WorldWideScience

Sample records for intelligent detector design

  1. Development of intelligent photomultipliers for the JUNO detector

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, Florian; Meloni, Marta; Soiron, Michael; Stahl, Achim; Steinmann, Jochen; Wiebusch, Christopher [III. Physikalisches Institut B, RWTH Aachen University, 52056 Aachen (Germany)

    2016-07-01

    The JUNO experiment will be a 20kt liquid scintillator neutrino detector near Kaiping, China, 50km from two nuclear power plants. Its main goal is the determination of the neutrino mass hierarchy from a precise measurement of the energy spectrum of neutrinos. Due to the detector size it is not possible to digitize the signal outside the detector cavern. Therefore FPGAs with a low-level reconstruction combined with a fast ADC mounted on the base will convert the PMTs into intelligent sensors. Advantages and disadvantages of this design are be discussed,and first measurements are shown.

  2. Data compression considerations for detectors with local intelligence

    International Nuclear Information System (INIS)

    Garcia-Sciveres, M; Wang, X

    2014-01-01

    This note summarizes the outcome of discussions about how data compression considerations apply to tracking detectors with local intelligence. The method for analyzing data compression efficiency is taken from a previous publication and applied to module characteristics from the WIT2014 workshop. We explore local intelligence and coupled layer structures in the language of data compression. In this context the original intelligent tracker concept of correlating hits to find matches of interest and discard others is just a form of lossy data compression. We now explore how these features (intelligence and coupled layers) can be exploited for lossless compression, which could enable full readout at higher trigger rates than previously envisioned, or even triggerless

  3. Intelligent Design

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    2005-01-01

    Forestillingen om at naturen er designet af en guddommelig 'intelligens' er et smukt filosofisk princip. Teorier om Intelligent Design som en naturvidenskabeligt baseret teori er derimod helt forfærdelig.......Forestillingen om at naturen er designet af en guddommelig 'intelligens' er et smukt filosofisk princip. Teorier om Intelligent Design som en naturvidenskabeligt baseret teori er derimod helt forfærdelig....

  4. Detector simulation needs for detector designers

    International Nuclear Information System (INIS)

    Hanson, G.G.

    1987-11-01

    Computer simulation of the components of SSC detectors and of the complete detectors will be very important for the designs of the detectors. The ratio of events from interesting physics to events from background processes is very low, so detailed understanding of detector response to the backgrounds is needed. Any large detector for the SSC will be very complex and expensive and every effort must be made to design detectors which will have excellent performance and will not have to undergo major rebuilding. Some areas in which computer simulation is particularly needed are pattern recognition in tracking detectors and development of shower simulation code which can be trusted as an aid in the design and optimization of calorimeters, including their electron identification performance. Existing codes require too much computer time to be practical and need to be compared with test beam data at energies of several hundred GeV. Computer simulation of the processing of the data, including electronics response to the signals from the detector components, processing of the data by microprocessors on the detector, the trigger, and data acquisition will be required. In this report we discuss the detector simulation needs for detector designers

  5. Intelligent design som videnskab?

    DEFF Research Database (Denmark)

    Klausen, Søren Harnow

    2007-01-01

    Diskuterer hvorvidt intelligent design kan betegnes som videnskab; argumenterer for at dette grundet fraværet af klare demarkationskriterier næppe kan afvises.......Diskuterer hvorvidt intelligent design kan betegnes som videnskab; argumenterer for at dette grundet fraværet af klare demarkationskriterier næppe kan afvises....

  6. An intelligent and networking solution of radiation monitoring system for LHC

    International Nuclear Information System (INIS)

    Shao Beibei; Gong Guanghua

    2001-01-01

    The LHC (the Large Hadron Collider), the largest accelerator in the world, is under designing and construction at CERN. It shares the 27 km LEP tunnel and is expected to be on the air in 2005. The Radiation Monitoring System of LEP was a central system with non-intelligent detectors. While as the proposed new RMS for LHC is a distributing intelligent networked system. Around 350 detectors will be employed. To save the cost, the design should make the old LEP's non-intelligent detectors reusable. To allow the detector controller automatic reports the detector database and net location through the world Fip bus, 1 wire components are embedded into the detectors and the network sockets. The radiation tolerance and the reliability of the communication of the wire components have been tested in a strong radiation field at CERN. The low cost components based position detection technique is valuable for most networked control system

  7. Intelligent Design, Neo Evangelicalism and Apologetics

    OpenAIRE

    Samuel, Asumadu-Sarkodie

    2015-01-01

    To begin with, there's a strange phenomenon popping up around the country. Scientists are stepping out of their laboratories and speaking to the media about something that has them quite concerned. It's not the threat of a new flu pandemic; it's not the threat of nuclear weapons proliferation, or even the possible threat of global warming. It's something called Intelligent Design. Intelligent design is the field of study that investigates signs of intelligence. It identifies those features of...

  8. Detector Mount Design for IGRINS

    Directory of Open Access Journals (Sweden)

    Jae Sok Oh

    2014-06-01

    Full Text Available The Immersion Grating Infrared Spectrometer (IGRINS is a near-infrared wide-band high-resolution spectrograph jointly developed by the Korea Astronomy and Space Science Institute and the University of Texas at Austin. IGRINS employs three HAWAII-2RG Focal Plane Array (H2RG FPA detectors. We present the design and fabrication of the detector mount for the H2RG detector. The detector mount consists of a detector housing, an ASIC housing, a Field Flattener Lens (FFL mount, and a support base frame. The detector and the ASIC housing should be kept at 65 K and the support base frame at 130 K. Therefore they are thermally isolated by the support made of GFRP material. The detector mount is designed so that it has features of fine adjusting the position of the detector surface in the optical axis and of fine adjusting yaw and pitch angles in order to utilize as an optical system alignment compensator. We optimized the structural stability and thermal characteristics of the mount design using computer-aided 3D modeling and finite element analysis. Based on the structural and thermal analysis, the designed detector mount meets an optical stability tolerance and system thermal requirements. Actual detector mount fabricated based on the design has been installed into the IGRINS cryostat and successfully passed a vacuum test and a cold test.

  9. Computational Intelligence Techniques for New Product Design

    CERN Document Server

    Chan, Kit Yan; Dillon, Tharam S

    2012-01-01

    Applying computational intelligence for product design is a fast-growing and promising research area in computer sciences and industrial engineering. However, there is currently a lack of books, which discuss this research area. This book discusses a wide range of computational intelligence techniques for implementation on product design. It covers common issues on product design from identification of customer requirements in product design, determination of importance of customer requirements, determination of optimal design attributes, relating design attributes and customer satisfaction, integration of marketing aspects into product design, affective product design, to quality control of new products. Approaches for refinement of computational intelligence are discussed, in order to address different issues on product design. Cases studies of product design in terms of development of real-world new products are included, in order to illustrate the design procedures, as well as the effectiveness of the com...

  10. Open source intelligence, open social intelligence and privacy by design

    OpenAIRE

    Casanovas, Pompeu; Royal Melbourne Institute of Technology (Austràlia). Centre for Applied Social Research

    2014-01-01

    Ponència presentada a European Conference on Social Intelligence (ECSI-2014) OSINT stands for Open Source Intelligence, (O)SI for (Open) Social Intelligence, PbD for Privacy by Design. The CAPER project has built an OSINT solution oriented to the prevention of organized crime. How to balance freedom and security? This position paper describes a way to embed the legal and ethical issues raised by the General Data Reform Package (GDRP) in Europe into this kind of surveillance platforms. It f...

  11. Intelligent Design and Intelligent Failure

    Science.gov (United States)

    Jerman, Gregory

    2015-01-01

    Good Evening, my name is Greg Jerman and for nearly a quarter century I have been performing failure analysis on NASA's aerospace hardware. During that time I had the distinct privilege of keeping the Space Shuttle flying for two thirds of its history. I have analyzed a wide variety of failed hardware from simple electrical cables to cryogenic fuel tanks to high temperature turbine blades. During this time I have found that for all the time we spend intelligently designing things, we need to be equally intelligent about understanding why things fail. The NASA Flight Director for Apollo 13, Gene Kranz, is best known for the expression "Failure is not an option." However, NASA history is filled with failures both large and small, so it might be more accurate to say failure is inevitable. It is how we react and learn from our failures that makes the difference.

  12. Social Intelligence Design in Ambient Intelligence

    NARCIS (Netherlands)

    Nijholt, Antinus; Stock, Oliviero; Stock, O.; Nishida, T.; Nishida, Toyoaki

    2009-01-01

    This Special Issue of AI and Society contains a selection of papers presented at the 6th Social Intelligence Design Workshop held at ITC-irst, Povo (Trento, Italy) in July 2007. Being the 6th in a series means that there now is a well-established and also a growing research area. The interest in

  13. Recommendation in Motion: Intelligent Hypertouch Garment Design

    Directory of Open Access Journals (Sweden)

    Shuang Liang

    2013-01-01

    Full Text Available Intelligent CAD garment design becomes more and more popular by attracting the attentions from both manufacturers and professional stylists. The existing garment CAD systems and clothing simulation software fail to provide user-friendly interfaces as well as dynamic recommendation during the garment creation process. In this paper, we propose an intelligent hypertouch garment design system, which dynamically predicts the possible solutions along with the intelligent design procedure. User behavioral information and dynamic shape matching are used to learn and predict the desired garment patterns. We also propose a new hypertouch concept of gesture-based interaction for our system. We evaluate our system with a prototype platform. The results show that our system is effective, robust, and easy to use for quick garment design.

  14. Intelligent Support for a Computer Aided Design Optimisation Cycle

    OpenAIRE

    B. Dolšak; M. Novak; J. Kaljun

    2006-01-01

    It is becoming more and more evident that  adding intelligence  to existing computer aids, such as computer aided design systems, can lead to significant improvements in the effective and reliable performance of various engineering tasks, including design optimisation. This paper presents three different intelligent modules to be applied within a computer aided design optimisation cycle to enable more intelligent and less experience-dependent design performance. 

  15. Design of an intelligent car

    Science.gov (United States)

    Na, Yongyi

    2017-03-01

    The design of simple intelligent car, using AT89S52 single chip microcomputer as the car detection and control core; The metal sensor TL - Q5MC induction to iron, to detect the way to send feedback to the signal of single chip microcomputer, make SCM according to the scheduled work mode to control the car in the area according to the predetermined speed, and the operation mode of the microcontroller choose different also can control the car driving along s-shaped iron; Use A44E hall element to detect the car speeds; Adopts 1602 LCD display time of car driving, driving the car to stop, take turns to show the car driving time, distance, average speed and the speed of time. This design has simple structure and is easy to implement, but are highly intelligent, humane, to a certain extent reflects the intelligence.

  16. ILC Reference Design Report Volume 4 - Detectors

    CERN Document Server

    Behnke, Ties; Jaros, John; Miyamoto, Akiya; Aarons, Gerald; Abe, Toshinori; Abernathy, Jason; Ablikim, Medina; Abramowicz, Halina; Adey, David; Adloff, Catherine; Adolphsen, Chris; Afanaciev, Konstantin; Agapov, Ilya; Ahn, Jung-Keun; Aihara, Hiroaki; Akemoto, Mitsuo; del Carmen Alabau, Maria; Albert, Justin; Albrecht, Hartwig; Albrecht, Michael; Alesini, David; Alexander, Gideon; Alexander, Jim; Allison, Wade; Amann, John; Amirikas, Ramila; An, Qi; Anami, Shozo; Ananthanarayan, B.; Anderson, Terry; Andricek, Ladislav; Anduze, Marc; Anerella, Michael; Anfimov, Nikolai; Angal-Kalinin, Deepa; Antipov, Sergei; Antoine, Claire; Aoki, Mayumi; Aoza, Atsushi; Aplin, Steve; Appleby, Rob; Arai, Yasuo; Araki, Sakae; Arkan, Tug; Arnold, Ned; Arnold, Ray; Arnowitt, Richard; Artru, Xavier; Arya, Kunal; Aryshev, Alexander; Asakawa, Eri; Asiri, Fred; Asner, David; Atac, Muzaffer; Atoian, Grigor; Attié, David; Augustin, Jean-Eudes; Augustine, David B.; Ayres, Bradley; Aziz, Tariq; Baars, Derek; Badaud, Frederique; Baddams, Nigel; Bagger, Jonathan; Bai, Sha; Bailey, David; Bailey, Ian R.; Baker, David; Balalykin, Nikolai I.; Balbuena, Juan Pablo; Baldy, Jean-Luc; Ball, Markus; Ball, Maurice; Ballestrero, Alessandro; Ballin, Jamie; Baltay, Charles; Bambade, Philip; Ban, Syuichi; Band, Henry; Bane, Karl; Banerjee, Bakul; Barbanotti, Serena; Barbareschi, Daniele; Barbaro-Galtieri, Angela; Barber, Desmond P.; Barbi, Mauricio; Bardin, Dmitri Y.; Barish, Barry; Barklow, Timothy L.; Barlow, Roger; Barnes, Virgil E.; Barone, Maura; Bartels, Christoph; Bartsch, Valeria; Basu, Rahul; Battaglia, Marco; Batygin, Yuri; Baudot, Jerome; Baur, Ulrich; Elwyn Baynham, D.; Beard, Carl; Bebek, Chris; Bechtle, Philip; Becker, Ulrich J.; Bedeschi, Franco; Bedjidian, Marc; Behera, Prafulla; Bellantoni, Leo; Bellerive, Alain; Bellomo, Paul; Bentson, Lynn D.; Benyamna, Mustapha; Bergauer, Thomas; Berger, Edmond; Bergholz, Matthias; Beri, Suman; Berndt, Martin; Bernreuther, Werner; Bertolini, Alessandro; Besancon, Marc; Besson, Auguste; Beteille, Andre; Bettoni, Simona; Beyer, Michael; Bhandari, R.K.; Bharadwaj, Vinod; Bhatnagar, Vipin; Bhattacharya, Satyaki; Bhattacharyya, Gautam; Bhattacherjee, Biplob; Bhuyan, Ruchika; Bi, Xiao-Jun; Biagini, Marica; Bialowons, Wilhelm; Biebel, Otmar; Bieler, Thomas; Bierwagen, John; Birch, Alison; Bisset, Mike; Biswal, S.S.; Blackmore, Victoria; Blair, Grahame; Blanchard, Guillaume; Blazey, Gerald; Blue, Andrew; Blümlein, Johannes; Boffo, Christian; Bohn, Courtlandt; Boiko, V.I.; Boisvert, Veronique; Bondarchuk, Eduard N.; Boni, Roberto; Bonvicini, Giovanni; Boogert, Stewart; Boonekamp, Maarten; Boorman, Gary; Borras, Kerstin; Bortoletto, Daniela; Bosco, Alessio; Bosio, Carlo; Bosland, Pierre; Bosotti, Angelo; Boudry, Vincent; Boumediene, Djamel-Eddine; Bouquet, Bernard; Bourov, Serguei; Bowden, Gordon; Bower, Gary; Boyarski, Adam; Bozovic-Jelisavcic, Ivanka; Bozzi, Concezio; Brachmann, Axel; Bradshaw, Tom W.; Brandt, Andrew; Brasser, Hans Peter; Brau, Benjamin; Brau, James E.; Breidenbach, Martin; Bricker, Steve; Brient, Jean-Claude; Brock, Ian; Brodsky, Stanley; Brooksby, Craig; Broome, Timothy A.; Brown, David; Brown, David; Brownell, James H.; Bruchon, Mélanie; Brueck, Heiner; Brummitt, Amanda J.; Brun, Nicole; Buchholz, Peter; Budagov, Yulian A.; Bulgheroni, Antonio; Bulyak, Eugene; Bungau, Adriana; Bürger, Jochen; Burke, Dan; Burkhart, Craig; Burrows, Philip; Burt, Graeme; Burton, David; Büsser, Karsten; Butler, John; Butterworth, Jonathan; Buzulutskov, Alexei; Cabruja, Enric; Caccia, Massimo; Cai, Yunhai; Calcaterra, Alessandro; Caliier, Stephane; Camporesi, Tiziano; Cao, Jun-Jie; Cao, J.S.; Capatina, Ofelia; Cappellini, Chiara; Carcagno, Ruben; Carena, Marcela; Carloganu, Cristina; Carosi, Roberto; Stephen Carr, F.; Carrion, Francisco; Carter, Harry F.; Carter, John; Carwardine, John; Cassel, Richard; Cassell, Ronald; Cavallari, Giorgio; Cavallo, Emanuela; Cembranos, Jose A.R.; Chakraborty, Dhiman; Chandez, Frederic; Charles, Matthew; Chase, Brian; Chattopadhyay, Subhasis; Chauveau, Jacques; Chefdeville, Maximilien; Chehab, Robert; Chel, Stéphane; Chelkov, Georgy; Chen, Chiping; Chen, He Sheng; Chen, Huai Bi; Chen, Jia Er; Chen, Sen Yu; Chen, Shaomin; Chen, Shenjian; Chen, Xun; Chen, Yuan Bo; Cheng, Jian; Chevallier, M.; Chi, Yun Long; Chickering, William; Cho, Gi-Chol; Cho, Moo-Hyun; Choi, Jin-Hyuk; Choi, Jong Bum; Choi, Seong Youl; Choi, Young-Il; Choudhary, Brajesh; Choudhury, Debajyoti; Rai Choudhury, S.; Christian, David; Christian, Glenn; Christophe, Grojean; Chung, Jin-Hyuk; Church, Mike; Ciborowski, Jacek; Cihangir, Selcuk; Ciovati, Gianluigi; Clarke, Christine; Clarke, Don G.; Clarke, James A.; Clements, Elizabeth; Coca, Cornelia; Coe, Paul; Cogan, John; Colas, Paul; Collard, Caroline; Colledani, Claude; Combaret, Christophe; Comerma, Albert; Compton, Chris; Constance, Ben; Conway, John; Cook, Ed; Cooke, Peter; Cooper, William; Corcoran, Sean; Cornat, Rémi; Corner, Laura; Cortina Gil, Eduardo; Clay Corvin, W.; Cotta Ramusino, Angelo; Cowan, Ray; Crawford, Curtis; Cremaldi, Lucien M; Crittenden, James A.; Cussans, David; Cvach, Jaroslav; da Silva, Wilfrid; Dabiri Khah, Hamid; Dabrowski, Anne; Dabrowski, Wladyslaw; Dadoun, Olivier; Dai, Jian Ping; Dainton, John; Daly, Colin; Danilov, Mikhail; Daniluk, Witold; Daram, Sarojini; Datta, Anindya; Dauncey, Paul; David, Jacques; Davier, Michel; Davies, Ken P.; Dawson, Sally; De Boer, Wim; De Curtis, Stefania; De Groot, Nicolo; de la Taille, Christophe; de Lira, Antonio; De Roeck, Albert; de Sangro, Riccardo; De Santis,Stefano; Deacon, Laurence; Deandrea, Aldo; Dehmelt, Klaus; Delagnes, Eric; Delahaye, Jean-Pierre; Delebecque, Pierre; Delerue, Nicholas; Delferriere, Olivier; Demarteau, Marcel; Deng, Zhi; Denisov, Yu.N.; Densham, Christopher J.; Desch, Klaus; Deshpande, Nilendra; Devanz, Guillaume; Devetak, Erik; Dexter, Amos; Di benedetto, Vito; Diéguez, Angel; Diener, Ralf; Dinh, Nguyen Dinh; Dixit, Madhu; Dixit, Sudhir; Djouadi, Abdelhak; Dolezal, Zdenek; Dollan, Ralph; Dong, Dong; Dong, Hai Yi; Dorfan, Jonathan; Dorokhov, Andrei; Doucas, George; Downing, Robert; Doyle, Eric; Doziere, Guy; Drago, Alessandro; Dragt, Alex; Drake, Gary; Drásal, Zbynek; Dreiner, Herbert; Drell, Persis; Driouichi, Chafik; Drozhdin, Alexandr; Drugakov, Vladimir; Du, Shuxian; Dugan, Gerald; Duginov, Viktor; Dulinski, Wojciech; Dulucq, Frederic; Dutta, Sukanta; Dwivedi, Jishnu; Dychkant, Alexandre; Dzahini, Daniel; Eckerlin, Guenter; Edwards, Helen; Ehrenfeld, Wolfgang; Ehrlichman, Michael; Ehrlichmann, Heiko; Eigen, Gerald; Elagin, Andrey; Elementi, Luciano; Eliasson, Peder; Ellis, John; Ellwood, George; Elsen, Eckhard; Emery, Louis; Enami, Kazuhiro; Endo, Kuninori; Enomoto, Atsushi; Eozénou, Fabien; Erbacher, Robin; Erickson, Roger; Oleg Eyser, K.; Fadeyev, Vitaliy; Fang, Shou Xian; Fant, Karen; Fasso, Alberto; Faucci Giannelli, Michele; Fehlberg, John; Feld, Lutz; Feng, Jonathan L.; Ferguson, John; Fernandez-Garcia, Marcos; Luis Fernandez-Hernando, J.; Fiala, Pavel; Fieguth, Ted; Finch, Alexander; Finocchiaro, Giuseppe; Fischer, Peter; Fisher, Peter; Eugene Fisk, H.; Fitton, Mike D.; Fleck, Ivor; Fleischer, Manfred; Fleury, Julien; Flood, Kevin; Foley, Mike; Ford, Richard; Fortin, Dominique; Foster, Brian; Fourches, Nicolas; Francis, Kurt; Frey, Ariane; Frey, Raymond; Friedsam, Horst; Frisch, Josef; Frishman, Anatoli; Fuerst, Joel; Fujii, Keisuke; Fujimoto, Junpei; Fukuda, Masafumi; Fukuda, Shigeki; Funahashi, Yoshisato; Funk, Warren; Furletova, Julia; Furukawa, Kazuro; Furuta, Fumio; Fusayasu, Takahiro; Fuster, Juan; Gadow, Karsten; Gaede, Frank; Gaglione, Renaud; Gai, Wei; Gajewski, Jan; Galik, Richard; Galkin, Alexei; Galkin, Valery; Gallin-Martel, Laurent; Gannaway, Fred; Gao, Jian She; Gao, Jie; Gao, Yuanning; Garbincius, Peter; Garcia-Tabares, Luis; Garren, Lynn; Garrido, Luís; Garutti, Erika; Garvey, Terry; Garwin, Edward; Gascón, David; Gastal, Martin; Gatto, Corrado; Gatto, Raoul; Gay, Pascal; Ge, Lixin; Ge, Ming Qi; Ge, Rui; Geiser, Achim; Gellrich, Andreas; Genat, Jean-Francois; Geng, Zhe Qiao; Gentile, Simonetta; Gerbick, Scot; Gerig, Rod; Ghosh, Dilip Kumar; Ghosh, Kirtiman; Gibbons, Lawrence; Giganon, Arnaud; Gillespie, Allan; Gillman, Tony; Ginzburg, Ilya; Giomataris, Ioannis; Giunta, Michele; Gladkikh, Peter; Gluza, Janusz; Godbole, Rohini; Godfrey, Stephen; Goldhaber, Gerson; Goldstein, Joel; Gollin, George D.; Gonzalez-Sanchez, Francisco Javier; Goodrick, Maurice; Gornushkin, Yuri; Gostkin, Mikhail; Gottschalk, Erik; Goudket, Philippe; Gough Eschrich, Ivo; Gournaris, Filimon; Graciani, Ricardo; Graf, Norman; Grah, Christian; Grancagnolo, Francesco; Grandjean, Damien; Grannis, Paul; Grassellino, Anna; Graugés, Eugeni; Gray, Stephen; Green, Michael; Greenhalgh, Justin; Greenshaw, Timothy; Grefe, Christian; Gregor, Ingrid-Maria; Grenier, Gerald; Grimes, Mark; Grimm, Terry; Gris, Philippe; Grivaz, Jean-Francois; Groll, Marius; Gronberg, Jeffrey; Grondin, Denis; Groom, Donald; Gross, Eilam; Grunewald, Martin; Grupen, Claus; Grzelak, Grzegorz; Gu, Jun; Gu, Yun-Ting; Guchait, Monoranjan; Guiducci, Susanna; Guler, Ali Murat; Guler, Hayg; Gulmez, Erhan; Gunion, John; Guo, Zhi Yu; Gurtu, Atul; Ha, Huy Bang; Haas, Tobias; Haase, Andy; Haba, Naoyuki; Haber, Howard; Haensel, Stephan; Hagge, Lars; Hagura, Hiroyuki; Hajdu, Csaba; Haller, Gunther; Haller, Johannes; Hallermann, Lea; Halyo, Valerie; Hamaguchi, Koichi; Hammond, Larry; Han, Liang; Han, Tao; Hand, Louis; Handu, Virender K.; Hano, Hitoshi; Hansen, Christian; Hansen, Jørn Dines; Hansen, Jorgen Beck; Hara, Kazufumi; Harder, Kristian; Hartin, Anthony; Hartung, Walter; Hast, Carsten; Hauptman, John; Hauschild, Michael; Hauviller, Claude; Havranek, Miroslav; Hawkes, Chris; Hawkings, Richard; Hayano, Hitoshi; Hazumi, Masashi; He, An; He, Hong Jian; Hearty, Christopher; Heath, Helen; Hebbeker, Thomas; Hedberg, Vincent; Hedin, David; Heifets, Samuel; Heinemeyer, Sven; Heini, Sebastien; Helebrant, Christian; Helms, Richard; Heltsley, Brian; Henrot-Versille, Sophie; Henschel, Hans; Hensel, Carsten; Hermel, Richard; Herms, Atilà; Herten, Gregor; Hesselbach, Stefan; Heuer, Rolf-Dieter; Heusch, Clemens A.; Hewett, Joanne; Higashi, Norio; Higashi, Takatoshi; Higashi, Yasuo; Higo, Toshiyasu; Hildreth, Michael D.; Hiller, Karlheinz; Hillert, Sonja; Hillier, Stephen James; Himel, Thomas; Himmi, Abdelkader; Hinchliffe, Ian; Hioki, Zenro; Hirano, Koichiro; Hirose, Tachishige; Hisamatsu, Hiromi; Hisano, Junji; Hlaing, Chit Thu; Hock, Kai Meng; Hoeferkamp, Martin; Hohlfeld, Mark; Honda, Yousuke; Hong, Juho; Hong, Tae Min; Honma, Hiroyuki; Horii, Yasuyuki; Horvath, Dezso; Hosoyama, Kenji; Hostachy, Jean-Yves; Hou, Mi; Hou, Wei-Shu; Howell, David; Hronek, Maxine; Hsiung, Yee B.; Hu, Bo; Hu, Tao; Huang, Jung-Yun; Huang, Tong Ming; Huang, Wen Hui; Huedem, Emil; Huggard, Peter; Hugonie, Cyril; Hu-Guo, Christine; Huitu, Katri; Hwang, Youngseok; Idzik, Marek; Ignatenko, Alexandr; Ignatov, Fedor; Ikeda, Hirokazu; Ikematsu, Katsumasa; Ilicheva, Tatiana; Imbault, Didier; Imhof, Andreas; Incagli, Marco; Ingbir, Ronen; Inoue, Hitoshi; Inoue, Youichi; Introzzi, Gianluca; Ioakeimidi, Katerina; Ishihara, Satoshi; Ishikawa, Akimasa; Ishikawa, Tadashi; Issakov, Vladimir; Ito, Kazutoshi; Ivanov, V.V.; Ivanov, Valentin; Ivanyushenkov, Yury; Iwasaki, Masako; Iwashita, Yoshihisa; Jackson, David; Jackson, Frank; Jacobsen, Bob; Jaganathan, Ramaswamy; Jamison, Steven; Janssen, Matthias Enno; Jaramillo-Echeverria, Richard; Jauffret, Clement; Jawale, Suresh B.; Jeans, Daniel; Jedziniak, Ron; Jeffery, Ben; Jehanno, Didier; Jenner, Leo J.; Jensen, Chris; Jensen, David R.; Jiang, Hairong; Jiang, Xiao Ming; Jimbo, Masato; Jin, Shan; Keith Jobe, R.; Johnson, Anthony; Johnson, Erik; Johnson, Matt; Johnston, Michael; Joireman, Paul; Jokic, Stevan; Jones, James; Jones, Roger M.; Jongewaard, Erik; Jönsson, Leif; Joshi, Gopal; Joshi, Satish C.; Jung, Jin-Young; Junk, Thomas; Juste, Aurelio; Kado, Marumi; Kadyk, John; Käfer, Daniela; Kako, Eiji; Kalavase, Puneeth; Kalinin, Alexander; Kalinowski, Jan; Kamitani, Takuya; Kamiya, Yoshio; Kamiya, Yukihide; Kamoshita, Jun-ichi; Kananov, Sergey; Kanaya, Kazuyuki; Kanazawa, Ken-ichi; Kanemura, Shinya; Kang, Heung-Sik; Kang, Wen; Kanjial, D.; Kapusta, Frédéric; Karataev, Pavel; Karchin, Paul E.; Karlen, Dean; Karyotakis, Yannis; Kashikhin, Vladimir; Kashiwagi, Shigeru; Kasley, Paul; Katagiri, Hiroaki; Kato, Takashi; Kato, Yukihiro; Katzy, Judith; Kaukher, Alexander; Kaur, Manjit; Kawagoe, Kiyotomo; Kawamura, Hiroyuki; Kazakov, Sergei; Kekelidze, V.D.; Keller, Lewis; Kelley, Michael; Kelly, Marc; Kelly, Michael; Kennedy, Kurt; Kephart, Robert; Keung, Justin; Khainovski, Oleg; Khan, Sameen Ahmed; Khare, Prashant; Khovansky, Nikolai; Kiesling, Christian; Kikuchi, Mitsuo; Kilian, Wolfgang; Killenberg, Martin; Kim, Donghee; Kim, Eun San; Kim, Eun-Joo; Kim, Guinyun; Kim, Hongjoo; Kim, Hyoungsuk; Kim, Hyun-Chui; Kim, Jonghoon; Kim, Kwang-Je; Kim, Kyung Sook; Kim, Peter; Kim, Seunghwan; Kim, Shin-Hong; Kim, Sun Kee; Kim, Tae Jeong; Kim, Youngim; Kim, Young-Kee; Kimmitt, Maurice; Kirby, Robert; Kircher, François; Kisielewska, Danuta; Kittel, Olaf; Klanner, Robert; Klebaner, Arkadiy L.; Kleinwort, Claus; Klimkovich, Tatsiana; Klinkby, Esben; Kluth, Stefan; Knecht, Marc; Kneisel, Peter; Ko, In Soo; Ko, Kwok; Kobayashi, Makoto; Kobayashi, Nobuko; Kobel, Michael; Koch, Manuel; Kodys, Peter; Koetz, Uli; Kohrs, Robert; Kojima, Yuuji; Kolanoski, Hermann; Kolodziej, Karol; Kolomensky, Yury G.; Komamiya, Sachio; Kong, Xiang Cheng; Konigsberg, Jacobo; Korbel, Volker; Koscielniak, Shane; Kostromin, Sergey; Kowalewski, Robert; Kraml, Sabine; Krammer, Manfred; Krasnykh, Anatoly; Krautscheid, Thorsten; Krawczyk, Maria; James Krebs, H.; Krempetz, Kurt; Kribs, Graham; Krishnagopal, Srinivas; Kriske, Richard; Kronfeld, Andreas; Kroseberg, Jürgen; Kruchonak, Uladzimir; Kruecker, Dirk; Krüger, Hans; Krumpa, Nicholas A.; Krumshtein, Zinovii; Kuang, Yu Ping; Kubo, Kiyoshi; Kuchler, Vic; Kudoh, Noboru; Kulis, Szymon; Kumada, Masayuki; Kumar, Abhay; Kume, Tatsuya; Kundu, Anirban; Kurevlev, German; Kurihara, Yoshimasa; Kuriki, Masao; Kuroda, Shigeru; Kuroiwa, Hirotoshi; Kurokawa, Shin-ichi; Kusano, Tomonori; Kush, Pradeep K.; Kutschke, Robert; Kuznetsova, Ekaterina; Kvasnicka, Peter; Kwon, Youngjoon; Labarga, Luis; Lacasta, Carlos; Lackey, Sharon; Lackowski, Thomas W.; Lafaye, Remi; Lafferty, George; Lagorio, Eric; Laktineh, Imad; Lal, Shankar; Laloum, Maurice; Lam, Briant; Lancaster, Mark; Lander, Richard; Lange, Wolfgang; Langenfeld, Ulrich; Langeveld, Willem; Larbalestier, David; Larsen, Ray; Lastovicka, Tomas; Lastovicka-Medin, Gordana; Latina, Andrea; Latour, Emmanuel; Laurent, Lisa; Le, Ba Nam; Le, Duc Ninh; Le Diberder, Francois; Dû, Patrick Le; Lebbolo, Hervé; Lebrun, Paul; Lecoq, Jacques; Lee, Sung-Won; Lehner, Frank; Leibfritz, Jerry; Lenkszus, Frank; Lesiak, Tadeusz; Levy, Aharon; Lewandowski, Jim; Leyh, Greg; Li, Cheng; Li, Chong Sheng; Li, Chun Hua; Li, Da Zhang; Li, Gang; Li, Jin; Li, Shao Peng; Li, Wei Ming; Li, Weiguo; Li, Xiao Ping; Li, Xue-Qian; Li, Yuanjing; Li, Yulan; Li, Zenghai; Li, Zhong Quan; Liang, Jian Tao; Liao, Yi; Lilje, Lutz; Guilherme Lima, J.; Lintern, Andrew J.; Lipton, Ronald; List, Benno; List, Jenny; Liu, Chun; Liu, Jian Fei; Liu, Ke Xin; Liu, Li Qiang; Liu, Shao Zhen; Liu, Sheng Guang; Liu, Shubin; Liu, Wanming; Liu, Wei Bin; Liu, Ya Ping; Liu, Yu Dong; Lockyer, Nigel; Logan, Heather E.; Logatchev, Pavel V.; Lohmann, Wolfgang; Lohse, Thomas; Lola, Smaragda; Lopez-Virto, Amparo; Loveridge, Peter; Lozano, Manuel; Lu, Cai-Dian; Lu, Changguo; Lu, Gong-Lu; Lu, Wen Hui; Lubatti, Henry; Lucotte, Arnaud; Lundberg, Björn; Lundin, Tracy; Luo, Mingxing; Luong, Michel; Luth, Vera; Lutz, Benjamin; Lutz, Pierre; Lux, Thorsten; Luzniak, Pawel; Lyapin, Alexey; Lykken, Joseph; Lynch, Clare; Ma, Li; Ma, Lili; Ma, Qiang; Ma, Wen-Gan; Macfarlane, David; Maciel, Arthur; MacLeod, Allan; MacNair, David; Mader, Wolfgang; Magill, Stephen; Magnan, Anne-Marie; Maiheu, Bino; Maity, Manas; Majchrzak, Millicent; Majumder, Gobinda; Makarov, Roman; Makowski, Dariusz; Malaescu, Bogdan; Mallik, C.; Mallik, Usha; Malton, Stephen; Malyshev, Oleg B.; Malysheva, Larisa I.; Mammosser, John; Mamta; Mamuzic, Judita; Manen, Samuel; Manghisoni, Massimo; Manly, Steven; Marcellini, Fabio; Marcisovsky, Michal; Markiewicz, Thomas W.; Marks, Steve; Marone, Andrew; Marti, Felix; Martin, Jean-Pierre; Martin, Victoria; Martin-Chassard, Gisèle; Martinez, Manel; Martinez-Rivero, Celso; Martsch, Dennis; Martyn, Hans-Ulrich; Maruyama, Takashi; Masuzawa, Mika; Mathez, Hervé; Matsuda, Takeshi; Matsumoto, Hiroshi; Matsumoto, Shuji; Matsumoto, Toshihiro; Matsunaga, Hiroyuki; Mättig, Peter; Mattison, Thomas; Mavromanolakis, Georgios; Mawatari, Kentarou; Mazzacane, Anna; McBride, Patricia; McCormick, Douglas; McCormick, Jeremy; McDonald, Kirk T.; McGee, Mike; McIntosh, Peter; McKee, Bobby; McPherson, Robert A.; Meidlinger, Mandi; Meier, Karlheinz; Mele, Barbara; Meller, Bob; Melzer-Pellmann, Isabell-Alissandra; Mendez, Hector; Mercer, Adam; Merkin, Mikhail; Meshkov, I.N.; Messner, Robert; Metcalfe, Jessica; Meyer, Chris; Meyer, Hendrik; Meyer, Joachim; Meyer, Niels; Meyners, Norbert; Michelato, Paolo; Michizono, Shinichiro; Mihalcea, Daniel; Mihara, Satoshi; Mihara, Takanori; Mikami, Yoshinari; Mikhailichenko, Alexander A.; Milardi, Catia; Miller, David J.; Miller, Owen; Miller, Roger J.; Milstene, Caroline; Mimashi, Toshihiro; Minashvili, Irakli; Miquel, Ramon; Mishra, Shekhar; Mitaroff, Winfried; Mitchell, Chad; Miura, Takako; Miyata, Hitoshi; Mjörnmark, Ulf; Mnich, Joachim; Moenig, Klaus; Moffeit, Kenneth; Mokhov, Nikolai; Molloy, Stephen; Monaco, Laura; Monasterio, Paul R.; Montanari, Alessandro; Moon, Sung Ik; Moortgat-Pick, Gudrid A.; Mora de Freitas, Paulo; Morel, Federic; Moretti, Stefano; Morgunov, Vasily; Mori, Toshinori; Morin, Laurent; Morisseau, François; Morita, Yoshiyuki; Morita, Youhei; Morita, Yuichi; Morozov, Nikolai; Morozumi, Yuichi; Morse, William; Moser, Hans-Guenther; Moultaka, Gilbert; Mtingwa, Sekazi; Mudrinic, Mihajlo; Mueller, Alex; Mueller, Wolfgang; Muennich, Astrid; Muhlleitner, Milada Margarete; Mukherjee, Bhaskar; Mukhopadhyaya, Biswarup; Müller, Thomas; Munro, Morrison; Murayama, Hitoshi; Muto, Toshiya; Myneni, Ganapati Rao; Nabhiraj, P.Y.; Nagaitsev, Sergei; Nagamine, Tadashi; Nagano, Ai; Naito, Takashi; Nakai, Hirotaka; Nakajima, Hiromitsu; Nakamura, Isamu; Nakamura, Tomoya; Nakanishi, Tsutomu; Nakao, Katsumi; Nakao, Noriaki; Nakayoshi, Kazuo; Nam, Sang; Namito, Yoshihito; Namkung, Won; Nantista, Chris; Napoly, Olivier; Narain, Meenakshi; Naroska, Beate; Nauenberg, Uriel; Nayyar, Ruchika; Neal, Homer; Nelson, Charles; Nelson, Janice; Nelson, Timothy; Nemecek, Stanislav; Neubauer, Michael; Neuffer, David; Newman, Myriam Q.; Nezhevenko, Oleg; Ng, Cho-Kuen; Nguyen, Anh Ky; Nguyen, Minh; Van Nguyen Thi,Hong; Niebuhr, Carsten; Niehoff, Jim; Niezurawski, Piotr; Nishitani, Tomohiro; Nitoh, Osamu; Noguchi, Shuichi; Nomerotski, Andrei; Noonan, John; Norbeck, Edward; Nosochkov, Yuri; Notz, Dieter; Nowak, Grazyna; Nowak, Hannelies; Noy, Matthew; Nozaki, Mitsuaki; Nyffeler, Andreas; Nygren, David; Oddone, Piermaria; O'Dell, Joseph; Oh, Jong-Seok; Oh, Sun Kun; Ohkuma, Kazumasa; Ohlerich, Martin; Ohmi, Kazuhito; Ohnishi, Yukiyoshi; Ohsawa, Satoshi; Ohuchi, Norihito; Oide, Katsunobu; Okada, Nobuchika; Okada, Yasuhiro; Okamura, Takahiro; Okugi, Toshiyuki; Okumi, Shoji; Okumura, Ken-ichi; Olchevski, Alexander; Oliver, William; Olivier, Bob; Olsen, James; Olsen, Jeff; Olsen, Stephen; Olshevsky, A.G.; Olsson, Jan; Omori, Tsunehiko; Onel, Yasar; Onengut, Gulsen; Ono, Hiroaki; Onoprienko, Dmitry; Oreglia, Mark; Oren, Will; Orimoto, Toyoko J.; Oriunno, Marco; Orlandea, Marius Ciprian; Oroku, Masahiro; Orr, Lynne H.; Orr, Robert S.; Oshea, Val; Oskarsson, Anders; Osland, Per; Ossetski, Dmitri; Österman, Lennart; Ostiguy, Francois; Otono, Hidetoshi; Ottewell, Brian; Ouyang, Qun; Padamsee, Hasan; Padilla, Cristobal; Pagani, Carlo; Palmer, Mark A.; Pam, Wei Min; Pande, Manjiri; Pande, Rajni; Pandit, V.S.; Pandita, P.N.; Pandurovic, Mila; Pankov, Alexander; Panzeri, Nicola; Papandreou, Zisis; Paparella, Rocco; Para, Adam; Park, Hwanbae; Parker, Brett; Parkes, Chris; Parma, Vittorio; Parsa, Zohreh; Parsons, Justin; Partridge, Richard; Pasquinelli, Ralph; Pásztor, Gabriella; Paterson, Ewan; Patrick, Jim; Patteri, Piero; Ritchie Patterson, J.; Pauletta, Giovanni; Paver, Nello; Pavlicek, Vince; Pawlik, Bogdan; Payet, Jacques; Pchalek, Norbert; Pedersen, John; Pei, Guo Xi; Pei, Shi Lun; Pelka, Jerzy; Pellegrini, Giulio; Pellett, David; Peng, G.X.; Penn, Gregory; Penzo, Aldo; Perry, Colin; Peskin, Michael; Peters, Franz; Petersen, Troels Christian; Peterson, Daniel; Peterson, Thomas; Petterson, Maureen; Pfeffer, Howard; Pfund, Phil; Phelps, Alan; Van Phi, Quang; Phillips, Jonathan; Phinney, Nan; Piccolo, Marcello; Piemontese, Livio; Pierini, Paolo; Thomas Piggott, W.; Pike, Gary; Pillet, Nicolas; Jayawardena, Talini Pinto; Piot, Phillippe; Pitts, Kevin; Pivi, Mauro; Plate, Dave; Pleier, Marc-Andre; Poblaguev, Andrei; Poehler, Michael; Poelker, Matthew; Poffenberger, Paul; Pogorelsky, Igor; Poirier, Freddy; Poling, Ronald; Poole, Mike; Popescu, Sorina; Popielarski, John; Pöschl, Roman; Postranecky, Martin; Potukochi, Prakash N.; Prast, Julie; Prat, Serge; Preger, Miro; Prepost, Richard; Price, Michael; Proch, Dieter; Puntambekar, Avinash; Qin, Qing; Qu, Hua Min; Quadt, Arnulf; Quesnel, Jean-Pierre; Radeka, Veljko; Rahmat, Rahmat; Rai, Santosh Kumar; Raimondi, Pantaleo; Ramberg, Erik; Ranjan, Kirti; Rao, Sista V.L.S.; Raspereza, Alexei; Ratti, Alessandro; Ratti, Lodovico; Raubenheimer, Tor; Raux, Ludovic; Ravindran, V.; Raychaudhuri, Sreerup; Re, Valerio; Rease, Bill; Reece, Charles E.; Regler, Meinhard; Rehlich, Kay; Reichel, Ina; Reichold, Armin; Reid, John; Reid, Ron; Reidy, James; Reinhard, Marcel; Renz, Uwe; Repond, Jose; Resta-Lopez, Javier; Reuen, Lars; Ribnik, Jacob; Rice, Tyler; Richard, François; Riemann, Sabine; Riemann, Tord; Riles, Keith; Riley, Daniel; Rimbault, Cécile; Rindani, Saurabh; Rinolfi, Louis; Risigo, Fabio; Riu, Imma; Rizhikov, Dmitri; Rizzo, Thomas; Rochford, James H.; Rodriguez, Ponciano; Roeben, Martin; Rolandi, Gigi; Roodman, Aaron; Rosenberg, Eli; Roser, Robert; Ross, Marc; Rossel, François; Rossmanith, Robert; Roth, Stefan; Rougé, André; Rowe, Allan; Roy, Amit; Roy, Sendhunil B.; Roy, Sourov; Royer, Laurent; Royole-Degieux, Perrine; Royon, Christophe; Ruan, Manqi; Rubin, David; Ruehl, Ingo; Jimeno, Alberto Ruiz; Ruland, Robert; Rusnak, Brian; Ryu, Sun-Young; Sabbi, Gian Luca; Sadeh, Iftach; Sadygov, Ziraddin Y; Saeki, Takayuki; Sagan, David; Sahni, Vinod C.; Saini, Arun; Saito, Kenji; Saito, Kiwamu; Sajot, Gerard; Sakanaka, Shogo; Sakaue, Kazuyuki; Salata, Zen; Salih, Sabah; Salvatore, Fabrizio; Samson, Joergen; Sanami, Toshiya; Levi Sanchez, Allister; Sands, William; Santic, John; Sanuki, Tomoyuki; Sapronov, Andrey; Sarkar, Utpal; Sasao, Noboru; Satoh, Kotaro; Sauli, Fabio; Saunders, Claude; Saveliev, Valeri; Savoy-Navarro, Aurore; Sawyer, Lee; Saxton, Laura; Schäfer, Oliver; Schälicke, Andreas; Schade, Peter; Schaetzel, Sebastien; Scheitrum, Glenn; Schibler, Emilie; Schindler, Rafe; Schlösser, Markus; Schlueter, Ross D.; Schmid, Peter; Schmidt, Ringo Sebastian; Schneekloth, Uwe; Schreiber, Heinz Juergen; Schreiber, Siegfried; Schroeder, Henning; Peter Schüler, K.; Schulte, Daniel; Schultz-Coulon, Hans-Christian; Schumacher, Markus; Schumann, Steffen; Schumm, Bruce A.; Schwienhorst, Reinhard; Schwierz, Rainer; Scott, Duncan J.; Scuri, Fabrizio; Sefkow, Felix; Sefri, Rachid; Seguin-Moreau, Nathalie; Seidel, Sally; Seidman, David; Sekmen, Sezen; Seletskiy, Sergei; Senaha, Eibun; Senanayake, Rohan; Sendai, Hiroshi; Sertore, Daniele; Seryi, Andrei; Settles, Ronald; Sever, Ramazan; Shales, Nicholas; Shao, Ming; Shelkov, G.A.; Shepard, Ken; Shepherd-Themistocleous, Claire; Sheppard, John C.; Shi, Cai Tu; Shidara, Tetsuo; Shim, Yeo-Jeong; Shimizu, Hirotaka; Shimizu, Yasuhiro; Shimizu, Yuuki; Shimogawa, Tetsushi; Shin, Seunghwan; Shioden, Masaomi; Shipsey, Ian; Shirkov, Grigori; Shishido, Toshio; Shivpuri, Ram K.; Shrivastava, Purushottam; Shulga, Sergey; Shumeiko, Nikolai; Shuvalov, Sergey; Si, Zongguo; Siddiqui, Azher Majid; Siegrist, James; Simon, Claire; Simrock, Stefan; Sinev, Nikolai; Singh, Bhartendu K.; Singh, Jasbir; Singh, Pitamber; Singh, R.K.; Singh, S.K.; Singini, Monito; Sinha, Anil K.; Sinha, Nita; Sinha, Rahul; Sinram, Klaus; Sissakian, A.N.; Skachkov, N.B.; Skrinsky, Alexander; Slater, Mark; Slominski, Wojciech; Smiljanic, Ivan; Smith, A J Stewart; Smith, Alex; Smith, Brian J.; Smith, Jeff; Smith, Jonathan; Smith, Steve; Smith, Susan; Smith, Tonee; Neville Snodgrass, W.; Sobloher, Blanka; Sohn, Young-Uk; Solidum, Ruelson; Solyak, Nikolai; Son, Dongchul; Sonmez, Nasuf; Sopczak, Andre; Soskov, V.; Spencer, Cherrill M.; Spentzouris, Panagiotis; Speziali, Valeria; Spira, Michael; Sprehn, Daryl; Sridhar, K.; Srivastava, Asutosh; St. Lorant, Steve; Stahl, Achim; Stanek, Richard P.; Stanitzki, Marcel; Stanley, Jacob; Stefanov, Konstantin; Stein, Werner; Steiner, Herbert; Stenlund, Evert; Stern, Amir; Sternberg, Matt; Stockinger, Dominik; Stockton, Mark; Stoeck, Holger; Strachan, John; Strakhovenko, V.; Strauss, Michael; Striganov, Sergei I.; Strologas, John; Strom, David; Strube, Jan; Stupakov, Gennady; Su, Dong; Sudo, Yuji; Suehara, Taikan; Suehiro, Toru; Suetsugu, Yusuke; Sugahara, Ryuhei; Sugimoto, Yasuhiro; Sugiyama, Akira; Suh, Jun Suhk; Sukovic, Goran; Sun, Hong; Sun, Stephen; Sun, Werner; Sun, Yi; Sun, Yipeng; Suszycki, Leszek; Sutcliffe, Peter; Suthar, Rameshwar L.; Suwada, Tsuyoshi; Suzuki, Atsuto; Suzuki, Chihiro; Suzuki, Shiro; Suzuki, Takashi; Swent, Richard; Swientek, Krzysztof; Swinson, Christina; Syresin, Evgeny; Szleper, Michal; Tadday, Alexander; Takahashi, Rika; Takahashi, Tohru; Takano, Mikio; Takasaki, Fumihiko; Takeda, Seishi; Takenaka, Tateru; Takeshita, Tohru; Takubo, Yosuke; Tanaka, Masami; Tang, Chuan Xiang; Taniguchi, Takashi; Tantawi, Sami; Tapprogge, Stefan; Tartaglia, Michael A.; Tassielli, Giovanni Francesco; Tauchi, Toshiaki; Tavian, Laurent; Tawara, Hiroko; Taylor, Geoffrey; Telnov, Alexandre V.; Telnov, Valery; Tenenbaum, Peter; Teodorescu, Eliza; Terashima, Akio; Terracciano, Giuseppina; Terunuma, Nobuhiro; Teubner, Thomas; Teuscher, Richard; Theilacker, Jay; Thomson, Mark; Tice, Jeff; Tigner, Maury; Timmermans, Jan; Titov, Maxim; Toge, Nobukazu; Tokareva, N.A.; Tollefson, Kirsten; Tomasek, Lukas; Tomovic, Savo; Tompkins, John; Tonutti, Manfred; Topkar, Anita; Toprek, Dragan; Toral, Fernando; Torrence, Eric; Traversi, Gianluca; Trimpl, Marcel; Mani Tripathi, S.; Trischuk, William; Trodden, Mark; Trubnikov, G.V.; Tschirhart, Robert; Tskhadadze, Edisher; Tsuchiya, Kiyosumi; Tsukamoto, Toshifumi; Tsunemi, Akira; Tucker, Robin; Turchetta, Renato; Tyndel, Mike; Uekusa, Nobuhiro; Ueno, Kenji; Umemori, Kensei; Ummenhofer, Martin; Underwood, David; Uozumi, Satoru; Urakawa, Junji; Urban, Jeremy; Uriot, Didier; Urner, David; Ushakov, Andrei; Usher, Tracy; Uzunyan, Sergey; Vachon, Brigitte; Valerio, Linda; Valin, Isabelle; Valishev, Alex; Vamra, Raghava; Van der Graaf, Harry; Van Kooten, Rick; Van Zandbergen, Gary; Vanel, Jean-Charles; Variola, Alessandro; Varner, Gary; Velasco, Mayda; Velte, Ulrich; Velthuis, Jaap; Vempati, Sundir K.; Venturini, Marco; Vescovi, Christophe; Videau, Henri; Vila, Ivan; Vincent, Pascal; Virey, Jean-Marc; Visentin, Bernard; Viti, Michele; Vo, Thanh Cuong; Vogel, Adrian; Vogt, Harald; von Toerne, Eckhard; Vorozhtsov, S.B.; Vos, Marcel; Votava, Margaret; Vrba, Vaclav; Wackeroth, Doreen; Wagner, Albrecht; Wagner, Carlos E.M.; Wagner, Stephen; Wake, Masayoshi; Walczak, Roman; Walker, Nicholas J.; Walkowiak, Wolfgang; Wallon, Samuel; Walsh, Roberval; Walston, Sean; Waltenberger, Wolfgang; Walz, Dieter; Wang, Chao En; Wang, Chun Hong; Wang, Dou; Wang, Faya; Wang, Guang Wei; Wang, Haitao; Wang, Jiang; Wang, Jiu Qing; Wang, Juwen; Wang, Lanfa; Wang, Lei; Wang, Min-Zu; Wang, Qing; Wang, Shu Hong; Wang, Xiaolian; Wang, Xue-Lei; Wang, Yi Fang; Wang, Zheng; Wanzenberg, Rainer; Ward, Bennie; Ward, David; Warmbein, Barbara; Warner, David W.; Warren, Matthew; Washio, Masakazu; Watanabe, Isamu; Watanabe, Ken; Watanabe, Takashi; Watanabe, Yuichi; Watson, Nigel; Wattimena, Nanda; Wayne, Mitchell; Weber, Marc; Weerts, Harry; Weiglein, Georg; Weiland, Thomas; Weinzierl, Stefan; Weise, Hans; Weisend, John; Wendt, Manfred; Wendt, Oliver; Wenzel, Hans; Wenzel, William A.; Wermes, Norbert; Werthenbach, Ulrich; Wesseln, Steve; Wester, William; White, Andy; White, Glen R.; Wichmann, Katarzyna; Wienemann, Peter; Wierba, Wojciech; Wilksen, Tim; Willis, William; Wilson, Graham W.; Wilson, John A.; Wilson, Robert; Wing, Matthew; Winter, Marc; Wirth, Brian D.; Wolbers, Stephen A.; Wolff, Dan; Wolski, Andrzej; Woodley, Mark D.; Woods, Michael; Woodward, Michael L.; Woolliscroft, Timothy; Worm, Steven; Wormser, Guy; Wright, Dennis; Wright, Douglas; Wu, Andy; Wu, Tao; Wu, Yue Liang; Xella, Stefania; Xia, Guoxing; Xia, Lei; Xiao, Aimin; Xiao, Liling; Xie, Jia Lin; Xing, Zhi-Zhong; Xiong, Lian You; Xu, Gang; Xu, Qing Jing; Yajnik, Urjit A.; Yakimenko, Vitaly; Yamada, Ryuji; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Hitoshi; Yamamoto, Masahiro; Yamamoto, Naoto; Yamamoto, Richard; Yamamoto, Yasuchika; Yamanaka, Takashi; Yamaoka, Hiroshi; Yamashita, Satoru; Yamazaki, Hideki; Yan, Wenbiao; Yang, Hai-Jun; Yang, Jin Min; Yang, Jongmann; Yang, Zhenwei; Yano, Yoshiharu; Yazgan, Efe; Yeh, G.P.; Yilmaz, Hakan; Yock, Philip; Yoda, Hakutaro; Yoh, John; Yokoya, Kaoru; Yokoyama, Hirokazu; York, Richard C.; Yoshida, Mitsuhiro; Yoshida, Takuo; Yoshioka, Tamaki; Young, Andrew; Yu, Cheng Hui; Yu, Jaehoon; Yu, Xian Ming; Yuan, Changzheng; Yue, Chong-Xing; Yue, Jun Hui; Zacek, Josef; Zagorodnov, Igor; Zalesak, Jaroslav; Zalikhanov, Boris; Zarnecki, Aleksander Filip; Zawiejski, Leszek; Zeitnitz, Christian; Zeller, Michael; Zerwas, Dirk; Zerwas, Peter; Zeyrek, Mehmet; Zhai, Ji Yuan; Zhang, Bao Cheng; Zhang, Bin; Zhang, Chuang; Zhang, He; Zhang, Jiawen; Zhang, Jing; Zhang, Jing Ru; Zhang, Jinlong; Zhang, Liang; Zhang, X.; Zhang, Yuan; Zhang, Zhige; Zhang, Zhiqing; Zhang, Ziping; Zhao, Haiwen; Zhao, Ji Jiu; Zhao, Jing Xia; Zhao, Ming Hua; Zhao, Sheng Chu; Zhao, Tianchi; Zhao, Tong Xian; Zhao, Zhen Tang; Zhao, Zhengguo; Zhou, De Min; Zhou, Feng; Zhou, Shun; Zhu, Shou Hua; Zhu, Xiong Wei; Zhukov, Valery; Zimmermann, Frank; Ziolkowski, Michael; Zisman, Michael S.; Zomer, Fabian; Zong, Zhang Guo; Zorba, Osman; Zutshi, Vishnu

    2007-01-01

    This report, Volume IV of the International Linear Collider Reference Design Report, describes the detectors which will record and measure the charged and neutral particles produced in the ILC's high energy e+e- collisions. The physics of the ILC, and the environment of the machine-detector interface, pose new challenges for detector design. Several conceptual designs for the detector promise the needed performance, and ongoing detector R&D is addressing the outstanding technological issues. Two such detectors, operating in push-pull mode, perfectly instrument the ILC interaction region, and access the full potential of ILC physics.

  17. Blindness in designing intelligent systems

    Science.gov (United States)

    Denning, Peter J.

    1988-01-01

    New investigations of the foundations of artificial intelligence are challenging the hypothesis that problem solving is the cornerstone of intelligence. New distinctions among three domains of concern for humans--description, action, and commitment--have revealed that the design process for programmable machines, such as expert systems, is based on descriptions of actions and induces blindness to nonanalytic action and commitment. Design processes focusing in the domain of description are likely to yield programs like burearcracies: rigid, obtuse, impersonal, and unable to adapt to changing circumstances. Systems that learn from their past actions, and systems that organize information for interpretation by human experts, are more likely to be successful in areas where expert systems have failed.

  18. Silicon micropattern detector: a dream

    Energy Technology Data Exchange (ETDEWEB)

    Heijne, E H.M.; Jarron, P; Olsen, A; Redaelli, N

    1988-12-15

    The present use of silicon microstrip detectors in elementary particle physics experiments is described and future needs are evaluated. Possibilities and problems to be encountered in the development of a true two-dimensional detector with intelligent data collection are discussed. This paper serves as an introduction to various other contributions to the conference proceedings, either dealing with futuristic device designs or with cautious steps on the road of technology development.

  19. Intelligent Design and Earth History

    Science.gov (United States)

    Elders, W. A.

    2001-05-01

    Intelligent Design (ID), the idea that the Earth's biota was intelligently designed and created, is not a new species recently evolved by allopatric speciation at the fringes of the creationist gene pool. In spite of its new veneer of sophistication, ID is a variant of an already extant species of religious polemics. In the western world, arguments about causative relationships between the complexity of nature and the supernatural can be traced from the fifth century St. Augustine, to the eighteenth century David Hume and the nineteenth century William Paley. Along this descent tree some argued from the existence of supernatural agencies to the creation of nature with its complexities, while others argued from the complexities of nature to the existence of supernatural agencies. Today, Phillip Johnson promotes ID by attacking evolution rather than by presenting evidence for ID. He argues that the evidence for macroevolution is either absent, misinterpreted or fraudulent. His "Wedge Strategy" attempts to separate his "objective science" from the "philosophical mechanistic naturalism" which he posits is responsible for the survival of Darwinism. To make his appeal as wide as possible he tries not to offend anyone (except evolutionists) by deliberately avoiding discussion of biblical literalism or the age of the Earth. Although in 1859 Darwin admitted that the geological evidence was "the most obvious and gravest objection which can be urged against my theory", subsequently geological evidence has become one of the chief supports of his theory. However, the fossil record is now seen to be not simply one of slow gradual descent with modification. Rates of divergence and disappearance of organisms have varied enormously through time. Repeated mass extinctions indicate a strong element of contingency in evolution. Accepting the postulate of an intelligent designer also requires the postulate of an intelligent destroyer. Darwin hinted at this when he referred to, "The

  20. STAR PIXEL detector mechanical design

    Energy Technology Data Exchange (ETDEWEB)

    Wieman, H H; Anderssen, E; Greiner, L; Matis, H S; Ritter, H G; Sun, X; Szelezniak, M [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)], E-mail: hhwieman@lbl.gov

    2009-05-15

    A high resolution pixel detector is being designed for the STAR [1] experiment at RHIC. This device will use MAPS as the detector element and will have a pointing accuracy of {approx}25 microns. We will be reporting on the mechanical design required to support this resolution. The radiation length of the first layer ({approx}0.3% X{sub 0}) and its distance from the interaction point (2.5 cm) determines the resolution. The design makes use of air cooling and thin carbon composite structures to limit the radiation length. The mechanics are being developed to achieve spatial calibrations and stability to 20 microns and to permit rapid detector replacement in event of radiation damage or other potential failures from operation near the beam.

  1. Mechatronical Aided Concept (MAC) in Intelligent Transport Vehicles Design

    OpenAIRE

    Pavel Pavlasek

    2003-01-01

    This article deals with the principles of synergy effect of mechatronical aided concept (MAC) to the design of intelligent transport vehicles products applying CA technologies and virtual reality design methods. Also includes presentation of intelligent railway vehicle development.

  2. The system of the designing for PET detectors

    International Nuclear Information System (INIS)

    Fang Zongliang

    2006-01-01

    PET stands for Positron Emission Tomography, a new nuclear medicine imaging device. PET detector is the key of PET. This paper introduces a system of the designing for PET detector. The system can be used to design various PET detector. A PET detector BLOCK with 8 x 8 crystals has been designed and built by this system. (authors)

  3. Preliminary A ampersand PCT multiple detector design

    International Nuclear Information System (INIS)

    Roberson, G.P.; Martz, H.E.; Camp, D.C.; Decman, D.J.; Johansson, E.M.

    1997-01-01

    The next generation, multi-detector active and passive computed tomography (A ampersand PCT) scanner will be optimized for speed and accuracy. At the Lawrence Livermore National Lab (LLNL) we have demonstrated the trade-offs between different A ampersand PCT design parameters that affect the speed and quality of the assay results. These fundamental parameters govern the optimum system design. Although the multi-detector scanner design has priority put on speed to increase waste drum throughput, higher speed should not compromise assay accuracy. One way to increase the speed of the A ampersand PCT technology is to use multiple detectors. This yields a linear speedup by a factor approximately equal to the number of detectors used without a compromise in system accuracy. There are many different design scenarios that can be developed using multiple detectors. Here we describe four different scenarios and discuss the trade-offs between them. Also, some considerations are given in this design description for the implementation of a multiple detector technology in a field- deployable mobile trailer system

  4. ATLAS Pixel Detector Design For HL-LHC

    CERN Document Server

    Smart, Ben; The ATLAS collaboration

    2016-01-01

    The ATLAS Inner Detector will be replaced for the High-Luminosity LHC (HL-LHC) running in 2026. The new Inner Detector will be called the Inner Tracker (ITk). The ITk will cover an extended eta-range: at least to |eta|<3.2, and likely up to |eta|<4.0. The ITk will be an all-Silicon based detector, consisting of a Silicon strip detector outside of a radius of 362mm, and a Silicon pixel detector inside of this radius. Several novel designs are being considered for the ITk pixel detector, to cope with high-eta charged particle tracks. These designs are grouped into 'extended' and 'inclined' design-types. Extended designs have long pixel staves with sensors parallel to the beamline. High-eta particles will therefore hit these sensors at shallow angles, leaving elongated charge clusters. The length of such a charge cluster can be used to estimate the angle of the passing particle. This information can then be used in track reconstruction to improve tracking efficiency and reduce fake rates. Inclined designs ...

