementing lean manufacturing concept in order to remain competitive and sustainable, however, not many of them are successful in the process due to various reasons. Communication is an important aspect of lean process in order to successfully implement lean manufacturing. This paper determines the roles of communication process in ensuring a successful implementation of leanness in manufacturing companies. All the information of lean manufacturing practice...

  11. Manufacturing Process for OLED Integrated Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Cheng-Hung [Vitro Flat Glass LLC, Cheswick, PA (United States). Glass Technology Center

    2017-03-31

    The main objective of this project was to develop a low-cost integrated substrate for rigid OLED solid-state lighting produced at a manufacturing scale. The integrated substrates could include combinations of soda lime glass substrate, light extraction layer, and an anode layer (i.e., Transparent Conductive Oxide, TCO). Over the 3+ year course of the project, the scope of work was revised to focus on the development of a glass substrates with an internal light extraction (IEL) layer. A manufacturing-scale float glass on-line particle embedding process capable of producing an IEL glass substrate having a thickness of less than 1.7mm and an area larger than 500mm x 400mm was demonstrated. Substrates measuring 470mm x 370mm were used in the OLED manufacturing process for fabricating OLED lighting panels in single pixel devices as large as 120.5mm x 120.5mm. The measured light extraction efficiency (calculated as external quantum efficiency, EQE) for on-line produced IEL samples (>50%) met the project’s initial goal.

  12. Nonterrestrial material processing and manufacturing of large space systems

    Science.gov (United States)

    Von Tiesenhausen, G.

    1979-01-01

    Nonterrestrial processing of materials and manufacturing of large space system components from preprocessed lunar materials at a manufacturing site in space is described. Lunar materials mined and preprocessed at the lunar resource complex will be flown to the space manufacturing facility (SMF), where together with supplementary terrestrial materials, they will be final processed and fabricated into space communication systems, solar cell blankets, radio frequency generators, and electrical equipment. Satellite Power System (SPS) material requirements and lunar material availability and utilization are detailed, and the SMF processing, refining, fabricating facilities, material flow and manpower requirements are described.

  13. Cost Models for MMC Manufacturing Processes

    Science.gov (United States)

    Elzey, Dana M.; Wadley, Haydn N. G.

    1996-01-01

    Processes for the manufacture of advanced metal matrix composites are rapidly approaching maturity in the research laboratory and there is growing interest in their transition to industrial production. However, research conducted to date has almost exclusively focused on overcoming the technical barriers to producing high-quality material and little attention has been given to the economical feasibility of these laboratory approaches and process cost issues. A quantitative cost modeling (QCM) approach was developed to address these issues. QCM are cost analysis tools based on predictive process models relating process conditions to the attributes of the final product. An important attribute, of the QCM approach is the ability to predict the sensitivity of material production costs to product quality and to quantitatively explore trade-offs between cost and quality. Applications of the cost models allow more efficient direction of future MMC process technology development and a more accurate assessment of MMC market potential. Cost models were developed for two state-of-the art metal matrix composite (MMC) manufacturing processes: tape casting and plasma spray deposition. Quality and Cost models are presented for both processes and the resulting predicted quality-cost curves are presented and discussed.

  14. A study on the applications of AI in finishing of additive manufacturing parts

    Science.gov (United States)

    Fathima Patham, K.

    2017-06-01

    Artificial intelligent and computer simulation are the technological powerful tools for solving complex problems in the manufacturing industries. Additive Manufacturing is one of the powerful manufacturing techniques that provide design flexibilities to the products. The products with complex shapes are directly manufactured without the need of any machining and tooling using Additive Manufacturing. However, the main drawback of the components produced using the Additive Manufacturing processes is the quality of the surfaces. This study aims to minimize the defects caused during Additive Manufacturing with the aid of Artificial Intelligence. The developed AI system has three layers, each layer is trying to eliminate or minimize the production errors. The first layer of the AI system optimizes the digitization of the 3D CAD model of the product and hence reduces the stair case errors. The second layer of the AI system optimizes the 3D printing machine parameters in order to eliminate the warping effect. The third layer of AI system helps to choose the surface finishing technique suitable for the printed component based on the Degree of Complexity of the product and the material. The efficiency of the developed AI system was examined on the functional parts such as gears.

  15. Development of Advanced Ceramic Manufacturing Technology; FINAL

    International Nuclear Information System (INIS)

    Pujari, V.K.

    2001-01-01

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. I n order to achieve these objectives, NAC, a leading U.S. advanced ceramics component manufacturer, assembled a multidisciplinary, vertically integrated team. This team included: a major diesel engine builder, Detroit Diesel Corporation (DDC); a corporate ceramics research division, SGIC's Northboro R and D Center; intelligent processing system developers, BDM Federal/MATSYS; a furnace equipment company, Centorr/Vacuum Industries; a sintering expert, Wittmer Consultants; a production OEM, Deco-Grand; a wheel manufacturer and grinding operation developer, Norton Company's Higgins Grinding Technology Center (HGTC); a ceramic machine shop, Chand Kare Technical Ceramics; and a manufacturing cost consultant, IBIS Associates. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration

  16. Intelligent methods for the process parameter determination of plastic injection molding

    Science.gov (United States)

    Gao, Huang; Zhang, Yun; Zhou, Xundao; Li, Dequn

    2018-03-01

    Injection molding is one of the most widely used material processing methods in producing plastic products with complex geometries and high precision. The determination of process parameters is important in obtaining qualified products and maintaining product quality. This article reviews the recent studies and developments of the intelligent methods applied in the process parameter determination of injection molding. These intelligent methods are classified into three categories: Case-based reasoning methods, expert system- based methods, and data fitting and optimization methods. A framework of process parameter determination is proposed after comprehensive discussions. Finally, the conclusions and future research topics are discussed.

  17. Using generic tool kits to build intelligent systems

    Science.gov (United States)

    Miller, David J.

    1994-01-01

    The Intelligent Systems and Robots Center at Sandia National Laboratories is developing technologies for the automation of processes associated with environmental remediation and information-driven manufacturing. These technologies, which focus on automated planning and programming and sensor-based and model-based control, are used to build intelligent systems which are able to generate plans of action, program the necessary devices, and use sensors to react to changes in the environment. By automating tasks through the use of programmable devices tied to computer models which are augmented by sensing, requirements for faster, safer, and cheaper systems are being satisfied. However, because of the need for rapid cost-effect prototyping and multi-laboratory teaming, it is also necessary to define a consistent approach to the construction of controllers for such systems. As a result, the Generic Intelligent System Controller (GISC) concept has been developed. This concept promotes the philosophy of producing generic tool kits which can be used and reused to build intelligent control systems.

  18. Flexibility in the context of intelligent plant's development

    Directory of Open Access Journals (Sweden)

    Fernando Augusto Pereira

    2008-07-01

    Full Text Available Globalization and competition among companies bring changes in the product development, reducing increasingly its life's cycle. Corporations are opting to world-wide products platforms, with global strategies. Besides the wider vision about corporative strategies, dynamic markets and strong competition are impacting in the medium and short term companies' demands. All these characteristics create turbulences in the organizations, but they can also convey opportunities. In order to take strategic advantage in this process, companies ought to innovate, changing the manner of planning and operating its plants. One possibility to achieve these goals is using flexibility in the manufacture. In this paper, flexibility aspects will be addressed in context of band, reply and dimension, and, how companies can apply this benefit to get better design in their plants and manufacture process, and eliminate waste. Key-words: Flexibility, Toyota Production System, Lean Manufacturing, Intelligent Plants, Wastes’ elimination.

  19. Quality and Safety Assurance of Iron Casts and Manufacturing Processes

    OpenAIRE

    Kukla S.

    2016-01-01

    The scope of this work focuses on the aspects of quality and safety assurance of the iron cast manufacturing processes. Special attention was given to the processes of quality control and after-machining of iron casts manufactured on automatic foundry lines. Due to low level of automation and huge work intensity at this stage of the process, a model area was established which underwent reorganization in accordance with the assumptions of the World Class Manufacturing (WCM). An analysis of wor...

  20. Manufacturing of anode supported SOFCs: Processing parameters and their influence

    DEFF Research Database (Denmark)

    Ramousse, Severine; Menon, Mohan; Brodersen, Karen

    2007-01-01

    The establishment of low cost, highly reliable and reproducible manufacturing processes has been focused for commercialization of SOFC technology. A major challenge in the production chain is the manufacture of anode-supported planar SOFC's single cells in which each layer in a layered structure...... contains a complex microstructure. In order to improve the cell performance as well as reducing the processing costs, it has been found necessary to consider the process chain holistically, because successful manufacture of such a cell and the achievement of optimal final properties depend on each...... of the processing steps and their interdependence. A large database for several thousand anode-supported SOFCs manufactured annually at the Risoe National Laboratory in collaboration with Topsoe Fuel Cell A/S has been constructed. This enables a statistical analysis of the various controlling parameters. Some...

  1. New Perspectives on Intelligence Collection and Processing

    Science.gov (United States)

    2016-06-01

    MASINT Measurement and Signature Intelligence NPS Naval Postgraduate School OSINT Open Source Intelligence pdf Probability Density Function SIGINT...MASINT): different types of sensors • Open Source Intelligence ( OSINT ): from all open sources • Signals Intelligence (SIGINT): intercepting the

  2. Intelligent Integration between Human Simulated Intelligence and Expert Control Technology for the Combustion Process of Gas Heating Furnace

    Directory of Open Access Journals (Sweden)

    Yucheng Liu

    2014-01-01

    Full Text Available Due to being poor in control quality of the combustion process of gas heating furnace, this paper explored a sort of strong robust control algorithm in order to improve the control quality of the combustion process of gas heating furnace. The paper analyzed the control puzzle in the complex combustion process of gas heating furnace, summarized the cybernetics characteristic of the complex combustion process, researched into control strategy of the uncertainty complex control process, discussed the control model of the complex process, presented a sort of intelligent integration between human-simulated intelligence and expert control technology, and constructed the control algorithm for the combustion process controlling of gas heating furnace. The simulation results showed that the control algorithm proposed in the paper is not only better in dynamic and steady quality of the combustion process, but also obvious in energy saving effect, feasible, and effective in control strategy.

  3. Intelligent systems/software engineering methodology - A process to manage cost and risk

    Science.gov (United States)

    Friedlander, Carl; Lehrer, Nancy

    1991-01-01

    A systems development methodology is discussed that has been successfully applied to the construction of a number of intelligent systems. This methodology is a refinement of both evolutionary and spiral development methodologies. It is appropriate for development of intelligent systems. The application of advanced engineering methodology to the development of software products and intelligent systems is an important step toward supporting the transition of AI technology into aerospace applications. A description of the methodology and the process model from which it derives is given. Associated documents and tools are described which are used to manage the development process and record and report the emerging design.

  4. Artificial intelligence applied to process signal analysis

    Science.gov (United States)

    Corsberg, Dan

    1988-01-01

    Many space station processes are highly complex systems subject to sudden, major transients. In any complex process control system, a critical aspect of the human/machine interface is the analysis and display of process information. Human operators can be overwhelmed by large clusters of alarms that inhibit their ability to diagnose and respond to a disturbance. Using artificial intelligence techniques and a knowledge base approach to this problem, the power of the computer can be used to filter and analyze plant sensor data. This will provide operators with a better description of the process state. Once a process state is recognized, automatic action could be initiated and proper system response monitored.

  5. An Approach to quantify the Costs of Business Process Intelligence.

    NARCIS (Netherlands)

    Mutschler, B.B.; Bumiller, J.; Reichert, M.U.; Desel, J.; Frank, U.

    2005-01-01

    Today, enterprises are forced to continuously optimize their business as well as service processes. In this context the process-centered alignment of information systems is crucial. The use of business process intelligence (BPI) tools offers promising perspectives in this respect. However, when

  6. Process chains for the manufacturing of moulded interconnect devices

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2009-01-01

    process chains for the manufacturing of MIDs. This paper presents a comparison among the MID manufacturing process chains, and it presents experimental results based on two of the most industrially adapted processes. Experiments with two-component (2k) injection molding and subsequent selective......) process show that the success of the process is heavily dependant on the choice of material. It presents how the surface topographies are varied as a function of laser type and material choice. The amount of seed metal particles in the plastic material is a crucial factor that controls laser...

  7. Meaning of cognitive processes for creating artificial intelligence

    OpenAIRE

    Pangrác, Vojtěch

    2011-01-01

    This diploma thesis brings an integral view at cognitive processes connected with artificial intelligence systems, and makes a comparison with the processes observed in nature, including human being. A historical background helps us to look at the whole issue from a certain point of view. The main axis of interest comes after the historical overview and includes the following: environment -- stimulations -- processing -- reflection in the cognitive system -- reaction to stimulation; I balance...

  8. CIMOSA process classification for business process mapping in non-manufacturing firms: A case study

    Science.gov (United States)

    Latiffianti, Effi; Siswanto, Nurhadi; Wiratno, Stefanus Eko; Saputra, Yudha Andrian

    2017-11-01

    A business process mapping is one important means to enable an enterprise to effectively manage the value chain. One of widely used approaches to classify business process for mapping purpose is Computer Integrated Manufacturing System Open Architecture (CIMOSA). CIMOSA was initially designed for Computer Integrated Manufacturing (CIM) system based enterprises. This paper aims to analyze the use of CIMOSA process classification for business process mapping in the firms that do not fall within the area of CIM. Three firms of different business area that have used CIMOSA process classification were observed: an airline firm, a marketing and trading firm for oil and gas products, and an industrial estate management firm. The result of the research has shown that CIMOSA can be used in non-manufacturing firms with some adjustment. The adjustment includes addition, reduction, or modification of some processes suggested by CIMOSA process classification as evidenced by the case studies.

  9. Electropulsing to assist conventional manufacturing processes

    OpenAIRE

    Sánchez Egea, Antonio José

    2016-01-01

    This thesis presents a study on the variation of the mechanical properties of some materials. These variations are registered for processes as bottom bending, wire drawing or round turning, which are performed under high density electropulses. This research implied the study of several issues related to the manufacturing processes and the electric pulses. For example, some isolated systems are developed for each process. This is required for protecting the monitoring devices and machinery fro...

  10. External designers in product design processes of small manufacturing firms

    NARCIS (Netherlands)

    Berends, Hans; Reymen, Isabelle; Stultiëns, Rutger G L; Peutz, Murk

    Small manufacturing firms often fail to reap the benefits of good design practices. This study investigates how the involvement of external designers influences the evolution of product design processes in small manufacturing firms. Qualitative and quantitative process research methods were used to

  11. 21 CFR 801.122 - Medical devices for processing, repacking, or manufacturing.

    Science.gov (United States)

    2010-04-01

    ....122 Medical devices for processing, repacking, or manufacturing. A device intended for processing... act if its label bears the statement “Caution: For manufacturing, processing, or repacking”. ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical devices for processing, repacking, or...

  12. 78 FR 18234 - Service of Process on Manufacturers; Manufacturers Importing Electronic Products Into the United...

    Science.gov (United States)

    2013-03-26

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 1005 [Docket No. FDA-2007-N-0091; (formerly 2007N-0104)] Service of Process on Manufacturers; Manufacturers Importing Electronic Products Into the United States; Agent Designation; Change of Address AGENCY: Food and Drug...

  13. Numerical simulation of complex part manufactured by selective laser melting process

    Science.gov (United States)

    Van Belle, Laurent

    2017-10-01

    Selective Laser Melting (SLM) process belonging to the family of the Additive Manufacturing (AM) technologies, enable to build parts layer by layer, from metallic powder and a CAD model. Physical phenomena that occur in the process have the same issues as conventional welding. Thermal gradients generate significant residual stresses and distortions in the parts. Moreover, the large and complex parts to manufacturing, accentuate the undesirable effects. Therefore, it is essential for manufacturers to offer a better understanding of the process and to ensure production reliability of parts with high added value. This paper focuses on the simulation of manufacturing turbine by SLM process in order to calculate residual stresses and distortions. Numerical results will be presented.

  14. Manufacturing Scheduling Using Colored Petri Nets and Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Maria Drakaki

    2017-02-01

    Full Text Available Agent-based intelligent manufacturing control systems are capable to efficiently respond and adapt to environmental changes. Manufacturing system adaptation and evolution can be addressed with learning mechanisms that increase the intelligence of agents. In this paper a manufacturing scheduling method is presented based on Timed Colored Petri Nets (CTPNs and reinforcement learning (RL. CTPNs model the manufacturing system and implement the scheduling. In the search for an optimal solution a scheduling agent uses RL and in particular the Q-learning algorithm. A warehouse order-picking scheduling is presented as a case study to illustrate the method. The proposed scheduling method is compared to existing methods. Simulation and state space results are used to evaluate performance and identify system properties.

  15. Assessment of low-cost manufacturing process sequences. [photovoltaic solar arrays

    Science.gov (United States)

    Chamberlain, R. G.

    1979-01-01

    An extensive research and development activity to reduce the cost of manufacturing photovoltaic solar arrays by a factor of approximately one hundred is discussed. Proposed and actual manufacturing process descriptions were compared to manufacturing costs. An overview of this methodology is presented.

  16. A product-process approach for development of the manufacturing footprint

    DEFF Research Database (Denmark)

    Farooq, Sami; Yang, Cheng; Johansen, John

    2009-01-01

    to ever changing global business environment there are certain other external factors that act as drivers for the manufacturing facility development process and therefore should be given considerable importance as they play a major role in defining the future footprint of a manufacturing organisation....... elaborating the development and establishment of various manufacturing facilities of a Danish pump manufacturer is then described. The discussion from the case leads to the conclusion that developing new manufacturing facilities can be explained using existing theories of manufacturing strategy. However due...

  17. Framework for Sustainability Performance Assessment for Manufacturing Processes- A Review

    Science.gov (United States)

    Singh, K.; Sultan, I.

    2017-07-01

    Manufacturing industries are facing tough competition due to increasing raw material cost and depleting natural resources. There is great pressure on the industry to produce environmental friendly products using environmental friendly processes. To address these issues modern manufacturing industries are focusing on sustainable manufacturing. To develop more sustainable societies, industries need to better understand how to respond to environmental, economic and social challenges. This paper proposed some framework and tools that accelerate the transition towards a sustainable system. The developed framework will be beneficial for sustainability assessment comparing different plans alongside material properties, ultimately helping the manufacturing industries to reduce the carbon emissions and material waste, besides improving energy efficiency. It is expected that this would be highly beneficial for determination of environmental impact of a process at early design stages. Therefore, it would greatly help the manufacturing industries for selection of process plan based on sustainable indices. Overall objective of this paper would have good impact on reducing air emissions and protecting environment. We expect this work to contribute to the development of a standard reference methodology to help further sustainability in the manufacturing sector.

  18. Working memory - not processing speed - mediates fluid intelligence deficits associated with attention deficit/hyperactivity disorder symptoms.

    Science.gov (United States)

    Brydges, Christopher R; Ozolnieks, Krista L; Roberts, Gareth

    2017-09-01

    Attention deficit/hyperactivity disorder (ADHD) is a psychological condition characterized by inattention and hyperactivity. Cognitive deficits are commonly observed in ADHD patients, including impaired working memory, processing speed, and fluid intelligence, the three of which are theorized to be closely associated with one another. In this study, we aimed to determine if decreased fluid intelligence was associated with ADHD, and was mediated by deficits in working memory and processing speed. This study tested 142 young adults from the general population on a range of working memory, processing speed, and fluid intelligence tasks, and an ADHD self-report symptoms questionnaire. Results showed that total and hyperactive ADHD symptoms correlated significantly and negatively with fluid intelligence, but this association was fully mediated by working memory. However, inattentive symptoms were not associated with fluid intelligence. Additionally, processing speed was not associated with ADHD symptoms at all, and was not uniquely predictive of fluid intelligence. The results provide implications for working memory training programs for ADHD patients, and highlight potential differences between the neuropsychological profiles of ADHD subtypes. © 2015 The British Psychological Society.

  19. Intelligent query processing for semantic mediation of information systems

    Directory of Open Access Journals (Sweden)

    Saber Benharzallah

    2011-11-01

    Full Text Available We propose an intelligent and an efficient query processing approach for semantic mediation of information systems. We propose also a generic multi agent architecture that supports our approach. Our approach focuses on the exploitation of intelligent agents for query reformulation and the use of a new technology for the semantic representation. The algorithm is self-adapted to the changes of the environment, offers a wide aptitude and solves the various data conflicts in a dynamic way; it also reformulates the query using the schema mediation method for the discovered systems and the context mediation for the other systems.

  20. A Review on the Mechanical Modeling of Composite Manufacturing Processes

    DEFF Research Database (Denmark)

    Baran, Ismet; Cinar, Kenan; Ersoy, Nuri

    2016-01-01

    The increased usage of fiber reinforced polymer composites in load bearing applications requires a detailed understanding of the process induced residual stresses and their effect on the shape distortions. This is utmost necessary in order to have more reliable composite manufacturing since...... the residual stresses alter the internal stress level of the composite part during the service life and the residual shape distortions may lead to not meeting the desired geometrical tolerances. The occurrence of residual stresses during the manufacturing process inherently contains diverse interactions...... between the involved physical phenomena mainly related to material flow, heat transfer and polymerization or crystallization. Development of numerical process models is required for virtual design and optimization of the composite manufacturing process which avoids the expensive trial-and-error based...

  1. 6th Workshop on Service Orientation in Holonic and Multi-Agent Manufacturing

    CERN Document Server

    Trentesaux, Damien; Thomas, André; Leitão, Paulo; Oliveira, José

    2017-01-01

    The book offers an integrated vision on Cloud and HPC, Big Data, Analytics and virtualization in computing-oriented manufacturing, combining information and communication technologies, service-oriented control of holonic architectures as well as enterprise integration solutions based on SOA principles. It is structured in eight parts, each one grouping research and trends in digital manufacturing and service oriented manufacturing control: Cloud and Cyber-Physical Systems for Smart Manufacturing, Reconfigurable and Self-organized Multi-Agent Systems for Industry and Service, Sustainability Issues in Intelligent Manufacturing Systems, Holonic and Multi-agent System Design for Industry and Service, Should Intelligent Manufacturing Systems be Dependable and Safe?, Service-oriented Management and Control of Manufacturing Systems, Engineering and Human Integration in Flexible and Reconfigurable Industrial Systems,Virtualization and Simulation in Computing-oriented Industry and Service.

  2. The roles of communication process for an effective lean manufacturing implementation

    Directory of Open Access Journals (Sweden)

    Perumal Puvanasvaran

    2009-07-01

    Full Text Available Many companies are implementing lean manufacturing concept in order to remain competitive and sustainable, however, not many of them are successful in the process due to various reasons. Communication is an important aspect of lean process in order to successfully implement lean manufacturing.  This paper determines the roles of communication process in ensuring a successful implementation of leanness in manufacturing companies. All the information of lean manufacturing practices and roles of communication in the implementation were compiled from related journals, books and websites. A study was conducted in an aerospace manufacturing in Malaysia. A five-point scale questionnaire is used as the study instrument. These questionnaires were distributed to 45 employees working in a kitting department and to 8 top management people. The results indicate that the degree of leanness were moderate.

  3. Topology Optimization for Reducing Additive Manufacturing Processing Distortions

    Science.gov (United States)

    2017-12-01

    distribution is unlimited. 1. Introduction Additive manufacturing (AM) is a production method that involves gradual, layer- by-layer building of material... design space—allowing the production of pre- viously unmanufacturable topologically optimized structures—constraints remain. One constraint, for...ARL-TR-8242•DEC 2017 US Army Research Laboratory Topology Optimization for ReducingAdditive Manufacturing ProcessingDistortions by Raymond A Wildman

  4. Integration of design and manufacturing in a virtual enterprise using enterprise rules, intelligent agents, STEP, and work flow

    Science.gov (United States)

    Gilman, Charles R.; Aparicio, Manuel; Barry, J.; Durniak, Timothy; Lam, Herman; Ramnath, Rajiv

    1997-12-01

    An enterprise's ability to deliver new products quickly and efficiently to market is critical for competitive success. While manufactureres recognize the need for speed and flexibility to compete in this market place, companies do not have the time or capital to move to new automation technologies. The National Industrial Information Infrastructure Protocols Consortium's Solutions for MES Adaptable Replicable Technology (NIIIP SMART) subgroup is developing an information infrastructure to enable the integration and interoperation among Manufacturing Execution Systems (MES) and Enterprise Information Systems within an enterprise or among enterprises. The goal of these developments is an adaptable, affordable, reconfigurable, integratable manufacturing system. Key innovative aspects of NIIIP SMART are: (1) Design of an industry standard object model that represents the diverse aspects of MES. (2) Design of a distributed object network to support real-time information sharing. (3) Product data exchange based on STEP and EXPRESS (ISO 10303). (4) Application of workflow and knowledge management technologies to enact manufacturing and business procedures and policy. (5) Application of intelligent agents to support emergent factories. This paper illustrates how these technologies have been incorporated into the NIIIP SMART system architecture to enable the integration and interoperation of existing tools and future MES applications in a 'plug and play' environment.

  5. Processes for manufacture of products from plants

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed herein is a process for inhibiting browning of plant material comprising adding a chelating agent to a disrupted plant material and adjusting the pH to a value of 2.0 to 4.5. Processes for manufacture of soluble and insoluble products from a plant material are also disclosed. Soluble...

  6. The Relationship between Multiple Intelligences with Preferred Science Teaching and Science Process Skills

    OpenAIRE

    Mohd Ali Samsudin; Noor Hasyimah Haniza; Corrienna Abdul-Talib; Hayani Marlia Mhd Ibrahim

    2015-01-01

    This study was undertaken to identify the relationship between multiple intelligences with preferred science teaching and science process skills. The design of the study is a survey using three questionnaires reported in the literature: Multiple Intelligences Questionnaire, Preferred Science Teaching Questionnaire and Science Process Skills Questionnaire. The study selected 300 primary school students from five (5) primary schools in Penang, Malaysia. The findings showed a relationship betwee...

  7. Development of Probabilistic Structural Analysis Integrated with Manufacturing Processes

    Science.gov (United States)

    Pai, Shantaram S.; Nagpal, Vinod K.

    2007-01-01

    An effort has been initiated to integrate manufacturing process simulations with probabilistic structural analyses in order to capture the important impacts of manufacturing uncertainties on component stress levels and life. Two physics-based manufacturing process models (one for powdered metal forging and the other for annular deformation resistance welding) have been linked to the NESSUS structural analysis code. This paper describes the methodology developed to perform this integration including several examples. Although this effort is still underway, particularly for full integration of a probabilistic analysis, the progress to date has been encouraging and a software interface that implements the methodology has been developed. The purpose of this paper is to report this preliminary development.

  8. Intelligent Extruder

    Energy Technology Data Exchange (ETDEWEB)

    AlperEker; Mark Giammattia; Paul Houpt; Aditya Kumar; Oscar Montero; Minesh Shah; Norberto Silvi; Timothy Cribbs

    2003-04-24

    ''Intelligent Extruder'' described in this report is a software system and associated support services for monitoring and control of compounding extruders to improve material quality, reduce waste and energy use, with minimal addition of new sensors or changes to the factory floor system components. Emphasis is on process improvements to the mixing, melting and de-volatilization of base resins, fillers, pigments, fire retardants and other additives in the :finishing'' stage of high value added engineering polymer materials. While GE Plastics materials were used for experimental studies throughout the program, the concepts and principles are broadly applicable to other manufacturers materials. The project involved a joint collaboration among GE Global Research, GE Industrial Systems and Coperion Werner & Pleiderer, USA, a major manufacturer of compounding equipment. Scope of the program included development of a algorithms for monitoring process material viscosity without rheological sensors or generating waste streams, a novel detection scheme for rapid detection of process upsets and an adaptive feedback control system to compensate for process upsets where at line adjustments are feasible. Software algorithms were implemented and tested on a laboratory scale extruder (50 lb/hr) at GE Global Research and data from a production scale system (2000 lb/hr) at GE Plastics was used to validate the monitoring and detection software. Although not evaluated experimentally, a new concept for extruder process monitoring through estimation of high frequency drive torque without strain gauges is developed and demonstrated in simulation. A plan to commercialize the software system is outlined, but commercialization has not been completed.

  9. Engineering aspects of rate-related processes in food manufacturing.

    Science.gov (United States)

    Adachi, Shuji

    2015-01-01

    Many rate-related phenomena occur in food manufacturing processes. This review addresses four of them, all of which are topics that the author has studied in order to design food manufacturing processes that are favorable from the standpoint of food engineering. They include chromatographic separation through continuous separation with a simulated moving adsorber, lipid oxidation kinetics in emulsions and microencapsulated systems, kinetic analysis and extraction in subcritical water, and water migration in pasta.

  10. Microstructure and corrosion characteristics of HANA 6 alloy with various manufacturing processes

    International Nuclear Information System (INIS)

    Kim, Hyun Gil; Choi, Byung Kwan; Jeong, Yong Hwan

    2008-01-01

    In order to obtain the best manufacturing process for the HANA 6 alloy, the various evaluations such as a corrosion test at 400 .deg. C steam condition, a microstructural analysis by using TEM, and texture analysis by using XRD were performed for the HANA 6 alloy with various manufacturing processes. This alloy was manufactured as sheets by applying 4 types of manufacturing processes which were controlled by a combination of the intermediate annealing temperature and reduction ratio, as well as two types of final annealing conditions which were applied to the HANA 6 alloy from TREX samples. The corrosion resistance of the HANA 6 alloy with various manufacturing processes was increased with a decreasing intermediate annealing temperature and the corrosion resistance of that alloy was decreased by increasing the final annealing temperature after a corrosion test up to 240 days. The precipitate of the HANA 6 alloy mainly consisted of Nb-containing precipitates in all the samples, but the size, distribution and Nb concentration of the precipitates was affected by the applied manufacturing processes. The Nb concentration in the precipitates was increased when the samples were annealed at 570.deg.C during the intermediate annealing processes. So, the corrosion rate of the HANA 6 alloy is affected considerably by a control of the intermediate and final annealing conditions which affect the precipitate characteristics in the matrix. The crystallographic texture of the HANA 6 alloy with various manufacturing processes is similar since the total reduction ratio was the same in all the manufactured sheet samples

  11. Biological features produced by additive manufacturing processes using vat photopolymerization method

    DEFF Research Database (Denmark)

    Davoudinejad, Ali; Mendez Ribo, Macarena; Pedersen, David Bue

    2017-01-01

    of micro biological features by Additive Manufacturing (AM) processes. The study characterizes the additive manufacturing processes for polymeric micro part productions using the vat photopolymerization method. A specifically designed vat photopolymerization AM machine suitable for precision printing...

  12. Service orientation in holonic and multi agent manufacturing and robotics

    CERN Document Server

    Thomas, Andre; Trentesaux, Damien

    2013-01-01

    The book covers four research domains representing a trend for modern manufacturing control: Holonic and Multi-agent technologies for industrial systems; Intelligent Product and Product-driven Automation; Service Orientation of Enterprise’s strategic and technical processes; and Distributed Intelligent Automation Systems. These evolution lines have in common concepts related to service orientation derived from the Service Oriented Architecture (SOA) paradigm.     The service-oriented multi-agent systems approach discussed in the book is characterized by the use of a set of distributed autonomous and cooperative agents, embedded in smart components that use the SOA principles, being oriented by offer and request of services, in order to fulfil production systems and value chain goals.   A new integrated vision combining emergent technologies is offered, to create control structures with distributed intelligence supporting the vertical and horizontal enterprise integration and running in truly distributed ...

  13. Tracking the course of the manufacturing process in selective laser melting

    Science.gov (United States)

    Thombansen, U.; Gatej, A.; Pereira, M.

    2014-02-01

    An innovative optical train for a selective laser melting based manufacturing system (SLM) has been designed under the objective to track the course of the SLM process. In this, the thermal emission from the melt pool and the geometric properties of the interaction zone are addressed by applying a pyrometer and a camera system respectively. The optical system is designed such that all three radiations from processing laser, thermal emission and camera image are coupled coaxially and that they propagate on the same optical axis. As standard f-theta lenses for high power applications inevitably lead to aberrations and divergent optical axes for increasing deflection angles in combination with multiple wavelengths, a pre-focus system is used to implement a focusing unit which shapes the beam prior to passing the scanner. The sensor system records synchronously the current position of the laser beam, the current emission from the melt pool and an image of the interaction zone. Acquired data of the thermal emission is being visualized after processing which allows an instant evaluation of the course of the process at any position of each layer. As such, it provides a fully detailed history of the product This basic work realizes a first step towards self-optimization of the manufacturing process by providing information about quality relevant events during manufacture. The deviation from the planned course of the manufacturing process to the actual course of the manufacturing process can be used to adapt the manufacturing strategy from one layer to the next. In the current state, the system can be used to facilitate the setup of the manufacturing system as it allows identification of false machine settings without having to analyze the work piece.

  14. Markov decision processes in artificial intelligence

    CERN Document Server

    Sigaud, Olivier

    2013-01-01

    Markov Decision Processes (MDPs) are a mathematical framework for modeling sequential decision problems under uncertainty as well as Reinforcement Learning problems. Written by experts in the field, this book provides a global view of current research using MDPs in Artificial Intelligence. It starts with an introductory presentation of the fundamental aspects of MDPs (planning in MDPs, Reinforcement Learning, Partially Observable MDPs, Markov games and the use of non-classical criteria). Then it presents more advanced research trends in the domain and gives some concrete examples using illustr

  15. Use of residual wood in the cement manufacturing process

    International Nuclear Information System (INIS)

    Gue, R.

    2005-01-01

    This PowerPoint presentation discussed the use of wood residuals in the cement manufacturing process. An outline of the cement manufacturing process was presented. Raw materials are combined in exact proportions to create a chemically correct mix, which is then pulverized in a mill. The mix is then burned in a kiln. The end product is cooled to form the pellet sized material known as clinker, which is then milled to form cement. The combustion and destruction characteristics of a cement kiln were presented. Modern cement kilns require approximately 3.2 Gj of energy to produce one tonne of cement. It was noted that wood residuals do not contain halogens, sulfur or other materials detrimental to the cement manufacturing process. Possible injection points for kilns were presented. Various studies have shown that wood residuals can be safely used as a fuel in the manufacture of cement. Environmental benefits derived from using wood included the complete destruction of organic portions, and the fact that residual ash becomes an indistinguishable part of the final product. It was concluded that wood residual materials are a satisfactory alternative fuel for the cement industry. tabs., figs

  16. Quality Control in Automated Manufacturing Processes – Combined Features for Image Processing

    Directory of Open Access Journals (Sweden)

    B. Kuhlenkötter

    2006-01-01

    Full Text Available In production processes the use of image processing systems is widespread. Hardware solutions and cameras respectively are available for nearly every application. One important challenge of image processing systems is the development and selection of appropriate algorithms and software solutions in order to realise ambitious quality control for production processes. This article characterises the development of innovative software by combining features for an automatic defect classification on product surfaces. The artificial intelligent method Support Vector Machine (SVM is used to execute the classification task according to the combined features. This software is one crucial element for the automation of a manually operated production process

  17. Microstructure devices for process intensification: Influence of manufacturing tolerances and design

    International Nuclear Information System (INIS)

    Brandner, Juergen J.

