WorldWideScience

Sample records for intelligent implant design

  1. Bioelectric analyses of an osseointegrated intelligent implant design system for amputees.

    Science.gov (United States)

    Isaacson, Brad M; Stinstra, Jeroen G; MacLeod, Rob S; Webster, Joseph B; Beck, James P; Bloebaum, Roy D

    2009-07-15

    The projected number of American amputees is expected to rise to 3.6 million by 2050. Many of these individuals depend on artificial limbs to perform routine activities, but prosthetic suspensions using traditional socket technology can prove to be cumbersome and uncomfortable for a person with limb loss. Moreover, for those with high proximal amputations, limited residual limb length may prevent exoprosthesis attachment all together. Osseointegrated implant technology is a novel operative procedure which allows firm skeletal attachment between the host bone and an implant. Preliminary results in European amputees with osseointegrated implants have shown improved clinical outcomes by allowing direct transfer of loads to the bone-implant interface. Despite the apparent advantages of osseointegration over socket technology, the current rehabilitation procedures require long periods of restrictive load bearing prior which may be reduced with expedited skeletal attachment via electrical stimulation. The goal of the osseointegrated intelligent implant design (OIID) system is to make the implant part of an electrical system to accelerate skeletal attachment and help prevent periprosthetic infection. To determine optimal electrode size and placement, we initiated proof of concept with computational modeling of the electric fields and current densities that arise during electrical stimulation of amputee residual limbs. In order to provide insure patient safety, subjects with retrospective computed tomography scans were selected and three dimensional reconstructions were created using customized software programs to ensure anatomical accuracy (Seg3D and SCIRun) in an IRB and HIPAA approved study. These software packages supported the development of patient specific models and allowed for interactive manipulation of electrode position and size. Preliminary results indicate that electric fields and current densities can be generated at the implant interface to achieve the

  2. Speech Intelligibility and Personality Peer-Ratings of Young Adults with Cochlear Implants

    Science.gov (United States)

    Freeman, Valerie

    2018-01-01

    Speech intelligibility, or how well a speaker's words are understood by others, affects listeners' judgments of the speaker's competence and personality. Deaf cochlear implant (CI) users vary widely in speech intelligibility, and their speech may have a noticeable "deaf" quality, both of which could evoke negative stereotypes or…

  3. Intelligent Design

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    2005-01-01

    Forestillingen om at naturen er designet af en guddommelig 'intelligens' er et smukt filosofisk princip. Teorier om Intelligent Design som en naturvidenskabeligt baseret teori er derimod helt forfærdelig.......Forestillingen om at naturen er designet af en guddommelig 'intelligens' er et smukt filosofisk princip. Teorier om Intelligent Design som en naturvidenskabeligt baseret teori er derimod helt forfærdelig....

  4. Investigating the effects of noise-estimation errors in simulated cochlear implant speech intelligibility

    DEFF Research Database (Denmark)

    Kressner, Abigail Anne; May, Tobias; Malik Thaarup Høegh, Rasmus

    2017-01-01

    A recent study suggested that the most important factor for obtaining high speech intelligibility in noise with cochlear implant recipients is to preserve the low-frequency amplitude modulations of speech across time and frequency by, for example, minimizing the amount of noise in speech gaps....... In contrast, other studies have argued that the transients provide the most information. Thus, the present study investigates the relative impact of these two factors in the framework of noise reduction by systematically correcting noise-estimation errors within speech segments, speech gaps......, and the transitions between them. Speech intelligibility in noise was measured using a cochlear implant simulation tested on normal-hearing listeners. The results suggest that minimizing noise in the speech gaps can substantially improve intelligibility, especially in modulated noise. However, significantly larger...

  5. Intelligent design som videnskab?

    DEFF Research Database (Denmark)

    Klausen, Søren Harnow

    2007-01-01

    Diskuterer hvorvidt intelligent design kan betegnes som videnskab; argumenterer for at dette grundet fraværet af klare demarkationskriterier næppe kan afvises.......Diskuterer hvorvidt intelligent design kan betegnes som videnskab; argumenterer for at dette grundet fraværet af klare demarkationskriterier næppe kan afvises....

  6. Comparing Binaural Pre-processing Strategies II: Speech Intelligibility of Bilateral Cochlear Implant Users.

    Science.gov (United States)

    Baumgärtel, Regina M; Hu, Hongmei; Krawczyk-Becker, Martin; Marquardt, Daniel; Herzke, Tobias; Coleman, Graham; Adiloğlu, Kamil; Bomke, Katrin; Plotz, Karsten; Gerkmann, Timo; Doclo, Simon; Kollmeier, Birger; Hohmann, Volker; Dietz, Mathias

    2015-12-30

    Several binaural audio signal enhancement algorithms were evaluated with respect to their potential to improve speech intelligibility in noise for users of bilateral cochlear implants (CIs). 50% speech reception thresholds (SRT50) were assessed using an adaptive procedure in three distinct, realistic noise scenarios. All scenarios were highly nonstationary, complex, and included a significant amount of reverberation. Other aspects, such as the perfectly frontal target position, were idealized laboratory settings, allowing the algorithms to perform better than in corresponding real-world conditions. Eight bilaterally implanted CI users, wearing devices from three manufacturers, participated in the study. In all noise conditions, a substantial improvement in SRT50 compared to the unprocessed signal was observed for most of the algorithms tested, with the largest improvements generally provided by binaural minimum variance distortionless response (MVDR) beamforming algorithms. The largest overall improvement in speech intelligibility was achieved by an adaptive binaural MVDR in a spatially separated, single competing talker noise scenario. A no-pre-processing condition and adaptive differential microphones without a binaural link served as the two baseline conditions. SRT50 improvements provided by the binaural MVDR beamformers surpassed the performance of the adaptive differential microphones in most cases. Speech intelligibility improvements predicted by instrumental measures were shown to account for some but not all aspects of the perceptually obtained SRT50 improvements measured in bilaterally implanted CI users. © The Author(s) 2015.

  7. Comparison of learning preferences of Turkish children who had been applied cochlear implantation in Turkey and Germany according to theory of multiple intelligence.

    Science.gov (United States)

    Sahli, Sanem; Laszig, Roland; Aschendorff, Antje; Kroeger, Stefanie; Wesarg, Thomas; Belgin, Erol

    2011-12-01

    The aim of the study is to determinate the using dominant multiple intelligence types and compare the learning preferences of Turkish cochlear implanted children aged four to ten in Turkey and Germany according to Theory of multiple intelligence. The study has been conducted on a total of 80 children and four groups in Freiburg/Germany and Ankara/Turkey. The applications have been done in University of Freiburg, Cochlear Implant Center in Germany, and University of Hacettepe, ENT Department, Audiology and Speech Pathology Section in Turkey. In this study, the data have been collected by means of General Information Form and Cochlear Implant Information Form applied to parents. To determine the dominant multiple intelligence types of children, the TIMI (Teele Inventory of Multiple Intelligences) which was developed by Sue Teele have been used. The study results exposed that there was not a statistically significant difference on dominant intelligence areas and averages of scores of multiple intelligence types in control groups (p>0.05). Although, the dominant intelligence areas were different (except for first dominant intelligence) in cochlear implanted children in Turkey and Germany, there was not a statistically significant difference on averages of scores of dominant multiple intelligence types. Every hearing impaired child who started training, should be evaluated in terms of multiple intelligence areas and identified strengths and weaknesses. Multiple intelligence activities should be used in their educational programs. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Impact of implant design on primary stability of orthodontic mini-implants.

    Science.gov (United States)

    Wilmes, Benedict; Ottenstreuer, Stephanie; Su, Yu-Yu; Drescher, Dieter

    2008-01-01

    Skeletal anchorage with mini-implants has greatly broadened the treatment possibilities in orthodontics over the last few years. To reduce implant failure rates, it is advisable to obtain adequate primary stability. The aim of this study was to quantitatively analyze the impact of implant design and dimension on primary stability. Forty-two porcine iliac bone segments were prepared and embedded in resin. To evaluate the primary stability, we documented insertion torques of the following mini-implants: Aarhus Screw, AbsoAnchor, LOMAS, Micro-Anchorage-System, ORLUS and Spider Screw. In each bone, five Dual Top Screws were inserted for reference purposes to achieve comparability among the specimens. We observed wide variation in insertion torques and hence primary stability, depending on mini-implant design and dimension; the great impact that mini-implant diameter has on insertion torques was particularly conspicuous. Conical mini-implants achieved higher primary stabilities than cylindrical designs. The diameter and design of the mini-implant thread have a distinctive impact on primary stability. Depending on the region of insertion and local bone quality, the choice of the mini-implant design and size is crucial to establish sufficient primary stability.

  9. Assessment of the Speech Intelligibility Performance of Post Lingual Cochlear Implant Users at Different Signal-to-Noise Ratios Using the Turkish Matrix Test

    Directory of Open Access Journals (Sweden)

    Zahra Polat

    2016-10-01

    Full Text Available Background: Spoken word recognition and speech perception tests in quiet are being used as a routine in assessment of the benefit which children and adult cochlear implant users receive from their devices. Cochlear implant users generally demonstrate high level performances in these test materials as they are able to achieve high level speech perception ability in quiet situations. Although these test materials provide valuable information regarding Cochlear Implant (CI users’ performances in optimal listening conditions, they do not give realistic information regarding performances in adverse listening conditions, which is the case in the everyday environment. Aims: The aim of this study was to assess the speech intelligibility performance of post lingual CI users in the presence of noise at different signal-to-noise ratio with the Matrix Test developed for Turkish language. Study Design: Cross-sectional study. Methods: The thirty post lingual implant user adult subjects, who had been using implants for a minimum of one year, were evaluated with Turkish Matrix test. Subjects’ speech intelligibility was measured using the adaptive and non-adaptive Matrix Test in quiet and noisy environments. Results: The results of the study show a correlation between Pure Tone Average (PTA values of the subjects and Matrix test Speech Reception Threshold (SRT values in the quiet. Hence, it is possible to asses PTA values of CI users using the Matrix Test also. However, no correlations were found between Matrix SRT values in the quiet and Matrix SRT values in noise. Similarly, the correlation between PTA values and intelligibility scores in noise was also not significant. Therefore, it may not be possible to assess the intelligibility performance of CI users using test batteries performed in quiet conditions. Conclusion: The Matrix Test can be used to assess the benefit of CI users from their systems in everyday life, since it is possible to perform

  10. Intelligent Design, Neo Evangelicalism and Apologetics

    OpenAIRE

    Samuel, Asumadu-Sarkodie

    2015-01-01

    To begin with, there's a strange phenomenon popping up around the country. Scientists are stepping out of their laboratories and speaking to the media about something that has them quite concerned. It's not the threat of a new flu pandemic; it's not the threat of nuclear weapons proliferation, or even the possible threat of global warming. It's something called Intelligent Design. Intelligent design is the field of study that investigates signs of intelligence. It identifies those features of...

  11. Macro design morphology of endosseous dental implants.

    Science.gov (United States)

    Sahiwal, Indira G; Woody, Ronald D; Benson, Byron W; Guillen, Guillermo E

    2002-05-01

    The identification of dental implant bodies in patients without available records is a considerable problem due to increased patient mobility and to the large number of implant systems with different designs. The purpose of this study was to document the designs of selected implants to help clinicians identify these implants from their radiographic images. More than 50 implant manufacturers were contacted and asked to provide implants with dimensions as close as possible to 3.75 mm (diameter) x 10 mm (length). Forty-four implants were donated, separated into threaded and non-threaded categories, and further sorted into tapered and non-tapered categories. The implants were examined visually, and features on the entire circumference and length of each implant were recorded and categorized as coronal, midbody, or apical. A series of tables describe the 44 implants according to coronal, midbody, and apical features. The results of this project offer dentists basic knowledge of the design of selected dental implants. Such knowledge can aid the radiographic identification of these implants.

  12. Evaluation of design parameters of eight dental implant designs: A ...

    African Journals Online (AJOL)

    Aim: Implants could be considered predictable tools for replacing missing teeth or teeth that are irrational to treat. Implant macrodesign includes thread, body shape and thread design. Implant threads should be designed to maximize the delivery of optimal favorable stresses. The aim of this finite element model study was to ...

  13. Computational Intelligence Techniques for New Product Design

    CERN Document Server

    Chan, Kit Yan; Dillon, Tharam S

    2012-01-01

    Applying computational intelligence for product design is a fast-growing and promising research area in computer sciences and industrial engineering. However, there is currently a lack of books, which discuss this research area. This book discusses a wide range of computational intelligence techniques for implementation on product design. It covers common issues on product design from identification of customer requirements in product design, determination of importance of customer requirements, determination of optimal design attributes, relating design attributes and customer satisfaction, integration of marketing aspects into product design, affective product design, to quality control of new products. Approaches for refinement of computational intelligence are discussed, in order to address different issues on product design. Cases studies of product design in terms of development of real-world new products are included, in order to illustrate the design procedures, as well as the effectiveness of the com...

  14. Open source intelligence, open social intelligence and privacy by design

    OpenAIRE

    Casanovas, Pompeu; Royal Melbourne Institute of Technology (Austràlia). Centre for Applied Social Research

    2014-01-01

    Ponència presentada a European Conference on Social Intelligence (ECSI-2014) OSINT stands for Open Source Intelligence, (O)SI for (Open) Social Intelligence, PbD for Privacy by Design. The CAPER project has built an OSINT solution oriented to the prevention of organized crime. How to balance freedom and security? This position paper describes a way to embed the legal and ethical issues raised by the General Data Reform Package (GDRP) in Europe into this kind of surveillance platforms. It f...

  15. Intelligent Design and Intelligent Failure

    Science.gov (United States)

    Jerman, Gregory

    2015-01-01

    Good Evening, my name is Greg Jerman and for nearly a quarter century I have been performing failure analysis on NASA's aerospace hardware. During that time I had the distinct privilege of keeping the Space Shuttle flying for two thirds of its history. I have analyzed a wide variety of failed hardware from simple electrical cables to cryogenic fuel tanks to high temperature turbine blades. During this time I have found that for all the time we spend intelligently designing things, we need to be equally intelligent about understanding why things fail. The NASA Flight Director for Apollo 13, Gene Kranz, is best known for the expression "Failure is not an option." However, NASA history is filled with failures both large and small, so it might be more accurate to say failure is inevitable. It is how we react and learn from our failures that makes the difference.

  16. Social Intelligence Design in Ambient Intelligence

    NARCIS (Netherlands)

    Nijholt, Antinus; Stock, Oliviero; Stock, O.; Nishida, T.; Nishida, Toyoaki

    2009-01-01

    This Special Issue of AI and Society contains a selection of papers presented at the 6th Social Intelligence Design Workshop held at ITC-irst, Povo (Trento, Italy) in July 2007. Being the 6th in a series means that there now is a well-established and also a growing research area. The interest in

  17. Recommendation in Motion: Intelligent Hypertouch Garment Design

    Directory of Open Access Journals (Sweden)

    Shuang Liang

    2013-01-01

    Full Text Available Intelligent CAD garment design becomes more and more popular by attracting the attentions from both manufacturers and professional stylists. The existing garment CAD systems and clothing simulation software fail to provide user-friendly interfaces as well as dynamic recommendation during the garment creation process. In this paper, we propose an intelligent hypertouch garment design system, which dynamically predicts the possible solutions along with the intelligent design procedure. User behavioral information and dynamic shape matching are used to learn and predict the desired garment patterns. We also propose a new hypertouch concept of gesture-based interaction for our system. We evaluate our system with a prototype platform. The results show that our system is effective, robust, and easy to use for quick garment design.

  18. Intelligent Support for a Computer Aided Design Optimisation Cycle

    OpenAIRE

    B. Dolšak; M. Novak; J. Kaljun

    2006-01-01

    It is becoming more and more evident that  adding intelligence  to existing computer aids, such as computer aided design systems, can lead to significant improvements in the effective and reliable performance of various engineering tasks, including design optimisation. This paper presents three different intelligent modules to be applied within a computer aided design optimisation cycle to enable more intelligent and less experience-dependent design performance. 

  19. Design of an intelligent car

    Science.gov (United States)

    Na, Yongyi

    2017-03-01

    The design of simple intelligent car, using AT89S52 single chip microcomputer as the car detection and control core; The metal sensor TL - Q5MC induction to iron, to detect the way to send feedback to the signal of single chip microcomputer, make SCM according to the scheduled work mode to control the car in the area according to the predetermined speed, and the operation mode of the microcontroller choose different also can control the car driving along s-shaped iron; Use A44E hall element to detect the car speeds; Adopts 1602 LCD display time of car driving, driving the car to stop, take turns to show the car driving time, distance, average speed and the speed of time. This design has simple structure and is easy to implement, but are highly intelligent, humane, to a certain extent reflects the intelligence.

  20. Novel implant design improves implant survival in multirooted extraction sites: a preclinical pilot study.

    Science.gov (United States)

    Sivan-Gildor, Adi; Machtei, Eli E; Gabay, Eran; Frankenthal, Shai; Levin, Liran; Suzuki, Marcelo; Coelho, Paulo G; Zigdon-Giladi, Hadar

    2014-10-01

    The primary aim is to evaluate clinical, radiographic, and histologic parameters of novel implants with "three roots" design that were inserted into fresh multirooted extraction sockets. A secondary aim is to compare this new implant to standard root-form dental implants. Immediate implantation of novel or standard design 6 × 6-mm implants was performed bilaterally into multirooted sockets in mandibles of mini-pigs. Twelve weeks later, clinical, radiographic, stability, histomorphometric, and microcomputed tomography (micro-CT) analyses were performed. Survival rates were significantly higher in the test implants compared with control (92.8% versus 33.3%, respectively; P micro-CT analyses demonstrated bone fill in the inner part of the test implants. Moreover, bone-to-implant contact was higher in the test implants (55.50% ± 3.68% versus 42.47% ± 9.89%). Contrary to the clinical, radiographic, and histomorphometric results, resonance frequency analysis measurements were greater in the control group (77.74 ± 3.21 implant stability quotient [ISQ]) compared with the test group (31.09 ± 0.28 ISQ), P = 0.008. The novel design implants resulted in significantly greater survival rate in multirooted extraction sites. Further studies will be required to validate these findings.

  1. Influence of controlled immediate loading and implant design on peri-implant bone formation.

    Science.gov (United States)

    Vandamme, Katleen; Naert, Ignace; Geris, Liesbet; Vander Sloten, Jozef; Puers, Robert; Duyck, Joke

    2007-02-01

    Tissue formation at the implant interface is known to be sensitive to mechanical stimuli. The aim of the study was to compare the bone formation around immediately loaded versus unloaded implants in two different implant macro-designs. A repeated sampling bone chamber with a central implant was installed in the tibia of 10 rabbits. Highly controlled loading experiments were designed for a cylindrical (CL) and screw-shaped (SL) implant, while the unloaded screw-shaped (SU) implant served as a control. An F-statistic model with alpha=5% determined statistical significance. A significantly higher bone area fraction was observed for SL compared with SU (pimplant contact occurred was the highest for SL and significantly different from SU (pimplant contact was observed, a loading (SL versus SU: p=0.0049) as well as an implant geometry effect (SL versus CL: p=0.01) was found, in favour of the SL condition. Well-controlled immediate implant loading accelerates tissue mineralization at the interface. Adequate bone stimulation via mechanical coupling may account for the larger bone response around the screw-type implant compared with the cylindrical implant.

  2. Hydroxyapatite implants with designed internal architecture.

    Science.gov (United States)

    Chu, T M; Halloran, J W; Hollister, S J; Feinberg, S E

    2001-06-01

    Porous hydroxyapatite (HA) has been used as a bone graft material in the clinics for decades. Traditionally, the pores in these HAs are either obtained from the coralline exoskeletal patterns or from the embedded organic particles in the starting HA powder. Both processes offer very limited control on the pore structure. A new method for manufacturing porous HA with designed pore channels has been developed. This method is essentially a lost-mold technique with negative molds made with Stereolithography and a highly loaded curable HA suspension as the ceramic carrier. Implants with designed channels and connection patterns were first generated from a Computer-Aided-Design (CAD) software and Computer Tomography (CT) data. The negative images of the designs were used to build the molds on a stereolithography apparatus with epoxy resins. A 40 vol% HA suspension in propoxylated neopentyl glycol diacrylate (PNPGDA) and iso-bornyl acrylate (IBA) was formulated. HA suspension was cast into the epoxy molds and cured into solid at 85 degrees C. The molds and acrylate binders were removed by pyrolysis, followed by HA green body sintering. With this method, implants with six different channel designs were built successfully and the designed channels were reproduced in the sintered HA implants. The channels created in the sintered HA implants were between 366 microm and 968 microm in diameter with standard deviations of 50 microm or less. The porosity created by the channels were between 26% and 52%. The results show that HA implants with designed connection pattern and well controlled channel size can be built with the technique developed in this study. Copyright 2001 Kluwer Academic Publishers

  3. Blindness in designing intelligent systems

    Science.gov (United States)

    Denning, Peter J.

    1988-01-01

    New investigations of the foundations of artificial intelligence are challenging the hypothesis that problem solving is the cornerstone of intelligence. New distinctions among three domains of concern for humans--description, action, and commitment--have revealed that the design process for programmable machines, such as expert systems, is based on descriptions of actions and induces blindness to nonanalytic action and commitment. Design processes focusing in the domain of description are likely to yield programs like burearcracies: rigid, obtuse, impersonal, and unable to adapt to changing circumstances. Systems that learn from their past actions, and systems that organize information for interpretation by human experts, are more likely to be successful in areas where expert systems have failed.

  4. Intelligent Design and Earth History

    Science.gov (United States)

    Elders, W. A.

    2001-05-01

    Intelligent Design (ID), the idea that the Earth's biota was intelligently designed and created, is not a new species recently evolved by allopatric speciation at the fringes of the creationist gene pool. In spite of its new veneer of sophistication, ID is a variant of an already extant species of religious polemics. In the western world, arguments about causative relationships between the complexity of nature and the supernatural can be traced from the fifth century St. Augustine, to the eighteenth century David Hume and the nineteenth century William Paley. Along this descent tree some argued from the existence of supernatural agencies to the creation of nature with its complexities, while others argued from the complexities of nature to the existence of supernatural agencies. Today, Phillip Johnson promotes ID by attacking evolution rather than by presenting evidence for ID. He argues that the evidence for macroevolution is either absent, misinterpreted or fraudulent. His "Wedge Strategy" attempts to separate his "objective science" from the "philosophical mechanistic naturalism" which he posits is responsible for the survival of Darwinism. To make his appeal as wide as possible he tries not to offend anyone (except evolutionists) by deliberately avoiding discussion of biblical literalism or the age of the Earth. Although in 1859 Darwin admitted that the geological evidence was "the most obvious and gravest objection which can be urged against my theory", subsequently geological evidence has become one of the chief supports of his theory. However, the fossil record is now seen to be not simply one of slow gradual descent with modification. Rates of divergence and disappearance of organisms have varied enormously through time. Repeated mass extinctions indicate a strong element of contingency in evolution. Accepting the postulate of an intelligent designer also requires the postulate of an intelligent destroyer. Darwin hinted at this when he referred to, "The

  5. Mechatronical Aided Concept (MAC) in Intelligent Transport Vehicles Design

    OpenAIRE

    Pavel Pavlasek

    2003-01-01

    This article deals with the principles of synergy effect of mechatronical aided concept (MAC) to the design of intelligent transport vehicles products applying CA technologies and virtual reality design methods. Also includes presentation of intelligent railway vehicle development.

  6. Information for the user in design of intelligent systems

    Science.gov (United States)

    Malin, Jane T.; Schreckenghost, Debra L.

    1993-01-01

    Recommendations are made for improving intelligent system reliability and usability based on the use of information requirements in system development. Information requirements define the task-relevant messages exchanged between the intelligent system and the user by means of the user interface medium. Thus, these requirements affect the design of both the intelligent system and its user interface. Many difficulties that users have in interacting with intelligent systems are caused by information problems. These information problems result from the following: (1) not providing the right information to support domain tasks; and (2) not recognizing that using an intelligent system introduces new user supervisory tasks that require new types of information. These problems are especially prevalent in intelligent systems used for real-time space operations, where data problems and unexpected situations are common. Information problems can be solved by deriving information requirements from a description of user tasks. Using information requirements embeds human-computer interaction design into intelligent system prototyping, resulting in intelligent systems that are more robust and easier to use.

  7. Mechatronical Aided Concept (MAC in Intelligent Transport Vehicles Design

    Directory of Open Access Journals (Sweden)

    Pavel Pavlasek

    2003-01-01

    Full Text Available This article deals with the principles of synergy effect of mechatronical aided concept (MAC to the design of intelligent transport vehicles products applying CA technologies and virtual reality design methods. Also includes presentation of intelligent railway vehicle development.

  8. Preschool speech intelligibility and vocabulary skills predict long-term speech and language outcomes following cochlear implantation in early childhood.

    Science.gov (United States)

    Castellanos, Irina; Kronenberger, William G; Beer, Jessica; Henning, Shirley C; Colson, Bethany G; Pisoni, David B

    2014-07-01

    Speech and language measures during grade school predict adolescent speech-language outcomes in children who receive cochlear implants (CIs), but no research has examined whether speech and language functioning at even younger ages is predictive of long-term outcomes in this population. The purpose of this study was to examine whether early preschool measures of speech and language performance predict speech-language functioning in long-term users of CIs. Early measures of speech intelligibility and receptive vocabulary (obtained during preschool ages of 3-6 years) in a sample of 35 prelingually deaf, early-implanted children predicted speech perception, language, and verbal working memory skills up to 18 years later. Age of onset of deafness and age at implantation added additional variance to preschool speech intelligibility in predicting some long-term outcome scores, but the relationship between preschool speech-language skills and later speech-language outcomes was not significantly attenuated by the addition of these hearing history variables. These findings suggest that speech and language development during the preschool years is predictive of long-term speech and language functioning in early-implanted, prelingually deaf children. As a result, measures of speech-language functioning at preschool ages can be used to identify and adjust interventions for very young CI users who may be at long-term risk for suboptimal speech and language outcomes.

  9. Implantable intraocular pressure monitoring systems: Design considerations

    KAUST Repository

    Arsalan, Muhammad

    2013-12-01

    Design considerations and limitations of implantable Intraocular Pressure Monitoring (IOPM) systems are presented in this paper. Detailed comparison with the state of the art is performed to highlight the benefits and challenges of the proposed design. The system-on-chip, presented here, is battery free and harvests energy from incoming RF signals. This low-cost design, in standard CMOS process, does not require any external components or bond wires to function. This paper provides useful insights to the designers of implantable wireless sensors in terms of design choices and associated tradeoffs. © 2013 IEEE.

  10. Implantable intraocular pressure monitoring systems: Design considerations

    KAUST Repository

    Arsalan, Muhammad; Ouda, Mahmoud H.; Marnat, Loic; Shamim, Atif; Salama, Khaled N.

    2013-01-01

    Design considerations and limitations of implantable Intraocular Pressure Monitoring (IOPM) systems are presented in this paper. Detailed comparison with the state of the art is performed to highlight the benefits and challenges of the proposed design. The system-on-chip, presented here, is battery free and harvests energy from incoming RF signals. This low-cost design, in standard CMOS process, does not require any external components or bond wires to function. This paper provides useful insights to the designers of implantable wireless sensors in terms of design choices and associated tradeoffs. © 2013 IEEE.

  11. The design of electric vehicle intelligent charger

    Science.gov (United States)

    Xu, Yangyang; Wang, Ying

    2018-05-01

    As the situation of the lack of energy and environment pollution deteriorates rapidly, electric vehicle, a new type of traffic tool, is being researched worldwide. As the core components of electric vehicle, the battery and charger's performance play an important roles in the quality of electric vehicle. So the design of the Electric Vehicle Intelligent Charger based on language-C is designed in this paper. The hardware system is used to produce the input signals of Electric Vehicle Intelligent Charger. The software system adopts the language-C software as development environment. The design can accomplish the test of the parametric such as voltage-current and temperature.

  12. Dental Implant Macro-Design Features Can Impact the Dynamics of Osseointegration.

    Science.gov (United States)

    Vivan Cardoso, Marcio; Vandamme, Katleen; Chaudhari, Amol; De Rycker, Judith; Van Meerbeek, Bart; Naert, Ignace; Duyck, Joke

    2015-08-01

    The purpose of this study was to compare the clinical performance of two dental implant types possessing a different macro-design in the in vivo pig model. Titanium Aadva(TM) implants (GC, Tokyo, Japan) were compared with OsseoSpeed(TM) implants (Astra, Mölndal, Sweden), with the Aadva implant displaying significant larger inter-thread dimensions than the OsseoSpeed implant. Implants were installed in the parietal bone of 12 domestic pigs and left for healing for either 1 or 3 months. Implant osseointegration was evaluated by quantitative histology (bone volume relative to the tissue volume [BV/TV]; bone-to-implant contact [BIC]) for distinct implant regions (collar, body, total implant length) with specific implant thread features. The Wilcoxon-Mann-Whitney nonparametric test with α = 0.05 was performed. An inferior amount of bone enveloping the Aadva implant compared with the OsseoSpeed implant was observed, in particular at the implant body part with its considerable inter-thread gaps (p macro-design negatively affected the amount of bone in direct contact with the implant for this specific implant part (p implant osseointegration at the initial healing stage (total implant length; 1-month healing; p implant displayed a clinically acceptable level of osseointegration, the findings demonstrate that implant macro-design features can impact the dynamics of implant osseointegration. Consideration of specific implant macro-design features should be made relative to the biological and mechanical microenvironment. © 2013 Wiley Periodicals, Inc.

  13. Role of clinician's experience and implant design on implant stability. An ex vivo study in artificial soft bones.

    Science.gov (United States)

    Romanos, Georgios E; Basha-Hijazi, Abdulaziz; Gupta, Bhumija; Ren, Yan-Fang; Malmstrom, Hans

    2014-04-01

    Clinical experience in implant placement is important in order to prevent implant failures. However, the implant design affects the primary implant stability (PS) especially in poor quality bones. Therefore, the aim of this study was to compare the effect of clinician surgical experience on PS, when placing different type of implant designs. A total of 180 implants (90 parallel walled-P and 90 tapered-T) were placed in freshly slaughtered cow ribs. Bone quality was evaluated by two examiners during surgery and considered as 'type IV' bone. Implants (ø 5 mm, length: 15 mm, Osseotite, BIOMET 3i, Palm Beach Gardens, FL, USA) were placed by three different clinicians (master/I, good/II, non-experienced/III, under direct supervision of a manufacturer representative; 30 implants/group). An independent observer assessed the accuracy of placement by resonance frequency analysis (RFA) with implant stability quotient (ISQ) values. Two-way analysis of variance (ANOVA) and Tukey's post hoc test were used to detect the surgical experience of the clinicians and their interaction and effects of implant design on the PS. All implants were mechanically stable. The mean ISQ values were: 49.57(± 18.49) for the P-implants and 67.07(± 8.79) for the T-implants. The two-way ANOVA showed significant effects of implant design (p bone. © 2012 Wiley Periodicals, Inc.

  14. Mode of communication and classroom placement impact on speech intelligibility.

    Science.gov (United States)

    Tobey, Emily A; Rekart, Deborah; Buckley, Kristi; Geers, Ann E

    2004-05-01

    To examine the impact of classroom placement and mode of communication on speech intelligibility scores in children aged 8 to 9 years using multichannel cochlear implants. Classroom placement (special education, partial mainstream, and full mainstream) and mode of communication (total communication and auditory-oral) reported via parental rating scales before and 4 times after implantation were the independent variables. Speech intelligibility scores obtained at 8 to 9 years of age were the dependent variables. The study included 131 congenitally deafened children between the ages of 8 and 9 years who received a multichannel cochlear implant before the age of 5 years. Higher speech intelligibility scores at 8 to 9 years of age were significantly associated with enrollment in auditory-oral programs rather than enrollment in total communication programs, regardless of when the mode of communication was used (before or after implantation). Speech intelligibility at 8 to 9 years of age was not significantly influenced by classroom placement before implantation, regardless of mode of communication. After implantation, however, there were significant associations between classroom placement and speech intelligibility scores at 8 to 9 years of age. Higher speech intelligibility scores at 8 to 9 years of age were associated with classroom exposure to normal-hearing peers in full or partial mainstream placements than in self-contained, special education placements. Higher speech intelligibility scores in 8- to 9-year-old congenitally deafened cochlear implant recipients were associated with educational settings that emphasize oral communication development. Educational environments that incorporate exposure to normal-hearing peers were also associated with higher speech intelligibility scores at 8 to 9 years of age.

  15. Games and Agents: Designing Intelligent Gameplay

    Directory of Open Access Journals (Sweden)

    F. Dignum

    2009-01-01

    Full Text Available There is an attention shift within the gaming industry toward more natural (long-term behavior of nonplaying characters (NPCs. Multiagent system research offers a promising technology to implement cognitive intelligent NPCs. However, the technologies used in game engines and multiagent platforms are not readily compatible due to some inherent differences of concerns. Where game engines focus on real-time aspects and thus propagate efficiency and central control, multiagent platforms assume autonomy of the agents. Increased autonomy and intelligence may offer benefits for a more compelling gameplay and may even be necessary for serious games. However, it raises problems when current game design techniques are used to incorporate state-of-the-art multiagent system technology. In this paper, we will focus on three specific problem areas that arise from this difference of view: synchronization, information representation, and communication. We argue that the current attempts for integration still fall short on some of these aspects. We show that to fully integrate intelligent agents in games, one should not only use a technical solution, but also a design methodology that is amenable to agents. The game design should be adjusted to incorporate the possibilities of agents early on in the process.

  16. Configurable intelligent optimization algorithm design and practice in manufacturing

    CERN Document Server

    Tao, Fei; Laili, Yuanjun

    2014-01-01

    Presenting the concept and design and implementation of configurable intelligent optimization algorithms in manufacturing systems, this book provides a new configuration method to optimize manufacturing processes. It provides a comprehensive elaboration of basic intelligent optimization algorithms, and demonstrates how their improvement, hybridization and parallelization can be applied to manufacturing. Furthermore, various applications of these intelligent optimization algorithms are exemplified in detail, chapter by chapter. The intelligent optimization algorithm is not just a single algorit

  17. Intelligent Frameworks for Instructional Design.

    Science.gov (United States)

    Spector, J. Michael; And Others

    1992-01-01

    Presents a taxonomy describing various uses of artificial intelligence techniques in automated instructional development systems. Instructional systems development is discussed in relation to the design of computer-based instructional courseware; two systems being developed at the Air Force Armstrong Laboratory are reviewed; and further research…

  18. Effects of the implant design on peri-implant bone stress and abutment micromovement: three-dimensional finite element analysis of original computer-aided design models.

    Science.gov (United States)

    Yamanishi, Yasufumi; Yamaguchi, Satoshi; Imazato, Satoshi; Nakano, Tamaki; Yatani, Hirofumi

    2014-09-01

    Occlusal overloading causes peri-implant bone resorption. Previous studies examined stress distribution in alveolar bone around commercial implants using three-dimensional (3D) finite element analysis. However, the commercial implants contained some different designs. The purpose of this study is to reveal the effect of the target design on peri-implant bone stress and abutment micromovement. Six 3D implant models were created for different implant-abutment joints: 1) internal joint model (IM); 2) external joint model (EM); 3) straight abutment (SA) shape; 4) tapered abutment (TA) shapes; 5) platform switching (PS) in the IM; and 6) modified TA neck design (reverse conical neck [RN]). A static load of 100 N was applied to the basal ridge surface of the abutment at a 45-degree oblique angle to the long axis of the implant. Both stress distribution in peri-implant bone and abutment micromovement in the SA and TA models were analyzed. Compressive stress concentrated on labial cortical bone and tensile stress on the palatal side in the EM and on the labial side in the IM. There was no difference in maximum principal stress distribution for SA and TA models. Tensile stress concentration was not apparent on labial cortical bone in the PS model (versus IM). Maximum principal stress concentrated more on peri-implant bone in the RN than in the TA model. The TA model exhibited less abutment micromovement than the SA model. This study reveals the effects of the design of specific components on peri-implant bone stress and abutment displacement after implant-supported single restoration in the anterior maxilla.

  19. Improving designer productivity. [artificial intelligence

    Science.gov (United States)

    Hill, Gary C.

    1992-01-01

    Designer and design team productivity improves with skill, experience, and the tools available. The design process involves numerous trials and errors, analyses, refinements, and addition of details. Computerized tools have greatly speeded the analysis, and now new theories and methods, emerging under the label Artificial Intelligence (AI), are being used to automate skill and experience. These tools improve designer productivity by capturing experience, emulating recognized skillful designers, and making the essence of complex programs easier to grasp. This paper outlines the aircraft design process in today's technology and business climate, presenting some of the challenges ahead and some of the promising AI methods for meeting these challenges.

  20. The impact of a modified cutting flute implant design on osseointegration.

    Science.gov (United States)

    Jimbo, R; Tovar, N; Marin, C; Teixeira, H S; Anchieta, R B; Silveira, L M; Janal, M N; Shibli, J A; Coelho, P G

    2014-07-01

    Information concerning the effects of the implant cutting flute design on initial stability and its influence on osseointegration in vivo is limited. This study evaluated the early effects of implants with a specific cutting flute design placed in the sheep mandible. Forty-eight dental implants with two different macro-geometries (24 with a specific cutting flute design - Blossom group; 24 with a self-tapping design - DT group) were inserted into the mandibular bodies of six sheep; the maximum insertion torque was recorded. Samples were retrieved and processed for histomorphometric analysis after 3 and 6 weeks. The mean insertion torque was lower for Blossom implants (Pimplant contact (BIC) and P=0.52 for bone area fraction occupied (BAFO); at 6 weeks, P=0.55 for BIC and P=0.45 for BAFO. While no histomorphometric differences were observed, ground sections showed different healing patterns between the implants, with better peri-implant bone organization around those with the specific cutting flute design (Blossom group). Implants with the modified cutting flute design had a significantly reduced insertion torque compared to the DT implants with a traditional cutting thread, and resulted in a different healing pattern. Copyright © 2014 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  1. Cranial implant design using augmented reality immersive system.

    Science.gov (United States)

    Ai, Zhuming; Evenhouse, Ray; Leigh, Jason; Charbel, Fady; Rasmussen, Mary

    2007-01-01

    Software tools that utilize haptics for sculpting precise fitting cranial implants are utilized in an augmented reality immersive system to create a virtual working environment for the modelers. The virtual environment is designed to mimic the traditional working environment as closely as possible, providing more functionality for the users. The implant design process uses patient CT data of a defective area. This volumetric data is displayed in an implant modeling tele-immersive augmented reality system where the modeler can build a patient specific implant that precisely fits the defect. To mimic the traditional sculpting workspace, the implant modeling augmented reality system includes stereo vision, viewer centered perspective, sense of touch, and collaboration. To achieve optimized performance, this system includes a dual-processor PC, fast volume rendering with three-dimensional texture mapping, the fast haptic rendering algorithm, and a multi-threading architecture. The system replaces the expensive and time consuming traditional sculpting steps such as physical sculpting, mold making, and defect stereolithography. This augmented reality system is part of a comprehensive tele-immersive system that includes a conference-room-sized system for tele-immersive small group consultation and an inexpensive, easily deployable networked desktop virtual reality system for surgical consultation, evaluation and collaboration. This system has been used to design patient-specific cranial implants with precise fit.

  2. Stress and strain distribution in three different mini dental implant designs using in implant retained overdenture: a finite element analysis study

    Science.gov (United States)

    AUNMEUNGTONG, W.; KHONGKHUNTHIAN, P.; RUNGSIYAKULL, P.

    2016-01-01

    SUMMARY Finite Element Analysis (FEA) has been used for prediction of stress and strain between dental implant components and bone in the implant design process. Purpose Purpose of this study was to characterize and analyze stress and strain distribution occurring in bone and implants and to compare stress and strain of three different implant designs. Materials and methods Three different mini dental implant designs were included in this study: 1. a mini dental implant with an internal implant-abutment connection (MDIi); 2. a mini dental implant with an external implant-abutment connection (MDIe); 3. a single piece mini dental implant (MDIs). All implant designs were scanned using micro-CT scans. The imaging details of the implants were used to simulate models for FEA. An artificial bone volume of 9×9 mm in size was constructed and each implant was placed separately at the center of each bone model. All bone-implant models were simulatively loaded under an axial compressive force of 100 N and a 45-degree force of 100 N loading at the top of the implants using computer software to evaluate stress and strain distribution. Results There was no difference in stress or strain between the three implant designs. The stress and strain occurring in all three mini dental implant designs were mainly localized at the cortical bone around the bone-implant interface. Oblique 45° loading caused increased deformation, magnitude and distribution of stress and strain in all implant models. Conclusions Within the limits of this study, the average stress and strain in bone and implant models with MDIi were similar to those with MDIe and MDIs. The oblique 45° load played an important role in dramatically increased average stress and strain in all bone-implant models. Clinical implications Mini dental implants with external or internal connections have similar stress distribution to single piece mini dental implants. In clinical situations, the three types of mini dental implant

  3. Stress and strain distribution in three different mini dental implant designs using in implant retained overdenture: a finite element analysis study.

    Science.gov (United States)

    Aunmeungtong, W; Khongkhunthian, P; Rungsiyakull, P

    2016-01-01

    Finite Element Analysis (FEA) has been used for prediction of stress and strain between dental implant components and bone in the implant design process. Purpose of this study was to characterize and analyze stress and strain distribution occurring in bone and implants and to compare stress and strain of three different implant designs. Three different mini dental implant designs were included in this study: 1. a mini dental implant with an internal implant-abutment connection (MDIi); 2. a mini dental implant with an external implant-abutment connection (MDIe); 3. a single piece mini dental implant (MDIs). All implant designs were scanned using micro-CT scans. The imaging details of the implants were used to simulate models for FEA. An artificial bone volume of 9×9 mm in size was constructed and each implant was placed separately at the center of each bone model. All bone-implant models were simulatively loaded under an axial compressive force of 100 N and a 45-degree force of 100 N loading at the top of the implants using computer software to evaluate stress and strain distribution. There was no difference in stress or strain between the three implant designs. The stress and strain occurring in all three mini dental implant designs were mainly localized at the cortical bone around the bone-implant interface. Oblique 45° loading caused increased deformation, magnitude and distribution of stress and strain in all implant models. Within the limits of this study, the average stress and strain in bone and implant models with MDIi were similar to those with MDIe and MDIs. The oblique 45° load played an important role in dramatically increased average stress and strain in all bone-implant models. Mini dental implants with external or internal connections have similar stress distribution to single piece mini dental implants. In clinical situations, the three types of mini dental implant should exhibit the same behavior to chewing force.

  4. Intelligent Design in the Public School Science Classroom

    Science.gov (United States)

    Hickey, Wesley D.

    2013-01-01

    The ongoing battle to insert intelligent causes into the science classrooms has been met with political approval and scientific rejection. Administrators in the United States need to be aware of the law related to creationism and intelligent design in order to lead in local curricular battles. Although unlikely to appease the ID proponents, there…

  5. Should Intelligent Design Be Included in Today's Public School Curriculums?

    Science.gov (United States)

    Costley, Kevin C.; Killins, Pam

    2010-01-01

    The controversial concept of evolution makes up only a small part of the science curriculum stated in Arkansas. During the past few years, the curriculum topic of "Intelligent Design" has caught the attention of many science teachers in the public schools. The Intelligent Design Movement has been successful in attracting the attention of…

  6. An Intelligent Automation Platform for Rapid Bioprocess Design.

    Science.gov (United States)

    Wu, Tianyi; Zhou, Yuhong

    2014-08-01

    Bioprocess development is very labor intensive, requiring many experiments to characterize each unit operation in the process sequence to achieve product safety and process efficiency. Recent advances in microscale biochemical engineering have led to automated experimentation. A process design workflow is implemented sequentially in which (1) a liquid-handling system performs high-throughput wet lab experiments, (2) standalone analysis devices detect the data, and (3) specific software is used for data analysis and experiment design given the user's inputs. We report an intelligent automation platform that integrates these three activities to enhance the efficiency of such a workflow. A multiagent intelligent architecture has been developed incorporating agent communication to perform the tasks automatically. The key contribution of this work is the automation of data analysis and experiment design and also the ability to generate scripts to run the experiments automatically, allowing the elimination of human involvement. A first-generation prototype has been established and demonstrated through lysozyme precipitation process design. All procedures in the case study have been fully automated through an intelligent automation platform. The realization of automated data analysis and experiment design, and automated script programming for experimental procedures has the potential to increase lab productivity. © 2013 Society for Laboratory Automation and Screening.

  7. An Intelligent Automation Platform for Rapid Bioprocess Design

    Science.gov (United States)

    Wu, Tianyi

    2014-01-01

    Bioprocess development is very labor intensive, requiring many experiments to characterize each unit operation in the process sequence to achieve product safety and process efficiency. Recent advances in microscale biochemical engineering have led to automated experimentation. A process design workflow is implemented sequentially in which (1) a liquid-handling system performs high-throughput wet lab experiments, (2) standalone analysis devices detect the data, and (3) specific software is used for data analysis and experiment design given the user’s inputs. We report an intelligent automation platform that integrates these three activities to enhance the efficiency of such a workflow. A multiagent intelligent architecture has been developed incorporating agent communication to perform the tasks automatically. The key contribution of this work is the automation of data analysis and experiment design and also the ability to generate scripts to run the experiments automatically, allowing the elimination of human involvement. A first-generation prototype has been established and demonstrated through lysozyme precipitation process design. All procedures in the case study have been fully automated through an intelligent automation platform. The realization of automated data analysis and experiment design, and automated script programming for experimental procedures has the potential to increase lab productivity. PMID:24088579

  8. Search for design intelligence: A field study on the role of emotional intelligence in architectural design studios

    OpenAIRE

    Nazidizaji, Sajjad; Tomé, Ana; Regateiro, Francisco

    2017-01-01

    The design studio is the core of the architecture curriculum. Interpersonal interactions have a key role during the processes of design and critique. The influence of emotional intelligence (EQ) on interpersonal communication skills has been widely proven. This study examines the correlation between EQ and architectural design competence. To achieve this, 78 architecture students were selected via a simple random sampling method and tested using an EQ test questionnaire developed by Bradbury ...

  9. Vision Guided Intelligent Robot Design And Experiments

    Science.gov (United States)

    Slutzky, G. D.; Hall, E. L.

    1988-02-01

    The concept of an intelligent robot is an important topic combining sensors, manipulators, and artificial intelligence to design a useful machine. Vision systems, tactile sensors, proximity switches and other sensors provide the elements necessary for simple game playing as well as industrial applications. These sensors permit adaption to a changing environment. The AI techniques permit advanced forms of decision making, adaptive responses, and learning while the manipulator provides the ability to perform various tasks. Computer languages such as LISP and OPS5, have been utilized to achieve expert systems approaches in solving real world problems. The purpose of this paper is to describe several examples of visually guided intelligent robots including both stationary and mobile robots. Demonstrations will be presented of a system for constructing and solving a popular peg game, a robot lawn mower, and a box stacking robot. The experience gained from these and other systems provide insight into what may be realistically expected from the next generation of intelligent machines.

  10. A Research Review on the Key Technologies of Intelligent Design for Customized Products

    Directory of Open Access Journals (Sweden)

    Shuyou Zhang

    2017-10-01

    Full Text Available The development of technologies such as big data and cyber-physical systems (CPSs has increased the demand for product design. Product digital design involves completing the product design process using advanced digital technologies such as geometry modeling, kinematic and dynamic simulation, multi-disciplinary coupling, virtual assembly, virtual reality (VR, multi-objective optimization (MOO, and human-computer interaction. The key technologies of intelligent design for customized products include: a description and analysis of customer requirements (CRs, product family design (PFD for the customer base, configuration and modular design for customized products, variant design for customized products, and a knowledge push for product intelligent design. The development trends in intelligent design for customized products include big-data-driven intelligent design technology for customized products and customized design tools and applications. The proposed method is verified by the design of precision computer numerical control (CNC machine tools.

  11. Intelligent Furniture Design in the Elderly Based on the Cognitive Situation

    Directory of Open Access Journals (Sweden)

    Lu Xinhui

    2017-01-01

    Full Text Available This paper analyzes the present situation of Chinese elderly furniture and the elderly has cognitive characteristics that consciousness experiences and recognitions recede, cognitive fuzzy from Information processing. Expounds the elderly intelligent furniture design elements: functional elements required the elderly furniture is easy and simple to handle; Size and shape elements should be biased towards low, light type, reduce multifunction or fold function; colour collocation should use low lightness and low purity natural materials; Emotional elements design should meet the demand of the elderly social emotion. Introduction of intelligent furniture make up the cognitive decline in the elderly, Furniture judge the elderly demand by the inductor, Supplement by hardware control module to solve the special needs of the elderly life. Build design thinking based on the cognitive process and explore the elderly intelligent furniture design. This paper discusses the design process, for example and concludes the design rules: 1.The Operating Experience Pleasure. It is the height matching of user expectation and furniture function. Pleasure in the design of the operating parts mainly embodies in two aspects. Firstly, the Fitts Law; Secondly, it’s The Movement Optimization. 2.”Unconscious” Design. Intelligent furniture need to delete unnecessary operation module, make it easy to understand, furniture function and cognitive scene match with each other. 3. Modularity Design. Modularization can indirectly regulate the scale and specification of the design. Under the premise of individual character, customization, the compression of the cost, Designer should make the elderly intelligent furniture consistent with the user action.4.Design Consistency. The consistency principle reflected in the appearance, color and operation way consistency.

  12. Intelligent structures and design of energy related facilities

    International Nuclear Information System (INIS)

    Namba, Haruyuki

    1994-01-01

    Possibility of applying intelligent structural concepts to civil design of energy plants is discussed. Intelligent structures, which are now common in aerospace engineering field, are also referred to as adaptive structures or smart structures depending on cases. Among various existing concepts, reconfigurable structures, precise shape control, structural monitoring using smart materials of optical fiber sensors, and relation with recent innovative communication technologies are focused from civil engineering point of view. Application of such new technologies will help to enhance design of energy related plants, which include multiplex functions which need to be very reliable and safe. (author)

  13. 16th International Conference on Intelligent Systems Design and Applications

    CERN Document Server

    Abraham, Ajith; Gamboa, Dorabela; Novais, Paulo

    2017-01-01

    This book comprises selected papers from the 16th International Conference on Intelligent Systems Design and Applications (ISDA’16), which was held in Porto, Portugal from December 1 to16, 2016. ISDA 2016 was jointly organized by the Portugual-based Instituto Superior de Engenharia do Porto and the US-based Machine Intelligence Research Labs (MIR Labs) to serve as a forum for the dissemination of state-of-the-art research and development of intelligent systems, intelligent technologies, and applications. The papers included address a wide variety of themes ranging from theories to applications of intelligent systems and computational intelligence area and provide a valuable resource for students and researchers in academia and industry alike. .

  14. Coupling artificial intelligence and numerical computation for engineering design (Invited paper)

    Science.gov (United States)

    Tong, S. S.

    1986-01-01

    The possibility of combining artificial intelligence (AI) systems and numerical computation methods for engineering designs is considered. Attention is given to three possible areas of application involving fan design, controlled vortex design of turbine stage blade angles, and preliminary design of turbine cascade profiles. Among the AI techniques discussed are: knowledge-based systems; intelligent search; and pattern recognition systems. The potential cost and performance advantages of an AI-based design-generation system are discussed in detail.

  15. Structural and mechanical characterization of custom design cranial implant created using additive manufacturing

    OpenAIRE

    Khaja Moiduddin; Saied Darwish; Abdulrahman Al-Ahmari; Sherif ElWatidy; Ashfaq Mohammad; Wadea Ameen

    2017-01-01

    Background: Reconstruction of customized cranial implants with a mesh structure using computer-assisted design and additive manufacturing improves the implant design, surgical planning, defect evaluation, implant-tissue interaction and surgeon's accuracy. The objective of this study is to design, develop and fabricate cranial implant with mechanical properties closer to that of bone and drastically decreases the implant failure and to improve the esthetic outcome in cranial surgery with preci...

  16. Load Transfer Characteristics of Various Designs of Three-Implant-Retained Mandibular Overdentures.

    Science.gov (United States)

    Tokar, Emre; Uludag, Bulent

    2015-01-01

    Many different attachment systems (eg, bars, studs, magnets, telescopic copings) have been used to retain overdentures. The current study aimed to investigate the load transfer characteristics and to compare the stress levels of four attachment designs for mandibular overdentures retained by one central implant and two inclined distal implants. Photoelastic mandibular models fabricated with three screw-type implants (Tapered Screw-Vent, 3.75 × 13 mm) were placed in the parasymphyseal area. The center implant was vertically oriented to the midline, and the other implants were embedded in the canine areas with a 20-degree angulation relative to the center implant. Four overdentures with different attachment designs (bar, bar/ball, bar/distally placed Rk-1s, and Locators) were studied in the context of this model. Vertical loads (100 N) were applied to the central fossa of the right first molar area of each overdenture. Stress levels that developed in the denture-bearing areas and around the implants were observed photoelastically and evaluated visually. The studied attachment designs showed low and moderate stress levels. The greatest stress was found with the bar/ball design, while the lowest stress levels were observed with the Locator attachment design. Stresses were concentrated on the loaded side for each design. All tested designs experienced moderate stress around the posterior edentulous area. None of the designs experienced more than moderate stress. The lowest stress was noted with the Locator attachments, which transmitted little discernible stress around the implants.

  17. Sherlock Holmes and intelligent design.

    Science.gov (United States)

    McCuskey, Brian

    2012-09-01

    This article examines how both scientists and creationists, as they argue over intelligent design, invoke and quote the fictional character of Sherlock Holmes to support their opposed positions. Rhetorical analysis ofHolmes's repeated contributions to the debate reveals not only how the argument for design falls apart, but also how the argument for Darwin compromises itself when following the detective onto shaky logical ground. The sciences and the humanities must work together to combat the corrosive influence ofpseudoscientific reasoning on our students and the general public; this article contributes to that joint enterprise.

  18. On Intelligent Design and Planning Method of Process Route Based on Gun Breech Machining Process

    Science.gov (United States)

    Hongzhi, Zhao; Jian, Zhang

    2018-03-01

    The paper states an approach of intelligent design and planning of process route based on gun breech machining process, against several problems, such as complex machining process of gun breech, tedious route design and long period of its traditional unmanageable process route. Based on gun breech machining process, intelligent design and planning system of process route are developed by virtue of DEST and VC++. The system includes two functional modules--process route intelligent design and its planning. The process route intelligent design module, through the analysis of gun breech machining process, summarizes breech process knowledge so as to complete the design of knowledge base and inference engine. And then gun breech process route intelligently output. On the basis of intelligent route design module, the final process route is made, edited and managed in the process route planning module.

  19. An intelligent interlock design support system

    International Nuclear Information System (INIS)

    Hayashi, Toshifumi; Kamiyama, Masahiko

    1990-01-01

    This paper presents an intelligent interlock design support system, called Handy. BWR plant interlocks have been designed on a conventional CAD system operating on a mini-computer based time sharing system. However, its ability to support interlock designers is limited, mainly due to the system not being capable of manipulating the interlock logic. Handy improves the design efficiency with consistent manipulation of the logic and drawings, interlock simulation, versatile database management, object oriented user interface, high resolution high speed graphics, and automatic interlock outlining with a design support expert system. Handy is now being tested by designers, and is expected to greatly contribute to their efficiency. (author)

  20. APPROACH ON INTELLIGENT OPTIMIZATION DESIGN BASED ON COMPOUND KNOWLEDGE

    Institute of Scientific and Technical Information of China (English)

    Yao Jianchu; Zhou Ji; Yu Jun

    2003-01-01

    A concept of an intelligent optimal design approach is proposed, which is organized by a kind of compound knowledge model. The compound knowledge consists of modularized quantitative knowledge, inclusive experience knowledge and case-based sample knowledge. By using this compound knowledge model, the abundant quantity information of mathematical programming and the symbolic knowledge of artificial intelligence can be united together in this model. The intelligent optimal design model based on such a compound knowledge and the automatically generated decomposition principles based on it are also presented. Practically, it is applied to the production planning, process schedule and optimization of production process of a refining & chemical work and a great profit is achieved. Specially, the methods and principles are adaptable not only to continuous process industry, but also to discrete manufacturing one.

  1. Effect of implant macro-design on primary stability: A prospective clinical study

    OpenAIRE

    Lozano-Carrascal, Naroa; Salom?-Coll, Oscar; Gilabert-Cerd?, Marta; Farr?-Pag?s, Nuria; Gargallo-Albiol, Jordi; Hern?ndez-Alfaro, Federico

    2016-01-01

    Background Implant restorations have become a high predictable treatment option. Several caracteristics such as surgical technique and implant design can influence the treatment outcomes. The aim of the present study was to evaluate the influence of implant macro-design on primary stability measured with resonance frequency analysis (RFA) and insertion torque (IT). Material and Methods A total of 47 implants divided in two groups: Test group (TI): 22 Tapered MIS? Seven implants; Control group...

  2. Designing with computational intelligence

    CERN Document Server

    Lopes, Heitor; Mourelle, Luiza

    2017-01-01

    This book discusses a number of real-world applications of computational intelligence approaches. Using various examples, it demonstrates that computational intelligence has become a consolidated methodology for automatically creating new competitive solutions to complex real-world problems. It also presents a concise and efficient synthesis of different systems using computationally intelligent techniques.

  3. Theoretical optimum of implant positional index design.

    Science.gov (United States)

    Semper, W; Kraft, S; Krüger, T; Nelson, K

    2009-08-01

    Rotational freedom of the implant-abutment connection influences its screw joint stability; for optimization, influential factors need to be evaluated based on a previously developed closed formula. The underlying hypothesis is that the manufacturing tolerances, geometric pattern, and dimensions of the index do not influence positional stability. We used the dimensions of 5 commonly used implant systems with a clearance of 20 microm to calculate the extent of rotational freedom; a 3D simulation (SolidWorks) validated the analytical findings. Polygonal positional indices showed the highest degrees of rotational freedom. The polygonal profile displayed higher positional stability than the polygons, but less positional accuracy than the cam-groove connection. Features of a maximal rotation-safe positional index were determined. The analytical calculation of rotational freedom of implant positional indices is possible. Rotational freedom is dependent on the geometric design of the index and may be decreased by incorporating specific aspects into the positional index design.

  4. Design Considerations for Developing Biodegradable Magnesium Implants

    Science.gov (United States)

    Brar, Harpreet S.; Keselowsky, Benjamin G.; Sarntinoranont, Malisa; Manuel, Michele V.

    The integration of biodegradable and bioabsorbable magnesium implants into the human body is a complex undertaking that faces major challenges. The complexity arises from the fact that biomaterials must meet both engineering and physiological requirements to ensure the desired properties. Historically, efforts have been focused on the behavior of commercial magnesium alloys in biological environments and their resultant effect on cell-mediated processes. Developing causal relationships between alloy chemistry and micro structure, and its effect on cellular behavior can be a difficult and time intensive process. A systems design approach driven by thermodynamics has the power to provide significant contributions in developing the next generation of magnesium alloy implants with controlled degradability, biocompatibility, and optimized mechanical properties, at reduced time and cost. This approach couples experimental research with theory and mechanistic modeling for the accelerated development of materials. The aim of this article is to enumerate this strategy, design considerations and hurdles for developing new magnesium alloys for use as biodegradable implant materials [1].

  5. Designing User Centred Intelligent Classroom Lighting

    DEFF Research Database (Denmark)

    Georgieva, Diana Zdravkova; Schledermann, Kathrine Marie; Nielsen, Stine Maria Louring

    2018-01-01

    Through a case study, this paper presents a new way of designing intelligent classroom lighting to meet the users’ needs. A mix of ethnographic methods (field observations and interviews) were used to investigate the everyday learning activities at a middle school in Copenhagen in order...... to determine how lighting can support the learning environment. Based on the investigations, lighting design criteria and three predefined lighting scenes are proposed as a new design for meeting the needs of students and teachers during three types of activities. The scenes focus on smartboard visibility...

  6. [Researches on biomechanics of micro-implant-bone interface and optimum design of micro implant's neck].

    Science.gov (United States)

    Deng, Feng; Zhang, Lei; Zhang, Yi; Song, Jin-lin; Fan, Yuboa

    2007-07-01

    To compare and analyze the stress distribution at the micro-implant-bone interface based on the different micro-implant-bone conditioned under orthodontic load, and to optimize the design of micro implant's neck. An adult skull with all tooth was scanned by spiral CT, and the data were imported into computer for three-dimensional reconstruction with software Mimics 9.0. The three dimensional finite element models of three micro-implant-bone interfaces(initial stability, full osseointegration and fibrous integration) were analyzed by finite element analysis software ABAQUS6.5. The primary stress distributions of different micro-implant-bone conditions were evaluated when 2N force was loaded. Then the diameter less than 1.5 mm of the micro implant's neck was added with 0.2 mm, to compare the stress distribution of the modified micro-implant-bone interface with traditional type. The stress mostly concentrated on the neck of micro implant and the full osseointegration interface in all models showed the lowest strain level. Compared with the traditional type, the increasing diameter neck of the micro implant obviously decreased the stress level in all the three conditions. The micro-implant-bone interface and the diameter of micro implant's neck both are the important influence factors to the stress distribution of micro implant.

  7. The efficacy of short (6 mm) dental implants with a novel thread design.

    Science.gov (United States)

    Bechara, Soheil; Nimčenko, Tatjana; Kubilius, Ričardas

    2017-01-01

    To assess efficacy of short (6 mm) implants with a novel macrostructure and thread design placed in a compromised bone situations of edentulous posterior regions of maxilla (3-4 mm of bone height under sinus floor) as compared to results of clinical situations treated with simultaneous maxillary sinus grafting and placement of long (≥10 mm) implants of the same company. Clinical cases of conducted clinical study. Patients with compromised bone height in edentulous posterior regions of maxilla were randomly divided into two groups. Short (6mm length) implant treatment conducted in the test group and simultaneous sinus lift with standard length implant placement treatment in the control group. In general implant stability quotient (ISQ) and marginal bone level (MBL) changes values in both groups were comparable. However, significant negative correlation was found between implant's diameter and MBL changes. Implant's length has little if none impact on initial implant anchorage, especially in greatly compromised residual bone situations. Results have confirmed that implant initial stability mainly depends on implant's macro-design and further its development on implant's micro-design: namely, implant diameter rather than length, tapered shape and improved thread design determines primarily acquired mechanical anchorage, while bioactive surface treatment ensures development of biological stability.

  8. Design and Implementation of a Wireless Sensor and Actuator Network to Support the Intelligent Control of Efficient Energy Usage.

    Science.gov (United States)

    Blanco, Jesús; García, Andrés; Morenas, Javier de Las

    2018-06-09

    Energy saving has become a major concern for the developed society of our days. This paper presents a Wireless Sensor and Actuator Network (WSAN) designed to provide support to an automatic intelligent system, based on the Internet of Things (IoT), which enables a responsible consumption of energy. The proposed overall system performs an efficient energetic management of devices, machines and processes, optimizing their operation to achieve a reduction in their overall energy usage at any given time. For this purpose, relevant data is collected from intelligent sensors, which are in-stalled at the required locations, as well as from the energy market through the Internet. This information is analysed to provide knowledge about energy utilization, and to improve efficiency. The system takes autonomous decisions automatically, based on the available information and the specific requirements in each case. The proposed system has been implanted and tested in a food factory. Results show a great optimization of energy efficiency and a substantial improvement on energy and costs savings.

