WorldWideScience

Sample records for intelligent armc algorithm

  1. Algorithms in ambient intelligence

    NARCIS (Netherlands)

    Aarts, E.H.L.; Korst, J.H.M.; Verhaegh, W.F.J.; Weber, W.; Rabaey, J.M.; Aarts, E.

    2005-01-01

    We briefly review the concept of ambient intelligence and discuss its relation with the domain of intelligent algorithms. By means of four examples of ambient intelligent systems, we argue that new computing methods and quantification measures are needed to bridge the gap between the class of

  2. Algorithms in ambient intelligence

    NARCIS (Netherlands)

    Aarts, E.H.L.; Korst, J.H.M.; Verhaegh, W.F.J.; Verhaegh, W.F.J.; Aarts, E.H.L.; Korst, J.H.M.

    2004-01-01

    In this chapter, we discuss the new paradigm for user-centered computing known as ambient intelligence and its relation with methods and techniques from the field of computational intelligence, including problem solving, machine learning, and expert systems.

  3. Learning Intelligent Genetic Algorithms Using Japanese Nonograms

    Science.gov (United States)

    Tsai, Jinn-Tsong; Chou, Ping-Yi; Fang, Jia-Cen

    2012-01-01

    An intelligent genetic algorithm (IGA) is proposed to solve Japanese nonograms and is used as a method in a university course to learn evolutionary algorithms. The IGA combines the global exploration capabilities of a canonical genetic algorithm (CGA) with effective condensed encoding, improved fitness function, and modified crossover and…

  4. Autonomous intelligent vehicles theory, algorithms, and implementation

    CERN Document Server

    Cheng, Hong

    2011-01-01

    Here is the latest on intelligent vehicles, covering object and obstacle detection and recognition and vehicle motion control. Includes a navigation approach using global views; introduces algorithms for lateral and longitudinal motion control and more.

  5. Combined Intelligent Control (CIC an Intelligent Decision Making Algorithm

    Directory of Open Access Journals (Sweden)

    Moteaal Asadi Shirzi

    2007-03-01

    Full Text Available The focus of this research is to introduce the concept of combined intelligent control (CIC as an effective architecture for decision-making and control of intelligent agents and multi-robot sets. Basically, the CIC is a combination of various architectures and methods from fields such as artificial intelligence, Distributed Artificial Intelligence (DAI, control and biological computing. Although any intelligent architecture may be very effective for some specific applications, it could be less for others. Therefore, CIC combines and arranges them in a way that the strengths of any approach cover the weaknesses of others. In this paper first, we introduce some intelligent architectures from a new aspect. Afterward, we offer the CIC by combining them. CIC has been executed in a multi-agent set. In this set, robots must cooperate to perform some various tasks in a complex and nondeterministic environment with a low sensory feedback and relationship. In order to investigate, improve, and correct the combined intelligent control method, simulation software has been designed which will be presented and considered. To show the ability of the CIC algorithm as a distributed architecture, a central algorithm is designed and compared with the CIC.

  6. Algorithms for Efficient Intelligence Collection

    Science.gov (United States)

    2013-09-01

    2006. Cortical substrates for exploratory decisions in humans. Nature 441(7095) 876–879. Deitchman, S. J. 1962. A lanchester model of guerrilla...Monterey, CA. Pearl, J. 1986. Fusion, propagation and structuring in belief networks. Artificial Intelligence 29 241–288. Schaffer, M. B. 1968. Lanchester

  7. Algorithms and architectures of artificial intelligence

    CERN Document Server

    Tyugu, E

    2007-01-01

    This book gives an overview of methods developed in artificial intelligence for search, learning, problem solving and decision-making. It gives an overview of algorithms and architectures of artificial intelligence that have reached the degree of maturity when a method can be presented as an algorithm, or when a well-defined architecture is known, e.g. in neural nets and intelligent agents. It can be used as a handbook for a wide audience of application developers who are interested in using artificial intelligence methods in their software products. Parts of the text are rather independent, so that one can look into the index and go directly to a description of a method presented in the form of an abstract algorithm or an architectural solution. The book can be used also as a textbook for a course in applied artificial intelligence. Exercises on the subject are added at the end of each chapter. Neither programming skills nor specific knowledge in computer science are expected from the reader. However, some p...

  8. Configurable intelligent optimization algorithm design and practice in manufacturing

    CERN Document Server

    Tao, Fei; Laili, Yuanjun

    2014-01-01

    Presenting the concept and design and implementation of configurable intelligent optimization algorithms in manufacturing systems, this book provides a new configuration method to optimize manufacturing processes. It provides a comprehensive elaboration of basic intelligent optimization algorithms, and demonstrates how their improvement, hybridization and parallelization can be applied to manufacturing. Furthermore, various applications of these intelligent optimization algorithms are exemplified in detail, chapter by chapter. The intelligent optimization algorithm is not just a single algorit

  9. An Innovative Thinking-Based Intelligent Information Fusion Algorithm

    Directory of Open Access Journals (Sweden)

    Huimin Lu

    2013-01-01

    Full Text Available This study proposes an intelligent algorithm that can realize information fusion in reference to the relative research achievements in brain cognitive theory and innovative computation. This algorithm treats knowledge as core and information fusion as a knowledge-based innovative thinking process. Furthermore, the five key parts of this algorithm including information sense and perception, memory storage, divergent thinking, convergent thinking, and evaluation system are simulated and modeled. This algorithm fully develops innovative thinking skills of knowledge in information fusion and is a try to converse the abstract conception of brain cognitive science to specific and operable research routes and strategies. Furthermore, the influences of each parameter of this algorithm on algorithm performance are analyzed and compared with those of classical intelligent algorithms trough test. Test results suggest that the algorithm proposed in this study can obtain the optimum problem solution by less target evaluation times, improve optimization effectiveness, and achieve the effective fusion of information.

  10. A Survey on Evolutionary Algorithm Based Hybrid Intelligence in Bioinformatics

    Directory of Open Access Journals (Sweden)

    Shan Li

    2014-01-01

    Full Text Available With the rapid advance in genomics, proteomics, metabolomics, and other types of omics technologies during the past decades, a tremendous amount of data related to molecular biology has been produced. It is becoming a big challenge for the bioinformatists to analyze and interpret these data with conventional intelligent techniques, for example, support vector machines. Recently, the hybrid intelligent methods, which integrate several standard intelligent approaches, are becoming more and more popular due to their robustness and efficiency. Specifically, the hybrid intelligent approaches based on evolutionary algorithms (EAs are widely used in various fields due to the efficiency and robustness of EAs. In this review, we give an introduction about the applications of hybrid intelligent methods, in particular those based on evolutionary algorithm, in bioinformatics. In particular, we focus on their applications to three common problems that arise in bioinformatics, that is, feature selection, parameter estimation, and reconstruction of biological networks.

  11. Using Genetic Algorithms in Secured Business Intelligence Mobile Applications

    Directory of Open Access Journals (Sweden)

    Silvia TRIF

    2011-01-01

    Full Text Available The paper aims to assess the use of genetic algorithms for training neural networks used in secured Business Intelligence Mobile Applications. A comparison is made between classic back-propagation method and a genetic algorithm based training. The design of these algorithms is presented. A comparative study is realized for determining the better way of training neural networks, from the point of view of time and memory usage. The results show that genetic algorithms based training offer better performance and memory usage than back-propagation and they are fit to be implemented on mobile devices.

  12. Automatic identification of otological drilling faults: an intelligent recognition algorithm.

    Science.gov (United States)

    Cao, Tianyang; Li, Xisheng; Gao, Zhiqiang; Feng, Guodong; Shen, Peng

    2010-06-01

    This article presents an intelligent recognition algorithm that can recognize milling states of the otological drill by fusing multi-sensor information. An otological drill was modified by the addition of sensors. The algorithm was designed according to features of the milling process and is composed of a characteristic curve, an adaptive filter and a rule base. The characteristic curve can weaken the impact of the unstable normal milling process and reserve the features of drilling faults. The adaptive filter is capable of suppressing interference in the characteristic curve by fusing multi-sensor information. The rule base can identify drilling faults through the filtering result data. The experiments were repeated on fresh porcine scapulas, including normal milling and two drilling faults. The algorithm has high rates of identification. This study shows that the intelligent recognition algorithm can identify drilling faults under interference conditions. (c) 2010 John Wiley & Sons, Ltd.

  13. [Algorithms, machine intelligence, big data : general considerations].

    Science.gov (United States)

    Radermacher, F J

    2015-08-01

    We are experiencing astonishing developments in the areas of big data and artificial intelligence. They follow a pattern that we have now been observing for decades: according to Moore's Law,the performance and efficiency in the area of elementary arithmetic operations increases a thousand-fold every 20 years. Although we have not achieved the status where in the singular sense machines have become as "intelligent" as people, machines are becoming increasingly better. The Internet of Things has again helped to massively increase the efficiency of machines. Big data and suitable analytics do the same. If we let these processes simply continue, our civilization may be endangerd in many instances. If the "containment" of these processes succeeds in the context of a reasonable political global governance, a worldwide eco-social market economy, andan economy of green and inclusive markets, many desirable developments that are advantageous for our future may result. Then, at some point in time, the constant need for more and faster innovation may even stop. However, this is anything but certain. We are facing huge challenges.

  14. An intelligent allocation algorithm for parallel processing

    Science.gov (United States)

    Carroll, Chester C.; Homaifar, Abdollah; Ananthram, Kishan G.

    1988-01-01

    The problem of allocating nodes of a program graph to processors in a parallel processing architecture is considered. The algorithm is based on critical path analysis, some allocation heuristics, and the execution granularity of nodes in a program graph. These factors, and the structure of interprocessor communication network, influence the allocation. To achieve realistic estimations of the executive durations of allocations, the algorithm considers the fact that nodes in a program graph have to communicate through varying numbers of tokens. Coarse and fine granularities have been implemented, with interprocessor token-communication duration, varying from zero up to values comparable to the execution durations of individual nodes. The effect on allocation of communication network structures is demonstrated by performing allocations for crossbar (non-blocking) and star (blocking) networks. The algorithm assumes the availability of as many processors as it needs for the optimal allocation of any program graph. Hence, the focus of allocation has been on varying token-communication durations rather than varying the number of processors. The algorithm always utilizes as many processors as necessary for the optimal allocation of any program graph, depending upon granularity and characteristics of the interprocessor communication network.

  15. An intelligent identification algorithm for the monoclonal picking instrument

    Science.gov (United States)

    Yan, Hua; Zhang, Rongfu; Yuan, Xujun; Wang, Qun

    2017-11-01

    The traditional colony selection is mainly operated by manual mode, which takes on low efficiency and strong subjectivity. Therefore, it is important to develop an automatic monoclonal-picking instrument. The critical stage of the automatic monoclonal-picking and intelligent optimal selection is intelligent identification algorithm. An auto-screening algorithm based on Support Vector Machine (SVM) is proposed in this paper, which uses the supervised learning method, which combined with the colony morphological characteristics to classify the colony accurately. Furthermore, through the basic morphological features of the colony, system can figure out a series of morphological parameters step by step. Through the establishment of maximal margin classifier, and based on the analysis of the growth trend of the colony, the selection of the monoclonal colony was carried out. The experimental results showed that the auto-screening algorithm could screen out the regular colony from the other, which meets the requirement of various parameters.

  16. Integrated artificial intelligence algorithm for skin detection

    Directory of Open Access Journals (Sweden)

    Bush Idoko John

    2018-01-01

    Full Text Available The detection of skin colour has been a useful and renowned technique due to its wide range of application in both analyses based on diagnostic and human computer interactions. Various problems could be solved by simply providing an appropriate method for pixel-like skin parts. Presented in this study is a colour segmentation algorithm that works directly in RGB colour space without converting the colour space. Genfis function as used in this study formed the Sugeno fuzzy network and utilizing Fuzzy C-Mean (FCM clustering rule, clustered the data and for each cluster/class a rule is generated. Finally, corresponding output from data mapping of pseudo-polynomial is obtained from input dataset to the adaptive neuro fuzzy inference system (ANFIS.

  17. ALGORITHMS FOR TRAFFIC MANAGEMENT IN THE INTELLIGENT TRANSPORT SYSTEMS

    Directory of Open Access Journals (Sweden)

    Andrey Borisovich Nikolaev

    2017-09-01

    Full Text Available Traffic jams interfere with the drivers and cost billions of dollars per year and lead to a substantial increase in fuel consumption. In order to avoid such problems the paper describes the algorithms for traffic management in intelligent transportation system, which collects traffic information in real time and is able to detect and manage congestion on the basis of this information. The results show that the proposed algorithms reduce the average travel time, emissions and fuel consumption. In particular, travel time has decreased by about 23%, the average fuel consumption of 9%, and the average emission of 10%.

  18. A Review of Intelligent Driving Style Analysis Systems and Related Artificial Intelligence Algorithms

    Directory of Open Access Journals (Sweden)

    Gys Albertus Marthinus Meiring

    2015-12-01

    Full Text Available In this paper the various driving style analysis solutions are investigated. An in-depth investigation is performed to identify the relevant machine learning and artificial intelligence algorithms utilised in current driver behaviour and driving style analysis systems. This review therefore serves as a trove of information, and will inform the specialist and the student regarding the current state of the art in driver style analysis systems, the application of these systems and the underlying artificial intelligence algorithms applied to these applications. The aim of the investigation is to evaluate the possibilities for unique driver identification utilizing the approaches identified in other driver behaviour studies. It was found that Fuzzy Logic inference systems, Hidden Markov Models and Support Vector Machines consist of promising capabilities to address unique driver identification algorithms if model complexity can be reduced.

  19. A Review of Intelligent Driving Style Analysis Systems and Related Artificial Intelligence Algorithms.

    Science.gov (United States)

    Meiring, Gys Albertus Marthinus; Myburgh, Hermanus Carel

    2015-12-04

    In this paper the various driving style analysis solutions are investigated. An in-depth investigation is performed to identify the relevant machine learning and artificial intelligence algorithms utilised in current driver behaviour and driving style analysis systems. This review therefore serves as a trove of information, and will inform the specialist and the student regarding the current state of the art in driver style analysis systems, the application of these systems and the underlying artificial intelligence algorithms applied to these applications. The aim of the investigation is to evaluate the possibilities for unique driver identification utilizing the approaches identified in other driver behaviour studies. It was found that Fuzzy Logic inference systems, Hidden Markov Models and Support Vector Machines consist of promising capabilities to address unique driver identification algorithms if model complexity can be reduced.

  20. An Intelligent Model for Pairs Trading Using Genetic Algorithms.

    Science.gov (United States)

    Huang, Chien-Feng; Hsu, Chi-Jen; Chen, Chi-Chung; Chang, Bao Rong; Li, Chen-An

    2015-01-01

    Pairs trading is an important and challenging research area in computational finance, in which pairs of stocks are bought and sold in pair combinations for arbitrage opportunities. Traditional methods that solve this set of problems mostly rely on statistical methods such as regression. In contrast to the statistical approaches, recent advances in computational intelligence (CI) are leading to promising opportunities for solving problems in the financial applications more effectively. In this paper, we present a novel methodology for pairs trading using genetic algorithms (GA). Our results showed that the GA-based models are able to significantly outperform the benchmark and our proposed method is capable of generating robust models to tackle the dynamic characteristics in the financial application studied. Based upon the promising results obtained, we expect this GA-based method to advance the research in computational intelligence for finance and provide an effective solution to pairs trading for investment in practice.

  1. The development of intensity modulated radiotherapy (IMRT) for prostate cancer at Austin and Repatriation Medical Centre (ARMC)

    International Nuclear Information System (INIS)

    Joon, D.L.; Mantle, C.; Viotto, A.; Rolfo, A.; Rykers, K.; Fernando, W.; Grace, M.; Liu, G.; Quong, G.; Feigen, M.; Wada, M.; Joon, M.L.; Fogarty, G.; Chao, M.W.; Khoo, V.

    2003-01-01

    To describe the protocol development of the IMRT program for prostate cancer at the ARMC. A series of protocols were defined and developed to facilitate the delivery of intensity modulated radiotherapy for prostate cancer. These included the following: 1. Physical Simulation including bowel and bladder preparation and immobilization 2. Image Acquisition including CT and MRI simulation scans with image co-registration 3. Contouring Definitions including target and organ at risk volumes as well as IMRT optimization and evaluation volumes 4. Radiotherapy Planning including constraint definition, inverse planning and CMS Focus specific parameters 5. DICOM RT interface including data transfer between CMS Focus and the Elekta Linac Desktop record and verify system 6. Verification including action limits and pre-treatment online EPID verification 7. Radiotherapy Delivery being that of step and shoot 8. Quality Assurance including physics testing and documentation The protocol development and testing has lead to the precise clinical delivery of IMRT for prostate cancer at ARMC that exceeds most of the parameters that were previously measured with our conventional and 3D conformal radiotherapy. Further development is now underway to allow it to be implemented as the routine treatment of prostate cancer at ARMC. The clinical implementation of IMRT for prostate cancer involves a collaborative team approach including radiation oncologists, radiation therapists, and radiation physics. This is necessary to develop the appropriate protocols and quality assurance for precision radiotherapy that is required for IMRT

  2. Intelligent decision support algorithm for distribution system restoration.

    Science.gov (United States)

    Singh, Reetu; Mehfuz, Shabana; Kumar, Parmod

    2016-01-01

    Distribution system is the means of revenue for electric utility. It needs to be restored at the earliest if any feeder or complete system is tripped out due to fault or any other cause. Further, uncertainty of the loads, result in variations in the distribution network's parameters. Thus, an intelligent algorithm incorporating hybrid fuzzy-grey relation, which can take into account the uncertainties and compare the sequences is discussed to analyse and restore the distribution system. The simulation studies are carried out to show the utility of the method by ranking the restoration plans for a typical distribution system. This algorithm also meets the smart grid requirements in terms of an automated restoration plan for the partial/full blackout of network.