  5. Information for the user in design of intelligent systems

    Science.gov (United States)

    Malin, Jane T.; Schreckenghost, Debra L.

    1993-01-01

    Recommendations are made for improving intelligent system reliability and usability based on the use of information requirements in system development. Information requirements define the task-relevant messages exchanged between the intelligent system and the user by means of the user interface medium. Thus, these requirements affect the design of both the intelligent system and its user interface. Many difficulties that users have in interacting with intelligent systems are caused by information problems. These information problems result from the following: (1) not providing the right information to support domain tasks; and (2) not recognizing that using an intelligent system introduces new user supervisory tasks that require new types of information. These problems are especially prevalent in intelligent systems used for real-time space operations, where data problems and unexpected situations are common. Information problems can be solved by deriving information requirements from a description of user tasks. Using information requirements embeds human-computer interaction design into intelligent system prototyping, resulting in intelligent systems that are more robust and easier to use.

  6. Mechatronical Aided Concept (MAC in Intelligent Transport Vehicles Design

    Directory of Open Access Journals (Sweden)

    Pavel Pavlasek

    2003-01-01

    Full Text Available This article deals with the principles of synergy effect of mechatronical aided concept (MAC to the design of intelligent transport vehicles products applying CA technologies and virtual reality design methods. Also includes presentation of intelligent railway vehicle development.

  7. The design of electric vehicle intelligent charger

    Science.gov (United States)

    Xu, Yangyang; Wang, Ying

    2018-05-01

    As the situation of the lack of energy and environment pollution deteriorates rapidly, electric vehicle, a new type of traffic tool, is being researched worldwide. As the core components of electric vehicle, the battery and charger's performance play an important roles in the quality of electric vehicle. So the design of the Electric Vehicle Intelligent Charger based on language-C is designed in this paper. The hardware system is used to produce the input signals of Electric Vehicle Intelligent Charger. The software system adopts the language-C software as development environment. The design can accomplish the test of the parametric such as voltage-current and temperature.

  8. Simulation tools for detector and instrument design

    DEFF Research Database (Denmark)

    Kanaki, Kalliopi; Kittelmann, Thomas; Cai, Xiao Xiao

    2018-01-01

    The high performance requirements at the European Spallation Source have been driving the technological advances on the neutron detector front. Now more than ever is it important to optimize the design of detectors and instruments, to fully exploit the ESS source brilliance. Most of the simulation...... a powerful set of tools to tailor the detector and instrument design to the instrument application....

  9. Detectors for Linear Colliders: Detector design for a Future Electron-Positron Collider (4/4)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    In this lecture I will discuss the issues related to the overall design and optimization of a detector for ILC and CLIC energies. I will concentrate on the two main detector concepts which are being developed in the context of the ILC. Here there has been much recent progress in developing realistic detector models and in understanding the physics performance of the overall detector concept. In addition, I will discuss the how the differences in the detector requirements for the ILC and CLIC impact the overall detector design.

  10. Games and Agents: Designing Intelligent Gameplay

    Directory of Open Access Journals (Sweden)

    F. Dignum

    2009-01-01

    Full Text Available There is an attention shift within the gaming industry toward more natural (long-term behavior of nonplaying characters (NPCs. Multiagent system research offers a promising technology to implement cognitive intelligent NPCs. However, the technologies used in game engines and multiagent platforms are not readily compatible due to some inherent differences of concerns. Where game engines focus on real-time aspects and thus propagate efficiency and central control, multiagent platforms assume autonomy of the agents. Increased autonomy and intelligence may offer benefits for a more compelling gameplay and may even be necessary for serious games. However, it raises problems when current game design techniques are used to incorporate state-of-the-art multiagent system technology. In this paper, we will focus on three specific problem areas that arise from this difference of view: synchronization, information representation, and communication. We argue that the current attempts for integration still fall short on some of these aspects. We show that to fully integrate intelligent agents in games, one should not only use a technical solution, but also a design methodology that is amenable to agents. The game design should be adjusted to incorporate the possibilities of agents early on in the process.

  11. Configurable intelligent optimization algorithm design and practice in manufacturing

    CERN Document Server

    Tao, Fei; Laili, Yuanjun

    2014-01-01

    Presenting the concept and design and implementation of configurable intelligent optimization algorithms in manufacturing systems, this book provides a new configuration method to optimize manufacturing processes. It provides a comprehensive elaboration of basic intelligent optimization algorithms, and demonstrates how their improvement, hybridization and parallelization can be applied to manufacturing. Furthermore, various applications of these intelligent optimization algorithms are exemplified in detail, chapter by chapter. The intelligent optimization algorithm is not just a single algorit

  12. Intelligent Frameworks for Instructional Design.

    Science.gov (United States)

    Spector, J. Michael; And Others

    1992-01-01

    Presents a taxonomy describing various uses of artificial intelligence techniques in automated instructional development systems. Instructional systems development is discussed in relation to the design of computer-based instructional courseware; two systems being developed at the Air Force Armstrong Laboratory are reviewed; and further research…

  13. Improving designer productivity. [artificial intelligence

    Science.gov (United States)

    Hill, Gary C.

    1992-01-01

    Designer and design team productivity improves with skill, experience, and the tools available. The design process involves numerous trials and errors, analyses, refinements, and addition of details. Computerized tools have greatly speeded the analysis, and now new theories and methods, emerging under the label Artificial Intelligence (AI), are being used to automate skill and experience. These tools improve designer productivity by capturing experience, emulating recognized skillful designers, and making the essence of complex programs easier to grasp. This paper outlines the aircraft design process in today's technology and business climate, presenting some of the challenges ahead and some of the promising AI methods for meeting these challenges.

  14. Intelligent Design in the Public School Science Classroom

    Science.gov (United States)

    Hickey, Wesley D.

    2013-01-01

    The ongoing battle to insert intelligent causes into the science classrooms has been met with political approval and scientific rejection. Administrators in the United States need to be aware of the law related to creationism and intelligent design in order to lead in local curricular battles. Although unlikely to appease the ID proponents, there…

  15. Muon System Design Studies for Detectors at CLIC

    CERN Document Server

    van der Kraaij, E

    2011-01-01

    The two concepts for CLIC detectors inherited their design of the muon systems from the ILC community. In this note the outcome of a reevaluation of the design for the CLIC environment is presented. Based on a full detector simulation, the muon identification performance is analysed for different detector layouts and different cellsizes. As a result, nine layers are suggested for the muon systems of the CLIC ILD and CLIC SiD detectors, which are arranged in three groups of three layers. The cellsizes have been kept at 30×30 mm2. These layouts are used for the performance studies of the CLIC Conceptual Design Report (CDR).

  16. Should Intelligent Design Be Included in Today's Public School Curriculums?

    Science.gov (United States)

    Costley, Kevin C.; Killins, Pam

    2010-01-01

    The controversial concept of evolution makes up only a small part of the science curriculum stated in Arkansas. During the past few years, the curriculum topic of "Intelligent Design" has caught the attention of many science teachers in the public schools. The Intelligent Design Movement has been successful in attracting the attention of…

  17. Reference Design of the Mu2e Detector Solenoid

    CERN Document Server

    Feher, S; Brandt,, J; Cheban, S; Coleman, R; Dhanaraj, N; Fang, I; Lamm, M; Lombardo, V; Lopes, M; Miller, J; Ostojic, R ,; Orris, D; Page, T; Peterson, T; Tang, Z; Wands, R

    2014-01-01

    The Mu2e experiment at Fermilab has been approved by the Department of Energy to proceed developing the preliminary design. Integral to the success of Mu2e is the superconducting solenoid system. One of the three major solenoids is the Detector Solenoid that houses the stopping target and the detectors. The goal of the Detector Solenoid team is to produce detailed design specifications that are sufficient for vendors to produce the final design drawings, tooling and fabrication procedures and proceed to production. In this paper we summarize the Reference Design of the Detector Solenoid.

  18. An Intelligent Automation Platform for Rapid Bioprocess Design.

    Science.gov (United States)

    Wu, Tianyi; Zhou, Yuhong

    2014-08-01

    Bioprocess development is very labor intensive, requiring many experiments to characterize each unit operation in the process sequence to achieve product safety and process efficiency. Recent advances in microscale biochemical engineering have led to automated experimentation. A process design workflow is implemented sequentially in which (1) a liquid-handling system performs high-throughput wet lab experiments, (2) standalone analysis devices detect the data, and (3) specific software is used for data analysis and experiment design given the user's inputs. We report an intelligent automation platform that integrates these three activities to enhance the efficiency of such a workflow. A multiagent intelligent architecture has been developed incorporating agent communication to perform the tasks automatically. The key contribution of this work is the automation of data analysis and experiment design and also the ability to generate scripts to run the experiments automatically, allowing the elimination of human involvement. A first-generation prototype has been established and demonstrated through lysozyme precipitation process design. All procedures in the case study have been fully automated through an intelligent automation platform. The realization of automated data analysis and experiment design, and automated script programming for experimental procedures has the potential to increase lab productivity. © 2013 Society for Laboratory Automation and Screening.

  19. An Intelligent Automation Platform for Rapid Bioprocess Design

    Science.gov (United States)

    Wu, Tianyi

    2014-01-01

    Bioprocess development is very labor intensive, requiring many experiments to characterize each unit operation in the process sequence to achieve product safety and process efficiency. Recent advances in microscale biochemical engineering have led to automated experimentation. A process design workflow is implemented sequentially in which (1) a liquid-handling system performs high-throughput wet lab experiments, (2) standalone analysis devices detect the data, and (3) specific software is used for data analysis and experiment design given the user’s inputs. We report an intelligent automation platform that integrates these three activities to enhance the efficiency of such a workflow. A multiagent intelligent architecture has been developed incorporating agent communication to perform the tasks automatically. The key contribution of this work is the automation of data analysis and experiment design and also the ability to generate scripts to run the experiments automatically, allowing the elimination of human involvement. A first-generation prototype has been established and demonstrated through lysozyme precipitation process design. All procedures in the case study have been fully automated through an intelligent automation platform. The realization of automated data analysis and experiment design, and automated script programming for experimental procedures has the potential to increase lab productivity. PMID:24088579

  20. Search for design intelligence: A field study on the role of emotional intelligence in architectural design studios

    OpenAIRE

    Nazidizaji, Sajjad; Tomé, Ana; Regateiro, Francisco

    2017-01-01

    The design studio is the core of the architecture curriculum. Interpersonal interactions have a key role during the processes of design and critique. The influence of emotional intelligence (EQ) on interpersonal communication skills has been widely proven. This study examines the correlation between EQ and architectural design competence. To achieve this, 78 architecture students were selected via a simple random sampling method and tested using an EQ test questionnaire developed by Bradbury ...

  1. Vision Guided Intelligent Robot Design And Experiments

    Science.gov (United States)

    Slutzky, G. D.; Hall, E. L.

    1988-02-01

    The concept of an intelligent robot is an important topic combining sensors, manipulators, and artificial intelligence to design a useful machine. Vision systems, tactile sensors, proximity switches and other sensors provide the elements necessary for simple game playing as well as industrial applications. These sensors permit adaption to a changing environment. The AI techniques permit advanced forms of decision making, adaptive responses, and learning while the manipulator provides the ability to perform various tasks. Computer languages such as LISP and OPS5, have been utilized to achieve expert systems approaches in solving real world problems. The purpose of this paper is to describe several examples of visually guided intelligent robots including both stationary and mobile robots. Demonstrations will be presented of a system for constructing and solving a popular peg game, a robot lawn mower, and a box stacking robot. The experience gained from these and other systems provide insight into what may be realistically expected from the next generation of intelligent machines.

  2. A Research Review on the Key Technologies of Intelligent Design for Customized Products

    Directory of Open Access Journals (Sweden)

    Shuyou Zhang

    2017-10-01

    Full Text Available The development of technologies such as big data and cyber-physical systems (CPSs has increased the demand for product design. Product digital design involves completing the product design process using advanced digital technologies such as geometry modeling, kinematic and dynamic simulation, multi-disciplinary coupling, virtual assembly, virtual reality (VR, multi-objective optimization (MOO, and human-computer interaction. The key technologies of intelligent design for customized products include: a description and analysis of customer requirements (CRs, product family design (PFD for the customer base, configuration and modular design for customized products, variant design for customized products, and a knowledge push for product intelligent design. The development trends in intelligent design for customized products include big-data-driven intelligent design technology for customized products and customized design tools and applications. The proposed method is verified by the design of precision computer numerical control (CNC machine tools.

  3. Intelligent Furniture Design in the Elderly Based on the Cognitive Situation

    Directory of Open Access Journals (Sweden)

    Lu Xinhui

    2017-01-01

    Full Text Available This paper analyzes the present situation of Chinese elderly furniture and the elderly has cognitive characteristics that consciousness experiences and recognitions recede, cognitive fuzzy from Information processing. Expounds the elderly intelligent furniture design elements: functional elements required the elderly furniture is easy and simple to handle; Size and shape elements should be biased towards low, light type, reduce multifunction or fold function; colour collocation should use low lightness and low purity natural materials; Emotional elements design should meet the demand of the elderly social emotion. Introduction of intelligent furniture make up the cognitive decline in the elderly, Furniture judge the elderly demand by the inductor, Supplement by hardware control module to solve the special needs of the elderly life. Build design thinking based on the cognitive process and explore the elderly intelligent furniture design. This paper discusses the design process, for example and concludes the design rules: 1.The Operating Experience Pleasure. It is the height matching of user expectation and furniture function. Pleasure in the design of the operating parts mainly embodies in two aspects. Firstly, the Fitts Law; Secondly, it’s The Movement Optimization. 2.”Unconscious” Design. Intelligent furniture need to delete unnecessary operation module, make it easy to understand, furniture function and cognitive scene match with each other. 3. Modularity Design. Modularization can indirectly regulate the scale and specification of the design. Under the premise of individual character, customization, the compression of the cost, Designer should make the elderly intelligent furniture consistent with the user action.4.Design Consistency. The consistency principle reflected in the appearance, color and operation way consistency.

  4. Intelligent structures and design of energy related facilities

    International Nuclear Information System (INIS)

    Namba, Haruyuki

    1994-01-01

    Possibility of applying intelligent structural concepts to civil design of energy plants is discussed. Intelligent structures, which are now common in aerospace engineering field, are also referred to as adaptive structures or smart structures depending on cases. Among various existing concepts, reconfigurable structures, precise shape control, structural monitoring using smart materials of optical fiber sensors, and relation with recent innovative communication technologies are focused from civil engineering point of view. Application of such new technologies will help to enhance design of energy related plants, which include multiplex functions which need to be very reliable and safe. (author)

  5. 16th International Conference on Intelligent Systems Design and Applications

    CERN Document Server

    Abraham, Ajith; Gamboa, Dorabela; Novais, Paulo

    2017-01-01

    This book comprises selected papers from the 16th International Conference on Intelligent Systems Design and Applications (ISDA’16), which was held in Porto, Portugal from December 1 to16, 2016. ISDA 2016 was jointly organized by the Portugual-based Instituto Superior de Engenharia do Porto and the US-based Machine Intelligence Research Labs (MIR Labs) to serve as a forum for the dissemination of state-of-the-art research and development of intelligent systems, intelligent technologies, and applications. The papers included address a wide variety of themes ranging from theories to applications of intelligent systems and computational intelligence area and provide a valuable resource for students and researchers in academia and industry alike. .

  6. Coupling artificial intelligence and numerical computation for engineering design (Invited paper)

    Science.gov (United States)

    Tong, S. S.

    1986-01-01

    The possibility of combining artificial intelligence (AI) systems and numerical computation methods for engineering designs is considered. Attention is given to three possible areas of application involving fan design, controlled vortex design of turbine stage blade angles, and preliminary design of turbine cascade profiles. Among the AI techniques discussed are: knowledge-based systems; intelligent search; and pattern recognition systems. The potential cost and performance advantages of an AI-based design-generation system are discussed in detail.

  7. Sherlock Holmes and intelligent design.

    Science.gov (United States)

    McCuskey, Brian

    2012-09-01

    This article examines how both scientists and creationists, as they argue over intelligent design, invoke and quote the fictional character of Sherlock Holmes to support their opposed positions. Rhetorical analysis ofHolmes's repeated contributions to the debate reveals not only how the argument for design falls apart, but also how the argument for Darwin compromises itself when following the detective onto shaky logical ground. The sciences and the humanities must work together to combat the corrosive influence ofpseudoscientific reasoning on our students and the general public; this article contributes to that joint enterprise.

  8. On Intelligent Design and Planning Method of Process Route Based on Gun Breech Machining Process

    Science.gov (United States)

    Hongzhi, Zhao; Jian, Zhang

    2018-03-01

    The paper states an approach of intelligent design and planning of process route based on gun breech machining process, against several problems, such as complex machining process of gun breech, tedious route design and long period of its traditional unmanageable process route. Based on gun breech machining process, intelligent design and planning system of process route are developed by virtue of DEST and VC++. The system includes two functional modules--process route intelligent design and its planning. The process route intelligent design module, through the analysis of gun breech machining process, summarizes breech process knowledge so as to complete the design of knowledge base and inference engine. And then gun breech process route intelligently output. On the basis of intelligent route design module, the final process route is made, edited and managed in the process route planning module.

  9. Use of thick HgI2 detectors as intelligent spectrometers

    International Nuclear Information System (INIS)

    Olmos, P.; Garcia-Belmonte, G.; Perez, J.M.; Diaz, J.C.

    1990-01-01

    Mercuric iodide is a very attractive material to detect ionizing radiation due to its high stopping power and wide energy gap, which allows the use of a small and compact detector at room temperature. However, the spectroscopic performances of these detectors are poor in comparisons with other more popular semiconductors with better transport characteristics. This effect becomes dramatic when thick crystals are used. The partial charge-collection method is reported to be the most suitable one for enhancing the energy resolution achieved with thick detectors. A Monte Carlo simulation of the behavior of the model and its dependence with crystals and electronic parameters is presented, giving operating rules that optimize the system performance in each situation. Specially designed hardware has been developed to extract the maximum information of the charge pulse produced by photon-detector interaction, according with the results of the simulation. As a final step, an automatic isotope-identification process, based on the use of neutral networks, is performed, the identification being the true output of the whole system. Due to the strong dependence of this output on the free hardware parameters, an adaptive network is designed to act on these parameters in such a way that the system converges automatically to the best identification. (orig.)

  10. An intelligent interlock design support system

    International Nuclear Information System (INIS)

    Hayashi, Toshifumi; Kamiyama, Masahiko

    1990-01-01

    This paper presents an intelligent interlock design support system, called Handy. BWR plant interlocks have been designed on a conventional CAD system operating on a mini-computer based time sharing system. However, its ability to support interlock designers is limited, mainly due to the system not being capable of manipulating the interlock logic. Handy improves the design efficiency with consistent manipulation of the logic and drawings, interlock simulation, versatile database management, object oriented user interface, high resolution high speed graphics, and automatic interlock outlining with a design support expert system. Handy is now being tested by designers, and is expected to greatly contribute to their efficiency. (author)

  11. APPROACH ON INTELLIGENT OPTIMIZATION DESIGN BASED ON COMPOUND KNOWLEDGE

    Institute of Scientific and Technical Information of China (English)

    Yao Jianchu; Zhou Ji; Yu Jun

    2003-01-01

    A concept of an intelligent optimal design approach is proposed, which is organized by a kind of compound knowledge model. The compound knowledge consists of modularized quantitative knowledge, inclusive experience knowledge and case-based sample knowledge. By using this compound knowledge model, the abundant quantity information of mathematical programming and the symbolic knowledge of artificial intelligence can be united together in this model. The intelligent optimal design model based on such a compound knowledge and the automatically generated decomposition principles based on it are also presented. Practically, it is applied to the production planning, process schedule and optimization of production process of a refining & chemical work and a great profit is achieved. Specially, the methods and principles are adaptable not only to continuous process industry, but also to discrete manufacturing one.

  12. Soudan 2 detector as a time-projection calorimeter

    International Nuclear Information System (INIS)

    Allison, W.W.M.; Alner, J.; Ambats, I.

    1986-01-01

    The Soudan 2 Nucleon Decay Detector uses Hytrel plastic tubes to cause ionization electrons to drift up to 50 cm prior to gas multiplication and collection. The drift tubes are embedded in a matrix of thin steel sheets. Readout is accomplished by flash digitizers in a system with distributed intelligence. This design is usable as a general-purpose calorimeter in which 3 spatial coordinates and pulse height are measured at all points where ionization occurs. Several 4.3 ton modules of this detector have now been studied in detail. We will present information about the detector performance and its dependence on manufacturing tolerances

  13. Design of a lepton detector for ISABELLE

    International Nuclear Information System (INIS)

    Burnstein, R.; Carithers, W.C.; Duong-van, M.

    1975-01-01

    The theoretical background is given for a proposed experiment to detect W mesons using their leptonic decay mode. A lepton detector was designed for use at the planned ISABELLE proton--proton colliding beam storage rings. The general configuration of the detector is shown, and an electron identification module, an electron-hadron calorimeter, methods of muon identification, and an optional central detector (magnetic solenoid spectrometer) are discussed

  14. Designing with computational intelligence

    CERN Document Server

    Lopes, Heitor; Mourelle, Luiza

    2017-01-01

    This book discusses a number of real-world applications of computational intelligence approaches. Using various examples, it demonstrates that computational intelligence has become a consolidated methodology for automatically creating new competitive solutions to complex real-world problems. It also presents a concise and efficient synthesis of different systems using computationally intelligent techniques.

  15. Designing User Centred Intelligent Classroom Lighting

    DEFF Research Database (Denmark)

    Georgieva, Diana Zdravkova; Schledermann, Kathrine Marie; Nielsen, Stine Maria Louring

    2018-01-01

    Through a case study, this paper presents a new way of designing intelligent classroom lighting to meet the users’ needs. A mix of ethnographic methods (field observations and interviews) were used to investigate the everyday learning activities at a middle school in Copenhagen in order...... to determine how lighting can support the learning environment. Based on the investigations, lighting design criteria and three predefined lighting scenes are proposed as a new design for meeting the needs of students and teachers during three types of activities. The scenes focus on smartboard visibility...

  16. Design of neutron detectors utilising luminescent glass

    International Nuclear Information System (INIS)

    Spowart, A.R.

    1983-01-01

    Impetus for the development of new neutron detector designs has derived from the worldwide commissioning of neutron spallation sources. The design concepts, and principal methods of utilisation of these major installations, have been recently reviewed. Their principal feature of interest is their broadband neutron emission allowing neutron investigations of all types of structure in materials from biological molecules to steels. Conventional neutron detectors are gas-filled devices, based on BF/sub 3/ or /sup 3/He gas. Their major advantage is their intrinsically low background count. Their principal disadvantage is their slow response time (10-100 μs), high cost and relative lack of flexibility in design to cope with large areas or complex geometry detection. They are, however, long established and the research facilities around the world have a heavy investment in the interpretative hardware for gas detectors

  17. Intelligent design af fokusgrupper - om metodisk design af fokusgrupper og menneskets forskellige intelligenser

    Directory of Open Access Journals (Sweden)

    Lene Heiselberg

    2008-09-01

    Full Text Available Når man arbejder professionelt med at gennemføre kvalitative mini- og fokusgruppeanalyser, kan det ikke undgås, at man som moderator indimellem tænker: Hvorfor deltager hun ikke? Hvad kan jeg gøre for at inkludere hende i diskussionen? Ofte skyldes nogle deltageres manglende engagement, at mini- eller fokusgruppens metodiske design favoriserer de deltagere, som har en fremtrædende verbalsproglig intelligens, og samtidig ekskluderes de, der har andre fremtrædende intelligenser, fra at yde det maksimale. En sådan situation er meget uheldig og kan i værste fald give en undersøgelse bias. Derfor har vi i DR Medieforskning arbejdet med en pragmatisk tilgang til problemet, hvor vi har afprøvet et metodisk design, som inkluderer kvalitative interviewteknikker og procesværktøjer, som appellerer til samtlige intelligenser. Som et resultat af en målrettet indsats for at inkludere flere intelligenser i det metodiske design, oplever vi, at deltagerne har mere lyst til at engagere sig og gør det med større selvsikkerhed. Desuden oplever vi i mindre grad fænomenet “cognitive tuning” , og derfor kan vi arbejde med flere og bedre data i analyse- og fortolkningsfasen. Intelligent design of focus groups - article about methodological design of focus groups and the different intelligences When you work professionally with the conducting and moderating of qualitative mini- and focus groups, you can't avoid sometimes thinking: Why isn’t she participating? What can I do to include her in the discussion? A participant's apparent lack of enthusiasm is often caused by the methodological design of the focus group giving preference to participants who have an explicit verbal intelligence, and as a consequence excludes participants with other explicit intelligences from contributing. A situation like the one described above is very undesirable and in a worst-case scenario it can cause a study to be biased. In order to try to solve this problem DR

  18. Optimization of a neutron detector design using adjoint transport simulation

    International Nuclear Information System (INIS)

    Yi, C.; Manalo, K.; Huang, M.; Chin, M.; Edgar, C.; Applegate, S.; Sjoden, G.

    2012-01-01

    A synthetic aperture approach has been developed and investigated for Special Nuclear Materials (SNM) detection in vehicles passing a checkpoint at highway speeds. SNM is postulated to be stored in a moving vehicle and detector assemblies are placed on the road-side or in chambers embedded below the road surface. Neutron and gamma spectral awareness is important for the detector assembly design besides high efficiencies, so that different SNMs can be detected and identified with various possible shielding settings. The detector assembly design is composed of a CsI gamma-ray detector block and five neutron detector blocks, with peak efficiencies targeting different energy ranges determined by adjoint simulations. In this study, formulations are derived using adjoint transport simulations to estimate detector efficiencies. The formulations is applied to investigate several neutron detector designs for Block IV, which has its peak efficiency in the thermal range, and Block V, designed to maximize the total neutron counts over the entire energy spectrum. Other Blocks detect different neutron energies. All five neutron detector blocks and the gamma-ray block are assembled in both MCNP and deterministic simulation models, with detector responses calculated to validate the fully assembled design using a 30-group library. The simulation results show that the 30-group library, collapsed from an 80-group library using an adjoint-weighting approach with the YGROUP code, significantly reduced the computational cost while maintaining accuracy. (authors)

  19. Distributed intelligence at CELLO

    International Nuclear Information System (INIS)

    Boer, W. de

    1981-01-01

    This paper describes the use of distributed intelligence at CELLO, a large 4π detector at PETRA. Besides special purpose hardware processors for online calibration and reformatting of data, several microcomputers are used for monitoring and testing the various detector components. (orig.)

  20. BTDI detector technology for reconnaissance application

    Science.gov (United States)

    Hilbert, Stefan; Eckardt, Andreas; Krutz, David

    2017-11-01

    The Institute of Optical Sensor Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the institute's scientific results of the leading-edge detector design in a BTDI (Bidirectional Time Delay and Integration) architecture. This project demonstrates an approved technological design for high or multi-spectral resolution spaceborne instruments. DLR OS and BAE Systems were driving the technology of new detectors and the FPA design for future projects, new manufacturing accuracy in order to keep pace with ambitious scientific and user requirements. Resulting from customer requirements and available technologies the current generation of space borne sensor systems is focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large swath and high-spectral resolution with intelligent control applications and new focal plane concepts opens the door to new remote sensing and smart deep space instruments. The paper gives an overview of the detector development and verification program at DLR on detector module level and key parameters like SNR, linearity, spectral response, quantum efficiency, PRNU, DSNU and MTF.

  1. Modeling and design of X-rays bidimensional detectors

    International Nuclear Information System (INIS)

    Quisbert, Elmer Paz Alcon

    2000-03-01

    In this work has been developed the scintillating fiber optic and semiconductor devices based 2-D detector design, modeling and performance evaluation using Monte Carlo methods, for high X-ray energy range (10-140 kV) radiography and tomography applications. These processes allowed us, also, the imaging system parameters and components optimization and appropriate detector design. The model estimated the detectors performance parameters (DQE, MTF and SNR), and radiation risk (in terms of mean absorbed dose in the patient) and to show up how the sequence of physical processes in X-ray detection influence the performance of this imaging PFOC detectors. In this way, the modeling of the detector includes the statistics of the spatial distribution of absorbed X-rays and of X-ray to light conversion, its transmission, and the light quanta conversion into electrons. Also contributions to noise from the detection system chain is included, mainly the CCD detector ambient noise. Performance prediction, based on calculation taken from simulations, illustrates how such detectors meet the exacting requirements of some medical and industrial applications. Also, it is envisaged that our modeling procedure of the imaging system will be suitable not only for investigating how the system components should be best designed but for CT and RD system performance prediction. The powerful techniques would enable us to give advice for future development, in this field, in search of more dose-efficient imaging systems. (author)

  2. A new rechargeable intelligent vehicle detection sensor

    International Nuclear Information System (INIS)

    Lin, L; Han, X B; Ding, R; Li, G; Lu, Steven C-Y; Hong, Q

    2005-01-01

    Intelligent Transportation System (ITS) is a valid approach to solve the increasing transportation issue in cities. Vehicle detection is one of the key technologies in ITS. The ITS collects and processes traffic data (vehicle flow, vehicular speed, vehicle density and occupancy ratios) from vehicle detection sensors buried under the road or installed along the road. Inductive loop detector as one type of the vehicle detector is applied extensively, with the characters of stability, high value to cost ratio and feasibility. On the other hand, most of the existing inductive loop vehicle detection sensors have some weak points such as friability of detective loop, huge engineering for setting and traffic interruption during installing the sensor. The design and reality of a new rechargeable intelligent vehicle detection sensor is presented in this paper against these weak points existing now. The sensor consists of the inductive loop detector, the rechargeable batteries, the MCU (microcontroller) and the transmitter. In order to reduce the installing project amount, make the loop durable and easily maintained, the volume of the detective loop is reduced as much as we can. Communication in RF (radio frequency) brings on the advantages of getting rid of the feeder cable completely and reducing the installing project amount enormously. For saving the cable installation, the sensor is supplied by the rechargeable batteries. The purpose of the intelligent management of the energy and transmitter by means of MCU is to minimize the power consumption and prolong the working period of the sensor. In a word, the new sensor is more feasible with smaller volume, wireless communication, rechargeable batteries, low power consumption, low cost, high detector precision and easy maintenance and installation

  3. A new rechargeable intelligent vehicle detection sensor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, L [Inspiring Technology Research Laboratory, Tianjin University, Tianjin 300072 (China); Han, X B [Inspiring Technology Research Laboratory, Tianjin University, Tianjin 300072 (China); Ding, R [Tianjin University of Technology and Education, Tianjin 300222 (China); Li, G [Inspiring Technology Research Laboratory, Tianjin University, Tianjin 300072 (China); Lu, Steven C-Y [Inspiring Technology Research Laboratory, Tianjin University, Tianjin 300072 (China); Hong, Q [Inspiring Technology Research Laboratory, Tianjin University, Tianjin 300072 (China)

    2005-01-01

    Intelligent Transportation System (ITS) is a valid approach to solve the increasing transportation issue in cities. Vehicle detection is one of the key technologies in ITS. The ITS collects and processes traffic data (vehicle flow, vehicular speed, vehicle density and occupancy ratios) from vehicle detection sensors buried under the road or installed along the road. Inductive loop detector as one type of the vehicle detector is applied extensively, with the characters of stability, high value to cost ratio and feasibility. On the other hand, most of the existing inductive loop vehicle detection sensors have some weak points such as friability of detective loop, huge engineering for setting and traffic interruption during installing the sensor. The design and reality of a new rechargeable intelligent vehicle detection sensor is presented in this paper against these weak points existing now. The sensor consists of the inductive loop detector, the rechargeable batteries, the MCU (microcontroller) and the transmitter. In order to reduce the installing project amount, make the loop durable and easily maintained, the volume of the detective loop is reduced as much as we can. Communication in RF (radio frequency) brings on the advantages of getting rid of the feeder cable completely and reducing the installing project amount enormously. For saving the cable installation, the sensor is supplied by the rechargeable batteries. The purpose of the intelligent management of the energy and transmitter by means of MCU is to minimize the power consumption and prolong the working period of the sensor. In a word, the new sensor is more feasible with smaller volume, wireless communication, rechargeable batteries, low power consumption, low cost, high detector precision and easy maintenance and installation.

  4. The Anti-RFI Design of Intelligent Electric Energy Meters with UHF RFID

    Science.gov (United States)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng

    2018-03-01

    In order to solve the existing artificial meter reading watt-hour meter industry is still slow and inventory of common problems, using the uhf radio frequency identification (RFID) technology and intelligent watt-hour meter depth fusion, which has a one-time read multiple tags, identification distance, high transmission rate, high reliability, etc, while retaining the original asset management functions, in order to ensure the uhf RFID and minimum impact on the operation of the intelligent watt-hour meter, proposed to improve the stability of the electric meter system while working at the same time, this paper designs the uhf RFID intelligent watt-hour meter radio frequency interference resistance, put forward to improve intelligent watt-hour meter electromagnetic compatibility design train of thought, and introduced its power and the hardware circuit design of printed circuit board, etc.

  5. Design innovations in neutron and gamma detectors

    International Nuclear Information System (INIS)

    Prasad, K.R.

    2003-01-01

    Neutron and gamma radiation needs to be monitored in most nuclear installations since it is highly penetrating. On-line monitoring of these radiations is very important for the safe and controlled operation of nuclear reactors, accelerators etc. Several design innovations have been carried out on gas ionisation detectors such as boron-lined proportional counters and ion chambers, fission detectors, gamma ion chambers as well as self-powered detectors. The use of additional structures within boron-lined detectors has enhanced their neutron sensitivity without a corresponding increase in the unwanted gamma sensitivity. The neutron sensitivity of fission counters can be enhanced by designing them as transmission line devices. Ion chambers with two and six pairs of electrodes have been developed for monitoring pulsed x-ray background at accelerator areas. Ion chambers have been employed at gamma fields up to 80 kR/h by deriving the exposure levels on-line using microcontroller devices programmed on the basis of theoretical and empirical formulas. The use of gas electron multiplier foils is proposed for charge multiplication in ion chambers. Self-powered detectors with new emitter materials like Hi, Ni and Inconel have been developed. (author)

  6. Open-source intelligence and privacy by design

    NARCIS (Netherlands)

    Koops, B.J.; Hoepman, J.H.; Leenes, R.

    2013-01-01

    As demonstrated by other papers on this issue, open-source intelligence (OSINT) by state authorities poses challenges for privacy protection and intellectual-property enforcement. A possible strategy to address these challenges is to adapt the design of OSINT tools to embed normative requirements,

  7. Design and performance of a cesium iodide detector

    Energy Technology Data Exchange (ETDEWEB)

    Adams, T.; Bishop, J.M.; Cady, R. [Notre Dame Univ., IN (United States)] [and others

    1996-01-11

    The design, construction, and performance of a 198-element CsI detector built for Brookhaven experiment E852 is described. Design considerations for the array included such factors as rate, magnetic field, sensitivity and acceptance. Signals were obtained with a photodiode/preamplifier combination using PIN photodiodes. Data were taken over the course of two runs during the summers of 1993 and 1994. A calibration procedure using halo muons is described. The gain, energy resolution, and position resolution of the detector are discussed. Finally, the ability of the detector to be used as a low energy photon veto is illustrated using the data. (orig.).

  8. Design of vehicle intelligent anti-collision warning system

    Science.gov (United States)

    Xu, Yangyang; Wang, Ying

    2018-05-01

    This paper mainly designs a low cost, high-accuracy, micro-miniaturization, and digital display and acousto-optic alarm features of the vehicle intelligent anti-collision warning system that based on MCU AT89C51. The vehicle intelligent anti-collision warning system includes forward anti-collision warning system, auto parking systems and reversing anti-collision radar system. It mainly develops on the basis of ultrasonic distance measurement, its performance is reliable, thus the driving safety is greatly improved and the parking security and efficiency enhance enormously.

  9. The design of remote intelligent terminal based on ARM

    International Nuclear Information System (INIS)

    Zhang Bin; Liu Zixin

    2014-01-01

    This paper introduces the function and principle of the remote intelligent terminal. It was designed on SmartARM 2200, uses uC/OS-II operating system and MiniGUI. And then,it gives a method to realize it. Introduces the work flow of remote intelligent terminal, and the function module of the system are analyzed in detail, and then the terminal of the principle has carried on the preliminary study. (authors)

  10. Design, calibration, and performance of the MINERvA detector

    Energy Technology Data Exchange (ETDEWEB)

    Aliaga, L. [Department of Physics, College of William and Mary, Williamsburg, VA 23187 (United States); Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Apartado 1761, Lima, Perú (Peru); Bagby, L.; Baldin, B. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Baumbaugh, A. [Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Apartado 1761, Lima, Perú (Peru); Bodek, A.; Bradford, R. [University of Rochester, Rochester, NY 14610 (United States); Brooks, W.K. [Departamento de Física, Universidad Técnica Federico Santa María, Avda. España 1680, Casilla 110-V, Valparaíso (Chile); Boehnlein, D. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Boyd, S. [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Budd, H. [University of Rochester, Rochester, NY 14610 (United States); Butkevich, A. [Institute for Nuclear Research of the Russian Academy of Sciences, 117312 Moscow (Russian Federation); Martinez Caicedo, D.A.; Castromonte, C.M. [Hampton University, Department of Physics, Hampton, VA 23668 (United States); Christy, M.E. [Department of Physics, University of Minnesota – Duluth, Duluth, MN 55812 (United States); Chvojka, J. [University of Rochester, Rochester, NY 14610 (United States); Motta, H. da [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Urca, Rio de Janeiro, RJ 22290-180 (Brazil); and others

    2014-04-11

    The MINERvA experiment is designed to perform precision studies of neutrino-nucleus scattering using ν{sub μ} and ν{sup ¯}{sub μ} neutrinos incident at 1–20 GeV in the NuMI beam at Fermilab. This article presents a detailed description of the MINERvA detector and describes the ex situ and in situ techniques employed to characterize the detector and monitor its performance. The detector is composed of a finely segmented scintillator-based inner tracking region surrounded by electromagnetic and hadronic sampling calorimetry. The upstream portion of the detector includes planes of graphite, iron and lead interleaved between tracking planes to facilitate the study of nuclear effects in neutrino interactions. Observations concerning the detector response over sustained periods of running are reported. The detector design and methods of operation have relevance to future neutrino experiments in which segmented scintillator tracking is utilized.

  11. Intelligent Design and the Creationism/Evolution Controversy

    Science.gov (United States)

    Scott, E. C.

    2004-12-01

    "Intelligent Design" (ID) is a new form of creationism that emerged after legal decisions in the 1980s hampered the inclusion of "creation science" in the public school curriculum. To avoid legal challenge, proponents claim agnosticism regarding the identity of the intelligent agent, which could be material (such as highly intelligent terrestrials) or transcendental (God). ID consists of a scientific/scholarly effort, and a politico-religious movement of "cultural renewal." Intelligent design is supposedly detectable through the application of Michael Behe's "irreducible complexity" concept and/or William Dembski's concept of "complex specified information". ID's claims amount to, first, that "Darwinism" (vaguely defined) is incapable of providing an adequate mechanism for evolution, and second (subsequently), that evolution did not occur. Although scientific ideas not infrequently are slow to be accepted, in the 20 years since ID appeared, there is no evidence of it being used to solve problems in biology. Even if the scientific/scholarly part of ID has been a failure, the "cultural renewal" part of ID has been a success. This social and political aspect of ID seeks "restoration" of a theistic sensibility in American culture to replace what supporters consider an overemphasis on secularism. In the last few years, in several states, legislators have introduced legislation promoting ID (to date, unsuccessfully) and an addendum to the 2001 federal education bill conference committee report (the "Santorum amendment") is being used to promote the teaching of ID in public schools. Perhaps because ID has no actual content other than antievolutionism, ID proponents contend that pre-college teachers should teach wweaknesses of evolutionw or "evidence against evolutionw - largely warmed-over arguments from creation science - even though professional scientists do not recognize these as valid scientific claims.

  12. Using Appreciative Intelligence for Ice-Breaking: A New Design

    Science.gov (United States)

    Verma, Neena; Pathak, Anil Anand

    2011-01-01

    Purpose: The purpose of this paper is to highlight the importance of applying appreciative intelligence and appreciative inquiry concepts to design a possibly new model of ice-breaking, which is strengths-based and very often used in any training in general and team building training in particular. Design/methodology/approach: The design has…

  13. Proceedings of the International Conference on Information Systems Design and Intelligent Applications 2012

    CERN Document Server

    Avadhani, P; Abraham, Ajith

    2012-01-01

    This volume contains the papers presented at INDIA-2012: International conference on  Information system Design and Intelligent Applications held on January 5-7, 2012 in Vishakhapatnam, India. This conference was organized by Computer Society of India (CSI), Vishakhapatnam chapter well supported by Vishakhapatnam Steel, RINL, Govt of India. It contains 108 papers contributed by authors from six different countries across four continents. These research papers mainly focused on intelligent applications and various system design issues. The papers cover a wide range of topics of computer science and information technology discipline ranging from image processing, data base application, data mining, grid and cloud computing, bioinformatics among many others. The various intelligent tools like swarm intelligence, artificial intelligence, evolutionary algorithms, bio-inspired algorithms have been applied in different papers for solving various challenging IT related problems.

  14. Creationism and intelligent design.

    Science.gov (United States)

    Pennock, Robert T

    2003-01-01

    Creationism, the rejection of evolution in favor of supernatural design, comes in many varieties besides the common young-earth Genesis version. Creationist attacks on science education have been evolving in the last few years through the alliance of different varieties. Instead of calls to teach "creation science," one now finds lobbying for "intelligent design" (ID). Guided by the Discovery Institute's "Wedge strategy," the ID movement aims to overturn evolution and what it sees as a pernicious materialist worldview and to renew a theistic foundation to Western culture, in which human beings are recognized as being created in the image of God. Common ID arguments involving scientific naturalism, "irreducible complexity," "complex specified information," and "icons of evolution," have been thoroughly examined and refuted. Nevertheless, from Kansas to Ohio to the U.S. Congress, ID continues lobbying to teach the controversy, and scientists need to be ready to defend good evolution education.

  15. Applications Of Artificial Intelligence In Control System Analysis And Design

    Science.gov (United States)

    Birdwell, J. D.

    1987-10-01

    To date, applications of artificial intelligence in control system analysis and design are primarily associated with the design process. These applications take the form of knowledge bases incorporating expertise on a design method, such as multivariable linear controller design, or on a field such as identification. My experience has demonstrated that, while such expert systems are useful, perhaps a greater benefit will come from applications in the maintenance of technical databases, as are found in real-time data acquisition systems, and of modeling and design databases, which represent the status of a computer-aided design process for a human user. This reflects the observation that computers are best at maintaining relations about large sets of objects, whereas humans are best at maintaining knowledge of depth, as occurs when a design option involving a sequence of steps is explored. This paper will discuss some of these issues, and will provide some examples which illustrate the potential of artificial intelligence.

  16. William Paley's lost "intelligent design".

    Science.gov (United States)

    Shapiro, Adam R

    2009-01-01

    William Paley's Natural Theology has experienced a resurgence in popularity in recent decades with the continuing controversies over the teaching of evolution and the emergence of a new "intelligent design" movement. But while both the movement's supporters and detractors agree that Paley is an intellectual forefather of the present-day movement, this agreement is forged at the expense of historical accuracy. Paley's intelligent design has almost nothing in common with the present day movement and, in fact, suggests theological arguments against the type of reasoning used by the modern movement. Paley wrote in reaction to Hume and in response to the evolutionary theories of Buffon and Erasmus Darwin. In this light, the Natural Theology suggests a different reading than it is usually given. Paley's narrowly-argued theology relies upon the ability to detect the presence of "purpose" in nature without relying upon knowing what those purposes are. His empirically-argued theology leads him to a God who operates through natural law, not in its contravention, and his concern goes far beyond proving the existence of a deity to undertaking the theological project of determining the attributes and characteristics of the deity. Though not himself an evolutionist, Paley put forth a theological worldview consistent with evolution. In fact, given his arguments that the observation of great contrivance increases the testimony of nature to God's power, Paley's philosophy might be more consistent with a theistic Darwinian evolution than with special creation.

  17. Is intelligent design science, and does it matter?

    Directory of Open Access Journals (Sweden)

    P W Bateman

    2007-09-01

    Full Text Available The debate between evolution and intelligent design is usually presented by evolutionary biologists as a clash between science and non-science (creationism and religion and therefore as a sterile argument which science wins by default. Countering this is intelligent design (ID and irreducible complexity (IC which posit that the diversity and complexity of life on earth indicates the hand of a designer, although the nature of that designer is not speculated on. In doing so, proponents of� ID and IC bring the argument squarely into the scientific camp and fulfil the requirements of being science, although this is difficult� to define. Here, we discuss the claims of ID and IC to provide an alternative to evolution and propose that science can adequately deal with and refute these claims. At the same time, ID and IC fulfil an important role as foils to �scientism�� � the belief that science is the best way of answering all questions. In the final analysis, however , despite their value in the debate, ID and IC are not found to be robust or reliable enough to replace evolution as the best way of explaining the diversity of life on earth.

  18. Design and Delivery of Technical Module for the Business Intelligence Course

    Science.gov (United States)

    Wang, Shouhong; Wang, Hai

    2013-01-01

    IS programs are increasingly being called on to offer courses in business intelligence. This article presents the pedagogical design and the delivery method of a practicable technical module for a non-technically oriented Business Intelligence course. It is a tutorial for the instructors who wish to incorporate a practical technical element in…

  19. Conceptual design of 3D integrated pixel sensors for the innermost layer of the ILC vertex detector

    International Nuclear Information System (INIS)

    Fu, Y; Hu-Guo, C; Dorokhov, A; Zhao, W; Hu, Y; Torheim, O

    2011-01-01

    The paper presents a design of CMOS Pixel Sensor (CPS) using the vertical integration technology (3DIT), expected to alleviate the most essential limitations of 2D-CPS. Our objective is to develop an intelligent architecture in order to meet the requirements of the innermost layer of the International Linear Collider (ILC) vertex detectors, which are particularly demanding in spatial resolution of less than 3 μm and associated frame readout time of 10 μs. The sensor, with a pixel pitch of 23 μm, will be composed of 3-tiers Integrated Circuits (IC) with different functionalities: detection with in pixel analogue processing, pixel-level 3-bit Analogue to Digital Conversion (ADC) and fast parallel sparse readout.

  20. Design of GRM phoswich detector readout system

    International Nuclear Information System (INIS)

    Liu Jiangtao; Dong Yongwei; Song Liming; Wu Bobing; Zhang Yongjie; Xu He

    2014-01-01

    A set of mixed-signal read out system was designed for the phoswich detectors of the γ-ray burst monitor in the SVOM satellite, which was used to obtain the amplitude and the width of the voltage pulse that came from the GRM phoswich detector, and classify the signals. The FPGA was used to control the timing in the system, high-speed peak holding circuit was used to get the peak of voltage pulse, and the RS232 interface was used to complete the data exchange between the system and the PC. The test results show that this design can achieve the data acquisition and the discrimination. (authors)

  1. Learning robots : teaching design students in integrating intelligence

    NARCIS (Netherlands)

    Barakova, E.I.; Hu, J.

    2011-01-01

    The present day society requires specialists with multidisciplinary knowledge and skills. We discuss the possibilities to educate professionals that design intelligent products and systems as a result of a competency based education. In particular this paper features a teaching method that makes the

  2. Intelligent Data Storage and Retrieval for Design Optimisation – an Overview

    Directory of Open Access Journals (Sweden)

    C. Peebles

    2005-01-01

    Full Text Available This paper documents the findings of a literature review conducted by the Sir Lawrence Wackett Centre for Aerospace Design Technology at RMIT University. The review investigates aspects of a proposed system for intelligent design optimisation. Such a system would be capable of efficiently storing (and compressing if required a range of types of design data into an intelligent database. This database would be accessed by the system during subsequent design processes, allowing for search of relevant design data for re-use in later designs, allowing it to become very efficient in reducing the time for later designs as the database grows in size. Extensive research has been performed, in both theoretical aspects of the project, and practical examples of current similar systems. This research covers the areas of database systems, database queries, representation and compression of design data, geometric representation and heuristic methods for design applications. 

  3. Configuration Design of Detector Shielding for Gamma Prompt Analysis

    International Nuclear Information System (INIS)

    Elin-Nuraini; Darsono; Elisabeth

    2000-01-01

    Configuration on design of detector shielding for gamma prompt analysishas been performed. The aim of this design is to obtain effective shieldingmaterial and configuration that able to protect the detector for fastneutron. The result shown that detector shielding configuration that obtainedby configuration of water and concrete, would be able to absorb fast neutronup to 99.5 %. The neutron flux that passed through shielding configuration is2.4 x 10 3 n/cm 2 dt, in the detector position of 60 cm (forward neutron beamdirection) on the X axis and 30 cm (side ward neutron beam direction) on theZ axis of target. On this position (60,30) counting result was 104358 for Pbcollimator and 246652 for PVC collimator. From examination result shown thatthe weight of silicon is in order 175 gram. (author)

  4. Cognitive Connected Vehicle Information System Design Requirement for Safety: Role of Bayesian Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Ata Khan

    2013-04-01

    Full Text Available Intelligent transportation systems (ITS are gaining acceptance around the world and the connected vehicle component of ITS is recognized as a high priority research and development area in many technologically advanced countries. Connected vehicles are expected to have the capability of safe, efficient and eco-driving operations whether these are under human control or in the adaptive machine control mode of operations. The race is on to design the capability to operate in connected traffic environment. The operational requirements can be met with cognitive vehicle design features made possible by advances in artificial intelligence-supported methodology, improved understanding of human factors, and advances in communication technology. This paper describes cognitive features and their information system requirements. The architecture of an information system is presented that supports the features of the cognitive connected vehicle. For better focus, information processing capabilities are specified and the role of Bayesian artificial intelligence is defined for data fusion. Example applications illustrate the role of information systems in integrating intelligent technology, Bayesian artificial intelligence, and abstracted human factors. Concluding remarks highlight the role of the information system and Bayesian artificial intelligence in the design of a new generation of cognitive connected vehicle.

  5. Design of intelligent house system based on Yeelink

    Directory of Open Access Journals (Sweden)

    Lin Zhi-Huang

    2016-01-01

    Full Text Available In order to monitor the security situation of house in real time, an intelligent house remote monitoring system is designed based on Yeelink cloud services and ZigBee wireless communication technology. This system includes three parts, ZigBee wireless sensor networks, intelligent house gateway and Yeelink Cloud Services. Users can access Yeelink website or APP to get real time information in the house, receiving information including gas concentration, temperature. Also, remote commands can be sent from mobile devices to control the household appliances. The user who can monitor and control the house effectively through a simple and convenient user interface, will feel much more safe and comfortable.

  6. Mechatronic System Design and Intelligent Motion Control of Hydraulic Robots and Machines

    DEFF Research Database (Denmark)

    Conrad, Finn; Sørensen, Torben

    2003-01-01

    The paper presents an approach and concept to mechatronic system design and intelligent motion control. The Information Technology (IT) offers software and hardware for improvement of R&D Mechatronic Teams to create products and solutions for industrial applications. The latest progress in IT makes...... integration of an overall design and manufacturing IT- concept feasible and commercially attractive. An IT-tool concept for modelling, simulation and design of mechatronic products and systems is proposed in this paper. It built on results from a Danish mechatronic research program on intelligent motion...

  7. Design for interaction between humans and intelligent systems during real-time fault management

    Science.gov (United States)

    Malin, Jane T.; Schreckenghost, Debra L.; Thronesbery, Carroll G.

    1992-01-01

    Initial results are reported to provide guidance and assistance for designers of intelligent systems and their human interfaces. The objective is to achieve more effective human-computer interaction (HCI) for real time fault management support systems. Studies of the development of intelligent fault management systems within NASA have resulted in a new perspective of the user. If the user is viewed as one of the subsystems in a heterogeneous, distributed system, system design becomes the design of a flexible architecture for accomplishing system tasks with both human and computer agents. HCI requirements and design should be distinguished from user interface (displays and controls) requirements and design. Effective HCI design for multi-agent systems requires explicit identification of activities and information that support coordination and communication between agents. The effects are characterized of HCI design on overall system design and approaches are identified to addressing HCI requirements in system design. The results include definition of (1) guidance based on information level requirements analysis of HCI, (2) high level requirements for a design methodology that integrates the HCI perspective into system design, and (3) requirements for embedding HCI design tools into intelligent system development environments.

  8. Fuzzy Logic Controller Design for Intelligent Robots

    Directory of Open Access Journals (Sweden)

    Ching-Han Chen

    2017-01-01

    Full Text Available This paper presents a fuzzy logic controller by which a robot can imitate biological behaviors such as avoiding obstacles or following walls. The proposed structure is implemented by integrating multiple ultrasonic sensors into a robot to collect data from a real-world environment. The decisions that govern the robot’s behavior and autopilot navigation are driven by a field programmable gate array- (FPGA- based fuzzy logic controller. The validity of the proposed controller was demonstrated by simulating three real-world scenarios to test the bionic behavior of a custom-built robot. The results revealed satisfactorily intelligent performance of the proposed fuzzy logic controller. The controller enabled the robot to demonstrate intelligent behaviors in complex environments. Furthermore, the robot’s bionic functions satisfied its design objectives.

  9. 2nd International Conference on INformation Systems Design and Intelligent Applications

    CERN Document Server

    Satapathy, Suresh; Sanyal, Manas; Sarkar, Partha; Mukhopadhyay, Anirban

    2015-01-01

    The second international conference on INformation Systems Design and Intelligent Applications (INDIA – 2015) held in Kalyani, India during January 8-9, 2015. The book covers all aspects of information system design, computer science and technology, general sciences, and educational research. Upon a double blind review process, a number of high quality papers are selected and collected in the book, which is composed of two different volumes, and covers a variety of topics, including natural language processing, artificial intelligence, security and privacy, communications, wireless and sensor networks, microelectronics, circuit and systems, machine learning, soft computing, mobile computing and applications, cloud computing, software engineering, graphics and image processing, rural engineering, e-commerce, e-governance, business computing, molecular computing, nano computing, chemical computing, intelligent computing for GIS and remote sensing, bio-informatics and bio-computing. These fields are not only ...

  10. 3rd International Conference on INformation Systems Design and Intelligent Applications

    CERN Document Server

    Mandal, Jyotsna; Udgata, Siba; Bhateja, Vikrant

    2016-01-01

    The third international conference on INformation Systems Design and Intelligent Applications (INDIA – 2016) held in Visakhapatnam, India during January 8-9, 2016. The book covers all aspects of information system design, computer science and technology, general sciences, and educational research. Upon a double blind review process, a number of high quality papers are selected and collected in the book, which is composed of three different volumes, and covers a variety of topics, including natural language processing, artificial intelligence, security and privacy, communications, wireless and sensor networks, microelectronics, circuit and systems, machine learning, soft computing, mobile computing and applications, cloud computing, software engineering, graphics and image processing, rural engineering, e-commerce, e-governance, business computing, molecular computing, nano-computing, chemical computing, intelligent computing for GIS and remote sensing, bio-informatics and bio-computing. These fields are not...

  11. Search for design intelligence: A field study on the role of emotional intelligence in architectural design studios

    Directory of Open Access Journals (Sweden)

    Sajjad Nazidizaji

    2014-12-01

    Full Text Available The design studio is the core of the architecture curriculum. Interpersonal interactions have a key role during the processes of design and critique. The influence of emotional intelligence (EQ on interpersonal communication skills has been widely proven. This study examines the correlation between EQ and architectural design competence. To achieve this, 78 architecture students were selected via a simple random sampling method and tested using an EQ test questionnaire developed by Bradbury and Greaves (2006. The scores of five architectural design studio courses (ADS-1, ADS-2, ADS-3, ADS-4, and ADS-5 were used as indicators of the progress in design of the students. Descriptive and inferential statistics methods were both employed to analyze the research data. The methods included correlation analysis, mean comparison t-test for independent samples, and single sample t-test. Findings showed no significant relationship between EQ and any of the indicators.

  12. Intelligent Human Machine Interface Design for Advanced Product Life Cycle Management Systems

    OpenAIRE

    Ahmed, Zeeshan

    2010-01-01

    Designing and implementing an intelligent and user friendly human machine interface for any kind of software or hardware oriented application is always be a challenging task for the designers and developers because it is very difficult to understand the psychology of the user, nature of the work and best suit of the environment. This research paper is basically about to propose an intelligent, flexible and user friendly machine interface for Product Life Cycle Management products or PDM Syste...

  13. Modeling and design of X-rays bidimensional detectors; Modelagem e projeto de detectores bidimensionais para radiacao-X

    Energy Technology Data Exchange (ETDEWEB)

    Quisbert, Elmer Paz Alcon

    2000-03-01

    In this work has been developed the scintillating fiber optic and semiconductor devices based 2-D detector design, modeling and performance evaluation using Monte Carlo methods, for high X-ray energy range (10-140 kV) radiography and tomography applications. These processes allowed us, also, the imaging system parameters and components optimization and appropriate detector design. The model estimated the detectors performance parameters (DQE, MTF and SNR), and radiation risk (in terms of mean absorbed dose in the patient) and to show up how the sequence of physical processes in X-ray detection influence the performance of this imaging PFOC detectors. In this way, the modeling of the detector includes the statistics of the spatial distribution of absorbed X-rays and of X-ray to light conversion, its transmission, and the light quanta conversion into electrons. Also contributions to noise from the detection system chain is included, mainly the CCD detector ambient noise. Performance prediction, based on calculation taken from simulations, illustrates how such detectors meet the exacting requirements of some medical and industrial applications. Also, it is envisaged that our modeling procedure of the imaging system will be suitable not only for investigating how the system components should be best designed but for CT and RD system performance prediction. The powerful techniques would enable us to give advice for future development, in this field, in search of more dose-efficient imaging systems. (author)

  14. Design and Construction of Prototype Dark Matter Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Peter Fisher

    2012-03-23

    The Lepton Quark Studies (LQS) group is engaged in searching for dark matter using the Dark Matter Time Projection Chamber (DMTPC) at the Waste Isolation Pilot Plant (WIPP) (Carlsbad, NM). DMTPC is a direction-sensitive dark matter detector designed to measure the recoil direction and energy deposited by fluorine nuclei recoiling from the interaction with incident WIMPs. In the past year, the major areas of progress have been: to publish the first dark matter search results from a surface run of the DMTPC prototype detector, to build and install the 10L prototype in the underground laboratory at WIPP which will house the 1 m{sup 3} detector, and to demonstrate charge and PMT readout of the TPC using prototype detectors, which allow triggering and {Delta}z measurement to be used in the 1 m{sup 3} detector under development.

  15. The Design and Implementation of an Intelligent Apparel Recommend Expert System

    Directory of Open Access Journals (Sweden)

    A. H. Dong

    2013-01-01

    Full Text Available Now with the rapid development of information science and technology, intelligent apparel recommend has drawn wide attention in apparel retail industry. Intelligent management and effective recommend are two issues of crucial importance for the retail store to enhance its corporate influence and increase its economic benefits. This paper proposes an intelligent recommend system design scheme for apparel retail which is based on expert system. By comprehensive utilization of database management and expert system technology, the proposed system provides a solid solution in improving the customer shopping experience. This paper presents a kind of object-oriented blackboard structure, which is applied in the apparel recommend expert system and establishes expert rule on the basis of apparel characteristic elements. Through the establishment of the rule base, the system generates personal recommend list by positive rule reasoning mechanism engine. The proposed method thus gives dress collocation scheme for the customer through the human-machine interaction from the point of view of the apparel experts. This design scheme avails the customers to experience targeted service with intellectualization, and personalization and it has certain reference significance for promoting apparel retail intelligence development.

  16. Design of an intelligent materials data base for the IFR

    International Nuclear Information System (INIS)

    Mikaili, R.; Lambert, J.D.B.; Orth, T.D.

    1992-01-01

    In the development of the integral fast reactor (IFR) concept, there is a consensus that materials considerations are an important part of the reactor design, operation, and maintenance and that materials performance is central to liquid-metal reactor reliability and safety. In the design of the IRF materials data base, artificial intelligence techniques are being used to ensure efficient control of information. Intelligent control will provide for the selection of menus to be displayed, efficient data-base searches, and application-dependent guidance through the data base. The development of the IRF data base has progressed to the point of (a) completing the design of the data-base architecture and tables, (b) installing computer hardware for storing large amounts of data, (c) outlining strategies for data transferal, and (d) identifying ways to validate and secure the integrity of data

  17. Design considerations for large detector arrays on submillimeter-wave telescopes

    Science.gov (United States)

    Stark, Antony A.

    2000-07-01

    The emerging technology of large (approximately 10,000 pixel) submillimeter-wave bolometer arrays presents a novel optical design problem -- how can such arrays be fed by diffraction- limited telescope optics where the primary mirror is less than 100,000 wavelengths in diameter? Standard Cassegrain designs for radiotelescope optics exhibit focal surface curvature so large that detectors cannot be placed more than 25 beam diameters from the central ray. The problem is worse for Ritchey-Chretien designs, because these minimize coma while increasing field curvature. Classical aberrations, including coma, are usually dominated by diffraction in submillimeter- wave single dish telescopes. The telescope designer must consider (1) diffraction, (2) aberration, (3) curvature of field, (4) cross-polarization, (5) internal reflections, (6) the effect of blockages, (7) means of beam chopping on- and off-source, (8) gravitational and thermal deformations of the primary mirror, (9) the physical mounting of large detector packages, and (10) the effect of gravity and (11) vibration on those detectors. Simultaneous optimization of these considerations in the case of large detector arrays leads to telescopes that differ considerably from standard radiotelescope designs. Offset optics provide flexibility for mounting detectors, while eliminating blockage and internal reflections. Aberrations and cross-polarization can be the same as on-axis designs having the same diameter and focal length. Trade-offs include the complication of primary mirror homology and an increase in overall cost. A dramatic increase in usable field of view can be achieved using shaped optics. Solutions having one to six mirrors will be discussed, including possible six-mirror design for the proposed South Pole 10 m telescope.