    2013-01-01

    Process intensification by miniaturization is a common task for several fields of technology. Starting from manufacturing of electronic devices, miniaturization with the accompanying opportunities and problems gained also interest in chemistry and chemical process engineering. While the integration of enhanced functions, e.g. integrated sensors and actuators, is still under consideration, miniaturization itself has been realized in all material classes, namely metals, ceramics and polymers. First devices have been manufactured by scaling down macro-scale devices. However, manufacturing tolerances, material properties and design show much larger influence to the process than in macro scale. Many of the devices generated alike the macro ones work properly, but possibly could be optimized to a certain extend by adjusting the design and manufacturing tolerances to the special demands of miniaturization. Thus, some considerations on the design and production of devices for micro process engineering should be made to provide devices which show reproducible and controllable process behavior. The aim of the following publication is to show the importance of considerations in manufacturing tolerances and dimensions as well as design of microstructures to avoid negative influences and optimize the process characteristics of miniaturized devices. Some examples will be shown to explain the considerations presented here

  18. An Optimized Version of a New Absolute Linear Encoder Dedicated to Intelligent Transportation Systems

    DEFF Research Database (Denmark)

    Argeseanu, Alin; Ritchie, Ewen; Leban, Krisztina Monika

    2009-01-01

    made in the coding algorithm, in the ruler topology and in the dedicated software. The optimized ALE is a robust device able to work in industrial environment, with a high level of vibrations. By this reason it is ideal for the transport system control in automating manufacturing processes, intelligent...

  19. Original article Functioning of memory and attention processes in children with intelligence below average

    Directory of Open Access Journals (Sweden)

    Aneta Rita Borkowska

    2014-05-01

    Full Text Available BACKGROUND The aim of the research was to assess memorization and recall of logically connected and unconnected material, coded graphically and linguistically, and the ability to focus attention, in a group of children with intelligence below average, compared to children with average intelligence. PARTICIPANTS AND PROCEDURE The study group included 27 children with intelligence below average. The control group consisted of 29 individuals. All of them were examined using the authors’ experimental trials and the TUS test (Attention and Perceptiveness Test. RESULTS Children with intelligence below average memorized significantly less information contained in the logical material, demonstrated lower ability to memorize the visual material, memorized significantly fewer words in the verbal material learning task, achieved lower results in such indicators of the visual attention process pace as the number of omissions and mistakes, and had a lower pace of perceptual work, compared to children with average intelligence. CONCLUSIONS The results confirm that children with intelligence below average have difficulties with memorizing new material, both logically connected and unconnected. The significantly lower capacity of direct memory is independent of modality. The results of the study on the memory process confirm the hypothesis about lower abilities of children with intelligence below average, in terms of concentration, work pace, efficiency and perception.

  20. Mining manufacturing data for discovery of high productivity process characteristics.

    Science.gov (United States)

    Charaniya, Salim; Le, Huong; Rangwala, Huzefa; Mills, Keri; Johnson, Kevin; Karypis, George; Hu, Wei-Shou

    2010-06-01

    Modern manufacturing facilities for bioproducts are highly automated with advanced process monitoring and data archiving systems. The time dynamics of hundreds of process parameters and outcome variables over a large number of production runs are archived in the data warehouse. This vast amount of data is a vital resource to comprehend the complex characteristics of bioprocesses and enhance production robustness. Cell culture process data from 108 'trains' comprising production as well as inoculum bioreactors from Genentech's manufacturing facility were investigated. Each run constitutes over one-hundred on-line and off-line temporal parameters. A kernel-based approach combined with a maximum margin-based support vector regression algorithm was used to integrate all the process parameters and develop predictive models for a key cell culture performance parameter. The model was also used to identify and rank process parameters according to their relevance in predicting process outcome. Evaluation of cell culture stage-specific models indicates that production performance can be reliably predicted days prior to harvest. Strong associations between several temporal parameters at various manufacturing stages and final process outcome were uncovered. This model-based data mining represents an important step forward in establishing a process data-driven knowledge discovery in bioprocesses. Implementation of this methodology on the manufacturing floor can facilitate a real-time decision making process and thereby improve the robustness of large scale bioprocesses. 2010 Elsevier B.V. All rights reserved.

  1. Internet-based intelligent information processing systems

    CERN Document Server

    Tonfoni, G; Ichalkaranje, N S

    2003-01-01

    The Internet/WWW has made it possible to easily access quantities of information never available before. However, both the amount of information and the variation in quality pose obstacles to the efficient use of the medium. Artificial intelligence techniques can be useful tools in this context. Intelligent systems can be applied to searching the Internet and data-mining, interpreting Internet-derived material, the human-Web interface, remote condition monitoring and many other areas. This volume presents the latest research on the interaction between intelligent systems (neural networks, adap

  2. Computational Process Modeling for Additive Manufacturing (OSU)

    Science.gov (United States)

    Bagg, Stacey; Zhang, Wei

    2015-01-01

    Powder-Bed Additive Manufacturing (AM) through Direct Metal Laser Sintering (DMLS) or Selective Laser Melting (SLM) is being used by NASA and the Aerospace industry to "print" parts that traditionally are very complex, high cost, or long schedule lead items. The process spreads a thin layer of metal powder over a build platform, then melts the powder in a series of welds in a desired shape. The next layer of powder is applied, and the process is repeated until layer-by-layer, a very complex part can be built. This reduces cost and schedule by eliminating very complex tooling and processes traditionally used in aerospace component manufacturing. To use the process to print end-use items, NASA seeks to understand SLM material well enough to develop a method of qualifying parts for space flight operation. Traditionally, a new material process takes many years and high investment to generate statistical databases and experiential knowledge, but computational modeling can truncate the schedule and cost -many experiments can be run quickly in a model, which would take years and a high material cost to run empirically. This project seeks to optimize material build parameters with reduced time and cost through modeling.

  3. PURPOSE – PROCESS – PEOPLE A LEAN APPROACH TO BIOMEDICAL MANUFACTURING

    Directory of Open Access Journals (Sweden)

    A.D. Kahlen

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Opportunities to improve production processes and access to markets through the implementation of lean manufacturing in biomedical manufacturing are presented. The importance of a unified definition of manufacturing, to which biomedical manufacturing is party, is emphasized, and the theory of “lean”, summarized as “purpose, process, people”, is elaborated. The requirements for the creation of value through the creation of flow and the elimination of wastes are highlighted in the context of biomedical manufacturing. Finally, case studies are presented to illustrate the approaches to “purpose, process, people”.

    AFRIKAANSE OPSOMMING: Geleenthede vir die verbetering van produksieprosesse en marktoegang via die implementering van skraalvervaardiging in die biomediese vervaardigingsbedryf word voorgehou. Aandag word geskenk aan die betekenis van terme soos “skraal, doel, proses, menes” in die konteks van biomediese vervaardiging. Waardeskepping, vloei en vermorsing word onder die loep geneem. Gevallestudies word ter illustrasie van begrippe aangebied.

  4. Cognitive and emotional demands of black humour processing: the role of intelligence, aggressiveness and mood.

    Science.gov (United States)

    Willinger, Ulrike; Hergovich, Andreas; Schmoeger, Michaela; Deckert, Matthias; Stoettner, Susanne; Bunda, Iris; Witting, Andrea; Seidler, Melanie; Moser, Reinhilde; Kacena, Stefanie; Jaeckle, David; Loader, Benjamin; Mueller, Christian; Auff, Eduard

    2017-05-01

    Humour processing is a complex information-processing task that is dependent on cognitive and emotional aspects which presumably influence frame-shifting and conceptual blending, mental operations that underlie humour processing. The aim of the current study was to find distinctive groups of subjects with respect to black humour processing, intellectual capacities, mood disturbance and aggressiveness. A total of 156 adults rated black humour cartoons and conducted measurements of verbal and nonverbal intelligence, mood disturbance and aggressiveness. Cluster analysis yields three groups comprising following properties: (1) moderate black humour preference and moderate comprehension; average nonverbal and verbal intelligence; low mood disturbance and moderate aggressiveness; (2) low black humour preference and moderate comprehension; average nonverbal and verbal intelligence, high mood disturbance and high aggressiveness; and (3) high black humour preference and high comprehension; high nonverbal and verbal intelligence; no mood disturbance and low aggressiveness. Age and gender do not differ significantly, differences in education level can be found. Black humour preference and comprehension are positively associated with higher verbal and nonverbal intelligence as well as higher levels of education. Emotional instability and higher aggressiveness apparently lead to decreased levels of pleasure when dealing with black humour. These results support the hypothesis that humour processing involves cognitive as well as affective components and suggest that these variables influence the execution of frame-shifting and conceptual blending in the course of humour processing.

  5. Lean Manufacturing - A Powerfull Tool for Reducing Waste During the Processes

    Directory of Open Access Journals (Sweden)

    Mihai Apreutesei

    2010-01-01

    Full Text Available Lean manufacturing provides a new management approach for many small and medium size manufacturers, especially older firms organized and managed under traditional push systems. Improvement results can be dramatic in terms of quality, cycle times, and customer responsiveness. Lean manufacturing is more than a set of tools and techniques and has been widely adopted by many production companies. Lean manufacturing is a culture in which all employees continuously look for ways to improve processes. In the present article are presented the Lean Manufacturing tools, like kaizen, Kanban, poka-yoke witch a company can use to reduce the waste(muda during a production process. The paper contains also, the most common seven types of waste from production and some examples from our daily activity.

  6. Manufacture of Third-Generation Lentivirus for Preclinical Use, with Process Development Considerations for Translation to Good Manufacturing Practice.

    Science.gov (United States)

    Gándara, Carolina; Affleck, Valerie; Stoll, Elizabeth Ann

    2018-02-01

    Lentiviral vectors are used in laboratories around the world for in vivo and ex vivo delivery of gene therapies, and increasingly clinical investigation as well as preclinical applications. The third-generation lentiviral vector system has many advantages, including high packaging capacity, stable gene expression in both dividing and post-mitotic cells, and low immunogenicity in the recipient organism. Yet, the manufacture of these vectors is challenging, especially at high titers required for direct use in vivo, and further challenges are presented by the process of translating preclinical gene therapies toward manufacture of products for clinical investigation. The goals of this paper are to report the protocol for manufacturing high-titer third-generation lentivirus for preclinical testing and to provide detailed information on considerations for translating preclinical viral vector manufacture toward scaled-up platforms and processes in order to make gene therapies under Good Manufacturing Practice that are suitable for clinical trials.

  7. Fault tree analysis of the manufacturing process of nuclear fuel containers

    International Nuclear Information System (INIS)

    Liao Weixian; Men Dechun; Sui Yuxue

    1998-08-01

    The nuclear fuel container consists of barrel body, bottom, cover, locking ring, rubber seal ring, and so on. It should be kept sealed in transportation and storage, so keeps the fuel contained from leakage. Its manufacturing process includes blanking, forming, seam welding, assembling, derusting and painting. The seam welding and assembling of barrel body and bottom are two key procedures, and the slope grinding, barrel body flaring and deep drawing of the bottom are important procedures. Faults in the manufacturing process of the nuclear fuel containers are investigated in details as for its quality requirements. A fault tree is established with products being unqualified as the top event. Five causes resulting in process faults are classified and analysed, and some measures are suggested for controlling different failures in manufacturing. More research work should be conducted in rules how to set up fault trees for manufacturing process

  8. A New Dimension of Business Intelligence: Location-based Intelligence

    OpenAIRE

    Zeljko Panian

    2012-01-01

    Through the course of this paper we define Locationbased Intelligence (LBI) which is outgrowing from process of amalgamation of geolocation and Business Intelligence. Amalgamating geolocation with traditional Business Intelligence (BI) results in a new dimension of BI named Location-based Intelligence. LBI is defined as leveraging unified location information for business intelligence. Collectively, enterprises can transform location data into business intelligence applic...

  9. Parallel processing for artificial intelligence 2

    CERN Document Server

    Kumar, V; Suttner, CB

    1994-01-01

    With the increasing availability of parallel machines and the raising of interest in large scale and real world applications, research on parallel processing for Artificial Intelligence (AI) is gaining greater importance in the computer science environment. Many applications have been implemented and delivered but the field is still considered to be in its infancy. This book assembles diverse aspects of research in the area, providing an overview of the current state of technology. It also aims to promote further growth across the discipline. Contributions have been grouped according to their

  10. Working memory and intelligibility of hearing-aid processed speech

    Science.gov (United States)

    Souza, Pamela E.; Arehart, Kathryn H.; Shen, Jing; Anderson, Melinda; Kates, James M.

    2015-01-01

    Previous work suggested that individuals with low working memory capacity may be at a disadvantage in adverse listening environments, including situations with background noise or substantial modification of the acoustic signal. This study explored the relationship between patient factors (including working memory capacity) and intelligibility and quality of modified speech for older individuals with sensorineural hearing loss. The modification was created using a combination of hearing aid processing [wide-dynamic range compression (WDRC) and frequency compression (FC)] applied to sentences in multitalker babble. The extent of signal modification was quantified via an envelope fidelity index. We also explored the contribution of components of working memory by including measures of processing speed and executive function. We hypothesized that listeners with low working memory capacity would perform more poorly than those with high working memory capacity across all situations, and would also be differentially affected by high amounts of signal modification. Results showed a significant effect of working memory capacity for speech intelligibility, and an interaction between working memory, amount of hearing loss and signal modification. Signal modification was the major predictor of quality ratings. These data add to the literature on hearing-aid processing and working memory by suggesting that the working memory-intelligibility effects may be related to aggregate signal fidelity, rather than to the specific signal manipulation. They also suggest that for individuals with low working memory capacity, sensorineural loss may be most appropriately addressed with WDRC and/or FC parameters that maintain the fidelity of the signal envelope. PMID:25999874

  11. Working memory and intelligibility of hearing-aid processed speech

    Directory of Open Access Journals (Sweden)

    Pamela eSouza

    2015-05-01

    Full Text Available Previous work suggested that individuals with low working memory capacity may be at a disadvantage in adverse listening environments, including situations with background noise or substantial modification of the acoustic signal. This study explored the relationship between patient factors (including working memory capacity and intelligibility and quality of modified speech for older individuals with sensorineural hearing loss. The modification was created using a combination of hearing aid processing (wide-dynamic range compression and frequency compression applied to sentences in multitalker babble. The extent of signal modification was quantified via an envelope fidelity index. We also explored the contribution of components of working memory by including measures of processing speed and executive function. We hypothesized that listeners with low working memory capacity would perform more poorly than those with high working memory capacity across all situations, and would also be differentially affected by high amounts of signal modification. Results showed a significant effect of working memory capacity for speech intelligibility, and an interaction between working memory, amount of hearing loss and signal modification. Signal modification was the major predictor of quality ratings. These data add to the literature on hearing-aid processing and working memory by suggesting that the working memory-intelligibility effects may be related to aggregate signal fidelity, rather than on the specific signal manipulation. They also suggest that for individuals with low working memory capacity, sensorineural loss may be most appropriately addressed with wide-dynamic range compression and/or frequency compression parameters that maintain the fidelity of the signal envelope.

  12. Participation : a key for intelligent manufacturing

    NARCIS (Netherlands)

    Vink, P.; Eijnatten, F.M. van; Rhijn, G. van

    2002-01-01

    To meet demands on short delivery times manufacturers are forced to improve the flow of assembly orders. Therefore humans performing the assembly operations should be motivated to increase productivity and flexibility. To achieve this, a participatory approach ‘PSIM’ was developed that could be

  13. Offshoring trends in the manufacturing process within the automotive industry

    DEFF Research Database (Denmark)

    Simplay, S.; Hansen, Zaza Nadja Lee

    2014-01-01

    consisting of original equipment manufacturers and engineering service providers. The findings indicated some offshoring trends in the automotive industry. Offshoring in this industry is moving from a manufacturing focus to incorporate large parts of the process, including high-level product development...... engineering activities. This development has created several challenges. These challenges arose as organisations are not considering how offshoring activities could be integrated with an increasingly global supply chain for the manufacturing of the final product. The paper contributes to manufacturing theory...

  14. INTEGRATION OF COST MODELS AND PROCESS SIMULATION TOOLS FOR OPTIMUM COMPOSITE MANUFACTURING PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Pack, Seongchan [General Motors; Wilson, Daniel [General Motors; Aitharaju, Venkat [General Motors; Kia, Hamid [General Motors; Yu, Hang [ESI, Group.; Doroudian, Mark [ESI Group

    2017-09-05

    Manufacturing cost of resin transfer molded composite parts is significantly influenced by the cycle time, which is strongly related to the time for both filling and curing of the resin in the mold. The time for filling can be optimized by various injection strategies, and by suitably reducing the length of the resin flow distance during the injection. The curing time can be reduced by the usage of faster curing resins, but it requires a high pressure injection equipment, which is capital intensive. Predictive manufacturing simulation tools that are being developed recently for composite materials are able to provide various scenarios of processing conditions virtually well in advance of manufacturing the parts. In the present study, we integrate the cost models with process simulation tools to study the influence of various parameters such as injection strategies, injection pressure, compression control to minimize high pressure injection, resin curing rate, and demold time on the manufacturing cost as affected by the annual part volume. A representative automotive component was selected for the study and the results are presented in this paper

  15. A simulation study on garment manufacturing process

    Science.gov (United States)

    Liong, Choong-Yeun; Rahim, Nur Azreen Abdul

    2015-02-01

    Garment industry is an important industry and continues to evolve in order to meet the consumers' high demands. Therefore, elements of innovation and improvement are important. In this work, research studies were conducted at a local company in order to model the sewing process of clothes manufacturing by using simulation modeling. Clothes manufacturing at the company involves 14 main processes, which are connecting the pattern, center sewing and side neating, pockets sewing, backside-sewing, attaching the front and back, sleeves preparation, attaching the sleeves and over lock, collar preparation, collar sewing, bottomedge sewing, buttonholing sewing, removing excess thread, marking button, and button cross sewing. Those fourteen processes are operated by six tailors only. The last four sets of processes are done by a single tailor. Data collection was conducted by on site observation and the probability distribution of processing time for each of the processes is determined by using @Risk's Bestfit. Then a simulation model is developed using Arena Software based on the data collected. Animated simulation model is developed in order to facilitate understanding and verifying that the model represents the actual system. With such model, what if analysis and different scenarios of operations can be experimented with virtually. The animation and improvement models will be presented in further work.

  16. Development of a novel cold forging process to manufacture eccentric shafts

    Science.gov (United States)

    Pasler, Lukas; Liewald, Mathias

    2018-05-01

    Since the commercial usage of compact combustion engines, eccentric shafts have been used to transform translational into rotational motion. Over the years, several processes to manufacture these eccentric shafts or crankshafts have been developed. Especially for single-cylinder engines manufactured in small quantities, built crankshafts disclose advantages regarding tooling costs and performance. Those manufacturing processes do have one thing in common: They are all executed at elevated temperatures to enable the material to be formed to high forming degree. In this paper, a newly developed cold forging process is presented, which combines lateral extrusion and shifting for manufacturing a crank in one forming operation at room temperature. In comparison to the established upsetting and shifting methods to manufacture such components, the tool cavity or crank web thickness remains constant. Therefore, the developed new process presented in this paper consists of a combination of shifting and extrusion of the billet, which allows pushing material into the forming zone during shifting. In order to reduce the tensile stresses induced by the shifting process, compressive stresses are superimposed. It is expected that the process limits will be expanded regarding the horizontal displacement and form filling. In the following report, the simulation and design of the tooling concept are presented. Experiments were conducted and compared with corresponding simulation results afterwards.

  17. Methodology for systematic analysis and improvement of manufacturing unit process life-cycle inventory (UPLCI)—CO2PE! initiative (cooperative effort on process emissions in manufacturing). Part 1: Methodology description

    DEFF Research Database (Denmark)

    Kellens, Karel; Dewulf, Wim; Overcash, Michael

    2012-01-01

    the provision of high-quality data for LCA studies of products using these unit process datasets for the manufacturing processes, as well as the in-depth analysis of individual manufacturing unit processes.In addition, the accruing availability of data for a range of similar machines (same process, different......This report proposes a life-cycle analysis (LCA)-oriented methodology for systematic inventory analysis of the use phase of manufacturing unit processes providing unit process datasets to be used in life-cycle inventory (LCI) databases and libraries. The methodology has been developed...... and resource efficiency improvements of the manufacturing unit process. To ensure optimal reproducibility and applicability, documentation guidelines for data and metadata are included in both approaches. Guidance on definition of functional unit and reference flow as well as on determination of system...

  18. Development of the computer-aided process planning (CAPP system for polymer injection molds manufacturing

    Directory of Open Access Journals (Sweden)

    J. Tepić

    2011-10-01

    Full Text Available Beginning of production and selling of polymer products largely depends on mold manufacturing. The costs of mold manufacturing have significant share in the final price of a product. The best way to improve and rationalize polymer injection molds production process is by doing mold design automation and manufacturing process planning automation. This paper reviews development of a dedicated process planning system for manufacturing of the mold for injection molding, which integrates computer-aided design (CAD, computer-aided process planning (CAPP and computer-aided manufacturing (CAM technologies.

  19. An Intelligent Method of Product Scheme Design Based on Product Gene

    Directory of Open Access Journals (Sweden)

    Qing Song Ai

    2013-01-01

    Full Text Available Nowadays, in order to have some featured products, many customers tend to buy customized products instead of buying common ones in supermarket. The manufacturing enterprises, with the purpose of improving their competitiveness, are focusing on providing customized products with high quality and low cost as well. At present, how to produce customized products rapidly and cheaply has been the key challenge to manufacturing enterprises. In this paper, an intelligent modeling approach applied to supporting the modeling of customized products is proposed, which may improve the efficiency during the product design process. Specifically, the product gene (PG method, which is an analogy of biological evolution in engineering area, is employed to model products in a new way. Based on product gene, we focus on the intelligent modeling method to generate product schemes rapidly and automatically. The process of our research includes three steps: (1 develop a product gene model for customized products; (2 find the obtainment and storage method for product gene; and (3 propose a specific genetic algorithm used for calculating the solution of customized product and generating new product schemes. Finally, a case study is applied to test the usefulness of our study.

  20. Manufacturing of ceramic microcomponents by a rapid prototyping process chain

    International Nuclear Information System (INIS)

    Knitter, R.; Bauer, W.; Goehring, D.; Hausselt, J.

    2001-01-01

    Manufacturing of new ceramic components may be improved significantly by the use of rapid prototyping processes especially in the development of miniaturized or micropatterned components. Most known generative ceramic molding processes do not provide a sufficient resolution for the fabrication of microstructured components. In contrast to this, a rapid prototyping process chain that for example, combines micro-stereolithography and low-pressure injection molding, allows the rapid manufacturing of ceramic microcomponents from functional models to preliminary or small-lot series. (orig.)

  1. Intelligent quality function deployment system in concurrent engineering environment

    Science.gov (United States)

    Lin, Zhihang; Che, Ada

    1998-10-01

    This paper describes work being undertaken in the development of an intelligent distributed quality function deployment (IDQFD) system, which supports product design team to transfer and deployment the `Voice of Customer' through `House of Quality' into the various stages of product planning, engineering and manufacturing. The requirement modeling of products, the optimization in QFD are indicated. The framework of the system, including QFD tools and platform for distributed collaborative work in QFD, is described. The strategy and methods for the collaboration processing in QFD process are presented. It shows promise for application in practice.

  2. Relationships among processing speed, working memory, and fluid intelligence in children.

    Science.gov (United States)

    Fry, A F; Hale, S

    2000-10-01

    The present review focuses on three issues, (a) the time course of developmental increases in cognitive abilities; (b) the impact of age on individual differences in these abilities, and (c) the mechanisms by which developmental increases in different aspects of cognition affect each other. We conclude from our review of the literature that the development of processing speed, working memory, and fluid intelligence, all follow a similar time course, suggesting that all three abilities develop in concert. Furthermore, the strength of the correlation between speed and intelligence does not appear to change with age, and most of the effect of the age-related increase in speed on intelligence appears to be mediated through the effect of speed on working memory. Finally, most of the effect of the age-related improvement in working memory on intelligence is itself attributable to the effect of the increase in speed on working memory, providing evidence of a cognitive developmental cascade.

  3. Mothers' daily person and process praise: implications for children's theory of intelligence and motivation.

    Science.gov (United States)

    Pomerantz, Eva M; Kempner, Sara G

    2013-11-01

    This research examined if mothers' day-to-day praise of children's success in school plays a role in children's theory of intelligence and motivation. Participants were 120 children (mean age = 10.23 years) and their mothers who took part in a 2-wave study spanning 6 months. During the first wave, mothers completed a 10-day daily interview in which they reported on their use of person (e.g., "You are smart") and process (e.g., "You tried hard") praise. Children's entity theory of intelligence and preference for challenge in school were assessed with surveys at both waves. Mothers' person, but not process, praise was predictive of children's theory of intelligence and motivation: The more person praise mothers used, the more children subsequently held an entity theory of intelligence and avoided challenge over and above their earlier functioning on these dimensions.

  4. Review of manufacturing processes for fabrication of SOFC components

    International Nuclear Information System (INIS)

    Stacey, B.; Badwal, S.P.S.; Foger, K.

    1998-01-01

    In order for fuel cell technology to be commercial, it must meet stringent criteria of reliability, life-time expectations and cost. While materials play an important role in determining these parameters, engineering design and manufacturing processes for fuel cell stack components are equally important. Manufacturing processes must be low cost and suitable for large volume production for the technology to be viable and competitive in the market place. Several processes suitable for the production of ceramic components used in solid oxide fuel cells as well as ceramic coating techniques required for the protection of some metal components have been described. Copyright (1998) Australasian Ceramic Society

  5. Comparison of Composites Properties Manufactured by Vacuum Process and Autoclave Process

    Directory of Open Access Journals (Sweden)

    MA Rufei

    2017-01-01

    Full Text Available Two kinds of prepregs ZT7G/LT-03A(unidirectional carbon fiber prepreg and ZT7G3198P/LT-03A(plain carbon fabric prepreg were used to manufacture three Bateches of composites by vacuum process and autoclave process respectively. The physical properties of the prepregs and mechanical properties of composite were tested. The performance, fiber volume content and porosity of composites manufactured by vacuum cure and autoclave process show that the physical property retention rates of vacuum cured composites are all over 75%, some even more than 100%. Interlaminar shear strength keeps the lowest retention rate and warp tensile strength keeps the highest retention in unidirectional carbon fiber composites. For fabric composite material, compression strength keeps the lowest and warp tensile strength keeps the highest retention. Vacuum cured composites perform lower fiber volume content and higher porosity, which are the main reasons of the lower performance.

  6. Silicon Valley's Processing Needs versus San Jose State University's Manufacturing Systems Processing Component: Implications for Industrial Technology

    Science.gov (United States)

    Obi, Samuel C.

    2004-01-01

    Manufacturing professionals within universities tend to view manufacturing systems from a global perspective. This perspective tends to assume that manufacturing processes are employed equally in every manufacturing enterprise, irrespective of the geography and the needs of the people in those diverse regions. But in reality local and societal…

  7. Towards a New Approach of the Economic Intelligence Process: Basic Concepts, Analysis Methods and Informational Tools

    Directory of Open Access Journals (Sweden)

    Sorin Briciu

    2009-04-01

    Full Text Available One of the obvious trends in current business environment is the increased competition. In this context, organizations are becoming more and more aware of the importance of knowledge as a key factor in obtaining competitive advantage. A possible solution in knowledge management is Economic Intelligence (EI that involves the collection, evaluation, processing, analysis, and dissemination of economic data (about products, clients, competitors, etc. inside organizations. The availability of massive quantities of data correlated with advances in information and communication technology allowing for the filtering and processing of these data provide new tools for the production of economic intelligence.The research is focused on innovative aspects of economic intelligence process (models of analysis, activities, methods and informational tools and is providing practical guidelines for initiating this process. In this paper, we try: (a to contribute to a coherent view on economic intelligence process (approaches, stages, fields of application; b to describe the most important models of analysis related to this process; c to analyze the activities, methods and tools associated with each stage of an EI process.

  8. 16 CFR 300.25 - Country where wool products are processed or manufactured.

    Science.gov (United States)

    2010-01-01

    ... an origin label on the unfinished product, the manufacturing processes as required in paragraph (a)(4... processed or manufactured. Further work or material added to the wool product in another country must effect...

  9. Enhancing Manufacturing Process Education via Computer Simulation and Visualization

    Science.gov (United States)

    Manohar, Priyadarshan A.; Acharya, Sushil; Wu, Peter

    2014-01-01

    Industrially significant metal manufacturing processes such as melting, casting, rolling, forging, machining, and forming are multi-stage, complex processes that are labor, time, and capital intensive. Academic research develops mathematical modeling of these processes that provide a theoretical framework for understanding the process variables…

  10. Global Production Planning Process considering the Supply Risk of Overseas Manufacturing Sites

    Directory of Open Access Journals (Sweden)

    Hosang Jung

    2015-01-01

    Full Text Available Although global manufacturers can produce most of their final products in local plants, they need to source components or parts from desirable overseas manufacturing partners at low cost in order to fulfill customer orders. In this global manufacturing environment, capacity information for planning is usually imprecise owing to the various risks of overseas plants (e.g., foreign governments’ policies and labor stability. It is therefore not easy for decision-makers to generate a global production plan showing the production amounts at local plants and overseas manufacturing facilities operated by manufacturing partners. In this paper, we present a new global production planning process considering the supply risk of overseas manufacturing sites. First, local experts estimate the supply capacity of an overseas plant using their judgment to determine when the risk could occur and how large the risk impact would be. Next, we run a global production planning model with the estimated supply capacities. The proposed process systematically adopts the qualitative judgments of local experts in the global production planning process and thus can provide companies with a realistic global production plan. We demonstrate the applicability of the proposed process with a real world case.

  11. 12th International Conference on Intelligent Information Hiding and Multimedia Signal Processing

    CERN Document Server

    Tsai, Pei-Wei; Huang, Hsiang-Cheh

    2017-01-01

    This volume of Smart Innovation, Systems and Technologies contains accepted papers presented in IIH-MSP-2016, the 12th International Conference on Intelligent Information Hiding and Multimedia Signal Processing. The conference this year was technically co-sponsored by Tainan Chapter of IEEE Signal Processing Society, Fujian University of Technology, Chaoyang University of Technology, Taiwan Association for Web Intelligence Consortium, Fujian Provincial Key Laboratory of Big Data Mining and Applications (Fujian University of Technology), and Harbin Institute of Technology Shenzhen Graduate School. IIH-MSP 2016 is held in 21-23, November, 2016 in Kaohsiung, Taiwan. The conference is an international forum for the researchers and professionals in all areas of information hiding and multimedia signal processing. .

  12. Does Intelligence Affect Economic Diversification?

    OpenAIRE

    Kodila-Tedika, Oasis; Asongu, Simplice A.

    2014-01-01

    This paper extends the growing literature on knowledge economy by investigating the effect of intelligence on economic diversification. Using a battery of estimation techniques that are robust to endogeneity, we find that human capital has positive effects on export diversification, manufactured added value and export manufactures. This empirical evidence is based on a world sample for the period 2010. The findings have significant implications for the fight against the Dutch disease. In esse...

  13. Recommendations for composite manufacturing pultrusion process and equipment

    Science.gov (United States)

    Steiner, R. L.; Cole, J. D.; Strong, A. B.; Todd, R. H.

    1992-10-01

    Pultrusion is an important composite manufacturing process that holds great potential for reducing the cost of composite parts. However, pultrusion machine manufacturers and those using this continuous process have generally worked in relative isolation from each other and have, therefore, repeated many of the same errors. This paper reports the findings of a research program involving input from 15 pultruder manufacturers who have contributed non-proprietary information for the "best" design for the pultrusion machine. Key areas of design difficulty have been identified and some suggested remedies given. The results of this program will be used to construct a "state-of-the-art" pultrusion machine in the authors' laboratory. The initial findings provided input for a Quality Function Deployment (QFD) study which is basis for the functional specification for the pultrusion machine. By using QFD, capabilities of existing machines were determined and design requirements for an improved state-of-the-art machine were established. The QFD exercise provided an in-depth look at the relationship between desired machine capabilities and machine design requirements.

  14. Manufacture of functional surfaces through combined application of tool manufacturing processes and Robot Assisted Polishing

    DEFF Research Database (Denmark)

    Eriksen, Rasmus Solmer; Arentoft, Mogens; Grønbæk, J.

    2012-01-01

    The tool surface topography is often a key parameter in the tribological performance of modern metal forming tools. A new generation of multifunctional surfaces is achieved by combination of conventional tool manufacturing processes with a novel Robot Assisted Polishing process. This novel surface...

  15. Biocompatibility of hydroxyapatite scaffolds processed by lithography-based additive manufacturing.

    Science.gov (United States)

    Tesavibul, Passakorn; Chantaweroad, Surapol; Laohaprapanon, Apinya; Channasanon, Somruethai; Uppanan, Paweena; Tanodekaew, Siriporn; Chalermkarnnon, Prasert; Sitthiseripratip, Kriskrai

    2015-01-01

    The fabrication of hydroxyapatite scaffolds for bone tissue engineering applications by using lithography-based additive manufacturing techniques has been introduced due to the abilities to control porous structures with suitable resolutions. In this research, the use of hydroxyapatite cellular structures, which are processed by lithography-based additive manufacturing machine, as a bone tissue engineering scaffold was investigated. The utilization of digital light processing system for additive manufacturing machine in laboratory scale was performed in order to fabricate the hydroxyapatite scaffold, of which biocompatibilities were eventually evaluated by direct contact and cell-culturing tests. In addition, the density and compressive strength of the scaffolds were also characterized. The results show that the hydroxyapatite scaffold at 77% of porosity with 91% of theoretical density and 0.36 MPa of the compressive strength are able to be processed. In comparison with a conventionally sintered hydroxyapatite, the scaffold did not present any cytotoxic signs while the viability of cells at 95.1% was reported. After 14 days of cell-culturing tests, the scaffold was able to be attached by pre-osteoblasts (MC3T3-E1) leading to cell proliferation and differentiation. The hydroxyapatite scaffold for bone tissue engineering was able to be processed by the lithography-based additive manufacturing machine while the biocompatibilities were also confirmed.

  16. Development of manufacturing process for production of 500 MWe calandria sheets

    International Nuclear Information System (INIS)

    Hariharan, R.; Ramesh, P.; Lakshminarayana, B.; Bhaskara Rao, C.V.; Pande, P.; Agarwala, G.C.