  3. A New Plant Intelligent Behaviour Optimisation Algorithm for Solving Vehicle Routing Problem

    OpenAIRE

    Chagwiza, Godfrey

    2018-01-01

    A new plant intelligent behaviour optimisation algorithm is developed. The algorithm is motivated by intelligent behaviour of plants and is implemented to solve benchmark vehicle routing problems of all sizes, and results were compared to those in literature. The results show that the new algorithm outperforms most of algorithms it was compared to for very large and large vehicle routing problem instances. This is attributed to the ability of the plant to use previously stored memory to respo...

  4. Improved Optical Flow Algorithm for a Intelligent Traffic Tracking System

    Directory of Open Access Journals (Sweden)

    Xia Yupeng

    2013-05-01

    Full Text Available It is known that to get the contours and segmentations of moving cars is the essential step of image processing in intelligent traffic tracking systems. As an effective way, the optical flow algorithm is widely used for this kind of applications. But in traditional gradient-based approaches, in order to make the data responding to the edges of moving objects expand to the area, which gray level is flat, it needs to keep the iteration times large enough. It takes a large amount of calculation time, and the accuracy of the result is not as good as expected. In order to improve the numerical reliability of image gradient data, Hessian matrix distinguishing, Gaussian filtering standard deviation amending, mean model amending and multi-image comparing, the four algorithms were investigated by applying them to track moving objects. From the experimental results, it is shown that both the calculation convergence speed and accuracy of our methods have greatly improved comparing with traditional algorithms, the feasibility and validity of those methods were confirmed.

  5. Intelligence algorithms for autonomous navigation in a ground vehicle

    Science.gov (United States)

    Petkovsek, Steve; Shakya, Rahul; Shin, Young Ho; Gautam, Prasanna; Norton, Adam; Ahlgren, David J.

    2012-01-01

    This paper will discuss the approach to autonomous navigation used by "Q," an unmanned ground vehicle designed by the Trinity College Robot Study Team to participate in the Intelligent Ground Vehicle Competition (IGVC). For the 2011 competition, Q's intelligence was upgraded in several different areas, resulting in a more robust decision-making process and a more reliable system. In 2010-2011, the software of Q was modified to operate in a modular parallel manner, with all subtasks (including motor control, data acquisition from sensors, image processing, and intelligence) running simultaneously in separate software processes using the National Instruments (NI) LabVIEW programming language. This eliminated processor bottlenecks and increased flexibility in the software architecture. Though overall throughput was increased, the long runtime of the image processing process (150 ms) reduced the precision of Q's realtime decisions. Q had slow reaction times to obstacles detected only by its cameras, such as white lines, and was limited to slow speeds on the course. To address this issue, the image processing software was simplified and also pipelined to increase the image processing throughput and minimize the robot's reaction times. The vision software was also modified to detect differences in the texture of the ground, so that specific surfaces (such as ramps and sand pits) could be identified. While previous iterations of Q failed to detect white lines that were not on a grassy surface, this new software allowed Q to dynamically alter its image processing state so that appropriate thresholds could be applied to detect white lines in changing conditions. In order to maintain an acceptable target heading, a path history algorithm was used to deal with local obstacle fields and GPS waypoints were added to provide a global target heading. These modifications resulted in Q placing 5th in the autonomous challenge and 4th in the navigation challenge at IGVC.

  6. Development of hybrid artificial intelligent based handover decision algorithm

    Directory of Open Access Journals (Sweden)

    A.M. Aibinu

    2017-04-01

    Full Text Available The possibility of seamless handover remains a mirage despite the plethora of existing handover algorithms. The underlying factor responsible for this has been traced to the Handover decision module in the Handover process. Hence, in this paper, the development of novel hybrid artificial intelligent handover decision algorithm has been developed. The developed model is made up of hybrid of Artificial Neural Network (ANN based prediction model and Fuzzy Logic. On accessing the network, the Received Signal Strength (RSS was acquired over a period of time to form a time series data. The data was then fed to the newly proposed k-step ahead ANN-based RSS prediction system for estimation of prediction model coefficients. The synaptic weights and adaptive coefficients of the trained ANN was then used to compute the k-step ahead ANN based RSS prediction model coefficients. The predicted RSS value was later codified as Fuzzy sets and in conjunction with other measured network parameters were fed into the Fuzzy logic controller in order to finalize handover decision process. The performance of the newly developed k-step ahead ANN based RSS prediction algorithm was evaluated using simulated and real data acquired from available mobile communication networks. Results obtained in both cases shows that the proposed algorithm is capable of predicting ahead the RSS value to about ±0.0002 dB. Also, the cascaded effect of the complete handover decision module was also evaluated. Results obtained show that the newly proposed hybrid approach was able to reduce ping-pong effect associated with other handover techniques.

  7. A test sheet generating algorithm based on intelligent genetic algorithm and hierarchical planning

    Science.gov (United States)

    Gu, Peipei; Niu, Zhendong; Chen, Xuting; Chen, Wei

    2013-03-01

    In recent years, computer-based testing has become an effective method to evaluate students' overall learning progress so that appropriate guiding strategies can be recommended. Research has been done to develop intelligent test assembling systems which can automatically generate test sheets based on given parameters of test items. A good multisubject test sheet depends on not only the quality of the test items but also the construction of the sheet. Effective and efficient construction of test sheets according to multiple subjects and criteria is a challenging problem. In this paper, a multi-subject test sheet generation problem is formulated and a test sheet generating approach based on intelligent genetic algorithm and hierarchical planning (GAHP) is proposed to tackle this problem. The proposed approach utilizes hierarchical planning to simplify the multi-subject testing problem and adopts genetic algorithm to process the layered criteria, enabling the construction of good test sheets according to multiple test item requirements. Experiments are conducted and the results show that the proposed approach is capable of effectively generating multi-subject test sheets that meet specified requirements and achieve good performance.

  8. Energy Demand Forecasting: Combining Cointegration Analysis and Artificial Intelligence Algorithm

    Directory of Open Access Journals (Sweden)

    Junbing Huang

    2018-01-01

    Full Text Available Energy is vital for the sustainable development of China. Accurate forecasts of annual energy demand are essential to schedule energy supply and provide valuable suggestions for developing related industries. In the existing literature on energy use prediction, the artificial intelligence-based (AI-based model has received considerable attention. However, few econometric and statistical evidences exist that can prove the reliability of the current AI-based model, an area that still needs to be addressed. In this study, a new energy demand forecasting framework is presented at first. On the basis of historical annual data of electricity usage over the period of 1985–2015, the coefficients of linear and quadratic forms of the AI-based model are optimized by combining an adaptive genetic algorithm and a cointegration analysis shown as an example. Prediction results of the proposed model indicate that the annual growth rate of electricity demand in China will slow down. However, China will continue to demand about 13 trillion kilowatt hours in 2030 because of population growth, economic growth, and urbanization. In addition, the model has greater accuracy and reliability compared with other single optimization methods.

  9. Improved RMR Rock Mass Classification Using Artificial Intelligence Algorithms

    Science.gov (United States)

    Gholami, Raoof; Rasouli, Vamegh; Alimoradi, Andisheh

    2013-09-01

    Rock mass classification systems such as rock mass rating (RMR) are very reliable means to provide information about the quality of rocks surrounding a structure as well as to propose suitable support systems for unstable regions. Many correlations have been proposed to relate measured quantities such as wave velocity to rock mass classification systems to limit the associated time and cost of conducting the sampling and mechanical tests conventionally used to calculate RMR values. However, these empirical correlations have been found to be unreliable, as they usually overestimate or underestimate the RMR value. The aim of this paper is to compare the results of RMR classification obtained from the use of empirical correlations versus machine-learning methodologies based on artificial intelligence algorithms. The proposed methods were verified based on two case studies located in northern Iran. Relevance vector regression (RVR) and support vector regression (SVR), as two robust machine-learning methodologies, were used to predict the RMR for tunnel host rocks. RMR values already obtained by sampling and site investigation at one tunnel were taken into account as the output of the artificial networks during training and testing phases. The results reveal that use of empirical correlations overestimates the predicted RMR values. RVR and SVR, however, showed more reliable results, and are therefore suggested for use in RMR classification for design purposes of rock structures.

  10. Improved chemical identification from sensor arrays using intelligent algorithms

    Science.gov (United States)

    Roppel, Thaddeus A.; Wilson, Denise M.

    2001-02-01

    Intelligent signal processing algorithms are shown to improve identification rates significantly in chemical sensor arrays. This paper focuses on the use of independently derived sensor status information to modify the processing of sensor array data by using a fast, easily-implemented "best-match" approach to filling in missing sensor data. Most fault conditions of interest (e.g., stuck high, stuck low, sudden jumps, excess noise, etc.) can be detected relatively simply by adjunct data processing, or by on-board circuitry. The objective then is to devise, implement, and test methods for using this information to improve the identification rates in the presence of faulted sensors. In one typical example studied, utilizing separately derived, a-priori knowledge about the health of the sensors in the array improved the chemical identification rate by an artificial neural network from below 10 percent correct to over 99 percent correct. While this study focuses experimentally on chemical sensor arrays, the results are readily extensible to other types of sensor platforms.

  11. Fuzzy gain scheduling of velocity PI controller with intelligent learning algorithm for reactor control

    International Nuclear Information System (INIS)

    Dong Yun Kim; Poong Hyun Seong; .

    1997-01-01

    In this research, we propose a fuzzy gain scheduler (FGS) with an intelligent learning algorithm for a reactor control. In the proposed algorithm, the gradient descent method is used in order to generate the rule bases of a fuzzy algorithm by learning. These rule bases are obtained by minimizing an objective function, which is called a performance cost function. The objective of the FGS with an intelligent learning algorithm is to generate gains, which minimize the error of system. The proposed algorithm can reduce the time and effort required for obtaining the fuzzy rules through the intelligent learning function. It is applied to reactor control of nuclear power plant (NPP), and the results are compared with those of a conventional PI controller with fixed gains. As a result, it is shown that the proposed algorithm is superior to the conventional PI controller. (author)

  12. A hybrid intelligent algorithm for portfolio selection problem with fuzzy returns

    Science.gov (United States)

    Li, Xiang; Zhang, Yang; Wong, Hau-San; Qin, Zhongfeng

    2009-11-01

    Portfolio selection theory with fuzzy returns has been well developed and widely applied. Within the framework of credibility theory, several fuzzy portfolio selection models have been proposed such as mean-variance model, entropy optimization model, chance constrained programming model and so on. In order to solve these nonlinear optimization models, a hybrid intelligent algorithm is designed by integrating simulated annealing algorithm, neural network and fuzzy simulation techniques, where the neural network is used to approximate the expected value and variance for fuzzy returns and the fuzzy simulation is used to generate the training data for neural network. Since these models are used to be solved by genetic algorithm, some comparisons between the hybrid intelligent algorithm and genetic algorithm are given in terms of numerical examples, which imply that the hybrid intelligent algorithm is robust and more effective. In particular, it reduces the running time significantly for large size problems.

  13. Enhanced intelligent water drops algorithm for multi-depot vehicle routing problem.

    Science.gov (United States)

    Ezugwu, Absalom E; Akutsah, Francis; Olusanya, Micheal O; Adewumi, Aderemi O

    2018-01-01

    The intelligent water drop algorithm is a swarm-based metaheuristic algorithm, inspired by the characteristics of water drops in the river and the environmental changes resulting from the action of the flowing river. Since its appearance as an alternative stochastic optimization method, the algorithm has found applications in solving a wide range of combinatorial and functional optimization problems. This paper presents an improved intelligent water drop algorithm for solving multi-depot vehicle routing problems. A simulated annealing algorithm was introduced into the proposed algorithm as a local search metaheuristic to prevent the intelligent water drop algorithm from getting trapped into local minima and also improve its solution quality. In addition, some of the potential problematic issues associated with using simulated annealing that include high computational runtime and exponential calculation of the probability of acceptance criteria, are investigated. The exponential calculation of the probability of acceptance criteria for the simulated annealing based techniques is computationally expensive. Therefore, in order to maximize the performance of the intelligent water drop algorithm using simulated annealing, a better way of calculating the probability of acceptance criteria is considered. The performance of the proposed hybrid algorithm is evaluated by using 33 standard test problems, with the results obtained compared with the solutions offered by four well-known techniques from the subject literature. Experimental results and statistical tests show that the new method possesses outstanding performance in terms of solution quality and runtime consumed. In addition, the proposed algorithm is suitable for solving large-scale problems.

  14. An empirical study on collective intelligence algorithms for video games problem-solving

    OpenAIRE

    González-Pardo, Antonio; Palero, Fernando; Camacho, David

    2015-01-01

    Computational intelligence (CI), such as evolutionary computation or swarm intelligence methods, is a set of bio-inspired algorithms that have been widely used to solve problems in areas like planning, scheduling or constraint satisfaction problems. Constrained satisfaction problems (CSP) have taken an important attention from the research community due to their applicability to real problems. Any CSP problem is usually modelled as a constrained graph where the edges represent a set of restri...

  15. International Conference on Artificial Intelligence and Evolutionary Algorithms in Engineering Systems

    CERN Document Server

    Dash, Subhransu; Panigrahi, Bijaya

    2015-01-01

      The book is a collection of high-quality peer-reviewed research papers presented in Proceedings of International Conference on Artificial Intelligence and Evolutionary Algorithms in Engineering Systems (ICAEES 2014) held at Noorul Islam Centre for Higher Education, Kumaracoil, India. These research papers provide the latest developments in the broad area of use of artificial intelligence and evolutionary algorithms in engineering systems. The book discusses wide variety of industrial, engineering and scientific applications of the emerging techniques. It presents invited papers from the inventors/originators of new applications and advanced technologies.

  16. Energy Demand Forecasting: Combining Cointegration Analysis and Artificial Intelligence Algorithm

    OpenAIRE

    Huang, Junbing; Tang, Yuee; Chen, Shuxing

    2018-01-01

    Energy is vital for the sustainable development of China. Accurate forecasts of annual energy demand are essential to schedule energy supply and provide valuable suggestions for developing related industries. In the existing literature on energy use prediction, the artificial intelligence-based (AI-based) model has received considerable attention. However, few econometric and statistical evidences exist that can prove the reliability of the current AI-based model, an area that still needs to ...

  17. Swarm intelligence algorithms for integrated optimization of piezoelectric actuator and sensor placement and feedback gains

    International Nuclear Information System (INIS)

    Dutta, Rajdeep; Ganguli, Ranjan; Mani, V

    2011-01-01

    Swarm intelligence algorithms are applied for optimal control of flexible smart structures bonded with piezoelectric actuators and sensors. The optimal locations of actuators/sensors and feedback gain are obtained by maximizing the energy dissipated by the feedback control system. We provide a mathematical proof that this system is uncontrollable if the actuators and sensors are placed at the nodal points of the mode shapes. The optimal locations of actuators/sensors and feedback gain represent a constrained non-linear optimization problem. This problem is converted to an unconstrained optimization problem by using penalty functions. Two swarm intelligence algorithms, namely, Artificial bee colony (ABC) and glowworm swarm optimization (GSO) algorithms, are considered to obtain the optimal solution. In earlier published research, a cantilever beam with one and two collocated actuator(s)/sensor(s) was considered and the numerical results were obtained by using genetic algorithm and gradient based optimization methods. We consider the same problem and present the results obtained by using the swarm intelligence algorithms ABC and GSO. An extension of this cantilever beam problem with five collocated actuators/sensors is considered and the numerical results obtained by using the ABC and GSO algorithms are presented. The effect of increasing the number of design variables (locations of actuators and sensors and gain) on the optimization process is investigated. It is shown that the ABC and GSO algorithms are robust and are good choices for the optimization of smart structures

  18. Fuzzy gain scheduling of velocity PI controller with intelligent learning algorithm for reactor control

    International Nuclear Information System (INIS)

    Kim, Dong Yun

    1997-02-01

    In this research, we propose a fuzzy gain scheduler (FGS) with an intelligent learning algorithm for a reactor control. In the proposed algorithm, the gradient descent method is used in order to generate the rule bases of a fuzzy algorithm by learning. These rule bases are obtained by minimizing an objective function, which is called a performance cost function. The objective of the FGS with an intelligent learning algorithm is to generate adequate gains, which minimize the error of system. The proposed algorithm can reduce the time and efforts required for obtaining the fuzzy rules through the intelligent learning function. The evolutionary programming algorithm is modified and adopted as the method in order to find the optimal gains which are used as the initial gains of FGS with learning function. It is applied to reactor control of nuclear power plant (NPP), and the results are compared with those of a conventional PI controller with fixed gains. As a result, it is shown that the proposed algorithm is superior to the conventional PI controller

  19. An Intelligent Broadcasting Algorithm for Early Warning Message Dissemination in VANETs

    Directory of Open Access Journals (Sweden)

    Ihn-Han Bae

    2015-01-01

    Full Text Available Vehicular ad hoc network (VANET has gained much attention recently to improve road safety, reduce traffic congestion, and enable efficient traffic management because of its many important applications in transportation. In this paper, an early warning intelligence broadcasting algorithm is proposed, EW-ICAST, to disseminate a safety message for VANETs. The proposed EW-ICAST uses not only the early warning system on the basis of time to collision (TTC but also the intelligent broadcasting algorithm on the basis of fuzzy logic. Thus, the EW-ICAST resolves effectively broadcast storm problem and meets time-critical requirement. The performance of EW-ICAST is evaluated through simulation and compared with that of other alert message dissemination algorithms. From the simulation results, we know that EW-ICAST is superior to Simple, P-persistence, and EDB algorithms.