  18. De Novo Design of Bioactive Small Molecules by Artificial Intelligence.

    Science.gov (United States)

    Merk, Daniel; Friedrich, Lukas; Grisoni, Francesca; Schneider, Gisbert

    2018-01-01

    Generative artificial intelligence offers a fresh view on molecular design. We present the first-time prospective application of a deep learning model for designing new druglike compounds with desired activities. For this purpose, we trained a recurrent neural network to capture the constitution of a large set of known bioactive compounds represented as SMILES strings. By transfer learning, this general model was fine-tuned on recognizing retinoid X and peroxisome proliferator-activated receptor agonists. We synthesized five top-ranking compounds designed by the generative model. Four of the compounds revealed nanomolar to low-micromolar receptor modulatory activity in cell-based assays. Apparently, the computational model intrinsically captured relevant chemical and biological knowledge without the need for explicit rules. The results of this study advocate generative artificial intelligence for prospective de novo molecular design, and demonstrate the potential of these methods for future medicinal chemistry. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  19. Design Report for Low Power Acoustic Detector

    Science.gov (United States)

    2013-08-01

    high speed integrated circuit (VHSIC) hardware description language ( VHDL ) implementation of both the HED and DCD detectors. Figures 4 and 5 show the...the hardware design, target detection algorithm design in both MATLAB and VHDL , and typical performance results. 15. SUBJECT TERMS Acoustic low...5 2.4 Algorithm Implementation ..............................................................................................6 3. Testing

  20. Intelligent Test Mechanism Design of Worn Big Gear

    Directory of Open Access Journals (Sweden)

    Hong-Yu LIU

    2014-10-01

    Full Text Available With the continuous development of national economy, big gear was widely applied in metallurgy and mine domains. So, big gear plays an important role in above domains. In practical production, big gear abrasion and breach take place often. It affects normal production and causes unnecessary economic loss. A kind of intelligent test method was put forward on worn big gear mainly aimed at the big gear restriction conditions of high production cost, long production cycle and high- intensity artificial repair welding work. The measure equations transformations were made on involute straight gear. Original polar coordinate equations were transformed into rectangular coordinate equations. Big gear abrasion measure principle was introduced. Detection principle diagram was given. Detection route realization method was introduced. OADM12 laser sensor was selected. Detection on big gear abrasion area was realized by detection mechanism. Tested data of unworn gear and worn gear were led in designed calculation program written by Visual Basic language. Big gear abrasion quantity can be obtained. It provides a feasible method for intelligent test and intelligent repair welding on worn big gear.

  1. Optimal Design of Large Dimensional Adaptive Subspace Detectors

    KAUST Repository

    Ben Atitallah, Ismail; Kammoun, Abla; Alouini, Mohamed-Slim; Alnaffouri, Tareq Y.

    2016-01-01

    This paper addresses the design of Adaptive Subspace Matched Filter (ASMF) detectors in the presence of a mismatch in the steering vector. These detectors are coined as adaptive in reference to the step of utilizing an estimate of the clutter covariance matrix using training data of signalfree observations. To estimate the clutter covariance matrix, we employ regularized covariance estimators that, by construction, force the eigenvalues of the covariance estimates to be greater than a positive scalar . While this feature is likely to increase the bias of the covariance estimate, it presents the advantage of improving its conditioning, thus making the regularization suitable for handling high dimensional regimes. In this paper, we consider the setting of the regularization parameter and the threshold for ASMF detectors in both Gaussian and Compound Gaussian clutters. In order to allow for a proper selection of these parameters, it is essential to analyze the false alarm and detection probabilities. For tractability, such a task is carried out under the asymptotic regime in which the number of observations and their dimensions grow simultaneously large, thereby allowing us to leverage existing results from random matrix theory. Simulation results are provided in order to illustrate the relevance of the proposed design strategy and to compare the performances of the proposed ASMF detectors versus Adaptive normalized Matched Filter (ANMF) detectors under mismatch scenarios.

  2. Optimal Design of Large Dimensional Adaptive Subspace Detectors

    KAUST Repository

    Ben Atitallah, Ismail

    2016-05-27

    This paper addresses the design of Adaptive Subspace Matched Filter (ASMF) detectors in the presence of a mismatch in the steering vector. These detectors are coined as adaptive in reference to the step of utilizing an estimate of the clutter covariance matrix using training data of signalfree observations. To estimate the clutter covariance matrix, we employ regularized covariance estimators that, by construction, force the eigenvalues of the covariance estimates to be greater than a positive scalar . While this feature is likely to increase the bias of the covariance estimate, it presents the advantage of improving its conditioning, thus making the regularization suitable for handling high dimensional regimes. In this paper, we consider the setting of the regularization parameter and the threshold for ASMF detectors in both Gaussian and Compound Gaussian clutters. In order to allow for a proper selection of these parameters, it is essential to analyze the false alarm and detection probabilities. For tractability, such a task is carried out under the asymptotic regime in which the number of observations and their dimensions grow simultaneously large, thereby allowing us to leverage existing results from random matrix theory. Simulation results are provided in order to illustrate the relevance of the proposed design strategy and to compare the performances of the proposed ASMF detectors versus Adaptive normalized Matched Filter (ANMF) detectors under mismatch scenarios.

  3. Solid state detector design

    International Nuclear Information System (INIS)

    Gunarwan Prayitno; Ahmad Rifai

    2010-01-01

    Much has been charged particle detector radiation detector made by the industry, especially those engaged in the development of detection equipment and components. The development and further research will be made solid state detector with silicon material. To be able to detect charged particles (radiation), required the processing of silicon material into the detector material. The method used to make silicon detector material is a lithium evaporations. Having formed an intrinsic region contactor installation process, and with testing. (author)

  4. [An object-oriented intelligent engineering design approach for lake pollution control].

    Science.gov (United States)

    Zou, Rui; Zhou, Jing; Liu, Yong; Zhu, Xiang; Zhao, Lei; Yang, Ping-Jian; Guo, Huai-Cheng

    2013-03-01

    Regarding the shortage and deficiency of traditional lake pollution control engineering techniques, a new lake pollution control engineering approach was proposed in this study, based on object-oriented intelligent design (OOID) from the perspective of intelligence. It can provide a new methodology and framework for effectively controlling lake pollution and improving water quality. The differences between the traditional engineering techniques and the OOID approach were compared. The key points for OOID were described as object perspective, cause and effect foundation, set points into surface, and temporal and spatial optimization. The blue algae control in lake was taken as an example in this study. The effect of algae control and water quality improvement were analyzed in details from the perspective of object-oriented intelligent design based on two engineering techniques (vertical hydrodynamic mixer and pumping algaecide recharge). The modeling results showed that the traditional engineering design paradigm cannot provide scientific and effective guidance for engineering design and decision-making regarding lake pollution. Intelligent design approach is based on the object perspective and quantitative causal analysis in this case. This approach identified that the efficiency of mixers was much higher than pumps in achieving the goal of low to moderate water quality improvement. However, when the objective of water quality exceeded a certain value (such as the control objective of peak Chla concentration exceeded 100 microg x L(-1) in this experimental water), the mixer cannot achieve this goal. The pump technique can achieve the goal but with higher cost. The efficiency of combining the two techniques was higher than using one of the two techniques alone. Moreover, the quantitative scale control of the two engineering techniques has a significant impact on the actual project benefits and costs.

  5. Reaction of North American neo-Thomism against the «Intelligent Design»

    Directory of Open Access Journals (Sweden)

    Desiderio Parrilla Martínez

    2017-08-01

    Full Text Available The doctrine of «Intelligent Design» formulated by Phillip E. Johnson, Michael Behe, William A. Dembski and Stephen C. Meyer is presented as a scientific alternative to neo-Darwinism. For philosophical naturalism or atheism is only a pseudo-science dependent of «Protestant creationism» and the literal biblical interpretation. The best philosophical critiques, however, come from American neo-Thomism. This paper presents the main arguments used by the Thomism in his polemic against the doctrine of «Intelligent Design».

  6. Norm based design of fault detectors

    DEFF Research Database (Denmark)

    Rank, Mike Lind; Niemann, Hans Henrik

    1999-01-01

    The design of fault detectors for fault detection and isolation (FDI) in dynamic systems is considered in this paper from a norm based point of view. An analysis of norm based threshold selection is given based on different formulations of FDI problems. Both the nominal FDI problem as well...

  7. Nature-inspired design of hybrid intelligent systems

    CERN Document Server

    Castillo, Oscar; Kacprzyk, Janusz

    2017-01-01

    This book highlights recent advances in the design of hybrid intelligent systems based on nature-inspired optimization and their application in areas such as intelligent control and robotics, pattern recognition, time series prediction, and optimization of complex problems. The book is divided into seven main parts, the first of which addresses theoretical aspects of and new concepts and algorithms based on type-2 and intuitionistic fuzzy logic systems. The second part focuses on neural network theory, and explores the applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The book’s third part presents enhancements to meta-heuristics based on fuzzy logic techniques and describes new nature-inspired optimization algorithms that employ fuzzy dynamic adaptation of parameters, while the fourth part presents diverse applications of nature-inspired optimization algorithms. In turn, the fifth part investigates applications of fuzzy logic in diverse areas, such as...

  8. Construction of a radiometer for pyroelectric detector and presentation of a model for detector design

    International Nuclear Information System (INIS)

    Siqueira, C.A. de.

    1987-01-01

    An expression has been developed for the pyroelectric voltage as a function of electric and thermal parameters of the detector. It has also been developed expressions for determination of unknown parameters from the experimentally obtained pyroelectric voltage curve as function of time and some other known information. It has also been shown figures of merit for characterization of the detectors, a study showing the detector performance dependence on each electric and thermal parameter and some illustrative experimental results. The radiometer designed and built for this work, is described. (author) [pt

  9. Design and Implementation of the ATLAS Detector Control System

    CERN Document Server

    Boterenbrood, H; Cook, J; Filimonov, V; Hallgren, B I; Heubers, W P J; Khomoutnikov, V; Ryabov, Yu; Varela, F

    2004-01-01

    The overall dimensions of the ATLAS experiment and its harsh environment, due to radiation and magnetic field, represent new challenges for the implementation of the Detector Control System. It supervises all hardware of the ATLAS detector, monitors the infrastructure of the experiment, and provides information exchange with the LHC accelerator. The system must allow for the operation of the different ATLAS sub-detectors in stand-alone mode, as required for calibration and debugging, as well as the coherent and integrated operation of all sub-detectors for physics data taking. For this reason, the Detector Control System is logically arranged to map the hierarchical organization of the ATLAS detector. Special requirements are placed onto the ATLAS Detector Control System because of the large number of distributed I/O channels and of the inaccessibility of the equipment during operation. Standardization is a crucial issue for the design and implementation of the control system because of the large variety of e...

  10. Designing Intelligent Tutoring Systems: A Personalization Strategy using Case-Based Reasoning and Multi-Agent Systems

    Directory of Open Access Journals (Sweden)

    Rosalía LAZA

    2013-05-01

    Full Text Available Intelligent Tutoring Systems (ITSs are educational systems that use artificial intelligence techniques for representing the knowledge. ITSs design is often criticized for being a complex and challenging process. In this article, we propose a framework for the ITSs design using Case Based Reasoning (CBR and Multiagent systems (MAS. The major advantage of using CBR is to allow the intelligent system to propose smart and quick solutions to problems, even in complex domains, avoiding the time necessary to derive those solutions from scratch. The use of intelligent agents and MAS architectures supports the retrieval of similar students models and the adaptation of teaching strategies according to the student profile. We describe deeply how the combination of both technologies helps to simplify the design of new ITSs and personalize the e-learning process for each student

  11. CMOS-TDI detector technology for reconnaissance application

    Science.gov (United States)

    Eckardt, Andreas; Reulke, Ralf; Jung, Melanie; Sengebusch, Karsten

    2014-10-01

    The Institute of Optical Sensor Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the institute's scientific results of the leading-edge detector design CMOS in a TDI (Time Delay and Integration) architecture. This project includes the technological design of future high or multi-spectral resolution spaceborne instruments and the possibility of higher integration. DLR OS and the Fraunhofer Institute for Microelectronic Circuits and Systems (IMS) in Duisburg were driving the technology of new detectors and the FPA design for future projects, new manufacturing accuracy and on-chip processing capability in order to keep pace with the ambitious scientific and user requirements. In combination with the engineering research, the current generation of space borne sensor systems is focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large-swath and high-spectral resolution with intelligent synchronization control, fast-readout ADC (analog digital converter) chains and new focal-plane concepts opens the door to new remote-sensing and smart deep-space instruments. The paper gives an overview of the detector development status and verification program at DLR, as well as of new control possibilities for CMOS-TDI detectors in synchronization control mode.

  12. An engineering design network for SSC detector development

    International Nuclear Information System (INIS)

    DiGiacomo, N.J.

    1990-01-01

    The detector systems that are being proposed to exploit the capabilities of the SSC are of a scale and scope that will make them among the most complex devices ever built. To successfully design and build these systems over the next decade, the authors must make use of integrated state of the art computer aided engineering and design (CAE/CAD) tools that have been developed and employed in industry. The challenge is to made these tools and associated engineering resources available to the spectrum of institutions - large and small universities, industries and national labs - involved in SSC detector development in such a way that each may contribute and participate in the most effective manner. The authors believe that powerful workstations running sophisticated modeling, analysis and simulation software, linked by high speed data networks and governed by modern configuration management methods offer the ideal means of arriving at the optimum detector configuration for physics at the SSC

  13. A framework for development of an intelligent system for design and manufacturing of stamping dies

    International Nuclear Information System (INIS)

    Hussein, H M A; Kumar, S

    2014-01-01

    An integration of computer aided design (CAD), computer aided process planning (CAPP) and computer aided manufacturing (CAM) is required for development of an intelligent system to design and manufacture stamping dies in sheet metal industries. In this paper, a framework for development of an intelligent system for design and manufacturing of stamping dies is proposed. In the proposed framework, the intelligent system is structured in form of various expert system modules for different activities of design and manufacturing of dies. All system modules are integrated with each other. The proposed system takes its input in form of a CAD file of sheet metal part, and then system modules automate all tasks related to design and manufacturing of stamping dies. Modules are coded using Visual Basic (VB) and developed on the platform of AutoCAD software

  14. A framework for development of an intelligent system for design and manufacturing of stamping dies

    Science.gov (United States)

    Hussein, H. M. A.; Kumar, S.

    2014-07-01

    An integration of computer aided design (CAD), computer aided process planning (CAPP) and computer aided manufacturing (CAM) is required for development of an intelligent system to design and manufacture stamping dies in sheet metal industries. In this paper, a framework for development of an intelligent system for design and manufacturing of stamping dies is proposed. In the proposed framework, the intelligent system is structured in form of various expert system modules for different activities of design and manufacturing of dies. All system modules are integrated with each other. The proposed system takes its input in form of a CAD file of sheet metal part, and then system modules automate all tasks related to design and manufacturing of stamping dies. Modules are coded using Visual Basic (VB) and developed on the platform of AutoCAD software.

  15. Automation of fusion first wall design using artificial intelligence technique

    International Nuclear Information System (INIS)

    Yoshimura, Shinobu; Yagawa, Genki; Mochizuki, Yoshihiko

    1990-01-01

    This paper describes the application of artificial intelligence techniques to a design automation of the fusion first wall to be operated in the complex environment where huge electromagnetic and thermal loading as well as heavy neutron irradiation occur. As a basic strategy of designing structure shape considering many coupled phenomena, an ordinary design procedure based on the generate and test strategy is adopted because of its simplicity and broad applicability. To automate the design procedure with maintaining its flexibility, extensibility and efficiency, artificial intelligence techniques are utilized in the following. An object-oriented knowledge representation technique is adopted to store knowledge modules, that is, objects, related to the first wall design, while a data-flow processing technique is utilized as an inference mechanism among the knowledge modules. These techniques realize the flexibility and extensibility of the system. Moreover, as an efficient design modification mechanism, which is essential in a design process, an empirical approach based on experts' empirical knowledge and a mathematical approach based on a kind of numerical sensitivity analysis are introduced. The developed system is applied to a simple example of the design of a two-dimensional model of the first wall with a cooling channel, and its fundamental performance is clearly demonstrated. (author)

  16. A Components Database Design and Implementation for Accelerators and Detectors

    International Nuclear Information System (INIS)

    Chan, A.; Meyer, S.

    2011-01-01

    Many accelerator and detector systems being fabricated for the PEP-II Accelerator and BABAR Detector needed configuration control and calibration measurements tracked for their components. Instead of building a database for each distinct system, a Components Database was designed and implemented that can encompass any type of component and any type of measurement. In this paper we describe this database design that is especially suited for the engineering and fabrication processes of the accelerator and detector environments where there are thousands of unique component types. We give examples of information stored in the Components Database, which includes accelerator configuration, calibration measurements, fabrication history, design specifications, inventory, etc. The World Wide Web interface is used to access the data, and templates are available for international collaborations to collect data off-line.

  17. Design of readout drivers for ATLAS pixel detectors using field programmable gate arrays

    CERN Document Server

    Sivasubramaniyan, Sriram

    Microstrip detectors are an integral patt of high energy physics research . Special protocols are used to transmit the data from these detectors . To readout the data from such detectors specialized instrumentation have to be designed . To achieve this task, creative and innovative high speed algorithms were designed simulated and implemented in Field Programmable gate arrays, using CAD/CAE tools. The simulation results indicated that these algorithms would be able to perform all the required tasks quickly and efficiently. This thesis describes the design of data acquisition system called the Readout Drivers (ROD) . It focuses on the ROD data path for ATLAS Pixel detectors. The data path will be an integrated part of Readout Drivers setup to decode the data from the silicon micro strip detectors and pixel detectors. This research also includes the design of Readout Driver controller. This Module is used to control the operation of the ROD. This module is responsible for the operation of the Pixel decoders bas...

  18. How Biology Teachers Can Respond to Intelligent Design

    Science.gov (United States)

    Mackenzie, Jim

    2010-01-01

    Teachers of biology and related subjects are increasingly meeting objections from students and their parents to the teaching of evolution and the exclusion of what is called the theory of Intelligent Design. This paper attempts to draw together arguments and evidence which may be used by such teachers. Four lessons are drawn from the 1982…

  19. Heuristic decision model for intelligent nuclear power systems design

    International Nuclear Information System (INIS)

    Nassersharif, B.; Portal, M.G.; Gaeta, M.J.

    1989-01-01

    The objective of this project was to investigate intelligent nuclear power systems design. A theoretical model of the design process has been developed. A fundamental process in this model is the heuristic decision making for design (i.e., selection of methods, components, materials, etc.). Rule-based expert systems do not provide the completeness that is necessary to generate good design. A new method, based on the fuzzy set theory, has been developed and is presented here. A feedwater system knowledge base (KB) was developed for a prototype software experiment to benchmark the theory

  20. Mechanical design of the CDF SVX II silicon vertex detector

    International Nuclear Information System (INIS)

    Skarha, J.E.

    1994-08-01

    A next generation silicon vertex detector is planned at CDF for the 1998 Tevatron collider run with the Main Injector. The SVX II silicon vertex detector will allow high luminosity data-taking, enable online triggering of secondary vertex production, and greatly increase the acceptance for heavy flavor physics at CDF. The design specifications, geometric layout, and early mechanical prototyping work for this detector are discussed

  1. On-line estimator/detector design for a plutonium nitrate concentrator unit

    International Nuclear Information System (INIS)

    Candy, J.V.; Rozsa, R.B.

    1979-04-01

    In this report we consider the design of a nonlinear estimator to be used in conjunction with on-line detectors for a plutonium/concentrator. Using a complex state-of-the-art process model to simulate realistic data, we show that the estimator performance using a simplified process model is adequate over a wide range of operation. The estimator is used to simulate and characterize some on-line diversion detectors, i.e., detectors designed to indicate if some of the critical special nuclear material in process is stolen or diverted from the unit. Several different diversion scenarios are presented. Simulation results indicate that the estimators and detectors yielded reasonable performance for the scenarios investigated

  2. Intelligent adaptive systems an interaction-centered design perspective

    CERN Document Server

    Hou, Ming; Burns, Catherine

    2014-01-01

    A synthesis of recent research and developments on intelligent adaptive systems from the HF (human factors) and HCI (human-computer interaction) domains, this book provides integrated design guidance and recommendations for researchers and system developers. It addresses a recognized lack of integration between the HF and HCI research communities, which has led to inconsistencies between the research approaches adopted, and a lack of exploitation of research from one field by the other. The book establishes design guidance through the review of conceptual frameworks, analytical methodologies,

  3. Design and Development of Intelligent Electrodes for Future Digital Health Monitoring: A Review

    Science.gov (United States)

    Khairuddin, A. M.; Azir, K. N. F. Ku; Kan, P. Eh

    2018-03-01

    Electrodes are sensors used in electrocardiography (ECG) monitoring system to diagnose heart diseases. Over the years, diverse types of electrodes have been designed and developed to improve ECG monitoring system. However, more recently, with the technological advances and capabilities from the Internet of Things (IoT), cloud computing and data analytics in personalized healthcare, researchers are attempting to design and develop more effective as well as flexible ECG devices by using intelligent electrodes. This paper reviews previous works on electrodes used in electrocardiography (ECG) monitoring devices to identify the key ftures for designing and developing intelligent electrodes in digital health monitoring devices.

  4. Modelling physics detectors in a computer aided design system for simulation purposes

    International Nuclear Information System (INIS)

    Ahvenainen, J.; Oksakivi, T.; Vuoskoski, J.

    1995-01-01

    The possibility of transferring physics detector models from computer aided design systems into physics simulation packages like GEANT is receiving increasing attention. The problem of exporting detector models constructed in CAD systems into GEANT is well known. We discuss the problem and describe an application, called DDT, which allows one to design detector models in a CAD system and then transfer the models into GEANT for simulation purposes. (orig.)

  5. A novel design of a personal nuclear track detector for ambient Rn

    International Nuclear Information System (INIS)

    Margaliot, M.; Even, O.; Herman, R.

    1997-01-01

    In some occupations, workers spend a part of their time underground, in closed and unventilated spaces, while most of their time is spent in the open air. The case in hand is a group of the 'Bezek' telephone technicians, whose work includes spending a few hours daily in small, coarsely finished and unventilated tunnels in which telephone branching boxes are located. The rest of their time they work outdoors, and a small part of it is spent in offices. The Rn levels in a few telephone branching tunnels were measured and were found to be rather high (levels of 3000 - 5000 Bq/m 3 are common). The average exposure of the workers is however much lower, due to short time spent in the tunnels, versus the longer time spent outdoors, and the low Rn level there. To obtain a well founded estimation of their actual commutative Rn exposure, a new integrative Rn detector was designed, which is attached to the workers clothing during the whole working day, and serves as a personal Rn detector, rather than as the a conventional area monitor. The detector element itself consists of a Nuclear Track Detector made of dosimetry grade CR-39. The function of the detector is how ever dependent mainly on the geometrical design of the housing of the detector. The properties of these detectors are, however, highly dependent on the design of the detectors housing.The design itself, it's theoretical efficiency, it's actual calibration process and it's calibration factor are presented. Mechanical reliability has been established in some 3 years of operation both as a fixed area monitor and as a personal portable detector. (authors)

  6. Design of a readout ASIC for gas detectors with self-amplification

    International Nuclear Information System (INIS)

    Deng Zhi; Liu Yinong

    2009-01-01

    A readout ASIC has been designed for gas detectors with self-amplification such as GEM and RPC. It provides amplification and shaping of the detector signals and buffers them to the free running ADCs. The charge gain and the shaping time can be adjusted. The programmability of gain and shaping time is very convenient for studying detector performance under different gas gain and also expands the application range of the chip. The ENC increases as charge gain decreases below 10 mV/fC because the noise from the shaper becomes significant. The chip is designed in Chartered 0.35μm 2P4M CMOS process. Detailed design and simulation results are described in the paper. (authors)

  7. Intelligent Digitized Design Systems for the Management of Design Knowledge Related to Nuclear R&D Institutes

    International Nuclear Information System (INIS)

    Zheng, M.; Minglu, W.

    2016-01-01

    Full text: Nuclear R&D is highly knowledge-intensive. With the rapid advent and development of modern information technology, knowledge management in nuclear industry has been provided with new approaches and possibilities. This article introduces a framework of intelligent digitized design system in nuclear R&D phase and finds answer to knowledge application, internal process optimization, experience feedback and further innovation. This framework utilizing digitalization and informatization finds a way to incorporate the process of the “Socialization, Externalization, Combination, Internalization” (SECI) model which include intelligent design process, integrated design software, smart verification and validation simulation platform, experiment data management platform, online monitoring platform and digital twin nuclear power plant, etc. The following case study gives a clear picture of what and how knowledge management has been performed under this framework. Furthermore, important lessons have been summarized. (author

  8. Design of FPGA-based radiation tolerant quench detectors for LHC

    Science.gov (United States)

    Steckert, J.; Skoczen, A.

    2017-04-01

    The Large Hadron Collider (LHC) comprises many superconducting circuits. Most elements of these circuits require active protection. The functionality of the quench detectors was initially implemented as microcontroller based equipment. After the initial stage of the LHC operation with beams the introduction of a new type of quench detector began. This article presents briefly the main ideas and architectures applied to the design and the validation of FPGA-based quench detectors.

  9. Design of FPGA-based radiation tolerant quench detectors for LHC

    International Nuclear Information System (INIS)

    Steckert, J.; Skoczen, A.

    2017-01-01

    The Large Hadron Collider (LHC) comprises many superconducting circuits. Most elements of these circuits require active protection. The functionality of the quench detectors was initially implemented as microcontroller based equipment. After the initial stage of the LHC operation with beams the introduction of a new type of quench detector began. This article presents briefly the main ideas and architectures applied to the design and the validation of FPGA-based quench detectors.

  10. The design and results of an algorithm for intelligent ground vehicles

    Science.gov (United States)

    Duncan, Matthew; Milam, Justin; Tote, Caleb; Riggins, Robert N.

    2010-01-01

    This paper addresses the design, design method, test platform, and test results of an algorithm used in autonomous navigation for intelligent vehicles. The Bluefield State College (BSC) team created this algorithm for its 2009 Intelligent Ground Vehicle Competition (IGVC) robot called Anassa V. The BSC robotics team is comprised of undergraduate computer science, engineering technology, marketing students, and one robotics faculty advisor. The team has participated in IGVC since the year 2000. A major part of the design process that the BSC team uses each year for IGVC is a fully documented "Post-IGVC Analysis." Over the nine years since 2000, the lessons the students learned from these analyses have resulted in an ever-improving, highly successful autonomous algorithm. The algorithm employed in Anassa V is a culmination of past successes and new ideas, resulting in Anassa V earning several excellent IGVC 2009 performance awards, including third place overall. The paper will discuss all aspects of the design of this autonomous robotic system, beginning with the design process and ending with test results for both simulation and real environments.

  11. Application of Wireless Intelligent Control System for HPS Lamps and LEDs Combined Illumination in Road Tunnel

    Science.gov (United States)

    Lai, Jinxing; Qiu, Junling; Chen, Jianxun; Wang, Yaqiong; Fan, Haobo

    2014-01-01

    Because of the particularity of the environment in the tunnel, the rational tunnel illumination system should be developed, so as to optimize the tunnel environment. Considering the high cost of traditional tunnel illumination system with high-pressure sodium (HPS) lamps as well as the effect of a single light source on tunnel entrance, the energy-saving illumination system with HPS lamps and LEDs combined illumination in road tunnel, which could make full use of these two kinds of lamps, was proposed. The wireless intelligent control system based on HPS lamps and LEDs combined illumination and microcontrol unit (MCU) Si1000 wireless communication technology was designed. And the remote monitoring, wireless communication, and PWM dimming module of this system were designed emphatically. Intensity detector and vehicle flow detector can be configured in wireless intelligent control system, which gather the information to the master control unit, and then the information is sent to the monitoring center through the Ethernet. The control strategies are got by the monitoring center according to the calculated results, and the control unit wirelessly sends parameters to lamps, which adjust the luminance of each segment of the tunnel and realize the wireless intelligent control of combined illumination in road tunnel. PMID:25587266

  12. Burnout detector design for heat transfer experiments

    International Nuclear Information System (INIS)

    Dias, H.F.

    1992-01-01

    This paper describes the design of an burnout detector for heat transfer experiments, applied during tests for optimization of fuel elements for PWR reactors. The burnout detector avoids the fuel rods destruction during the experiments at the Centro de Desenvolvimento da Tecnologia Nuclear. The detector evaluates the temperature changes over the fuel rods in the temperature changes over the fuel rods in the area where the burnout phenomenon could be anticipated. As soon as the phenomenon appears, the system power supply is turned off. The thermal Circuit No. 1, during the experiments, had been composed by nine fuel rods feed parallelly by the same power supply. Fine copper wires had been attached at the centre and at the ends of the fuel rod to take two Wheat stone bridge arms. The detector had been applied across the bridge diagonals, which must be balanced the burnout excursion can be detected as a small but fast increase of the signal over the detector. Large scale experiments had been carried out to compare the resistance bridge performance against a thermocouple attached through the fuel rod wall. These experiments had been showed us the advantages of the first method over the last, because the bridge evaluates the whole fuel rod, while the thermocouple evaluates only the area where it had been attached. (author)

  13. Design of data acquisition system for GEM detector

    International Nuclear Information System (INIS)

    Lu Jianliang; Chen Ziyu; Shen Ji; Jin Xi

    2011-01-01

    It describes the design and realization of the USB 2.0 high speed data acquisition devise which is used in the readout electronics of the GEM (gas electron multiplier) detector. By using of the USB Microcontroller EZ-USB FX2 CY7C68013A, high speed ADC and FPGA, high-speed data rate of data acquisition and transmission was realized. The data rate reaches to 20 MByte/s, meeting the requirements of data acquisition and transmission of the detector. (authors)

  14. SPECT detector system design based on embedded system

    International Nuclear Information System (INIS)

    Zhang Weizheng; Zhao Shujun; Zhang Lei; Sun Yuanling

    2007-01-01

    A single-photon emission computed tomography detector system based on embedded Linux designed. This system is composed of detector module, data acquisition module, ARM MPU module, network interface communication module and human machine interface module. Its software uses multithreading technology based on embedded Linux. It can achieve high speed data acquisition, real-time data correction and network data communication. It can accelerate the data acquisition and decrease the dead time. The accuracy and the stability of the system can be improved. (authors)

  15. tkLayout: a design tool for innovative silicon tracking detectors

    Science.gov (United States)

    Bianchi, G.

    2014-03-01

    A new CMS tracker is scheduled to become operational for the LHC Phase 2 upgrade in the early 2020's. tkLayout is a software package developed to create 3d models for the design of the CMS tracker and to evaluate its fundamental performance figures. The new tracker will have to cope with much higher luminosity conditions, resulting in increased track density, harsher radiation exposure and, especially, much higher data acquisition bandwidth, such that equipping the tracker with triggering capabilities is envisaged. The design of an innovative detector involves deciding on an architecture offering the best trade-off among many figures of merit, such as tracking resolution, power dissipation, bandwidth, cost and so on. Quantitatively evaluating these figures of merit as early as possible in the design phase is of capital importance and it is best done with the aid of software models. tkLayout is a flexible modeling tool: new performance estimates and support for different detector geometries can be quickly added, thanks to its modular structure. Besides, the software executes very quickly (about two minutes), so that many possible architectural variations can be rapidly modeled and compared, to help in the choice of a viable detector layout and then to optimize it. A tracker geometry is generated from simple configuration files, defining the module types, layout and materials. Support structures are automatically added and services routed to provide a realistic tracker description. The tracker geometries thus generated can be exported to the standard CMS simulation framework (CMSSW) for full Monte Carlo studies. tkLayout has proven essential in giving guidance to CMS in studying different detector layouts and exploring the feasibility of innovative solutions for tracking detectors, in terms of design, performance and projected costs. This tool has been one of the keys to making important design decisions for over five years now and has also enabled project engineers

  16. Physics and Detectors at CLIC CLIC Conceptual Design Report

    CERN Document Server

    Miyamoto, Akiya; Stanitzki,Marcel; Weerts, Harry

    2012-01-01

    This report describes the physics potential and experiments at a future multi- TeV e+e− collider based on the Compact Linear Collider (CLIC) technology. The physics scenarios considered include precision measurements of known quantities as well as the discovery potential of physics beyond the Standard Model. The report describes the detector performance required at CLIC, taking into account the interaction point environment and especially beaminduced backgrounds. Two detector concepts, designed around highly granular calorimeters and based on concepts studied for the International Linear Collider (ILC), are described and used to study the physics reach and potential of such a collider. Detector subsystems and the principal engineering challenges are illustrated. The overall performance of these CLIC detector concepts is demonstrated by studies of the performance of individual subdetector systems as well as complete simulation studies of six benchmark physics processes. These full detector simulation and rec...

  17. Design and implementation of an expert system for the detector control systems of the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Henss, Tobias

    2008-12-01

    In the framework of this thesis an expert system ''Pixel-Advisor'' for the control system of the pixel detector was designed and implemented. This supports the operational personnel in the diagnosis and removal of possible problems, which are in connection with the detector control system and unburdens the few available DCS experts

  18. A bottom collider vertex detector design, Monte-Carlo simulation and analysis package

    International Nuclear Information System (INIS)

    Lebrun, P.

    1990-01-01

    A detailed simulation of the BCD vertex detector is underway. Specifications and global design issues are briefly reviewed. The BCD design based on double sided strip detector is described in more detail. The GEANT3-based Monte-Carlo program and the analysis package used to estimate detector performance are discussed in detail. The current status of the expected resolution and signal to noise ratio for the ''golden'' CP violating mode B d → π + π - is presented. These calculations have been done at FNAL energy (√s = 2.0 TeV). Emphasis is placed on design issues, analysis techniques and related software rather than physics potentials. 20 refs., 46 figs

  19. The RS-485 communication system design of the waste steel radioactivity detector system

    International Nuclear Information System (INIS)

    Zhang Yongli

    2014-01-01

    The importance and schematic structure of the waste steel radioactivity detector system is given firstly in this paper, and then the RS-485 communication system design including the circuit and program of the waste steel radioactivity detector system is provided. The test result of RS-485 communication system is also introduced, that shows the design completely meets the requirements of the waste steel radioactivity detector system. (author)

  20. Gamma-ray detectors for intelligent, hand-held radiation monitors

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1983-01-01

    Small radiation detectors based on HgI 2 , bismuth germanate (BGO), plastic, or NaI(Tl) detector materials were evaluated for use in small, lighweight radiation monitors. The two denser materials, HgI 2 and BGO, had poor resolution at low-energy and thus performed less well than NaI(Tl) in detecting low-energy gamma rays from bare, enriched uranium. The plastic scintillator, a Compton recoil detector, also performed less well at low gamma-ray energy. Two small NaI(Tl) detectors were suitable for detecting bare uranium and sheilded plutonium. One became part of a new lightweight hand-held monitor and the other found uses as a pole-mounted detector for monitoring hard-to-reach locations

  1. Expert System for 3D Collar Intelligent Design

    Institute of Scientific and Technical Information of China (English)

    LIU Yan; GENG Zhao-feng

    2004-01-01

    A method to set up 3D collar prototype is developed in this paper by using the technique of cubic spline and bicubic surface patch. Then the relationship between the parameters of 3D collar prototype and different collar styles are studied. Based on the relationship, we can develop some algorithms of transferring style requirements to the parameters value of the collar prototype, and obtain some generation rules for the design of 3D collar style. As such, the knowledge base can be constructed, and the intelligent design system of 3D collar style is built. Using the system, various 3D collar styles can be designed automatically to satisfy various style requirements.

  2. Design of Sail-Assisted Unmanned Surface Vehicle Intelligent Control System

    Directory of Open Access Journals (Sweden)

    Yong Ma

    2016-01-01

    Full Text Available To achieve the wind sail-assisted function of the unmanned surface vehicle (USV, this work focuses on the design problems of the sail-assisted USV intelligent control systems (SUICS and illustrates the implementation process of the SUICS. The SUICS consists of the communication system, the sensor system, the PC platform, and the lower machine platform. To make full use of the wind energy, in the SUICS, we propose the sail angle of attack automatic adjustment (Sail_4A algorithm and present the realization flow for each subsystem of the SUICS. By using the test boat, the design and implementation of the SUICS are fulfilled systematically. Experiments verify the performance and effectiveness of our SUICS. The SUICS enhances the intelligent utility of sustainable wind energy for the sail-assisted USV significantly and plays a vital role in shipping energy-saving emission reduction requirements issued by International Maritime Organization (IMO.

  3. CATO: a CAD tool for intelligent design of optical networks and interconnects

    Science.gov (United States)

    Chlamtac, Imrich; Ciesielski, Maciej; Fumagalli, Andrea F.; Ruszczyk, Chester; Wedzinga, Gosse

    1997-10-01

    Increasing communication speed requirements have created a great interest in very high speed optical and all-optical networks and interconnects. The design of these optical systems is a highly complex task, requiring the simultaneous optimization of various parts of the system, ranging from optical components' characteristics to access protocol techniques. Currently there are no computer aided design (CAD) tools on the market to support the interrelated design of all parts of optical communication systems, thus the designer has to rely on costly and time consuming testbed evaluations. The objective of the CATO (CAD tool for optical networks and interconnects) project is to develop a prototype of an intelligent CAD tool for the specification, design, simulation and optimization of optical communication networks. CATO allows the user to build an abstract, possible incomplete, model of the system, and determine its expected performance. Based on design constraints provided by the user, CATO will automatically complete an optimum design, using mathematical programming techniques, intelligent search methods and artificial intelligence (AI). Initial design and testing of a CATO prototype (CATO-1) has been completed recently. The objective was to prove the feasibility of combining AI techniques, simulation techniques, an optical device library and a graphical user interface into a flexible CAD tool for obtaining optimal communication network designs in terms of system cost and performance. CATO-1 is an experimental tool for designing packet-switching wavelength division multiplexing all-optical communication systems using a LAN/MAN ring topology as the underlying network. The two specific AI algorithms incorporated are simulated annealing and a genetic algorithm. CATO-1 finds the optimal number of transceivers for each network node, using an objective function that includes the cost of the devices and the overall system performance.

  4. Design criteria for a hemispherical detector for LET measurements

    International Nuclear Information System (INIS)

    Schell, M.C.; DeLuca, P.M. Jr.; Pearson, D.W.; Attix, F.H.

    1980-01-01

    A detector for the direct measurement of the Linear Energy Transfer (LET) in cylindrical geometry was developed by Brandan and DeLuca. The detector successfully measured the LET of protons and a fraction of the heavy charged particles generated in cylindrical A150 plastic and graphite walls by 14.8 MeV neutrons. In this report, we present design tests for the hemispherical LET detector which will measure the LET of charged particles in spherical geometry and allow comparison with calculated LET spectra. The hemispherical LET detector will also provide a data base for radiobiological predictions with the Track Structure Model by Katz. A comparison of predictions of radiobiological effects by the Theory of Dual Radiation Action and the Track Structure Model by Edwards and the authors indicate that the Track Structure Model predicts cell survival as a function of dose more accurately and hence an additional motivation for the present construction of the hemispherical LET detector

  5. IC design challenges for ambient intelligence

    NARCIS (Netherlands)

    Aarts, E.H.L.; Roovers, R.L.J.

    2003-01-01

    The vision of ambient intelligence opens a world of unprecedented experiences: the interaction of people with electronic devices is changed as contextual awareness, natural interfaces and ubiquitous availability of information are realized. We analyze the consequences of the ambient intelligence

  6. The design of intelligent support systems for nuclear reactor operators

    International Nuclear Information System (INIS)

    Bernard, J.A.

    1992-01-01

    This paper identifies factors relevant to the design of intelligent support systems and their use for the provision of real-time diagnostic information. As such, it constitutes a followup to the state-of-the-art review that was previously published by Bernard and Washio on the utilization of expert systems within the nuclear industry. Some major differences between intelligent-support tools and conventional expert systems are enumerated. In summary, conventional expert systems that encode experimental knowledge in production rules are not suitable vehicle for the creation of operator support systems. The principal difficulty is the need for real-time operation. This in turn means that intelligent support systems will have knowledge bases derived from temporally accurate plant models, inference engines that permit revisions in the search process to accommodate revised data, and man-machine interfaces that do not require any human input. Such systems will be heavily instrumented, and the associated knowledge bases will require a hierarchical organization to emulate human approaches to analysis

  7. A Polyethylene Moderator Design for Auxiliary Ex-core Neutron Detector

    International Nuclear Information System (INIS)

    Lee, Hwan Soo; Shin, Ho Cheol; Bae, Seong Man

    2012-01-01

    The moderator of detector assembly in ENFMS (Excore Neutron Flux Monitoring System) plays a key role for slowing down from fast neutron to thermal neutron at outside of reactor vessel. Since neutron monitoring detector such as BF3, fission chamber detectors mostly responds to thermal neutron, moderator should be included to neutron detector assembly to detect more efficiently. Generally, resin has been used for moderator of detector in ENFMS of OPR1000 and APR1400, because resin has stable thermal resistance, availability and high neutron moderation characteristics due to the light atomic materials. In case of an auxiliary ex-core neutron detector, the polyethylene is suggested that polyethylene has a better moderator rather than resin, then, the amounts of moderator are reduced. This is important thing for auxiliary ex-core detector equipment at reactor, because the auxiliary equipment should affect minimally to another system. In this study, polyethylene moderator is designed for auxiliary ex-core neutron detector. To find out the optimal thickness of polyethylene moderator, preliminary simulation and experiments are performed. And sensitivity simulation for detector moderator at actual reactor is performed by DORT code

  8. Design of data acquisition system for 2D-ARRAY ionization chamber detector

    International Nuclear Information System (INIS)

    He Chaohui; Xing Guilai; Wu Zhifang; Wang Zhentao

    2012-01-01

    The introduction is given on the design and development of data acquisition system for 2D-ARRAY ionization chamber detector, which is used for dose verification of tumor radiotherapy. The paper describes the structure and the principle of the 2D-ARRAY ionization chamber detector system in detail, and focuses on the discussion on the design process of the detector's data acquisition system and the development of data acquisition system which is constituted by preamplifier, preamplifier control board and data acquisition board. The client can setup the parameters of the detector system via TCP/IP and do data processing such as high speed data collection and acquisition, further operation and so on. (authors)

  9. Ecological Design of Cooperative Human-Machine Interfaces for Safety of Intelligent Transport Systems

    Directory of Open Access Journals (Sweden)

    Orekhov Aleksandr

    2016-01-01

    Full Text Available The paper describes research results in the domain of cooperative intelligent transport systems. The requirements for human-machine interface considering safety issue of for intelligent transport systems (ITSare analyzed. Profiling of the requirements to cooperative human-machine interface (CHMI for such systems including requirements to usability and safety is based on a set of standards for ITSs. An approach and design technique of cooperative human-machine interface for ITSs are suggested. The architecture of cloud-based CHMI for intelligent transport systems has been developed. The prototype of software system CHMI4ITSis described.

  10. Design of a wire imaging synchrotron radiation detector

    International Nuclear Information System (INIS)

    Kent, J.; Gomez-Cadenas, J.J.; Hogan, A.; King, M.; Rowe, W.; Watson, S.; Von Zanthier, C.; Briggs, D.D.; Levi, M.

    1990-01-01

    This paper documents the design of a detector invented to measure the positions of synchrotron radiation beams for the precision energy spectrometers of the Stanford Linear Collider (SLC). The energy measurements involve the determination, on a pulse-by-pulse basis, of the separation of pairs of intense beams of synchrotron photons in the MeV energy range. The detector intercepts the beams with arrays of fine wires. The ejection of Compton recoil electrons results in charges being developed in the wires, thus enabling a determination of beam positions. 10 refs., 4 figs

  11. A Review of Fuzzy Logic and Neural Network Based Intelligent Control Design for Discrete-Time Systems

    Directory of Open Access Journals (Sweden)

    Yiming Jiang

    2016-01-01

    Full Text Available Over the last few decades, the intelligent control methods such as fuzzy logic control (FLC and neural network (NN control have been successfully used in various applications. The rapid development of digital computer based control systems requires control signals to be calculated in a digital or discrete-time form. In this background, the intelligent control methods developed for discrete-time systems have drawn great attentions. This survey aims to present a summary of the state of the art of the design of FLC and NN-based intelligent control for discrete-time systems. For discrete-time FLC systems, numerous remarkable design approaches are introduced and a series of efficient methods to deal with the robustness, stability, and time delay of FLC discrete-time systems are recommended. Techniques for NN-based intelligent control for discrete-time systems, such as adaptive methods and adaptive dynamic programming approaches, are also reviewed. Overall, this paper is devoted to make a brief summary for recent progresses in FLC and NN-based intelligent control design for discrete-time systems as well as to present our thoughts and considerations of recent trends and potential research directions in this area.

  12. Design and construction of a Cherenkov detector for Compton polarimetry at the ILC

    International Nuclear Information System (INIS)

    Bartels, Christoph

    2010-11-01

    This paper describes the design and construction of a Cherenkov detector conceived with regard to high energy Compton polarimeters for the International Linear Collider, where beam diagnostic systems of unprecedented precision must complement the interaction region detectors to pursue an ambitious physics programme. Besides the design of the Cherenkov detector, detailed simulation studies and first testbeam results are presented. Good agreement of beam data with expectations from Monte Carlo simulations is observed. (orig.)

  13. Design and construction of a Cherenkov detector for Compton polarimetry at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Christoph [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Ebert, Joachim; Hartin, Anthony; Helebrant, Christian; Kaefer, Daniela; List, Jenny [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-11-15

    This paper describes the design and construction of a Cherenkov detector conceived with regard to high energy Compton polarimeters for the International Linear Collider, where beam diagnostic systems of unprecedented precision must complement the interaction region detectors to pursue an ambitious physics programme. Besides the design of the Cherenkov detector, detailed simulation studies and first testbeam results are presented. Good agreement of beam data with expectations from Monte Carlo simulations is observed. (orig.)

  14. Implications of intelligent, integrated microsystems for product design and development

    International Nuclear Information System (INIS)

    MYERS, DAVID R.; MCWHORTER, PAUL J.

    2000-01-01

    Intelligent, integrated microsystems combine some or all of the functions of sensing, processing information, actuation, and communication within a single integrated package, and preferably upon a single silicon chip. As the elements of these highly integrated solutions interact strongly with each other, the microsystem can be neither designed nor fabricated piecemeal, in contrast to the more familiar assembled products. Driven by technological imperatives, microsystems will best be developed by multi-disciplinary teams, most likely within the flatter, less hierarchical organizations. Standardization of design and process tools around a single, dominant technology will expedite economically viable operation under a common production infrastructure. The production base for intelligent, integrated microsystems has elements in common with the mathematical theory of chaos. Similar to chaos theory, the development of microsystems technology will be strongly dependent on, and optimized to, the initial product requirements that will drive standardization--thereby further rewarding early entrants to integrated microsystem technology

  15. Technical Design Report for the: PANDA Micro Vertex Detector

    CERN Document Server

    Erni, W; Krusche, B; Steinacher, M; Heng, Y; Liu, Z; Liu, H; Shen, X; Wang, Q; Xu, H; Albrecht, M; Becker, J; Eickel, K; Feldbauer, F; Fink, M; Friedel, P; Heinsius, F H; Held, T; Koch, H; Kopf, B; Leyhe, M; Motzko, C; Pelizäus, M; Pychy, J; Roth, B; Schröder, T; Schulze, J; Steinke, M; Trifterer, T; Wiedner, U; Zhong, J; Beck, R; Becker, M; Bianco, S; Brinkmann, K -Th; Hammann, C; Hinterberger, F; Jäkel, R; Kaiser, D; Kliemt, R; Koop, K; Schmidt, C; Schnell, R; Thoma, U; Vlasov, P; Wendel, C; Winnebeck, A; Würschig, Th; Zaunick, H -G; Bianconi, A; Bragadireanu, M; Caprini, M; Ciubancan, M; Pantea, D; Tarta, P -D; De Napoli, M; Giacoppo, F; Rapisarda, E; Sfienti, C; Fiutowski, T; Idzik, N; Mindur, B; Przyborowski, D; Swientek, K; Bialkowski, E; Budzanowski, A; Czech, B; Kliczewski, S; Kozela, A; Kulessa, P; Lebiedowicz, P; Malgorzata, K; Pysz, K; Schäfer, W; Siudak, R; Szczurek, A; Brandys, P; Czyzewski, T; Czyzycki, W; Domagala, M; Hawryluk, M; Filo, G; Kwiatkowski, D; Lisowski, E; Lisowski, F; Bardan, W; Gil, D; Kamys, B; Kistryn, St; Korcyl, K; Krzemieñ, W; Magiera, A; Moskal, P; Rudy, Z; Salabura, P; Smyrski, J; Wroñska, A; Al-Turany, M; Arora, R; Augustin, I; Deppe, H; Dutta, D; Flemming, H; Götzen, K; Hohler, G; Karabowicz, R; Lehmann, D; Lewandowski, B; Lühning, J; Maas, F; Orth, H; Peters, K; Saito, T; Schepers, G; Schmidt, C J; Schmitt, L; Schwarz, C; Schwiening, J; Voss, B; Wieczorek, P; Wilms, A; Abazov, V M; Alexeev, G D; Arefiev, V A; Astakhov, V I; Barabanov, M Yu; Batyunya, B V; Davydov, Yu I; Dodokhov, V Kh; Efremov, A A; Fedunov, A G; Feshchenko, A A; Galoyan, A S; Grigoryan, S; Karmokov, A; Koshurnikov, E K; Lobanov, V I; Lobanov, Yu Yu; Makarov, A F; Malinina, L V; Malyshev, V L; Mustafaev, G A; Olshevski, A G; Pasyuk, M A; Perevalova, E A; Piskun, A A; Pocheptsov, T A; Pontecorvo, G; Rodionov, V K; Rogov, Yu N; Salmin, R A; Samartsev, A G; Sapozhnikov, M G; Shabratova, G S; Skachkova, A N; Skachkov, N B; Strokovsky, E A; Suleimanov, M K; Teshev, R Sh; Tokmenin, V V; Uzhinsky, V V; Vodopyanov, A S; Zaporozhets, S A; Zhuravlev, N I; Zorin, A G; Branford, D; Glazier, D; Watts, D; Woods, P; Britting, A; Eyrich, W; Lehmann, A; Uhlig, F; Dobbs, S; Metreveli, Z; Seth, K; Tann, B; Tomaradze, A; Bettoni, D; Carassiti, V; Dalpiaz, P; Drago, A; Fioravanti, E; Garzia, I; Negrini, M; Savriè, M; Stancari, G; Dulach, B; Gianotti, P; Guaraldo, C; Lucherini, V; Pace, E; Bersani, A; Macri, M; Marinelli, M; Parodi, R F; Dormenev, V; Drexler, P; Düren, M; Eisner, T; Foehl, K; Hayrapetyan, A; Koch, P; Krïoch, B; Kühn, W; Lange, S; Liang, Y; Liu, M; Merle, O; Metag, V; Moritz, M; Nanova, M; Novotny, R; Spruck, B; Stenzel, H; Strackbein, C; Thiel, M; Wang, Q; Clarkson, T; Euan, C; Hill, G; Hoek, M; Ireland, D; Kaiser, R; Keri, T; Lehmann, I; Livingston, K; Lumsden, P; MacGregor, D; McKinnon, B; Montgomery, R; Murray, M; Protopopescu, D; Rosner, G; Seitz, B; Yang, G; Babai, M; Biegun, A K; Glazenborg-Kluttig, A; Guliyev, E; Jothi, V S; Kavatsyuk, M; Lemmens, P; Löhner, H; Messchendorp, J; Poelman, T; Smit, H; van der Weele, J C; Sohlbach, H; Büscher, M; Dosdall, R; Dzhygadlo, R; Esch, S; Gillitzer, A; Goldenbaum, F; Grunwald, D; Jha, V; Kemmerling, G; Kleines, H; Lehrach, A; Maier, R; Mertens, M; Ohm, H; Pohl, D L; Prasuhn, D; Randriamalala, T; Ritman, J; Roeder, M; Sterzenbach, G; Stockmanns, T; Wintz, P; Wüstner, P; Xu, H; Kisiel, J; Li, S; Li, Z; Sun, Z; Xu, H; Fissum, K; Hansen, K; Isaksson, L; Lundin, M; Schröder, B; Achenbach, P; Denig, A; Distler, M; Fritsch, M; Kangh, D; Karavdina, A; Lauth, W; Michel, M; Espi, M C Mora; Pochodzalla, J; Sanchez, S; Sanchez-Lorente, A; Sfienti, C; Weber, T; Dormenev, V I; Fedorov, A A; Korzhik, M V; Missevitch, O V; Boukharov, A; Malyshev, O; Marishev, I; Semenov, A; Varma, R; Höppner, C; Ketzer, B; Konorov, I; Mann, A; Neubert, S; Paul, S; Vandenbroucke, M; Zhang, Q; Khoukaz, A; Rausmann, T; Täschner, A; Wessels, J; Baldin, E; Kotov, K; Peleganchuk, S; Tikhonov, Yu; Hennino, T; Imre, M; Kunne, R; Galliard, C Le; Normand, J P Le; Marchand, D; Maroni, A; Ong, S; Pouthas, J; Ramstein, B; Rosier, P; Sudol, M; Theneau, C; Tomasi-Gustafsson, E; Van de Wiele, J; Zerguerras, T; Boca, G; Braghieri, A; Costanza, S; Fontana, A; Genova, P; Lavezzi, L; Montagna, P; Rotondi, A; Buda, V; Abramov, V V; Davidenko, A M; Derevschikov, A A; Goncharenko, Y M; Grishin, V N; Kachanov, V A; Konstantinov, D A; Kormilitsin, V A; Matulenko, Y A; Melnik, Y M; Meschanin, A P; Minaev, N G; Mochalov, V V; Morozov, D A; Nogach, L V; Nurushev, S B; Ryazantsev, A V; Semenov, P A; Soloviev, L F; Uzunian, A V; Vasiliev, A N; Yakutin, A E; Belostotski, S; Gavrilov, G; Itzotov, A; Kisselev, A; Kravchenko, P; Manaenkov, S; Miklukho, O; Naryshkin, Y; Veretennikov, D; Vikhrov, V; Zhadanov, A; Bäck, T; Cederwall, B; Bargholtz, C; Gerén, L; Tegnér, P E; Thørngren, P; von Würtemberg, K M; Fava, L; Alberto, D; Amoroso, A; Bussa, M P; Busso, L; De Mori, F; Destefanis, M; Ferrero, L; Greco, M; Kugathasan, T; Maggiora, M; Marcello, S; Sosio, S; Spataro, S; Calvo, D; Coli, S; De Remigis, P; Filippi, A; Giraudo, G; Lusso, S; Mazza, G; Mignone, M; Rivetti, A; Wheadon, R; Zotti, L; Morra, O; Iazzi, F; Lavagno, A; Quarati, P; Szymanska, K; Birsa, R; Bradamante, F; Bressan, A; Martin, A; Clement, H; Galnander, B; Calén, H; Fransson, K; Johansson, T; Kupsc, A; Marciniewski, P; Thomé, E; Wolke, M; Zlomanczuk, J; Díaz, J; Ortiz, A; Buda, P; Dmowski, K; Korzeniewski, R; Przemyslaw, D; Slowinski, B; Borsuk, S; Chlopik, A; Guzik, Z; Kopec, J; Kozlowski, T; Melnychuk, D; Plominski, M; Szewinski, J; Traczyk, K; Zwieglinski, B; Bühler, P; Gruber, A; Kienle, P; Marton, J; Widmann, E; Zmeskal, J

    2012-01-01

    This document illustrates the technical layout and the expected performance of the Micro Vertex Detector (MVD) of the PANDA experiment. The MVD will detect charged particles as close as possible to the interaction zone. Design criteria and the optimisation process as well as the technical solutions chosen are discussed and the results of this process are subjected to extensive Monte Carlo physics studies. The route towards realisation of the detector is outlined.

  16. Methodology, Algorithms, and Emerging Tool for Automated Design of Intelligent Integrated Multi-Sensor Systems

    Directory of Open Access Journals (Sweden)

    Andreas König

    2009-11-01

    Full Text Available The emergence of novel sensing elements, computing nodes, wireless communication and integration technology provides unprecedented possibilities for the design and application of intelligent systems. Each new application system must be designed from scratch, employing sophisticated methods ranging from conventional signal processing to computational intelligence. Currently, a significant part of this overall algorithmic chain of the computational system model still has to be assembled manually by experienced designers in a time and labor consuming process. In this research work, this challenge is picked up and a methodology and algorithms for automated design of intelligent integrated and resource-aware multi-sensor systems employing multi-objective evolutionary computation are introduced. The proposed methodology tackles the challenge of rapid-prototyping of such systems under realization constraints and, additionally, includes features of system instance specific self-correction for sustained operation of a large volume and in a dynamically changing environment. The extension of these concepts to the reconfigurable hardware platform renders so called self-x sensor systems, which stands, e.g., for self-monitoring, -calibrating, -trimming, and -repairing/-healing systems. Selected experimental results prove the applicability and effectiveness of our proposed methodology and emerging tool. By our approach, competitive results were achieved with regard to classification accuracy, flexibility, and design speed under additional design constraints.

  17. A Framework for Function Allocation in Intelligent Driver Interface Design for Comfort and Safety

    Directory of Open Access Journals (Sweden)

    Wuhong Wang

    2010-11-01

    Full Text Available This paper presents a conceptual framework for ecological function allocation and optimization matching solution for a human-machine interface with intelligent characteristics by lwho does what and when and howr consideration. As a highlighted example in nature-social system, intelligent transportation system has been playing increasingly role in keeping traffic safety, our research is concerned with identifying human factors problem of In-vehicle Support Systems (ISSs and revealing the consequence of the effects of ISSs on driver cognitive interface. The primary objective is to explore some new ergonomics principals that will be able to use to design an intelligent driver interface for comfort and safety, which will address the impact of driver interfaces layouts, traffic information types, and driving behavioral factors on the advanced vehicles safety design.

  18. Practical Consideration Factors to Design Array Configuration of Direction Finding System for Airborne Signal Intelligence

    Directory of Open Access Journals (Sweden)

    Jong-Hwan Lee

    2018-01-01

    Full Text Available Airborne signal intelligence (SIGINT systems must be capable of locating radio signal sources. Direction finding (DF to support this capability is an important factor. There are some practical considerations to be taken when designing the array configuration of a DF system for airborne SIGINT systems. This paper summarizes the practical factors when designing the array configuration of the DF system for airborne SIGINT. In particular, it focuses on four areas: antenna consideration factors when installing the DF system for airborne SIGINT from a practical point of view, array configuration methods for airborne communications intelligence and electronic intelligence, and a numerical analysis to select the optimum antenna position for airborne SIGINT.

  19. BORA: a front end board, with local intelligence, for the RICH detector of the Compass Collaboration

    International Nuclear Information System (INIS)

    Baum, G.; Birsa, R.; Bradamante, F.; Bressan, A.; Colavita, A.; Crespo, M.; Costa, S.; Dalla Torre, S.; Fauland, P.; Finger, M.; Fratnik, F.; Giorgi, M.; Gobbo, B.; Grasso, A.; Lamanna, M.; Martin, A.; Menon, G.; Panzieri, D.; Schiavon, P.; Tessarotto, F.; Zanetti, A.M.

    1999-01-01

    In this paper we describe the design of the re-configurable front-end boards (BORA boards) for the 82944 channel RICH-1 (Ring Imaging CHerenkov) of the Compass Collaboration (NA58). The front-end electronics controls the sample-and-hold operation after the arrival of an event trigger, acquires the analog voltages from the pre-amp VLSI and converts them into 10 bits at a rate of 20 Ms/s per analog channel. The digitized analogue values are then written into FIFOs. A subsequent operation compares the readings of each and every channel with corresponding programmable thresholds, and transmits those values larger than the threshold, together with the channel number, through an optical fiber to subsequent processing stages of the acquisition system. The overall operation of the board is controlled and supervised by a fast DSP. The availability of local intelligence allows the board to present innovative features such as: to be part of a computer network that connects several similar boards of the detector with a PC. The presence of the DSP allows testing the operability and linearity of the analog channels; and creating engineering frames containing local temperatures and voltages and transmitting the results through the network. The operator can reconfigure the hardware and software of the board by downloading programs from the PC

  20. BORA: A front end board, with local intelligence, for the rich detector of the compass collaboration

    International Nuclear Information System (INIS)

    Baum, G.; Birsa, R.; Bradamante, F.

    1999-02-01

    In this paper we describe the design of the re-configurable front-end boards (BORA boards) for the 82944 channel RICH-1 (Ring Imaging CHerenkov) of the Compass Collaboration (NA58). The front-end electronics controls the sample-and-hold operation after the arrival of an event trigger, acquires the analogue voltages from the pre-amp VLSI and converts them into 10 bits at a rate of 20 Ms/s per analogue channel. After the analog values are digitized they are written into FIFOs. A subsequent operation compares the readings of each and every channel with corresponding programmable thresholds, and transmits those values larger than the threshold, together with the channel number, through an optical fiber to subsequent processing stages of the acquisition system. The overall operation of the board is controlled and supervised by a fast DSP. The availability of local intelligence allows the board to present innovative features such as: to be part of a computer network that connects several similar boards of the detector with a PC. The presence of the DSP allows testing the operability and linearity of the analogue channels; and creating engineering frames containing local temperatures and voltages and transmitting the results through the network. The operator can reconfigure the hardware and software of the board by downloading programs from the PC. (author)

  1. Miniature Intelligent Wireless Fire Detector System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project is to develop a wireless intelligent dual-band photodetector system for advanced fire detection/recognition, combining UV/IR III...

  2. Design and Research of Intelligent Remote Control Fan Based on Single Chip Microcomputer and Bluetooth Technology

    Directory of Open Access Journals (Sweden)

    Zhang Xue-Xia

    2017-01-01

    Full Text Available This paper is designed for intelligent remote control fans. The design of the microcontroller as the core, the sensor, Bluetooth and Andrews system applied to the design of intelligent remote control fan. According to the temperature sensor to achieve the indoor temperature collection, to achieve and set the temperature comparison, thus affecting the fan speed. At the same time, the system according to the infrared sensor components to detect external factors, in order to achieve the running or stopping of the fan, that is, to achieve intelligent control of the fan. In addition, the system achieve the Bluetooth and mobile phone Andrews system of effective combination, and through the software program to complete the fan remote operation and wind speed control.

  3. Design, construction and testing of a self-powered neutron detector

    International Nuclear Information System (INIS)

    Correa, R.F.

    1987-01-01

    The design, construction and testing of a self-powered neutron detector (SPN) and associated electronics are described. Several tests were performed giving information about dielectrical properties of detector and cable, gamma spectra induced in the detector through reactor irradiation, detector response as a function of neutron flux, current stability and reproductibility with the neutron flux. The gamma and neutron sensitivities were also evaluated, by means of thermoluminescent dosimeters and gold foils as references. The test results are presented and show that the detector response is reliable. The gamma and neutron sensitivities are in agreement with those found in the available literature. Nevertheless, a ceramic insulated cable should be employed for permanent use in a reactor. The tests were performed in a 100 KW TRIGA Mark I reactor at the Centro de Desenvolvimento da Tecnologia Nuclear of NUCLEBRAS, in Belo Horizonte, Brazil. (author) [pt

  4. Design of data sampler in intelligent physical start-up system for nuclear reactor

    International Nuclear Information System (INIS)

    Wang Yinli; Ling Qiu

    2007-01-01

    It introduces the design of data sampler in intelligent physical start-up system for nuclear reactor. The hardware frame taking STμPSD3234A as the core and the firmware design based on USB interface are discussed. (authors)

  5. Muon-catalyzed fusion experiment target and detector system. Preliminary design report

    International Nuclear Information System (INIS)

    Jones, S.E.; Watts, K.D.; Caffrey, A.J.; Walter, J.B.