    1992-01-01

    Calandria tubes made of zircaloy-2 are being used as structural components in pressurised heavy water power reactors. The sheets required for producing calandria tube for 235 MWe reactors are being manufactured at Zircaloy Fabrication Plant (ZFP), NFC utilizing a 2 Hi/4 Hi rolling mill procured for the purpose, by carrying out cold rolling process to achieve the required size after hot rolling suitable extruded slabs. Due to limitation of width of the sheet that can be rolled with the mill as well as the size of the slab that can be extruded with the existing press, difficulties arose in producing acceptable full length sheets of size 6600 mm long x 435 mm wide x 1.6 mm thick for manufacturing 500 MWe calandria tube. This paper deals with the details of the process problem resolved. They are: (a)designing of suitable hot and cold rolling pass schedules, (b)selection and standardization of process parameters such as beta quenching, hot rolling and cold rolling, and (c)details of the overall manufacturing process. Due to implementation of above, sheets required for manufacturing 500 MWe calandria tube sheets were successfully rolled. About 40 nos. of acceptable full length sheets have already been manufactured. (author). 1 fig., 3 tabs

  17. Assessment of Counter-Measures for Disturbance Management in Manufacturing Environments

    OpenAIRE

    Stich , Volker; Schröter , Moritz; Jordan , Felix; Wenger , Lucas; Blum , Matthias

    2017-01-01

    Part 6: Intelligent Diagnostics and Maintenance Solutions; International audience; With big data-technologies on the rise, new fields of application appear in terms of analyzing data to find new relationships for improving process understanding and stability. Manufacturing companies oftentimes cope with a high number of deviations but struggle to solve them with less effort. The research project BigPro aims to develop a methodology for implementing counter measures to disturbances and deviati...

  18. Study on Manufacturing Process of Hollow Main Shaft by Open Die Forging

    International Nuclear Information System (INIS)

    Kwon, Yong Chul; Kang, Jong Hun; Kim, Sang Sik

    2016-01-01

    The main shaft is one of the key components connecting the rotor hub and gear box of a wind power generator. Typically, main shafts are manufactured by open die forging method. However, the main shaft for large MW class wind generators is designed to be hollow in order to reduce the weight. Additionally, the main shafts are manufactured by a casting process. This study aims to develop a manufacturing process for hollow main shafts by the open die forging method. The design of a forging process for a solid main shaft and hollow shaft was prepared by an open die forging process design scheme. Finite element analyses were performed to obtain the flow stress by a hot compression test at different temperature and strain rates. The control parameters of each forging process, such as temperature and effective strain, were obtained and compared to predict the suitability of the hollow main shaft forging process. Finally, high productivity reflecting material utilization ratio, internal quality, shape, and dimension was verified by the prototypes manufactured by the proposed forging process for hollow main shafts

  19. Study on Manufacturing Process of Hollow Main Shaft by Open Die Forging

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Yong Chul [Gyeongnam Technopark, Changwon (Korea, Republic of); Kang, Jong Hun [Jungwon Univ., Goisan (Korea, Republic of); Kim, Sang Sik [Gyeongsang Natiional Univ., Jinju (Korea, Republic of)

    2016-02-15

    The main shaft is one of the key components connecting the rotor hub and gear box of a wind power generator. Typically, main shafts are manufactured by open die forging method. However, the main shaft for large MW class wind generators is designed to be hollow in order to reduce the weight. Additionally, the main shafts are manufactured by a casting process. This study aims to develop a manufacturing process for hollow main shafts by the open die forging method. The design of a forging process for a solid main shaft and hollow shaft was prepared by an open die forging process design scheme. Finite element analyses were performed to obtain the flow stress by a hot compression test at different temperature and strain rates. The control parameters of each forging process, such as temperature and effective strain, were obtained and compared to predict the suitability of the hollow main shaft forging process. Finally, high productivity reflecting material utilization ratio, internal quality, shape, and dimension was verified by the prototypes manufactured by the proposed forging process for hollow main shafts.

  20. In-Process Monitoring of Additive Manufacturing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The key innovation in this project is the implementation of an Imaging Fourier Transform Spectrometer (IFTS) for in situ metal additive manufacturing process...

  1. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing.

    Science.gov (United States)

    Esmonde-White, Karen A; Cuellar, Maryann; Uerpmann, Carsten; Lenain, Bruno; Lewis, Ian R

    2017-01-01

    Adoption of Quality by Design (QbD) principles, regulatory support of QbD, process analytical technology (PAT), and continuous manufacturing are major factors effecting new approaches to pharmaceutical manufacturing and bioprocessing. In this review, we highlight new technology developments, data analysis models, and applications of Raman spectroscopy, which have expanded the scope of Raman spectroscopy as a process analytical technology. Emerging technologies such as transmission and enhanced reflection Raman, and new approaches to using available technologies, expand the scope of Raman spectroscopy in pharmaceutical manufacturing, and now Raman spectroscopy is successfully integrated into real-time release testing, continuous manufacturing, and statistical process control. Since the last major review of Raman as a pharmaceutical PAT in 2010, many new Raman applications in bioprocessing have emerged. Exciting reports of in situ Raman spectroscopy in bioprocesses complement a growing scientific field of biological and biomedical Raman spectroscopy. Raman spectroscopy has made a positive impact as a process analytical and control tool for pharmaceutical manufacturing and bioprocessing, with demonstrated scientific and financial benefits throughout a product's lifecycle.

  2. Evaluating the competitive intelligence effort in a manufacturing company / Sidney Farrell

    OpenAIRE

    Farrell, Sidney

    2007-01-01

    In order for organisations to remain competitive, supportive tools for decision-making are required. In an industry of information overload, the emphasis is not on more information but on actionable intelligence, capable of guiding decisions in a company. Specific areas are considered fundamental for the success of actionable competitive intelligence. The most important facet is the support and involvement of top management and the participation of the entire company. Fur...

  3. Sustainable manufacturing: Effect of material selection and design on the environmental impact in the manufacturing process

    International Nuclear Information System (INIS)

    Harun, Mohd Hazwan Syafiq; Salaam, Hadi Abdul; Taha, Zahari

    2013-01-01

    The environmental impact of a manufacturing process is also dependent on the selection of the material and design of a product. This is because the manufacturing of a product is directly connected to the amount of carbon emitted in consuming the electrical energy for that manufacturing process. The difference in the general properties of materials such as strength, hardness and impact will have significant effect on the power consumption of the machine used to complete the product. In addition the environmental impact can also be reduced if the proposed designs use less material. In this study, an LCA tool called Eco-It is used. Evaluate the environmental impact caused by manufacturing simple jig. A simple jig with 4 parts was used as a case study. Two experiments were carried out. The first experiment was to study the environmental effects of different material, and the second experiment was to study the environmental impact of different design. The materials used for the jig are Aluminium and mild steel. The results showed a decrease in the rate of carbon emissions by 60% when Aluminium is use instead from mild steel, and a decrease of 26% when the-design is modified

  4. Manufacturing Squares: An Integrative Statistical Process Control Exercise

    Science.gov (United States)

    Coy, Steven P.

    2016-01-01

    In the exercise, students in a junior-level operations management class are asked to manufacture a simple product. Given product specifications, they must design a production process, create roles and design jobs for each team member, and develop a statistical process control plan that efficiently and effectively controls quality during…

  5. Design and Optimization of Sheet Hydroforming Process for Manufacturing Oil tank

    International Nuclear Information System (INIS)

    Prakash, C.; Narasimhan, K.

    2005-01-01

    The need for reduction of weight is an important issue in sheet metal forming industry. The hydroforming process has become an effective manufacturing process, as it can be adapted for the manufacturing of complex structural components with high structural stiffness. The process parameters and material properties are important factors that influence the quality of final product. In this paper, an optimized window of process parameters is obtained for successful sheet hydroforming of Oil tank. The simulation of hydroforming process is performed by using a Finite Element Method based Commercial code

  6. Quality and Safety Assurance of Iron Casts and Manufacturing Processes

    Directory of Open Access Journals (Sweden)

    Kukla S.

    2016-06-01

    Full Text Available The scope of this work focuses on the aspects of quality and safety assurance of the iron cast manufacturing processes. Special attention was given to the processes of quality control and after-machining of iron casts manufactured on automatic foundry lines. Due to low level of automation and huge work intensity at this stage of the process, a model area was established which underwent reorganization in accordance with the assumptions of the World Class Manufacturing (WCM. An analysis of work intensity was carried out and the costs were divided in order to identify operations with no value added, particularly at individual manufacturing departments. Also an analysis of ergonomics at work stations was carried out to eliminate activities that are uncomfortable and dangerous to the workers' health. Several solutions were proposed in terms of rationalization of work organization at iron cast after-machining work stations. The proposed solutions were assessed with the use of multi-criteria assessment tools and then the best variant was selected based on the assumed optimization criteria. The summary of the obtained results reflects benefits from implementation of the proposed solutions.

  7. Research on Digital Product Modeling Key Technologies of Digital Manufacturing

    Institute of Scientific and Technical Information of China (English)

    DING Guoping; ZHOU Zude; HU Yefa; ZHAO Liang

    2006-01-01

    With the globalization and diversification of the market and the rapid development of Information Technology (IT) and Artificial Intelligence (AI), the digital revolution of manufacturing is coming. One of the key technologies in digital manufacturing is product digital modeling. This paper firstly analyzes the information and features of the product digital model during each stage in the product whole lifecycle, then researches on the three critical technologies of digital modeling in digital manufacturing-product modeling, standard for the exchange of product model data and digital product data management. And the potential signification of the product digital model during the process of digital manufacturing is concluded-product digital model integrates primary features of each stage during the product whole lifecycle based on graphic features, applies STEP as data exchange mechanism, and establishes PDM system to manage the large amount, complicated and dynamic product data to implement the product digital model data exchange, sharing and integration.

  8. Ultrasonic-assisted manufacturing processes: Variational model and numerical simulations

    KAUST Repository

    Siddiq, Amir

    2012-04-01

    We present a computational study of ultrasonic assisted manufacturing processes including sheet metal forming, upsetting, and wire drawing. A fully variational porous plasticity model is modified to include ultrasonic softening effects and then utilized to account for instantaneous softening when ultrasonic energy is applied during deformation. Material model parameters are identified via inverse modeling, i.e. by using experimental data. The versatility and predictive ability of the model are demonstrated and the effect of ultrasonic intensity on the manufacturing process at hand is investigated and compared qualitatively with experimental results reported in the literature. © 2011 Elsevier B.V. All rights reserved.

  9. Computational Intelligence and Decision Making Trends and Applications

    CERN Document Server

    Madureira, Ana; Marques, Viriato

    2013-01-01

    This book provides a general overview and original analysis of new developments and applications in several areas of Computational Intelligence and Information Systems. Computational Intelligence has become an important tool for engineers to develop and analyze novel techniques to solve problems in basic sciences such as physics, chemistry, biology, engineering, environment and social sciences.   The material contained in this book addresses the foundations and applications of Artificial Intelligence and Decision Support Systems, Complex and Biological Inspired Systems, Simulation and Evolution of Real and Artificial Life Forms, Intelligent Models and Control Systems, Knowledge and Learning Technologies, Web Semantics and Ontologies, Intelligent Tutoring Systems, Intelligent Power Systems, Self-Organized and Distributed Systems, Intelligent Manufacturing Systems and Affective Computing. The contributions have all been written by international experts, who provide current views on the topics discussed and pr...

  10. Final Air Toxics Standards for Clay Ceramics Manufacturing, Glass Manufacturing, and Secondary Nonferrous Metals Processing Area Sources Fact Sheet

    Science.gov (United States)

    This page contains a December 2007 fact sheet with information regarding the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Clay Ceramics Manufacturing, Glass Manufacturing, and Secondary Nonferrous Metals Processing Area Sources

  11. An Open Source-Based Real-Time Data Processing Architecture Framework for Manufacturing Sustainability

    Directory of Open Access Journals (Sweden)

    Muhammad Syafrudin

    2017-11-01

    Full Text Available Currently, the manufacturing industry is experiencing a data-driven revolution. There are multiple processes in the manufacturing industry and will eventually generate a large amount of data. Collecting, analyzing and storing a large amount of data are one of key elements of the smart manufacturing industry. To ensure that all processes within the manufacturing industry are functioning smoothly, the big data processing is needed. Thus, in this study an open source-based real-time data processing (OSRDP architecture framework was proposed. OSRDP architecture framework consists of several open sources technologies, including Apache Kafka, Apache Storm and NoSQL MongoDB that are effective and cost efficient for real-time data processing. Several experiments and impact analysis for manufacturing sustainability are provided. The results showed that the proposed system is capable of processing a massive sensor data efficiently when the number of sensors data and devices increases. In addition, the data mining based on Random Forest is presented to predict the quality of products given the sensor data as the input. The Random Forest successfully classifies the defect and non-defect products, and generates high accuracy compared to other data mining algorithms. This study is expected to support the management in their decision-making for product quality inspection and support manufacturing sustainability.

  12. Cold Spraying of Armstrong Process Titanium Powder for Additive Manufacturing

    Science.gov (United States)

    MacDonald, D.; Fernández, R.; Delloro, F.; Jodoin, B.

    2017-04-01

    Titanium parts are ideally suited for aerospace applications due to their unique combination of high specific strength and excellent corrosion resistance. However, titanium as bulk material is expensive and challenging/costly to machine. Production of complex titanium parts through additive manufacturing looks promising, but there are still many barriers to overcome before reaching mainstream commercialization. The cold gas dynamic spraying process offers the potential for additive manufacturing of large titanium parts due to its reduced reactive environment, its simplicity to operate, and the high deposition rates it offers. A few challenges are to be addressed before the additive manufacturing potential of titanium by cold gas dynamic spraying can be reached. In particular, it is known that titanium is easy to deposit by cold gas dynamic spraying, but the deposits produced are usually porous when nitrogen is used as the carrier gas. In this work, a method to manufacture low-porosity titanium components at high deposition efficiencies is revealed. The components are produced by combining low-pressure cold spray using nitrogen as the carrier gas with low-cost titanium powder produced using the Armstrong process. The microstructure and mechanical properties of additive manufactured titanium components are investigated.

  13. A DMAIC approach for process capability improvement an engine crankshaft manufacturing process

    Science.gov (United States)

    Sharma, G. V. S. S.; Rao, P. Srinivasa

    2014-05-01

    The define-measure-analyze-improve-control (DMAIC) approach is a five-strata approach, namely DMAIC. This approach is the scientific approach for reducing the deviations and improving the capability levels of the manufacturing processes. The present work elaborates on DMAIC approach applied in reducing the process variations of the stub-end-hole boring operation of the manufacture of crankshaft. This statistical process control study starts with selection of the critical-to-quality (CTQ) characteristic in the define stratum. The next stratum constitutes the collection of dimensional measurement data of the CTQ characteristic identified. This is followed by the analysis and improvement strata where the various quality control tools like Ishikawa diagram, physical mechanism analysis, failure modes effects analysis and analysis of variance are applied. Finally, the process monitoring charts are deployed at the workplace for regular monitoring and control of the concerned CTQ characteristic. By adopting DMAIC approach, standard deviation is reduced from 0.003 to 0.002. The process potential capability index ( C P) values improved from 1.29 to 2.02 and the process performance capability index ( C PK) values improved from 0.32 to 1.45, respectively.

  14. Development of a virtual metrology for high-mix TFT-LCD manufacturing processes

    International Nuclear Information System (INIS)

    Chen Shan; Pan Tianhong; Jang Shishang

    2010-01-01

    Nowadays, TFT-LCD manufacturing has become a very complex process, in which many different products being manufactured with many different tools. The ability to predict the quality of product in such a high-mix system is critical to developing and maintaining a high yield. In this paper, a statistical method is proposed for building a virtual metrology model from a number of products using a high-mix manufacturing process. Stepwise regression is used to select 'key variables' that really affect the quality of the products. Multivariate analysis of covariance is also proposed for simultaneously applying the selected variables and product effect. This framework provides a systematic method of building a processing quality prediction system for a high-mix manufacturing process. The experimental results show that the proposed quality prognostic system can not only estimate the critical dimension accurately but also detect potentially faulty glasses.

  15. Competitive Intelligence.

    Science.gov (United States)

    Bergeron, Pierrette; Hiller, Christine A.

    2002-01-01

    Reviews the evolution of competitive intelligence since 1994, including terminology and definitions and analytical techniques. Addresses the issue of ethics; explores how information technology supports the competitive intelligence process; and discusses education and training opportunities for competitive intelligence, including core competencies…

  16. Interated Intelligent Industrial Process Sensing and Control: Applied to and Demonstrated on Cupola Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed Abdelrahman; roger Haggard; Wagdy Mahmoud; Kevin Moore; Denis Clark; Eric Larsen; Paul King

    2003-02-12

    The final goal of this project was the development of a system that is capable of controlling an industrial process effectively through the integration of information obtained through intelligent sensor fusion and intelligent control technologies. The industry of interest in this project was the metal casting industry as represented by cupola iron-melting furnaces. However, the developed technology is of generic type and hence applicable to several other industries. The system was divided into the following four major interacting components: 1. An object oriented generic architecture to integrate the developed software and hardware components @. Generic algorithms for intelligent signal analysis and sensor and model fusion 3. Development of supervisory structure for integration of intelligent sensor fusion data into the controller 4. Hardware implementation of intelligent signal analysis and fusion algorithms

  17. Design of Test Parts to Characterize Micro Additive Manufacturing Processes

    DEFF Research Database (Denmark)

    Thompson, Mary Kathryn; Mischkot, Michael

    2015-01-01

    The minimum feature size and obtainable tolerances of additive manufacturing processes are linked to the smallest volumetric elements (voxels) that can be created. This work presents the iterative design of a test part to investigate the resolution of AM processes with voxel sizes at the micro...... scale. Each design iteration reduces the test part size, increases the number of test features, improves functionality, and decreases coupling in the part. The final design is a set of three test parts that are easy to orient and measure, and that provide useful information about micro additive...... manufacturing processes....

  18. Business process integration between European manufacturers and transport and logistics service providers

    DEFF Research Database (Denmark)

    Mortensen, Ole; Lemoine, W

    2005-01-01

    The goal of the Supply Chain Management process is to create value for customers, stakeholders and all supply chain members, through the integration of disparate processes like manufacturing flow management, customer service and order fulfillment. However, many firms fail in the path of achieving...... a total integration. This study illustrates, from an empirical point of view, the problems associated to SC integration among European firms operating in global/international markets. The focus is on the relationship between two echelons in the supply chain: manufacturers and their transport and logistics...... service providers (TLSPs). The paper examines (1) the characteristics of the collaborative partnerships established between manufacturers and their TLSPs; (2) to what extent manufacturers and their TLSPs have integrated SC business processes; (3) the IT used to support the SC cooperation and integration...

  19. Predicting speech intelligibility based on the signal-to-noise envelope power ratio after modulation-frequency selective processing

    DEFF Research Database (Denmark)

    Jørgensen, Søren; Dau, Torsten

    2011-01-01

    A model for predicting the intelligibility of processed noisy speech is proposed. The speech-based envelope power spectrum model has a similar structure as the model of Ewert and Dau [(2000). J. Acoust. Soc. Am. 108, 1181-1196], developed to account for modulation detection and masking data. The ...... process provides a key measure of speech intelligibility. © 2011 Acoustical Society of America.......A model for predicting the intelligibility of processed noisy speech is proposed. The speech-based envelope power spectrum model has a similar structure as the model of Ewert and Dau [(2000). J. Acoust. Soc. Am. 108, 1181-1196], developed to account for modulation detection and masking data....... The model estimates the speech-to-noise envelope power ratio, SNR env, at the output of a modulation filterbank and relates this metric to speech intelligibility using the concept of an ideal observer. Predictions were compared to data on the intelligibility of speech presented in stationary speech...

  20. Process mining : business intelligence software wordt eindelijk intelligent

    NARCIS (Netherlands)

    Aalst, van der W.M.P.

    2007-01-01

    Business Intelligence is een begrip dat verwijst naar software die gebruikt kan worden om gegevens over operationele bedrijfsprocessen te verzamelen en deze vervolgens te analyseren. Het doel van BI software is het verkrijgen van meer kennis en inzicht, welke gebruikt kunnen worden om processen

  1. Dimensional metrology for process and part quality control in micro manufacturing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Tosello, Guido; Gasparin, Stefania

    2011-01-01

    dimensions are scaled down and geometrical complexity of objects is increased, the available measurement technologies appear not sufficient. New solutions for measuring principles and instrumentation, tolerancing rules and procedures as well as traceability and calibration are necessary if micro......Micro manufacturing has gained interest over the last decade as the demand for micro mechanical components has increased. The need for dimensional metrology at micro scale is evident both in terms of quality assurance of components and products and in terms of process control. As critical...... manufacturing is to develop into industrial manufacturing solutions. In this paper the application of dimensional precision metrology to both component and process quality control will be demonstrated. The parts investigated are micro injection moulded polymer parts, typical for the field of micro manufacturing....

  2. Manufacturing process modeling for composite materials and structures, Sandia blade reliability collaborative

    Energy Technology Data Exchange (ETDEWEB)

    Guest, Daniel A.; Cairns, Douglas S.

    2014-02-01

    The increased use and interest in wind energy over the last few years has necessitated an increase in the manufacturing of wind turbine blades. This increase in manufacturing has in many ways out stepped the current understanding of not only the materials used but also the manufacturing methods used to construct composite laminates. The goal of this study is to develop a list of process parameters which influence the quality of composite laminates manufactured using vacuum assisted resin transfer molding and to evaluate how they influence laminate quality. Known to be primary factors for the manufacturing process are resin flow rate and vacuum pressure. An incorrect balance of these parameters will often cause porosity or voids in laminates that ultimately degrade the strength of the composite. Fiber waviness has also been seen as a major contributor to failures in wind turbine blades and is often the effect of mishandling during the lay-up process. Based on laboratory tests conducted, a relationship between these parameters and laminate quality has been established which will be a valuable tool in developing best practices and standard procedures for the manufacture of wind turbine blade composites.

  3. 76 FR 36078 - Milk for Manufacturing Purposes and Its Production and Processing; Requirements Recommended for...

    Science.gov (United States)

    2011-06-21

    ...] Milk for Manufacturing Purposes and Its Production and Processing; Requirements Recommended for... to quality and sanitation requirements for the production and processing of manufacturing grade milk... Manufacturing Purposes and Its Production and Processing; Recommended Requirements for Adoption by State...

  4. 77 FR 24722 - Draft Guidance for Industry: Assessing the Effects of Significant Manufacturing Process Changes...

    Science.gov (United States)

    2012-04-25

    ...] Draft Guidance for Industry: Assessing the Effects of Significant Manufacturing Process Changes... Manufacturing Process Changes, Including Emerging Technologies, on the Safety and Regulatory Status of Food... determining whether changes in manufacturing process, including the intentional reduction in particle size to...

  5. Automation in Siemens fuel manufacturing - the basis for quality improvement by statistical process control (SPC)

    International Nuclear Information System (INIS)

    Drecker, St.; Hoff, A.; Dietrich, M.; Guldner, R.

    1999-01-01

    Statistical Process Control (SPC) is one of the systematic tools to perform a valuable contribution to the control and planning activities for manufacturing processes and product quality. Advanced Nuclear Fuels GmbH (ANF) started a program to introduce SPC in all sections of the manufacturing process of fuel assemblies. The concept phase is based on a realization of SPC in 3 pilot projects. The existing manufacturing devices are reviewed for the utilization of SPC. Subsequent modifications were made to provide the necessary interfaces. The processes 'powder/pellet manufacturing'. 'cladding tube manufacturing' and 'laser-welding of spacers' are located at the different locations of ANF. Due to the completion of the first steps and the experience obtained by the pilot projects, the introduction program for SPC has already been extended to other manufacturing processes. (authors)

  6. Process for manufacture of Te microwire in glass insulation

    International Nuclear Information System (INIS)

    Bodiul, Pavel; Nicolaeva, Alibina; Konopko, Leonid; Bondarciuc, Nicolae

    2010-01-01

    The invention relates to the manufacturing of microwires in glass insulation and can be used in electronics and in the manufacturing of thermoelectrodes for thermoelectric sensors. The process for manufacture of Te microwire in glass insulation consists in softening the Te sample and its pulling in glass insulation. Near the microwire pulling zone through the furnace is maintained a temperature of 430-440 degrees Celsius, which causes the solidification firstly of Te microwire, and then of glass insulation. The result of the invention is to obtain Te microwires in glass insulation of high quality with a diameter of 50-100 μm and a length of 3-15 cm.

  7. Materials, Processes, and Facile Manufacturing for Bioresorbable Electronics: A Review.

    Science.gov (United States)

    Yu, Xiaowei; Shou, Wan; Mahajan, Bikram K; Huang, Xian; Pan, Heng

    2018-05-07

    Bioresorbable electronics refer to a new class of advanced electronics that can completely dissolve or disintegrate with environmentally and biologically benign byproducts in water and biofluids. They have provided a solution to the growing electronic waste problem with applications in temporary usage of electronics such as implantable devices and environmental sensors. Bioresorbable materials such as biodegradable polymers, dissolvable conductors, semiconductors, and dielectrics are extensively studied, enabling massive progress of bioresorbable electronic devices. Processing and patterning of these materials are predominantly relying on vacuum-based fabrication methods so far. However, for the purpose of commercialization, nonvacuum, low-cost, and facile manufacturing/printing approaches are the need of the hour. Bioresorbable electronic materials are generally more chemically reactive than conventional electronic materials, which require particular attention in developing the low-cost manufacturing processes in ambient environment. This review focuses on material reactivity, ink availability, printability, and process compatibility for facile manufacturing of bioresorbable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Economic trade-offs of additive manufacturing integration in injection moulding process chain

    DEFF Research Database (Denmark)

    Charalambis, Alessandro; Kerbache, Laoucine; Tosello, Guido

    2017-01-01

    Additive Manufacturing has emerged as an innovative set of novel technologies capable of replacing established manufacturing processes due to fabrication of highly complex parts and its continuous improvements of efficiency and cost effectiveness. This study is based on the idea that through...... the creation of synergies between additive and conventional manufacturing technologies it is possible to achieve greater cost advantages and operational benefits than by substituting injection moulding with additive manufacturing. The analysis presented explores the cost advantages that can be secured when...... additive manufacturing is used to support the fabrication of mould inserts for the product development phase of the injection moulding process chain. This study shows that fabrication of soft tooling by mean of AM is economically convenient with a cost reduction between 80% and 90%. Break-even points...

  9. Manufacturing process optimization of nuclear fuel guide tube using HANA alloys

    International Nuclear Information System (INIS)

    Jeong, Yong Hwan; Park, S. Y.; Choi, B. K.; Park, J. Y.; Kim, H. G.; Jeong, Y. I.; Park, D. J.; Lim, J. K.

    2010-08-01

    From this project, the advanced manufacturing parameters which were contained of heat-treatment, reduction rate, and new process (2 step) were considered to increase the guide tube performance of HANA material. It was obtained that the strength and corrosion resistance of HANA material were improved by applying the improve manufacturing parameters when compared to the commercial guide tube material. · Manufacturing parameter study to increase mechanical property -Tensile strength increase of 30% by manufacturing parameter setup when compared to the guide tube specification · Manufacturing parameter study to decrease irradiation growth -Theoretical study of the texture effect on sample specimens related to the irradiation growth · Manufacturing parameter study to increase corrosion resistance -Corrosion resistance increase of 30% by manufacturing parameter setup when compared to the commercial guide tube

  10. Intelligent Membranes: Dream or Reality?

    Directory of Open Access Journals (Sweden)

    Annarosa Gugliuzza

    2013-07-01

    Full Text Available Intelligent materials are claimed to overcome current drawbacks associated with the attainment of high standards of life, health, security and defense. Membrane-based sensors represent a category of smart systems capable of providing a large number of benefits to different markets of textiles, biomedicine, environment, chemistry, agriculture, architecture, transport and energy. Intelligent membranes can be characterized by superior sensitivity, broader dynamic range and highly sophisticated mechanisms of autorecovery. These prerogatives are regarded as the result of multi-compartment arrays, where complementary functions can be accommodated and well-integrated. Based on the mechanism of “sense to act”, stimuli-responsive membranes adapt themselves to surrounding environments, producing desired effects such as smart regulation of transport, wetting, transcription, hydrodynamics, separation, and chemical or energy conversion. Hopefully, the design of new smart devices easier to manufacture and assemble can be realized through the integration of sensing membranes with wireless networks, looking at the ambitious challenge to establish long-distance communications. Thus, the transfer of signals to collecting systems could allow continuous and real-time monitoring of data, events and/or processes.

  11. 40 CFR 761.187 - Reporting importers and by persons generating PCBs in excluded manufacturing processes.

    Science.gov (United States)

    2010-07-01

    ...) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS General Records and Reports § 761.187 Reporting importers and by persons generating PCBs in excluded manufacturing processes. In addition to... generating PCBs in excluded manufacturing processes. 761.187 Section 761.187 Protection of Environment...

  12. A Review of Decisions Support Systems for Manufacturing Systems

    OpenAIRE

    Felsberger, Andreas; Oberegger, Bernhard; Reiner, Gerald

    2017-01-01

    In the field of manufacturing systems automated data acquisition and development of technological innovations like manufacturing execution systems (MES), Enterprise Resource Planning (ERP), Advanced Planning Systems (APS) and new trends in Big Data and Business Intelligence (BI) have given rise to new applications and methods of existing decisionsupport technologies. Today manufacturers need an adaptive system that helps to react and adapt to the constantly changing business environment. The ...

  13. 24 CFR 3282.53 - Service of process on foreign manufacturers and importers.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Service of process on foreign manufacturers and importers. 3282.53 Section 3282.53 Housing and Urban Development Regulations Relating to... REGULATIONS Formal Procedures § 3282.53 Service of process on foreign manufacturers and importers. The...

  14. Integrated Monitoring System of Production Processes

    Directory of Open Access Journals (Sweden)

    Oborski Przemysław

    2016-12-01

    Full Text Available Integrated monitoring system for discrete manufacturing processes is presented in the paper. The multilayer hardware and software reference model was developed. Original research are an answer for industry needs of the integration of information flow in production process. Reference model corresponds with proposed data model based on multilayer data tree allowing to describe orders, products, processes and save monitoring data. Elaborated models were implemented in the integrated monitoring system demonstrator developed in the project. It was built on the base of multiagent technology to assure high flexibility and openness on applying intelligent algorithms for data processing. Currently on the base of achieved experience an application integrated monitoring system for real production system is developed. In the article the main problems of monitoring integration are presented, including specificity of discrete production, data processing and future application of Cyber-Physical-Systems. Development of manufacturing systems is based more and more on taking an advantage of applying intelligent solutions into machine and production process control and monitoring. Connection of technical systems, machine tools and manufacturing processes monitoring with advanced information processing seems to be one of the most important areas of near future development. It will play important role in efficient operation and competitiveness of the whole production system. It is also important area of applying in the future Cyber-Physical-Systems that can radically improve functionally of monitoring systems and reduce the cost of its implementation.

  15. Additive Manufacturing Cloud via Peer-Robot Collaboration

    Directory of Open Access Journals (Sweden)

    Yuan Yao

    2016-05-01

    Full Text Available When building a 3D printing cloud manufacturing platform, self-sensing and collaboration on manufacturing resources present challenging problems. This paper proposes a peer-robot collaboration framework to deal with these issues. Each robot combines heterogeneous additive manufacturing hardware and software, acting as an intelligent agent. Through collaboration with other robots, it forms a dynamic and scalable integration manufacturing system. The entire distributed system is managed by rules that employ an internal rule engine, which supports rule conversion and conflict resolution. Two additive manufacturing service scenarios are designed to analyse the efficiency and scalability of the framework. Experiments show that the presented method performs well in tasks requiring large-scale access to resources and collaboration.

  16. Participation : the key to intelligent manufacturing improvement

    NARCIS (Netherlands)

    Vink, P.; Eijnatten, van F.M.; Arisawa, H.; Kambayashi, Y.; Kumar, V.

    2002-01-01

    This paper describes the background and objectives of the IST project "Organizational Aspects of Human-Machine Coexisting Systems" (HUMACS), that develops and pilot-demonstrates a Participative Simulation environment for Integral (i.e., logistics, technology and human factors) Manufacturing

  17. Fit of single tooth zirconia copings: comparison between various manufacturing processes.

    Science.gov (United States)

    Grenade, Charlotte; Mainjot, Amélie; Vanheusden, Alain

    2011-04-01

    Various CAD/CAM processes are commercially available to manufacture zirconia copings. Comparative data on their performance in terms of fit are needed. The purpose of this in vitro study was to compare the internal and marginal fit of single tooth zirconia copings manufactured with a CAD/CAM process (Procera; Nobel Biocare) and a mechanized manufacturing process (Ceramill; Amann Girrbach). Abutments (n=20) prepared in vivo for ceramic crowns served as a template for manufacturing both Procera and Ceramill zirconia copings. Copings were manufactured and cemented (Clearfil Esthetic Cement; Kuraray) on epoxy replicas of stone cast abutments. Specimens were sectioned. Nine measurements were performed for each coping. Over- and under-extended margins were evaluated. Comparisons between the 2 processes were performed with a generalized linear mixed model (α=.05). Internal gap values between Procera and Ceramill groups were not significantly different (P=.13). The mean marginal gap (SD) for Procera copings (51(50) μm) was significantly smaller than for Ceramill (81(66) μm) (P<.005). The percentages of over- and under-extended margins were 43% and 57% for Procera respectively, and 71% and 29% for Ceramill. Within the limitations of this in vitro study, the marginal fit of Procera copings was significantly better than that of Ceramill copings. Furthermore, Procera copings showed a smaller percentage of over-extended margins than did Ceramill copings. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  18. CHO Quasispecies—Implications for Manufacturing Processes

    Directory of Open Access Journals (Sweden)

    Florian M. Wurm

    2013-10-01

    Full Text Available Chinese hamster ovary (CHO cells are a source of multi-ton quantities of protein pharmaceuticals. They are, however, immortalized cells, characterized by a high degree of genetic and phenotypic diversity. As is known for any biological system, this diversity is enhanced by selective forces when laboratories (no sharing of gene pools grow cells under (diverse conditions that are practical and useful. CHO cells have been used in culture for more than 50 years, and various lines of cells are available and have been used in manufacturing. This article tries to represent, in a cursory way, the history of CHO cells, particularly the origin and subsequent fate of key cell lines. It is proposed that the name CHO represents many different cell types, based on their inherent genetic diversity and their dynamic rate of genetic change. The continuing remodeling of genomic structure in clonal or non-clonal cell populations, particularly due to the non-standardized culture conditions in hundreds of different labs renders CHO cells a typical case for “quasispecies”. This term was coined for families of related (genomic sequences exposed to high mutation rate environments where a large fraction of offspring is expected to carry one or more mutations. The implications of the quasispecies concept for CHO cells used in protein manufacturing processes are significant. CHO genomics/transcriptomics may provide only limited insights when done on one or two “old” and poorly characterized CHO strains. In contrast, screening of clonal cell lines, derived from a well-defined starting material, possibly within a given academic or industrial environment, may reveal a more narrow diversity of phenotypes with respect to physiological/metabolic activities and, thus, allow more precise and reliable predictions of the potential of a clone for high-yielding manufacturing processes.