  20. Research on intelligent algorithm of electro - hydraulic servo control system

    Science.gov (United States)

    Wang, Yannian; Zhao, Yuhui; Liu, Chengtao

    2017-09-01

    In order to adapt the nonlinear characteristics of the electro-hydraulic servo control system and the influence of complex interference in the industrial field, using a fuzzy PID switching learning algorithm is proposed and a fuzzy PID switching learning controller is designed and applied in the electro-hydraulic servo controller. The designed controller not only combines the advantages of the fuzzy control and PID control, but also introduces the learning algorithm into the switching function, which makes the learning of the three parameters in the switching function can avoid the instability of the system during the switching between the fuzzy control and PID control algorithms. It also makes the switch between these two control algorithm more smoother than that of the conventional fuzzy PID.

  1. Gas demand forecasting by a new artificial intelligent algorithm

    Science.gov (United States)

    Khatibi. B, Vahid; Khatibi, Elham

    2012-01-01

    Energy demand forecasting is a key issue for consumers and generators in all energy markets in the world. This paper presents a new forecasting algorithm for daily gas demand prediction. This algorithm combines a wavelet transform and forecasting models such as multi-layer perceptron (MLP), linear regression or GARCH. The proposed method is applied to real data from the UK gas markets to evaluate their performance. The results show that the forecasting accuracy is improved significantly by using the proposed method.

  2. Algorithmic requirements for swarm intelligence in differently coupled collective systems

    International Nuclear Information System (INIS)

    Stradner, Jürgen; Thenius, Ronald; Zahadat, Payam; Hamann, Heiko; Crailsheim, Karl; Schmickl, Thomas

    2013-01-01

    Swarm systems are based on intermediate connectivity between individuals and dynamic neighborhoods. In natural swarms self-organizing principles bring their agents to that favorable level of connectivity. They serve as interesting sources of inspiration for control algorithms in swarm robotics on the one hand, and in modular robotics on the other hand. In this paper we demonstrate and compare a set of bio-inspired algorithms that are used to control the collective behavior of swarms and modular systems: BEECLUST, AHHS (hormone controllers), FGRN (fractal genetic regulatory networks), and VE (virtual embryogenesis). We demonstrate how such bio-inspired control paradigms bring their host systems to a level of intermediate connectivity, what delivers sufficient robustness to these systems for collective decentralized control. In parallel, these algorithms allow sufficient volatility of shared information within these systems to help preventing local optima and deadlock situations, this way keeping those systems flexible and adaptive in dynamic non-deterministic environments

  3. An improved clustering algorithm based on reverse learning in intelligent transportation

    Science.gov (United States)

    Qiu, Guoqing; Kou, Qianqian; Niu, Ting

    2017-05-01

    With the development of artificial intelligence and data mining technology, big data has gradually entered people's field of vision. In the process of dealing with large data, clustering is an important processing method. By introducing the reverse learning method in the clustering process of PAM clustering algorithm, to further improve the limitations of one-time clustering in unsupervised clustering learning, and increase the diversity of clustering clusters, so as to improve the quality of clustering. The algorithm analysis and experimental results show that the algorithm is feasible.

  4. A new distributed systems scheduling algorithm: a swarm intelligence approach

    Science.gov (United States)

    Haghi Kashani, Mostafa; Sarvizadeh, Raheleh; Jameii, Mahdi

    2011-12-01

    The scheduling problem in distributed systems is known as an NP-complete problem, and methods based on heuristic or metaheuristic search have been proposed to obtain optimal and suboptimal solutions. The task scheduling is a key factor for distributed systems to gain better performance. In this paper, an efficient method based on memetic algorithm is developed to solve the problem of distributed systems scheduling. With regard to load balancing efficiently, Artificial Bee Colony (ABC) has been applied as local search in the proposed memetic algorithm. The proposed method has been compared to existing memetic-Based approach in which Learning Automata method has been used as local search. The results demonstrated that the proposed method outperform the above mentioned method in terms of communication cost.

  5. Intelligent micro blood typing system using a fuzzy algorithm

    International Nuclear Information System (INIS)

    Kang, Taeyun; Cho, Dong-Woo; Lee, Seung-Jae; Kim, Yonggoo; Lee, Gyoo-Whung

    2010-01-01

    ABO typing is the first analysis performed on blood when it is tested for transfusion purposes. The automated machines used in hospitals for this purpose are typically very large and the process is complicated. In this paper, we present a new micro blood typing system that is an improved version of our previous system (Kang et al 2004 Trans. ASME, J. Manuf. Sci. Eng. 126 766, Lee et al 2005 Sensors Mater. 17 113). This system, fabricated using microstereolithography, has a passive valve for controlling the flow of blood and antibodies. The intelligent micro blood typing system has two parts: a single-line micro blood typing device and a fuzzy expert system for grading the strength of agglutination. The passive valve in the single-line micro blood typing device makes the blood stop at the entrance of a micro mixer and lets it flow again after the blood encounters antibodies. Blood and antibodies are mixed in the micro mixer and agglutination occurs in the chamber. The fuzzy expert system then determines the degree of agglutination from images of the agglutinated blood. Blood typing experiments using this device were successful, and the fuzzy expert system produces a grading decision comparable to that produced by an expert conducting a manual analysis

  6. Implementing embedded artificial intelligence rules within algorithmic programming languages

    Science.gov (United States)

    Feyock, Stefan

    1988-01-01

    Most integrations of artificial intelligence (AI) capabilities with non-AI (usually FORTRAN-based) application programs require the latter to execute separately to run as a subprogram or, at best, as a coroutine, of the AI system. In many cases, this organization is unacceptable; instead, the requirement is for an AI facility that runs in embedded mode; i.e., is called as subprogram by the application program. The design and implementation of a Prolog-based AI capability that can be invoked in embedded mode are described. The significance of this system is twofold: Provision of Prolog-based symbol-manipulation and deduction facilities makes a powerful symbolic reasoning mechanism available to applications programs written in non-AI languages. The power of the deductive and non-procedural descriptive capabilities of Prolog, which allow the user to describe the problem to be solved, rather than the solution, is to a large extent vitiated by the absence of the standard control structures provided by other languages. Embedding invocations of Prolog rule bases in programs written in non-AI languages makes it possible to put Prolog calls inside DO loops and similar control constructs. The resulting merger of non-AI and AI languages thus results in a symbiotic system in which the advantages of both programming systems are retained, and their deficiencies largely remedied.

  7. A Dynamic Multistage Hybrid Swarm Intelligence Optimization Algorithm for Function Optimization

    Directory of Open Access Journals (Sweden)

    Daqing Wu

    2012-01-01

    Full Text Available A novel dynamic multistage hybrid swarm intelligence optimization algorithm is introduced, which is abbreviated as DM-PSO-ABC. The DM-PSO-ABC combined the exploration capabilities of the dynamic multiswarm particle swarm optimizer (PSO and the stochastic exploitation of the cooperative artificial bee colony algorithm (CABC for solving the function optimization. In the proposed hybrid algorithm, the whole process is divided into three stages. In the first stage, a dynamic multiswarm PSO is constructed to maintain the population diversity. In the second stage, the parallel, positive feedback of CABC was implemented in each small swarm. In the third stage, we make use of the particle swarm optimization global model, which has a faster convergence speed to enhance the global convergence in solving the whole problem. To verify the effectiveness and efficiency of the proposed hybrid algorithm, various scale benchmark problems are tested to demonstrate the potential of the proposed multistage hybrid swarm intelligence optimization algorithm. The results show that DM-PSO-ABC is better in the search precision, and convergence property and has strong ability to escape from the local suboptima when compared with several other peer algorithms.

  8. Intelligent energy allocation strategy for PHEV charging station using gravitational search algorithm

    Science.gov (United States)

    Rahman, Imran; Vasant, Pandian M.; Singh, Balbir Singh Mahinder; Abdullah-Al-Wadud, M.

    2014-10-01

    Recent researches towards the use of green technologies to reduce pollution and increase penetration of renewable energy sources in the transportation sector are gaining popularity. The development of the smart grid environment focusing on PHEVs may also heal some of the prevailing grid problems by enabling the implementation of Vehicle-to-Grid (V2G) concept. Intelligent energy management is an important issue which has already drawn much attention to researchers. Most of these works require formulation of mathematical models which extensively use computational intelligence-based optimization techniques to solve many technical problems. Higher penetration of PHEVs require adequate charging infrastructure as well as smart charging strategies. We used Gravitational Search Algorithm (GSA) to intelligently allocate energy to the PHEVs considering constraints such as energy price, remaining battery capacity, and remaining charging time.

  9. An extended Intelligent Water Drops algorithm for workflow scheduling in cloud computing environment

    Directory of Open Access Journals (Sweden)

    Shaymaa Elsherbiny

    2018-03-01

    Full Text Available Cloud computing is emerging as a high performance computing environment with a large scale, heterogeneous collection of autonomous systems and flexible computational architecture. Many resource management methods may enhance the efficiency of the whole cloud computing system. The key part of cloud computing resource management is resource scheduling. Optimized scheduling of tasks on the cloud virtual machines is an NP-hard problem and many algorithms have been presented to solve it. The variations among these schedulers are due to the fact that the scheduling strategies of the schedulers are adapted to the changing environment and the types of tasks. The focus of this paper is on workflows scheduling in cloud computing, which is gaining a lot of attention recently because workflows have emerged as a paradigm to represent complex computing problems. We proposed a novel algorithm extending the natural-based Intelligent Water Drops (IWD algorithm that optimizes the scheduling of workflows on the cloud. The proposed algorithm is implemented and embedded within the workflows simulation toolkit and tested in different simulated cloud environments with different cost models. Our algorithm showed noticeable enhancements over the classical workflow scheduling algorithms. We made a comparison between the proposed IWD-based algorithm with other well-known scheduling algorithms, including MIN-MIN, MAX-MIN, Round Robin, FCFS, and MCT, PSO and C-PSO, where the proposed algorithm presented noticeable enhancements in the performance and cost in most situations.

  10. Intelligent Diagnostic Assistant for Complicated Skin Diseases through C5's Algorithm.

    Science.gov (United States)

    Jeddi, Fatemeh Rangraz; Arabfard, Masoud; Kermany, Zahra Arab

    2017-09-01

    Intelligent Diagnostic Assistant can be used for complicated diagnosis of skin diseases, which are among the most common causes of disability. The aim of this study was to design and implement a computerized intelligent diagnostic assistant for complicated skin diseases through C5's Algorithm. An applied-developmental study was done in 2015. Knowledge base was developed based on interviews with dermatologists through questionnaires and checklists. Knowledge representation was obtained from the train data in the database using Excel Microsoft Office. Clementine Software and C5's Algorithms were applied to draw the decision tree. Analysis of test accuracy was performed based on rules extracted using inference chains. The rules extracted from the decision tree were entered into the CLIPS programming environment and the intelligent diagnostic assistant was designed then. The rules were defined using forward chaining inference technique and were entered into Clips programming environment as RULE. The accuracy and error rates obtained in the training phase from the decision tree were 99.56% and 0.44%, respectively. The accuracy of the decision tree was 98% and the error was 2% in the test phase. Intelligent diagnostic assistant can be used as a reliable system with high accuracy, sensitivity, specificity, and agreement.

  11. Novel Rock Detection Intelligence for Space Exploration Based on Non-Symbolic Algorithms and Concepts

    Science.gov (United States)

    Yildirim, Sule; Beachell, Ronald L.; Veflingstad, Henning

    2007-01-01

    Future space exploration can utilize artificial intelligence as an integral part of next generation space rover technology to make the rovers more autonomous in performing mission objectives. The main advantage of the increased autonomy through a higher degree of intelligence is that it allows for greater utilization of rover resources by reducing the frequency of time consuming communications between rover and earth. In this paper, we propose a space exploration application of our research on a non-symbolic algorithm and concepts model. This model is based on one of the most recent approaches of cognitive science and artificial intelligence research, a parallel distributed processing approach. We use the Mars rovers. Sprit and Opportunity, as a starting point for proposing what rovers in the future could do if the presented model of non-symbolic algorithms and concepts is embedded in a future space rover. The chosen space exploration application for this paper, novel rock detection, is only one of many potential space exploration applications which can be optimized (through reduction of the frequency of rover-earth communications. collection and transmission of only data that is distinctive/novel) through the use of artificial intelligence technology compared to existing approaches.

  12. Appropriate Combination of Artificial Intelligence and Algorithms for Increasing Predictive Accuracy Management

    Directory of Open Access Journals (Sweden)

    Shahram Gilani Nia

    2010-03-01

    Full Text Available In this paper a simple and effective expert system to predict random data fluctuation in short-term period is established. Evaluation process includes introducing Fourier series, Markov chain model prediction and comparison (Gray combined with the model prediction Gray- Fourier- Markov that the mixed results, to create an expert system predicted with artificial intelligence, made this model to predict the effectiveness of random fluctuation in most data management programs to increase. The outcome of this study introduced artificial intelligence algorithms that help detect that the computer environment to create a system that experts predict the short-term and unstable situation happens correctly and accurately predict. To test the effectiveness of the algorithm presented studies (Chen Tzay len,2008, and predicted data of tourism demand for Iran model is used. Results for the two countries show output model has high accuracy.

  13. Study on Data Clustering and Intelligent Decision Algorithm of Indoor Localization

    Science.gov (United States)

    Liu, Zexi

    2018-01-01

    Indoor positioning technology enables the human beings to have the ability of positional perception in architectural space, and there is a shortage of single network coverage and the problem of location data redundancy. So this article puts forward the indoor positioning data clustering algorithm and intelligent decision-making research, design the basic ideas of multi-source indoor positioning technology, analyzes the fingerprint localization algorithm based on distance measurement, position and orientation of inertial device integration. By optimizing the clustering processing of massive indoor location data, the data normalization pretreatment, multi-dimensional controllable clustering center and multi-factor clustering are realized, and the redundancy of locating data is reduced. In addition, the path is proposed based on neural network inference and decision, design the sparse data input layer, the dynamic feedback hidden layer and output layer, low dimensional results improve the intelligent navigation path planning.

  14. Applying Intelligent Algorithms to Automate the Identification of Error Factors.

    Science.gov (United States)

    Jin, Haizhe; Qu, Qingxing; Munechika, Masahiko; Sano, Masataka; Kajihara, Chisato; Duffy, Vincent G; Chen, Han

    2018-05-03

    Medical errors are the manifestation of the defects occurring in medical processes. Extracting and identifying defects as medical error factors from these processes are an effective approach to prevent medical errors. However, it is a difficult and time-consuming task and requires an analyst with a professional medical background. The issues of identifying a method to extract medical error factors and reduce the extraction difficulty need to be resolved. In this research, a systematic methodology to extract and identify error factors in the medical administration process was proposed. The design of the error report, extraction of the error factors, and identification of the error factors were analyzed. Based on 624 medical error cases across four medical institutes in both Japan and China, 19 error-related items and their levels were extracted. After which, they were closely related to 12 error factors. The relational model between the error-related items and error factors was established based on a genetic algorithm (GA)-back-propagation neural network (BPNN) model. Additionally, compared to GA-BPNN, BPNN, partial least squares regression and support vector regression, GA-BPNN exhibited a higher overall prediction accuracy, being able to promptly identify the error factors from the error-related items. The combination of "error-related items, their different levels, and the GA-BPNN model" was proposed as an error-factor identification technology, which could automatically identify medical error factors.

  15. Intelligent Swarm Firefly Algorithm for the Prediction of China’s National Electricity Consumption

    OpenAIRE

    Zhang, Guangfeng; Chen, Yi; Yu, Yongnian; Wu, Shaomin

    2017-01-01

    China’s energy consumption is the world’s largest and is still rising, leading to concerns of energy shortage and environmental issues. It is, therefore, necessary to estimate the energy demand and to examine the dynamic nature of the electricity consumption. In this paper, we develop a nonlinear model of energy consumption and utilise a computational intelligence approach, specifcally a swarm frefly algorithm with a variable population, to examine China’s electricity consumption with historic...