  9. Intelligent design af fokusgrupper - om metodisk design af fokusgrupper og menneskets forskellige intelligenser

    Directory of Open Access Journals (Sweden)

    Lene Heiselberg

    2008-09-01

    Full Text Available Når man arbejder professionelt med at gennemføre kvalitative mini- og fokusgruppeanalyser, kan det ikke undgås, at man som moderator indimellem tænker: Hvorfor deltager hun ikke? Hvad kan jeg gøre for at inkludere hende i diskussionen? Ofte skyldes nogle deltageres manglende engagement, at mini- eller fokusgruppens metodiske design favoriserer de deltagere, som har en fremtrædende verbalsproglig intelligens, og samtidig ekskluderes de, der har andre fremtrædende intelligenser, fra at yde det maksimale. En sådan situation er meget uheldig og kan i værste fald give en undersøgelse bias. Derfor har vi i DR Medieforskning arbejdet med en pragmatisk tilgang til problemet, hvor vi har afprøvet et metodisk design, som inkluderer kvalitative interviewteknikker og procesværktøjer, som appellerer til samtlige intelligenser. Som et resultat af en målrettet indsats for at inkludere flere intelligenser i det metodiske design, oplever vi, at deltagerne har mere lyst til at engagere sig og gør det med større selvsikkerhed. Desuden oplever vi i mindre grad fænomenet “cognitive tuning” , og derfor kan vi arbejde med flere og bedre data i analyse- og fortolkningsfasen. Intelligent design of focus groups - article about methodological design of focus groups and the different intelligences When you work professionally with the conducting and moderating of qualitative mini- and focus groups, you can't avoid sometimes thinking: Why isn’t she participating? What can I do to include her in the discussion? A participant's apparent lack of enthusiasm is often caused by the methodological design of the focus group giving preference to participants who have an explicit verbal intelligence, and as a consequence excludes participants with other explicit intelligences from contributing. A situation like the one described above is very undesirable and in a worst-case scenario it can cause a study to be biased. In order to try to solve this problem DR

  10. Effect of implant design and bioactive glass coating on biomechanical properties of fiber-reinforced composite implants.

    Science.gov (United States)

    Ballo, Ahmed M; Akca, Eralp; Ozen, Tuncer; Moritz, Niko; Lassila, Lippo; Vallittu, Pekka; Närhi, Timo

    2014-08-01

    This study aimed to evaluate the influence of implant design and bioactive glass (BAG) coating on the response of bone to fiber-reinforced composite (FRC) implants. Three different FRC implant types were manufactured for the study: non-threaded implants with a BAG coating; threaded implants with a BAG coating; and threaded implants with a grit-blasted surface. Thirty-six implants (six implants for each group per time point) were installed in the tibiae of six pigs. After an implantation period of 4 and 12 wk, the implants were retrieved and prepared for micro-computed tomography (micro-CT), push-out testing, and scanning electron microscopy analysis. Micro-CT demonstrated that the screw-threads and implant structure remained undamaged during the installation. The threaded FRC/BAG implants had the highest bone volume after 12 wk of implantation. The push-out strengths of the threaded FRC/BAG implants after 4 and 12 wk (463°N and 676°N, respectively) were significantly higher than those of the threaded FRC implants (416°N and 549°N, respectively) and the nonthreaded FRC/BAG implants (219°N and 430°N, respectively). Statistically significant correlation was found between bone volume and push-out strength values. This study showed that osseointegrated FRC implants can withstand the static loading up to failure without fracture, and that the addition of BAG significantly improves the push-out strength of FRC implants. © 2014 Eur J Oral Sci.

  11. The Anti-RFI Design of Intelligent Electric Energy Meters with UHF RFID

    Science.gov (United States)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng

    2018-03-01

    In order to solve the existing artificial meter reading watt-hour meter industry is still slow and inventory of common problems, using the uhf radio frequency identification (RFID) technology and intelligent watt-hour meter depth fusion, which has a one-time read multiple tags, identification distance, high transmission rate, high reliability, etc, while retaining the original asset management functions, in order to ensure the uhf RFID and minimum impact on the operation of the intelligent watt-hour meter, proposed to improve the stability of the electric meter system while working at the same time, this paper designs the uhf RFID intelligent watt-hour meter radio frequency interference resistance, put forward to improve intelligent watt-hour meter electromagnetic compatibility design train of thought, and introduced its power and the hardware circuit design of printed circuit board, etc.

  12. Open-source intelligence and privacy by design

    NARCIS (Netherlands)

    Koops, B.J.; Hoepman, J.H.; Leenes, R.

    2013-01-01

    As demonstrated by other papers on this issue, open-source intelligence (OSINT) by state authorities poses challenges for privacy protection and intellectual-property enforcement. A possible strategy to address these challenges is to adapt the design of OSINT tools to embed normative requirements,

  13. Design of vehicle intelligent anti-collision warning system

    Science.gov (United States)

    Xu, Yangyang; Wang, Ying

    2018-05-01

    This paper mainly designs a low cost, high-accuracy, micro-miniaturization, and digital display and acousto-optic alarm features of the vehicle intelligent anti-collision warning system that based on MCU AT89C51. The vehicle intelligent anti-collision warning system includes forward anti-collision warning system, auto parking systems and reversing anti-collision radar system. It mainly develops on the basis of ultrasonic distance measurement, its performance is reliable, thus the driving safety is greatly improved and the parking security and efficiency enhance enormously.

  14. The design of remote intelligent terminal based on ARM

    International Nuclear Information System (INIS)

    Zhang Bin; Liu Zixin

    2014-01-01

    This paper introduces the function and principle of the remote intelligent terminal. It was designed on SmartARM 2200, uses uC/OS-II operating system and MiniGUI. And then,it gives a method to realize it. Introduces the work flow of remote intelligent terminal, and the function module of the system are analyzed in detail, and then the terminal of the principle has carried on the preliminary study. (authors)

  15. Implantable biomedical microsystems design principles and applications

    CERN Document Server

    Bhunia, Swarup; Sawan, Mohamad

    2015-01-01

    Research and innovation in areas such as circuits, microsystems, packaging, biocompatibility, miniaturization, power supplies, remote control, reliability, and lifespan are leading to a rapid increase in the range of devices and corresponding applications in the field of wearable and implantable biomedical microsystems, which are used for monitoring, diagnosing, and controlling the health conditions of the human body. This book provides comprehensive coverage of the fundamental design principles and validation for implantable microsystems, as well as several major application areas. Each co

  16. Biomechanical aspects of initial intraosseous stability and implant design: a quantitative micro-morphometric analysis.

    Science.gov (United States)

    Akça, Kivanç; Chang, Ting-Ling; Tekdemir, Ibrahim; Fanuscu, Mete I

    2006-08-01

    The objective of this biomechanical study was to explore the effect of bone micro-morphology on initial intraosseous stability of implants with different designs. Straumann and Astra Tech dental implants were placed into anterior and posterior regions of completely edentulous maxilla and mandible of a human cadaver. Experiments were undertaken to quantify initial implant stability and bone micro-morphology. Installation torque values (ITVs) and implant stability quotients (ISQs) were measured to determine initial intraosseous implant stability. For quantification of relative bone volume and micro-architecture, sectioned implant-bone and bone core specimens of each implant placement site were consecutively scanned and trabecular bone was analyzed in a micro-computed tomography (micro-CT) unit. Experimental outcomes were evaluated for correlations among implant designs, initial intraosseous implant stability and bone micro-structural parameters. ITVs correlated higher with bone volume fraction (BV/TV) than ISQs, at 88.1% and 68.9% levels, respectively. Correlations between ITVs and micro-morphometric parameters were significant at the 95% confidence level (Pimplant designs used were not significant at the 95% confidence level (P>0.05). Bone micro-morphology has a prevailing effect over implant design on intraosseus initial implant stability, and ITV is more sensitive in terms of revealing biomechanical properties at the bone-implant interface in comparison with ISQ.

  17. The effect of implant macro-thread design on implant stability in the early post-operative period: a randomized, controlled pilot study.

    Science.gov (United States)

    McCullough, Jeffrey J; Klokkevold, Perry R

    2017-10-01

    Available literature suggests there is a transient drop in implant stability from approximately week 0 to week 3-4 as a result of peri-implant bone remodeling as it transitions from a primary, mechanical stability to a secondary, biological stability. Research investigating the influence of macro-thread design on this process is scant. The specific aim of this study was to evaluate the role of macro-thread design on implant stability in the early post-operative healing period using resonance frequency analysis (RFA). Seven patients, each missing at least two posterior teeth in the same arch, were included in the study. Three patients qualified for four implants resulting in a total of 10 matched pairs. All sites were healed (>6 months), non-grafted sites with sufficient bone to place implants. Each site in a matched pair was randomly assigned to receive either a control (Megagen EZ Plus Internal; EZ) or test (Megagen AnyRidge; AR) implant. The test implant incorporates a novel thread design with a wide thread depth and increased thread pitch. RFA was used to determine implant stability quotient (ISQ) values for each implant at the time of placement and weekly for the first 8 weeks. Implants consistently achieved a relatively high insertion torque (30-45 N/cm) and high initial ISQ value (79.8 ± 1.49). Baseline ISQ values for test (AR; 79.55 ± 1.61) and control (EZ; 80.05 ± 1.37) implants were similar. A general pattern of stability from baseline through all eight follow-up evaluations was observed for the test implants. A pattern of decreasing ISQ values was observed for the control implants across the early follow-up evaluations up to week four, where the value plateaued. There was a statistically significant main effect due to implant type (P implant type and time (P implants performed differently at certain time points. Within the limitations of this study, macro-thread design appears to play a role in implant stability in the early post

  18. Health-economic evaluation in implant trials: design considerations.

    Science.gov (United States)

    Alt, Volker; Pavlidis, Theodoros; Szalay, Gabor; Heiss, Christian; Schnettler, Reinhard

    2009-01-01

    In today's world, demonstration of the safety, efficacy, and quality of a new treatment strategy is no longer sufficient in many countries for market entry and reimbursement in the public healthcare system. This implies that new implants in orthopedic and orthopedic trauma surgery not only must be shown to lead to better medical outcome compared with the standard of care implant, but also must be shown to exhibit "good value" for the money for the public health-care system based on sound economic data from health-economic studies. The purpose of this article is to elucidate a framework for health-economic aspects alongside implant trials, with the assumption that the new implant is more costly but potentially better than the control implant. Cost-effectiveness, cost-utility, and cost-benefit studies are suitable for the assessment of the health-economic value of a new implant. The following criteria should be considered for a health-economic study design in the context with an implant: i) it should state medical benefits of the new implant compared with the control implant; ii) it should precise the type of health economic study; iii) it should define the methodological approach, perspective of the study, and types of costs; iv) if necessary, it should state discount costs and/benefits; and v) a sound sensitivity analysis should be included. Furthermore, close cooperation between researchers, clinicians, and health economists is essential.

  19. Intelligent Design and the Creationism/Evolution Controversy

    Science.gov (United States)

    Scott, E. C.

    2004-12-01

    "Intelligent Design" (ID) is a new form of creationism that emerged after legal decisions in the 1980s hampered the inclusion of "creation science" in the public school curriculum. To avoid legal challenge, proponents claim agnosticism regarding the identity of the intelligent agent, which could be material (such as highly intelligent terrestrials) or transcendental (God). ID consists of a scientific/scholarly effort, and a politico-religious movement of "cultural renewal." Intelligent design is supposedly detectable through the application of Michael Behe's "irreducible complexity" concept and/or William Dembski's concept of "complex specified information". ID's claims amount to, first, that "Darwinism" (vaguely defined) is incapable of providing an adequate mechanism for evolution, and second (subsequently), that evolution did not occur. Although scientific ideas not infrequently are slow to be accepted, in the 20 years since ID appeared, there is no evidence of it being used to solve problems in biology. Even if the scientific/scholarly part of ID has been a failure, the "cultural renewal" part of ID has been a success. This social and political aspect of ID seeks "restoration" of a theistic sensibility in American culture to replace what supporters consider an overemphasis on secularism. In the last few years, in several states, legislators have introduced legislation promoting ID (to date, unsuccessfully) and an addendum to the 2001 federal education bill conference committee report (the "Santorum amendment") is being used to promote the teaching of ID in public schools. Perhaps because ID has no actual content other than antievolutionism, ID proponents contend that pre-college teachers should teach wweaknesses of evolutionw or "evidence against evolutionw - largely warmed-over arguments from creation science - even though professional scientists do not recognize these as valid scientific claims.

  20. Using Appreciative Intelligence for Ice-Breaking: A New Design

    Science.gov (United States)

    Verma, Neena; Pathak, Anil Anand

    2011-01-01

    Purpose: The purpose of this paper is to highlight the importance of applying appreciative intelligence and appreciative inquiry concepts to design a possibly new model of ice-breaking, which is strengths-based and very often used in any training in general and team building training in particular. Design/methodology/approach: The design has…

  1. Proceedings of the International Conference on Information Systems Design and Intelligent Applications 2012

    CERN Document Server

    Avadhani, P; Abraham, Ajith

    2012-01-01

    This volume contains the papers presented at INDIA-2012: International conference on  Information system Design and Intelligent Applications held on January 5-7, 2012 in Vishakhapatnam, India. This conference was organized by Computer Society of India (CSI), Vishakhapatnam chapter well supported by Vishakhapatnam Steel, RINL, Govt of India. It contains 108 papers contributed by authors from six different countries across four continents. These research papers mainly focused on intelligent applications and various system design issues. The papers cover a wide range of topics of computer science and information technology discipline ranging from image processing, data base application, data mining, grid and cloud computing, bioinformatics among many others. The various intelligent tools like swarm intelligence, artificial intelligence, evolutionary algorithms, bio-inspired algorithms have been applied in different papers for solving various challenging IT related problems.

  2. Macro design effects on stress distribution around implants: a photoelastic stress analysis.

    Science.gov (United States)

    Ozkir, Serhat Emre; Terzioglu, Hakan

    2012-01-01

    Biomechanics is one of the main factors for achieving long-term success of implant supported prostheses. Long-term failures mostly depend on biomechanical complications. It is important to distinguish the effects of macro design of the implants. In this study, the photoelastic response of four different types of implants that were inserted with different angulations were comparatively analyzed. The implant types investigated were screw cylinder (ITI, Straumann AG, Basel, Switzerland), stepped cylinder (Frialit2, Friadent GmbH, Manheim, Germany), root form (Camlog Rootline, Alatatec, Wilshelm, Germany), and cylindrical implant, with micro-threads on the implant neck (Astra, AstraTech, Mölndal, Sweden). In the test models, one of the implants was inserted straight, while the other one was aligned mesially with 15° angles. The superstructures were prepared as single crowns. A 150N loading was applied to the restorations throughout the test. A comparison of the implant designs showed that there were no significant differences between the straight implants; however, between the inclined implants, the most favorable stress distribution was seen with the stepped cylinder implants. The least favorable stress concentration was observed around the root formed implants. Microthreads around the implant neck appeared to be effective in a homogenous stress distribution. Observations showed that misaligned implants caused less stress than straight implants, but the stress concentrations were not homogenous. As there were observable differences between the implant types, straight placed cylindrical implants showed better stress distribution characteristics, while inclined tapering implants had better stress distribution characteristics.

  3. Creationism and intelligent design.

    Science.gov (United States)

    Pennock, Robert T

    2003-01-01

    Creationism, the rejection of evolution in favor of supernatural design, comes in many varieties besides the common young-earth Genesis version. Creationist attacks on science education have been evolving in the last few years through the alliance of different varieties. Instead of calls to teach "creation science," one now finds lobbying for "intelligent design" (ID). Guided by the Discovery Institute's "Wedge strategy," the ID movement aims to overturn evolution and what it sees as a pernicious materialist worldview and to renew a theistic foundation to Western culture, in which human beings are recognized as being created in the image of God. Common ID arguments involving scientific naturalism, "irreducible complexity," "complex specified information," and "icons of evolution," have been thoroughly examined and refuted. Nevertheless, from Kansas to Ohio to the U.S. Congress, ID continues lobbying to teach the controversy, and scientists need to be ready to defend good evolution education.

  4. Applications Of Artificial Intelligence In Control System Analysis And Design

    Science.gov (United States)

    Birdwell, J. D.

    1987-10-01

    To date, applications of artificial intelligence in control system analysis and design are primarily associated with the design process. These applications take the form of knowledge bases incorporating expertise on a design method, such as multivariable linear controller design, or on a field such as identification. My experience has demonstrated that, while such expert systems are useful, perhaps a greater benefit will come from applications in the maintenance of technical databases, as are found in real-time data acquisition systems, and of modeling and design databases, which represent the status of a computer-aided design process for a human user. This reflects the observation that computers are best at maintaining relations about large sets of objects, whereas humans are best at maintaining knowledge of depth, as occurs when a design option involving a sequence of steps is explored. This paper will discuss some of these issues, and will provide some examples which illustrate the potential of artificial intelligence.

  5. Effect of implant macro-design on primary stability: A prospective clinical study.

    Science.gov (United States)

    Lozano-Carrascal, Naroa; Salomó-Coll, Oscar; Gilabert-Cerdà, Marta; Farré-Pagés, Nuria; Gargallo-Albiol, Jordi; Hernández-Alfaro, Federico

    2016-03-01

    Implant restorations have become a high predictable treatment option. Several caracteristics such as surgical technique and implant design can influence the treatment outcomes. The aim of the present study was to evaluate the influence of implant macro-design on primary stability measured with resonance frequency analysis (RFA) and insertion torque (IT). Material and Mehods: A total of 47 implants divided in two groups: Test group (TI): 22 Tapered MIS® Seven implants; Control group (CI): 25 cylindrical Astra® Osseospeed implants. All implants were inserted following the manufacturers' standard protocols. Implant primary stability was measured at the moment of implant placement by registering insertion torque values (ITv) and ISQ values by means of Osstell™ Mentor (ISQv) (Integration Diagnostic Ltd., Goteborg, Sweden). In the mandible, mean ISQv for tapered implants (TI) was 71.67±5.16 and for cylindrical implants (CI) 57.15±4.83 (p=0.01). Mean insertion torque was 46.67±6.85 Ncm for TI and 35.77±6.72 Ncm for CI (p=0.01). In the maxilla, mean ISQ was 67.2±4.42 for tapered implants and 49.17±15.30 for cylindrical implants (p=0.01). Mean insertion torque for TI was 41.5±6.26 Ncm and for CI 39.17±6.34 Ncm (p>0.05). For tapered implants, no correlation could be found between implant diameter and primary stability. But for cylindrical implants there was a statistically significant correlation between implant diameter and primary stability: ITv (p=0.03); ISQv (p=0.04). Within the limits of the present study, tapered shaped implants achieve higher primary stability measured through ISQ and insertion torque values. Moreover, for cylindrical implants positive correlation has been established between implant diameter and primary stability.

  6. William Paley's lost "intelligent design".

    Science.gov (United States)

    Shapiro, Adam R

    2009-01-01

    William Paley's Natural Theology has experienced a resurgence in popularity in recent decades with the continuing controversies over the teaching of evolution and the emergence of a new "intelligent design" movement. But while both the movement's supporters and detractors agree that Paley is an intellectual forefather of the present-day movement, this agreement is forged at the expense of historical accuracy. Paley's intelligent design has almost nothing in common with the present day movement and, in fact, suggests theological arguments against the type of reasoning used by the modern movement. Paley wrote in reaction to Hume and in response to the evolutionary theories of Buffon and Erasmus Darwin. In this light, the Natural Theology suggests a different reading than it is usually given. Paley's narrowly-argued theology relies upon the ability to detect the presence of "purpose" in nature without relying upon knowing what those purposes are. His empirically-argued theology leads him to a God who operates through natural law, not in its contravention, and his concern goes far beyond proving the existence of a deity to undertaking the theological project of determining the attributes and characteristics of the deity. Though not himself an evolutionist, Paley put forth a theological worldview consistent with evolution. In fact, given his arguments that the observation of great contrivance increases the testimony of nature to God's power, Paley's philosophy might be more consistent with a theistic Darwinian evolution than with special creation.

  7. Is intelligent design science, and does it matter?

    Directory of Open Access Journals (Sweden)

    P W Bateman

    2007-09-01

    Full Text Available The debate between evolution and intelligent design is usually presented by evolutionary biologists as a clash between science and non-science (creationism and religion and therefore as a sterile argument which science wins by default. Countering this is intelligent design (ID and irreducible complexity (IC which posit that the diversity and complexity of life on earth indicates the hand of a designer, although the nature of that designer is not speculated on. In doing so, proponents of� ID and IC bring the argument squarely into the scientific camp and fulfil the requirements of being science, although this is difficult� to define. Here, we discuss the claims of ID and IC to provide an alternative to evolution and propose that science can adequately deal with and refute these claims. At the same time, ID and IC fulfil an important role as foils to �scientism�� � the belief that science is the best way of answering all questions. In the final analysis, however , despite their value in the debate, ID and IC are not found to be robust or reliable enough to replace evolution as the best way of explaining the diversity of life on earth.

  8. Comparison of Social Interaction between Cochlear-Implanted Children with Normal Intelligence Undergoing Auditory Verbal Therapy and Normal-Hearing Children: A Pilot Study.

    Science.gov (United States)

    Monshizadeh, Leila; Vameghi, Roshanak; Sajedi, Firoozeh; Yadegari, Fariba; Hashemi, Seyed Basir; Kirchem, Petra; Kasbi, Fatemeh

    2018-04-01

    A cochlear implant is a device that helps hearing-impaired children by transmitting sound signals to the brain and helping them improve their speech, language, and social interaction. Although various studies have investigated the different aspects of speech perception and language acquisition in cochlear-implanted children, little is known about their social skills, particularly Persian-speaking cochlear-implanted children. Considering the growing number of cochlear implants being performed in Iran and the increasing importance of developing near-normal social skills as one of the ultimate goals of cochlear implantation, this study was performed to compare the social interaction between Iranian cochlear-implanted children who have undergone rehabilitation (auditory verbal therapy) after surgery and normal-hearing children. This descriptive-analytical study compared the social interaction level of 30 children with normal hearing and 30 with cochlear implants who were conveniently selected. The Raven test was administered to the both groups to ensure normal intelligence quotient. The social interaction status of both groups was evaluated using the Vineland Adaptive Behavior Scale, and statistical analysis was performed using Statistical Package for Social Sciences (SPSS) version 21. After controlling age as a covariate variable, no significant difference was observed between the social interaction scores of both the groups (p > 0.05). In addition, social interaction had no correlation with sex in either group. Cochlear implantation followed by auditory verbal rehabilitation helps children with sensorineural hearing loss to have normal social interactions, regardless of their sex.

  9. Design and Delivery of Technical Module for the Business Intelligence Course

    Science.gov (United States)

    Wang, Shouhong; Wang, Hai

    2013-01-01

    IS programs are increasingly being called on to offer courses in business intelligence. This article presents the pedagogical design and the delivery method of a practicable technical module for a non-technically oriented Business Intelligence course. It is a tutorial for the instructors who wish to incorporate a practical technical element in…

  10. Learning robots : teaching design students in integrating intelligence

    NARCIS (Netherlands)

    Barakova, E.I.; Hu, J.

    2011-01-01

    The present day society requires specialists with multidisciplinary knowledge and skills. We discuss the possibilities to educate professionals that design intelligent products and systems as a result of a competency based education. In particular this paper features a teaching method that makes the

  11. Intelligent Data Storage and Retrieval for Design Optimisation – an Overview

    Directory of Open Access Journals (Sweden)

    C. Peebles

    2005-01-01

    Full Text Available This paper documents the findings of a literature review conducted by the Sir Lawrence Wackett Centre for Aerospace Design Technology at RMIT University. The review investigates aspects of a proposed system for intelligent design optimisation. Such a system would be capable of efficiently storing (and compressing if required a range of types of design data into an intelligent database. This database would be accessed by the system during subsequent design processes, allowing for search of relevant design data for re-use in later designs, allowing it to become very efficient in reducing the time for later designs as the database grows in size. Extensive research has been performed, in both theoretical aspects of the project, and practical examples of current similar systems. This research covers the areas of database systems, database queries, representation and compression of design data, geometric representation and heuristic methods for design applications. 

  12. A Novel Surgical Template Design in Staged Dental Implant Rehabilitations

    Directory of Open Access Journals (Sweden)

    Michael Patras

    2012-05-01

    Full Text Available Background: The philosophy of a gradual transition to an implant retained prosthesis in cases of full-mouth or extensive rehabilitation usually involves a staged treatment concept. In this therapeutic approach, the placement of implants may sometimes be divided into phases. During a subsequent surgical phase of treatment, the pre-existing implants can serve as anchors for the surgical template. Those modified surgical templates help in the precise transferring of restorative information into the surgical field and guide the optimal three-dimensional implant positioning. Methods: This article highlights the rationale of implant-retained surgical templates and illustrates them through the presentation of two clinical cases. The templates are duplicates of the provisional restorations and are secured to the existing implants through the utilization of implant mounts. Results: This template design in such staged procedures provided stability in the surgical field and enhanced the accuracy in implant positioning based upon the planned restoration, thus ensuring predictable treatment outcomes.Conclusions: Successful rehabilitation lies in the correct sequence of surgical and prosthetic procedures. Whenever a staged approach of implant placement is planned, the clinician can effectively use the initially placed implants as anchors for the surgical template during the second phase of implant surgery.

  13. Developing a new dental implant design and comparing its biomechanical features with four designs

    Directory of Open Access Journals (Sweden)

    Mansour Rismanchian

    2010-01-01

    Full Text Available Background: As various implant geometries present different biomechanical behaviors, the purpose of this work was to study stress distribution around tapered and cylindrical threaded implant geometries using three-dimensional finite element stress analysis. Methods : Seven implant models were constructed using Computer Assisted Designing system. After digitized models of mandibular section, the crowns were created. They were combined with implant models, which were previously imported into CATIA software. The combined solid model was transferred to ABAQOUS to create a finite element meshed model which was later analyzed regarding the highest maximum and minimum principal stresses of bone. Results: For all models, the highest stresses of cortical bone were located at the crestal cortical bone around the implant. Threaded implants, triangular thread form and taper body form showed a higher peak of tensile and compressive stress than non-threaded implants, square thread form and straight body form, respectively. A taper implant with triangular threads, which is doubled in the cervical portion of the body, had a significantly lower peak of tensile and compressive stress in the cortical bone than straight/taper triangular or square threaded implant forms. Conclusion: For the investigation of bone implant interfacial stress, the non-bonded state should be studied too. Confirmative clinical and biological studies are required in order to benefit from the results of this study.

  14. Cognitive Connected Vehicle Information System Design Requirement for Safety: Role of Bayesian Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Ata Khan

    2013-04-01

    Full Text Available Intelligent transportation systems (ITS are gaining acceptance around the world and the connected vehicle component of ITS is recognized as a high priority research and development area in many technologically advanced countries. Connected vehicles are expected to have the capability of safe, efficient and eco-driving operations whether these are under human control or in the adaptive machine control mode of operations. The race is on to design the capability to operate in connected traffic environment. The operational requirements can be met with cognitive vehicle design features made possible by advances in artificial intelligence-supported methodology, improved understanding of human factors, and advances in communication technology. This paper describes cognitive features and their information system requirements. The architecture of an information system is presented that supports the features of the cognitive connected vehicle. For better focus, information processing capabilities are specified and the role of Bayesian artificial intelligence is defined for data fusion. Example applications illustrate the role of information systems in integrating intelligent technology, Bayesian artificial intelligence, and abstracted human factors. Concluding remarks highlight the role of the information system and Bayesian artificial intelligence in the design of a new generation of cognitive connected vehicle.

  15. Design of intelligent house system based on Yeelink

    Directory of Open Access Journals (Sweden)

    Lin Zhi-Huang

    2016-01-01

    Full Text Available In order to monitor the security situation of house in real time, an intelligent house remote monitoring system is designed based on Yeelink cloud services and ZigBee wireless communication technology. This system includes three parts, ZigBee wireless sensor networks, intelligent house gateway and Yeelink Cloud Services. Users can access Yeelink website or APP to get real time information in the house, receiving information including gas concentration, temperature. Also, remote commands can be sent from mobile devices to control the household appliances. The user who can monitor and control the house effectively through a simple and convenient user interface, will feel much more safe and comfortable.

  16. Mechatronic System Design and Intelligent Motion Control of Hydraulic Robots and Machines

    DEFF Research Database (Denmark)

    Conrad, Finn; Sørensen, Torben

    2003-01-01

    The paper presents an approach and concept to mechatronic system design and intelligent motion control. The Information Technology (IT) offers software and hardware for improvement of R&D Mechatronic Teams to create products and solutions for industrial applications. The latest progress in IT makes...... integration of an overall design and manufacturing IT- concept feasible and commercially attractive. An IT-tool concept for modelling, simulation and design of mechatronic products and systems is proposed in this paper. It built on results from a Danish mechatronic research program on intelligent motion...

  17. Design for interaction between humans and intelligent systems during real-time fault management

    Science.gov (United States)

    Malin, Jane T.; Schreckenghost, Debra L.; Thronesbery, Carroll G.

    1992-01-01

    Initial results are reported to provide guidance and assistance for designers of intelligent systems and their human interfaces. The objective is to achieve more effective human-computer interaction (HCI) for real time fault management support systems. Studies of the development of intelligent fault management systems within NASA have resulted in a new perspective of the user. If the user is viewed as one of the subsystems in a heterogeneous, distributed system, system design becomes the design of a flexible architecture for accomplishing system tasks with both human and computer agents. HCI requirements and design should be distinguished from user interface (displays and controls) requirements and design. Effective HCI design for multi-agent systems requires explicit identification of activities and information that support coordination and communication between agents. The effects are characterized of HCI design on overall system design and approaches are identified to addressing HCI requirements in system design. The results include definition of (1) guidance based on information level requirements analysis of HCI, (2) high level requirements for a design methodology that integrates the HCI perspective into system design, and (3) requirements for embedding HCI design tools into intelligent system development environments.

  18. Fuzzy Logic Controller Design for Intelligent Robots

    Directory of Open Access Journals (Sweden)

    Ching-Han Chen

    2017-01-01

    Full Text Available This paper presents a fuzzy logic controller by which a robot can imitate biological behaviors such as avoiding obstacles or following walls. The proposed structure is implemented by integrating multiple ultrasonic sensors into a robot to collect data from a real-world environment. The decisions that govern the robot’s behavior and autopilot navigation are driven by a field programmable gate array- (FPGA- based fuzzy logic controller. The validity of the proposed controller was demonstrated by simulating three real-world scenarios to test the bionic behavior of a custom-built robot. The results revealed satisfactorily intelligent performance of the proposed fuzzy logic controller. The controller enabled the robot to demonstrate intelligent behaviors in complex environments. Furthermore, the robot’s bionic functions satisfied its design objectives.

  19. 2nd International Conference on INformation Systems Design and Intelligent Applications

    CERN Document Server

    Satapathy, Suresh; Sanyal, Manas; Sarkar, Partha; Mukhopadhyay, Anirban

    2015-01-01

    The second international conference on INformation Systems Design and Intelligent Applications (INDIA – 2015) held in Kalyani, India during January 8-9, 2015. The book covers all aspects of information system design, computer science and technology, general sciences, and educational research. Upon a double blind review process, a number of high quality papers are selected and collected in the book, which is composed of two different volumes, and covers a variety of topics, including natural language processing, artificial intelligence, security and privacy, communications, wireless and sensor networks, microelectronics, circuit and systems, machine learning, soft computing, mobile computing and applications, cloud computing, software engineering, graphics and image processing, rural engineering, e-commerce, e-governance, business computing, molecular computing, nano computing, chemical computing, intelligent computing for GIS and remote sensing, bio-informatics and bio-computing. These fields are not only ...

  20. 3rd International Conference on INformation Systems Design and Intelligent Applications

    CERN Document Server

    Mandal, Jyotsna; Udgata, Siba; Bhateja, Vikrant

    2016-01-01

    The third international conference on INformation Systems Design and Intelligent Applications (INDIA – 2016) held in Visakhapatnam, India during January 8-9, 2016. The book covers all aspects of information system design, computer science and technology, general sciences, and educational research. Upon a double blind review process, a number of high quality papers are selected and collected in the book, which is composed of three different volumes, and covers a variety of topics, including natural language processing, artificial intelligence, security and privacy, communications, wireless and sensor networks, microelectronics, circuit and systems, machine learning, soft computing, mobile computing and applications, cloud computing, software engineering, graphics and image processing, rural engineering, e-commerce, e-governance, business computing, molecular computing, nano-computing, chemical computing, intelligent computing for GIS and remote sensing, bio-informatics and bio-computing. These fields are not...

  1. Search for design intelligence: A field study on the role of emotional intelligence in architectural design studios

    Directory of Open Access Journals (Sweden)

    Sajjad Nazidizaji

    2014-12-01

    Full Text Available The design studio is the core of the architecture curriculum. Interpersonal interactions have a key role during the processes of design and critique. The influence of emotional intelligence (EQ on interpersonal communication skills has been widely proven. This study examines the correlation between EQ and architectural design competence. To achieve this, 78 architecture students were selected via a simple random sampling method and tested using an EQ test questionnaire developed by Bradbury and Greaves (2006. The scores of five architectural design studio courses (ADS-1, ADS-2, ADS-3, ADS-4, and ADS-5 were used as indicators of the progress in design of the students. Descriptive and inferential statistics methods were both employed to analyze the research data. The methods included correlation analysis, mean comparison t-test for independent samples, and single sample t-test. Findings showed no significant relationship between EQ and any of the indicators.

  2. Intelligent Human Machine Interface Design for Advanced Product Life Cycle Management Systems

    OpenAIRE

    Ahmed, Zeeshan

    2010-01-01

    Designing and implementing an intelligent and user friendly human machine interface for any kind of software or hardware oriented application is always be a challenging task for the designers and developers because it is very difficult to understand the psychology of the user, nature of the work and best suit of the environment. This research paper is basically about to propose an intelligent, flexible and user friendly machine interface for Product Life Cycle Management products or PDM Syste...

  3. Macro design effects on stress distribution around implants: A photoelastic stress analysis

    OpenAIRE

    Serhat Emre Ozkir; Hakan Terzioglu

    2012-01-01

    Objectives: Biomechanics is one of the main factors for achieving long-term success of implant supported prostheses. Long-term failures mostly depend on biomechanical complications. It is important to distinguish the effects of macro design of the implants. Materials and Methods: In this study, the photoelastic response of four different types of implants that were inserted with different angulations were comparatively analyzed. The implant types investigated were screw cylinder (ITI, Str...

  4. Evaluation of stress distribution characteristics on various bar designs of three-implant-supported mandibular overdentures

    Directory of Open Access Journals (Sweden)

    Emre Tokar

    2017-01-01

    Full Text Available Objective: Implant-supported-overdentures, instead of conventional complete dentures, are frequently recommended to rehabilitate patients having edentulous mandible. The aim of this study was to evaluate the stress distribution characteristics of mandibular implant-supported overdentures with four different bar attachment designs. Materials and Method: A photoelastic mandibular model with three implants (3.75 mm - 13 mm placed at the interforaminal region was generated from a cast of an edentulous mandible. Four mandibular bar overdenture designs were fabricated: bar-clip, bar-galvano, bar-locator, and bar-ceka. Axial vertical loads (135 N were applied to the central fossa of the right first molar area for each overdenture design. Stress concentrations were recorded photographically and analyzed visually. Results: The tested bar attachment designs revealed low and moderate stress levels. The lowest stress was observed with the bar-clip design, followed by bar-locator, bar-ceka, and bar-galvano designs. Conclusion: The loads were distributed to all of the implants. Studied designs experienced moderate stress levels around the loaded side implant. Bars with distally placed stud attachments and surface treatment with electroforming seems to increase stress levels around the implants.

  5. Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology.

    Science.gov (United States)

    Chen, Jianyu; Zhang, Zhiguang; Chen, Xianshuai; Zhang, Chunyu; Zhang, Gong; Xu, Zhewu

    2014-11-01

    Recently a new therapeutic concept of patient-specific implant dentistry has been advanced based on computer-aided design/computer-aided manufacturing technology. However, a comprehensive study of the design and 3-dimensional (3D) printing of the customized implants, their mechanical properties, and their biomechanical behavior is lacking. The purpose of this study was to evaluate the mechanical and biomechanical performance of a novel custom-made dental implant fabricated by the selective laser melting technique with simulation and in vitro experimental studies. Two types of customized implants were designed by using reverse engineering: a root-analog implant and a root-analog threaded implant. The titanium implants were printed layer by layer with the selective laser melting technique. The relative density, surface roughness, tensile properties, bend strength, and dimensional accuracy of the specimens were evaluated. Nonlinear and linear finite element analysis and experimental studies were used to investigate the stress distribution, micromotion, and primary stability of the implants. Selective laser melting 3D printing technology was able to reproduce the customized implant designs and produce high density and strength and adequate dimensional accuracy. Better stress distribution and lower maximum micromotions were observed for the root-analog threaded implant model than for the root-analog implant model. In the experimental tests, the implant stability quotient and pull-out strength of the 2 types of implants indicated that better primary stability can be obtained with a root-analog threaded implant design. Selective laser melting proved to be an efficient means of printing fully dense customized implants with high strength and sufficient dimensional accuracy. Adding the threaded characteristic to the customized root-analog threaded implant design maintained the approximate geometry of the natural root and exhibited better stress distribution and

  6. Evaluation of a New Dental Implant Cervical Design in Comparison with a Conventional Design in an Experimental American Foxhound Model.

    Science.gov (United States)

    Pérez-Albacete Martínez, Maria Ángeles; Pérez-Albacete Martínez, Carlos; Maté Sánchez De Val, José Eduardo; Ramos Oltra, María Luisa; Fernández Domínguez, Manuel; Calvo Guirado, Jose Luis

    2018-03-21

    The aim of this study was to evaluate osseointegration and crestal bone height in implants with a triangular cervical design in comparison with a standard rounded cervical design. The control group consisted of 24 implants with a standard cervical design, and the test group of 24 implants with a triangular cervical design. The implants were inserted in healed bone in six American Foxhounds. Crestal bone height and tissue thickness in the cervical portion were measured after 12 weeks healing. Data analysis found mean crestal bone loss of: 0.31 ± 0.24 mm on the buccal side, 0.35 ± 0.14 mm on the lingual in the test group, and 0.71 ± 0.28 mm buccal loss, and 0.42 ± 0.30 mm lingual in the control group; with statistically significant differences on the buccal aspect ( p = 0.0019). Mean tissue thickness in the test group was 1.98 ± 0.17 mm on the buccal aspect, and 2.43 ± 0.93 mm in the lingual; in the control group it was 2.48 ± 0.61 mm buccal thickness, and 2.88 ± 0.14 mm lingual, with significant differences on both aspects ( p = 0.0043; p = 0.0029). The results suggest that greater thickness of peri-implant tissue can be expected when the triangular cervical implant design is used rather than the standard cervical design.

  7. The Design and Implementation of an Intelligent Apparel Recommend Expert System

    Directory of Open Access Journals (Sweden)

    A. H. Dong

    2013-01-01

    Full Text Available Now with the rapid development of information science and technology, intelligent apparel recommend has drawn wide attention in apparel retail industry. Intelligent management and effective recommend are two issues of crucial importance for the retail store to enhance its corporate influence and increase its economic benefits. This paper proposes an intelligent recommend system design scheme for apparel retail which is based on expert system. By comprehensive utilization of database management and expert system technology, the proposed system provides a solid solution in improving the customer shopping experience. This paper presents a kind of object-oriented blackboard structure, which is applied in the apparel recommend expert system and establishes expert rule on the basis of apparel characteristic elements. Through the establishment of the rule base, the system generates personal recommend list by positive rule reasoning mechanism engine. The proposed method thus gives dress collocation scheme for the customer through the human-machine interaction from the point of view of the apparel experts. This design scheme avails the customers to experience targeted service with intellectualization, and personalization and it has certain reference significance for promoting apparel retail intelligence development.

  8. Design of an intelligent materials data base for the IFR

    International Nuclear Information System (INIS)

    Mikaili, R.; Lambert, J.D.B.; Orth, T.D.

    1992-01-01

    In the development of the integral fast reactor (IFR) concept, there is a consensus that materials considerations are an important part of the reactor design, operation, and maintenance and that materials performance is central to liquid-metal reactor reliability and safety. In the design of the IRF materials data base, artificial intelligence techniques are being used to ensure efficient control of information. Intelligent control will provide for the selection of menus to be displayed, efficient data-base searches, and application-dependent guidance through the data base. The development of the IRF data base has progressed to the point of (a) completing the design of the data-base architecture and tables, (b) installing computer hardware for storing large amounts of data, (c) outlining strategies for data transferal, and (d) identifying ways to validate and secure the integrity of data

  9. De Novo Design of Bioactive Small Molecules by Artificial Intelligence.

    Science.gov (United States)

    Merk, Daniel; Friedrich, Lukas; Grisoni, Francesca; Schneider, Gisbert

    2018-01-01

    Generative artificial intelligence offers a fresh view on molecular design. We present the first-time prospective application of a deep learning model for designing new druglike compounds with desired activities. For this purpose, we trained a recurrent neural network to capture the constitution of a large set of known bioactive compounds represented as SMILES strings. By transfer learning, this general model was fine-tuned on recognizing retinoid X and peroxisome proliferator-activated receptor agonists. We synthesized five top-ranking compounds designed by the generative model. Four of the compounds revealed nanomolar to low-micromolar receptor modulatory activity in cell-based assays. Apparently, the computational model intrinsically captured relevant chemical and biological knowledge without the need for explicit rules. The results of this study advocate generative artificial intelligence for prospective de novo molecular design, and demonstrate the potential of these methods for future medicinal chemistry. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  10. Intelligent Test Mechanism Design of Worn Big Gear

    Directory of Open Access Journals (Sweden)

    Hong-Yu LIU

    2014-10-01

    Full Text Available With the continuous development of national economy, big gear was widely applied in metallurgy and mine domains. So, big gear plays an important role in above domains. In practical production, big gear abrasion and breach take place often. It affects normal production and causes unnecessary economic loss. A kind of intelligent test method was put forward on worn big gear mainly aimed at the big gear restriction conditions of high production cost, long production cycle and high- intensity artificial repair welding work. The measure equations transformations were made on involute straight gear. Original polar coordinate equations were transformed into rectangular coordinate equations. Big gear abrasion measure principle was introduced. Detection principle diagram was given. Detection route realization method was introduced. OADM12 laser sensor was selected. Detection on big gear abrasion area was realized by detection mechanism. Tested data of unworn gear and worn gear were led in designed calculation program written by Visual Basic language. Big gear abrasion quantity can be obtained. It provides a feasible method for intelligent test and intelligent repair welding on worn big gear.

  11. Ultracompact Implantable Design With Integrated Wireless Power Transfer and RF Transmission Capabilities.

    Science.gov (United States)

    Sun, Guilin; Muneer, Badar; Li, Ying; Zhu, Qi

    2018-04-01

    This paper presents an ultracompact design of biomedical implantable devices with integrated wireless power transfer (WPT) and RF transmission capabilities for implantable medical applications. By reusing the spiral coil in an implantable device, both RF transmission and WPT are realized without the performance degradation of both functions in ultracompact size. The complete theory of WPT based on magnetic resonant coupling is discussed and the design methodology of an integrated structure is presented in detail, which can guide the design effectively. A system with an external power transmitter and implantable structure is fabricated to validate the proposed approach. The experimental results show that the implantable structure can receive power wirelessly at 39.86 MHz with power transfer efficiency of 47.2% and can also simultaneously radiate at 2.45 GHz with an impedance bandwidth of 10.8% and a gain of -15.71 dBi in the desired direction. Furthermore, sensitivity analyses are carried out with the help of experiment and simulation. The results reveal that the system has strong tolerance to the nonideal conditions. Additionally, the specific absorption rate distribution is evaluated in the light of strict IEEE standards. The results reveal that the implantable structure can receive up to 115 mW power from an external transmitter and radiate 6.4 dB·m of power safely.

  12. [An object-oriented intelligent engineering design approach for lake pollution control].

    Science.gov (United States)

    Zou, Rui; Zhou, Jing; Liu, Yong; Zhu, Xiang; Zhao, Lei; Yang, Ping-Jian; Guo, Huai-Cheng

    2013-03-01

    Regarding the shortage and deficiency of traditional lake pollution control engineering techniques, a new lake pollution control engineering approach was proposed in this study, based on object-oriented intelligent design (OOID) from the perspective of intelligence. It can provide a new methodology and framework for effectively controlling lake pollution and improving water quality. The differences between the traditional engineering techniques and the OOID approach were compared. The key points for OOID were described as object perspective, cause and effect foundation, set points into surface, and temporal and spatial optimization. The blue algae control in lake was taken as an example in this study. The effect of algae control and water quality improvement were analyzed in details from the perspective of object-oriented intelligent design based on two engineering techniques (vertical hydrodynamic mixer and pumping algaecide recharge). The modeling results showed that the traditional engineering design paradigm cannot provide scientific and effective guidance for engineering design and decision-making regarding lake pollution. Intelligent design approach is based on the object perspective and quantitative causal analysis in this case. This approach identified that the efficiency of mixers was much higher than pumps in achieving the goal of low to moderate water quality improvement. However, when the objective of water quality exceeded a certain value (such as the control objective of peak Chla concentration exceeded 100 microg x L(-1) in this experimental water), the mixer cannot achieve this goal. The pump technique can achieve the goal but with higher cost. The efficiency of combining the two techniques was higher than using one of the two techniques alone. Moreover, the quantitative scale control of the two engineering techniques has a significant impact on the actual project benefits and costs.

  13. Reaction of North American neo-Thomism against the «Intelligent Design»

    Directory of Open Access Journals (Sweden)

    Desiderio Parrilla Martínez

    2017-08-01

    Full Text Available The doctrine of «Intelligent Design» formulated by Phillip E. Johnson, Michael Behe, William A. Dembski and Stephen C. Meyer is presented as a scientific alternative to neo-Darwinism. For philosophical naturalism or atheism is only a pseudo-science dependent of «Protestant creationism» and the literal biblical interpretation. The best philosophical critiques, however, come from American neo-Thomism. This paper presents the main arguments used by the Thomism in his polemic against the doctrine of «Intelligent Design».

  14. Evaluation of a New Dental Implant Cervical Design in Comparison with a Conventional Design in an Experimental American Foxhound Model

    Directory of Open Access Journals (Sweden)

    Maria Ángeles Pérez-Albacete Martínez

    2018-03-01

    Full Text Available The aim of this study was to evaluate osseointegration and crestal bone height in implants with a triangular cervical design in comparison with a standard rounded cervical design. The control group consisted of 24 implants with a standard cervical design, and the test group of 24 implants with a triangular cervical design. The implants were inserted in healed bone in six American Foxhounds. Crestal bone height and tissue thickness in the cervical portion were measured after 12 weeks healing. Data analysis found mean crestal bone loss of: 0.31 ± 0.24 mm on the buccal side, 0.35 ± 0.14 mm on the lingual in the test group, and 0.71 ± 0.28 mm buccal loss, and 0.42 ± 0.30 mm lingual in the control group; with statistically significant differences on the buccal aspect (p = 0.0019. Mean tissue thickness in the test group was 1.98 ± 0.17 mm on the buccal aspect, and 2.43 ± 0.93 mm in the lingual; in the control group it was 2.48 ± 0.61 mm buccal thickness, and 2.88 ± 0.14 mm lingual, with significant differences on both aspects (p = 0.0043; p = 0.0029. The results suggest that greater thickness of peri-implant tissue can be expected when the triangular cervical implant design is used rather than the standard cervical design.

  15. Nature-inspired design of hybrid intelligent systems

    CERN Document Server

    Castillo, Oscar; Kacprzyk, Janusz

    2017-01-01

    This book highlights recent advances in the design of hybrid intelligent systems based on nature-inspired optimization and their application in areas such as intelligent control and robotics, pattern recognition, time series prediction, and optimization of complex problems. The book is divided into seven main parts, the first of which addresses theoretical aspects of and new concepts and algorithms based on type-2 and intuitionistic fuzzy logic systems. The second part focuses on neural network theory, and explores the applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The book’s third part presents enhancements to meta-heuristics based on fuzzy logic techniques and describes new nature-inspired optimization algorithms that employ fuzzy dynamic adaptation of parameters, while the fourth part presents diverse applications of nature-inspired optimization algorithms. In turn, the fifth part investigates applications of fuzzy logic in diverse areas, such as...

  16. Designing Intelligent Tutoring Systems: A Personalization Strategy using Case-Based Reasoning and Multi-Agent Systems

    Directory of Open Access Journals (Sweden)

    Rosalía LAZA

    2013-05-01

    Full Text Available Intelligent Tutoring Systems (ITSs are educational systems that use artificial intelligence techniques for representing the knowledge. ITSs design is often criticized for being a complex and challenging process. In this article, we propose a framework for the ITSs design using Case Based Reasoning (CBR and Multiagent systems (MAS. The major advantage of using CBR is to allow the intelligent system to propose smart and quick solutions to problems, even in complex domains, avoiding the time necessary to derive those solutions from scratch. The use of intelligent agents and MAS architectures supports the retrieval of similar students models and the adaptation of teaching strategies according to the student profile. We describe deeply how the combination of both technologies helps to simplify the design of new ITSs and personalize the e-learning process for each student

  17. A framework for development of an intelligent system for design and manufacturing of stamping dies

    International Nuclear Information System (INIS)

    Hussein, H M A; Kumar, S

    2014-01-01

    An integration of computer aided design (CAD), computer aided process planning (CAPP) and computer aided manufacturing (CAM) is required for development of an intelligent system to design and manufacture stamping dies in sheet metal industries. In this paper, a framework for development of an intelligent system for design and manufacturing of stamping dies is proposed. In the proposed framework, the intelligent system is structured in form of various expert system modules for different activities of design and manufacturing of dies. All system modules are integrated with each other. The proposed system takes its input in form of a CAD file of sheet metal part, and then system modules automate all tasks related to design and manufacturing of stamping dies. Modules are coded using Visual Basic (VB) and developed on the platform of AutoCAD software

  18. A framework for development of an intelligent system for design and manufacturing of stamping dies

    Science.gov (United States)

    Hussein, H. M. A.; Kumar, S.

    2014-07-01

    An integration of computer aided design (CAD), computer aided process planning (CAPP) and computer aided manufacturing (CAM) is required for development of an intelligent system to design and manufacture stamping dies in sheet metal industries. In this paper, a framework for development of an intelligent system for design and manufacturing of stamping dies is proposed. In the proposed framework, the intelligent system is structured in form of various expert system modules for different activities of design and manufacturing of dies. All system modules are integrated with each other. The proposed system takes its input in form of a CAD file of sheet metal part, and then system modules automate all tasks related to design and manufacturing of stamping dies. Modules are coded using Visual Basic (VB) and developed on the platform of AutoCAD software.

  19. Automation of fusion first wall design using artificial intelligence technique

    International Nuclear Information System (INIS)

    Yoshimura, Shinobu; Yagawa, Genki; Mochizuki, Yoshihiko

    1990-01-01

    This paper describes the application of artificial intelligence techniques to a design automation of the fusion first wall to be operated in the complex environment where huge electromagnetic and thermal loading as well as heavy neutron irradiation occur. As a basic strategy of designing structure shape considering many coupled phenomena, an ordinary design procedure based on the generate and test strategy is adopted because of its simplicity and broad applicability. To automate the design procedure with maintaining its flexibility, extensibility and efficiency, artificial intelligence techniques are utilized in the following. An object-oriented knowledge representation technique is adopted to store knowledge modules, that is, objects, related to the first wall design, while a data-flow processing technique is utilized as an inference mechanism among the knowledge modules. These techniques realize the flexibility and extensibility of the system. Moreover, as an efficient design modification mechanism, which is essential in a design process, an empirical approach based on experts' empirical knowledge and a mathematical approach based on a kind of numerical sensitivity analysis are introduced. The developed system is applied to a simple example of the design of a two-dimensional model of the first wall with a cooling channel, and its fundamental performance is clearly demonstrated. (author)

  20. How Biology Teachers Can Respond to Intelligent Design

    Science.gov (United States)

    Mackenzie, Jim

    2010-01-01

    Teachers of biology and related subjects are increasingly meeting objections from students and their parents to the teaching of evolution and the exclusion of what is called the theory of Intelligent Design. This paper attempts to draw together arguments and evidence which may be used by such teachers. Four lessons are drawn from the 1982…

  1. Impact of socioeconomic factors on paediatric cochlear implant outcomes.

    Science.gov (United States)

    Sharma, Shalabh; Bhatia, Khyati; Singh, Satinder; Lahiri, Asish Kumar; Aggarwal, Asha

    2017-11-01

    concurred with our results, but most of the studies had suggested that children in families of higher socioeconomic status had have better speech and language acquisition. Cochlear implantation significantly improves auditory perception and speech intelligibility of children suffering from profound sensorineural hearing loss. Younger The younger the age at implantation, the better are the results. Hence, early implantation should be promoted and encouraged. Our study suggests that children who followed the designated program of postoperative mapping and auditory verbal therapy for a minimum period of 1 year seemed to do equally well in terms of hearing perception and speech intelligibility, irrespective of the socioeconomic status of the family. Further studies are essential to assess the impact of these factors on long-term speech acquisition andlanguage development. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Heuristic decision model for intelligent nuclear power systems design

    International Nuclear Information System (INIS)

    Nassersharif, B.; Portal, M.G.; Gaeta, M.J.

    1989-01-01

    The objective of this project was to investigate intelligent nuclear power systems design. A theoretical model of the design process has been developed. A fundamental process in this model is the heuristic decision making for design (i.e., selection of methods, components, materials, etc.). Rule-based expert systems do not provide the completeness that is necessary to generate good design. A new method, based on the fuzzy set theory, has been developed and is presented here. A feedwater system knowledge base (KB) was developed for a prototype software experiment to benchmark the theory

  3. Intelligent adaptive systems an interaction-centered design perspective

    CERN Document Server

    Hou, Ming; Burns, Catherine

    2014-01-01

    A synthesis of recent research and developments on intelligent adaptive systems from the HF (human factors) and HCI (human-computer interaction) domains, this book provides integrated design guidance and recommendations for researchers and system developers. It addresses a recognized lack of integration between the HF and HCI research communities, which has led to inconsistencies between the research approaches adopted, and a lack of exploitation of research from one field by the other. The book establishes design guidance through the review of conceptual frameworks, analytical methodologies,

  4. Design and Development of Intelligent Electrodes for Future Digital Health Monitoring: A Review

    Science.gov (United States)

    Khairuddin, A. M.; Azir, K. N. F. Ku; Kan, P. Eh

    2018-03-01

    Electrodes are sensors used in electrocardiography (ECG) monitoring system to diagnose heart diseases. Over the years, diverse types of electrodes have been designed and developed to improve ECG monitoring system. However, more recently, with the technological advances and capabilities from the Internet of Things (IoT), cloud computing and data analytics in personalized healthcare, researchers are attempting to design and develop more effective as well as flexible ECG devices by using intelligent electrodes. This paper reviews previous works on electrodes used in electrocardiography (ECG) monitoring devices to identify the key ftures for designing and developing intelligent electrodes in digital health monitoring devices.

  5. Intelligent Digitized Design Systems for the Management of Design Knowledge Related to Nuclear R&D Institutes

    International Nuclear Information System (INIS)

    Zheng, M.; Minglu, W.

    2016-01-01

    Full text: Nuclear R&D is highly knowledge-intensive. With the rapid advent and development of modern information technology, knowledge management in nuclear industry has been provided with new approaches and possibilities. This article introduces a framework of intelligent digitized design system in nuclear R&D phase and finds answer to knowledge application, internal process optimization, experience feedback and further innovation. This framework utilizing digitalization and informatization finds a way to incorporate the process of the “Socialization, Externalization, Combination, Internalization” (SECI) model which include intelligent design process, integrated design software, smart verification and validation simulation platform, experiment data management platform, online monitoring platform and digital twin nuclear power plant, etc. The following case study gives a clear picture of what and how knowledge management has been performed under this framework. Furthermore, important lessons have been summarized. (author

  6. Accuracy of Different Implant Impression Techniques: Evaluation of New Tray Design Concept.

    Science.gov (United States)

    Liu, David Yu; Cader, Fathima Nashmie; Abduo, Jaafar; Palamara, Joseph

    2017-12-29

    To evaluate implant impression accuracy with a new tray design concept in comparison to nonsplinted and splinted impression techniques for a 2-implant situation. A reference bar titanium framework was fabricated to fit on 2 parallel implants. The framework was used to generate a resin master model with 2 implants that fit precisely against the framework. Three impression techniques were evaluated: (1) nonsplinted, (2) splinted, and (3) nonsplinted with modified tray impressions. All the trays were fabricated from light-cured acrylic resin material with openings that corresponded to the implant impression copings. Ten impressions were taken for each technique using poly(vinyl siloxane) impression material. The impressions were poured with type IV dental stone to generate the test casts. A rosette strain gauge was bonded to the middle of the framework. As the framework retaining screws were tightened on each test cast, the developed strains were recorded until the completion of the tightening to 35 Ncm. The generated strains of the rosette strain gauge were used to calculate the maximum principal strain. A statistically significant difference was observed among the different impression techniques. The modified tray design impression technique was associated with the least framework strains, which indicates greater accuracy compared with the other techniques. There was no significant difference between the splinted and the nonsplinted impression techniques. The new tray design concept appeared to produce more accurate implant impressions than the other techniques. Despite the statistical difference among the impression techniques, the clinical significance of this difference is yet to be determined. © 2017 by the American College of Prosthodontists.

  7. Design of an end station for a high current ion implantation system

    International Nuclear Information System (INIS)

    Kranik, J.R.

    1979-01-01

    During the last 4 to 5 years IBM has been involved in an effort to develop a high current Ion Implantation system with pre-deposition capabilities. The system is dedicated to Arsenic implants, involving doses > 1 x 10 15 ions/cm 2 in the energy range of 30 to 60 keV. A major portion of this effort involved the design of an associated end station capable of producing high uniformity implants with beam currents in the 0.5 to 6.0 mA range. The end station contains all components from the exit of the analyzing magnet, including the exit beamline, process chamber, scan system, wafer handling system, high vacuum pumping package, beam optics, dosimetry system, and associated electronic controls. The unit was restricted to a six wafer (82 mm) batch size to maintain process line compatibility. In addition, implant dose non-uniformity objectives were established at +- 3% (2σ) within a wafer and +- 2% (2σ) wafer-to-wafer. Also, the system was to be capable of implanting 24 wafers/hour at a dose of 7.5 x 10 15 ions/cm 2 . Major consideration in the design was afforded to high reliability, ease of maintenance and production level throughput capabilities. The rationale and evolution of the final end station design is described. (author)

  8. [Design on tester of pull-out force for orthodontic micro implant].

    Science.gov (United States)

    Su, He; Wu, Pei; Wang, Huiyuan; Chen, Yan; Bao, Xuemei

    2013-09-01

    A special device for measuring the pull-out force of orthodontic micro implant was designed, which has the characteristics of simple construction and easy operation, and can be used to detect the pull-out-force of orthodontic micro implant. The tested data was stored and analyzed by a computer, and as the results, the pull-out-force curve, maximum pull-out force as well as average pull-out force were outputted, which was applied in analyzing or investigating the initial stability and immediate loading property of orthodontic micro implant.

  9. Probabilistic predictive modelling of carbon nanocomposites for medical implants design.

    Science.gov (United States)

    Chua, Matthew; Chui, Chee-Kong

    2015-04-01

    Modelling of the mechanical properties of carbon nanocomposites based on input variables like percentage weight of Carbon Nanotubes (CNT) inclusions is important for the design of medical implants and other structural scaffolds. Current constitutive models for the mechanical properties of nanocomposites may not predict well due to differences in conditions, fabrication techniques and inconsistencies in reagents properties used across industries and laboratories. Furthermore, the mechanical properties of the designed products are not deterministic, but exist as a probabilistic range. A predictive model based on a modified probabilistic surface response algorithm is proposed in this paper to address this issue. Tensile testing of three groups of different CNT weight fractions of carbon nanocomposite samples displays scattered stress-strain curves, with the instantaneous stresses assumed to vary according to a normal distribution at a specific strain. From the probabilistic density function of the experimental data, a two factors Central Composite Design (CCD) experimental matrix based on strain and CNT weight fraction input with their corresponding stress distribution was established. Monte Carlo simulation was carried out on this design matrix to generate a predictive probabilistic polynomial equation. The equation and method was subsequently validated with more tensile experiments and Finite Element (FE) studies. The method was subsequently demonstrated in the design of an artificial tracheal implant. Our algorithm provides an effective way to accurately model the mechanical properties in implants of various compositions based on experimental data of samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The design and results of an algorithm for intelligent ground vehicles

    Science.gov (United States)

    Duncan, Matthew; Milam, Justin; Tote, Caleb; Riggins, Robert N.

    2010-01-01

    This paper addresses the design, design method, test platform, and test results of an algorithm used in autonomous navigation for intelligent vehicles. The Bluefield State College (BSC) team created this algorithm for its 2009 Intelligent Ground Vehicle Competition (IGVC) robot called Anassa V. The BSC robotics team is comprised of undergraduate computer science, engineering technology, marketing students, and one robotics faculty advisor. The team has participated in IGVC since the year 2000. A major part of the design process that the BSC team uses each year for IGVC is a fully documented "Post-IGVC Analysis." Over the nine years since 2000, the lessons the students learned from these analyses have resulted in an ever-improving, highly successful autonomous algorithm. The algorithm employed in Anassa V is a culmination of past successes and new ideas, resulting in Anassa V earning several excellent IGVC 2009 performance awards, including third place overall. The paper will discuss all aspects of the design of this autonomous robotic system, beginning with the design process and ending with test results for both simulation and real environments.

  11. Alveolar Bone Resorption Evaluation Around Single-piece Designed Bicortical Implants, Using Immediate Loading Protocol, Based on Orthopantomographs

    Directory of Open Access Journals (Sweden)

    Száva Dániel-Tamás

    2017-12-01

    Full Text Available Background: Inserting dental implants in severely atrophied jawbones is a great challenge for the dental practitioner. There are an increasing number of patients who choose dental implantanchored prosthetic restorations despite compromised bone quality and quantity. There have been numerous attempts in adapting implant design for the atrophic crestal bone. One-piece, needle-type basal implant design is a typical design for these cases. These implants are inserted in the remaining compact bone located in the basal aspect of the jawbones. If high primary stability is achieved, these implants are used for immediate loading protocol. From many points of view, this technique is based on contradictory principles compared to classic implant surgery and loading protocols. The aim of this study was to investigate the long-term success of basal one-piece short-diameter dental implants used for immediate loading protocol.