    1982-03-01

    We present detailed plans for the target and particle detector systems for the muon-catalyzed fusion experiment. Requirements imposed on the target vessel by experimental conditions and safety considerations are delineated. Preliminary designs for the target vessel capsule and secondary containment vessel have been developed which meet these requirements. In addition, the particle detection system is outlined, including associated fast electronics and on-line data acquisition. Computer programs developed to study the target and detector system designs are described

  6. Mechanical design and material budget of the CMS barrel pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Amsler, C; Boesiger, K; Chiochia, V; Maier, R; Meyer, Hp; Robmann, P; Scherr, S; Schmidt, A; Steiner, S [Universitaet Zuerich, Physik-Institut, Winterthurerstr. 190, CH-8057 Zuerich (Switzerland); Erdmann, W; Gabathuler, K; Horisberger, R; Koenig, S; Kotlinski, D; Meier, B; Streuli, S [Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Rizzi, A [ETH Zuerich, Institute for Particle Physics, CH-8093 Zuerich (Switzerland)], E-mail: Alexander.Schmidt@cern.ch

    2009-05-15

    The Compact Muon Solenoid experiment at the Large Hadron Collider at CERN includes a silicon pixel detector as its innermost component. Its main task is the precise reconstruction of charged particles close to the primary interaction vertex. This paper gives an overview of the mechanical requirements and design choices for the barrel pixel detector. The distribution of material in the detector as well as its description in the Monte Carlo simulation are discussed in detail.

  7. Mechanical Design and Material Budget of the CMS Barrel Pixel Detector

    CERN Document Server

    Amsler, C; Chiochia, V; Erdmann, W; Gabathuler, K; Horisberger, R; König, S; Kotlinski, D; Maier, R; Meyer, H; Meier, B; Meyer, Hp; Rizzi, A; Robmann, P; Scherr, S; Schmidt, A; Steiner, S; Erdmann, W; Gabathuler, K; Horisberger, R; König, S; Kotlinski, D; Meier, B; Streuli, S; Rizzi, A

    2009-01-01

    The Compact Muon Solenoid experiment at the Large Hadron Collider at CERN includes a silicon pixel detector as its innermost component. Its main task is the precise reconstruction of charged particles close to the primary interaction vertex. This paper gives an overview of the mechanical requirements and design choices for the barrel pixel detector. The distribution of material in the detector as well as its description in the Monte Carlo simulation are discussed in detail.

  8. Cognitive Process as a Basis for Intelligent Retrieval Systems Design.

    Science.gov (United States)

    Chen, Hsinchun; Dhar, Vasant

    1991-01-01

    Two studies of the cognitive processes involved in online document-based information retrieval were conducted. These studies led to the development of five computational models of online document retrieval which were incorporated into the design of an "intelligent" document-based retrieval system. Both the system and the broader implications of…

  9. Development of core thermal-hydraulics module for intelligent reactor design system (IRDS)

    International Nuclear Information System (INIS)

    Kugo, Teruhiko; Nakagawa, Masayuki; Fujii, Sadao.

    1994-08-01

    We have developed an innovative reactor core thermal-hydraulics module where a designer can easily and efficiently evaluate his design concept of a new type reactor in the thermal-hydraulics field. The main purpose of this module is to decide a feasible range of basic design parameters of a reactor core in a conceptual design stage of a new type reactor. The module is to be implemented in Intelligent Reactor Design System (IRDS). The module has the following characteristics; 1) to deal with several reactor types, 2) four thermal hydraulics and fuel behavior analysis codes are installed to treat different type of reactors and design detail, 3) to follow flexibly modification of a reactor concept, 4) to provide analysis results in an understandable way so that a designer can easily evaluate feasibility of his concept, and so on. The module runs on an engineering workstation (EWS) and has a user-friendly man-machine interface on a pre- and post-processing. And it is equipped with a function to search a feasible range called as Design Window, for two design parameters by artificial intelligence (AI) technique and knowledge engineering. In this report, structure, guidance for users of an usage of the module and instruction of input data for analysis modules are presented. (author)

  10. Front-end Intelligence for triggering and local track recognition in Gas Pixel Detectors

    CERN Document Server

    Hessey, NP; The ATLAS collaboration; van der Graaf, H; Vermeulen, J; Jansweijer, P; Romaniouk, A

    2012-01-01

    The combination of gaseous detectors with pixel readout chips gives unprecedented hit resolution (improving from O(100 um) for wire chambers to 10 um), as well as high-rate capability, low radiation length and giving in addition angular information on the local track. These devices measure individually every electron liberated by the passage of a charged particle, leading to a large quantity of data to be read out. Typically an external trigger is used to start the read-out. We are investigating the addition of local intelligence to the pixel read-out chip. A first level of processing detects the passage of a particle through the gas volume, and accurately determines the time of passage. A second level measures in an approximate but fast way the tilt-angle of the track. This can be used to trigger a third stage in which all hits associated to the track are processed locally to give a least-squares-fit to the track. The chip can then send out just the fitted track parameters instead of the individual electron ...

  11. MLED_BI: a new BI Design Approach to Support Multilingualism in Business Intelligence

    Directory of Open Access Journals (Sweden)

    Nedim Dedić

    2017-11-01

    Full Text Available Existing approaches to support Multilingualism (ML in Business Intelligence (BI create problems for business users, present a number of challenges from the technical perspective, and lead to issues with logical dependence in the star schema. In this paper, we propose MLED_BI (Multilingual Enabled Design for Business Intelligence, a novel BI design approach to support the application of ML in BI Environment, which overcomes the issues and problems found with existing approaches. The approach is based on a revision of the data warehouse dimensional modelling approach and treats the Star Schema as a higher level entity. This paper describes MLED_BI and the validation and evaluation approach used.

  12. Design constrution and testing of a self-powered neutron detector

    International Nuclear Information System (INIS)

    Correa, R.F.

    1987-01-01

    The design, contruction and testing of a self-powered neutron detector (SPN) and associated electronics are described. Several tests were performed giving information about dielectrical properties od detector and cable, gamma spectra induced in the detector through reactor irradiation, detector response as a function of neutron flux, current stability and reproductibility with the neutron flux. The gamma and neutron sensitivities were also evaluated, by means of thermoluminescent dosimeters and gold foils as references. The test results are presented and show that the detector response is reliable. The gamma and neutron sensitivities are in agreement with those found in the available literature. Neverthe less, a ceramic insulated cable should be employed for permanent use in a reactor. The tests were perfomance in a 100 kW TRIGA Mark I reactor at the Centro de Desenvolvimento da Tecnologia Nuclear of NUCLEBRAS,in Belo Horizonte, Brazil. (Author) [pt

  13. Intelligent Design versus Evolution

    Directory of Open Access Journals (Sweden)

    Nathan Aviezer

    2010-07-01

    Full Text Available Intelligent Design (ID burst onto the scene in 1996, with the publication of Darwin’s Black Box by Michael Behe. Since then, there has been a plethora of articles written about ID, both pro and con. However, most of the articles critical of ID deal with peripheral issues, such as whether ID is just another form of creationism or whether ID qualifies as science or whether ID should be taught in public schools. It is our view that the central issue is whether the basic claim of ID is correct. Our goal is fourfold: (I to show that most of the proposed refutations of ID are unconvincing and/or incorrect, (II to describe the single fundamental error of ID, (III to discuss the historic tradition surrounding the ID controversy, showing that ID is an example of a “god-of-the-gaps” argument, and (IV to place the ID controversy in the larger context of proposed proofs for the existence of God, with the emphasis on Jewish tradition.

  14. Research-through-design for considering ethical implications in Ambient Intelligence system design: The Growth Plan approach

    NARCIS (Netherlands)

    Ross, P.R.; Tomico, O.

    2009-01-01

    The technologies we use transform our behaviours and experiences. Particularly Ambient Intelligent (AmI) systems, envisioned to integrate extensively, will have a profound influence on our everyday lives. Design of these systems requires considering what kind of influence is desirable. This brings

  15. IT-tool Concept for Design and Intelligent Motion Control

    DEFF Research Database (Denmark)

    Conrad, Finn; Hansen, Poul Erik; Sørensen, Torben

    2000-01-01

    The paper presents results obtained from a Danish mechatronic research program focusing on intelligent motion control as well as results from the Esprit project SWING on IT-tools for rapid prototyping of fluid power components and systems. A mechatronic test facility with digital controllers for ....... Furthermore, a developed IT-tool concept for controller and system design utilising the ISO 10303 STEP Standard is proposed....

  16. Design of the flame detector based on pyroelectric infrared sensor

    Science.gov (United States)

    Liu, Yang; Yu, Benhua; Dong, Lei; Li, Kai

    2017-10-01

    As a fire detection device, flame detector has the advantages of short reaction time and long distance. Based on pyroelectric infrared sensor working principle, the passive pyroelectric infrared alarm system is designed, which is mainly used for safety of tunnel to detect whether fire occurred or not. Modelling and Simulation of the pyroelectric Detector Using Labview. An attempt was made to obtain a simple test platform of a pyroelectric detector which would make an excellent basis for the analysis of its dynamic behaviour. After many experiments, This system has sensitive response, high anti-interference ability and safe and reliable performance.

  17. Design of a Dry Dilution Refrigerator for MMC Gamma Detector Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Stephan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Boyd, Stephen [Univ. of New Mexico, Albuquerque, NM (United States); Cantor, Robin

    2017-04-03

    The goal of this LCP is to develop an ultra-high resolution gamma detector based on magnetic microcalorimeters (MMCs) for accurate non-destructive analysis (NDA) of nuclear materials. For highest energy resolution, we will introduce erbium-doped silver (Ag:Er) as a novel sensor material to replace current Au:Er sensors. The detector sensitivity will be increased by developing arrays of 32 Ag:Er pixels read out by 16 SQUID preamplifiers. MMC detectors require operating temperatures of ~15 mK and thus the use of a dilution refrigerator, and the desire for user-friendly operation without cryogenic liquids requires that this refrigerator use pulse-tube pre-cooling to ~4 K. For long-term reliability, we intend to re-design the heat switch that is needed to apply the magnetizing current to the Ag:Er sensor and that used to fail in earlier designs after months of operation. A cryogenic Compton veto will be installed to reduce the spectral background of the MMC, especially at low energies where ultra-high energy resolution is most important. The goals for FY16 were 1) to purchase a liquid-cryogen-free dilution refrigerator and adapt it for MMC operation, and 2) to fabricate Ag:Er-based MMC γ-detectors with improved performance and optimize their response. This report discusses the design of the instruments, and progress in MMC detector fabrication. Details of the MMC fabrication have been discussed in an April 2016 report to DOE.

  18. Standardization of detector control systems

    International Nuclear Information System (INIS)

    Fukunaga, Chikara

    2000-01-01

    Current and future detectors for high-energy and/or nuclear physics experiments require highly intelligent detector control systems. In order to reduce resources, the construction of a standardized template for the control systems based on the commercially available superviser control and data acquisition (SCADA) system has been proposed. The possibility of constructing this template is discussed and several key issues for evaluation of SCADA as the basis for such a template are presented. (author)

  19. Should Intelligent Design Be Taught in Public School Science Classrooms?

    Science.gov (United States)

    Plutynski, Anya

    2010-01-01

    A variety of different arguments have been offered for teaching "both sides" of the evolution/ID debate in public schools. This article reviews five of the most common types of arguments advanced by proponents of Intelligent Design and demonstrates how and why they are founded on confusion and misunderstanding. It argues on behalf of teaching…

  20. The application of artificial intelligence technology to aeronautical system design

    Science.gov (United States)

    Bouchard, E. E.; Kidwell, G. H.; Rogan, J. E.

    1988-01-01

    This paper describes the automation of one class of aeronautical design activity using artificial intelligence and advanced software techniques. Its purpose is to suggest concepts, terminology, and approaches that may be useful in enhancing design automation. By understanding the basic concepts and tasks in design, and the technologies that are available, it will be possible to produce, in the future, systems whose capabilities far exceed those of today's methods. Some of the tasks that will be discussed have already been automated and are in production use, resulting in significant productivity benefits. The concepts and techniques discussed are applicable to all design activity, though aeronautical applications are specifically presented.

  1. Using protistan examples to dispel the myths of intelligent design.

    Science.gov (United States)

    Farmer, Mark A; Habura, Andrea

    2010-01-01

    In recent years the teaching of the religiously based philosophy of intelligent design (ID) has been proposed as an alternative to modern evolutionary theory. Advocates of ID are largely motivated by their opposition to naturalistic explanations of biological diversity, in accordance with their goal of challenging the philosophy of scientific materialism. Intelligent design has been embraced by a wide variety of creationists who promote highly questionable claims that purport to show the inadequacy of evolutionary theory, which they consider to be a threat to a theistic worldview. We find that examples from protistan biology are well suited for providing evidence of many key evolutionary concepts, and have often been misrepresented or roundly ignored by ID advocates. These include examples of adaptations and radiations that are said to be statistically impossible, as well as examples of speciation both in the laboratory and as documented in the fossil record. Because many biologists may not be familiar with the richness of the protist evolution dataset or with ID-based criticisms of evolution, we provide examples of current ID arguments and specific protistan counter-examples.

  2. An intelligent and interactive carpet role of design in a textile innovation project

    NARCIS (Netherlands)

    Deckers, E.J.L.; Stouw, van der B.; Peutz, J.

    2012-01-01

    This paper presents an ongoing innovation project on the development of an intelligent and interactive carpet called PeR+, short for Perception Rug Plus. This design-research project is a collaboration between an international flooring company, DESSO, and the Department of Industrial Design at the

  3. Designing and implementation of an intelligent manufacturing system

    Directory of Open Access Journals (Sweden)

    Michael Peschl

    2011-12-01

    Full Text Available Purpose: The goal of XPRESS is to establish a breakthrough for the factory of the future with a new flexible production concept based on the generic idea of “specialized intelligent process units” (“Manufactrons” integrated in cross-sectoral learning networks for a customized production. XPRESS meets the challenge to integrate intelligence and flexibility at the “highest” level of the production control system as well as at the “lowest” level of the singular machine.Design/methodology/approach: Architecture of a manufactronic networked factory is presented, making it possible to generate particular manufactrons for the specific tasks, based on the automatic analysis of its required features.Findings: The manufactronic factory concept meets the challenge to integrate intelligence and flexibility at the “highest” level of the production control system as well as at the “lowest” level of the singular machine. The quality assurance system provided a 100% inline quality monitoring, destructive costs reduced 30%-49%, the ramp-up time for the set-up of production lines decreased up to 50% and the changeover time decreased up to 80%.Research limitations/implications: Specific features of the designed manufactronic architecture, namely the transport manufactrons, have been tested as separate mechanisms which can be merged into the final comprehensive at a later stage.Practical implications: This concept is demonstrated in the automotive and aeronautics industries, but can be easily transferred to nearly all production processes. Using the manufactronic approach, industrial players will be able to anticipate and to respond to rapidly changing consumer needs, producing high-quality products in adequate quantities while reducing costs.Originality/value: Assembly units composed of manufactrons can flexibly perform varying types of complex tasks, whereas today this is limited to a few pre-defined tasks. Additionally, radical

  4. Version II of the ISACS Intelligent Coordinator: object-oriented design and implementation

    International Nuclear Information System (INIS)

    Liholt, V.; Miazza, P.

    1993-03-01

    Within the Integrated Surveillance And Control System (ISACS-1)prototype coupled to the NORS PWR simulator, the Intelligent Coordinator (IC) is a central software module. It provides for example the operators with high-level knowledge on the overall plant status. This is performed through the integration of information fetched from the process and different Computerised Operator Support Systems. In 1991, the first version of ISACS and its associated Intelligent Information Coordinator came into operation. During initial ISACS-1 test runs, minor malfunctions were evidently detected in the IC software. At the same time, new reasoning capabilities were also required. A careful analysis of the IC software, implemented with the software shell G2, revealed that its software structure did not allow any easy extension. This report presents in detail the object-oriented redesign of the Intelligent Coordinator of ISACS-1 Firstly, the main capabilities of the Intelligent Coordinator are recalled. Then, the different object classes composing the application are commented in detail The implementation of this new design with the G2 software shell is illustrated through examples. This allows us at the same time to comment our experiences made with the G2 tool. Finally, a quantitative comparison between the successive versions of the Intelligent Coordinator shows clearly the improvements achieved by this object-oriented redesign. A drastic reduction of the number of production rules attests that a better representation of the plant expert knowledge embedded in the Intelligent Coordinator has been achieved. (author)

  5. Artificial intelligence in process design and operation

    International Nuclear Information System (INIS)

    Sudduth, A.L.

    1988-01-01

    Artificial Intelligence (AI) has recently become prominent in the discussion of computer applications in the utility business. In order to assess this technology, a research project was performed to determine whether software development techniques based on AI could be used to facilitate management of information associated with the design of a generating station. The approach taken was the development of an expert system, using a relatively simple set of rules acting on a more complex knowledge base. A successful prototype for the application was developed and its potential extension to a production environment demonstrated. During the course of prototype development, other possible applications of AI in design engineering were discovered, and areas of particular interest selected for further investigation. A plan for AI R and D was formulated. That plan and other possible future work in AI are discussed

  6. Concept of object-oriented intelligent support for nuclear reactor designing

    International Nuclear Information System (INIS)

    Yoshikawa, H.; Gofuku, A.

    1991-01-01

    A concept of object-oriented intelligent CAD/CAE environment is proposed for the conceptual designing of advanced nuclear reactor system. It is composed of (i) object-oriented frame-structure database which represents the hierarchical relationship of the composite elements of reactor core and the physical properties, and (ii) object-oriented modularization of the elementary calculation processes, which are needed for reactor core design analysis. As an example practise, an object-oriented frame structure is constructed for representing a 3D configuration of a special fuel element of a space reactor design, by using a general-purpose expert system shell ESHELL/X. (author)

  7. Intelligent stochastic optimization routine for in-core fuel cycle design

    International Nuclear Information System (INIS)

    Parks, G.T.

    1988-01-01

    Any reactor fuel management strategy must specify the fuel design, batch sizes, loading configurations, and operational procedures for each cycle. To permit detailed design studies, the complex core characteristics must necessarily be computer modeled. Thus, the identification of an optimal fuel cycle design represents an optimization problem with a nonlinear objective function (OF), nonlinear safety constraints, many control variables, and no direct derivative information. Most available library routines cannot tackle such problems; this paper introduces an intelligent stochastic optimization routine that can. There has been considerable interest recently in the application of stochastic methods to difficult optimization problems, based on the statistical mechanics algorithms originally attributed to Metropolis. Previous work showed that, in optimizing the performance of a British advanced gas-cooled reactor fuel stringer, a rudimentary version of the Metropolis algorithm performed as efficiently as the only suitable routine in the Numerical Algorithms Group library. Since then the performance of the Metropolis algorithm has been considerably enhanced by the introduction of self-tuning capabilities by which the routine adjusts its control parameters and search pattern as it progresses. Both features can be viewed as examples of artificial intelligence, in which the routine uses the accumulation of data, or experience, to guide its future actions

  8. Combined Intelligent Control (CIC an Intelligent Decision Making Algorithm

    Directory of Open Access Journals (Sweden)

    Moteaal Asadi Shirzi

    2007-03-01

    Full Text Available The focus of this research is to introduce the concept of combined intelligent control (CIC as an effective architecture for decision-making and control of intelligent agents and multi-robot sets. Basically, the CIC is a combination of various architectures and methods from fields such as artificial intelligence, Distributed Artificial Intelligence (DAI, control and biological computing. Although any intelligent architecture may be very effective for some specific applications, it could be less for others. Therefore, CIC combines and arranges them in a way that the strengths of any approach cover the weaknesses of others. In this paper first, we introduce some intelligent architectures from a new aspect. Afterward, we offer the CIC by combining them. CIC has been executed in a multi-agent set. In this set, robots must cooperate to perform some various tasks in a complex and nondeterministic environment with a low sensory feedback and relationship. In order to investigate, improve, and correct the combined intelligent control method, simulation software has been designed which will be presented and considered. To show the ability of the CIC algorithm as a distributed architecture, a central algorithm is designed and compared with the CIC.

  9. Interface Design Concepts in the Development of ELSA, an Intelligent Electronic Library Search Assistant.

    Science.gov (United States)

    Denning, Rebecca; Smith, Philip J.

    1994-01-01

    Describes issues and advances in the design of appropriate inference engines and knowledge structures needed by commercially feasible intelligent intermediary systems for information retrieval. Issues associated with the design of interfaces to such functions are discussed in detail. Design principles for guiding implementation of these interfaces…

  10. A constraint-based approach to intelligent support of nuclear reactor design

    International Nuclear Information System (INIS)

    Furuta, Kazuo

    1993-01-01

    Constraint is a powerful representation to formulate and solve problems in design; a constraint-based approach to intelligent support of nuclear reactor design is proposed. We first discuss the features of the approach, and then present the architecture of a nuclear reactor design support system under development. In this design support system, the knowledge base contains constraints useful to structure the design space as object class definitions, and several types of constraint resolvers are provided as design support subsystems. The adopted method of constraint resolution are explained in detail. The usefulness of the approach is demonstrated using two design problems: Design window search and multiobjective optimization in nuclear reactor design. (orig./HP)

  11. Calculation of track and vertex errors for detector design studies

    International Nuclear Information System (INIS)

    Harr, R.

    1995-01-01

    The Kalman Filter technique has come into wide use for charged track reconstruction in high-energy physics experiments. It is also well suited for detector design studies, allowing for the efficient estimation of optimal track covariance matrices without the need of a hit level Monte Carlo simulation. Although much has been published about the Kalman filter equations, there is a lack of previous literature explaining how to implement the equations. In this paper, the operators necessary to implement the Kalman filter equations for two common detector configurations are worked out: a central detector in a uniform solenoidal magnetic field, and a fixed-target detector with no magnetic field in the region of the interactions. With the track covariance matrices in hand, vertex and invariant mass errors are readily calculable. These quantities are particularly interesting for evaluating experiments designed to study weakly decaying particles which give rise to displaced vertices. The optimal vertex errors are obtained via a constrained vertex fit. Solutions are presented to the constrained vertex problem with and without kinematic constraints. Invariant mass errors are obtained via propagation of errors; the use of vertex constrained track parameters is discussed. Many of the derivations are new or previously unpublished

  12. Conceptual design of the ITER fast-ion loss detector

    International Nuclear Information System (INIS)

    Garcia-Munoz, M.; Ayllon-Guerola, J.; Galdon, J.; Garcia Lopez, J.; Gonzalez-Martin, J.; Jimenez-Ramos, M. C.; Rodriguez-Ramos, M.; Rivero-Rodriguez, J. F.; Sanchis-Sanchez, L.; Kocan, M.; Bertalot, L.; Bonnet, Y.; Casal, N.; Giacomin, T.; Pinches, S. D.; Reichle, R.; Vayakis, G.; Veshchev, E.; Vorpahl, Ch.; Walsh, M.

    2016-01-01

    A conceptual design of a reciprocating fast-ion loss detector for ITER has been developed and is presented here. Fast-ion orbit simulations in a 3D magnetic equilibrium and up-to-date first wall have been carried out to revise the measurement requirements for the lost alpha monitor in ITER. In agreement with recent observations, the simulations presented here suggest that a pitch-angle resolution of ∼5° might be necessary to identify the loss mechanisms. Synthetic measurements including realistic lost alpha-particle as well as neutron and gamma fluxes predict scintillator signal-to-noise levels measurable with standard light acquisition systems with the detector aperture at ∼11 cm outside of the diagnostic first wall. At measurement position, heat load on detector head is comparable to that in present devices.

  13. Conceptual design of the ITER fast-ion loss detector

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Munoz, M., E-mail: mgm@us.es; Ayllon-Guerola, J.; Galdon, J.; Garcia Lopez, J.; Gonzalez-Martin, J.; Jimenez-Ramos, M. C.; Rodriguez-Ramos, M.; Rivero-Rodriguez, J. F.; Sanchis-Sanchez, L. [Department of Atomic, Molecular and Nuclear Physics, University of Seville, 41012 Seville (Spain); CNA (Universidad de Sevilla-CSIC-J. Andalucía), Seville (Spain); Kocan, M.; Bertalot, L.; Bonnet, Y.; Casal, N.; Giacomin, T.; Pinches, S. D.; Reichle, R.; Vayakis, G.; Veshchev, E.; Vorpahl, Ch.; Walsh, M. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 Saint Paul-lez-Durance Cedex (France); and others

    2016-11-15

    A conceptual design of a reciprocating fast-ion loss detector for ITER has been developed and is presented here. Fast-ion orbit simulations in a 3D magnetic equilibrium and up-to-date first wall have been carried out to revise the measurement requirements for the lost alpha monitor in ITER. In agreement with recent observations, the simulations presented here suggest that a pitch-angle resolution of ∼5° might be necessary to identify the loss mechanisms. Synthetic measurements including realistic lost alpha-particle as well as neutron and gamma fluxes predict scintillator signal-to-noise levels measurable with standard light acquisition systems with the detector aperture at ∼11 cm outside of the diagnostic first wall. At measurement position, heat load on detector head is comparable to that in present devices.

  14. Embedded systems design issues in ambient intelligence

    NARCIS (Netherlands)

    Aarts, E.H.L.; Roovers, R.L.J.; Basten, A.A.; Geilen, M.C.W.; Groot, de H.W.H.

    2003-01-01

    The vision of ambient intelligence opens a world of unprecedented ex.periences: the interaction of people with electronic devices is changed as context awareness, natural interfaces and ubiquitous availability of information are realized. We analyze the consequences of the ambient intelligence

  15. The EUROBALL neutron wall - design and performance tests of neutron detectors

    CERN Document Server

    Skeppstedt, Ö; Lindström, L; Wadsworth, R; Hibbert, I; Kelsall, N; Jenkins, D; Grawe, H; aGórska, M; Moszynski, M; Sujkowski, Z; Wolski, D; Kapusta, M; Hellström, M; Kalogeropoulos, S; Oner, D; Johnson, A; Cederkäll, J; Klamra, W; Nyberg, J; Weiszflog, M; Kay, J; Griffiths, R; Garces-Narro, J; Pearson, C; Eberth, J

    1999-01-01

    The mechanical design of the EUROBALL neutron wall and neutron detectors, and their performance measured with a sup 2 sup 4 sup 6 sup , sup 2 sup 4 sup 8 Cm fission source are described. The array consists of 15 pseudohexaconical detector units subdivided into three, 149 mm high, hermetically separated segments and a smaller central pentagonal unit subdivided into five segments. The detectors are filled with Bicron BC501A liquid scintillator. Each section of the hexaconical detectors is viewed by a 130 mm diameter Philips XP4512PA photomultiplier while the sections of pentagonal detectors are viewed by Philips XP4312B PMTs. The tests of n-gamma discrimination performed by zero-crossing and time-of-flight methods show a full separation of gamma- and neutron events down to 50 keV recoil electron energy. These tests demonstrate the excellent timing properties of the detectors and an average time resolution of 1.56 ns. The factors determining the efficiency of neutron detectors are discussed. The total efficiency...

  16. The design, construction and performance of the ALEPH silicon vertex detector

    International Nuclear Information System (INIS)

    Mours, B.

    1996-03-01

    The ALEPH silicon vertex detector is the first detector operating in a colliding beam environment that uses silicon strip detectors which provide readout on both sides and hence a three-dimensional point measurement for the trajectory of charged particles. The detector system was commissioned successfully at the e + e - collider LEP at the research centre CERN, Switzerland, during the year 1991 while taking data at the Z 0 resonance. The achieved spatial resolution of the complete 73 728 channel device (intrinsic plus alignment) in 12 μm in the r.φ view and 12 μm in the z view. The design and construction of the entire detector system are discussed in detail and the experience gained in running the detector is described with special emphasis on the uses of this novel tracking device for the physics of short-lived heavy particles produced in the decays of the Z 0 resonance. (orig.)

  17. Design and construction of the SAPHIR detector

    International Nuclear Information System (INIS)

    Schwille, W.J.; Bockhorst, M.; Burbach, G.; Burgwinkel, R.; Empt, J.; Guse, B.; Haas, K.M.; Hannappel, J.; Heinloth, K.; Hey, T.; Honscheid, K.; Jahnen, T.; Jakob, H.P.; Joepen, N.; Juengst, H.; Kirch, U.; Klein, F.J.; Kostrewa, D.; Lindemann, L.; Link, J.; Manns, J.; Menze, D.; Merkel, H.; Merkel, R.; Neuerburg, W.; Paul, E.; Ploetzke, R.; Schenk, U.; Schmidt, S.; Scholmann, J.; Schuetz, P.; Schultz-Coulon, H.C.; Schweitzer, M.; Tran, M.Q.; Vogl, W.; Wedemeyer, R.; Wehnes, F.; Wisskirchen, J.; Wolf, A.

    1994-01-01

    The design, construction, and performance of the large solid angle magnetic spectrometer SAPHIR is described. It was built for the investigation of photon-induced reactions on nucleous and light nuclei with mulit-particle final states up to photon energies of 3.1 GeV. The detector is equipped with a tagged photon beam facility and is operated at the stretcher ring ELSA in Bonn. (orig.)

  18. Design and construction of the SAPHIR detector

    Energy Technology Data Exchange (ETDEWEB)

    Schwille, W.J. (Bonn Univ. (Germany). Physikalisches Inst.); Bockhorst, M. (Bonn Univ. (Germany). Physikalisches Inst.); Burbach, G. (Bonn Univ. (Germany). Physikalisches Inst.); Burgwinkel, R. (Bonn Univ. (Germany). Physikalisches Inst.); Empt, J. (Bonn Univ. (Germany). Physikalisches Inst.); Guse, B. (Bonn Univ. (Germany). Physikalisches Inst.); Haas, K.M. (Bonn Univ. (Germany). Physikalisches Inst.); Hannappel, J. (Bonn Univ. (Germany). Physikalisches Inst.); Heinloth, K. (Bonn Univ. (Germany). Physikalisches Inst.); Hey, T. (Bonn Univ. (Germany). Physikalisches Inst.); Honscheid, K. (Bonn Univ. (Germany). Physikalisches Inst.); Jahnen, T. (Bonn Univ. (Germany). Physikalisches Inst.); Jakob, H.P. (Bonn Univ. (Germany). Physikalisches Inst.); Joepen, N. (Bonn Univ. (Germany). Physikalisches Inst.); Juengst, H. (Bonn Univ. (Germany). Physikalisches Inst.); Kirch, U. (Bonn Univ. (Germany). Physikalisches Inst.); Klein, F.J. (Bonn Univ. (Germany). Physikalisches Inst.)

    1994-05-15

    The design, construction, and performance of the large solid angle magnetic spectrometer SAPHIR is described. It was built for the investigation of photon-induced reactions on nucleous and light nuclei with mulit-particle final states up to photon energies of 3.1 GeV. The detector is equipped with a tagged photon beam facility and is operated at the stretcher ring ELSA in Bonn. (orig.)

  19. A design of energy detector for ArF excimer lasers

    Science.gov (United States)

    Feng, Zebin; Han, Xiaoquan; Zhou, Yi; Bai, Lujun

    2017-08-01

    ArF excimer lasers with short wavelength and high photon energy are widely applied in the field of integrated circuit lithography, material processing, laser medicine, and so on. Excimer laser single pulse energy is a very important parameter in the application. In order to detect the single pulse energy on-line, one energy detector based on photodiode was designed. The signal processing circuit connected to the photodiode was designed so that the signal obtained by the photodiode was amplified and the pulse width was broadened. The amplified signal was acquired by a data acquisition card and stored in the computer for subsequent data processing. The peak of the pulse signal is used to characterize the single pulse energy of ArF excimer laser. In every condition of deferent pulse energy value levels, a series of data about laser pulses energy were acquired synchronously using the Ophir energy meter and the energy detector. A data set about the relationship between laser pulse energy and the peak of the pulse signal was acquired. Then, by using the data acquired, a model characterizing the functional relationship between the energy value and the peak value of the pulse was trained based on an algorithm of machine learning, Support Vector Regression (SVR). By using the model, the energy value can be obtained directly from the energy detector designed in this project. The result shows that the relative error between the energy obtained by the energy detector and by the Ophir energy meter is less than 2%.

  20. Thermal simulations of the new design for the BELLE silicon vertex detector

    International Nuclear Information System (INIS)

    Dragic, J.

    2000-01-01

    Full text: The experienced imperfections of the BELLE silicon vertex detector, SVD1 motioned the design of a new detector, SVD2, which targets on improving the main weaknesses encountered in the old design. In this report we focus on tile thermal aspects of the SVD2 ladder, whereby sufficient cooling of the detector is necessary in order to minimise the detector leakage currents. It is estimated that reducing the temperature of the silicon detector from 25 deg C to 15 deg C would result in a 50% reduction in leak current. Further, cooling the detector would help minimize mechanical stresses from the thermal cycling. Our task is to ensure that the heat generated by the readout chips is conducted down the SVD hybrid unit effectively, such that the chip and the hybrid temperature does not overbear the SVD silicon sensor temperature. We considered the performance of two materials to act as a heat spreading plate which is glued between the two hybrids in order to improve the heat conductivity of the hybrid unit, namely Copper and Thermal Pyrolytic Graphite (TPG). The effects of other ladder components were also considered in order to enhance the cooling of the silicon detectors. Finite element analysis with ANSYS software was used to simulate the thermal conditions of the SVD2 hybrid unit, in accordance with the baseline design for the mechanical structure of the ladder. It was found that Cu was a preferred material as it achieved equivalent silicon sensor cooling (3.6 deg C above cooling point), while its mechanical properties rendered it a lot more practical. Suppressing, the thermal path via a rib support block, by increasing its thermal resistivity, as well as increasing thermal conductivity of the ribs in the hybrid region, were deemed essential in the effective cooling of the silicon sensors

  1. The BaBar LST Detector High Voltage System: Design And Implementation

    International Nuclear Information System (INIS)

    Benelli, G.; Honscheid, K.; Lewis, E.A.; Regensburger, J.J.; Smith, D.S.; Ohio State U.

    2006-01-01

    In 2004, the first two sextants of the new Limited Streamer Tube (LST) detector were installed in the BABAR experiment to replace the ageing Resistive Plate Chambers (RPCs) as active detectors for the BABAR Instrumented Flux Return (IFR) muon system. Each streamer tube of the new detector consists of 8 cells. The cell walls are coated with graphite paint and a 100 (micro)m wire forms the anode. These wires are coupled in pairs inside the tubes resulting in 4 independent two-cell segments per LST. High voltage (HV) is applied to the 4 segments through a custom connector that also provides the decoupling capacitor to pick up the detector signals from the anode wires. The BABAR LST detector is operated at 5.5 kV. The high voltage system for the LST detector was designed and built at The Ohio State University (OSU HVPS). Each of the 25 supplies built for BaBar provides 80 output channels with individual current monitoring and overcurrent protection. For each group of 20 channels the HV can be adjusted between 0 and 6 kV. A 4-fold fan-out is integrated in the power supplies to provide a total of 320 outputs. The power supplies are controlled through built-in CANbus and Ethernet (TCP/IP) interfaces. In this presentation we will discuss the design and novel features of the OSU HVPS system and its integration into the BABAR EPICS detector control framework. Experience with the supplies operation during the LST extensive quality control program and their performance during the initial data taking period will be discussed

  2. Mechanical design for positioning of GM detector for system of avian flu virus detection equipment

    International Nuclear Information System (INIS)

    Rahmat; Budi Santoso; Krismawan; Abdul Jalil

    2010-01-01

    Mechanical design for positioning of GM detector system has been done. It is used for avian flu detection equipment. The requirements for the design are to protect detection system against shock, portable, and easy to maintain. The mechanical system consists of connectors, cable assemblies, holders, casing, housing and detectors cover. The selected material should have small gamma radiation absorption property in order to give optimum counts for the detector. The design result should give a system that is easy to operate, cheap and easy to assemble. (author)

  3. DESIGN AND DEVELOPMENT OF AN INTELLIGENT INSTRUCTIVE SYSTEM: Scholastic Tutor (St*

    Directory of Open Access Journals (Sweden)

    Adebiyi MARION O.

    2011-10-01

    Full Text Available Intelligent Tutoring Systems (ITS is an act of impacting knowledge while computer teaches or acts as the tutors which is a supplement to human teachers. The ability to teach each student based on their individual abilities a major advantage posed by ITS and that is why it is being embraced in this work. This work describes the design of an Intelligent Tutoring System that was tagged Scholastic tutor (St*, which has the individual learning and collaborative problem-solving modules. The individual tutoring module was designed to provide appropriate lessons to individuals based on his/her background knowledge level, interest, and learning style and assimilation rate prior to using the tutoring system. A software agent is used to monitor and process these parameters, arrange the learning topic, and exercises, for each individual. The collaborative problem-based tutoring module was designed to present tutorial problems and provides facilities to assist learners with some useful information and advice for problem solving. This is because the present lecturing methodology which is the conventional teaching methodology provides an interactive classroom setting that promotes the open exchange of ideas and allows for the lecturer to communicate directly with the students but has a great disadvantage of not teaching all the students according to their own learning rate and pace. The intelligent tutor solves this problem by providing individualised learning for each student where they can learn according to their own pace and learning abilities it will provide remedy and advice when learners encounter difficulties during learning session. The classical model of ITS architecture has four main modules; domain model, student model, tutoring model and the user interface model.

  4. Design and properties of silicon charged-particle detectors developed at the Institute of Electron Technology (ITE)

    Science.gov (United States)

    Wegrzecki, Maciej; Bar, Jan; Budzyński, Tadeusz; CieŻ, Michal; Grabiec, Piotr; Kozłowski, Roman; Kulawik, Jan; Panas, Andrzej; Sarnecki, Jerzy; Słysz, Wojciech; Szmigiel, Dariusz; Wegrzecka, Iwona; Wielunski, Marek; Witek, Krzysztof; Yakushev, Alexander; Zaborowski, Michał

    2013-07-01

    The paper discusses the design of charged-particle detectors commissioned and developed at the Institute of Electron Technology (ITE) in collaboration with foreign partners, used in international research on transactinide elements and to build personal radiation protection devices in Germany. Properties of these detectors and the results obtained using the devices are also presented. The design of the following epiplanar detector structures is discussed: ♢ 64-element chromatographic arrays for the COMPACT (Cryo On-line Multidetector for Physics And Chemistry of Transactinides) detection system used at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt (GSI) for research on Hassium, Copernicium and Flerovium, as well as elements 119 and 120, ♢ 2-element flow detectors for the COLD (Cryo On-Line Detector) system used for research on Copernicium and Flerovium at the Joint Institute for Nuclear Research, Dubna, ♢ detectors for a radon exposimeter and sensors for a neutron dosimeter developed at the Institut für Strahlenschutz, Helmholtz Zentrum München. The design of planar detectors - single-sided and double-sided strip detectors for the Focal Plane Detector Box used at GSI for research on Flerovium and elements 119 and 120 is also discussed.

  5. Design And Implementation of Dsp-Based Intelligent Controller For Automobile Braking System

    Directory of Open Access Journals (Sweden)

    S.N. Sidek and M.J.E. Salami

    2012-08-01

    Full Text Available An intelligent braking system has great potential applications especially, in developed countries where research on smart vehicle and intelligent highways are receiving ample attention. The system when integrated with other subsystems like automatic traction control, intelligent throttle, and auto cruise systems, etc will result in smart vehicle maneuver. The driver at the end of the day will become the passenger, safety accorded the highest priority and the journey optimized in term of time duration, cost, efficiency and comfortability. The impact of such design and development will cater for the need of contemporary society that aspires to a quality drive as well as to accommodate the advancement of technology especially in the area of smart sensors and actuators.  The emergence of digital signal processor enhances the capacity and features of universal microcontroller.  This paper introduces the use of TI DSP, TMS320LF2407 as an engine of the system. The overall system is designed so that the value of inter-vehicle distance from infrared laser sensor and speed of follower car from speedometer are fed into the DSP for processing, resulting in the DSP issuing commands to the actuator to function appropriately.Key words:  Smart Vehicle, Digital Signal Processor, Fuzzy Controller, and Infra Red Laser Sensor

  6. The design and performance of the ZEUS micro vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Polini, A. [Bologna Univ. (Italy)]|[INFN Bologna (Italy); Brock, I.; Goers, S. [Bonn Univ. (DE). Physikalisches Institut] (and others)

    2007-08-15

    In order to extend the tracking acceptance, to improve the primary and secondary vertex reconstruction and thus enhancing the tagging capabilities for short lived particles, the ZEUS experiment at the HERA Collider at DESY installed a silicon strip vertex detector. The barrel part of the detector is a 63 cm long cylinder with silicon sensors arranged around an elliptical beampipe. The forward part consists of four circular shaped disks. In total just over 200k channels are read out using 2.9 m{sup 2} of silicon. In this report a detailed overview of the design and construction of the detector is given and the performance of the completed system is reviewed. (orig.)

  7. The design and performance of the ZEUS micro vertex detector

    International Nuclear Information System (INIS)

    Polini, A.; Brock, I.; Goers, S.

    2007-08-01

    In order to extend the tracking acceptance, to improve the primary and secondary vertex reconstruction and thus enhancing the tagging capabilities for short lived particles, the ZEUS experiment at the HERA Collider at DESY installed a silicon strip vertex detector. The barrel part of the detector is a 63 cm long cylinder with silicon sensors arranged around an elliptical beampipe. The forward part consists of four circular shaped disks. In total just over 200k channels are read out using 2.9 m 2 of silicon. In this report a detailed overview of the design and construction of the detector is given and the performance of the completed system is reviewed. (orig.)

  8. An Intelligent System for Modelling, Design and Analysis of Chemical Processes

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    ICAS, Integrated Computer Aided System, is a software that consists of a number of intelligent tools, which are very suitable, among others, for computer aided modelling, sustainable design of chemical and biochemical processes, and design-analysis of product-process monitoring systems. Each...... the computer aided modelling tool will illustrate how to generate a desired process model, how to analyze the model equations, how to extract data and identify the model and make it ready for various types of application. In sustainable process design, the example will highlight the issue of integration...

  9. MCNP-REN: a Monte Carlo tool for neutron detector design

    International Nuclear Information System (INIS)

    Abhold, M.E.; Baker, M.C.

    2002-01-01

    The development of neutron detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model fails to accurately predict detector response in common applications. For this reason, the general Monte Carlo code developed at Los Alamos National Laboratory, Monte Carlo N-Particle (MCNP), was modified to simulate the pulse streams that would be generated by a neutron detector and normally analyzed by a shift register. This modified code, MCNP-Random Exponentially Distributed Neutron Source (MCNP-REN), along with the Time Analysis Program, predicts neutron detector response without using the point reactor model, making it unnecessary for the user to decide whether or not the assumptions of the point model are met for their application. MCNP-REN is capable of simulating standard neutron coincidence counting as well as neutron multiplicity counting. Measurements of mixed oxide fresh fuel were taken with the Underwater Coincidence Counter, and measurements of highly enriched uranium reactor fuel were taken with the active neutron interrogation Research Reactor Fuel Counter and compared to calculation. Simulations completed for other detector design applications are described. The method used in MCNP-REN is demonstrated to be fundamentally sound and shown to eliminate the need to use the point model for detector performance predictions

  10. The design and construction of the ZEUS central tracking detector

    Energy Technology Data Exchange (ETDEWEB)

    Foster, B.; Malos, J.; Saxon, D.H.; Clark, D.E.; Jamdagni, A.K.; Markou, C.; Miller, D.B.; Miller, D.G.; Toudup, L.W.; Auty, C.G.; Blair, G.A.; Brooks, C.B.; Cashmore, R.J.; Hanford, A.T.; Harnew, N.; Holmes, A.R.; Linford, W.; Martin, N.C.; McArthur, I.C.; Nash, J.; Nobbs, K.N.; Wastie, R.L.; Williams, M.T.; Wilson, F.F.; Wilson, R.D.; Hart, J.C.; Hatley, R.W.; Hiddleston, J.W.; Gibson, M.D.; McCubbin, N.A.; Middleton, A.; Morrissey, M.C.; Morrow, D.; O' Brien, P.; Payne, B.T.; Roberts, J.C.H.; Shaw, T.B.; Sinclair, C.K.; Wallis, E.W.G.; White, D.J.; Yeo, K.L.; Bullock, F.W.; Dumper, J.; Fraser, T.J.; Hayes, D.; Jones, T.W.; Strachan, D.E.; Vine, I.A. (H.H. Wills Physics Lab., Univ. of Bristol (United Kingdom) Dept. of Physics and Astronomy, Univ. of Glasgow (United Kingdom) Blackett Lab., Physics Dept., Imperial Coll., London (United Kingdom) Dept. of Physics, Nuclear Physics Lab., Univ. of Oxford (United Kingdom) Rutherford Appleton Lab., Chilton (United Kingdom) Dept. of Physics an

    1994-01-15

    The mechanical, electrical and electronic design and construction of the ZEUS central tracking detector are described, together with the chamber monitoring and environmental control. This cylindrical drift chamber is designed for track reconstruction, electron identification and fast event triggering in a high beam-crossing rate, high magnetic field application. (orig.)

  11. DESIGN AN INTELLIGENT CONTROLLER FOR FULL VEHICLE NONLINEAR ACTIVE SUSPENSION SYSTEMS

    OpenAIRE

    Aldair, A. A.; Wang, W. J.

    2011-01-01

    The main objective of designed the controller for a vehicle suspension system is to reduce the discomfort sensed by passengers which arises from road roughness and to increase the ride handling associated with the pitching and rolling movements. This necessitates a very fast and accurate controller to meet as much control objectives, as possible. Therefore, this paper deals with an artificial intelligence Neuro-Fuzzy (NF) technique to design a robust controller to meet the control objectives....

  12. Electron identification and implications in SSC detector design

    International Nuclear Information System (INIS)

    Bensinger, J.; Wang, E.M.; Yamamoto, H.

    1990-05-01

    In the context of Heavy Higgs searches in the decay mode H → ZZ → 4e, electron identification issues and their implications on detector design are discussed (though many of the issues are valid for muon modes as well). The backgrounds considered seem manageable (a net rejection of 100 for combined electron ID and isolation cut is needed and seems fairly straightforward). A detector must have wide electron rapidity coverage η T > GeV; be hermetic (in the sense of minimizing regions where electrons can disappear through cracks, dead spaces, or poorly placed walls); and have high efficiency electron ID (∼ 0.90) since we are trying to be sensitive to a feeble signal and we need 4 electrons. The product of a number of fairly high acceptances based on optimistic estimates still yields in the end a net Higgs acceptance about 0.15 to 0.25 depending on how hermetic a detector is assumed. For M Higgs < 500 GeV, this may be tolerable; whereas, for higher Higgs masses, the situation is much less clear

  13. Design of Faraday cup ion detectors built by thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Szalkowski, G.A., E-mail: gszalkowski3@gatech.edu [Department of Nuclear Engineering, Georgia Institute of Technology, 770 State St., Atlanta, GA 30332 (United States); Darrow, D.S., E-mail: ddarrow@pppl.gov [Princeton Plasma Physics Laboratory, P. O. Box 451, Princeton, NJ 08543 (United States); Cecil, F.E., E-mail: fcecil@mines.edu [Department of Physics, Colorado School of Mines, Golden, CO 80401 (United States)

    2017-03-11

    Thin film Faraday cup detectors can provide measurements of fast ion loss from magnetically confined fusion plasmas. These multilayer detectors can resolve the energy distribution of the lost ions in addition to giving the total loss rate. Prior detectors were assembled from discrete foils and insulating sheets. Outlined here is a design methodology for creating detectors using thin film deposition that are suited to particular scientific goals. The intention is to use detectors created by this method on the Joint European Torus (JET) and the National Spherical Torus Experiment-Upgrade (NSTX-U). The detectors will consist of alternating layers of aluminum and silicon dioxide, with layer thicknesses chosen to isolate energies of interest. Thin film deposition offers the advantage of relatively simple and more mechanically robust construction compared to other methods, as well as allowing precise control of film thickness. Furthermore, this depositional fabrication technique places the layers in intimate thermal contact, providing for three-dimensional conduction and dissipation of the ion-produced heating in the layers, rather than the essentially two-dimensional heat conduction in the discrete foil stack implementation.

  14. Design and Optimization of Intelligent Service Robot Suspension System Using Dynamic Model

    International Nuclear Information System (INIS)

    Choi, Seong Hoon; Park, Tae Won; Lee, Soo Ho; Jung, Sung Pil; Jun, Kab Jin; Yoon, J. W.

    2010-01-01

    Recently, an intelligent service robot is being developed for use in guiding and providing information to visitors about the building at public institutions. The intelligent robot has a sensor at the bottom to recognize its location. Four wheels, which are arranged in the form of a lozenge, support the robot. This robot cannot be operated on uneven ground because its driving parts are attached to its main body that contains the important internal components. Continuous impact with the ground can change the precise positions of the components and weaken the connection between each structural part. In this paper, the design of the suspension system for such a robot is described. The dynamic model of the robot is created, and the driving characteristics of the robot with the designed suspension system are simulated. Additionally, the suspension system is optimized to reduce the impact for the robot components

  15. Methodology, Birth Order, Intelligence, and Personality.

    Science.gov (United States)

    Michalski, Richard L.; Shackelford, Todd K.

    2001-01-01

    Critiques recent research on the effects of birth order on intelligence and personality, which found that the between-family design revealed that birth order negatively related to intelligence, while the within-family design revealed that birth order was unrelated to intelligence. Suggests that it may not be intelligence that co-varies with birth…

  16. Design and Implementation of Cloud Platform for Intelligent Logistics in the Trend of Intellectualization

    Institute of Scientific and Technical Information of China (English)

    Mengke Yang; Movahedipour Mahmood; Xiaoguang Zhou; Salam Shafaq; Latif Zahid

    2017-01-01

    Intellectualization has become a new trend for telecom industry, driven by in-telligent technology including cloud comput-ing, big data, and Internet of things. In order to satisfy the service demand of intelligent logistics, this paper designed an intelligent logistics platform containing the main ap-plications such as e-commerce, self-service transceiver, big data analysis, path location and distribution optimization. The intelligent logistics service platform has been built based on cloud computing to collect, store and han-dling multi-source heterogeneous mass data from sensors, RFID electronic tag, vehicle ter-minals and APP, so that the open-access cloud services including distribution, positioning, navigation, scheduling and other data services can be provided for the logistics distribution applications. And then the architecture of in-telligent logistics cloud platform containing software layer (SaaS), platform layer (PaaS) and infrastructure (IaaS) has been constructed accordance with the core technology relative high concurrent processing technique, hetero-geneous terminal data access, encapsulation and data mining. Therefore, intelligent logis-tics cloud platform can be carried out by the service mode for implementation to accelerate the construction of the symbiotic win-win logistics ecological system and the benign de-velopment of the ICT industry in the trend of intellectualization in China.

  17. Issues regarding the design and acceptance of intelligent support systems for reactor operators

    International Nuclear Information System (INIS)

    Bernard, J.A.

    1992-01-01

    In this paper, factors relevant to the design and acceptance of intelligent support systems for the operation of nuclear power plants are enumerated and discussed. The central premise is that conventional expert systems which encode experiential knowledge in production rules are not a suitable vehicle for the creation of practical operator support systems. The principal difficulty is the need for real-time operation. This in turn means that intelligent support systems will have knowledge bases derived from temporally accurate plant models, inference engines that permit revisions in the search process so as to accommodate revised or new data, and man-machine interfaces that do not require any human input. Such systems will have to be heavily instrumented and the associated knowledge bases will require a hierarchical organization so as to emulate human approaches to analysis. Issues related to operator acceptance of intelligent support tools are then reviewed. Possible applications are described and the relative merits of the machine- and human-centered approaches to the implementation of intelligent support systems are enumerated. The paper concludes with a plea for additional experimental evaluations

  18. Low-cost cadmium zinc telluride radiation detectors based on electron-transport-only designs

    International Nuclear Information System (INIS)

    Brunett, B.A.; Lund, J.C.; Van Scyoc, J.M.; Hilton, N.R.; Lee, E.Y.; James, R.B.

    1999-01-01

    The goal of this project was to utilize a novel device design to build a compact, high resolution, room temperature operated semiconductor gamma ray sensor. This sensor was constructed from a cadmium zinc telluride (CZT) crystal. It was able to both detect total radiation intensity and perform spectroscopy on the detected radiation. CZT detectors produced today have excellent electron charge carrier collection, but suffer from poor hole collection. For conventional gamma-ray spectrometers, both the electrons and holes must be collected with high efficiency to preserve energy resolution. The requirement to collect the hole carriers, which have relatively low lifetimes, limits the efficiency and performance of existing experimental devices. By implementing novel device designs such that the devices rely only on the electron signal for energy information, the sensitivity of the sensors for detecting radiation can be increased substantially. In this report the authors describe a project to develop a new type of electron-only CZT detector. They report on their successful efforts to design, implement and test these new radiation detectors. In addition to the design and construction of the sensors the authors also report, in considerable detail, on the electrical characteristics of the CZT crystals used to make their detectors

  19. Does the design of a robot influence its animacy and perceived intelligence?

    NARCIS (Netherlands)

    Bartneck, C.; Kanda, T.; Mubin, O.; Al Mahmud, A.

    2009-01-01

    Robots exhibit life-like behavior by performing intelligent actions. To enhance human-robot interaction it is necessary to investigate and understand how end-users perceive such animate behavior. In this paper, we report an experiment to investigate how people perceived different designs of robot

  20. Empirical versus Random Item Selection in the Design of Intelligence Test Short Forms--The WISC-R Example.

    Science.gov (United States)

    Goh, David S.

    1979-01-01

    The advantages of using psychometric thoery to design short forms of intelligence tests are demonstrated by comparing such usage to a systematic random procedure that has previously been used. The Wechsler Intelligence Scale for Children Revised (WISC-R) Short Form is presented as an example. (JKS)

  1. Mechanical Design and Development of TES Bolometer Detector Arrays for the Advanced ACTPol Experiment

    Science.gov (United States)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio M.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; hide

    2016-01-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline pro le leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modi ed to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  2. Self-Calibration and Optimal Response in Intelligent Sensors Design Based on Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Gilberto Bojorquez

    2007-08-01

    Full Text Available The development of smart sensors involves the design of reconfigurable systemscapable of working with different input sensors. Reconfigurable systems ideally shouldspend the least possible amount of time in their calibration. An autocalibration algorithmfor intelligent sensors should be able to fix major problems such as offset, variation of gainand lack of linearity, as accurately as possible. This paper describes a new autocalibrationmethodology for nonlinear intelligent sensors based on artificial neural networks, ANN.The methodology involves analysis of several network topologies and training algorithms.The proposed method was compared against the piecewise and polynomial linearizationmethods. Method comparison was achieved using different number of calibration points,and several nonlinear levels of the input signal. This paper also shows that the proposedmethod turned out to have a better overall accuracy than the other two methods. Besides,experimentation results and analysis of the complete study, the paper describes theimplementation of the ANN in a microcontroller unit, MCU. In order to illustrate themethod capability to build autocalibration and reconfigurable systems, a temperaturemeasurement system was designed and tested. The proposed method is an improvement over the classic autocalibration methodologies, because it impacts on the design process of intelligent sensors, autocalibration methodologies and their associated factors, like time and cost.

  3. SOA enabled ELTA: approach in designing business intelligence solutions in Era of Big Data

    Directory of Open Access Journals (Sweden)

    Viktor Dmitriyev

    2015-01-01

    Full Text Available The current work presents a new approach for designing business intelligence solutions. In the Era of Big Data, former and robust analytical concepts and utilities need to adapt themselves to the changed market circumstances. The main focus of this work is to address the acceleration of building process of a “data-centric” Business Intelligence (BI solution besides preparing BI solutions for Big Data utilization. This research addresses the following goals: reducing the time spent during business intelligence solution’s design phase; achieving flexibility of BI solution by adding new data sources; and preparing BI solution for utilizing Big Data concepts. This research proposes an extension of the existing Extract, Load and Transform (ELT approach to the new one Extract, Load, Transform and Analyze (ELTA supported by service-orientation concept. Additionally, the proposed model incorporates Service-Oriented Architecture concept as a mediator for the transformation phase. On one side, such incorporation brings flexibility to the BI solution and on the other side; it reduces the complexity of the whole system by moving some responsibilities to external authorities.

  4. An integrated 3D design, modeling and analysis resource for SSC detector systems

    International Nuclear Information System (INIS)

    DiGiacomo, N.J.; Adams, T.; Anderson, M.K.; Davis, M.; Easom, B.; Gliozzi, J.; Hale, W.M.; Hupp, J.; Killian, K.; Krohn, M.; Leitch, R.; Lajczok, M.; Mason, L.; Mitchell, J.; Pohlen, J.; Wright, T.

    1989-01-01

    Integrated computer aided engineering and design (CAE/CAD) is having a significant impact on the way design, modeling and analysis is performed, from system concept exploration and definition through final design and integration. Experience with integrated CAE/CAD in high technology projects of scale and scope similar to SSC detectors leads them to propose an integrated computer-based design, modeling and analysis resource aimed specifically at SSC detector system development. The resource architecture emphasizes value-added contact with data and efficient design, modeling and analysis of components, sub-systems or systems with fidelity appropriate to the task. They begin with a general examination of the design, modeling and analysis cycle in high technology projects, emphasizing the transition from the classical islands of automation to the integrated CAE/CAD-based approach. They follow this with a discussion of lessons learned from various attempts to design and implement integrated CAE/CAD systems in scientific and engineering organizations. They then consider the requirements for design, modeling and analysis during SSC detector development, and describe an appropriate resource architecture. They close with a report on the status of the resource and present some results that are indicative of its performance. 10 refs., 7 figs

  5. Design, characterization and beam test performance of different silicon microstrip detector geometries

    International Nuclear Information System (INIS)

    Catacchini, E.; Ciampolini, L.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, M.; Meschini, M.; Parrini, G.; Pieri, M.

    1998-01-01

    During the last few years a large number of silicon microstrip detectors has been especially designed and tested in order to study and optimize the performances of the tracking devices to be used in the forward-backward part of the CMS (technical proposal, CERN/LHCC 94-38 LHCC/Pl, 15 December 1994) experiment. Both single and double sided silicon detectors of a trapezoidal ('wedge') shape and with different strip configurations, including prototypes produced with double metal technology, were characterized in the laboratory and tested using high-energy beams. Furthermore, due to the high-radiation environment where the detectors should operate, particular care was devoted to the study of the characteristics of heavily irradiated detectors. The main results of detector performances (charge response, signal-to-noise ratio, spatial resolution etc.) will be reviewed and discussed. (author)

  6. Design, development and performance study of six-gap glass MRPC detectors

    Energy Technology Data Exchange (ETDEWEB)

    Devi, M.M. [Tata Institute of Fundamental Research, Mumbai (India); Weizmann Institute of Science, Rehovot (Israel); Mondal, N.K.; Satyanarayana, B.; Shinde, R.R. [Tata Institute of Fundamental Research, Mumbai (India)

    2016-12-15

    The multigap resistive plate chambers (MRPCs) are gas ionization detectors with multiple gas sub-gaps made of resistive electrodes. The high voltage (HV) is applied on the outer surfaces of outermost resistive plates only, while the interior plates are left electrically floating. The presence of multiple narrow sub-gaps with high electric field results in faster signals on the outer electrodes, thus improving the detector's time resolution. Due to their excellent performance and relatively low cost, the MRPC detector has found potential application in time-of-flight (TOF) systems. Here we present the design, fabrication, optimization of the operating parameters such as the HV, the gas mixture composition, and, performance of six-gap glass MRPC detectors of area 27 cm x 27 cm, which are developed in order to find application as trigger detectors, in TOF measurement etc. The design has been optimized with unique spacers and blockers to ensure a proper gas flow through the narrow sub-gaps, which are 250 μm wide. The gas mixture consisting of R134A, Isobutane and SF{sub 6}, and the fraction of each constituting gases has been optimized after studying the MRPC performance for a set of different concentrations. The counting efficiency of the MRPC is about 95% at 17.9 kV. At the same operating voltage, the time resolution, after correcting for the walk effect, is found to be about 219 ps. (orig.)

  7. tkLayout: a Design Tool for Innovative Silicon Tracking Detectors

    CERN Document Server

    Bianchi, Giovanni

    2014-01-01

    A new CMS tracker is scheduled to become operational for the LHC Phase 2 upgrade in the early 2020's. tkLayout is a software package developed to create 3d models for the design of the CMS tracker and to evaluate its fundamental performance figures. The new tracker will have to cope with much higher luminosity conditions, resulting in increased track density, harsher radiation exposure and, especially, much higher data acquisition bandwidth, such that equipping the tracker with triggering capabilities is envisaged. The design of an innovative detector involves deciding on an architecture offering the best trade-off among many figures of merit, such as tracking resolution, power dissipation, bandwidth, cost and so on. Quantitatively evaluating these figures of merit as early as possible in the design phase is of capital importance and it is best done with the aid of software models. tkLayout is a flexible modeling tool: new performance estimates and support for different detector geometries can be quickly ad...

  8. Detector design issues for compact nuclear emission cameras dedicated to breast imaging

    International Nuclear Information System (INIS)

    Levin, Craig S.

    2003-01-01

    Certain gamma ray and positron emitting radiotracers have shown great promise for use in the detection, diagnosis and staging of breast cancer. Unfortunately, standard nuclear emission cameras (SPECT, PET) found in the clinic are not practical for breast imaging of these emissions due to inadequate spatial and energy resolutions and sensitivity, large and awkward size, and relatively high cost per study. High spatial and energy resolutions and sensitivity are needed for good lesion detectability. Due to these limitations of standard cameras, there has been recent research into the development of small, compact nuclear emission imagers dedicated for close-proximity breast imaging. The small detector head size means a variety of exotic detectors or collimators may be implemented to improve spatial and energy resolution and sensitivity performances at a reasonable cost. In this paper, we will present some of the compact gamma ray and annihilation photon imaging detector designs that have been proposed and/or developed for dedicated breast imaging. We will review the physics and discuss the advantages and disadvantages of various detector configurations. Finally we will estimate the fundamental spatial resolution potential available with close-proximity nuclear emission imaging and discuss how one may approach those limits through proper detector design

  9. Towards Intelligent Supply Chains

    DEFF Research Database (Denmark)

    Siurdyban, Artur; Møller, Charles

    2012-01-01

    applied to the context of organizational processes can increase the success rate of business operations. The framework is created using a set of theoretical based constructs grounded in a discussion across several streams of research including psychology, pedagogy, artificial intelligence, learning...... of deploying inapt operations leading to deterioration of profits. To address this problem, we propose a unified business process design framework based on the paradigm of intelligence. Intelligence allows humans and human-designed systems cope with environmental volatility, and we argue that its principles......, business process management and supply chain management. It outlines a number of system tasks combined in four integrated management perspectives: build, execute, grow and innovate, put forward as business process design propositions for Intelligent Supply Chains....