  16. Comprehensive Angular Response Study of LLNL Panasonic Dosimeter Configurations and Artificial Intelligence Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Stone, D. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-06-30

    In April of 2016, the Lawrence Livermore National Laboratory External Dosimetry Program underwent a Department of Energy Laboratory Accreditation Program (DOELAP) on-site assessment. The assessment reported a concern that the study performed in 2013 Angular Dependence Study Panasonic UD-802 and UD-810 Dosimeters LLNL Artificial Intelligence Algorithm was incomplete. Only the responses at ±60° and 0° were evaluated and independent data from dosimeters was not used to evaluate the algorithm. Additionally, other configurations of LLNL dosimeters were not considered in this study. This includes nuclear accident dosimeters (NAD) which are placed in the wells surrounding the TLD in the dosimeter holder.

  17. Improved discrete swarm intelligence algorithms for endmember extraction from hyperspectral remote sensing images

    Science.gov (United States)

    Su, Yuanchao; Sun, Xu; Gao, Lianru; Li, Jun; Zhang, Bing

    2016-10-01

    Endmember extraction is a key step in hyperspectral unmixing. A new endmember extraction framework is proposed for hyperspectral endmember extraction. The proposed approach is based on the swarm intelligence (SI) algorithm, where discretization is used to solve the SI algorithm because pixels in a hyperspectral image are naturally defined within a discrete space. Moreover, a "distance" factor is introduced into the objective function to limit the endmember numbers which is generally limited in real scenarios, while traditional SI algorithms likely produce superabundant spectral signatures, which generally belong to the same classes. Three endmember extraction methods are proposed based on the artificial bee colony, ant colony optimization, and particle swarm optimization algorithms. Experiments with both simulated and real hyperspectral images indicate that the proposed framework can improve the accuracy of endmember extraction.

  18. Research on intelligent recommendation algorithm of e-commerce based on association rules

    Science.gov (United States)

    Shen, Jiajie; Cheng, Xianyi

    2017-09-01

    As the commodities of e-commerce are more and more rich, more and more consumers are willing to choose online shopping, because of these rich varieties of commodity information, customers will often appear aesthetic fatigue. Therefore, we need a recommendation algorithm according to the recent behavior of customers including browsing and consuming to predicate and intelligently recommend goods which the customers need, thus to improve the satisfaction of customers and to increase the profit of e-commerce. This paper first discusses recommendation algorithm, then improves Apriori. Finally, using R language realizes a recommendation algorithm of commodities. The result shows that this algorithm provides a certain decision-making role for customers to buy commodities.

  19. Fuzzy gain scheduling of velocity PI controller with intelligent learning algorithm for reactor control

    International Nuclear Information System (INIS)

    Kim, Dong Yun; Seong, Poong Hyun

    1996-01-01

    In this study, we proposed a fuzzy gain scheduler with intelligent learning algorithm for a reactor control. In the proposed algorithm, we used the gradient descent method to learn the rule bases of a fuzzy algorithm. These rule bases are learned toward minimizing an objective function, which is called a performance cost function. The objective of fuzzy gain scheduler with intelligent learning algorithm is the generation of adequate gains, which minimize the error of system. The condition of every plant is generally changed as time gose. That is, the initial gains obtained through the analysis of system are no longer suitable for the changed plant. And we need to set new gains, which minimize the error stemmed from changing the condition of a plant. In this paper, we applied this strategy for reactor control of nuclear power plant (NPP), and the results were compared with those of a simple PI controller, which has fixed gains. As a result, it was shown that the proposed algorithm was superior to the simple PI controller

  20. Performance of multiobjective computational intelligence algorithms for the routing and wavelength assignment problem

    Directory of Open Access Journals (Sweden)

    Jorge Patiño

    2016-01-01

    Full Text Available This paper presents an evaluation performance of computational intelligence algorithms based on the multiobjective theory for the solution of the Routing and Wavelength Assignment problem (RWA in optical networks. The study evaluates the Firefly Algorithm, the Differential Evolutionary Algorithm, the Simulated Annealing Algorithm and two versions of the Particle Swarm Optimization algorithm. The paper provides a description of the multiobjective algorithms; then, an evaluation based on the performance provided by the multiobjective algorithms versus mono-objective approaches when dealing with different traffic loads, different numberof wavelengths and wavelength conversion process over the NSFNet topology is presented. Simulation results show that monoobjective algorithms properly solve the RWA problem for low values of data traffic and low number of wavelengths. However, the multiobjective approaches adapt better to online traffic when the number of wavelengths available in the network increases as well as when wavelength conversion is implemented in the nodes.

  1. The design and results of an algorithm for intelligent ground vehicles

    Science.gov (United States)

    Duncan, Matthew; Milam, Justin; Tote, Caleb; Riggins, Robert N.

    2010-01-01

    This paper addresses the design, design method, test platform, and test results of an algorithm used in autonomous navigation for intelligent vehicles. The Bluefield State College (BSC) team created this algorithm for its 2009 Intelligent Ground Vehicle Competition (IGVC) robot called Anassa V. The BSC robotics team is comprised of undergraduate computer science, engineering technology, marketing students, and one robotics faculty advisor. The team has participated in IGVC since the year 2000. A major part of the design process that the BSC team uses each year for IGVC is a fully documented "Post-IGVC Analysis." Over the nine years since 2000, the lessons the students learned from these analyses have resulted in an ever-improving, highly successful autonomous algorithm. The algorithm employed in Anassa V is a culmination of past successes and new ideas, resulting in Anassa V earning several excellent IGVC 2009 performance awards, including third place overall. The paper will discuss all aspects of the design of this autonomous robotic system, beginning with the design process and ending with test results for both simulation and real environments.

  2. Algorithm of Energy Efficiency Improvement for Intelligent Devices in Railway Transport

    Directory of Open Access Journals (Sweden)

    Beinaroviča Anna

    2016-07-01

    Full Text Available The present paper deals with the use of systems and devices with artificial intelligence in the motor vehicle driving. The main objective of transport operations is a transportation planning with minimum energy consumption. There are various methods for energy saving, and the paper discusses one of them – proper planning of transport operations. To gain proper planning it is necessary to involve the system and devices with artificial intelligence. They will display possible developments in the choice of one or another transport plan. Consequently, it can be supposed how much the plan is effective against the spent energy. The intelligent device considered in this paper consists of an algorithm, a database, and the internet for the connection to other intelligent devices. The main task of the target function is to minimize the total downtime at intermediate stations. A specific unique PHP-based computer model was created. It uses the MySQL database for simulation data storage and processing. Conclusions based on the experiments were made. The experiments showed that after optimization, a train can pass intermediate stations without making multiple stops breaking and accelerating, which leads to decreased energy consumption.

  3. Bioinspired Intelligent Algorithm and Its Applications for Mobile Robot Control: A Survey

    Directory of Open Access Journals (Sweden)

    Jianjun Ni

    2016-01-01

    Full Text Available Bioinspired intelligent algorithm (BIA is a kind of intelligent computing method, which is with a more lifelike biological working mechanism than other types. BIAs have made significant progress in both understanding of the neuroscience and biological systems and applying to various fields. Mobile robot control is one of the main application fields of BIAs which has attracted more and more attention, because mobile robots can be used widely and general artificial intelligent algorithms meet a development bottleneck in this field, such as complex computing and the dependence on high-precision sensors. This paper presents a survey of recent research in BIAs, which focuses on the research in the realization of various BIAs based on different working mechanisms and the applications for mobile robot control, to help in understanding BIAs comprehensively and clearly. The survey has four primary parts: a classification of BIAs from the biomimetic mechanism, a summary of several typical BIAs from different levels, an overview of current applications of BIAs in mobile robot control, and a description of some possible future directions for research.

  4. Bioinspired Intelligent Algorithm and Its Applications for Mobile Robot Control: A Survey.

    Science.gov (United States)

    Ni, Jianjun; Wu, Liuying; Fan, Xinnan; Yang, Simon X

    2016-01-01

    Bioinspired intelligent algorithm (BIA) is a kind of intelligent computing method, which is with a more lifelike biological working mechanism than other types. BIAs have made significant progress in both understanding of the neuroscience and biological systems and applying to various fields. Mobile robot control is one of the main application fields of BIAs which has attracted more and more attention, because mobile robots can be used widely and general artificial intelligent algorithms meet a development bottleneck in this field, such as complex computing and the dependence on high-precision sensors. This paper presents a survey of recent research in BIAs, which focuses on the research in the realization of various BIAs based on different working mechanisms and the applications for mobile robot control, to help in understanding BIAs comprehensively and clearly. The survey has four primary parts: a classification of BIAs from the biomimetic mechanism, a summary of several typical BIAs from different levels, an overview of current applications of BIAs in mobile robot control, and a description of some possible future directions for research.

  5. Bioinspired Intelligent Algorithm and Its Applications for Mobile Robot Control: A Survey

    Science.gov (United States)

    Ni, Jianjun; Wu, Liuying; Fan, Xinnan; Yang, Simon X.

    2016-01-01

    Bioinspired intelligent algorithm (BIA) is a kind of intelligent computing method, which is with a more lifelike biological working mechanism than other types. BIAs have made significant progress in both understanding of the neuroscience and biological systems and applying to various fields. Mobile robot control is one of the main application fields of BIAs which has attracted more and more attention, because mobile robots can be used widely and general artificial intelligent algorithms meet a development bottleneck in this field, such as complex computing and the dependence on high-precision sensors. This paper presents a survey of recent research in BIAs, which focuses on the research in the realization of various BIAs based on different working mechanisms and the applications for mobile robot control, to help in understanding BIAs comprehensively and clearly. The survey has four primary parts: a classification of BIAs from the biomimetic mechanism, a summary of several typical BIAs from different levels, an overview of current applications of BIAs in mobile robot control, and a description of some possible future directions for research. PMID:26819582

  6. Methodology, Algorithms, and Emerging Tool for Automated Design of Intelligent Integrated Multi-Sensor Systems

    Directory of Open Access Journals (Sweden)

    Andreas König

    2009-11-01

    Full Text Available The emergence of novel sensing elements, computing nodes, wireless communication and integration technology provides unprecedented possibilities for the design and application of intelligent systems. Each new application system must be designed from scratch, employing sophisticated methods ranging from conventional signal processing to computational intelligence. Currently, a significant part of this overall algorithmic chain of the computational system model still has to be assembled manually by experienced designers in a time and labor consuming process. In this research work, this challenge is picked up and a methodology and algorithms for automated design of intelligent integrated and resource-aware multi-sensor systems employing multi-objective evolutionary computation are introduced. The proposed methodology tackles the challenge of rapid-prototyping of such systems under realization constraints and, additionally, includes features of system instance specific self-correction for sustained operation of a large volume and in a dynamically changing environment. The extension of these concepts to the reconfigurable hardware platform renders so called self-x sensor systems, which stands, e.g., for self-monitoring, -calibrating, -trimming, and -repairing/-healing systems. Selected experimental results prove the applicability and effectiveness of our proposed methodology and emerging tool. By our approach, competitive results were achieved with regard to classification accuracy, flexibility, and design speed under additional design constraints.

  7. An intelligent active force control algorithm to control an upper extremity exoskeleton for motor recovery

    Science.gov (United States)

    Hasbullah Mohd Isa, Wan; Taha, Zahari; Mohd Khairuddin, Ismail; Majeed, Anwar P. P. Abdul; Fikri Muhammad, Khairul; Abdo Hashem, Mohammed; Mahmud, Jamaluddin; Mohamed, Zulkifli

    2016-02-01

    This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton by means of an intelligent active force control (AFC) mechanism. The Newton-Euler formulation was used in deriving the dynamic modelling of both the anthropometry based human upper extremity as well as the exoskeleton that consists of the upper arm and the forearm. A proportional-derivative (PD) architecture is employed in this study to investigate its efficacy performing joint-space control objectives. An intelligent AFC algorithm is also incorporated into the PD to investigate the effectiveness of this hybrid system in compensating disturbances. The Mamdani Fuzzy based rule is employed to approximate the estimated inertial properties of the system to ensure the AFC loop responds efficiently. It is found that the IAFC-PD performed well against the disturbances introduced into the system as compared to the conventional PD control architecture in performing the desired trajectory tracking.

  8. Advanced Emergency Braking Control Based on a Nonlinear Model Predictive Algorithm for Intelligent Vehicles

    Directory of Open Access Journals (Sweden)

    Ronghui Zhang

    2017-05-01

    Full Text Available Focusing on safety, comfort and with an overall aim of the comprehensive improvement of a vision-based intelligent vehicle, a novel Advanced Emergency Braking System (AEBS is proposed based on Nonlinear Model Predictive Algorithm. Considering the nonlinearities of vehicle dynamics, a vision-based longitudinal vehicle dynamics model is established. On account of the nonlinear coupling characteristics of the driver, surroundings, and vehicle itself, a hierarchical control structure is proposed to decouple and coordinate the system. To avoid or reduce the collision risk between the intelligent vehicle and collision objects, a coordinated cost function of tracking safety, comfort, and fuel economy is formulated. Based on the terminal constraints of stable tracking, a multi-objective optimization controller is proposed using the theory of non-linear model predictive control. To quickly and precisely track control target in a finite time, an electronic brake controller for AEBS is designed based on the Nonsingular Fast Terminal Sliding Mode (NFTSM control theory. To validate the performance and advantages of the proposed algorithm, simulations are implemented. According to the simulation results, the proposed algorithm has better integrated performance in reducing the collision risk and improving the driving comfort and fuel economy of the smart car compared with the existing single AEBS.

  9. Short-Term Wind Electric Power Forecasting Using a Novel Multi-Stage Intelligent Algorithm

    Directory of Open Access Journals (Sweden)

    Haoran Zhao

    2018-03-01

    Full Text Available As the most efficient renewable energy source for generating electricity in a modern electricity network, wind power has the potential to realize sustainable energy supply. However, owing to its random and intermittent instincts, a high permeability of wind power into a power network demands accurate and effective wind energy prediction models. This study proposes a multi-stage intelligent algorithm for wind electric power prediction, which combines the Beveridge–Nelson (B-N decomposition approach, the Least Square Support Vector Machine (LSSVM, and a newly proposed intelligent optimization approach called the Grasshopper Optimization Algorithm (GOA. For data preprocessing, the B-N decomposition approach was employed to disintegrate the hourly wind electric power data into a deterministic trend, a cyclic term, and a random component. Then, the LSSVM optimized by the GOA (denoted GOA-LSSVM was applied to forecast the future 168 h of the deterministic trend, the cyclic term, and the stochastic component, respectively. Finally, the future hourly wind electric power values can be obtained by multiplying the forecasted values of these three trends. Through comparing the forecasting performance of this proposed method with the LSSVM, the LSSVM optimized by the Fruit-fly Optimization Algorithm (FOA-LSSVM, and the LSSVM optimized by Particle Swarm Optimization (PSO-LSSVM, it is verified that the established multi-stage approach is superior to other models and can increase the precision of wind electric power prediction effectively.

  10. An evolutionary algorithm technique for intelligence, surveillance, and reconnaissance plan optimization

    Science.gov (United States)

    Langton, John T.; Caroli, Joseph A.; Rosenberg, Brad

    2008-04-01

    To support an Effects Based Approach to Operations (EBAO), Intelligence, Surveillance, and Reconnaissance (ISR) planners must optimize collection plans within an evolving battlespace. A need exists for a decision support tool that allows ISR planners to rapidly generate and rehearse high-performing ISR plans that balance multiple objectives and constraints to address dynamic collection requirements for assessment. To meet this need we have designed an evolutionary algorithm (EA)-based "Integrated ISR Plan Analysis and Rehearsal System" (I2PARS) to support Effects-based Assessment (EBA). I2PARS supports ISR mission planning and dynamic replanning to coordinate assets and optimize their routes, allocation and tasking. It uses an evolutionary algorithm to address the large parametric space of route-finding problems which is sometimes discontinuous in the ISR domain because of conflicting objectives such as minimizing asset utilization yet maximizing ISR coverage. EAs are uniquely suited for generating solutions in dynamic environments and also allow user feedback. They are therefore ideal for "streaming optimization" and dynamic replanning of ISR mission plans. I2PARS uses the Non-dominated Sorting Genetic Algorithm (NSGA-II) to automatically generate a diverse set of high performing collection plans given multiple objectives, constraints, and assets. Intended end users of I2PARS include ISR planners in the Combined Air Operations Centers and Joint Intelligence Centers. Here we show the feasibility of applying the NSGA-II algorithm and EAs in general to the ISR planning domain. Unique genetic representations and operators for optimization within the ISR domain are presented along with multi-objective optimization criteria for ISR planning. Promising results of the I2PARS architecture design, early software prototype, and limited domain testing of the new algorithm are discussed. We also present plans for future research and development, as well as technology

  11. Optimizing bi-objective, multi-echelon supply chain model using particle swarm intelligence algorithm

    Science.gov (United States)

    Sathish Kumar, V. R.; Anbuudayasankar, S. P.; Rameshkumar, K.