  12. On the relationship between auditory cognition and speech intelligibility in cochlear implant users: An ERP study.

    Science.gov (United States)

    Finke, Mareike; Büchner, Andreas; Ruigendijk, Esther; Meyer, Martin; Sandmann, Pascale

    2016-07-01

    There is a high degree of variability in speech intelligibility outcomes across cochlear-implant (CI) users. To better understand how auditory cognition affects speech intelligibility with the CI, we performed an electroencephalography study in which we examined the relationship between central auditory processing, cognitive abilities, and speech intelligibility. Postlingually deafened CI users (N=13) and matched normal-hearing (NH) listeners (N=13) performed an oddball task with words presented in different background conditions (quiet, stationary noise, modulated noise). Participants had to categorize words as living (targets) or non-living entities (standards). We also assessed participants' working memory (WM) capacity and verbal abilities. For the oddball task, we found lower hit rates and prolonged response times in CI users when compared with NH listeners. Noise-related prolongation of the N1 amplitude was found for all participants. Further, we observed group-specific modulation effects of event-related potentials (ERPs) as a function of background noise. While NH listeners showed stronger noise-related modulation of the N1 latency, CI users revealed enhanced modulation effects of the N2/N4 latency. In general, higher-order processing (N2/N4, P3) was prolonged in CI users in all background conditions when compared with NH listeners. Longer N2/N4 latency in CI users suggests that these individuals have difficulties to map acoustic-phonetic features to lexical representations. These difficulties seem to be increased for speech-in-noise conditions when compared with speech in quiet background. Correlation analyses showed that shorter ERP latencies were related to enhanced speech intelligibility (N1, N2/N4), better lexical fluency (N1), and lower ratings of listening effort (N2/N4) in CI users. In sum, our findings suggest that CI users and NH listeners differ with regards to both the sensory and the higher-order processing of speech in quiet as well as in

  13. Macroscopic and microscopic evaluation of a new implant design supporting immediately loaded full arch rehabilitation.

    Science.gov (United States)

    Tetè, Stefano; Zizzari, Vincenzo; De Carlo, Alessandro; Sinjari, Bruna; Gherlone, Enrico

    2012-04-01

    The purpose of this study is to evaluate macroscopic and microscopic appearance of a new implant design, with particular emphasis given to the type of prosthesis connection. Two dental implants of the same type (Torque Type(®), WinSix(®), BioSAFin. S.r.l. - Ancona, Italy), with sandblasted and acid etched surfaces (Micro Rough Surface(®)), but differing from each other for the prosthesis connection system, were examined by scanning electron microscope (SEM) analysis at different magnifications: TTI implant, with a hexagonal internal connection, and TTX implant, with a hexagonal external connection. SEM analysis showed that the Torque Type(®) implant is characterized by a truncated cone shape with tapered tips. The implant body showed a double loop thread and double pitch with blunt tips. For both types of connection, the implant neck was 0.7 mm in height with a 3% taper. This implant design may be able to guarantee osteotomic properties at the time of insertion in a surgical site suitably prepared, a facilitated screwing, thanks to the thread pitch and to the broad and deep draining grooves, thereby ensuring a good primary stability. The different connection design appears defined and precise, in order to ensure a good interface between the fixture and the prosthetic components. Therefore, this design appears to be particularly suitable in cases where a good primary stability is necessary and a precise coupling between endosseous and prosthetic components, as it allows an easy insertion of the fixture even in conditions of reduced bone availability, and in cases of immediately loaded full-arch rehabilitations.

  14. Expert System for 3D Collar Intelligent Design

    Institute of Scientific and Technical Information of China (English)

    LIU Yan; GENG Zhao-feng

    2004-01-01

    A method to set up 3D collar prototype is developed in this paper by using the technique of cubic spline and bicubic surface patch. Then the relationship between the parameters of 3D collar prototype and different collar styles are studied. Based on the relationship, we can develop some algorithms of transferring style requirements to the parameters value of the collar prototype, and obtain some generation rules for the design of 3D collar style. As such, the knowledge base can be constructed, and the intelligent design system of 3D collar style is built. Using the system, various 3D collar styles can be designed automatically to satisfy various style requirements.

  15. Radiographic evaluation of marginal bone level around implants with different neck designs after 1 year.

    Science.gov (United States)

    Shin, Young-Kyu; Han, Chong-Hyun; Heo, Seong-Joo; Kim, Sunjai; Chun, Heoung-Jae

    2006-01-01

    To evaluate the influence of macro- and microstructure of the implant surface at the marginal bone level after functional loading. Sixty-eight patients were randomly assigned to 1 of 3 groups. The first group received 35 implants with a machined neck (Ankylos); the second group, 34 implants with a rough-surfaced neck (Stage 1); and the third, 38 implants with a rough-surfaced neck with microthreads (Oneplant). Clinical and radiographic examinations were conducted at baseline (implant loading) and 3, 6, and 12 months postloading. Two-way repeated analysis of variance (ANOVA) was used to test the significance of marginal bone change of each tested group at baseline, 3, 6, and 12 month follow-ups and 1-way ANOVA was also used to compare the bone loss of each time interval within the same implant group (P implant neck not only reduce crestal bone loss but also help with early biomechanical adaptation against loading in comparison to the machined neck design. A rough surface with microthreads at the implant neck was the most effective design to maintain the marginal bone level against functional loading.

  16. Design of Sail-Assisted Unmanned Surface Vehicle Intelligent Control System

    Directory of Open Access Journals (Sweden)

    Yong Ma

    2016-01-01

    Full Text Available To achieve the wind sail-assisted function of the unmanned surface vehicle (USV, this work focuses on the design problems of the sail-assisted USV intelligent control systems (SUICS and illustrates the implementation process of the SUICS. The SUICS consists of the communication system, the sensor system, the PC platform, and the lower machine platform. To make full use of the wind energy, in the SUICS, we propose the sail angle of attack automatic adjustment (Sail_4A algorithm and present the realization flow for each subsystem of the SUICS. By using the test boat, the design and implementation of the SUICS are fulfilled systematically. Experiments verify the performance and effectiveness of our SUICS. The SUICS enhances the intelligent utility of sustainable wind energy for the sail-assisted USV significantly and plays a vital role in shipping energy-saving emission reduction requirements issued by International Maritime Organization (IMO.

  17. Speech perception, production and intelligibility in French-speaking children with profound hearing loss and early cochlear implantation after congenital cytomegalovirus infection.

    Science.gov (United States)

    Laccourreye, L; Ettienne, V; Prang, I; Couloigner, V; Garabedian, E-N; Loundon, N

    2015-12-01

    To analyze speech in children with profound hearing loss following congenital cytomegalovirus (cCMV) infection with cochlear implantation (CI) before the age of 3 years. In a cohort of 15 children with profound hearing loss, speech perception, production and intelligibility were assessed before and 3 years after CI; variables impacting results were explored. Post-CI, median word recognition was 74% on closed-list and 48% on open-list testing; 80% of children acquired speech production; and 60% were intelligible for all listeners or listeners attentive to lip-reading and/or aware of the child's hearing loss. Univariate analysis identified 3 variables (mean post-CI hearing threshold, bilateral vestibular areflexia, and brain abnormality on MRI) with significant negative impact on the development of speech perception, production and intelligibility. CI showed positive impact on hearing and speech in children with post-cCMV profound hearing loss. Our study demonstrated the key role of maximizing post-CI hearing gain. A few children had insufficient progress, especially in case of bilateral vestibular areflexia and/or brain abnormality on MRI. This led us to suggest that balance rehabilitation and speech therapy should be intensified in such cases. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. CATO: a CAD tool for intelligent design of optical networks and interconnects

    Science.gov (United States)

    Chlamtac, Imrich; Ciesielski, Maciej; Fumagalli, Andrea F.; Ruszczyk, Chester; Wedzinga, Gosse

    1997-10-01

    Increasing communication speed requirements have created a great interest in very high speed optical and all-optical networks and interconnects. The design of these optical systems is a highly complex task, requiring the simultaneous optimization of various parts of the system, ranging from optical components' characteristics to access protocol techniques. Currently there are no computer aided design (CAD) tools on the market to support the interrelated design of all parts of optical communication systems, thus the designer has to rely on costly and time consuming testbed evaluations. The objective of the CATO (CAD tool for optical networks and interconnects) project is to develop a prototype of an intelligent CAD tool for the specification, design, simulation and optimization of optical communication networks. CATO allows the user to build an abstract, possible incomplete, model of the system, and determine its expected performance. Based on design constraints provided by the user, CATO will automatically complete an optimum design, using mathematical programming techniques, intelligent search methods and artificial intelligence (AI). Initial design and testing of a CATO prototype (CATO-1) has been completed recently. The objective was to prove the feasibility of combining AI techniques, simulation techniques, an optical device library and a graphical user interface into a flexible CAD tool for obtaining optimal communication network designs in terms of system cost and performance. CATO-1 is an experimental tool for designing packet-switching wavelength division multiplexing all-optical communication systems using a LAN/MAN ring topology as the underlying network. The two specific AI algorithms incorporated are simulated annealing and a genetic algorithm. CATO-1 finds the optimal number of transceivers for each network node, using an objective function that includes the cost of the devices and the overall system performance.

  19. IC design challenges for ambient intelligence

    NARCIS (Netherlands)

    Aarts, E.H.L.; Roovers, R.L.J.

    2003-01-01

    The vision of ambient intelligence opens a world of unprecedented experiences: the interaction of people with electronic devices is changed as contextual awareness, natural interfaces and ubiquitous availability of information are realized. We analyze the consequences of the ambient intelligence

  20. The design of intelligent support systems for nuclear reactor operators

    International Nuclear Information System (INIS)

    Bernard, J.A.

    1992-01-01

    This paper identifies factors relevant to the design of intelligent support systems and their use for the provision of real-time diagnostic information. As such, it constitutes a followup to the state-of-the-art review that was previously published by Bernard and Washio on the utilization of expert systems within the nuclear industry. Some major differences between intelligent-support tools and conventional expert systems are enumerated. In summary, conventional expert systems that encode experimental knowledge in production rules are not suitable vehicle for the creation of operator support systems. The principal difficulty is the need for real-time operation. This in turn means that intelligent support systems will have knowledge bases derived from temporally accurate plant models, inference engines that permit revisions in the search process to accommodate revised data, and man-machine interfaces that do not require any human input. Such systems will be heavily instrumented, and the associated knowledge bases will require a hierarchical organization to emulate human approaches to analysis

  1. The Relation between Nonverbal IQ and Postoperative CI Outcomes in Cochlear Implant Users: Preliminary Result

    Directory of Open Access Journals (Sweden)

    Mina Park

    2015-01-01

    Full Text Available Objectives. This study assessed the correlation between performance intelligence and the postoperative cochlear implant (CI outcome in Korean-speaking children. In addition, the relationship between the performance intelligence subscales and the post-CI speech outcome was evaluated. Materials and Methods. Thirteen pediatric CI users (five males, eight females; median age at implantation 6.2 (range 1.3–14.2 years; median age at intelligence test 9.3 (range 5–16 years who were tested using the Korean Educational Development Institute-Wechsler Intelligence Scale for children were studied. The correlations between the intelligence scores and 1-2 years postoperative Categories of Auditory Performance (CAP scores and between subscales of performance and 1-2 years postoperative CAP scores were analyzed. Results. There was no correlation between the categories of verbal intelligence quotient (IQ and performance IQ for “mentally retarded” and “average,” respectively (Spearman’s rho = 0.42, P=0.15. There was a strong correlation between performance IQ and the postoperative CAP scale (Spearman’s rho = 0.8977, P=0.0008. “Picture arrangement” and “picture completion,” reflecting social cognition, were strongly correlated with the postoperative CAP scales. Conclusion. Performance intelligence, especially social cognition, was strongly related to the postoperative CI outcome of cochlear implant users. Therefore, auditory rehabilitation, including social rehabilitation, should maximize the postoperative CI outcomes.

  2. Optimal design of implants for magnetically mediated hyperthermia: A wireless power transfer approach

    Science.gov (United States)

    Lang, Hans-Dieter; Sarris, Costas D.

    2017-09-01

    In magnetically mediated hyperthermia (MMH), an externally applied alternating magnetic field interacts with a mediator (such as a magnetic nanoparticle or an implant) inside the body to heat up the tissue in its proximity. Producing heat via induced currents in this manner is strikingly similar to wireless power transfer (WPT) for implants, where power is transferred from a transmitter outside of the body to an implanted receiver, in most cases via magnetic fields as well. Leveraging this analogy, a systematic method to design MMH implants for optimal heating efficiency is introduced, akin to the design of WPT systems for optimal power transfer efficiency. This paper provides analytical formulas for the achievable heating efficiency bounds as well as the optimal operating frequency and the implant material. Multiphysics simulations validate the approach and further demonstrate that optimization with respect to maximum heating efficiency is accompanied by minimizing heat delivery to healthy tissue. This is a property that is highly desirable when considering MMH as a key component or complementary method of cancer treatment and other applications.

  3. Effects of implant material and plate design on tendon function and morphology.

    Science.gov (United States)

    Cohen, Mark S; Turner, Thomas M; Urban, Robert M

    2006-04-01

    Titanium implants are an alternative to stainless steel implants for internal fixation after fracture. The advantages of titanium include decreased implant stiffness, increased bio-compatibility, and diminished stress shielding. However, titanium has been implicated in tendon irritation and adhesions when used in the hand and wrist. We evaluated the relationship between extensor tendon morphology and dorsal plating of the distal radius in a canine model using distal radius pi plates made of stainless steel, titanium, and titanium alloy with a modified ramped edge design. We found marked histologic changes in the tendons and surrounding soft tissues including tendon deformation and degeneration (fibrillation, cartilage metaplasia, hypocellularity and hyalinization of blood vessels), peritendonous adhesions and neovascularity in the parenchyma. Only a minimal inflammatory cell infiltrate was identified and was limited to the tenosynovium and/or paratenon. No differences were identified between titanium and stainless steel implants and those with a ramped design. Although all animals lost wrist motion with time, no differences were observed between groups. Our results suggest that pi plate placement on the dorsal surface of the distal radius may lead to extensor tendon irritation and dysfunction. There is no evidence to suggest that this is specifically related to titanium or plate edge design.

  4. Ecological Design of Cooperative Human-Machine Interfaces for Safety of Intelligent Transport Systems

    Directory of Open Access Journals (Sweden)

    Orekhov Aleksandr

    2016-01-01

    Full Text Available The paper describes research results in the domain of cooperative intelligent transport systems. The requirements for human-machine interface considering safety issue of for intelligent transport systems (ITSare analyzed. Profiling of the requirements to cooperative human-machine interface (CHMI for such systems including requirements to usability and safety is based on a set of standards for ITSs. An approach and design technique of cooperative human-machine interface for ITSs are suggested. The architecture of cloud-based CHMI for intelligent transport systems has been developed. The prototype of software system CHMI4ITSis described.

  5. A Review of Fuzzy Logic and Neural Network Based Intelligent Control Design for Discrete-Time Systems

    Directory of Open Access Journals (Sweden)

    Yiming Jiang

    2016-01-01

    Full Text Available Over the last few decades, the intelligent control methods such as fuzzy logic control (FLC and neural network (NN control have been successfully used in various applications. The rapid development of digital computer based control systems requires control signals to be calculated in a digital or discrete-time form. In this background, the intelligent control methods developed for discrete-time systems have drawn great attentions. This survey aims to present a summary of the state of the art of the design of FLC and NN-based intelligent control for discrete-time systems. For discrete-time FLC systems, numerous remarkable design approaches are introduced and a series of efficient methods to deal with the robustness, stability, and time delay of FLC discrete-time systems are recommended. Techniques for NN-based intelligent control for discrete-time systems, such as adaptive methods and adaptive dynamic programming approaches, are also reviewed. Overall, this paper is devoted to make a brief summary for recent progresses in FLC and NN-based intelligent control design for discrete-time systems as well as to present our thoughts and considerations of recent trends and potential research directions in this area.

  6. Just-in-time Design and Additive Manufacture of Patient-specific Medical Implants

    Science.gov (United States)

    Shidid, Darpan; Leary, Martin; Choong, Peter; Brandt, Milan

    Recent advances in medical imaging and manufacturing science have enabled the design and production of complex, patient-specific orthopaedic implants. Additive Manufacture (AM) generates three-dimensional structures layer by layer, and is not subject to the constraints associated with traditional manufacturing methods. AM provides significant opportunities for the design of novel geometries and complex lattice structures with enhanced functional performance. However, the design and manufacture of patient-specific AM implant structures requires unique expertise in handling various optimization platforms. Furthermore, the design process for complex structures is computationally intensive. The primary aim of this research is to enable the just-in-time customisation of AM prosthesis; whereby AM implant design and manufacture be completed within the time constraints of a single surgical procedure, while minimising prosthesis mass and optimising the lattice structure to match the stiffness of the surrounding bone tissue. In this research, a design approach using raw CT scan data is applied to the AM manufacture of femoral prosthesis. Using the proposed just-in-time concept, the mass of the prosthesis was rapidly designed and manufactured while satisfying the associated structural requirements. Compressive testing of lattice structures manufactured using proposed method shows that the load carrying capacity of the resected composite bone can be recovered by up to 85% and the compressive stiffness of the AM prosthesis is statistically indistinguishable from the stiffness of the initial bone.

  7. Implications of intelligent, integrated microsystems for product design and development

    International Nuclear Information System (INIS)

    MYERS, DAVID R.; MCWHORTER, PAUL J.

    2000-01-01

    Intelligent, integrated microsystems combine some or all of the functions of sensing, processing information, actuation, and communication within a single integrated package, and preferably upon a single silicon chip. As the elements of these highly integrated solutions interact strongly with each other, the microsystem can be neither designed nor fabricated piecemeal, in contrast to the more familiar assembled products. Driven by technological imperatives, microsystems will best be developed by multi-disciplinary teams, most likely within the flatter, less hierarchical organizations. Standardization of design and process tools around a single, dominant technology will expedite economically viable operation under a common production infrastructure. The production base for intelligent, integrated microsystems has elements in common with the mathematical theory of chaos. Similar to chaos theory, the development of microsystems technology will be strongly dependent on, and optimized to, the initial product requirements that will drive standardization--thereby further rewarding early entrants to integrated microsystem technology

  8. Methodology, Algorithms, and Emerging Tool for Automated Design of Intelligent Integrated Multi-Sensor Systems

    Directory of Open Access Journals (Sweden)

    Andreas König

    2009-11-01

    Full Text Available The emergence of novel sensing elements, computing nodes, wireless communication and integration technology provides unprecedented possibilities for the design and application of intelligent systems. Each new application system must be designed from scratch, employing sophisticated methods ranging from conventional signal processing to computational intelligence. Currently, a significant part of this overall algorithmic chain of the computational system model still has to be assembled manually by experienced designers in a time and labor consuming process. In this research work, this challenge is picked up and a methodology and algorithms for automated design of intelligent integrated and resource-aware multi-sensor systems employing multi-objective evolutionary computation are introduced. The proposed methodology tackles the challenge of rapid-prototyping of such systems under realization constraints and, additionally, includes features of system instance specific self-correction for sustained operation of a large volume and in a dynamically changing environment. The extension of these concepts to the reconfigurable hardware platform renders so called self-x sensor systems, which stands, e.g., for self-monitoring, -calibrating, -trimming, and -repairing/-healing systems. Selected experimental results prove the applicability and effectiveness of our proposed methodology and emerging tool. By our approach, competitive results were achieved with regard to classification accuracy, flexibility, and design speed under additional design constraints.

  9. Listening Effort With Cochlear Implant Simulations

    NARCIS (Netherlands)

    Pals, Carina; Sarampalis, Anastasios; Başkent, Deniz

    2013-01-01

    Purpose: Fitting a cochlear implant (CI) for optimal speech perception does not necessarily optimize listening effort. This study aimed to show that listening effort may change between CI processing conditions for which speech intelligibility remains constant. Method: Nineteen normal-hearing

  10. A Framework for Function Allocation in Intelligent Driver Interface Design for Comfort and Safety

    Directory of Open Access Journals (Sweden)

    Wuhong Wang

    2010-11-01

    Full Text Available This paper presents a conceptual framework for ecological function allocation and optimization matching solution for a human-machine interface with intelligent characteristics by lwho does what and when and howr consideration. As a highlighted example in nature-social system, intelligent transportation system has been playing increasingly role in keeping traffic safety, our research is concerned with identifying human factors problem of In-vehicle Support Systems (ISSs and revealing the consequence of the effects of ISSs on driver cognitive interface. The primary objective is to explore some new ergonomics principals that will be able to use to design an intelligent driver interface for comfort and safety, which will address the impact of driver interfaces layouts, traffic information types, and driving behavioral factors on the advanced vehicles safety design.

  11. Practical Consideration Factors to Design Array Configuration of Direction Finding System for Airborne Signal Intelligence

    Directory of Open Access Journals (Sweden)

    Jong-Hwan Lee

    2018-01-01

    Full Text Available Airborne signal intelligence (SIGINT systems must be capable of locating radio signal sources. Direction finding (DF to support this capability is an important factor. There are some practical considerations to be taken when designing the array configuration of a DF system for airborne SIGINT systems. This paper summarizes the practical factors when designing the array configuration of the DF system for airborne SIGINT. In particular, it focuses on four areas: antenna consideration factors when installing the DF system for airborne SIGINT from a practical point of view, array configuration methods for airborne communications intelligence and electronic intelligence, and a numerical analysis to select the optimum antenna position for airborne SIGINT.

  12. Design and Research of Intelligent Remote Control Fan Based on Single Chip Microcomputer and Bluetooth Technology

    Directory of Open Access Journals (Sweden)

    Zhang Xue-Xia

    2017-01-01

    Full Text Available This paper is designed for intelligent remote control fans. The design of the microcontroller as the core, the sensor, Bluetooth and Andrews system applied to the design of intelligent remote control fan. According to the temperature sensor to achieve the indoor temperature collection, to achieve and set the temperature comparison, thus affecting the fan speed. At the same time, the system according to the infrared sensor components to detect external factors, in order to achieve the running or stopping of the fan, that is, to achieve intelligent control of the fan. In addition, the system achieve the Bluetooth and mobile phone Andrews system of effective combination, and through the software program to complete the fan remote operation and wind speed control.

  13. Design of data sampler in intelligent physical start-up system for nuclear reactor

    International Nuclear Information System (INIS)

    Wang Yinli; Ling Qiu

    2007-01-01

    It introduces the design of data sampler in intelligent physical start-up system for nuclear reactor. The hardware frame taking STμPSD3234A as the core and the firmware design based on USB interface are discussed. (authors)

  14. Mechanical stability of immediately loaded implants with various surfaces and designs: a pilot study in dogs.

    Science.gov (United States)

    Neugebauer, Jörg; Weinländer, Michael; Lekovic, Vojislav; von Berg, Karl-Heinz Linne; Zoeller, Joachim E

    2009-01-01

    Immediate loading is among the most innovative techniques in implant therapy today. This pilot study investigates the biomechanical outcome of various designs and surfaces that claim to shorten implant treatment. In each quadrant of two mongrel dogs, four different implants were used for immediate loading. The following implants were placed 3 months after tooth extraction: screw with low thread profile and anodic oxidized surface (LPAOS), solid screw with wide thread profile and titanium plasma spray coating (WPTPS), screw with low profile and hybrid design of double-etched and machined surface (LPHES), and screw with two thread profiles and a sandblasted and acid-etched surface (DTSAE). The insertion torque of each implant was above 35 Ncm. Resonance frequency analysis was performed after implant placement and again after sacrifice. Additionally, the removal torque and the amount of embedded titanium particles in the peri-implant bone were measured. All 16 prostheses were functional after a 5-month loading period. The highest mean removal torque values were recorded with WPTPS implants (24.4 Ncm/mm), followed by DTSAE implants (22.3 Ncm/mm) and LPAOS implants (18.7 Ncm/mm); the lowest score was obtained by LPHES (12.0 Ncm/mm). The ISQ values increased between the time of surgery and recall for all systems on average, but a significant positive correlation was found for DTSAE only. Significantly higher amounts of titanium were found in the surrounding bone with WPTPS (0.76%) and LPAOS (0.41%) in comparison with DTSAE (0.10%) and LPHES (0.03%). Immediate loading is possible with various designs and surfaces if high primary stability can be achieved during implant placement.

  15. Reverse Engineering Nature to Design Biomimetic Total Knee Implants.

    Science.gov (United States)

    Varadarajan, Kartik Mangudi; Zumbrunn, Thomas; Rubash, Harry E; Malchau, Henrik; Muratoglu, Orhun K; Li, Guoan

    2015-10-01

    While contemporary total knee arthroplasty (TKA) provides tremendous clinical benefits, the normal feel and function of the knee is not fully restored. To address this, a novel design process was developed to reverse engineer "biomimetic" articular surfaces that are compatible with normal soft-tissue envelope and kinematics of the knee. The biomimetic articular surface is created by moving the TKA femoral component along in vivo kinematics of normal knees and carving out the tibial articular surface from a rectangular tibial block. Here, we describe the biomimetic design process. In addition, we utilize geometric comparisons and kinematic simulations to show that; (1) tibial articular surfaces of conventional implants are fundamentally incompatible with normal knee motion, and (2) the anatomic geometry of the biomimetic surface contributes directly to restoration of normal knee kinematics. Such biomimetic implants may enable us to achieve the long sought after goal of a "normal" knee post-TKA surgery. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  16. Cognitive Process as a Basis for Intelligent Retrieval Systems Design.

    Science.gov (United States)

    Chen, Hsinchun; Dhar, Vasant

    1991-01-01

    Two studies of the cognitive processes involved in online document-based information retrieval were conducted. These studies led to the development of five computational models of online document retrieval which were incorporated into the design of an "intelligent" document-based retrieval system. Both the system and the broader implications of…

  17. Development of core thermal-hydraulics module for intelligent reactor design system (IRDS)

    International Nuclear Information System (INIS)

    Kugo, Teruhiko; Nakagawa, Masayuki; Fujii, Sadao.

    1994-08-01

    We have developed an innovative reactor core thermal-hydraulics module where a designer can easily and efficiently evaluate his design concept of a new type reactor in the thermal-hydraulics field. The main purpose of this module is to decide a feasible range of basic design parameters of a reactor core in a conceptual design stage of a new type reactor. The module is to be implemented in Intelligent Reactor Design System (IRDS). The module has the following characteristics; 1) to deal with several reactor types, 2) four thermal hydraulics and fuel behavior analysis codes are installed to treat different type of reactors and design detail, 3) to follow flexibly modification of a reactor concept, 4) to provide analysis results in an understandable way so that a designer can easily evaluate feasibility of his concept, and so on. The module runs on an engineering workstation (EWS) and has a user-friendly man-machine interface on a pre- and post-processing. And it is equipped with a function to search a feasible range called as Design Window, for two design parameters by artificial intelligence (AI) technique and knowledge engineering. In this report, structure, guidance for users of an usage of the module and instruction of input data for analysis modules are presented. (author)

  18. MLED_BI: a new BI Design Approach to Support Multilingualism in Business Intelligence

    Directory of Open Access Journals (Sweden)

    Nedim Dedić

    2017-11-01

    Full Text Available Existing approaches to support Multilingualism (ML in Business Intelligence (BI create problems for business users, present a number of challenges from the technical perspective, and lead to issues with logical dependence in the star schema. In this paper, we propose MLED_BI (Multilingual Enabled Design for Business Intelligence, a novel BI design approach to support the application of ML in BI Environment, which overcomes the issues and problems found with existing approaches. The approach is based on a revision of the data warehouse dimensional modelling approach and treats the Star Schema as a higher level entity. This paper describes MLED_BI and the validation and evaluation approach used.

  19. The effect of implant design and bone quality on insertion torque, resonance frequency analysis, and insertion energy during implant placement in low or low- to medium-density bone.

    Science.gov (United States)

    Wang, Tong-Mei; Lee, Ming-Shu; Wang, Juo-Song; Lin, Li-Deh

    2015-01-01

    This study investigated the effect of implant design and bone quality on insertion torque (IT), implant stability quotient (ISQ), and insertion energy (IE) by monitoring the continuous change in IT and ISQ while implants were inserted in artificial bone blocks that simulate bone of poor or poor-to-medium quality. Polyurethane foam blocks (Sawbones) of 0.16 g/cm³ and 0.32 g/cm³ were respectively used to simulate low density and low- to medium-density cancellous bone. In addition, some test blocks were laminated with a 1-mm 0.80 g/cm³ polyurethane layer to simulate cancellous bone with a thin cortical layer. Four different implants (Nobel Biocare Mk III-3.75, Mk III-4.0, Mk IV-4.0, and NobelActive-4.3) were placed into the different test blocks in accordance with the manufacturer's instructions. The IT and ISQ were recorded at every 0.5-mm of inserted length during implant insertion, and IE was calculated from the torque curve. The peak IT (PIT), final IT (FIT), IE, and final ISQ values were statistically analyzed. All implants showed increasing ISQ values when the implant was inserted more deeply. In contrast to the ISQ, implants with different designs showed dissimilar IT curve patterns during the insertion. All implants showed a significant increase in the PIT, FIT, IE, and ISQ when the test-block density increased or when the 1-mm laminated layer was present. Tapered implants showed FIT or PIT values of more than 40 Ncm for all of the laminated test blocks and for the nonlaminated test blocks of low to medium density. Parallel-wall implants did not exhibit PIT or FIT values of more than 40 Ncm for all of the test blocks. NobelActive-4.3 showed a significantly higher FIT, but a significantly lower IE, than Mk IV-4.0. While the existence of cortical bone or implant designs significantly affects the dynamic IT profiles during implant insertion, it does not affect the ISQ to a similar extent. Certain implant designs are more suitable than others if high IT is

  20. Intelligent Design versus Evolution

    Directory of Open Access Journals (Sweden)

    Nathan Aviezer

    2010-07-01

    Full Text Available Intelligent Design (ID burst onto the scene in 1996, with the publication of Darwin’s Black Box by Michael Behe. Since then, there has been a plethora of articles written about ID, both pro and con. However, most of the articles critical of ID deal with peripheral issues, such as whether ID is just another form of creationism or whether ID qualifies as science or whether ID should be taught in public schools. It is our view that the central issue is whether the basic claim of ID is correct. Our goal is fourfold: (I to show that most of the proposed refutations of ID are unconvincing and/or incorrect, (II to describe the single fundamental error of ID, (III to discuss the historic tradition surrounding the ID controversy, showing that ID is an example of a “god-of-the-gaps” argument, and (IV to place the ID controversy in the larger context of proposed proofs for the existence of God, with the emphasis on Jewish tradition.

  1. Influence of Abutment Design on Clinical Status of Peri-Implant Tissues

    OpenAIRE

    Taiyeb-Ali, T. B.; Toh, C. G.; Siar, C. H.; Seiz, D.; Ong, S. T.

    2017-01-01

    Objective: To compare the clinical soft tissue responses around implant tooth-supported 3-unit bridges using tapered abutments with those using butt-joint abutments. Methods: In a split-mouth design study, 8 mm Ankylos (Dentsply Friadent, Germany) implants were placed in the second mandibular molar region of 8 adult Macaca fascicularis monkeys about I month after extraction of all mandibular molars. After 3 months of submerged healing, 3-unit metal bridges were constructed. Clinical data was ...

  2. Research-through-design for considering ethical implications in Ambient Intelligence system design: The Growth Plan approach

    NARCIS (Netherlands)

    Ross, P.R.; Tomico, O.

    2009-01-01

    The technologies we use transform our behaviours and experiences. Particularly Ambient Intelligent (AmI) systems, envisioned to integrate extensively, will have a profound influence on our everyday lives. Design of these systems requires considering what kind of influence is desirable. This brings

  3. IT-tool Concept for Design and Intelligent Motion Control

    DEFF Research Database (Denmark)

    Conrad, Finn; Hansen, Poul Erik; Sørensen, Torben

    2000-01-01

    The paper presents results obtained from a Danish mechatronic research program focusing on intelligent motion control as well as results from the Esprit project SWING on IT-tools for rapid prototyping of fluid power components and systems. A mechatronic test facility with digital controllers for ....... Furthermore, a developed IT-tool concept for controller and system design utilising the ISO 10303 STEP Standard is proposed....

  4. Effects of framework design and layering material on fracture strength of implant-supported zirconia-based molar crowns.

    Science.gov (United States)

    Kamio, Shingo; Komine, Futoshi; Taguchi, Kohei; Iwasaki, Taro; Blatz, Markus B; Matsumura, Hideo

    2015-12-01

    To evaluate the effects of framework design and layering material on the fracture strength of implant-supported zirconia-based molar crowns. Sixty-six titanium abutments (GingiHue Post) were tightened onto dental implants (Implant Lab Analog). These abutment-implant complexes were randomly divided into three groups (n = 22) according to the design of the zirconia framework (Katana), namely, uniform-thickness (UNI), anatomic (ANA), and supported anatomic (SUP) designs. The specimens in each design group were further divided into two subgroups (n = 11): zirconia-based all-ceramic restorations (ZAC group) and zirconia-based restorations with an indirect composite material (Estenia C&B) layered onto the zirconia framework (ZIC group). All crowns were cemented on implant abutments, after which the specimens were tested for fracture resistance. The data were analyzed with the Kruskal-Wallis test and the Mann-Whitney U-test with the Bonferroni correction (α = 0.05). The following mean fracture strength values (kN) were obtained in UNI design, ANA design, and SUP design, respectively: Group ZAC, 3.78, 6.01, 6.50 and Group ZIC, 3.15, 5.65, 5.83. In both the ZAC and ZIC groups, fracture strength was significantly lower for the UNI design than the other two framework designs (P = 0.001). Fracture strength did not significantly differ (P > 0.420) between identical framework designs in the ZAC and ZIC groups. A framework design with standardized layer thickness and adequate support of veneer by zirconia frameworks, as in the ANA and SUP designs, increases fracture resistance in implant-supported zirconia-based restorations under conditions of chewing attrition. Indirect composite material and porcelain perform similarly as layering materials on zirconia frameworks. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Evolution of design considerations in complex craniofacial reconstruction using patient-specific implants.

    Science.gov (United States)

    Peel, Sean; Bhatia, Satyajeet; Eggbeer, Dominic; Morris, Daniel S; Hayhurst, Caroline

    2017-06-01

    Previously published evidence has established major clinical benefits from using computer-aided design, computer-aided manufacturing, and additive manufacturing to produce patient-specific devices. These include cutting guides, drilling guides, positioning guides, and implants. However, custom devices produced using these methods are still not in routine use, particularly by the UK National Health Service. Oft-cited reasons for this slow uptake include the following: a higher up-front cost than conventionally fabricated devices, material-choice uncertainty, and a lack of long-term follow-up due to their relatively recent introduction. This article identifies a further gap in current knowledge - that of design rules, or key specification considerations for complex computer-aided design/computer-aided manufacturing/additive manufacturing devices. This research begins to address the gap by combining a detailed review of the literature with first-hand experience of interdisciplinary collaboration on five craniofacial patient case studies. In each patient case, bony lesions in the orbito-temporal region were segmented, excised, and reconstructed in the virtual environment. Three cases translated these digital plans into theatre via polymer surgical guides. Four cases utilised additive manufacturing to fabricate titanium implants. One implant was machined from polyether ether ketone. From the literature, articles with relevant abstracts were analysed to extract design considerations. In all, 19 frequently recurring design considerations were extracted from previous publications. Nine new design considerations were extracted from the case studies - on the basis of subjective clinical evaluation. These were synthesised to produce a design considerations framework to assist clinicians with prescribing and design engineers with modelling. Promising avenues for further research are proposed.

  6. Controlling the Biomimetic Implant Interface: Modulating Antimicrobial Activity by Spacer Design

    Science.gov (United States)

    Wisdom, Cate; Vanoosten, Sarah Kay; Boone, Kyle W.; Khvostenko, Dmytro; Arnold, Paul M.; Snead, Malcolm L.; Tamerler, Candan

    2016-08-01

    Surgical site infection is a common cause of post-operative morbidity, often leading to implant loosening, ultimately requiring revision surgery, increased costs and worse surgical outcomes. Since implant failure starts at the implant surface, creating and controlling the bio-material interface will play a critical role in reducing infection while improving host cell-to-implant interaction. Here, we engineered a biomimetic interface based upon a chimeric peptide that incorporates a titanium binding peptide (TiBP) with an antimicrobial peptide (AMP) into a single molecule to direct binding to the implant surface and deliver an antimicrobial activity against S. mutans and S. epidermidis, two bacteria which are linked with clinical implant infections. To optimize antimicrobial activity, we investigated the design of the spacer domain separating the two functional domains of the chimeric peptide. Lengthening and changing the amino acid composition of the spacer resulted in an improvement of minimum inhibitory concentration by a three-fold against S. mutans. Surfaces coated with the chimeric peptide reduced dramatically the number of bacteria, with up to a nine-fold reduction for S. mutans and a 48-fold reduction for S. epidermidis. Ab initio predictions of antimicrobial activity based on structural features were confirmed. Host cell attachment and viability at the biomimetic interface were also improved compared to the untreated implant surface. Biomimetic interfaces formed with this chimeric peptide offer interminable potential by coupling antimicrobial and improved host cell responses to implantable titanium materials, and this peptide based approach can be extended to various biomaterials surfaces.

  7. Assessing Speech Intelligibility in Children with Hearing Loss: Toward Revitalizing a Valuable Clinical Tool

    Science.gov (United States)

    Ertmer, David J.

    2011-01-01

    Background: Newborn hearing screening, early intervention programs, and advancements in cochlear implant and hearing aid technology have greatly increased opportunities for children with hearing loss to become intelligible talkers. Optimizing speech intelligibility requires that progress be monitored closely. Although direct assessment of…

  8. Should Intelligent Design Be Taught in Public School Science Classrooms?

    Science.gov (United States)

    Plutynski, Anya

    2010-01-01

    A variety of different arguments have been offered for teaching "both sides" of the evolution/ID debate in public schools. This article reviews five of the most common types of arguments advanced by proponents of Intelligent Design and demonstrates how and why they are founded on confusion and misunderstanding. It argues on behalf of teaching…

  9. The application of artificial intelligence technology to aeronautical system design

    Science.gov (United States)

    Bouchard, E. E.; Kidwell, G. H.; Rogan, J. E.

    1988-01-01

    This paper describes the automation of one class of aeronautical design activity using artificial intelligence and advanced software techniques. Its purpose is to suggest concepts, terminology, and approaches that may be useful in enhancing design automation. By understanding the basic concepts and tasks in design, and the technologies that are available, it will be possible to produce, in the future, systems whose capabilities far exceed those of today's methods. Some of the tasks that will be discussed have already been automated and are in production use, resulting in significant productivity benefits. The concepts and techniques discussed are applicable to all design activity, though aeronautical applications are specifically presented.

  10. Using protistan examples to dispel the myths of intelligent design.

    Science.gov (United States)

    Farmer, Mark A; Habura, Andrea

    2010-01-01

    In recent years the teaching of the religiously based philosophy of intelligent design (ID) has been proposed as an alternative to modern evolutionary theory. Advocates of ID are largely motivated by their opposition to naturalistic explanations of biological diversity, in accordance with their goal of challenging the philosophy of scientific materialism. Intelligent design has been embraced by a wide variety of creationists who promote highly questionable claims that purport to show the inadequacy of evolutionary theory, which they consider to be a threat to a theistic worldview. We find that examples from protistan biology are well suited for providing evidence of many key evolutionary concepts, and have often been misrepresented or roundly ignored by ID advocates. These include examples of adaptations and radiations that are said to be statistically impossible, as well as examples of speciation both in the laboratory and as documented in the fossil record. Because many biologists may not be familiar with the richness of the protist evolution dataset or with ID-based criticisms of evolution, we provide examples of current ID arguments and specific protistan counter-examples.

  11. An intelligent and interactive carpet role of design in a textile innovation project

    NARCIS (Netherlands)

    Deckers, E.J.L.; Stouw, van der B.; Peutz, J.

    2012-01-01

    This paper presents an ongoing innovation project on the development of an intelligent and interactive carpet called PeR+, short for Perception Rug Plus. This design-research project is a collaboration between an international flooring company, DESSO, and the Department of Industrial Design at the

  12. Designing and implementation of an intelligent manufacturing system

    Directory of Open Access Journals (Sweden)

    Michael Peschl

    2011-12-01

    Full Text Available Purpose: The goal of XPRESS is to establish a breakthrough for the factory of the future with a new flexible production concept based on the generic idea of “specialized intelligent process units” (“Manufactrons” integrated in cross-sectoral learning networks for a customized production. XPRESS meets the challenge to integrate intelligence and flexibility at the “highest” level of the production control system as well as at the “lowest” level of the singular machine.Design/methodology/approach: Architecture of a manufactronic networked factory is presented, making it possible to generate particular manufactrons for the specific tasks, based on the automatic analysis of its required features.Findings: The manufactronic factory concept meets the challenge to integrate intelligence and flexibility at the “highest” level of the production control system as well as at the “lowest” level of the singular machine. The quality assurance system provided a 100% inline quality monitoring, destructive costs reduced 30%-49%, the ramp-up time for the set-up of production lines decreased up to 50% and the changeover time decreased up to 80%.Research limitations/implications: Specific features of the designed manufactronic architecture, namely the transport manufactrons, have been tested as separate mechanisms which can be merged into the final comprehensive at a later stage.Practical implications: This concept is demonstrated in the automotive and aeronautics industries, but can be easily transferred to nearly all production processes. Using the manufactronic approach, industrial players will be able to anticipate and to respond to rapidly changing consumer needs, producing high-quality products in adequate quantities while reducing costs.Originality/value: Assembly units composed of manufactrons can flexibly perform varying types of complex tasks, whereas today this is limited to a few pre-defined tasks. Additionally, radical

  13. A phone-assistive device based on Bluetooth technology for cochlear implant users.

    Science.gov (United States)

    Qian, Haifeng; Loizou, Philipos C; Dorman, Michael F

    2003-09-01

    Hearing-impaired people, and particularly hearing-aid and cochlear-implant users, often have difficulty communicating over the telephone. The intelligibility of telephone speech is considerably lower than the intelligibility of face-to-face speech. This is partly because of lack of visual cues, limited telephone bandwidth, and background noise. In addition, cellphones may cause interference with the hearing aid or cochlear implant. To address these problems that hearing-impaired people experience with telephones, this paper proposes a wireless phone adapter that can be used to route the audio signal directly to the hearing aid or cochlear implant processor. This adapter is based on Bluetooth technology. The favorable features of this new wireless technology make the adapter superior to traditional assistive listening devices. A hardware prototype was built and software programs were written to implement the headset profile in the Bluetooth specification. Three cochlear implant users were tested with the proposed phone-adapter and reported good speech quality.

  14. Version II of the ISACS Intelligent Coordinator: object-oriented design and implementation

    International Nuclear Information System (INIS)

    Liholt, V.; Miazza, P.

    1993-03-01

    Within the Integrated Surveillance And Control System (ISACS-1)prototype coupled to the NORS PWR simulator, the Intelligent Coordinator (IC) is a central software module. It provides for example the operators with high-level knowledge on the overall plant status. This is performed through the integration of information fetched from the process and different Computerised Operator Support Systems. In 1991, the first version of ISACS and its associated Intelligent Information Coordinator came into operation. During initial ISACS-1 test runs, minor malfunctions were evidently detected in the IC software. At the same time, new reasoning capabilities were also required. A careful analysis of the IC software, implemented with the software shell G2, revealed that its software structure did not allow any easy extension. This report presents in detail the object-oriented redesign of the Intelligent Coordinator of ISACS-1 Firstly, the main capabilities of the Intelligent Coordinator are recalled. Then, the different object classes composing the application are commented in detail The implementation of this new design with the G2 software shell is illustrated through examples. This allows us at the same time to comment our experiences made with the G2 tool. Finally, a quantitative comparison between the successive versions of the Intelligent Coordinator shows clearly the improvements achieved by this object-oriented redesign. A drastic reduction of the number of production rules attests that a better representation of the plant expert knowledge embedded in the Intelligent Coordinator has been achieved. (author)

  15. Design and health care: a study of virtual design and direct metal lasersintering of titanium alloy for the production of customized facial implants

    Directory of Open Access Journals (Sweden)

    Wilson Kindlein Junior

    2009-11-01

    Full Text Available The increase in life expectancy and a great number ofaccidents lead to higher demand for medical products,including corrective implants. Patients with tumors or traumas need to replace injured areas in order to restore their aesthetic and structural function. Currently, the available craniofacial implants present a standard geometry and seldom generate satisfactory results. Customized implants, on theother hand, are designed to conform exactly to individual patient’s anatomy. This way, the use of customized implantscan show beneficial effects to the patient and the surgicalteam. In this study, the design and manufacturing of customized implant prior to surgery were described. Implant shape and functional requirements were established by digitaldata based on CT-scans and mirroring operations. The designprocess of customized mandible prosthesis is illustrated as well as its manufacturing process (direct metal laser sinteringand quality control. Laser sintering process and its constraints for the production of customized implants in titanium alloy(Ti-6Al-4V with complex geometry and internal structures are reported.

  16. Artificial intelligence in process design and operation

    International Nuclear Information System (INIS)

    Sudduth, A.L.

    1988-01-01

    Artificial Intelligence (AI) has recently become prominent in the discussion of computer applications in the utility business. In order to assess this technology, a research project was performed to determine whether software development techniques based on AI could be used to facilitate management of information associated with the design of a generating station. The approach taken was the development of an expert system, using a relatively simple set of rules acting on a more complex knowledge base. A successful prototype for the application was developed and its potential extension to a production environment demonstrated. During the course of prototype development, other possible applications of AI in design engineering were discovered, and areas of particular interest selected for further investigation. A plan for AI R and D was formulated. That plan and other possible future work in AI are discussed

  17. Concept of object-oriented intelligent support for nuclear reactor designing

    International Nuclear Information System (INIS)

    Yoshikawa, H.; Gofuku, A.

    1991-01-01

    A concept of object-oriented intelligent CAD/CAE environment is proposed for the conceptual designing of advanced nuclear reactor system. It is composed of (i) object-oriented frame-structure database which represents the hierarchical relationship of the composite elements of reactor core and the physical properties, and (ii) object-oriented modularization of the elementary calculation processes, which are needed for reactor core design analysis. As an example practise, an object-oriented frame structure is constructed for representing a 3D configuration of a special fuel element of a space reactor design, by using a general-purpose expert system shell ESHELL/X. (author)

  18. Intelligent stochastic optimization routine for in-core fuel cycle design

    International Nuclear Information System (INIS)

    Parks, G.T.

    1988-01-01

    Any reactor fuel management strategy must specify the fuel design, batch sizes, loading configurations, and operational procedures for each cycle. To permit detailed design studies, the complex core characteristics must necessarily be computer modeled. Thus, the identification of an optimal fuel cycle design represents an optimization problem with a nonlinear objective function (OF), nonlinear safety constraints, many control variables, and no direct derivative information. Most available library routines cannot tackle such problems; this paper introduces an intelligent stochastic optimization routine that can. There has been considerable interest recently in the application of stochastic methods to difficult optimization problems, based on the statistical mechanics algorithms originally attributed to Metropolis. Previous work showed that, in optimizing the performance of a British advanced gas-cooled reactor fuel stringer, a rudimentary version of the Metropolis algorithm performed as efficiently as the only suitable routine in the Numerical Algorithms Group library. Since then the performance of the Metropolis algorithm has been considerably enhanced by the introduction of self-tuning capabilities by which the routine adjusts its control parameters and search pattern as it progresses. Both features can be viewed as examples of artificial intelligence, in which the routine uses the accumulation of data, or experience, to guide its future actions

  19. Combined Intelligent Control (CIC an Intelligent Decision Making Algorithm

    Directory of Open Access Journals (Sweden)

    Moteaal Asadi Shirzi

    2007-03-01

    Full Text Available The focus of this research is to introduce the concept of combined intelligent control (CIC as an effective architecture for decision-making and control of intelligent agents and multi-robot sets. Basically, the CIC is a combination of various architectures and methods from fields such as artificial intelligence, Distributed Artificial Intelligence (DAI, control and biological computing. Although any intelligent architecture may be very effective for some specific applications, it could be less for others. Therefore, CIC combines and arranges them in a way that the strengths of any approach cover the weaknesses of others. In this paper first, we introduce some intelligent architectures from a new aspect. Afterward, we offer the CIC by combining them. CIC has been executed in a multi-agent set. In this set, robots must cooperate to perform some various tasks in a complex and nondeterministic environment with a low sensory feedback and relationship. In order to investigate, improve, and correct the combined intelligent control method, simulation software has been designed which will be presented and considered. To show the ability of the CIC algorithm as a distributed architecture, a central algorithm is designed and compared with the CIC.

  20. Investigation of the influence of design details on short implant biomechanics using colorimetric photoelastic analysis: a pilot study

    Directory of Open Access Journals (Sweden)

    João César Zielak

    Full Text Available Introduction : The clinical survival of a dental implant is directly related to its biomechanical behavior. Since short implants present lower bone/implant contact area, their design may be more critical to stress distribution to surrounding tissues. Photoelastic analysis is a biomechanical method that uses either simple qualitative results or complex calculations for the acquisition of quantitative data. In order to simplify data acquisition, we performed a pilot study to demonstrate the investigation of biomechanics via correlation of the findings of colorimetric photoelastic analysis (stress transition areas; STAs of design details between two types of short dental implants under axial loads. Methods Implants were embedded in a soft photoelastic resin and axially loaded with 10 and 20 N of force. Implant design features were correlated with the STAs (mm2 of the colored fringes of colorimetric photoelastic analysis. Results Under a 10 N load, the surface area of the implants was directly related to STA, whereas under a 20 N load, the surface area and thread height were inversely related to STA. Conclusion A smaller external thread height seemed to improve the biomechanical performance of the short implants investigated.

  1. Interface Design Concepts in the Development of ELSA, an Intelligent Electronic Library Search Assistant.

    Science.gov (United States)

    Denning, Rebecca; Smith, Philip J.

    1994-01-01

    Describes issues and advances in the design of appropriate inference engines and knowledge structures needed by commercially feasible intelligent intermediary systems for information retrieval. Issues associated with the design of interfaces to such functions are discussed in detail. Design principles for guiding implementation of these interfaces…

  2. A constraint-based approach to intelligent support of nuclear reactor design

    International Nuclear Information System (INIS)

    Furuta, Kazuo

    1993-01-01

    Constraint is a powerful representation to formulate and solve problems in design; a constraint-based approach to intelligent support of nuclear reactor design is proposed. We first discuss the features of the approach, and then present the architecture of a nuclear reactor design support system under development. In this design support system, the knowledge base contains constraints useful to structure the design space as object class definitions, and several types of constraint resolvers are provided as design support subsystems. The adopted method of constraint resolution are explained in detail. The usefulness of the approach is demonstrated using two design problems: Design window search and multiobjective optimization in nuclear reactor design. (orig./HP)

  3. Design of a Dynamic Spinal Implant for the treatment of Early Onset Scoliosis

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Alvarez, A.; Shepherd, D.; Dearn, K.

    2016-07-01

    GSDyn (Growing Spine Dynamic) is a novel implant that has been designed and manufactured to mechanically correct three dimensional spinal deformities in children with Early Onset Scoliosis (EOS). The innovative element of the implant is the lengthening mechanism that allows the elongation surgeries to be easier, faster and less invasive procedures than with other mechanical implants on the market, as they can be performed under local anaesthetics and with a surgical incision of less than one centimetre. It also includes a dynamic system to prevent implant breakage and anchor loosening, two of the most common complications occurring in this treatment. The development of the implant has been guided by spinal surgeons. Finite Element Analysis has been performed to evaluate the behaviour of the device under different loading conditions and two working prototypes have been successfully manufactured. (Author)

  4. Embedded systems design issues in ambient intelligence

    NARCIS (Netherlands)

    Aarts, E.H.L.; Roovers, R.L.J.; Basten, A.A.; Geilen, M.C.W.; Groot, de H.W.H.

    2003-01-01

    The vision of ambient intelligence opens a world of unprecedented ex.periences: the interaction of people with electronic devices is changed as context awareness, natural interfaces and ubiquitous availability of information are realized. We analyze the consequences of the ambient intelligence

  5. DESIGN AND DEVELOPMENT OF AN INTELLIGENT INSTRUCTIVE SYSTEM: Scholastic Tutor (St*

    Directory of Open Access Journals (Sweden)

    Adebiyi MARION O.

    2011-10-01

    Full Text Available Intelligent Tutoring Systems (ITS is an act of impacting knowledge while computer teaches or acts as the tutors which is a supplement to human teachers. The ability to teach each student based on their individual abilities a major advantage posed by ITS and that is why it is being embraced in this work. This work describes the design of an Intelligent Tutoring System that was tagged Scholastic tutor (St*, which has the individual learning and collaborative problem-solving modules. The individual tutoring module was designed to provide appropriate lessons to individuals based on his/her background knowledge level, interest, and learning style and assimilation rate prior to using the tutoring system. A software agent is used to monitor and process these parameters, arrange the learning topic, and exercises, for each individual. The collaborative problem-based tutoring module was designed to present tutorial problems and provides facilities to assist learners with some useful information and advice for problem solving. This is because the present lecturing methodology which is the conventional teaching methodology provides an interactive classroom setting that promotes the open exchange of ideas and allows for the lecturer to communicate directly with the students but has a great disadvantage of not teaching all the students according to their own learning rate and pace. The intelligent tutor solves this problem by providing individualised learning for each student where they can learn according to their own pace and learning abilities it will provide remedy and advice when learners encounter difficulties during learning session. The classical model of ITS architecture has four main modules; domain model, student model, tutoring model and the user interface model.

  6. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs.

    Science.gov (United States)

    Sing, Swee Leong; An, Jia; Yeong, Wai Yee; Wiria, Florencia Edith

    2016-03-01

    Additive manufacturing (AM), also commonly known as 3D printing, allows the direct fabrication of functional parts with complex shapes from digital models. In this review, the current progress of two AM processes suitable for metallic orthopaedic implant applications, namely selective laser melting (SLM) and electron beam melting (EBM) are presented. Several critical design factors such as the need for data acquisition for patient-specific design, design dependent porosity for osteo-inductive implants, surface topology of the implants and design for reduction of stress-shielding in implants are discussed. Additive manufactured biomaterials such as 316L stainless steel, titanium-6aluminium-4vanadium (Ti6Al4V) and cobalt-chromium (CoCr) are highlighted. Limitations and future potential of such technologies are also explored. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. Spatial Release From Masking in Simulated Cochlear Implant Users With and Without Access to Low-Frequency Acoustic Hearing

    Directory of Open Access Journals (Sweden)

    Ben Williges

    2015-12-01

    Full Text Available For normal-hearing listeners, speech intelligibility improves if speech and noise are spatially separated. While this spatial release from masking has already been quantified in normal-hearing listeners in many studies, it is less clear how spatial release from masking changes in cochlear implant listeners with and without access to low-frequency acoustic hearing. Spatial release from masking depends on differences in access to speech cues due to hearing status and hearing device. To investigate the influence of these factors on speech intelligibility, the present study measured speech reception thresholds in spatially separated speech and noise for 10 different listener types. A vocoder was used to simulate cochlear implant processing and low-frequency filtering was used to simulate residual low-frequency hearing. These forms of processing were combined to simulate cochlear implant listening, listening based on low-frequency residual hearing, and combinations thereof. Simulated cochlear implant users with additional low-frequency acoustic hearing showed better speech intelligibility in noise than simulated cochlear implant users without acoustic hearing and had access to more spatial speech cues (e.g., higher binaural squelch. Cochlear implant listener types showed higher spatial release from masking with bilateral access to low-frequency acoustic hearing than without. A binaural speech intelligibility model with normal binaural processing showed overall good agreement with measured speech reception thresholds, spatial release from masking, and spatial speech cues. This indicates that differences in speech cues available to listener types are sufficient to explain the changes of spatial release from masking across these simulated listener types.

  8. Design And Implementation of Dsp-Based Intelligent Controller For Automobile Braking System

    Directory of Open Access Journals (Sweden)

    S.N. Sidek and M.J.E. Salami

    2012-08-01

    Full Text Available An intelligent braking system has great potential applications especially, in developed countries where research on smart vehicle and intelligent highways are receiving ample attention. The system when integrated with other subsystems like automatic traction control, intelligent throttle, and auto cruise systems, etc will result in smart vehicle maneuver. The driver at the end of the day will become the passenger, safety accorded the highest priority and the journey optimized in term of time duration, cost, efficiency and comfortability. The impact of such design and development will cater for the need of contemporary society that aspires to a quality drive as well as to accommodate the advancement of technology especially in the area of smart sensors and actuators.  The emergence of digital signal processor enhances the capacity and features of universal microcontroller.  This paper introduces the use of TI DSP, TMS320LF2407 as an engine of the system. The overall system is designed so that the value of inter-vehicle distance from infrared laser sensor and speed of follower car from speedometer are fed into the DSP for processing, resulting in the DSP issuing commands to the actuator to function appropriately.Key words:  Smart Vehicle, Digital Signal Processor, Fuzzy Controller, and Infra Red Laser Sensor

  9. Influence of prosthesis design and implantation technique on implant stresses after cementless revision THR

    Directory of Open Access Journals (Sweden)

    Duda Georg N

    2011-05-01

    Full Text Available Abstract Background Femoral offset influences the forces at the hip and the implant stresses after revision THR. For extended bone defects, these forces may cause considerable bending moments within the implant, possibly leading to implant failure. This study investigates the influences of femoral anteversion and offset on stresses in the Wagner SL revision stem implant under varying extents of bone defect conditions. Methods Wagner SL revision stems with standard (34 mm and increased offset (44 mm were virtually implanted in a model femur with bone defects of variable extent (Paprosky I to IIIb. Variations in surgical technique were simulated by implanting the stems each at 4° or 14° of anteversion. Muscle and joint contact forces were applied to the reconstruction and implant stresses were determined using finite element analyses. Results Whilst increasing the implant's offset by 10 mm led to increased implant stresses (16.7% in peak tensile stresses, altering anteversion played a lesser role (5%. Generally, larger stresses were observed with reduced bone support: implant stresses increased by as much as 59% for a type IIIb defect. With increased offset, the maximum tensile stress was 225 MPa. Conclusion Although increased stresses were observed within the stem with larger offset and increased anteversion, these findings indicate that restoration of offset, key to restoring joint function, is unlikely to result in excessive implant stresses under routine activities if appropriate fixation can be achieved.

  10. An Intelligent System for Modelling, Design and Analysis of Chemical Processes

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    ICAS, Integrated Computer Aided System, is a software that consists of a number of intelligent tools, which are very suitable, among others, for computer aided modelling, sustainable design of chemical and biochemical processes, and design-analysis of product-process monitoring systems. Each...... the computer aided modelling tool will illustrate how to generate a desired process model, how to analyze the model equations, how to extract data and identify the model and make it ready for various types of application. In sustainable process design, the example will highlight the issue of integration...

  11. Embodiment and Estrangement: Results from a First-in-Human "Intelligent BCI" Trial.

    Science.gov (United States)

    Gilbert, F; Cook, M; O'Brien, T; Illes, J

    2017-11-11

    While new generations of implantable brain computer interface (BCI) devices are being developed, evidence in the literature about their impact on the patient experience is lagging. In this article, we address this knowledge gap by analysing data from the first-in-human clinical trial to study patients with implanted BCI advisory devices. We explored perceptions of self-change across six patients who volunteered to be implanted with artificially intelligent BCI devices. We used qualitative methodological tools grounded in phenomenology to conduct in-depth, semi-structured interviews. Results show that, on the one hand, BCIs can positively increase a sense of the self and control; on the other hand, they can induce radical distress, feelings of loss of control, and a rupture of patient identity. We conclude by offering suggestions for the proactive creation of preparedness protocols specific to intelligent-predictive and advisory-BCI technologies essential to prevent potential iatrogenic harms.

  12. Monitoring osseointegration and developing intelligent systems (Conference Presentation)

    Science.gov (United States)

    Salvino, Liming W.

    2017-05-01

    Effective monitoring of structural and biological systems is an extremely important research area that enables technology development for future intelligent devices, platforms, and systems. This presentation provides an overview of research efforts funded by the Office of Naval Research (ONR) to establish structural health monitoring (SHM) methodologies in the human domain. Basic science efforts are needed to utilize SHM sensing, data analysis, modeling, and algorithms to obtain the relevant physiological and biological information for human-specific health and performance conditions. This overview of current research efforts is based on the Monitoring Osseointegrated Prosthesis (MOIP) program. MOIP develops implantable and intelligent prosthetics that are directly anchored to the bone of residual limbs. Through real-time monitoring, sensing, and responding to osseointegration of bones and implants as well as interface conditions and environment, our research program aims to obtain individualized actionable information for implant failure identification, load estimation, infection mitigation and treatment, as well as healing assessment. Looking ahead to achieve ultimate goals of SHM, we seek to expand our research areas to cover monitoring human, biological and engineered systems, as well as human-machine interfaces. Examples of such include 1) brainwave monitoring and neurological control, 2) detecting and evaluating brain injuries, 3) monitoring and maximizing human-technological object teaming, and 4) closed-loop setups in which actions can be triggered automatically based on sensors, actuators, and data signatures. Finally, some ongoing and future collaborations across different disciplines for the development of knowledge automation and intelligent systems will be discussed.

  13. Design of a new electrode array for cochlear implants

    International Nuclear Information System (INIS)

    Kha, H.; Chen, B.

    2010-01-01

    Full text: This study aims to design a new electrode array which can be precisely located beneath the basilar membrane within the cochlear scala tympani. This placement of the electrode array is beneficial for increasing the effectiveness of the electrical stimulation of the audi tory nerves and maximising the growth factors delivered into the cochlea for regenerating the progressively lost auditory neurons, thereby significantly improving performance of the cochlear implant systems. Methods The design process involved two steps. First, the biocom patible nitinol-based shape memory alloy, of which mechanical deformation can be controlled using electrical cUTents/fields act vated by body temperature, was selected. Second, five different designs of the electrode array with embedded nitinol actuators were studied (Table I). The finite element method was employed to predict final positions of these electrode arrays. Results The electrode array with three 6 mm actuators at 2-8, 8-J4 and 14-20 mm from the tip (Fig. I) was found to be located most closely to the basilar membrane, compared with those in the other four cases. Conclusions A new nitinol cochlear implant electrode array with three embedded nitinol actuators has been designed. This electrode array is expected to be located beneath the basilar membrane for maximising the delivery of growth factors. Future research will involve the manufacturing of a prototype of this electrode array for use in insertion experiments and neurotrophin release tests.

  14. DESIGN AN INTELLIGENT CONTROLLER FOR FULL VEHICLE NONLINEAR ACTIVE SUSPENSION SYSTEMS

    OpenAIRE

    Aldair, A. A.; Wang, W. J.

    2011-01-01

    The main objective of designed the controller for a vehicle suspension system is to reduce the discomfort sensed by passengers which arises from road roughness and to increase the ride handling associated with the pitching and rolling movements. This necessitates a very fast and accurate controller to meet as much control objectives, as possible. Therefore, this paper deals with an artificial intelligence Neuro-Fuzzy (NF) technique to design a robust controller to meet the control objectives....

  15. A study of the bone healing kinetics of plateau versus screw root design titanium dental implants.

    LENUS (Irish Health Repository)

    Leonard, Gary

    2009-03-01

    This study was designed to compare the bone healing process around plateau root from (PRF) and screw root from (SRF) titanium dental implants over the immediate 12 week healing period post implant placement.

  16. Design and Optimization of Intelligent Service Robot Suspension System Using Dynamic Model

    International Nuclear Information System (INIS)

    Choi, Seong Hoon; Park, Tae Won; Lee, Soo Ho; Jung, Sung Pil; Jun, Kab Jin; Yoon, J. W.

    2010-01-01

    Recently, an intelligent service robot is being developed for use in guiding and providing information to visitors about the building at public institutions. The intelligent robot has a sensor at the bottom to recognize its location. Four wheels, which are arranged in the form of a lozenge, support the robot. This robot cannot be operated on uneven ground because its driving parts are attached to its main body that contains the important internal components. Continuous impact with the ground can change the precise positions of the components and weaken the connection between each structural part. In this paper, the design of the suspension system for such a robot is described. The dynamic model of the robot is created, and the driving characteristics of the robot with the designed suspension system are simulated. Additionally, the suspension system is optimized to reduce the impact for the robot components

  17. Methodology, Birth Order, Intelligence, and Personality.

    Science.gov (United States)

    Michalski, Richard L.; Shackelford, Todd K.