  10. Conceptual design of a 2 tesla superconducting solenoid for the Fermilab D{O} detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Brzezniak, J.; Fast, R.W.; Krempetz, K.

    1994-05-01

    This paper presents a conceptual design of a superconducting solenoid to be part of a proposed upgrade for the D0 detector. This detector was completed in 1992, and has been taking data since then. The Fermilab Tevatron had scheduled a series of luminosity enhancements prior to the startup of this detector. In response to this accelerator upgrade, efforts have been underway to design upgrades for D0 to take advantage of the new luminosity, and improvements in detector technology. This magnet is conceived as part of the new central tracking system for D0, providing a radiation-hard high-precision magnetic tracking system with excellent electron identification.

  11. A mechanical design for positioning of gm detector for system of avian flu virus detection equipment

    International Nuclear Information System (INIS)

    Rahmat; Budi Santoso; Krismawan; Abdul Jalil

    2010-01-01

    Mechanical design for positioning of GM detector system has been done. It is used for avian flu detection equipment. The requirements for the design are to protect detection system against shock, portable, and easy to maintain. The mechanical system consists of connectors, cable assemblies, holders, casing, housing and detectors cover. The selected material should have small gamma radiation absorption property in order to give optimum counts for the detector. The design result should give a system that is easy to operate, cheap and easy to assemble. (author)

  12. Two specialized delayed-neutron detector designs for assays of fissionable elements in water and sediment samples

    International Nuclear Information System (INIS)

    Balestrini, S.J.; Balagna, J.P.; Menlove, H.O.

    1976-01-01

    Two specialized neutron-sensitive detectors are described which are employed for rapid assays of fissionable elements by sensing for delayed neutrons emitted by samples after they have been irradiated in a nuclear reactor. The more sensitive of the two detectors, designed to assay for uranium in water samples, is 40% efficient; the other, designed for sediment sample assays, is 27% efficient. These detectors are also designed to operate under water as an inexpensive shielding against neutron leakage from the reactor and neutrons from cosmic rays. (Auth.)

  13. Design of intelligent comfort control system with human learning and minimum power control strategies

    International Nuclear Information System (INIS)

    Liang, J.; Du, R.

    2008-01-01

    This paper presents the design of an intelligent comfort control system by combining the human learning and minimum power control strategies for the heating, ventilating and air conditioning (HVAC) system. In the system, the predicted mean vote (PMV) is adopted as the control objective to improve indoor comfort level by considering six comfort related variables, whilst a direct neural network controller is designed to overcome the nonlinear feature of the PMV calculation for better performance. To achieve the highest comfort level for the specific user, a human learning strategy is designed to tune the user's comfort zone, and then, a VAV and minimum power control strategy is proposed to minimize the energy consumption further. In order to validate the system design, a series of computer simulations are performed based on a derived HVAC and thermal space model. The simulation results confirm the design of the intelligent comfort control system. In comparison to the conventional temperature controller, this system can provide a higher comfort level and better system performance, so it has great potential for HVAC applications in the future

  14. Performance simulation and structure design of Binode CdZnTe gamma-ray detector

    International Nuclear Information System (INIS)

    Niu Libo; Li Yulan; Fu Jianqiang; Jiang Hao; Zhang Lan; He Bin; Li Yuanjing

    2014-01-01

    A new electrode structure CdZnTe (Cadmium Zinc Telluride) detector named Binode CdZnTe has been pro- posed in this paper. Together with the softwares of MAXWELL, GEANT4, and ROOT, the charge collection process and its gamma spectrum of the detector have been simulated and the detector structure has been optimized. In order to improve its performance further, Compton scattering effect correction has been used. The simulation results demonstrate that with refined design and Compton scattering effect correction, Binode CdZnTe detectors is capable of achieving 3.92% FWHM at 122 keV, and 1.27% FWHM at 662 keV. Com- pared with other single-polarity (electron-only) detector configurations, Binode CdZnTe detector offers a cost effective and simple structure alternative with comparable energy resolution. (authors)

  15. Functional Requirements on the Design of the Detectors and the Interaction Region of an e+e- Linear Collider with a Push-Pull Arrangement of Detectors

    International Nuclear Information System (INIS)

    Markiewicz, T.

    2009-01-01

    The Interaction Region of the International Linear Collider is based on two experimental detectors working in a push-pull mode. A time efficient implementation of this model sets specific requirements and challenges for many detector and machine systems, in particular the IR magnets, the cryogenics and the alignment system, the beamline shielding, the detector design and the overall integration. This paper attempts to separate the functional requirements of a push pull interaction region and machine detector interface from any particular conceptual or technical solution that might have been proposed to date by either the ILC Beam Delivery Group or any of the three detector concepts. As such, we hope that it provides a set of ground rules for interpreting and evaluating the MDI parts of the proposed detector concept's Letters of Intent, due March 2009. The authors of the present paper are the leaders of the IR Integration Working Group within Global Design Effort Beam Delivery System and the representatives from each detector concept submitting the Letters Of Intent.

  16. Design of embedded hardware platform in intelligent γ-spectrometry instrument based on ARM9

    International Nuclear Information System (INIS)

    Hong Tianqi; Fang Fang

    2008-01-01

    This paper described the design of embedded hardware platform based on ARM9 S3C2410A, emphases are focused on analyzing the methods of design the circuits of memory, LCD and keyboard ports. It presented a new solution of hardware platform in intelligent portable instrument for γ measurement. (authors)

  17. Artificial Consciousness or Artificial Intelligence

    OpenAIRE

    Spanache Florin

    2017-01-01

    Artificial intelligence is a tool designed by people for the gratification of their own creative ego, so we can not confuse conscience with intelligence and not even intelligence in its human representation with conscience. They are all different concepts and they have different uses. Philosophically, there are differences between autonomous people and automatic artificial intelligence. This is the difference between intelligence and artificial intelligence, autonomous versus a...

  18. Intelligent buildings vs. bioclimatic design; Edificios inteligentes vs. diseno bioclimatico

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo Gonzalez, Ricardo [Tecnologico de Monterrey (Mexico)

    2006-10-15

    Present the form of intelligent buildings designing is the article purpose. Those kinds of edifications take advantage of climatic conditions which allow the users comfort and the efficient electric power use, avoiding the polluting agents. It also shows the four next following stages to design an intelligent building to know: the dry weather and relative dampness schedule variations during a year in the building location; the predominant winds direction, intensity and schedule frequency; the cloudiness, rain, etc and how to use the Givoni diagram to obtain the natural air-conditioning strategies and reach the thermal comfort. [Spanish] El proposito de este articulo es presentar la forma de disenar edificios Inteligentes, los cuales aprovechan las condiciones climaticas que permiten el confort de los usuarios y el uso eficiente de la energia electrica, evitando asi la emision de agentes contaminantes. Tambien menciona los siguientes cuatro pasos para el diseno de un edificio inteligente: conocer las variaciones horarias de temperatura seca y humedad relativa durante un ano en el lugar donde estara el edificio, saber la direccion, intensidad y frecuencia horaria de los vientos dominantes, tener conocimiento de la nubosidad, lluvia, etc. y utilizar el diagrama de Givoni para obtener las estrategias de climatizacion natural para obtener el confort termico.

  19. Design of the cooling systems for the multiplicity and vertex detector

    International Nuclear Information System (INIS)

    Bernardin, J.D.; Cunningham, R.

    1997-11-01

    The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory is being constructed to investigate a phase of matter termed the quark-gluon plasma. The plasma will be produced through the collision of two heavy ions. The multiplicity and vertex detector (MVD) located in the center of PHENIX will characterize the events, determine the collision point, and act as a central trigger. This report presents the final mechanical designs of the cooling systems for the Multiplicity and Vertex Detector (MVD). In particular, the design procedure and layouts are discussed for two different air cooling systems for the multichip modules and MVD enclosure, and a liquid cooling system for the low dropout voltage regulators. First of all, experimental prototype cooling system test results used to drive the final mechanical designs are summarized and discussed. Next, the cooling system requirements and design calculation for the various subsystem components are presented along with detailed lists of supply vendors, components, and costs. Finally, safety measures incorporated in the final mechanical design and operation procedures for each of the subsystems are detailed

  20. The ZEUS vertex detector: Design and prototype

    International Nuclear Information System (INIS)

    Alvisi, C.; Anzivino, G.; Arzarello, F.; Barbagli, G.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, G.; Bruni, P.; Camerini, U.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Ciralli, F.; Contin, A.; Costa, M.; D'Auria, S.; Del Papa, C.; De Pasquale, S.; Fiori, F.; Forte, A.; Frasconi, F.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Lisowski, B.; Maccarrone, G.; Margotti, A.; Massam, T.; Nania, R.; O'Shea, V.; Palmonari, F.; Pelfer, P.; Pilastrini, R.; Qian, S.; Sartorelli, G.; Schioppa, M.; Susinno, G.; Timellini, R.; Zichichi, A.; Bologna Univ.; Cosenza Univ.; Florence Univ.; Istituto Nazionale di Fisica Nucleare, Bologna; Istituto Nazionale di Fisica Nucleare, Florence; Istituto Nazionale di Fisica Nucleare, Frascati; Consiglio Nazionale delle Ricerche, Florence

    1991-01-01

    A gas vertex detector, operated with dimethylether (DME) at atmospheric pressure, is presently being built for the ZEUS experiment at HERA. Its main design features, together with the performances of a prototype measured at various operating voltages, particle rates and geometrical conditions on a CERN Proton Synchrotron test beam, are presented. A spatial resolution down to 35 μm and an average wire efficiency of 96% have been achieved, for a 3 mm gas gap relative to each sense wire. (orig.)

  1. Intelligent Systems and Advanced User Interfaces for Design, Operation, and Maintenance of Command Management Systems

    Science.gov (United States)

    Mitchell, Christine M.

    1998-01-01

    Historically Command Management Systems (CMS) have been large, expensive, spacecraft-specific software systems that were costly to build, operate, and maintain. Current and emerging hardware, software, and user interface technologies may offer an opportunity to facilitate the initial formulation and design of a spacecraft-specific CMS as well as a to develop a more generic or a set of core components for CMS systems. Current MOC (mission operations center) hardware and software include Unix workstations, the C/C++ and Java programming languages, and X and Java window interfaces representations. This configuration provides the power and flexibility to support sophisticated systems and intelligent user interfaces that exploit state-of-the-art technologies in human-machine systems engineering, decision making, artificial intelligence, and software engineering. One of the goals of this research is to explore the extent to which technologies developed in the research laboratory can be productively applied in a complex system such as spacecraft command management. Initial examination of some of the issues in CMS design and operation suggests that application of technologies such as intelligent planning, case-based reasoning, design and analysis tools from a human-machine systems engineering point of view (e.g., operator and designer models) and human-computer interaction tools, (e.g., graphics, visualization, and animation), may provide significant savings in the design, operation, and maintenance of a spacecraft-specific CMS as well as continuity for CMS design and development across spacecraft with varying needs. The savings in this case is in software reuse at all stages of the software engineering process.

  2. Design and performance of the focusing DIRC detector

    Energy Technology Data Exchange (ETDEWEB)

    Dey, B. [University of California, Riverside, CA 92521 (United States); Borsato, M.; Arnaud, N. [Laboratoire de l' Accélérateur Linéaire, Centre Scientifique d' Orsay, F-91898 Orsay Cedex (France); Leith, D.W.G.S.; Nishimura, K. [SLAC National Accelerator Laboratory, Stanford, CA 94309 (United States); Roberts, D.A. [University of Maryland, College Park, MD 20742, USA. (United States); Ratcliff, B.N. [SLAC National Accelerator Laboratory, Stanford, CA 94309 (United States); Varner, G. [University of Hawaii, Honolulu, HI 96822, USA. (United States); Va' vra, J., E-mail: jjv@slac.stanford.edu [SLAC National Accelerator Laboratory, Stanford, CA 94309 (United States)

    2015-03-01

    We present the final results from a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC). This detector was designed as a full-scale prototype of the particle identification system for the SuperB experiment [1], and comprises 1/12 of the SuperB barrel azimuthal coverage, with partial photodetector and electronics implementation. The prototype was tested in the SLAC Cosmic Ray Telescope which provided 3D tracking of cosmic muons with an angular resolution of ~1.5 mrad, a position resolution of 4–5 mm, a start time resolution of 70 ps, and muon tracks above ~2 GeV tagged using an iron range stack. The fused silica focusing photon camera was coupled to a full-size BaBar DIRC bar box and was read out, over part of the full coverage, by 12 Hamamatsu H8500 multi-anode photomultipliers (MaPMTs) providing 768 pixels. We used waveform digitizing electronics to read out the MaPMTs. We give a detailed description of our data analysis methods and point out limitations on the present performance. We present results that demonstrate some basic performance characteristics of this design, including (a) single photon Cherenkov angle resolutions with and without chromatic corrections, (b) signal-to-noise (S/N) ratio between the Cherenkov peak and background, which primarily consists of ambiguities of the possible photon paths from emission along the track to a given pixel, (c) dTOP=TOP{sub measured} – TOP{sub expected} resolutions (with TOP being the photon Time-of-Propagation in fused silica), and (d) performance of the detector in the presence of high-rate backgrounds.

  3. Micro controller based system for characterizing gas detector operating parameters

    International Nuclear Information System (INIS)

    Thakur, Vaishali M.; Verma, Amit K.; Anilkumar, S.; Babu, D.A.R.; Sharma, D.N.; Harikumar, M.

    2011-01-01

    The estimation and analysis of radioactivity levels in samples from environment and from various stages of nuclear fuel cycle operations has become a matter of concern for the implementation of radiological safety procedures. Gas filled/ flow detectors play crucial role in achieving this objective. Since these detectors need high voltage for their operation, the operating characteristics of each detector for optimum performance has to be determined before incorporating into the systems. The operating voltages of these detectors are ranging from few hundred volts to few kilo volts. Present paper describes the design of microcontroller based system to control two HV modules (Electron tubes make: PS2001/12P) independently and acquire data from different gas filled radiation detectors simultaneously. The system uses Philips 80C552 microcontroller based Single Board Computer (SBC). The inbuilt DAC and ADC of microcontroller were used to control HV from 0-2000 with less than ± 1 %, error 1000V. The starting HV, HV step size, decision making intelligence to terminate HV increment (for preset plateau slope) and data acquisition (for preset time), data acquisition time etc., can be programmed. Nearly 200 detectors data (20 data points per detector) can be stored and transferred to PC on request. Data collected by the system for LND 719 GM detectors with starting voltage from 500 V, HV step size of 24 V and 100 seconds counting time to find out the plateau length. The plateau slope and length obtained with this system for LND 719 GM detectors are 3-5%/100V and ∼ 150V respectively. (author)

  4. The DelFly design, aerodynamics, and artificial intelligence of a flapping wing robot

    CERN Document Server

    de Croon, G C H E; Remes, B D W; Ruijsink, R; De Wagter, C

    2016-01-01

    This book introduces the topics most relevant to autonomously flying flapping wing robots: flapping-wing design, aerodynamics, and artificial intelligence. Readers can explore these topics in the context of the "Delfly", a flapping wing robot designed at Delft University in The Netherlands. How are tiny fruit flies able to lift their weight, avoid obstacles and predators, and find food or shelter? The first step in emulating this is the creation of a micro flapping wing robot that flies by itself. The challenges are considerable: the design and aerodynamics of flapping wings are still active areas of scientific research, whilst artificial intelligence is subject to extreme limitations deriving from the few sensors and minimal processing onboard. This book conveys the essential insights that lie behind success such as the DelFly Micro and the DelFly Explorer. The DelFly Micro, with its 3.07 grams and 10 cm wing span, is still the smallest flapping wing MAV in the world carrying a camera, whilst the DelFly Expl...

  5. Design and performance of vacuum capable detector electronics for linear position sensitive neutron detectors

    International Nuclear Information System (INIS)

    Riedel, R.A.; Cooper, R.G.; Funk, L.L.; Clonts, L.G.

    2012-01-01

    We describe the design and performance of electronics for linear position sensitive neutron detectors. The eight tube assembly requires 10 W of power and can be controlled via digital communication links. The electronics can be used without modification in vacuum. Using a transimpedance amplifier and gated integration, we achieve a highly linear system with coefficient of determinations of 0.9999 or better. Typical resolution is one percent of tube length.

  6. Design and performance of vacuum capable detector electronics for linear position sensitive neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, R.A., E-mail: riedelra@ornl.gov [Oak Ridge National Laboratories, Oak Ridge, TN 37830 (United States); Cooper, R.G.; Funk, L.L.; Clonts, L.G. [Oak Ridge National Laboratories, Oak Ridge, TN 37830 (United States)

    2012-02-01

    We describe the design and performance of electronics for linear position sensitive neutron detectors. The eight tube assembly requires 10 W of power and can be controlled via digital communication links. The electronics can be used without modification in vacuum. Using a transimpedance amplifier and gated integration, we achieve a highly linear system with coefficient of determinations of 0.9999 or better. Typical resolution is one percent of tube length.

  7. Intelligent Design-theorieën zijn geen wetenschappelijke alternatieven voor de neodarwinistische evolutietheorie

    NARCIS (Netherlands)

    H. Dooremale

    2005-01-01

    textabstractDe minister van onderwijs – Maria van der Hoeven – meent dat Intelligent Design (ID) serieus als alternatief voor de neodarwiniaanse evolutietheorie moet worden bekeken. De discussie richt zich voornamelijk op de verdediging van de evolutietheorie tegen de aantijgingen van de

  8. Design and Fabrication of the Second-Generation KID-Based Light Detectors of CALDER

    Science.gov (United States)

    Colantoni, I.; Cardani, L.; Casali, N.; Cruciani, A.; Bellini, F.; Castellano, M. G.; Cosmelli, C.; D'Addabbo, A.; Di Domizio, S.; Martinez, M.; Tomei, C.; Vignati, M.

    2018-04-01

    The goal of the cryogenic wide-area light detectors with excellent resolution project is the development of light detectors with large active area and noise energy resolution smaller than 20 eV RMS using phonon-mediated kinetic inductance detectors (KIDs). The detectors are developed to improve the background suppression in large-mass bolometric experiments such as CUORE, via the double readout of the light and the heat released by particles interacting in the bolometers. In this work we present the fabrication process, starting from the silicon wafer arriving to the single chip. In the first part of the project, we designed and fabricated KID detectors using aluminum. Detectors are designed by means of state-of-the-art software for electromagnetic analysis (SONNET). The Al thin films (40 nm) are evaporated on high-quality, high-resistivity (> 10 kΩ cm) Si(100) substrates using an electron beam evaporator in a HV chamber. Detectors are patterned in direct-write mode, using electron beam lithography (EBL), positive tone resist poly-methyl methacrylate and lift-off process. Finally, the chip is diced into 20 × 20 mm2 chips and assembled in a holder OFHC (oxygen-free high conductivity) copper using PTFE support. To increase the energy resolution of our detectors, we are changing the superconductor to sub-stoichiometric TiN (TiN x ) deposited by means of DC magnetron sputtering. We are optimizing its deposition by means of DC magnetron reactive sputtering. For this kind of material, the fabrication process is subtractive and consists of EBL patterning through negative tone resist AR-N 7700 and deep reactive ion etching. Critical temperature of TiN x samples was measured in a dedicated cryostat.

  9. System Design and Implementation of Intelligent Fire Engine Path Planning based on SAT Algorithm

    Institute of Scientific and Technical Information of China (English)

    CAI Li-sha[1; ZENG Wei-peng[1; HAN Bao-ru[1

    2016-01-01

    In this paper, in order to make intelligent fi re car complete autonomy path planning in simulation map. Proposed system design of intelligent fi re car path planning based on SAT. The system includes a planning module, a communication module, a control module. Control module via the communication module upload the initial state and the goal state to planning module. Planning module solve this planning solution,and then download planning solution to control module, control the movement of the car fi re. Experiments show this the system is tracking short time, higher planning effi ciency.

  10. Design and fabrication of a novel self-powered solid-state neutron detector

    Science.gov (United States)

    LiCausi, Nicholas

    There is a strong interest in intercepting special nuclear materials (SNM) at national and international borders and ports for homeland security applications. Detection of SNM such as U and Pu is often accomplished by sensing their natural or induced neutron emission. Such detector systems typically use thermal neutron detectors inside a plastic moderator. In order to achieve high detection efficiency gas filled detectors are often used; these detectors require high voltage bias for operation, which complicates the system when tens or hundreds of detectors are deployed. A better type of detector would be an inexpensive solid-state detector that can be mass-produced like any other computer chip. Research surrounding solid-state detectors has been underway since the late 1990's. A simple solid-state detector employs a planar solar-cell type p-n junction and a thin conversion material that converts incident thermal neutrons into detectable alpha-particles and 7Li ions. Existing work has typically used 6LiF or 10B as this conversion layer. Although a simple planar detector can act as a highly portable, low cost detector, it is limited to relatively low detection efficiency (˜10%). To increase the efficiency, 3D perforated p-i-n silicon devices were proposed. To get high efficiency, these detectors need to be biased, resulting in increased leakage current and hence detector noise. In this research, a new type of detector structure was proposed, designed and fabricated. Among several detector structures evaluated, a honeycomb-like silicon p-n structure was selected, which is filled with natural boron as the neutron converter. A silicon p+-n diode formed on the thin silicon wall of the honeycomb structure detects the energetic alpha-particles emitted from the boron conversion layer. The silicon detection layer is fabricated to be fully depleted with an integral step during the boron filling process. This novel feature results in a simplified fabrication process. Three

  11. Design of a trigger layout and the corresponding implementation of a 200 GB/s readout network for the ALICE transition radiation detector

    International Nuclear Information System (INIS)

    Schneider, Rolf

    2008-01-01

    Through the use of modern information technology, intelligent trigger systems are gaining more and more importance in high-energy physics. Particularly in heavy ion experiments, the large number of generated particles results in an enormous amount of data. By filtering the data at an early stage and discarding irrelevant events, the efficiency of the entire system can be raised significantly. The ALICE experiment at CERN breaks new ground in this respect. With the Transition Radiation Detector, the acquired signals are processed parallel right on the detector using more than 65 000 multi-chip modules. Via a readout network, the preprocessed data arrives at a global track reconstruction unit, which contributes to the decision whether an event is discarded or further processed. In this thesis, a trigger concept for the Transition Radiation Detector is developed and the readout network is implemented. A special challenge is to achieve an efficient interaction of the above processing stages. By means of simulations and analyses, the entire system is optimized in this regard. It turns out that the read-out process plays a decisive role. In this context, a design flow for the used ASIC is developed. The analyses show that through optimizations the extremely high demands made on this complex system can be met. During a beam time, first prototypes have successfully been tested. The entire system is currently being assembled and will be brought on line in 2008. (orig.)

  12. A phoswich detector design for improved spatial sampling in PET

    Science.gov (United States)

    Thiessen, Jonathan D.; Koschan, Merry A.; Melcher, Charles L.; Meng, Fang; Schellenberg, Graham; Goertzen, Andrew L.

    2018-02-01

    Block detector designs, utilizing a pixelated scintillator array coupled to a photosensor array in a light-sharing design, are commonly used for positron emission tomography (PET) imaging applications. In practice, the spatial sampling of these designs is limited by the crystal pitch, which must be large enough for individual crystals to be resolved in the detector flood image. Replacing the conventional 2D scintillator array with an array of phoswich elements, each consisting of an optically coupled side-by-side scintillator pair, may improve spatial sampling in one direction of the array without requiring resolving smaller crystal elements. To test the feasibility of this design, a 4 × 4 phoswich array was constructed, with each phoswich element consisting of two optically coupled, 3 . 17 × 1 . 58 × 10mm3 LSO crystals co-doped with cerium and calcium. The amount of calcium doping was varied to create a 'fast' LSO crystal with decay time of 32.9 ns and a 'slow' LSO crystal with decay time of 41.2 ns. Using a Hamamatsu R8900U-00-C12 position-sensitive photomultiplier tube (PS-PMT) and a CAEN V1720 250 MS/s waveform digitizer, we were able to show effective discrimination of the fast and slow LSO crystals in the phoswich array. Although a side-by-side phoswich array is feasible, reflections at the crystal boundary due to a mismatch between the refractive index of the optical adhesive (n = 1 . 5) and LSO (n = 1 . 82) caused it to behave optically as an 8 × 4 array rather than a 4 × 4 array. Direct coupling of each phoswich element to individual photodetector elements may be necessary with the current phoswich array design. Alternatively, in order to implement this phoswich design with a conventional light sharing PET block detector, a high refractive index optical adhesive is necessary to closely match the refractive index of LSO.

  13. Dealing with distributed intelligence in monitoring and control systems

    International Nuclear Information System (INIS)

    McLaren, R.A.

    1981-01-01

    The Euorpean Hybrid Spectrometer is built up of many individual detectors, each having widely varying monitoring and control requirements. With the advent of cheap microprocessor systems a shift from the concept of a single monitoring and control computer of that of distributed intelligent controllers has been economically feasible. A detector designer can now thoroughly test and debug a complete monitoring and control system on a local, dedicated micro-computer, while during operation, the central computer can be relieved of many simple repetitive tasks. Rapidly, however, it has become obvious that the designers of these systems have to take into account the final operational environment and build into both the hardware and software, features allowing easy integration into a central monitoring and control chain. In addition, the problems of maintenance and enventual modification have to be taken into consideration early in the development. Examples of currently operational systems will be briefly described to demonstrate how a set of basic guidelines plus standardisation of hardware/software can minimise the problems of integration and maintenance. Based on practical experience gained in the European Hybrid Spectrometer, investigations are proceeding on various possible alternatives for future micro-computer based monitoring and control systems. (orig.)

  14. Conceptual Design of Simulated Radiation Detector for Nuclear Forensics Exercise Purposes

    International Nuclear Information System (INIS)

    Kim, Jae Kwang; Baek, Ye Ji; Lee, Seung Min

    2016-01-01

    A site associated with an illicit trafficking or security event may contain trace evidence of criminal or malicious acts involving radioactive material. Such a site is called a radiological crime scene. Management of a radiological crime scene requires a process of ensuring an orderly accurate and effective collection and preservation of evidence. In order to effectively address such a security event, first responders and/or on-scene investigators need to exercise detecting, locating and recovering materials at the scene of the incident. During such the exercise, a sealed source can be used. This source is allowed to be a very small amount for exercises as there is the limit on the amount of radioactive material that causes no harm. So it is typically difficult to be found by some radiation detectors that the exercises have little effect on improving the ability of trainees. Therefore, we developed a conceptual design of a simulation radiation detector coupled with simulation sources which are designed to imitate a significant amount radioactive material for the purpose of a nuclear forensics exercise. With the potential of a terrorist attack using radioactive materials, the first responders should regularly perform the nuclear forensics exercise in order to prepare for a recovery operation. In this regard, some devices such as simulated detector, coupled with a virtual source, can replace a real detector and a surrogate source of material in field exercises. BLE technology could be applied to create similar environments to that of an actual radiological attack. The detector coupled with the simulated sources could be very helpful for first responders in testing and improving their ability in the case of a nuclear security event. In addition, this conceptual design could be extended to develop a simulated dosimeter coupled with a beacon signal emitters. The dosimeter is a personal device used for indicating the cumulated exposure of radiation in real time in the

  15. Conceptual Design of Simulated Radiation Detector for Nuclear Forensics Exercise Purposes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Kwang; Baek, Ye Ji; Lee, Seung Min [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2016-05-15

    A site associated with an illicit trafficking or security event may contain trace evidence of criminal or malicious acts involving radioactive material. Such a site is called a radiological crime scene. Management of a radiological crime scene requires a process of ensuring an orderly accurate and effective collection and preservation of evidence. In order to effectively address such a security event, first responders and/or on-scene investigators need to exercise detecting, locating and recovering materials at the scene of the incident. During such the exercise, a sealed source can be used. This source is allowed to be a very small amount for exercises as there is the limit on the amount of radioactive material that causes no harm. So it is typically difficult to be found by some radiation detectors that the exercises have little effect on improving the ability of trainees. Therefore, we developed a conceptual design of a simulation radiation detector coupled with simulation sources which are designed to imitate a significant amount radioactive material for the purpose of a nuclear forensics exercise. With the potential of a terrorist attack using radioactive materials, the first responders should regularly perform the nuclear forensics exercise in order to prepare for a recovery operation. In this regard, some devices such as simulated detector, coupled with a virtual source, can replace a real detector and a surrogate source of material in field exercises. BLE technology could be applied to create similar environments to that of an actual radiological attack. The detector coupled with the simulated sources could be very helpful for first responders in testing and improving their ability in the case of a nuclear security event. In addition, this conceptual design could be extended to develop a simulated dosimeter coupled with a beacon signal emitters. The dosimeter is a personal device used for indicating the cumulated exposure of radiation in real time in the

  16. A Study of the Operation of Especially Designed Photosensitive Gaseous Detectors at Cryogenic Temperatures

    CERN Document Server

    Periale, L; Lund-Jensen, B; Pavlopoulos, P; Peskov, Vladimir; Picchi, P; Pietropaolo, F

    2006-01-01

    In some experiments and applications there is need for large-area photosensitive detectors to operate at cryogenic temperatures. Nowadays, vacuum PMs are usually used for this purpose. We have developed special designs of planar photosensitive gaseous detectors able to operate at cryogenic temperatures. Such detectors are much cheaper PMs and are almost insensitive to magnetic fields. Results of systematic measurements of their quantum efficiencies, the maximum achievable gains and long-term stabilities will be presented. The successful operation of these detectors open realistic possibilities in replacing PMs by photosensitive gaseous detectors in some applications dealing with cryogenic liquids; for example in experiments using noble liquid TPCs or noble liquid scintillating calorimeters.

  17. Design of an Intelligent Support Agent Model for People with a Cognitive Vulnerability

    NARCIS (Netherlands)

    Aziz, A.A.; Klein, M.C.A.; Zhang, B.; Wang, Y.; Kinser, W.

    2010-01-01

    This paper presents the design of an intelligent agent application aimed at supporting people with a cognitive vulnerability to prevent the onset of a depression. For this, a computational model of the cognitive processes around depression is used. The agent application uses the principles of

  18. Design of intelligent proximity detection zones to prevent striking and pinning fatalities around continuous mining machines.

    Science.gov (United States)

    Bissert, P T; Carr, J L; DuCarme, J P; Smith, A K

    2016-01-01

    The continuous mining machine is a key piece of equipment used in underground coal mining operations. Over the past several decades these machines have been involved in a number of mine worker fatalities. Proximity detection systems have been developed to avert hazards associated with operating continuous mining machines. Incorporating intelligent design into proximity detection systems allows workers greater freedom to position themselves to see visual cues or avoid other hazards such as haulage equipment or unsupported roof or ribs. However, intelligent systems must be as safe as conventional proximity detection systems. An evaluation of the 39 fatal accidents for which the Mine Safety and Health Administration has published fatality investigation reports was conducted to determine whether the accident may have been prevented by conventional or intelligent proximity. Multiple zone configurations for the intelligent systems were studied to determine how system performance might be affected by the zone configuration. Researchers found that 32 of the 39 fatalities, or 82 percent, may have been prevented by both conventional and intelligent proximity systems. These results indicate that, by properly configuring the zones of an intelligent proximity detection system, equivalent protection to a conventional system is possible.

  19. Intelligent Agents for Design and Synthesis Environments: My Summary

    Science.gov (United States)

    Norvig, Peter

    1999-01-01

    This presentation gives a summary of intelligent agents for design synthesis environments. We'll start with the conclusions, and work backwards to justify them. First, an important assumption is that agents (whatever they are) are good for software engineering. This is especially true for software that operates in an uncertain, changing environment. The "real world" of physical artifacts is like that: uncertain in what we can measure, changing in that things are always breaking down, and we must interact with non-software entities. The second point is that software engineering techniques can contribute to good design. There may have been a time when we wanted to build simple artifacts containing little or no software. But modern aircraft and spacecraft are complex, and rely on a great deal of software. So better software engineering leads to better designed artifacts, especially when we are designing a series of related artifacts and can amortize the costs of software development. The third point is that agents are especially useful for design tasks, above and beyond their general usefulness for software engineering, and the usefulness of software engineering to design.

  20. Analysis and optimal design of Si microstrip detector with overhanging metal electrode

    CERN Document Server

    Ranjan, Kirti; Chatterji, S; Srivastava-Ajay, K; Shivpuri, R K

    2001-01-01

    The harsh radiation environment to be encountered at LHC (large hadron collider) and RHIC (relativistic heavy ion collider) poses a challenging task for the fabrication of Si microstrip detectors. Due to high luminosities, detectors are required to sustain very high voltage operation well exceeding the bias voltage needed to fully deplete them. The "overhanging" metal contact is now a well established technique for improving the breakdown performance of the Si microstrip detector. Based on computer simulation, the influence of various physical and geometrical parameters on the electrical breakdown of the Si detectors equipped with metal overhangs is extensively analysed. Furthermore, optimization of design parameters is performed to achieve breakdown voltages close to maximum realizable values. The simulation results are found to be in good agreement with experimental data. (17 refs).

  1. New evaluation methods for conceptual design selection using computational intelligence techniques

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hong Zhong; Liu, Yu; Li, Yanfeng; Wang, Zhonglai [University of Electronic Science and Technology of China, Chengdu (China); Xue, Lihua [Higher Education Press, Beijing (China)

    2013-03-15

    The conceptual design selection, which aims at choosing the best or most desirable design scheme among several candidates for the subsequent detailed design stage, oftentimes requires a set of tools to conduct design evaluation. Using computational intelligence techniques, such as fuzzy logic, neural network, genetic algorithm, and physical programming, several design evaluation methods are put forth in this paper to realize the conceptual design selection under different scenarios. Depending on whether an evaluation criterion can be quantified or not, the linear physical programming (LPP) model and the RAOGA-based fuzzy neural network (FNN) model can be utilized to evaluate design alternatives in conceptual design stage. Furthermore, on the basis of Vanegas and Labib's work, a multi-level conceptual design evaluation model based on the new fuzzy weighted average (NFWA) and the fuzzy compromise decision-making method is developed to solve the design evaluation problem consisting of many hierarchical criteria. The effectiveness of the proposed methods is demonstrated via several illustrative examples.

  2. New evaluation methods for conceptual design selection using computational intelligence techniques

    International Nuclear Information System (INIS)

    Huang, Hong Zhong; Liu, Yu; Li, Yanfeng; Wang, Zhonglai; Xue, Lihua

    2013-01-01

    The conceptual design selection, which aims at choosing the best or most desirable design scheme among several candidates for the subsequent detailed design stage, oftentimes requires a set of tools to conduct design evaluation. Using computational intelligence techniques, such as fuzzy logic, neural network, genetic algorithm, and physical programming, several design evaluation methods are put forth in this paper to realize the conceptual design selection under different scenarios. Depending on whether an evaluation criterion can be quantified or not, the linear physical programming (LPP) model and the RAOGA-based fuzzy neural network (FNN) model can be utilized to evaluate design alternatives in conceptual design stage. Furthermore, on the basis of Vanegas and Labib's work, a multi-level conceptual design evaluation model based on the new fuzzy weighted average (NFWA) and the fuzzy compromise decision-making method is developed to solve the design evaluation problem consisting of many hierarchical criteria. The effectiveness of the proposed methods is demonstrated via several illustrative examples.

  3. EUV high resolution imager on-board solar orbiter: optical design and detector performances

    Science.gov (United States)

    Halain, J. P.; Mazzoli, A.; Rochus, P.; Renotte, E.; Stockman, Y.; Berghmans, D.; BenMoussa, A.; Auchère, F.

    2017-11-01

    The EUV high resolution imager (HRI) channel of the Extreme Ultraviolet Imager (EUI) on-board Solar Orbiter will observe the solar atmospheric layers at 17.4 nm wavelength with a 200 km resolution. The HRI channel is based on a compact two mirrors off-axis design. The spectral selection is obtained by a multilayer coating deposited on the mirrors and by redundant Aluminum filters rejecting the visible and infrared light. The detector is a 2k x 2k array back-thinned silicon CMOS-APS with 10 μm pixel pitch, sensitive in the EUV wavelength range. Due to the instrument compactness and the constraints on the optical design, the channel performance is very sensitive to the manufacturing, alignments and settling errors. A trade-off between two optical layouts was therefore performed to select the final optical design and to improve the mirror mounts. The effect of diffraction by the filter mesh support and by the mirror diffusion has been included in the overall error budget. Manufacturing of mirror and mounts has started and will result in thermo-mechanical validation on the EUI instrument structural and thermal model (STM). Because of the limited channel entrance aperture and consequently the low input flux, the channel performance also relies on the detector EUV sensitivity, readout noise and dynamic range. Based on the characterization of a CMOS-APS back-side detector prototype, showing promising results, the EUI detector has been specified and is under development. These detectors will undergo a qualification program before being tested and integrated on the EUI instrument.

  4. The design of a position-sensitive thermal-neutron detector

    International Nuclear Information System (INIS)

    Zhang Yi; Chen Ziyu; Shen Ji

    2007-01-01

    We design a type of position-sensitive thermal-neutron detector. The design is based on the nuclear reaction 10 B(n, α) 7 Li, and solid boron-10 is used as the target material while the alpha and lithium-7 particles from the reaction are caught as the source of position information of the original neutrons. With the help of MCNP software, we simulate the distribution of alpha particles in the boron target, which leads to the optimal thickness of target, physical efficiency and position resolution. (authors)

  5. Gilson, Darwin, and Intelligent Design

    Directory of Open Access Journals (Sweden)

    Desmond J. FitzGerald

    2015-12-01

    Full Text Available The article starts with stating the fact that today there is an increasing recognition of difficulties with Darwinism accompanied by vigorous responses on the part of Darwin’s defenders; among the instances of challenge to the dominant theory, one can find a book of Gilson, From Aristotle to Darwin and Back Again, and those behind the Intelligent Design movement. Inrelating the book of Gilson to the ID proponents, the author concludes that, while in some ways they are on the same side in opposing the anti-creation thrust of Darwinism, Gilson is neutral on the validity or truth of Darwin’s biological hypothesis. Gilson, however, whose book preceded the ID movement by some twenty years, seeks to analyze Darwinism from the perspective of the classical philosophy of nature. He well understands that, according to modern scientific method, final causes are excluded from consideration, but he calls for a biophilosophy which will be open to the reality of human experience as Aristotle was and recognize that teleology is present in nature. According to him, even if teleology seems to be a contestable explanation, chance as understood by Darwinists is the pure absence of explanation.

  6. Design of intelligent power consumption optimization and visualization management platform for large buildings based on internet of things

    Directory of Open Access Journals (Sweden)

    Gong Shulan

    2017-01-01

    Full Text Available The buildings provide a significant contribution to total energy consumption and CO2 emission. It has been estimated that the development of an intelligent power consumption monitor and control system will result in about 30% savings in energy consumption. This design innovatively integrates the advanced technologies such as the internet of things, the internet, intelligent buildings and intelligent electricity which can offer open, efficient, convenient energy consumption detection platform in demand side and visual management demonstration application platform in power enterprises side. The system was created to maximize the effective and efficient the use of energy resource. It was development around sensor networks and intelligent gateway and the monitoring center software. This will realize the highly integration and comprehensive application in energy and information to meet the needs with intelligent buildings

  7. An engineering design study of the transfer bridge for the SSC SDC detector

    International Nuclear Information System (INIS)

    Western, J.L.; Tulk, G.W.; Dittert, L.I.

    1993-05-01

    The transfer bridge is a major structural installation component for the large detector proposed by the Solenoidal Detector Collaboration (SDC). The transfer bridge is the structural device that allows for installation of the Muon Forward Toroid (MFT) and calorimeter components into the Muon Barrel Toroid (MBT). This paper summarizes the design and construction of the SDC transfer bridge

  8. Intelligent structural optimization: Concept, Model and Methods

    International Nuclear Information System (INIS)

    Lu, Dagang; Wang, Guangyuan; Peng, Zhang

    2002-01-01

    Structural optimization has many characteristics of Soft Design, and so, it is necessary to apply the experience of human experts to solving the uncertain and multidisciplinary optimization problems in large-scale and complex engineering systems. With the development of artificial intelligence (AI) and computational intelligence (CI), the theory of structural optimization is now developing into the direction of intelligent optimization. In this paper, a concept of Intelligent Structural Optimization (ISO) is proposed. And then, a design process model of ISO is put forward in which each design sub-process model are discussed. Finally, the design methods of ISO are presented

  9. Design of Sail-Assisted Unmanned Surface Vehicle Intelligent Control System

    OpenAIRE

    Ma, Yong; Zhao, Yujiao; Diao, Jiantao; Gan, Langxiong; Bi, Huaxiong; Zhao, Jingming

    2016-01-01

    To achieve the wind sail-assisted function of the unmanned surface vehicle (USV), this work focuses on the design problems of the sail-assisted USV intelligent control systems (SUICS) and illustrates the implementation process of the SUICS. The SUICS consists of the communication system, the sensor system, the PC platform, and the lower machine platform. To make full use of the wind energy, in the SUICS, we propose the sail angle of attack automatic adjustment (Sail_4A) algorithm and present ...

  10. Design and test of a prototype silicon detector module for ATLAS Semiconductor Tracker endcaps

    International Nuclear Information System (INIS)

    Clark, A.G.; Donega, M.; D'Onofrio, M.

    2005-01-01

    The ATLAS Semiconductor Tracker (SCT) will be a central part of the tracking system of the ATLAS experiment. The SCT consists of four concentric barrels of silicon detectors as well as two silicon endcap detectors formed by nine disks each. The layout of the forward silicon detector module presented in this paper is based on the approved layout of the silicon detectors of the SCT, their geometry and arrangement in disks, but uses otherwise components identical to the barrel modules of the SCT. The module layout is optimized for excellent thermal management and electrical performance, while keeping the assembly simple and adequate for a large scale module production. This paper summarizes the design and layout of the module and present results of a limited prototype production, which has been extensively tested in the laboratory and testbeam. The module design was not finally adopted for series production because a dedicated forward hybrid layout was pursued

  11. A new event detector designed for the Seismic Research Observatories

    Science.gov (United States)

    Murdock, James N.; Hutt, Charles R.

    1983-01-01

    A new short-period event detector has been implemented on the Seismic Research Observatories. For each signal detected, a printed output gives estimates of the time of onset of the signal, direction of the first break, quality of onset, period and maximum amplitude of the signal, and an estimate of the variability of the background noise. On the SRO system, the new algorithm runs ~2.5x faster than the former (power level) detector. This increase in speed is due to the design of the algorithm: all operations can be performed by simple shifts, additions, and comparisons (floating point operations are not required). Even though a narrow-band recursive filter is not used, the algorithm appears to detect events competitively with those algorithms that employ such filters. Tests at Albuquerque Seismological Laboratory on data supplied by Blandford suggest performance commensurate with the on-line detector of the Seismic Data Analysis Center, Alexandria, Virginia.

  12. Design and Characterization of the VMM1 ASIC for Micropattern Gas Detectors

    CERN Document Server

    Metcalfe, J; The ATLAS collaboration; Fried, J; Li, S; Nambiar, N; Polychronakos, V; Vernon, E

    2013-01-01

    We present here the measurements of the first prototype VMM1 ASIC designed at Brookhaven National Laboratory in 130 nm CMOS and fabricated in spring 2012. The 64-channel ASIC features a novel design for use with several types of micropattern gas detectors. The data driven system measures peak amplitude and timing information in tracking mode and first channel hit address in trigger mode. Several programmable gain and integration times allows the flexibility to work with Micromegas, Thin Gap Chambers (TGCs), and Gas Electron Multiplier (GEM) detectors. The IC design architecture and features will be presented along with measurements characterizing the performance of the VMM1 such as noise, linearity of the response, time walk, and calibration range. The concept for use with Micromegas in ATLAS Upgrade will also be covered including characterization under test beam conditions.

  13. Logic Programs as a Specification and Description Tool in the Design Process of an Intelligent Tutoring System

    OpenAIRE

    Möbus, Claus

    1987-01-01

    We propose the use of logic programs when designing intelligent tutoring systems. With their help we specified the small-step semantics of the learning curriculum, designed the graphical user interface, derived instructions and modelled students' knowledge.

  14. The Design of Intelligent Repair Welding Mechanism and Relative Control System of Big Gear

    Directory of Open Access Journals (Sweden)

    Hong-Yu LIU

    2014-10-01

    Full Text Available Effective repair of worn big gear has large influence on ensuring safety production and enhancing economic benefits. A kind of intelligent repair welding method was put forward mainly aimed at the big gear restriction conditions of high production cost, long production cycle and high- intensity artificial repair welding work. Big gear repair welding mechanism was designed in this paper. The work principle and part selection of big gear repair welding mechanism was introduced. The three dimensional mode of big gear repair welding mechanism was constructed by Pro/E three dimensional design software. Three dimensional motions can be realized by motor controlling ball screw. According to involute gear feature, the complicated curve motion on curved gear surface can be transformed to linear motion by orientation. By this way, the repair welding on worn gear area can be realized. In the design of big gear repair welding mechanism control system, Siemens S7-200 series hardware was chosen. Siemens STEP7 programming software was chosen as system design tool. The entire repair welding process was simulated by experiment simulation. It provides a kind of practical and feasible method for the intelligent repair welding of big worn gear.

  15. Some considerations about the theory of intelligent design

    Directory of Open Access Journals (Sweden)

    JUAN E CARREÑO

    2009-01-01

    Full Text Available The so-called theory of intelligent design (ID has gained a growing reputation in the Anglo-Saxon culture, becoming a subject of public debate. The approaches that constitute the core of this proposal, however, have been poorly characterized and systematized. The three most significant authors of ID are certainly Michael Behe, William Dembski and Stephen Meyer. Beyond the differences that can be distinguished in the work of each of them, the central fact in their arguments is the complexity of living organisms, which according to these authors, escapes any kind of natural explanation. In effect, according to the authors of ID, the irreducible complexity that can be detected in the natural world would allow to infer design in a scientifically valid way, even though many of them prefer to remain silent regarding the identity and attributes of the designer. We think that under this proposal, remains a deep epistemological confusion, since its very structure combines methodologies that are beyond the scope of historical and natural evolutionary theories. We also reject the claim that ID is a legitimate scientific theory, because it does not exhibit the classical characteristics that a scientific kind of knowledge must have.

  16. LHCb: Detector Module Design, Construction and Performance for the LHCb SciFi Tracker

    CERN Multimedia

    Ekelhof, R

    2014-01-01

    The Scintillating Fibre (SciFi) Tracker for the LHCb Upgrade (CERN/LHCC 2014-001; LHCb TDR 15) is based on 2.5 m long multi-layered ribbons from 10,000 km of scintillating fibre over 12 planes covering 350 m2. The planes are separated into modular detectors, each with cooled silicon photomultiplier (SiPM) arrays for photo-readout. In this talk, we will present the construction and performance of this novel detector, including the intricacies of scintillating fibre ribbon production, constructing precision detector planes with a rigid and light module design, and the integration of the readout components for this detector. The complexities and issues regarding this active part of the SciFi Tracker will be emphasised along with the current solutions and measured performances.

  17. The remarkable cell: Intelligently designed or by evolutionary process?

    Directory of Open Access Journals (Sweden)

    Mark Pretorius

    2013-02-01

    Full Text Available The objective of this article was to deal with the challenging theme of the Origin of Life. Science has been arguing the when and how of the beginning of life for centuries. It is a subject which remains perplexing despite all the technological advances made in science. The first part of the article dealt with the idea of a universe and earth divinely created to sustain life. The second part dealt with the premise that the first life forms were the miraculous work of an intelligent designer, which is revealed by the sophisticated and intricate design of these first life forms. The article concluded with an explanation that these life forms are in stark contrast to the idea of a random Darwinian type evolution for life�s origin, frequently referred to as abiogenesis or spontaneous generation.

  18. Artificial intelligence applications to design validation and sneak function analysis

    International Nuclear Information System (INIS)

    Stratton, R.C.

    1985-01-01

    An objective of the US space reactor program is to design systems with high reliability and safety of control over long operating lifetimes. Argonne National Laboratory (ANL) is a participant in the National Man-Machine Integration (MMI) program for Liquid Metal Fast Breeder Reactors (LMFBR). A purpose of this program is to promote the development of concepts and technologies that enhance the operational safety and reliability of fast-breeder reactors. Much of the work is directly applicable to the space reactor program. This paper reports on one of the MMI projects being developed by ANL. The project reported pertains to an automated system that demonstrates the use of artificial intelligence (AI) for design validation (DA) and sneak function analysis (SFA). The AI system models the design specification and the physical design of the cooling process assigned to the Argon Cooling System (ACS) at Experimental Breeder Reactor II (EBR-II). The models are developed using heuristic knowledge and natural laws. 13 refs

  19. Intelligent Environmental Nanomaterials

    KAUST Repository

    Chang, Jian

    2018-01-30

    Due to the inherent complexity of environmental problems, especially water and air pollution, the utility of single-function environmental nanomaterials used in conventional and unconventional environmental treatment technologies are gradually reaching their limits. Intelligent nanomaterials with environmentally-responsive functionalities have shown potential to improve the performance of existing and new environmental technologies. By rational design of their structures and functionalities, intelligent nanomaterials can perform different tasks in response to varying application scenarios for the purpose of achieving the best performance. This review offers a critical analysis of the design concepts and latest progresses on the intelligent environmental nanomaterials in filtration membranes with responsive gates, materials with switchable wettability for selective and on-demand oil/water separation, environmental materials with self-healing capability, and emerging nanofibrous air filters for PM2.5 removal. We hope that this review will inspire further research efforts to develop intelligent environmental nanomaterials for the enhancement of the overall quality of environmental or human health.

  20. Intelligent Environmental Nanomaterials

    KAUST Repository

    Chang, Jian; Zhang, Lianbin; Wang, Peng

    2018-01-01

    Due to the inherent complexity of environmental problems, especially water and air pollution, the utility of single-function environmental nanomaterials used in conventional and unconventional environmental treatment technologies are gradually reaching their limits. Intelligent nanomaterials with environmentally-responsive functionalities have shown potential to improve the performance of existing and new environmental technologies. By rational design of their structures and functionalities, intelligent nanomaterials can perform different tasks in response to varying application scenarios for the purpose of achieving the best performance. This review offers a critical analysis of the design concepts and latest progresses on the intelligent environmental nanomaterials in filtration membranes with responsive gates, materials with switchable wettability for selective and on-demand oil/water separation, environmental materials with self-healing capability, and emerging nanofibrous air filters for PM2.5 removal. We hope that this review will inspire further research efforts to develop intelligent environmental nanomaterials for the enhancement of the overall quality of environmental or human health.

  1. Design of Bus Protocol Intelligent Initiation System Based On RS485

    Directory of Open Access Journals (Sweden)

    Li Liming

    2017-01-01

    Full Text Available In order to design an effective and reliable RS485 bus protocol based on RS485 bus, this paper introduces the structure and transmission mode of the command frame and the response frame, and also introduce four control measures and the communication in order to process quality of this system. The communication protocol is open, tolerant, reliable and fast, and can realize ignition more reliable and accurate in the intelligent initiation system.

  2. Teaching intelligent design or sparking interest in science? What players do with Will Wright's Spore

    Science.gov (United States)

    Owens, Trevor

    2012-12-01

    The 2008 commercial video game Spore allowed more than a million players to design their own life forms. Starting from single-celled organisms players played through a caricature of natural history. Press coverage of the game's release offer two frames for thinking about the implications of the game. Some scientists and educators saw the game as a troubling teacher of intelligent design, while others suggested it might excite public interest in science. This paper explores the extent to which these two ways of thinking about the game are consistent with what players have done with the game in its online community. This analysis suggests that, at least for the players participating in this community, the game has not seduced them into believing in intelligent design. Instead the activities of these players suggest that the game has played a catalytic role in engaging the public with science. These findings indicate that designers of educational games may wish to consider more deeply tensions between prioritizing accuracy of content in educational games over player engagement.

  3. Design of Ka-band antipodal finline mixer and detector

    International Nuclear Information System (INIS)

    Yao Changfei; Xu Jinping; Chen Mo

    2009-01-01

    This paper mainly discusses the analysis and design of a finline single-ended mixer and detector. In the circuit, for the purpose of eliminating high-order resonant modes and improving transition loss, metallic via holes are implemented along the mounting edge of the substrate embedded in the split-block of the WG-finline-microstrip transition. Meanwhile, a Ka band slow-wave and bandstop filter, which represents a reactive termination, is designed for the utilization of idle frequencies and operation frequencies energy. Full-wave analysis is carried out to optimize the input matching network of the mixer and the detector circuit using lumped elements to model the nonlinear diode. The exported S-matrix of the optimized circuit is used for conversion loss and voltage sensitivity analysis. The lowest measured conversion loss is 3.52 dB at 32.2 GHz; the conversion loss is flat and less than 5.68 dB in the frequency band of 29-34 GHz. The highest measured zero-bias voltage sensitivity is 1450 mV/mW at 38.6 GHz, and the sensitivity is better than 1000 mV/mW in the frequency band of 38-40 GHz.

  4. The role of networks and artificial intelligence in nanotechnology design and analysis.

    Science.gov (United States)

    Hudson, D L; Cohen, M E

    2004-05-01

    Techniques with their origins in artificial intelligence have had a great impact on many areas of biomedicine. Expert-based systems have been used to develop computer-assisted decision aids. Neural networks have been used extensively in disease classification and more recently in many bioinformatics applications including genomics and drug design. Network theory in general has proved useful in modeling all aspects of biomedicine from healthcare organizational structure to biochemical pathways. These methods show promise in applications involving nanotechnology both in the design phase and in interpretation of system functioning.

  5. Design and study of a coplanar grid array CdZnTe detector for improved spatial resolution

    International Nuclear Information System (INIS)

    Ma, Yuedong; Xiao, Shali; Yang, Guoqiang; Zhang, Liuqiang

    2014-01-01

    Coplanar grid (CPG) CdZnTe detectors have been used as gamma-ray spectrometers for years. Comparing with pixelated CdZnTe detectors, CPG CdZnTe detectors have either no or poor spatial resolution, which directly limits its use in imaging applications. To address the issue, a 2×2 CPG array CdZnTe detector with dimensions of 7×7×5 mm 3 was fabricated. Each of the CPG pairs in the detector was moderately shrunk in size and precisely designed to improve the spatial resolution while maintaining good energy resolution, considering the charge loss at the surface between the strips of each CPG pairs. Preliminary measurements were demonstrated at an energy resolution of 2.7–3.9% for the four CPG pairs using 662 keV gamma rays and with a spatial resolution of 3.3 mm, which is the best spatial resolution ever achieved for CPG CdZnTe detectors. The results reveal that the CPG CdZnTe detector can also be applied to imaging applications at a substantially higher spatial resolution. - Highlights: • A novel structure of coplanar grid CdZnTe detector was designed to evaluate the possibility of applying the detector to gamma-ray imaging applications. • The best spatial resolution of coplanar grid CdZnTe detectors ever reported has been achieved, along with good spectroscopic performance. • Depth correction of the energy spectra using a new algorithm is presented

  6. Low-noise detector and amplifier design for 100 ns direct detection CO{sub 2} LIDAR receiver

    Energy Technology Data Exchange (ETDEWEB)

    Cafferty, M.M.; Cooke, B.J.; Laubscher, B.E.; Olivas, N.L.; Fuller, K.

    1997-06-01

    The development and test results of a prototype detector/amplifier design for a background limited, pulsed 100 ns, 10--100 kHz repetition rate LIDAR/DIAL receiver system are presented. Design objectives include near-matched filter detection of received pulse amplitude and round trip time-of-flight, and the elimination of excess correlated detector/amplifier noise for optimal pulse averaging. A novel pole-zero cancellation amplifier, coupled with a state-of-the-art SBRC (Santa Barbara Research Center) infrared detector was implemented to meet design objectives. The pole-zero cancellation amplifier utilizes a tunable, pseudo-matched filter technique to match the width of the laser pulse to the shaping time of the filter for optimal SNR performance. Low frequency correlated noise, (l/f and drift noise) is rejected through a second order high gain feedback loop. The amplifier also employs an active detector bias stage minimizing detector drift. Experimental results will be provided that demonstrate near-background limited, 100 ns pulse detection performance given a 8.5--11.5 {micro}m (300 K B.B.) radiant background, with the total noise floor spectrally white for optimal pulse averaging efficiency.

  7. Plasma Panel Detectors for MIP Detection for the SLHC and a Test Chamber Design

    CERN Document Server

    Ball, Robert; Etzion, Erez; Friedman, Peter S; Levin, Daniel S; Moshe, Meny Ben; Weaverdyck, Curtis; Zhou, Bing

    2010-01-01

    Performance demands for high and super-high luminosity at the LHC (up to 10^35 cm^(-2) sec^(-1) after the 2017 shutdown) and at future colliders demand high resolution tracking detectors with very fast time response and excellent temporal and spatial resolution. We are investigating a new radiation detector technology based on Plasma Display Panels (PDP), the underlying engine of panel plasma television displays. The design and production of PDPs is supported by four decades of industrial development. Emerging from this television technology is the Plasma Panel Sensor (PPS), a novel variant of the micropattern radiation detector. The PPS is fundamentally an array of micro-Geiger plasma discharge cells operating in a non-ageing, hermetically sealed gas mixture . We report on the PPS development program, including design of a PPS Test Cell.

  8. Admittance detector for high impedance systems: design and applications.

    Science.gov (United States)

    Zhang, Min; Stamos, Brian N; Dasgupta, Purnendu K

    2014-12-02

    We describe an admittance detector for high impedance systems (small capillary bore and/or low solution specific conductance). Operation in the low frequency range (≤1 kHz, much lower than most relevant publications) provides optimum response to conductance changes in capillaries ≤20 μm in bore. The detector design was based on studies described in a preceding companion paper ( Zhang, M.; Stamos, B. N.; Amornthammarong, N.; Dasgupta, P. K. Anal. Chem. 2014, 8 , DOI 10.1021/ac503245a.). The highest S/N for detecting 100 μM KCl (5.5 μM peak concentration, ∼0.8 μS/cm) injected into water flowing through a capillary of 7.5 μm inner radius (r) was observed at 500-750 Hz. A low bias current operational amplifier in the transimpedance configuration permitted high gain (1 V/nA) to measure pA-nA level currents in the detection cell. Aside from an oscillator, an offset-capable RMS-DC converter formed the complete detection circuitry. Limits of detection (LODs) of KCl scaled inversely with the capillary cross section and were 2.1 and 0.32 μM injected KCl for r = 1 and 2.5 μm capillaries, respectively. When used as a detector on an r = 8 μm bore poly(methyl methacrylate) capillary in a split effluent stream from a suppressed ion chromatograph, the LOD was 27 nM bromide (Vex 22 V p-p), compared to 14 nM observed with a commercial bipolar pulse macroscale conductivity detector with an actively thermostated cell. We also show applications of the detector in electrophoresis in capillaries with r = 1 and 2.5 μm. Efficient heat dissipation permits high concentrations of the background electrolyte and sensitive detection because of efficient electrostacking.

  9. The 150 ns detector project: progress with small detectors

    International Nuclear Information System (INIS)

    Warburton, W.K.; Russell, S.R.; Kleinfelder, Stuart A.; Segal, Julie

    1994-01-01

    This project's long term goal is to develop a pixel area detector capable of 6 MHz frame rates (150 ns/frame). Our milestones toward this goal are: a single pixel, 1x256 1D and 8x8 2D detectors, 256x256 2D detectors and, finally, 1024x1024 2D detectors. The design strategy is to supply a complete electronics chain (resetting preamp, selectable gain amplifier, analog-to-digital converter (ADC), and memory) for each pixel. In the final detectors these will all be custom integrated circuits. The front end preamplifiers are being integrated first, since their design and performance are both the most unusual and also critical to the project's success. Similarly, our early work is also concentrating on devising and perfecting detector structures which are thick enough (1 mm) to absorb over 99% of the incident X-rays in the energy range of interest. In this paper we discuss our progress toward the 1x256 1D and 8x8 2D detectors. We have fabricated sample detectors at Stanford's Center for Integrated Systems and are preparing both to test them individually and to wirebond them to the preamplifier samples to produce our first working small 1D and 2D detectors. We will describe our solutions to the design problems associated with collecting charge in less than 30 ns from 1 mm thick pixels in high resistivity silicon. We have constructed and tested the front end of our preamplifier design using a commercial 1.2 μm CMOS technology and are moving on to produce a few channels of the complete preamplifier, including a switchable gain stage and output stage. We will discuss both the preamplifier design and our initial test results. ((orig.))

  10. The 150 ns detector project: progress with small detectors

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, W.K. (X-ray Instrumentation Associates, 2513 Charleston Rd, Ste 207, Mountain View, CA 94043 (United States)); Russell, S.R. (X-ray Instrumentation Associates, 2513 Charleston Rd, Ste 207, Mountain View, CA 94043 (United States)); Kleinfelder, Stuart A. (VLSI Physics, 19 Drury Lane, Berkeley, CA 94705 (United States)); Segal, Julie (Integrated Ckts Lab., Dept. of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States))

    1994-09-01

    This project's long term goal is to develop a pixel area detector capable of 6 MHz frame rates (150 ns/frame). Our milestones toward this goal are: a single pixel, 1x256 1D and 8x8 2D detectors, 256x256 2D detectors and, finally, 1024x1024 2D detectors. The design strategy is to supply a complete electronics chain (resetting preamp, selectable gain amplifier, analog-to-digital converter (ADC), and memory) for each pixel. In the final detectors these will all be custom integrated circuits. The front end preamplifiers are being integrated first, since their design and performance are both the most unusual and also critical to the project's success. Similarly, our early work is also concentrating on devising and perfecting detector structures which are thick enough (1 mm) to absorb over 99% of the incident X-rays in the energy range of interest. In this paper we discuss our progress toward the 1x256 1D and 8x8 2D detectors. We have fabricated sample detectors at Stanford's Center for Integrated Systems and are preparing both to test them individually and to wirebond them to the preamplifier samples to produce our first working small 1D and 2D detectors. We will describe our solutions to the design problems associated with collecting charge in less than 30 ns from 1 mm thick pixels in high resistivity silicon. We have constructed and tested the front end of our preamplifier design using a commercial 1.2 [mu]m CMOS technology and are moving on to produce a few channels of the complete preamplifier, including a switchable gain stage and output stage. We will discuss both the preamplifier design and our initial test results. ((orig.))

  11. Designing an Intelligent Mobile Learning Tool for Grammar Learning (i-MoL

    Directory of Open Access Journals (Sweden)

    Munir Shuib

    2015-01-01

    Full Text Available English is the most important second language in most non-English speaking countries, including Malaysia. A good English proficiency comes from good grasp of grammar. To conquer the problems of low English proficiency among Malaysians, it is important to identify the key motivators that could facilitate the process of grammar learning. In this digital age, technology can play a very important role and mobile technology could be one of it. Thus, this study aims at designing a mobile learning tool, namely the Intelligent Mobile Learning Tool for Grammar Learning (i-MoL to act as the “on-the-go” grammar learning support via mobile phones. i-MoL helps reinforce grammar learning through mobile phone with game-like applications, inquiry-based activities and flashcard-like information. The intelligent part of i-MoL lies in its ability to map the mobile-based grammar learning content to individual’s preferred learning styles based on Felder-Silverman Learning Style Model (FSLSM. The instructional system design through the ADDIE model was used in this study as a systematic approach in designing a novel and comprehensive mobile learning tool for grammar learning. In terms of implications, this study provides insights on how mobile technologies can be utilized to meet the mobility demand among language learners today.