    2018-02-01

    In the current globalized scenario, business organizations are more dependent on cost effective supply chain to enhance profitability and better handle competition. Demand uncertainty is an important factor in success or failure of a supply chain. An efficient supply chain limits the stock held at all echelons to the extent of avoiding a stock-out situation. In this paper, a three echelon supply chain model consisting of supplier, manufacturing plant and market is developed and the same is optimized using particle swarm intelligence algorithm.

  12. Intelligent cloud computing security using genetic algorithm as a computational tools

    Science.gov (United States)

    Razuky AL-Shaikhly, Mazin H.

    2018-05-01

    An essential change had occurred in the field of Information Technology which represented with cloud computing, cloud giving virtual assets by means of web yet awesome difficulties in the field of information security and security assurance. Currently main problem with cloud computing is how to improve privacy and security for cloud “cloud is critical security”. This paper attempts to solve cloud security by using intelligent system with genetic algorithm as wall to provide cloud data secure, all services provided by cloud must detect who receive and register it to create list of users (trusted or un-trusted) depend on behavior. The execution of present proposal has shown great outcome.

  13. Hybrid Swarm Intelligence Energy Efficient Clustered Routing Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar

    2016-01-01

    Full Text Available Currently, wireless sensor networks (WSNs are used in many applications, namely, environment monitoring, disaster management, industrial automation, and medical electronics. Sensor nodes carry many limitations like low battery life, small memory space, and limited computing capability. To create a wireless sensor network more energy efficient, swarm intelligence technique has been applied to resolve many optimization issues in WSNs. In many existing clustering techniques an artificial bee colony (ABC algorithm is utilized to collect information from the field periodically. Nevertheless, in the event based applications, an ant colony optimization (ACO is a good solution to enhance the network lifespan. In this paper, we combine both algorithms (i.e., ABC and ACO and propose a new hybrid ABCACO algorithm to solve a Nondeterministic Polynomial (NP hard and finite problem of WSNs. ABCACO algorithm is divided into three main parts: (i selection of optimal number of subregions and further subregion parts, (ii cluster head selection using ABC algorithm, and (iii efficient data transmission using ACO algorithm. We use a hierarchical clustering technique for data transmission; the data is transmitted from member nodes to the subcluster heads and then from subcluster heads to the elected cluster heads based on some threshold value. Cluster heads use an ACO algorithm to discover the best route for data transmission to the base station (BS. The proposed approach is very useful in designing the framework for forest fire detection and monitoring. The simulation results show that the ABCACO algorithm enhances the stability period by 60% and also improves the goodput by 31% against LEACH and WSNCABC, respectively.

  14. Design of intelligent locks based on the triple KeeLoq algorithm

    Directory of Open Access Journals (Sweden)

    Huibin Chen

    2016-04-01

    Full Text Available KeeLoq algorithm with high security was usually used in wireless codec. Its security lack is indicated in this article according to the detailed rationale and the introduction of previous attack researches. Taking examples from Triple Data Encryption Standard algorithm, the triple KeeLoq codec algorithm was first proposed. Experimental results showed that the algorithm would not reduce powerful rolling effect and in consideration of limited computing power of embedded microcontroller three 64-bit keys were suitable to increase the crack difficulties and further improved its security. The method was applied to intelligent door access system for experimental verification. 16F690 extended Bluetooth or WiFi interface was employed to design the lock system on door. Key application was constructed on Android platform. The wireless communication between the lock on door and Android key application employed triple KeeLoq algorithm to ensure the higher security. Due to flexibility and multiformity (an Android key application with various keys of software-based keys, the solution owned overwhelmed advantages of low cost, high security, humanity, and green environmental protection.

  15. Swarm intelligence based on modified PSO algorithm for the optimization of axial-flow pump impeller

    International Nuclear Information System (INIS)

    Miao, Fuqing; Kim, Chol Min; Ahn, Seok Young; Park, Hong Seok

    2015-01-01

    This paper presents a multi-objective optimization of the impeller shape of an axial-flow pump based on the Modified particle swarm optimization (MPSO) algorithm. At first, an impeller shape was designed and used as a reference in the optimization process then NPSHr and η of the axial flow pump were numerically investigated by using the commercial software ANSYS with the design variables concerning hub angle β_h, chord angle β_c, cascade solidity of chord σ_c and maximum thickness of blade H. By using the Group method of data handling (GMDH) type neural networks in commercial software DTREG, the corresponding polynomial representation for NPSHr and η with respect to the design variables were obtained. A benchmark test was employed to evaluate the performance of the MPSO algorithm in comparison with other particle swarm algorithms. Later the MPSO approach was used for Pareto based optimization. Finally, the MPSO optimization result and CFD simulation result were compared in a re-evaluation process. By using swarm intelligence based on the modified PSO algorithm, better performance pump with higher efficiency and lower NPSHr could be obtained. This novel algorithm was successfully applied for the optimization of axial-flow pump impeller shape design

  16. Swarm intelligence based on modified PSO algorithm for the optimization of axial-flow pump impeller

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Fuqing; Kim, Chol Min; Ahn, Seok Young [Pusan National University, Busan (Korea, Republic of); Park, Hong Seok [Ulsan University, Ulsan (Korea, Republic of)

    2015-11-15

    This paper presents a multi-objective optimization of the impeller shape of an axial-flow pump based on the Modified particle swarm optimization (MPSO) algorithm. At first, an impeller shape was designed and used as a reference in the optimization process then NPSHr and η of the axial flow pump were numerically investigated by using the commercial software ANSYS with the design variables concerning hub angle β{sub h}, chord angle β{sub c}, cascade solidity of chord σ{sub c} and maximum thickness of blade H. By using the Group method of data handling (GMDH) type neural networks in commercial software DTREG, the corresponding polynomial representation for NPSHr and η with respect to the design variables were obtained. A benchmark test was employed to evaluate the performance of the MPSO algorithm in comparison with other particle swarm algorithms. Later the MPSO approach was used for Pareto based optimization. Finally, the MPSO optimization result and CFD simulation result were compared in a re-evaluation process. By using swarm intelligence based on the modified PSO algorithm, better performance pump with higher efficiency and lower NPSHr could be obtained. This novel algorithm was successfully applied for the optimization of axial-flow pump impeller shape design.

  17. Multi-Working Modes Product-Color Planning Based on Evolutionary Algorithms and Swarm Intelligence

    Directory of Open Access Journals (Sweden)

    Man Ding

    2010-01-01

    Full Text Available In order to assist designer in color planning during product development, a novel synthesized evaluation method is presented to evaluate color-combination schemes of multi-working modes products (MMPs. The proposed evaluation method considers color-combination images in different working modes as evaluating attributes, to which the corresponding weights are assigned for synthesized evaluation. Then a mathematical model is developed to search for optimal color-combination schemes of MMP based on the proposed evaluation method and two powerful search techniques known as Evolution Algorithms (EAs and Swarm Intelligence (SI. In the experiments, we present a comparative study for two EAs, namely, Genetic Algorithm (GA and Difference Evolution (DE, and one SI algorithm, namely, Particle Swarm Optimization (PSO, on searching for color-combination schemes of MMP problem. All of the algorithms are evaluated against a test scenario, namely, an Arm-type aerial work platform, which has two working modes. The results show that the DE obtains the superior solution than the other two algorithms for color-combination scheme searching problem in terms of optimization accuracy and computation robustness. Simulation results demonstrate that the proposed method is feasible and efficient.

  18. Frameworks for Performing on Cloud Automated Software Testing Using Swarm Intelligence Algorithm: Brief Survey

    Directory of Open Access Journals (Sweden)

    Mohammad Hossain

    2018-04-01

    Full Text Available This paper surveys on Cloud Based Automated Testing Software that is able to perform Black-box testing, White-box testing, as well as Unit and Integration Testing as a whole. In this paper, we discuss few of the available automated software testing frameworks on the cloud. These frameworks are found to be more efficient and cost effective because they execute test suites over a distributed cloud infrastructure. One of the framework effectiveness was attributed to having a module that accepts manual test cases from users and it prioritize them accordingly. Software testing, in general, accounts for as much as 50% of the total efforts of the software development project. To lessen the efforts, one the frameworks discussed in this paper used swarm intelligence algorithms. It uses the Ant Colony Algorithm for complete path coverage to minimize time and the Bee Colony Optimization (BCO for regression testing to ensure backward compatibility.

  19. Development of cyberblog-based intelligent tutorial system to improve students learning ability algorithm

    Science.gov (United States)

    Wahyudin; Riza, L. S.; Putro, B. L.

    2018-05-01

    E-learning as a learning activity conducted online by the students with the usual tools is favoured by students. The use of computer media in learning provides benefits that are not owned by other learning media that is the ability of computers to interact individually with students. But the weakness of many learning media is to assume that all students have a uniform ability, when in reality this is not the case. The concept of Intelligent Tutorial System (ITS) combined with cyberblog application can overcome the weaknesses in neglecting diversity. An Intelligent Tutorial System-based Cyberblog application (ITS) is a web-based interactive application program that implements artificial intelligence which can be used as a learning and evaluation media in the learning process. The use of ITS-based Cyberblog in learning is one of the alternative learning media that is interesting and able to help students in measuring ability in understanding the material. This research will be associated with the improvement of logical thinking ability (logical thinking) of students, especially in algorithm subjects.

  20. Simulation Modeling of Intelligent Control Algorithms for Constructing Autonomous Power Supply Systems with Improved Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Gimazov Ruslan

    2018-01-01

    Full Text Available The paper considers the issue of supplying autonomous robots by solar batteries. Low efficiency of modern solar batteries is a critical issue for the whole industry of renewable energy. The urgency of solving the problem of improved energy efficiency of solar batteries for supplying the robotic system is linked with the task of maximizing autonomous operation time. Several methods to improve the energy efficiency of solar batteries exist. The use of MPPT charge controller is one these methods. MPPT technology allows increasing the power generated by the solar battery by 15 – 30%. The most common MPPT algorithm is the perturbation and observation algorithm. This algorithm has several disadvantages, such as power fluctuation and the fixed time of the maximum power point tracking. These problems can be solved by using a sufficiently accurate predictive and adaptive algorithm. In order to improve the efficiency of solar batteries, autonomous power supply system was developed, which included an intelligent MPPT charge controller with the fuzzy logic-based perturbation and observation algorithm. To study the implementation of the fuzzy logic apparatus in the MPPT algorithm, in Matlab/Simulink environment, we developed a simulation model of the system, including solar battery, MPPT controller, accumulator and load. Results of the simulation modeling established that the use of MPPT technology had increased energy production by 23%; introduction of the fuzzy logic algorithm to MPPT controller had greatly increased the speed of the maximum power point tracking and neutralized the voltage fluctuations, which in turn reduced the power underproduction by 2%.

  1. Optimization process planning using hybrid genetic algorithm and intelligent search for job shop machining.

    Science.gov (United States)

    Salehi, Mojtaba; Bahreininejad, Ardeshir

    2011-08-01

    Optimization of process planning is considered as the key technology for computer-aided process planning which is a rather complex and difficult procedure. A good process plan of a part is built up based on two elements: (1) the optimized sequence of the operations of the part; and (2) the optimized selection of the machine, cutting tool and Tool Access Direction (TAD) for each operation. In the present work, the process planning is divided into preliminary planning, and secondary/detailed planning. In the preliminary stage, based on the analysis of order and clustering constraints as a compulsive constraint aggregation in operation sequencing and using an intelligent searching strategy, the feasible sequences are generated. Then, in the detailed planning stage, using the genetic algorithm which prunes the initial feasible sequences, the optimized operation sequence and the optimized selection of the machine, cutting tool and TAD for each operation based on optimization constraints as an additive constraint aggregation are obtained. The main contribution of this work is the optimization of sequence of the operations of the part, and optimization of machine selection, cutting tool and TAD for each operation using the intelligent search and genetic algorithm simultaneously.

  2. Introducing a Novel Hybrid Artificial Intelligence Algorithm to Optimize Network of Industrial Applications in Modern Manufacturing

    Directory of Open Access Journals (Sweden)

    Aydin Azizi

    2017-01-01

    Full Text Available Recent advances in modern manufacturing industries have created a great need to track and identify objects and parts by obtaining real-time information. One of the main technologies which has been utilized for this need is the Radio Frequency Identification (RFID system. As a result of adopting this technology to the manufacturing industry environment, RFID Network Planning (RNP has become a challenge. Mainly RNP deals with calculating the number and position of antennas which should be deployed in the RFID network to achieve full coverage of the tags that need to be read. The ultimate goal of this paper is to present and evaluate a way of modelling and optimizing nonlinear RNP problems utilizing artificial intelligence (AI techniques. This effort has led the author to propose a novel AI algorithm, which has been named “hybrid AI optimization technique,” to perform optimization of RNP as a hard learning problem. The proposed algorithm is composed of two different optimization algorithms: Redundant Antenna Elimination (RAE and Ring Probabilistic Logic Neural Networks (RPLNN. The proposed hybrid paradigm has been explored using a flexible manufacturing system (FMS, and results have been compared with Genetic Algorithm (GA that demonstrates the feasibility of the proposed architecture successfully.

  3. Scheduling algorithm for data relay satellite optical communication based on artificial intelligent optimization

    Science.gov (United States)

    Zhao, Wei-hu; Zhao, Jing; Zhao, Shang-hong; Li, Yong-jun; Wang, Xiang; Dong, Yi; Dong, Chen

    2013-08-01

    Optical satellite communication with the advantages of broadband, large capacity and low power consuming broke the bottleneck of the traditional microwave satellite communication. The formation of the Space-based Information System with the technology of high performance optical inter-satellite communication and the realization of global seamless coverage and mobile terminal accessing are the necessary trend of the development of optical satellite communication. Considering the resources, missions and restraints of Data Relay Satellite Optical Communication System, a model of optical communication resources scheduling is established and a scheduling algorithm based on artificial intelligent optimization is put forwarded. According to the multi-relay-satellite, multi-user-satellite, multi-optical-antenna and multi-mission with several priority weights, the resources are scheduled reasonable by the operation: "Ascertain Current Mission Scheduling Time" and "Refresh Latter Mission Time-Window". The priority weight is considered as the parameter of the fitness function and the scheduling project is optimized by the Genetic Algorithm. The simulation scenarios including 3 relay satellites with 6 optical antennas, 12 user satellites and 30 missions, the simulation result reveals that the algorithm obtain satisfactory results in both efficiency and performance and resources scheduling model and the optimization algorithm are suitable in multi-relay-satellite, multi-user-satellite, and multi-optical-antenna recourses scheduling problem.

  4. Parameter estimation of Lorenz chaotic system using a hybrid swarm intelligence algorithm

    International Nuclear Information System (INIS)

    Lazzús, Juan A.; Rivera, Marco; López-Caraballo, Carlos H.

    2016-01-01

    A novel hybrid swarm intelligence algorithm for chaotic system parameter estimation is present. For this purpose, the parameters estimation on Lorenz systems is formulated as a multidimensional problem, and a hybrid approach based on particle swarm optimization with ant colony optimization (PSO–ACO) is implemented to solve this problem. Firstly, the performance of the proposed PSO–ACO algorithm is tested on a set of three representative benchmark functions, and the impact of the parameter settings on PSO–ACO efficiency is studied. Secondly, the parameter estimation is converted into an optimization problem on a three-dimensional Lorenz system. Numerical simulations on Lorenz model and comparisons with results obtained by other algorithms showed that PSO–ACO is a very powerful tool for parameter estimation with high accuracy and low deviations. - Highlights: • PSO–ACO combined particle swarm optimization with ant colony optimization. • This study is the first research of PSO–ACO to estimate parameters of chaotic systems. • PSO–ACO algorithm can identify the parameters of the three-dimensional Lorenz system with low deviations. • PSO–ACO is a very powerful tool for the parameter estimation on other chaotic system.

  5. Parameter estimation of Lorenz chaotic system using a hybrid swarm intelligence algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lazzús, Juan A., E-mail: jlazzus@dfuls.cl; Rivera, Marco; López-Caraballo, Carlos H.

    2016-03-11

    A novel hybrid swarm intelligence algorithm for chaotic system parameter estimation is present. For this purpose, the parameters estimation on Lorenz systems is formulated as a multidimensional problem, and a hybrid approach based on particle swarm optimization with ant colony optimization (PSO–ACO) is implemented to solve this problem. Firstly, the performance of the proposed PSO–ACO algorithm is tested on a set of three representative benchmark functions, and the impact of the parameter settings on PSO–ACO efficiency is studied. Secondly, the parameter estimation is converted into an optimization problem on a three-dimensional Lorenz system. Numerical simulations on Lorenz model and comparisons with results obtained by other algorithms showed that PSO–ACO is a very powerful tool for parameter estimation with high accuracy and low deviations. - Highlights: • PSO–ACO combined particle swarm optimization with ant colony optimization. • This study is the first research of PSO–ACO to estimate parameters of chaotic systems. • PSO–ACO algorithm can identify the parameters of the three-dimensional Lorenz system with low deviations. • PSO–ACO is a very powerful tool for the parameter estimation on other chaotic system.