  19. Thin Slits Manufacturing Process Using Electro Discharge Technique

    Czech Academy of Sciences Publication Activity Database

    Hošek, Jan

    -, č. 40 (2011), s. 175-178 ISSN 1584-5982 R&D Projects: GA AV ČR IAA200760905 Institutional research plan: CEZ:AV0Z20760514 Keywords : thin slit * EDM process * manufacturing Subject RIV: JR - Other Machinery

  20. Participation : The key to intelligent manufacturing improvement

    NARCIS (Netherlands)

    Vink, P.; Eijnatten, F.M. van

    2002-01-01

    This paper describes the background and objectives of the IST project “Organizational Aspects of Human-Machine Coexisting Systems” (HUMACS), that develops and pilot-demonstrates a Participative Simulation environment for Integral (i.e., logistics, technology and human factors) Manufacturing

  1. Artificial intelligence programming languages for computer aided manufacturing

    Science.gov (United States)

    Rieger, C.; Samet, H.; Rosenberg, J.

    1979-01-01

    Eight Artificial Intelligence programming languages (SAIL, LISP, MICROPLANNER, CONNIVER, MLISP, POP-2, AL, and QLISP) are presented and surveyed, with examples of their use in an automated shop environment. Control structures are compared, and distinctive features of each language are highlighted. A simple programming task is used to illustrate programs in SAIL, LISP, MICROPLANNER, and CONNIVER. The report assumes reader knowledge of programming concepts, but not necessarily of the languages surveyed.

  2. Toward Meaningful Manufacturing Variation Data in Design - Feature Based Description of Variation in Manufacturing Processes

    DEFF Research Database (Denmark)

    Eifler, Tobias; Boorla, Srinivasa Murthy; Howard, Thomas J.

    2016-01-01

    The need to mitigate the effects of manufacturing variation already in design is nowadays commonly acknowledged and has led to a wide use of predictive modeling techniques, tolerancing approaches, etc. in industry. The trustworthiness of corresponding variation analyses is, however, not ensured...... by the availability of sophisticated methods and tools alone, but does evidently also depend on the accuracy of the input information used. As existing approaches for the description of manufacturing variation focus however, almost exclusively, on monitoring and controlling production processes, there is frequently...... a lack of objective variation data in design. As a result, variation analyses and tolerancing activities rely on numerous assumptions made to fill the gaps of missing or incomplete data. To overcome this hidden subjectivity, a schema for a consistent and standardised description of manufacturing...

  3. 15 CFR 400.32 - Procedure for review of request for approval of manufacturing or processing.

    Science.gov (United States)

    2010-01-01

    ... approval of manufacturing or processing. 400.32 Section 400.32 Commerce and Foreign Trade Regulations... REGULATIONS OF THE FOREIGN-TRADE ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.32 Procedure for review of request for approval of manufacturing or processing. (a) Request as part of application...

  4. Semantic Business Intelligence - a New Generation of Business Intelligence

    Directory of Open Access Journals (Sweden)

    Dinu AIRINEI

    2012-01-01

    Full Text Available Business Intelligence Solutions represents applications used by companies to manage process and analyze data to provide substantiated decision. In the context of Semantic Web develop-ment trend is to integrate semantic unstructured data, making business intelligence solutions to be redesigned in such a manner that can analyze, process and synthesize, in addition to traditional data and data integrated with semantic another form and structure. This invariably leads appearance of new BI solution, called Semantic Business Intelligence.

  5. Materials processing in zero gravity. [space manufacturing

    Science.gov (United States)

    Wuenscher, H. F.

    1973-01-01

    Manufacturing processes which are expected to show drastic changes in a space environment due to the absence of earth gravity are classified according to (1) buoyancy and thermal convection sensitive processes and (2) processes where molecular forces like cohesion and adhesion remain as the relatively strongest and hence controlling factors. Some specific process demonstration experiments carried out during the Apollo 14 mission and in the Skylab program are described. These include chemical separation by electrophoresis, the M551 metals melting experiment, the M552 exothermic brazing experiment, the M553 sphere forming experiment, the M554 composite casting experiment, and the M555 gallium arsenide crystal growth experiment.

  6. Process development for green part printing using binder jetting additive manufacturing

    Science.gov (United States)

    Miyanaji, Hadi; Orth, Morgan; Akbar, Junaid Muhammad; Yang, Li

    2018-05-01

    Originally developed decades ago, the binder jetting additive manufacturing (BJ-AM) process possesses various advantages compared to other additive manufacturing (AM) technologies such as broad material compatibility and technological expandability. However, the adoption of BJ-AM has been limited by the lack of knowledge with the fundamental understanding of the process principles and characteristics, as well as the relatively few systematic design guideline that are available. In this work, the process design considerations for BJ-AM in green part fabrication were discussed in detail in order to provide a comprehensive perspective of the design for additive manufacturing for the process. Various process factors, including binder saturation, in-process drying, powder spreading, powder feedstock characteristics, binder characteristics and post-process curing, could significantly affect the printing quality of the green parts such as geometrical accuracy and part integrity. For powder feedstock with low flowability, even though process parameters could be optimized to partially offset the printing feasibility issue, the qualities of the green parts will be intrinsically limited due to the existence of large internal voids that are inaccessible to the binder. In addition, during the process development, the balanced combination between the saturation level and in-process drying is of critical importance in the quality control of the green parts.

  7. New model of enterprises resource planning implementation planning process in manufacturing enterprises

    Directory of Open Access Journals (Sweden)

    Mirjana Misita

    2016-05-01

    Full Text Available This article presents new model of enterprises resource planning implementation planning process in manufacturing enterprises based on assessment of risk sources. This assessment was performed by applying analytic hierarchy process. Analytic hierarchy process method allows variation of relative importance of specific risk sources dependent on the section from which the risk source originates (organizational environment, technical issues, people issues, adoption process management, and external support. Survey was conducted on 85 manufacturing enterprises involved with an enterprises resource planning solution. Ranking of risk sources assessments returns most frequent risks of enterprises resource planning implementation success in manufacturing enterprises, and representative factors were isolated through factor analysis by risk source origin. Finally, results indicate that there are hidden causes of failed implementation, for example, risk source “top management training and education,” from risk origin “adoption process management.”

  8. Virtual CIM and Digital Manufacturing

    Institute of Scientific and Technical Information of China (English)

    Sev V.Nagalingam; Grier C.I.Lin

    2006-01-01

    Manufacturing enterprises play an important role in improving the economic environment of a country.Today, the capability to produce high quality products with shorter delivery time and the ability to produce according to the diverse customer requirements has become the characteristics of successful manufacturing industries. Application of intelligent manufacturing systems and Computer integrated manufacturing (CIM) are the most effective methods for overcoming the issues faced by present day manufactures while retaining the employment level and revenue of a country in today's highly competitive global market. With the developments taking place in CIM and its related technologies, the application of CIM in manufacturing enterprises has become a reality from the dream. This paper highlights the historical developments towards automation and the need for CIM systems. Furthermore, it analyses some new terms such as agile manufacturing, digital manufacturing, agent-based manufacturing and others, which have been emerging recently, and argues all these new technologies are the subsystems of CIM. In addition, this paper provides a new direction in CIM to fulfil the emerging challenges in today's global market and to satisfy the emerging need of virtual enterprises in the form of Virtual CIM.

  9. Study on intelligent processing system of man-machine interactive garment frame model

    Science.gov (United States)

    Chen, Shuwang; Yin, Xiaowei; Chang, Ruijiang; Pan, Peiyun; Wang, Xuedi; Shi, Shuze; Wei, Zhongqian

    2018-05-01

    A man-machine interactive garment frame model intelligent processing system is studied in this paper. The system consists of several sensor device, voice processing module, mechanical parts and data centralized acquisition devices. The sensor device is used to collect information on the environment changes brought by the body near the clothes frame model, the data collection device is used to collect the information of the environment change induced by the sensor device, voice processing module is used for speech recognition of nonspecific person to achieve human-machine interaction, mechanical moving parts are used to make corresponding mechanical responses to the information processed by data collection device.it is connected with data acquisition device by a means of one-way connection. There is a one-way connection between sensor device and data collection device, two-way connection between data acquisition device and voice processing module. The data collection device is one-way connection with mechanical movement parts. The intelligent processing system can judge whether it needs to interact with the customer, realize the man-machine interaction instead of the current rigid frame model.

  10. Additive Manufacturing of High-Entropy Alloys by Laser Processing

    NARCIS (Netherlands)

    Ocelik, V.; Janssen, Niels; Smith, Stefan; De Hosson, J. Th M.

    This contribution concentrates on the possibilities of additive manufacturing of high-entropy clad layers by laser processing. In particular, the effects of the laser surface processing parameters on the microstructure and hardness of high-entropy alloys (HEAs) were examined. AlCoCrFeNi alloys with

  11. Knowledge Assisted Integrated Design of a Component and Its Manufacturing Process

    Science.gov (United States)

    Gautham, B. P.; Kulkarni, Nagesh; Khan, Danish; Zagade, Pramod; Reddy, Sreedhar; Uppaluri, Rohith

    Integrated design of a product and its manufacturing processes would significantly reduce the total cost of the products as well as the cost of its development. However this would only be possible if we have a platform that allows us to link together simulations tools used for product design, performance evaluation and its manufacturing processes in a closed loop. In addition to that having a comprehensive knowledgebase that provides systematic knowledge guided assistance to product or process designers who may not possess in-depth design knowledge or in-depth knowledge of the simulation tools, would significantly speed up the end-to-end design process. In this paper, we propose a process and illustrate a case for achieving an integrated product and manufacturing process design assisted by knowledge support for the user to make decisions at various stages. We take transmission component design as an example. The example illustrates the design of a gear for its geometry, material selection and its manufacturing processes, particularly, carburizing-quenching and tempering, and feeding the material properties predicted during heat treatment into performance estimation in a closed loop. It also identifies and illustrates various decision stages in the integrated life cycle and discusses the use of knowledge engineering tools such as rule-based guidance, to assist the designer make informed decisions. Simulation tools developed on various commercial, open-source platforms as well as in-house tools along with knowledge engineering tools are linked to build a framework with appropriate navigation through user-friendly interfaces. This is illustrated through examples in this paper.

  12. The application of neural networks with artificial intelligence technique in the modeling of industrial processes

    International Nuclear Information System (INIS)

    Saini, K. K.; Saini, Sanju

    2008-01-01

    Neural networks are a relatively new artificial intelligence technique that emulates the behavior of biological neural systems in digital software or hardware. These networks can 'learn', automatically, complex relationships among data. This feature makes the technique very useful in modeling processes for which mathematical modeling is difficult or impossible. The work described here outlines some examples of the application of neural networks with artificial intelligence technique in the modeling of industrial processes.

  13. Decision Support for Software Process Management Teams: An Intelligent Software Agent Approach

    National Research Council Canada - National Science Library

    Church, Lori

    2000-01-01

    ... to market, eliminate redundancy, and ease job stress. This thesis proposes a conceptual model for software process management decision support in the form of an intelligent software agent network...

  14. Small Scale Turbopump Manufacturing Technology and Material Processes

    Science.gov (United States)

    Alvarez, Erika; Morgan, Kristin; Wells, Doug; Zimmerman, Frank

    2011-01-01

    As part of an internal research and development project, NASA Marshall Space Flight Center (MSFC) has been developing a high specific impulse 9,000-lbf LOX/LH2 pump-fed engine testbed with the capability to throttle 10:1. A Fuel Turbopump (FTP) with the ability to operate across a speed range of 30,000-rpm to 100,000-rpm was developed and analyzed. This small size and flight-like Fuel Turbopump has completed the design and analysis phase and is currently in the manufacturing phase. This paper highlights the manufacturing and processes efforts to fabricate an approximately 20-lb turbopump with small flow passages, intricately bladed components and approximately 3-in diameter impellers. As a result of the small scale and tight tolerances of the hardware on this turbopump, several unique manufacturing and material challenges were encountered. Some of the technologies highlighted in this paper include the use of powder metallurgy technology to manufacture small impellers, electron beam welding of a turbine blisk shroud, and casting challenges. The use of risk reduction efforts such as non-destructive testing (NDT) and evaluation (NDE), fractography, material testing, and component spin testing are also discussed in this paper.

  15. 75 FR 61418 - Milk for Manufacturing Purposes and Its Production and Processing; Requirements Recommended for...

    Science.gov (United States)

    2010-10-05

    ... for Manufacturing Purposes and Its Production and Processing; Requirements Recommended for Adoption by... sanitation requirements for the production and processing of manufacturing grade milk. These Recommended... comments. SUMMARY: This document proposes to amend the recommended manufacturing milk requirements...

  16. Effect of promoting self-esteem by participatory learning process on emotional intelligence among early adolescents.

    Science.gov (United States)

    Munsawaengsub, Chokchai; Yimklib, Somkid; Nanthamongkolchai, Sutham; Apinanthavech, Suporn

    2009-12-01

    To study the effect of promoting self-esteem by participatory learning program on emotional intelligence among early adolescents. The quasi-experimental study was conducted in grade 9 students from two schools in Bangbuathong district, Nonthaburi province. Each experimental and comparative group consisted of 34 students with the lowest score of emotional intelligence. The instruments were questionnaires, Program to Develop Emotional Intelligence and Handbook of Emotional Intelligence Development. The experimental group attended 8 participatory learning activities in 4 weeks to Develop Emotional Intelligence while the comparative group received the handbook for self study. Assessment the effectiveness of program was done by pre-test and post-test immediately and 4 weeks apart concerning the emotional intelligence. Implementation and evaluation was done during May 24-August 12, 2005. Data were analyzed by frequency, percentage, mean, standard deviation, Chi-square, independent sample t-test and paired sample t-test. Before program implementation, both groups had no statistical difference in mean score of emotional intelligence. After intervention, the experimental group had higher mean score of emotional intelligence both immediately and 4 weeks later with statistical significant (p = 0.001 and self-esteem by participatory learning process could enhance the emotional intelligence in early-adolescent. This program could be modified and implemented for early adolescent in the community.

  17. Cognitive Process as a Basis for Intelligent Retrieval Systems Design.

    Science.gov (United States)

    Chen, Hsinchun; Dhar, Vasant

    1991-01-01

    Two studies of the cognitive processes involved in online document-based information retrieval were conducted. These studies led to the development of five computational models of online document retrieval which were incorporated into the design of an "intelligent" document-based retrieval system. Both the system and the broader implications of…

  18. USE OF ARTIFICIAL INTELLIGENCE TECHNIQUES IN QUALITY IMPROVING PROCESS

    OpenAIRE

    KALİTE İYİLEŞTİRME SÜRECİNDE YAPAY ZEKÃ KAYA; Orhan ENGİN

    2005-01-01

    Today, changing of competition conditions and customer preferences caused to happen many differences in the viewpoint of firms' quality studies. At the same time, improvements in computer technologies accelerated use of artificial intelligence. Artificial intelligence technologies are being used to solve many industry problems. In this paper, we investigated the use of artificial intelligence techniques to solve quality problems. The artificial intelligence techniques, which are used in quali...

  19. Influence of Manufacturing Processes on the Performance of Phantom Lungs

    International Nuclear Information System (INIS)

    Traub, Richard J.

    2008-01-01

    Chest counting is an important tool for estimating the radiation dose to individuals who have inhaled radioactive materials. Chest counting systems are calibrated by counting the activity in the lungs of phantoms where the activity in the phantom lungs is known. In the United States a commonly used calibration phantom was developed at the Lawrence Livermore National Laboratory and is referred to as the Livermore Torso Phantom. An important feature of this phantom is that the phantom lungs can be interchanged so that the counting system can be challenged by different combinations of radionuclides and activity. Phantom lungs are made from lung tissue substitutes whose constituents are foaming plastics and various adjuvants selected to make the lung tissue substitute similar to normal healthy lung tissue. Some of the properties of phantom lungs cannot be readily controlled by phantom lung manufacturers. Some, such as density, are a complex function of the manufacturing process, while others, such as elemental composition of the bulk plastic are controlled by the plastics manufacturer without input, or knowledge of the phantom manufacturer. Despite the fact that some of these items cannot be controlled, they can be measured and accounted for. This report describes how manufacturing processes can influence the performance of phantom lungs. It is proposed that a metric that describes the brightness of the lung be employed by the phantom lung manufacturer to determine how well the phantom lung approximates the characteristics of a human lung. For many purposes, the linear attenuation of the lung tissue substitute is an appropriate surrogate for the brightness

  20. Using Software Zelio Soft in Educational Process to Simulation Control Programs for Intelligent Relays

    Science.gov (United States)

    Michalik, Peter; Mital, Dusan; Zajac, Jozef; Brezikova, Katarina; Duplak, Jan; Hatala, Michal; Radchenko, Svetlana

    2016-10-01

    Article deals with point to using intelligent relay and PLC systems in practice, to their architecture and principles of programming and simulations for education process on all types of school from secondary to universities. Aim of the article is proposal of simple examples of applications, where is demonstrated methodology of programming on real simple practice examples and shown using of chosen instructions. In practical part is described process of creating schemas and describing of function blocks, where are described methodologies of creating program and simulations of output reactions on changeable inputs for intelligent relays.

  1. Wellbore manufacturing processes for in situ heat treatment processes

    Science.gov (United States)

    Davidson, Ian Alexander; Geddes, Cameron James; Rudolf, Randall Lynn; Selby, Bruce Allen; MacDonald, Duncan Charles

    2012-12-11

    A method includes making coiled tubing at a coiled tubing manufacturing unit coupled to a coiled tubing transportation system. One or more coiled tubing reels are transported from the coiled tubing manufacturing unit to one or more moveable well drilling systems using the coiled tubing transportation system. The coiled tubing transportation system runs from the tubing manufacturing unit to one or more movable well drilling systems, and then back to the coiled tubing manufacturing unit.

  2. Proposal of a Modelling of the Innovation Process in an International Manufacturing Company

    Directory of Open Access Journals (Sweden)

    Pauline Lacom

    2017-07-01

    Full Text Available Nowadays, to cope with the competition, and to ensure the durability of their activities, companies have to be able to innovate. Manufacturing companies operating in a B2B market often perceive innovation as a technological result. However, innovation is often more characterized as a process. The needs of the users, and not only the technology, can achieve innovation. In this context, our paper intends to determine how to involve better the users in the innovation process of an international manufacturing company, which is, according to us, representative of the current manufacturing companies. The aim of our research paper is to help manufacturing companies to manage innovation led by users, and to implement their innovation process so that they will be able to set up specific tools for each action of the process. The study proposes a diagram-based language Structured Analysis and Design Technique (SADT that is based on the normative guide FD X50-271 of the French national organization for standardization (AFNOR. The SADT model we propose usefully complements this guide, to make the innovation process more understandable, practical and operational, for manufacturing companies, which are often helpless when faced with the subject. A critical analysis of the model we propose completed in a manufacturing company through semi-structured interviews of the innovation team and questionnaire for all the employees shows the application of the model in the company.

  3. 3D Machine Vision and Additive Manufacturing: Concurrent Product and Process Development

    International Nuclear Information System (INIS)

    Ilyas, Ismet P

    2013-01-01

    The manufacturing environment rapidly changes in turbulence fashion. Digital manufacturing (DM) plays a significant role and one of the key strategies in setting up vision and strategic planning toward the knowledge based manufacturing. An approach of combining 3D machine vision (3D-MV) and an Additive Manufacturing (AM) may finally be finding its niche in manufacturing. This paper briefly overviews the integration of the 3D machine vision and AM in concurrent product and process development, the challenges and opportunities, the implementation of the 3D-MV and AM at POLMAN Bandung in accelerating product design and process development, and discusses a direct deployment of this approach on a real case from our industrial partners that have placed this as one of the very important and strategic approach in research as well as product/prototype development. The strategic aspects and needs of this combination approach in research, design and development are main concerns of the presentation.

  4. Fuzzy linguistic hedges for the selection of manufacturing process for prosthetic sockets

    Directory of Open Access Journals (Sweden)

    Richa Pandey

    2014-08-01

    Full Text Available In this paper, a comparison is presented between two prime methods of producing prosthetic sockets by using the fuzzy linguistic hedges approach on the qualitative feedback of Indian prosthetic users. Recent trends indicate that the Indian manufacturers have tried to adopt the newer technologies like reverse engineering (RE approach to achieve the desired goals. However, the satisfaction of the user is of utmost importance for the unique and customized products for rehabilitation. In order to analyze the effectiveness of the manufacturing approaches, user case studies are taken, based on the linguistic feedbacks, and a comparative study is conducted. Thirteen users from four different manufacturing units are taken for study and sockets made by conventional as well as RE are experimented. Fuzzy membership functions are constructed using the linguistic hedges based on the user feedbacks. An analytical hierarchy process (AHP is applied to arrive at a decision to select the manufacturing process for user satisfaction and manufacturing excellence.

  5. Defect recognition in CFRP components using various NDT methods within a smart manufacturing process

    Science.gov (United States)

    Schumacher, David; Meyendorf, Norbert; Hakim, Issa; Ewert, Uwe

    2018-04-01

    The manufacturing process of carbon fiber reinforced polymer (CFRP) components is gaining a more and more significant role when looking at the increasing amount of CFRPs used in industries today. The monitoring of the manufacturing process and hence the reliability of the manufactured products, is one of the major challenges we need to face in the near future. Common defects which arise during manufacturing process are e.g. porosity and voids which may lead to delaminations during operation and under load. To find irregularities and classify them as possible defects in an early stage of the manufacturing process is of high importance for the safety and reliability of the finished products, as well as of significant impact from an economical point of view. In this study we compare various NDT methods which were applied to similar CFRP laminate samples in order to detect and characterize regions of defective volume. Besides ultrasound, thermography and eddy current, different X-ray methods like radiography, laminography and computed tomography are used to investigate the samples. These methods are compared with the intention to evaluate their capability to reliably detect and characterize defective volume. Beyond the detection and evaluation of defects, we also investigate possibilities to combine various NDT methods within a smart manufacturing process in which the decision which method shall be applied is inherent within the process. Is it possible to design an in-line or at-line testing process which can recognize defects reliably and reduce testing time and costs? This study aims to show up opportunities of designing a smart NDT process synchronized to the production based on the concepts of smart production (Industry 4.0). A set of defective CFRP laminate samples and different NDT methods were used to demonstrate how effective defects are recognized and how communication between interconnected NDT sensors and the manufacturing process could be organized.

  6. Method for distributed agent-based non-expert simulation of manufacturing process behavior

    Science.gov (United States)

    Ivezic, Nenad; Potok, Thomas E.

    2004-11-30

    A method for distributed agent based non-expert simulation of manufacturing process behavior on a single-processor computer comprises the steps of: object modeling a manufacturing technique having a plurality of processes; associating a distributed agent with each the process; and, programming each the agent to respond to discrete events corresponding to the manufacturing technique, wherein each discrete event triggers a programmed response. The method can further comprise the step of transmitting the discrete events to each agent in a message loop. In addition, the programming step comprises the step of conditioning each agent to respond to a discrete event selected from the group consisting of a clock tick message, a resources received message, and a request for output production message.

  7. Ultrasonic-assisted manufacturing processes: Variational model and numerical simulations

    KAUST Repository

    Siddiq, Amir; El Sayed, Tamer

    2012-01-01

    We present a computational study of ultrasonic assisted manufacturing processes including sheet metal forming, upsetting, and wire drawing. A fully variational porous plasticity model is modified to include ultrasonic softening effects

  8. Manufacturing process design for multi commodities in agriculture

    Science.gov (United States)

    Prasetyawan, Yudha; Santosa, Andrian Henry

    2017-06-01

    High-potential commodities within particular agricultural sectors should be accompanied by maximum benefit value that can be attained by both local farmers and business players. In several cases, the business players are small-medium enterprises (SMEs) which have limited resources to perform added value process of the local commodities into the potential products. The weaknesses of SMEs such as the manual production process with low productivity, limited capacity to maintain prices, and unattractive packaging due to conventional production. Agricultural commodity is commonly created into several products such as flour, chips, crackers, oil, juice, and other products. This research was initiated by collecting data by interview method particularly to obtain the perspectives of SMEs as the business players. Subsequently, the information was processed based on the Quality Function Deployment (QFD) to determine House of Quality from the first to fourth level. A proposed design as the result of QFD was produced and evaluated with Technology Assessment Model (TAM) and continued with a revised design. Finally, the revised design was analyzed with financial perspective to obtain the cost structure of investment, operational, maintenance, and workers. The machine that performs manufacturing process, as the result of revised design, was prototyped and tested to determined initial production process. The designed manufacturing process offers IDR 337,897, 651 of Net Present Value (NPV) in comparison with the existing process value of IDR 9,491,522 based on similar production input.

  9. Process and control systems for composites manufacturing

    Science.gov (United States)

    Tsiang, T. H.; Wanamaker, John L.

    1992-01-01

    A precise control of composite material processing would not only improve part quality, but it would also directly reduce the overall manufacturing cost. The development and incorporation of sensors will help to generate real-time information for material processing relationships and equipment characteristics. In the present work, the thermocouple, pressure transducer, and dielectrometer technologies were investigated. The monitoring sensors were integrated with the computerized control system in three non-autoclave fabrication techniques: hot-press, self contained tool (self heating and pressurizing), and pressure vessel). The sensors were implemented in the parts and tools.

  10. Manufacturing of tailored tubes with a process integrated heat treatment

    Science.gov (United States)

    Hordych, Illia; Boiarkin, Viacheslav; Rodman, Dmytro; Nürnberger, Florian

    2017-10-01

    The usage of work-pieces with tailored properties allows for reducing costs and materials. One example are tailored tubes that can be used as end parts e.g. in the automotive industry or in domestic applications as well as semi-finished products for subsequent controlled deformation processes. An innovative technology to manufacture tubes is roll forming with a subsequent inductive heating and adapted quenching to obtain tailored properties in the longitudinal direction. This processing offers a great potential for the production of tubes with a wide range of properties, although this novel approach still requires a suited process design. Based on experimental data, a process simulation is being developed. The simulation shall be suitable for a virtual design of the tubes and allows for gaining a deeper understanding of the required processing. The model proposed shall predict microstructural and mechanical tube properties by considering process parameters, different geometries, batch-related influences etc. A validation is carried out using experimental data of tubes manufactured from various steel grades.

  11. Advanced multiresponse process optimisation an intelligent and integrated approach

    CERN Document Server

    Šibalija, Tatjana V

    2016-01-01

    This book presents an intelligent, integrated, problem-independent method for multiresponse process optimization. In contrast to traditional approaches, the idea of this method is to provide a unique model for the optimization of various processes, without imposition of assumptions relating to the type of process, the type and number of process parameters and responses, or interdependences among them. The presented method for experimental design of processes with multiple correlated responses is composed of three modules: an expert system that selects the experimental plan based on the orthogonal arrays; the factor effects approach, which performs processing of experimental data based on Taguchi’s quality loss function and multivariate statistical methods; and process modeling and optimization based on artificial neural networks and metaheuristic optimization algorithms. The implementation is demonstrated using four case studies relating to high-tech industries and advanced, non-conventional processes.

  12. Development of Integrated Programs for Aerospace-vehicle Design (IPAD): Product manufacture interactions with the design process

    Science.gov (United States)

    Crowell, H. A.

    1979-01-01

    The product manufacturing interactions with the design process and the IPAD requirements to support the interactions are described. The data requirements supplied to manufacturing by design are identified and quantified. Trends in computer-aided manufacturing are discussed and the manufacturing process of the 1980's is anticipated.

  13. Electron beam additive manufacturing with wire - Analysis of the process

    Science.gov (United States)

    Weglowski, Marek St.; Błacha, Sylwester; Pilarczyk, Jan; Dutkiewicz, Jan; Rogal, Łukasz

    2018-05-01

    The electron beam additive manufacturing process with wire is a part of global trend to find fast and efficient methods for producing complex shapes elements from costly metal alloys such as stainless steels, nickel alloys, titanium alloys etc. whose production by other conventional technologies is unprofitable or technically impossible. Demand for additive manufacturing is linked to the development of new technologies in the automotive, aerospace and machinery industries. The aim of the presented work was to carried out research on electron beam additive manufacturing with a wire as a deposited (filler) material. The scope of the work was to investigate the influence of selected technological parameters such as: wire feed rate, beam current, travelling speed, acceleration voltage on stability of the deposition process and geometric dimensions of the padding welds. The research revealed that, at low beam currents, the deposition process is unstable. The padding weld reinforcement is non-uniform. Irregularity of the width, height and straightness of the padding welds can be observed. At too high acceleration voltage and beam current, burn-through of plate and excess penetration weld can be revealed. The achieved results and gained knowledge allowed to produce, based on EBAM with wire process, whole structure from stainless steel.

  14. Readiness Assessment Towards Smart Manufacturing System for Tuna Processing Industry in Indonesia

    Science.gov (United States)

    Anggrahini, D.; Kurniati, N.; Karningsih, P. D.; Parenreng, S. M.; Syahroni, N.

    2018-04-01

    Marine product processing is one of the top priority clusters in the national development. Tuna, as a kind of deep ocean fishes, has the highest number of production that significantly increased throughout the years. Indonesia government encourages tuna processing industry, which are mostly dominated by small to medium enterprises, to grow continuously. Nowadays, manufacturers are facing substantial challenges in adopting modern system and technology that will lead a significant improvement through the internet of things (IoT). A smart factory transform integrated manufacturing process, in a high speed processing to respond customer needs. It has some positive impacts, such as increasing productivity, reducing set up time, shortening marketing and other support activities, hence the process is being more flexible and efficient. To implement smart manufacturing system, factories should know the readiness at any level of them, technology capability and strategy appropriateness. This exploratory study aims to identify the criterias, and develop an assessment tools to measure the level towards smart factory.

  15. Computer automation and artificial intelligence

    International Nuclear Information System (INIS)

    Hasnain, S.B.

    1992-01-01

    Rapid advances in computing, resulting from micro chip revolution has increased its application manifold particularly for computer automation. Yet the level of automation available, has limited its application to more complex and dynamic systems which require an intelligent computer control. In this paper a review of Artificial intelligence techniques used to augment automation is presented. The current sequential processing approach usually adopted in artificial intelligence has succeeded in emulating the symbolic processing part of intelligence, but the processing power required to get more elusive aspects of intelligence leads towards parallel processing. An overview of parallel processing with emphasis on transputer is also provided. A Fuzzy knowledge based controller for amination drug delivery in muscle relaxant anesthesia on transputer is described. 4 figs. (author)

  16. Tolerance analysis in manufacturing using process capability ratio with measurement uncertainty

    DEFF Research Database (Denmark)

    Mahshid, Rasoul; Mansourvar, Zahra; Hansen, Hans Nørgaard

    2017-01-01

    . In this paper, a new statistical analysis was applied to manufactured products to assess achieved tolerances when the process is known while using capability ratio and expanded uncertainty. The analysis has benefits for process planning, determining actual precision limits, process optimization, troubleshoot......Tolerance analysis provides valuable information regarding performance of manufacturing process. It allows determining the maximum possible variation of a quality feature in production. Previous researches have focused on application of tolerance analysis to the design of mechanical assemblies...... malfunctioning existing part. The capability measure is based on a number of measurements performed on part’s quality variable. Since the ratio relies on measurements, elimination of any possible error has notable negative impact on results. Therefore, measurement uncertainty was used in combination with process...

  17. Supporting shop floor intelligence

    DEFF Research Database (Denmark)

    Carstensen, Peter; Schmidt, Kjeld; Wiil, Uffe Kock

    1999-01-01

    Many manufacturing enterprises are now trying to introduce various forms of flexible work organizations on the shop floor. However, existing computer-based production planning and control systems pose severe obstacles for autonomous working groups and other kinds of shop floor control to become r......-to-day production planning by supporting intelligent and responsible workers in their situated coordination activities on the shop floor....

  18. Process Control Strategies for Dual-Phase Steel Manufacturing Using ANN and ANFIS

    Science.gov (United States)

    Vafaeenezhad, H.; Ghanei, S.; Seyedein, S. H.; Beygi, H.; Mazinani, M.

    2014-11-01

    In this research, a comprehensive soft computational approach is presented for the analysis of the influencing parameters on manufacturing of dual-phase steels. A set of experimental data have been gathered to obtain the initial database used for the training and testing of both artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS). The parameters used in the strategy were intercritical annealing temperature, carbon content, and holding time which gives off martensite percentage as an output. A fraction of the data set was chosen to train both ANN and ANFIS, and the rest was put into practice to authenticate the act of the trained networks while seeing unseen data. To compare the obtained results, coefficient of determination and root mean squared error indexes were chosen. Using artificial intelligence methods, it is not necessary to consider and establish a preliminary mathematical model and formulate its affecting parameters on its definition. In conclusion, the martensite percentages corresponding to the manufacturing parameters can be determined prior to a production using these controlling algorithms. Although the results acquired from both ANN and ANFIS are very encouraging, the proposed ANFIS has enhanced performance over the ANN and takes better effect on cost-reduction profit.

  19. Extraterrestrial processing and manufacturing of large space systems. Volume 3: Executive summary

    Science.gov (United States)

    Miller, R. H.; Smith, D. B. S.

    1979-01-01

    Facilities and equipment are defined for refining processes to commercial grade of lunar material that is delivered to a 'space manufacturing facility' in beneficiated, primary processed quality. The manufacturing facilities and the equipment for producing elements of large space systems from these materials and providing programmatic assessments of the concepts are also defined. In-space production processes of solar cells (by vapor deposition) and arrays, structures and joints, conduits, waveguides, RF equipment radiators, wire cables, converters, and others are described.

  20. Process Modeling and Validation for Metal Big Area Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Simunovic, Srdjan [ORNL; Nycz, Andrzej [ORNL; Noakes, Mark W. [ORNL; Chin, Charlie [Dassault Systemes; Oancea, Victor [Dassault Systemes

    2017-05-01

    Metal Big Area Additive Manufacturing (mBAAM) is a new additive manufacturing (AM) technology based on the metal arc welding. A continuously fed metal wire is melted by an electric arc that forms between the wire and the substrate, and deposited in the form of a bead of molten metal along the predetermined path. Objects are manufactured one layer at a time starting from the base plate. The final properties of the manufactured object are dependent on its geometry and the metal deposition path, in addition to depending on the basic welding process parameters. Computational modeling can be used to accelerate the development of the mBAAM technology as well as a design and optimization tool for the actual manufacturing process. We have developed a finite element method simulation framework for mBAAM using the new features of software ABAQUS. The computational simulation of material deposition with heat transfer is performed first, followed by the structural analysis based on the temperature history for predicting the final deformation and stress state. In this formulation, we assume that two physics phenomena are coupled in only one direction, i.e. the temperatures are driving the deformation and internal stresses, but their feedback on the temperatures is negligible. The experiment instrumentation (measurement types, sensor types, sensor locations, sensor placements, measurement intervals) and the measurements are presented. The temperatures and distortions from the simulations show good correlation with experimental measurements. Ongoing modeling work is also briefly discussed.