  12. An intelligent and integrated V and V environment design for NPP I and C software systems

    International Nuclear Information System (INIS)

    Koo, Seo Ryong; Son Han Seong; Seong, Poong Hyun

    2001-01-01

    Nuclear Power Plant (NPP) is the safety critical system. Since, nuclear instrumentation and control (I and C) systems including the plant protection system play the brain part of human, nuclear I and C systems have an influence on safety and operation of NPP. Essentially, software V and V should be performed for the safety critical systems based on software. It is very important in the technical aspect because of the problems concerning license acquisitions. In this work, an intelligent and integrated V and V environment supporting the automation of V and V was designed. The intelligent and integrated V and V environment consists of the intelligent controller part, components part, interface part, and GUI part. These parts were integrated systematically, while taking their own independent functions

  13. Classroom acoustics design for speakers’ comfort and speech intelligibility: a European perspective

    DEFF Research Database (Denmark)

    Garcia, David Pelegrin; Rasmussen, Birgit; Brunskog, Jonas

    2014-01-01

    . The recommended values of reverberation time in fully occupied classrooms for exible teaching methods are between 0.45 s and 0.6 s (between 0.6 and 0.7 s in an unoccupied but furnished condition) for classrooms with less than 40 students and volumes below 210 m 3 . When designing larger classrooms, a dedicated......Current European regulatory requirements or guidelines for reverberation time in classrooms have the goal of enhancing speech intelligibility for students and reducing noise levels in classrooms. At the same time, school teachers suffer frequently from voice problems due to high vocal load...... intelligibility for students. Two room acoustic parameters are shown relevant for a speaker: the voice support, linked to vocal effort, and the decay time derived from an oral-binaural impulse response, linked to vocal comfort. Theoretical prediction models for room-averaged values of these parameters...

  14. LHCb Scintillating Fiber detector front end electronics design and quality assurance

    Science.gov (United States)

    Vink, W. E. W.; Pellegrino, A.; Ietswaard, G. C. M.; Verkooijen, J. C.; Carneiro, U.; Massefferi, A.

    2017-03-01

    The on-detector electronics of the LHCb Scintillating Fiber Detector consists of multiple PCBs assembled in a unit called Read Out Box, capable of reading out 2048 channels with an output rate of 70 Gbps. There are three types of boards: PACIFIC, Clusterization and Master Board. The Pacific Boards host PACIFIC ASICs, with pre-amplifier and comparator stages producing two bits of data per channel. A cluster-finding algorithm is then run in an FPGA on the Clusterization Board. The Master Board distributes fast and slow control, and power. We describe the design, production and test of prototype PCBs.

  15. Design and fabrication of an optimum peripheral region for low gain avalanche detectors

    International Nuclear Information System (INIS)

    Fernández-Martínez, Pablo; Flores, D.; Hidalgo, S.; Greco, V.; Merlos, A.; Pellegrini, G.; Quirion, D.

    2016-01-01

    Low Gain Avalanche Detectors (LGAD) represent a remarkable advance in high energy particle detection, since they provide a moderate increase (gain ~10) of the collected charge, thus leading to a notable improvement of the signal-to-noise ratio, which largely extends the possible application of Silicon detectors beyond their present working field. The optimum detection performance requires a careful implementation of the multiplication junction, in order to obtain the desired gain on the read out signal, but also a proper design of the edge termination and the peripheral region, which prevents the LGAD detectors from premature breakdown and large leakage current. This work deals with the critical technological aspects required to optimize the LGAD structure. The impact of several design strategies for the device periphery is evaluated with the aid of TCAD simulations, and compared with the experimental results obtained from the first LGAD prototypes fabricated at the IMB-CNM clean room. Solutions for the peripheral region improvement are also provided.

  16. Design and fabrication of an optimum peripheral region for low gain avalanche detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Martínez, Pablo; Flores, D., E-mail: david.flores@imb-cnm.csic.es; Hidalgo, S.; Greco, V.; Merlos, A.; Pellegrini, G.; Quirion, D.

    2016-06-11

    Low Gain Avalanche Detectors (LGAD) represent a remarkable advance in high energy particle detection, since they provide a moderate increase (gain ~10) of the collected charge, thus leading to a notable improvement of the signal-to-noise ratio, which largely extends the possible application of Silicon detectors beyond their present working field. The optimum detection performance requires a careful implementation of the multiplication junction, in order to obtain the desired gain on the read out signal, but also a proper design of the edge termination and the peripheral region, which prevents the LGAD detectors from premature breakdown and large leakage current. This work deals with the critical technological aspects required to optimize the LGAD structure. The impact of several design strategies for the device periphery is evaluated with the aid of TCAD simulations, and compared with the experimental results obtained from the first LGAD prototypes fabricated at the IMB-CNM clean room. Solutions for the peripheral region improvement are also provided.

  17. sCMOS detector for imaging VNIR spectrometry

    Science.gov (United States)

    Eckardt, Andreas; Reulke, Ralf; Schwarzer, Horst; Venus, Holger; Neumann, Christian

    2013-09-01

    The facility Optical Information Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the scientific results of the institute of leading edge instruments and focal plane designs for EnMAP VIS/NIR spectrograph. EnMAP (Environmental Mapping and Analysis Program) is one of the selected proposals for the national German Space Program. The EnMAP project includes the technological design of the hyper spectral space borne instrument and the algorithms development of the classification. The EnMAP project is a joint response of German Earth observation research institutions, value-added resellers and the German space industry like Kayser-Threde GmbH (KT) and others to the increasing demand on information about the status of our environment. The Geo Forschungs Zentrum (GFZ) Potsdam is the Principal Investigator of EnMAP. DLR OS and KT were driving the technology of new detectors and the FPA design for this project, new manufacturing accuracy and on-chip processing capability in order to keep pace with the ambitious scientific and user requirements. In combination with the engineering research, the current generations of space borne sensor systems are focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large swath and high spectral resolution with intelligent synchronization control, fast-readout ADC chains and new focal-plane concepts open the door to new remote-sensing and smart deep space instruments. The paper gives an overview over the detector verification program at DLR on FPA level, new control possibilities for sCMOS detectors in global shutter mode and key parameters like PRNU, DSNU, MTF, SNR, Linearity, Spectral Response, Quantum Efficiency, Flatness and Radiation Tolerance will be discussed in detail.

  18. Intelligence, income, and education as potential influences on a child's home environment: A (maternal) sibling-comparison design.

    Science.gov (United States)

    Hadd, Alexandria Ree; Rodgers, Joseph Lee

    2017-07-01

    The quality of the home environment, as a predictor, is related to health, education, and emotion outcomes. However, factors influencing the quality of the home environment, as an outcome, have been understudied-particularly how children construct their own environments. Further, most previous research on family processes and outcomes has implemented between-family designs, which limit claims of causality. The present study uses kinship data from the National Longitudinal Survey of Youth to construct a maternal sibling-comparison design to investigate how maternal and child traits predict the quality of home environment. Using a standard between-family analysis, we first replicate previous research showing a relationship between maternal intelligence and the quality of the home environment. Then, we reevaluate the link between maternal intelligence and the home environment using differences between maternal sisters on several characteristics to explain differences between home environments for their children. Following, we evaluate whether child intelligence differences are related to home environment differences in the presence of maternal characteristics. Results are compared with those from the between-family analysis. Past causal interpretations are challenged by our findings, and the role of child intelligence in the construction of the home environment emerges as a critical contributor that increases in importance with development. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Detector design and evaluation for the solenoidal tracker at RHIC

    International Nuclear Information System (INIS)

    Howe, H.; Ahmad, S.; Bonner, B.E.

    1992-01-01

    There are two components to this research, both at the high-η ends of the STAR detector to be built in Brookhaven in 1997. The first project is to design the start counters to be placed along the incident beam-pipe. These detectors will be used to determine the starting time for the TOF layer, which, in conjunction with the main low-η TPC detectors, will determine particle identification. The TOF system will need a time resolution of 100 ps, which must be reflected in the start counter design. The start counter will detect particles emitted with pseudorapidities of η-4.5-5.5, and the size of the counter is dependent on the placement of the counter along the beam pipe. The authors will also explore start counter segmentation and light collection from the scintillator. Second, they are using computer simulation to try to calculate the initial momentum of particles, given their crossing points through the high-η TPCs. A computer model can give one such track through the TPCs. By modelling the track of the particle back through an ideal magnetic field, the authors can estimate the initial momentum. Then, based on this momentum, they project the particle through a complex magnetic field corresponding to the actual field generated and determine where that particle strikes the TPCs. By then varying the initial momentum slightly, they can minimize the difference between such tracks and the original track and, thus, accurately calculate the initial momentum

  20. Intelligent editor/printer enhancements

    Science.gov (United States)

    Woodfill, M. C.; Pheanis, D. C.

    1983-01-01

    Microprocessor support hardware, software, and cross assemblers relating to the Motorola 6800 and 6809 process systems were developed. Pinter controller and intelligent CRT development are discussed. The user's manual, design specifications for the MC6809 version of the intelligent printer controller card, and a 132-character by 64-line intelligent CRT display system using a Motorola 6809 MPU, and a one-line assembler and disassembler are provided.

  1. Intelligent Tutoring System: A Tool for Testing the Research Curiosities of Artificial Intelligence Researchers

    Science.gov (United States)

    Yaratan, Huseyin

    2003-01-01

    An ITS (Intelligent Tutoring System) is a teaching-learning medium that uses artificial intelligence (AI) technology for instruction. Roberts and Park (1983) defines AI as the attempt to get computers to perform tasks that if performed by a human-being, intelligence would be required to perform the task. The design of an ITS comprises two distinct…

  2. Numerical optimisation in spot detector design

    NARCIS (Netherlands)

    van der Heijden, Ferdinand; Apperloo, W.; Spreeuwers, Lieuwe Jan

    1997-01-01

    Spots are image details resulting from objects, the projections of which are so small that the inner structure of these objects cannot be resolved from their image. Spot detectors are image operators aiming at the detection and localisation of spots in the image. Most spot detectors can be tuned

  3. The International Linear Collider Technical Design Report - Volume 4: Detectors

    CERN Document Server

    Behnke, Ties; Burrows, Philip N.; Fuster, Juan; Peskin, Michael; Stanitzki, Marcel; Sugimoto, Yasuhiro; Yamada, Sakue; Yamamoto, Hitoshi

    2013-01-01

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to incr...

  4. Technical Design Report for the ATLAS Inner Tracker Strip Detector

    CERN Document Server

    Collaboration, ATLAS

    2017-01-01

    This is the first of two Technical Design Report documents that describe the upgrade of the central tracking system for the ATLAS experiment for the operation at the High Luminosity LHC (HL-LHC) starting in the middle of 2026. At this time the LHC will have been upgraded to reach a peak instantaneous luminosity of 7.5x10^34 cm^[-2]s^[-1], which corresponds to approximately 200 inelastic proton-proton collisions per beam crossing. The new Inner Tracker (ITk) will be operational for more than ten years, during which ATLAS aims to accumulate a total data set of 3,000 fb^[-1]. Meeting these requirements presents a unique challenge for the design of an all-silicon tracking system that consists of a pixel detector at small radius close to the beam line and a large-area strip tracking detector surrounding it. This document presents in detail the requirements of the new tracker, its layout and expected performance including the results of several benchmark physics studies at the highest numbers of collisions per beam...

  5. Three-dimensional cross point readout detector design for including depth information

    Science.gov (United States)

    Lee, Seung-Jae; Baek, Cheol-Ha

    2018-04-01

    We designed a depth-encoding positron emission tomography (PET) detector using a cross point readout method with wavelength-shifting (WLS) fibers. To evaluate the characteristics of the novel detector module and the PET system, we used the DETECT2000 to perform optical photon transport in the crystal array. The GATE was also used. The detector module is made up of four layers of scintillator arrays, the five layers of WLS fiber arrays, and two sensor arrays. The WLS fiber arrays in each layer cross each other to transport light to each sensor array. The two sensor arrays are coupled to the forward and left sides of the WLS fiber array, respectively. The identification of three-dimensional pixels was determined using a digital positioning algorithm. All pixels were well decoded, with the system resolution ranging from 2.11 mm to 2.29 mm at full width at half maximum (FWHM).

  6. Design of a linear detector array unit for high energy x-ray helical computed tomography and linear scanner

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Tae; Park, Jong Hwan; Kim, Gi Yoon [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of); Kim, Dong Geun [Medical Imaging Department, ASTEL Inc., Seongnam (Korea, Republic of); Park, Shin Woong; Yi, Yun [Dept. of Electronics and Information Eng, Korea University, Seoul (Korea, Republic of); Kim, Hyun Duk [Research Center, Luvantix ADM Co., Ltd., Daejeon (Korea, Republic of)

    2016-11-15

    A linear detector array unit (LdAu) was proposed and designed for the high energy X-ray 2-d and 3-d imaging systems for industrial non-destructive test. Specially for 3-d imaging, a helical CT with a 15 MeV linear accelerator and a curved detector is proposed. the arc-shape detector can be formed by many LdAus all of which are arranged to face the focal spot when the source-to-detector distance is fixed depending on the application. An LdAu is composed of 10 modules and each module has 48 channels of CdWO{sub 4} (CWO) blocks and Si PIn photodiodes with 0.4 mm pitch. this modular design was made for easy manufacturing and maintenance. through the Monte carlo simulation, the CWO detector thickness of 17 mm was optimally determined. the silicon PIn photodiodes were designed as 48 channel arrays and fabricated with NTD (neutron transmutation doping) wafers of high resistivity and showed excellent leakage current properties below 1 nA at 10 V reverse bias. to minimize the low-voltage breakdown, the edges of the active layer and the guard ring were designed as a curved shape. the data acquisition system was also designed and fabricated as three independent functional boards; a sensor board, a capture board and a communication board to a Pc. this paper describes the design of the detectors (CWO blocks and Si PIn photodiodes) and the 3-board data acquisition system with their simulation results.

  7. Artificial intelligence: the future in nuclear plant maintenance

    International Nuclear Information System (INIS)

    Norgate, G.

    1984-01-01

    The role of robotics and remote handling equipment in future nuclear power plant maintenance activities is discussed in the context of artificial intelligence applications. Special requirements manipulators, control systems, and man-machine interfaces for nuclear applications are noted. Tasks might include inspection with cameras, eddy current probes, and leak detectors; the collection of material samples; radiation monitoring; and the disassembly, repair and reassembly of a variety of system components. A robot with vision and force sensing and an intelligent control system that can access a knowledge base is schematically described. Recent advances in image interpretation systems are also discussed

  8. Artificial intelligence in robot control systems

    Science.gov (United States)

    Korikov, A.

    2018-05-01

    This paper analyzes modern concepts of artificial intelligence and known definitions of the term "level of intelligence". In robotics artificial intelligence system is defined as a system that works intelligently and optimally. The author proposes to use optimization methods for the design of intelligent robot control systems. The article provides the formalization of problems of robotic control system design, as a class of extremum problems with constraints. Solving these problems is rather complicated due to the high dimensionality, polymodality and a priori uncertainty. Decomposition of the extremum problems according to the method, suggested by the author, allows reducing them into a sequence of simpler problems, that can be successfully solved by modern computing technology. Several possible approaches to solving such problems are considered in the article.

  9. A comparison of the performance of compact neutrino detector designs for nuclear reactor safeguards and monitoring

    International Nuclear Information System (INIS)

    Reyna, D. E.; McKeown, R. W.

    2006-01-01

    There has been an increasing interest in the monitoring of nuclear fuel for power reactors by detecting the anti-neutrinos produced during operation. Small liquid scintillator detectors have already demonstrated sensitivity to operational power levels, but more sensitive monitoring requires improvements in the efficiency and uniformity of these detectors. In this work, we use a montecarlo simulation to investigate the detector performance of four different detector configurations. Based on the analysis of neutron detection efficiency and positron energy response, we find that the optimal detector design will depend on the goals and restrictions of the specific installation or application. We have attempted to present the relevant information so that future detector development can proceed in a profitable direction

  10. Resistive gaseous detectors designs, performance, and perspectives

    CERN Document Server

    Abbrescia, Marcello; Peskov, Vladimir

    2018-01-01

    This first book to critically summarize the latest achievements and emerging applications within this interdisciplinary topic focuses on one of the most important types of detectors for elementary particles and photons: resistive plate chambers (RPCs). In the first part, the outstanding, international team of authors comprehensively describes and presents the features and design of single and double-layer RPCs before covering more advanced multi-layer RPCs. The second part then focuses on the application of RPCs in high energy physics, materials science, medicine and security. Throughout, the experienced authors adopt a didactic approach, with each subject presented in a simple way, increasing in complexity step by step.

  11. An intelligent human-machine system based on an ecological interface design concept

    International Nuclear Information System (INIS)

    Naito, N.

    1995-01-01

    It seems both necessary and promising to develop an intelligent human-machine system, considering the objective of the human-machine system and the recent advance in cognitive engineering and artificial intelligence together with the ever-increasing importance of human factor issues in nuclear power plant operation and maintenance. It should support human operators in their knowledge-based behaviour and allow them to cope with unanticipated abnormal events, including recovery from erroneous human actions. A top-down design approach has been adopted based on cognitive work analysis, and (1) an ecological interface, (2) a cognitive model-based advisor and (3) a robust automatic sequence controller have been established. These functions have been integrated into an experimental control room. A validation test was carried out by the participation of experienced operators and engineers. The results showed the usefulness of this system in supporting the operator's supervisory plant control tasks. ((orig.))

  12. SmartWeld/SmartProcess - intelligent model based system for the design and validation of welding processes

    Energy Technology Data Exchange (ETDEWEB)

    Mitchner, J.

    1996-04-01

    Diagrams are presented on an intelligent model based system for the design and validation of welding processes. Key capabilities identified include `right the first time` manufacturing, continuous improvement, and on-line quality assurance.

  13. Object-oriented analysis and design of a GEANT based detector simulator

    International Nuclear Information System (INIS)

    Amako, K.; Kanzaki, J.; Sasaki, T.; Takaiwa, Y.; Nakagawa, Y.; Yamagata, T.

    1994-01-01

    The authors give a status report of the project to design a detector simulation program by reengineering GEANT with the object-oriented methodology. They followed the Object Modeling Technique. They explain the object model they constructed. Also problems of the technique found during their study are discussed

  14. Intelligent System Design Using Hyper-Heuristics

    Directory of Open Access Journals (Sweden)

    Nelishia Pillay

    2015-07-01

    Full Text Available Determining the most appropriate search method or artificial intelligence technique to solve a problem is not always evident and usually requires implementation of the different approaches to ascertain this. In some instances a single approach may not be sufficient and hybridization of methods may be needed to find a solution. This process can be time consuming. The paper proposes the use of hyper-heuristics as a means of identifying which method or combination of approaches is needed to solve a problem. The research presented forms part of a larger initiative aimed at using hyper-heuristics to develop intelligent hybrid systems. As an initial step in this direction, this paper investigates this for classical artificial intelligence uninformed and informed search methods, namely depth first search, breadth first search, best first search, hill-climbing and the A* algorithm. The hyper-heuristic determines the search or combination of searches to use to solve the problem. An evolutionary algorithm hyper-heuristic is implemented for this purpose and its performance is evaluated in solving the 8-Puzzle, Towers of Hanoi and Blocks World problems. The hyper-heuristic employs a generational evolutionary algorithm which iteratively refines an initial population using tournament selection to select parents, which the mutation and crossover operators are applied to for regeneration. The hyper-heuristic was able to identify a search or combination of searches to produce solutions for the twenty 8-Puzzle, five Towers of Hanoi and five Blocks World problems. Furthermore, admissible solutions were produced for all problem instances.

  15. Using Learning Analytics to Understand the Design of an Intelligent Language Tutor – Chatbot Lucy

    OpenAIRE

    Yi Fei Wang; Stephen Petrina

    2013-01-01

    the goal of this article is to explore how learning analytics can be used to predict and advise the design of an intelligent language tutor, chatbot Lucy. With its focus on using student-produced data to understand the design of Lucy to assist English language learning, this research can be a valuable component for language-learning designers to improve second language acquisition. In this article, we present students’ learning journey and data trails, the chatting log architecture and result...

  16. Design of the digitizing beam position limit detector

    International Nuclear Information System (INIS)

    Merl, R.

    1998-01-01

    The Digitizing Beam Position Limit Detector (DBPLD) is designed to identify and react to beam missteering conditions in the Advanced Photon Source (APS) storage ring. The high power of the insertion devices requires these missteering conditions to result in a beam abort in less than 2 milliseconds. Commercially available beam position monitors provide a voltage proportional to beam position immediately upstream and downstream of insertion devices. The DBPLD is a custom VME board that digitizes these voltages and interrupts the heartbeat of the APS machine protection system when the beam position exceeds its trip limits

  17. Design studies on sensors for the ATLAS Pixel Detector

    CERN Document Server

    Hügging, F G

    2002-01-01

    For the ATLAS Pixel Detector, prototype sensors have been successfully developed. For the sensors design, attention was given to survivability of the harsh LHC radiation environment leading to the need to operate them at several hundreds of volts, while maintaining a good charge collection efficiency, small cell size and minimal multiple scattering. For a cost effective mass production, a bias grid is implemented to test the sensors before assembly under full bias. (6 refs).

  18. Design and performance of a modularized NaI(Tl) detector (the crystal ball prototype)

    International Nuclear Information System (INIS)

    Chan, Y.; Partridge, R.A.; Peck, C.W.

    1977-01-01

    A prototype NaI(Tl) detector (the Cluster of 54) of spherical geometry subtending a solid angle of 7.5 percent of 4π at its center, has recently been assembled and tested. This detector consisted of 54 close-packed but optically isolated NaI(Tl) modules and the associated electronic circuitry. The Cluster of 54 is the predecessor of an almost complete spherical detector, the Crystal Ball, which will cover 94 percent of 4π. The latter detector is now under construction and is especially designed for the study of γ-rays produced in electron-positron collisions at colliding beam facilities. The mechanical, optical, and electronic assembly of the prototype system is outlined. Cluster of 54 test data will be presented

  19. Trends in the design of front-end systems for room temperature solid state detectors

    International Nuclear Information System (INIS)

    Manfredi, Pier F.; Re, Valerio

    2003-01-01

    The paper discusses the present trends in the design of low-noise front-end systems for room temperature semiconductor detectors. The technological advancement provided by submicron CMOS and BiCMOS processes is examined from several points of view. The noise performances are a fundamental issue in most detector applications and suitable attention is devoted to them for the purpose of judging whether or not the present processes supersede the solutions featuring a field-effect transistor as a front-end element. However, other considerations are also important in judging how well a monolithic technology suits the front-end design. Among them, the way a technology lends itself to the realization of additional functions, for instance, the charge reset in a charge-sensitive loop or the time-variant filters featuring the special weighting functions that may be requested in some applications of CdTe or CZT detectors

  20. The effect of the rotational orientation of circular photomultipliers in a PET camera block detector design

    International Nuclear Information System (INIS)

    Uribe, J.; Wong, Wai-Hoi; Hu, Guoju

    1996-01-01

    This is a study of the effects of geometric asymmetries in circular photomultipliers (PMT) on the design of PET position-sensitive block detectors. The dynodes of linear-focus circular PMT's are asymmetric relative to the axis of the photocathode, despite the rotational symmetry of the photocathode. Hence, there are regional photocathode differences in the anode signal, which affect the decoding characteristics of position sensitive block detectors. This orientation effect, as well as the effect of introducing light diffusers, are studied in a block detector design (BGO) using the PMT-quadrant-sharing configuration. The PMT studied is the Philips XP-1911 (19mm diameter). Seven symmetrical and representative orientations of the four decoding PMT were investigated, as well as one asymmetric orientation. The measurements performed include block-composite pulse-height spectra and crystal decoding maps. Two orientation effects were observed: (A) distortion variation in decoding maps, and (B) decoding resolution variation. The introduction of circular plastic pieces, used as light diffusers, prove to be useful by improving the decoding of crystals on the periphery of the detector block and minimizing distortion in the decoding map. These measurements have shown optimal PMT orientations for the PMT-quadrant-sharing design, as well as for conventional block designs

  1. Design of angular position detector for rotary stepping motor of CEDM

    International Nuclear Information System (INIS)

    Park, Seok Ha; Kim, Jong In; Kim, Ji Ho; Huh, Hyung; Yu, Je Yong

    2000-11-01

    The position of control rod must be detected continuously to control CEDM control rod used in SMART. The up-and-down movement of control rod can be detected approximately by using a position indicator, but an additionary sensor should be required because the accuracy of it is low. And because the rotary stepping motor for SMART CEDM is to work at harsh conditions of high temperature, pressure and radiation, it is difficult to select an adequate sensor from commercially available products. Therefore, a sensor to monitor the position of control rod by detecting the position of rotary angle for stepping motor should studied. This paper analyzes and compares the techniques of Synchro, Resolver, and Magnesyn being used as a rotary angle detector for stepping motor. The rotary angle detector by using our unique concept is designed on the basis of upper work. The prototype of rotary angle detector is produced and the results of test and valuation is presented

  2. DESIGN OF AN INTELLIGENT SYSTEM TO DETECT TYPE OF PAIN USING ARTIFICIAL NEURAL NETWORK FOR PATIENTS WITH SPINAL CORD INJURY IN SHEFA NEUROSCIENCE RESEARCH CENTER

    OpenAIRE

    Nasrolah Nasr HeidarAbadi, Reza Safdari, Peirhossein Kolivand, Amir Javadi, Azimeh Danesh Shahraki1, Marjan Ghazi Saeidi*

    2017-01-01

    Using artificial intelligence in computerized clinical systems helps physicians diagnose disease or choose treatment. Intelligent methods are constantly changed to be more effective and accurate for quick medical diagnosis. Neural networks are a powerful tool to help physicians. The tools can process a high number of data and minimize errors in ignoring patients' information. Intelligent system design based on artificial neural network was performed in 3 phases. Phase1: Designing the data rec...

  3. Artificial intelligence in conceptual design of intelligent manufacturing systems: A state of the art review

    OpenAIRE

    Petrović, Milica M.; Miljković, Zoran Đ.; Babić, Bojan R.

    2013-01-01

    Intelligent manufacturing systems (IMS), as the highest class of flexible manufacturing systems, are able to adapt to market changes applying methods of artificial intelligence. This paper presents a detailed review of the following IMS functions: (i) process planning optimization, (ii) scheduling optimization, (iii) integrated process planning and scheduling, and (iv) mobile robot scheduling for internal material transport tasks. The research presented in this paper shows that improved perfo...

  4. Design and Construction of Detector and Data Acquisition Elements for Proton Computed Tomography

    International Nuclear Information System (INIS)

    Fermi Research Alliance; Northern Illinois University

    2015-01-01

    Proton computed tomography (pCT) offers an alternative to x-ray imaging with potential for three-dimensional imaging, reduced radiation exposure, and in-situ imaging. Northern Illinois University (NIU) is developing a second-generation proton computed tomography system with a goal of demonstrating the feasibility of three-dimensional imaging within clinically realistic imaging times. The second-generation pCT system is comprised of a tracking system, a calorimeter, data acquisition, a computing farm, and software algorithms. The proton beam encounters the upstream tracking detectors, the patient or phantom, the downstream tracking detectors, and a calorimeter. The schematic layout of the PCT system is shown. The data acquisition sends the proton scattering information to an offline computing farm. Major innovations of the second generation pCT project involve an increased data acquisition rate ( MHz range) and development of three-dimensional imaging algorithms. The Fermilab Particle Physics Division and Northern Illinois Center for Accelerator and Detector Development at Northern Illinois University worked together to design and construct the tracking detectors, calorimeter, readout electronics and detector mounting system.

  5. Artificial Intelligence and Moral intelligence

    Directory of Open Access Journals (Sweden)

    Laura Pana

    2008-07-01

    Full Text Available We discuss the thesis that the implementation of a moral code in the behaviour of artificial intelligent systems needs a specific form of human and artificial intelligence, not just an abstract intelligence. We present intelligence as a system with an internal structure and the structural levels of the moral system, as well as certain characteristics of artificial intelligent agents which can/must be treated as 1- individual entities (with a complex, specialized, autonomous or selfdetermined, even unpredictable conduct, 2- entities endowed with diverse or even multiple intelligence forms, like moral intelligence, 3- open and, even, free-conduct performing systems (with specific, flexible and heuristic mechanisms and procedures of decision, 4 – systems which are open to education, not just to instruction, 5- entities with “lifegraphy”, not just “stategraphy”, 6- equipped not just with automatisms but with beliefs (cognitive and affective complexes, 7- capable even of reflection (“moral life” is a form of spiritual, not just of conscious activity, 8 – elements/members of some real (corporal or virtual community, 9 – cultural beings: free conduct gives cultural value to the action of a ”natural” or artificial being. Implementation of such characteristics does not necessarily suppose efforts to design, construct and educate machines like human beings. The human moral code is irremediably imperfect: it is a morality of preference, of accountability (not of responsibility and a morality of non-liberty, which cannot be remedied by the invention of ethical systems, by the circulation of ideal values and by ethical (even computing education. But such an imperfect morality needs perfect instruments for its implementation: applications of special logic fields; efficient psychological (theoretical and technical attainments to endow the machine not just with intelligence, but with conscience and even spirit; comprehensive technical

  6. Detector Control and Data Acquisition for the Wide-Field Infrared Survey Telescope (WFIRST) with a Custom ASIC

    Science.gov (United States)

    Smith, Brian S.; Loose, Markus; Alkire, Greg; Joshi, Atul; Kelly, Daniel; Siskind, Eric; Rossetti, Dino; Mah, Jonathan; Cheng, Edward; Miko, Laddawan; hide

    2016-01-01

    The Wide-Field Infrared Survey Telescope (WFIRST) will have the largest near-IR focal plane ever flown by NASA, a total of 18 4K x 4K devices. The project has adopted a system-level approach to detector control and data acquisition where 1) control and processing intelligence is pushed into components closer to the detector to maximize signal integrity, 2) functions are performed at the highest allowable temperatures, and 3) the electronics are designed to ensure that the intrinsic detector noise is the limiting factor for system performance. For WFIRST, the detector arrays operate at 90 to 100 K, the detector control and data acquisition functions are performed by a custom ASIC at 150 to 180 K, and the main data processing electronics are at the ambient temperature of the spacecraft, notionally approx.300 K. The new ASIC is the main interface between the cryogenic detectors and the warm instrument electronics. Its single-chip design provides basic clocking for most types of hybrid detectors with CMOS ROICs. It includes a flexible but simple-to-program sequencer, with the option of microprocessor control for more elaborate readout schemes that may be data-dependent. All analog biases, digital clocks, and analog-to-digital conversion functions are incorporated and are connected to the nearby detectors with a short cable that can provide thermal isolation. The interface to the warm electronics is simple and robust through multiple LVDS channels. It also includes features that support parallel operation of multiple ASICs to control detectors that may have more capability or requirements than can be supported by a single chip.

  7. CLIC CDR - physics and detectors: CLIC conceptual design report.

    Energy Technology Data Exchange (ETDEWEB)

    Berger, E.; Demarteau, M.; Repond, J.; Xia, L.; Weerts, H. (High Energy Physics); (Many)

    2012-02-10

    This report forms part of the Conceptual Design Report (CDR) of the Compact LInear Collider (CLIC). The CLIC accelerator complex is described in a separate CDR volume. A third document, to appear later, will assess strategic scenarios for building and operating CLIC in successive center-of-mass energy stages. It is anticipated that CLIC will commence with operation at a few hundred GeV, giving access to precision standard-model physics like Higgs and top-quark physics. Then, depending on the physics landscape, CLIC operation would be staged in a few steps ultimately reaching the maximum 3 TeV center-of-mass energy. Such a scenario would maximize the physics potential of CLIC providing new physics discovery potential over a wide range of energies and the ability to make precision measurements of possible new states previously discovered at the Large Hadron Collider (LHC). The main purpose of this document is to address the physics potential of a future multi-TeV e{sup +}e{sup -} collider based on CLIC technology and to describe the essential features of a detector that are required to deliver the full physics potential of this machine. The experimental conditions at CLIC are significantly more challenging than those at previous electron-positron colliders due to the much higher levels of beam-induced backgrounds and the 0.5 ns bunch-spacing. Consequently, a large part of this report is devoted to understanding the impact of the machine environment on the detector with the aim of demonstrating, with the example of realistic detector concepts, that high precision physics measurements can be made at CLIC. Since the impact of background increases with energy, this document concentrates on the detector requirements and physics measurements at the highest CLIC center-of-mass energy of 3 TeV. One essential output of this report is the clear demonstration that a wide range of high precision physics measurements can be made at CLIC with detectors which are challenging, but

  8. A methodology for the design of experiments in computational intelligence with multiple regression models.

    Science.gov (United States)

    Fernandez-Lozano, Carlos; Gestal, Marcos; Munteanu, Cristian R; Dorado, Julian; Pazos, Alejandro

    2016-01-01

    The design of experiments and the validation of the results achieved with them are vital in any research study. This paper focuses on the use of different Machine Learning approaches for regression tasks in the field of Computational Intelligence and especially on a correct comparison between the different results provided for different methods, as those techniques are complex systems that require further study to be fully understood. A methodology commonly accepted in Computational intelligence is implemented in an R package called RRegrs. This package includes ten simple and complex regression models to carry out predictive modeling using Machine Learning and well-known regression algorithms. The framework for experimental design presented herein is evaluated and validated against RRegrs. Our results are different for three out of five state-of-the-art simple datasets and it can be stated that the selection of the best model according to our proposal is statistically significant and relevant. It is of relevance to use a statistical approach to indicate whether the differences are statistically significant using this kind of algorithms. Furthermore, our results with three real complex datasets report different best models than with the previously published methodology. Our final goal is to provide a complete methodology for the use of different steps in order to compare the results obtained in Computational Intelligence problems, as well as from other fields, such as for bioinformatics, cheminformatics, etc., given that our proposal is open and modifiable.

  9. A methodology for the design of experiments in computational intelligence with multiple regression models

    Directory of Open Access Journals (Sweden)

    Carlos Fernandez-Lozano

    2016-12-01

    Full Text Available The design of experiments and the validation of the results achieved with them are vital in any research study. This paper focuses on the use of different Machine Learning approaches for regression tasks in the field of Computational Intelligence and especially on a correct comparison between the different results provided for different methods, as those techniques are complex systems that require further study to be fully understood. A methodology commonly accepted in Computational intelligence is implemented in an R package called RRegrs. This package includes ten simple and complex regression models to carry out predictive modeling using Machine Learning and well-known regression algorithms. The framework for experimental design presented herein is evaluated and validated against RRegrs. Our results are different for three out of five state-of-the-art simple datasets and it can be stated that the selection of the best model according to our proposal is statistically significant and relevant. It is of relevance to use a statistical approach to indicate whether the differences are statistically significant using this kind of algorithms. Furthermore, our results with three real complex datasets report different best models than with the previously published methodology. Our final goal is to provide a complete methodology for the use of different steps in order to compare the results obtained in Computational Intelligence problems, as well as from other fields, such as for bioinformatics, cheminformatics, etc., given that our proposal is open and modifiable.

  10. The Design of Artificial Intelligence Robot Based on Fuzzy Logic Controller Algorithm

    Science.gov (United States)

    Zuhrie, M. S.; Munoto; Hariadi, E.; Muslim, S.

    2018-04-01

    Artificial Intelligence Robot is a wheeled robot driven by a DC motor that moves along the wall using an ultrasonic sensor as a detector of obstacles. This study uses ultrasonic sensors HC-SR04 to measure the distance between the robot with the wall based ultrasonic wave. This robot uses Fuzzy Logic Controller to adjust the speed of DC motor. When the ultrasonic sensor detects a certain distance, sensor data is processed on ATmega8 then the data goes to ATmega16. From ATmega16, sensor data is calculated based on Fuzzy rules to drive DC motor speed. The program used to adjust the speed of a DC motor is CVAVR program (Code Vision AVR). The readable distance of ultrasonic sensor is 3 cm to 250 cm with response time 0.5 s. Testing of robots on walls with a setpoint value of 9 cm to 10 cm produce an average error value of -12% on the wall of L, -8% on T walls, -8% on U wall, and -1% in square wall.

  11. Intelligent instrumentation principles and applications

    CERN Document Server

    Bhuyan, Manabendra

    2011-01-01

    With the advent of microprocessors and digital-processing technologies as catalyst, classical sensors capable of simple signal conditioning operations have evolved rapidly to take on higher and more specialized functions including validation, compensation, and classification. This new category of sensor expands the scope of incorporating intelligence into instrumentation systems, yet with such rapid changes, there has developed no universal standard for design, definition, or requirement with which to unify intelligent instrumentation. Explaining the underlying design methodologies of intelligent instrumentation, Intelligent Instrumentation: Principles and Applications provides a comprehensive and authoritative resource on the scientific foundations from which to coordinate and advance the field. Employing a textbook-like language, this book translates methodologies to more than 80 numerical examples, and provides applications in 14 case studies for a complete and working understanding of the material. Beginn...

  12. Ethical Design of Intelligent Assistive Technologies for Dementia: A Descriptive Review.

    Science.gov (United States)

    Ienca, Marcello; Wangmo, Tenzin; Jotterand, Fabrice; Kressig, Reto W; Elger, Bernice

    2017-09-22

    The use of Intelligent Assistive Technology (IAT) in dementia care opens the prospects of reducing the global burden of dementia and enabling novel opportunities to improve the lives of dementia patients. However, with current adoption rates being reportedly low, the potential of IATs might remain under-expressed as long as the reasons for suboptimal adoption remain unaddressed. Among these, ethical and social considerations are critical. This article reviews the spectrum of IATs for dementia and investigates the prevalence of ethical considerations in the design of current IATs. Our screening shows that a significant portion of current IATs is designed in the absence of explicit ethical considerations. These results suggest that the lack of ethical consideration might be a codeterminant of current structural limitations in the translation of IATs from designing labs to bedside. Based on these data, we call for a coordinated effort to proactively incorporate ethical considerations early in the design and development of new products.

  13. Acoustic Sensor Design for Dark Matter Bubble Chamber Detectors.

    Science.gov (United States)

    Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-06-10

    Dark matter bubble chamber detectors use piezoelectric sensors in order to detect and discriminate the acoustic signals emitted by the bubbles grown within the superheated fluid from a nuclear recoil produced by a particle interaction. These sensors are attached to the outside walls of the vessel containing the fluid. The acoustic discrimination depends strongly on the properties of the sensor attached to the outer wall of the vessel that has to meet the requirements of radiopurity and size. With the aim of optimizing the sensor system, a test bench for the characterization of the sensors has been developed. The sensor response for different piezoelectric materials, geometries, matching layers, and backing layers have been measured and contrasted with FEM simulations and analytical models. The results of these studies lead us to have a design criterion for the construction of specific sensors for the next generation of dark matter bubble chamber detectors (250 L).

  14. Acoustic Sensor Design for Dark Matter Bubble Chamber Detectors

    Directory of Open Access Journals (Sweden)

    Ivan Felis

    2016-06-01

    Full Text Available Dark matter bubble chamber detectors use piezoelectric sensors in order to detect and discriminate the acoustic signals emitted by the bubbles grown within the superheated fluid from a nuclear recoil produced by a particle interaction. These sensors are attached to the outside walls of the vessel containing the fluid. The acoustic discrimination depends strongly on the properties of the sensor attached to the outer wall of the vessel that has to meet the requirements of radiopurity and size. With the aim of optimizing the sensor system, a test bench for the characterization of the sensors has been developed. The sensor response for different piezoelectric materials, geometries, matching layers, and backing layers have been measured and contrasted with FEM simulations and analytical models. The results of these studies lead us to have a design criterion for the construction of specific sensors for the next generation of dark matter bubble chamber detectors (250 L.

  15. Design and construction of the prototype synchrotron radiation detector

    CERN Document Server

    Anderhub, H; Baetzner, D; Baumgartner, S; Biland, A; Camps, C; Capell, M; Commichau, V; Djambazov, L; Fanchiang, Y J; Flügge, G; Fritschi, M; Grimm, O; Hangarter, K; Hofer, H; Horisberger, Urs; Kan, R; Kaestli, W; Kenney, G P; Kim, G N; Kim, K S; Koutsenko, V F; Kraeber, M; Kuipers, J; Lebedev, A; Lee, M W; Lee, S C; Lewis, R; Lustermann, W; Pauss, Felicitas; Rauber, T; Ren, D; Ren, Z L; Röser, U; Son, D; Ting, Samuel C C; Tiwari, A N; Viertel, Gert M; Gunten, H V; Wicki, S W; Wang, T S; Yang, J; Zimmermann, B

    2002-01-01

    The Prototype Synchrotron Radiation Detector (PSRD) is a small-scale experiment designed to measure the rate of low-energy charged particles and photons in near the Earth's orbit. It is a precursor to the Synchrotron Radiation Detector (SRD), a proposed addition to the upgraded version of the Alpha Magnetic Spectrometer (AMS-02). The SRD will use the Earth's magnetic field to identify the charge sign of electrons and positrons with energies above 1 TeV by detecting the synchrotron radiation they emit in this field. The differential energy spectrum of these particles is astrophysically interesting and not well covered by the remaining components of AMS-02. Precise measurements of this spectrum offer the possibility to gain information on the acceleration mechanism and characteristics of all cosmic rays in our galactic neighbourhood. The SRD will discriminate against protons as they radiate only weakly. Both the number and energy of the synchrotron photons that the SRD needs to detect are small. The identificat...

  16. Designing a holistic end-to-end intelligent network analysis and security platform

    Science.gov (United States)

    Alzahrani, M.

    2018-03-01

    Firewall protects a network from outside attacks, however, once an attack entering a network, it is difficult to detect. Recent significance accidents happened. i.e.: millions of Yahoo email account were stolen and crucial data from institutions are held for ransom. Within two year Yahoo’s system administrators were not aware that there are intruder inside the network. This happened due to the lack of intelligent tools to monitor user behaviour in internal network. This paper discusses a design of an intelligent anomaly/malware detection system with proper proactive actions. The aim is to equip the system administrator with a proper tool to battle the insider attackers. The proposed system adopts machine learning to analyse user’s behaviour through the runtime behaviour of each node in the network. The machine learning techniques include: deep learning, evolving machine learning perceptron, hybrid of Neural Network and Fuzzy, as well as predictive memory techniques. The proposed system is expanded to deal with larger network using agent techniques.

  17. The design of intelligentized nuclear radiation monitoring detector

    International Nuclear Information System (INIS)

    Meng Yan; Fang Zongliang; Wen Qilin; Li Lirong; Hu Jiewei; Peng Jing

    2010-01-01

    This paper introduced an intelligentized nuclear radiation monitoring detector. The detector contains GM tubes, high voltage power supply and MCU circuit. The detector connect terminal via reformative serial port to provide power, accept the data and sent the command. (authors)

  18. Design The Cervical Cancer Detector Use The Artificial Neural Network

    International Nuclear Information System (INIS)

    Af'idah, Dwi Intan; Widianto, Eko Didik; Setyawan, Budi

    2013-01-01

    Cancer is one of the contagious diseases that become a public health issue, both in the world and in Indonesia. In the world, 12% of all deaths caused by cancer and is the second killer after cardiovascular disease. Early detection using the IVA is a practical and inexpensive (only requiring acetic acid). However, the accuracy of the method is quite low, as it can not detect the stage of the cancer. While other methods have a better sensitivity than the IVA method, is a method of PAP smear. However, this method is relatively expensive, and requires an experienced pathologist-cytologist. According to the case above, Considered important to make the cancer cervics detector that is used to detect the abnormality and cervical cancer stage and consists of a digital microscope, as well as a computer application based on artificial neural network. The use of cervical cancer detector software and hardware are integrated each other. After the specifications met, the steps to design the cervical cancer detection are: Modifying a conventional microscope by adding a lens, image recording, and the lights, Programming the tools, designing computer applications, Programming features abnormality detection and staging of cancer.

  19. The International Linear Collider Technical Design Report - Volume 4: Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Ties [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  20. Design and development of an intelligent nursing bed - a pilot project of "joint assignment".

    Science.gov (United States)

    Jiehui Jiang; Tingwei Liu; Yuting Zhang; Yu Song; Mi Zhou; Xiaosong Zheng; Zhuangzhi Yan

    2017-07-01

    The "joint assignment" is a creative bachelor education project for Biomedical Engineering (BME) in Shanghai University (SHU), China. The objective of this project is to improve students' capabilities in design thinking and teamwork through practices in the process of the design and development of complex medical product. As the first step, a pilot project "design and development of intelligent nursing bed" was set up in May 2015. This paper describes details of how project organization and management, various teaching methods and scientific evaluation approaches were achieved in this pilot project. For example, a method containing one main line and four branches is taken to manage the project and "prototyping model" was used as the main research approach. As a result a multi-win situation was achieved. The results showed, firstly, 62 bachelor students including 16 BME students were well trained. They improved themselves in use of practical tools, communication skills and scientific writing; Secondly, commercial companies received a nice product design on intelligent nursing bed, and have been working on industrializing it; Thirdly, the university and associated schools obtained an excellent practical education experience to supplement traditional class education; Fourthly and most importantly, requirements from end-users will be met. The results also showed that the "joint assignment" task could become a significant component in BME bachelor education.

  1. Intelligent control of dynamic LED lighting; Intelligent styring af dynamisk LED belysning. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Thorseth, A.; Corell, D.; Hansen, Soeren S.; Dam-Hansen, C.; Petersen, Paul Michael

    2013-01-15

    The project has resulted in a prototype of a new intelligent lighting control system. The control system enables the end user to control his or her own local lighting environment (lighting zone) according to individual preferences and needs. The report provides a description of how the developed intelligent lighting system is composed and functions. The system is designed as a work lamp that enables dynamic change of the light color scheme according to a number of light control algorithms. It is specifically designed in relation to user tests of the intelligent lighting system, which is carried out in the final part of the project. An intelligent and advanced control of LED lighting was developed, which enables optimization of the user's light conditions in a given situation. Based on a number of known parameters, the system can control lighting so that at any time optimal light conditions are created, using a minimum of electric power. (LN)

  2. Detectors on the drawing board

    CERN Document Server

    Katarina Anthony

    2011-01-01

    Linear collider detector developers inside and outside CERN are tackling the next generation of detector technology. While their focus has centred on high-energy linear collider detectors, their innovative concepts and designs will be applicable to any future detector.   A simulated event display in one of the new generation detectors. “While the LHC experiments remain the pinnacle of detector technology, you may be surprised to realise that the design and expertise behind them is well over 10 years old,” says Lucie Linssen, CERN’s Linear Collider Detector (LCD) project manager whose group is pushing the envelope of detector design. “The next generation of detectors will have to surpass the achievements of the LHC experiments. It’s not an easy task but, by observing detectors currently in operation and exploiting a decade’s worth of technological advancements, we’ve made meaningful progress.” The LCD team is curr...

  3. Application of artificial intelligence (AI) methods for designing and analysis of reconfigurable cellular manufacturing system (RCMS)

    CSIR Research Space (South Africa)

    Xing, B

    2009-12-01

    Full Text Available This work focuses on the design and control of a novel hybrid manufacturing system: Reconfigurable Cellular Manufacturing System (RCMS) by using Artificial Intelligence (AI) approach. It is hybrid as it combines the advantages of Cellular...

  4. The designing principle and implementation of multi-channel intelligence isotope thickness gauge based on multifunction card PCI-1710

    International Nuclear Information System (INIS)

    Zhang Bin; Zhao Shujun; Guo Maotian; He Jintian

    2006-01-01

    The designing principle, the constitution of system and the implementation of multi-channel intelligence isotope thickness gauge are introduced in the paper in detail, which are based on multifunction card PCI-1710. The paper also discusses the primaryprinciple of isotope thickness gauge, correct factor in measurement and complication of calibration. In the following, the whole frame of multi-channel intelligence isotope thickness gauge is given. The functions, the characteristics and the usage of multifunction card PCI-1710 are described. Furthermore, the developing process and the function modules of software are presented. Finally, the real prototype of multi-channel intelligence isotope thickness gauge is introduced, using 241 Am as a radioactive element. (authors)

  5. Design, simulation, fabrication, and preliminary tests of 3D CMS pixel detectors for the super-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Koybasi, Ozhan; /Purdue U.; Bortoletto, Daniela; /Purdue U.; Hansen, Thor-Erik; /SINTEF, Oslo; Kok, Angela; /SINTEF, Oslo; Hansen, Trond Andreas; /SINTEF, Oslo; Lietaer, Nicolas; /SINTEF, Oslo; Jensen, Geir Uri; /SINTEF, Oslo; Summanwar, Anand; /SINTEF, Oslo; Bolla, Gino; /Purdue U.; Kwan, Simon Wing Lok; /Fermilab

    2010-01-01

    The Super-LHC upgrade puts strong demands on the radiation hardness of the innermost tracking detectors of the CMS, which cannot be fulfilled with any conventional planar detector design. The so-called 3D detector architectures, which feature columnar electrodes passing through the substrate thickness, are under investigation as a potential solution for the closest operation points to the beams, where the radiation fluence is estimated to reach 10{sup 16} n{sub eq}/cm{sup 2}. Two different 3D detector designs with CMS pixel readout electronics are being developed and evaluated for their advantages and drawbacks. The fabrication of full-3D active edge CMS pixel devices with p-type substrate has been successfully completed at SINTEF. In this paper, we study the expected post-irradiation behaviors of these devices with simulations and, after a brief description of their fabrication, we report the first leakage current measurement results as performed on wafer.

  6. Artificial Intelligence in Civil Engineering

    OpenAIRE

    Lu, Pengzhen; Chen, Shengyong; Zheng, Yujun

    2012-01-01

    Artificial intelligence is a branch of computer science, involved in the research, design, and application of intelligent computer. Traditional methods for modeling and optimizing complex structure systems require huge amounts of computing resources, and artificial-intelligence-based solutions can often provide valuable alternatives for efficiently solving problems in the civil engineering. This paper summarizes recently developed methods and theories in the developing direction for applicati...

  7. Swarm intelligence-based approach for optimal design of CMOS differential amplifier and comparator circuit using a hybrid salp swarm algorithm

    Science.gov (United States)

    Asaithambi, Sasikumar; Rajappa, Muthaiah

    2018-05-01

    In this paper, an automatic design method based on a swarm intelligence approach for CMOS analog integrated circuit (IC) design is presented. The hybrid meta-heuristics optimization technique, namely, the salp swarm algorithm (SSA), is applied to the optimal sizing of a CMOS differential amplifier and the comparator circuit. SSA is a nature-inspired optimization algorithm which mimics the navigating and hunting behavior of salp. The hybrid SSA is applied to optimize the circuit design parameters and to minimize the MOS transistor sizes. The proposed swarm intelligence approach was successfully implemented for an automatic design and optimization of CMOS analog ICs using Generic Process Design Kit (GPDK) 180 nm technology. The circuit design parameters and design specifications are validated through a simulation program for integrated circuit emphasis simulator. To investigate the efficiency of the proposed approach, comparisons have been carried out with other simulation-based circuit design methods. The performances of hybrid SSA based CMOS analog IC designs are better than the previously reported studies.

  8. Conception, design and development of a low-cost intelligent prosthesis for one-sided transfemoral amputees

    Directory of Open Access Journals (Sweden)

    Wilson Carlos da Silva Júnior

    Full Text Available Introduction Modern transfemoral knee prostheses are designed to offer comfort and self-confidence to amputees. These prostheses are mainly based upon either a passive concept, with a damping system, or an active computational intelligent design to control knee motion during the swing phase. In Brazil, most lower extremity amputees are unable to afford modern prostheses due to their high cost. In this work, we present the conception, design and development of a low-cost intelligent prosthesis for one-sided transfemoral amputees. Methods The concept of the prosthesis is based on a control system with sensors for loads, which are installed on the amputee’s preserved leg and used as a mirror for the movement of the prosthesis. Mechanical strength analysis, using the Finite Element Method, electromechanical tests for the sensors and actuators and verification of data acquisition, signal conditioning and data transferring to the knee prosthesis were performed. Results The laboratory tests performed showed the feasibility of the proposed design. The electromechanical concept that was used enabled a controlled activation of the knee prosthesis by the two load cells located on the shoe sole of the preserved leg. Conclusions The electromechanical design concept and the resulting knee prosthesis show promising results concerning prosthesis activation during walking tests, thereby showing the feasibility of a reduced manufacturing cost compared to the modern prostheses available on the market.

  9. An Optimized Design of Single-Channel Beta-Gamma Coincidence Phoswich Detector by Geant4 Monte Carlo Simulations

    Directory of Open Access Journals (Sweden)

    Weihua Zhang

    2011-01-01

    Full Text Available An optimized single-channel phoswich well detector design has been proposed and assessed in order to improve beta-gamma coincidence measurement sensitivity of xenon radioisotopes. This newly designed phoswich well detector consists of a plastic beta counting cell (BC404 embedded in a CsI(Tl crystal coupled to a photomultiplier tube. The BC404 is configured in a cylindrical pipe shape to minimise light collection deterioration. The CsI(Tl crystal consists of a rectangular part and a semicylindrical scintillation part as a light reflector to increase light gathering. Compared with a PhosWatch detector, the final optimized detector geometry showed 15% improvement in the energy resolution of a 131mXe 129.4 keV conversion electron peak. The predicted beta-gamma coincidence efficiencies of xenon radioisotopes have also been improved accordingly.

  10. Design optimization of the PANDA micro-vertex-detector for high performance spectroscopy in the charm quark sector

    Energy Technology Data Exchange (ETDEWEB)

    Wuerschig, Thomas

    2011-07-19

    The PANDA experiment is one of the key projects at the future FAIR facility, which is currently under construction at GSI Darmstadt. Measurements will be performed with antiprotons using a fixed-target setup. The main scope of PANDA is the study of the strong interaction in the charm quark sector. Therefore, high precision spectroscopy of hadronic systems in this energy domain is a prerequisite. The Micro-Vertex-Detector (MVD) as innermost part of the tracking system plays an important role to achieve this goal. At present, the PANDA project has exceeded the initial phase of conceptual design studies. Based on these results, an optimization of the individual detector subsystems, and thus also for the MVD, is necessary to continue the overall detector development towards its commissioning. Therefore, a comprehensive and realistic detector model must be developed, which on the one hand fulfils the physics requirements but on the other hand also includes feasible engineering solutions. This task is the main scope of the present work. The outcome of these studies will deliver important contributions to the technical design report for the PANDA MVD, which is the next step towards the final detector assembly. In the first part of this work, main physics aspects of the charm spectroscopy are highlighted and a complete review of the experimental status in this field is given. Afterwards, all relevant details of the PANDA experiment are summarized. The conceptual design and associated hardware developments for the MVD are discussed separately in the following chapters. They deliver basic input for the performed detector optimization, which is presented in the central part. Furthermore, this section describes the development of a comprehensive detector model for the MVD and its introduction into the physics simulation framework of PANDA. The final part contains a compilation of extended simulations with the developed detector model. This includes the determination of basic

  11. Design optimization of the PANDA micro-vertex-detector for high performance spectroscopy in the charm quark sector

    International Nuclear Information System (INIS)

    Wuerschig, Thomas

    2011-01-01

    The PANDA experiment is one of the key projects at the future FAIR facility, which is currently under construction at GSI Darmstadt. Measurements will be performed with antiprotons using a fixed-target setup. The main scope of PANDA is the study of the strong interaction in the charm quark sector. Therefore, high precision spectroscopy of hadronic systems in this energy domain is a prerequisite. The Micro-Vertex-Detector (MVD) as innermost part of the tracking system plays an important role to achieve this goal. At present, the PANDA project has exceeded the initial phase of conceptual design studies. Based on these results, an optimization of the individual detector subsystems, and thus also for the MVD, is necessary to continue the overall detector development towards its commissioning. Therefore, a comprehensive and realistic detector model must be developed, which on the one hand fulfils the physics requirements but on the other hand also includes feasible engineering solutions. This task is the main scope of the present work. The outcome of these studies will deliver important contributions to the technical design report for the PANDA MVD, which is the next step towards the final detector assembly. In the first part of this work, main physics aspects of the charm spectroscopy are highlighted and a complete review of the experimental status in this field is given. Afterwards, all relevant details of the PANDA experiment are summarized. The conceptual design and associated hardware developments for the MVD are discussed separately in the following chapters. They deliver basic input for the performed detector optimization, which is presented in the central part. Furthermore, this section describes the development of a comprehensive detector model for the MVD and its introduction into the physics simulation framework of PANDA. The final part contains a compilation of extended simulations with the developed detector model. This includes the determination of basic

  12. A novel, highly efficient cavity backshort design for far-infrared TES detectors

    Science.gov (United States)

    Bracken, C.; de Lange, G.; Audley, M. D.; Trappe, N.; Murphy, J. A.; Gradziel, M.; Vreeling, W.-J.; Watson, D.

    2018-03-01

    In this paper we present a new cavity backshort design for TES (transition edge sensor) detectors which will provide increased coupling of the incoming astronomical signal to the detectors. The increased coupling results from the improved geometry of the cavities, where the geometry is a consequence of the proposed chemical etching manufacturing technique. Using a number of modelling techniques, predicted results of the performance of the cavities for frequencies of 4.3-10 THz are presented and compared to more standard cavity designs. Excellent optical efficiency is demonstrated, with improved response flatness across the band. In order to verify the simulated results, a scaled model cavity was built for testing at the lower W-band frequencies (75-100 GHz) with a VNA system. Further testing of the scale model at THz frequencies was carried out using a globar and bolometer via an FTS measurement set-up. The experimental results are presented, and compared to the simulations. Although there is relatively poor comparison between simulation and measurement at some frequencies, the discrepancies are explained by means of higher-mode excitation in the measured cavity which are not accounted for in the single-mode simulations. To verify this assumption, a better behaved cylindrical cavity is simulated and measured, where excellent agreement is demonstrated in those results. It can be concluded that both the simulations and the supporting measurements give confidence that this novel cavity design will indeed provide much-improved optical coupling for TES detectors in the far-infrared/THz band.

  13. "Intelligences That Plants Can Pass On": Play Dough, Fun and Teaching Strategies with Insights to Multiple Intelligences

    Science.gov (United States)

    Laughlin, Kevin; Foley, Andi

    2012-01-01

    The "Intelligences That Plants Can Pass On" is an activity that involves several of Gardner's Multiple Intelligences and was designed for demonstrating the practical use of Multiple Intelligences in delivering education programs to all ages of learners. Instructions are provided for how to implement this activity, and the activity is linked to…

  14. Novel silicon stripixel detector: concept, simulation, design, and fabrication

    International Nuclear Information System (INIS)

    Li, Z.

    2004-01-01

    A novel detector concept has been developed in this work that has the necessary properties to provide two-dimensional (2-D) position sensitivity with a moderate number of readout electronic channels and single-sided detector fabrication process. The concept is based on interleaved pixel electrodes arranged in a projective X-Y readout, which makes possible position encoding with minimum number of channels. In further discussions, we refer to this concept as 'stripixel' detector, as it combines the 2-D position resolution of a pixel electrode geometry with the simplicity of the projective readout of a double-sided strip detector. For DC coupled detectors with large pitches (>20 μm), individual pixels are divided into X- and Y-cell that can be interleaved by many different schemes that ensure the charge sharing between them. This type of stripixel detectors is called interleaved stripixel detectors. When the detector pitch goes down (<20 μm), the X and Y-pixel may not have to be interleaved, and they can be connected in an alternating way to X-Y strip readout. This type of stripixel detectors is called alternating stripixel detectors (ASD). For ASD, a position resolution better than 1 μm in two dimensions can be achieved by determining the centroid of the charge collected on pixel electrodes with a granularity in the range of 5-6 μm. For AC coupled detectors, no interleaving scheme may be needed, and there may be no limit on the pitch size, i.e. it may go from pitches in the order of microns, to hundreds of microns or even mm's. This electrode granularity does not pose difficult demands on the lithography and the fabrication technology. This novel detector concept can be applied to any semiconductor detectors/sensors, such as Si, Ge, GaAs, SiC, diamond, etc

  15. Intelligent systems engineering methodology

    Science.gov (United States)

    Fouse, Scott

    1990-01-01

    An added challenge for the designers of large scale systems such as Space Station Freedom is the appropriate incorporation of intelligent system technology (artificial intelligence, expert systems, knowledge-based systems, etc.) into their requirements and design. This presentation will describe a view of systems engineering which successfully addresses several aspects of this complex problem: design of large scale systems, design with requirements that are so complex they only completely unfold during the development of a baseline system and even then continue to evolve throughout the system's life cycle, design that involves the incorporation of new technologies, and design and development that takes place with many players in a distributed manner yet can be easily integrated to meet a single view of the requirements. The first generation of this methodology was developed and evolved jointly by ISX and the Lockheed Aeronautical Systems Company over the past five years on the Defense Advanced Research Projects Agency/Air Force Pilot's Associate Program, one of the largest, most complex, and most successful intelligent systems constructed to date. As the methodology has evolved it has also been applied successfully to a number of other projects. Some of the lessons learned from this experience may be applicable to Freedom.

  16. How can we get intelligent systems close to experiments

    International Nuclear Information System (INIS)

    Bock, R.K.; Ermolin, Y.; Krischer, W.; Ljuslin, C.; Lone, S.; Marchioro, A.; Zografos, K.

    1989-01-01

    For the high data rates expected at future multi-TeV hadronic colliders like the SSC, it is of utmost importance to take decisions in real time on partial data and as fast as possible. At a first level and shortest timescale, some customized electronics will reduce the rates. In a second phase, decisions have to use concepts closer to physics and hence imply the presence of some intelligence in the trigger. This paper considers various parallel computer or computer-like systems for their possibilities to be embedded as critical active elements in future detectors. The authors discuss the present activities and the pilot systems being built up as part of the LAA project at CERN. These activities aim at a better understanding of existing commercial systems, their design, and their limits of performance

  17. An Intelligent Method of Product Scheme Design Based on Product Gene

    Directory of Open Access Journals (Sweden)

    Qing Song Ai

    2013-01-01

    Full Text Available Nowadays, in order to have some featured products, many customers tend to buy customized products instead of buying common ones in supermarket. The manufacturing enterprises, with the purpose of improving their competitiveness, are focusing on providing customized products with high quality and low cost as well. At present, how to produce customized products rapidly and cheaply has been the key challenge to manufacturing enterprises. In this paper, an intelligent modeling approach applied to supporting the modeling of customized products is proposed, which may improve the efficiency during the product design process. Specifically, the product gene (PG method, which is an analogy of biological evolution in engineering area, is employed to model products in a new way. Based on product gene, we focus on the intelligent modeling method to generate product schemes rapidly and automatically. The process of our research includes three steps: (1 develop a product gene model for customized products; (2 find the obtainment and storage method for product gene; and (3 propose a specific genetic algorithm used for calculating the solution of customized product and generating new product schemes. Finally, a case study is applied to test the usefulness of our study.