    2001-01-01

    Critiques recent research on the effects of birth order on intelligence and personality, which found that the between-family design revealed that birth order negatively related to intelligence, while the within-family design revealed that birth order was unrelated to intelligence. Suggests that it may not be intelligence that co-varies with birth…

  18. Design and Implementation of Cloud Platform for Intelligent Logistics in the Trend of Intellectualization

    Institute of Scientific and Technical Information of China (English)

    Mengke Yang; Movahedipour Mahmood; Xiaoguang Zhou; Salam Shafaq; Latif Zahid

    2017-01-01

    Intellectualization has become a new trend for telecom industry, driven by in-telligent technology including cloud comput-ing, big data, and Internet of things. In order to satisfy the service demand of intelligent logistics, this paper designed an intelligent logistics platform containing the main ap-plications such as e-commerce, self-service transceiver, big data analysis, path location and distribution optimization. The intelligent logistics service platform has been built based on cloud computing to collect, store and han-dling multi-source heterogeneous mass data from sensors, RFID electronic tag, vehicle ter-minals and APP, so that the open-access cloud services including distribution, positioning, navigation, scheduling and other data services can be provided for the logistics distribution applications. And then the architecture of in-telligent logistics cloud platform containing software layer (SaaS), platform layer (PaaS) and infrastructure (IaaS) has been constructed accordance with the core technology relative high concurrent processing technique, hetero-geneous terminal data access, encapsulation and data mining. Therefore, intelligent logis-tics cloud platform can be carried out by the service mode for implementation to accelerate the construction of the symbiotic win-win logistics ecological system and the benign de-velopment of the ICT industry in the trend of intellectualization in China.

  19. Dental implant customization using numerical optimization design and 3-dimensional printing fabrication of zirconia ceramic.

    Science.gov (United States)

    Cheng, Yung-Chang; Lin, Deng-Huei; Jiang, Cho-Pei; Lin, Yuan-Min

    2017-05-01

    This study proposes a new methodology for dental implant customization consisting of numerical geometric optimization and 3-dimensional printing fabrication of zirconia ceramic. In the numerical modeling, exogenous factors for implant shape include the thread pitch, thread depth, maximal diameter of implant neck, and body size. Endogenous factors are bone density, cortical bone thickness, and non-osseointegration. An integration procedure, including uniform design method, Kriging interpolation and genetic algorithm, is applied to optimize the geometry of dental implants. The threshold of minimal micromotion for optimization evaluation was 100 μm. The optimized model is imported to the 3-dimensional slurry printer to fabricate the zirconia green body (powder is bonded by polymer weakly) of the implant. The sintered implant is obtained using a 2-stage sintering process. Twelve models are constructed according to uniform design method and simulated the micromotion behavior using finite element modeling. The result of uniform design models yields a set of exogenous factors that can provide the minimal micromotion (30.61 μm), as a suitable model. Kriging interpolation and genetic algorithm modified the exogenous factor of the suitable model, resulting in 27.11 μm as an optimization model. Experimental results show that the 3-dimensional slurry printer successfully fabricated the green body of the optimization model, but the accuracy of sintered part still needs to be improved. In addition, the scanning electron microscopy morphology is a stabilized t-phase microstructure, and the average compressive strength of the sintered part is 632.1 MPa. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Application of computer graphics in the design of custom orthopedic implants.

    Science.gov (United States)

    Bechtold, J E

    1986-10-01

    Implementation of newly developed computer modelling techniques and computer graphics displays and software have greatly aided the orthopedic design engineer and physician in creating a custom implant with good anatomic conformity in a short turnaround time. Further advances in computerized design and manufacturing will continue to simplify the development of custom prostheses and enlarge their niche in the joint replacement market.

  1. Issues regarding the design and acceptance of intelligent support systems for reactor operators

    International Nuclear Information System (INIS)

    Bernard, J.A.

    1992-01-01

    In this paper, factors relevant to the design and acceptance of intelligent support systems for the operation of nuclear power plants are enumerated and discussed. The central premise is that conventional expert systems which encode experiential knowledge in production rules are not a suitable vehicle for the creation of practical operator support systems. The principal difficulty is the need for real-time operation. This in turn means that intelligent support systems will have knowledge bases derived from temporally accurate plant models, inference engines that permit revisions in the search process so as to accommodate revised or new data, and man-machine interfaces that do not require any human input. Such systems will have to be heavily instrumented and the associated knowledge bases will require a hierarchical organization so as to emulate human approaches to analysis. Issues related to operator acceptance of intelligent support tools are then reviewed. Possible applications are described and the relative merits of the machine- and human-centered approaches to the implementation of intelligent support systems are enumerated. The paper concludes with a plea for additional experimental evaluations

  2. Does the design of a robot influence its animacy and perceived intelligence?

    NARCIS (Netherlands)

    Bartneck, C.; Kanda, T.; Mubin, O.; Al Mahmud, A.

    2009-01-01

    Robots exhibit life-like behavior by performing intelligent actions. To enhance human-robot interaction it is necessary to investigate and understand how end-users perceive such animate behavior. In this paper, we report an experiment to investigate how people perceived different designs of robot

  3. Empirical versus Random Item Selection in the Design of Intelligence Test Short Forms--The WISC-R Example.

    Science.gov (United States)

    Goh, David S.

    1979-01-01

    The advantages of using psychometric thoery to design short forms of intelligence tests are demonstrated by comparing such usage to a systematic random procedure that has previously been used. The Wechsler Intelligence Scale for Children Revised (WISC-R) Short Form is presented as an example. (JKS)

  4. Self-Calibration and Optimal Response in Intelligent Sensors Design Based on Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Gilberto Bojorquez

    2007-08-01

    Full Text Available The development of smart sensors involves the design of reconfigurable systemscapable of working with different input sensors. Reconfigurable systems ideally shouldspend the least possible amount of time in their calibration. An autocalibration algorithmfor intelligent sensors should be able to fix major problems such as offset, variation of gainand lack of linearity, as accurately as possible. This paper describes a new autocalibrationmethodology for nonlinear intelligent sensors based on artificial neural networks, ANN.The methodology involves analysis of several network topologies and training algorithms.The proposed method was compared against the piecewise and polynomial linearizationmethods. Method comparison was achieved using different number of calibration points,and several nonlinear levels of the input signal. This paper also shows that the proposedmethod turned out to have a better overall accuracy than the other two methods. Besides,experimentation results and analysis of the complete study, the paper describes theimplementation of the ANN in a microcontroller unit, MCU. In order to illustrate themethod capability to build autocalibration and reconfigurable systems, a temperaturemeasurement system was designed and tested. The proposed method is an improvement over the classic autocalibration methodologies, because it impacts on the design process of intelligent sensors, autocalibration methodologies and their associated factors, like time and cost.

  5. SOA enabled ELTA: approach in designing business intelligence solutions in Era of Big Data

    Directory of Open Access Journals (Sweden)

    Viktor Dmitriyev

    2015-01-01

    Full Text Available The current work presents a new approach for designing business intelligence solutions. In the Era of Big Data, former and robust analytical concepts and utilities need to adapt themselves to the changed market circumstances. The main focus of this work is to address the acceleration of building process of a “data-centric” Business Intelligence (BI solution besides preparing BI solutions for Big Data utilization. This research addresses the following goals: reducing the time spent during business intelligence solution’s design phase; achieving flexibility of BI solution by adding new data sources; and preparing BI solution for utilizing Big Data concepts. This research proposes an extension of the existing Extract, Load and Transform (ELT approach to the new one Extract, Load, Transform and Analyze (ELTA supported by service-orientation concept. Additionally, the proposed model incorporates Service-Oriented Architecture concept as a mediator for the transformation phase. On one side, such incorporation brings flexibility to the BI solution and on the other side; it reduces the complexity of the whole system by moving some responsibilities to external authorities.

  6. Towards Intelligent Supply Chains

    DEFF Research Database (Denmark)

    Siurdyban, Artur; Møller, Charles

    2012-01-01

    applied to the context of organizational processes can increase the success rate of business operations. The framework is created using a set of theoretical based constructs grounded in a discussion across several streams of research including psychology, pedagogy, artificial intelligence, learning...... of deploying inapt operations leading to deterioration of profits. To address this problem, we propose a unified business process design framework based on the paradigm of intelligence. Intelligence allows humans and human-designed systems cope with environmental volatility, and we argue that its principles......, business process management and supply chain management. It outlines a number of system tasks combined in four integrated management perspectives: build, execute, grow and innovate, put forward as business process design propositions for Intelligent Supply Chains....

  7. Improvement of intelligibility of ideal binary-masked noisy speech by adding background noise.

    Science.gov (United States)

    Cao, Shuyang; Li, Liang; Wu, Xihong

    2011-04-01

    When a target-speech/masker mixture is processed with the signal-separation technique, ideal binary mask (IBM), intelligibility of target speech is remarkably improved in both normal-hearing listeners and hearing-impaired listeners. Intelligibility of speech can also be improved by filling in speech gaps with un-modulated broadband noise. This study investigated whether intelligibility of target speech in the IBM-treated target-speech/masker mixture can be further improved by adding a broadband-noise background. The results of this study show that following the IBM manipulation, which remarkably released target speech from speech-spectrum noise, foreign-speech, or native-speech masking (experiment 1), adding a broadband-noise background with the signal-to-noise ratio no less than 4 dB significantly improved intelligibility of target speech when the masker was either noise (experiment 2) or speech (experiment 3). The results suggest that since adding the noise background shallows the areas of silence in the time-frequency domain of the IBM-treated target-speech/masker mixture, the abruption of transient changes in the mixture is smoothed and the perceived continuity of target-speech components becomes enhanced, leading to improved target-speech intelligibility. The findings are useful for advancing computational auditory scene analysis, hearing-aid/cochlear-implant designs, and understanding of speech perception under "cocktail-party" conditions.

  8. Coding strategies for cochlear implants under adverse environments

    Science.gov (United States)

    Tahmina, Qudsia

    Cochlear implants are electronic prosthetic devices that restores partial hearing in patients with severe to profound hearing loss. Although most coding strategies have significantly improved the perception of speech in quite listening conditions, there remains limitations on speech perception under adverse environments such as in background noise, reverberation and band-limited channels, and we propose strategies that improve the intelligibility of speech transmitted over the telephone networks, reverberated speech and speech in the presence of background noise. For telephone processed speech, we propose to examine the effects of adding low-frequency and high- frequency information to the band-limited telephone speech. Four listening conditions were designed to simulate the receiving frequency characteristics of telephone handsets. Results indicated improvement in cochlear implant and bimodal listening when telephone speech was augmented with high frequency information and therefore this study provides support for design of algorithms to extend the bandwidth towards higher frequencies. The results also indicated added benefit from hearing aids for bimodal listeners in all four types of listening conditions. Speech understanding in acoustically reverberant environments is always a difficult task for hearing impaired listeners. Reverberated sounds consists of direct sound, early reflections and late reflections. Late reflections are known to be detrimental to speech intelligibility. In this study, we propose a reverberation suppression strategy based on spectral subtraction to suppress the reverberant energies from late reflections. Results from listening tests for two reverberant conditions (RT60 = 0.3s and 1.0s) indicated significant improvement when stimuli was processed with SS strategy. The proposed strategy operates with little to no prior information on the signal and the room characteristics and therefore, can potentially be implemented in real-time CI

  9. Early Sign Language Exposure and Cochlear Implantation Benefits.

    Science.gov (United States)

    Geers, Ann E; Mitchell, Christine M; Warner-Czyz, Andrea; Wang, Nae-Yuh; Eisenberg, Laurie S

    2017-07-01

    Most children with hearing loss who receive cochlear implants (CI) learn spoken language, and parents must choose early on whether to use sign language to accompany speech at home. We address whether parents' use of sign language before and after CI positively influences auditory-only speech recognition, speech intelligibility, spoken language, and reading outcomes. Three groups of children with CIs from a nationwide database who differed in the duration of early sign language exposure provided in their homes were compared in their progress through elementary grades. The groups did not differ in demographic, auditory, or linguistic characteristics before implantation. Children without early sign language exposure achieved better speech recognition skills over the first 3 years postimplant and exhibited a statistically significant advantage in spoken language and reading near the end of elementary grades over children exposed to sign language. Over 70% of children without sign language exposure achieved age-appropriate spoken language compared with only 39% of those exposed for 3 or more years. Early speech perception predicted speech intelligibility in middle elementary grades. Children without sign language exposure produced speech that was more intelligible (mean = 70%) than those exposed to sign language (mean = 51%). This study provides the most compelling support yet available in CI literature for the benefits of spoken language input for promoting verbal development in children implanted by 3 years of age. Contrary to earlier published assertions, there was no advantage to parents' use of sign language either before or after CI. Copyright © 2017 by the American Academy of Pediatrics.

  10. Interstitial vaginal needle implantation in gynecological tumors : design and construction of applicator

    International Nuclear Information System (INIS)

    Kang, Seung Hee; Chun, Mi Son; Kang, Hae Jin; Jung, Chil; Son, Jeong Hyae

    1998-01-01

    It is not a simple task to achieve the ideal isodose curve with a standard vaginal applicator or single plane needle impant in the paravaginal tissue when primary or recurrent gynecological neoplasms(cervical cancers, vaginal cancers and vulvar cancers) are treated as a boost following external beam radiotherapy. The authors introduce the development and construction of a simple, inexpensive, customized applicator for volume implant to maximize the radiation dose to the tumor while minimizing the dose to the rectum and the bladder. Nine patients underwent Ir-192 transperineal interstitial implantation for either recurrent(5 cases)or primary(3 cases) cervical cancers or primary vaginal cancer(1 case) between August 1994 and February 1998 at Ajou university hospital. First 3 cases were performed with a single plane implant guided by digital palpation. Because of inadequate isodose coverage in the tumor volume in first 3 cases, we designed and constructed interstitial vaginal applicator for volume implant to mprove tumor dose distribution and homogeneity while sparing the surrounding normal tissue. Our applicators consist of vaginal obturator and perineal template that made of the clear acrylamide and dental mold material(Provil). The applicators were customized individually according to the tumor size and its location. Both HDR and LDR irradiation were given with these applicators accomodating 6 Fr needles(Microselectron, Nucletron). The pretreatment planning prior to actual implant was performed whenever possible. Needles can be inserted easily and evenly into the tumor volume through the holes of templates, requiring less efforts and time for the implant prodecure. Our applicators made of materials available from commercial vendors. These have an advantage that require easy procedure, and spend relatively short time to construct. Also it was possible to fabricate applicators to individualize according to the tumor size and its location and to achieve the ideal

  11. Anterior single implants with different neck designs : 5 Year results of a randomized clinical trial

    NARCIS (Netherlands)

    den Hartog, Laurens; Meijer, Henny J A; Vissink, Arjan; Raghoebar, Gerry M

    BACKGROUND: The design of the implant neck might be significant for preservation of marginal bone. PURPOSE: To compare the 5-year radiographic and clinical outcome of single anterior implants provided with a smooth neck, a rough neck or a scalloped rough neck. MATERIALS AND METHODS: 93 Patients with

  12. Wear Behavior of an Unstable Knee: Stabilization via Implant Design?

    Directory of Open Access Journals (Sweden)

    Jörn Reinders

    2014-01-01

    Full Text Available Background. Wear-related failures and instabilities are frequent failure mechanisms of total knee replacements. High-conforming designs may provide additional stability for the joint. This study analyzes the effects of a ligamentous insufficiency on the stability and the wear behavior of a high-conforming knee design. Methods. Two simulator wear tests were performed on a high-conforming total knee replacement design. In the first, a ligamentous-stable knee replacement with a sacrificed anterior cruciate ligament was simulated. In the second, a ligamentous-unstable knee with additionally insufficient posterior cruciate ligament and medial collateral ligament was simulated. Wear was determined gravimetrically and wear particles were analyzed. Implant kinematics was recorded during simulation. Results. Significantly higher wear rates (P≤0.001 were observed for the unstable knee (14.58±0.56 mg/106 cycles compared to the stable knee (7.97 ± 0.87 mg/106 cycles. A higher number of wear particles with only small differences in wear particle characteristics were observed. Under unstable knee conditions, kinematics increased significantly for translations and rotations (P≤0.01. This increase was mainly attributed to higher tibial posterior translation and internal rotations. Conclusion. Higher kinematics under unstable test conditions is a result of insufficient stabilization via implant design. Due to the higher kinematics, increased wear was observed in this study.

  13. Design of intelligent comfort control system with human learning and minimum power control strategies

    International Nuclear Information System (INIS)

    Liang, J.; Du, R.

    2008-01-01

    This paper presents the design of an intelligent comfort control system by combining the human learning and minimum power control strategies for the heating, ventilating and air conditioning (HVAC) system. In the system, the predicted mean vote (PMV) is adopted as the control objective to improve indoor comfort level by considering six comfort related variables, whilst a direct neural network controller is designed to overcome the nonlinear feature of the PMV calculation for better performance. To achieve the highest comfort level for the specific user, a human learning strategy is designed to tune the user's comfort zone, and then, a VAV and minimum power control strategy is proposed to minimize the energy consumption further. In order to validate the system design, a series of computer simulations are performed based on a derived HVAC and thermal space model. The simulation results confirm the design of the intelligent comfort control system. In comparison to the conventional temperature controller, this system can provide a higher comfort level and better system performance, so it has great potential for HVAC applications in the future

  14. Deep Learning-Based Noise Reduction Approach to Improve Speech Intelligibility for Cochlear Implant Recipients.

    Science.gov (United States)

    Lai, Ying-Hui; Tsao, Yu; Lu, Xugang; Chen, Fei; Su, Yu-Ting; Chen, Kuang-Chao; Chen, Yu-Hsuan; Chen, Li-Ching; Po-Hung Li, Lieber; Lee, Chin-Hui

    2018-01-20

    We investigate the clinical effectiveness of a novel deep learning-based noise reduction (NR) approach under noisy conditions with challenging noise types at low signal to noise ratio (SNR) levels for Mandarin-speaking cochlear implant (CI) recipients. The deep learning-based NR approach used in this study consists of two modules: noise classifier (NC) and deep denoising autoencoder (DDAE), thus termed (NC + DDAE). In a series of comprehensive experiments, we conduct qualitative and quantitative analyses on the NC module and the overall NC + DDAE approach. Moreover, we evaluate the speech recognition performance of the NC + DDAE NR and classical single-microphone NR approaches for Mandarin-speaking CI recipients under different noisy conditions. The testing set contains Mandarin sentences corrupted by two types of maskers, two-talker babble noise, and a construction jackhammer noise, at 0 and 5 dB SNR levels. Two conventional NR techniques and the proposed deep learning-based approach are used to process the noisy utterances. We qualitatively compare the NR approaches by the amplitude envelope and spectrogram plots of the processed utterances. Quantitative objective measures include (1) normalized covariance measure to test the intelligibility of the utterances processed by each of the NR approaches; and (2) speech recognition tests conducted by nine Mandarin-speaking CI recipients. These nine CI recipients use their own clinical speech processors during testing. The experimental results of objective evaluation and listening test indicate that under challenging listening conditions, the proposed NC + DDAE NR approach yields higher intelligibility scores than the two compared classical NR techniques, under both matched and mismatched training-testing conditions. When compared to the two well-known conventional NR techniques under challenging listening condition, the proposed NC + DDAE NR approach has superior noise suppression capabilities and gives less distortion

  15. Finite Element Study of Three Different Treatment Designs of a Mandibular Three Implant-Retained Overdenture

    Directory of Open Access Journals (Sweden)

    M. Shishesaz

    Full Text Available Abstract This study compares ball, bar-clip and bar-ball attachment systems for implant-retained mandibular overdentures with three implants. The first implant is placed in the middle of the mandible and the other two are imbedded in the first premolar regions. Linear elastic finite element analysis is used for design analysis. Three dimensional geometry of the mandible is generated from computed tomography. Other parts are modeled using SolidWorks software. The foodstuff is positioned at the right first molar, representing the most frequent masticating situation. To obtain accurate mesh-independent results, finite element models are solved using several mesh grids. They are then validated by means of a detailed convergence analysis. The results demonstrate that the highest von-Mises stress in the bone is always located around the neck of the implant, at its upper threads. Ball and bar-ball attachments transfer the highest and lowest stresses to the bone surrounding the implants, respectively. The lowest stresses in the cortical and cancellous bones are due to bar-ball attachment. Yet, the overdenture gets its maximum movement for this arrangement. Consequently, the use of bar-ball attachment is only recommended for the cases in which stress transferred to peri-implant bone is more important than overdenture stability. Among the three treatment designs, ball attachment seems to exhibit the lowest lateral and overall displacements and hence, better overdenture stability.

  16. Design of embedded hardware platform in intelligent γ-spectrometry instrument based on ARM9

    International Nuclear Information System (INIS)

    Hong Tianqi; Fang Fang

    2008-01-01

    This paper described the design of embedded hardware platform based on ARM9 S3C2410A, emphases are focused on analyzing the methods of design the circuits of memory, LCD and keyboard ports. It presented a new solution of hardware platform in intelligent portable instrument for γ measurement. (authors)

  17. Artificial Consciousness or Artificial Intelligence

    OpenAIRE

    Spanache Florin

    2017-01-01

    Artificial intelligence is a tool designed by people for the gratification of their own creative ego, so we can not confuse conscience with intelligence and not even intelligence in its human representation with conscience. They are all different concepts and they have different uses. Philosophically, there are differences between autonomous people and automatic artificial intelligence. This is the difference between intelligence and artificial intelligence, autonomous versus a...

  18. Intelligent buildings vs. bioclimatic design; Edificios inteligentes vs. diseno bioclimatico

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo Gonzalez, Ricardo [Tecnologico de Monterrey (Mexico)

    2006-10-15

    Present the form of intelligent buildings designing is the article purpose. Those kinds of edifications take advantage of climatic conditions which allow the users comfort and the efficient electric power use, avoiding the polluting agents. It also shows the four next following stages to design an intelligent building to know: the dry weather and relative dampness schedule variations during a year in the building location; the predominant winds direction, intensity and schedule frequency; the cloudiness, rain, etc and how to use the Givoni diagram to obtain the natural air-conditioning strategies and reach the thermal comfort. [Spanish] El proposito de este articulo es presentar la forma de disenar edificios Inteligentes, los cuales aprovechan las condiciones climaticas que permiten el confort de los usuarios y el uso eficiente de la energia electrica, evitando asi la emision de agentes contaminantes. Tambien menciona los siguientes cuatro pasos para el diseno de un edificio inteligente: conocer las variaciones horarias de temperatura seca y humedad relativa durante un ano en el lugar donde estara el edificio, saber la direccion, intensidad y frecuencia horaria de los vientos dominantes, tener conocimiento de la nubosidad, lluvia, etc. y utilizar el diagrama de Givoni para obtener las estrategias de climatizacion natural para obtener el confort termico.

  19. Objective and Subjective Measures of Simultaneous vs Sequential Bilateral Cochlear Implants in Adults: A Randomized Clinical Trial.

    Science.gov (United States)

    Kraaijenga, Véronique J C; Ramakers, Geerte G J; Smulders, Yvette E; van Zon, Alice; Stegeman, Inge; Smit, Adriana L; Stokroos, Robert J; Hendrice, Nadia; Free, Rolien H; Maat, Bert; Frijns, Johan H M; Briaire, Jeroen J; Mylanus, E A M; Huinck, Wendy J; Van Zanten, Gijsbert A; Grolman, Wilko

    2017-09-01

    To date, no randomized clinical trial on the comparison between simultaneous and sequential bilateral cochlear implants (BiCIs) has been performed. To investigate the hearing capabilities and the self-reported benefits of simultaneous BiCIs compared with those of sequential BiCIs. A multicenter randomized clinical trial was conducted between January 12, 2010, and September 2, 2012, at 5 tertiary referral centers among 40 participants eligible for BiCIs. Main inclusion criteria were postlingual severe to profound hearing loss, age 18 to 70 years, and a maximum duration of 10 years without hearing aid use in both ears. Data analysis was conducted from May 24 to June 12, 2016. The simultaneous BiCI group received 2 cochlear implants during 1 surgical procedure. The sequential BiCI group received 2 cochlear implants with an interval of 2 years between implants. First, the results 1 year after receiving simultaneous BiCIs were compared with the results 1 year after receiving sequential BiCIs. Second, the results of 3 years of follow-up for both groups were compared separately. The primary outcome measure was speech intelligibility in noise from straight ahead. Secondary outcome measures were speech intelligibility in noise from spatially separated sources, speech intelligibility in silence, localization capabilities, and self-reported benefits assessed with various hearing and quality of life questionnaires. Nineteen participants were randomized to receive simultaneous BiCIs (11 women and 8 men; median age, 52 years [interquartile range, 36-63 years]), and another 19 participants were randomized to undergo sequential BiCIs (8 women and 11 men; median age, 54 years [interquartile range, 43-64 years]). Three patients did not receive a second cochlear implant and were unavailable for follow-up. Comparable results were found 1 year after simultaneous or sequential BiCIs for speech intelligibility in noise from straight ahead (difference, 0.9 dB [95% CI, -3.1 to 4.4 dB]) and

  20. Survival of various implant-supported prosthesis designs following 36 months of clinical function.

    Science.gov (United States)

    Rodriguez, A M; Orenstein, I H; Morris, H F; Ochi, S

    2000-12-01

    The use of endosseous dental implants to replace natural teeth lost to trauma, dental caries, or periodontal disease has become a predictable form of prosthetic treatment since gaining popularity in the early 1980s. While numerous clinical studies have focused on the survival of implants, few address the survival of different prosthesis designs. Beginning in 1991, 882 prostheses supported by more than 2,900 implants (687 patients) were placed by the Department of Veterans Affairs Dental Implant Clinical Research Group (DICRG). These prostheses were divided into five research strata based on arch location. The recommended design for each stratum was: bar-supported overdenture (maxillary completely edentulous); screw-retained hybrid denture (mandibular completely edentulous); screw-retained fixed partial denture (mandibular and maxillary posterior partially edentulous); and cemented single crown (maxillary anterior single tooth). Alternative overdenture designs were utilized in the edentulous arches when the recommended prosthesis could not be fabricated. Prosthesis success rates for the research strata were calculated for an observation time of up to 36 months following prosthesis placement. Success rates for the maxillary edentulous stratum ranged from 94.6% for the bar-retained overdenture supported by five to six fixtures to 81.8% for the cap-retained overdenture. The mandibular edentulous strata produced success rates of 98.1% for the fixed hybrid prosthesis to 91.7% for the cap-retained prosthesis. Success rates for maxillary and mandibular posterior fixed partial dentures were 94.3% and 92.6%, respectively, while the maxillary anterior single-tooth prosthesis yielded a success rate of 98.1% for the 36-month observation period. The recommended prosthesis designs investigated in this study proved to be reliable, with encouraging success rates for an observation period of 36 months following placement.

  1. Reliability of computer designed surgical guides in six implant rehabilitations with two years follow-up.

    Science.gov (United States)

    Giordano, Mauro; Ausiello, Pietro; Martorelli, Massimo; Sorrentino, Roberto

    2012-09-01

    To evaluate the reliability and accuracy of computer-designed surgical guides in osseointegrated oral implant rehabilitation. Six implant rehabilitations, with a total of 17 implants, were completed with computer-designed surgical guides, performed with the master model developed by muco-compressive and muco-static impressions. In the first case, the surgical guide had exclusively mucosal support, in the second case exclusively dental support. For all six cases computer-aided surgical planning was performed by virtual analyses with 3D models obtained by dental scan DICOM data. The accuracy and stability of implant osseointegration over two years post surgery was then evaluated with clinical and radiographic examinations. Radiographic examination, performed with digital acquisitions (RVG - Radio Video graph) and parallel techniques, allowed two-dimensional feedback with a margin of linear error of 10%. Implant osseointegration was recorded for all the examined rehabilitations. During the clinical and radiographic post-surgical assessments, over the following two years, the peri-implant bone level was found to be stable and without appearance of any complications. The margin of error recorded between pre-operative positions assigned by virtual analysis and the post-surgical digital radiographic observations was as low as 0.2mm. Computer-guided implant surgery can be very effective in oral rehabilitations, providing an opportunity for the surgeon: (a) to avoid the necessity of muco-periosteal detachments and then (b) to perform minimally invasive interventions, whenever appropriate, with a flapless approach. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Intelligent Systems and Advanced User Interfaces for Design, Operation, and Maintenance of Command Management Systems

    Science.gov (United States)

    Mitchell, Christine M.

    1998-01-01

    Historically Command Management Systems (CMS) have been large, expensive, spacecraft-specific software systems that were costly to build, operate, and maintain. Current and emerging hardware, software, and user interface technologies may offer an opportunity to facilitate the initial formulation and design of a spacecraft-specific CMS as well as a to develop a more generic or a set of core components for CMS systems. Current MOC (mission operations center) hardware and software include Unix workstations, the C/C++ and Java programming languages, and X and Java window interfaces representations. This configuration provides the power and flexibility to support sophisticated systems and intelligent user interfaces that exploit state-of-the-art technologies in human-machine systems engineering, decision making, artificial intelligence, and software engineering. One of the goals of this research is to explore the extent to which technologies developed in the research laboratory can be productively applied in a complex system such as spacecraft command management. Initial examination of some of the issues in CMS design and operation suggests that application of technologies such as intelligent planning, case-based reasoning, design and analysis tools from a human-machine systems engineering point of view (e.g., operator and designer models) and human-computer interaction tools, (e.g., graphics, visualization, and animation), may provide significant savings in the design, operation, and maintenance of a spacecraft-specific CMS as well as continuity for CMS design and development across spacecraft with varying needs. The savings in this case is in software reuse at all stages of the software engineering process.

  3. Binaural enhancement for bilateral cochlear implant users.

    Science.gov (United States)

    Brown, Christopher A

    2014-01-01

    Bilateral cochlear implant (BCI) users receive limited binaural cues and, thus, show little improvement to speech intelligibility from spatial cues. The feasibility of a method for enhancing the binaural cues available to BCI users is investigated. This involved extending interaural differences of levels, which typically are restricted to high frequencies, into the low-frequency region. Speech intelligibility was measured in BCI users listening over headphones and with direct stimulation, with a target talker presented to one side of the head in the presence of a masker talker on the other side. Spatial separation was achieved by applying either naturally occurring binaural cues or enhanced cues. In this listening configuration, BCI patients showed greater speech intelligibility with the enhanced binaural cues than with naturally occurring binaural cues. In some situations, it is possible for BCI users to achieve greater speech intelligibility when binaural cues are enhanced by applying interaural differences of levels in the low-frequency region.

  4. Managing design excellence tools during the development of new orthopaedic implants.

    Science.gov (United States)

    Défossez, Henri J P; Serhan, Hassan

    2013-11-01

    Design excellence (DEX) tools have been widely used for years in some industries for their potential to facilitate new product development. The medical sector, targeted by cost pressures, has therefore started adopting them. Numerous tools are available; however only appropriate deployment during the new product development stages can optimize the overall process. The primary study objectives were to describe generic tools and illustrate their implementation and management during the development of new orthopaedic implants, and compile a reference package. Secondary objectives were to present the DEX tool investment costs and savings, since the method can require significant resources for which companies must carefully plan. The publicly available DEX method "Define Measure Analyze Design Verify Validate" was adopted and implemented during the development of a new spinal implant. Several tools proved most successful at developing the correct product, addressing clinical needs, and increasing market penetration potential, while reducing design iterations and manufacturing validations. Cost analysis and Pugh Matrix coupled with multi generation planning enabled developing a strong rationale to activate the project, set the vision and goals. improved risk management and product map established a robust technical verification-validation program. Design of experiments and process quantification facilitated design for manufacturing of critical features, as early as the concept phase. Biomechanical testing with analysis of variance provided a validation model with a recognized statistical performance baseline. Within those tools, only certain ones required minimum resources (i.e., business case, multi generational plan, project value proposition, Pugh Matrix, critical To quality process validation techniques), while others required significant investments (i.e., voice of customer, product usage map, improved risk management, design of experiments, biomechanical testing

  5. The DelFly design, aerodynamics, and artificial intelligence of a flapping wing robot

    CERN Document Server

    de Croon, G C H E; Remes, B D W; Ruijsink, R; De Wagter, C

    2016-01-01

    This book introduces the topics most relevant to autonomously flying flapping wing robots: flapping-wing design, aerodynamics, and artificial intelligence. Readers can explore these topics in the context of the "Delfly", a flapping wing robot designed at Delft University in The Netherlands. How are tiny fruit flies able to lift their weight, avoid obstacles and predators, and find food or shelter? The first step in emulating this is the creation of a micro flapping wing robot that flies by itself. The challenges are considerable: the design and aerodynamics of flapping wings are still active areas of scientific research, whilst artificial intelligence is subject to extreme limitations deriving from the few sensors and minimal processing onboard. This book conveys the essential insights that lie behind success such as the DelFly Micro and the DelFly Explorer. The DelFly Micro, with its 3.07 grams and 10 cm wing span, is still the smallest flapping wing MAV in the world carrying a camera, whilst the DelFly Expl...

  6. Intelligent Design-theorieën zijn geen wetenschappelijke alternatieven voor de neodarwinistische evolutietheorie

    NARCIS (Netherlands)

    H. Dooremale

    2005-01-01

    textabstractDe minister van onderwijs – Maria van der Hoeven – meent dat Intelligent Design (ID) serieus als alternatief voor de neodarwiniaanse evolutietheorie moet worden bekeken. De discussie richt zich voornamelijk op de verdediging van de evolutietheorie tegen de aantijgingen van de

  7. System Design and Implementation of Intelligent Fire Engine Path Planning based on SAT Algorithm

    Institute of Scientific and Technical Information of China (English)

    CAI Li-sha[1; ZENG Wei-peng[1; HAN Bao-ru[1

    2016-01-01

    In this paper, in order to make intelligent fi re car complete autonomy path planning in simulation map. Proposed system design of intelligent fi re car path planning based on SAT. The system includes a planning module, a communication module, a control module. Control module via the communication module upload the initial state and the goal state to planning module. Planning module solve this planning solution,and then download planning solution to control module, control the movement of the car fi re. Experiments show this the system is tracking short time, higher planning effi ciency.

  8. Implantable electronics: emerging design issues and an ultra light-weight security solution.

    Science.gov (United States)

    Narasimhan, Seetharam; Wang, Xinmu; Bhunia, Swarup

    2010-01-01

    Implantable systems that monitor biological signals require increasingly complex digital signal processing (DSP) electronics for real-time in-situ analysis and compression of the recorded signals. While it is well-known that such signal processing hardware needs to be implemented under tight area and power constraints, new design requirements emerge with their increasing complexity. Use of nanoscale technology shows tremendous benefits in implementing these advanced circuits due to dramatic improvement in integration density and power dissipation per operation. However, it also brings in new challenges such as reliability and large idle power (due to higher leakage current). Besides, programmability of the device as well as security of the recorded information are rapidly becoming major design considerations of such systems. In this paper, we analyze the emerging issues associated with the design of the DSP unit in an implantable system. Next, we propose a novel ultra light-weight solution to address the information security issue. Unlike the conventional information security approaches like data encryption, which come at large area and power overhead and hence are not amenable for resource-constrained implantable systems, we propose a multilevel key-based scrambling algorithm, which exploits the nature of the biological signal to effectively obfuscate it. Analysis of the proposed algorithm in the context of neural signal processing and its hardware implementation shows that we can achieve high level of security with ∼ 13X lower power and ∼ 5X lower area overhead than conventional cryptographic solutions.

  9. Design of an Intelligent Support Agent Model for People with a Cognitive Vulnerability

    NARCIS (Netherlands)

    Aziz, A.A.; Klein, M.C.A.; Zhang, B.; Wang, Y.; Kinser, W.

    2010-01-01

    This paper presents the design of an intelligent agent application aimed at supporting people with a cognitive vulnerability to prevent the onset of a depression. For this, a computational model of the cognitive processes around depression is used. The agent application uses the principles of

  10. Design of intelligent proximity detection zones to prevent striking and pinning fatalities around continuous mining machines.

    Science.gov (United States)

    Bissert, P T; Carr, J L; DuCarme, J P; Smith, A K

    2016-01-01

    The continuous mining machine is a key piece of equipment used in underground coal mining operations. Over the past several decades these machines have been involved in a number of mine worker fatalities. Proximity detection systems have been developed to avert hazards associated with operating continuous mining machines. Incorporating intelligent design into proximity detection systems allows workers greater freedom to position themselves to see visual cues or avoid other hazards such as haulage equipment or unsupported roof or ribs. However, intelligent systems must be as safe as conventional proximity detection systems. An evaluation of the 39 fatal accidents for which the Mine Safety and Health Administration has published fatality investigation reports was conducted to determine whether the accident may have been prevented by conventional or intelligent proximity. Multiple zone configurations for the intelligent systems were studied to determine how system performance might be affected by the zone configuration. Researchers found that 32 of the 39 fatalities, or 82 percent, may have been prevented by both conventional and intelligent proximity systems. These results indicate that, by properly configuring the zones of an intelligent proximity detection system, equivalent protection to a conventional system is possible.

  11. Intelligent Agents for Design and Synthesis Environments: My Summary

    Science.gov (United States)

    Norvig, Peter

    1999-01-01

    This presentation gives a summary of intelligent agents for design synthesis environments. We'll start with the conclusions, and work backwards to justify them. First, an important assumption is that agents (whatever they are) are good for software engineering. This is especially true for software that operates in an uncertain, changing environment. The "real world" of physical artifacts is like that: uncertain in what we can measure, changing in that things are always breaking down, and we must interact with non-software entities. The second point is that software engineering techniques can contribute to good design. There may have been a time when we wanted to build simple artifacts containing little or no software. But modern aircraft and spacecraft are complex, and rely on a great deal of software. So better software engineering leads to better designed artifacts, especially when we are designing a series of related artifacts and can amortize the costs of software development. The third point is that agents are especially useful for design tasks, above and beyond their general usefulness for software engineering, and the usefulness of software engineering to design.

  12. New evaluation methods for conceptual design selection using computational intelligence techniques

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hong Zhong; Liu, Yu; Li, Yanfeng; Wang, Zhonglai [University of Electronic Science and Technology of China, Chengdu (China); Xue, Lihua [Higher Education Press, Beijing (China)

    2013-03-15

    The conceptual design selection, which aims at choosing the best or most desirable design scheme among several candidates for the subsequent detailed design stage, oftentimes requires a set of tools to conduct design evaluation. Using computational intelligence techniques, such as fuzzy logic, neural network, genetic algorithm, and physical programming, several design evaluation methods are put forth in this paper to realize the conceptual design selection under different scenarios. Depending on whether an evaluation criterion can be quantified or not, the linear physical programming (LPP) model and the RAOGA-based fuzzy neural network (FNN) model can be utilized to evaluate design alternatives in conceptual design stage. Furthermore, on the basis of Vanegas and Labib's work, a multi-level conceptual design evaluation model based on the new fuzzy weighted average (NFWA) and the fuzzy compromise decision-making method is developed to solve the design evaluation problem consisting of many hierarchical criteria. The effectiveness of the proposed methods is demonstrated via several illustrative examples.

  13. New evaluation methods for conceptual design selection using computational intelligence techniques

    International Nuclear Information System (INIS)

    Huang, Hong Zhong; Liu, Yu; Li, Yanfeng; Wang, Zhonglai; Xue, Lihua

    2013-01-01

    The conceptual design selection, which aims at choosing the best or most desirable design scheme among several candidates for the subsequent detailed design stage, oftentimes requires a set of tools to conduct design evaluation. Using computational intelligence techniques, such as fuzzy logic, neural network, genetic algorithm, and physical programming, several design evaluation methods are put forth in this paper to realize the conceptual design selection under different scenarios. Depending on whether an evaluation criterion can be quantified or not, the linear physical programming (LPP) model and the RAOGA-based fuzzy neural network (FNN) model can be utilized to evaluate design alternatives in conceptual design stage. Furthermore, on the basis of Vanegas and Labib's work, a multi-level conceptual design evaluation model based on the new fuzzy weighted average (NFWA) and the fuzzy compromise decision-making method is developed to solve the design evaluation problem consisting of many hierarchical criteria. The effectiveness of the proposed methods is demonstrated via several illustrative examples.

  14. In-vitro study on the accuracy of a simple-design CT-guided stent for dental implants

    International Nuclear Information System (INIS)

    Huh, Young June; Choi, Bo Ram; Huh, Kyung Hoe; Yi, Won Jin; Heo, Min Suk; Lee, Sam Sun; Choi, Soon Chul

    2012-01-01

    An individual surgical stent fabricated from computed tomography (CT) data, called a CT-guided stent, would be useful for accurate installation of implants. The purpose of the present study was to introduce a newly developed CT-guided stent with a simple design and evaluate the accuracy of the stent placement. A resin template was fabricated from a hog mandible and a specially designed plastic plate, with 4 metal balls inserted in it for radiographic recognition, was attached to the occlusal surface of the template. With the surgical stent applied, CT images were taken, and virtual implants were placed using software. The spatial positions of the virtually positioned implants were acquired and implant guiding holes were drilled into the surgical stent using a specially designed 5-axis drilling machine. The surgical stent was placed on the mandible and CT images were taken again. The discrepancy between the central axis of the drilled holes on the second CT images and the virtually installed implants on the first CT images was evaluated. The deviation of the entry point and angulation of the central axis in the reference plane were 0.47±0.27 mm, 0.57±0.23 mm, and 0.64±0.16 degree, 0.57±0.15 degree, respectively. However, for the two different angulations in each group, the 20 degree angulation showed a greater error in the deviation of the entry point than did the 10 degree angulation. The CT-guided template proposed in this study was highly accurate. It could replace existing implant guide systems to reduce costs and effort.

  15. Gilson, Darwin, and Intelligent Design

    Directory of Open Access Journals (Sweden)

    Desmond J. FitzGerald

    2015-12-01

    Full Text Available The article starts with stating the fact that today there is an increasing recognition of difficulties with Darwinism accompanied by vigorous responses on the part of Darwin’s defenders; among the instances of challenge to the dominant theory, one can find a book of Gilson, From Aristotle to Darwin and Back Again, and those behind the Intelligent Design movement. Inrelating the book of Gilson to the ID proponents, the author concludes that, while in some ways they are on the same side in opposing the anti-creation thrust of Darwinism, Gilson is neutral on the validity or truth of Darwin’s biological hypothesis. Gilson, however, whose book preceded the ID movement by some twenty years, seeks to analyze Darwinism from the perspective of the classical philosophy of nature. He well understands that, according to modern scientific method, final causes are excluded from consideration, but he calls for a biophilosophy which will be open to the reality of human experience as Aristotle was and recognize that teleology is present in nature. According to him, even if teleology seems to be a contestable explanation, chance as understood by Darwinists is the pure absence of explanation.

  16. Low Power Design for Future Wearable and Implantable Devices

    Directory of Open Access Journals (Sweden)

    Katrine Lundager

    2016-10-01

    Full Text Available With the fast progress in miniaturization of sensors and advances in micromachinery systems, a gate has been opened to the researchers to develop extremely small wearable/implantable microsystems for different applications. However, these devices are reaching not to a physical limit but a power limit, which is a critical limit for further miniaturization to develop smaller and smarter wearable/implantable devices (WIDs, especially for multi-task continuous computing purposes. Developing smaller and smarter devices with more functionality requires larger batteries, which are currently the main power provider for such devices. However, batteries have a fixed energy density, limited lifetime and chemical side effect plus the fact that the total size of the WID is dominated by the battery size. These issues make the design very challenging or even impossible. A promising solution is to design batteryless WIDs scavenging energy from human or environment including but not limited to temperature variations through thermoelectric generator (TEG devices, body movement through Piezoelectric devices, solar energy through miniature solar cells, radio-frequency (RF harvesting through antenna etc. However, the energy provided by each of these harvesting mechanisms is very limited and thus cannot be used for complex tasks. Therefore, a more comprehensive solution is the use of different harvesting mechanisms on a single platform providing enough energy for more complex tasks without the need of batteries. In addition to this, complex tasks can be done by designing Integrated Circuits (ICs, as the main core and the most power consuming component of any WID, in an extremely low power mode by lowering the supply voltage utilizing low-voltage design techniques. Having the ICs operational at very low voltages, will enable designing battery-less WIDs for complex tasks, which will be discussed in details throughout this paper. In this paper, a path towards battery

  17. Design of intelligent power consumption optimization and visualization management platform for large buildings based on internet of things

    Directory of Open Access Journals (Sweden)

    Gong Shulan

    2017-01-01

    Full Text Available The buildings provide a significant contribution to total energy consumption and CO2 emission. It has been estimated that the development of an intelligent power consumption monitor and control system will result in about 30% savings in energy consumption. This design innovatively integrates the advanced technologies such as the internet of things, the internet, intelligent buildings and intelligent electricity which can offer open, efficient, convenient energy consumption detection platform in demand side and visual management demonstration application platform in power enterprises side. The system was created to maximize the effective and efficient the use of energy resource. It was development around sensor networks and intelligent gateway and the monitoring center software. This will realize the highly integration and comprehensive application in energy and information to meet the needs with intelligent buildings

  18. Short Implants: New Horizon in Implant Dentistry.

    Science.gov (United States)

    Jain, Neha; Gulati, Manisha; Garg, Meenu; Pathak, Chetan

    2016-09-01

    The choice of implant length is an essential factor in deciding the survival rates of these implants and the overall success of the prosthesis. Placing an implant in the posterior part of the maxilla and mandible has always been very critical due to poor bone quality and quantity. Long implants can be placed in association with complex surgical procedures such as sinus lift and bone augmentation. These techniques are associated with higher cost, increased treatment time and greater morbidity. Hence, there is need for a less invasive treatment option in areas of poor bone quantity and quality. Data related to survival rates of short implants, their design and prosthetic considerations has been compiled and structured in this manuscript with emphasis on the indications, advantages of short implants and critical biomechanical factors to be taken into consideration when choosing to place them. Studies have shown that comparable success rates can be achieved with short implants as those with long implants by decreasing the lateral forces to the prosthesis, eliminating cantilevers, increasing implant surface area and improving implant to abutment connection. Short implants can be considered as an effective treatment alternative in resorbed ridges. Short implants can be considered as a viable treatment option in atrophic ridge cases in order to avoid complex surgical procedures required to place long implants. With improvement in the implant surface geometry and surface texture, there is an increase in the bone implant contact area which provides a good primary stability during osseo-integration.

  19. Intelligent structural optimization: Concept, Model and Methods

    International Nuclear Information System (INIS)

    Lu, Dagang; Wang, Guangyuan; Peng, Zhang

    2002-01-01

    Structural optimization has many characteristics of Soft Design, and so, it is necessary to apply the experience of human experts to solving the uncertain and multidisciplinary optimization problems in large-scale and complex engineering systems. With the development of artificial intelligence (AI) and computational intelligence (CI), the theory of structural optimization is now developing into the direction of intelligent optimization. In this paper, a concept of Intelligent Structural Optimization (ISO) is proposed. And then, a design process model of ISO is put forward in which each design sub-process model are discussed. Finally, the design methods of ISO are presented

  20. Influence of Palatal Coverage and Implant Distribution on Implant Strain in Maxillary Implant Overdentures.

    Science.gov (United States)

    Takahashi, Toshihito; Gonda, Tomoya; Mizuno, Yoko; Fujinami, Yozo; Maeda, Yoshinobu

    2016-01-01

    Maxillary implant overdentures are often used in clinical practice. However, there is no agreement or established guidelines regarding prosthetic design or optimal implant placement configuration. The purpose of this study was to examine the influence of palatal coverage and implant number and distribution in relation to impact strain under maxillary implant overdentures. A maxillary edentulous model with implants and experimental overdentures with and without palatal coverage was fabricated. Four strain gauges were attached to each implant, and they were positioned in the anterior, premolar, and molar areas. A vertical occlusal load of 98 N was applied through a mandibular complete denture, and the implant strains were compared using one-way analysis of variance (P = .05). The palatolabial strain was much higher on anterior implants than on other implants in both denture types. Although there was no significant difference between the strain under dentures with and without palatal coverage, palateless dentures tended to result in higher implant strain than dentures with palatal coverage. Dentures supported by only two implants registered higher strain than those supported by four or six implants. Implants under palateless dentures registered higher strain than those under dentures with palatal coverage. Anterior implants exhibited higher palatolabial strain than other implants regardless of palatal coverage and implant configuration; it is therefore recommended that maxillary implant overdentures should be supported by six implants with support extending to the distal end of the arch.

  1. Design of Sail-Assisted Unmanned Surface Vehicle Intelligent Control System

    OpenAIRE

    Ma, Yong; Zhao, Yujiao; Diao, Jiantao; Gan, Langxiong; Bi, Huaxiong; Zhao, Jingming

    2016-01-01

    To achieve the wind sail-assisted function of the unmanned surface vehicle (USV), this work focuses on the design problems of the sail-assisted USV intelligent control systems (SUICS) and illustrates the implementation process of the SUICS. The SUICS consists of the communication system, the sensor system, the PC platform, and the lower machine platform. To make full use of the wind energy, in the SUICS, we propose the sail angle of attack automatic adjustment (Sail_4A) algorithm and present ...

  2. Modifying cochlear implant design: advantages of placing a return electrode in the modiolus.

    Science.gov (United States)

    Ho, Steven Y; Wiet, Richard J; Richter, Claus-Peter

    2004-07-01

    A modiolar return electrode significantly increases the current flow across spiral ganglion cells into the modiolus, and may decrease the cochlear implant's power requirements. Ideal cochlear implants should maximize current flow into the modiolus to stimulate auditory neurons. Previous efforts to facilitate current flow through the modiolus included the fabrication and use of precurved electrodes designed to "hug" the modiolus and silastic positioners designed to place the electrodes closer to the modiolus. In contrast to earlier efforts, this study explores the effects of return electrode placement on current distributions in the modiolus. The effects of return electrode positioning on current flow in the modiolus were studied in a Plexiglas model of the cochlea. Results of model measurements were confirmed by measurements in the modiolus of human temporal bones. The return electrode was placed either within the modiolus, or remotely, outside the temporal bone, simulating contemporary cochlear implant configurations using monopolar stimulation. Cochlear model results clearly show that modiolar current amplitudes can be influenced significantly by the location of the return electrode, being larger when placed into the modiolus. Temporal bone data show similar findings. Voltages recorded in the modiolus are, on average, 2.8 times higher with the return electrode in the modiolus compared with return electrode locations outside the temporal bone. Placing a cochlear implant's return electrode in the modiolus should significantly reduce its power consumption. Reducing power requirements should lead to improved efficiency, safer long-term use, and longer device life.

  3. Implantable electronic medical devices

    CERN Document Server

    Fitzpatrick, Dennis

    2014-01-01

    Implantable Electronic Medical Devices provides a thorough review of the application of implantable devices, illustrating the techniques currently being used together with overviews of the latest commercially available medical devices. This book provides an overview of the design of medical devices and is a reference on existing medical devices. The book groups devices with similar functionality into distinct chapters, looking at the latest design ideas and techniques in each area, including retinal implants, glucose biosensors, cochlear implants, pacemakers, electrical stimulation t

  4. The effects of implant-macro design on stress quantity and distribution around three types of fixtures by photo-elastic analysis

    OpenAIRE

    Shams Ak; Eyvaz ziaee A; Esfahanizadeh G; Ghoseiri R

    2011-01-01

    "nBackground and Aims: Considering the great incidence of implant failures due to high stresses around implant and at bone-implant interfaces, the aim of this study was to compare the effects of three different implant-macro designs on the quantity and distribution pattern of stresses around implants."nMaterials and Methods: In this experimental in vitro study, three types of implants including Biohorizon (4×10.5 mm), Iler (4×10 mm), and Swiss Plus (4.1×...

  5. Development of a novel method for surgical implant design optimization through noninvasive assessment of local bone properties.

    Science.gov (United States)

    Schiuma, D; Brianza, S; Tami, A E

    2011-03-01

    A method was developed to improve the design of locking implants by finding the optimal paths for the anchoring elements, based on a high resolution pQCT assessment of local bone mineral density (BMD) distribution and bone micro-architecture (BMA). The method consists of three steps: (1) partial fixation of the implant to the bone and creation of a reference system, (2) implant removal and pQCT scan of the bone, and (3) determination of BMD and BMA of all implant-anchoring locations along the actual and alternative directions. Using a PHILOS plate, the method uncertainty was tested on an artificial humerus bone model. A cadaveric humerus was used to quantify how the uncertainty of the method affects the assessment of bone parameters. BMD and BMA were determined along four possible alternative screw paths as possible criteria for implant optimization. The method is biased by a 0.87 ± 0.12 mm systematic uncertainty and by a 0.44 ± 0.09 mm random uncertainty in locating the virtual screw position. This study shows that this method can be used to find alternative directions for the anchoring elements, which may possess better bone properties. This modification will thus produce an optimized implant design. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Logic Programs as a Specification and Description Tool in the Design Process of an Intelligent Tutoring System

    OpenAIRE

    Möbus, Claus

    1987-01-01

    We propose the use of logic programs when designing intelligent tutoring systems. With their help we specified the small-step semantics of the learning curriculum, designed the graphical user interface, derived instructions and modelled students' knowledge.

  7. Nanosurface design of dental implants for improved cell growth and function

    Science.gov (United States)

    Pan, Hsu-An; Hung, Yao-Ching; Chiou, Jin-Chern; Tai, Shih-Ming; Chen, Hsin-Hung; Huang, G. Steven

    2012-08-01

    A strategy was proposed for the topological design of dental implants based on an in vitro survey of optimized nanodot structures. An in vitro survey was performed using nanodot arrays with dot diameters ranging from 10 to 200 nm. MG63 osteoblasts were seeded on nanodot arrays and cultured for 3 days. Cell number, percentage undergoing apoptotic-like cell death, cell adhesion and cytoskeletal organization were evaluated. Nanodots with a diameter of approximately 50 nm enhanced cell number by 44%, minimized apoptotic-like cell death to 2.7%, promoted a 30% increase in microfilament bundles and maximized cell adhesion with a 73% increase in focal adhesions. An enhancement of about 50% in mineralization was observed, determined by von Kossa staining and by Alizarin Red S staining. Therefore, we provide a complete range of nanosurfaces for growing osteoblasts to discriminate their nanoscale environment. Nanodot arrays present an opportunity to positively and negatively modulate cell behavior and maturation. Our results suggest a topological approach which is beneficial for the design of dental implants.

  8. The Design of Intelligent Repair Welding Mechanism and Relative Control System of Big Gear

    Directory of Open Access Journals (Sweden)

    Hong-Yu LIU

    2014-10-01

    Full Text Available Effective repair of worn big gear has large influence on ensuring safety production and enhancing economic benefits. A kind of intelligent repair welding method was put forward mainly aimed at the big gear restriction conditions of high production cost, long production cycle and high- intensity artificial repair welding work. Big gear repair welding mechanism was designed in this paper. The work principle and part selection of big gear repair welding mechanism was introduced. The three dimensional mode of big gear repair welding mechanism was constructed by Pro/E three dimensional design software. Three dimensional motions can be realized by motor controlling ball screw. According to involute gear feature, the complicated curve motion on curved gear surface can be transformed to linear motion by orientation. By this way, the repair welding on worn gear area can be realized. In the design of big gear repair welding mechanism control system, Siemens S7-200 series hardware was chosen. Siemens STEP7 programming software was chosen as system design tool. The entire repair welding process was simulated by experiment simulation. It provides a kind of practical and feasible method for the intelligent repair welding of big worn gear.

  9. Some considerations about the theory of intelligent design

    Directory of Open Access Journals (Sweden)

    JUAN E CARREÑO

    2009-01-01

    Full Text Available The so-called theory of intelligent design (ID has gained a growing reputation in the Anglo-Saxon culture, becoming a subject of public debate. The approaches that constitute the core of this proposal, however, have been poorly characterized and systematized. The three most significant authors of ID are certainly Michael Behe, William Dembski and Stephen Meyer. Beyond the differences that can be distinguished in the work of each of them, the central fact in their arguments is the complexity of living organisms, which according to these authors, escapes any kind of natural explanation. In effect, according to the authors of ID, the irreducible complexity that can be detected in the natural world would allow to infer design in a scientifically valid way, even though many of them prefer to remain silent regarding the identity and attributes of the designer. We think that under this proposal, remains a deep epistemological confusion, since its very structure combines methodologies that are beyond the scope of historical and natural evolutionary theories. We also reject the claim that ID is a legitimate scientific theory, because it does not exhibit the classical characteristics that a scientific kind of knowledge must have.

  10. Biomechanical Influence of Implant Neck Designs on Stress Distribution over Adjacent Bone: A Three-Dimensional Non-Linear Finite Element Analysis

    Science.gov (United States)

    Ikman Ishak, Muhammad; Shafi, Aisyah Ahmad; Mohamad, Su Natasha; Jizat, Noorlindawaty Md

    2018-03-01

    The design of dental implant body has a major influence on the stress dissipation over adjacent bone as numbers of implant failure cases reported in past clinical studies. Besides, the inappropriate implant features may cause excessive high or low stresses which could possibly contribute to pathologic bone resorption or atrophy. The aim of this study is to evaluate the effect of different configurations of implant neck on stress dispersion within the adjacent bone via three-dimensional (3-D) finite element analysis (FEA). A set of computed tomography (CT) images of craniofacial was used to reconstruct a 3-D model of mandible using an image-processing software. The selected region of interest was the left side covering the second premolar, first molar and second molar regions. The bone model consisted of both compact (cortical) and porous (cancellous) structures. Three dental implant sets (crown, implant body, and abutment) with different designs of implant neck – straight, tapered with 15°, and tapered with 30° were modelled using a computer-aided design (CAD) software and all models were then analysed via 3-D FEA software. Top surface of first molar crown was subjected to occlusal forces of 114.6 N, 17.2 N, and 23.4 N in the axial, lingual, and mesio-distal directions, respectively. All planes of the mandible model were rigidly constrained in all directions. The result has demonstrated that the straight implant body neck is superior in attributing to high stress generation over adjacent bone as compared to others. This may associate with lower frictional resistance produced than those of tapered designs to withstand the applied loads.

  11. The remarkable cell: Intelligently designed or by evolutionary process?

    Directory of Open Access Journals (Sweden)

    Mark Pretorius

    2013-02-01

    Full Text Available The objective of this article was to deal with the challenging theme of the Origin of Life. Science has been arguing the when and how of the beginning of life for centuries. It is a subject which remains perplexing despite all the technological advances made in science. The first part of the article dealt with the idea of a universe and earth divinely created to sustain life. The second part dealt with the premise that the first life forms were the miraculous work of an intelligent designer, which is revealed by the sophisticated and intricate design of these first life forms. The article concluded with an explanation that these life forms are in stark contrast to the idea of a random Darwinian type evolution for life�s origin, frequently referred to as abiogenesis or spontaneous generation.

  12. Artificial intelligence applications to design validation and sneak function analysis

    International Nuclear Information System (INIS)

    Stratton, R.C.

    1985-01-01

    An objective of the US space reactor program is to design systems with high reliability and safety of control over long operating lifetimes. Argonne National Laboratory (ANL) is a participant in the National Man-Machine Integration (MMI) program for Liquid Metal Fast Breeder Reactors (LMFBR). A purpose of this program is to promote the development of concepts and technologies that enhance the operational safety and reliability of fast-breeder reactors. Much of the work is directly applicable to the space reactor program. This paper reports on one of the MMI projects being developed by ANL. The project reported pertains to an automated system that demonstrates the use of artificial intelligence (AI) for design validation (DA) and sneak function analysis (SFA). The AI system models the design specification and the physical design of the cooling process assigned to the Argon Cooling System (ACS) at Experimental Breeder Reactor II (EBR-II). The models are developed using heuristic knowledge and natural laws. 13 refs

  13. Intelligent Environmental Nanomaterials

    KAUST Repository

    Chang, Jian

    2018-01-30

    Due to the inherent complexity of environmental problems, especially water and air pollution, the utility of single-function environmental nanomaterials used in conventional and unconventional environmental treatment technologies are gradually reaching their limits. Intelligent nanomaterials with environmentally-responsive functionalities have shown potential to improve the performance of existing and new environmental technologies. By rational design of their structures and functionalities, intelligent nanomaterials can perform different tasks in response to varying application scenarios for the purpose of achieving the best performance. This review offers a critical analysis of the design concepts and latest progresses on the intelligent environmental nanomaterials in filtration membranes with responsive gates, materials with switchable wettability for selective and on-demand oil/water separation, environmental materials with self-healing capability, and emerging nanofibrous air filters for PM2.5 removal. We hope that this review will inspire further research efforts to develop intelligent environmental nanomaterials for the enhancement of the overall quality of environmental or human health.

  14. Intelligent Environmental Nanomaterials

    KAUST Repository

    Chang, Jian; Zhang, Lianbin; Wang, Peng

    2018-01-01

    Due to the inherent complexity of environmental problems, especially water and air pollution, the utility of single-function environmental nanomaterials used in conventional and unconventional environmental treatment technologies are gradually reaching their limits. Intelligent nanomaterials with environmentally-responsive functionalities have shown potential to improve the performance of existing and new environmental technologies. By rational design of their structures and functionalities, intelligent nanomaterials can perform different tasks in response to varying application scenarios for the purpose of achieving the best performance. This review offers a critical analysis of the design concepts and latest progresses on the intelligent environmental nanomaterials in filtration membranes with responsive gates, materials with switchable wettability for selective and on-demand oil/water separation, environmental materials with self-healing capability, and emerging nanofibrous air filters for PM2.5 removal. We hope that this review will inspire further research efforts to develop intelligent environmental nanomaterials for the enhancement of the overall quality of environmental or human health.

  15. Design of Bus Protocol Intelligent Initiation System Based On RS485

    Directory of Open Access Journals (Sweden)

    Li Liming

    2017-01-01

    Full Text Available In order to design an effective and reliable RS485 bus protocol based on RS485 bus, this paper introduces the structure and transmission mode of the command frame and the response frame, and also introduce four control measures and the communication in order to process quality of this system. The communication protocol is open, tolerant, reliable and fast, and can realize ignition more reliable and accurate in the intelligent initiation system.

  16. Influence of custom-made implant designs on the biomechanical performance for the case of immediate post-extraction placement in the maxillary esthetic zone: a finite element analysis.

    Science.gov (United States)

    Chen, Jianyu; Zhang, Zhiguang; Chen, Xianshuai; Zhang, Xiao

    2017-05-01

    Due to the increasing adoption of immediate implantation strategies and the rapid development of the computer aided design/computer aided manufacturing technology, a therapeutic concept based on patient-specific implant dentistry has recently been reintroduced by many researchers. However, little information is available on the designs of custom-made dental implant systems, especially their biomechanical behavior. The influence of the custom-made implant designs on the biomechanical performance for both an immediate and a delayed loading protocol in the maxillary esthetic zone was evaluated by means of the finite element (FE) method. FE models of three dental implants were considered: a state of the art cylindrical implant and two custom-made implants designed by reverse engineering technology, namely a root-analogue implant and a root-analogue threaded implant. The von Mises stress distributions and micro-motions around the bone-implant interfaces were calculated using ANSYS software. In a comparison of the three implant designs for both loading protocols, a favorable biomechanical performance was observed for the use of root-analogue threaded implant which approximated the geometry of natural anterior tooth and maintained the original long-axis. The results indicated that bone-implant interfacial micro-motion was reduced and a favorable stress distribution after osseointegration was achieved.