  6. An intelligent algorithm for optimizing emergency department job and patient satisfaction.

    Science.gov (United States)

    Azadeh, Ali; Yazdanparast, Reza; Abdolhossein Zadeh, Saeed; Keramati, Abbas

    2018-06-11

    Purpose Resilience engineering, job satisfaction and patient satisfaction were evaluated and analyzed in one Tehran emergency department (ED) to determine ED strengths, weaknesses and opportunities to improve safety, performance, staff and patient satisfaction. The paper aims to discuss these issues. Design/methodology/approach The algorithm included data envelopment analysis (DEA), two artificial neural networks: multilayer perceptron and radial basis function. Data were based on integrated resilience engineering (IRE) and satisfaction indicators. IRE indicators are considered inputs and job and patient satisfaction indicators are considered output variables. Methods were based on mean absolute percentage error analysis. Subsequently, the algorithm was employed for measuring staff and patient satisfaction separately. Each indicator is also identified through sensitivity analysis. Findings The results showed that salary, wage, patient admission and discharge are the crucial factors influencing job and patient satisfaction. The results obtained by the algorithm were validated by comparing them with DEA. Practical implications The approach is a decision-making tool that helps health managers to assess and improve performance and take corrective action. Originality/value This study presents an IRE and intelligent algorithm for analyzing ED job and patient satisfaction - the first study to present an integrated IRE, neural network and mathematical programming approach for optimizing job and patient satisfaction, which simultaneously optimizes job and patient satisfaction, and IRE. The results are validated by DEA through statistical methods.

  7. Game Algorithm for Resource Allocation Based on Intelligent Gradient in HetNet

    Directory of Open Access Journals (Sweden)

    Fang Ye

    2017-02-01

    Full Text Available In order to improve system performance such as throughput, heterogeneous network (HetNet has become an effective solution in Long Term Evolution-Advanced (LET-A. However, co-channel interference leads to degradation of the HetNet throughput, because femtocells are always arranged to share the spectrum with the macro base station. In this paper, in view of the serious cross-layer interference in double layer HetNet, the Stackelberg game model is adopted to analyze the resource allocation methods of the network. Unlike the traditional system models only focusing on macro base station performance improvement, we take into account the overall system performance and build a revenue function with convexity. System utility functions are defined as the average throughput, which does not adopt frequency spectrum trading method, so as to avoid excessive signaling overhead. Due to the value scope of continuous Nash equilibrium of the built game model, the gradient iterative algorithm is introduced to reduce the computational complexity. As for the solution of Nash equilibrium, one kind of gradient iterative algorithm is proposed, which is able to intelligently choose adjustment factors. The Nash equilibrium can be quickly solved; meanwhile, the step of presetting adjustment factors is avoided according to network parameters in traditional linear iterative model. Simulation results show that the proposed algorithm enhances the overall performance of the system.

  8. Design and economic investigation of shell and tube heat exchangers using Improved Intelligent Tuned Harmony Search algorithm

    Directory of Open Access Journals (Sweden)

    Oguz Emrah Turgut

    2014-12-01

    Full Text Available This study explores the thermal design of shell and tube heat exchangers by using Improved Intelligent Tuned Harmony Search (I-ITHS algorithm. Intelligent Tuned Harmony Search (ITHS is an upgraded version of harmony search algorithm which has an advantage of deciding intensification and diversification processes by applying proper pitch adjusting strategy. In this study, we aim to improve the search capacity of ITHS algorithm by utilizing chaotic sequences instead of uniformly distributed random numbers and applying alternative search strategies inspired by Artificial Bee Colony algorithm and Opposition Based Learning on promising areas (best solutions. Design variables including baffle spacing, shell diameter, tube outer diameter and number of tube passes are used to minimize total cost of heat exchanger that incorporates capital investment and the sum of discounted annual energy expenditures related to pumping and heat exchanger area. Results show that I-ITHS can be utilized in optimizing shell and tube heat exchangers.

  9. A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting

    International Nuclear Information System (INIS)

    Su, Zhongyue; Wang, Jianzhou; Lu, Haiyan; Zhao, Ge

    2014-01-01

    Highlights: • A new hybrid model is developed for wind speed forecasting. • The model is based on the Kalman filter and the ARIMA. • An intelligent optimization method is employed in the hybrid model. • The new hybrid model has good performance in western China. - Abstract: Forecasting the wind speed is indispensable in wind-related engineering studies and is important in the management of wind farms. As a technique essential for the future of clean energy systems, reducing the forecasting errors related to wind speed has always been an important research subject. In this paper, an optimized hybrid method based on the Autoregressive Integrated Moving Average (ARIMA) and Kalman filter is proposed to forecast the daily mean wind speed in western China. This approach employs Particle Swarm Optimization (PSO) as an intelligent optimization algorithm to optimize the parameters of the ARIMA model, which develops a hybrid model that is best adapted to the data set, increasing the fitting accuracy and avoiding over-fitting. The proposed method is subsequently examined on the wind farms of western China, where the proposed hybrid model is shown to perform effectively and steadily

  10. A new hybrid optimization method inspired from swarm intelligence: Fuzzy adaptive swallow swarm optimization algorithm (FASSO

    Directory of Open Access Journals (Sweden)

    Mehdi Neshat

    2015-11-01

    Full Text Available In this article, the objective was to present effective and optimal strategies aimed at improving the Swallow Swarm Optimization (SSO method. The SSO is one of the best optimization methods based on swarm intelligence which is inspired by the intelligent behaviors of swallows. It has been able to offer a relatively strong method for solving optimization problems. However, despite its many advantages, the SSO suffers from two shortcomings. Firstly, particles movement speed is not controlled satisfactorily during the search due to the lack of an inertia weight. Secondly, the variables of the acceleration coefficient are not able to strike a balance between the local and the global searches because they are not sufficiently flexible in complex environments. Therefore, the SSO algorithm does not provide adequate results when it searches in functions such as the Step or Quadric function. Hence, the fuzzy adaptive Swallow Swarm Optimization (FASSO method was introduced to deal with these problems. Meanwhile, results enjoy high accuracy which are obtained by using an adaptive inertia weight and through combining two fuzzy logic systems to accurately calculate the acceleration coefficients. High speed of convergence, avoidance from falling into local extremum, and high level of error tolerance are the advantages of proposed method. The FASSO was compared with eleven of the best PSO methods and SSO in 18 benchmark functions. Finally, significant results were obtained.

  11. Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm

    Science.gov (United States)

    Villarubia, Gabriel; De Paz, Juan F.; Bajo, Javier

    2017-01-01

    The use of electric bikes (e-bikes) has grown in popularity, especially in large cities where overcrowding and traffic congestion are common. This paper proposes an intelligent engine management system for e-bikes which uses the information collected from sensors to optimize battery energy and time. The intelligent engine management system consists of a built-in network of sensors in the e-bike, which is used for multi-sensor data fusion; the collected data is analysed and fused and on the basis of this information the system can provide the user with optimal and personalized assistance. The user is given recommendations related to battery consumption, sensors, and other parameters associated with the route travelled, such as duration, speed, or variation in altitude. To provide a user with these recommendations, artificial neural networks are used to estimate speed and consumption for each of the segments of a route. These estimates are incorporated into evolutionary algorithms in order to make the optimizations. A comparative analysis of the results obtained has been conducted for when routes were travelled with and without the optimization system. From the experiments, it is evident that the use of an engine management system results in significant energy and time savings. Moreover, user satisfaction increases as the level of assistance adapts to user behavior and the characteristics of the route. PMID:29088087

  12. Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm

    Directory of Open Access Journals (Sweden)

    Daniel H. De La Iglesia

    2017-10-01

    Full Text Available The use of electric bikes (e-bikes has grown in popularity, especially in large cities where overcrowding and traffic congestion are common. This paper proposes an intelligent engine management system for e-bikes which uses the information collected from sensors to optimize battery energy and time. The intelligent engine management system consists of a built-in network of sensors in the e-bike, which is used for multi-sensor data fusion; the collected data is analysed and fused and on the basis of this information the system can provide the user with optimal and personalized assistance. The user is given recommendations related to battery consumption, sensors, and other parameters associated with the route travelled, such as duration, speed, or variation in altitude. To provide a user with these recommendations, artificial neural networks are used to estimate speed and consumption for each of the segments of a route. These estimates are incorporated into evolutionary algorithms in order to make the optimizations. A comparative analysis of the results obtained has been conducted for when routes were travelled with and without the optimization system. From the experiments, it is evident that the use of an engine management system results in significant energy and time savings. Moreover, user satisfaction increases as the level of assistance adapts to user behavior and the characteristics of the route.

  13. Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm.

    Science.gov (United States)

    De La Iglesia, Daniel H; Villarrubia, Gabriel; De Paz, Juan F; Bajo, Javier

    2017-10-31

    The use of electric bikes (e-bikes) has grown in popularity, especially in large cities where overcrowding and traffic congestion are common. This paper proposes an intelligent engine management system for e-bikes which uses the information collected from sensors to optimize battery energy and time. The intelligent engine management system consists of a built-in network of sensors in the e-bike, which is used for multi-sensor data fusion; the collected data is analysed and fused and on the basis of this information the system can provide the user with optimal and personalized assistance. The user is given recommendations related to battery consumption, sensors, and other parameters associated with the route travelled, such as duration, speed, or variation in altitude. To provide a user with these recommendations, artificial neural networks are used to estimate speed and consumption for each of the segments of a route. These estimates are incorporated into evolutionary algorithms in order to make the optimizations. A comparative analysis of the results obtained has been conducted for when routes were travelled with and without the optimization system. From the experiments, it is evident that the use of an engine management system results in significant energy and time savings. Moreover, user satisfaction increases as the level of assistance adapts to user behavior and the characteristics of the route.

  14. Pap Smear Diagnosis Using a Hybrid Intelligent Scheme Focusing on Genetic Algorithm Based Feature Selection and Nearest Neighbor Classification

    DEFF Research Database (Denmark)

    Marinakis, Yannis; Dounias, Georgios; Jantzen, Jan

    2009-01-01

    The term pap-smear refers to samples of human cells stained by the so-called Papanicolaou method. The purpose of the Papanicolaou method is to diagnose pre-cancerous cell changes before they progress to invasive carcinoma. In this paper a metaheuristic algorithm is proposed in order to classify t...... other previously applied intelligent approaches....

  15. Intelligence

    Science.gov (United States)

    Sternberg, Robert J.

    2012-01-01

    Intelligence is the ability to learn from experience and to adapt to, shape, and select environments. Intelligence as measured by (raw scores on) conventional standardized tests varies across the lifespan, and also across generations. Intelligence can be understood in part in terms of the biology of the brain—especially with regard to the functioning in the prefrontal cortex—and also correlates with brain size, at least within humans. Studies of the effects of genes and environment suggest that the heritability coefficient (ratio of genetic to phenotypic variation) is between .4 and .8, although heritability varies as a function of socioeconomic status and other factors. Racial differences in measured intelligence have been observed, but race is a socially constructed rather than biological variable, so such differences are difficult to interpret. PMID:22577301

  16. Intelligence.

    Science.gov (United States)

    Sternberg, Robert J

    2012-03-01

    Intelligence is the ability to learn from experience and to adapt to, shape, and select environments. Intelligence as measured by (raw scores on) conventional standardized tests varies across the lifespan, and also across generations. Intelligence can be understood in part in terms of the biology of the brain-especially with regard to the functioning in the prefrontal cortex-and also correlates with brain size, at least within humans. Studies of the effects of genes and environment suggest that the heritability coefficient (ratio of genetic to phenotypic variation) is between .4 and .8, although heritability varies as a function of socioeconomic status and other factors. Racial differences in measured intelligence have been observed, but race is a socially constructed rather than biological variable, so such differences are difficult to interpret.

  17. Artificial Neural Network and Genetic Algorithm Hybrid Intelligence for Predicting Thai Stock Price Index Trend

    Directory of Open Access Journals (Sweden)

    Montri Inthachot

    2016-01-01

    Full Text Available This study investigated the use of Artificial Neural Network (ANN and Genetic Algorithm (GA for prediction of Thailand’s SET50 index trend. ANN is a widely accepted machine learning method that uses past data to predict future trend, while GA is an algorithm that can find better subsets of input variables for importing into ANN, hence enabling more accurate prediction by its efficient feature selection. The imported data were chosen technical indicators highly regarded by stock analysts, each represented by 4 input variables that were based on past time spans of 4 different lengths: 3-, 5-, 10-, and 15-day spans before the day of prediction. This import undertaking generated a big set of diverse input variables with an exponentially higher number of possible subsets that GA culled down to a manageable number of more effective ones. SET50 index data of the past 6 years, from 2009 to 2014, were used to evaluate this hybrid intelligence prediction accuracy, and the hybrid’s prediction results were found to be more accurate than those made by a method using only one input variable for one fixed length of past time span.

  18. Multi-objective decoupling algorithm for active distance control of intelligent hybrid electric vehicle

    Science.gov (United States)

    Luo, Yugong; Chen, Tao; Li, Keqiang

    2015-12-01

    The paper presents a novel active distance control strategy for intelligent hybrid electric vehicles (IHEV) with the purpose of guaranteeing an optimal performance in view of the driving functions, optimum safety, fuel economy and ride comfort. Considering the complexity of driving situations, the objects of safety and ride comfort are decoupled from that of fuel economy, and a hierarchical control architecture is adopted to improve the real-time performance and the adaptability. The hierarchical control structure consists of four layers: active distance control object determination, comprehensive driving and braking torque calculation, comprehensive torque distribution and torque coordination. The safety distance control and the emergency stop algorithms are designed to achieve the safety and ride comfort goals. The optimal rule-based energy management algorithm of the hybrid electric system is developed to improve the fuel economy. The torque coordination control strategy is proposed to regulate engine torque, motor torque and hydraulic braking torque to improve the ride comfort. This strategy is verified by simulation and experiment using a forward simulation platform and a prototype vehicle. The results show that the novel control strategy can achieve the integrated and coordinated control of its multiple subsystems, which guarantees top performance of the driving functions and optimum safety, fuel economy and ride comfort.

  19. Artificial Neural Network and Genetic Algorithm Hybrid Intelligence for Predicting Thai Stock Price Index Trend

    Science.gov (United States)

    Boonjing, Veera; Intakosum, Sarun

    2016-01-01

    This study investigated the use of Artificial Neural Network (ANN) and Genetic Algorithm (GA) for prediction of Thailand's SET50 index trend. ANN is a widely accepted machine learning method that uses past data to predict future trend, while GA is an algorithm that can find better subsets of input variables for importing into ANN, hence enabling more accurate prediction by its efficient feature selection. The imported data were chosen technical indicators highly regarded by stock analysts, each represented by 4 input variables that were based on past time spans of 4 different lengths: 3-, 5-, 10-, and 15-day spans before the day of prediction. This import undertaking generated a big set of diverse input variables with an exponentially higher number of possible subsets that GA culled down to a manageable number of more effective ones. SET50 index data of the past 6 years, from 2009 to 2014, were used to evaluate this hybrid intelligence prediction accuracy, and the hybrid's prediction results were found to be more accurate than those made by a method using only one input variable for one fixed length of past time span. PMID:27974883

  20. An algorithm for intelligent sorting of CT-related dose parameters

    Science.gov (United States)

    Cook, Tessa S.; Zimmerman, Stefan L.; Steingal, Scott; Boonn, William W.; Kim, Woojin

    2011-03-01

    Imaging centers nationwide are seeking innovative means to record and monitor CT-related radiation dose in light of multiple instances of patient over-exposure to medical radiation. As a solution, we have developed RADIANCE, an automated pipeline for extraction, archival and reporting of CT-related dose parameters. Estimation of whole-body effective dose from CT dose-length product (DLP)-an indirect estimate of radiation dose-requires anatomy-specific conversion factors that cannot be applied to total DLP, but instead necessitate individual anatomy-based DLPs. A challenge exists because the total DLP reported on a dose sheet often includes multiple separate examinations (e.g., chest CT followed by abdominopelvic CT). Furthermore, the individual reported series DLPs may not be clearly or consistently labeled. For example, Arterial could refer to the arterial phase of the triple liver CT or the arterial phase of a CT angiogram. To address this problem, we have designed an intelligent algorithm to parse dose sheets for multi-series CT examinations and correctly separate the total DLP into its anatomic components. The algorithm uses information from the departmental PACS to determine how many distinct CT examinations were concurrently performed. Then, it matches the number of distinct accession numbers to the series that were acquired, and anatomically matches individual series DLPs to their appropriate CT examinations. This algorithm allows for more accurate dose analytics, but there remain instances where automatic sorting is not feasible. To ultimately improve radiology patient care, we must standardize series names and exam names to unequivocally sort exams by anatomy and correctly estimate whole-body effective dose.