  1. Modelling Technical and Economic Parameters in Selection of Manufacturing Devices

    Directory of Open Access Journals (Sweden)

    Naqib Daneshjo

    2017-11-01

    Full Text Available Sustainable science and technology development is also conditioned by continuous development of means of production which have a key role in structure of each production system. Mechanical nature of the means of production is complemented by controlling and electronic devices in context of intelligent industry. A selection of production machines for a technological process or technological project has so far been practically resolved, often only intuitively. With regard to increasing intelligence, the number of variable parameters that have to be considered when choosing a production device is also increasing. It is necessary to use computing techniques and decision making methods according to heuristic methods and more precise methodological procedures during the selection. The authors present an innovative model for optimization of technical and economic parameters in the selection of manufacturing devices for industry 4.0.

  2. 27 CFR 40.1 - Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Manufacture of tobacco... MANUFACTURE OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Scope of Regulations § 40.1 Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco. This part contains...

  3. Automated input data management in manufacturing process simulation

    OpenAIRE

    Ettefaghian, Alireza

    2015-01-01

    Input Data Management (IDM) is a time consuming and costly process for Discrete Event Simulation (DES) projects. Input Data Management is considered as the basis of real-time process simulation (Bergmann, Stelzer and Strassburger, 2011). According to Bengtsson et al. (2009), data input phase constitutes on the average about 31% of the time of an entire simulation project. Moreover, the lack of interoperability between manufacturing applications and simulation software leads to a high cost to ...

  4. A factory concept for processing and manufacturing with lunar material

    Science.gov (United States)

    Driggers, G. W.

    1977-01-01

    A conceptual design for an orbital factory sized to process 1.5 million metric tons per year of raw lunar fines into 0.3 million metric tons of manufacturing materials is presented. A conservative approach involving application of present earth-based technology leads to a design devoid of new inventions. Earth based counterparts to the factory machinery were used to generate subsystem masses and lumped parameters for volume and mass estimates. The results are considered to be conservative since technologies more advanced than those assumed are presently available in many areas. Some attributes of potential space processing technologies applied to material refinement and component manufacture are discussed.

  5. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  6. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    International Nuclear Information System (INIS)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories' operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment

  7. Customer-driven manufacturing in the food processing industry

    NARCIS (Netherlands)

    Donk, D.P. van

    2000-01-01

    Food processing industry copes with high logistical demands from its customers. This paper studies a company changing to more customer (order) driven manufacturing. In order to help decide which products should be made to order and which made to stock, a frame is developed and applied to find and

  8. Fundamental Aspects of Selective Melting Additive Manufacturing Processes

    Energy Technology Data Exchange (ETDEWEB)

    van Swol, Frank B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-12-01

    Certain details of the additive manufacturing process known as selective laser melting (SLM) affect the performance of the final metal part. To unleash the full potential of SLM it is crucial that the process engineer in the field receives guidance about how to select values for a multitude of process variables employed in the building process. These include, for example, the type of powder (e.g., size distribution, shape, type of alloy), orientation of the build axis, the beam scan rate, the beam power density, the scan pattern and scan rate. The science-based selection of these settings con- stitutes an intrinsically challenging multi-physics problem involving heating and melting a metal alloy, reactive, dynamic wetting followed by re-solidification. In addition, inherent to the process is its considerable variability that stems from the powder packing. Each time a limited number of powder particles are placed, the stacking is intrinsically different from the previous, possessing a different geometry, and having a different set of contact areas with the surrounding particles. As a result, even if all other process parameters (scan rate, etc) are exactly the same, the shape and contact geometry and area of the final melt pool will be unique to that particular configuration. This report identifies the most important issues facing SLM, discusses the fundamental physics associated with it and points out how modeling can support the additive manufacturing efforts.

  9. Visual function and cognitive speed of processing mediate age-related decline in memory span and fluid intelligence.

    Science.gov (United States)

    Clay, Olivio J; Edwards, Jerri D; Ross, Lesley A; Okonkwo, Ozioma; Wadley, Virginia G; Roth, David L; Ball, Karlene K

    2009-06-01

    To evaluate the relationship between sensory and cognitive decline, particularly with respect to speed of processing, memory span, and fluid intelligence. In addition, the common cause, sensory degradation and speed of processing hypotheses were compared. Structural equation modeling was used to investigate the complex relationships among age-related decrements in these areas. Cross-sectional data analyses included 842 older adult participants (M = 73 years). After accounting for age-related declines in vision and processing speed, the direct associations between age and memory span and between age and fluid intelligence were nonsignificant. Older age was associated with visual decline, which was associated with slower speed of processing, which in turn was associated with greater cognitive deficits. The findings support both the sensory degradation and speed of processing accounts of age-related, cognitive decline. Furthermore, the findings highlight positive aspects of normal cognitive aging in that older age may not be associated with a loss of fluid intelligence if visual sensory functioning and processing speed can be maintained.

  10. Artificial intelligence for the modeling and control of combustion processes: a review

    Energy Technology Data Exchange (ETDEWEB)

    Kalogirou, S.A. [Higher Technical Inst., Nicosia, Cyprus (Greece). Dept. of Mechanical Engineering

    2003-07-01

    Artificial intelligence (AI) systems are widely accepted as a technology offering an alternative way to tackle complex and ill-defined problems. They can learn from examples, are fault tolerant in the sense that they are able to handle noisy and incomplete data, are able to deal with non-linear problems, and once trained can perform prediction and generalization at high speed. They have been used in diverse applications in control, robotics, pattern recognition, forecasting, medicine, power systems, manufacturing, optimization, signal processing, and social/psychological sciences. They are particularly useful in system modeling such as in implementing complex mappings and system identification. Al systems comprise areas like, expert systems, artificial neural networks, genetic algorithms, fuzzy logic and various hybrid systems, which combine two or more techniques. The major objective of this paper is to illustrate how Al techniques might play an important role in modeling and prediction of the performance and control of combustion process. The paper outlines an understanding of how AI systems operate by way of presenting a number of problems in the different disciplines of combustion engineering. The various applications of AI are presented in a thematic rather than a chronological or any other order. Problems presented include two main areas: combustion systems and internal combustion (IC) engines. Combustion systems include boilers, furnaces and incinerators modeling and emissions prediction, whereas, IC engines include diesel and spark ignition engines and gas engines modeling and control. Results presented in this paper, are testimony to the potential of Al as a design tool in many areas of combustion engineering. (author)

  11. Adaptive Process Controls and Ultrasonics for High Temperature PEM MEA Manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Walczyk, Daniel F. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2015-08-26

    The purpose of this 5-year DOE-sponsored project was to address major process bottlenecks associated with fuel cell manufacturing. New technologies were developed to significantly reduce pressing cycle time for high temperature PEM membrane electrode assembly (MEA) through the use of novel, robust ultrasonic (U/S) bonding processes along with low temperature (<100°C) PEM MEAs. In addition, greater manufacturing uniformity and performance was achieved through (a) an investigation into the causes of excessive variation in ultrasonically and thermally bonded MEAs using more diagnostics applied during the entire fabrication and cell build process, and (b) development of rapid, yet simple quality control measurement techniques for use by industry.

  12. Research on Marketing Channel of Mobile Manufacturer Based on Analytic Hierarchy Process

    Institute of Scientific and Technical Information of China (English)

    XIONG Hui; LI Shi-ming; LAN Yong

    2006-01-01

    Research on "marketing channel" of mobile attracts much attention in these years,but there're only few articles referring to how to optimize the disposition of channel resources for mobile manufacturers. Based on a typically multiplex marketing channel system of mobile manufacturer, the analytic hierarchy process (AHP) structure model is established. Through the judgment matrix, simple and total hierarchy arrangement, consistent test, this paper gets the weight of each kind of marketing channel of mobile manufacturer. It provides the practical reference value for mobile manufacturers to distribute resources of marketing channels.

  13. PROCESS PERFORMANCE EVALUATION USING HISTOGRAM AND TAGUCHI TECHNIQUE IN LOCK MANUFACTURING COMPANY

    Directory of Open Access Journals (Sweden)

    Hagos Berhane

    2013-12-01

    Full Text Available Process capability analysis is a vital part of an overall quality improvement program. It is a technique that has application in many segments of the product cycle, including product and process design, vendor sourcing, production or manufacturing planning, and manufacturing. Frequently, a process capability study involves observing a quality characteristic of the product. Since this information usually pertains to the product rather than the process, this analysis should strictly speaking be called a product analysis study. A true process capability study in this context would involve collecting data that relates to process parameters so that remedial actions can be identified on a timely basis. The present study attempts to analyze performance of drilling, pressing, and reaming operations carried out for the manufacturing of two major lock components viz. handle and lever plate, at Gaurav International, Aligarh (India. The data collected for depth of hole on handle, central hole diameter, and key hole diameter are used to construct histogram. Next, the information available in frequency distribution table, the process mean, process capability from calculations and specification limits provided by the manufacturing concern are used with Taguchi technique. The data obtained from histogram and Taguchi technique combined are used to evaluate the performance of the manufacturing process. Results of this study indicated that the performance of all the processes used to produce depth of hole on handle, key hole diameter, and central hole diameter are potentially incapable as the process capability indices are found to be 0.54, 0.54 and 0.76 respectively. The number of nonconforming parts expressed in terms of parts per million (ppm that have fallen out of the specification limits are found to be 140000, 26666.66, and 146666.66 for depth of hole on handle, central hole diameter, and key hole diameter respectively. As a result, the total loss incurred

  14. The use of LCA for modelling sustainability and environmental impact of manufacturing processes

    Energy Technology Data Exchange (ETDEWEB)

    Culaba, A.; Purvis, M. [Portsmouth Univ. (United Kingdom). Dept. of Mechanical and Manufacturing Engineering

    1995-12-31

    Most industries rely significantly on natural resources for raw materials and energy requirements. As a consequence of manufacturing activities, various pollutants are generated in the process. While effects on the environment can be detrimental, wastes and emissions account for a high percentage loss in the overall material balance. Unless these unnecessary losses are minimized and recovered, the environment would continue to be disadvantaged and long-term supply of raw materials and energy would likewise be affected. The key to the analysis of such problems concerns generalised procedures for the modelling of the sustainable use of resources in manufacturing processes and the development of associated sustainability criteria. This requires identifying the various aspects of manufacturing from the time the raw materials are extracted until they have been processed into products and then used or consumed and finally disposed of. The use of life cycle assessment (LCA) methodology encompasses these analyses and that of the identification of environmental effects associated with every stage of the manufacturing process. The presentation concludes that LCA is a very useful and effective tool in providing planners, legislator and decision-makers with the necessary information on the probable impacts of manufacture on the environment as well as underlying legislation, ecological, health standards and emission limits. (author)

  15. The use of LCA for modelling sustainability and environmental impact of manufacturing processes

    Energy Technology Data Exchange (ETDEWEB)

    Culaba, A; Purvis, M [Portsmouth Univ. (United Kingdom). Dept. of Mechanical and Manufacturing Engineering

    1996-12-31

    Most industries rely significantly on natural resources for raw materials and energy requirements. As a consequence of manufacturing activities, various pollutants are generated in the process. While effects on the environment can be detrimental, wastes and emissions account for a high percentage loss in the overall material balance. Unless these unnecessary losses are minimized and recovered, the environment would continue to be disadvantaged and long-term supply of raw materials and energy would likewise be affected. The key to the analysis of such problems concerns generalised procedures for the modelling of the sustainable use of resources in manufacturing processes and the development of associated sustainability criteria. This requires identifying the various aspects of manufacturing from the time the raw materials are extracted until they have been processed into products and then used or consumed and finally disposed of. The use of life cycle assessment (LCA) methodology encompasses these analyses and that of the identification of environmental effects associated with every stage of the manufacturing process. The presentation concludes that LCA is a very useful and effective tool in providing planners, legislator and decision-makers with the necessary information on the probable impacts of manufacture on the environment as well as underlying legislation, ecological, health standards and emission limits. (author)

  16. Evaluation of polymer micro parts produced by additive manufacturing processes using vat photopolymerization method

    DEFF Research Database (Denmark)

    Davoudinejad, Ali; Pedersen, David Bue; Tosello, Guido

    2017-01-01

    Micro manufacturing scale feature production by Additive Manufacturing (AM) processes for the direct production of miniaturized polymer components is analysed in this work. The study characterizes the AM processes for polymer micro parts productions using the vat photopolymerization method...

  17. AN OVERVIEW OF PHARMACEUTICAL PROCESS VALIDATION AND PROCESS CONTROL VARIABLES OF TABLETS MANUFACTURING PROCESSES IN INDUSTRY

    OpenAIRE

    Mahesh B. Wazade*, Sheelpriya R. Walde and Abhay M. Ittadwar

    2012-01-01

    Validation is an integral part of quality assurance; the product quality is derived from careful attention to a number of factors including selection of quality parts and materials, adequate product and manufacturing process design, control of the process variables, in-process and end-product testing. Recently validation has become one of the pharmaceutical industry’s most recognized and discussed subjects. It is a critical success factor in product approval and ongoing commercialization, fac...

  18. ENABLING SMART MANUFACTURING TECHNOLOGIES FOR DECISION-MAKING SUPPORT

    Science.gov (United States)

    Helu, Moneer; Libes, Don; Lubell, Joshua; Lyons, Kevin; Morris, KC

    2017-01-01

    Smart manufacturing combines advanced manufacturing capabilities and digital technologies throughout the product lifecycle. These technologies can provide decision-making support to manufacturers through improved monitoring, analysis, modeling, and simulation that generate more and better intelligence about manufacturing systems. However, challenges and barriers have impeded the adoption of smart manufacturing technologies. To begin to address this need, this paper defines requirements for data-driven decision making in manufacturing based on a generalized description of decision making. Using these requirements, we then focus on identifying key barriers that prevent the development and use of data-driven decision making in industry as well as examples of technologies and standards that have the potential to overcome these barriers. The goal of this research is to promote a common understanding among the manufacturing community that can enable standardization efforts and innovation needed to continue adoption and use of smart manufacturing technologies. PMID:28649678

  19. Design of production process main shaft process with lean manufacturing to improve productivity

    Science.gov (United States)

    Siregar, I.; Nasution, A. A.; Andayani, U.; Anizar; Syahputri, K.

    2018-02-01

    This object research is one of manufacturing companies that produce oil palm machinery parts. In the production process there is delay in the completion of the Main shaft order. Delays in the completion of the order indicate the low productivity of the company in terms of resource utilization. This study aimed to obtain a draft improvement of production processes that can improve productivity by identifying and eliminating activities that do not add value (non-value added activity). One approach that can be used to reduce and eliminate non-value added activity is Lean Manufacturing. This study focuses on the identification of non-value added activity with value stream mapping analysis tools, while the elimination of non-value added activity is done with tools 5 whys and implementation of pull demand system. Based on the research known that non-value added activity on the production process of the main shaft is 9,509.51 minutes of total lead time 10,804.59 minutes. This shows the level of efficiency (Process Cycle Efficiency) in the production process of the main shaft is still very low by 11.89%. Estimation results of improvement showed a decrease in total lead time became 4,355.08 minutes and greater process cycle efficiency that is equal to 29.73%, which indicates that the process was nearing the concept of lean production.

  20. A comparison of BPMN 2.0 with other notations for manufacturing processes

    Science.gov (United States)

    García-Domínguez, A.; Marcos, Mariano; Medina, I.

    2012-04-01

    In order to study their current practices and improve on them, manufacturing firms need to view their processes from several viewpoints at various abstraction levels. Several notations have been developed for this purpose, such as Value Stream Mappings or IDEF models. More recently, the BPMN 2.0 standard from the Object Management Group has been proposed for modeling business processes. A process organizes several activities (manual or automatic) into a single higher-level entity, which can be reused elsewhere in the organization. Its potential for standardizing business interactions is well-known, but there is little work on using BPMN 2.0 to model manufacturing processes. In this work some of the previous notations are outlined and BPMN 2.0 is positioned among them after discussing it in more depth. Some guidelines on using BPMN 2.0 for manufacturing are offered, and its advantages and disadvantages in comparison with the other notations are presented.

  1. ASPIE: A Framework for Active Sensing and Processing of Complex Events in the Internet of Manufacturing Things

    Directory of Open Access Journals (Sweden)

    Shaobo Li

    2018-03-01

    Full Text Available Rapid perception and processing of critical monitoring events are essential to ensure healthy operation of Internet of Manufacturing Things (IoMT-based manufacturing processes. In this paper, we proposed a framework (active sensing and processing architecture (ASPIE for active sensing and processing of critical events in IoMT-based manufacturing based on the characteristics of IoMT architecture as well as its perception model. A relation model of complex events in manufacturing processes, together with related operators and unified XML-based semantic definitions, are developed to effectively process the complex event big data. A template based processing method for complex events is further introduced to conduct complex event matching using the Apriori frequent item mining algorithm. To evaluate the proposed models and methods, we developed a software platform based on ASPIE for a local chili sauce manufacturing company, which demonstrated the feasibility and effectiveness of the proposed methods for active perception and processing of complex events in IoMT-based manufacturing.

  2. Automated business process management – in times of digital transformation using machine learning or artificial intelligence

    Directory of Open Access Journals (Sweden)

    Paschek Daniel

    2017-01-01

    Full Text Available The continuous optimization of business processes is still a challenge for companies. In times of digital transformation, faster changing internal and external framework conditions and new customer expectations for fastest delivery and best quality of goods and many more, companies should set up their internal process at the best way. But what to do if framework conditions changed unexpectedly? The purpose of the paper is to analyse how the digital transformation will impact the Business Process Management (BPM while using methods like machine learning or artificial intelligence. Therefore, the core components will be explained, compared and set up in relation. To identify application areas interviews and analysis will be held up with digital companies. The finding of the paper will be recommendation for action in the field of BPM and process optimization through machine learning and artificial intelligence. The Approach of optimizing and management processes via machine learning and artificial intelligence will support companies to decide which tool will be the best for automated BPM.

  3. Towards Intelligent Supply Chains

    DEFF Research Database (Denmark)

    Siurdyban, Artur; Møller, Charles

    2012-01-01

    applied to the context of organizational processes can increase the success rate of business operations. The framework is created using a set of theoretical based constructs grounded in a discussion across several streams of research including psychology, pedagogy, artificial intelligence, learning...... of deploying inapt operations leading to deterioration of profits. To address this problem, we propose a unified business process design framework based on the paradigm of intelligence. Intelligence allows humans and human-designed systems cope with environmental volatility, and we argue that its principles......, business process management and supply chain management. It outlines a number of system tasks combined in four integrated management perspectives: build, execute, grow and innovate, put forward as business process design propositions for Intelligent Supply Chains....

  4. Primary Manufacturing Processes for Fiber Reinforced Composites: History, Development & Future Research Trends

    Science.gov (United States)

    Tapan Bhatt, Alpa; Gohil, Piyush P.; Chaudhary, Vijaykumar

    2018-03-01

    Composite Materials are becoming more popular gradually replacing traditional material with extra strength, lighter weight and superior property. The world is exploring use of fiber reinforced composites in all application which includes air, land and water transport, construction industry, toys, instrumentation, medicine and the list is endless. Based on application and reinforcement used, there are many ways to manufactures parts with fiber reinforced composites. In this paper various manufacturing processes have been discussed at length, to make fiber reinforced composites components. The authors have endeavored to include all the processes available recently in composite industry. Paper first highlights history of fiber reinforced composites manufacturing, and then the comparison of different manufacturing process to build composites have been discussed, to give clear understanding on, which process should be selected, based on reinforcement, matrix and application. All though, there are several advantages to use such fiber reinforcement composites, still industries have not grown at par and there is a lot of scope to improve these industries. At last, where India stands today, what are the challenges in market has been highlighted and future market and research trend of exploring such composite industries have been discussed. This work is carried out as a part of research project sanctioned by GUJCOST, Gandhinagar.

  5. An Intelligent System for Modelling, Design and Analysis of Chemical Processes

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    ICAS, Integrated Computer Aided System, is a software that consists of a number of intelligent tools, which are very suitable, among others, for computer aided modelling, sustainable design of chemical and biochemical processes, and design-analysis of product-process monitoring systems. Each...... the computer aided modelling tool will illustrate how to generate a desired process model, how to analyze the model equations, how to extract data and identify the model and make it ready for various types of application. In sustainable process design, the example will highlight the issue of integration...

  6. Parallel direct solver for finite element modeling of manufacturing processes

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, P.A.F.

    2017-01-01

    The central processing unit (CPU) time is of paramount importance in finite element modeling of manufacturing processes. Because the most significant part of the CPU time is consumed in solving the main system of equations resulting from finite element assemblies, different approaches have been...

  7. Information processing speed mediates the relationship between white matter and general intelligence in schizophrenia.

    Science.gov (United States)

    Alloza, Clara; Cox, Simon R; Duff, Barbara; Semple, Scott I; Bastin, Mark E; Whalley, Heather C; Lawrie, Stephen M

    2016-08-30

    Several authors have proposed that schizophrenia is the result of impaired connectivity between specific brain regions rather than differences in local brain activity. White matter abnormalities have been suggested as the anatomical substrate for this dysconnectivity hypothesis. Information processing speed may act as a key cognitive resource facilitating higher order cognition by allowing multiple cognitive processes to be simultaneously available. However, there is a lack of established associations between these variables in schizophrenia. We hypothesised that the relationship between white matter and general intelligence would be mediated by processing speed. White matter water diffusion parameters were studied using Tract-based Spatial Statistics and computed within 46 regions-of-interest (ROI). Principal component analysis was conducted on these white matter ROI for fractional anisotropy (FA) and mean diffusivity, and on neurocognitive subtests to extract general factors of white mater structure (gFA, gMD), general intelligence (g) and processing speed (gspeed). There was a positive correlation between g and gFA (r= 0.67, p =0.001) that was partially and significantly mediated by gspeed (56.22% CI: 0.10-0.62). These findings suggest a plausible model of structure-function relations in schizophrenia, whereby white matter structure may provide a neuroanatomical substrate for general intelligence, which is partly supported by speed of information processing. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Tendency of lubricating oil manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Toshio

    1988-09-30

    The manufacturing method of paraffin base oil and the tendency are explained in details. The base oil is distillate of petroleum which is obtained at the high boiling of 400/degree/C or higher. The base oil is made from the distillate which is obtained through solvent deasphalting of the vacuum distillated residual oil. The refining process of those material is classified into the two different process steps such as refining and modifying process step in which the quality of the material is improved while eliminating unstable resin, aromatic compound, and sulfur contained in the material, and dewaxing process step in which the wax contained in the material is removed. The former is combination of the two different process steps such as solvent extraction process and hydrogen finishing process or hydroforming process. The latter is a combination of the two different process steps such as solvent dewaxing and catalytic dewaxing (hydro-dewaxing). Various examples of reactions, features and industrial processes are given in accordance with each of these process steps. Regarding the tendency toward the future, the kinds of materials will be expanded in the way that naphthene base oil will adopted as the material oil along with diversification of the quality of lubricating oil, and the processing technology including two-stage processing, catalytic dewaxing, etc. will be expected to be improved. 18 references, 11 figures, 7 tables.

  9. Trends in ambient intelligent systems the role of computational intelligence

    CERN Document Server

    Khan, Mohammad; Abraham, Ajith

    2016-01-01

    This book demonstrates the success of Ambient Intelligence in providing possible solutions for the daily needs of humans. The book addresses implications of ambient intelligence in areas of domestic living, elderly care, robotics, communication, philosophy and others. The objective of this edited volume is to show that Ambient Intelligence is a boon to humanity with conceptual, philosophical, methodical and applicative understanding. The book also aims to schematically demonstrate developments in the direction of augmented sensors, embedded systems and behavioral intelligence towards Ambient Intelligent Networks or Smart Living Technology. It contains chapters in the field of Ambient Intelligent Networks, which received highly positive feedback during the review process. The book contains research work, with in-depth state of the art from augmented sensors, embedded technology and artificial intelligence along with cutting-edge research and development of technologies and applications of Ambient Intelligent N...

  10. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting-Selection Guidelines.

    Science.gov (United States)

    Gokuldoss, Prashanth Konda; Kolla, Sri; Eckert, Jürgen

    2017-06-19

    Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties.

  11. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting—Selection Guidelines

    Science.gov (United States)

    Konda Gokuldoss, Prashanth; Kolla, Sri; Eckert, Jürgen

    2017-01-01

    Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties. PMID:28773031

  12. Using microwave Doppler radar in automated manufacturing applications

    Science.gov (United States)

    Smith, Gregory C.

    Since the beginning of the Industrial Revolution, manufacturers worldwide have used automation to improve productivity, gain market share, and meet growing or changing consumer demand for manufactured products. To stimulate further industrial productivity, manufacturers need more advanced automation technologies: "smart" part handling systems, automated assembly machines, CNC machine tools, and industrial robots that use new sensor technologies, advanced control systems, and intelligent decision-making algorithms to "see," "hear," "feel," and "think" at the levels needed to handle complex manufacturing tasks without human intervention. The investigator's dissertation offers three methods that could help make "smart" CNC machine tools and industrial robots possible: (1) A method for detecting acoustic emission using a microwave Doppler radar detector, (2) A method for detecting tool wear on a CNC lathe using a Doppler radar detector, and (3) An online non-contact method for detecting industrial robot position errors using a microwave Doppler radar motion detector. The dissertation studies indicate that microwave Doppler radar could be quite useful in automated manufacturing applications. In particular, the methods developed may help solve two difficult problems that hinder further progress in automating manufacturing processes: (1) Automating metal-cutting operations on CNC machine tools by providing a reliable non-contact method for detecting tool wear, and (2) Fully automating robotic manufacturing tasks by providing a reliable low-cost non-contact method for detecting on-line position errors. In addition, the studies offer a general non-contact method for detecting acoustic emission that may be useful in many other manufacturing and non-manufacturing areas, as well (e.g., monitoring and nondestructively testing structures, materials, manufacturing processes, and devices). By advancing the state of the art in manufacturing automation, the studies may help

  13. Synthetic-Creative Intelligence and Psychometric Intelligence: Analysis of the Threshold Theory and Creative Process

    Science.gov (United States)

    Ferrando, Mercedes; Soto, Gloria; Prieto, Lola; Sáinz, Marta; Ferrándiz, Carmen

    2016-01-01

    There has been an increasing body of research to uncover the relationship between creativity and intelligence. This relationship usually has been examined using traditional measures of intelligence and seldom using new approaches (i.e. Ferrando et al. 2005). In this work, creativity is measured by tools developed based on Sternberg's successful…

  14. Drug-printing by flexographic printing technology--a new manufacturing process for orodispersible films.

    Science.gov (United States)

    Janssen, Eva Maria; Schliephacke, Ralf; Breitenbach, Armin; Breitkreutz, Jörg

    2013-01-30

    Orodispersible films (ODFs) are intended to disintegrate within seconds when placed onto the tongue. The common way of manufacturing is the solvent casting method. Flexographic printing on drug-free ODFs is introduced as a highly flexible and cost-effective alternative manufacturing method in this study. Rasagiline mesylate and tadalafil were used as model drugs. Printing of rasagiline solutions and tadalafil suspensions was feasible. Up to four printing cycles were performed. The possibility to employ several printing cycles enables a continuous, highly flexible manufacturing process, for example for individualised medicine. The obtained ODFs were characterised regarding their mechanical properties, their disintegration time, API crystallinity and homogeneity. Rasagiline mesylate did not recrystallise after the printing process. Relevant film properties were not affected by printing. Results were comparable to the results of ODFs manufactured with the common solvent casting technique, but the APIs are less stressed through mixing, solvent evaporation and heat. Further, loss of material due to cutting jumbo and daughter rolls can be reduced. Therefore, a versatile new manufacturing technology particularly for processing high-potent low-dose or heat sensitive drugs is introduced in this study. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Precision manufacturing

    CERN Document Server

    Dornfeld, David

    2008-01-01

    Today there is a high demand for high-precision products. The manufacturing processes are now highly sophisticated and derive from a specialized genre called precision engineering. Precision Manufacturing provides an introduction to precision engineering and manufacturing with an emphasis on the design and performance of precision machines and machine tools, metrology, tooling elements, machine structures, sources of error, precision machining processes and precision process planning. As well as discussing the critical role precision machine design for manufacturing has had in technological developments over the last few hundred years. In addition, the influence of sustainable manufacturing requirements in precision processes is introduced. Drawing upon years of practical experience and using numerous examples and illustrative applications, David Dornfeld and Dae-Eun Lee cover precision manufacturing as it applies to: The importance of measurement and metrology in the context of Precision Manufacturing. Th...

  16. Recent advances in fuel product and manufacturing process development

    International Nuclear Information System (INIS)

    Slember, R.J.; Doshi, P.K.

    1987-01-01

    This paper discusses advancements in commercial nuclear fuel products and manufacturing made by the Westinghouse Electric Corporation in response to the commercial nuclear fuel industry's demand for high reliability, increased plant availability and improved operating flexibility. The features and benefits of Westinghouse's most advanced fuel products--VANTAGE 5 for PWR plants and QUAD+ for BWR plants--are described, as well as 'high performance' fuel concepts now under development for delivery in the late 1980s. The paper also disusses the importance of in-process quality control throughout manufacturing towards reducing product variability and improving fuel reliability. (author)

  17. Advanced intelligent systems

    CERN Document Server

    Ryoo, Young; Jang, Moon-soo; Bae, Young-Chul

    2014-01-01

    Intelligent systems have been initiated with the attempt to imitate the human brain. People wish to let machines perform intelligent works. Many techniques of intelligent systems are based on artificial intelligence. According to changing and novel requirements, the advanced intelligent systems cover a wide spectrum: big data processing, intelligent control, advanced robotics, artificial intelligence and machine learning. This book focuses on coordinating intelligent systems with highly integrated and foundationally functional components. The book consists of 19 contributions that features social network-based recommender systems, application of fuzzy enforcement, energy visualization, ultrasonic muscular thickness measurement, regional analysis and predictive modeling, analysis of 3D polygon data, blood pressure estimation system, fuzzy human model, fuzzy ultrasonic imaging method, ultrasonic mobile smart technology, pseudo-normal image synthesis, subspace classifier, mobile object tracking, standing-up moti...

  18. Process simulations for manufacturing of thick composites

    Science.gov (United States)

    Kempner, Evan A.

    The availability of manufacturing simulations for composites can significantly reduce the costs associated with process development. Simulations provide a tool for evaluating the effect of processing conditions on the quality of parts produced without requiring numerous experiments. This is especially significant in parts that have troublesome features such as large thickness. The development of simulations for thick walled composites has been approached by examining the mechanics of resin flow and fiber deformation during processing, applying these evaluations to develop simulations, and evaluating the simulation with experimental results. A unified analysis is developed to describe the three-dimensional resin flow and fiber preform deformation during processing regardless of the manufacturing process used. It is shown how the generic governing evaluations in the unified analysis can be applied to autoclave molding, compression molding, pultrusion, filament winding, and resin transfer molding. A comparison is provided with earlier models derived individually for these processes. The evaluations described for autoclave curing were used to produce a one-dimensional cure simulation for autoclave curing of thick composites. The simulation consists of an analysis for heat transfer and resin flow in the composite as well as bleeder plies used to absorb resin removed from the part. Experiments were performed in a hot press to approximate curing in an autoclave. Graphite/epoxy laminates of 3 cm and 5 cm thickness were cured while monitoring temperatures at several points inside the laminate and thickness. The simulation predicted temperatures fairly closely, but difficulties were encountered in correlation of thickness results. This simulation was also used to study the effects of prepreg aging on processing of thick composites. An investigation was also performed on filament winding with prepreg tow. Cylinders were wound of approximately 12 mm thickness with pressure

  19. Acoustic richness modulates the neural networks supporting intelligible speech processing.

    Science.gov (United States)

    Lee, Yune-Sang; Min, Nam Eun; Wingfield, Arthur; Grossman, Murray; Peelle, Jonathan E

    2016-03-01

    The information contained in a sensory signal plays a critical role in determining what neural processes are engaged. Here we used interleaved silent steady-state (ISSS) functional magnetic resonance imaging (fMRI) to explore how human listeners cope with different degrees of acoustic richness during auditory sentence comprehension. Twenty-six healthy young adults underwent scanning while hearing sentences that varied in acoustic richness (high vs. low spectral detail) and syntactic complexity (subject-relative vs. object-relative center-embedded clause structures). We manipulated acoustic richness by presenting the stimuli as unprocessed full-spectrum speech, or noise-vocoded with 24 channels. Importantly, although the vocoded sentences were spectrally impoverished, all sentences were highly intelligible. These manipulations allowed us to test how intelligible speech processing was affected by orthogonal linguistic and acoustic demands. Acoustically rich speech showed stronger activation than acoustically less-detailed speech in a bilateral temporoparietal network with more pronounced activity in the right hemisphere. By contrast, listening to sentences with greater syntactic complexity resulted in increased activation of a left-lateralized network including left posterior lateral temporal cortex, left inferior frontal gyrus, and left dorsolateral prefrontal cortex. Significant interactions between acoustic richness and syntactic complexity occurred in left supramarginal gyrus, right superior temporal gyrus, and right inferior frontal gyrus, indicating that the regions recruited for syntactic challenge differed as a function of acoustic properties of the speech. Our findings suggest that the neural systems involved in speech perception are finely tuned to the type of information available, and that reducing the richness of the acoustic signal dramatically alters the brain's response to spoken language, even when intelligibility is high. Copyright © 2015 Elsevier

  20. Influence of Family Processes, Motivation, and Beliefs about Intelligence on Creative Problem Solving of Scientifically Talented Individuals

    Science.gov (United States)

    Cho, Seokhee; Lin, Chia-Yi

    2011-01-01

    Predictive relationships among perceived family processes, intrinsic and extrinsic motivation, incremental beliefs about intelligence, confidence in intelligence, and creative problem-solving practices in mathematics and science were examined. Participants were 733 scientifically talented Korean students in fourth through twelfth grades as well as…

  1. Additive Manufacturing of Tooling for Refrigeration Cabinet Foaming Processes

    Energy Technology Data Exchange (ETDEWEB)

    Post, Brian K [ORNL; Nuttall, David [ORNL; Cukier, Michael Z [ORNL; Hile, Michael B [ORNL

    2016-07-29

    The primary objective of this project was to leverage the Big Area Additive Manufacturing (BAAM) process and materials into a long term, quick change tooling concept to drastically reduce product lead and development timelines and costs. Current refrigeration foam molds are complicated to manufacture involving casting several aluminum parts in an approximate shape, machining components of the molds and post fitting and shimming of the parts in an articulated fixture. The total process timeline can take over 6 months. The foaming process is slower than required for production, therefore multiple fixtures, 10 to 27, are required per refrigerator model. Molds are particular to a specific product configuration making mixed model assembly challenging for sequencing, mold changes or auto changeover features. The initial goal was to create a tool leveraging the ORNL materials and additive process to build a tool in 4 to 6 weeks or less. A secondary goal was to create common fixture cores and provide lightweight fixture sections that could be revised in a very short time to increase equipment flexibility reduce lead times, lower the barriers to first production trials, and reduce tooling costs.