  17. Teaching intelligent design or sparking interest in science? What players do with Will Wright's Spore

    Science.gov (United States)

    Owens, Trevor

    2012-12-01

    The 2008 commercial video game Spore allowed more than a million players to design their own life forms. Starting from single-celled organisms players played through a caricature of natural history. Press coverage of the game's release offer two frames for thinking about the implications of the game. Some scientists and educators saw the game as a troubling teacher of intelligent design, while others suggested it might excite public interest in science. This paper explores the extent to which these two ways of thinking about the game are consistent with what players have done with the game in its online community. This analysis suggests that, at least for the players participating in this community, the game has not seduced them into believing in intelligent design. Instead the activities of these players suggest that the game has played a catalytic role in engaging the public with science. These findings indicate that designers of educational games may wish to consider more deeply tensions between prioritizing accuracy of content in educational games over player engagement.

  18. The role of networks and artificial intelligence in nanotechnology design and analysis.

    Science.gov (United States)

    Hudson, D L; Cohen, M E

    2004-05-01

    Techniques with their origins in artificial intelligence have had a great impact on many areas of biomedicine. Expert-based systems have been used to develop computer-assisted decision aids. Neural networks have been used extensively in disease classification and more recently in many bioinformatics applications including genomics and drug design. Network theory in general has proved useful in modeling all aspects of biomedicine from healthcare organizational structure to biochemical pathways. These methods show promise in applications involving nanotechnology both in the design phase and in interpretation of system functioning.

  19. The effect of scoliosis implant design parameters on whole spine mechanical behavior

    NARCIS (Netherlands)

    Arts, J.J.; Marangalou, J. Hazrati; Meijer, G.; Ito, K.; van Rietbergen, B.; Homminga, J.J.

    2017-01-01

    Background Finite element (FE) models have become a standard pre-clinical tool to study biomechanics of spine and are used to simulate and evaluate different strategies in scoliosis treatment: examine their efficacy as well as the effect of different implant design parameters. The goal of this study

  20. A preferential design approach for energy-efficient and robust implantable neural signal processing hardware.

    Science.gov (United States)

    Narasimhan, Seetharam; Chiel, Hillel J; Bhunia, Swarup

    2009-01-01

    For implantable neural interface applications, it is important to compress data and analyze spike patterns across multiple channels in real time. Such a computational task for online neural data processing requires an innovative circuit-architecture level design approach for low-power, robust and area-efficient hardware implementation. Conventional microprocessor or Digital Signal Processing (DSP) chips would dissipate too much power and are too large in size for an implantable system. In this paper, we propose a novel hardware design approach, referred to as "Preferential Design" that exploits the nature of the neural signal processing algorithm to achieve a low-voltage, robust and area-efficient implementation using nanoscale process technology. The basic idea is to isolate the critical components with respect to system performance and design them more conservatively compared to the noncritical ones. This allows aggressive voltage scaling for low power operation while ensuring robustness and area efficiency. We have applied the proposed approach to a neural signal processing algorithm using the Discrete Wavelet Transform (DWT) and observed significant improvement in power and robustness over conventional design.

  1. Effect of microthreads on coronal bone healing of narrow-diameter implants with reverse-tapered design in beagle dogs.

    Science.gov (United States)

    Chang, Yun-Young; Kim, Su-Hwan; Park, Keun-Oh; Yun, Jeong-Ho

    2017-12-01

    The objective of this study was to investigate the effect of microthreads on the coronal bone healing of narrow-diameter implants with reverse-tapered design. A total of 52 implants were classified into two groups according to presence or absence of coronal microthreads, the reverse-tapered narrow-diameter implant (RTN) group, and the reverse-tapered narrow-diameter implant with microthreads (RTNM) group. The implants were installed in split-mouth design in the edentulous mandible of six dogs. Three animals were sacrificed at 4 weeks and three at 8 weeks. Resonance frequency analysis, bone measurement using microcomputed tomography (micro-CT), removal torque test, and histometric analysis were performed. No significant differences in implant stability quotient value were observed between the groups at baseline, 4 weeks, or 8 weeks. Bone measurement using micro-CT showed that bone-implant contact volume (BICV) and bone-implant contact volume ratio (BICVR) in the coronal part of RTNM were statistically higher than those in RTN at 4 and 8 weeks. Histometric analysis showed statistically higher bone-implant contact length (BICL) in the coronal part of RTNM than in RTN at 4 weeks; however, bone-implant contact ratio (BICR) was not significantly different between the groups. At 8 weeks, the BICL and BICR did not differ significantly between the groups. Removal torque test showed no significant differences between the groups at 4 and 8 weeks. The microthreads might facilitate more coronal bone-implant contact due to increased surface areas at an early healing phase; however, they did not significantly affect coronal bone healing at 8 weeks. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Cochlear implantation in Waardenburg syndrome: The Indian scenario.

    Science.gov (United States)

    Deka, Ramesh Chandra; Sikka, Kapil; Chaturvedy, Gaurav; Singh, Chirom Amit; Venkat Karthikeyan, C; Kumar, Rakesh; Agarwal, Shivani

    2010-10-01

    Children with Waardenburg syndrome (WS) exhibiting normal inner ear anatomy, like those included in our cohort, derive significant benefit from cochlear implantation and results are comparable to those reported for the general population of implanted children. The patient population of WS accounts for approximately 2% of congenitally deaf children. The purpose of this retrospective case review was to describe the outcomes for those children with WS who have undergone cochlear implantation. On retrospective chart review, there were four cases with WS who underwent cochlear implantation. These cases were assessed for age at implantation, clinical and radiological features, operative and perioperative course, and performance outcomes. Auditory perception and speech production ability were evaluated using categories of auditory performance (CAP), meaningful auditory integration scales (MAIS), and speech intelligibility rating (SIR) during the follow-up period. In this group of children with WS, with a minimum follow-up of 12 months, the CAP score ranged from 3 to 5, MAIS from 25 to 30, and SIR was 3. These scores are comparable with those of other cochlear implantees.

  3. Design of a multi-axis implantable MEMS sensor for intraosseous bone stress monitoring

    International Nuclear Information System (INIS)

    Alfaro, Fernando; Weiss, Lee; Campbell, Phil; Fedder, Gary K; Miller, Mark

    2009-01-01

    The capability to assess the biomechanical properties of living bone is important for basic research as well as the clinical management of skeletal trauma and disease. Even though radiodensitometric imaging is commonly used to infer bone quality, bone strength does not necessarily correlate well with these non-invasive measurements. This paper reports on the design, fabrication and initial testing of an implantable ultra-miniature multi-axis sensor for directly measuring bone stresses at a micro-scale. The device, which is fabricated with CMOS-MEMS processes, is intended to be permanently implanted within open fractures, or embedded in bone grafts, or placed on implants at the interfaces between bone and prosthetics. The stress sensor comprises an array of piezoresistive pixels to detect a stress tensor at the interfacial area between the MEMS chip and bone, with a resolution to 100 Pa, in 1 s averaging. The sensor system design and manufacture is also compatible with the integration of wireless RF telemetry, for power and data retrieval, all within a 3 mm × 3 mm × 0.3 mm footprint. The piezoresistive elements are integrated within a textured surface to enhance sensor integration with bone. Finite element analysis led to a sensor design for normal and shear stress detection. A wired sensor was fabricated in the Jazz 0.35 µm BiCMOS process and then embedded in mock bone material to characterize its response to tensile and bending loads up to 250 kPa

  4. Group D. Initiator paper. Implants--peri-implant (hard and soft tissue) interactions in health and disease: the impact of explosion of implant manufacturers.

    Science.gov (United States)

    Ivanovski, Saso

    2015-01-01

    1. The best-documented implants have a threaded solid screw-type design and are manufactured from commercially pure (grade IV) titanium. There is good evidence to support implants ≥ 6 mm in length, and ≥ 3 mm in diameter. 2. Integrity of the seal between the abutment and the implant is important for several reasons, including minimization of mechanical and biological complications and maintaining marginal bone levels. Although the ideal design features of the implant-abutment connection have not been determined, an internal connection, micro-grooves at the implant collar, and horizontal offset of the implant-abutment junction (platform switch) appear to impart favorable properties. 3. Implants with moderately rough implant surfaces provide advantages over machined surfaces in terms of the speed and extent of osseointegration. While the favorable performances of both minimally and moderately rough surfaces are supported by long-term data, moderately rough surfaces provide superior outcomes in compromised sites, such as the posterior maxilla. 4. Although plaque is critical in the progression of peri-implantitis, the disease has a multi-factorial aetiology, and may be influenced by poor integrity of the abutment/implant connection. Iatrogenic factors, such as the introduction of a foreign body. (e.g., cement) below the mucosal margin, can be important contributors. 5. Clinicians should exercise caution when using a particular implant system, ensuring that the implant design is appropriate and supported by scientific evidence. Central to this is access to and participation in quality education on the impact that implant characteristics can have on clinical outcomes. Caution should be exercised in utilizing non-genuine restorative componentry that may lead to a poor implant-abutment fit and subsequent technical and biological complications.

  5. Designing an Intelligent Mobile Learning Tool for Grammar Learning (i-MoL

    Directory of Open Access Journals (Sweden)

    Munir Shuib

    2015-01-01

    Full Text Available English is the most important second language in most non-English speaking countries, including Malaysia. A good English proficiency comes from good grasp of grammar. To conquer the problems of low English proficiency among Malaysians, it is important to identify the key motivators that could facilitate the process of grammar learning. In this digital age, technology can play a very important role and mobile technology could be one of it. Thus, this study aims at designing a mobile learning tool, namely the Intelligent Mobile Learning Tool for Grammar Learning (i-MoL to act as the “on-the-go” grammar learning support via mobile phones. i-MoL helps reinforce grammar learning through mobile phone with game-like applications, inquiry-based activities and flashcard-like information. The intelligent part of i-MoL lies in its ability to map the mobile-based grammar learning content to individual’s preferred learning styles based on Felder-Silverman Learning Style Model (FSLSM. The instructional system design through the ADDIE model was used in this study as a systematic approach in designing a novel and comprehensive mobile learning tool for grammar learning. In terms of implications, this study provides insights on how mobile technologies can be utilized to meet the mobility demand among language learners today.

  6. An intelligent and integrated V and V environment design for NPP I and C software systems

    International Nuclear Information System (INIS)

    Koo, Seo Ryong; Son Han Seong; Seong, Poong Hyun

    2001-01-01

    Nuclear Power Plant (NPP) is the safety critical system. Since, nuclear instrumentation and control (I and C) systems including the plant protection system play the brain part of human, nuclear I and C systems have an influence on safety and operation of NPP. Essentially, software V and V should be performed for the safety critical systems based on software. It is very important in the technical aspect because of the problems concerning license acquisitions. In this work, an intelligent and integrated V and V environment supporting the automation of V and V was designed. The intelligent and integrated V and V environment consists of the intelligent controller part, components part, interface part, and GUI part. These parts were integrated systematically, while taking their own independent functions

  7. Chronic behavior evaluation of a micro-machined neural implant with optimized design based on an experimentally derived model.

    Science.gov (United States)

    Andrei, Alexandru; Welkenhuysen, Marleen; Ameye, Lieveke; Nuttin, Bart; Eberle, Wolfgang

    2011-01-01

    Understanding the mechanical interactions between implants and the surrounding tissue is known to have an important role for improving the bio-compatibility of such devices. Using a recently developed model, a particular micro-machined neural implant design aiming the reduction of insertion forces dependence on the insertion speed was optimized. Implantations with 10 and 100 μm/s insertion speeds showed excellent agreement with the predicted behavior. Lesion size, gliosis (GFAP), inflammation (ED1) and neuronal cells density (NeuN) was evaluated after 6 week of chronic implantation showing no insertion speed dependence.

  8. Classroom acoustics design for speakers’ comfort and speech intelligibility: a European perspective

    DEFF Research Database (Denmark)

    Garcia, David Pelegrin; Rasmussen, Birgit; Brunskog, Jonas

    2014-01-01

    . The recommended values of reverberation time in fully occupied classrooms for exible teaching methods are between 0.45 s and 0.6 s (between 0.6 and 0.7 s in an unoccupied but furnished condition) for classrooms with less than 40 students and volumes below 210 m 3 . When designing larger classrooms, a dedicated......Current European regulatory requirements or guidelines for reverberation time in classrooms have the goal of enhancing speech intelligibility for students and reducing noise levels in classrooms. At the same time, school teachers suffer frequently from voice problems due to high vocal load...... intelligibility for students. Two room acoustic parameters are shown relevant for a speaker: the voice support, linked to vocal effort, and the decay time derived from an oral-binaural impulse response, linked to vocal comfort. Theoretical prediction models for room-averaged values of these parameters...

  9. Intelligence, income, and education as potential influences on a child's home environment: A (maternal) sibling-comparison design.

    Science.gov (United States)

    Hadd, Alexandria Ree; Rodgers, Joseph Lee

    2017-07-01

    The quality of the home environment, as a predictor, is related to health, education, and emotion outcomes. However, factors influencing the quality of the home environment, as an outcome, have been understudied-particularly how children construct their own environments. Further, most previous research on family processes and outcomes has implemented between-family designs, which limit claims of causality. The present study uses kinship data from the National Longitudinal Survey of Youth to construct a maternal sibling-comparison design to investigate how maternal and child traits predict the quality of home environment. Using a standard between-family analysis, we first replicate previous research showing a relationship between maternal intelligence and the quality of the home environment. Then, we reevaluate the link between maternal intelligence and the home environment using differences between maternal sisters on several characteristics to explain differences between home environments for their children. Following, we evaluate whether child intelligence differences are related to home environment differences in the presence of maternal characteristics. Results are compared with those from the between-family analysis. Past causal interpretations are challenged by our findings, and the role of child intelligence in the construction of the home environment emerges as a critical contributor that increases in importance with development. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Intelligent editor/printer enhancements

    Science.gov (United States)

    Woodfill, M. C.; Pheanis, D. C.

    1983-01-01

    Microprocessor support hardware, software, and cross assemblers relating to the Motorola 6800 and 6809 process systems were developed. Pinter controller and intelligent CRT development are discussed. The user's manual, design specifications for the MC6809 version of the intelligent printer controller card, and a 132-character by 64-line intelligent CRT display system using a Motorola 6809 MPU, and a one-line assembler and disassembler are provided.

  11. Direct fabrication through electron beam melting technology of custom cranial implants designed in a PHANToM-based haptic environment

    International Nuclear Information System (INIS)

    Mazzoli, Alida; Germani, Michele; Raffaeli, Roberto

    2009-01-01

    Repairing critical human skull injuries requires the production and use of customized cranial implants and involves the integration of computer aided design and manufacturing (CAD and CAM). The main causes for large cranial defects are trauma, cranial tumors, infected craniotomy bone flaps and external neurosurgical decompression. The success of reconstructive cranial surgery depends upon: the preoperative evaluation of the defect, the design and manufacturing of the implant, and the skill of the operating surgeon. Cranial implant design is usually carried out manually using CAD although this process is very time-consuming and the quality of the end product depends wholly upon the skill of the operator. This paper presents an alternative automated method for the design of custom-made cranial plates in a PHANToM ® -based haptic environment, and their direct fabrication in biocompatible metal using electron beam melting (EBM) technology.

  12. Evaluation of Strain Distribution in Bone around Implant in Treatment Design of Overdentures Using Computer and Modeling of Finite Elements

    Directory of Open Access Journals (Sweden)

    Masoumeh Khoshhal

    2016-03-01

    Full Text Available Introduction: Introduction: Few studies have investigated the distribution of stress around implants. In this study the distribution of stress in bones around implants was investigated in five overdenture (OD treatment designs including OD-1, OD-2, OD-3, OD-4 and OD-5. Materials and methods: The Catia modeling software was used in order to simulate the tooth/implant model and bone. First, the borders of cancellous and cortical bone in each section of the CT images were attained by Photoshop software. Then, modeling softwares SolidWorks and NUMBER were applied to make the final three-dimensional model of jaw. Finally, the amount of stress on the surface of bone/implant was studied by means of stress analysis software (Ansys v11.0. Results: Protrusive movements of implants B and D in OD-1 showed the highest amount of strain, 2435 εµ. Also, high amounts of strain, 1668 and 1557 εµwere observed in OD-1 and OD-2 designs in lateral movements respectively. Conclusion: The bottom line is that no forces to the extent of destruction based on the Ferost model were found for these designs. The highest amount of strain occurred in OD-1 design, which is held in mild overload window. Moreover, the amounts of strain in the rest of designs investigated were in adaptive window.

  13. Evaluation of Strain Distribution in Bone around Implant in Treatment Design of Overdentures Using Computer and Modeling of Finite Elements

    Directory of Open Access Journals (Sweden)

    Masoumeh Khoshhal

    2015-12-01

    Full Text Available Introduction: Introduction: Few studies have investigated the distribution of stress around implants. In this study the distribution of stress in bones around implants was investigated in five overdenture (OD treatment designs including OD-1, OD-2, OD-3, OD-4 and OD-5. Materials and methods: The Catia modeling software was used in order to simulate the tooth/implant model and bone. First, the borders of cancellous and cortical bone in each section of the CT images were attained by Photoshop software. Then, modeling softwares SolidWorks and NUMBER were applied to make the final three-dimensional model of jaw. Finally, the amount of stress on the surface of bone/implant was studied by means of stress analysis software (Ansys v11.0. Results: Protrusive movements of implants B and D in OD-1 showed the highest amount of strain, 2435 εµ. Also, high amounts of strain, 1668 and 1557 εµwere observed in OD-1 and OD-2 designs in lateral movements respectively. Conclusion: The bottom line is that no forces to the extent of destruction based on the Ferost model were found for these designs. The highest amount of strain occurred in OD-1 design, which is held in mild overload window. Moreover, the amounts of strain in the rest of designs investigated were in adaptive window.

  14. Intelligent Tutoring System: A Tool for Testing the Research Curiosities of Artificial Intelligence Researchers

    Science.gov (United States)

    Yaratan, Huseyin

    2003-01-01

    An ITS (Intelligent Tutoring System) is a teaching-learning medium that uses artificial intelligence (AI) technology for instruction. Roberts and Park (1983) defines AI as the attempt to get computers to perform tasks that if performed by a human-being, intelligence would be required to perform the task. The design of an ITS comprises two distinct…

  15. Mechanical design, analysis, and laboratory testing of a dental implant with axial flexibility similar to natural tooth with periodontal ligament.

    Science.gov (United States)

    Pektaş, Ömer; Tönük, Ergin

    2014-11-01

    At the interface between the jawbone and the roots of natural teeth, a thin, elastic, shock-absorbing tissue, called the periodontal ligament, forms a cushion which provides certain flexibility under mechanical loading. The dental restorations supported by implants, however, involve comparatively rigid connections to the jawbone. This causes overloading of the implant while bearing functional loading together with neighboring natural teeth, which leads to high stresses within the implant system and in the jawbone. A dental implant, with resilient components in the upper structure (abutment) in order to mimic the mechanical behavior of the periodontal ligament in the axial direction, was designed, analyzed in silico, and produced for mechanical testing. The aims of the design were avoiding high levels of stress, loosening of the abutment connection screw, and soft tissue irritations. The finite element analysis of the designed implant revealed that the elastic abutment yielded a similar axial mobility with the natural tooth while keeping stress in the implant at safe levels. The in vitro mechanical testing of the prototype resulted in similar axial mobility predicted by the analysis and as that of a typical natural tooth. The abutment screw did not loosen under repeated loading and there was no static or fatigue failure. © IMechE 2014.

  16. Comprehensive evaluation of a child with an auditory brainstem implant.

    Science.gov (United States)

    Eisenberg, Laurie S; Johnson, Karen C; Martinez, Amy S; DesJardin, Jean L; Stika, Carren J; Dzubak, Danielle; Mahalak, Mandy Lutz; Rector, Emily P

    2008-02-01

    We had an opportunity to evaluate an American child whose family traveled to Italy to receive an auditory brainstem implant (ABI). The goal of this evaluation was to obtain insight into possible benefits derived from the ABI and to begin developing assessment protocols for pediatric clinical trials. Case study. Tertiary referral center. Pediatric ABI Patient 1 was born with auditory nerve agenesis. Auditory brainstem implant surgery was performed in December, 2005, in Verona, Italy. The child was assessed at the House Ear Institute, Los Angeles, in July 2006 at the age of 3 years 11 months. Follow-up assessment has continued at the HEAR Center in Birmingham, Alabama. Auditory brainstem implant. Performance was assessed for the domains of audition, speech and language, intelligence and behavior, quality of life, and parental factors. Patient 1 demonstrated detection of sound, speech pattern perception with visual cues, and inconsistent auditory-only vowel discrimination. Language age with signs was approximately 2 years, and vocalizations were increasing. Of normal intelligence, he exhibited attention deficits with difficulty completing structured tasks. Twelve months later, this child was able to identify speech patterns consistently; closed-set word identification was emerging. These results were within the range of performance for a small sample of similarly aged pediatric cochlear implant users. Pediatric ABI assessment with a group of well-selected children is needed to examine risk versus benefit in this population and to analyze whether open-set speech recognition is achievable.

  17. Artificial intelligence in robot control systems

    Science.gov (United States)

    Korikov, A.

    2018-05-01

    This paper analyzes modern concepts of artificial intelligence and known definitions of the term "level of intelligence". In robotics artificial intelligence system is defined as a system that works intelligently and optimally. The author proposes to use optimization methods for the design of intelligent robot control systems. The article provides the formalization of problems of robotic control system design, as a class of extremum problems with constraints. Solving these problems is rather complicated due to the high dimensionality, polymodality and a priori uncertainty. Decomposition of the extremum problems according to the method, suggested by the author, allows reducing them into a sequence of simpler problems, that can be successfully solved by modern computing technology. Several possible approaches to solving such problems are considered in the article.

  18. Fixed Full Arches Supported by Tapered Implants with Knife-Edge Thread Design and Nanostructured, Calcium-Incorporated Surface: A Short-Term Prospective Clinical Study

    Directory of Open Access Journals (Sweden)

    Soheil Bechara

    2017-01-01

    Full Text Available Purpose. To evaluate implant survival, peri-implant bone loss, and complications affecting fixed full-arch (FFA restorations supported by implants with a knife-edge thread design and nanostructured, calcium-incorporated surface. Methods. Between January 2013 and December 2015, all patients referred for implant-supported FFA restorations were considered for enrollment in this study. All patients received implants with a knife-edge thread design and nanostructured calcium-incorporated surface (Anyridge®, Megagen, South Korea were restored with FFA restorations and enrolled in a recall program. The final outcomes were implant survival, peri-implant bone loss, biologic/prosthetic complications, and “complication-free” survival of restorations. Results. Twenty-four patients were selected. Overall, 215 implants were inserted (130 maxilla, 85 mandible, 144 in extraction sockets and 71 in healed ridges. Thirty-six FFAs were delivered (21 maxilla, 15 mandible: 27 were immediately loaded and 9 were conventionally loaded. The follow-up ranged from 1 to 3 years. Two fixtures failed, yielding an implant survival rate of 95.9% (patient-based. A few complications were registered, for a “complication-free” survival of restorations of 88.9%. Conclusions. FFA restorations supported by implants with a knife-edge thread design and nanostructured, calcium-incorporated surface are successful in the short term, with high survival and low complication rates; long-term studies are needed to confirm these outcomes.

  19. An intelligent human-machine system based on an ecological interface design concept

    International Nuclear Information System (INIS)

    Naito, N.

    1995-01-01

    It seems both necessary and promising to develop an intelligent human-machine system, considering the objective of the human-machine system and the recent advance in cognitive engineering and artificial intelligence together with the ever-increasing importance of human factor issues in nuclear power plant operation and maintenance. It should support human operators in their knowledge-based behaviour and allow them to cope with unanticipated abnormal events, including recovery from erroneous human actions. A top-down design approach has been adopted based on cognitive work analysis, and (1) an ecological interface, (2) a cognitive model-based advisor and (3) a robust automatic sequence controller have been established. These functions have been integrated into an experimental control room. A validation test was carried out by the participation of experienced operators and engineers. The results showed the usefulness of this system in supporting the operator's supervisory plant control tasks. ((orig.))

  20. Recent advances in dental implants.

    Science.gov (United States)

    Hong, Do Gia Khang; Oh, Ji-Hyeon

    2017-12-01

    Dental implants are a common treatment for the loss of teeth. This paper summarizes current knowledge on implant surfaces, immediate loading versus conventional loading, short implants, sinus lifting, and custom implants using three-dimensional printing. Most of the implant surface modifications showed good osseointegration results. Regarding biomolecular coatings, which have been recently developed and studied, good results were observed in animal experiments. Immediate loading had similar clinical outcomes compared to conventional loading and can be used as a successful treatment because it has the advantage of reducing treatment times and providing early function and aesthetics. Short implants showed similar clinical outcomes compared to standard implants. A variety of sinus augmentation techniques, grafting materials, and alternative techniques, such as tilted implants, zygomatic implants, and short implants, can be used. With the development of new technologies in three-dimension and computer-aided design/computer-aided manufacturing (CAD/CAM) customized implants can be used as an alternative to conventional implant designs. However, there are limitations due to the lack of long-term studies or clinical studies. A long-term clinical trial and a more predictive study are needed.

  1. SmartWeld/SmartProcess - intelligent model based system for the design and validation of welding processes

    Energy Technology Data Exchange (ETDEWEB)

    Mitchner, J.

    1996-04-01

    Diagrams are presented on an intelligent model based system for the design and validation of welding processes. Key capabilities identified include `right the first time` manufacturing, continuous improvement, and on-line quality assurance.

  2. Effect of implant position, angulation, and attachment height on peri-implant bone stress associated with mandibular two-implant overdentures: a finite element analysis.

    Science.gov (United States)

    Hong, Hae Ryong; Pae, Ahran; Kim, Yooseok; Paek, Janghyun; Kim, Hyeong-Seob; Kwon, Kung-Rock

    2012-01-01

    The aim of this study was to analyze and compare the level and distribution of peri-implant bone stresses associated with mandibular two-implant overdentures with different implant positions. Mathematical models of mandibles and overdentures were designed using finite element analysis software. Two intraosseous implants and ball attachment systems were placed in the interforaminal region. The overdenture, which was supported by the two implants, was designed to withstand bilateral and unilateral vertical masticatory loads (total 100 N). In all, eight types of models, which differed according to assigned implant positions, height of attachments, and angulation, were tested: MI (model with implants positioned in the lateral incisor sites), MC (implants in canine sites), MP (implants in premolar sites), MI-Hi (greater height of attachments), MC-M (canine implants placed with mesial inclination), MC-D (canine implants placed with distal inclination), MC-B (canine implants placed with buccal inclination), and MC-L (canine implants placed with lingual inclination). Peri-implant bone stress levels associated with overdentures retained by lateral incisor implants resulted in the lowest stress levels and the highest efficiency in distributing peri-implant stress. MI-Hi showed increased stress levels and decreased efficiency in stress distribution. As the implants were inclined, stress levels increased and the efficiency of stress distribution decreased. Among the inclined models, MC-B showed the lowest stress level and best efficiency in stress distribution. The lowest stress and the best stability of implants in mandibular two-implant overdentures were obtained when implants were inserted in lateral incisor areas with shorter attachments and were placed parallel to the long axes of the teeth.

  3. Macroscopic and microscopic evaluation of a new implant design supporting immediately loaded full arch rehabilitation

    OpenAIRE

    Tetè, Stefano; Zizzari, Vincenzo; De Carlo, Alessandro; Sinjari, Bruna; Gherlone, Enrico

    2012-01-01

    The purpose of this study is to evaluate macroscopic and microscopic appearance of a new implant design, with particular emphasis given to the type of prosthesis connection. Two dental implants of the same type (Torque Type®, WinSix®, BioSAFin. S.r.l. - Ancona, Italy), with sandblasted and acid etched surfaces (Micro Rough Surface®), but differing from each other for the prosthesis connection system, were examined by scanning electron microscope (SEM) analysis at different magnifications: TTI...

  4. Marginal bone levels at single tooth implants with a conical fixture design. The influence of surface macro- and microstructure.

    Science.gov (United States)

    Norton, M R

    1998-04-01

    The concept of a conical implant design to accommodate single tooth replacement, has previously been shown to result in excessive bone loss, around the machined titanium conical collar, usually down to the 1st thread. This unusually aggressive loss of bone was shown to occur within a short period of time, post loading, with greater than 3 mm of bone loss occurring within the 1st 6 months to 1 year. The influence of implant design, surface texture and microleakage have all been highlighted as a potential cause. A modification of the surface structure, both at the macroscopic and microscopic level, as well as an altered fixture-abutment interface design has resulted in the maintenance of marginal bone around a single tooth titanium implant with a similar conical design. The radiographic follow-up of 33 implants loaded for up to 4 years, has revealed, by comparison, a most favourable maintenance of marginal bone around the conical collar, with a mean marginal bone loss of 0.32 mm mesially and 0.34 mm distally for the whole group. The cumulative mean marginal bone loss mesially and distally is 0.42 mm and 0.40 mm from 1 to 2 years, 0.54 mm and 0.43 mm from 2 to 3 years, 0.51 mm and 0.24 mm from 3 to 4 years, and 0.62 mm and 0.60 mm for implants past their 4 year recall.

  5. Intelligent System Design Using Hyper-Heuristics

    Directory of Open Access Journals (Sweden)

    Nelishia Pillay

    2015-07-01

    Full Text Available Determining the most appropriate search method or artificial intelligence technique to solve a problem is not always evident and usually requires implementation of the different approaches to ascertain this. In some instances a single approach may not be sufficient and hybridization of methods may be needed to find a solution. This process can be time consuming. The paper proposes the use of hyper-heuristics as a means of identifying which method or combination of approaches is needed to solve a problem. The research presented forms part of a larger initiative aimed at using hyper-heuristics to develop intelligent hybrid systems. As an initial step in this direction, this paper investigates this for classical artificial intelligence uninformed and informed search methods, namely depth first search, breadth first search, best first search, hill-climbing and the A* algorithm. The hyper-heuristic determines the search or combination of searches to use to solve the problem. An evolutionary algorithm hyper-heuristic is implemented for this purpose and its performance is evaluated in solving the 8-Puzzle, Towers of Hanoi and Blocks World problems. The hyper-heuristic employs a generational evolutionary algorithm which iteratively refines an initial population using tournament selection to select parents, which the mutation and crossover operators are applied to for regeneration. The hyper-heuristic was able to identify a search or combination of searches to produce solutions for the twenty 8-Puzzle, five Towers of Hanoi and five Blocks World problems. Furthermore, admissible solutions were produced for all problem instances.

  6. Analog Integrated Circuit and System Design for a Compact, Low-Power Cochlear Implant

    NARCIS (Netherlands)

    Ngamkham, W.

    2015-01-01

    Cochlear Implants (CIs) are prosthetic devices that restore hearing in profoundly deaf patients by bypassing the damaged parts of the inner ear and directly stimulating the remaining auditory nerve fibers in the cochlea with electrical pulses. This thesis describs the electronic circuit design of

  7. Using Learning Analytics to Understand the Design of an Intelligent Language Tutor – Chatbot Lucy

    OpenAIRE

    Yi Fei Wang; Stephen Petrina

    2013-01-01

    the goal of this article is to explore how learning analytics can be used to predict and advise the design of an intelligent language tutor, chatbot Lucy. With its focus on using student-produced data to understand the design of Lucy to assist English language learning, this research can be a valuable component for language-learning designers to improve second language acquisition. In this article, we present students’ learning journey and data trails, the chatting log architecture and result...

  8. Design of an Implantable Device for Ocular Drug Delivery

    Directory of Open Access Journals (Sweden)

    Jae-Hwan Lee

    2012-01-01

    Full Text Available Ocular diseases, such as, glaucoma, age-related macular degeneration (AMD, diabetic retinopathy, and retinitis pigmentosa require drug management in order to prevent blindness and affecting million of adults in USA and worldwide. There is an increasing need to develop devices for drug delivery to address ocular diseases. This study focuses on the design, simulation, and development of an implantable ocular drug delivery device consisting of micro-/nanochannels embedded between top and bottom covers with a drug reservoir made from polydimethylsiloxane (PDMS which is silicon-based organic and biodegradable polymer. Several simulations were carried out with six different micro-channel configurations in order to see the feasibility for ocular drug delivery applications. Based on the results obtained, channel design of osmotic I and osmotic II satisfied the diffusion rates required for ocular drug delivery. Finally, a prototype illustrating the three components of the drug delivery design is presented. In the future, the device will be tested for its functionality and diffusion characteristics.

  9. DESIGN OF AN INTELLIGENT SYSTEM TO DETECT TYPE OF PAIN USING ARTIFICIAL NEURAL NETWORK FOR PATIENTS WITH SPINAL CORD INJURY IN SHEFA NEUROSCIENCE RESEARCH CENTER

    OpenAIRE

    Nasrolah Nasr HeidarAbadi, Reza Safdari, Peirhossein Kolivand, Amir Javadi, Azimeh Danesh Shahraki1, Marjan Ghazi Saeidi*

    2017-01-01

    Using artificial intelligence in computerized clinical systems helps physicians diagnose disease or choose treatment. Intelligent methods are constantly changed to be more effective and accurate for quick medical diagnosis. Neural networks are a powerful tool to help physicians. The tools can process a high number of data and minimize errors in ignoring patients' information. Intelligent system design based on artificial neural network was performed in 3 phases. Phase1: Designing the data rec...

  10. Artificial intelligence in conceptual design of intelligent manufacturing systems: A state of the art review

    OpenAIRE

    Petrović, Milica M.; Miljković, Zoran Đ.; Babić, Bojan R.

    2013-01-01

    Intelligent manufacturing systems (IMS), as the highest class of flexible manufacturing systems, are able to adapt to market changes applying methods of artificial intelligence. This paper presents a detailed review of the following IMS functions: (i) process planning optimization, (ii) scheduling optimization, (iii) integrated process planning and scheduling, and (iv) mobile robot scheduling for internal material transport tasks. The research presented in this paper shows that improved perfo...

  11. Artificial Intelligence and Moral intelligence

    Directory of Open Access Journals (Sweden)

    Laura Pana

    2008-07-01

    Full Text Available We discuss the thesis that the implementation of a moral code in the behaviour of artificial intelligent systems needs a specific form of human and artificial intelligence, not just an abstract intelligence. We present intelligence as a system with an internal structure and the structural levels of the moral system, as well as certain characteristics of artificial intelligent agents which can/must be treated as 1- individual entities (with a complex, specialized, autonomous or selfdetermined, even unpredictable conduct, 2- entities endowed with diverse or even multiple intelligence forms, like moral intelligence, 3- open and, even, free-conduct performing systems (with specific, flexible and heuristic mechanisms and procedures of decision, 4 – systems which are open to education, not just to instruction, 5- entities with “lifegraphy”, not just “stategraphy”, 6- equipped not just with automatisms but with beliefs (cognitive and affective complexes, 7- capable even of reflection (“moral life” is a form of spiritual, not just of conscious activity, 8 – elements/members of some real (corporal or virtual community, 9 – cultural beings: free conduct gives cultural value to the action of a ”natural” or artificial being. Implementation of such characteristics does not necessarily suppose efforts to design, construct and educate machines like human beings. The human moral code is irremediably imperfect: it is a morality of preference, of accountability (not of responsibility and a morality of non-liberty, which cannot be remedied by the invention of ethical systems, by the circulation of ideal values and by ethical (even computing education. But such an imperfect morality needs perfect instruments for its implementation: applications of special logic fields; efficient psychological (theoretical and technical attainments to endow the machine not just with intelligence, but with conscience and even spirit; comprehensive technical

  12. A methodology for the design of experiments in computational intelligence with multiple regression models.

    Science.gov (United States)

    Fernandez-Lozano, Carlos; Gestal, Marcos; Munteanu, Cristian R; Dorado, Julian; Pazos, Alejandro

    2016-01-01

    The design of experiments and the validation of the results achieved with them are vital in any research study. This paper focuses on the use of different Machine Learning approaches for regression tasks in the field of Computational Intelligence and especially on a correct comparison between the different results provided for different methods, as those techniques are complex systems that require further study to be fully understood. A methodology commonly accepted in Computational intelligence is implemented in an R package called RRegrs. This package includes ten simple and complex regression models to carry out predictive modeling using Machine Learning and well-known regression algorithms. The framework for experimental design presented herein is evaluated and validated against RRegrs. Our results are different for three out of five state-of-the-art simple datasets and it can be stated that the selection of the best model according to our proposal is statistically significant and relevant. It is of relevance to use a statistical approach to indicate whether the differences are statistically significant using this kind of algorithms. Furthermore, our results with three real complex datasets report different best models than with the previously published methodology. Our final goal is to provide a complete methodology for the use of different steps in order to compare the results obtained in Computational Intelligence problems, as well as from other fields, such as for bioinformatics, cheminformatics, etc., given that our proposal is open and modifiable.

  13. A methodology for the design of experiments in computational intelligence with multiple regression models

    Directory of Open Access Journals (Sweden)

    Carlos Fernandez-Lozano

    2016-12-01

    Full Text Available The design of experiments and the validation of the results achieved with them are vital in any research study. This paper focuses on the use of different Machine Learning approaches for regression tasks in the field of Computational Intelligence and especially on a correct comparison between the different results provided for different methods, as those techniques are complex systems that require further study to be fully understood. A methodology commonly accepted in Computational intelligence is implemented in an R package called RRegrs. This package includes ten simple and complex regression models to carry out predictive modeling using Machine Learning and well-known regression algorithms. The framework for experimental design presented herein is evaluated and validated against RRegrs. Our results are different for three out of five state-of-the-art simple datasets and it can be stated that the selection of the best model according to our proposal is statistically significant and relevant. It is of relevance to use a statistical approach to indicate whether the differences are statistically significant using this kind of algorithms. Furthermore, our results with three real complex datasets report different best models than with the previously published methodology. Our final goal is to provide a complete methodology for the use of different steps in order to compare the results obtained in Computational Intelligence problems, as well as from other fields, such as for bioinformatics, cheminformatics, etc., given that our proposal is open and modifiable.

  14. Correlation between Insertion Torque and Implant Stability Quotient in Tapered Implants with Knife-Edge Thread Design

    Directory of Open Access Journals (Sweden)

    Domenico Baldi

    2018-01-01

    Full Text Available Aim. To evaluate the correlation between insertion torque (IT and implant stability quotient (ISQ in tapered implants with knife-edge threads. Methods. Seventy-five identical implants (Anyridge, Megagen were inserted by using a surgical drilling unit with torque control and an integrated resonance frequency analysis module (Implantmed, W&H. IT (N/cm and ISQ were recorded and implants were divided into three groups (n=25 according to the IT: low (50. ISQ difference among groups was assessed by Kruskal-Wallis test, followed by Bonferroni-corrected Mann–Whitney U-test for pairwise comparisons. The strength of the association between IT and ISQ was assessed by Spearman Rho correlation coefficient (α=0.05. Results. At the pairwise comparisons, a significant difference of ISQ values was demonstrated only between low torque and high torque groups. The strength of the association between IT and ISQ value was significant for both the entire sample and the medium torque group, while it was not significant in low and high torque groups. Conclusions. For the investigated implant, ISQ and IT showed a positive correlation up to values around 50 N/cm: higher torques subject the bone-implant system to unnecessary biological and mechanical stress without additional benefits in terms of implant stability. This trial is registered with NCT03222219.

  15. Intelligent instrumentation principles and applications

    CERN Document Server

    Bhuyan, Manabendra

    2011-01-01

    With the advent of microprocessors and digital-processing technologies as catalyst, classical sensors capable of simple signal conditioning operations have evolved rapidly to take on higher and more specialized functions including validation, compensation, and classification. This new category of sensor expands the scope of incorporating intelligence into instrumentation systems, yet with such rapid changes, there has developed no universal standard for design, definition, or requirement with which to unify intelligent instrumentation. Explaining the underlying design methodologies of intelligent instrumentation, Intelligent Instrumentation: Principles and Applications provides a comprehensive and authoritative resource on the scientific foundations from which to coordinate and advance the field. Employing a textbook-like language, this book translates methodologies to more than 80 numerical examples, and provides applications in 14 case studies for a complete and working understanding of the material. Beginn...

  16. Ethical Design of Intelligent Assistive Technologies for Dementia: A Descriptive Review.

    Science.gov (United States)

    Ienca, Marcello; Wangmo, Tenzin; Jotterand, Fabrice; Kressig, Reto W; Elger, Bernice

    2017-09-22

    The use of Intelligent Assistive Technology (IAT) in dementia care opens the prospects of reducing the global burden of dementia and enabling novel opportunities to improve the lives of dementia patients. However, with current adoption rates being reportedly low, the potential of IATs might remain under-expressed as long as the reasons for suboptimal adoption remain unaddressed. Among these, ethical and social considerations are critical. This article reviews the spectrum of IATs for dementia and investigates the prevalence of ethical considerations in the design of current IATs. Our screening shows that a significant portion of current IATs is designed in the absence of explicit ethical considerations. These results suggest that the lack of ethical consideration might be a codeterminant of current structural limitations in the translation of IATs from designing labs to bedside. Based on these data, we call for a coordinated effort to proactively incorporate ethical considerations early in the design and development of new products.

  17. Influence of Implant Positions and Occlusal Forces on Peri-Implant Bone Stress in Mandibular Two-Implant Overdentures: A 3-Dimensional Finite Element Analysis.

    Science.gov (United States)

    Alvarez-Arenal, Angel; Gonzalez-Gonzalez, Ignacio; deLlanos-Lanchares, Hector; Brizuela-Velasco, Aritza; Dds, Elena Martin-Fernandez; Ellacuria-Echebarria, Joseba

    2017-12-01

    The aim of this study was to evaluate and compare the bone stress around implants in mandibular 2-implant overdentures depending on the implant location and different loading conditions. Four 3-dimensional finite element models simulating a mandibular 2-implant overdenture and a Locator attachment system were designed. The implants were located at the lateral incisor, canine, second premolar, and crossed-implant levels. A 150 N unilateral and bilateral vertical load of different location was applied, as was 40 N when combined with midline load. Data for von Mises stress were produced numerically, color coded, and compared between the models for peri-implant bone and loading conditions. With unilateral loading, in all 4 models much higher peri-implant bone stress values were recorded on the load side compared with the no-load side, while with bilateral occlusal loading, the stress distribution was similar on both sides. In all models, the posterior unilateral load showed the highest stress, which decreased as the load was applied more mesially. In general, the best biomechanical environment in the peri-implant bone was found in the model with implants at premolar level. In the crossed-implant model, the load side greatly altered the biomechanical environment. Overall, the overdenture with implants at second premolar level should be the chosen design, regardless of where the load is applied. The occlusal loading application site influences the bone stress around the implant. Bilateral occlusal loading distributes the peri-implant bone stress symmetrically, while unilateral loading increases it greatly on the load side, no matter where the implants are located.

  18. Comparisons of IQ in Children With and Without Cochlear Implants: Longitudinal Findings and Associations With Language.

    Science.gov (United States)

    Cejas, Ivette; Mitchell, Christine M; Hoffman, Michael; Quittner, Alexandra L

    2018-04-05

    To make longitudinal comparisons of intelligence quotient (IQ) in children with cochlear implants (CIs) and typical hearing peers from early in development to the school-age period. Children with additional comorbidities and CIs were also evaluated. To estimate the impact of socioeconomic status and oral language on school-age cognitive performance. This longitudinal study evaluated nonverbal IQ in a multicenter, national sample of 147 children with CIs and 75 typically hearing peers. IQ was evaluated at baseline, prior to cochlear implantation, using the Bayley Scales of Infant and Toddler Development and the Leiter International Performance Scale. School-age IQ was assessed using the Wechsler Intelligence Scales for Children. For the current study, only the Perceptual Reasoning and Processing Speed indices were administered. Oral language was evaluated using the Comprehensive Assessment of Spoken Language. Children in the CI group scored within the normal range of intelligence at both time points. However, children with additional comorbidities scored significantly worse on the Processing Speed, but not the Perceptual Reasoning Index. Maternal education and language were significantly related to school-age IQ in both groups. Importantly, language was the strongest predictor of intellectual functioning in both children with CIs and normal hearing. These results suggest that children using cochlear implants perform similarly to hearing peers on measures of intelligence, but those with severe comorbidities are at-risk for cognitive deficits. Despite the strong link between socioeconomic status and intelligence, this association was no longer significant once spoken language performance was accounted for. These results reveal the important contributions that early intervention programs, which emphasize language and parent training, contribute to cognitive functioning in school-age children with CIs. For families from economically disadvantaged backgrounds, who are at

  19. Designing a holistic end-to-end intelligent network analysis and security platform

    Science.gov (United States)

    Alzahrani, M.

    2018-03-01

    Firewall protects a network from outside attacks, however, once an attack entering a network, it is difficult to detect. Recent significance accidents happened. i.e.: millions of Yahoo email account were stolen and crucial data from institutions are held for ransom. Within two year Yahoo’s system administrators were not aware that there are intruder inside the network. This happened due to the lack of intelligent tools to monitor user behaviour in internal network. This paper discusses a design of an intelligent anomaly/malware detection system with proper proactive actions. The aim is to equip the system administrator with a proper tool to battle the insider attackers. The proposed system adopts machine learning to analyse user’s behaviour through the runtime behaviour of each node in the network. The machine learning techniques include: deep learning, evolving machine learning perceptron, hybrid of Neural Network and Fuzzy, as well as predictive memory techniques. The proposed system is expanded to deal with larger network using agent techniques.

  20. Implementation of integrated circuit and design of SAR ADC for fully implantable hearing aids.

    Science.gov (United States)

    Kim, Jong Hoon; Lee, Jyung Hyun; Cho, Jin-Ho

    2017-07-20

    The hearing impaired population has been increasing; many people suffer from hearing problems. To deal with this difficulty, various types of hearing aids are being rapidly developed. In particular, fully implantable hearing aids are being actively studied to improve the performance of existing hearing aids and to reduce the stigma of hearing loss patients. It has to be of small size and low-power consumption for easy implantation and long-term use. The objective of the study was to implement a small size and low-power consumption successive approximation register analog-to-digital converter (SAR ADC) for fully implantable hearing aids. The ADC was selected as the SAR ADC because its analog circuit components are less required by the feedback circuit of the SAR ADC than the sigma-delta ADC which is conventionally used in hearing aids, and it has advantages in the area and power consumption. So, the circuit of SAR ADC is designed considering the speech region of humans because the objective is to deliver the speech signals of humans to hearing loss patients. If the switch of sample and hold works in the on/off positions, the charge injection and clock feedthrough are produced by a parasitic capacitor. These problems affect the linearity of the hold voltage, and as a result, an error of the bit conversion is generated. In order to solve the problem, a CMOS switch that consists of NMOS and PMOS was used, and it reduces the charge injection because the charge carriers in the NMOS and PMOS have inversed polarity. So, 16 bit conversion is performed before the occurrence of the Least Significant Bit (LSB) error. In order to minimize the offset voltage and power consumption of the designed comparator, we designed a preamplifier with current mirror. Therefore, the power consumption was reduced by the power control switch used in the comparator. The layout of the designed SAR ADC was performed by Virtuoso Layout Editor (Cadence, USA). In the layout result, the size of the

  1. A hardware-algorithm co-design approach to optimize seizure detection algorithms for implantable applications.

    Science.gov (United States)

    Raghunathan, Shriram; Gupta, Sumeet K; Markandeya, Himanshu S; Roy, Kaushik; Irazoqui, Pedro P

    2010-10-30

    Implantable neural prostheses that deliver focal electrical stimulation upon demand are rapidly emerging as an alternate therapy for roughly a third of the epileptic patient population that is medically refractory. Seizure detection algorithms enable feedback mechanisms to provide focally and temporally specific intervention. Real-time feasibility and computational complexity often limit most reported detection algorithms to implementations using computers for bedside monitoring or external devices communicating with the implanted electrodes. A comparison of algorithms based on detection efficacy does not present a complete picture of the feasibility of the algorithm with limited computational power, as is the case with most battery-powered applications. We present a two-dimensional design optimization approach that takes into account both detection efficacy and hardware cost in evaluating algorithms for their feasibility in an implantable application. Detection features are first compared for their ability to detect electrographic seizures from micro-electrode data recorded from kainate-treated rats. Circuit models are then used to estimate the dynamic and leakage power consumption of the compared features. A score is assigned based on detection efficacy and the hardware cost for each of the features, then plotted on a two-dimensional design space. An optimal combination of compared features is used to construct an algorithm that provides maximal detection efficacy per unit hardware cost. The methods presented in this paper would facilitate the development of a common platform to benchmark seizure detection algorithms for comparison and feasibility analysis in the next generation of implantable neuroprosthetic devices to treat epilepsy. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. [Individualized restorative designs and clinical evaluation for dental implants in the anterior esthetic zone with inappropriate conditions].

    Science.gov (United States)

    Dai, Wen-yong; Zhou, Guo-xing; Zhang, Xiao-zhen; Zhao, Yi; Wang, Jie; Yang, Yi; Zhu, Zhi-jun; Tang, Chun-bo

    2014-08-01

    To offer individualized restorative strategies for patients receiving dental implants in the anterior esthetic zone but with inappropriate available conditions and evaluate the clinical outcomes. Forty-six patients with 58 implants were recruited for the study in accordance with the criteria and received individualized implant prostheses in the anterior esthetic zone. The patients were followed up for 3-24 months, and the clinical outcomes were evaluated by pink and white esthetic scores (PES/WES). The patients were from 18 to 69 years old, and followed up for 12.6 months in average. According to the third month follow-up esthetic scores, for PES, 1.72% of the patients got low scores, 44.83% got medium scores and 53.45% got high scores; For WES, 0% got low scores, 20.69% got medium scores and 79.31% got high scores. No implant failure or peri-implantitis occurred. Individualized restorative designs for implants in the esthetic zone can effectively improve the appearance of the prostheses which originally have no appropriate available space. Close follow-up and monitoring of the peri-implant soft tissue and proper oral hygiene instructions are important to ensure the conditions of the prostheses.

  3. Individual titanium zygomatic implant

    Science.gov (United States)

    Nekhoroshev, M. V.; Ryabov, K. N.; Avdeev, E. V.

    2018-03-01

    Custom individual implants for the reconstruction of craniofacial defects have gained importance due to better qualitative characteristics over their generic counterparts – plates, which should be bent according to patient needs. The Additive Manufacturing of individual implants allows reducing cost and improving quality of implants. In this paper, the authors describe design of zygomatic implant models based on computed tomography (CT) data. The fabrication of the implants will be carried out with 3D printing by selective laser melting machine SLM 280HL.

  4. Outcomes of cochlear implantation in deaf children of deaf parents: comparative study.

    Science.gov (United States)

    Hassanzadeh, S

    2012-10-01

    This retrospective study compared the cochlear implantation outcomes of first- and second-generation deaf children. The study group consisted of seven deaf, cochlear-implanted children with deaf parents. An equal number of deaf children with normal-hearing parents were selected by matched sampling as a reference group. Participants were matched based on onset and severity of deafness, duration of deafness, age at cochlear implantation, duration of cochlear implantation, gender, and cochlear implant model. We used the Persian Auditory Perception Test for the Hearing Impaired, the Speech Intelligibility Rating scale, and the Sentence Imitation Test, in order to measure participants' speech perception, speech production and language development, respectively. Both groups of children showed auditory and speech development. However, the second-generation deaf children (i.e. deaf children of deaf parents) exceeded the cochlear implantation performance of the deaf children with hearing parents. This study confirms that second-generation deaf children exceed deaf children of hearing parents in terms of cochlear implantation performance. Encouraging deaf children to communicate in sign language from a very early age, before cochlear implantation, appears to improve their ability to learn spoken language after cochlear implantation.

  5. Design and development of an intelligent nursing bed - a pilot project of "joint assignment".

    Science.gov (United States)

    Jiehui Jiang; Tingwei Liu; Yuting Zhang; Yu Song; Mi Zhou; Xiaosong Zheng; Zhuangzhi Yan

    2017-07-01

    The "joint assignment" is a creative bachelor education project for Biomedical Engineering (BME) in Shanghai University (SHU), China. The objective of this project is to improve students' capabilities in design thinking and teamwork through practices in the process of the design and development of complex medical product. As the first step, a pilot project "design and development of intelligent nursing bed" was set up in May 2015. This paper describes details of how project organization and management, various teaching methods and scientific evaluation approaches were achieved in this pilot project. For example, a method containing one main line and four branches is taken to manage the project and "prototyping model" was used as the main research approach. As a result a multi-win situation was achieved. The results showed, firstly, 62 bachelor students including 16 BME students were well trained. They improved themselves in use of practical tools, communication skills and scientific writing; Secondly, commercial companies received a nice product design on intelligent nursing bed, and have been working on industrializing it; Thirdly, the university and associated schools obtained an excellent practical education experience to supplement traditional class education; Fourthly and most importantly, requirements from end-users will be met. The results also showed that the "joint assignment" task could become a significant component in BME bachelor education.

  6. Intelligent control of dynamic LED lighting; Intelligent styring af dynamisk LED belysning. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Thorseth, A.; Corell, D.; Hansen, Soeren S.; Dam-Hansen, C.; Petersen, Paul Michael

    2013-01-15

    The project has resulted in a prototype of a new intelligent lighting control system. The control system enables the end user to control his or her own local lighting environment (lighting zone) according to individual preferences and needs. The report provides a description of how the developed intelligent lighting system is composed and functions. The system is designed as a work lamp that enables dynamic change of the light color scheme according to a number of light control algorithms. It is specifically designed in relation to user tests of the intelligent lighting system, which is carried out in the final part of the project. An intelligent and advanced control of LED lighting was developed, which enables optimization of the user's light conditions in a given situation. Based on a number of known parameters, the system can control lighting so that at any time optimal light conditions are created, using a minimum of electric power. (LN)

  7. Minimum Abutment Height to Eliminate Bone Loss: Influence of Implant Neck Design and Platform Switching.

    Science.gov (United States)

    Spinato, Sergio; Galindo-Moreno, Pablo; Bernardello, Fabio; Zaffe, Davide

    This retrospective study quantitatively analyzed the minimum prosthetic abutment height to eliminate bone loss after 4.7-mm-diameter implant placement in maxillary bone and how grafting techniques can affect the marginal bone loss in implants placed in maxillary areas. Two different implant types with a similar neck design were singularly placed in two groups of patients: the test group, with platform-switched implants, and the control group, with conventional (non-platform-switched) implants. Patients requiring bone augmentation underwent unilateral sinus augmentation using a transcrestal technique with mineralized xenograft. Radiographs were taken immediately after implant placement, after delivery of the prosthetic restoration, and after 12 months of loading. The average mesial and distal marginal bone loss of the control group (25 patients) was significantly more than twice that of the test group (26 patients), while their average abutment height was similar. Linear regression analysis highlighted a statistically significant inverse relationship between marginal bone loss and abutment height in both groups; however, the intercept of the regression line, both mesially and distally, was 50% lower for the test group than for the control group. The marginal bone loss was annulled with an abutment height of 2.5 mm for the test group and 3.0 mm for the control group. No statistically significant differences were found regarding marginal bone loss of implants placed in native maxillary bone compared with those placed in the grafted areas. The results suggest that the shorter the abutment height, the greater the marginal bone loss in cement-retained prostheses. Abutment height showed a greater influence in platform-switched than in non-platform-switched implants on the limitation of marginal bone loss.

  8. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review.

    Science.gov (United States)

    Wang, Xiaojian; Xu, Shanqing; Zhou, Shiwei; Xu, Wei; Leary, Martin; Choong, Peter; Qian, M; Brandt, Milan; Xie, Yi Min

    2016-03-01

    One of the critical issues in orthopaedic regenerative medicine is the design of bone scaffolds and implants that replicate the biomechanical properties of the host bones. Porous metals have found themselves to be suitable candidates for repairing or replacing the damaged bones since their stiffness and porosity can be adjusted on demands. Another advantage of porous metals lies in their open space for the in-growth of bone tissue, hence accelerating the osseointegration process. The fabrication of porous metals has been extensively explored over decades, however only limited controls over the internal architecture can be achieved by the conventional processes. Recent advances in additive manufacturing have provided unprecedented opportunities for producing complex structures to meet the increasing demands for implants with customized mechanical performance. At the same time, topology optimization techniques have been developed to enable the internal architecture of porous metals to be designed to achieve specified mechanical properties at will. Thus implants designed via the topology optimization approach and produced by additive manufacturing are of great interest. This paper reviews the state-of-the-art of topological design and manufacturing processes of various types of porous metals, in particular for titanium alloys, biodegradable metals and shape memory alloys. This review also identifies the limitations of current techniques and addresses the directions for future investigations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Application of artificial intelligence (AI) methods for designing and analysis of reconfigurable cellular manufacturing system (RCMS)

    CSIR Research Space (South Africa)

    Xing, B

    2009-12-01

    Full Text Available This work focuses on the design and control of a novel hybrid manufacturing system: Reconfigurable Cellular Manufacturing System (RCMS) by using Artificial Intelligence (AI) approach. It is hybrid as it combines the advantages of Cellular...

  10. The designing principle and implementation of multi-channel intelligence isotope thickness gauge based on multifunction card PCI-1710

    International Nuclear Information System (INIS)

    Zhang Bin; Zhao Shujun; Guo Maotian; He Jintian

    2006-01-01

    The designing principle, the constitution of system and the implementation of multi-channel intelligence isotope thickness gauge are introduced in the paper in detail, which are based on multifunction card PCI-1710. The paper also discusses the primaryprinciple of isotope thickness gauge, correct factor in measurement and complication of calibration. In the following, the whole frame of multi-channel intelligence isotope thickness gauge is given. The functions, the characteristics and the usage of multifunction card PCI-1710 are described. Furthermore, the developing process and the function modules of software are presented. Finally, the real prototype of multi-channel intelligence isotope thickness gauge is introduced, using 241 Am as a radioactive element. (authors)

  11. Do "premium" joint implants add value?: analysis of high cost joint implants in a community registry.

    Science.gov (United States)

    Gioe, Terence J; Sharma, Amit; Tatman, Penny; Mehle, Susan

    2011-01-01

    Numerous joint implant options of varying cost are available to the surgeon, but it is unclear whether more costly implants add value in terms of function or longevity. We evaluated registry survival of higher-cost "premium" knee and hip components compared to lower-priced standard components. Premium TKA components were defined as mobile-bearing designs, high-flexion designs, oxidized-zirconium designs, those including moderately crosslinked polyethylene inserts, or some combination. Premium THAs included ceramic-on-ceramic, metal-on-metal, and ceramic-on-highly crosslinked polyethylene designs. We compared 3462 standard TKAs to 2806 premium TKAs and 868 standard THAs to 1311 premium THAs using standard statistical methods. The cost of the premium implants was on average approximately $1000 higher than the standard implants. There was no difference in the cumulative revision rate at 7-8 years between premium and standard TKAs or THAs. In this time frame, premium implants did not demonstrate better survival than standard implants. Revision indications for TKA did not differ, and infection and instability remained contributors. Longer followup is necessary to demonstrate whether premium implants add value in younger patient groups. Level III, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

  12. Artificial Intelligence in Civil Engineering

    OpenAIRE

    Lu, Pengzhen; Chen, Shengyong; Zheng, Yujun

    2012-01-01

    Artificial intelligence is a branch of computer science, involved in the research, design, and application of intelligent computer. Traditional methods for modeling and optimizing complex structure systems require huge amounts of computing resources, and artificial-intelligence-based solutions can often provide valuable alternatives for efficiently solving problems in the civil engineering. This paper summarizes recently developed methods and theories in the developing direction for applicati...

  13. Swarm intelligence-based approach for optimal design of CMOS differential amplifier and comparator circuit using a hybrid salp swarm algorithm

    Science.gov (United States)

    Asaithambi, Sasikumar; Rajappa, Muthaiah

    2018-05-01

    In this paper, an automatic design method based on a swarm intelligence approach for CMOS analog integrated circuit (IC) design is presented. The hybrid meta-heuristics optimization technique, namely, the salp swarm algorithm (SSA), is applied to the optimal sizing of a CMOS differential amplifier and the comparator circuit. SSA is a nature-inspired optimization algorithm which mimics the navigating and hunting behavior of salp. The hybrid SSA is applied to optimize the circuit design parameters and to minimize the MOS transistor sizes. The proposed swarm intelligence approach was successfully implemented for an automatic design and optimization of CMOS analog ICs using Generic Process Design Kit (GPDK) 180 nm technology. The circuit design parameters and design specifications are validated through a simulation program for integrated circuit emphasis simulator. To investigate the efficiency of the proposed approach, comparisons have been carried out with other simulation-based circuit design methods. The performances of hybrid SSA based CMOS analog IC designs are better than the previously reported studies.

  14. Benefits of simultaneous bilateral cochlear implantation on verbal reasoning skills in prelingually deaf children

    NARCIS (Netherlands)

    Jacobs, Evi; Langereis, Margreet C.; Frijns, Johan H. M.; Free, Rolien H.; Goedegebure, Andre; Smits, Cas; Stokroos, Robert J.; Ariens-Meijer, Saskia A. M.; Mylanus, Emmanuel A. M.; Vermeulen, Anneke M.

    2016-01-01

    Background: Impaired auditory speech perception abilities in deaf children with hearing aids compromised their verbal intelligence enormously. The availability of unilateral cochlear implantation (Cl) auditory speech perception and spoken vocabulary enabled them to reach near ageappropriate levels.

  15. Benefits of simultaneous bilateral cochlear implantation on verbal reasoning skills in prelingually deaf children

    NARCIS (Netherlands)

    Jacobs, E.; Langereis, M.C.; Frijns, J.H.; Free, R.H.; Goedegebure, A.; Smits, C.; Stokroos, R.J.; Ariens-Meijer, S.A.; Mylanus, E.A.M.; Vermeulen, A.M.J.

    2016-01-01

    BACKGROUND: Impaired auditory speech perception abilities in deaf children with hearing aids compromised their verbal intelligence enormously. The availability of unilateral cochlear implantation (CI) auditory speech perception and spoken vocabulary enabled them to reach near ageappropriate levels.

  16. CLINICAL CONSIDERATIONS OF DENTAL IMPLANT SYSTEM IN IMMEDIATE LOADING IMPLANT CASES

    Directory of Open Access Journals (Sweden)

    Carolina Damayanti Marpaung

    2015-06-01

    Full Text Available Immediate loading of dental implant has been researched intensively in the development of Branemark’s early concept of 2 stages implant placement. This was embarked from both patients and practiitioner’s convenience towards a simpler protocol and shorter time frame. Many recent researchers later found that micromotions derived from occlusal loading for a certain degree, instead of resulting a fibrous tissue encapsulation, can enhance the osseointegration process. Dental Implant system enhancement towards maximizing the primary stability held a key factor in Branemark’s concept development. Surgical protocol and implant design was found to give a significant contribution to the prognosis of immediate-loading implants.

  17. Conception, design and development of a low-cost intelligent prosthesis for one-sided transfemoral amputees

    Directory of Open Access Journals (Sweden)

    Wilson Carlos da Silva Júnior

    Full Text Available Introduction Modern transfemoral knee prostheses are designed to offer comfort and self-confidence to amputees. These prostheses are mainly based upon either a passive concept, with a damping system, or an active computational intelligent design to control knee motion during the swing phase. In Brazil, most lower extremity amputees are unable to afford modern prostheses due to their high cost. In this work, we present the conception, design and development of a low-cost intelligent prosthesis for one-sided transfemoral amputees. Methods The concept of the prosthesis is based on a control system with sensors for loads, which are installed on the amputee’s preserved leg and used as a mirror for the movement of the prosthesis. Mechanical strength analysis, using the Finite Element Method, electromechanical tests for the sensors and actuators and verification of data acquisition, signal conditioning and data transferring to the knee prosthesis were performed. Results The laboratory tests performed showed the feasibility of the proposed design. The electromechanical concept that was used enabled a controlled activation of the knee prosthesis by the two load cells located on the shoe sole of the preserved leg. Conclusions The electromechanical design concept and the resulting knee prosthesis show promising results concerning prosthesis activation during walking tests, thereby showing the feasibility of a reduced manufacturing cost compared to the modern prostheses available on the market.