  1. An algorithm for intelligent sorting of CT-related dose parameters.

    Science.gov (United States)

    Cook, Tessa S; Zimmerman, Stefan L; Steingall, Scott R; Boonn, William W; Kim, Woojin

    2012-02-01

    Imaging centers nationwide are seeking innovative means to record and monitor computed tomography (CT)-related radiation dose in light of multiple instances of patient overexposure to medical radiation. As a solution, we have developed RADIANCE, an automated pipeline for extraction, archival, and reporting of CT-related dose parameters. Estimation of whole-body effective dose from CT dose length product (DLP)--an indirect estimate of radiation dose--requires anatomy-specific conversion factors that cannot be applied to total DLP, but instead necessitate individual anatomy-based DLPs. A challenge exists because the total DLP reported on a dose sheet often includes multiple separate examinations (e.g., chest CT followed by abdominopelvic CT). Furthermore, the individual reported series DLPs may not be clearly or consistently labeled. For example, "arterial" could refer to the arterial phase of the triple liver CT or the arterial phase of a CT angiogram. To address this problem, we have designed an intelligent algorithm to parse dose sheets for multi-series CT examinations and correctly separate the total DLP into its anatomic components. The algorithm uses information from the departmental PACS to determine how many distinct CT examinations were concurrently performed. Then, it matches the number of distinct accession numbers to the series that were acquired and anatomically matches individual series DLPs to their appropriate CT examinations. This algorithm allows for more accurate dose analytics, but there remain instances where automatic sorting is not feasible. To ultimately improve radiology patient care, we must standardize series names and exam names to unequivocally sort exams by anatomy and correctly estimate whole-body effective dose.

  2. Optimization of the core configuration design using a hybrid artificial intelligence algorithm for research reactors

    International Nuclear Information System (INIS)

    Hedayat, Afshin; Davilu, Hadi; Barfrosh, Ahmad Abdollahzadeh; Sepanloo, Kamran

    2009-01-01

    To successfully carry out material irradiation experiments and radioisotope productions, a high thermal neutron flux at irradiation box over a desired life time of a core configuration is needed. On the other hand, reactor safety and operational constraints must be preserved during core configuration selection. Two main objectives and two safety and operational constraints are suggested to optimize reactor core configuration design. Suggested parameters and conditions are considered as two separate fitness functions composed of two main objectives and two penalty functions. This is a constrained and combinatorial type of a multi-objective optimization problem. In this paper, a fast and effective hybrid artificial intelligence algorithm is introduced and developed to reach a Pareto optimal set. The hybrid algorithm is composed of a fast and elitist multi-objective genetic algorithm (GA) and a fast fitness function evaluating system based on the cascade feed forward artificial neural networks (ANNs). A specific GA representation of core configuration and also special GA operators are introduced and used to overcome the combinatorial constraints of this optimization problem. A software package (Core Pattern Calculator 1) is developed to prepare and reform required data for ANNs training and also to revise the optimization results. Some practical test parameters and conditions are suggested to adjust main parameters of the hybrid algorithm. Results show that introduced ANNs can be trained and estimate selected core parameters of a research reactor very quickly. It improves effectively optimization process. Final optimization results show that a uniform and dense diversity of Pareto fronts are gained over a wide range of fitness function values. To take a more careful selection of Pareto optimal solutions, a revision system is introduced and used. The revision of gained Pareto optimal set is performed by using developed software package. Also some secondary operational

  3. Optimization of the core configuration design using a hybrid artificial intelligence algorithm for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hedayat, Afshin, E-mail: ahedayat@aut.ac.i [Department of Nuclear Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Reactor Research and Development School, Nuclear Science and Technology Research Institute (NSTRI), End of North Karegar Street, P.O. Box 14395-836, Tehran (Iran, Islamic Republic of); Davilu, Hadi [Department of Nuclear Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Barfrosh, Ahmad Abdollahzadeh [Department of Computer Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sepanloo, Kamran [Reactor Research and Development School, Nuclear Science and Technology Research Institute (NSTRI), End of North Karegar Street, P.O. Box 14395-836, Tehran (Iran, Islamic Republic of)

    2009-12-15

    To successfully carry out material irradiation experiments and radioisotope productions, a high thermal neutron flux at irradiation box over a desired life time of a core configuration is needed. On the other hand, reactor safety and operational constraints must be preserved during core configuration selection. Two main objectives and two safety and operational constraints are suggested to optimize reactor core configuration design. Suggested parameters and conditions are considered as two separate fitness functions composed of two main objectives and two penalty functions. This is a constrained and combinatorial type of a multi-objective optimization problem. In this paper, a fast and effective hybrid artificial intelligence algorithm is introduced and developed to reach a Pareto optimal set. The hybrid algorithm is composed of a fast and elitist multi-objective genetic algorithm (GA) and a fast fitness function evaluating system based on the cascade feed forward artificial neural networks (ANNs). A specific GA representation of core configuration and also special GA operators are introduced and used to overcome the combinatorial constraints of this optimization problem. A software package (Core Pattern Calculator 1) is developed to prepare and reform required data for ANNs training and also to revise the optimization results. Some practical test parameters and conditions are suggested to adjust main parameters of the hybrid algorithm. Results show that introduced ANNs can be trained and estimate selected core parameters of a research reactor very quickly. It improves effectively optimization process. Final optimization results show that a uniform and dense diversity of Pareto fronts are gained over a wide range of fitness function values. To take a more careful selection of Pareto optimal solutions, a revision system is introduced and used. The revision of gained Pareto optimal set is performed by using developed software package. Also some secondary operational

  4. On the Idea of a New Artificial Intelligence Based Optimization Algorithm Inspired From the Nature of Vortex

    Directory of Open Access Journals (Sweden)

    Utku Kose

    2015-07-01

    Full Text Available In this paper, the idea of a new artificial intelligence based optimization algorithm, which is inspired from the nature of vortex, has been provided briefly. As also a bio-inspired computation algorithm, the idea is generally focused on a typical vortex flow / behavior in nature and inspires from some dynamics that are occurred in the sense of vortex nature. Briefly, the algorithm is also a swarm-oriented evolutional problem solution approach; because it includes many methods related to elimination of weak swarm members and trying to improve the solution process by supporting the solution space via new swarm members. In order have better idea about success of the algorithm; it has been tested via some benchmark functions. At this point, the obtained results show that the algorithm can be an alternative to the literature in terms of single-objective optimizationsolution ways. Vortex Optimization Algorithm (VOA is the name suggestion by the authors; for this new idea of intelligent optimization approach.

  5. Application of an Intelligent Fuzzy Regression Algorithm in Road Freight Transportation Modeling

    Directory of Open Access Journals (Sweden)

    Pooya Najaf

    2013-07-01

    Full Text Available Road freight transportation between provinces of a country has an important effect on the traffic flow of intercity transportation networks. Therefore, an accurate estimation of the road freight transportation for provinces of a country is so crucial to improve the rural traffic operation in a large scale management. Accordingly, the focused case study database in this research is the information related to Iran’s provinces in the year 2008. Correlation between road freight transportation with variables such as transport cost and distance, population, average household income and Gross Domestic Product (GDP of each province is calculated. Results clarify that the population is the most effective factor in the prediction of provinces’ transported freight. Linear Regression Model (LRM is calibrated based on the population variable, and afterwards Fuzzy Regression Algorithm (FRA is generated on the basis of the LRM. The proposed FRA is an intelligent modified algorithm with an accurate prediction and fitting ability. This methodology can be significantly useful in macro-level planning problems where decreasing prediction error values is one of the most important concerns for decision makers. In addition, Back-Propagation Neural Network (BPNN is developed to evaluate the prediction capability of the models and to be compared with FRA. According to the final results, the modified FRA estimates road freight transportation values more accurately than the BPNN and LRM. Finally, in order to predict the road freight transportation values, the reliability of the calibrated models is analyzed using the information of the year 2009. Results show higher reliability for the proposed modified FRA.

  6. a Novel 3d Intelligent Fuzzy Algorithm Based on Minkowski-Clustering

    Science.gov (United States)

    Toori, S.; Esmaeily, A.

    2017-09-01

    Assessing and monitoring the state of the earth surface is a key requirement for global change research. In this paper, we propose a new consensus fuzzy clustering algorithm that is based on the Minkowski distance. This research concentrates on Tehran's vegetation mass and its changes during 29 years using remote sensing technology. The main purpose of this research is to evaluate the changes in vegetation mass using a new process by combination of intelligent NDVI fuzzy clustering and Minkowski distance operation. The dataset includes the images of Landsat8 and Landsat TM, from 1989 to 2016. For each year three images of three continuous days were used to identify vegetation impact and recovery. The result was a 3D NDVI image, with one dimension for each day NDVI. The next step was the classification procedure which is a complicated process of categorizing pixels into a finite number of separate classes, based on their data values. If a pixel satisfies a certain set of standards, the pixel is allocated to the class that corresponds to those criteria. This method is less sensitive to noise and can integrate solutions from multiple samples of data or attributes for processing data in the processing industry. The result was a fuzzy one dimensional image. This image was also computed for the next 28 years. The classification was done in both specified urban and natural park areas of Tehran. Experiments showed that our method worked better in classifying image pixels in comparison with the standard classification methods.

  7. Intelligent control a hybrid approach based on fuzzy logic, neural networks and genetic algorithms

    CERN Document Server

    Siddique, Nazmul

    2014-01-01

    Intelligent Control considers non-traditional modelling and control approaches to nonlinear systems. Fuzzy logic, neural networks and evolutionary computing techniques are the main tools used. The book presents a modular switching fuzzy logic controller where a PD-type fuzzy controller is executed first followed by a PI-type fuzzy controller thus improving the performance of the controller compared with a PID-type fuzzy controller.  The advantage of the switching-type fuzzy controller is that it uses one rule-base thus minimises the rule-base during execution. A single rule-base is developed by merging the membership functions for change of error of the PD-type controller and sum of error of the PI-type controller. Membership functions are then optimized using evolutionary algorithms. Since the two fuzzy controllers were executed in series, necessary further tuning of the differential and integral scaling factors of the controller is then performed. Neural-network-based tuning for the scaling parameters of t...

  8. Comparative performance analysis of the artificial-intelligence-based thermal control algorithms for the double-skin building

    International Nuclear Information System (INIS)

    Moon, Jin Woo

    2015-01-01

    This study aimed at developing artificial-intelligence-(AI)-theory-based optimal control algorithms for improving the indoor temperature conditions and heating energy efficiency of the double-skin buildings. For this, one conventional rule-based and four AI-based algorithms were developed, including artificial neural network (ANN), fuzzy logic (FL), and adaptive neuro fuzzy inference systems (ANFIS), for operating the surface openings of the double skin and the heating system. A numerical computer simulation method incorporating the matrix laboratory (MATLAB) and the transient systems simulation (TRNSYS) software was used for the comparative performance tests. The analysis results revealed that advanced thermal-environment comfort and stability can be provided by the AI-based algorithms. In particular, the FL and ANFIS algorithms were superior to the ANN algorithm in terms of providing better thermal conditions. The ANN-based algorithm, however, proved its potential to be the most energy-efficient and stable strategy among the four AI-based algorithms. It can be concluded that the optimal algorithm can be differently determined according to the major focus of the strategy. If comfortable thermal condition is the principal interest, then the FL or ANFIS algorithm could be the proper solution, and if energy saving for space heating and system operation stability is the main concerns, then the ANN-based algorithm may be applicable. - Highlights: • Integrated control algorithms were developed for the heating system and surface openings. • AI theories were applied to the control algorithms. • ANN, FL, and ANFIS were the applied AI theories. • Comparative performance tests were conducted using computer simulation. • AI algorithms presented superior temperature environment.

  9. Real-time intelligent pattern recognition algorithm for surface EMG signals

    Directory of Open Access Journals (Sweden)

    Jahed Mehran

    2007-12-01

    Full Text Available Abstract Background Electromyography (EMG is the study of muscle function through the inquiry of electrical signals that the muscles emanate. EMG signals collected from the surface of the skin (Surface Electromyogram: sEMG can be used in different applications such as recognizing musculoskeletal neural based patterns intercepted for hand prosthesis movements. Current systems designed for controlling the prosthetic hands either have limited functions or can only be used to perform simple movements or use excessive amount of electrodes in order to achieve acceptable results. In an attempt to overcome these problems we have proposed an intelligent system to recognize hand movements and have provided a user assessment routine to evaluate the correctness of executed movements. Methods We propose to use an intelligent approach based on adaptive neuro-fuzzy inference system (ANFIS integrated with a real-time learning scheme to identify hand motion commands. For this purpose and to consider the effect of user evaluation on recognizing hand movements, vision feedback is applied to increase the capability of our system. By using this scheme the user may assess the correctness of the performed hand movement. In this work a hybrid method for training fuzzy system, consisting of back-propagation (BP and least mean square (LMS is utilized. Also in order to optimize the number of fuzzy rules, a subtractive clustering algorithm has been developed. To design an effective system, we consider a conventional scheme of EMG pattern recognition system. To design this system we propose to use two different sets of EMG features, namely time domain (TD and time-frequency representation (TFR. Also in order to decrease the undesirable effects of the dimension of these feature sets, principle component analysis (PCA is utilized. Results In this study, the myoelectric signals considered for classification consists of six unique hand movements. Features chosen for EMG signal

  10. Hemodynamic and oxygen transport patterns for outcome prediction, therapeutic goals, and clinical algorithms to improve outcome. Feasibility of artificial intelligence to customize algorithms.

    Science.gov (United States)

    Shoemaker, W C; Patil, R; Appel, P L; Kram, H B

    1992-11-01

    A generalized decision tree or clinical algorithm for treatment of high-risk elective surgical patients was developed from a physiologic model based on empirical data. First, a large data bank was used to do the following: (1) describe temporal hemodynamic and oxygen transport patterns that interrelate cardiac, pulmonary, and tissue perfusion functions in survivors and nonsurvivors; (2) define optimal therapeutic goals based on the supranormal oxygen transport values of high-risk postoperative survivors; (3) compare the relative effectiveness of alternative therapies in a wide variety of clinical and physiologic conditions; and (4) to develop criteria for titration of therapy to the endpoints of the supranormal optimal goals using cardiac index (CI), oxygen delivery (DO2), and oxygen consumption (VO2) as proxy outcome measures. Second, a general purpose algorithm was generated from these data and tested in preoperatively randomized clinical trials of high-risk surgical patients. Improved outcome was demonstrated with this generalized algorithm. The concept that the supranormal values represent compensations that have survival value has been corroborated by several other groups. We now propose a unique approach to refine the generalized algorithm to develop customized algorithms and individualized decision analysis for each patient's unique problems. The present article describes a preliminary evaluation of the feasibility of artificial intelligence techniques to accomplish individualized algorithms that may further improve patient care and outcome.

  11. Intelligent PID controller based on ant system algorithm and fuzzy inference and its application to bionic artificial leg

    Institute of Scientific and Technical Information of China (English)

    谭冠政; 曾庆冬; 李文斌

    2004-01-01

    A designing method of intelligent proportional-integral-derivative(PID) controllers was proposed based on the ant system algorithm and fuzzy inference. This kind of controller is called Fuzzy-ant system PID controller. It consists of an off-line part and an on-line part. In the off-line part, for a given control system with a PID controller,by taking the overshoot, setting time and steady-state error of the system unit step response as the performance indexes and by using the ant system algorithm, a group of optimal PID parameters K*p , Ti* and T*d can be obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-line part, based on Kp* , Ti*and Td* and according to the current system error e and its time derivative, a specific program is written, which is used to optimize and adjust the PID parameters on-line through a fuzzy inference mechanism to ensure that the system response has optimal transient and steady-state performance. This kind of intelligent PID controller can be used to control the motor of the intelligent bionic artificial leg designed by the authors. The result of computer simulation experiment shows that the controller has less overshoot and shorter setting time.

  12. Attitude Determination Method by Fusing Single Antenna GPS and Low Cost MEMS Sensors Using Intelligent Kalman Filter Algorithm

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2017-01-01

    Full Text Available For meeting the demands of cost and size for micronavigation system, a combined attitude determination approach with sensor fusion algorithm and intelligent Kalman filter (IKF on low cost Micro-Electro-Mechanical System (MEMS gyroscope, accelerometer, and magnetometer and single antenna Global Positioning System (GPS is proposed. The effective calibration method is performed to compensate the effect of errors in low cost MEMS Inertial Measurement Unit (IMU. The different control strategies fusing the MEMS multisensors are designed. The yaw angle fusing gyroscope, accelerometer, and magnetometer algorithm is estimated accurately under GPS failure and unavailable sideslip situations. For resolving robust control and characters of the uncertain noise statistics influence, the high gain scale of IKF is adjusted by fuzzy controller in the transition process and steady state to achieve faster convergence and accurate estimation. The experiments comparing different MEMS sensors and fusion algorithms are implemented to verify the validity of the proposed approach.