  18. Designing distributed user interfaces for ambient intelligent environments using models and simulations

    OpenAIRE

    LUYTEN, Kris; VAN DEN BERGH, Jan; VANDERVELPEN, Chris; CONINX, Karin

    2006-01-01

    There is a growing demand for design support to create interactive systems that are deployed in ambient intelligent environments. Unlike traditional interactive systems, the wide diversity of situations these type of user interfaces need to work in require tool support that is close to the environment of the end-user on the one hand and provide a smooth integration with the application logic on the other hand. This paper shows how the model-based user interface development methodology can be ...

  19. Design of InAs/GaSb superlattice infrared barrier detectors

    Science.gov (United States)

    Delmas, M.; Rossignol, R.; Rodriguez, J. B.; Christol, P.

    2017-04-01

    Design of InAs/GaSb type-II superlattice (T2SL) infrared barrier detectors is theoretically investigated. Each part of the barrier structures is studied in order to achieve optimal device operation at 150 K and 77 K, in the midwave and longwave infrared domain, respectively. Whatever the spectral domain, nBp structure with a p-type absorbing zone and an n-type contact layer is found to be the most favourable detector architecture allowing a reduction of the dark-current associated with generation-recombination processes. The nBp structures are then compared to pin photodiodes. The MWIR nBp detector with 5 μm cut-off wavelength can operate up to 120 K, resulting in an improvement of 20 K on the operating temperature compared to the pin device. The dark-current density of the LWIR nBp device at 77 K is expected to be as low as 3.5 × 10-4 A/cm2 at 50 mV reverse bias, more than one decade lower than the usual T2SL photodiode. This result, for a device having cut-off wavelength at 12 μm, is at the state of the art compared to the well-known MCT 'rule 07'.

  20. Design and performance of a lead fluoride detector as a luminosity monitor

    International Nuclear Information System (INIS)

    Pérez Benito, R.; Khaneft, D.; O'Connor, C.; Capozza, L.; Diefenbach, J.; Gläser, B.; Ma, Y.; Maas, F.E.; Rodríguez Piñeiro, D.

    2016-01-01

    Precise luminosity measurements for the OLYMPUS two-photon exchange experiment at DESY were performed by counting scattering events with alternating beams of electrons and positrons incident on atomic electrons in a gaseous hydrogen target. Final products of Møller, Bhabha, and pair annihilation interactions were observed using a pair of lead fluoride Cherenkov calorimeters with custom housings and electronics, adapted from a system used by the A4 parity violation experiment at MAMI. This paper describes the design, calibration, and operation of these detectors. An explanation of the Monte Carlo methods used to simulate the physical processes involved both at the scattering vertices and in the detector apparatus is also included.

  1. Design and performance of a lead fluoride detector as a luminosity monitor

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Benito, R.; Khaneft, D. [Johannes Gutenberg-Universität, Mainz (Germany); O' Connor, C., E-mail: colton@mit.edu [Massachusetts Institute of Technology, Cambridge, MA (United States); Capozza, L. [Johannes Gutenberg-Universität, Mainz (Germany); Diefenbach, J. [Hampton University, Hampton, VA (United States); Gläser, B.; Ma, Y.; Maas, F.E.; Rodríguez Piñeiro, D. [Johannes Gutenberg-Universität, Mainz (Germany)

    2016-08-01

    Precise luminosity measurements for the OLYMPUS two-photon exchange experiment at DESY were performed by counting scattering events with alternating beams of electrons and positrons incident on atomic electrons in a gaseous hydrogen target. Final products of Møller, Bhabha, and pair annihilation interactions were observed using a pair of lead fluoride Cherenkov calorimeters with custom housings and electronics, adapted from a system used by the A4 parity violation experiment at MAMI. This paper describes the design, calibration, and operation of these detectors. An explanation of the Monte Carlo methods used to simulate the physical processes involved both at the scattering vertices and in the detector apparatus is also included.

  2. Design, construction and commissioning of the Thermal Screen Control System for the CMS Tracker detector at CERN

    CERN Document Server

    Carrone, E; Tsirou, A

    The CERN (European Organization for Nuclear Research) laboratory is currently building the Large Hadron Collider (LHC). Four international collaborations have designed (and are now constructing) detectors able to exploit the physics potential of this collider. Among them is the Compact Muon Solenoid (CMS), a general purpose detector optimized for the search of Higgs boson and for physics beyond the Standard Model of fundamental interactions between elementary particles. This thesis presents, in particular, the design, construction, commissioning and test of the control system for a screen that provides a thermal separation between the Tracker and ECAL (Electromagnetic CALorimeter) detector of CMS (Compact Muon Solenoid experiment). Chapter 1 introduces the new challenges posed by these installations and deals, more in detail, with the Tracker detector of CMS. The size of current experiments for high energy physics is comparable to that of a small industrial plant: therefore, the techniques used for controls a...

  3. JACoW Design of the front-end detector control system of the ATLAS New Small Wheels

    CERN Document Server

    Moschovakos, Paris

    2018-01-01

    The ATLAS experiment will be upgraded during the next LHC Long Shutdown (LS2). The flagship upgrade is the New Small Wheel (NSW) [1], which consists of 2 disks of Muon Gas detectors. The detector technologies used are Micromegas (MM) and sTGC, providing a total of 16 layers of tracking and trigger. The Slow Control Adapter (SCA) is part of the Gigabit Transceiver (GBT) - “Radiation Hard Optical Link Project” family of chips designed at CERN, EP-ESE department [2,3], which will be used at the NSW upgrade. The SCA offers several interfaces to read analogue and digital inputs, and configure front-end Readout ASICs, FPGAs, or other chips. The design of the NSW Detector Control System (DCS) takes advantage of this functionality, as described in this paper.

  4. The design and imaging characteristics of dynamic, solid-state, flat-panel x-ray image detectors for digital fluoroscopy and fluorography

    International Nuclear Information System (INIS)

    Cowen, A.R.; Davies, A.G.; Sivananthan, M.U.

    2008-01-01

    Dynamic, flat-panel, solid-state, x-ray image detectors for use in digital fluoroscopy and fluorography emerged at the turn of the millennium. This new generation of dynamic detectors utilize a thin layer of x-ray absorptive material superimposed upon an electronic active matrix array fabricated in a film of hydrogenated amorphous silicon (a-Si:H). Dynamic solid-state detectors come in two basic designs, the indirect-conversion (x-ray scintillator based) and the direct-conversion (x-ray photoconductor based). This review explains the underlying principles and enabling technologies associated with these detector designs, and evaluates their physical imaging characteristics, comparing their performance against the long established x-ray image intensifier television (TV) system. Solid-state detectors afford a number of physical imaging benefits compared with the latter. These include zero geometrical distortion and vignetting, immunity from blooming at exposure highlights and negligible contrast loss (due to internal scatter). They also exhibit a wider dynamic range and maintain higher spatial resolution when imaging over larger fields of view. The detective quantum efficiency of indirect-conversion, dynamic, solid-state detectors is superior to that of both x-ray image intensifier TV systems and direct-conversion detectors. Dynamic solid-state detectors are playing a burgeoning role in fluoroscopy-guided diagnosis and intervention, leading to the displacement of x-ray image intensifier TV-based systems. Future trends in dynamic, solid-state, digital fluoroscopy detectors are also briefly considered. These include the growth in associated three-dimensional (3D) visualization techniques and potential improvements in dynamic detector design

  5. Applications of artificial intelligence to space station: General purpose intelligent sensor interface

    Science.gov (United States)

    Mckee, James W.

    1988-01-01

    This final report describes the accomplishments of the General Purpose Intelligent Sensor Interface task of the Applications of Artificial Intelligence to Space Station grant for the period from October 1, 1987 through September 30, 1988. Portions of the First Biannual Report not revised will not be included but only referenced. The goal is to develop an intelligent sensor system that will simplify the design and development of expert systems using sensors of the physical phenomena as a source of data. This research will concentrate on the integration of image processing sensors and voice processing sensors with a computer designed for expert system development. The result of this research will be the design and documentation of a system in which the user will not need to be an expert in such areas as image processing algorithms, local area networks, image processor hardware selection or interfacing, television camera selection, voice recognition hardware selection, or analog signal processing. The user will be able to access data from video or voice sensors through standard LISP statements without any need to know about the sensor hardware or software.

  6. Design and Analysis of a Collision Detector for Hybrid Robotic Machine Tools

    Directory of Open Access Journals (Sweden)

    Dan ZHANG

    2015-10-01

    Full Text Available Capacitive sensing depends on the physical parameter changing either the spacing between the two plates or the dielectric constant. Based on this idea, a capacitive based collision detection sensor is proposed and designed in this paper for the purpose of detecting any collision between the end effector and peripheral equipment (e.g., fixture for the three degrees of freedom hybrid robotic machine tools when it is in operation. One side of the finger-like capacitor is attached to the moving platform of the hybrid robotic manipulator and the other side of the finger-like capacitor is attached to the tool. When the tool accidently hits the peripheral equipment, the vibration will make the distance of the capacitor change and therefore trigger the machine to stop. The new design is illustrated and modelled. The capacitance, sensitivity and frequency response of the detector are analyzed in detail, and finally, the fabrication process is presented. The proposed collision detector can also be applied to other machine tools.

  7. Design, fabrication and characterization of multi-guard-ring furnished p+n-n+ silicon strip detectors for future HEP experiments

    Science.gov (United States)

    Lalwani, Kavita; Jain, Geetika; Dalal, Ranjeet; Ranjan, Kirti; Bhardwaj, Ashutosh

    2016-07-01

    Si detectors, in various configurations (strips and pixels), have been playing a key role in High Energy Physics (HEP) experiments due to their excellent vertexing and high precision tracking information. In future HEP experiments like upgrade of the Compact Muon Solenoid experiment (CMS) at the Large Hadron Collider (LHC), CERN and the proposed International Linear Collider (ILC), the Si tracking detectors will be operated in a very harsh radiation environment, which leads to both surface and bulk damage in Si detectors which in turn changes their electrical properties, i.e. change in the full depletion voltage, increase in the leakage current and decrease in the charge collection efficiency. In order to achieve the long term durability of Si-detectors in future HEP experiments, it is required to operate these detectors at very high reverse biases, beyond the full depletion voltage, thus requiring higher detector breakdown voltage. Delhi University (DU) is involved in the design, fabrication and characterization of multi-guard-ring furnished ac-coupled, single sided, p+n-n+ Si strip detectors for future HEP experiments. The design has been optimized using a two-dimensional numerical device simulation program (TCAD-Silvaco). The Si strip detectors are fabricated with eight-layers mask process using the planar fabrication technology by Bharat Electronic Lab (BEL), India. Further an electrical characterization set-up is established at DU to ensure the quality performance of fabricated Si strip detectors and test structures. In this work measurement results on non irradiated Si Strip detectors and test structures with multi-guard-rings using Current Voltage (IV) and Capacitance Voltage (CV) characterization set-ups are discussed. The effect of various design parameters, for example guard-ring spacing, number of guard-rings and metal overhang on breakdown voltage of test structures have been studied.

  8. Design of dual energy x-ray detector for conveyor belt with steel wire ropes

    Science.gov (United States)

    Dai, Yue; Miao, Changyun; Rong, Feng

    2009-07-01

    A dual energy X-ray detector for conveyor belt with steel wire ropes is researched in the paper. Conveyor belt with steel wire ropes is one of primary transfer equipments in modern production. The traditional test methods like electromagnetic induction principle could not display inner image of steel wire ropes directly. So X-ray detection technology has used to detect the conveyor belt. However the image was not so clear by the interference of the rubber belt. Therefore, the dualenergy X-ray detection technology with subtraction method is developed to numerically remove the rubber belt from radiograph, thus improving the definition of the ropes image. The purpose of this research is to design a dual energy Xray detector that could make the operator easier to found the faulty of the belt. This detection system is composed of Xray source, detector controlled by FPGA chip, PC for running image processing system and so on. With the result of the simulating, this design really improved the capability of the staff to test the conveyor belt.

  9. Spiral silicon drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Lutz, G.; Kemmer, J.; Prechtel, U.; Ziemann, T.

    1988-01-01

    An advanced large area silicon photodiode (and x-ray detector), called Spiral Drift Detector, was designed, produced and tested. The Spiral Detector belongs to the family of silicon drift detectors and is an improvement of the well known Cylindrical Drift Detector. In both detectors, signal electrons created in silicon by fast charged particles or photons are drifting toward a practically point-like collection anode. The capacitance of the anode is therefore kept at the minimum (0.1pF). The concentric rings of the cylindrical detector are replaced by a continuous spiral in the new detector. The spiral geometry detector design leads to a decrease of the detector leakage current. In the spiral detector all electrons generated at the silicon-silicon oxide interface are collected on a guard sink rather than contributing to the detector leakage current. The decrease of the leakage current reduces the parallel noise of the detector. This decrease of the leakage current and the very small capacities of the detector anode with a capacitively matched preamplifier may improve the energy resolution of Spiral Drift Detectors operating at room temperature down to about 50 electrons rms. This resolution is in the range attainable at present only by cooled semiconductor detectors. 5 refs., 10 figs

  10. Transmutation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Viererbl, L., E-mail: vie@ujv.c [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Lahodova, Z. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Klupak, V. [Nuclear Research Institute Rez plc (Czech Republic); Sus, F. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Kucera, J. [Research Centre Rez Ltd. (Czech Republic); Nuclear Physics Institute, Academy of Sciences of the Czech Republic (Czech Republic); Kus, P.; Marek, M. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic)

    2011-03-11

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  11. Transmutation detectors

    International Nuclear Information System (INIS)

    Viererbl, L.; Lahodova, Z.; Klupak, V.; Sus, F.; Kucera, J.; Kus, P.; Marek, M.

    2011-01-01

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  12. Development of intelligent code system to support conceptual design of nuclear reactor core

    International Nuclear Information System (INIS)

    Kugo, Teruhiko; Nakagawa, Masayuki; Tsuchihashi, Keichiro

    1997-01-01

    An intelligent reactor design system IRDS has been developed to support conceptual design of new type reactor cores in the fields of neutronics, thermal-hydraulics and fuel behavior. The features of IRDS are summarized as follows: 1) a variety of computer codes to cover various design tasks relevant to 'static' and 'burnup' problems are implemented, 2) all the information necessary to the codes implemented is unified in a data base, 3) several data and knowledge bases are referred to in order to proceed design process efficiently for non-expert users, 4) advanced man-machine interface to communicate with the system through an interactive and graphical user interface is equipped and 5) a function to search automatically a design window, which is defined as a feasible parameter range to satisfy design requirement and criteria is employed to support the optimization or satisfication process. Applicability and productivity of the system are demonstrated by the design study of fuel pin for new type FBR cores. (author)

  13. STANFORD-OHWAKI-KOHS TACTILE BLOCK DESIGN INTELLIGENCE TEST FOR THE BLIND. PART ONE-FINAL REPORT.

    Science.gov (United States)

    DAUTERMAN, WILLIAM L.; SUINN, RICHARD M.

    THIS TEST WAS DEVELOPED TO MEASURE THE INTELLIGENCE OF BLIND ADOLESCENTS AND ADULTS. SIX HUNDRED AND THIRTY BLIND SUBJECTS 14 YEARS OF AGE AND OLDER WERE USED IN REFINING AND STANDARDIZING THE NONVERBAL, PERFORMANCE OHWAKI-KOHS BLOCK DESIGN TEST FOR USE BY BLIND INDIVIDUALS IN THE UNITED STATES. RESULTS INDICATED STATISTICALLY SIGNIFICANT…

  14. Development of high efficiency neutron detectors

    International Nuclear Information System (INIS)

    Pickrell, M.M.; Menlove, H.O.

    1993-01-01

    The authors have designed a novel neutron detector system using conventional 3 He detector tubes and composites of polyethylene and graphite. At this time the design consists entirely of MCNP simulations of different detector configurations and materials. These detectors are applicable to low-level passive and active neutron assay systems such as the passive add-a-source and the 252 Cf shuffler. Monte Carlo simulations of these neutron detector designs achieved efficiencies of over 35% for assay chambers that can accommodate 55-gal. drums. Only slight increases in the number of detector tubes and helium pressure are required. The detectors also have reduced die-away times. Potential applications are coincident and multiplicity neutron counting for waste disposal and safeguards. The authors will present the general design philosophy, underlying physics, calculation mechanics, and results

  15. socio-ec(h)o: Ambient Intelligence and Gameplay

    OpenAIRE

    Wakkary, Ron

    2005-01-01

    The socio-ec(h)o project aims to research a generalized ambient intelligent software platform and design models for responsive environments based on the concept of ambient intelligent "ecologies" and group gameplay. The benefits of the research include a software-architecture, ambient intelligence inference engine, and interaction design models for gameplay and responsive environments. The paper will discuss the results of our prototypes for games in responsive environments. These prototypes ...

  16. Lepton detector workshop summary

    International Nuclear Information System (INIS)

    Imlay, R.; Iwata, S.; Jacobs, S.

    1976-01-01

    A discussion is given of the initial detector design, focusing on the cost estimates and on the inner detector modules. With regard to inner modules, the rate problem was examined for the closest elements, and the question whether one should use argon or lead-liquid scintillator calorimeters was discussed. New designs which involved major modifications to the lepton detector are considered. The major motivations for alternative designs were twofold. One was that the original detector looked quite expensive, and a study of the tradeoff of money versus physics had not really been done yet. The second point was that, since the physics region to be explored was totally new ground, one would like to leave as many options open as possible and build a detector that was as flexible as possible. A scaled-down version of the original design, which was strongly favored by this study, appears to save an appreciable amount of money with a small decrease in the initial physics scope. The more modular designs seem quite attractive, but not enough time was spent to demonstrate feasibility

  17. Intelligent transportation systems problems and perspectives

    CERN Document Server

    Pamuła, Wiesław

    2016-01-01

    This book presents a discussion of problems encountered in the deployment of Intelligent Transport Systems (ITS). It puts emphasis on the early tasks of designing and proofing the concept of integration of technologies in Intelligent Transport Systems. In its first part the book concentrates on the design problems of urban ITS. The second part of the book features case studies representative for the different modes of transport. These are freight transport, rail transport and aerospace transport encompassing also space stations. The book provides ideas for deployment which may be developed by scientists and engineers engaged in the design of Intelligent Transport Systems. It can also be used in the training of specialists, students and post-graduate students in universities and transport high schools.    .

  18. A Characterization of the Utility of Using Artificial Intelligence to Test Two Artificial Intelligence Systems

    OpenAIRE

    Straub, Jeremy; Huber, Justin

    2013-01-01

    An artificial intelligence system, designed for operations in a real-world environment faces a nearly infinite set of possible performance scenarios. Designers and developers, thus, face the challenge of validating proper performance across both foreseen and unforeseen conditions, particularly when the artificial intelligence is controlling a robot that will be operating in close proximity, or may represent a danger, to humans. While the manual creation of test cases allows limited testing (p...

  19. Strip detector for the ATLAS detector upgrade for the High-Luminosity LHC

    CERN Document Server

    Veloce, Laurelle Maria; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is currently preparing for an upgrade of the tracking system in the course of the High Luminosity LHC, scheduled for 2025. The expected radiation damage at an integrated luminosity of 3000fb-1 will require the tracking detectors to withstand hadron fluencies to over 1x1016 1 MeV neutron equivalent per cm2. With the addition of increased readout rates, the existing Inner Detector will have to be replaced by an all-silicon Inner Tracker (ITk) with a pixel detector surrounded by a strip detector. The ITk strip detector consists of a four-layer barrel and a forward region composed of six discs on each side of the barrel. The current prototyping phase has resulted in the ITk Strip Detector Technical Design Report (TDR), which starts the pre-production readiness phase at the involved institutes. In this contribution we present the design of the ITk Strip Detector and current status of R&D of various detector components.

  20. Intelligence and Design: Thinking about Operational Art

    Science.gov (United States)

    2014-07-01

    Intelligence Agency. The DIOCC advocates military requirements within the intelli- gence community. 34. The advantages and disadvantages of each...problem as being the political disen- franchisement of the Chinese squatters. A prominent environmental factor was that British policy sought the

  1. Artificial Consciousness or Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Spanache Florin

    2017-05-01

    Full Text Available Artificial intelligence is a tool designed by people for the gratification of their own creative ego, so we can not confuse conscience with intelligence and not even intelligence in its human representation with conscience. They are all different concepts and they have different uses. Philosophically, there are differences between autonomous people and automatic artificial intelligence. This is the difference between intelligence and artificial intelligence, autonomous versus automatic. But conscience is above these differences because it is neither conditioned by the self-preservation of autonomy, because a conscience is something that you use to help your neighbor, nor automatic, because one’s conscience is tested by situations which are not similar or subject to routine. So, artificial intelligence is only in science-fiction literature similar to an autonomous conscience-endowed being. In real life, religion with its notions of redemption, sin, expiation, confession and communion will not have any meaning for a machine which cannot make a mistake on its own.

  2. The application and development of artificial intelligence in smart clothing

    Science.gov (United States)

    Wei, Xiong

    2018-03-01

    This paper mainly introduces the application of artificial intelligence in intelligent clothing. Starting from the development trend of artificial intelligence, analysis the prospects for development in smart clothing with artificial intelligence. Summarize the design key of artificial intelligence in smart clothing. Analysis the feasibility of artificial intelligence in smart clothing.

  3. Design of Pixellated CMOS Photon Detector for Secondary Electron Detection in the Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Joon Huang Chuah

    2011-01-01

    Full Text Available This paper presents a novel method of detecting secondary electrons generated in the scanning electron microscope (SEM. The method suggests that the photomultiplier tube (PMT, traditionally used in the Everhart-Thornley (ET detector, is to be replaced with a configurable multipixel solid-state photon detector offering the advantages of smaller dimension, lower supply voltage and power requirements, and potentially cheaper product cost. The design of the proposed detector has been implemented using a standard 0.35 μm CMOS technology with optical enhancement. This microchip comprises main circuit constituents of an array of photodiodes connecting to respective noise-optimised transimpedance amplifiers (TIAs, a selector-combiner (SC circuit, and a postamplifier (PA. The design possesses the capability of detecting photons with low input optical power in the range of 1 nW with 100 μm × 100 μm sized photodiodes and achieves a total amplification of 180 dBΩ at the output.

  4. LHCb Detector Performance

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Geraci, Angelo; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Pessina, Gianluigi; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilschut, Hans; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2015-03-05

    The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are described, using data taken from 2010 to 2012. It is shown that the design criteria of the experiment have been met. The excellent performance of the detector has allowed the LHCb collaboration to publish a wide range of physics results, demonstrating LHCb's unique role, both as a heavy flavour experiment and as a general purpose detector in the forward region.

  5. Design studies and sensor tests for the beam calorimeter of the ILC detector

    International Nuclear Information System (INIS)

    Kuznetsova, E.

    2007-03-01

    The International Linear Collider (ILC) is being designed to explore particle physics at the TeV scale. The design of the Very Forward Region of the ILC detector is considered in the presented work. The Beam Calorimeter - one of two electromagnetic calorimeters situated there - is the subject of this thesis. The Beam Calorimeter has to provide a good hermeticity for high energy electrons, positrons and photons down to very low polar angles, serve for fast beam diagnostics and shield the inner part of the detector from backscattered beamstrahlung remnants and synchrotron radiation. As a possible technology for the Beam Calorimeter a diamond-tungsten sandwich calorimeter is considered. Detailed simulation studies are done in order to explore the suitability of the considered design for the Beam Calorimeter objectives. Detection efficiency, energy and angular resolution for electromagnetic showers are studied. At the simulation level the diamondtungsten design is shown to match the requirements on the Beam Calorimeter performance. Studies of polycrystalline chemical vapour deposition (pCVD) diamond as a sensor material for the Beam Calorimeter are done to explore the properties of the material. Results of the measurements performed with pCVD diamond samples produced by different manufacturers are presented. (orig.)

  6. Design studies and sensor tests for the beam calorimeter of the ILC detector

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsova, E.

    2007-03-15

    The International Linear Collider (ILC) is being designed to explore particle physics at the TeV scale. The design of the Very Forward Region of the ILC detector is considered in the presented work. The Beam Calorimeter - one of two electromagnetic calorimeters situated there - is the subject of this thesis. The Beam Calorimeter has to provide a good hermeticity for high energy electrons, positrons and photons down to very low polar angles, serve for fast beam diagnostics and shield the inner part of the detector from backscattered beamstrahlung remnants and synchrotron radiation. As a possible technology for the Beam Calorimeter a diamond-tungsten sandwich calorimeter is considered. Detailed simulation studies are done in order to explore the suitability of the considered design for the Beam Calorimeter objectives. Detection efficiency, energy and angular resolution for electromagnetic showers are studied. At the simulation level the diamondtungsten design is shown to match the requirements on the Beam Calorimeter performance. Studies of polycrystalline chemical vapour deposition (pCVD) diamond as a sensor material for the Beam Calorimeter are done to explore the properties of the material. Results of the measurements performed with pCVD diamond samples produced by different manufacturers are presented. (orig.)

  7. Sparse Detector Imaging Sensor with Two-Class Silhouette Classification

    Directory of Open Access Journals (Sweden)

    David Russomanno

    2008-12-01

    Full Text Available This paper presents the design and test of a simple active near-infrared sparse detector imaging sensor. The prototype of the sensor is novel in that it can capture remarkable silhouettes or profiles of a wide-variety of moving objects, including humans, animals, and vehicles using a sparse detector array comprised of only sixteen sensing elements deployed in a vertical configuration. The prototype sensor was built to collect silhouettes for a variety of objects and to evaluate several algorithms for classifying the data obtained from the sensor into two classes: human versus non-human. Initial tests show that the classification of individually sensed objects into two classes can be achieved with accuracy greater than ninety-nine percent (99% with a subset of the sixteen detectors using a representative dataset consisting of 512 signatures. The prototype also includes a Webservice interface such that the sensor can be tasked in a network-centric environment. The sensor appears to be a low-cost alternative to traditional, high-resolution focal plane array imaging sensors for some applications. After a power optimization study, appropriate packaging, and testing with more extensive datasets, the sensor may be a good candidate for deployment in vast geographic regions for a myriad of intelligent electronic fence and persistent surveillance applications, including perimeter security scenarios.

  8. 智能门禁系统设计要点探讨%Discussion on the Design of Intelligent Access Control System

    Institute of Scientific and Technical Information of China (English)

    朱矩龙

    2015-01-01

    Access control system is the basis and security of the use of building security, the use of advanced technology to design intelligent access control system is conducive to improve the safety of the building. Discusses a based on TM card intelligent access control system design, expounds the main problems existing in traditional access control system, comprehensive description of the hardware design and software design of the intelligent access control system, and the system is simulated and tested.%门禁系统是建筑使用安全性的基础和保障,使用先进技术对智能门禁系统进行设计有利于提高建筑的安全性能。探讨了一种基于TM卡技术的智能门禁系统设计,阐述了传统门禁系统存在的主要问题,综合说明了智能门禁系统的硬件设计和软件设计,并对系统进行了仿真测试。

  9. The 15th Annual Intelligent Ground Vehicle Competition: Intelligent Ground Robots Created by Intelligent Students

    National Research Council Canada - National Science Library

    Theisen, Bernard L

    2007-01-01

    ..., and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities...

  10. The Modular Design and Production of an Intelligent Robot Based on a Closed-Loop Control Strategy.

    Science.gov (United States)

    Zhang, Libo; Zhu, Junjie; Ren, Hao; Liu, Dongdong; Meng, Dan; Wu, Yanjun; Luo, Tiejian

    2017-10-14

    Intelligent robots are part of a new generation of robots that are able to sense the surrounding environment, plan their own actions and eventually reach their targets. In recent years, reliance upon robots in both daily life and industry has increased. The protocol proposed in this paper describes the design and production of a handling robot with an intelligent search algorithm and an autonomous identification function. First, the various working modules are mechanically assembled to complete the construction of the work platform and the installation of the robotic manipulator. Then, we design a closed-loop control system and a four-quadrant motor control strategy, with the aid of debugging software, as well as set steering gear identity (ID), baud rate and other working parameters to ensure that the robot achieves the desired dynamic performance and low energy consumption. Next, we debug the sensor to achieve multi-sensor fusion to accurately acquire environmental information. Finally, we implement the relevant algorithm, which can recognize the success of the robot's function for a given application. The advantage of this approach is its reliability and flexibility, as the users can develop a variety of hardware construction programs and utilize the comprehensive debugger to implement an intelligent control strategy. This allows users to set personalized requirements based on their needs with high efficiency and robustness.

  11. Open-field mouse brain PET: design optimisation and detector characterisation.

    Science.gov (United States)

    Kyme, Andre Z; Judenhofer, Martin S; Gong, Kuang; Bec, Julien; Selfridge, Aaron; Du, Junwei; Qi, Jinyi; Cherry, Simon R; Meikle, Steven R

    2017-07-13

    'Open-field' PET, in which an animal is free to move within an enclosed space during imaging, is a very promising advance for neuroscientific research. It provides a key advantage over conventional imaging under anesthesia by enabling functional changes in the brain to be correlated with an animal's behavioural response to environmental or pharmacologic stimuli. Previously we have demonstrated the feasibility of open-field imaging of rats using motion compensation techniques applied to a commercially available PET scanner. However, this approach of 'retro-fitting' motion compensation techniques to an existing system is limited by the inherent geometric and performance constraints of the system. The goal of this project is to develop a purpose-built PET scanner with geometry, motion tracking and imaging performance tailored and optimised for open-field imaging of the mouse brain. The design concept is a rail-based sliding tomograph which moves according to the animal's motion. Our specific aim in this work was to evaluate candidate scanner designs and characterise the performance of a depth-of-interaction detector module for the open-field system. We performed Monte Carlo simulations to estimate and compare the sensitivity and spatial resolution performance of four scanner geometries: a ring, parallel plate, and two box variants. Each system was based on a detector block consisting of a 23  ×  23 array of 0.785  ×  0.785  ×  20 mm 3 LSO crystals (overall dim. 19.6  ×  19.6  ×  20 mm). We found that a DoI resolution capability of 3 mm was necessary to achieve approximately uniform sub-millimetre spatial resolution throughout the FoV for all scanners except the parallel-plate geometry. With this DoI performance, the sensitivity advantage afforded by the box geometry with overlapping panels (16% peak absolute sensitivity, a 36% improvement over the ring design) suggests this unconventional design is best suited for

  12. A framework for the design of a voice-activated, intelligent, and hypermedia-based aircraft maintenance manual

    Science.gov (United States)

    Patankar, Manoj Shashikant

    Federal Aviation Regulations require Aviation Maintenance Technicians (AMTs) to refer to approved maintenance manuals when performing maintenance on airworthy aircraft. Because these manuals are paper-based, larger the size of the aircraft, more cumbersome are the manuals. Federal Aviation Administration (FAA) recognized the difficulties associated with the use of large manuals and conducted studies on the use of electronic media as an alternative to the traditional paper format. However, these techniques do not employ any artificial intelligence technologies and the user interface is limited to either a keyboard or a stylus pen. The primary emphasis of this research was to design a generic framework that would allow future development of voice-activated, intelligent, and hypermedia-based aircraft maintenance manuals. A prototype (VIHAMS-Voice-activated, Intelligent, and Hypermedia-based Aircraft Maintenance System) was developed, as a secondary emphasis, using the design and development techniques that evolved from this research. An evolutionary software design approach was used to design the proposed framework and the structured rapid prototyping technique was used to produce the VIHAMS prototype. VoiceAssist by Creative Labs was used to provide the voice interface so that the users (AMTs) could keep their hands free to work on the aircraft while maintaining complete control over the computer through discrete voice commands. KnowledgePro for Windows sp{TM}, an expert system shell, provided "intelligence" to the prototype. As a result of this intelligence, the system provided expert guidance to the user. The core information contained in conventional manuals was available in a hypermedia format. The prototype's operating hardware included a notebook computer with a fully functional audio system. An external microphone and the built-in speaker served as the input and output devices (along with the color monitor), respectively. Federal Aviation Administration

  13. Crowdteaching: Supporting Teaching as Designing in Collective Intelligence Communities

    Directory of Open Access Journals (Sweden)

    Mimi Recker

    2014-09-01

    Full Text Available The widespread availability of high-quality Web-based content offers new potential for supporting teachers as designers of curricula and classroom activities. When coupled with a participatory Web culture and infrastructure, teachers can share their creations as well as leverage from the best that their peers have to offer to support a collective intelligence or crowdsourcing community, which we dub crowdteaching. We applied a collective intelligence framework to characterize crowdteaching in the context of a Web-based tool for teachers called the Instructional Architect (IA. The IA enables teachers to find, create, and share instructional activities (called IA projects for their students using online learning resources. These IA projects can further be viewed, copied, or adapted by other IA users. This study examines the usage activities of two samples of teachers, and also analyzes the characteristics of a subset of their IA projects. Analyses of teacher activities suggest that they are engaging in crowdteaching processes. Teachers, on average, chose to share over half of their IA projects, and copied some directly from other IA projects. Thus, these teachers can be seen as both contributors to and consumers of crowdteaching processes. In addition, IA users preferred to view IA projects rather than to completely copy them. Finally, correlational results based on an analysis of the characteristics of IA projects suggest that several easily computed metrics (number of views, number of copies, and number of words in IA projects can act as an indirect proxy of instructionally relevant indicators of the content of IA projects.

  14. Integrated intelligent instruments using supercritical fluid technology for soil analysis

    International Nuclear Information System (INIS)

    Liebman, S.A.; Phillips, C.; Fitzgerald, W.; Levy, E.J.

    1994-01-01

    Contaminated soils pose a significant challenge for characterization and remediation programs that require rapid, accurate and comprehensive data in the field or laboratory. Environmental analyzers based on supercritical fluid (SF) technology have been designed and developed for meeting these global needs. The analyzers are designated the CHAMP Systems (Chemical Hazards Automated Multimedia Processors). The prototype instrumentation features SF extraction (SFE) and on-line capillary gas chromatographic (GC) analysis with chromatographic and/or spectral identification detectors, such as ultra-violet, Fourier transform infrared and mass spectrometers. Illustrations are given for a highly automated SFE-capillary GC/flame ionization (FID) configuration to provide validated screening analysis for total extractable hydrocarbons within ca. 5--10 min, as well as a full qualitative/quantitative analysis in 25--30 min. Data analysis using optional expert system and neural networks software is demonstrated for test gasoline and diesel oil mixtures in this integrated intelligent instrument approach to trace organic analysis of soils and sediments

  15. Silicon Pixel Detectors for Synchrotron Applications

    CERN Document Server

    Stewart, Graeme Douglas

    Recent advances in particle accelerators have increased the demands being placed on detectors. Novel detector designs are being implemented in many different areas including, for example, high luminosity experiments at the LHC or at next generation synchrotrons. The purpose of this thesis was to characterise some of these novel detectors. The first of the new detector types is called a 3D detector. This design was first proposed by Parker, Kenney and Segal (1997). In this design, doped electrodes are created that extend through the silicon substrate. When compared to a traditional photodiode with electrodes on the opposing surfaces, the 3D design can combine a reasonable detector thickness with a small electrode spacing resulting in fast charge collection and limited charge sharing. The small electrode spacing leads to the detectors having lower depletion voltages. This, combined with the fast collection time, makes 3D detectors a candidate for radiation hard applications. These applications include the upgra...

  16. Primary Cosmic Rays Composition: Simulations and Detector Design

    International Nuclear Information System (INIS)

    Supanitsky, D.; Etchegoyen, A.; Medina, C.; Medina-Tanco, G.; Gomez Berisso, M.

    2007-01-01

    The Pierre Auger Observatory is a hybrid detector system for the detection of very high energy cosmic rays. A most difficult and important problem in these studies is the determination of the primary cosmic ray composition for which muon content in air showers appears to be one of the best parameters to discriminate between different composition types.Although the Pierre Auger surface detectors, which consist of water Cherenkov tanks, are sensitive to muon content they are not able to measure the number of muons directly. In this work we study using simulations the information that can be gained by adding muon detectors to the Auger surface detectors. We consider muon counters with two alternative areas

  17. Design of startup neutron detector handling mechanism instrumentation

    International Nuclear Information System (INIS)

    Upadhyay, Chandra Kant; Sivaramakrishna, M.; Nagaraj, C.P.; Madhusoodanan, K.

    2010-01-01

    In PFBR, to monitor the reactor during first fuel loading and low power operation, special provision is made in the central fuel subassembly to accommodate the neutron detectors. During fuel handling operations, these detectors need to be lifted up to facilitate plug rotation. These detectors are also need to be lifted from the core to save their life, during intermediate and high power operations. Towards this, a mobile assembly containing these detectors is made with lowering and retracting provision. To control this operation, constant speed motor, torque limiter, proximity switch, wire drawn potentiometer, magnetic reed switches are provided. To ensure a smooth and safe handling of this assembly, control logic with necessary interlocks is developed. (author)

  18. Design of the cryogenic systems for the Near and Far LAr-TPC detectors of the Short-Baseline Neutrino program (SBN) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Geynisman, M. [Fermilab; Bremer, J. [CERN; Chalifour, M. [CERN; Delaney, M. [Fermilab; Dinnon, M. [Fermilab; Doubnik, R. [Fermilab; Hentschel, S. [Fermilab; Kim, M. J. [Fermilab; Montanari, C. [INFN, Pavia; Monatanari, D. [Fermilab; Nichols, T. [Fermilab; Norris, B. [Fermilab; Sarychev, M. [Fermilab; Schwartz, F. [Fermilab; Tillman, J. [Fermilab; Zuckerbrot, M. [Fermilab

    2017-08-31

    The Short-Baseline Neutrino (SBN) physics program at Fermilab and Neutrino Platform (NP) at CERN are part of the international Neutrino Program leading to the development of Long-Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) science project. The SBN program consisting of three Liquid Argon Time Projection Chamber (LAr-TPC) detectors positioned along the Booster Neutrino Beam (BNB) at Fermilab includes an existing detector known as MicroBooNE (170-ton LAr-TPC) plus two new experiments known as SBN’s Near Detector (SBND, ~260 tons) and SBN’s Far Detector (SBN-FD, ~760 tons). All three detectors have distinctly different design of their cryostats thus defining specific requirements for the cryogenic systems. Fermilab has already built two new facilities to house SBND and SBN-FD detectors. The cryogenic systems for these detectors are in various stages of design and construction with CERN and Fermilab being responsible for delivery of specific sub-systems. This contribution presents specific design requirements and typical implementation solutions for each sub-system of the SBND and SBN-FD cryogenic systems.

  19. Alzheimer's disease and intelligence.

    Science.gov (United States)

    Yeo, R A; Arden, R; Jung, R E

    2011-06-01

    A significant body of evidence has accumulated suggesting that individual variation in intellectual ability, whether assessed directly by intelligence tests or indirectly through proxy measures, is related to risk of developing Alzheimer's disease (AD) in later life. Important questions remain unanswered, however, such as the specificity of risk for AD vs. other forms of dementia, and the specific links between premorbid intelligence and development of the neuropathology characteristic of AD. Lower premorbid intelligence has also emerged as a risk factor for greater mortality across myriad health and mental health diagnoses. Genetic covariance contributes importantly to these associations, and pleiotropic genetic effects may impact diverse organ systems through similar processes, including inefficient design and oxidative stress. Through such processes, the genetic underpinnings of intelligence, specifically, mutation load, may also increase the risk of developing AD. We discuss how specific neurobiologic features of relatively lower premorbid intelligence, including reduced metabolic efficiency, may facilitate the development of AD neuropathology. The cognitive reserve hypothesis, the most widely accepted account of the intelligence-AD association, is reviewed in the context of this larger literature.

  20. An engineering design study of the support platform assembly for the SSC SDC detector

    International Nuclear Information System (INIS)

    Krebs, H.J.; Western, J.L.; Wands, R.H.

    1993-04-01

    A large angular acceptance high energy physics particle detector is presently being designed by the Solenoidal Detector Collaboration for the purposes of doing high pt physics at the Superconducting Super Collider Laboratory. The support platform assembly is the structural device which transfers the 30,000 tonne gravitational load of the octagonally shaped muon barrel toroid and the other detector components to the foundation below. The detector components are very sensitive to differential deflection and rely on the barrel toroid and support platform for stability. The operational load path is provided by two pairs of inclined longitudinal plates resting at 67.5 degree on three pairs of plate girders that are positioned in-line in Z. The plate girders are held together laterally with 38 tie bars and supported vertically by the vertical adjustment system. The lateral stability of the inclined plates is provided by 22 stabilizer beams with cross bracing between each beam. The Z location of each split in the plate girder is coincident with the Z location of the gap in the calorimeter (4428 nun from the detector center.) The width of each split is 155 mm to allow installation of the alignment reference system. The collider beam line in the IR-8 underground experimental hall is oriented at a 2.16 mm/m slope from south to north as shown in Figure 2. The support is designed and installed to provide this slope at the top surface of the inclined plates. The assembled support rests on a ten foot thick steel reinforced 8000 psi concrete slab. The slab has a 2 mm differential deflection criteria under nominal gravitational loading

  1. Recent Advances in Intelligent Engineering Systems

    CERN Document Server

    Klempous, Ryszard; Araujo, Carmen

    2012-01-01

    This volume is a collection of 19 chapters on intelligent engineering systems written by respectable experts of the fields. The book consists of three parts. The first part is devoted to the foundational aspects of computational intelligence. It consists of 8 chapters that include studies in genetic algorithms, fuzzy logic connectives, enhanced intelligence in product models, nature-inspired optimization technologies, particle swarm optimization, evolution algorithms, model complexity of neural networks, and fitness landscape analysis. The second part contains contributions to intelligent computation in networks, presented in 5 chapters. The covered subjects include the application of self-organizing maps for early detection of denial of service attacks, combating security threats via immunity and adaptability in cognitive radio networks, novel modifications in WSN network design for improved SNR and reliability, a conceptual framework for the design of audio based cognitive infocommunication channels, and a ...

  2. The Development of an Intelligent Leadership Model for State Universities

    OpenAIRE

    Aleme Keikha; Reza Hoveida; Nour Mohammad Yaghoubi

    2017-01-01

    Higher education and intelligent leadership are considered important parts of every country’s education system, which could potentially play a key role in accomplishing the goals of society. In theories of leadership, new patterns attempt to view leadership through the prism of creative and intelligent phenomena. This paper aims to design and develop an intelligent leadership model for public universities. A qualitativequantitative research method was used to design a basic model of intellige...

  3. Design of Intelligent Manufacturing Big Data Cloud Service Platform

    Directory of Open Access Journals (Sweden)

    Cai Danlin

    2018-01-01

    Full Text Available With the coming of the intelligent manufacturing, the technology and application of industrial big data will be popular in the future. The productivity, competitiveness and innovation of the manufacturing industries will be improved through the integrated innovation of big data technology and industries. Besides, products, production process, management, services, new form and new models will be more intellectualized. They will support the transformation and upgrading of manufacturing industry and the construction of an open, shared and collaborative ecological environment for intelligent manufacturing industry.

  4. Intelligent Integrated System Health Management

    Science.gov (United States)

    Figueroa, Fernando

    2012-01-01

    Intelligent Integrated System Health Management (ISHM) is the management of data, information, and knowledge (DIaK) with the purposeful objective of determining the health of a system (Management: storage, distribution, sharing, maintenance, processing, reasoning, and presentation). Presentation discusses: (1) ISHM Capability Development. (1a) ISHM Knowledge Model. (1b) Standards for ISHM Implementation. (1c) ISHM Domain Models (ISHM-DM's). (1d) Intelligent Sensors and Components. (2) ISHM in Systems Design, Engineering, and Integration. (3) Intelligent Control for ISHM-Enabled Systems

  5. Strip detector for the ATLAS detector upgrade for the high-luminosity LHC

    CERN Document Server

    Madaffari, Daniele; The ATLAS collaboration

    2017-01-01

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential of the LHC through a sizeable increase in the luminosity, reaching 1x10$^{35}$ cm$^{-2}$s$^{-1}$ after 10 years of operation. A consequence of this increased luminosity is the expected radiation damage at an integrated luminosity of 3000 fb$^{-1}$, requiring the tracking detectors to withstand hadron fluencies to over 1x10$^{16}$ 1 MeV neutron equivalent per cm$^2$. With the addition of increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk), which will consist of both strip and pixelated silicon detectors. The physics motivations, required performance characteristics and basic design of the proposed upgrade of the strip detector will be a subject of this talk. Present ideas and solutions for the strip detector and current research and development program will be discussed.

  6. Design and implementation of an expert system for the detector control systems of the ATLAS pixel detector; Entwurf und Implementation eines Expertensystems fuer das Detektorkontrollsystem des ATLAS-Pixeldetektors

    Energy Technology Data Exchange (ETDEWEB)

    Henss, Tobias

    2008-12-15

    In the framework of this thesis an expert system ''Pixel-Advisor'' for the control system of the pixel detector was designed and implemented. This supports the operational personnel in the diagnosis and removal of possible problems, which are in connection with the detector control system and unburdens the few available DCS experts.

  7. Intelligence in Artificial Intelligence

    OpenAIRE

    Datta, Shoumen Palit Austin

    2016-01-01

    The elusive quest for intelligence in artificial intelligence prompts us to consider that instituting human-level intelligence in systems may be (still) in the realm of utopia. In about a quarter century, we have witnessed the winter of AI (1990) being transformed and transported to the zenith of tabloid fodder about AI (2015). The discussion at hand is about the elements that constitute the canonical idea of intelligence. The delivery of intelligence as a pay-per-use-service, popping out of ...

  8. Artificial Intelligence in Civil Engineering

    Directory of Open Access Journals (Sweden)

    Pengzhen Lu

    2012-01-01

    Full Text Available Artificial intelligence is a branch of computer science, involved in the research, design, and application of intelligent computer. Traditional methods for modeling and optimizing complex structure systems require huge amounts of computing resources, and artificial-intelligence-based solutions can often provide valuable alternatives for efficiently solving problems in the civil engineering. This paper summarizes recently developed methods and theories in the developing direction for applications of artificial intelligence in civil engineering, including evolutionary computation, neural networks, fuzzy systems, expert system, reasoning, classification, and learning, as well as others like chaos theory, cuckoo search, firefly algorithm, knowledge-based engineering, and simulated annealing. The main research trends are also pointed out in the end. The paper provides an overview of the advances of artificial intelligence applied in civil engineering.

  9. Solar-Based Fuzzy Intelligent Water Sprinkle System

    Directory of Open Access Journals (Sweden)

    Riza Muhida

    2012-03-01

    Full Text Available A solar-based intelligent water sprinkler system project that has been developed to ensure the effectiveness in watering the plant is improved by making the system automated. The control system consists of an electrical capacitance soil moisture sensor installed into the ground which is interfaced to a controller unit of Motorola 68HC11 Handy board microcontroller. The microcontroller was programmed based on the decision rules made using fuzzy logic approach on when to water the lawn. The whole system is powered up by the solar energy which is then interfaced to a particular type of irrigation timer for plant fertilizing schedule and rain detector through a simple design of rain dual-collector tipping bucket. The controller unit automatically disrupted voltage signals sent to the control valves whenever irrigation was not needed. Using this system we combined the logic implementation in the area of irrigation and weather sensing equipment, and more efficient water delivery can be made possible. 

  10. Designing an Adaptive Nuero-Fuzzy Inference System for Evaluating the Business Intelligence System Implementation in Software Industry

    Directory of Open Access Journals (Sweden)

    Iman Raeesi Vanani

    2015-03-01

    Full Text Available The main goal of research is designing an adaptive nuero-fuzzy inference system for evaluating the implementation of business intelligence systems in software industry. Iranian software development organizations have been facing a lot of problems in case of implementing business intelligence systems. This system would be helpful in recognizing the conditions and prerequisites of success or failure. Organizations can recalculate the neuro-fuzzy system outputs with some considerations on various inputs to figure out which inputs have the most effect on the implementation outputs. By resolving the problems on inputs, organizations can achieve a better level of implementation success. The designed system has been trained by a data set and afterwards, it has been evaluated. The trained system has reached the error value of 0.08. Eventually, some recommendations have been provided for software development firms on the areas that might need more considerations and improvements.

  11. Design and construction of a time-of-flight wall detector at External Target Facility of HIRFL-CSR

    Science.gov (United States)

    Sun, Y.; Sun, Z. Y.; Yu, Y. H.; Yan, D.; Tang, S. W.; Sun, Y. Z.; Wang, S. T.; Zhang, X. H.; Yue, K.; Fang, F.; Chen, J. L.; Zhang, Y. J.; Hu, B. T.

    2018-06-01

    A Time-Of-Flight Wall (TOFW) detector has been designed and constructed at the External Target Facility (ETF) of HIRFL-CSR. The detector covers a sensitive area of 1.2 × 1.2 m2 and consists of 30 modules. Each module is composed of a long plastic scintillator bar with two photo-multiplier tubes coupled at both ends for readout. The design and manufacture details are described and the test results are reported. The performance of the TOFW detector has been tested and measured with cosmic rays and a 310 MeV/u 40Ar beam. The results show that the time resolutions of all the TOFW modules are better than 128 ps, satisfying the requirements of the experiments which will be carried out at the ETF.

  12. The Relationships between Paranormal Belief, Creationism, Intelligent Design and Evolution at Secondary Schools in Vienna (Austria)

    Science.gov (United States)

    Eder, Erich; Turic, Katharina; Milasowszky, Norbert; Van Adzin, Katherine; Hergovich, Andreas

    2011-01-01

    The present study is the first to investigate the relationships between a multiple set of paranormal beliefs and the acceptance of evolution, creationism, and intelligent design, respectively, in Europe. Using a questionnaire, 2,129 students at secondary schools in Vienna (Austria) answered the 26 statements of the Revised Paranormal Belief Scale…

  13. AIGO: a southern hemisphere detector for the worldwide array of ground-based interferometric gravitational wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Barriga, P; Blair, D G; Coward, D; Davidson, J; Dumas, J-C; Howell, E; Ju, L; Wen, L; Zhao, C [School of Physics, The University of Western Australia, Crawley, WA 6009 (Australia); McClelland, D E; Scott, S M; Slagmolen, B J J; Inta, R [Department of Physics, Faculty of Science, Australian National University, Canberra, ACT 0200 (Australia); Munch, J; Ottaway, D J; Veitch, P; Hosken, D [Department of Physics, University of Adelaide, Adelaide, SA 5005 (Australia); Melatos, A; Chung, C; Sammut, L, E-mail: pbarriga@cyllene.uwa.edu.a [School of Physics University of Melbourne, Parkville, Vic 3010 (Australia)

    2010-04-21

    This paper describes the proposed AIGO detector for the worldwide array of interferometric gravitational wave detectors. The first part of the paper summarizes the benefits that AIGO provides to the worldwide array of detectors. The second part gives a technical description of the detector, which will follow closely the Advanced LIGO design. Possible technical variations in the design are discussed.

  14. AIGO: a southern hemisphere detector for the worldwide array of ground-based interferometric gravitational wave detectors

    OpenAIRE

    Barriga, P.; Blair, D.; Coward, D.; Davidson, J.; Dumas, J.; Howell, E.; Ju, L.; Wen, L.; Zhao, C.; McClelland, D.; Scott, S.; Slagmolen, B.; Inta, R.; Munch, J.; Ottaway, D.

    2010-01-01

    This paper describes the proposed AIGO detector for the worldwide array of interferometric gravitational wave detectors. The first part of the paper summarizes the benefits that AIGO provides to the worldwide array of detectors. The second part gives a technical description of the detector, which will follow closely the Advanced LIGO design. Possible technical variations in the design are discussed.

  15. Concept design and cluster control of advanced space connectable intelligent microsatellite

    Science.gov (United States)

    Wang, Xiaohui; Li, Shuang; She, Yuchen

    2017-12-01

    In this note, a new type of advanced space connectable intelligent microsatellite is presented to extend the range of potential application of microsatellite and improve the efficiency of cooperation. First, the overall concept of the micro satellite cluster is described, which is characterized by autonomously connecting with each other and being able to realize relative rotation through the external interfaces. Second, the multi-satellite autonomous assembly algorithm and control algorithm of the cluster motion are developed to make the cluster system combine into a variety of configurations in order to achieve different types of functionality. Finally, the design of the satellite cluster system is proposed, and the possible applications are discussed.

  16. Key issues for the successful design of an intelligent, interactive playground

    NARCIS (Netherlands)

    Sturm, J.A.; Bekker, M.M.; Groenendaal, B.; Wesselink, R.; Eggen, J.H.

    2008-01-01

    An Intelligent Playground is an environment with interactive objects that, using advanced technology such as sensors and actuators, react to the interaction with the children and actively encourage children to play. Thus, an intelligent playground stimulates children to move and play together. In

  17. Humanitarian Intelligence : A Practitioner's Guide to Crisis Analysis and Project Design

    NARCIS (Netherlands)

    Zwitter, Andrej

    2016-01-01

    Humanitarian aid workers are faced with many challenges, from possible terrorist attacks to dealing with difficult stakeholders and securing operational space free from violence. To do their work properly and safely, they need effective intelligence. Humanitarian intelligence refers to the use of

  18. Design of an ionization diffusion chamber detector

    International Nuclear Information System (INIS)

    Sugiarto, S.

    1976-01-01

    Prototype of an Ionization Diffusion Chamber detector has been made. It is a silindrical glass, 20 cm in diameter, 13,5 cm in height, air gas filled, operated at room pressure and room temperature at the top of this instrument while for the box temperature dry ice (CO 2 solid) temperature is used. This detector is ready for seeing alpha and beta particle tracks. (author)

  19. An intelligent simulation environment for control system design

    International Nuclear Information System (INIS)

    Robinson, J.T.

    1989-01-01

    The Oak Ridge National Laboratory is currently assisting in the development of advanced control systems for the next generation of nuclear power plants. This paper presents a prototype interactive and intelligent simulation environment being developed to support this effort. The environment combines tools from the field of Artificial Intelligence; in particular object-oriented programming, a LISP programming environment, and a direct manipulation user interface; with traditional numerical methods for simulating combined continuous/discrete processes. The resulting environment is highly interactive and easy to use. Models may be created and modified quickly through a window oriented direct manipulation interface. Models may be modified at any time, even as the simulation is running, and the results observed immediately via real-time graphics. 8 refs., 3 figs

  20. Open-source intelligence in the Czech military knowledge syst em and process design

    OpenAIRE

    Krejci, Roman

    2002-01-01

    Owing to the recent transitions in the Czech Republic, the Czech military must satisfy a large set of new requirements. One way the military intelligence can become more effective and can conserve resources is by increasing the efficiency of open-source intelligence (OSINT), which plays an important part in intelligence gathering in the age of information. When using OSINT effectively, the military intelligence can elevate its responsiveness to different types of crises and can also properly ...

  1. Detector Unit

    CERN Multimedia

    1960-01-01

    Original detector unit of the Instituut voor Kernfysisch Onderzoek (IKO) BOL project. This detector unit shows that silicon detectors for nuclear physics particle detection were already developed and in use in the 1960's in Amsterdam. Also the idea of putting 'strips' onto the silicon for high spatial resolution of a particle's impact on the detector were implemented in the BOL project which used 64 of these detector units. The IKO BOL project with its silicon particle detectors was designed, built and operated from 1965 to roughly 1977. Detector Unit of the BOL project: These detectors, notably the ‘checkerboard detector’, were developed during the years 1964-1968 in Amsterdam, The Netherlands, by the Natuurkundig Laboratorium of the N.V. Philips Gloeilampen Fabrieken. This was done in close collaboration with the Instituut voor Kernfysisch Onderzoek (IKO) where the read-out electronics for their use in the BOL Project was developed and produced.

  2. Open-field mouse brain PET: design optimisation and detector characterisation

    Science.gov (United States)

    Kyme, Andre Z.; Judenhofer, Martin S.; Gong, Kuang; Bec, Julien; Selfridge, Aaron; Du, Junwei; Qi, Jinyi; Cherry, Simon R.; Meikle, Steven R.

    2017-08-01

    ‘Open-field’ PET, in which an animal is free to move within an enclosed space during imaging, is a very promising advance for neuroscientific research. It provides a key advantage over conventional imaging under anesthesia by enabling functional changes in the brain to be correlated with an animal’s behavioural response to environmental or pharmacologic stimuli. Previously we have demonstrated the feasibility of open-field imaging of rats using motion compensation techniques applied to a commercially available PET scanner. However, this approach of ‘retro-fitting’ motion compensation techniques to an existing system is limited by the inherent geometric and performance constraints of the system. The goal of this project is to develop a purpose-built PET scanner with geometry, motion tracking and imaging performance tailored and optimised for open-field imaging of the mouse brain. The design concept is a rail-based sliding tomograph which moves according to the animal’s motion. Our specific aim in this work was to evaluate candidate scanner designs and characterise the performance of a depth-of-interaction detector module for the open-field system. We performed Monte Carlo simulations to estimate and compare the sensitivity and spatial resolution performance of four scanner geometries: a ring, parallel plate, and two box variants. Each system was based on a detector block consisting of a 23  ×  23 array of 0.785  ×  0.785  ×  20 mm3 LSO crystals (overall dim. 19.6  ×  19.6  ×  20 mm). We found that a DoI resolution capability of 3 mm was necessary to achieve approximately uniform sub-millimetre spatial resolution throughout the FoV for all scanners except the parallel-plate geometry. With this DoI performance, the sensitivity advantage afforded by the box geometry with overlapping panels (16% peak absolute sensitivity, a 36% improvement over the ring design) suggests this unconventional design is best

  3. Report on {open_quotes}inspection of human subject research in intelligence and intelligence-related projects{close_quotes}

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-16

    Executive Order 12333, {open_quotes}United States Intelligence Activities,{close_quotes} (1) designates the Department`s intelligence element as a member of the Intelligence Community, and (2) states that no agency within the Intelligence community shall sponsor, contract for or conduct research on human subjects except in accordance with guidelines issued by the Department of Health and Human Services. The Federal policy for the Protection of Human Subjects, which was based on Department of Health and Human Services regulations, was promulgated in Title 10 Code of Federal Regulations Part 745 by the Department of Energy. The purpose of this inspection was to review the internal control procedures used by the Office of Nonproliferation and National Security to manage selected intelligence and intelligence-related projects that involve human subject research.

  4. Design and implementation of an expert system for the detector control systems of the ATLAS pixel detector; Entwurf und Implementation eines Expertensystems fuer das Detektorkontrollsystem des ATLAS-Pixeldetektors

    Energy Technology Data Exchange (ETDEWEB)

    Henss, Tobias

    2008-12-15

    In the framework of this thesis an expert system ''Pixel-Advisor'' for the control system of the pixel detector was designed and implemented. This supports the operational personnel in the diagnosis and removal of possible problems, which are in connection with the detector control system and unburdens the few available DCS experts.

  5. A survey on the design of multiprocessing systems for artificial intelligence applications

    Science.gov (United States)

    Wah, Benjamin W.; Li, Guo Jie

    1989-01-01

    Some issues in designing computers for artificial intelligence (AI) processing are discussed. These issues are divided into three levels: the representation level, the control level, and the processor level. The representation level deals with the knowledge and methods used to solve the problem and the means to represent it. The control level is concerned with the detection of dependencies and parallelism in the algorithmic and program representations of the problem, and with the synchronization and sheduling of concurrent tasks. The processor level addresses the hardware and architectural components needed to evaluate the algorithmic and program representations. Solutions for the problems of each level are illustrated by a number of representative systems. Design decisions in existing projects on AI computers are classed into top-down, bottom-up, and middle-out approaches.

  6. Artificial intelligence and design: Opportunities, research problems and directions

    Science.gov (United States)

    Amarel, Saul

    1990-01-01

    The issues of industrial productivity and economic competitiveness are of major significance in the U.S. at present. By advancing the science of design, and by creating a broad computer-based methodology for automating the design of artifacts and of industrial processes, we can attain dramatic improvements in productivity. It is our thesis that developments in computer science, especially in Artificial Intelligence (AI) and in related areas of advanced computing, provide us with a unique opportunity to push beyond the present level of computer aided automation technology and to attain substantial advances in the understanding and mechanization of design processes. To attain these goals, we need to build on top of the present state of AI, and to accelerate research and development in areas that are especially relevant to design problems of realistic complexity. We propose an approach to the special challenges in this area, which combines 'core work' in AI with the development of systems for handling significant design tasks. We discuss the general nature of design problems, the scientific issues involved in studying them with the help of AI approaches, and the methodological/technical issues that one must face in developing AI systems for handling advanced design tasks. Looking at basic work in AI from the perspective of design automation, we identify a number of research problems that need special attention. These include finding solution methods for handling multiple interacting goals, formation problems, problem decompositions, and redesign problems; choosing representations for design problems with emphasis on the concept of a design record; and developing approaches for the acquisition and structuring of domain knowledge with emphasis on finding useful approximations to domain theories. Progress in handling these research problems will have major impact both on our understanding of design processes and their automation, and also on several fundamental questions

  7. Design And Implementation of Dsp-Based Intelligent Controller For Automobile Braking System

    OpenAIRE

    S.N. Sidek and M.J.E. Salami

    2012-01-01

    An intelligent braking system has great potential applications especially, in developed countries where research on smart vehicle and intelligent highways are receiving ample attention. The system when integrated with other subsystems like automatic traction control, intelligent throttle, and auto cruise systems, etc will result in smart vehicle maneuver. The driver at the end of the day will become the passenger, safety accorded the highest priority and the journey optimized in term of time ...

  8. Study of preamplifier, shaper and peak detector in readout ASIC for particle detector

    International Nuclear Information System (INIS)

    Wang Ke; Zhang Shengjun; Fan Lei; Li Xian

    2014-01-01

    Recently, kinds of particle detectors have used Application Specific Integrated Circuits (ASIC) in their electronics readout system and ASICs have been designed in China now. This project designed a multi-channel readout ASIC for general detector. The chip has Preamplifier, Shaper and Peak Detector embedded for easy readout. For each channel, signal which is preprocessed by a low-noise preamplifier is sent to the shaper to form a quasi-Gaussian pulse and keep its peak for readout. This chip and modules of individual Preamplifier, Shaper and Peak Detector have been manufactured, results will be reported in time. (authors)

  9. Integrated double-sided silicon microstrip detectors

    Directory of Open Access Journals (Sweden)

    Perevertailo V. L.

    2011-11-01

    Full Text Available The problems of design, technology and manufacturing double-sided silicon microstrip detectors using standard equipment production line in mass production of silicon integrated circuits are considered. The design of prototype high-energy particles detector for experiment ALICE (CERN is presented. The parameters of fabricated detectors are comparable with those of similar foreign detectors, but they are distinguished by lesser cost.

  10. Integration of artificial intelligence and numerical optimization techniques for the design of complex aerospace systems

    International Nuclear Information System (INIS)

    Tong, S.S.; Powell, D.; Goel, S.