  18. Does the Laser-Microtextured Short Implant Collar Design Reduce Marginal Bone Loss in Comparison with a Machined Collar?

    Directory of Open Access Journals (Sweden)

    B. Alper Gultekin

    2016-01-01

    Full Text Available Purpose. To compare marginal bone loss between subgingivally placed short-collar implants with machined collars and those with machined and laser-microtextured collars. Materials and Methods. The investigators used a retrospective study design and included patients who needed missing posterior teeth replaced with implants. Short-collar implants with identical geometries were divided into two groups: an M group, machined collar; and an L group, machined and laser-microtextured collar. Implants were evaluated according to marginal bone loss, implant success, and probing depth (PD at 3 years of follow-up. Results. Sixty-two patients received 103 implants (56 in the M group and 47 in the L group. The cumulative survival rate was 100%. All implants showed clinically acceptable marginal bone loss, although bone resorption was lower in the L group (0.49 mm than in the M group (1.38 mm at 3 years (p<0.01. A significantly shallower PD was found for the implants in the L group during follow-up (p<0.01. Conclusions. Our results suggest predictable outcomes with regard to bone loss for both groups; however, bone resorption was less in the L group than in the M group before and after loading. The laser-microtextured collar implant may provide a shallower PD than the machined collar implant.

  19. "Intelligences That Plants Can Pass On": Play Dough, Fun and Teaching Strategies with Insights to Multiple Intelligences

    Science.gov (United States)

    Laughlin, Kevin; Foley, Andi

    2012-01-01

    The "Intelligences That Plants Can Pass On" is an activity that involves several of Gardner's Multiple Intelligences and was designed for demonstrating the practical use of Multiple Intelligences in delivering education programs to all ages of learners. Instructions are provided for how to implement this activity, and the activity is linked to…

  20. Wireless implantable passive strain sensor: design, fabrication and characterization

    International Nuclear Information System (INIS)

    Umbrecht, F; Wägli, P; Dechand, S; Hierold, Ch; Gattiker, F; Neuenschwander, J; Sennhauser, U

    2010-01-01

    This work presents a new passive sensor concept for monitoring the deformation of orthopedic implants. The novel sensing principle of the WIPSS (wireless implantable passive strain sensor) is based on a hydro-mechanical amplification effect. The WIPSS is entirely made from biocompatible PMMA and consists of a microchannel attached to a reservoir, which is filled with an incompressible fluid. As the reservoir is exposed to strain, its volume changes and consequently the fill level inside the microchannel varies. The wireless detection of the microchannel's strain-dependent fill level is based on ultrasound. The WIPSS' sensing principle is proved by finite-element simulations and the reservoir's design is optimized toward maximum volume change, in order to achieve high sensitivity. A fabrication process for WIPSS sensor devices entirely made from PMMA is presented. The obtained measurement results confirmed the sensor's functionality and showed very good agreement with the obtained results of the conducted FE simulations regarding the sensor's sensitivity. A strain resolution of 1.7 ± 0.2 × 10 −5 was achieved. Further, the determination of the cross-sensitivity to temperature and strains applied out of the sensing direction is presented. The response to dynamic inputs (0.1–5 Hz) has been measured and showed decreasing sensor output with increasing frequency. Test structures of the sensor device allow the application of a signal bandwidth up to 1 Hz. Therefore, the proposed sensor concept of the WIPSS presents a promising new sensor system for static in vivo strain monitoring of orthopedic implants. In combination with the developed ultrasound-based read-out method, this new sensor system offers the potential of wireless sensor read-out with medical ultrasound scanners, which are commercially available.

  1. Imaging, virtual planning, design, and production of patient-specific implants and clinical validation in craniomaxillofacial surgery.

    Science.gov (United States)

    Dérand, Per; Rännar, Lars-Erik; Hirsch, Jan-M

    2012-09-01

    The purpose of this article was to describe the workflow from imaging, via virtual design, to manufacturing of patient-specific titanium reconstruction plates, cutting guide and mesh, and its utility in connection with surgical treatment of acquired bone defects in the mandible using additive manufacturing by electron beam melting (EBM). Based on computed tomography scans, polygon skulls were created. Following that virtual treatment plans entailing free microvascular transfer of fibula flaps using patient-specific reconstruction plates, mesh, and cutting guides were designed. The design was based on the specification of a Compact UniLOCK 2.4 Large (Synthes(®), Switzerland). The obtained polygon plates were bent virtually round the reconstructed mandibles. Next, the resections of the mandibles were planned virtually. A cutting guide was outlined to facilitate resection, as well as plates and titanium mesh for insertion of bone or bone substitutes. Polygon plates and meshes were converted to stereolithography format and used in the software Magics for preparation of input files for the successive step, additive manufacturing. EBM was used to manufacture the customized implants in a biocompatible titanium grade, Ti6Al4V ELI. The implants and the cutting guide were cleaned and sterilized, then transferred to the operating theater, and applied during surgery. Commercially available software programs are sufficient in order to virtually plan for production of patient-specific implants. Furthermore, EBM-produced implants are fully usable under clinical conditions in reconstruction of acquired defects in the mandible. A good compliance between the treatment plan and the fit was demonstrated during operation. Within the constraints of this article, the authors describe a workflow for production of patient-specific implants, using EBM manufacturing. Titanium cutting guides, reconstruction plates for fixation of microvascular transfer of osteomyocutaneous bone grafts, and

  2. Surface modifications of dental implants.

    Science.gov (United States)

    Stanford, C M

    2008-06-01

    Dental implant surface technologies have been evolving rapidly to enhance a more rapid bone formation on their surface and hold a potential to increase the predictability of expedited implant therapy. While implant outcomes have become highly predictable, there are sites and conditions that result in elevated implant loss. This paper reviews the impact of macro-retentive features which includes approaches to surface oxide modification, thread design, press-fit and sintered-bead technologies to increase predictability of outcomes. Implant designs that lead to controlled lateral compression of the bone can improve primary stability as long as the stress does not exceed the localized yield strength of the cortical bone. Some implant designs have reduced crestal bone loss by use of multiple cutting threads that are closely spaced, smoothed on the tip but designed to create a hoop-stress stability of the implant as it is completely seated in the osteotomy. Following the placement of the implant, there is a predictable sequence of bone turnover and replacement at the interface that allows the newly formed bone to adapt to microscopic roughness on the implant surface, and on some surfaces, a nanotopography (<10(-9) m scale) that has been shown to preferably influence the formation of bone. Newly emerging studies show that bone cells are exquisitely sensitive to these topographical features and will upregulate the expression of bone related genes for new bone formation when grown on these surfaces. We live in an exciting time of rapid changes in the modalities we can offer patients for tooth replacement therapy. Given this, it is our responsibility to be critical when claims are made, incorporate into our practice what is proven and worthwhile, and to continue to support and provide the best patient care possible.

  3. Intelligent systems engineering methodology

    Science.gov (United States)

    Fouse, Scott

    1990-01-01

    An added challenge for the designers of large scale systems such as Space Station Freedom is the appropriate incorporation of intelligent system technology (artificial intelligence, expert systems, knowledge-based systems, etc.) into their requirements and design. This presentation will describe a view of systems engineering which successfully addresses several aspects of this complex problem: design of large scale systems, design with requirements that are so complex they only completely unfold during the development of a baseline system and even then continue to evolve throughout the system's life cycle, design that involves the incorporation of new technologies, and design and development that takes place with many players in a distributed manner yet can be easily integrated to meet a single view of the requirements. The first generation of this methodology was developed and evolved jointly by ISX and the Lockheed Aeronautical Systems Company over the past five years on the Defense Advanced Research Projects Agency/Air Force Pilot's Associate Program, one of the largest, most complex, and most successful intelligent systems constructed to date. As the methodology has evolved it has also been applied successfully to a number of other projects. Some of the lessons learned from this experience may be applicable to Freedom.

  4. Implante coclear em crianças pós-linguais: resultados funcionais após 10 anos da cirurgia Cochlear implant in postlingual children: functional results 10 years after the surgery

    Directory of Open Access Journals (Sweden)

    Liege Franzini Tanamati

    2012-04-01

    Full Text Available Os benefícios do implante coclear (IC às habilidades comunicativas são obtidos ao longo de anos de uso. Há poucos estudos sobre os resultados a longo prazo em crianças pós-linguais que cresceram usando o dispositivo. OBJETIVO: Reportar os resultados funcionais em crianças pós-linguais, após 10 anos de uso do dispositivo. MATERIAL E MÉTODO: Dez crianças pós-linguais, implantadas antes dos 18 anos, participaram deste estudo. Foram avaliadas: a percepção da fala para sentenças e a inteligibilidade de fala. Informações sobre o uso/funcionamento do dispositivo e nível acadêmico/ocupacional foram documentadas. Desenho científico: Estudo de série. RESULTADOS: O reconhecimento para sentenças no silêncio foi igual a 73% e, no ruído, 40%. Para o método de transcrição, a média de acertos foi igual a 92% e, na escala de inteligibilidade, 4.15. Não houve falhas no dispositivo interno. Três participantes haviam concluído o ensino superior e, outros cinco, o ensino médio. Oito participantes estavam empregados. CONCLUSÃO: Este estudo mostrou que o IC é um procedimento seguro e confiável. As crianças pós-linguais após 10 anos de uso do IC alcançaram resultados funcionais em relação à percepção e a inteligibilidade da fala, concluíram ao menos o ensino superior e estavam inseridas no mercado de trabalho.The benefits of cochlear implants (CI for communication skills are obtained over the years. There are but a few studies regarding the long-term outcomes in postlingual deaf children who grew up using the electronic device. AIM: To assess the functional results in a group of postlingual children, 10 years after using a CI. METHODS: Ten postlingual deaf children, implanted before 18 years of age, participated in this study. We assessed: sentence recognition and speech intelligibility. We documented: device use and function and the patient's academic/occupational status. Study design: series. RESULTS: The mean scores were

  5. An Intelligent Method of Product Scheme Design Based on Product Gene

    Directory of Open Access Journals (Sweden)

    Qing Song Ai

    2013-01-01

    Full Text Available Nowadays, in order to have some featured products, many customers tend to buy customized products instead of buying common ones in supermarket. The manufacturing enterprises, with the purpose of improving their competitiveness, are focusing on providing customized products with high quality and low cost as well. At present, how to produce customized products rapidly and cheaply has been the key challenge to manufacturing enterprises. In this paper, an intelligent modeling approach applied to supporting the modeling of customized products is proposed, which may improve the efficiency during the product design process. Specifically, the product gene (PG method, which is an analogy of biological evolution in engineering area, is employed to model products in a new way. Based on product gene, we focus on the intelligent modeling method to generate product schemes rapidly and automatically. The process of our research includes three steps: (1 develop a product gene model for customized products; (2 find the obtainment and storage method for product gene; and (3 propose a specific genetic algorithm used for calculating the solution of customized product and generating new product schemes. Finally, a case study is applied to test the usefulness of our study.

  6. Designing distributed user interfaces for ambient intelligent environments using models and simulations

    OpenAIRE

    LUYTEN, Kris; VAN DEN BERGH, Jan; VANDERVELPEN, Chris; CONINX, Karin

    2006-01-01

    There is a growing demand for design support to create interactive systems that are deployed in ambient intelligent environments. Unlike traditional interactive systems, the wide diversity of situations these type of user interfaces need to work in require tool support that is close to the environment of the end-user on the one hand and provide a smooth integration with the application logic on the other hand. This paper shows how the model-based user interface development methodology can be ...

  7. Dental-Implantate und ihre Werkstoffe

    Science.gov (United States)

    Newesely, Heinrich

    1983-07-01

    Some new trends in materials for dental implants, which also effect in the operative techniques and implant design, are described. Advantages and shortcomings of the different material types are exemplified and correlated with their bioinert resp. bioactive functions. The practical interest in metallic implants focussed in titanium resp. oxide ceramics in the ceramic field, whereas the special goal of implant research follows from the improvement of the bioactive principle with loaded calcium phosphate implants.

  8. Optimal Design of Wireless Power Transmission Links for Millimeter-Sized Biomedical Implants.

    Science.gov (United States)

    Ahn, Dukju; Ghovanloo, Maysam

    2016-02-01

    This paper presents a design methodology for RF power transmission to millimeter-sized implantable biomedical devices. The optimal operating frequency and coil geometries are found such that power transfer efficiency (PTE) and tissue-loss-constrained allowed power are maximized. We define receiver power reception susceptibility (Rx-PRS) and transmitter figure of merit (Tx-FoM) such that their multiplication yields the PTE. Rx-PRS and Tx-FoM define the roles of the Rx and Tx in the PTE, respectively. First, the optimal Rx coil geometry and operating frequency range are identified such that the Rx-PRS is maximized for given implant constraints. Since the Rx is very small and has lesser design freedom than the Tx, the overall operating frequency is restricted mainly by the Rx. Rx-PRS identifies such operating frequency constraint imposed by the Rx. Secondly, the Tx coil geometry is selected such that the Tx-FoM is maximized under the frequency constraint at which the Rx-PRS was saturated. This aligns the target frequency range of Tx optimization with the frequency range at which Rx performance is high, resulting in the maximum PTE. Finally, we have found that even in the frequency range at which the PTE is relatively flat, the tissue loss per unit delivered power can be significantly different for each frequency. The Rx-PRS can predict the frequency range at which the tissue loss per unit delivered power is minimized while PTE is maintained high. In this way, frequency adjustment for the PTE and tissue-loss-constrained allowed power is realized by characterizing the Rx-PRS. The design procedure was verified through full-wave electromagnetic field simulations and measurements using de-embedding method. A prototype implant, 1 mm in diameter, achieved PTE of 0.56% ( -22.5 dB) and power delivered to load (PDL) was 224 μW at 200 MHz with 12 mm Tx-to-Rx separation in the tissue environment.

  9. Applications of artificial intelligence to space station: General purpose intelligent sensor interface

    Science.gov (United States)

    Mckee, James W.

    1988-01-01

    This final report describes the accomplishments of the General Purpose Intelligent Sensor Interface task of the Applications of Artificial Intelligence to Space Station grant for the period from October 1, 1987 through September 30, 1988. Portions of the First Biannual Report not revised will not be included but only referenced. The goal is to develop an intelligent sensor system that will simplify the design and development of expert systems using sensors of the physical phenomena as a source of data. This research will concentrate on the integration of image processing sensors and voice processing sensors with a computer designed for expert system development. The result of this research will be the design and documentation of a system in which the user will not need to be an expert in such areas as image processing algorithms, local area networks, image processor hardware selection or interfacing, television camera selection, voice recognition hardware selection, or analog signal processing. The user will be able to access data from video or voice sensors through standard LISP statements without any need to know about the sensor hardware or software.

  10. Influence of collar design on peri-implant tissue healing around immediate implants: A pilot study in Foxhound dogs.

    Science.gov (United States)

    Calvo-Guirado, José Luis; López-López, Patricia Jara; Maté Sánchez de Val, José Eduardo; Mareque-Bueno, Javier; Delgado-Ruiz, Rafael Arcesio; Romanos, Georgios E

    2015-07-01

    The study aims to assess the soft tissue level (STL) and crestal bone level (CBL), of titanium dental implants with different mixed collar abutments configurations. This study included 48 implants with the same dimensions. They were divided into two groups of 24 implants each one: implants with a polished collar of 2 mm plus a roughened area of 0.8 mm (CONTROL) and implants with a polished collar of 0.8 mm plus a micro-threated and roughened area of 2 mm (TEST). The implants were inserted randomly in the post-extraction sockets of P2, P3, P4, and M1 bilaterally in the lower jaw of six foxhound dogs. STL and CBL were evaluated after 8 and 12 weeks by histology and histometry. All implants were clinically and histologically osseointegrated. Healing patterns examined microscopically at 8 and 12 weeks for both groups yielded similar qualitative findings for the STL evaluation, without significant differences between groups (P > 0.05). CBL was significantly higher in the buccal side in comparison with the lingual side for both groups (P implant shoulder to the top of the bony crest) and IS-C (distance from the implant shoulder to the first bone-to-implant contact) values significantly higher for control group in comparison with test (P < 0.05). At 12 weeks, CBL showed increased values for both groups that were higher in controls group in comparison with test (P < 0.05). Bony crest resorption could not be avoided both at test and control sites. However, the neck conformation at the test sites reduced the buccal bone resorption. Soft tissue dimensions were similar both at the test and control sites. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Development of intelligent code system to support conceptual design of nuclear reactor core

    International Nuclear Information System (INIS)

    Kugo, Teruhiko; Nakagawa, Masayuki; Tsuchihashi, Keichiro

    1997-01-01

    An intelligent reactor design system IRDS has been developed to support conceptual design of new type reactor cores in the fields of neutronics, thermal-hydraulics and fuel behavior. The features of IRDS are summarized as follows: 1) a variety of computer codes to cover various design tasks relevant to 'static' and 'burnup' problems are implemented, 2) all the information necessary to the codes implemented is unified in a data base, 3) several data and knowledge bases are referred to in order to proceed design process efficiently for non-expert users, 4) advanced man-machine interface to communicate with the system through an interactive and graphical user interface is equipped and 5) a function to search automatically a design window, which is defined as a feasible parameter range to satisfy design requirement and criteria is employed to support the optimization or satisfication process. Applicability and productivity of the system are demonstrated by the design study of fuel pin for new type FBR cores. (author)

  12. Design optimization under uncertainties of a mesoscale implant in biological tissues using a probabilistic learning algorithm

    Science.gov (United States)

    Soize, C.

    2017-11-01

    This paper deals with the optimal design of a titanium mesoscale implant in a cortical bone for which the apparent elasticity tensor is modeled by a non-Gaussian random field at mesoscale, which has been experimentally identified. The external applied forces are also random. The design parameters are geometrical dimensions related to the geometry of the implant. The stochastic elastostatic boundary value problem is discretized by the finite element method. The objective function and the constraints are related to normal, shear, and von Mises stresses inside the cortical bone. The constrained nonconvex optimization problem in presence of uncertainties is solved by using a probabilistic learning algorithm that allows for considerably reducing the numerical cost with respect to the classical approaches.

  13. STANFORD-OHWAKI-KOHS TACTILE BLOCK DESIGN INTELLIGENCE TEST FOR THE BLIND. PART ONE-FINAL REPORT.

    Science.gov (United States)

    DAUTERMAN, WILLIAM L.; SUINN, RICHARD M.

    THIS TEST WAS DEVELOPED TO MEASURE THE INTELLIGENCE OF BLIND ADOLESCENTS AND ADULTS. SIX HUNDRED AND THIRTY BLIND SUBJECTS 14 YEARS OF AGE AND OLDER WERE USED IN REFINING AND STANDARDIZING THE NONVERBAL, PERFORMANCE OHWAKI-KOHS BLOCK DESIGN TEST FOR USE BY BLIND INDIVIDUALS IN THE UNITED STATES. RESULTS INDICATED STATISTICALLY SIGNIFICANT…

  14. socio-ec(h)o: Ambient Intelligence and Gameplay

    OpenAIRE

    Wakkary, Ron

    2005-01-01

    The socio-ec(h)o project aims to research a generalized ambient intelligent software platform and design models for responsive environments based on the concept of ambient intelligent "ecologies" and group gameplay. The benefits of the research include a software-architecture, ambient intelligence inference engine, and interaction design models for gameplay and responsive environments. The paper will discuss the results of our prototypes for games in responsive environments. These prototypes ...

  15. Intelligent transportation systems problems and perspectives

    CERN Document Server

    Pamuła, Wiesław

    2016-01-01

    This book presents a discussion of problems encountered in the deployment of Intelligent Transport Systems (ITS). It puts emphasis on the early tasks of designing and proofing the concept of integration of technologies in Intelligent Transport Systems. In its first part the book concentrates on the design problems of urban ITS. The second part of the book features case studies representative for the different modes of transport. These are freight transport, rail transport and aerospace transport encompassing also space stations. The book provides ideas for deployment which may be developed by scientists and engineers engaged in the design of Intelligent Transport Systems. It can also be used in the training of specialists, students and post-graduate students in universities and transport high schools.    .

  16. A Characterization of the Utility of Using Artificial Intelligence to Test Two Artificial Intelligence Systems

    OpenAIRE

    Straub, Jeremy; Huber, Justin

    2013-01-01

    An artificial intelligence system, designed for operations in a real-world environment faces a nearly infinite set of possible performance scenarios. Designers and developers, thus, face the challenge of validating proper performance across both foreseen and unforeseen conditions, particularly when the artificial intelligence is controlling a robot that will be operating in close proximity, or may represent a danger, to humans. While the manual creation of test cases allows limited testing (p...

  17. Intelligence and Design: Thinking about Operational Art

    Science.gov (United States)

    2014-07-01

    Intelligence Agency. The DIOCC advocates military requirements within the intelli- gence community. 34. The advantages and disadvantages of each...problem as being the political disen- franchisement of the Chinese squatters. A prominent environmental factor was that British policy sought the

  18. Artificial Consciousness or Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Spanache Florin

    2017-05-01

    Full Text Available Artificial intelligence is a tool designed by people for the gratification of their own creative ego, so we can not confuse conscience with intelligence and not even intelligence in its human representation with conscience. They are all different concepts and they have different uses. Philosophically, there are differences between autonomous people and automatic artificial intelligence. This is the difference between intelligence and artificial intelligence, autonomous versus automatic. But conscience is above these differences because it is neither conditioned by the self-preservation of autonomy, because a conscience is something that you use to help your neighbor, nor automatic, because one’s conscience is tested by situations which are not similar or subject to routine. So, artificial intelligence is only in science-fiction literature similar to an autonomous conscience-endowed being. In real life, religion with its notions of redemption, sin, expiation, confession and communion will not have any meaning for a machine which cannot make a mistake on its own.

  19. The application and development of artificial intelligence in smart clothing

    Science.gov (United States)

    Wei, Xiong

    2018-03-01

    This paper mainly introduces the application of artificial intelligence in intelligent clothing. Starting from the development trend of artificial intelligence, analysis the prospects for development in smart clothing with artificial intelligence. Summarize the design key of artificial intelligence in smart clothing. Analysis the feasibility of artificial intelligence in smart clothing.

  20. New Design for Rapid Prototyping of Digital Master Casts for Multiple Dental Implant Restorations.

    Directory of Open Access Journals (Sweden)

    Luis Romero

    Full Text Available This study proposes the replacement of all the physical devices used in the manufacturing of conventional prostheses through the use of digital tools, such as 3D scanners, CAD design software, 3D implants files, rapid prototyping machines or reverse engineering software, in order to develop laboratory work models from which to finish coatings for dental prostheses. Different types of dental prosthetic structures are used, which were adjusted by a non-rotatory threaded fixing system.From a digital process, the relative positions of dental implants, soft tissue and adjacent teeth of edentulous or partially edentulous patients has been captured, and a maser working model which accurately replicates data relating to the patients oral cavity has been through treatment of three-dimensional digital data.Compared with the conventional master cast, the results show a significant cost savings in attachments, as well as an increase in the quality of reproduction and accuracy of the master cast, with the consequent reduction in the number of patient consultation visits. The combination of software and hardware three-dimensional tools allows the optimization of the planning of dental implant-supported rehabilitations protocol, improving the predictability of clinical treatments and the production cost savings of master casts for restorations upon implants.

  1. New Design for Rapid Prototyping of Digital Master Casts for Multiple Dental Implant Restorations.

    Science.gov (United States)

    Romero, Luis; Jiménez, Mariano; Espinosa, María Del Mar; Domínguez, Manuel

    2015-01-01

    This study proposes the replacement of all the physical devices used in the manufacturing of conventional prostheses through the use of digital tools, such as 3D scanners, CAD design software, 3D implants files, rapid prototyping machines or reverse engineering software, in order to develop laboratory work models from which to finish coatings for dental prostheses. Different types of dental prosthetic structures are used, which were adjusted by a non-rotatory threaded fixing system. From a digital process, the relative positions of dental implants, soft tissue and adjacent teeth of edentulous or partially edentulous patients has been captured, and a maser working model which accurately replicates data relating to the patients oral cavity has been through treatment of three-dimensional digital data. Compared with the conventional master cast, the results show a significant cost savings in attachments, as well as an increase in the quality of reproduction and accuracy of the master cast, with the consequent reduction in the number of patient consultation visits. The combination of software and hardware three-dimensional tools allows the optimization of the planning of dental implant-supported rehabilitations protocol, improving the predictability of clinical treatments and the production cost savings of master casts for restorations upon implants.

  2. New Design for Rapid Prototyping of Digital Master Casts for Multiple Dental Implant Restorations

    Science.gov (United States)

    Romero, Luis; Jiménez, Mariano; Espinosa, María del Mar; Domínguez, Manuel

    2015-01-01

    Aim This study proposes the replacement of all the physical devices used in the manufacturing of conventional prostheses through the use of digital tools, such as 3D scanners, CAD design software, 3D implants files, rapid prototyping machines or reverse engineering software, in order to develop laboratory work models from which to finish coatings for dental prostheses. Different types of dental prosthetic structures are used, which were adjusted by a non-rotatory threaded fixing system. Method From a digital process, the relative positions of dental implants, soft tissue and adjacent teeth of edentulous or partially edentulous patients has been captured, and a maser working model which accurately replicates data relating to the patients oral cavity has been through treatment of three-dimensional digital data. Results Compared with the conventional master cast, the results show a significant cost savings in attachments, as well as an increase in the quality of reproduction and accuracy of the master cast, with the consequent reduction in the number of patient consultation visits. The combination of software and hardware three-dimensional tools allows the optimization of the planning of dental implant-supported rehabilitations protocol, improving the predictability of clinical treatments and the production cost savings of master casts for restorations upon implants. PMID:26696528

  3. Design, implementation and testing of an implantable impedance-based feedback-controlled neural gastric stimulator

    International Nuclear Information System (INIS)

    Arriagada, A J; Jurkov, A S; Mintchev, M P; Neshev, E; Andrews, C N; Muench, G

    2011-01-01

    Functional neural gastrointestinal electrical stimulation (NGES) is a methodology of gastric electrical stimulation that can be applied as a possible treatment for disorders such as obesity and gastroparesis. NGES is capable of generating strong lumen-occluding local contractions that can produce retrograde or antegrade movement of gastric content. A feedback-controlled implantable NGES system has been designed, implemented and tested both in laboratory conditions and in an acute animal setting. The feedback system, based on gastric tissue impedance change, is aimed at reducing battery energy requirements and managing the phenomenon of gastric tissue accommodation. Acute animal testing was undertaken in four mongrel dogs (2 M, 2 F, weight 25.53 ± 7.3 kg) that underwent subserosal two-channel electrode implantation. Three force transducers sutured serosally along the gastric axis and a wireless signal acquisition system were utilized to record stimulation-generated contractions and tissue impedance variations respectively. Mechanically induced contractions in the stomach were utilized to indirectly generate a tissue impedance change that was detected by the feedback system. Results showed that increasing or decreasing impedance changes were detected by the implantable stimulator and that therapy can be triggered as a result. The implantable feedback system brings NGES one step closer to long term treatment of burdening gastric motility disorders in humans

  4. 智能门禁系统设计要点探讨%Discussion on the Design of Intelligent Access Control System

    Institute of Scientific and Technical Information of China (English)

    朱矩龙

    2015-01-01

    Access control system is the basis and security of the use of building security, the use of advanced technology to design intelligent access control system is conducive to improve the safety of the building. Discusses a based on TM card intelligent access control system design, expounds the main problems existing in traditional access control system, comprehensive description of the hardware design and software design of the intelligent access control system, and the system is simulated and tested.%门禁系统是建筑使用安全性的基础和保障,使用先进技术对智能门禁系统进行设计有利于提高建筑的安全性能。探讨了一种基于TM卡技术的智能门禁系统设计,阐述了传统门禁系统存在的主要问题,综合说明了智能门禁系统的硬件设计和软件设计,并对系统进行了仿真测试。

  5. The 15th Annual Intelligent Ground Vehicle Competition: Intelligent Ground Robots Created by Intelligent Students

    National Research Council Canada - National Science Library

    Theisen, Bernard L

    2007-01-01

    ..., and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities...

  6. The Modular Design and Production of an Intelligent Robot Based on a Closed-Loop Control Strategy.

    Science.gov (United States)

    Zhang, Libo; Zhu, Junjie; Ren, Hao; Liu, Dongdong; Meng, Dan; Wu, Yanjun; Luo, Tiejian

    2017-10-14

    Intelligent robots are part of a new generation of robots that are able to sense the surrounding environment, plan their own actions and eventually reach their targets. In recent years, reliance upon robots in both daily life and industry has increased. The protocol proposed in this paper describes the design and production of a handling robot with an intelligent search algorithm and an autonomous identification function. First, the various working modules are mechanically assembled to complete the construction of the work platform and the installation of the robotic manipulator. Then, we design a closed-loop control system and a four-quadrant motor control strategy, with the aid of debugging software, as well as set steering gear identity (ID), baud rate and other working parameters to ensure that the robot achieves the desired dynamic performance and low energy consumption. Next, we debug the sensor to achieve multi-sensor fusion to accurately acquire environmental information. Finally, we implement the relevant algorithm, which can recognize the success of the robot's function for a given application. The advantage of this approach is its reliability and flexibility, as the users can develop a variety of hardware construction programs and utilize the comprehensive debugger to implement an intelligent control strategy. This allows users to set personalized requirements based on their needs with high efficiency and robustness.

  7. Osseointegration of three-dimensional designed titanium implants manufactured by selective laser melting.

    Science.gov (United States)

    Shaoki, Algabri; Xu, Jia-Yun; Sun, Haipeng; Chen, Xian-Shuai; Ouyang, Jianglin; Zhuang, Xiu-Mei; Deng, Fei-Long

    2016-10-27

    The selective laser melting (SLM) technique is a recent additive manufacturing (AM) technique. Several studies have reported success in the SLM-based production of biocompatible orthopaedic implants and three-dimensional bone defect constructs. In this study, we evaluated the surface properties and biocompatibility of an SLM titanium implant in vitro and compared them with those of a machined (MA) titanium control surface. In addition, we evaluated the osseointegration capability of the SLM implants in vivo and compared it with those of MA and Nobel-speedy (Nobel-S) implants. SLM microtopographical surface analysis revealed porous and high roughness with varied geometry compared with a smooth surface in MA Ti samples but with similar favourable wettability. Osteoblast proliferation and alkaline phosphatase activity were significantly enhanced on the SLM surface. Histological analysis of the bone-implant contact ratio revealed no significant difference among SLM, MA, and Nobel-S implants. Micro-CT assessment indicated that there was no significant difference in bone volume fraction around the implant among SLM implants and other types of surface modification implants. The removal torque value measurement of SLM implants was significantly lower that of than Nobel-S implants P manufacturing technique.

  8. Management of peri-implantitis

    Directory of Open Access Journals (Sweden)

    Jayachandran Prathapachandran

    2012-01-01

    Full Text Available Peri-implantitis is a site-specific infectious disease that causes an inflammatory process in soft tissues, and bone loss around an osseointegrated implant in function. The etiology of the implant infection is conditioned by the status of the tissue surrounding the implant, implant design, degree of roughness, external morphology, and excessive mechanical load. The microorganisms most commonly associated with implant failure are spirochetes and mobile forms of Gram-negative anaerobes, unless the origin is the result of simple mechanical overload. Diagnosis is based on changes of color in the gingiva, bleeding and probing depth of peri-implant pockets, suppuration, X-ray, and gradual loss of bone height around the tooth. Treatment will differ depending upon whether it is a case of peri-implant mucositis or peri-implantitis. The management of implant infection should be focused on the control of infection, the detoxification of the implant surface, and regeneration of the alveolar bone. This review article deals with the various treatment options in the management of peri-implantitis. The article also gives a brief description of the etiopathogenesis, clinical features, and diagnosis of peri-implantitis.

  9. A framework for the design of a voice-activated, intelligent, and hypermedia-based aircraft maintenance manual

    Science.gov (United States)

    Patankar, Manoj Shashikant

    Federal Aviation Regulations require Aviation Maintenance Technicians (AMTs) to refer to approved maintenance manuals when performing maintenance on airworthy aircraft. Because these manuals are paper-based, larger the size of the aircraft, more cumbersome are the manuals. Federal Aviation Administration (FAA) recognized the difficulties associated with the use of large manuals and conducted studies on the use of electronic media as an alternative to the traditional paper format. However, these techniques do not employ any artificial intelligence technologies and the user interface is limited to either a keyboard or a stylus pen. The primary emphasis of this research was to design a generic framework that would allow future development of voice-activated, intelligent, and hypermedia-based aircraft maintenance manuals. A prototype (VIHAMS-Voice-activated, Intelligent, and Hypermedia-based Aircraft Maintenance System) was developed, as a secondary emphasis, using the design and development techniques that evolved from this research. An evolutionary software design approach was used to design the proposed framework and the structured rapid prototyping technique was used to produce the VIHAMS prototype. VoiceAssist by Creative Labs was used to provide the voice interface so that the users (AMTs) could keep their hands free to work on the aircraft while maintaining complete control over the computer through discrete voice commands. KnowledgePro for Windows sp{TM}, an expert system shell, provided "intelligence" to the prototype. As a result of this intelligence, the system provided expert guidance to the user. The core information contained in conventional manuals was available in a hypermedia format. The prototype's operating hardware included a notebook computer with a fully functional audio system. An external microphone and the built-in speaker served as the input and output devices (along with the color monitor), respectively. Federal Aviation Administration

  10. Reference-Free Assessment of Speech Intelligibility Using Bispectrum of an Auditory Neurogram

    Science.gov (United States)

    Hossain, Mohammad E.; Jassim, Wissam A.; Zilany, Muhammad S. A.

    2016-01-01

    Sensorineural hearing loss occurs due to damage to the inner and outer hair cells of the peripheral auditory system. Hearing loss can cause decreases in audibility, dynamic range, frequency and temporal resolution of the auditory system, and all of these effects are known to affect speech intelligibility. In this study, a new reference-free speech intelligibility metric is proposed using 2-D neurograms constructed from the output of a computational model of the auditory periphery. The responses of the auditory-nerve fibers with a wide range of characteristic frequencies were simulated to construct neurograms. The features of the neurograms were extracted using third-order statistics referred to as bispectrum. The phase coupling of neurogram bispectrum provides a unique insight for the presence (or deficit) of supra-threshold nonlinearities beyond audibility for listeners with normal hearing (or hearing loss). The speech intelligibility scores predicted by the proposed method were compared to the behavioral scores for listeners with normal hearing and hearing loss both in quiet and under noisy background conditions. The results were also compared to the performance of some existing methods. The predicted results showed a good fit with a small error suggesting that the subjective scores can be estimated reliably using the proposed neural-response-based metric. The proposed metric also had a wide dynamic range, and the predicted scores were well-separated as a function of hearing loss. The proposed metric successfully captures the effects of hearing loss and supra-threshold nonlinearities on speech intelligibility. This metric could be applied to evaluate the performance of various speech-processing algorithms designed for hearing aids and cochlear implants. PMID:26967160

  11. Crowdteaching: Supporting Teaching as Designing in Collective Intelligence Communities

    Directory of Open Access Journals (Sweden)

    Mimi Recker

    2014-09-01

    Full Text Available The widespread availability of high-quality Web-based content offers new potential for supporting teachers as designers of curricula and classroom activities. When coupled with a participatory Web culture and infrastructure, teachers can share their creations as well as leverage from the best that their peers have to offer to support a collective intelligence or crowdsourcing community, which we dub crowdteaching. We applied a collective intelligence framework to characterize crowdteaching in the context of a Web-based tool for teachers called the Instructional Architect (IA. The IA enables teachers to find, create, and share instructional activities (called IA projects for their students using online learning resources. These IA projects can further be viewed, copied, or adapted by other IA users. This study examines the usage activities of two samples of teachers, and also analyzes the characteristics of a subset of their IA projects. Analyses of teacher activities suggest that they are engaging in crowdteaching processes. Teachers, on average, chose to share over half of their IA projects, and copied some directly from other IA projects. Thus, these teachers can be seen as both contributors to and consumers of crowdteaching processes. In addition, IA users preferred to view IA projects rather than to completely copy them. Finally, correlational results based on an analysis of the characteristics of IA projects suggest that several easily computed metrics (number of views, number of copies, and number of words in IA projects can act as an indirect proxy of instructionally relevant indicators of the content of IA projects.

  12. Alzheimer's disease and intelligence.

    Science.gov (United States)

    Yeo, R A; Arden, R; Jung, R E

    2011-06-01

    A significant body of evidence has accumulated suggesting that individual variation in intellectual ability, whether assessed directly by intelligence tests or indirectly through proxy measures, is related to risk of developing Alzheimer's disease (AD) in later life. Important questions remain unanswered, however, such as the specificity of risk for AD vs. other forms of dementia, and the specific links between premorbid intelligence and development of the neuropathology characteristic of AD. Lower premorbid intelligence has also emerged as a risk factor for greater mortality across myriad health and mental health diagnoses. Genetic covariance contributes importantly to these associations, and pleiotropic genetic effects may impact diverse organ systems through similar processes, including inefficient design and oxidative stress. Through such processes, the genetic underpinnings of intelligence, specifically, mutation load, may also increase the risk of developing AD. We discuss how specific neurobiologic features of relatively lower premorbid intelligence, including reduced metabolic efficiency, may facilitate the development of AD neuropathology. The cognitive reserve hypothesis, the most widely accepted account of the intelligence-AD association, is reviewed in the context of this larger literature.

  13. Micro sized implantable ball lens-based fiber optic probe design

    Science.gov (United States)

    Cha, Jaepyeong; Kang, Jin U.

    2014-02-01

    A micro sized implantable ball lens-based fiber optic probe design is described for continuous monitoring of brain activity in freely behaving mice. A prototype uses a 500-micron ball lens and a highly flexible 350-micron-diameter fiber bundle, which are enclosed by a 21G stainless steel sheath. Several types and thickness of brain tissue, consisting of fluorescent probes such as GFP, GCaMP3 calcium indicator, are used to evaluate the performance of the imaging probe. Measured working distance is approximately 400-μm, but is long enough to detect neural activities from cortical and cerebellar tissues of mice brain.

  14. Implant Materials Generate Different Peri-implant Inflammatory Factors

    OpenAIRE

    Olivares-Navarrete, Rene; Hyzy, Sharon L.; Slosar, Paul J.; Schneider, Jennifer M.; Schwartz, Zvi; Boyan, Barbara D.

    2015-01-01

    Study Design. An in vitro study examining factors produced by human mesenchymal stem cells on spine implant materials. Objective. The aim of this study was to examine whether the inflammatory microenvironment generated by cells on titanium-aluminum-vanadium (Ti-alloy, TiAlV) surfaces is affected by surface microtexture and whether it differs from that generated on poly-ether-ether-ketone (PEEK). Summary of Background Data. Histologically, implants fabricated from PEEK have a fibrous connectiv...

  15. A personalized 3D-printed prosthetic joint replacement for the human temporomandibular joint: From implant design to implantation.

    Science.gov (United States)

    Ackland, David C; Robinson, Dale; Redhead, Michael; Lee, Peter Vee Sin; Moskaljuk, Adrian; Dimitroulis, George

    2017-05-01

    Personalized prosthetic joint replacements have important applications in cases of complex bone and joint conditions where the shape and size of off-the-shelf components may not be adequate. The objective of this study was to design, test and fabricate a personalized 3D-printed prosthesis for a patient requiring total joint replacement surgery of the temporomandibular joint (TMJ). The new 'Melbourne' prosthetic TMJ design featured a condylar component sized specifically to the patient and fixation screw positions that avoid potential intra-operative damage to the mandibular nerve. The Melbourne prosthetic TMJ was developed for a 58-year-old female recipient with end-stage osteoarthritis of the TMJ. The load response of the prosthesis during chewing and a maximum-force bite was quantified using a personalized musculoskeletal model of the patient's masticatory system developed using medical images. The simulations were then repeated after implantation of the Biomet Microfixation prosthetic TMJ, an established stock device. The maximum condylar stresses, screw stress and mandibular stress at the screw-bone interface were lower in the Melbourne prosthetic TMJ (259.6MPa, 312.9MPa and 198.4MPa, respectively) than those in the Biomet Microfixation device (284.0MPa, 416.0MPa and 262.2MPa, respectively) during the maximum-force bite, with similar trends also observed during the chewing bite. After trialing surgical placement and evaluating prosthetic TMJ stability using cadaveric specimens, the prosthesis was fabricated using 3D printing, sterilized, and implanted into the female recipient. Six months post-operatively, the prosthesis recipient had a normal jaw opening distance (40.0 mm), with no complications identified. The new design features and immediate load response of the Melbourne prosthetic TMJ suggests that it may provide improved clinical and biomechanical joint function compared to a commonly used stock device, and reduce risk of intra-operative nerve damage

  16. [Contribution of computer-aided design for the conception of custom-made implants in Pectus Excavatum surgical treatment. Experience of the Nantes plastic surgery unit].

    Science.gov (United States)

    Tilliet Le Dentu, H; Lancien, U; Sellal, O; Duteille, F; Perrot, P

    2018-02-01

    Pectus excavatum is the most common congenital chest malformation and is a common reason for consultation in plastic surgery. Our attitude is most often a filling of the depression with a custom-made silicone prosthesis. The objective of this work was to evaluate the interest of computer-aided design (CAD) of implants compared to the conventional plaster molds method. We have collected all the cases of custom-made silicone implants to treat funnel chests in our plastic surgery department. The quality of the results was evaluated by the patient, and in a blind manner by the surgical team using photographs and standardized surveys. The pre-operative delays, the operating time and length of hospital stays, the number of surgical recoveries, and the post-operative surgical outcomes were recorded. Between 1990 and 2016, we designed 29 silicone thoracic implants in our department. Before 2012, implants were made from plaster chest molds (n=13). After this date, implants were designed by CAD (n=16). Patients rated their results as "good" or "excellent" in 77% and 86% of cases respectively in the plaster and CAD groups. The surgical team's ratings for CAD implant reconstructions were better than in the plaster group: 8.17 versus 6.96 (P=0.001). CAD implants were significantly less detectable than the plaster group implants. The operating time was reduced in the CAO group: 60.2 compared to 74.7minutes in the plaster group (P=0.04), as was the length of hospitalization: 3.5 versus 5.3 days (P=0.01). There were no significant differences between the two groups in terms of post-operative complications. The management of pectus excavatum by a custom-made silicone implant is a minimally invasive method that provides good cosmetic results. The design of these implants is facilitated and qualitatively improved by CAD. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Recent Advances in Intelligent Engineering Systems

    CERN Document Server

    Klempous, Ryszard; Araujo, Carmen

    2012-01-01

    This volume is a collection of 19 chapters on intelligent engineering systems written by respectable experts of the fields. The book consists of three parts. The first part is devoted to the foundational aspects of computational intelligence. It consists of 8 chapters that include studies in genetic algorithms, fuzzy logic connectives, enhanced intelligence in product models, nature-inspired optimization technologies, particle swarm optimization, evolution algorithms, model complexity of neural networks, and fitness landscape analysis. The second part contains contributions to intelligent computation in networks, presented in 5 chapters. The covered subjects include the application of self-organizing maps for early detection of denial of service attacks, combating security threats via immunity and adaptability in cognitive radio networks, novel modifications in WSN network design for improved SNR and reliability, a conceptual framework for the design of audio based cognitive infocommunication channels, and a ...

  18. The Development of an Intelligent Leadership Model for State Universities

    OpenAIRE

    Aleme Keikha; Reza Hoveida; Nour Mohammad Yaghoubi

    2017-01-01

    Higher education and intelligent leadership are considered important parts of every country’s education system, which could potentially play a key role in accomplishing the goals of society. In theories of leadership, new patterns attempt to view leadership through the prism of creative and intelligent phenomena. This paper aims to design and develop an intelligent leadership model for public universities. A qualitativequantitative research method was used to design a basic model of intellige...

  19. Optimal pulse modulator design criteria for plasma source ion implanters

    International Nuclear Information System (INIS)

    Reass, W.

    1993-01-01

    This paper describes what are believed to be the required characteristics of a high-voltage modulator for efficient and optimal ion deposition from the ''Plasma Source Ion Implantation'' (PSII) process. The PSII process is a method to chemically or physically alter and enhance surface properties of objects by placing them in a weakly ionized plasma and pulsing the object with a high negative voltage. The attracted ions implant themselves and form chemical bonds or are interstitially mixed with the base material. Present industrial uses of implanted objects tends to be for limited-production, high-value-added items. Traditional implanting hardware uses the typical low-current (ma) semiconductor ''raster scan'' implanters. The targets must also be manipulated to maintain a surface normal to the ion beam. The PSII method can provide ''bulk'' equipment processing on a large industrial scale. For the first generation equipment, currents are scaled from milliamps to hundreds of amps, voltages to -175kV, at kilohertz rep-rates, and high plasma ion densities

  20. Design of Intelligent Manufacturing Big Data Cloud Service Platform

    Directory of Open Access Journals (Sweden)

    Cai Danlin

    2018-01-01

    Full Text Available With the coming of the intelligent manufacturing, the technology and application of industrial big data will be popular in the future. The productivity, competitiveness and innovation of the manufacturing industries will be improved through the integrated innovation of big data technology and industries. Besides, products, production process, management, services, new form and new models will be more intellectualized. They will support the transformation and upgrading of manufacturing industry and the construction of an open, shared and collaborative ecological environment for intelligent manufacturing industry.

  1. Intelligent Integrated System Health Management

    Science.gov (United States)

    Figueroa, Fernando

    2012-01-01

    Intelligent Integrated System Health Management (ISHM) is the management of data, information, and knowledge (DIaK) with the purposeful objective of determining the health of a system (Management: storage, distribution, sharing, maintenance, processing, reasoning, and presentation). Presentation discusses: (1) ISHM Capability Development. (1a) ISHM Knowledge Model. (1b) Standards for ISHM Implementation. (1c) ISHM Domain Models (ISHM-DM's). (1d) Intelligent Sensors and Components. (2) ISHM in Systems Design, Engineering, and Integration. (3) Intelligent Control for ISHM-Enabled Systems

  2. Intelligence in Artificial Intelligence

    OpenAIRE

    Datta, Shoumen Palit Austin

    2016-01-01

    The elusive quest for intelligence in artificial intelligence prompts us to consider that instituting human-level intelligence in systems may be (still) in the realm of utopia. In about a quarter century, we have witnessed the winter of AI (1990) being transformed and transported to the zenith of tabloid fodder about AI (2015). The discussion at hand is about the elements that constitute the canonical idea of intelligence. The delivery of intelligence as a pay-per-use-service, popping out of ...

  3. Artificial Intelligence in Civil Engineering

    Directory of Open Access Journals (Sweden)

    Pengzhen Lu

    2012-01-01

    Full Text Available Artificial intelligence is a branch of computer science, involved in the research, design, and application of intelligent computer. Traditional methods for modeling and optimizing complex structure systems require huge amounts of computing resources, and artificial-intelligence-based solutions can often provide valuable alternatives for efficiently solving problems in the civil engineering. This paper summarizes recently developed methods and theories in the developing direction for applications of artificial intelligence in civil engineering, including evolutionary computation, neural networks, fuzzy systems, expert system, reasoning, classification, and learning, as well as others like chaos theory, cuckoo search, firefly algorithm, knowledge-based engineering, and simulated annealing. The main research trends are also pointed out in the end. The paper provides an overview of the advances of artificial intelligence applied in civil engineering.

  4. Cochlear implant rehabilitation outcomes in Waardenburg syndrome children.

    Science.gov (United States)

    de Sousa Andrade, Susana Margarida; Monteiro, Ana Rita Tomé; Martins, Jorge Humberto Ferreira; Alves, Marisa Costa; Santos Silva, Luis Filipe; Quadros, Jorge Manuel Cardoso; Ribeiro, Carlos Alberto Reis

    2012-09-01

    The purpose of this study was to review the outcomes of children with documented Waardenburg syndrome implanted in the ENT Department of Centro Hospitalar de Coimbra, concerning postoperative speech perception and production, in comparison to the rest of non-syndromic implanted children. A retrospective chart review was performed for children congenitally deaf who had undergone cochlear implantation with multichannel implants, diagnosed as having Waardenburg syndrome, between 1992 and 2011. Postoperative performance outcomes were assessed and confronted with results obtained by children with non-syndromic congenital deafness also implanted in our department. Open-set auditory perception skills were evaluated by using European Portuguese speech discrimination tests (vowels test, monosyllabic word test, number word test and words in sentence test). Meaningful auditory integration scales (MAIS) and categories of auditory performance (CAP) were also measured. Speech production was further assessed and included results on meaningful use of speech Scale (MUSS) and speech intelligibility rating (SIR). To date, 6 implanted children were clinically identified as having WS type I, and one met the diagnosis of type II. All WS children received multichannel cochlear implants, with a mean age at implantation of 30.6±9.7months (ranging from 19 to 42months). Postoperative outcomes in WS children were similar to other nonsyndromic children. In addition, in number word and vowels discrimination test WS group showed slightly better performances, as well as in MUSS and MAIS assessment. Our study has shown that cochlear implantation should be considered a rehabilitative option for Waardenburg syndrome children with profound deafness, enabling the development and improvement of speech perception and production abilities in this group of patients, reinforcing their candidacy for this audio-oral rehabilitation method. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Multicycle mechanical performance of titanium and stainless steel transpedicular spine implants.

    Science.gov (United States)

    Pienkowski, D; Stephens, G C; Doers, T M; Hamilton, D M

    1998-04-01

    This was a prospective in vitro study comparing titanium alloy and stainless steel alloy in transpedicular spine implants from two different manufactures. To compare the multicycle mechanical performance of these two alloys, used in each of two different implant designs. Transpedicular spine implants primarily have been manufactured from stainless steel, but titanium alloy offers imaging advantages. However, the notch sensitivity of titanium alloy has caused concern regarding how implants made from this material will compare in stiffness and fatigue life with implants made from stainless steel. Twenty-four implants (two alloys, two designs, six implants per group) were mounted in machined polyethylene wafers and repetitively loaded (up to 1 million cycles) from 80 N to 800 N using a 5-Hertz sinusoidal waveform. Load and displacement data were automatically and periodically sampled throughout the entire test. Implant stiffness increased with cycle load number, reached a steady state, then declined just before fatigue failure. Stiffness varied less in titanium transpedicular spine implants than in their stainless counterparts. All stainless steel implant types were stiffer (steady-state value, P titanium alloy counterparts. One titanium implant design failed with fewer (P stainless steel counterpart, whereas a stainless steel implant of another design failed with fewer (P titanium counterpart. Overall, fatigue life, i.e., the total number of load cycles until failure, was related to implant type (P implant material. A transpedicular spine implant's fatigue lifetime depends on both the design and the material and cannot be judged on material alone. Stainless steel implants are stiffer than titanium alloy implants of equal design and size; however, for those designs in which the fatigue life of the titanium alloy version is superior, enlargement of the implant's components can compensate for titanium's lower modulus of elasticity and result in an implant equally stiff

  6. Classification system on the selection of number of implants and superstructure design on the basis available vertical restorative space and interforaminal distance for implant supported mandibular overdenture

    Directory of Open Access Journals (Sweden)

    Akshay Bhargava

    2016-01-01

    Full Text Available Purpose: The rehabilitation of the edentulous mandible is a challenge due to various limiting factors, of which the available vertical restorative space (AVRS has been well understood in the literature. However, other anatomic variations such as arch form, arch size, and also the interforaminal distance (IFD (due to the presence of mandibular nerve are influential in the selection of size and position of implants, and thereby the prosthetic design. Materials and Method: In the present study, 30 edentulous patients from a group of 300 edentulous patients, representing all the three jaw relations (Class I, II, and III were evaluated for designing a classification that could help in a comprehensive treatment plan for the edentulous mandible. Dental panoramic radiographs of each individual with a trial or final prosthesis were made. The horizontal IFD and AVRS values were calculated. Results: One-way analysis of variance followed by post-hoc test (multiple comparison and Bonferroni method having P < 0.05 as significant value showed an overall mean of 38.9 mm for horizontal distance and 13.69 mm for the AVRS in 30 edentulous patients. Conclusion: The results showed that in the majority of cases (90% there is insufficient space to place a bar attachment supported by five implants for mandibular overdentures. This suggests that a universal treatment plan cannot be followed due to varying anatomic factors. Hence, it becomes imperative to have a set of clinical guidelines based on the AVRS and IFD, for the selection of implant number and type of attachment. The article proposes a simple classification system based on the AVRS and IFD for establishing guidelines in the treatment planning of the edentulous mandible, to aid in selection of implant size, number, and position along with the associated prosthetic design.

  7. Designing an Adaptive Nuero-Fuzzy Inference System for Evaluating the Business Intelligence System Implementation in Software Industry

    Directory of Open Access Journals (Sweden)

    Iman Raeesi Vanani

    2015-03-01

    Full Text Available The main goal of research is designing an adaptive nuero-fuzzy inference system for evaluating the implementation of business intelligence systems in software industry. Iranian software development organizations have been facing a lot of problems in case of implementing business intelligence systems. This system would be helpful in recognizing the conditions and prerequisites of success or failure. Organizations can recalculate the neuro-fuzzy system outputs with some considerations on various inputs to figure out which inputs have the most effect on the implementation outputs. By resolving the problems on inputs, organizations can achieve a better level of implementation success. The designed system has been trained by a data set and afterwards, it has been evaluated. The trained system has reached the error value of 0.08. Eventually, some recommendations have been provided for software development firms on the areas that might need more considerations and improvements.

  8. The Relationships between Paranormal Belief, Creationism, Intelligent Design and Evolution at Secondary Schools in Vienna (Austria)

    Science.gov (United States)

    Eder, Erich; Turic, Katharina; Milasowszky, Norbert; Van Adzin, Katherine; Hergovich, Andreas

    2011-01-01

    The present study is the first to investigate the relationships between a multiple set of paranormal beliefs and the acceptance of evolution, creationism, and intelligent design, respectively, in Europe. Using a questionnaire, 2,129 students at secondary schools in Vienna (Austria) answered the 26 statements of the Revised Paranormal Belief Scale…

  9. Chest reconstruction using a custom-designed polyethylene 3D implant after resection of the sternal manubrium

    Directory of Open Access Journals (Sweden)

    Lipińska J

    2017-08-01

    Full Text Available Joanna Lipińska,1 Leszek Kutwin,1 Marcin Wawrzycki,1 Leszek Olbrzymek,2 Sławomir Jabłoński1 1Department of Thoracic Surgery, General and Oncological Surgery, Medical University of Lodz, 2Ledo, Lodz, Poland Introduction: Resection of manubrium or body of the sternum is associated with a necessity of chest wall reconstruction. Large sternal defects require the use of different types of implants to ensure acceptable esthetic effect for the patient and chest stabilization. Aim: The purpose of this case report is to present a novel method of reconstruction of manubrium removed due to renal cancer metastasis to the sternum.Case: We present the case of a patient, who had underwent right nephrectomy for clear cell kidney cancer, diagnosed with a metastatic tumor in the sternum resulting in destruction of manubrium. The patient undergone tumor resection with primary reconstruction with an individual prosthesis. Sternal defect was filled with a personalized, computed tomography scan-based 3D-milled implant made of polyethylene.Results: Sternal reconstruction was uneventful. The patient endured surgery well, and has been under surveillance in outpatient clinic, without any respiration disorders, implant movement or local recurrence.Conclusion: Custom-designed sternal implants created by 3D technique constitute an interesting alternative for previous methods of filling defects after resection of a tumor in this location. Keywords: 3D-milled implant, thoracoplasty, reconstructive surgery, chest reconstruction, sternal metastasis, sternal implant, sternal tumor 

  10. Maxillary Three-Implant Overdentures Opposing Mandibular Two-Implant Overdentures: 10-Year Surgical Outcomes of a Randomized Controlled Trial.

    Science.gov (United States)

    Ma, Sunyoung; Tawse-Smith, Andrew; De Silva, Rohana K; Atieh, Momen A; Alsabeeha, Nabeel H M; Payne, Alan G T

    2016-06-01

    The surgical placement of four maxillary implants for overdentures may not be obligatory when opposing mandibular two-implant overdentures. To determine 10-year surgical outcomes and implant success of three narrow diameter implants in edentulous maxillae with conventional loading. Forty participants with mandibular two-implant overdentures were randomly allocated for surgery for maxillary overdentures. Using osteotomes, three implants of similar systems were placed with a one-stage procedure and 12-week loading with splinted and unsplinted prosthodontic designs. Marginal bone and stability measurements were done at surgery, 12 weeks, 1-, 2-, 5-, 7-, 10 years. One hundred seventeen implants were placed in 39 participants, with 35 being seen at 1 year; 29 at 2 years; 28 at 5 years; 26 at 7 years; and 23 (59%) at 10 years. Marginal bone loss was 1.35 mm between surgery and 12 weeks; 0.36 mm between 12 weeks and 1 year; 0.48 mm between 1 and 5 years; and 0.22 mm between 5 and 10 years. Implant stability quotients were 56.05, 57.54, 60.88, 58.80, 61.17 at surgery, 12 weeks, 1 year, 5 years, and 10 years. Four-field tables by implant showed success rates of 82% at 1 year; 69.2% at 2 years; 66.7% at 5 years; 61.5% at 7 years; 51.3% at 10 years. Data showed no differences between surgical technique, systems, or prosthodontic designs. Surgical placement with osteotomes of three narrow diameter implants for maxillary overdentures, opposing mandibular two-implant overdentures, is an acceptable approach, subject to strict patient selection. Implant success is independent of prosthodontic design. © 2015 Wiley Periodicals, Inc.

  11. Concept design and cluster control of advanced space connectable intelligent microsatellite

    Science.gov (United States)

    Wang, Xiaohui; Li, Shuang; She, Yuchen

    2017-12-01

    In this note, a new type of advanced space connectable intelligent microsatellite is presented to extend the range of potential application of microsatellite and improve the efficiency of cooperation. First, the overall concept of the micro satellite cluster is described, which is characterized by autonomously connecting with each other and being able to realize relative rotation through the external interfaces. Second, the multi-satellite autonomous assembly algorithm and control algorithm of the cluster motion are developed to make the cluster system combine into a variety of configurations in order to achieve different types of functionality. Finally, the design of the satellite cluster system is proposed, and the possible applications are discussed.

  12. Key issues for the successful design of an intelligent, interactive playground

    NARCIS (Netherlands)

    Sturm, J.A.; Bekker, M.M.; Groenendaal, B.; Wesselink, R.; Eggen, J.H.

    2008-01-01

    An Intelligent Playground is an environment with interactive objects that, using advanced technology such as sensors and actuators, react to the interaction with the children and actively encourage children to play. Thus, an intelligent playground stimulates children to move and play together. In

  13. Humanitarian Intelligence : A Practitioner's Guide to Crisis Analysis and Project Design

    NARCIS (Netherlands)

    Zwitter, Andrej

    2016-01-01

    Humanitarian aid workers are faced with many challenges, from possible terrorist attacks to dealing with difficult stakeholders and securing operational space free from violence. To do their work properly and safely, they need effective intelligence. Humanitarian intelligence refers to the use of

  14. An intelligent simulation environment for control system design

    International Nuclear Information System (INIS)

    Robinson, J.T.

    1989-01-01

    The Oak Ridge National Laboratory is currently assisting in the development of advanced control systems for the next generation of nuclear power plants. This paper presents a prototype interactive and intelligent simulation environment being developed to support this effort. The environment combines tools from the field of Artificial Intelligence; in particular object-oriented programming, a LISP programming environment, and a direct manipulation user interface; with traditional numerical methods for simulating combined continuous/discrete processes. The resulting environment is highly interactive and easy to use. Models may be created and modified quickly through a window oriented direct manipulation interface. Models may be modified at any time, even as the simulation is running, and the results observed immediately via real-time graphics. 8 refs., 3 figs

  15. Open-source intelligence in the Czech military knowledge syst em and process design

    OpenAIRE

    Krejci, Roman

    2002-01-01

    Owing to the recent transitions in the Czech Republic, the Czech military must satisfy a large set of new requirements. One way the military intelligence can become more effective and can conserve resources is by increasing the efficiency of open-source intelligence (OSINT), which plays an important part in intelligence gathering in the age of information. When using OSINT effectively, the military intelligence can elevate its responsiveness to different types of crises and can also properly ...

  16. Influence of the implant-abutment connection design and diameter on the screw joint stability

    Science.gov (United States)

    Shin, Hyon-Mo; Huh, Jung-Bo; Yun, Mi-Jeong; Jeon, Young-Chan; Chang, Brian Myung

    2014-01-01

    PURPOSE This study was conducted to evaluate the influence of the implant-abutment connection design and diameter on the screw joint stability. MATERIALS AND METHODS Regular and wide-diameter implant systems with three different joint connection designs: an external butt joint, a one-stage internal cone, and a two-stage internal cone were divided into seven groups (n=5, in each group). The initial removal torque values of the abutment screw were measured with a digital torque gauge. The postload removal torque values were measured after 100,000 cycles of a 150 N and a 10 Hz cyclic load had been applied. Subsequently, the rates of the initial and postload removal torque losses were calculated to evaluate the effect of the joint connection design and diameter on the screw joint stability. Each group was compared using Kruskal-Wallis test and Mann-Whitney U test as post-hoc test (α=0.05). RESULTS The postload removal torque value was high in the following order with regard to magnitude: two-stage internal cone, one-stage internal cone, and external butt joint systems. In the regular-diameter group, the external butt joint and one-stage internal cone systems showed lower postload removal torque loss rates than the two-stage internal cone system. In the wide-diameter group, the external butt joint system showed a lower loss rate than the one-stage internal cone and two-stage internal cone systems. In the two-stage internal cone system, the wide-diameter group showed a significantly lower loss rate than the regular-diameter group (P<.05). CONCLUSION The results of this study showed that the external butt joint was more advantageous than the internal cone in terms of the postload removal torque loss. For the difference in the implant diameter, a wide diameter was more advantageous in terms of the torque loss rate. PMID:24843398

  17. Influence of the implant-abutment connection design and diameter on the screw joint stability.

    Science.gov (United States)

    Shin, Hyon-Mo; Huh, Jung-Bo; Yun, Mi-Jeong; Jeon, Young-Chan; Chang, Brian Myung; Jeong, Chang-Mo

    2014-04-01

    This study was conducted to evaluate the influence of the implant-abutment connection design and diameter on the screw joint stability. Regular and wide-diameter implant systems with three different joint connection designs: an external butt joint, a one-stage internal cone, and a two-stage internal cone were divided into seven groups (n=5, in each group). The initial removal torque values of the abutment screw were measured with a digital torque gauge. The postload removal torque values were measured after 100,000 cycles of a 150 N and a 10 Hz cyclic load had been applied. Subsequently, the rates of the initial and postload removal torque losses were calculated to evaluate the effect of the joint connection design and diameter on the screw joint stability. Each group was compared using Kruskal-Wallis test and Mann-Whitney U test as post-hoc test (α=0.05). THE POSTLOAD REMOVAL TORQUE VALUE WAS HIGH IN THE FOLLOWING ORDER WITH REGARD TO MAGNITUDE: two-stage internal cone, one-stage internal cone, and external butt joint systems. In the regular-diameter group, the external butt joint and one-stage internal cone systems showed lower postload removal torque loss rates than the two-stage internal cone system. In the wide-diameter group, the external butt joint system showed a lower loss rate than the one-stage internal cone and two-stage internal cone systems. In the two-stage internal cone system, the wide-diameter group showed a significantly lower loss rate than the regular-diameter group (P<.05). The results of this study showed that the external butt joint was more advantageous than the internal cone in terms of the postload removal torque loss. For the difference in the implant diameter, a wide diameter was more advantageous in terms of the torque loss rate.