  2. Metal Advanced Manufacturing Bot-Assisted Assembly (MAMBA) Process, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Tethers Unlimited, Inc. (TUI) proposes to develop the Metal Advanced Manufacturing Bot-Assisted Assembly (MAMBA) Process, a robotically managed metal press and...

  3. Fiscal 2000 achievement report on the venture business assisting type regional consortium - Core industry creation type. Research and development of polisher robot system using intelligent force control; 2000 nendo chiiki consortium kenkyu kaihatsu jigyo seika hokokusho. Intelligent ryoku seigyo wo mochiita kenma robot system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The effort aims to automatize the manufacture of wooden furniture by robotizing the polishing work in the field of wooden furniture manufacturing, making use of the seeds provided by intelligent force control technologies. The intelligent force control technologies ('Delicate control of force for the open architecture type industrial robot' and 'Method for target orbit generation not requiring joystick teaching') of Saga University and the interior laboratory of Fukuoka Prefectural Industrial Research Institute are evolved and applied, and are integrated with the 3-dimensional object modelling technology developed by the mechanical and electronic laboratory, Fukuoka Prefectural Industrial Research Institute, and the CAD (computer aided design) data conversion technology developed by ASA Systems Inc. The result was a polisher robot system experimentally fabricated to satisfy the need of an automated polishing process in the wooden furniture manufacturing industry. The robot was tested, and achieved a surface coarseness level of 5{mu}m or less. As for the manufacturing rate, it attained a rate of approximately 100mm/s which was two times higher than the rate to be expected from a skilled worker. (NEDO)

  4. Front-End Intelligence for Large-Scale Application-Oriented Internet-of-Things

    KAUST Repository

    Bader, Ahmed; Ghazzai, Hakim; Kadri, Abdullah; Alouini, Mohamed-Slim

    2016-01-01

    The Internet-of-things (IoT) refers to the massive integration of electronic devices, vehicles, buildings, and other objects to collect and exchange data. It is the enabling technology for a plethora of applications touching various aspects of our lives such as healthcare, wearables, surveillance, home automation, smart manufacturing, and intelligent automotive systems. Existing IoT architectures are highly centralized and heavily rely on a back-end core network for all decision-making processes. This may lead to inefficiencies in terms of latency, network traffic management, computational processing, and power consumption. In this paper, we advocate the empowerment of front-end IoT devices to support the back-end network in fulfilling end-user applications requirements mainly by means of improved connectivity and efficient network management. A novel conceptual framework is presented for a new generation of IoT devices that will enable multiple new features for both the IoT administrators as well as end users. Exploiting the recent emergence of software-defined architecture, these smart IoT devices will allow fast, reliable, and intelligent management of diverse IoT-based applications. After highlighting relevant shortcomings of the existing IoT architectures, we outline some key design perspectives to enable front-end intelligence while shedding light on promising future research directions.

  5. Competitive intelligence information management and innovation in small technology-based companies

    Science.gov (United States)

    Tanev, Stoyan

    2007-05-01

    In this article we examine how (i) company type and (ii) the competitive intelligence information used by small technology-based companies affect their innovation performance. The focus is on the specific information types used and not on the information sources. Information topics are classified in four groups - customers (10), company (9), competitor (11) and industry (12). The sample consists of 45 small new technology-based companies, specialized suppliers, and service companies from a variety of sectors - software, photonics, telecommunications, biomedical engineering and biotech, traditional manufacturing etc. The results suggest that the total number of intelligence information topics companies use to make decisions about innovation is not associated with the number of their new products, processes, services and patents. Therefore the companies in our sample do not seem to have the resources, processes or value systems required to use different competitive intelligence information when making decisions on innovation or may rely more on their own internal logic than on external information. Companies are classified using a Pavitt-like taxonomy. Service companies are considered as a separate company type. This allows for explicitly studying both, the innovative role of new services in product driven companies, and the role of new product development in service companies.

  6. Front-End Intelligence for Large-Scale Application-Oriented Internet-of-Things

    KAUST Repository

    Bader, Ahmed

    2016-06-14

    The Internet-of-things (IoT) refers to the massive integration of electronic devices, vehicles, buildings, and other objects to collect and exchange data. It is the enabling technology for a plethora of applications touching various aspects of our lives such as healthcare, wearables, surveillance, home automation, smart manufacturing, and intelligent automotive systems. Existing IoT architectures are highly centralized and heavily rely on a back-end core network for all decision-making processes. This may lead to inefficiencies in terms of latency, network traffic management, computational processing, and power consumption. In this paper, we advocate the empowerment of front-end IoT devices to support the back-end network in fulfilling end-user applications requirements mainly by means of improved connectivity and efficient network management. A novel conceptual framework is presented for a new generation of IoT devices that will enable multiple new features for both the IoT administrators as well as end users. Exploiting the recent emergence of software-defined architecture, these smart IoT devices will allow fast, reliable, and intelligent management of diverse IoT-based applications. After highlighting relevant shortcomings of the existing IoT architectures, we outline some key design perspectives to enable front-end intelligence while shedding light on promising future research directions.

  7. A quality by design approach using artificial intelligence techniques to control the critical quality attributes of ramipril tablets manufactured by wet granulation.

    Science.gov (United States)

    Aksu, Buket; Paradkar, Anant; de Matas, Marcel; Özer, Özgen; Güneri, Tamer; York, Peter

    2013-02-01

    Quality by design (QbD) is an essential part of the modern approach to pharmaceutical quality. This study was conducted in the framework of a QbD project involving ramipril tablets. Preliminary work included identification of the critical quality attributes (CQAs) and critical process parameters (CPPs) based on the quality target product profiles (QTPPs) using the historical data and risk assessment method failure mode and effect analysis (FMEA). Compendial and in-house specifications were selected as QTPPs for ramipril tablets. CPPs that affected the product and process were used to establish an experimental design. The results thus obtained can be used to facilitate definition of the design space using tools such as design of experiments (DoE), the response surface method (RSM) and artificial neural networks (ANNs). The project was aimed at discovering hidden knowledge associated with the manufacture of ramipril tablets using a range of artificial intelligence-based software, with the intention of establishing a multi-dimensional design space that ensures consistent product quality. At the end of the study, a design space was developed based on the study data and specifications, and a new formulation was optimized. On the basis of this formulation, a new laboratory batch formulation was prepared and tested. It was confirmed that the explored formulation was within the design space.

  8. An Integrated Environment for Batch Process Development - From Recipe to Manufacture

    DEFF Research Database (Denmark)

    Batch process development involves the process of converting a chemical synthesis into an optimum, safe, robust, and economical process for manufacturing the chemical of desired quality at the ultimate desired scale. In this paper we describe a strategy for developing a set of integrated decision...

  9. Modelling of additive manufacturing processes: a review and classification

    Science.gov (United States)

    Stavropoulos, Panagiotis; Foteinopoulos, Panagis

    2018-03-01

    Additive manufacturing (AM) is a very promising technology; however, there are a number of open issues related to the different AM processes. The literature on modelling the existing AM processes is reviewed and classified. A categorization of the different AM processes in process groups, according to the process mechanism, has been conducted and the most important issues are stated. Suggestions are made as to which approach is more appropriate according to the key performance indicator desired to be modelled and a discussion is included as to the way that future modelling work can better contribute to improving today's AM process understanding.

  10. The process of deforestation in weak democracies and the role of Intelligence.

    Science.gov (United States)

    Obydenkova, Anastassia; Nazarov, Zafar; Salahodjaev, Raufhon

    2016-07-01

    This article examines the interconnection between national intelligence, political institutions, and the mismanagement of public resources (deforestations). The paper examines the reasons for deforestation and investigates the factors accountable for it. The analysis builds on authors-compiled cross-national dataset on 185 countries over the time period of twenty years, from 1990 to 2010. We find that, first, nation's intelligence reduces significantly the level of deforestation in a state. Moreover, the nations' IQ seems to play an offsetting role in the natural resource conservation (forest management) in the countries with weak democratic institutions. The analysis also discovered the presence of the U-shaped relationship between democracy and deforestation. Intelligence sheds more light on this interconnection and explains the results. Our results are robust to various sample selection strategies and model specifications. The main implication from our study is that intelligence not only shapes formal rules and informal regulations such as social trust, norms and traditions but also it has the ability to reverse the paradoxical process known as "resource curse." The study contributes to better understanding of reasons of deforestation and shed light on the debated impact of political regime on forest management. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Technological review of the HRP manufacturing process R and D activity

    International Nuclear Information System (INIS)

    Visca, Eliseo; Pizzuto, A.; Gavila, P.; Riccardi, B.; Roccella, S.; Candura, D.; Sanguinetti, G.P.

    2013-01-01

    Highlights: • R and D activities for the manufacturing of ITER divertor high heat flux plasma-facing components (HHFC). • ENEA and Ansaldo have jointly manufactured several actively cooled monoblock mock-ups and prototypical components. • Successful manufacturing by HRP (hot radial pressing) and PBC (pre-brazed casting) of both W and CFC armoured small and medium scale mockups. • ENEA-ANSALDO participate to the European programme for the qualification of the manufacturing technology for the ITER divertor IVT. • A qualification divertor inner vertical target prototype successfully tested at ITER relevant thermal heat fluxes. -- Abstract: ENEA and Ansaldo Nucleare S.p.A. have been deeply involved in the European International Thermonuclear Experimental Reactor (ITER) R and D activities for the manufacturing of high heat flux plasma-facing components (HHFC), and in particular for the inner vertical target (IVT) of the ITER divertor. This component has to be manufactured by using both armour and structural materials whose properties are defined by ITER. Their physical properties prevent the use of standard joining techniques. The reference armour materials are tungsten and carbon/carbon fibre composite (CFC). The cooling pipe is made of copper alloy (CuCrZr-IG). During the last years ENEA and Ansaldo have jointly manufactured several actively cooled monoblock mock-ups and prototypical components of different length, geometry and materials, by using innovative processes: HRP (hot radial pressing) and PBC (pre-brazed casting). The history of the technical issues solved during the R and D phase and the improvements implemented to the assembling tools and equipments are reviewed in the paper together with the testing results. The optimization of the processes started from the successful manufacturing of both W and CFC armoured small scale mockups thermal fatigue tested in the worst ITER operating condition (20 MW/m 2 ) through the achievement of record

  12. Technological review of the HRP manufacturing process R and D activity

    Energy Technology Data Exchange (ETDEWEB)

    Visca, Eliseo, E-mail: eliseo.visca@enea.it [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, IT-00044 Frascati (Italy); Pizzuto, A. [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, IT-00044 Frascati (Italy); Gavila, P.; Riccardi, B. [Fusion For Energy, C. Josep Pla 2, ES-08019 Barcelona (Spain); Roccella, S. [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, IT-00044 Frascati (Italy); Candura, D.; Sanguinetti, G.P. [Ansaldo Nucleare S.p.A., Corso Perrone 25, IT-16121 Genova (Italy)

    2013-10-15

    Highlights: • R and D activities for the manufacturing of ITER divertor high heat flux plasma-facing components (HHFC). • ENEA and Ansaldo have jointly manufactured several actively cooled monoblock mock-ups and prototypical components. • Successful manufacturing by HRP (hot radial pressing) and PBC (pre-brazed casting) of both W and CFC armoured small and medium scale mockups. • ENEA-ANSALDO participate to the European programme for the qualification of the manufacturing technology for the ITER divertor IVT. • A qualification divertor inner vertical target prototype successfully tested at ITER relevant thermal heat fluxes. -- Abstract: ENEA and Ansaldo Nucleare S.p.A. have been deeply involved in the European International Thermonuclear Experimental Reactor (ITER) R and D activities for the manufacturing of high heat flux plasma-facing components (HHFC), and in particular for the inner vertical target (IVT) of the ITER divertor. This component has to be manufactured by using both armour and structural materials whose properties are defined by ITER. Their physical properties prevent the use of standard joining techniques. The reference armour materials are tungsten and carbon/carbon fibre composite (CFC). The cooling pipe is made of copper alloy (CuCrZr-IG). During the last years ENEA and Ansaldo have jointly manufactured several actively cooled monoblock mock-ups and prototypical components of different length, geometry and materials, by using innovative processes: HRP (hot radial pressing) and PBC (pre-brazed casting). The history of the technical issues solved during the R and D phase and the improvements implemented to the assembling tools and equipments are reviewed in the paper together with the testing results. The optimization of the processes started from the successful manufacturing of both W and CFC armoured small scale mockups thermal fatigue tested in the worst ITER operating condition (20 MW/m{sup 2}) through the achievement of record

  13. Research on application of intelligent computation based LUCC model in urbanization process

    Science.gov (United States)

    Chen, Zemin

    2007-06-01

    Global change study is an interdisciplinary and comprehensive research activity with international cooperation, arising in 1980s, with the largest scopes. The interaction between land use and cover change, as a research field with the crossing of natural science and social science, has become one of core subjects of global change study as well as the front edge and hot point of it. It is necessary to develop research on land use and cover change in urbanization process and build an analog model of urbanization to carry out description, simulation and analysis on dynamic behaviors in urban development change as well as to understand basic characteristics and rules of urbanization process. This has positive practical and theoretical significance for formulating urban and regional sustainable development strategy. The effect of urbanization on land use and cover change is mainly embodied in the change of quantity structure and space structure of urban space, and LUCC model in urbanization process has been an important research subject of urban geography and urban planning. In this paper, based upon previous research achievements, the writer systematically analyzes the research on land use/cover change in urbanization process with the theories of complexity science research and intelligent computation; builds a model for simulating and forecasting dynamic evolution of urban land use and cover change, on the basis of cellular automation model of complexity science research method and multi-agent theory; expands Markov model, traditional CA model and Agent model, introduces complexity science research theory and intelligent computation theory into LUCC research model to build intelligent computation-based LUCC model for analog research on land use and cover change in urbanization research, and performs case research. The concrete contents are as follows: 1. Complexity of LUCC research in urbanization process. Analyze urbanization process in combination with the contents

  14. Integrated lunar materials manufacturing process

    Science.gov (United States)

    Gibson, Michael A. (Inventor); Knudsen, Christian W. (Inventor)

    1990-01-01

    A manufacturing plant and process for production of oxygen on the moon uses lunar minerals as feed and a minimum of earth-imported, process materials. Lunar feed stocks are hydrogen-reducible minerals, ilmenite and lunar agglutinates occurring in numerous, explored locations mixed with other minerals in the pulverized surface layer of lunar soil known as regolith. Ilmenite (FeTiO.sub.3) and agglutinates contain ferrous (Fe.sup.+2) iron reducible by hydrogen to yield H.sub.2 O and metallic Fe at about 700.degree.-1,200.degree. C. The H.sub.2 O is electrolyzed in gas phase to yield H.sub.2 for recycle and O.sub.2 for storage and use. Hydrogen losses to lunar vacuum are minimized, with no net hydrogen (or any other earth-derived reagent) consumption except for small leaks. Feed minerals are surface-mined by front shovels and transported in trucks to the processing area. The machines are manned or robotic. Ilmenite and agglutinates occur mixed with silicate minerals which are not hydrogen-reducible at 700.degree.-1,200.degree. C. and consequently are separated and concentrated before feeding to the oxygen generation process. Solids rejected from the separation step and reduced solids from the oxygen process are returned to the mine area. The plant is powered by nuclear or solar power generators. Vapor-phase water electrolysis, a staged, countercurrent, fluidized bed reduction reactor and a radio-frequency-driven ceramic gas heater are used to improve thermal efficiency.

  15. Analytic network process model for sustainable lean and green manufacturing performance indicator

    Science.gov (United States)

    Aminuddin, Adam Shariff Adli; Nawawi, Mohd Kamal Mohd; Mohamed, Nik Mohd Zuki Nik

    2014-09-01

    Sustainable manufacturing is regarded as the most complex manufacturing paradigm to date as it holds the widest scope of requirements. In addition, its three major pillars of economic, environment and society though distinct, have some overlapping among each of its elements. Even though the concept of sustainability is not new, the development of the performance indicator still needs a lot of improvement due to its multifaceted nature, which requires integrated approach to solve the problem. This paper proposed the best combination of criteria en route a robust sustainable manufacturing performance indicator formation via Analytic Network Process (ANP). The integrated lean, green and sustainable ANP model can be used to comprehend the complex decision system of the sustainability assessment. The finding shows that green manufacturing is more sustainable than lean manufacturing. It also illustrates that procurement practice is the most important criteria in the sustainable manufacturing performance indicator.

  16. Improving drug manufacturing with process analytical technology.

    Science.gov (United States)

    Rodrigues, Licinia O; Alves, Teresa P; Cardoso, Joaquim P; Menezes, José C

    2006-01-01

    Within the process analytical technology (PAT) framework, as presented in the US Food and Drug Administration guidelines, the aim is to design, develop and operate processes consistently to ensure a pre-defined level of quality at the end of the manufacturing process. Three PAT implementation scenarios can be envisaged. Firstly, PAT could be used in its most modest version (in an almost non-PAT manner) to simply replace an existing quality control protocol (eg, using near-infrared spectroscopy for an in-process quality control, such as moisture content). Secondly, the use of in-process monitoring and process analysis could be integrated to enhance process understanding and operation for an existing industrial process. Thirdly, PAT could be used extensively and exclusively throughout development, scale-up and full-scale production of a new product and process. Although the first type of implementations are well known, reports of the second and third types remain scarce. Herein, results obtained from PAT implementations of the second and third types are described for two industrial processes for preparing bulk active pharmaceutical ingredients, demonstrating the benefits in terms of increased process understanding and process control.

  17. Make-to-order manufacturing - new approach to management of manufacturing processes

    Science.gov (United States)

    Saniuk, A.; Waszkowski, R.

    2016-08-01

    Strategic management must now be closely linked to the management at the operational level, because only in such a situation the company can be flexible and can quickly respond to emerging opportunities and pursue ever-changing strategic objectives. In these conditions industrial enterprises seek constantly new methods, tools and solutions which help to achieve competitive advantage. They are beginning to pay more attention to cost management, economic effectiveness and performance of business processes. In the article characteristics of make-to-order systems (MTO) and needs associated with managing such systems is identified based on the literature analysis. The main aim of this article is to present the results of research related to the development of a new solution dedicated to small and medium enterprises manufacture products solely on the basis of production orders (make-to- order systems). A set of indicators to enable continuous monitoring and control of key strategic areas this type of company is proposed. A presented solution includes the main assumptions of the following concepts: the Performance Management (PM), the Balanced Scorecard (BSC) and a combination of strategic management with the implementation of operational management. The main benefits of proposed solution are to increase effectiveness of MTO manufacturing company management.

  18. Using artificial intelligence to automate remittance processing.

    Science.gov (United States)

    Adams, W T; Snow, G M; Helmick, P M

    1998-06-01

    The consolidated business office of the Allegheny Health Education Research Foundation (AHERF), a large integrated healthcare system based in Pittsburgh, Pennsylvania, sought to improve its cash-related business office activities by implementing an automated remittance processing system that uses artificial intelligence. The goal was to create a completely automated system whereby all monies it processed would be tracked, automatically posted, analyzed, monitored, controlled, and reconciled through a central database. Using a phased approach, the automated payment system has become the central repository for all of the remittances for seven of the hospitals in the AHERF system and has allowed for the complete integration of these hospitals' existing billing systems, document imaging system, and intranet, as well as the new automated payment posting, and electronic cash tracking and reconciling systems. For such new technology, which is designed to bring about major change, factors contributing to the project's success were adequate planning, clearly articulated objectives, marketing, end-user acceptance, and post-implementation plan revision.

  19. Supply chain risk management processes for resilience: A study of South African grocery manufacturers

    Directory of Open Access Journals (Sweden)

    Simon Simba

    2017-09-01

    Full Text Available Background: The supply chain risk management (SCRM process is aimed at the implementation of strategies that assist in managing both daily and exceptional risks facing the supply chain through continuous risk assessment to reduce vulnerability and ensure continuity. Purpose: The purpose of the study was to determine whether the SCRM process enables supply chain resilience among grocery manufacturers in South Africa. The fast-moving consumer goods (FMCG-manufacturing industry faces increased risk because of the nature of their products being perishable with a limited shelf life. Method: This study was conducted using a descriptive qualitative research design. Data were collected by means of 12 semi-structured interviews with senior supply chain practitioners within the South African grocery manufacturing industry. Findings: The study found that most firms informally implement SCRM processes of risk identification, assessment, mitigation and monitoring to mitigate disruptions. Furthermore, the findings indicate that the SCRM processes facilitate resilience among grocery manufacturers in South Africa. Conclusion: The managerial implications show that supply chain managers of grocery manufacturers should formalise the SCRM process and develop risk assessment scales to better prioritise risks in order to run a resilient supply chain. The research contributes to the supply chain management field by adding to the scarce literature relating to SCRM as an enabler of supply chain resilience in a South African context.

  20. Artificial intelligence for the modeling and control of combustion processes: a review

    Energy Technology Data Exchange (ETDEWEB)

    Soteris A. Kalogirou, [Higher Technical Institute, Nicosia (Cyprus). Department of Mechanical Engineering

    2003-07-01

    Artificial intelligence (AI) systems are widely accepted as a technology offering an alternative way to tackle complex and ill-defined problems. They can learn from examples, are fault tolerant in the sense that they are able to handle noisy and incomplete data, are able to deal with non-linear problems, and once trained can perform prediction and generalization at high speed. They have been used in diverse applications in control, robotics, pattern recognition, forecasting, medicine, power systems, manufacturing, optimization, signal processing, and social/psychological sciences. They are particularly useful in system modeling such as in implementing complex mappings and system identification. AI systems comprise areas like, expert systems, artificial neural networks, genetic algorithms, fuzzy logic and various hybrid systems, which combine two or more techniques. The major objective of this paper is to illustrate how AI techniques might play an important role in modeling and prediction of the performance and control of combustion process. The paper outlines an understanding of how AI systems operate by way of presenting a number of problems in the different disciplines of combustion engineering. The various applications of AI are presented in a thematic rather than a chronological or any other order. Problems presented include two main areas: combustion systems and internal combustion (IC) engines. Combustion systems include boilers, furnaces and incinerators modeling and emissions prediction, whereas, IC engines include diesel and spark ignition engines and gas engines modeling and control. Results presented in this paper, are testimony to the potential of AI as a design tool in many areas of combustion engineering. 109 refs., 31 figs., 11 tabs.

  1. Simulation of textile manufacturing processes for planning, scheduling, and quality control purposes

    Science.gov (United States)

    Cropper, A. E.; Wang, Z.

    1995-08-01

    Simulation, as a management information tool, has been applied to engineering manufacture and assembly operations. The application of the principles to textile manufacturing (fiber to fabric) is discussed. The particular problems and solutions in applying the simulation software package to the yarn production processes are discussed with an indication of how the software achieves the production schedule. The system appears to have application in planning, scheduling, and quality assurance. The latter being a result of the traceability possibilities through a process involving mixing and splitting of material.

  2. Understanding the Globalization of Intelligence

    DEFF Research Database (Denmark)

    Svendsen, Adam David Morgan

    "This book provides an introduction to the complexities of contemporary Western Intelligence and its dynamics during an era of globalization. Towards an understanding of the globalization of intelligence process, Svendsen focuses on the secretive phenomenon of international or foreign intelligence...... cooperation ('liaison'), as it occurs in both theory and practice. Reflecting a complex coexistence plurality of several different and overlapping concepts in action, the challenging process of the globalization of intelligence emerges as essential for complex issue management purposes during a globalized era...

  3. Artificial Intelligence.

    Science.gov (United States)

    Wash, Darrel Patrick

    1989-01-01

    Making a machine seem intelligent is not easy. As a consequence, demand has been rising for computer professionals skilled in artificial intelligence and is likely to continue to go up. These workers develop expert systems and solve the mysteries of machine vision, natural language processing, and neural networks. (Editor)

  4. Semantic Business Intelligence - a New Generation of Business Intelligence

    OpenAIRE

    Dinu AIRINEI; Dora-Anca BERTA

    2012-01-01

    Business Intelligence Solutions represents applications used by companies to manage process and analyze data to provide substantiated decision. In the context of Semantic Web develop-ment trend is to integrate semantic unstructured data, making business intelligence solutions to be redesigned in such a manner that can analyze, process and synthesize, in addition to traditional data and data integrated with semantic another form and structure. This invariably leads appearance of new BI solutio...

  5. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    International Nuclear Information System (INIS)

    Sani, Mohd Shafie; Aziz, Faieza Abdul

    2013-01-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  6. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    Science.gov (United States)

    Shafie Sani, Mohd; Aziz, Faieza Abdul

    2013-06-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  7. quality assurance calculation in UO2 pellet manufacturing process

    International Nuclear Information System (INIS)

    Can, S.; Acarkan, S.; Guereli, L. and others

    1997-01-01

    A process qualification plan is prepared for preparation of quality assurance documentation in accordance with ISO-9000 series of standards, for sintered UO 2 pellets manufactured in the Nuclear Fuel Technology Department. The objectives of this plan are to determine quantitatively and statistically process capability of the pellet production, to check product properties (are) in conformance with specifications at the pre-( ) confidence levels, to prepare necessary documents and to assess the results. The product properties taking into account are chemical composition, cracks, density, microstructure and grain size. The statistical parameters used for qualification element of quality assurance are calculated.Statistical values for sintered pellets are: LENGTH/WEIGHT/DIAMETER/DENSITY/%TD: MEAN:13,395/16,808/12,293/10,679/97,400 STD:0,1651/ 0,252/0,0212/0,015/0,140. It was seen that sintered pellets manufactured in the Nuclear Fuel Technology Department meet the criteria within 95% confidence level. In this paper specifications, criteria and calculations will be explained in detail

  8. The influence of masker type on early reflection processing and speech intelligibility (L)

    DEFF Research Database (Denmark)

    Arweiler, Iris; Buchholz, Jörg M.; Dau, Torsten

    2013-01-01

    Arweiler and Buchholz [J. Acoust. Soc. Am. 130, 996-1005 (2011)] showed that, while the energy of early reflections (ERs) in a room improves speech intelligibility, the benefit is smaller than that provided by the energy of the direct sound (DS). In terms of integration of ERs and DS, binaural...... listening did not provide a benefit from ERs apart from a binaural energy summation, such that monaural auditory processing could account for the data. However, a diffuse speech shaped noise (SSN) was used in the speech intelligibility experiments, which does not provide distinct binaural cues...... to the auditory system. In the present study, the monaural and binaural benefit from ERs for speech intelligibility was investigated using three directional maskers presented from 90° azimuth: a SSN, a multi-talker babble, and a reversed two-talker masker. For normal-hearing as well as hearing-impaired listeners...

  9. A method for manufacturing a tool part for an injection molding process, a hot embossing process, a nano-imprint process, or an extrusion process

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a method for manufacturing a tool part for an injection molding process, a hot embossing process, nano-imprint process or an extrusion process. First, there is provided a master structure (10) with a surface area comprising nanometre-sized protrusions (11...

  10. Intelligence and treaty ratification

    International Nuclear Information System (INIS)

    Cahn, A.H.

    1990-01-01

    This paper reports that there are two sets of questions applicable to the ratification phase: what is the role of intelligence in the ratification process? What effect did intelligence have on that process. The author attempts to answer these and other questions

  11. Precision laser processing for micro electronics and fiber optic manufacturing

    Science.gov (United States)

    Webb, Andrew; Osborne, Mike; Foster-Turner, Gideon; Dinkel, Duane W.

    2008-02-01

    The application of laser based materials processing for precision micro scale manufacturing in the electronics and fiber optic industry is becoming increasingly widespread and accepted. This presentation will review latest laser technologies available and discuss the issues to be considered in choosing the most appropriate laser and processing parameters. High repetition rate, short duration pulsed lasers have improved rapidly in recent years in terms of both performance and reliability enabling flexible, cost effective processing of many material types including metal, silicon, plastic, ceramic and glass. Demonstrating the relevance of laser micromachining, application examples where laser processing is in use for production will be presented, including miniaturization of surface mount capacitors by applying a laser technique for demetalization of tracks in the capacitor manufacturing process and high quality laser machining of fiber optics including stripping, cleaving and lensing, resulting in optical quality finishes without the need for traditional polishing. Applications include telecoms, biomedical and sensing. OpTek Systems was formed in 2000 and provide fully integrated systems and sub contract services for laser processes. They are headquartered in the UK and are establishing a presence in North America through a laser processing facility in South Carolina and sales office in the North East.

  12. 40 CFR 723.175 - Chemical substances used in or for the manufacture or processing of instant photographic and peel...

    Science.gov (United States)

    2010-07-01

    ... manufacture and processing in the special production area. All manufacturing, processing, and use operations... shape or design during manufacture, (ii) which has end use function(s) dependent in whole or in part... production area, the ambient air concentration of the new chemical substance during manufacture, processing...

  13. The process of implementing Competitive Intelligence in a company

    OpenAIRE

    František Bartes

    2013-01-01

    It is a common occurrence in business practice that the management of a company, in an effort to jump-start the function of the Competitive Intelligence unit, makes a number of mistakes and errors. Yet it is not difficult to avoid these missteps and achieve the desired level of Competitive Intelligence activities in a purposeful and effective manner. The author believes that a resolution of this problem lies in his concept of Competitive Intelligence viewed as a system application discipline ...

  14. Micro-manufacturing: design and manufacturing of micro-products

    National Research Council Canada - National Science Library

    Koç, Muammer; Özel, Tuğrul

    2011-01-01

    .... After addressing the fundamentals and non-metallic-based micro-manufacturing processes in the semiconductor industry, it goes on to address specific metallic-based micro-manufacturing processes...

  15. Introduction to powder metallurgy processes for titanium manufacturing; Introduccion al procesado pulvimetalurgico del titanio

    Energy Technology Data Exchange (ETDEWEB)

    Esteban, P. G.; Bolzoni, L.; Ruiz-Navas, E. M.; Gordo, E.

    2011-07-01

    The development of new extraction processes to produce titanium in powder form leads Powder Metallurgy to an advantage position among the manufacturing processes for titanium. The cost reduction of base material, coupled with the economy of the powder metallurgy processes, give titanium industry the chance to diversify its products, which could lead to production volumes able to stabilise the price of the metal. This work reviews some of the Powder Metallurgy techniques for the manufacturing of titanium parts, and describes the two typical approaches for titanium manufacturing: Blending Elemental and Prealloyed Powders. Among others, conventional pressing and sintering are described, which are compared with cold and hot isostatic pressing techniques. Real and potential applications are described. (Author) 71 refs.

  16. Method for automatically evaluating a transition from a batch manufacturing technique to a lean manufacturing technique

    Science.gov (United States)

    Ivezic, Nenad; Potok, Thomas E.

    2003-09-30

    A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.

  17. Natural language processing in psychiatry. Artificial intelligence technology and psychopathology.

    Science.gov (United States)

    Garfield, D A; Rapp, C; Evens, M

    1992-04-01

    The potential benefit of artificial intelligence (AI) technology as a tool of psychiatry has not been well defined. In this essay, the technology of natural language processing and its position with regard to the two main schools of AI is clearly outlined. Past experiments utilizing AI techniques in understanding psychopathology are reviewed. Natural language processing can automate the analysis of transcripts and can be used in modeling theories of language comprehension. In these ways, it can serve as a tool in testing psychological theories of psychopathology and can be used as an effective tool in empirical research on verbal behavior in psychopathology.

  18. Quantifying the robustness of process manufacturing concept – A medical product case study

    DEFF Research Database (Denmark)

    Boorla, Srinivasa Murthy; Troldtoft, M.E.; Eifler, Tobias

    2017-01-01

    Product robustness refers to the consistency of performance of all of the units produced. It is often the case that process manufactured products are not designed concurrently, so by the end of the product design phase the Process Manufacturing Concept (PMC) has yet to be decided. Allocating...... the unit-to-unit robustness of an early-stage for a PMC is proposed. The method uses variability and adjustability information from the manufacturing concept in combination with sensitivity information from products' design to predict its functional performance variation. A Technology maturation factor...... process capable tolerances to the product during the design phase is therefore not possible. The robustness of the concept (how capable it is to achieve the product specification), only becomes clear at this late stage and thus after testing and iteration. In this article, a method for calculating...

  19. Fundamental atomic plasma chemistry for semiconductor manufacturing process analysis

    International Nuclear Information System (INIS)

    Ventzek, P.L.G.; Zhang, D.; Stout, P.J.; Rauf, S.; Orlowski, M.; Kudrya, V.; Astapenko, V.; Eletskii, A.

    2002-01-01

    An absence of fundamental atomic plasma chemistry data (e.g. electron impact cross-sections) hinders the application of plasma process models in semiconductor manufacturing. Of particular importance is excited state plasma chemistry data for metallization applications. This paper describes important plasma chemistry processes in the context of high density plasmas for metallization application and methods for the calculation of data for the study of these processes. Also discussed is the development of model data sets that address computational tractability issues. Examples of model electron impact cross-sections for Ni reduced from multiple collision processes are presented

  20. Development of iFab (Instant Foundry Adaptive Through Bits) Manufacturing Process and Machine Library

    Science.gov (United States)

    2012-08-01

    input shaft , pump, gearbox, rack & pinion… Wheel assy wheel, tire, drive hub, lug, spindle , bearing… Braking brake disc/drum, caliper, friction...processes and associated machines is provided. Progress with respect to Task 3 (to design and develop the Manufacturing Capability Modeling Environment...of Military Ground Vehicle Design , Materials, and Processes ............... 4 4.2 Task 2 Manufacturing Knowledge Characterization

  1. Additive manufacturing of tunable lenses

    Science.gov (United States)

    Schlichting, Katja; Novak, Tobias; Heinrich, Andreas

    2017-02-01

    Individual additive manufacturing of optical systems based on 3D Printing offers varied possibilities in design and usage. In addition to the additive manufacturing procedure, the usage of tunable lenses allows further advantages for intelligent optical systems. Our goal is to bring the advantages of additive manufacturing together with the huge potential of tunable lenses. We produced tunable lenses as a bundle without any further processing steps, like polishing. The lenses were designed and directly printed with a 3D Printer as a package. The design contains the membrane as an optical part as well as the mechanical parts of the lens, like the attachments for the sleeves which contain the oil. The dynamic optical lenses were filled with an oil. The focal length of the lenses changes due to a change of the radius of curvature. This change is caused by changing the pressure in the inside of the lens. In addition to that, we designed lenses with special structures to obtain different areas with an individual optical power. We want to discuss the huge potential of this technology for several applications. Further, an appropriate controlling system is needed. Wéll show the possibilities to control and regulate the optical power of the lenses. The lenses could be used for illumination tasks, and in the future, for individual measurement tasks. The main advantage is the individuality and the possibility to create an individual design which completely fulfills the requirements for any specific application.