    1992-02-01

    A new software system called Engineous combines artificial intelligence and numerical methods for the design and optimization of complex aerospace systems. Engineous combines the advanced computational techniques of genetic algorithms, expert systems, and object-oriented programming with the conventional methods of numerical optimization and simulated annealing to create a design optimization environment that can be applied to computational models in various disciplines. Engineous has produced designs with higher predicted performance gains that current manual design processes - on average a 10-to-1 reduction of turnaround time - and has yielded new insights into product design. It has been applied to the aerodynamic preliminary design of an aircraft engine turbine, concurrent aerodynamic and mechanical preliminary design of an aircraft engine turbine blade and disk, a space superconductor generator, a satellite power converter, and a nuclear-powered satellite reactor and shield. 23 refs

  11. Evaluation of design parameters in soil-structure systems through artificial intelligence

    International Nuclear Information System (INIS)

    Cremonini, M.G.; Vardanega, C.; Parvis, E.

    1989-01-01

    This study refers to development of an artificial intelligence tool to evaluate design parameters for a soil-structure system as the foundations of Class 1 buildings of a nuclear power plant (NPP). This is based on an expert analysis of a large amount of information, collected during a comprehensive program of site investigations and laboratory tests and stored on a computer data-bank. The methodology comprises the following steps: organization of the available information on the site characteristics in a data-base; implementation and extensive use of a specific knowledge based expert system (KBES) devoted to both the analysis, interpretation and check of the information in the data-base, and to the evaluation of the design parameters; determination of effective access criteria to the data-base, for purposes of reordering the information and extracting design properties from a large number of experimental data; development of design profiles for both index properties and strength/strain parameters; and final evaluation of the design parameters. Results are obtained in the form of: local and general site stratigraphy; summarized soil index properties, detailing the site setting; static and dynamic stress-strain parameters, G/G max behavior and damping factors; condolidation parameters and OCR ratio; spatial distribution of parameters on site area; identification of specific local conditions; and cross correlation of parameters, thus covering the whole range of design parameters for NPP soil-structure systems

  12. Design a Smart Control Strategy to Implement an Intelligent Energy Safety and Management System

    OpenAIRE

    Jing-Min Wang; Ming-Ta Yang

    2014-01-01

    The energy saving and electricity safety are today a cause for increasing concern for homes and buildings. Integrating the radio frequency identification (RFID) and ZigBee wireless sensor network (WSN) mature technologies, the paper designs a smart control strategy to implement an intelligent energy safety and management system (IESMS) which performs energy measuring, controlling, monitoring, and saving of the power outlet system. The presented RFID and billing module is used to identify user...

  13. Cognitive Connected Vehicle Information System Design Requirement for Safety: Role of Bayesian Artificial Intelligence

    OpenAIRE

    Ata Khan

    2013-01-01

    Intelligent transportation systems (ITS) are gaining acceptance around the world and the connected vehicle component of ITS is recognized as a high priority research and development area in many technologically advanced countries. Connected vehicles are expected to have the capability of safe, efficient and eco-driving operations whether these are under human control or in the adaptive machine control mode of operations. The race is on to design the capability to operate in connected traffic ...

  14. Design of information-measuring and control systems for intelligent buildings. Trends of development

    Directory of Open Access Journals (Sweden)

    Petrova Irina Yur’evna

    2015-12-01

    Full Text Available The article considers the modern requirements for integrated management systems of a smart home. The authors propose a hierarchical classification of the levels of house automation, which allows allocating different levels of information transfer. The article considers the trends of development of information-measuring and control systems of intelligent buildings. The generalized scheme of information-measuring and control subsystems of an intelligent building are given. The energy-information model of the knowledge base of physical and technical effects described in the article allows developing a system of automated support of the conceptual stage of elements design in information measuring and control systems. With the help of this knowledge base the system allows dozens of times expanding the scope of knowledge actively used by specialists and two or three times reducing the time of creating new solutions by selecting the most efficient of the options and the underlying calculation of the essential characteristics of their conceptual models, which significantly reduces the number of created prototypes and field tests.

  15. Design and economic investigation of shell and tube heat exchangers using Improved Intelligent Tuned Harmony Search algorithm

    Directory of Open Access Journals (Sweden)

    Oguz Emrah Turgut

    2014-12-01

    Full Text Available This study explores the thermal design of shell and tube heat exchangers by using Improved Intelligent Tuned Harmony Search (I-ITHS algorithm. Intelligent Tuned Harmony Search (ITHS is an upgraded version of harmony search algorithm which has an advantage of deciding intensification and diversification processes by applying proper pitch adjusting strategy. In this study, we aim to improve the search capacity of ITHS algorithm by utilizing chaotic sequences instead of uniformly distributed random numbers and applying alternative search strategies inspired by Artificial Bee Colony algorithm and Opposition Based Learning on promising areas (best solutions. Design variables including baffle spacing, shell diameter, tube outer diameter and number of tube passes are used to minimize total cost of heat exchanger that incorporates capital investment and the sum of discounted annual energy expenditures related to pumping and heat exchanger area. Results show that I-ITHS can be utilized in optimizing shell and tube heat exchangers.

  16. Metal-semiconductor, composite radiation detectors

    International Nuclear Information System (INIS)

    Orvis, W.J.; Yee, J.H.; Fuess, D.A.

    1991-12-01

    In 1989, Naruse and Hatayama of Toshiba published a design for an increased efficiency x-ray detector. The design increased the efficiency of a semiconductor detector by interspersing layers of high-z metal within it. Semiconductors such as silicon make good, high-resolution radiation detectors, but they have low efficiency because they are low-z materials (z = 14). High-z metals, on the other hand, are good absorbers of high-energy photons. By interspersing high-z metal layers with semiconductor layers, Naruse and Hatayama combined the high absorption efficiency of the high-z metals with good detection capabilities of a semiconductor. This project is an attempt to use the same design to produce a high- efficiency gamma ray detector. By their nature, gamma rays require thicker metal layers to efficiently absorb them. These thicker layers change the behavior of the detector by reducing the resolution, compared to a solid state detector, and shifting the photopeak by a predictable amount. During the last year, we have modeled parts of the detector and have nearly completed a prototype device. 2 refs

  17. Design and realization of a fast low noise electronics for a hybrid pixel X-ray detector dedicated to small animal imaging

    International Nuclear Information System (INIS)

    Chantepie, Benoit

    2008-01-01

    Since the invention of computerized tomography (CT), charge integration detector were widely employed for X-ray biomedical imaging applications. Nevertheless, other options exist. A new technology of direct detection using semiconductors has been developed for high energy physics instrumentation. This new technology, called hybrid pixel detector, works in photon counting mode and allows for selecting the minimum energy of the counted photons. The imXgam research team at CPPM develops the PIXSCAN demonstrator, a CT-scanner using the hybrid pixel detector XPAD. The aim of this project is to evaluate the improvement on image quality and on dose delivered during X-ray examinations of a small animal. After a first prototype of hybrid pixel detector XPAD1 proving the feasibility of the project, a complete imager XPAD2 was designed and integrated in the PIXSCAN demonstrator. Since then, with the evolution of microelectronic industry, important improvements are conceivable. To reducing the size of pixels and to improving the energy resolution of detectors, a third design XPAD3 was conceived and will be soon integrated in a second generation of PIXSCAN demonstrator. In this project, my thesis's work consisted in taking part to the design of the detector readout electronics, to the characterization of the chips and of the hybrid pixel detectors, and also to the definition of an auto-zeroing architecture for pixels. (author) [fr

  18. Leading to Learning and Competitive Intelligence

    Science.gov (United States)

    Luu, Trong Tuan

    2013-01-01

    Purpose: This research aims to examine whether there is the chain effect from corporate social responsibility (CSR) and emotional intelligence (EI) to organizational learning and competitive intelligence in chemical companies in a Vietnam business setting. Design/methodology/approach: Structural equation modeling (SEM) approach was used to analyze…

  19. Artificial Intelligence and Moral intelligence

    OpenAIRE

    Laura Pana

    2008-01-01

    We discuss the thesis that the implementation of a moral code in the behaviour of artificial intelligent systems needs a specific form of human and artificial intelligence, not just an abstract intelligence. We present intelligence as a system with an internal structure and the structural levels of the moral system, as well as certain characteristics of artificial intelligent agents which can/must be treated as 1- individual entities (with a complex, specialized, autonomous or selfdetermined,...

  20. Improved network monitoring using UTC detector data 'RAID'

    OpenAIRE

    Cherrett, Tom; Waterson, Ben; McDonald, Mike; Clarke, Russell; Bangert, Alex; Morris, Ray

    2002-01-01

    As part of the 5th Framework PRIME project1 (Prediction Of Congestion And Incidents In Real Time, For Intelligent Incident Management And Emergency Traffic Management), a new incident detection algorithm has been developed using the 250-ms digital data produced by UTC detectors. The contributors to this part of the project were the University of Southampton, Southampton City Council and Siemens Traffic Controls.

  1. Application Platform for Intelligent Mobility – research facility for intelligent mobility services

    OpenAIRE

    Schnieder, Lars

    2012-01-01

    Traffic can be seen as a multi-dimensional field of research. Traffic can be best described as a socio-technical system which brings about new challenges for the design of future transportation systems. With its Application Platform for Intelligent Mobility (AIM), the German Aerospace Center (DLR), together with the state of Lower Saxony, the city of Braunschweig and other partners, is creating a unique way of linking up research, development and applications for intelligent transportation an...

  2. Advances in Intelligence and Security Informatics

    CERN Document Server

    Mao, Wenji

    2012-01-01

    The Intelligent Systems Series comprises titles that present state of the art knowledge and the latest advances in intelligent systems. Its scope includes theoretical studies, design methods, and real-world implementations and applications. Traditionally, Intelligence and Security Informatics (ISI) research and applications have focused on information sharing and data mining, social network analysis, infrastructure protection and emergency responses for security informatics. With the continuous advance of IT technologies and the increasing sophistication of national and international securi

  3. Design of the cryogenic systems for the Near and Far LAr-TPC detectors of the Short-Baseline Neutrino program (SBN) at Fermilab

    CERN Document Server

    Geynisman, M; Chalifour, M; Delaney, M; Dinnon, M; Doubnik, R; Hentschel, S; Kim, M J; Montanari, C; Montanari, D; Nichols, T; Norris, B; Sarychev, M; Schwartz, F; Tillman, J; Zuckerbrot, M

    2017-01-01

    The Short-Baseline Neutrino (SBN) physics program at Fermilab and Neutrino Platform (NP) at CERN are part of the international Neutrino Program leading to the development of Long-Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) science project. The SBN program consisting of three Liquid Argon Time Projection Chamber (LAr-TPC) detectors positioned along the Booster Neutrino Beam (BNB) at Fermilab includes an existing detector known as MicroBooNE (170-ton LAr-TPC) plus two new experiments known as SBN’s Near Detector (SBND, ~260 tons) and SBN’s Far Detector (SBN-FD, ~760 tons). All three detectors have distinctly different design of their cryostats thus defining specific requirements for the cryogenic systems. Fermilab has already built two new facilities to house SBND and SBN-FD detectors. The cryogenic systems for these detectors are in various stages of design and construction with CERN and Fermilab being responsible for delivery of specific sub-systems. This contribution prese...

  4. Toward New-Generation Intelligent Manufacturing

    Directory of Open Access Journals (Sweden)

    Ji Zhou

    2018-02-01

    Full Text Available Intelligent manufacturing is a general concept that is under continuous development. It can be categorized into three basic paradigms: digital manufacturing, digital-networked manufacturing, and new-generation intelligent manufacturing. New-generation intelligent manufacturing represents an in-depth integration of new-generation artificial intelligence (AI technology and advanced manufacturing technology. It runs through every link in the full life-cycle of design, production, product, and service. The concept also relates to the optimization and integration of corresponding systems; the continuous improvement of enterprises’ product quality, performance, and service levels; and reduction in resources consumption. New-generation intelligent manufacturing acts as the core driving force of the new industrial revolution and will continue to be the main pathway for the transformation and upgrading of the manufacturing industry in the decades to come. Human-cyber-physical systems (HCPSs reveal the technological mechanisms of new-generation intelligent manufacturing and can effectively guide related theoretical research and engineering practice. Given the sequential development, cross interaction, and iterative upgrading characteristics of the three basic paradigms of intelligent manufacturing, a technology roadmap for “parallel promotion and integrated development” should be developed in order to drive forward the intelligent transformation of the manufacturing industry in China. Keywords: Advanced manufacturing, New-generation intelligent manufacturing, Human-cyber-physical system, New-generation AI, Basic paradigms, Parallel promotion, Integrated development

  5. Business intelligence guidebook from data integration to analytics

    CERN Document Server

    Sherman, Rick

    2015-01-01

    Between the high-level concepts of business intelligence and the nitty-gritty instructions for using vendors’ tools lies the essential, yet poorly-understood layer of architecture, design and process. Without this knowledge, Big Data is belittled – projects flounder, are late and go over budget. Business Intelligence Guidebook: From Data Integration to Analytics shines a bright light on an often neglected topic, arming you with the knowledge you need to design rock-solid business intelligence and data integration processes. Practicing consultant and adjunct BI professor Rick Sherman takes the guesswork out of creating systems that are cost-effective, reusable and essential for transforming raw data into valuable information for business decision-makers. After reading this book, you will be able to design the overall architecture for functioning business intelligence systems with the supporting data warehousing and data-integration applications. You will have the information you need to get a project laun...

  6. An intelligent system and a relational data base for codifying helmet-mounted display symbology design requirements

    Science.gov (United States)

    Rogers, Steven P.; Hamilton, David B.

    1994-06-01

    To employ the most readily comprehensible presentation methods and symbology with helmet-mounted displays (HMDs), it is critical to identify the information elements needed to perform each pilot function and to analytically determine the attributes of these elements. The extensive analyses of mission requirements currently performed for pilot-vehicle interface design can be aided and improved by the new capabilities of intelligent systems and relational databases. An intelligent system, named ACIDTEST, has been developed specifically for organizing and applying rules to identify the best display modalities, locations, and formats. The primary objectives of the ACIDTEST system are to provide rapid accessibility to pertinent display research data, to integrate guidelines from many disciplines and identify conflicts among these guidelines, to force a consistent display approach among the design team members, and to serve as an 'audit trail' of design decisions and justifications. A powerful relational database called TAWL ORDIR has been developed to document information requirements and attributes for use by ACIDTEST as well as to greatly augment the applicability of mission analysis data. TAWL ORDIR can be used to rapidly reorganize mission analysis data components for study, perform commonality analyses for groups of tasks, determine the information content requirement for tailored display modes, and identify symbology integration opportunities.

  7. Plastic scintillator detector for pulsed flux measurements

    Science.gov (United States)

    Kadilin, V. V.; Kaplun, A. A.; Taraskin, A. A.

    2017-01-01

    A neutron detector, providing charged particle detection capability, has been designed. The main purpose of the detector is to measure pulsed fluxes of both charged particles and neutrons during scientific experiments. The detector consists of commonly used neutron-sensitive ZnS(Ag) / 6LiF scintillator screens wrapping a layer of polystyrene based scintillator (BC-454, EJ-254 or equivalent boron loaded plastic). This type of detector design is able to log a spatial distribution of events and may be scaled to any size. Different variations of the design were considered and modelled in specialized toolkits. The article presents a review of the detector design features as well as simulation results.

  8. A methodological study on organizing an intelligent CAD/CAE system for conceptual design of advanced nuclear reactor system

    International Nuclear Information System (INIS)

    Gofuku, Akio; Yoshikawa, Hidekazu

    1993-01-01

    In order to shorten the time span of design work and enhance both consistency and rationality of design products, the authors are now investigating an intelligent CAD/CAE system to support cooperative works by many specialists by adopting object-oriented approach. In this paper, the cognitive aspect of design activities of specialists in the conceptual design phase of nuclear reactors is discussed. The activities of the specialists in their design analysis process are highly knowledge-based and goal-oriented. The characteristics of the activities are 1) hierarchization of design goal into sub-goals, 2) prioritization of design sub-goals and step-by-step practise of design analysis, and 3) abstraction of real-world space structure into more simplified space structure to cope with theoretical treatment. Based on these consideration, a conceptual design model of specialists' activities composed of attribute modeling and design expertise knowledge base is proposed. The 'principle of functional independence' proposed by Sue is applied to bridge between the attribute modeling and design expertise knowledge base. The intelligent CAD/CAE system is now under development by focusing on the conceptual design of a space power reactor core utilizing thermo-ionic fuel elements as direct thermo-to-electric conversion. A program to calculate thermo-hydraulics of reactor core and thermo-ionic power generation has been developed. An interface has been also developed in order to communicate with the specialists at JAERI by E-mail concerning the interactive calculation between our calculation and the neutronics calculation of reactor core. (orig.)

  9. A methodological study on organizing an intelligent CAD/CAE system for conceptual design of advanced nuclear reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Gofuku, Akio (Inst. of Atomic Energy, Kyoto Univ. (Japan)); Yoshikawa, Hidekazu (Inst. of Atomic Energy, Kyoto Univ. (Japan))

    1993-04-01

    In order to shorten the time span of design work and enhance both consistency and rationality of design products, the authors are now investigating an intelligent CAD/CAE system to support cooperative works by many specialists by adopting object-oriented approach. In this paper, the cognitive aspect of design activities of specialists in the conceptual design phase of nuclear reactors is discussed. The activities of the specialists in their design analysis process are highly knowledge-based and goal-oriented. The characteristics of the activities are 1) hierarchization of design goal into sub-goals, 2) prioritization of design sub-goals and step-by-step practise of design analysis, and 3) abstraction of real-world space structure into more simplified space structure to cope with theoretical treatment. Based on these consideration, a conceptual design model of specialists' activities composed of attribute modeling and design expertise knowledge base is proposed. The 'principle of functional independence' proposed by Sue is applied to bridge between the attribute modeling and design expertise knowledge base. The intelligent CAD/CAE system is now under development by focusing on the conceptual design of a space power reactor core utilizing thermo-ionic fuel elements as direct thermo-to-electric conversion. A program to calculate thermo-hydraulics of reactor core and thermo-ionic power generation has been developed. An interface has been also developed in order to communicate with the specialists at JAERI by E-mail concerning the interactive calculation between our calculation and the neutronics calculation of reactor core. (orig.)

  10. FCJ-206 From Braitenberg’s Vehicles to Jansen’s Beach Animals: Towards an Ecological Approach to the Design of Non-Organic Intelligence

    Directory of Open Access Journals (Sweden)

    Maaike Bleeker

    2016-12-01

    Full Text Available This article presents a comparison of two proposals for how to conceive of the evolution of non-organic intelligence. One is Valentino Braitenberg’s 1984 essay ‘Vehicles: Experiments in Synthetic Psychology’. The other is the Strandbeesten (beach animals of Dutch engineer-artist Theo Jansen. Jansen’s beach animals are not robots. Yet, as semi-autonomous non-organic agents created by humans, they are interesting in the context of the development of robots for how they present an ecological approach to the design of non-organic intelligence. Placing Braitenberg’s and Jansen’s approaches side by side illuminates how Jansen’s approach implies a radically different take than Braitenberg’s on non-organic intelligence, on intelligence as environmental, and on what the relationship between agency and behaviour might comprise.

  11. The history of intelligence. Future prospects

    NARCIS (Netherlands)

    Hijzen, C.W.

    2017-01-01

    Recently, several flaws in the intelligence studies have been designated. It lacksa proper body of knowledge, it lacks theories, and it fails to be ‘cumulative’.In order to become more academic, intelligence studies should therefore build‘more theories’, it is often heard. In this article, it is

  12. Architecture for Business Intelligence in the Healthcare Sector

    Science.gov (United States)

    Lee, Sang Young

    2018-03-01

    Healthcare environment is growing to include not only the traditional information systems, but also a business intelligence platform. For executive leaders, consultants, and analysts, there is no longer a need to spend hours in design and develop of typical reports or charts, the entire solution can be completed through using Business Intelligence software. The current paper highlights the advantages of big data analytics and business intelligence in the healthcare industry. In this paper, In this paper we focus our discussion around intelligent techniques and methodologies which are recently used for business intelligence in healthcare.

  13. Intelligent control and automation technology for nuclear applications

    International Nuclear Information System (INIS)

    Kim, Jae Hee; Kim, Ko Ryeo; Lee, Jae Cheol; Eom, Heung Seop; Lee, Jang Soo

    1994-01-01

    Using recently established intelligent mobile robot theory and high technologies in computer science, we have designed an inspection automation system for welded parts of the reactor vessel, and we intend to establish basic technologies. The recent status of those technologies is surveyed for various application areas, and the characteristics and availability of those techniques such as intelligent mobile robot, digital computer control, intelligent user interface, realtime data processing, ultrasonic signal processing, intelligent user interface, intelligent defect recognition, are studied and examined at first. The high performance and compact size inspection system is designed, and if implemented, it is expected to be very efficient in economic point of view. In addition, the use of integrated SW system leads to the reduction of human errors. Through the analysis results and experiences, we investigated the further feasibility of basic technology applications to the various similar operation systems in NPP. (Author)

  14. Incorporating single detector failure into the ROP detector layout optimization for CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kastanya, Doddy, E-mail: Doddy.Kastanya@snclavalin.com

    2015-12-15

    Highlights: • ROP TSP value needs to be adjusted when any detector in the system fails. • Single detector failure criterion has been incorporated into the detector layout optimization as a constraint. • Results show that the optimized detector layout is more robust with respect to its vulnerability to a single detector failure. • An early rejection scheme has been introduced to speed-up the optimization process. - Abstract: In CANDU{sup ®} reactors, the regional overpower protection (ROP) systems are designed to protect the reactor against overpower in the fuel which could reduce the safety margin-to-dryout. In the CANDU{sup ®} 600 MW (CANDU 6) design, there are two ROP systems in the core, each of which is connected to a fast-acting shutdown system. Each ROP system consists of a number of fast-responding, self-powered flux detectors suitably distributed throughout the core within vertical and horizontal flux detector assemblies. The placement of these ROP detectors is a challenging discrete optimization problem. In the past few years, two algorithms, DETPLASA and ADORE, have been developed to optimize the detector layout for the ROP systems in CANDU reactors. These algorithms utilize the simulated annealing (SA) technique to optimize the placement of the detectors in the core. The objective of the optimization process is typically either to maximize the TSP value for a given number of detectors in the system or to minimize the number of detectors in the system to obtain a target TSP value. One measure to determine the robustness of the optimized detector layout is to evaluate the maximum decrease (penalty) in TSP value when any single detector in the system fails. The smaller the penalty, the more robust the design is. Therefore, in order to ensure that the optimized detector layout is robust, the single detector failure (SDF) criterion has been incorporated as an additional constraint into the ADORE algorithm. Results from this study indicate that there

  15. Developing Information Systems for Competitive Intelligence Support.

    Science.gov (United States)

    Hohhof, Bonnie

    1994-01-01

    Discusses issues connected with developing information systems for competitive intelligence support; defines the elements of an effective competitive information system; and summarizes issues affecting system design and implementation. Highlights include intelligence information; information needs; information sources; decision making; and…

  16. 3D design and electric simulation of a silicon drift detector using a spiral biasing adapter

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yu-yun; Xiong, Bo [School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105 (China); Center for Semiconductor Particle and photon Imaging Detector, Development and Fabrication, Xiangtan University, Xiangtan 411105 (China); Li, Zheng, E-mail: zhengli58@gmail.com [School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105 (China); Center for Semiconductor Particle and photon Imaging Detector, Development and Fabrication, Xiangtan University, Xiangtan 411105 (China)

    2016-09-21

    The detector system of combining a spiral biasing adapter (SBA) with a silicon drift detector (SBA-SDD) is largely different from the traditional silicon drift detector (SDD), including the spiral SDD. It has a spiral biasing adapter of the same design as a traditional spiral SDD and an SDD with concentric rings having the same radius. Compared with the traditional spiral SDD, the SBA-SDD separates the spiral's functions of biasing adapter and the p–n junction definition. In this paper, the SBA-SDD is simulated using a Sentaurus TCAD tool, which is a full 3D device simulation tool. The simulated electric characteristics include electric potential, electric field, electron concentration, and single event effect. Because of the special design of the SBA-SDD, the SBA can generate an optimum drift electric field in the SDD, comparable with the conventional spiral SDD, while the SDD can be designed with concentric rings to reduce surface area. Also the current and heat generated in the SBA are separated from the SDD. To study the single event response, we simulated the induced current caused by incident heavy ions (20 and 50 μm penetration length) with different linear energy transfer (LET). The SBA-SDD can be used just like a conventional SDD, such as X-ray detector for energy spectroscopy and imaging, etc. - Highlights: • The separation of the spiral biasing adapter and SDD is a new concept. • The distribution of the electric potential is symmetrical around the axis through the anode. • The region with higher electron concentrations defines the drift channel.

  17. The potential of artificial intelligence toys

    DEFF Research Database (Denmark)

    Dai, Zheng

    2008-01-01

    Artificial intelligence is moving to a next step of development and application areas. From electronic games to human-like robots, AI toy is a good choice for next step during this process. Technology-based design is fit to the development of AI toy. It can exert the advantages and explore more...... value for existing resources. It combines AI programs and common sensors to realize the function of intelligence input and output. Designers can use technology-based criteria to design and need to consider the possible issues in this new field. All of these aspects can be referenced from electronic game...

  18. The international linear collider. Technical design report. Vol. 4. Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Ties; Brau, James E.; Burrows, Philip; Fuster, Juan; Peskin, Michael; Stanitzki, Marcel; Sugimoto, Yasuhiro; Yamada, Sakue; Yamamoto, Hitoshi [eds.

    2013-10-01

    The following topics are dealt with: The Si Vertex detectors, the main tracker, calorimetry, muon detectors, the superconducting spectrometer magnet, the detector electronics and data acquisition, simulation and reconstruction, benchmarking, costs. (HSI)

  19. The international linear collider. Technical design report. Vol. 4. Detectors

    International Nuclear Information System (INIS)

    Behnke, Ties; Brau, James E.; Burrows, Philip; Fuster, Juan; Peskin, Michael; Stanitzki, Marcel; Sugimoto, Yasuhiro; Yamada, Sakue; Yamamoto, Hitoshi

    2013-01-01

    The following topics are dealt with: The Si Vertex detectors, the main tracker, calorimetry, muon detectors, the superconducting spectrometer magnet, the detector electronics and data acquisition, simulation and reconstruction, benchmarking, costs. (HSI)

  20. Intelligence Naturelle et Intelligence Artificielle

    OpenAIRE

    Dubois, Daniel

    2011-01-01

    Cet article présente une approche systémique du concept d’intelligence naturelle en ayant pour objectif de créer une intelligence artificielle. Ainsi, l’intelligence naturelle, humaine et animale non-humaine, est une fonction composée de facultés permettant de connaître et de comprendre. De plus, l'intelligence naturelle reste indissociable de la structure, à savoir les organes du cerveau et du corps. La tentation est grande de doter les systèmes informatiques d’une intelligence artificielle ...

  1. Some design considerations for a large solid angle charged plus neutrals detector for e+e/sup /minus// storage rings

    International Nuclear Information System (INIS)

    Mast, T.; Nelson, J.

    1974-08-01

    We describe here the relations between various design parameters, costs, resolutions, geometry, etc., that we have found useful in thinking about charged and neutral particle detectors for SPEAR and PEP. A great many alternatives exist for the various components of these detectors: solenoid vs. Helmholtz coils for the magnet, normal versus superconducting magnets, active converters versus passive converters for the gammas, different gamma detection methods, different return yoke configurations, etc. We have thought most about a system based upon a solenoid magnet with drift chambers inside for charged particle detection and lead glass outside for gamma detection. Consequently most of the formulae and figures in this paper are oriented toward that configuration. A great many other configurations have been discussed as possibilities for PEP detectors. Since the constraints ($, manpower, electrical power) and the physics of interest at PEP are still unknown we consider the present configuration to be only one of many possibilities. Each of the possible configurations needs to be carefully studied to understand its limitations and to optimize the design within those limitations. In that spirit we present here some of the tools needed for understanding the design of a solenoidal detector. 18 figs

  2. Report of the compact detector subgroup

    International Nuclear Information System (INIS)

    Kirkby, J.; Kondo, T.; Olsen, S.L.

    1988-01-01

    This report discusses different detector designs that are being proposed for Superconducting Super Collider experiments. The detectors discussed are: Higgs particle detector, Solid State Box detector, SMART detector, muon detection system, and forward detector. Also discussed are triggering strategies for these detectors, high field solenoids, barium fluoride option for EM calorimetry, radiation damage considerations, and cost estimates

  3. Artificial Intelligence as a Means to Moral Enhancement

    Directory of Open Access Journals (Sweden)

    Klincewicz Michał

    2016-12-01

    Full Text Available This paper critically assesses the possibility of moral enhancement with ambient intelligence technologies and artificial intelligence presented in Savulescu and Maslen (2015. The main problem with their proposal is that it is not robust enough to play a normative role in users’ behavior. A more promising approach, and the one presented in the paper, relies on an artificial moral reasoning engine, which is designed to present its users with moral arguments grounded in first-order normative theories, such as Kantianism or utilitarianism, that reason-responsive people can be persuaded by. This proposal can play a normative role and it is also a more promising avenue towards moral enhancement. It is more promising because such a system can be designed to take advantage of the sometimes undue trust that people put in automated technologies. We could therefore expect a well-designed moral reasoner system to be able to persuade people that may not be persuaded by similar arguments from other people. So, all things considered, there is hope in artificial intelligence for moral enhancement, but not in artificial intelligence that relies solely on ambient intelligence technologies.

  4. Plastic scintillator detector for pulsed flux measurements

    International Nuclear Information System (INIS)

    Kadilin, V V; Kaplun, A A; Taraskin, A A

    2017-01-01

    A neutron detector, providing charged particle detection capability, has been designed. The main purpose of the detector is to measure pulsed fluxes of both charged particles and neutrons during scientific experiments. The detector consists of commonly used neutron-sensitive ZnS(Ag) / 6 LiF scintillator screens wrapping a layer of polystyrene based scintillator (BC-454, EJ-254 or equivalent boron loaded plastic). This type of detector design is able to log a spatial distribution of events and may be scaled to any size. Different variations of the design were considered and modelled in specialized toolkits. The article presents a review of the detector design features as well as simulation results. (paper)

  5. Design and evaluation of a SiPM-based large-area detector module for positron emission imaging

    Science.gov (United States)

    Alva-Sánchez, H.; Murrieta-Rodríguez, T.; Calva-Coraza, E.; Martínez-Dávalos, A.; Rodríguez-Villafuerte, M.

    2018-03-01

    The design and evaluation of a large-area detector module for positron emission imaging applications, is presented. The module features a SensL ArrayC-60035-64P-PCB solid state detector (8×8 array of tileable silicon photomultipliers by SensL, 7.2 mm pitch) covering a total area of 57.4×57.4 mm2. The detector module was formed using a pixelated array of 40×40 lutetium-yttrium oxyorthosilicate (LYSO) scintillator crystal elements with 1.43 mm pitch. A 7 mm thick coupling light guide was used to allow light sharing between adjacent SiPM. A 16-channel symmetric charge division (SCD) readout board was designed to multiplex the number of signals from 64 to 16 (8 columns and 8 rows) and a center-of-gravity algorithm to identify the position. Data acquisition and digitization was accomplished using a custom-made system based on FPGAs boards. Crystal maps were obtained using 18F-positron sources and Voronoi diagrams were used to correct for geometric distortions and to generate a non-uniformity correction matrix. All measurements were taken at a controlled room temperature of 22oC. The crystal maps showed minor distortion, 90% of the 1600 total crystal elements could be identified, a mean peak-to-valley ratio of 4.3 was obtained and a 10.8% mean energy resolution for 511 keV annihilation photons was determined. The performance of the detector using our own readout board was compared to that using two different commercially readout boards using the same detector module arrangement. We show that these large-area SiPM arrays, combined with a 16-channel SCD readout board, can offer high spatial resolution, excellent energy resolution and detector uniformity and thus, can be used for positron emission imaging applications.

  6. Innovative applications of artificial intelligence

    Science.gov (United States)

    Schorr, Herbert; Rappaport, Alain

    Papers concerning applications of artificial intelligence are presented, covering applications in aerospace technology, banking and finance, biotechnology, emergency services, law, media planning, music, the military, operations management, personnel management, retail packaging, and manufacturing assembly and design. Specific topics include Space Shuttle telemetry monitoring, an intelligent training system for Space Shuttle flight controllers, an expert system for the diagnostics of manufacturing equipment, a logistics management system, a cooling systems design assistant, and a knowledge-based integrated circuit design critic. Additional topics include a hydraulic circuit design assistant, the use of a connector assembly specification expert system to harness detailed assembly process knowledge, a mixed initiative approach to airlift planning, naval battle management decision aids, an inventory simulation tool, a peptide synthesis expert system, and a system for planning the discharging and loading of container ships.

  7. Application of the self-powered detector concept in the design of a threshold gamma-ray detector

    International Nuclear Information System (INIS)

    LeVert, F.E.

    1979-01-01

    The self-powered detector concept has been utilized to develop an energy threshold gamma-ray detector. Gamma-ray energy discrimination is achieved by using a thick annular lead shield around the outer wall (emitter) of the detector in conjunction with a self-shielding central electrode (collector). Measurements conducted in the graphite pit of the Argonne Thermal Source Reactor have confirmed its ability to detect high-energy prompt fission gamma rays while discriminating against a significant flux of low-energy gamma rays from the decay of fission products. Also, auto-power spectral densities obtained with the detector were used to estimate the kinetic parameter, β/l, of the reactor

  8. Design and implementation of an XML based object-oriented detector description database for CMS

    International Nuclear Information System (INIS)

    Liendl, M.

    2003-04-01

    This thesis deals with the development of a detector description database (DDD) for the compact muon solenoid (CMS) experiment at the large hadron collider (LHC) located at the European organization for nuclear research (CERN). DDD is a fundamental part of the CMS offline software with its main applications, simulation and reconstruction. Both are in need of different models of the detector in order to efficiently solve their specific tasks. In the thesis the requirements to a detector description database are analyzed and the chosen solution is described in detail. It comprises the following components: an XML based detector description language, a runtime system that implements an object-oriented transient representation of the detector, and an application programming interface to be used by client applications. One of the main aspects of the development is the design of the DDD components. The starting point is a domain model capturing concisely the characteristics of the problem domain. The domain model is transformed into several implementation models according to the guidelines of the model driven architecture (MDA). Implementation models and appropriate refinements thereof are foundation for adequate implementations. Using the MDA approach, a fully functional prototype was realized in C++ and XML. The prototype was successfully tested through seamless integration into both the simulation and the reconstruction framework of CMS. (author)

  9. The atlas detector

    International Nuclear Information System (INIS)

    Perrodo, P.

    2001-01-01

    The ATLAS detector, one of the two multi-purpose detectors at the Large Hadron Collider at CERN, is currently being built in order to meet the first proton-proton collisions in time. A description of the detector components will be given, corresponding to the most up to date design and status of construction, completed with test beam results and performances of the first serial modules. (author)

  10. Positional glow curve simulation for thermoluminescent detector (TLD) system design

    International Nuclear Information System (INIS)

    Branch, C.J.; Kearfott, K.J.

    1999-01-01

    Multi- and thin element dosimeters, variable heating rate schemes, and glow-curve analysis have been employed to improve environmental and personnel dosimetry using thermoluminescent detectors (TLDs). Detailed analysis of the effects of errors and optimization of techniques would be highly desirable. However, an understanding of the relationship between TL light production, light attenuation, and precise heating schemes is made difficult because of experimental challenges involved in measuring positional TL light production and temperature variations as a function of time. This work reports the development of a general-purpose computer code, thermoluminescent detector simulator, TLD-SIM, to simulate the heating of any TLD type using a variety of conventional and experimental heating methods including pulsed focused or unfocused lasers with Gaussian or uniform cross sections, planchet, hot gas, hot finger, optical, infrared, or electrical heating. TLD-SIM has been used to study the impact on the TL light production of varying the input parameters which include: detector composition, heat capacity, heat conductivity, physical size, and density; trapped electron density, the frequency factor of oscillation of electrons in the traps, and trap-conduction band potential energy difference; heating scheme source terms and heat transfer boundary conditions; and TL light scatter and attenuation coefficients. Temperature profiles and glow curves as a function of position time, as well as the corresponding temporally and/or spatially integrated glow values, may be plotted while varying any of the input parameters. Examples illustrating TLD system functions, including glow curve variability, will be presented. The flexible capabilities of TLD-SIM promises to enable improved TLD system design

  11. New design of a quasi-monolithic detector module with DOI capability for small animal pet

    International Nuclear Information System (INIS)

    Chung, Yong Hyun; Lee, Seung-Jae; Baek, Cheol-Ha; Choi, Yong

    2008-01-01

    We report a new design of a detector module with depth of interaction (DOI) based on a quasi-monolithic LSO crystal, a multi-channel sensor, and maximum-likelihood position-estimation (MLPE) algorithm. Light transport and detection were modeled in a quasi-monolithic crystal using DETECT2000 code, with lookup tables (LUTs) built by simulation. Events were well separated by applying the MLPE method within 2.0 mm spatial resolution in both trans-axial and DOI directions. These results demonstrate that the proposed detector provides dependable positioning capability for small animal positron emission tomography (PET)

  12. Recommendations for the ethical use and design of artificial intelligent care providers.

    Science.gov (United States)

    Luxton, David D

    2014-09-01

    This paper identifies and reviews ethical issues associated with artificial intelligent care providers (AICPs) in mental health care and other helping professions. Specific recommendations are made for the development of ethical codes, guidelines, and the design of AICPs. Current developments in the application of AICPs and associated technologies are reviewed and a foundational overview of applicable ethical principles in mental health care is provided. Emerging ethical issues regarding the use of AICPs are then reviewed in detail. Recommendations for ethical codes and guidelines as well as for the development of semi-autonomous and autonomous AICP systems are described. The benefits of AICPs and implications for the helping professions are discussed in order to weigh the pros and cons of their use. Existing ethics codes and practice guidelines do not presently consider the current or the future use of interactive artificial intelligent agents to assist and to potentially replace mental health care professionals. AICPs present new ethical issues that will have significant ramifications for the mental health care and other helping professions. Primary issues involve the therapeutic relationship, competence, liability, trust, privacy, and patient safety. Many of the same ethical and philosophical considerations are applicable to use and design of AICPs in medicine, nursing, social work, education, and ministry. The ethical and moral aspects regarding the use of AICP systems must be well thought-out today as this will help to guide the use and development of these systems in the future. Topics presented are relevant to end users, AI developers, and researchers, as well as policy makers and regulatory boards. Published by Elsevier B.V.

  13. A Characterization of the Utility of Using Artificial Intelligence to Test Two Artificial Intelligence Systems

    Directory of Open Access Journals (Sweden)

    Jeremy Straub

    2013-05-01

    Full Text Available An artificial intelligence system, designed for operations in a real-world environment faces a nearly infinite set of possible performance scenarios. Designers and developers, thus, face the challenge of validating proper performance across both foreseen and unforeseen conditions, particularly when the artificial intelligence is controlling a robot that will be operating in close proximity, or may represent a danger, to humans. While the manual creation of test cases allows limited testing (perhaps ensuring that a set of foreseeable conditions trigger an appropriate response, this may be insufficient to fully characterize and validate safe system performance. An approach to validating the performance of an artificial intelligence system using a simple artificial intelligence test case producer (AITCP is presented. The AITCP allows the creation and simulation of prospective operating scenarios at a rate far exceeding that possible by human testers. Four scenarios for testing an autonomous navigation control system are presented: single actor in two-dimensional space, multiple actors in two-dimensional space, single actor in three-dimensional space, and multiple actors in three-dimensional space. The utility of using the AITCP is compared to that of human testers in each of these scenarios.

  14. Intelligent system for accident identification in NPP

    International Nuclear Information System (INIS)

    Hernandez, J.L.

    1998-01-01

    Accidental situations in NPP are great concern for operators, the facility, regulatory bodies and the environmental. This work proposes a design of intelligent system aimed to assist the operator in the process of decision making initiator events with higher relative contribution to the reactor core damage occur. The intelligent System uses the results of the pre-operational Probabilistic safety Assessment and the Thermal hydraulic Safety Analysis of the NPP Juragua as source for building its knowledge base. The nucleus of the system is presented as a design of an intelligent hybrid from the combination of the artificial intelligence techniques fuzzy logic and artificial neural networks. The system works with variables from the process of the first circuit, second circuit and the containment and it is presented as a model for the integration of safety analyses in the process of decision making by the operator when tackling with accidental situations

  15. Designing a new type of neutron detector for neutron and gamma-ray discrimination via GEANT4

    International Nuclear Information System (INIS)

    Shan, Qing; Chu, Shengnan; Ling, Yongsheng; Cai, Pingkun; Jia, Wenbao

    2016-01-01

    Design of a new type of neutron detector, consisting of a fast neutron converter, plastic scintillator, and Cherenkov detector, to discriminate 14-MeV fast neutrons and gamma rays in a pulsed n–γ mixed field and monitor their neutron fluxes is reported in this study. Both neutrons and gamma rays can produce fluorescence in the scintillator when they are incident on the detector. However, only the secondary charged particles of the gamma rays can produce Cherenkov light in the Cherenkov detector. The neutron and gamma-ray fluxes can be calculated by measuring the fluorescence and Cherenkov light. The GEANT4 Monte Carlo simulation toolkit is used to simulate the whole process occurring in the detector, whose optimum parameters are known. Analysis of the simulation results leads to a calculation method of neutron flux. This method is verified by calculating the neutron fluxes using pulsed n–γ mixed fields with different n/γ ratios, and the results show that the relative errors of all calculations are <5%. - Highlights: • A neutron detector is developed to discriminate 14-MeV fast neutrons and gamma rays. • The GEANT4 is used to optimize the parameters of the detector. • A calculation method of neutron flux is established through the simulation. • Several n/γ mixture fields are simulated to validate of the calculation method.

  16. 3D space combat simulation game with artificial intelligence

    OpenAIRE

    Pernička, Václav

    2013-01-01

    The goal of this thesis is to design and implement a 3D space shooter with artifitial intelligence. This thesis includes theoretic analysis of space shooters, types of artifitial intelligence and assumptions important for developing in 3D space. The game also includes a simple artifitial intelligent player.

  17. Engineering general intelligence

    CERN Document Server

    Goertzel, Ben; Geisweiller, Nil

    2014-01-01

    The work outlines a detailed blueprint for the creation of an Artificial General Intelligence system with capability at the human level and ultimately beyond, according to the Cog Prime AGI design and the Open Cog software architecture.

  18. Emergent web intelligence advanced information retrieval

    CERN Document Server

    Badr, Youakim; Abraham, Ajith; Hassanien, Aboul-Ella

    2010-01-01

    Web Intelligence explores the impact of artificial intelligence and advanced information technologies representing the next generation of Web-based systems, services, and environments, and designing hybrid web systems that serve wired and wireless users more efficiently. Multimedia and XML-based data are produced regularly and in increasing way in our daily digital activities, and their retrieval must be explored and studied in this emergent web-based era. 'Emergent Web Intelligence: Advanced information retrieval, provides reviews of the related cutting-edge technologies and insights. It is v

  19. Towards a gravitational wave observatory designer: sensitivity limits of spaceborne detectors

    International Nuclear Information System (INIS)

    Barke, S; Wang, Y; Delgado, J J Esteban; Tröbs, M; Heinzel, G; Danzmann, K

    2015-01-01

    The most promising concept for low frequency (millihertz to hertz) gravitational wave observatories are laser interferometric detectors in space. It is usually assumed that the noise floor for such a detector is dominated by optical shot noise in the signal readout. For this to be true, a careful balance of mission parameters is crucial to keep all other parasitic disturbances below shot noise. We developed a web application that uses over 30 input parameters and considers many important technical noise sources and noise suppression techniques to derive a realistic position noise budget. It optimizes free parameters automatically and generates a detailed report on all individual noise contributions. Thus one can easily explore the entire parameter space and design a realistic gravitational wave observatory. In this document we describe the different parameters, present all underlying calculations, and compare the final observatory’s sensitivity with astrophysical sources of gravitational waves. We use as an example parameters currently assumed to be likely applied to a space mission proposed to be launched in 2034 by the European Space Agency. The web application itself is publicly available on the Internet at http://spacegravity.org/designer. Future versions of the web application will incorporate the frequency dependence of different noise sources and include a more detailed model of the observatory’s residual acceleration noise. (paper)

  20. Towards a gravitational wave observatory designer: sensitivity limits of spaceborne detectors

    Science.gov (United States)

    Barke, S.; Wang, Y.; Esteban Delgado, J. J.; Tröbs, M.; Heinzel, G.; Danzmann, K.

    2015-05-01

    The most promising concept for low frequency (millihertz to hertz) gravitational wave observatories are laser interferometric detectors in space. It is usually assumed that the noise floor for such a detector is dominated by optical shot noise in the signal readout. For this to be true, a careful balance of mission parameters is crucial to keep all other parasitic disturbances below shot noise. We developed a web application that uses over 30 input parameters and considers many important technical noise sources and noise suppression techniques to derive a realistic position noise budget. It optimizes free parameters automatically and generates a detailed report on all individual noise contributions. Thus one can easily explore the entire parameter space and design a realistic gravitational wave observatory. In this document we describe the different parameters, present all underlying calculations, and compare the final observatory’s sensitivity with astrophysical sources of gravitational waves. We use as an example parameters currently assumed to be likely applied to a space mission proposed to be launched in 2034 by the European Space Agency. The web application itself is publicly available on the Internet at http://spacegravity.org/designer. Future versions of the web application will incorporate the frequency dependence of different noise sources and include a more detailed model of the observatory’s residual acceleration noise.

  1. An intelligent stochastic optimization routine for nuclear fuel cycle design

    International Nuclear Information System (INIS)

    Parks, G.T.

    1990-01-01

    A simulated annealing (Metropolis algorithm) optimization routine named AMETROP, which has been developed for use on realistic nuclear fuel cycle problems, is introduced. Each stage of the algorithm is described and the means by which it overcomes or avoids the difficulties posed to conventional optimization routines by such problems are explained. Special attention is given to innovations that enhance AMETROP's performance both through artificial intelligence features, in which the routine uses the accumulation of data to influence its future actions, and through a family of simple performance aids, which allow the designer to use his heuristic knowledge to guide the routine's essentially random search. Using examples from a typical fuel cycle optimization problem, the performance of the stochastic Metropolis algorithm is compared to that of the only suitable deterministic routine in a standard software library, showing AMETROP to have many advantages

  2. New flux detectors for CANDU 6 reactors

    International Nuclear Information System (INIS)

    Cuttler, J.M.; Medak, N.

    1992-06-01

    CANDU reactors utilize large numbers of in-core self-powered detectors for control and protection. In the original design, the detectors (coaxial cables) were wound on carrier tubes and immersed in the heavy water moderator. Failures occurred due to corrosion and other factors, and replacement was very costly because the assemblies were not designed with maintenance in mind. A new design was conceived based on straight detectors, of larger diameter, in a sealed package of individual 'well' tubes. This protected the detectors from hostile environments and enabled individual failed sensors to be replaced by inserting spares in vacant neighbouring tubes. The new design was made retrofittable to older CANDU reactors. Provision was made for on-line scanning of the core with a miniature fission chamber. The modified detectors were tested in a lengthy development program and found to exhibit superior performance to that of the original detectors. Most of the CANDU reactors have now adopted the new design. In the case of the Gentilly-2 and Point Lepreau reactors, advantage was taken of the opportunity to redesign the detector layout (using better codes and the increased flexibility in positioning detectors) to achieve better coverage of abnormal events, leading to higher trip setpoints and wider operating margins

  3. Students’ logical-mathematical intelligence profile

    Science.gov (United States)

    Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.

    2018-04-01

    One of students’ characteristics which play an important role in learning mathematics is logical-mathematical intelligence. This present study aims to identify profile of students’ logical-mathematical intelligence in general and specifically in each indicator. It is also analyzed and described based on students’ sex. This research used qualitative method with case study strategy. The subjects involve 29 students of 9th grade that were selected by purposive sampling. Data in this research involve students’ logical-mathematical intelligence result and interview. The results show that students’ logical-mathematical intelligence was identified in the moderate level with the average score is 11.17 and 51.7% students in the range of the level. In addition, the level of both male and female students are also mostly in the moderate level. On the other hand, both male and female students’ logical-mathematical intelligence is strongly influenced by the indicator of ability to classify and understand patterns and relationships. Furthermore, the ability of comparison is the weakest indicator. It seems that students’ logical-mathematical intelligence is still not optimal because more than 50% students are identified in moderate and low level. Therefore, teachers need to design a lesson that can improve students’ logical-mathematical intelligence level, both in general and on each indicator.

  4. Teaching Evolution at A-Level: Is "Intelligent Design" a Scientific Theory That Merits Inclusion in the Biology Syllabus?

    Science.gov (United States)

    Freeland, Peter

    2013-01-01

    Charles Darwin supposed that evolution involved a process of gradual change, generated randomly, with the selection and retention over many generations of survival-promoting features. Some theists have never accepted this idea. "Intelligent design" is a relatively recent theory, supposedly based on scientific evidence, which attempts to…

  5. On Model Design for Simulation of Collective Intelligence

    NARCIS (Netherlands)

    Schut, M.C.

    2010-01-01

    The study of collective intelligence (CI) systems is increasingly gaining interest in a variety of research and application domains. Those domains range from existing research areas such as computer networks and collective robotics to upcoming areas of agent-based and insect-based computing; also

  6. Design optimum frac jobs using virtual intelligence techniques

    Energy Technology Data Exchange (ETDEWEB)

    Shahab Mohaghegh; Andrei Popa; Sam Ameri [West Virginia University, Morgantown, WV (United States). Petroleum and Natural Gas Engineering

    2000-10-01

    Designing optimal frac jobs is a complex and time-consuming process. It usually involves the use of a two- or three-dimensional computer model. For the computer models to perform as intended, a wealth of input data is required. The input data includes wellbore configuration and reservoir characteristics such as porosity, permeability, stress and thickness profiles of the pay layers as well as the overburden layers. Among other essential information required for the design process is fracturing fluid type and volume, proppant type and volume, injection rate, proppant concentration and frac job schedule. Some of the parameters such as fluid and proppant types have discrete possible choices. Other parameters such as fluid and proppant volume, on the other hand, assume values from within a range of minimum and maximum values. A potential frac design for a particular pay zone is a combination of all of these parameters. Finding the optimum combination is not a trivial process. It usually requires an experienced engineer and a considerable amount of time to tune the parameters in order to achieve desirable outcome. This paper introduces a new methodology that integrates two virtual intelligence techniques, namely, artificial neural networks and genetic algorithms to automate and simplify the optimum frac job design process. This methodology requires little input from the engineer beyond the reservoir characterizations and wellbore configuration. The software tool that has been developed based on this methodology uses the reservoir characteristics and an optimization criteria indicated by the engineer, for example a certain propped frac length, and provides the detail of the optimum frac design that will result in the specified criteria. An ensemble of neural networks is trained to mimic the two- or three-dimensional frac simulator. Once successfully trained, these networks are capable of providing instantaneous results in response to any set of input parameters. These

  7. Design optimum frac jobs using virtual intelligence techniques

    Science.gov (United States)

    Mohaghegh, Shahab; Popa, Andrei; Ameri, Sam

    2000-10-01

    Designing optimal frac jobs is a complex and time-consuming process. It usually involves the use of a two- or three-dimensional computer model. For the computer models to perform as intended, a wealth of input data is required. The input data includes wellbore configuration and reservoir characteristics such as porosity, permeability, stress and thickness profiles of the pay layers as well as the overburden layers. Among other essential information required for the design process is fracturing fluid type and volume, proppant type and volume, injection rate, proppant concentration and frac job schedule. Some of the parameters such as fluid and proppant types have discrete possible choices. Other parameters such as fluid and proppant volume, on the other hand, assume values from within a range of minimum and maximum values. A potential frac design for a particular pay zone is a combination of all of these parameters. Finding the optimum combination is not a trivial process. It usually requires an experienced engineer and a considerable amount of time to tune the parameters in order to achieve desirable outcome. This paper introduces a new methodology that integrates two virtual intelligence techniques, namely, artificial neural networks and genetic algorithms to automate and simplify the optimum frac job design process. This methodology requires little input from the engineer beyond the reservoir characterizations and wellbore configuration. The software tool that has been developed based on this methodology uses the reservoir characteristics and an optimization criteria indicated by the engineer, for example a certain propped frac length, and provides the detail of the optimum frac design that will result in the specified criteria. An ensemble of neural networks is trained to mimic the two- or three-dimensional frac simulator. Once successfully trained, these networks are capable of providing instantaneous results in response to any set of input parameters. These

  8. Information Design for “Weak Signal” detection and processing in Economic Intelligence: A case study on Health resources

    Directory of Open Access Journals (Sweden)

    Sahbi Sidhom

    2011-12-01

    Full Text Available The topics of this research cover all phases of “Information Design” applied to detect and profit from weak signals in economic intelligence (EI or business intelligence (BI. The field of the information design (ID applies to the process of translating complex, unorganized or unstructured data into valuable and meaningful information. ID practice requires an interdisciplinary approach, which combines skills in graphic design (writing, analysis processing and editing, human performances technology and human factors. Applied in the context of information system, it allows end-users to easily detect implicit topics known as “weak signals” (WS. In our approach to implement the ID, the processes cover the development of a knowledge management (KM process in the context of EI. A case study concerning information monitoring health resources is presented using ID processes to outline weak signals. Both French and American bibliographic databases were applied to make the connection to multilingual concepts in the health watch process.

  9. The implementation of intelligent home controller

    Science.gov (United States)

    Li, Biqing; Li, Zhao

    2018-04-01

    This paper mainly talks about the working way of smart home terminal controller and the design of hardware and software. Controlling the lights and by simulating the lamp and the test of the curtain, destroy the light of lamp ON-OFF and the curtain's UP-DOWN by simulating the lamp and the test of the cuetain. Through the sensor collects the ambient information and sends to the network, such as light, temperature and humidity. Besides, it can realise the control of intelligent home control by PCS. Terminal controller of intelligent home which is based on ZiBee technology has into the intelligent home system, it provides people with convenient, safe and intelligent household experience.

  10. Test Review: Wechsler Abbreviated Scale of Intelligence, Second Edition

    Science.gov (United States)

    Irby, Sarah M.; Floyd, Randy G.

    2013-01-01

    The Wechsler Abbreviated Scale of Intelligence, Second Edition (WASI-II; Wechsler, 2011) is a brief intelligence test designed for individuals aged 6 through 90 years. It is a revision of the Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler, 1999). During revision, there were three goals: enhancing the link between the Wechsler…

  11. Social Representations of Intelligence

    Directory of Open Access Journals (Sweden)

    Elena Zubieta

    2016-02-01

    Full Text Available The article stresses the relationship between Explicit and Implicit theories of Intelligence. Following the line of common sense epistemology and the theory of Social Representations, a study was carried out in order to analyze naive’s explanations about Intelligence Definitions. Based on Mugny & Carugati (1989 research, a self-administered questionnaire was designed and filled in by 286 subjects. Results are congruent with the main hyphotesis postulated: A general overlap between explicit and implicit theories showed up. According to the results Intelligence appears as both, a social attribute related to social adaptation and as a concept defined in relation with contextual variables similar to expert’s current discourses. Nevertheless, conceptions based on “gifted ideology” still are present stressing the main axes of Intelligence debate: biological and sociological determinism. In the same sense, unfamiliarity and social identity are reaffirmed as organizing principles of social representation. The distance with the object -measured as the belief in intelligence differences as a solve/non solve problem- and the level of implication with the topic -teachers/no teachers- appear as discriminating elements at the moment of supporting specific dimensions. 

  12. A Alternative Analog Circuit Design Methodology Employing Integrated Artificial Intelligence Techniques

    Science.gov (United States)

    Tuttle, Jeffery L.

    In consideration of the computer processing power now available to the designer, an alternative analog circuit design methodology is proposed. Computer memory capacities no longer require the reduction of the transistor operational characteristics to an imprecise formulation. Therefore, it is proposed that transistor modelling be abandoned in favor of fully characterized transistor data libraries. Secondly, availability of the transistor libraries would facilitate an automated selection of the most appropriate device(s) for the circuit being designed. More specifically, a preprocessor computer program to a more sophisticated circuit simulator (e.g. SPICE) is developed to assist the designer in developing the basic circuit topology and the selection of the most appropriate transistor. Once this is achieved, the circuit topology and selected transistor data library would be downloaded to the simulator for full circuit operational characterization and subsequent design modifications. It is recognized that the design process is enhanced by the use of heuristics as applied to iterative design results. Accordingly, an artificial intelligence (AI) interface is developed to assist the designer in applying the preprocessor results. To demonstrate the retrofitability of the AI interface to established programs, the interface is specifically designed to be as non-intrusive to the host code as possible. Implementation of the proposed methodology offers the potential to speed the design process, since the preprocessor both minimizes the required number of simulator runs and provides a higher acceptance potential of the initial and subsequent simulator runs. Secondly, part count reductions may be realizable since the circuit topologies are not as strongly driven by transistor limitations. Thirdly, the predicted results should more closely match actual circuit operations since the inadequacies of the transistor models have been virtually eliminated. Finally, the AI interface

  13. Barrier Infrared Detector (BIRD)

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent breakthrough in MWIR detector design, has resulted in a high operating temperature (HOT) barrier infrared detector (BIRD) that is capable of spectral...

  14. New detectors and perspectives in industrial radiology

    International Nuclear Information System (INIS)

    Ewert, U.; Zscherpel, U.

    2001-01-01

    Since more than 100 years industrial radiology was developed on the basis of X-ray film. Special film systems were developed for NDT applications, which have better image quality than medical film systems. High spatial resolution is obtained due to the combination of these films with lead screens instead of fluorescence screens. Medical film systems were developed under other requirements. It was always necessary to consider the compromise between minimum patient dose and suitable image quality. New digital detectors were developed for medical applications, which have the potential to substitute the X-ray film and revolutionize the radiological technique. These detectors allow new computer based applications, which permit new intelligent computer based methods and also may substitute film applications. These technological and algorithmic developments are highly beneficial for new NDT-procedures too

  15. The design and construction of a double-sided Silicon Microvertex Detector for the L3 experiment at CERN

    International Nuclear Information System (INIS)

    Adam, A.; Ambrosi, G.; Babucci, E.; Bertucci, B.; Biasini, M.; Bilei, G.M.; Caria, M.; Checcucci, B.; Easo, S.; Fiandrini, E.; Krastev, V.R.; Massetti, R.; Pauluzzi, M.; Santocchia, A.; Servoli, L.; Baschirotto, A.; Bosetti, M.; Pensotti, S.; Rancoita, P.G.; Rattaggi, M.; Terzi, G.; Battiston, R.; Bay, A.; Burger, W.J.; Extermann, P.; Perrin, E.; Susinno, G.F.; Bencze, G.Y.L.; Kornis, J.; Toth, J.; Bobbink, G.J.; Duinker, P.; Brooks, M.L.; Coan, T.E.; Kapustinsky, J.S.; Kinnison, W.W.; Lee, D.M.; Mills, G.B.; Thompson, T.C.; Busenitz, J.; DiBitonto, D.; Camps, C.; Commichau, V.; Hangartner, K.; Schmitz, P.; Chen, A.; Hou, S.; Lin, W.T.; Gougas, A.; Kim, D.; Paul, T.; Hauviller, C.; Herve, A.; Josa, I.; Landi, G.; Lebeau, M.; Lecomte, P.; Viertel, G.M.; Waldmeier, S.; Leiste, R.; Lejeune, E.; Weill, R.; Lohmann, W.; Nowak, H.; Sachwitz, M.; Schoeniech, B.; Tonisch, F.; Trowitzsch, G.; Vogt, H.; Passaleva, G.; Yeh, S.C.

    1993-01-01

    A Silicon Microvertex Detector (SMD) has been commissioned for the L3 experiment at the Large Electron-Positron colliding-beam accelerator (LEP) at the European Center for Nuclear Physics, (CERN). The SMD is a 72,672 channel, two layer barrel tracker that is comprised of 96 ac-coupled, double-sided silicon detectors. Details of the design and construction are presented

  16. The design of the optical components and gas control systems of the CERN Omega Ring Imaging Cerenkov Detector

    International Nuclear Information System (INIS)

    Apsimon, R.J.; Cowell, J.; Flower, P.S.

    1985-06-01

    A large Ring Imaging Cerenkov Detector (RICH) has been commissioned for use at the CERN Omega Spectrometer. The general design of the device is discussed, and the dependence of the attainable spatial resolution and range of particle identification on its optical parameters is illustrated. The construction and performance of the major optical components and gas systems of the detector are also described. (author)

  17. The Synthesis of Intelligent Real-Time Systems

    Science.gov (United States)

    1990-11-09

    Synthesis of Intelligent Real - Time Systems . The purpose of the effort was to develop and extend theories and techniques that facilitate the design and...implementation of intelligent real - time systems . In particular, Teleos has extended situated-automata theory to apply to situations in which the system has

  18. Artificial intelligence for Mariáš

    OpenAIRE

    Kaštánková, Petra

    2016-01-01

    This thesis focuses on the implementation of a card game, Mariáš, and an artificial intelligence for this game. The game is designed for three players and it can be played with either other human players, or with a computer adversary. The game is designed as a client-server application, whereby the player connects to the game using a web page. The basis of the artificial intelligence is the Minimax algorithm. To speed it up we use the Alpha-Beta pruning, hash tables for storing equivalent sta...

  19. GANIL beam profile detectors

    International Nuclear Information System (INIS)

    Tribouillard, C.

    1997-01-01

    In the design phase of GANIL which started in 1977, one of the priorities of the project management was equipping the beamlines with a fast and efficient system for visualizing the beam position, thus making possible adjustment of the beam transport lines optics and facilitating beam control. The implantation of some thirty detectors was foreseen in the initial design. The assembly of installed detectors (around 190) proves the advantages of these detectors for displaying all the beams extracted from GANIL: transfer and transport lines, beam extracted from SISSI, very high intensity beam, secondary ion beams from the production target of the LISE and SPEG spectrometers, different SPIRAL project lines. All of these detectors are based on standard characteristics: - standard flange diameter (DN 160) with a standard booster for all the sensors; - identical analog electronics for all the detectors, with networking; - unique display system. The new micro-channel plate non-interceptive detectors (beam profile and ion packet lengths) make possible in-line control of the beam quality and accelerator stability. (author)

  20. A low-Z PET detector

    International Nuclear Information System (INIS)

    Burnham, C.A.; Kaufman, D.E.; Chesler, D.A.; Stearns, C.W.; Correia, J.A.; Brownell, G.L.

    1990-01-01

    In order to examine the potential of low-Z detector materials for PET, a small field imaging system using plastic detectors has been designed. In this system the site of a photon interaction in the detector is located using light produced by the first Compton electron. This is in contrast to high-Z detectors where multiple interactions occur. The calculated performance of the detector and supporting measurements are presented