  18. Influence of implant neck design on facial bone crest dimensions in the esthetic zone analyzed by cone beam CT: a comparative study with a 5-to-9-year follow-up.

    Science.gov (United States)

    Chappuis, Vivianne; Bornstein, Michael M; Buser, Daniel; Belser, Urs

    2016-09-01

    To examine the influence of two different neck designs on facial bone crest dimensions in esthetic single implant sites after a 5-to-9-year follow-up analyzed by cone beam computed tomography (CBCT). Sixty-one patients with an implant-borne single crown following early implant placement in the esthetic zone were enrolled. The test group consisted of a bone level (BL) neck design exhibiting a hydrophilic micro-rough surface combined with a platform-switching interface (PS) (n = 20). The control group comprised a soft tissue level (STL) neck design exhibiting a hydrophobic machined surface with a matching butt-joint interface (n = 41). Standardized clinical, radiologic, and esthetic parameters were applied. The facial bone crest dimensions were assessed by CBCT. Soft tissue parameters and pink esthetic scores yielded no significant differences between the two designs. Major differences were only observed at the implant shoulder level. The height of the facial bone crest for the BL design was located 0.2 mm above the implant shoulder level, whereas for the STL design, its location was 1.6 mm below. The width of the peri-implant saucer-like bone defect was reduced by 40% for the BL implant design. No differences were observed 2 mm below the shoulder level. The results of this comparative study suggest better crestal bone stability on the facial aspect of single implant sites in the esthetic zone for a BL design with a platform-switching concept when compared with STL implants with a butt-joint interface. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Soft and Hard Tissue Changes around Tissue-Oriented Tulip-Design Implant Abutments: A 1-Year Randomized Prospective Clinical Trial.

    Science.gov (United States)

    Gutmacher, Zvi; Levi, Guy; Blumenfeld, Israel; Machtei, Eli E

    2015-10-01

    The advantages of platform switching using narrower abutments remain controversial. Many researchers suggest that platform switching can yield enhanced clinical results, while others remain skeptical. We hypothesize that the effectiveness of platform switching might be associated with the degree of reduction in size of the abutment. To radiographically and clinically examine a new abutment design created to move the implant-abutment interface farther medially. This was a prospective, randomized controlled clinical trial that included 27 patients (41 MIS Lance Plus® implants; MIS Implant Technologies, Karmiel, Israel). The patients' age ranged from 39 to 75 years. At the second stage of the surgery, the implants were randomly assigned to either the new platform switch Tulip abutment (TA) design or to the standard platform abutment (SA). Implant probing depth (IPD) and bleeding on probing (BOP) were recorded at baseline and after 12 months. Standardized periapical radiographs were taken (at baseline and at 12 months) and the marginal bone height measured. All implants were successfully integrated. The mean IPD at 1 year post-op was 2.91 mm for the SA group and 2.69 mm for the TA group (p > .05). Similarly, the BOP at 1 year was almost identical in both groups. The mean values of bone resorption at baseline were 0.98 ± 0.37 mm and 0.69 ± 0.20 for the TA and SA groups, respectively (p > .05). Bone loss (baseline to 12 months) was significantly greater in the SA group compared with the TA group. Use of the new TA, with its significantly downsized diameter, resulted in reduced bone loss at 1 year. Further research will be required to assess the long-term effect of this abutment on peri-implant health. © 2014 Wiley Periodicals, Inc.

  20. Patient satisfaction with maxillary 3-implant overdentures using different attachment systems opposing mandibular 2-implant overdentures.

    Science.gov (United States)

    Al-Zubeidi, Mohammed I; Alsabeeha, Nabeel H M; Thomson, W Murray; Payne, Alan G T

    2012-05-01

    Patient-based outcomes with maxillary overdentures on a minimum number of implants, opposing mandibular 2-implant overdentures are not evident in the literature. To evaluate patient's satisfaction with maxillary 3-implant overdentures, opposing mandibular 2-implant overdentures, using two different attachment systems over the first 2 years of service. Forty participants wearing mandibular 2-implant overdentures for 3 years were randomly allocated to one of two similar implant system groups to receive maxillary 3-implant overdentures. Twenty participants were allocated to splinted and unsplinted attachment system treatment groups for each system. Patient satisfaction with pre-treatment complete maxillary dentures, with maxillary 3-implant overdentures at baseline and annually for 2 years, was measured using visual analogue scale questionnaires and the oral health impact profiles. Palatal coverage of the maxillary overdentures was reduced at the first annual recall. Data showed significant improvement in pain reduction, comfort, stability, and function variables of the visual analogue scale after treatment. Analysis by prosthodontic design using visual analogue scale showed no significant difference. The total oral health impact profile-14 scores after treatment for all participants, regardless of prosthodontic design, were significantly lower (more satisfied). The overall oral health impact profile-20E score at baseline was significantly higher (more satisfied) compared with pre-treatment conventional maxillary dentures. No significant changes were observed in the first or second years compared with baseline results. Twenty-two participants (84.6%) preferred reduced palatal coverage, regardless of prosthodontic design, after 1 year. Twenty participants (76.9%) still preferred reduced palatal coverage at the end of the second year. The provision of maxillary 3-implant overdentures to oppose mandibular 2-implant overdentures significantly improve levels of patient

  1. Report on {open_quotes}inspection of human subject research in intelligence and intelligence-related projects{close_quotes}

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-16

    Executive Order 12333, {open_quotes}United States Intelligence Activities,{close_quotes} (1) designates the Department`s intelligence element as a member of the Intelligence Community, and (2) states that no agency within the Intelligence community shall sponsor, contract for or conduct research on human subjects except in accordance with guidelines issued by the Department of Health and Human Services. The Federal policy for the Protection of Human Subjects, which was based on Department of Health and Human Services regulations, was promulgated in Title 10 Code of Federal Regulations Part 745 by the Department of Energy. The purpose of this inspection was to review the internal control procedures used by the Office of Nonproliferation and National Security to manage selected intelligence and intelligence-related projects that involve human subject research.

  2. Pre- and Postoperative Binaural Unmasking for Bimodal Cochlear Implant Listeners.

    Science.gov (United States)

    Sheffield, Benjamin M; Schuchman, Gerald; Bernstein, Joshua G W

    Cochlear implants (CIs) are increasingly recommended to individuals with residual bilateral acoustic hearing. Although new hearing-preserving electrode designs and surgical approaches show great promise, CI recipients are still at risk to lose acoustic hearing in the implanted ear, which could prevent the ability to take advantage of binaural unmasking to aid speech recognition in noise. This study examined the tradeoff between the benefits of a CI for speech understanding in noise and the potential loss of binaural unmasking for CI recipients with some bilateral preoperative acoustic hearing. Binaural unmasking is difficult to evaluate in CI candidates because speech perception in noise is generally too poor to measure reliably in the range of signal to noise ratios (SNRs) where binaural intelligibility level differences (BILDs) are typically observed (binaural benefit, 9 out of 10 listeners tested postoperatively had performance equal to or better than their best pre-CI performance. The listener who retained functional acoustic hearing in the implanted ear also demonstrated a preserved acoustic BILD postoperatively. Approximately half of the CI candidates in this study demonstrated preoperative binaural hearing benefits for audiovisual speech perception in noise. Most of these listeners lost their acoustic hearing in the implanted ear after surgery (using nonhearing-preservation techniques), and therefore lost access to this binaural benefit. In all but one case, any loss of binaural benefit was compensated for or exceeded by an improvement in speech perception with the CI. Evidence of a preoperative BILD suggests that certain CI candidates might further benefit from hearing-preservation surgery to retain acoustic binaural unmasking, as demonstrated for the listener who underwent hearing-preservation surgery. This test of binaural audiovisual speech perception in noise could serve as a diagnostic tool to identify CI candidates who are most likely to receive

  3. A survey on the design of multiprocessing systems for artificial intelligence applications

    Science.gov (United States)

    Wah, Benjamin W.; Li, Guo Jie

    1989-01-01

    Some issues in designing computers for artificial intelligence (AI) processing are discussed. These issues are divided into three levels: the representation level, the control level, and the processor level. The representation level deals with the knowledge and methods used to solve the problem and the means to represent it. The control level is concerned with the detection of dependencies and parallelism in the algorithmic and program representations of the problem, and with the synchronization and sheduling of concurrent tasks. The processor level addresses the hardware and architectural components needed to evaluate the algorithmic and program representations. Solutions for the problems of each level are illustrated by a number of representative systems. Design decisions in existing projects on AI computers are classed into top-down, bottom-up, and middle-out approaches.

  4. Pneumococcal meningitis post-cochlear implantation: preventative measures.

    Science.gov (United States)

    Wei, Benjamin P C; Shepherd, Robert K; Robins-Browne, Roy M; Clark, Graeme M; O'Leary, Stephen J

    2010-11-01

    Both clinical data and laboratory studies demonstrated the risk of pneumococcal meningitis post-cochlear implantation. This review examines strategies to prevent post-implant meningitis. Medline/PubMed database; English articles after 1980. Search terms: cochlear implants, pneumococcus meningitis, streptococcus pneumonia, immunization, prevention. Narrative review. All articles relating to post-implant meningitis without any restriction in study designs were assessed and information extracted. The presence of inner ear trauma as a result of surgical technique or cochlear implant electrode array design was associated with a higher risk of post-implant meningitis. Laboratory data demonstrated the effectiveness of pneumococcal vaccination in preventing meningitis induced via the hematogenous route of infection. Fibrous sealing around the electrode array at the cochleostomy site, and the use of antibiotic-coated electrode array reduced the risk of meningitis induced via an otogenic route. The recent scientific data support the U.S. Food and Drug Administration recommendation of pneumococcal vaccination for the prevention of meningitis in implant recipients. Nontraumatic cochlear implant design, surgical technique, and an adequate fibrous seal around the cochleostomy site further reduce the risk of meningitis. Copyright © 2010 American Academy of Otolaryngology–Head and Neck Surgery Foundation. Published by Mosby, Inc. All rights reserved.

  5. Effect of macro-design of immediately loaded implants on micromotion and stress distribution in surrounding bone using finite element analysis.

    Science.gov (United States)

    Fazel, Akbar; Aalai, Shima; Rismanchian, Mansour

    2009-08-01

    Macro-design influences the initial stability of implant and reduces micromotions. The aim of this study was to determine and compare micromotions and stress distribution in the bone around immediately loaded Maestro and Xive implants using finite element analysis. In this experimental study, accurate, clear photos were prepared of Xive and Maestro implants 12 and 13 mm long and 4 and 3.8 mm in diameter, respectively, using a Nikon Digital Camera with a resolution 5.24-megapixels with 8x Optical Zoom and 4x Digital Zoom. After accurate measurements, 3-D models of the implants inside the lower mandible (D2) were processed in Solidworks Version 2003 environment and transferred into Ansys for finite element analysis. After loading of 500 N angled at 70 degrees from the horizontal plane, the micromotion of the implant and Von Misses stresses around the bone were measured. The measured micromotion in Maestro implant was 148 mum and that in Xive was 284 mum. Stress distribution in the bone surrounding Maestro implant was better than Xive, but maximum stress surrounding Xive implants (30 MPa) was lower than Maestro (33 MPa). Based on the results obtained in the present study, maximum micromotion in maestro was less than that in Xive implants. This finding can guarantee the application of maestro implants for immediate loading.

  6. Influence of Abutment Design on Stiffness, Strength, and Failure of Implant-Supported Monolithic Resin Nano Ceramic (RNC) Crowns.

    Science.gov (United States)

    Joda, Tim; Huber, Samuel; Bürki, Alexander; Zysset, Philippe; Brägger, Urs

    2015-12-01

    Recent technical development allows the digital manufacturing of monolithic reconstructions with high-performance materials. For implant-supported crowns, the fixation requires an abutment design onto which the reconstruction can be bonded. The aim of this laboratory investigation was to analyze stiffness, strength, and failure modes of implant-supported, computer-assisted design and computer-aided manufacturing (CAD/CAM)-generated resin nano ceramic (RNC) crowns bonded to three different titanium abutments. Eighteen monolithic RNC crowns were produced and loaded in a universal testing machine under quasi-static condition according to DIN ISO 14801. With regard to the type of titanium abutment, three groups were defined: (1) prefabricated cementable standard; (2) CAD/CAM-constructed individualized; and (3) novel prefabricated bonding base. Stiffness and strength were measured and analyzed statistically with Wilcoxon rank sum test. Sections of the specimens were examined microscopically. Stiffness demonstrated high stability for all specimens loaded in the physiological loading range with means and standard deviations of 1,579 ± 120 N/mm (group A), 1,733 ± 89 N/mm (group B), and 1,704 ± 162 N/mm (group C). Mean strength of the novel prefabricated bonding base (group C) was 17% lower than of the two other groups. Plastic deformations were detectable for all implant-abutment crown connections. Monolithic implant crowns made of RNC seem to represent a feasible and stable prosthetic construction under laboratory testing conditions with strength higher than the average occlusal force, independent of the different abutment designs used in this investigation. © 2014 Wiley Periodicals, Inc.

  7. Aqueous shunt implantation in glaucoma

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2017-01-01

    Full Text Available Aqueous shunts or glaucoma drainage devices are increasingly utilized in the management of refractory glaucoma. The general design of the most commonly-used shunts is based on the principles of the Molteno implant: ie. a permanent sclerostomy (tube, a predetermined bleb area (plate and diversion of aqueous humour to the equatorial region and away from the limbal subconjunctival space. These three factors make aqueous shunts more resistant to scarring as compared to trabeculectomy. The two most commonly used shunts are the Ahmed Glaucoma Valve, which contains a flow-restrictor, and the non-valved Baervedlt Glaucoma Implant. While the valved implants have a lower tendency to hypotony and related complications, the non-valved implants with larger, more-biocompatible end plate design, achieve lower intraocular pressures with less encapsulation. Non-valved implants require additional suturing techniques to prevent early hypotony and a number of these methods will be described. Although serious shunt-related infection is rare, corneal decompensation and diplopia are small but significant risks.

  8. Design for a low temperature ion implantation and luminescence cryostat

    International Nuclear Information System (INIS)

    Noonan, J.R.; Kirkpatrick, C.G.; Myers, D.R.; Streetman, B.G.

    1976-01-01

    Several simple design changes of a conventional liquid helium optical Dewar can significantly improve the cryostat's versatility for use in low temperature particle irradiation. A bellows assembly provides precise sample positioning and allows convenient access for electrical connections. A heat exchanger consisting of thin walled tubing with a 'goose neck' bend provides a simple, effective means of cooling the sample as well as excellent thermal isolation of the sample holder from the coolant reservoir during controlled anneals. The addition of a vane-type vacuum valve, optical windows, and a rotatable tailpiece facilitates the study of optical properties of materials following low temperature ion implantation. (author)

  9. Artificial intelligence and design: Opportunities, research problems and directions

    Science.gov (United States)

    Amarel, Saul

    1990-01-01

    The issues of industrial productivity and economic competitiveness are of major significance in the U.S. at present. By advancing the science of design, and by creating a broad computer-based methodology for automating the design of artifacts and of industrial processes, we can attain dramatic improvements in productivity. It is our thesis that developments in computer science, especially in Artificial Intelligence (AI) and in related areas of advanced computing, provide us with a unique opportunity to push beyond the present level of computer aided automation technology and to attain substantial advances in the understanding and mechanization of design processes. To attain these goals, we need to build on top of the present state of AI, and to accelerate research and development in areas that are especially relevant to design problems of realistic complexity. We propose an approach to the special challenges in this area, which combines 'core work' in AI with the development of systems for handling significant design tasks. We discuss the general nature of design problems, the scientific issues involved in studying them with the help of AI approaches, and the methodological/technical issues that one must face in developing AI systems for handling advanced design tasks. Looking at basic work in AI from the perspective of design automation, we identify a number of research problems that need special attention. These include finding solution methods for handling multiple interacting goals, formation problems, problem decompositions, and redesign problems; choosing representations for design problems with emphasis on the concept of a design record; and developing approaches for the acquisition and structuring of domain knowledge with emphasis on finding useful approximations to domain theories. Progress in handling these research problems will have major impact both on our understanding of design processes and their automation, and also on several fundamental questions

  10. Management of peri-implant infections

    Directory of Open Access Journals (Sweden)

    K L Vandana

    2015-01-01

    Full Text Available The ever-increasing popularity of dental implants in recent years has been associated with the reported incidence of short-term and long-term complications such as peri-implant mucositis and peri-implantitis. Therapies proposed for treating peri-implantitis are based on the evidence available for the treatment of periodontitis, and are aimed at reducing the bacterial load within peri-implant pockets and decontaminating implant surfaces, and, in some cases, attempting afterward to bring about bone regeneration. The treatment of peri-implant infections comprises conservative (nonsurgical and surgical approaches. This paper reviews various treatment strategies used for the treatment of peri-implant diseases. There are many approaches suggested by various authors for the treatment of peri-implant diseases, but there is no “ideal peri-implant therapy” that has been described in the literature. There is no consensus regarding the treatment protocol as the studies conducted so far have had varying study designs, small sample sizes, and short follow-up periods.

  11. Design And Implementation of Dsp-Based Intelligent Controller For Automobile Braking System

    OpenAIRE

    S.N. Sidek and M.J.E. Salami

    2012-01-01

    An intelligent braking system has great potential applications especially, in developed countries where research on smart vehicle and intelligent highways are receiving ample attention. The system when integrated with other subsystems like automatic traction control, intelligent throttle, and auto cruise systems, etc will result in smart vehicle maneuver. The driver at the end of the day will become the passenger, safety accorded the highest priority and the journey optimized in term of time ...

  12. Customizable cap implants for neurophysiological experimentation.

    Science.gov (United States)

    Blonde, Jackson D; Roussy, Megan; Luna, Rogelio; Mahmoudian, Borna; Gulli, Roberto A; Barker, Kevin C; Lau, Jonathan C; Martinez-Trujillo, Julio C

    2018-04-22

    Several primate neurophysiology laboratories have adopted acrylic-free, custom-fit cranial implants. These implants are often comprised of titanium or plastic polymers, such as polyether ether ketone (PEEK). Titanium is favored for its mechanical strength and osseointegrative properties whereas PEEK is notable for its lightweight, machinability, and MRI compatibility. Recent titanium/PEEK implants have proven to be effective in minimizing infection and implant failure, thereby prolonging experiments and optimizing the scientific contribution of a single primate. We created novel, customizable PEEK 'cap' implants that contour to the primate's skull. The implants were created using MRI and/or CT data, SolidWorks software and CNC-machining. Three rhesus macaques were implanted with a PEEK cap implant. Head fixation and chronic recordings were successfully performed. Improvements in design and surgical technique solved issues of granulation tissue formation and headpost screw breakage. Primate cranial implants have traditionally been fastened to the skull using acrylic and anchor screws. This technique is prone to skin recession, infection, and implant failure. More recent methods have used imaging data to create custom-fit titanium/PEEK implants with radially extending feet or vertical columns. Compared to our design, these implants are more surgically invasive over time, have less force distribution, and/or do not optimize the utilizable surface area of the skull. Our PEEK cap implants served as an effective and affordable means to perform electrophysiological experimentation while reducing surgical invasiveness, providing increased strength, and optimizing useful surface area. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  13. Integration of artificial intelligence and numerical optimization techniques for the design of complex aerospace systems

    International Nuclear Information System (INIS)

    Tong, S.S.; Powell, D.; Goel, S.

    1992-02-01

    A new software system called Engineous combines artificial intelligence and numerical methods for the design and optimization of complex aerospace systems. Engineous combines the advanced computational techniques of genetic algorithms, expert systems, and object-oriented programming with the conventional methods of numerical optimization and simulated annealing to create a design optimization environment that can be applied to computational models in various disciplines. Engineous has produced designs with higher predicted performance gains that current manual design processes - on average a 10-to-1 reduction of turnaround time - and has yielded new insights into product design. It has been applied to the aerodynamic preliminary design of an aircraft engine turbine, concurrent aerodynamic and mechanical preliminary design of an aircraft engine turbine blade and disk, a space superconductor generator, a satellite power converter, and a nuclear-powered satellite reactor and shield. 23 refs

  14. Correction of Pectus Excavatum by Custom-Made Silicone Implants: Contribution of Computer-Aided Design Reconstruction. A 20-Year Experience and 401 Cases.

    Science.gov (United States)

    Chavoin, Jean-Pierre; Grolleau, Jean-Louis; Moreno, Benjamin; Brunello, Jérémie; André, Aymeric; Dahan, Marcel; Garrido, Ignacio; Chaput, Benoit

    2016-05-01

    In the absence of demonstrable functional impairment, pectus excavatum is merely a congenital deformity, albeit with a marked psychological impact. Many patients do not wish to undergo thoracic remodeling operations, which are invasive and do not clearly result in respiratory or cardiac improvement. From 1993 to 2015, the authors designed 401 custom-made silicone implants to treat funnel chests. Before 2007, implants were made from plaster chest molds. Beginning in 2007, three-dimensional reconstructions were made from computed tomographic scans by computer-aided design. The authors prospectively recorded all assessments and follow-up data since 1993. Preoperative and postoperative photographs of two random groups of 50 patients were analyzed, in a blinded manner, by two surgeons independently. Intraoperative and postoperative complications, clinical outcomes, patient satisfaction, and quality of life were evaluated. One infection and three hematomas were recorded. Periprosthetic seroma was evident in all cases. Patients rated the cosmetic outcomes of computer-aided design implants significantly higher than those of the earlier implants made using plaster molds (p = 0.030). Malformations were better corrected in the computer-aided design group (86 percent) than in the plaster group (72 percent) (p = 0.038). Patient satisfaction was higher in the former group (p = 0.011). Medical Outcomes Study 36-Item Short-Form Health Survey scores revealed significant improvements, both socially and emotionally. Correction of pectus excavatum using a computer-aided design silicone implant fulfils aesthetic and psychological demands. The technique is simple and reliable and yields high-quality results. In the medium term, the approach may render invasive techniques obsolete. These operations remain risky and of doubtful functional utility. Therapeutic, III.

  15. Evaluation of design parameters in soil-structure systems through artificial intelligence

    International Nuclear Information System (INIS)

    Cremonini, M.G.; Vardanega, C.; Parvis, E.

    1989-01-01

    This study refers to development of an artificial intelligence tool to evaluate design parameters for a soil-structure system as the foundations of Class 1 buildings of a nuclear power plant (NPP). This is based on an expert analysis of a large amount of information, collected during a comprehensive program of site investigations and laboratory tests and stored on a computer data-bank. The methodology comprises the following steps: organization of the available information on the site characteristics in a data-base; implementation and extensive use of a specific knowledge based expert system (KBES) devoted to both the analysis, interpretation and check of the information in the data-base, and to the evaluation of the design parameters; determination of effective access criteria to the data-base, for purposes of reordering the information and extracting design properties from a large number of experimental data; development of design profiles for both index properties and strength/strain parameters; and final evaluation of the design parameters. Results are obtained in the form of: local and general site stratigraphy; summarized soil index properties, detailing the site setting; static and dynamic stress-strain parameters, G/G max behavior and damping factors; condolidation parameters and OCR ratio; spatial distribution of parameters on site area; identification of specific local conditions; and cross correlation of parameters, thus covering the whole range of design parameters for NPP soil-structure systems

  16. Design a Smart Control Strategy to Implement an Intelligent Energy Safety and Management System

    OpenAIRE

    Jing-Min Wang; Ming-Ta Yang

    2014-01-01

    The energy saving and electricity safety are today a cause for increasing concern for homes and buildings. Integrating the radio frequency identification (RFID) and ZigBee wireless sensor network (WSN) mature technologies, the paper designs a smart control strategy to implement an intelligent energy safety and management system (IESMS) which performs energy measuring, controlling, monitoring, and saving of the power outlet system. The presented RFID and billing module is used to identify user...

  17. Cognitive Connected Vehicle Information System Design Requirement for Safety: Role of Bayesian Artificial Intelligence

    OpenAIRE

    Ata Khan

    2013-01-01

    Intelligent transportation systems (ITS) are gaining acceptance around the world and the connected vehicle component of ITS is recognized as a high priority research and development area in many technologically advanced countries. Connected vehicles are expected to have the capability of safe, efficient and eco-driving operations whether these are under human control or in the adaptive machine control mode of operations. The race is on to design the capability to operate in connected traffic ...

  18. Design of information-measuring and control systems for intelligent buildings. Trends of development

    Directory of Open Access Journals (Sweden)

    Petrova Irina Yur’evna

    2015-12-01

    Full Text Available The article considers the modern requirements for integrated management systems of a smart home. The authors propose a hierarchical classification of the levels of house automation, which allows allocating different levels of information transfer. The article considers the trends of development of information-measuring and control systems of intelligent buildings. The generalized scheme of information-measuring and control subsystems of an intelligent building are given. The energy-information model of the knowledge base of physical and technical effects described in the article allows developing a system of automated support of the conceptual stage of elements design in information measuring and control systems. With the help of this knowledge base the system allows dozens of times expanding the scope of knowledge actively used by specialists and two or three times reducing the time of creating new solutions by selecting the most efficient of the options and the underlying calculation of the essential characteristics of their conceptual models, which significantly reduces the number of created prototypes and field tests.

  19. Design and economic investigation of shell and tube heat exchangers using Improved Intelligent Tuned Harmony Search algorithm

    Directory of Open Access Journals (Sweden)

    Oguz Emrah Turgut

    2014-12-01

    Full Text Available This study explores the thermal design of shell and tube heat exchangers by using Improved Intelligent Tuned Harmony Search (I-ITHS algorithm. Intelligent Tuned Harmony Search (ITHS is an upgraded version of harmony search algorithm which has an advantage of deciding intensification and diversification processes by applying proper pitch adjusting strategy. In this study, we aim to improve the search capacity of ITHS algorithm by utilizing chaotic sequences instead of uniformly distributed random numbers and applying alternative search strategies inspired by Artificial Bee Colony algorithm and Opposition Based Learning on promising areas (best solutions. Design variables including baffle spacing, shell diameter, tube outer diameter and number of tube passes are used to minimize total cost of heat exchanger that incorporates capital investment and the sum of discounted annual energy expenditures related to pumping and heat exchanger area. Results show that I-ITHS can be utilized in optimizing shell and tube heat exchangers.

  20. Macro design effects on stress distribution around implants: A photoelastic stress analysis

    Directory of Open Access Journals (Sweden)

    Serhat Emre Ozkir

    2012-01-01

    Conclusion: As there were observable differences between the implant types, straight placed cylindrical implants showed better stress distribution characteristics, while inclined tapering implants had better stress distribution characteristics.

  1. Comparison of posterior capsule folds following intracapsular implantation of three types of intraocular lenses with different haptic design

    Directory of Open Access Journals (Sweden)

    Ling-Lin Zhang

    2018-04-01

    Full Text Available AIM: To compare the incidence of posterior capsule folds among different types of intraocular lens(IOLto determine risk factors of posterior capsule folds. METHODS:It was a retrospective study. We collected the cases in which the patients underwent phacoemulsification(PHACOand IOL implantation and at least one of the three types of IOL was implanted, including 2-haptic 3-piece IOLs(HOYA PY60AD, 4-haptic 1-piece IOLs(Bausch & Lomb AO, 2-haptic 1-piece IOLs(AMO Tecnis ZCB00. The posterior capsule folds were measured using slit lamp microscope 2d after the surgery. Information of patient's age, gender, length of ocular axis, intraocular pressure, types of IOL were recorded. Posterior capsule fold risk indicators were identified by using logistic regression analysis. RESULTS: One hundred eighty-seven patients(242 eyeshad been collected, including 80 eyes implanted with HOYA PY60AD IOLs, 81 eyes implanted with Bausch & Lomb AO IOLs, 81 eyes implanted with AMO Tecnis ZCB00 IOLs. The incidence of posterior capsule folds of patients implanted with HOYA PY60AD IOLs was significantly higher than those of patients implanted with AMO Tecnis ZCB00 IOLs(56.3% vs 38.3%, P=0.027. While the incidence of patients implanted with Bausch & Lomb AO IOLs was significantly lower than those of patients implanted with AMO Tecnis ZCB00 IOLs(14.8% vs 38.3%, P=0.001. Multi-factor logistics regression analysis demonstrated that independent risk factors were type of IOLs and length of ocular axis. Compared with AMO Tecnis ZCB00 IOLs, using HOYA PY60AD IOLs increased the risk of posterior capsule folds \\〖P=0.020, OR(95%CI=2.145(1.129,4.073\\〗, while using Bausch & Lomb AO IOLs reduced the risk \\〖P=0.001, OR(95%CI=0.274(0.127, 0.591\\〗. Shorter ocular axis might increase the risk of posterior capsule folds \\〖P=0.012, OR(95%CI=0.669(0.489, 0.915\\〗. CONCLUSION: Haptic design should be an important consideration in IOL design. Compared with AMO Tecnis ZCB00 IOLs

  2. Cochlear implant after bacterial meningitis.

    Science.gov (United States)

    Bille, Jesper; Ovesen, Therese

    2014-06-01

    The aim of this retrospective case study at a tertiary referral center was to investigate the outcome of cochlear implantation (CI) in children with sensorineural hearing loss due to meningitis compared to CI in children with deafness due to other reasons. This post-meningial group (PMG) consisted of 22 children undergoing CI due to deafness induced by meningitis, between December 1996 and January 2012. Five children had bilateral simultaneous implantation. None was excluded and the children were followed for at least 3 years. Operations were carried out by one of two surgeons using similar techniques in all cases. Each patient from the PMG was matched 2:1 with children having implantation for other reasons according to age and follow up (control group). Overall, the median category of auditory performance (CAP) and speech intelligibility rating (SIR) score were not statistically significantly different between the two groups. The presence of additional central nervous system (CNS) disorders (post-meningeal sequelae), however, correlated significantly with poorer outcome CI was a safe procedure without surgical complications in the present study. It is possible to restore auditory capacity and speech performance to a degree comparable to children undergoing implantation for other reasons. A statistically important variable is secondary CNS involvement. The rehabilitation program after CI should be adjusted according to these additional handicaps. It is recommended to screen meningitis patients as fast as possible to identify those with hearing loss and initiate treatment with hearing aids or CI. © 2013 The Authors. Pediatrics International © 2013 Japan Pediatric Society.

  3. [Design and application of implantable medical device information management system].

    Science.gov (United States)

    Cao, Shaoping; Yin, Chunguang; Zhao, Zhenying

    2013-03-01

    Through the establishment of implantable medical device information management system, with the aid of the regional joint sharing of resources, we further enhance the implantable medical device traceability management level, strengthen quality management, control of medical risk.

  4. Leading to Learning and Competitive Intelligence

    Science.gov (United States)

    Luu, Trong Tuan

    2013-01-01

    Purpose: This research aims to examine whether there is the chain effect from corporate social responsibility (CSR) and emotional intelligence (EI) to organizational learning and competitive intelligence in chemical companies in a Vietnam business setting. Design/methodology/approach: Structural equation modeling (SEM) approach was used to analyze…

  5. Image-Based Macro-Micro Finite Element Models of a Canine Femur with Implant Design Implications

    Science.gov (United States)

    Ghosh, Somnath; Krishnan, Ganapathi; Dyce, Jonathan

    2006-06-01

    In this paper, a comprehensive model of a bone-cement-implant assembly is developed for a canine cemented femoral prosthesis system. Various steps in this development entail profiling the canine femur contours by computed tomography (CT) scanning, computer aided design (CAD) reconstruction of the canine femur from CT images, CAD modeling of the implant from implant blue prints and CAD modeling of the interface cement. Finite element analysis of the macroscopic assembly is conducted for stress analysis in individual components of the system, accounting for variation in density and material properties in the porous bone material. A sensitivity analysis is conducted with the macroscopic model to investigate the effect of implant design variables on the stress distribution in the assembly. Subsequently, rigorous microstructural analysis of the bone incorporating the morphological intricacies is conducted. Various steps in this development include acquisition of the bone microstructural data from histological serial sectioning, stacking of sections to obtain 3D renderings of void distributions, microstructural characterization and determination of properties and, finally, microstructural stress analysis using a 3D Voronoi cell finite element method. Generation of the simulated microstructure and analysis by the 3D Voronoi cell finite element model provides a new way of modeling complex microstructures and correlating to morphological characteristics. An inverse calculation of the material parameters of bone by combining macroscopic experiments with microstructural characterization and analysis provides a new approach to evaluating properties without having to do experiments at this scale. Finally, the microstructural stresses in the femur are computed using the 3D VCFEM to study the stress distribution at the scale of the bone porosity. Significant difference is observed between the macroscopic stresses and the peak microscopic stresses at different locations.

  6. Artificial Intelligence and Moral intelligence

    OpenAIRE

    Laura Pana

    2008-01-01

    We discuss the thesis that the implementation of a moral code in the behaviour of artificial intelligent systems needs a specific form of human and artificial intelligence, not just an abstract intelligence. We present intelligence as a system with an internal structure and the structural levels of the moral system, as well as certain characteristics of artificial intelligent agents which can/must be treated as 1- individual entities (with a complex, specialized, autonomous or selfdetermined,...

  7. Application Platform for Intelligent Mobility – research facility for intelligent mobility services

    OpenAIRE

    Schnieder, Lars

    2012-01-01

    Traffic can be seen as a multi-dimensional field of research. Traffic can be best described as a socio-technical system which brings about new challenges for the design of future transportation systems. With its Application Platform for Intelligent Mobility (AIM), the German Aerospace Center (DLR), together with the state of Lower Saxony, the city of Braunschweig and other partners, is creating a unique way of linking up research, development and applications for intelligent transportation an...

  8. Advances in Intelligence and Security Informatics

    CERN Document Server

    Mao, Wenji

    2012-01-01

    The Intelligent Systems Series comprises titles that present state of the art knowledge and the latest advances in intelligent systems. Its scope includes theoretical studies, design methods, and real-world implementations and applications. Traditionally, Intelligence and Security Informatics (ISI) research and applications have focused on information sharing and data mining, social network analysis, infrastructure protection and emergency responses for security informatics. With the continuous advance of IT technologies and the increasing sophistication of national and international securi

  9. Toward New-Generation Intelligent Manufacturing

    Directory of Open Access Journals (Sweden)

    Ji Zhou

    2018-02-01

    Full Text Available Intelligent manufacturing is a general concept that is under continuous development. It can be categorized into three basic paradigms: digital manufacturing, digital-networked manufacturing, and new-generation intelligent manufacturing. New-generation intelligent manufacturing represents an in-depth integration of new-generation artificial intelligence (AI technology and advanced manufacturing technology. It runs through every link in the full life-cycle of design, production, product, and service. The concept also relates to the optimization and integration of corresponding systems; the continuous improvement of enterprises’ product quality, performance, and service levels; and reduction in resources consumption. New-generation intelligent manufacturing acts as the core driving force of the new industrial revolution and will continue to be the main pathway for the transformation and upgrading of the manufacturing industry in the decades to come. Human-cyber-physical systems (HCPSs reveal the technological mechanisms of new-generation intelligent manufacturing and can effectively guide related theoretical research and engineering practice. Given the sequential development, cross interaction, and iterative upgrading characteristics of the three basic paradigms of intelligent manufacturing, a technology roadmap for “parallel promotion and integrated development” should be developed in order to drive forward the intelligent transformation of the manufacturing industry in China. Keywords: Advanced manufacturing, New-generation intelligent manufacturing, Human-cyber-physical system, New-generation AI, Basic paradigms, Parallel promotion, Integrated development

  10. Business intelligence guidebook from data integration to analytics

    CERN Document Server

    Sherman, Rick

    2015-01-01

    Between the high-level concepts of business intelligence and the nitty-gritty instructions for using vendors’ tools lies the essential, yet poorly-understood layer of architecture, design and process. Without this knowledge, Big Data is belittled – projects flounder, are late and go over budget. Business Intelligence Guidebook: From Data Integration to Analytics shines a bright light on an often neglected topic, arming you with the knowledge you need to design rock-solid business intelligence and data integration processes. Practicing consultant and adjunct BI professor Rick Sherman takes the guesswork out of creating systems that are cost-effective, reusable and essential for transforming raw data into valuable information for business decision-makers. After reading this book, you will be able to design the overall architecture for functioning business intelligence systems with the supporting data warehousing and data-integration applications. You will have the information you need to get a project laun...

  11. Implants in free fibula flap supporting dental rehabilitation - Implant and peri-implant related outcomes of a randomized clinical trial.

    Science.gov (United States)

    Kumar, Vinay V; Ebenezer, Supriya; Kämmerer, Peer W; Jacob, P C; Kuriakose, Moni A; Hedne, Naveen; Wagner, Wilfried; Al-Nawas, Bilal

    2016-11-01

    The objective of this study was to assess the difference in success rates of implants when using two or four implant-supported-overdentures following segmental mandibular reconstruction with fibula free flap. This prospective, parallel designed, randomized clinical study was conducted with 1:1 ratio. At baseline, all participants already had segmental reconstruction of mandible with free fibula flap. The participants were randomized into two groups: Group-I received implant-supported-overdentures on two tissue-level implants and Group-II received implant-supported-overdentures on four tissue-level implants. Success rates of the implants were evaluated at 3 months, 6 months and 12 months following implant loading using marginal bone level changes as well as peri-implant indices (Buser et al., 1990). 52 patients were randomized into two treatment groups (26 each), out of which 18 patients (36 implants) of Group-I and 17 patients (68 implants) of Group-II were evaluated. One implant in Group-I was lost due to infective complications and one patient in the same group had superior barrel necrosis. There was a statistically significant increase at both time points (p = 0.03, p = 0.04 at 6 months, 12 months) in the amount of marginal bone loss in Group-I (0.4 mm, 0.5 mm at 6 months, 12 months) as compared to Group-II (0.1 mm, 0.2 mm at 6 months, 12 months). There were no clinically significant changes peri-implant parameters between both groups. Peri-implant soft tissue hyperplasia was seen in both groups, 32% of implants at 3-months, 26% at 6-months and 3% at 12-months follow-up. The results of this study show that patients with 2-implant-supported-overdentures had higher marginal bone loss as compared to patients with 4-implant-supported-overdentures. There were no clinically significant differences in peri-implant soft tissue factors in patients with 2- or 4-implant-supported-overdentures. Hyperplastic peri-implant tissues are common in the early implant

  12. An intelligent system and a relational data base for codifying helmet-mounted display symbology design requirements

    Science.gov (United States)

    Rogers, Steven P.; Hamilton, David B.

    1994-06-01

    To employ the most readily comprehensible presentation methods and symbology with helmet-mounted displays (HMDs), it is critical to identify the information elements needed to perform each pilot function and to analytically determine the attributes of these elements. The extensive analyses of mission requirements currently performed for pilot-vehicle interface design can be aided and improved by the new capabilities of intelligent systems and relational databases. An intelligent system, named ACIDTEST, has been developed specifically for organizing and applying rules to identify the best display modalities, locations, and formats. The primary objectives of the ACIDTEST system are to provide rapid accessibility to pertinent display research data, to integrate guidelines from many disciplines and identify conflicts among these guidelines, to force a consistent display approach among the design team members, and to serve as an 'audit trail' of design decisions and justifications. A powerful relational database called TAWL ORDIR has been developed to document information requirements and attributes for use by ACIDTEST as well as to greatly augment the applicability of mission analysis data. TAWL ORDIR can be used to rapidly reorganize mission analysis data components for study, perform commonality analyses for groups of tasks, determine the information content requirement for tailored display modes, and identify symbology integration opportunities.

  13. A methodological study on organizing an intelligent CAD/CAE system for conceptual design of advanced nuclear reactor system

    International Nuclear Information System (INIS)

    Gofuku, Akio; Yoshikawa, Hidekazu

    1993-01-01

    In order to shorten the time span of design work and enhance both consistency and rationality of design products, the authors are now investigating an intelligent CAD/CAE system to support cooperative works by many specialists by adopting object-oriented approach. In this paper, the cognitive aspect of design activities of specialists in the conceptual design phase of nuclear reactors is discussed. The activities of the specialists in their design analysis process are highly knowledge-based and goal-oriented. The characteristics of the activities are 1) hierarchization of design goal into sub-goals, 2) prioritization of design sub-goals and step-by-step practise of design analysis, and 3) abstraction of real-world space structure into more simplified space structure to cope with theoretical treatment. Based on these consideration, a conceptual design model of specialists' activities composed of attribute modeling and design expertise knowledge base is proposed. The 'principle of functional independence' proposed by Sue is applied to bridge between the attribute modeling and design expertise knowledge base. The intelligent CAD/CAE system is now under development by focusing on the conceptual design of a space power reactor core utilizing thermo-ionic fuel elements as direct thermo-to-electric conversion. A program to calculate thermo-hydraulics of reactor core and thermo-ionic power generation has been developed. An interface has been also developed in order to communicate with the specialists at JAERI by E-mail concerning the interactive calculation between our calculation and the neutronics calculation of reactor core. (orig.)

  14. A methodological study on organizing an intelligent CAD/CAE system for conceptual design of advanced nuclear reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Gofuku, Akio (Inst. of Atomic Energy, Kyoto Univ. (Japan)); Yoshikawa, Hidekazu (Inst. of Atomic Energy, Kyoto Univ. (Japan))

    1993-04-01

    In order to shorten the time span of design work and enhance both consistency and rationality of design products, the authors are now investigating an intelligent CAD/CAE system to support cooperative works by many specialists by adopting object-oriented approach. In this paper, the cognitive aspect of design activities of specialists in the conceptual design phase of nuclear reactors is discussed. The activities of the specialists in their design analysis process are highly knowledge-based and goal-oriented. The characteristics of the activities are 1) hierarchization of design goal into sub-goals, 2) prioritization of design sub-goals and step-by-step practise of design analysis, and 3) abstraction of real-world space structure into more simplified space structure to cope with theoretical treatment. Based on these consideration, a conceptual design model of specialists' activities composed of attribute modeling and design expertise knowledge base is proposed. The 'principle of functional independence' proposed by Sue is applied to bridge between the attribute modeling and design expertise knowledge base. The intelligent CAD/CAE system is now under development by focusing on the conceptual design of a space power reactor core utilizing thermo-ionic fuel elements as direct thermo-to-electric conversion. A program to calculate thermo-hydraulics of reactor core and thermo-ionic power generation has been developed. An interface has been also developed in order to communicate with the specialists at JAERI by E-mail concerning the interactive calculation between our calculation and the neutronics calculation of reactor core. (orig.)

  15. FCJ-206 From Braitenberg’s Vehicles to Jansen’s Beach Animals: Towards an Ecological Approach to the Design of Non-Organic Intelligence

    Directory of Open Access Journals (Sweden)

    Maaike Bleeker

    2016-12-01

    Full Text Available This article presents a comparison of two proposals for how to conceive of the evolution of non-organic intelligence. One is Valentino Braitenberg’s 1984 essay ‘Vehicles: Experiments in Synthetic Psychology’. The other is the Strandbeesten (beach animals of Dutch engineer-artist Theo Jansen. Jansen’s beach animals are not robots. Yet, as semi-autonomous non-organic agents created by humans, they are interesting in the context of the development of robots for how they present an ecological approach to the design of non-organic intelligence. Placing Braitenberg’s and Jansen’s approaches side by side illuminates how Jansen’s approach implies a radically different take than Braitenberg’s on non-organic intelligence, on intelligence as environmental, and on what the relationship between agency and behaviour might comprise.

  16. The history of intelligence. Future prospects

    NARCIS (Netherlands)

    Hijzen, C.W.

    2017-01-01

    Recently, several flaws in the intelligence studies have been designated. It lacksa proper body of knowledge, it lacks theories, and it fails to be ‘cumulative’.In order to become more academic, intelligence studies should therefore build‘more theories’, it is often heard. In this article, it is

  17. Architecture for Business Intelligence in the Healthcare Sector

    Science.gov (United States)

    Lee, Sang Young

    2018-03-01

    Healthcare environment is growing to include not only the traditional information systems, but also a business intelligence platform. For executive leaders, consultants, and analysts, there is no longer a need to spend hours in design and develop of typical reports or charts, the entire solution can be completed through using Business Intelligence software. The current paper highlights the advantages of big data analytics and business intelligence in the healthcare industry. In this paper, In this paper we focus our discussion around intelligent techniques and methodologies which are recently used for business intelligence in healthcare.

  18. Challenging aspects of contemporary cochlear implant electrode array design.

    Science.gov (United States)

    Mistrík, Pavel; Jolly, Claude; Sieber, Daniel; Hochmair, Ingeborg

    2017-12-01

    A design comparison of current perimodiolar and lateral wall electrode arrays of the cochlear implant (CI) is provided. The focus is on functional features such as acoustic frequency coverage and tonotopic mapping, battery consumption and dynamic range. A traumacity of their insertion is also evaluated. Review of up-to-date literature. Perimodiolar electrode arrays are positioned in the basal turn of the cochlea near the modiolus. They are designed to initiate the action potential in the proximity to the neural soma located in spiral ganglion. On the other hand, lateral wall electrode arrays can be inserted deeper inside the cochlea, as they are located along the lateral wall and such insertion trajectory is less traumatic. This class of arrays targets primarily surviving neural peripheral processes. Due to their larger insertion depth, lateral wall arrays can deliver lower acoustic frequencies in manner better corresponding to cochlear tonotopicity. In fact, spiral ganglion sections containing auditory nerve fibres tuned to low acoustic frequencies are located deeper than 1 and half turn inside the cochlea. For this reason, a significant frequency mismatch might be occurring for apical electrodes in perimodiolar arrays, detrimental to speech perception. Tonal languages such as Mandarin might be therefore better treated with lateral wall arrays. On the other hand, closer proximity to target tissue results in lower psychophysical threshold levels for perimodiolar arrays. However, the maximal comfort level is also lower, paradoxically resulting in narrower dynamic range than that of lateral wall arrays. Battery consumption is comparable for both types of arrays. Lateral wall arrays are less likely to cause trauma to cochlear structures. As the current trend in cochlear implantation is the maximal protection of residual acoustic hearing, the lateral wall arrays seem more suitable for hearing preservation CI surgeries. Future development could focus on combining the

  19. Intelligent control and automation technology for nuclear applications

    International Nuclear Information System (INIS)

    Kim, Jae Hee; Kim, Ko Ryeo; Lee, Jae Cheol; Eom, Heung Seop; Lee, Jang Soo

    1994-01-01

    Using recently established intelligent mobile robot theory and high technologies in computer science, we have designed an inspection automation system for welded parts of the reactor vessel, and we intend to establish basic technologies. The recent status of those technologies is surveyed for various application areas, and the characteristics and availability of those techniques such as intelligent mobile robot, digital computer control, intelligent user interface, realtime data processing, ultrasonic signal processing, intelligent user interface, intelligent defect recognition, are studied and examined at first. The high performance and compact size inspection system is designed, and if implemented, it is expected to be very efficient in economic point of view. In addition, the use of integrated SW system leads to the reduction of human errors. Through the analysis results and experiences, we investigated the further feasibility of basic technology applications to the various similar operation systems in NPP. (Author)

  20. Remote powering and data communication for implanted biomedical systems

    CERN Document Server

    Kilinc, Enver Gurhan; Maloberti, Franco

    2016-01-01

    This book describes new circuits and systems for implantable biomedical applications and explains the design of a batteryless, remotely-powered implantable micro-system, designed for long-term patient monitoring.  Following new trends in implantable biomedical applications, the authors demonstrate a system which is capable of efficient, remote powering and reliable data communication.  Novel architecture and design methodologies are used to transfer power with a low-power, optimized inductive link and data is transmitted by a reliable communication link.  Additionally, an electro-mechanical solution is presented for tracking and monitoring the implantable system, while the patient is mobile.  ·         Describes practical example of an implantable batteryless biomedical system; ·         Analyzes and compares various energy harvesting and power transfer methods; ·         Describes design of remote powering link and data communication of the implantable system, comparing differe...

  1. Developing Information Systems for Competitive Intelligence Support.

    Science.gov (United States)

    Hohhof, Bonnie

    1994-01-01

    Discusses issues connected with developing information systems for competitive intelligence support; defines the elements of an effective competitive information system; and summarizes issues affecting system design and implementation. Highlights include intelligence information; information needs; information sources; decision making; and…

  2. The potential of artificial intelligence toys

    DEFF Research Database (Denmark)

    Dai, Zheng

    2008-01-01

    Artificial intelligence is moving to a next step of development and application areas. From electronic games to human-like robots, AI toy is a good choice for next step during this process. Technology-based design is fit to the development of AI toy. It can exert the advantages and explore more...... value for existing resources. It combines AI programs and common sensors to realize the function of intelligence input and output. Designers can use technology-based criteria to design and need to consider the possible issues in this new field. All of these aspects can be referenced from electronic game...

  3. Intelligence Naturelle et Intelligence Artificielle

    OpenAIRE

    Dubois, Daniel

    2011-01-01

    Cet article présente une approche systémique du concept d’intelligence naturelle en ayant pour objectif de créer une intelligence artificielle. Ainsi, l’intelligence naturelle, humaine et animale non-humaine, est une fonction composée de facultés permettant de connaître et de comprendre. De plus, l'intelligence naturelle reste indissociable de la structure, à savoir les organes du cerveau et du corps. La tentation est grande de doter les systèmes informatiques d’une intelligence artificielle ...

  4. Artificial Intelligence as a Means to Moral Enhancement

    Directory of Open Access Journals (Sweden)

    Klincewicz Michał

    2016-12-01

    Full Text Available This paper critically assesses the possibility of moral enhancement with ambient intelligence technologies and artificial intelligence presented in Savulescu and Maslen (2015. The main problem with their proposal is that it is not robust enough to play a normative role in users’ behavior. A more promising approach, and the one presented in the paper, relies on an artificial moral reasoning engine, which is designed to present its users with moral arguments grounded in first-order normative theories, such as Kantianism or utilitarianism, that reason-responsive people can be persuaded by. This proposal can play a normative role and it is also a more promising avenue towards moral enhancement. It is more promising because such a system can be designed to take advantage of the sometimes undue trust that people put in automated technologies. We could therefore expect a well-designed moral reasoner system to be able to persuade people that may not be persuaded by similar arguments from other people. So, all things considered, there is hope in artificial intelligence for moral enhancement, but not in artificial intelligence that relies solely on ambient intelligence technologies.

  5. Innovative applications of artificial intelligence

    Science.gov (United States)

    Schorr, Herbert; Rappaport, Alain

    Papers concerning applications of artificial intelligence are presented, covering applications in aerospace technology, banking and finance, biotechnology, emergency services, law, media planning, music, the military, operations management, personnel management, retail packaging, and manufacturing assembly and design. Specific topics include Space Shuttle telemetry monitoring, an intelligent training system for Space Shuttle flight controllers, an expert system for the diagnostics of manufacturing equipment, a logistics management system, a cooling systems design assistant, and a knowledge-based integrated circuit design critic. Additional topics include a hydraulic circuit design assistant, the use of a connector assembly specification expert system to harness detailed assembly process knowledge, a mixed initiative approach to airlift planning, naval battle management decision aids, an inventory simulation tool, a peptide synthesis expert system, and a system for planning the discharging and loading of container ships.

  6. Heat generation during implant placement in low-density bone: effect of surgical technique, insertion torque and implant macro design.

    Science.gov (United States)

    Marković, Aleksa; Mišić, Tijana; Miličić, Biljana; Calvo-Guirado, Jose Luis; Aleksić, Zoran; Ðinić, Ana

    2013-07-01

    The study aimed to investigate the effect of surgical technique, implant macrodesign and insertion torque on bone temperature changes during implant placement. In the in vitro study, 144 self-tapping (blueSKY(®) 4 × 10 mm; Bredent) and 144 non-self-tapping (Standard implant(®) 4.1 × 10 mm; Straumann) were placed in osteotomies prepared in pig ribs by lateral bone condensing or bone drilling techniques. The maximum insertion torque values of 30, 35 and 40 Ncm were used. Real-time bone temperature measurement during implant placement was performed by three thermocouples positioned vertically, in tripod configuration around every osteotomy, at a distance of 5 mm from it and at depths of 1, 5 and 10 mm. Data were analysed using Kruskal-Wallis, Mann-Whitney U-tests and Regression analysis. Significant predictor of bone temperature at the osteotomy depth of 1 mm was insertion torque (P = 0.003) and at the depth of 10-mm implant macrodesign (P = 0.029), while no significant predictor at depth of 5 mm was identified (P > 0.05). Higher insertion torque values as well as non-self-tapping implant macrodesign were related to higher temperatures. Implant placement in sites prepared by bone drilling induced significantly higher temperature increase (P = 0.021) compared with bone condensing sites at the depth of 5 mm, while no significant difference was recorded at other depths. Compared with 30 Ncm, insertion torque values of 35 and 40 Ncm produced significantly higher temperature increase (P = 0.005; P = 0.003, respectively) at the depth of 1 mm. There was no significant difference in temperature change induced by 35 and 40 Ncm, neither by implant macrodesign at all investigated depths (P > 0.05). Placement of self-tapping implants with low insertion torque into sites prepared by lateral bone condensing technique might be advantageous in terms of thermal effect on bone. © 2012 John Wiley & Sons A/S.

  7. Design and simulation of printed spiral coil used in wireless power transmission systems for implant medical devices.

    Science.gov (United States)

    Wu, Wei; Fang, Qiang

    2011-01-01

    Printed Spiral Coil (PSC) is a coil antenna for near-field wireless power transmission to the next generation implant medical devices. PSC for implant medical device should be power efficient and low electromagnetic radiation to human tissues. We utilized a physical model of printed spiral coil and applied our algorithm to design PSC operating at 13.56 MHz. Numerical and electromagnetic simulation of power transfer efficiency of PSC in air medium is 77.5% and 71.1%, respectively. The simulation results show that the printed spiral coil which is optimized for air will keep 15.2% power transfer efficiency in human subcutaneous tissues. In addition, the Specific Absorption Ratio (SAR) for this coil antenna in subcutaneous at 13.56 MHz is below 1.6 W/Kg, which suggests this coil is implantable safe based on IEEE C95.1 safety guideline.

  8. The influence of ventilation tube design on the magnitude of stress imposed at the implant/tympanic membrane interface.

    LENUS (Irish Health Repository)

    Vard, John P

    2008-03-01

    The design of ventilation tubes or grommets is thought to have a considerable influence on their performance. A computational model (finite element method) was used to investigate the significance of four design parameters of a commonly used design of ventilation tube. The design parameters were: the length of the shaft, the diameter of the flanges, the thickness of the flanges, and the material type. A statistical analysis technique, known as a factorial analysis of variance, was used to examine the importance of the four design parameters on the dynamical behaviour of the middle ear with the implant in situ and on the magnitude of stress induced at the implant\\/tympanic membrane interface. We predicted that the ventilation tube alters the frequency response of the middle ear; specifically the shaft length and the thickness of the flanges were found to have a significant effect upon the vibratory pattern at the umbo. A reduced length of tube and an increased size of flange were also found to be significant for minimising membrane stress (both with P<0.001). Thus, design parameters of critical influence on optimising performance were identified.

  9. Design of a Small Modified Minkowski Fractal Antenna for Passive Deep Brain Stimulation Implants

    Directory of Open Access Journals (Sweden)

    Sara Manafi

    2014-01-01

    Full Text Available A small planar modified Minkowski fractal antenna is designed and simulated in dual frequency bands (2.4 and 5.8 GHz for wireless energy harvesting by deep brain stimulation (DBS devices. The designed antenna, physically being confined inside a miniaturized structure, can efficiently convert the wireless signals in dual ISM frequency bands to the energy source to recharge the DBS battery or power the pulse generator directly. The performance metrics such as the return loss, the specific absorption rate (SAR, and the radiation pattern within skin and muscle-fat-skin tissues are evaluated for the designed antenna. The gain of the proposed antenna is 3.2 dBi at 2.4 GHz and 4.7 dBi at 5.8 GHz; also the averaged SAR of the antenna in human body tissue is found to be well below the legally allowed limit at both frequency bands. The link budget shows the received power at the distance of 25 cm at 2.4 GHz and 5.8 GHz are around 0.4 mW and 0.04 mW, which can empower the DBS implant. The large operational bandwidth, the physical compactness, and the efficiency in wireless signal reception make this antenna suitable in being used in implanted biomedical devices such as DBS pulse generators.

  10. Use of data mining to predict significant factors and benefits of bilateral cochlear implantation.

    Science.gov (United States)

    Ramos-Miguel, Angel; Perez-Zaballos, Teresa; Perez, Daniel; Falconb, Juan Carlos; Ramosb, Angel

    2015-11-01

    Data mining (DM) is a technique used to discover pattern and knowledge from a big amount of data. It uses artificial intelligence, automatic learning, statistics, databases, etc. In this study, DM was successfully used as a predictive tool to assess disyllabic speech test performance in bilateral implanted patients with a success rate above 90%. 60 bilateral sequentially implanted adult patients were included in the study. The DM algorithms developed found correlations between unilateral medical records and Audiological test results and bilateral performance by establishing relevant variables based on two DM techniques: the classifier and the estimation. The nearest neighbor algorithm was implemented in the first case, and the linear regression in the second. The results showed that patients with unilateral disyllabic test results below 70% benefited the most from a bilateral implantation. Finally, it was observed that its benefits decrease as the inter-implant time increases.

  11. Recommendations for the ethical use and design of artificial intelligent care providers.

    Science.gov (United States)

    Luxton, David D

    2014-09-01

    This paper identifies and reviews ethical issues associated with artificial intelligent care providers (AICPs) in mental health care and other helping professions. Specific recommendations are made for the development of ethical codes, guidelines, and the design of AICPs. Current developments in the application of AICPs and associated technologies are reviewed and a foundational overview of applicable ethical principles in mental health care is provided. Emerging ethical issues regarding the use of AICPs are then reviewed in detail. Recommendations for ethical codes and guidelines as well as for the development of semi-autonomous and autonomous AICP systems are described. The benefits of AICPs and implications for the helping professions are discussed in order to weigh the pros and cons of their use. Existing ethics codes and practice guidelines do not presently consider the current or the future use of interactive artificial intelligent agents to assist and to potentially replace mental health care professionals. AICPs present new ethical issues that will have significant ramifications for the mental health care and other helping professions. Primary issues involve the therapeutic relationship, competence, liability, trust, privacy, and patient safety. Many of the same ethical and philosophical considerations are applicable to use and design of AICPs in medicine, nursing, social work, education, and ministry. The ethical and moral aspects regarding the use of AICP systems must be well thought-out today as this will help to guide the use and development of these systems in the future. Topics presented are relevant to end users, AI developers, and researchers, as well as policy makers and regulatory boards. Published by Elsevier B.V.

  12. Strain driven fast osseointegration of implants

    Directory of Open Access Journals (Sweden)

    Wiesmann Hans-Peter

    2005-09-01

    Full Text Available Abstract Background Although the bone's capability of dental implant osseointegration has clinically been utilised as early as in the Gallo-Roman population, the specific mechanisms for the emergence and maintenance of peri-implant bone under functional load have not been identified. Here we show that under immediate loading of specially designed dental implants with masticatory loads, osseointegration is rapidly achieved. Methods We examined the bone reaction around non- and immediately loaded dental implants inserted in the mandible of mature minipigs during the presently assumed time for osseointegration. We used threaded conical titanium implants containing a titanium2+ oxide surface, allowing direct bone contact after insertion. The external geometry was designed according to finite element analysis: the calculation showed that physiological amplitudes of strain (500–3,000 ustrain generated through mastication were homogenously distributed in peri-implant bone. The strain-energy density (SED rate under assessment of a 1 Hz loading cycle was 150 Jm-3 s-1, peak dislocations were lower then nm. Results Bone was in direct contact to the implant surface (bone/implant contact rate 90% from day one of implant insertion, as quantified by undecalcified histological sections. This effect was substantiated by ultrastructural analysis of intimate osteoblast attachment and mature collagen mineralisation at the titanium surface. We detected no loss in the intimate bone/implant bond during the experimental period of either control or experimental animals, indicating that immediate load had no adverse effect on bone structure in peri-implant bone. Conclusion In terms of clinical relevance, the load related bone reaction at the implant interface may in combination with substrate effects be responsible for an immediate osseointegration state.

  13. Novel implant for peri-prosthetic proximal tibia fractures.

    Science.gov (United States)

    Tran, Ton; Chen, Bernard K; Wu, Xinhua; Pun, Chung Lun

    2018-03-01

    Repair of peri-prosthetic proximal tibia fractures is very challenging in patients with a total knee replacement or arthroplasty. The tibial component of the knee implant severely restricts the fixation points of the tibial implant to repair peri-prosthetic fractures. A novel implant has been designed with an extended flange over the anterior of tibial condyle to provide additional points of fixation, overcoming limitations of existing generic locking plates used for proximal tibia fractures. Furthermore, the screws fixed through the extended flange provide additional support to prevent the problem of subsidence of tibial component of knee implant. The design methodology involved extraction of bone data from CT scans into a flexible CAD format, implant design and structural evaluation and optimisation using FEM as well as prototype development and manufacture by selective laser melting 3D printing technology with Ti6Al4 V powder. A prototype tibia implant was developed based on a patient-specific bone structure, which was regenerated from the CT images of patient's tibia. The design is described in detail and being applied to fit up to 80% of patients, for both left and right sides based on the average dimensions and shape of the bone structure from a wide range of CT images. A novel tibial implant has been developed to repair peri-prosthetic proximal tibia fractures which overcomes significant constraints from the tibial component of existing knee implant. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. A Characterization of the Utility of Using Artificial Intelligence to Test Two Artificial Intelligence Systems

    Directory of Open Access Journals (Sweden)

    Jeremy Straub

    2013-05-01

    Full Text Available An artificial intelligence system, designed for operations in a real-world environment faces a nearly infinite set of possible performance scenarios. Designers and developers, thus, face the challenge of validating proper performance across both foreseen and unforeseen conditions, particularly when the artificial intelligence is controlling a robot that will be operating in close proximity, or may represent a danger, to humans. While the manual creation of test cases allows limited testing (perhaps ensuring that a set of foreseeable conditions trigger an appropriate response, this may be insufficient to fully characterize and validate safe system performance. An approach to validating the performance of an artificial intelligence system using a simple artificial intelligence test case producer (AITCP is presented. The AITCP allows the creation and simulation of prospective operating scenarios at a rate far exceeding that possible by human testers. Four scenarios for testing an autonomous navigation control system are presented: single actor in two-dimensional space, multiple actors in two-dimensional space, single actor in three-dimensional space, and multiple actors in three-dimensional space. The utility of using the AITCP is compared to that of human testers in each of these scenarios.

  15. Ion implantation for microelectronics

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1977-01-01

    Ion implantation has proved to be a versatile and efficient means of producing microelectronic devices. This review summarizes the relevant physics and technology and assesses the advantages of the method. Examples are then given of widely different device structures which have been made by ion implantation. While most of the industrial application has been in silicon, good progress continues to be made in the more difficult field of compound semiconductors. Equipment designed for the industrial ion implantation of microelectronic devices is discussed briefly. (Auth.)