  2. 2nd International Conference on Mechanical, Manufacturing and Process Plant Engineering

    CERN Document Server

    2017-01-01

    This volume presents selected papers from the 2nd International Conference on Mechanical, Manufacturing and Process Plant Engineering (ICMMPE 2016) which was held from 23rd to 24th November, 2016 in Kuala Lumpur, Malaysia. The proceedings discuss genuine problems of joining technologies that are heart of manufacturing sectors. It discusses the findings of experimental and numerical works from soldering, arc welding to solid state joining technology that faced by current industry. .

  3. 2nd International Symposium on Signal Processing and Intelligent Recognition Systems

    CERN Document Server

    Bandyopadhyay, Sanghamitra; Krishnan, Sri; Li, Kuan-Ching; Mosin, Sergey; Ma, Maode

    2016-01-01

    This Edited Volume contains a selection of refereed and revised papers originally presented at the second International Symposium on Signal Processing and Intelligent Recognition Systems (SIRS-2015), December 16-19, 2015, Trivandrum, India. The program committee received 175 submissions. Each paper was peer reviewed by at least three or more independent referees of the program committee and the 59 papers were finally selected. The papers offer stimulating insights into biometrics, digital watermarking, recognition systems, image and video processing, signal and speech processing, pattern recognition, machine learning and knowledge-based systems. The book is directed to the researchers and scientists engaged in various field of signal processing and related areas. .

  4. Implementing high-temperature short-time media treatment in commercial-scale cell culture manufacturing processes.

    Science.gov (United States)

    Pohlscheidt, Michael; Charaniya, Salim; Kulenovic, Fikret; Corrales, Mahalia; Shiratori, Masaru; Bourret, Justin; Meier, Steven; Fallon, Eric; Kiss, Robert

    2014-04-01

    The production of therapeutic proteins by mammalian cell culture is complex and sets high requirements for process, facility, and equipment design, as well as rigorous regulatory and quality standards. One particular point of concern and significant risk to supply chain is the susceptibility to contamination such as bacteria, fungi, mycoplasma, and viruses. Several technologies have been developed to create barriers for these agents to enter the process, e.g. filtration, UV inactivation, and temperature inactivation. However, if not implemented during development of the manufacturing process, these types of process changes can have significant impact on process performance if not managed appropriately. This article describes the implementation of the high-temperature short-time (HTST) treatment of cell culture media as an additional safety barrier against adventitious agents during the transfer of a large-scale commercial cell culture manufacturing process. The necessary steps and experiments, as well as subsequent results during qualification runs and routine manufacturing, are shown.

  5. Materials Selection And Fabrication Practices For Food Processing Equipment Manufacturers In Uganda

    Directory of Open Access Journals (Sweden)

    John Baptist Kirabira

    2017-08-01

    Full Text Available The food processing industry is one of the fast-growing sub-sectors in Uganda. The industry which is majorly composed of medium and small scale firms depends on the locally developed food processing equipment. Due to lack of effective materials selection practices employed by the equipment manufacturers the materials normally selected for most designs are not the most appropriate ones hence compromising the quality of the equipment produced. This has not only led to poor quality food products due to contamination but could also turn out health hazardous to the consumers of the food products. This study involved the assessment of the current materials selection and fabrication procedures used by the food processing equipment manufacturers with a view of devising best practices that can be used to improve the quality of the food products processed by the locally fabricated equipment. Results of the study show that designers experience biasness and desire to minimize cost compromise the materials selection procedure. In addition to failing to choose the best material for a given application most equipment manufacturers are commonly fabricating equipment with inadequate surface finish and improper weldments. This hinders the equipments ability to meet food hygiene standards.

  6. An intelligent condition monitoring system for on-line classification of machine tool wear

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Fu; Hope, A D; Javed, M [Systems Engineering Faculty, Southampton Institute (United Kingdom)

    1998-12-31

    The development of intelligent tool condition monitoring systems is a necessary requirement for successful automation of manufacturing processes. This presentation introduces a tool wear monitoring system for milling operations. The system utilizes power, force, acoustic emission and vibration sensors to monitor tool condition comprehensively. Features relevant to tool wear are drawn from time and frequency domain signals and a fuzzy pattern recognition technique is applied to combine the multisensor information and provide reliable classification results of tool wear states. (orig.) 10 refs.

  7. An intelligent condition monitoring system for on-line classification of machine tool wear

    Energy Technology Data Exchange (ETDEWEB)

    Fu Pan; Hope, A.D.; Javed, M. [Systems Engineering Faculty, Southampton Institute (United Kingdom)

    1997-12-31

    The development of intelligent tool condition monitoring systems is a necessary requirement for successful automation of manufacturing processes. This presentation introduces a tool wear monitoring system for milling operations. The system utilizes power, force, acoustic emission and vibration sensors to monitor tool condition comprehensively. Features relevant to tool wear are drawn from time and frequency domain signals and a fuzzy pattern recognition technique is applied to combine the multisensor information and provide reliable classification results of tool wear states. (orig.) 10 refs.

  8. Statistics to the Rescue!: Using Data to Evaluate a Manufacturing Process

    Science.gov (United States)

    Keithley, Michael G.

    2009-01-01

    The use of statistics and process controls is too often overlooked in educating students. This article describes an activity appropriate for high school students who have a background in material processing. It gives them a chance to advance their knowledge by determining whether or not a manufacturing process works well. The activity follows a…

  9. Intelligent processing for thick composites

    Science.gov (United States)

    Shin, Daniel Dong-Ok

    2000-10-01

    Manufacturing thick composite parts are associated with adverse curing conditions such as large in-plane temperature gradient and exotherms. The condition is further aggravated because the manufacturer's cycle and the existing cure control systems do not adequately counter such affects. In response, the forecast-based thermal control system is developed to have better cure control for thick composites. Accurate cure kinetic model is crucial for correctly identifying the amount of heat generated for composite process simulation. A new technique for identifying cure parameters for Hercules AS4/3502 prepreg is presented by normalizing the DSC data. The cure kinetics is based on an autocatalytic model for the proposed method, which uses dynamic and isothermal DSC data to determine its parameters. Existing models are also used to determine kinetic parameters but rendered inadequate because of the material's temperature dependent final degree of cure. The model predictions determined from the new technique showed good agreement to both isothermal and dynamic DSC data. The final degree of cure was also in good agreement with experimental data. A realistic cure simulation model including bleeder ply analysis and compaction is validated with Hercules AS4/3501-6 based laminates. The nonsymmetrical temperature distribution resulting from the presence of bleeder plies agreed well to the model prediction. Some of the discrepancies in the predicted compaction behavior were attributed to inaccurate viscosity and permeability models. The temperature prediction was quite good for the 3cm laminate. The validated process simulation model along with cure kinetics model for AS4/3502 prepreg were integrated into the thermal control system. The 3cm Hercules AS4/3501-6 and AS4/3502 laminate were fabricated. The resulting cure cycles satisfied all imposed requirements by minimizing exotherms and temperature gradient. Although the duration of the cure cycles increased, such phenomena was

  10. Intelligent robotics can boost America's economic growth

    Science.gov (United States)

    Erickson, Jon D.

    1994-01-01

    A case is made for strategic investment in intelligent robotics as a part of the solution to the problem of improved global competitiveness for U.S. manufacturing, a critical industrial sector. Similar cases are made for strategic investments in intelligent robotics for field applications, construction, and service industries such as health care. The scope of the country's problems and needs is beyond the capability of the private sector alone, government alone, or academia alone to solve independently of the others. National cooperative programs in intelligent robotics are needed with the private sector supplying leadership direction and aerospace and non-aerospace industries conducting the development. Some necessary elements of such programs are outlined. The National Aeronautics and Space Administration (NASA) and the Lyndon B. Johnson Space Center (JSC) can be key players in such national cooperative programs in intelligent robotics for several reasons: (1) human space exploration missions require supervised intelligent robotics as enabling tools and, hence must develop supervised intelligent robotic systems; (2) intelligent robotic technology is being developed for space applications at JSC (but has a strong crosscutting or generic flavor) that is advancing the state of the art and is producing both skilled personnel and adaptable developmental infrastructure such as integrated testbeds; and (3) a NASA JSC Technology Investment Program in Robotics has been proposed based on commercial partnerships and collaborations for precompetitive, dual-use developments.

  11. Intelligent autonomous systems 12. Vol. 2. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sukhan [Sungkyunkwan Univ., Gyeonggi-Do (Korea, Republic of). College of Information and Communication Engineering; Yoon, Kwang-Joon [Konkuk Univ., Seoul (Korea, Republic of); Cho, Hyungsuck [Daegu Gyeongbuk Institute of Science and Technology, Daegu (Korea, Republic of); Lee, Jangmyung (eds.) [Pusan National Univ. (Korea, Republic of). Dept. of Electronics Engineering

    2013-02-01

    Recent research in Intelligent and Autonomous Systems. Volume 2 of the proceedings of the 12th International Conference IAS-12, held June 26-29, 2012, jeju Island, Korea. Written by leading experts in the field. Intelligent autonomous systems are emerged as a key enabler for the creation of a new paradigm of services to humankind, as seen by the recent advancement of autonomous cars licensed for driving in our streets, of unmanned aerial and underwater vehicles carrying out hazardous tasks on-site, and of space robots engaged in scientific as well as operational missions, to list only a few. This book aims at serving the researchers and practitioners in related fields with a timely dissemination of the recent progress on intelligent autonomous systems, based on a collection of papers presented at the 12th International Conference on Intelligent Autonomous Systems, held in Jeju, Korea, June 26-29, 2012. With the theme of ''Intelligence and Autonomy for the Service to Humankind, the conference has covered such diverse areas as autonomous ground, aerial, and underwater vehicles, intelligent transportation systems, personal/domestic service robots, professional service robots for surgery/rehabilitation, rescue/security and space applications, and intelligent autonomous systems for manufacturing and healthcare. This volume 2 includes contributions devoted to Service Robotics and Human-Robot Interaction and Autonomous Multi-Agent Systems and Life Engineering.

  12. Hopper design for metallic powders used in additive manufacturing processes

    CSIR Research Space (South Africa)

    Visagie, N

    2013-10-01

    Full Text Available The influence of hopper geometry on the flow behaviour of typical metallic powders used in additive manufacturing processes is investigated. Bulk hopper theory provides a method of determining critical hopper parameters for bulk amounts...

  13. Unit operation in food manufacturing and processing. Shokuhin seizo/kako ni okeru tan'i sosa

    Energy Technology Data Exchange (ETDEWEB)

    Matsuno, R. (Kyoto Univ., Kyoto (Japan). Faculty of Aguriculture)

    1993-09-05

    Processed foods must be produced in mass, cheap and safe and should be suitable for the delicate taste of human being. Food tastes are effected by an outlook on human attitude, and the surrounding environment. And these factors are reflected to unit operation in food manufacturing and processing and it is clarified that there are many technical difficulties. The characteristics of unit operation for food manufacturing and processing are that the food materials are a multicomponent system, moreover, a very small amount of aroma components, taste components, vitamin, physiologically activation materials and so on are more important than the main components, and also inapplicable of the model centering to the most quantitative component. The purpose of unit operation in food manufacturing and processing is to produce the properties of matter matching to human sense, and therefore there are many problems left unsolved. The development of analytical technology also has an influence on manufacturing and processing technology. Consequently, food manufacturing and processing technology must be based on general science. It is necessary to develop unit operation with an understanding of mutual effect between food and human body.

  14. Process development for the manufacturing of state-of-the-art spacer grids

    Energy Technology Data Exchange (ETDEWEB)

    Schebitz, Florian; Dietrich, Matthias [Advanced Nuclear Fuels GmbH, Karlstein (Germany)

    2013-07-01

    At the beginning it was questioned if 'time to market' is really important for the nuclear industry. The clear answer is YES. Even if the development times might be longer compared to projects in other industries it is still beneficial to use concurrent engineering. In the world wide network of manufacturing sites, Advanced Nuclear Fuels GmbH in Karlstein is quite often involved when the development of new processes is necessary. As ANF Karlstein is delivering products around the world the experience with different customer requirements supports an optimized solution in order to fulfill these principle requirements and to deliver state-of-the-art products like spacer grids. Continues feedback from process development already improves the first prototypes. In the meantime ANF Karlstein manufactured the components for both new fuel assembly designs which are introduced as a first set of Lead Fuel Assemblies. For the manufacturing of the next sets of spacer grids (for tests and next series of Lead Fuel Assemblies) the described processes will be used and further improved, so that an industrialized solution is available. (orig.)

  15. Physical evaluations of Co-Cr-Mo parts processed using different additive manufacturing techniques

    Science.gov (United States)

    Ghani, Saiful Anwar Che; Mohamed, Siti Rohaida; Harun, Wan Sharuzi Wan; Noar, Nor Aida Zuraimi Md

    2017-12-01

    In recent years, additive manufacturing with highly design customization has gained an important technique for fabrication in aerospace and medical fields. Despite the ability of the process to produce complex components with highly controlled architecture geometrical features, maintaining the part's accuracy, ability to fabricate fully functional high density components and inferior surfaces quality are the major obstacles in producing final parts using additive manufacturing for any selected application. This study aims to evaluate the physical properties of cobalt chrome molybdenum (Co-Cr-Mo) alloys parts fabricated by different additive manufacturing techniques. The full dense Co-Cr-Mo parts were produced by Selective Laser Melting (SLM) and Direct Metal Laser Sintering (DMLS) with default process parameters. The density and relative density of samples were calculated using Archimedes' principle while the surface roughness on the top and side surface was measured using surface profiler. The roughness average (Ra) for top surface for SLM produced parts is 3.4 µm while 2.83 µm for DMLS produced parts. The Ra for side surfaces for SLM produced parts is 4.57 µm while 9.0 µm for DMLS produced parts. The higher Ra values on side surfaces compared to the top faces for both manufacturing techniques was due to the balling effect phenomenon. The yield relative density for both Co-Cr-Mo parts produced by SLM and DMLS are 99.3%. Higher energy density has influence the higher density of produced samples by SLM and DMLS processes. The findings of this work demonstrated that SLM and DMLS process with default process parameters have effectively produced full dense parts of Co-Cr-Mo with high density, good agreement of geometrical accuracy and better surface finish. Despite of both manufacturing process yield that produced components with higher density, the current finding shows that SLM technique could produce components with smoother surface quality compared to DMLS

  16. Systems engineering management process maturity of South African manufacturing organisations

    CSIR Research Space (South Africa)

    Lemberger, ID

    2014-07-01

    Full Text Available to integrate people, processes and technologies to deliver innovative complex systems. The investigation set out to improve the understanding of systems engineering (SE) with focus on organisations in manufacturing of coke, petroleum, chemical products, rubber...

  17. Technological and economical assessment of alternative process chains for blisk manufacture

    OpenAIRE

    Klocke, Fritz; Schmitt, Robert; Zeis, Markus; Heidemanns, Lukas; Kerkhoff, Johannes; Heinen, Daniel; Klink, Andreas

    2015-01-01

    Due to the increase of blisk (blade integrated disk) demands instead of the conventional fir-tree design in current aero-engine concepts there is a high resource-driven need for a comprehensive evaluation of different process chain alternatives for blisk manufacture. Therefore, in this paper different manufacturing chains consisting of roughing, pre-finishing and finishing/polishing are compared to each other by the example of a HPC-blisk out of Inconel 718. Beside conventional milling and el...

  18. Multivariate modelling of the tablet manufacturing process with wet granulation for tablet optimization and in-process control

    NARCIS (Netherlands)

    Westerhuis, J.A; Coenegracht, P.M J; Lerk, C.F

    1997-01-01

    The process of tablet manufacturing with granulation is described as a two-step process. The first step comprises wet granulation of the powder mixture, and in the second step the granules are compressed into tablets. For the modelling of the pharmaceutical process of wet granulation and tableting,

  19. 2015 Chinese Intelligent Systems Conference

    CERN Document Server

    Du, Junping; Li, Hongbo; Zhang, Weicun; CISC’15

    2016-01-01

    This book presents selected research papers from the 2015 Chinese Intelligent Systems Conference (CISC’15), held in Yangzhou, China. The topics covered include multi-agent systems, evolutionary computation, artificial intelligence, complex systems, computation intelligence and soft computing, intelligent control, advanced control technology, robotics and applications, intelligent information processing, iterative learning control, and machine learning. Engineers and researchers from academia, industry and the government can gain valuable insights into solutions combining ideas from multiple disciplines in the field of intelligent systems.

  20. Numerical simulation of residual stress in laser based additive manufacturing process

    Science.gov (United States)

    Kalyan Panda, Bibhu; Sahoo, Seshadev

    2018-03-01

    Minimizing the residual stress build-up in metal-based additive manufacturing plays a pivotal role in selecting a particular material and technique for making an industrial part. In beam-based additive manufacturing, although a great deal of effort has been made to minimize the residual stresses, it is still elusive how to do so by simply optimizing the processing parameters, such as beam size, beam power, and scan speed. Amid different types of additive manufacturing processes, Direct Metal Laser Sintering (DMLS) process uses a high-power laser to melt and sinter layers of metal powder. The rapid solidification and heat transfer on powder bed endows a high cooling rate which leads to the build-up of residual stresses, that will affect the mechanical properties of the build parts. In the present work, the authors develop a numerical thermo-mechanical model for the measurement of residual stress in the AlSi10Mg build samples by using finite element method. Transient temperature distribution in the powder bed was assessed using the coupled thermal to structural model. Subsequently, the residual stresses were estimated with varying laser power. From the simulation result, it found that the melt pool dimensions increase with increasing the laser power and the magnitude of residual stresses in the built part increases.

  1. Methodology for systematic analysis and improvement of manufacturing unit process life cycle inventory (UPLCI) CO2PE! initiative (cooperative effort on process emissions in manufacturing). Part 2: case studies

    DEFF Research Database (Denmark)

    Kellens, Karel; Dewulf, Wim; Overcash, Michael

    2012-01-01

    industrial data and engineering calculations for energy use and material loss. This approach is illustrated by means of a case study of a drilling process.The in-depth approach, which leads to more accurate LCI data as well as the identification of potential for environmental improvements...... for environmental improvement based on the in-depth analysis of individual manufacturing unit processes. Two case studies illustrate the applicability of the methodology.......This report presents two case studies, one for both the screening approach and the in-depth approach, demonstrating the application of the life cycle assessment-oriented methodology for systematic inventory analysis of the machine tool use phase of manufacturing unit processes, which has been...

  2. The impact of the manufacturing process on the hardness and sensory properties of milk chocolate

    Directory of Open Access Journals (Sweden)

    Zarić Danica B.

    2012-01-01

    Full Text Available The aim of this paper was to examine the impact of the manufacturing process on the textural characteristics and sensory properties of milk chocolate. The research was conducted on the samples of chocolate produced in a ball mill during 30, 60 and 90 minutes of refining, each of them being pre-crystallized at 26, 28 and 30°C. A chocolate mass of identical ingredient composition was also produced using a standard manufacturing process at the same pre-crystallization temperatures. Chocolate hardness was examined using a piece of equipment called Texture Analyser, measuring the stress intensity which leads to chocolate crushing. Sensory analysis was performed using the point scoring method. The new manufacturing process, i.e. the manufacturing of chocolate in a ball mill improves sensory properties and hardness of milk chocolate. [Projekat Ministarstva nauke Republike Srbije, br. TR 31014

  3. State-of-the-Art Multi-Objective Optimisation of Manufacturing Processes Based on Thermo-Mechanical Simulations

    DEFF Research Database (Denmark)

    Tutum, Cem Celal; Hattel, Jesper Henri

    2011-01-01

    During the last couple of decades the possibility of modelling multi-physics phenomena has increased dramatically, thus making simulation of very complex manufacturing processes possible and in some fields even an everyday event. A consequence of this has been improved products with respect...... competition between manufacturers of products in combination with the possibility of doing these highly complex simulations. Thus, there is a crucial need for combining advanced simulation tools for manufacturing processes with systematic optimisation algorithms which are capable of searching for single....... These limitations eventually determine what is in fact possible today and hence define what the “state-of-the-art” is. So, seen from that perspective the very definition of the state-of-the-art itself in the field of optimisation of manufacturing processes constitutes an important discussion. Moreover, in the major...

  4. Corrosion and Creep Characteristics of the HANA-4 Alloy with the various Manufacturing Processes

    International Nuclear Information System (INIS)

    Kim, Hyun-Gil; Choi, Byung-Kwan; Park, Jeong-Yong; Jeong, Yong-Hwan

    2008-01-01

    Zirconium alloys have been used as a fuel cladding material for several decades, since these alloys have revealed a good corrosion resistance and mechanical properties in reactor operating conditions. The development of an advanced Zr-based alloy with an improved corrosion and creep resistance is necessary for the high burn-up operating conditions in PWRs. The alloying element effects of the Nb, Sn, Fe, Cr, Cu etc as well as an optimization of the manufacturing processes such as the reduction ratio and annealing temperatures have been studied to improve the corrosion and creep properties. A high Nb-containing Zr-based alloy named HANA-4 was designed at KAERI and its nominal composition is Zr-1.5Nb-0.4Sn-0.2Fe-0.1Cr in wt.%. For high Nb-containing Zr alloys, their corrosion resistance is very sensitive to their microstructural characteristics which are determined by a manufacturing process. In order to obtain the best manufacturing process for the HANA-4 alloy, various evaluations such as corrosion and creep tests, a microstructural analysis, and a texture analysis were performed on the HANA-4 alloy with various manufacturing processes

  5. Understanding evolutionary processes in non-manufacturing industries: Empirical insights from the shakeout in pharmaceutical wholesaling

    OpenAIRE

    Adam J. Fein

    1998-01-01

    Although the empirical pattern of industry shakeout has been documented for many manufacturing industries, we know little about the processes by which market structure evolves in non-manufacturing service industries. This paper establishes detailed empirical observations about the consolidation of a single non-manufacturing industry, the wholesale distribution of pharmaceuticals. These observations are used to explore differences between manufacturing and wholesaling in both the patterns and ...

  6. Accessibility analysis in manufacturing processes using visibility cones

    Institute of Scientific and Technical Information of China (English)

    尹周平; 丁汉; 熊有伦

    2002-01-01

    Accessibility is a kind of important design feature of products,and accessibility analysis has been acknowledged as a powerful tool for solving computational manufacturing problems arising from different manufacturing processes.After exploring the relations among approachability,accessibility and visibility,a general method for accessibility analysis using visibility cones (VC) is proposed.With the definition of VC of a point,three kinds of visibility of a feature,namely complete visibility cone (CVC),partial visibility cone (PVC) and local visibility cone (LVC),are defined.A novel approach to computing VCs is formulated by identifying C-obstacles in the C-space,for which a general and efficient algorithm is proposed and implemented by making use of visibility culling.Lastly,we discuss briefly how to realize accessibility analysis in numerically controlled (NC) machining planning,coordinate measuring machines (CMMs) inspection planning and assembly sequence planning with the proposed methods.

  7. Artificial intelligence, expert systems, computer vision, and natural language processing

    Science.gov (United States)

    Gevarter, W. B.

    1984-01-01

    An overview of artificial intelligence (AI), its core ingredients, and its applications is presented. The knowledge representation, logic, problem solving approaches, languages, and computers pertaining to AI are examined, and the state of the art in AI is reviewed. The use of AI in expert systems, computer vision, natural language processing, speech recognition and understanding, speech synthesis, problem solving, and planning is examined. Basic AI topics, including automation, search-oriented problem solving, knowledge representation, and computational logic, are discussed.

  8. A Latent Variable Analysis of Working Memory Capacity, Short-Term Memory Capacity, Processing Speed, and General Fluid Intelligence.

    Science.gov (United States)

    Conway, Andrew R. A.; Cowan, Nelsin; Bunting, Michael F.; Therriault, David J.; Minkoff, Scott R. B.

    2002-01-01

    Studied the interrelationships among general fluid intelligence, short-term memory capacity, working memory capacity, and processing speed in 120 young adults and used structural equation modeling to determine the best predictor of general fluid intelligence. Results suggest that working memory capacity, but not short-term memory capacity or…

  9. The Autonomous Maintenance Implementation Directory as a Step Toward the Intelligent Quality Management System

    Science.gov (United States)

    Molenda, Michał

    2016-12-01

    The article describes the effects of the improvement of the production process which one of the industrial enterprises obtained by implementing the method of Autonomous Maintenance (AM), which is one of the pillars of the concept of Total Productive Maintenance (TPM). AM method was presented as an aid to the formation of intelligent, self-improving procesess of the quality management system (QMS). The main part of this article is to present results of studies that have been conducted in one of the large industrial enterprises in Poland, manufacturing for the automotive industry. The aim of the study was to evaluate the effectiveness of the implementation of the AM method as a tool for selfimprovement of industrial processes in the following company. The study was conducted in 2015. The gathering and comparison of data from the period of two years, ie. the year before and the year after the implementation of AM, helped to determine the effectiveness of AM in building intelligent quality management system.

  10. Modelling of just-in-sequence supply of manufacturing processes

    Directory of Open Access Journals (Sweden)

    Bányai Tamás

    2017-01-01

    Full Text Available The customer oriented production led to the growth of complexity of manufacturing and connected logistics processes. In many production companies one of the largest asset on balance sheet is inventory. To avoid inventory problems and to be the winners of today’s market situation manufacturing companies try to decrease heavy inventory levels through just-in-time based supply strategies. The aim of this research work is to analyse these supply strategies. The first part of the paper describes the just-in-time based supply and summarises the most important characteristics of them. The second part focuses on the modelling of just-in-sequence based in-plant supply. The models makes it possible to determine different in-plant supply strategies.

  11. Alzheimer's disease and intelligence.

    Science.gov (United States)

    Yeo, R A; Arden, R; Jung, R E

    2011-06-01

    A significant body of evidence has accumulated suggesting that individual variation in intellectual ability, whether assessed directly by intelligence tests or indirectly through proxy measures, is related to risk of developing Alzheimer's disease (AD) in later life. Important questions remain unanswered, however, such as the specificity of risk for AD vs. other forms of dementia, and the specific links between premorbid intelligence and development of the neuropathology characteristic of AD. Lower premorbid intelligence has also emerged as a risk factor for greater mortality across myriad health and mental health diagnoses. Genetic covariance contributes importantly to these associations, and pleiotropic genetic effects may impact diverse organ systems through similar processes, including inefficient design and oxidative stress. Through such processes, the genetic underpinnings of intelligence, specifically, mutation load, may also increase the risk of developing AD. We discuss how specific neurobiologic features of relatively lower premorbid intelligence, including reduced metabolic efficiency, may facilitate the development of AD neuropathology. The cognitive reserve hypothesis, the most widely accepted account of the intelligence-AD association, is reviewed in the context of this larger literature.

  12. Study on the Transformation and Upgrade of E-Commerce Application in Manufacturing Industry

    OpenAIRE

    Zhao Liang; Feng Mengzhao

    2017-01-01

    Under the Internet thinking, manufacturing management mode is changed, it is not depend on the scale, but in the user as the center, more dependent on the reaction rate of user requirements. As the big data, cloud computing, Internet of things technology such as the development of technology, manufacturing is from automatic to intelligent evolution, on the user's personalized customization is possible. Using Internet thinking positive development manufacturing enterprise electronic commerce a...

  13. Novel Manufacturing Process for Unique Mixed Carbide Refractory Composites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This STTR Phase I project will establish the feasibility of an innovative manufacturing process to fabricate a range of unique hafnium/silicon based carbide...

  14. Intelligent Mission Controller Node

    National Research Council Canada - National Science Library

    Perme, David

    2002-01-01

    The goal of the Intelligent Mission Controller Node (IMCN) project was to improve the process of translating mission taskings between real-world Command, Control, Communications, Computers, and Intelligence (C41...

  15. Development and evaluation of an intelligent traceability system for frozen tilapia fillet processing.

    Science.gov (United States)

    Xiao, Xinqing; Fu, Zetian; Qi, Lin; Mira, Trebar; Zhang, Xiaoshuan

    2015-10-01

    The main export varieties in China are brand-name, high-quality bred aquatic products. Among them, tilapia has become the most important and fast-growing species since extensive consumer markets in North America and Europe have evolved as a result of commodity prices, year-round availability and quality of fresh and frozen products. As the largest tilapia farming country, China has over one-third of its tilapia production devoted to further processing and meeting foreign market demand. Using by tilapia fillet processing, this paper introduces the efforts for developing and evaluating ITS-TF: an intelligent traceability system integrated with statistical process control (SPC) and fault tree analysis (FTA). Observations, literature review and expert questionnaires were used for system requirement and knowledge acquisition; scenario simulation was applied to evaluate and validate ITS-TF performance. The results show that traceability requirement is evolved from a firefighting model to a proactive model for enhancing process management capacity for food safety; ITS-TF transforms itself as an intelligent system to provide functions on early warnings and process management by integrated SPC and FTA. The valuable suggestion that automatic data acquisition and communication technology should be integrated into ITS-TF was achieved for further system optimization, perfection and performance improvement. © 2014 Society of Chemical Industry.

  16. NICE3 SO3 Cleaning Process in Semiconductor Manufacturing

    International Nuclear Information System (INIS)

    Blazek, Steve

    1999-01-01

    This fact sheet explains how Anon, Inc., has developed a novel method of removing photoresist--a light-sensitive material used to produce semiconductor wafers for computers--from the computer manufacturing process at reduced cost and greater efficiency. The new technology is technically superior to existing semiconductor cleaning methods and results in reduced use of hazardous chemicals

  17. Modular industrial robots as the tool of process automation in robotized manufacturing cells

    Science.gov (United States)

    Gwiazda, A.; Banas, W.; Sekala, A.; Foit, K.; Hryniewicz, P.; Kost, G.

    2015-11-01

    Recently the number of designed modular machine was increased. The term modular machine is used to denote different types of machinery, equipment and production lines, which are created using modular elements. Modular could be both mechanic elements, and drives, as well as control systems. This method of machine design is more and more popular because it allows obtaining flexible and relatively cheap solutions. So it is worth to develop the concept of modularity in next areas of application. The advantages of modular solutions are: simplification of the structure, standardization of components, and faster assembly process of the complete machine Additional advantages, which is particularly important for manufacturers, are shorter manufacturing times, longer production series and reduced manufacturing costs. Modular designing is also the challenge for designers and the need for a new approach to the design process, to the starting process and to the exploitation process. The purpose for many manufacturers is the standardization of the components used for creating the finished products. This purpose could be realized by the application of standard modules which could be combined together in different ways to create the desired particular construction as much as possible in accordance with the order. This solution is for the producer more favorable than the construction of a large machine whose configuration must be matched to each individual order. In the ideal case each module has its own control system and the full functionality of the modular machine is obtained due to the mutual cooperation of all modules. Such a solution also requires the modular components which create the modular machine are equipped with interfaces compatible one with another to facilitate their communication. The individual components of the machine could be designed, manufactured and used independently and production management task could be divided into subtasks. They could be also

  18. The effects of spiritual intelligence and its dimensions on organizational citizenship behaviour

    Directory of Open Access Journals (Sweden)

    Md. Aftab Anwar

    2015-09-01

    Full Text Available Purpose: Organizational citizenship behaviour may exist among employees who have inner feelings of having better work experiences by using their spiritual experiences, and also to nurture these by creating meaningful ethical work environments. These phenomena have not been sufficiently studied especially in the context of recent corporate scandals and ethical violations. For this reason, this study seeks to enrich the understanding of relationship of spiritual intelligence and its sub constructs on employee citizenship behaviour among the employees who are working in manufacturing and service organization in Malaysia. Design/methodology/approach: This paper examines the effect of spiritual intelligence and its dimensions on organizational citizenship behaviour among the employees who are working in manufacturing and service industries in Malaysia. Data were collected from 112 employees of the organization from 10 manufacturing and 10 service organization in Peninsular Malaysia. Findings and Originality/value: Multiple regression analyses have revealed that employee spiritual intelligence plays an important role for generating citizenship behaviour among employees. The two important dimensions namely critical existential thinking and transcendental awareness of spiritual intelligence are having great effect on organizational citizenship behaviour. Research limitations/implications: Scholars can develop new research agenda first to identify the nature of effects it might have on employee’s performance which can boost the ultimate goal of the organization. Practical implications: Through the finding of this empirical study, it is hoped that it can provide some preliminary assessment and knowledge of the effects of spiritual intelligence of employees and how they relate to the OCB. This would be vital for industrial development by adding relevant policies regarding enhancing employees’ OCB. Social implications: This study has the capacity to

  19. Supply chain risk management processes for resilience: A study of South African grocery manufacturers

    OpenAIRE

    Simon Simba; Wesley Niemann; Theuns Kotzé; Assilah Agigi

    2017-01-01

    Background: The supply chain risk management (SCRM) process is aimed at the implementation of strategies that assist in managing both daily and exceptional risks facing the supply chain through continuous risk assessment to reduce vulnerability and ensure continuity. Purpose: The purpose of the study was to determine whether the SCRM process enables supply chain resilience among grocery manufacturers in South Africa. The fast-moving consumer goods (FMCG)-manufacturing industry faces incre...

  20. Simulation based energy-resource efficient manufacturing integrated with in-process virtual management

    Science.gov (United States)

    Katchasuwanmanee, Kanet; Cheng, Kai; Bateman, Richard

    2016-09-01

    As energy efficiency is one of the key essentials towards sustainability, the development of an energy-resource efficient manufacturing system is among the great challenges facing the current industry. Meanwhile, the availability of advanced technological innovation has created more complex manufacturing systems that involve a large variety of processes and machines serving different functions. To extend the limited knowledge on energy-efficient scheduling, the research presented in this paper attempts to model the production schedule at an operation process by considering the balance of energy consumption reduction in production, production work flow (productivity) and quality. An innovative systematic approach to manufacturing energy-resource efficiency is proposed with the virtual simulation as a predictive modelling enabler, which provides real-time manufacturing monitoring, virtual displays and decision-makings and consequentially an analytical and multidimensional correlation analysis on interdependent relationships among energy consumption, work flow and quality errors. The regression analysis results demonstrate positive relationships between the work flow and quality errors and the work flow and energy consumption. When production scheduling is controlled through optimization of work flow, quality errors and overall energy consumption, the energy-resource efficiency can be achieved in the production. Together, this proposed multidimensional modelling and analysis approach provides optimal conditions for the production scheduling at the manufacturing system by taking account of production quality, energy consumption and resource efficiency, which can lead to the key competitive advantages and sustainability of the system operations in the industry.

  1. Manufacturing process and electrode properties of palladium-electroded ionic polymer–metal composite

    International Nuclear Information System (INIS)

    Chang, Longfei; Chen, Hualing; Zhu, Zicai; Li, Bo

    2012-01-01

    This paper primarily focuses on the manufacturing process of palladium-electroded ionic polymer–metal composite (IPMC). First, according to the special properties of Pd, many experiments were done to determine several specific procedures, including the addition of a reducing agent and the time consumed. Subsequently, the effects of the core manufacturing steps on the electrode morphology were revealed by scanning electron microscopy studies of 22 IPMC samples treated with different combinations of manufacturing steps. Finally, the effects of electrode characteristics on the electromechanical properties, including the sheet resistivity, the elastic modulus and the electro-active performance, of IPMCs were evaluated experimentally and analyzed according to the electrode morphology. (paper)

  2. Toward industrialization: Supporting the manufacturing processes of superconducting cavities at DESY

    International Nuclear Information System (INIS)

    Buerger, J.; Dammann, J.A.; Hagge, L.; Iversen, J.; Matheisen, A.; Singer, W.