  16. Speech perception and production in children with inner ear malformations after cochlear implantation.

    Science.gov (United States)

    Rachovitsas, Dimitrios; Psillas, George; Chatzigiannakidou, Vasiliki; Triaridis, Stefanos; Constantinidis, Jiannis; Vital, Victor

    2012-09-01

    The aim of this study was to assess the speech perception and speech intelligibility outcome after cochlear implantation in children with malformed inner ear and to compare them with a group of congenitally deaf children implantees without inner ear malformation. Six deaf children (five boys and one girl) with inner ear malformations who were implanted and followed in our clinic were included. These children were matched with six implanted children with normal cochlea for age at implantation and duration of cochlear implant use. All subjects were tested with the internationally used battery tests of listening progress profile (LiP), capacity of auditory performance (CAP), and speech intelligibility rating (SIR). A closed and open set word perception test adapted to the Modern Greek language was also used. In the dysplastic group, two children suffered from CHARGE syndrome, another two from mental retardation, and two children grew up in bilingual homes. At least two years after switch-on, the dysplastic group scored mean LiP 62%, CAP 3.8, SIR 2.1, closed-set 61%, and open-set 49%. The children without inner ear dysplasia achieved significantly better scores, except for CAP which this difference was marginally statistically significant (p=0.009 for LiP, p=0.080 for CAP, p=0.041 for SIR, p=0.011 for closed-set, and p=0.006 for open-set tests). All of the implanted children with malformed inner ear showed benefit of auditory perception and speech production. However, the children with inner ear malformation performed less well compared with the children without inner ear dysplasia. This was possibly due to the high proportion of disabilities detected in the dysplastic group, such as CHARGE syndrome and mental retardation. Bilingualism could also be considered as a factor which possibly affects the outcome of implanted children. Therefore, children with malformed inner ear should be preoperatively evaluated for cognitive and developmental delay. In this case

  17. Intelligent system for accident identification in NPP

    International Nuclear Information System (INIS)

    Hernandez, J.L.

    1998-01-01

    Accidental situations in NPP are great concern for operators, the facility, regulatory bodies and the environmental. This work proposes a design of intelligent system aimed to assist the operator in the process of decision making initiator events with higher relative contribution to the reactor core damage occur. The intelligent System uses the results of the pre-operational Probabilistic safety Assessment and the Thermal hydraulic Safety Analysis of the NPP Juragua as source for building its knowledge base. The nucleus of the system is presented as a design of an intelligent hybrid from the combination of the artificial intelligence techniques fuzzy logic and artificial neural networks. The system works with variables from the process of the first circuit, second circuit and the containment and it is presented as a model for the integration of safety analyses in the process of decision making by the operator when tackling with accidental situations

  18. 3D space combat simulation game with artificial intelligence

    OpenAIRE

    Pernička, Václav

    2013-01-01

    The goal of this thesis is to design and implement a 3D space shooter with artifitial intelligence. This thesis includes theoretic analysis of space shooters, types of artifitial intelligence and assumptions important for developing in 3D space. The game also includes a simple artifitial intelligent player.

  19. Engineering general intelligence

    CERN Document Server

    Goertzel, Ben; Geisweiller, Nil

    2014-01-01

    The work outlines a detailed blueprint for the creation of an Artificial General Intelligence system with capability at the human level and ultimately beyond, according to the Cog Prime AGI design and the Open Cog software architecture.

  20. Emergent web intelligence advanced information retrieval

    CERN Document Server

    Badr, Youakim; Abraham, Ajith; Hassanien, Aboul-Ella

    2010-01-01

    Web Intelligence explores the impact of artificial intelligence and advanced information technologies representing the next generation of Web-based systems, services, and environments, and designing hybrid web systems that serve wired and wireless users more efficiently. Multimedia and XML-based data are produced regularly and in increasing way in our daily digital activities, and their retrieval must be explored and studied in this emergent web-based era. 'Emergent Web Intelligence: Advanced information retrieval, provides reviews of the related cutting-edge technologies and insights. It is v

  1. A New Experimental Design for Bacterial Microleakage Investigation at the Implant-Abutment Interface: An In Vitro Study.

    Science.gov (United States)

    Zipprich, Holger; Miatke, Sven; Hmaidouch, Rim; Lauer, Hans-Christoph

    2016-01-01

    regarding the bacterial seal of different implant systems. Conical IACs offer a better bacterial seal compared with flat IACs, which showed increased microleakage after dynamic loading. IAC design plays a crucial role in terms of bacterial colonization. Taking samples of the implant interior without abutment disconnection eliminates an error source.

  2. Ion implantation for semiconductors

    International Nuclear Information System (INIS)

    Grey-Morgan, T.

    1995-01-01

    Full text: Over the past two decades, thousands of particle accelerators have been used to implant foreign atoms like boron, phosphorus and arsenic into silicon crystal wafers to produce special embedded layers for manufacturing semiconductor devices. Depending on the device required, the atomic species, the depth of implant and doping levels are the main parameters for the implantation process; the selection and parameter control is totally automated. The depth of the implant, usually less than 1 micron, is determined by the ion energy, which can be varied between 2 and 600 keV. The ion beam is extracted from a Freeman or Bernas type ion source and accelerated to 60 keV before mass analysis. For higher beam energies postacceleration is applied up to 200 keV and even higher energies can be achieved by mass selecting multiplycharged ions, but with a corresponding reduction in beam output. Depending on the device to be manufactured, doping levels can range from 10 10 to 10 15 atoms/cm 2 and are controlled by implanter beam currents in the range up to 30mA; continuous process monitoring ensures uniformity across the wafer of better than 1 % . As semiconductor devices get smaller, additional sophistication is required in the design of the implanter. The silicon wafers charge electrically during implantation and this charge must be dissipated continuously to reduce the electrical stress in the device and avoid destructive electrical breakdown. Electron flood guns produce low energy electrons (below 10 electronvolts) to neutralize positive charge buildup and implanter design must ensure minimum contamination by other isotopic species and ensure low internal sputter rates. The pace of technology in the semiconductor industry is such that implanters are being built now for 256 Megabit circuits but which are only likely to be widely available five years from now. Several specialist companies manufacture implanter systems, each costing around US$5 million, depending on the

  3. An intelligent stochastic optimization routine for nuclear fuel cycle design

    International Nuclear Information System (INIS)

    Parks, G.T.

    1990-01-01

    A simulated annealing (Metropolis algorithm) optimization routine named AMETROP, which has been developed for use on realistic nuclear fuel cycle problems, is introduced. Each stage of the algorithm is described and the means by which it overcomes or avoids the difficulties posed to conventional optimization routines by such problems are explained. Special attention is given to innovations that enhance AMETROP's performance both through artificial intelligence features, in which the routine uses the accumulation of data to influence its future actions, and through a family of simple performance aids, which allow the designer to use his heuristic knowledge to guide the routine's essentially random search. Using examples from a typical fuel cycle optimization problem, the performance of the stochastic Metropolis algorithm is compared to that of the only suitable deterministic routine in a standard software library, showing AMETROP to have many advantages

  4. Students’ logical-mathematical intelligence profile

    Science.gov (United States)

    Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.

    2018-04-01

    One of students’ characteristics which play an important role in learning mathematics is logical-mathematical intelligence. This present study aims to identify profile of students’ logical-mathematical intelligence in general and specifically in each indicator. It is also analyzed and described based on students’ sex. This research used qualitative method with case study strategy. The subjects involve 29 students of 9th grade that were selected by purposive sampling. Data in this research involve students’ logical-mathematical intelligence result and interview. The results show that students’ logical-mathematical intelligence was identified in the moderate level with the average score is 11.17 and 51.7% students in the range of the level. In addition, the level of both male and female students are also mostly in the moderate level. On the other hand, both male and female students’ logical-mathematical intelligence is strongly influenced by the indicator of ability to classify and understand patterns and relationships. Furthermore, the ability of comparison is the weakest indicator. It seems that students’ logical-mathematical intelligence is still not optimal because more than 50% students are identified in moderate and low level. Therefore, teachers need to design a lesson that can improve students’ logical-mathematical intelligence level, both in general and on each indicator.

  5. Teaching Evolution at A-Level: Is "Intelligent Design" a Scientific Theory That Merits Inclusion in the Biology Syllabus?

    Science.gov (United States)

    Freeland, Peter

    2013-01-01

    Charles Darwin supposed that evolution involved a process of gradual change, generated randomly, with the selection and retention over many generations of survival-promoting features. Some theists have never accepted this idea. "Intelligent design" is a relatively recent theory, supposedly based on scientific evidence, which attempts to…

  6. Esthetic Evaluation of Anterior Single-Tooth Implants with Different Abutment Designs-Patients' Satisfaction Compared to Dentists' Observations.

    Science.gov (United States)

    Patil, Ratnadeep; Gresnigt, Marco M M; Mahesh, Kavita; Dilbaghi, Anjali; Cune, Marco S

    2017-07-01

    To correlate patients' satisfaction and dentists' observations regarding two abutment designs used for single crowns in the esthetic zone: a divergent one (control) and a curved one (experimental), with special emphasis on muco-gingival esthetics. Twenty-six patients with nonadjacent missing teeth in the esthetic zone were enrolled in a randomized clinical trial (within-subject comparison). Two implants placed in each were restored using abutments of different geometry. Patients' appreciation was assessed on a visual analog scale (VAS) by recording answers to three questions, and dentists' appreciation was determined by means of the Pink Esthetic Score (PES) at T0 (crown cementation, baseline) and at T12 (1 year post-cementation). ANOVA with post hoc analysis was used to identify differences between groups and at different moments in time. Pearson correlations were calculated between all variables, both at T0 and at T12. No statistically significant differences were found at any time between the control and experimental abutment design, either for the PES or for the VAS score. PES slightly improved after 1 year, as did the VAS rating related to functioning with the implant-crown compared to the natural teeth. All PES and VAS scores demonstrated highly significant correlation. Both patient satisfaction and professional appreciation of muco-gingival conditions after single implant treatment in the esthetic zone were high; however, the curved, experimental abutment design performed no better than the conventional, divergent type. Curved abutment design does not significantly impact crown or gingival esthetics as assessed by PES and VAS scored by dentists and patients, respectively. © 2016 by the American College of Prosthodontists.

  7. On Model Design for Simulation of Collective Intelligence

    NARCIS (Netherlands)

    Schut, M.C.

    2010-01-01

    The study of collective intelligence (CI) systems is increasingly gaining interest in a variety of research and application domains. Those domains range from existing research areas such as computer networks and collective robotics to upcoming areas of agent-based and insect-based computing; also

  8. Design optimum frac jobs using virtual intelligence techniques

    Energy Technology Data Exchange (ETDEWEB)

    Shahab Mohaghegh; Andrei Popa; Sam Ameri [West Virginia University, Morgantown, WV (United States). Petroleum and Natural Gas Engineering

    2000-10-01

    Designing optimal frac jobs is a complex and time-consuming process. It usually involves the use of a two- or three-dimensional computer model. For the computer models to perform as intended, a wealth of input data is required. The input data includes wellbore configuration and reservoir characteristics such as porosity, permeability, stress and thickness profiles of the pay layers as well as the overburden layers. Among other essential information required for the design process is fracturing fluid type and volume, proppant type and volume, injection rate, proppant concentration and frac job schedule. Some of the parameters such as fluid and proppant types have discrete possible choices. Other parameters such as fluid and proppant volume, on the other hand, assume values from within a range of minimum and maximum values. A potential frac design for a particular pay zone is a combination of all of these parameters. Finding the optimum combination is not a trivial process. It usually requires an experienced engineer and a considerable amount of time to tune the parameters in order to achieve desirable outcome. This paper introduces a new methodology that integrates two virtual intelligence techniques, namely, artificial neural networks and genetic algorithms to automate and simplify the optimum frac job design process. This methodology requires little input from the engineer beyond the reservoir characterizations and wellbore configuration. The software tool that has been developed based on this methodology uses the reservoir characteristics and an optimization criteria indicated by the engineer, for example a certain propped frac length, and provides the detail of the optimum frac design that will result in the specified criteria. An ensemble of neural networks is trained to mimic the two- or three-dimensional frac simulator. Once successfully trained, these networks are capable of providing instantaneous results in response to any set of input parameters. These

  9. Design optimum frac jobs using virtual intelligence techniques

    Science.gov (United States)

    Mohaghegh, Shahab; Popa, Andrei; Ameri, Sam

    2000-10-01

    Designing optimal frac jobs is a complex and time-consuming process. It usually involves the use of a two- or three-dimensional computer model. For the computer models to perform as intended, a wealth of input data is required. The input data includes wellbore configuration and reservoir characteristics such as porosity, permeability, stress and thickness profiles of the pay layers as well as the overburden layers. Among other essential information required for the design process is fracturing fluid type and volume, proppant type and volume, injection rate, proppant concentration and frac job schedule. Some of the parameters such as fluid and proppant types have discrete possible choices. Other parameters such as fluid and proppant volume, on the other hand, assume values from within a range of minimum and maximum values. A potential frac design for a particular pay zone is a combination of all of these parameters. Finding the optimum combination is not a trivial process. It usually requires an experienced engineer and a considerable amount of time to tune the parameters in order to achieve desirable outcome. This paper introduces a new methodology that integrates two virtual intelligence techniques, namely, artificial neural networks and genetic algorithms to automate and simplify the optimum frac job design process. This methodology requires little input from the engineer beyond the reservoir characterizations and wellbore configuration. The software tool that has been developed based on this methodology uses the reservoir characteristics and an optimization criteria indicated by the engineer, for example a certain propped frac length, and provides the detail of the optimum frac design that will result in the specified criteria. An ensemble of neural networks is trained to mimic the two- or three-dimensional frac simulator. Once successfully trained, these networks are capable of providing instantaneous results in response to any set of input parameters. These

  10. Information Design for “Weak Signal” detection and processing in Economic Intelligence: A case study on Health resources

    Directory of Open Access Journals (Sweden)

    Sahbi Sidhom

    2011-12-01

    Full Text Available The topics of this research cover all phases of “Information Design” applied to detect and profit from weak signals in economic intelligence (EI or business intelligence (BI. The field of the information design (ID applies to the process of translating complex, unorganized or unstructured data into valuable and meaningful information. ID practice requires an interdisciplinary approach, which combines skills in graphic design (writing, analysis processing and editing, human performances technology and human factors. Applied in the context of information system, it allows end-users to easily detect implicit topics known as “weak signals” (WS. In our approach to implement the ID, the processes cover the development of a knowledge management (KM process in the context of EI. A case study concerning information monitoring health resources is presented using ID processes to outline weak signals. Both French and American bibliographic databases were applied to make the connection to multilingual concepts in the health watch process.

  11. The implementation of intelligent home controller

    Science.gov (United States)

    Li, Biqing; Li, Zhao

    2018-04-01

    This paper mainly talks about the working way of smart home terminal controller and the design of hardware and software. Controlling the lights and by simulating the lamp and the test of the curtain, destroy the light of lamp ON-OFF and the curtain's UP-DOWN by simulating the lamp and the test of the cuetain. Through the sensor collects the ambient information and sends to the network, such as light, temperature and humidity. Besides, it can realise the control of intelligent home control by PCS. Terminal controller of intelligent home which is based on ZiBee technology has into the intelligent home system, it provides people with convenient, safe and intelligent household experience.

  12. Test Review: Wechsler Abbreviated Scale of Intelligence, Second Edition

    Science.gov (United States)

    Irby, Sarah M.; Floyd, Randy G.

    2013-01-01

    The Wechsler Abbreviated Scale of Intelligence, Second Edition (WASI-II; Wechsler, 2011) is a brief intelligence test designed for individuals aged 6 through 90 years. It is a revision of the Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler, 1999). During revision, there were three goals: enhancing the link between the Wechsler…

  13. Social Representations of Intelligence

    Directory of Open Access Journals (Sweden)

    Elena Zubieta

    2016-02-01

    Full Text Available The article stresses the relationship between Explicit and Implicit theories of Intelligence. Following the line of common sense epistemology and the theory of Social Representations, a study was carried out in order to analyze naive’s explanations about Intelligence Definitions. Based on Mugny & Carugati (1989 research, a self-administered questionnaire was designed and filled in by 286 subjects. Results are congruent with the main hyphotesis postulated: A general overlap between explicit and implicit theories showed up. According to the results Intelligence appears as both, a social attribute related to social adaptation and as a concept defined in relation with contextual variables similar to expert’s current discourses. Nevertheless, conceptions based on “gifted ideology” still are present stressing the main axes of Intelligence debate: biological and sociological determinism. In the same sense, unfamiliarity and social identity are reaffirmed as organizing principles of social representation. The distance with the object -measured as the belief in intelligence differences as a solve/non solve problem- and the level of implication with the topic -teachers/no teachers- appear as discriminating elements at the moment of supporting specific dimensions. 

  14. Successful Rehabilitation of Partial Edentulous Maxilla and Mandible with New Type of Implants: Molecular Precision Implants

    Directory of Open Access Journals (Sweden)

    Matteo Danza

    2014-01-01

    Full Text Available The extraction of teeth results in rapid bone resorption both vertically and horizontally in the first month. The loss of alveolar ridge reduces the chance of implant rehabilitation. Atraumatic extraction, implant placement in extraction socket, and an immediate prosthesis have been proposed as alternative therapies to maintain the volume and contours tissue and reduce time and cost of treatment. The immediate load of implants is a universally practiced procedure; nevertheless a successful procedure requires expertise in both the clinical and the reconstructive stages using a solid implant system. Excellent primary stability and high bone-implant contact are only minimal requirements for any type of implant procedure. In this paper we present a case report using a new type of implants. The new type of implants, due to its sophisticated control system of production, provides to the implantologist a safe and reliable implant, with a macromorphology designed to ensure a close contact with the surrounding bone.

  15. A Alternative Analog Circuit Design Methodology Employing Integrated Artificial Intelligence Techniques

    Science.gov (United States)

    Tuttle, Jeffery L.

    In consideration of the computer processing power now available to the designer, an alternative analog circuit design methodology is proposed. Computer memory capacities no longer require the reduction of the transistor operational characteristics to an imprecise formulation. Therefore, it is proposed that transistor modelling be abandoned in favor of fully characterized transistor data libraries. Secondly, availability of the transistor libraries would facilitate an automated selection of the most appropriate device(s) for the circuit being designed. More specifically, a preprocessor computer program to a more sophisticated circuit simulator (e.g. SPICE) is developed to assist the designer in developing the basic circuit topology and the selection of the most appropriate transistor. Once this is achieved, the circuit topology and selected transistor data library would be downloaded to the simulator for full circuit operational characterization and subsequent design modifications. It is recognized that the design process is enhanced by the use of heuristics as applied to iterative design results. Accordingly, an artificial intelligence (AI) interface is developed to assist the designer in applying the preprocessor results. To demonstrate the retrofitability of the AI interface to established programs, the interface is specifically designed to be as non-intrusive to the host code as possible. Implementation of the proposed methodology offers the potential to speed the design process, since the preprocessor both minimizes the required number of simulator runs and provides a higher acceptance potential of the initial and subsequent simulator runs. Secondly, part count reductions may be realizable since the circuit topologies are not as strongly driven by transistor limitations. Thirdly, the predicted results should more closely match actual circuit operations since the inadequacies of the transistor models have been virtually eliminated. Finally, the AI interface

  16. The effect of thread pattern upon implant osseointegration.

    Science.gov (United States)

    Abuhussein, Heba; Pagni, Giorgio; Rebaudi, Alberto; Wang, Hom-Lay

    2010-02-01

    Implant design features such as macro- and micro-design may influence overall implant success. Limited information is currently available. Therefore, it is the purpose of this paper to examine these factors such as thread pitch, thread geometry, helix angle, thread depth and width as well as implant crestal module may affect implant stability. A literature search was conducted using MEDLINE to identify studies, from simulated laboratory models, animal, to human, related to this topic using the keywords of implant thread, implant macrodesign, thread pitch, thread geometry, helix angle, thread depth, thread width and implant crestal module. The results showed how thread geometry affects the distribution of stress forces around the implant. A decreased thread pitch may positively influence implant stability. Excess helix angles in spite of a faster insertion may jeopardize the ability of implants to sustain axial load. Deeper threads seem to have an important effect on the stabilization in poorer bone quality situations. The addition of threads or microthreads up to the crestal module of an implant might provide a potential positive contribution on bone-to to-implant contact as well as on the preservation of marginal bone; nonetheless this remains to be determined. Appraising the current literature on this subject and combining existing data to verify the presence of any association between the selected characteristics may be critical in the achievement of overall implant success.

  17. The Synthesis of Intelligent Real-Time Systems

    Science.gov (United States)

    1990-11-09

    Synthesis of Intelligent Real - Time Systems . The purpose of the effort was to develop and extend theories and techniques that facilitate the design and...implementation of intelligent real - time systems . In particular, Teleos has extended situated-automata theory to apply to situations in which the system has

  18. Artificial intelligence for Mariáš

    OpenAIRE

    Kaštánková, Petra

    2016-01-01

    This thesis focuses on the implementation of a card game, Mariáš, and an artificial intelligence for this game. The game is designed for three players and it can be played with either other human players, or with a computer adversary. The game is designed as a client-server application, whereby the player connects to the game using a web page. The basis of the artificial intelligence is the Minimax algorithm. To speed it up we use the Alpha-Beta pruning, hash tables for storing equivalent sta...

  19. Evaluation of stress patterns produced by implant-retained overdentures and implant-retained fixed partial denture.

    Science.gov (United States)

    Mazaro, José Vitor Quinelli; Filho, Humberto Gennari; Vedovatto, Eduardo; Pellizzer, Eduardo Piza; Rezende, Maria Cristina Rosifini Alves; Zavanelli, Adriana Cristina

    2011-11-01

    The purposes of this study were to photoelastically measure the biomechanical behavior of 4 implants retaining different cantilevered bar mandibular overdenture designs and to compare a fixed partial denture (FPD). A photoelastic model of a human edentulous mandible was fabricated, which contained 4 screw-type implants (3.75 × 10 mm) embedded in the parasymphyseal area. An FPD and 3 overdenture designs with the following attachments were evaluated: 3 plastic Hader clips, 1 Hader clip with 2 posterior resilient cap attachments, and 3 ball/O-ring attachments. Vertical occlusal forces of 100 N were applied between the central incisor and unilaterally to the right and left second premolars and second molars. Stresses that developed in the supporting structure were monitored photoelastically and recorded photographically. The results showed that the anterior loading, the overdenture with 3 plastic Hader clips, displayed the largest stress concentration at the medium implant. With premolar loading, the FPD and overdenture with 3 plastic Hader clips displayed the highest stresses to the ipsilateral terminal implant. With molar loading, the overdenture with 3 ball/O-ring attachments displayed the most uniform stress distribution in the posterior edentulous ridge, with less overloading in the terminal implant. It was concluded that vertical forces applied to the bar-clip overdenture and FPD created immediate stress patterns of greater magnitude and concentration on the ipsilateral implants, whereas the ball/O-ring attachments transferred minimal stress to the implants. The increased cantilever in the FPD caused the highest stresses to the terminal implant.

  20. The role of dental implant abutment design on the aesthetic outcome: preliminary 3-month post-loading results from a multicentre split-mouth randomised controlled trial comparing two different abutment designs.

    Science.gov (United States)

    Esposito, Marco; Cardaropoli, Daniele; Gobbato, Luca; Scutellà, Fabio; Fabianelli, Andrea; Mascellani, Saverio; Delli Ficorelli, Gianluca; Mazzocco, Fabio; Sbricoli, Luca; Trullenque-Eriksson, Anna

    To evaluate whether there are aesthetic and clinical benefits to using a newly designed abutment (Curvomax), over a conventional control abutment (GingiHue). A total of 49 patients, who required at least two implants, had two sites randomised according to a split-mouth design to receive one abutment of each type at seven different centres. The time of loading (immediate, early or delayed) and of prosthesis (provisional crowns of fixed prosthesis) was decided by the clinicians, but they had to restore both implants in a similar way. Provisional prostheses were replaced by definitive ones 3 months after initial loading, when the follow-up for the initial part of this study was completed. Outcome measures were: prosthesis failures, implant failures, complications, pink esthetic score (PES), peri-implant marginal bone level changes, and patient preference. In total, 49 Curvomax and 49 GingiHue abutments were delivered. Two patients dropped out. No implant failure, prosthesis failure or complication was reported. There were no differences at 3 months post-loading for PES (difference = -0.15, 95% CI -0.55 to 0.25; P (paired t test) = 0.443) and marginal bone level changes (difference = -0.02 mm, 95% CI -0.20 to 0.16; P (paired t test) = 0.817). The majority of the patients (30) had no preference regarding the two abutment designs; 11 patients preferred the Curvomax, while five patients preferred the GingiHue abutments (P (McNemar test) = 0.210). The preliminary results of the comparison between two different abutment designs did not disclose any statistically significant differences between the evaluated abutments. However the large number of missing radiographs and clinical pictures casts doubt on the reliability of the results. Longer follow-ups of wider patient populations are needed to better understand whether there is an effective advantage with one of the two abutment designs. Conflict of interest statement: This research project was originally partially funded by

  1. Two-stage implant systems.

    Science.gov (United States)

    Fritz, M E

    1999-06-01

    Since the advent of osseointegration approximately 20 years ago, there has been a great deal of scientific data developed on two-stage integrated implant systems. Although these implants were originally designed primarily for fixed prostheses in the mandibular arch, they have been used in partially dentate patients, in patients needing overdentures, and in single-tooth restorations. In addition, this implant system has been placed in extraction sites, in bone-grafted areas, and in maxillary sinus elevations. Often, the documentation of these procedures has lagged. In addition, most of the reports use survival criteria to describe results, often providing overly optimistic data. It can be said that the literature describes a true adhesion of the epithelium to the implant similar to adhesion to teeth, that two-stage implants appear to have direct contact somewhere between 50% and 70% of the implant surface, that the microbial flora of the two-stage implant system closely resembles that of the natural tooth, and that the microbiology of periodontitis appears to be closely related to peri-implantitis. In evaluations of the data from implant placement in all of the above-noted situations by means of meta-analysis, it appears that there is a strong case that two-stage dental implants are successful, usually showing a confidence interval of over 90%. It also appears that the mandibular implants are more successful than maxillary implants. Studies also show that overdenture therapy is valid, and that single-tooth implants and implants placed in partially dentate mouths have a success rate that is quite good, although not quite as high as in the fully edentulous dentition. It would also appear that the potential causes of failure in the two-stage dental implant systems are peri-implantitis, placement of implants in poor-quality bone, and improper loading of implants. There are now data addressing modifications of the implant surface to alter the percentage of

  2. Facilitating Multiple Intelligences Through Multimodal Learning Analytics

    Directory of Open Access Journals (Sweden)

    Ayesha PERVEEN

    2018-01-01

    Full Text Available This paper develops a theoretical framework for employing learning analytics in online education to trace multiple learning variations of online students by considering their potential of being multiple intelligences based on Howard Gardner’s 1983 theory of multiple intelligences. The study first emphasizes the need to facilitate students as multiple intelligences by online education systems and then suggests a framework of the advanced form of learning analytics i.e., multimodal learning analytics for tracing and facilitating multiple intelligences while they are engaged in online ubiquitous learning. As multimodal learning analytics is still an evolving area, it poses many challenges for technologists, educationists as well as organizational managers. Learning analytics make machines meet humans, therefore, the educationists with an expertise in learning theories can help technologists devise latest technological methods for multimodal learning analytics and organizational managers can implement them for the improvement of online education. Therefore, a careful instructional design based on a deep understanding of students’ learning abilities, is required to develop teaching plans and technological possibilities for monitoring students’ learning paths. This is how learning analytics can help design an adaptive instructional design based on a quick analysis of the data gathered. Based on that analysis, the academicians can critically reflect upon the quick or delayed implementation of the existing instructional design based on students’ cognitive abilities or even about the single or double loop learning design. The researcher concludes that the online education is multimodal in nature, has the capacity to endorse multiliteracies and, therefore, multiple intelligences can be tracked and facilitated through multimodal learning analytics in an online mode. However, online teachers’ training both in technological implementations and

  3. Research on dental implant and its industrialization stage

    Science.gov (United States)

    Dongjoon, Yang; Sukyoung, Kim

    2017-02-01

    Bone cell attachment to Ti implant surfaces is the most concerned issue in the clinical implant dentistry. Many attempts to achieve the fast and strong integration between bone and implant have been tried in many ways, such as selection of materials (for example, Ti, ZrO2), shape design of implant (for example, soft tissue level, bone level, taped or conical, etc), and surface modification of implants (for example, roughed. coated, hybrid), etc. Among them, a major consideration is the surface design of dental implants. The surface with proper structural characteristics promotes or induces the desirable responses of cells and tissues. To obtain such surface which has desirable cell and tissue response, a variety of surface modification techniques has been developed and employed for many years. In this review, the method and trend of surface modification will be introduced and explained in terms of the surface topography and chemistry of dental implants.

  4. The brain triuno and the ethical intelligence: fundamental counterfoil of the multifocal intelligence

    Directory of Open Access Journals (Sweden)

    C. Seijo

    2013-10-01

    Full Text Available This study has for aim offer an analysis as for the brain triuno and the ethical intelligence: fundamental Counterfoil of the multifocal intelligence, taking in tells one of the theories that it sustains her like they are the different types of multiple intelligences established by Beauport and Cury (2004. The theoretical sustenance, it is based on the contents of Martin (2005, Belohlavek (2007, Galicians (2002, Beauport and Cury (2004, between others, being realized under a symbolic interpretive approach, across a qualitative methodology, type descriptive and not experimental design, by means of a documentary analysis. In this regard, it is found that the ethical intelligence is a mental mechanism that constructs the structural preconceptos and the rules of game with which an individual approaches the reality, that is to say, it is the capacity of the general formation, predicting the behavior for the achievement of aims organizacionales. As for the final considerations they focused in obtaining the most wide knowledge inside the organizations, allowing to reflect before the weaknesses that they present thinking about the brain triuno applying the multifocal intelligence, fundamental counterfoil of the ethical intelligence and of what way the rationing visualizes the strengths, nevertheless of the weaknesses that they present. 

  5. Model business intelligence system design of quality products by using data mining in R Bakery Company

    Science.gov (United States)

    Fitriana, R.; Saragih, J.; Luthfiana, N.

    2017-12-01

    R Bakery company is a company that produces bread every day. Products that produced in that company have many different types of bread. Products are made in the form of sweet bread and wheat bread which have different tastes for every types of bread. During the making process, there were defects in the products which the defective product turns into reject product. Types of defects that are produced include burnt, sodden bread and shapeless bread. To find out the information about the defects that have been produced then by applying a designed model business intelligence system to create database and data warehouse. By using model business Intelligence system, it will generate useful information such as how many defect that produced by each of the bakery products. To make it easier to obtain such information, it can be done by using data mining method which data that we get is deep explored. The method of data mining is using k-means clustering method. The results of this intelligence business model system are cluster 1 with little amount of defect, cluster 2 with medium amount of defect and cluster 3 with high amount of defect. From OLAP Cube method can be seen that the defect generated during the 7 months period of 96,744 pieces.

  6. Artificial intelligence and information-control systems of robots - 87

    International Nuclear Information System (INIS)

    Plander, I.

    1987-01-01

    Independent research areas of artificial intelligence represent the following problems: automatic problem solving and new knowledge discovering, automatic program synthesis, natural language, picture and scene recognition and understanding, intelligent control systems of robots equipped with sensoric subsystems, dialogue of two knowledge systems, as well as studying and modelling higher artificial intelligence attributes, such as emotionality and personality. The 4th Conference draws on the problems treated at the preceding Conferences, and presents the most recent knowledge on the following topics: theoretical problems of artificial intelligence, knowledge-based systems, expert systems, perception and pattern recognition, robotics, intelligent computer-aided design, special-purpose computer systems for artificial intelligence and robotics

  7. Design and realization of intelligent tourism service system based on voice interaction

    Science.gov (United States)

    Hu, Lei-di; Long, Yi; Qian, Cheng-yang; Zhang, Ling; Lv, Guo-nian

    2008-10-01

    Voice technology is one of the important contents to improve the intelligence and humanization of tourism service system. Combining voice technology, the paper concentrates on application needs and the composition of system to present an overall intelligent tourism service system's framework consisting of presentation layer, Web services layer, and tourism application service layer. On the basis, the paper further elaborated the implementation of the system and its key technologies, including intelligent voice interactive technology, seamless integration technology of multiple data sources, location-perception-based guides' services technology, and tourism safety control technology. Finally, according to the situation of Nanjing tourism, a prototype of Tourism Services System is realized.

  8. The Information Barber Pole: Integrating White Information and Red Intelligence in Emerging Conflicts

    Science.gov (United States)

    2013-12-01

    Preparation of the Environment OSINT open source intelligence PNP SAF Philippines National Police Special Action Force SFA Security Force Assistance...intelligence functions which include (but are not limited to) human intelligence (HUMINT), open source intelligence ( OSINT ), and signals intelligence (SIGINT...intelligence ( OSINT ) is designed to capture information that hasn’t traditionally been considered part of the overall intelligence estimate. White

  9. Comparison of external and internal implant-abutment connections for implant supported prostheses. A systematic review and meta-analysis.

    Science.gov (United States)

    Lemos, Cleidiel Aparecido Araujo; Verri, Fellippo Ramos; Bonfante, Estevam Augusto; Santiago Júnior, Joel Ferreira; Pellizzer, Eduardo Piza

    2018-03-01

    The systematic review and meta-analysis aimed to answer the PICO question: "Do patients that received external connection implants show similar marginal bone loss, implant survival and complication rates as internal connection implants?". Meta-analyses of marginal bone loss, survival rates of implants and complications rates were performed for the included studies. Study eligibility criteria included (1) randomized controlled trials (RCTs) and/or prospective, (2) studies with at least 10 patients, (3) direct comparison between connection types and (4) publications in English language. The Cochrane risk of bias tool was used to assess the quality and risk of bias in RCTs, while Newcastle-Ottawa scale was used for non-RCTs. A comprehensive search strategy was designed to identify published studies on PubMed/MEDLINE, Scopus, and The Cochrane Library databases up to October 2017. The search identified 661 references. Eleven studies (seven RCTs and four prospective studies) were included, with a total of 530 patients (mean age, 53.93 years), who had received a total of 1089 implants (461 external-connection and 628 internal-connection implants). The internal-connection implants exhibited lower marginal bone loss than external-connection implants (PInternal connections had lower marginal bone loss when compared to external connections. However, the implant-abutment connection had no influence on the implant's survival and complication rates. Based on the GRADE approach the evidence was classified as very low to moderate due to the study design, inconsistency, and publication bias. Thus, future research is highly encouraged. Internal connection implants should be preferred over external connection implants, especially when different risk factors that may contribute to increased marginal bone loss are present. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. [The Russian-language version of the matrix test (RUMatrix) in free field in patients after cochlear implantation in the long term].

    Science.gov (United States)

    Goykhburg, M V; Bakhshinyan, V V; Petrova, I P; Wazybok, A; Kollmeier, B; Tavartkiladze, G A

    The deterioration of speech intelligibility in the patients using cochlear implantation (CI) systems is especially well apparent in the noisy environment. It explains why phrasal speech tests, such as a Matrix sentence test, have become increasingly more popular in the speech audiometry during rehabilitation after CI. The Matrix test allows to estimate speech perception by the patients in a real life situation. The objective of this study was to assess the effectiveness of audiological rehabilitation of CI patients using the Russian-language version of the matrix test (RUMatrix) in free field in the noisy environment. 33 patients aged from 5 to 40 years with a more than 3 year experience of using cochlear implants inserted at the National Research Center for Audiology and Hearing Rehabilitation were included in our study. Five of these patients were implanted bilaterally. The results of our study showed a statistically significant improvement of speech intelligibility in the noisy environment after the speech processor adjustment; dynamics of the signal-to-noise ratio changes was -1.7 dB (planguages makes possible its application in international multicenter studies.

  11. Large Efficient Intelligent Heating Relay Station System

    Science.gov (United States)

    Wu, C. Z.; Wei, X. G.; Wu, M. Q.

    2017-12-01

    The design of large efficient intelligent heating relay station system aims at the improvement of the existing heating system in our country, such as low heating efficiency, waste of energy and serious pollution, and the control still depends on the artificial problem. In this design, we first improve the existing plate heat exchanger. Secondly, the ATM89C51 is used to control the whole system and realize the intelligent control. The detection part is using the PT100 temperature sensor, pressure sensor, turbine flowmeter, heating temperature, detection of user end liquid flow, hydraulic, and real-time feedback, feedback signal to the microcontroller through the heating for users to adjust, realize the whole system more efficient, intelligent and energy-saving.

  12. Simultaneous Communication and Cochlear Implants in the Classroom?

    NARCIS (Netherlands)

    Blom, H.C.; Marschark, M.

    2015-01-01

    This study was designed to evaluate the potential of simultaneous communication (sign and speech together) to support classroom learning by college students who use cochlear implants (CIs). Metacognitive awareness of learning also was evaluated. A within-subjects design involving 40 implant users

  13. Cluster Implantation and Deposition Apparatus

    DEFF Research Database (Denmark)

    Hanif, Muhammad; Popok, Vladimir

    2015-01-01

    In the current report, a design and capabilities of a cluster implantation and deposition apparatus (CIDA) involving two different cluster sources are described. The clusters produced from gas precursors (Ar, N etc.) by PuCluS-2 can be used to study cluster ion implantation in order to develop...

  14. Complications with computer-aided designed/computer-assisted manufactured titanium and soldered gold bars for mandibular implant-overdentures: short-term observations.

    Science.gov (United States)

    Katsoulis, Joannis; Wälchli, Julia; Kobel, Simone; Gholami, Hadi; Mericske-Stern, Regina

    2015-01-01

    Implant-overdentures supported by rigid bars provide stability in the edentulous atrophic mandible. However, fractures of solder joints and matrices, and loosening of screws and matrices were observed with soldered gold bars (G-bars). Computer-aided designed/computer-assisted manufactured (CAD/CAM) titanium bars (Ti-bars) may reduce technical complications due to enhanced material quality. To compare prosthetic-technical maintenance service of mandibular implant-overdentures supported by CAD/CAM Ti-bar and soldered G-bar. Edentulous patients were consecutively admitted for implant-prosthodontic treatment with a maxillary complete denture and a mandibular implant-overdenture connected to a rigid G-bar or Ti-bar. Maintenance service and problems with the implant-retention device complex and the prosthesis were recorded during minimally 3-4 years. Annual peri-implant crestal bone level changes (ΔBIC) were radiographically assessed. Data of 213 edentulous patients (mean age 68 ± 10 years), who had received a total of 477 tapered implants, were available. Ti-bar and G-bar comprised 101 and 112 patients with 231 and 246 implants, respectively. Ti-bar mostly exhibited distal bar extensions (96%) compared to 34% of G-bar (p overdentures supported by soldered gold bars or milled CAD/CAM Ti-bars are a successful treatment modality but require regular maintenance service. These short-term observations support the hypothesis that CAD/CAM Ti-bars reduce technical complications. Fracture location indicated that the titanium thickness around the screw-access hole should be increased. © 2013 Wiley Periodicals, Inc.

  15. Development of a simplified method for intelligent glazed façade design under different control strategies and verified by building simulation tool BSim

    DEFF Research Database (Denmark)

    Liu, Mingzhe; Wittchen, Kim Bjarne; Heiselberg, Per

    2014-01-01

    The research aims to develop a simplified calculation method for intelligent glazed facade under different control conditions (night shutter, solar shading and natural ventilation) to simulate the energy performance and indoor environment of an office room installed with the intelligent facade......, it is possible to calculate the whole year performance of a room or building with intelligent glazed façade, which makes it a less time consuming tool to investigate the performance of the intelligent façade under different control strategies in the design stage with acceptable accuracy. Results showed good....... The method took the angle dependence of the solar characteristic into account, including the simplified hourly building model developed according to EN 13790 to evaluate the influence of the controlled façade on both the indoor environment (indoor air temperature, solar transmittance through the façade...

  16. Emotional intelligence of mental health nurses.

    Science.gov (United States)

    van Dusseldorp, Loes R L C; van Meijel, Berno K G; Derksen, Jan J L

    2011-02-01

    The aim of this study is to gain insight into the level of emotional intelligence of mental health nurses in the Netherlands. The focus in research on emotional intelligence to date has been on a variety of professionals. However, little is known about emotional intelligence in mental health nurses. The emotional intelligence of 98 Dutch nurses caring for psychiatric patients is reported. Data were collected with the Bar-On Emotional Quotient Inventory within a cross-sectional research design. The mean level of emotional intelligence of this sample of professionals is statistically significant higher than the emotional intelligence of the general population. Female nurses score significantly higher than men on the subscales Empathy, Social Responsibility, Interpersonal Relationship, Emotional Self-awareness, Self-Actualisation and Assertiveness. No correlations are found between years of experience and age on the one hand and emotional intelligence on the other hand. The results of this study show that nurses in psychiatric care indeed score above average in the emotional intelligence required to cope with the amount of emotional labour involved in daily mental health practice. The ascertained large range in emotional intelligence scores among the mental health nurses challenges us to investigate possible implications which higher or lower emotional intelligence levels may have on the quality of care. For instance, a possible relation between the level of emotional intelligence and the quality of the therapeutic nurse-patient relationship or the relation between the level of emotional intelligence and the manner of coping with situations characterised by a great amount of emotional labour (such as caring for patients who self-harm or are suicidal). © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.

  17. An overview of recent advances in designing orthopedic and craniofacial implants.

    Science.gov (United States)

    Mantripragada, Venkata P; Lecka-Czernik, Beata; Ebraheim, Nabil A; Jayasuriya, Ambalangodage C

    2013-11-01

    Great deal of research is still going on in the field of orthopedic and craniofacial implant development to resolve various issues being faced by the industry today. Despite several disadvantages of the metallic implants, they continue to be used, primarily because of their superior mechanical properties. In order to minimize the harmful effects of the metallic implants and its by-products, several modifications are being made to these materials, for instance nickel-free stainless steel, cobalt-chromium and titanium alloys are being introduced to eliminate the toxic effects of nickel being released from the alloys, introduce metallic implants with lower modulus, reduce the cost of these alloys by replacing rare elements with less expensive elements etc. New alloys like tantalum, niobium, zirconium, and magnesium are receiving attention given their satisfying mechanical and biological properties. Non-oxide ceramics like silicon nitride and silicon carbide are being currently developed as a promising implant material possessing a combination of properties such as good wear and corrosion resistance, increased ductility, good fracture and creep resistance, and relatively high hardness in comparison to alumina. Polymer/magnesium composites are being developed to improve mechanical properties as well as retain polymer's property of degradation. Recent advances in orthobiologics are proving interesting as well. This paper thus deals with the latest improvements being made to the existing implant materials and includes new materials being introduced in the field of biomaterials. Copyright © 2013 Wiley Periodicals, Inc.

  18. The intelligent user interface for NASA's advanced information management systems

    Science.gov (United States)

    Campbell, William J.; Short, Nicholas, Jr.; Rolofs, Larry H.; Wattawa, Scott L.

    1987-01-01

    NASA has initiated the Intelligent Data Management Project to design and develop advanced information management systems. The project's primary goal is to formulate, design and develop advanced information systems that are capable of supporting the agency's future space research and operational information management needs. The first effort of the project was the development of a prototype Intelligent User Interface to an operational scientific database, using expert systems and natural language processing technologies. An overview of Intelligent User Interface formulation and development is given.

  19. Artificial intelligence in nanotechnology.

    Science.gov (United States)

    Sacha, G M; Varona, P

    2013-11-15

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  20. Artificial intelligence in nanotechnology

    Science.gov (United States)

    Sacha, G. M.; Varona, P.

    2013-11-01

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  1. Intelligent control systems 1990

    International Nuclear Information System (INIS)

    Shoureshi, R.

    1991-01-01

    The field of artificial intelligence (Al) has generated many useful ideas and techniques that can be integrated into the design of control systems. It is believed and, for special cases, has been demonstrated, that integration of Al into control systems would provide the necessary tools for solving many of the complex problems that present control techniques and Al algorithms are unable to do, individually. However, this integration requires the development of basic understanding and new fundamentals to provide scientific bases for achievement of its potential. This book presents an overview of some of the latest research studies in the area of intelligent control systems. These papers present techniques for formulation of intelligent control, and development of the rule-based control systems. Papers present applications of control systems in nuclear power plants and HVAC systems

  2. Artificial intelligence in nanotechnology

    International Nuclear Information System (INIS)

    Sacha, G M; Varona, P

    2013-01-01

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines. (topical review)

  3. Analytical and experimental position stability of the abutment in different dental implant systems with a conical implant?abutment connection

    OpenAIRE

    Semper-Hogg, Wiebke; Kraft, Silvan; Stiller, Sebastian; Mehrhof, Juergen; Nelson, Katja

    2012-01-01

    Objectives Position stability of the abutment should be investigated in four implant systems with a conical implant?abutment connection. Materials and methods Previously developed formulas and an established experimental setup were used to determine the position stability of the abutment in the four implant systems with a conical implant?abutment connection and different positional index designs: The theoretical rotational freedom was calculated by using the dimensions of one randomly selecte...

  4. Designing, preparing and evaluation of novel HA/Ti composite coating for endodontic dental implant

    Directory of Open Access Journals (Sweden)

    Fathi MH.

    2002-08-01

    Full Text Available Nowadays, application of implants as a new method for replacing extracted teeth have been improved. So, many researches have been performed for improving the characteristics of implants. The aim of this study was to design and produce a desired coating in order to obtaining two goals including; improvement of the corrosion behavior of metallic endodontic implant and the bone osseointegration simultaneously. Stainless steel 316L (SS, cobalt-chromium alloy (Vit and commercial pure titanium (cpTi were chosen as metallic substrates and hydroxyapatite coating (HAC were performed by plasma-spraying (PS process on three different substrates. A novel double layer Hydroxyapatite/Titanium (HA/Ti composite coating composed of a HA top layer and a Ti under layer was prepared using PS and physical vapor deposition (PVD process respectively on SS. Structural characterization techniques including XRD, SEM and EDX were utilized to investigate the microstructure, morpholgy and crystallinity of the coatings. Electrochemical potentiodynamic tests were performed in physiological solutions in order to determine and compare the corrosion behavior of the coated and uncoated specimens behavior as an indication of biocmpatibility. Results indicated that the cpTi possesses the highest and SS the lowest corrosion resistance (highest corrosion current density between uncoated substrates. This trend was independent to the type of physiological environment. The HA coating decreased the corrosion current density of HA coated metallic implants but did not change that trend. HAC acted as a mechanical barrier on the metallic substrate but could not prevent the interaction between metallic substrate and environment completely. The HA/Ti composite coating improved the corrosion behavior of SS. The corrosion current density of HA/Ti coated SS decreased and was exactly similar to single HA coated cpTi in physiological solutions. The results indicated that HA/Ti composite coated SS

  5. Cochlear Implantation in Patients With Usher Syndrome Type IIa Increases Performance and Quality of Life.

    Science.gov (United States)

    Hartel, Bas P; van Nierop, Josephine W I; Huinck, Wendy J; Rotteveel, Liselotte J C; Mylanus, Emmanuel A M; Snik, Ad F; Kunst, Henricus P M; Pennings, Ronald J E

    2017-07-01

    Usher syndrome type IIa (USH2a) is characterized by congenital moderate to severe hearing impairment and retinitis pigmentosa. Hearing rehabilitation starts in early childhood with the application of hearing aids. In some patients with USH2a, severe progression of hearing impairment leads to insufficient speech intelligibility with hearing aids and issues with adequate communication and safety. Cochlear implantation (CI) is the next step in rehabilitation of such patients. This study evaluates the performance and benefit of CI in patients with USH2a. Retrospective case-control study to evaluate the performance and benefit of CI in 16 postlingually deaf adults (eight patients with USH2a and eight matched controls). Performance and benefit were evaluated by a speech intelligibility test and three quality-of-life questionnaires. Patients with USH2a with a mean age of 59 years at implantation exhibited good performance after CI. The phoneme scores improved significantly from 41 to 87% in patients with USH2a (p = 0.02) and from 30 to 86% in the control group (p = 0.001). The results of the questionnaire survey demonstrated a clear benefit from CI. There were no differences in performance or benefit between patients with USH2a and control patients before and after CI. CI increases speech intelligibility and improves quality of life in patients with USH2a.

  6. Evaluation of four designs of short implants placed in atrophic areas with reduced bone height: a three-year, retrospective, clinical and radiographic study.

    Science.gov (United States)

    Lopez Torres, J A; Gehrke, S A; Calvo Guirado, J L; Aristazábal, L F R

    2017-09-01

    The aim of the present study was to evaluate retrospectively the clinical and radiographic behaviour of four commercially-available short implants with different macrodesigns and microdesigns in areas in which the height of the bone was reduced. We took into account the success and survival, peri-implant crestal bone loss, and the level of probing at which the gum bled. Patients were included if they had been given one or more short implants (≤8.5mm long) in the posterior jaws at least three years earlier. Three hundred and ninety-one short implants were placed in 170 subjects, and were divided in four groups based on the brand of implant. The implants were evaluated one, two, and three years after they had been inserted. Short implants had a three-year survival and success rate of 90% in all groups, and bone loss was acceptable after three years with no significant differences between them. These results support the use of short implants as an effective and safe treatment. However, within the limitations of this study, the design of the implant does seem to influence the behaviour of peri-implant bone at the crestal level. Copyright © 2017. Published by Elsevier Ltd.

  7. Leadership styles: The role of cultural intelligence

    Directory of Open Access Journals (Sweden)

    Anthony Solomon

    2017-07-01

    Full Text Available Orientation: Within both the South African context and abroad, leaders are increasingly being required to engage with staff members whose cultures differ from their own. As the attractiveness of different leadership styles varies in line with staff member cultural preferences, the challenge leaders face is that their behaviours may no longer be apposite. To this end, it is mostly unknown whether those leaders who are deemed culturally intelligent behave in a specific manner, that is, display the empowering and directive leadership styles. Research purpose: The purpose of this study was to explore the relationship between leader cultural intelligence and the empowering and directive styles of leadership, as perceived by subordinates. Motivation for the study: To operate successfully, leaders need to adopt and display those leadership styles that best match the cultural expectations of their staff members. Cultural intelligence may assist in this respect. Most of the studies on leader cultural intelligence and leadership styles have concentrated on the transformational leadership style. There is, thus, a requirement to examine how leader cultural intelligence relates to other leadership styles. Research design, approach and method: The study was quantitative in nature and made use of a cross-sectional survey design. Data were collected from 1140 staff members spread across 19 diverse organisations carrying on business activities in South Africa. Correlation and regression techniques were performed to identify relationships. Main findings: Leader cultural intelligence was found to have a stronger relationship with empowering leadership than it had with directive leadership. With empowering leadership, leader metacognitive and motivational cultural intelligence acted as important antecedents, whilst for directive leadership, leader’s motivational, cognitive and metacognitive cultural intelligence played a predictive part that carried a medium

  8. Design and Evaluation of a Fully Implantable Control Unit for Blood Pumps

    Science.gov (United States)

    Unthan, Kristin; Gräf, Felix; Laumen, Marco; Finocchiaro, Thomas; Sommer, Christoph; Lanmüller, Hermann; Steinseifer, Ulrich

    2015-01-01

    As the number of donor hearts is limited while more and more patients suffer from end stage biventricular heart failure, Total Artificial Hearts become a promising alternative to conventional treatment. While pneumatic devices sufficiently supply the patients with blood flow, the patient's quality of life is limited by the percutaneous pressure lines and the size of the external control unit. This paper describes the development of the control unit of the ReinHeart, a fully implantable Total Artificial Heart. General requirements for any implantable control unit are defined from a technical and medical point of view: necessity of a Transcutaneous Energy Transmission, autonomous operation, safety, geometry, and efficiency. Based on the requirements, a prototype is designed; it incorporates a LiFePo4 battery pack with charger, a rectifier for transcutaneous energy transmission, the motor's driver electronics, and a microcontroller which monitors and controls all functions. In validation tests, the control unit demonstrated a stable operation on TET and battery supply and a safe switching from one supply to the other. The overall mean efficiency is 14% on TET and 22% on battery supply. The control unit is suitable for chronic animal trials of the ReinHeart. PMID:26583095

  9. Dental implant surgery: planning and guidance

    International Nuclear Information System (INIS)

    Lobregt, S.; Schillings, J.J.; Vuurberg, E.

    2001-01-01

    A prototype application has been developed for interactive planning of dental implants on the EasyVision workstation. The user is led step by step via virtual positioning of the implant to the design of a customized drill guide. (orig.)

  10. Turned On / Turned Off: Speculating on the Microchip-based Contraceptive Implant

    DEFF Research Database (Denmark)

    Homewood, Sarah; Heyer, Clint

    2017-01-01

    disruptions of "the pill". Framed as interactive technology, we speculate on the design space of controllable implanted contraceptives. We explored existing implanted contraceptives through a performance ethnography of their implantation. Inspiration from this process informed a speculative video of living...... with controllable implants and a guide for healthcare professionals. These materials, along with expert presentations, backgrounded a design workshop in which participants unpacked issues around controllable contraceptive implants. Participants created and roleplayed physical mock-ups of controllers, manifesting...

  11. R&D on dental implants breakage

    Science.gov (United States)

    Croitoru, Sorin Mihai; Popovici, Ion Alexandru

    2017-09-01

    Most used dental implants for human dental prostheses are of two steps type: first step means implantation and, after several months healing and osseointegration, second step is prosthesis fixture. For sure, dental implants and prostheses are meant to last for a lifetime. Still, there are unfortunate cases when dental implants break. This paper studies two steps dental implants breakage and proposes a set of instruments for replacement and restoration of the broken implant. First part of the paper sets the input data of the study: structure of the studied two steps dental implants based on two Romanian patents and values of the loading forces found in practice and specialty papers. In the second part of the paper, using DEFORM 2D™ FEM simulation software, worst case scenarios of loading dental implants are studied in order to determine which zones and components of the dental implant set are affected (broken). Last part of the paper is dedicated to design and presentation of a set for extracting and cutting tools used to restore the broken implant set.

  12. Using artificial intelligence methods to design new conducting polymers

    Directory of Open Access Journals (Sweden)

    Ronaldo Giro

    2003-12-01

    Full Text Available In the last years the possibility of creating new conducting polymers exploring the concept of copolymerization (different structural monomeric units has attracted much attention from experimental and theoretical points of view. Due to the rich carbon reactivity an almost infinite number of new structures is possible and the procedure of trial and error has been the rule. In this work we have used a methodology able of generating new structures with pre-specified properties. It combines the use of negative factor counting (NFC technique with artificial intelligence methods (genetic algorithms - GAs. We present the results for a case study for poly(phenylenesulfide phenyleneamine (PPSA, a copolymer formed by combination of homopolymers: polyaniline (PANI and polyphenylenesulfide (PPS. The methodology was successfully applied to the problem of obtaining binary up to quinternary disordered polymeric alloys with a pre-specific gap value or exhibiting metallic properties. It is completely general and can be in principle adapted to the design of new classes of materials with pre-specified properties.

  13. Penerapan Model Pembelajaran Atraktif Berbasis Multiple Intelligences Tentang Pemantulan Cahaya pada Cermin

    Directory of Open Access Journals (Sweden)

    Intan Kusumawati

    2016-03-01

    Full Text Available Penelitian ini bertujuan untuk mengetahui efektivitas penerapan model pembelajaran atraktif berbasis multiple intelligences dalam meremediasi miskonsepsi siswa tentang pemantulan cahaya pada cermin. Pada penelitian ini digunakan bentuk pre-eksperimental design dengan rancangan one group pretest-post test design. Alat pengumpulan data berupa tes pilihan ganda dengan reasoning. Hasil validitas sebesar 4,08 dan reliabilitas 0,537. Siswa dibagi menjadi lima kelompok kecerdasan, yaitu kelompok linguistic intelligence, mathematical-logical intelligence, visual-spatial intelligence, bodily-khinestetic intelligence, dan musical intelligence. Siswa membahas konsep fisika sesuai kelompok kecerdasannya dalam bentuk pembuatan pantun-puisi, teka-teki silang, menggambar kreatif, drama, dan mengarang lirik lagu. Efektivitas penerapan model pembelajaran multiple intelligences menggunakan persamaan effect size. Ditemukan bahwa skor effect size masing-masing kelompok berkategori tinggi sebesar 5,76; 3,76; 4,60; 1,70; dan 1,34. Penerapan model pembelajaran atraktif berbasis multiple intelligences efektif dalam meremediasi miskonsepsi siswa. Penelitian ini diharapkan dapat digunakan pada materi fisika dan sekolah lainnya.

  14. A Multi-Agent Framework for Coordination of Intelligent Assistive Technologies

    DEFF Research Database (Denmark)

    Valente, Pedro Ricardo da Nova; Hossain, S.; Groenbaek, B.

    2010-01-01

    Intelligent care for the future is the IntelliCare project's main priority. This paper describes the design of a generic multi-agent framework for coordination of intelligent assistive technologies. The paper overviews technologies and software systems suitable for context awareness...... and housekeeping tasks, especially for performing a multi-robot cleaning-task activity. It also describes conducted work in the design of a multi-agent platform for coordination of intelligent assistive technologies. Instead of using traditional robot odometry estimation methods, we have tested an independent...

  15. Training Engineers for the Ambient Intelligence Challenge

    Science.gov (United States)

    Corno, Fulvio; De Russis, Luigi

    2017-01-01

    The increasing complexity of the new breed of distributed intelligent systems, such as the Internet of Things, which require a diversity of languages and protocols, can only be tamed with design and programming best practices. Interest is also growing for including the human factor, as advocated by the "ambient intelligence" (AmI)…

  16. Surgical Templates for Dental Implant Positioning; Current ...

    African Journals Online (AJOL)

    prosthodontics; however, designing an implant‑supported prosthesis with function .... template where a provisional fixed restoration bridges the implant site. Pesun and ... in single implant therapy or short‑span implant‑supported prostheses.

  17. Intelligent Design Creationism: The New Kid on the Block

    Science.gov (United States)

    Scott, Eugenie C.

    2000-03-01

    Traditionally, the antievolution movement has been characterized by biblical literalists who hold that the universe (including living things) was created in its present form and has not appreciably changed since that creation event, which in the most familiar version, "young earth" creationism (YEC), occurred about 10,000 years ago. The YECs primarily are associated with not-for-profit organizations such as the Institute for Creation Research and Answers in Genesis. Now there is a "new kid on the [antievolutionist] block": Intelligent Design Creationism (IDC). IDC updates William Paley's 1801 "Argument from Design" that structural complexity requires an omniscient designer, with examples from biochemistry and cell biology. Unlike YEC, IDC's most prominent practitioners are academics associated with secular universities, such as lawyer Phillip Johnson of UC- Berkeley, and biochemist Michael Behe of Lehigh University. Like YECs, IDCs stress alleged "weaknesses" in evolution more than positive evidence for their position. IDCs avoid the Big Bang, the age of the Earth, the speed of light, and most other cosmological issues, but are very concerned with "disproving" biological evolution, the inference that living things shared common ancestry. They also argue that evolution is inherently anti-religious. Perhaps most disturbingly, they propose that supernatural explanations be allowed into science. Although the most prominent IDCs are based at secular universities, they produce little IDC scholarship. Refereed scholarly articles promoting IDC have been lacking, though books and articles for the general public and newspaper opinion/editorial pieces, appear in great quantity. IDC books are being used in philosophy of science, science studies, and other non-science courses where students may be misled into thinking that evolution is scientifically a "theory in crisis."

  18. Immediate Implants Placed in Fresh Sockets Associated with Periapical Pathology: A Split-Mouth Design and Survival Evaluation after 1-Year Follow-Up.

    Science.gov (United States)

    Hita-Iglesias, Cristina; Sánchez-Sánchez, Francisco J; Montero, Javier; Galindo-Moreno, Pablo; Mesa, Francisco; Martínez-Lara, Ildefonso; Sánchez-Fernández, Elena

    2016-12-01

    To compare the immediate implant success rates between sites with chronic apical lesions and healthy sites in the same patients 1 year postdelayed loading. One hundred sixty-eight immediate implants were placed in sixty patients at upper incisor, canine, and premolar sites. A split-mouth design was used, placing a minimum of two implants, one in a fresh socket associated with chronic periapical disease, the average lesion size was larger than 4 mm and less than 8 mm (test group), and the other(s) in a healthy fresh socket (control group). Implant survival rate at 1 year postloading delayed was compared between the groups. The implant survival rate was 98.2% for the total sample (n = 168); out of the three implants lost, two were from the test group, and one was from the control group (in the same patient as one of the former). Among the surviving implants, five were also considered failures due to excessive bone loss (n = 3) and also because of the recurrence of the periapical lesions (n = 2). Survival rates were significantly lower in the test than control sites at 12 months postloading. Implant survival rates were significantly lower after the immediate implantation in postextraction sockets associated with chronic periapical disease (90.8%) than in healthy postextraction sockets (98.1%). © 2015 Wiley Periodicals, Inc.

  19. 2D FEA of evaluation of micromovements and stresses at bone-implant interface in immediately loaded tapered implants in the posterior maxilla

    Directory of Open Access Journals (Sweden)

    Shrikar R Desai

    2013-01-01

    Full Text Available Aim: The aim of the study is to evaluate the influence implant length on stress distribution at bone implant interface in single immediately loaded implants when placed in D4 bone quality. Materials and Methods: A 2-dimensional finite element models were developed to simulate two types of implant designs, standard 3.75 mm-diameter tapered body implants of 6 and 10 mm lengths. The implants were placed in D4 bone quality with a cortical bone thickness of 0.5 mm. The implant design incorporated microthreads at the crestal part and the rest of the implant body incorporated Acme threads. The Acme thread form has a 29° thread angle with a thread height half of the pitch; the apex and valley are flat. A 100 N of force was applied vertically and in the oblique direction (at an angle of 45° to the long axis of the implants. The respective material properties were assigned. Micro-movements and stresses at the bone implant interface were evaluated. Results: The results of total deformation (micro-movement and Von mises stress were found to be lower for tapered long implant (10 mm than short implant (6 mm while using both vertical as well as oblique loading. Conclusion: Short implants can be successfully placed in poor bone quality under immediate loading protocol. The novel approach of the combination of microthreads at the crestal portion and acme threads for body portion of implant fixture gave promising results.

  20. 2D FEA of evaluation of micromovements and stresses at bone-implant interface in immediately loaded tapered implants in the posterior maxilla.

    Science.gov (United States)

    Desai, Shrikar R; Singh, Rika; Karthikeyan, I

    2013-09-01

    The aim of the study is to evaluate the influence implant length on stress distribution at bone implant interface in single immediately loaded implants when placed in D4 bone quality. A 2-dimensional finite element models were developed to simulate two types of implant designs, standard 3.75 mm-diameter tapered body implants of 6 and 10 mm lengths. The implants were placed in D4 bone quality with a cortical bone thickness of 0.5 mm. The implant design incorporated microthreads at the crestal part and the rest of the implant body incorporated Acme threads. The Acme thread form has a 29° thread angle with a thread height half of the pitch; the apex and valley are flat. A 100 N of force was applied vertically and in the oblique direction (at an angle of 45°) to the long axis of the implants. The respective material properties were assigned. Micro-movements and stresses at the bone implant interface were evaluated. The results of total deformation (micro-movement) and Von mises stress were found to be lower for tapered long implant (10 mm) than short implant (6 mm) while using both vertical as well as oblique loading. Short implants can be successfully placed in poor bone quality under immediate loading protocol. The novel approach of the combination of microthreads at the crestal portion and acme threads for body portion of implant fixture gave promising results.