    2006-01-01

    Manufacturing high-gradient superconducting cavities for future accelerators requires detailed knowledge of the entire production process. This knowledge has to be transferred from the laboratories, which are developing the process, to industry in order to achieve reproducible results in the industrial production of large numbers of cavities. The paper introduces DESY's approach to process industrialization based on the use of an engineering data management system (EDMS)

  3. Laser processing of ceramics for microelectronics manufacturing

    Science.gov (United States)

    Sposili, Robert S.; Bovatsek, James; Patel, Rajesh

    2017-03-01

    Ceramic materials are used extensively in the microelectronics, semiconductor, and LED lighting industries because of their electrically insulating and thermally conductive properties, as well as for their high-temperature-service capabilities. However, their brittleness presents significant challenges for conventional machining processes. In this paper we report on a series of experiments that demonstrate and characterize the efficacy of pulsed nanosecond UV and green lasers in machining ceramics commonly used in microelectronics manufacturing, such as aluminum oxide (alumina) and aluminum nitride. With a series of laser pocket milling experiments, fundamental volume ablation rate and ablation efficiency data were generated. In addition, techniques for various industrial machining processes, such as shallow scribing and deep scribing, were developed and demonstrated. We demonstrate that lasers with higher average powers offer higher processing rates with the one exception of deep scribes in aluminum nitride, where a lower average power but higher pulse energy source outperformed a higher average power laser.

  4. Artificial Immune Algorithm for Subtask Industrial Robot Scheduling in Cloud Manufacturing

    Science.gov (United States)

    Suma, T.; Murugesan, R.

    2018-04-01

    The current generation of manufacturing industry requires an intelligent scheduling model to achieve an effective utilization of distributed manufacturing resources, which motivated us to work on an Artificial Immune Algorithm for subtask robot scheduling in cloud manufacturing. This scheduling model enables a collaborative work between the industrial robots in different manufacturing centers. This paper discussed two optimizing objectives which includes minimizing the cost and load balance of industrial robots through scheduling. To solve these scheduling problems, we used the algorithm based on Artificial Immune system. The parameters are simulated with MATLAB and the results compared with the existing algorithms. The result shows better performance than existing.

  5. Technical cost modelling for a novel semi-solid metal (SSM) casting processes for automotive component manufacturing

    CSIR Research Space (South Africa)

    Tlale, NS

    2008-09-01

    Full Text Available to predict the cost structure of a newly developed manufacturing process if it is to be considered by manufacturing enterprises for development to substitute a process that is in use. The costs of the new SSM technologies was established by technical cost...

  6. The Professionalization of Intelligence Cooperation

    DEFF Research Database (Denmark)

    Svendsen, Adam David Morgan

    "Providing an in-depth insight into the subject of intelligence cooperation (officially known as liason), this book explores the complexities of this process. Towards facilitating a general understanding of the professionalization of intelligence cooperation, Svendsen's analysis includes risk...... management and encourages the realisation of greater resilience. Svendsen discusses the controversial, mixed and uneven characterisations of the process of the professionalization of intelligence cooperation and argues for a degree of 'fashioning method out of mayhem' through greater operational...

  7. Development strategy and process models for phased automation of design and digital manufacturing electronics

    Science.gov (United States)

    Korshunov, G. I.; Petrushevskaya, A. A.; Lipatnikov, V. A.; Smirnova, M. S.

    2018-03-01

    The strategy of quality of electronics insurance is represented as most important. To provide quality, the processes sequence is considered and modeled by Markov chain. The improvement is distinguished by simple database means of design for manufacturing for future step-by-step development. Phased automation of design and digital manufacturing electronics is supposed. The MatLab modelling results showed effectiveness increase. New tools and software should be more effective. The primary digital model is proposed to represent product in the processes sequence from several processes till the whole life circle.

  8. Artificial Intelligence--Applications in Education.

    Science.gov (United States)

    Poirot, James L.; Norris, Cathleen A.

    1987-01-01

    This first in a projected series of five articles discusses artificial intelligence and its impact on education. Highlights include the history of artificial intelligence and the impact of microcomputers; learning processes; human factors and interfaces; computer assisted instruction and intelligent tutoring systems; logic programing; and expert…

  9. Speech Intelligibility Prediction Based on Mutual Information

    DEFF Research Database (Denmark)

    Jensen, Jesper; Taal, Cees H.

    2014-01-01

    This paper deals with the problem of predicting the average intelligibility of noisy and potentially processed speech signals, as observed by a group of normal hearing listeners. We propose a model which performs this prediction based on the hypothesis that intelligibility is monotonically related...... to the mutual information between critical-band amplitude envelopes of the clean signal and the corresponding noisy/processed signal. The resulting intelligibility predictor turns out to be a simple function of the mean-square error (mse) that arises when estimating a clean critical-band amplitude using...... a minimum mean-square error (mmse) estimator based on the noisy/processed amplitude. The proposed model predicts that speech intelligibility cannot be improved by any processing of noisy critical-band amplitudes. Furthermore, the proposed intelligibility predictor performs well ( ρ > 0.95) in predicting...

  10. Validation of the manufacturing process used to produce long-acting recombinant factor IX Fc fusion protein.

    Science.gov (United States)

    McCue, J; Osborne, D; Dumont, J; Peters, R; Mei, B; Pierce, G F; Kobayashi, K; Euwart, D

    2014-07-01

    Recombinant factor IX Fc (rFIXFc) fusion protein is the first of a new class of bioengineered long-acting factors approved for the treatment and prevention of bleeding episodes in haemophilia B. The aim of this work was to describe the manufacturing process for rFIXFc, to assess product quality and to evaluate the capacity of the process to remove impurities and viruses. This manufacturing process utilized a transferable and scalable platform approach established for therapeutic antibody manufacturing and adapted for production of the rFIXFc molecule. rFIXFc was produced using a process free of human- and animal-derived raw materials and a host cell line derived from human embryonic kidney (HEK) 293H cells. The process employed multi-step purification and viral clearance processing, including use of a protein A affinity capture chromatography step, which binds to the Fc portion of the rFIXFc molecule with high affinity and specificity, and a 15 nm pore size virus removal nanofilter. Process validation studies were performed to evaluate identity, purity, activity and safety. The manufacturing process produced rFIXFc with consistent product quality and high purity. Impurity clearance validation studies demonstrated robust and reproducible removal of process-related impurities and adventitious viruses. The rFIXFc manufacturing process produces a highly pure product, free of non-human glycan structures. Validation studies demonstrate that this product is produced with consistent quality and purity. In addition, the scalability and transferability of this process are key attributes to ensure consistent and continuous supply of rFIXFc. © 2014 The Authors. Haemophilia Published by John Wiley & Sons Ltd.

  11. Role of Ontologies for CPS Implementation in Manufacturing

    Directory of Open Access Journals (Sweden)

    Garetti Marco

    2015-12-01

    Full Text Available Cyber Physical Systems are an evolution of embedded systems featuring a tight combination of collaborating computational elements that control physical entities. CPSs promise a great potential of innovation in many areas including manufacturing and production. This is because we obtain a very powerful, flexible, modular infrastructure allowing easy (re configurability and fast ramp-up of manufacturing applications by building a manufacturing system with modular mechatronic components (for machining, transportation and storage and embedded intelligence, by integrating them into a system, through a network connection. However, when building such kind of architectures, the way to supply the needed domain knowledge to real manufacturing applications arises as a problem to solve. In fact, a CPS based architecture for manufacturing is made of smart but independent manufacturing components without any knowledge of the role they have to play together in the real world of manufacturing applications. Ontologies can supply such kind of knowledge, playing a very important role in CPS for manufacturing. The paper deals with this intriguing theme, also presenting an implementation of this approach in a research project for the open automation of manufacturing systems, in which the power of CPS is complemented by the support of an ontology of the manufacturing domain.

  12. Quality changes in krill and krill products during their manufacturing process

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Jacobsen, Charlotte; Bruheim, Inge

    The main objective of this study is to a) investigate the effect of temperature towards the non-enzymatic browning reactions and lipid oxidation in krill products sampled at different stages during their manufacturing process. In order to further investigate this, a simple model system comprising...... amino acids (leucine, isoleucine, valine, methionine and lysine) was prepared with addition of lipid (saturated and α, β-unsaturated aldehydes) or non-enzymatic (Strecker aldehydes and pyrazine) derived volatiles. Therefore, the secondary objective is to investigate if the occurrence of non......-enzymatic browning reactions and lipid oxidation in krill products during their manufacturing process. The occurrence of these reactions could be observed in krill meal and this was ascribed to the presence of carbonyl compounds derived lipid oxidation products. The presence of a high level of non...

  13. Processing Speed and Intelligence as Predictors of School Achievement: Mediation or Unique Contribution?

    Science.gov (United States)

    Dodonova, Yulia A.; Dodonov, Yury S.

    2012-01-01

    The relationships between processing speed, intelligence, and school achievement were analyzed on a sample of 184 Russian 16-year-old students. Two speeded tasks required the discrimination of simple geometrical shapes and the recognition of the presented meaningless figures. Raven's Advanced Progressive Matrices and the verbal subtests of…

  14. Patterns of order processing : a study of the formalization of the ordering process in order-driven manufacturing companies

    NARCIS (Netherlands)

    Welker, Geertruida Annigje

    2004-01-01

    It is essential for many order-driven manufacturing companies to be able to respond quickly to changing customer demand. In this respect, the ordering process plays a central role, as coordination between demand and production takes places within this process. The ordering process must contribute to

  15. Modeling of RFID-Enabled Real-Time Manufacturing Execution System in Mixed-Model Assembly Lines

    Directory of Open Access Journals (Sweden)

    Zhixin Yang

    2015-01-01

    Full Text Available To quickly respond to the diverse product demands, mixed-model assembly lines are well adopted in discrete manufacturing industries. Besides the complexity in material distribution, mixed-model assembly involves a variety of components, different process plans and fast production changes, which greatly increase the difficulty for agile production management. Aiming at breaking through the bottlenecks in existing production management, a novel RFID-enabled manufacturing execution system (MES, which is featured with real-time and wireless information interaction capability, is proposed to identify various manufacturing objects including WIPs, tools, and operators, etc., and to trace their movements throughout the production processes. However, being subject to the constraints in terms of safety stock, machine assignment, setup, and scheduling requirements, the optimization of RFID-enabled MES model for production planning and scheduling issues is a NP-hard problem. A new heuristical generalized Lagrangian decomposition approach has been proposed for model optimization, which decomposes the model into three subproblems: computation of optimal configuration of RFID senor networks, optimization of production planning subjected to machine setup cost and safety stock constraints, and optimization of scheduling for minimized overtime. RFID signal processing methods that could solve unreliable, redundant, and missing tag events are also described in detail. The model validity is discussed through algorithm analysis and verified through numerical simulation. The proposed design scheme has important reference value for the applications of RFID in multiple manufacturing fields, and also lays a vital research foundation to leverage digital and networked manufacturing system towards intelligence.

  16. Biomedical Titanium alloy prostheses manufacturing by means of Superplastic and Incremental Forming processes

    Directory of Open Access Journals (Sweden)

    Piccininni Antonio

    2016-01-01

    Full Text Available The present work collects some results of the three-years Research Program “BioForming“, funded by the Italian Ministry of Education (MIUR and aimed to investigate the possibility of using flexible sheet forming processes, i.e. Super Plastic Forming (SPF and Single Point Incremental Forming (SPIF, for the manufacturing of patient-oriented titanium prostheses. The prosthetic implants used as case studies were from the skull; in particular, two different Ti alloys and geometries were considered: one to be produced in Ti-Gr23 by SPF and one to be produced in Ti-Gr2 by SPIF. Numerical simulations implementing material behaviours evaluated by characterization tests were conducted in order to design both the manufacturing processes. Subsequently, experimental tests were carried out implementing numerical results in terms of: (i gas pressure profile able to determine a constant (and optimal strain rate during the SPF process; (ii tool path able to avoid rupture during the SPIF process. Post forming characteristics of the prostheses in terms of thickness distributions were measured and compared to data from simulations for validation purposes. A good correlation between numerical and experimental thickness distributions has been obtained; in addition, the possibility of successfully adopting both the SPF and the SPIF processes for the manufacturing of prostheses has been demonstrated.

  17. Affordable Design: A Methodolgy to Implement Process-Based Manufacturing Cost into the Traditional Performance-Focused Multidisciplinary Design Optimization

    Science.gov (United States)

    Bao, Han P.; Samareh, J. A.

    2000-01-01

    The primary objective of this paper is to demonstrate the use of process-based manufacturing and assembly cost models in a traditional performance-focused multidisciplinary design and optimization process. The use of automated cost-performance analysis is an enabling technology that could bring realistic processbased manufacturing and assembly cost into multidisciplinary design and optimization. In this paper, we present a new methodology for incorporating process costing into a standard multidisciplinary design optimization process. Material, manufacturing processes, and assembly processes costs then could be used as the objective function for the optimization method. A case study involving forty-six different configurations of a simple wing is presented, indicating that a design based on performance criteria alone may not necessarily be the most affordable as far as manufacturing and assembly cost is concerned.

  18. Cost estimation of a specifically designed direct light processing (DLP) additive manufacturing machine for precision printing

    DEFF Research Database (Denmark)

    Charalambis, Alessandro; Davoudinejad, Ali; Tosello, Guido

    2017-01-01

    creating new opportunities for manufacturers in a variety of industrial sectors. AM is an essentialprototyping technique for product design and development that is used in many different fields. However, the suitability of AMapplications in actual production in an industrial context needs to be determined......Additive Manufacturing (AM) refers to a portfolio of novel manufacturing technologies based on a layer-by-layer fabrication method.The market and industrial application of additive manufacturing technologies as an established manufacturing process have increasedexponentially in the last years....... This study, presents a cost estimation model forprecision printing with a specifically designed Digital Light Processing (DLP) AM machine built and validated at the Technical Universityof Denmark. The model presented in this study can be easily adapted and applied to estimate within a high level...

  19. TAPE CALENDERING MANUFACTURING PROCESS FOR MULTILAYER THIN-FILM SOLID OXIDE FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Minh; Kurt Montgomery

    2004-10-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the Phases I and II under Contract DE-AC26-00NT40705 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Tape Calendering Manufacturing Process For Multilayer Thin-Film Solid Oxide Fuel Cells''. The main objective of this project was to develop the manufacturing process based on tape calendering for multilayer solid oxide fuel cells (SOFC's) using the unitized cell design concept and to demonstrate cell performance under specified operating conditions. Summarized in this report is the development and improvements to multilayer SOFC cells and the unitized cell design. Improvements to the multilayer SOFC cell were made in electrochemical performance, in both the anode and cathode, with cells demonstrating power densities of nearly 0.9 W/cm{sup 2} for 650 C operation and other cell configurations showing greater than 1.0 W/cm{sup 2} at 75% fuel utilization and 800 C. The unitized cell design was matured through design, analysis and development testing to a point that cell operation at greater than 70% fuel utilization was demonstrated at 800 C. The manufacturing process for both the multilayer cell and unitized cell design were assessed and refined, process maps were developed, forming approaches explored, and nondestructive evaluation (NDE) techniques examined.

  20. Intelligent editor/printer enhancements

    Science.gov (United States)

    Woodfill, M. C.; Pheanis, D. C.

    1983-01-01

    Microprocessor support hardware, software, and cross assemblers relating to the Motorola 6800 and 6809 process systems were developed. Pinter controller and intelligent CRT development are discussed. The user's manual, design specifications for the MC6809 version of the intelligent printer controller card, and a 132-character by 64-line intelligent CRT display system using a Motorola 6809 MPU, and a one-line assembler and disassembler are provided.

  1. The Influence of Cochlear Mechanical Dysfunction, Temporal Processing Deficits, and Age on the Intelligibility of Audible Speech in Noise for Hearing-Impaired Listeners

    Directory of Open Access Journals (Sweden)

    Peter T. Johannesen

    2016-05-01

    Full Text Available The aim of this study was to assess the relative importance of cochlear mechanical dysfunction, temporal processing deficits, and age on the ability of hearing-impaired listeners to understand speech in noisy backgrounds. Sixty-eight listeners took part in the study. They were provided with linear, frequency-specific amplification to compensate for their audiometric losses, and intelligibility was assessed for speech-shaped noise (SSN and a time-reversed two-talker masker (R2TM. Behavioral estimates of cochlear gain loss and residual compression were available from a previous study and were used as indicators of cochlear mechanical dysfunction. Temporal processing abilities were assessed using frequency modulation detection thresholds. Age, audiometric thresholds, and the difference between audiometric threshold and cochlear gain loss were also included in the analyses. Stepwise multiple linear regression models were used to assess the relative importance of the various factors for intelligibility. Results showed that (a cochlear gain loss was unrelated to intelligibility, (b residual cochlear compression was related to intelligibility in SSN but not in a R2TM, (c temporal processing was strongly related to intelligibility in a R2TM and much less so in SSN, and (d age per se impaired intelligibility. In summary, all factors affected intelligibility, but their relative importance varied across maskers.

  2. Manufacturing process used to produce long-acting recombinant factor VIII Fc fusion protein.

    Science.gov (United States)

    McCue, Justin; Kshirsagar, Rashmi; Selvitelli, Keith; Lu, Qi; Zhang, Mingxuan; Mei, Baisong; Peters, Robert; Pierce, Glenn F; Dumont, Jennifer; Raso, Stephen; Reichert, Heidi

    2015-07-01

    Recombinant factor VIII Fc fusion protein (rFVIIIFc) is a long-acting coagulation factor approved for the treatment of hemophilia A. Here, the rFVIIIFc manufacturing process and results of studies evaluating product quality and the capacity of the process to remove potential impurities and viruses are described. This manufacturing process utilized readily transferable and scalable unit operations and employed multi-step purification and viral clearance processing, including a novel affinity chromatography adsorbent and a 15 nm pore size virus removal nanofilter. A cell line derived from human embryonic kidney (HEK) 293H cells was used to produce rFVIIIFc. Validation studies evaluated identity, purity, activity, and safety. Process-related impurity clearance and viral clearance spiking studies demonstrate robust and reproducible removal of impurities and viruses, with total viral clearance >8-15 log10 for four model viruses (xenotropic murine leukemia virus, mice minute virus, reovirus type 3, and suid herpes virus 1). Terminal galactose-α-1,3-galactose and N-glycolylneuraminic acid, two non-human glycans, were undetectable in rFVIIIFc. Biochemical and in vitro biological analyses confirmed the purity, activity, and consistency of rFVIIIFc. In conclusion, this manufacturing process produces a highly pure product free of viruses, impurities, and non-human glycan structures, with scale capabilities to ensure a consistent and adequate supply of rFVIIIFc. Copyright © 2015 Biogen. Published by Elsevier Ltd.. All rights reserved.

  3. Advanced Engineering Environments: Implications for Aerospace Manufacturing

    Science.gov (United States)

    Thomas, D.

    2001-01-01

    There are significant challenges facing today's aerospace industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker all face the developer of aerospace systems. New information technologies offer promising opportunities to develop advanced engineering environments (AEEs) to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. These advances will enable modeling and simulation of manufacturing methods, which will in turn allow manufacturing considerations to be included much earlier in the system development cycle. Significant cost savings, increased quality, and decreased manufacturing cycle time are expected to result. This paper will give an overview of the NASA's Intelligent Synthesis Environment, the agency initiative to develop an AEE, with a focus on the anticipated benefits in aerospace manufacturing.

  4. Additive Manufacturing Technologies Used for Processing Polymers: Current Status and Potential Application in Prosthetic Dentistry.

    Science.gov (United States)

    Revilla-León, Marta; Özcan, Mutlu

    2018-04-22

    There are 7 categories of additive manufacturing (AM) technologies, and a wide variety of materials can be used to build a CAD 3D object. The present article reviews the main AM processes for polymers for dental applications: stereolithography (SLA), digital light processing (DLP), material jetting (MJ), and material extrusion (ME). The manufacturing process, accuracy, and precision of these methods will be reviewed, as well as their prosthodontic applications. © 2018 by the American College of Prosthodontists.

  5. The Impact of Business Intelligence (BI Competence on Customer Relationship Management (CRM Process: An Empirical Investigation of the Banking Industry

    Directory of Open Access Journals (Sweden)

    Ali Mortezaei

    2018-03-01

    Full Text Available Nowadays, establishing long-term and effective relationships with customers is a key factor in understanding customers’ needs and preferences and achieving competitive advantage. In addition, companies are facing with a growing need for information and analytical knowledge about their customers, market, competitors, organizational environment, and other factors affecting their business. Business intelligence has been considered as a response to this need. The purpose of this study is to investigate the role of business intelligence competence in improving customer relationship management process. Based on the literature review and the competence – capability relationship paradigm, a conceptual model was developed comprising of different dimensions of business intelligence competence and customer relationship management processes. The data were collected from the banking sector and partial least squares structural equation modelling was employed for data analysis. Empirical results showed that organizational business intelligence competence, comprising of managerial, technical, and cultural competence, has a significantly positive impact on enhancing capabilities of customer relationship management process including initiation, maintenance, and termination of the relationship.

  6. A Multidirectional Model for Assessing Learning Disabled Students' Intelligence: An Information-Processing Framework.

    Science.gov (United States)

    Swanson, H. Lee

    1982-01-01

    An information processing approach to the assessment of learning disabled students' intellectual performance is presented. The model is based on the assumption that intelligent behavior is comprised of a variety of problem- solving strategies. An account of child problem solving is explained and illustrated with a "thinking aloud" protocol.…

  7. Improvement of the Zircaloy fuel can manufacturing process

    International Nuclear Information System (INIS)

    1986-01-01

    The following work has been performed in order to ensure more reliable supply of start material for the manufacture of Zy-2 and Zy-4 fuel cans, and to improve the processing techniques and product quality: 1) Two complete production campaigns with the ingot suppliers Western Zirconium and Ugine Aciers. 2) Development of new ingot dimensions (rolling tests). 3) Development of a mechanized washing and cleansing procedure. 4) Development of a new abrasive treatment technique (wet sand blasting). (orig./HP) [de

  8. Methods of Computational Intelligence in the Context of Quality Assurance in Foundry Products

    Directory of Open Access Journals (Sweden)

    Rojek G.

    2016-06-01

    Full Text Available One way to ensure the required technical characteristics of castings is the strict control of production parameters affecting the quality of the finished products. If the production process is improperly configured, the resulting defects in castings lead to huge losses. Therefore, from the point of view of economics, it is advisable to use the methods of computational intelligence in the field of quality assurance and adjustment of parameters of future production. At the same time, the development of knowledge in the field of metallurgy, aimed to raise the technical level and efficiency of the manufacture of foundry products, should be followed by the development of information systems to support production processes in order to improve their effectiveness and compliance with the increasingly more stringent requirements of ergonomics, occupational safety, environmental protection and quality. This article is a presentation of artificial intelligence methods used in practical applications related to quality assurance. The problem of control of the production process involves the use of tools such as the induction of decision trees, fuzzy logic, rough set theory, artificial neural networks or case-based reasoning.

  9. A Technical and Business Perspective on Wireless Sensor Network for Manufacturing Execution System

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2015-01-01

    Full Text Available Motivated by the complex production management with difficulties in error-prone assembly system and inaccurate supply chain inventory, this paper designs a novel manufacturing execution system (MES architecture for intelligent monitoring based on wireless sensor network (WSN. The technical perspective includes analysis on the proposed manufacturing resource mutual inductance method under active sensing network, appreciation technology of multisource information, and dynamic optimization technology for manufacturing execution processes. From business perspective, this paper elaborates the impact of RFID investment on complex product by establishing a three-stage supply chain model that involves two suppliers carrying out Stackelberg games (manufacturer and retailer. The optimal cost threshold values of technology investment are examined for both the centralized and the decentralized scenarios utilizing quantitative modeling methods. By analyzing and comparing the optimal profit with or without investment on WSN, this paper establishes a supply chain coordination and boosting model. The results of this paper have contributed significantly for one to make decision on whether RFID should be adopted among its members in supply chain. The system performance and model extension are verified via numerical analyses.

  10. The manufacture process and properties of (U, Gd)O2 burnable poisonous fuel pellets

    International Nuclear Information System (INIS)

    Yi Wei; Tang Yueming; Dai Shengping; Yang Youqing; Zuo Guoping; Wu Shihong; Gu Xiaofei; Gu Mingfei

    2006-03-01

    The main properties of important raw powder materials used in the (U, Gd)O 2 burnable poisonous fuel pellets production line of NPIC are presented. The powders included UO 2 , Gd 2 O 3 , (U, Gd) 3 O 8 and necessary additives, such as ammonium oxalate and zinc stearate. And the main properties of (U, Gd)O 2 burnable poisonous fuel pellets and the manufacture processes, such as ball-milling blending, granulation, pressing, sintering and grinding are also described. Moreover, the main effect of the process parameters controlled in the manufacture process have been discussed. (authors)

  11. Process and quality control in manufacturing of nuclear fuel assemblies of LWRs

    International Nuclear Information System (INIS)

    Dietrich, M.; Hoff, A.; Reimann, P.

    2000-01-01

    Manufacturing of nuclear fuel assemblies requires a multitude of different process and quality methods to assure and maintain a high quality level. In recent years methods have been applied which prevent deviations rather than detect deviant products. This paper gives an example on how to control a complex manufacturing process by using a small number of key parameters and second, it demonstrates the importance of graphical data evaluation and presentation methods. In the past many product and product characteristics were inspected m comparison with specification limits only. However, todays methods allow the early identification of trends, increase of variation, shifts disturbances etc. before the product characteristics exceed the specification limits. These methods are process control charts, x-y-plots, boxplots, failure mode and effect analysis (FMEA), process capability numbers and others. This paper demonstrates the beneficial use of some of the methods by presenting selected examples applied at Advanced Nuclear Fuels GmbH (ANF). (author)

  12. Cognitive logical systems with artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Liss, E

    1983-09-01

    The simulation of cognitive processes for the purpose of the technical development of learning systems with intelligent behavior is a basic object of the young interdisciplinary cognition science which is based upon artificial intelligence, cognitive psychology, computer science, linguistics and pedagogics. Cognitive systems may be described as knowledge-based logical systems. Based on structural and functional principles of intelligent automata and elementary information processing systems with structural learning capability the future process, machine and robot controls, advising units and fifth generation computers may be developed.

  13. Dental ethics and emotional intelligence.

    Science.gov (United States)

    Rosenblum, Alvin B; Wolf, Steve

    2014-01-01

    Dental ethics is often taught, viewed, and conducted as an intell enterprise, uninformed by other noncognitive factors. Emotional intelligence (EQ) is defined distinguished from the cognitive intelligence measured by Intelligence Quotient (IQ). This essay recommends more inclusion of emotional, noncognitive input to the ethical decision process in dental education and dental practice.

  14. Process Development for the Design and Manufacturing of Personalizable Mouth Sticks.

    Science.gov (United States)

    Berger, Veronika M; Pölzer, Stephan; Nussbaum, Gerhard; Ernst, Waltraud; Major, Zoltan

    2017-01-01

    To increase the independence of people with reduced hand/arm functionality, a process to generate personalizable mouth sticks was developed based on the participatory design principle. In a web tool, anybody can choose the geometry and the materials of their mouth piece, stick and tip. Manufacturing techniques (e.g. 3D printing) and materials used in the process are discussed and evaluated.

  15. Optimization process planning using hybrid genetic algorithm and intelligent search for job shop machining.

    Science.gov (United States)

    Salehi, Mojtaba; Bahreininejad, Ardeshir

    2011-08-01

    Optimization of process planning is considered as the key technology for computer-aided process planning which is a rather complex and difficult procedure. A good process plan of a part is built up based on two elements: (1) the optimized sequence of the operations of the part; and (2) the optimized selection of the machine, cutting tool and Tool Access Direction (TAD) for each operation. In the present work, the process planning is divided into preliminary planning, and secondary/detailed planning. In the preliminary stage, based on the analysis of order and clustering constraints as a compulsive constraint aggregation in operation sequencing and using an intelligent searching strategy, the feasible sequences are generated. Then, in the detailed planning stage, using the genetic algorithm which prunes the initial feasible sequences, the optimized operation sequence and the optimized selection of the machine, cutting tool and TAD for each operation based on optimization constraints as an additive constraint aggregation are obtained. The main contribution of this work is the optimization of sequence of the operations of the part, and optimization of machine selection, cutting tool and TAD for each operation using the intelligent search and genetic algorithm simultaneously.

  16. Cognitive Processing Speed, Working Memory, and the Intelligibility of Hearing Aid-Processed Speech in Persons with Hearing Impairment

    Directory of Open Access Journals (Sweden)

    Wycliffe Kabaywe Yumba

    2017-08-01

    Full Text Available Previous studies have demonstrated that successful listening with advanced signal processing in digital hearing aids is associated with individual cognitive capacity, particularly working memory capacity (WMC. This study aimed to examine the relationship between cognitive abilities (cognitive processing speed and WMC and individual listeners’ responses to digital signal processing settings in adverse listening conditions. A total of 194 native Swedish speakers (83 women and 111 men, aged 33–80 years (mean = 60.75 years, SD = 8.89, with bilateral, symmetrical mild to moderate sensorineural hearing loss who had completed a lexical decision speed test (measuring cognitive processing speed and semantic word-pair span test (SWPST, capturing WMC participated in this study. The Hagerman test (capturing speech recognition in noise was conducted using an experimental hearing aid with three digital signal processing settings: (1 linear amplification without noise reduction (NoP, (2 linear amplification with noise reduction (NR, and (3 non-linear amplification without NR (“fast-acting compression”. The results showed that cognitive processing speed was a better predictor of speech intelligibility in noise, regardless of the types of signal processing algorithms used. That is, there was a stronger association between cognitive processing speed and NR outcomes and fast-acting compression outcomes (in steady state noise. We observed a weaker relationship between working memory and NR, but WMC did not relate to fast-acting compression. WMC was a relatively weaker predictor of speech intelligibility in noise. These findings might have been different if the participants had been provided with training and or allowed to acclimatize to binary masking noise reduction or fast-acting compression.

  17. EPLD/CPLD based solution for sodium vapour leak detection processing instrumentation - ECIL's development, design, manufacturing and commissioning for implementation of DDCS at SGTF, IGCAR

    International Nuclear Information System (INIS)

    Rajasekhara Rao, K.S.; Mitra, S.G.; Kannaiah, B.

    2004-01-01

    For the Complex Process and Instrumentation needs of Sodium System of SGTF (Steam Generator Test Facility) of IGCAR, ECIL has developed the State of the Art EPLD / CPLD based solutions for Sodium Vapour Leak Detection Processing with Distributed I/O Intelligence for the task of Acquiring the Data, Analog to Digital Conversion, Data Interpretation as Sodium Leak, Healthy, Sensor /Cable Open/Short, Annunciation and Data Communication with DDCS. The System is flexible on a programmable chip for each group of 32 Sensors Data Processing and the Processing is Software Controlled rather than traditional hardware based. The System is adaptable to process requirement changes with simple Software updation/tuning rather than cumbersome and time-consuming hardware changes. Since the design is Software based, there is no drift and it is calibration free. The implementation is based on conceptual Design, Schematic Capture, VHDL Coding and Compilation, EPLD/CPLD Programming using J-Tag, Prefabrication Simulation Testing with Test Bench, Thermal-EMI-EMC Analysis, Fabrication, Assembly and Testing. The Leak Detection Processing is Integrated as part of 'DDCS - Developed, Designed, Manufactured and Commissioned at SGTF, IGCAR' consisting of Dual Redundant Multi Loop PID Controllers/PLCs, DAS and net worked HMI. The System is well established and, operational at IGCAR. (author)

  18. Process Machine Interactions Predicition and Manipulation of Interactions between Manufacturing Processes and Machine Tool Structures

    CERN Document Server

    Hollmann, Ferdinand

    2013-01-01

    This contributed volume collects the scientific results of the DFG Priority Program 1180 Prediction and Manipulation of Interactions between Structure and Process. The research program has been conducted during the years 2005 and 2012, whereas the primary goal was the analysis of the interactions between processes and structures in modern production facilities. This book presents the findings of the 20 interdisciplinary subprojects, focusing on different manufacturing processes such as high performance milling, tool grinding or metal forming. It contains experimental investigations as well as mathematical modeling of production processes and machine interactions. New experimental advancements and novel simulation approaches are also included.

  19. The future of intelligent manufacturing systems and human factors

    NARCIS (Netherlands)

    Vink, P.; Stahre, J.

    2006-01-01

    In this paper the results of a 3 year European project are described. In this project 20 experts in the field of human factors define the most promising way of using the European work force in manufacturing in the future. Based on discussions between the experts and participating companies and

  20. Process validation for the manufacturing of Tc-99m generator at Nuclear Malaysia

    International Nuclear Information System (INIS)

    Noriah Jamal; Rehir Dahlan; Wan Anuar Wan Awang; Zakaria Ibrahim; Shaaban Kassim; Wan Firdaus Wan Ishak; Nelly Bo Nai Lee; Noraisyah Yusof; Siti Selina Abdul Hamid; Ng Yen; Rahimah Abdul Rahim; Muhammad Hanafi Mohamad Mokhtar; Azahari Kasbollah; Abd Jalil Abd Hamid; Yahya Talib; Shafii Khamis; Zulkifli Mohamed Hashim

    2007-01-01

    Process validation provides the best platform in identifying potential problems in the actual radiopharmaceuticals manufacturing work. The purpose of this paper is to present experience in performing process validation for the manufacturing of Tc-99m generator at Nuclear Malaysia. Process validation for the manufacturing of Tc-99m generator was done by performing four try runs, between October 2006 to April 2007. It was done using saline instead of the actual product. Each try run took four days to complete. On day 1, clean room was cleaned and disinfected. On day 2, activity of washing and sterilization of utensils, columns, rubber stoppers and aluminium caps was carried out. On day 3, preparation of white top, alumina packed column and mixing solutions was performed. Apparatus was also sent for sterilizing test. On day 4, the actual production day of the try run by impregnating column with sterile saline was performed. Prior to the manufacturing activities, particle counts measurement and area clearance were performed to ensure that the temperature and humidity of the clean room are suitable for the production work. Settle plates were placed at the identified positions including in the Hot Cell. Personnel's finger print was performed before and after production work by using touch plates. After completion of try run, elution from the generators that been manufactured, settle and touch plates were sent to quality control unit for the microbiological test. It took fourteen days to get the test results. The first try run was failed, which may be due to insufficient of proper arrangement/preparation of work. It may also due to problem of cleaning/disinfection of clean room, which may not be done properly. The further three consecutive try runs meet all the specifications including the sterility test, endotoxin test and finger prints. It shows that the manufacturing of Tc-99m generator at Nuclear Malaysia is validated and ready for the active run. (Author)