  13. Research Algorithm on Building Intelligent Transportation System based on RFID Technology

    Directory of Open Access Journals (Sweden)

    Chuanqi Chen

    2013-05-01

    Full Text Available Intelligent transportation system to all aspects of organic integration of human, vehicle, road and environment of the transport system, so that the operation of functional integration and intelligent vehicle, road. Intelligent transportation system (ITS to improve the efficiency of traffic system by increasing the effective use and management of traffic information is mainly composed of information collection and input, output, control strategy, implementation of the subsystems of data transmission and communication subsystem. The RFID reader to wireless communication through the antenna and RFID tag can achieve a write operation on the tag identification codes and memory read data. The paper proposes research on building intelligent transportation system based on RFID technology. Experimental results show that ITS system can effectively improve the traffic situation, improve the utilization rate of the existing road resource and save social cost.

  14. Algorithm for Public Electric Transport Schedule Control for Intelligent Embedded Devices

    Science.gov (United States)

    Alps, Ivars; Potapov, Andrey; Gorobetz, Mikhail; Levchenkov, Anatoly

    2010-01-01

    In this paper authors present heuristics algorithm for precise schedule fulfilment in city traffic conditions taking in account traffic lights. The algorithm is proposed for programmable controller. PLC is proposed to be installed in electric vehicle to control its motion speed and signals of traffic lights. Algorithm is tested using real controller connected to virtual devices and real functional models of real tram devices. Results of experiments show high precision of public transport schedule fulfilment using proposed algorithm.

  15. System Design and Implementation of Intelligent Fire Engine Path Planning based on SAT Algorithm

    Institute of Scientific and Technical Information of China (English)

    CAI Li-sha[1; ZENG Wei-peng[1; HAN Bao-ru[1

    2016-01-01

    In this paper, in order to make intelligent fi re car complete autonomy path planning in simulation map. Proposed system design of intelligent fi re car path planning based on SAT. The system includes a planning module, a communication module, a control module. Control module via the communication module upload the initial state and the goal state to planning module. Planning module solve this planning solution,and then download planning solution to control module, control the movement of the car fi re. Experiments show this the system is tracking short time, higher planning effi ciency.

  16. Intelligible Artificial Intelligence

    OpenAIRE

    Weld, Daniel S.; Bansal, Gagan

    2018-01-01

    Since Artificial Intelligence (AI) software uses techniques like deep lookahead search and stochastic optimization of huge neural networks to fit mammoth datasets, it often results in complex behavior that is difficult for people to understand. Yet organizations are deploying AI algorithms in many mission-critical settings. In order to trust their behavior, we must make it intelligible --- either by using inherently interpretable models or by developing methods for explaining otherwise overwh...

  17. Optimal sensor placement for large structures using the nearest neighbour index and a hybrid swarm intelligence algorithm

    International Nuclear Information System (INIS)

    Lian, Jijian; He, Longjun; Ma, Bin; Peng, Wenxiang; Li, Huokun

    2013-01-01

    Research on optimal sensor placement (OSP) has become very important due to the need to obtain effective testing results with limited testing resources in health monitoring. In this study, a new methodology is proposed to select the best sensor locations for large structures. First, a novel fitness function derived from the nearest neighbour index is proposed to overcome the drawbacks of the effective independence method for OSP for large structures. This method maximizes the contribution of each sensor to modal observability and simultaneously avoids the redundancy of information between the selected degrees of freedom. A hybrid algorithm combining the improved discrete particle swarm optimization (DPSO) with the clonal selection algorithm is then implemented to optimize the proposed fitness function effectively. Finally, the proposed method is applied to an arch dam for performance verification. The results show that the proposed hybrid swarm intelligence algorithm outperforms a genetic algorithm with decimal two-dimension array encoding and DPSO in the capability of global optimization. The new fitness function is advantageous in terms of sensor distribution and ensuring a well-conditioned information matrix and orthogonality of modes, indicating that this method may be used to provide guidance for OSP in various large structures. (paper)

  18. Analysis of Changes in Market Shares of Commercial Banks Operating in Turkey Using Computational Intelligence Algorithms

    OpenAIRE

    Amasyali, M. Fatih; Demırhan, Ayse; Bal, Mert

    2014-01-01

    This paper aims to model the change in market share of 30 domestic and foreign banks, which have been operating between the years 1990 and 2009 in Turkey by taking into consideration 20 financial ratios of those banks. Due to the fragile structure of the banking sector in Turkey, this study plays an important role for determining the changes in market share of banks and taking the necessary measures promptly. For this reason, computational intelligence methods have been used in the study. Acc...

  19. Investigation of trunk muscle activities during lifting using a multi-objective optimization-based model and intelligent optimization algorithms.

    Science.gov (United States)

    Ghiasi, Mohammad Sadegh; Arjmand, Navid; Boroushaki, Mehrdad; Farahmand, Farzam

    2016-03-01

    A six-degree-of-freedom musculoskeletal model of the lumbar spine was developed to predict the activity of trunk muscles during light, moderate and heavy lifting tasks in standing posture. The model was formulated into a multi-objective optimization problem, minimizing the sum of the cubed muscle stresses and maximizing the spinal stability index. Two intelligent optimization algorithms, i.e., the vector evaluated particle swarm optimization (VEPSO) and nondominated sorting genetic algorithm (NSGA), were employed to solve the optimization problem. The optimal solution for each task was then found in the way that the corresponding in vivo intradiscal pressure could be reproduced. Results indicated that both algorithms predicted co-activity in the antagonistic abdominal muscles, as well as an increase in the stability index when going from the light to the heavy task. For all of the light, moderate and heavy tasks, the muscles' activities predictions of the VEPSO and the NSGA were generally consistent and in the same order of the in vivo electromyography data. The proposed methodology is thought to provide improved estimations for muscle activities by considering the spinal stability and incorporating the in vivo intradiscal pressure data.

  20. Using a Combined Platform of Swarm Intelligence Algorithms and GIS to Provide Land Suitability Maps for Locating Cardiac Rehabilitation Defibrillators

    Science.gov (United States)

    KAFFASH-CHARANDABI, Neda; SADEGHI-NIARAKI, Abolghasem; PARK, Dong-Kyun

    2015-01-01

    Background: Cardiac arrest is a condition in which the heart is completely stopped and is not pumping any blood. Although most cardiac arrest cases are reported from homes or hospitals, about 20% occur in public areas. Therefore, these areas need to be investigated in terms of cardiac arrest incidence so that places of high incidence can be identified and cardiac rehabilitation defibrillators installed there. Methods: In order to investigate a study area in Petersburg, Pennsylvania State, and to determine appropriate places for installing defibrillators with 5-year period data, swarm intelligence algorithms were used. Moreover, the location of the defibrillators was determined based on the following five evaluation criteria: land use, altitude of the area, economic conditions, distance from hospitals and approximate areas of reported cases of cardiac arrest for public places that were created in geospatial information system (GIS). Results: The A-P HADEL algorithm results were more precise about 27.36%. The validation results indicated a wider coverage of real values and the verification results confirmed the faster and more exact optimization of the cost function in the PSO method. Conclusion: The study findings emphasize the necessity of applying optimal optimization methods along with GIS and precise selection of criteria in the selection of optimal locations for installing medical facilities because the selected algorithm and criteria dramatically affect the final responses. Meanwhile, providing land suitability maps for installing facilities across hot and risky spots has the potential to save many lives. PMID:26587471

  1. Algorithme intelligent d'optimisation d'un design structurel de grande envergure

    Science.gov (United States)

    Dominique, Stephane

    The implementation of an automated decision support system in the field of design and structural optimisation can give a significant advantage to any industry working on mechanical designs. Indeed, by providing solution ideas to a designer or by upgrading existing design solutions while the designer is not at work, the system may reduce the project cycle time, or allow more time to produce a better design. This thesis presents a new approach to automate a design process based on Case-Based Reasoning (CBR), in combination with a new genetic algorithm named Genetic Algorithm with Territorial core Evolution (GATE). This approach was developed in order to reduce the operating cost of the process. However, as the system implementation cost is quite expensive, the approach is better suited for large scale design problem, and particularly for design problems that the designer plans to solve for many different specification sets. First, the CBR process uses a databank filled with every known solution to similar design problems. Then, the closest solutions to the current problem in term of specifications are selected. After this, during the adaptation phase, an artificial neural network (ANN) interpolates amongst known solutions to produce an additional solution to the current problem using the current specifications as inputs. Each solution produced and selected by the CBR is then used to initialize the population of an island of the genetic algorithm. The algorithm will optimise the solution further during the refinement phase. Using progressive refinement, the algorithm starts using only the most important variables for the problem. Then, as the optimisation progress, the remaining variables are gradually introduced, layer by layer. The genetic algorithm that is used is a new algorithm specifically created during this thesis to solve optimisation problems from the field of mechanical device structural design. The algorithm is named GATE, and is essentially a real number

  2. Intelligent Models Performance Improvement Based on Wavelet Algorithm and Logarithmic Transformations in Suspended Sediment Estimation

    Directory of Open Access Journals (Sweden)

    R. Hajiabadi

    2016-10-01

    Full Text Available Introduction One reason for the complexity of hydrological phenomena prediction, especially time series is existence of features such as trend, noise and high-frequency oscillations. These complex features, especially noise, can be detected or removed by preprocessing. Appropriate preprocessing causes estimation of these phenomena become easier. Preprocessing in the data driven models such as artificial neural network, gene expression programming, support vector machine, is more effective because the quality of data in these models is important. Present study, by considering diagnosing and data transformation as two different preprocessing, tries to improve the results of intelligent models. In this study two different intelligent models, Artificial Neural Network and Gene Expression Programming, are applied to estimation of daily suspended sediment load. Wavelet transforms and logarithmic transformation is used for diagnosing and data transformation, respectively. Finally, the impacts of preprocessing on the results of intelligent models are evaluated. Materials and Methods In this study, Gene Expression Programming and Artificial Neural Network are used as intelligent models for suspended sediment load estimation, then the impacts of diagnosing and logarithmic transformations approaches as data preprocessor are evaluated and compared to the result improvement. Two different logarithmic transforms are considered in this research, LN and LOG. Wavelet transformation is used to time series denoising. In order to denoising by wavelet transforms, first, time series can be decomposed at one level (Approximation part and detail part and second, high-frequency part (detail will be removed as noise. According to the ability of gene expression programming and artificial neural network to analysis nonlinear systems; daily values of suspended sediment load of the Skunk River in USA, during a 5-year period, are investigated and then estimated.4 years of

  3. Time Series Analysis and Forecasting for Wind Speeds Using Support Vector Regression Coupled with Artificial Intelligent Algorithms

    Directory of Open Access Journals (Sweden)

    Ping Jiang

    2015-01-01

    Full Text Available Wind speed/power has received increasing attention around the earth due to its renewable nature as well as environmental friendliness. With the global installed wind power capacity rapidly increasing, wind industry is growing into a large-scale business. Reliable short-term wind speed forecasts play a practical and crucial role in wind energy conversion systems, such as the dynamic control of wind turbines and power system scheduling. In this paper, an intelligent hybrid model for short-term wind speed prediction is examined; the model is based on cross correlation (CC analysis and a support vector regression (SVR model that is coupled with brainstorm optimization (BSO and cuckoo search (CS algorithms, which are successfully utilized for parameter determination. The proposed hybrid models were used to forecast short-term wind speeds collected from four wind turbines located on a wind farm in China. The forecasting results demonstrate that the intelligent hybrid models outperform single models for short-term wind speed forecasting, which mainly results from the superiority of BSO and CS for parameter optimization.

  4. Genetic algorithms in teaching artificial intelligence (automated generation of specific algebras)

    Science.gov (United States)

    Habiballa, Hashim; Jendryscik, Radek

    2017-11-01

    The problem of teaching essential Artificial Intelligence (AI) methods is an important task for an educator in the branch of soft-computing. The key focus is often given to proper understanding of the principle of AI methods in two essential points - why we use soft-computing methods at all and how we apply these methods to generate reasonable results in sensible time. We present one interesting problem solved in the non-educational research concerning automated generation of specific algebras in the huge search space. We emphasize above mentioned points as an educational case study of an interesting problem in automated generation of specific algebras.

  5. Algorithms

    Indian Academy of Sciences (India)

    polynomial) division have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language Is used to describe an algorithm for execution on a computer. An algorithm expressed using a programming.

  6. Is chess the drosophila of artificial intelligence? A social history of an algorithm.

    Science.gov (United States)

    Ensmenger, Nathan

    2012-02-01

    Since the mid 1960s, researchers in computer science have famously referred to chess as the 'drosophila' of artificial intelligence (AI). What they seem to mean by this is that chess, like the common fruit fly, is an accessible, familiar, and relatively simple experimental technology that nonetheless can be used productively to produce valid knowledge about other, more complex systems. But for historians of science and technology, the analogy between chess and drosophila assumes a larger significance. As Robert Kohler has ably described, the decision to adopt drosophila as the organism of choice for genetics research had far-reaching implications for the development of 20th century biology. In a similar manner, the decision to focus on chess as the measure of both human and computer intelligence had important and unintended consequences for AL research. This paper explores the emergence of chess as an experimental technology, its significance in the developing research practices of the AI community, and the unique ways in which the decision to focus on chess shaped the program of AI research in the decade of the 1970s. More broadly, it attempts to open up the virtual black box of computer software--and of computer games in particular--to the scrutiny of historical and sociological analysis.

  7. Artificial intelligence programming with LabVIEW: genetic algorithms for instrumentation control and optimization.

    Science.gov (United States)

    Moore, J H

    1995-06-01

    A genetic algorithm for instrumentation control and optimization was developed using the LabVIEW graphical programming environment. The usefulness of this methodology for the optimization of a closed loop control instrument is demonstrated with minimal complexity and the programming is presented in detail to facilitate its adaptation to other LabVIEW applications. Closed loop control instruments have variety of applications in the biomedical sciences including the regulation of physiological processes such as blood pressure. The program presented here should provide a useful starting point for those wishing to incorporate genetic algorithm approaches to LabVIEW mediated optimization of closed loop control instruments.

  8. Intelligent QoS routing algorithm based on improved AODV protocol for Ad Hoc networks

    Science.gov (United States)

    Huibin, Liu; Jun, Zhang

    2016-04-01

    Mobile Ad Hoc Networks were playing an increasingly important part in disaster reliefs, military battlefields and scientific explorations. However, networks routing difficulties are more and more outstanding due to inherent structures. This paper proposed an improved cuckoo searching-based Ad hoc On-Demand Distance Vector Routing protocol (CSAODV). It elaborately designs the calculation methods of optimal routing algorithm used by protocol and transmission mechanism of communication-package. In calculation of optimal routing algorithm by CS Algorithm, by increasing QoS constraint, the found optimal routing algorithm can conform to the requirements of specified bandwidth and time delay, and a certain balance can be obtained among computation spending, bandwidth and time delay. Take advantage of NS2 simulation software to take performance test on protocol in three circumstances and validate the feasibility and validity of CSAODV protocol. In results, CSAODV routing protocol is more adapt to the change of network topological structure than AODV protocol, which improves package delivery fraction of protocol effectively, reduce the transmission time delay of network, reduce the extra burden to network brought by controlling information, and improve the routing efficiency of network.

  9. A Hybrid Swarm Intelligence Algorithm for Intrusion Detection Using Significant Features

    Directory of Open Access Journals (Sweden)

    P. Amudha

    2015-01-01

    Full Text Available Intrusion detection has become a main part of network security due to the huge number of attacks which affects the computers. This is due to the extensive growth of internet connectivity and accessibility to information systems worldwide. To deal with this problem, in this paper a hybrid algorithm is proposed to integrate Modified Artificial Bee Colony (MABC with Enhanced Particle Swarm Optimization (EPSO to predict the intrusion detection problem. The algorithms are combined together to find out better optimization results and the classification accuracies are obtained by 10-fold cross-validation method. The purpose of this paper is to select the most relevant features that can represent the pattern of the network traffic and test its effect on the success of the proposed hybrid classification algorithm. To investigate the performance of the proposed method, intrusion detection KDDCup’99 benchmark dataset from the UCI Machine Learning repository is used. The performance of the proposed method is compared with the other machine learning algorithms and found to be significantly different.

  10. Classification and learning using genetic algorithms applications in Bioinformatics and Web Intelligence

    CERN Document Server

    Bandyopadhyay, Sanghamitra

    2007-01-01

    This book provides a unified framework that describes how genetic learning can be used to design pattern recognition and learning systems. It examines how a search technique, the genetic algorithm, can be used for pattern classification mainly through approximating decision boundaries. Coverage also demonstrates the effectiveness of the genetic classifiers vis-à-vis several widely used classifiers, including neural networks.

  11. 3Es System Optimization under Uncertainty Using Hybrid Intelligent Algorithm: A Fuzzy Chance-Constrained Programming Model

    Directory of Open Access Journals (Sweden)

    Jiekun Song

    2016-01-01

    Full Text Available Harmonious development of 3Es (economy-energy-environment system is the key to realize regional sustainable development. The structure and components of 3Es system are analyzed. Based on the analysis of causality diagram, GDP and industrial structure are selected as the target parameters of economy subsystem, energy consumption intensity is selected as the target parameter of energy subsystem, and the emissions of COD, ammonia nitrogen, SO2, and NOX and CO2 emission intensity are selected as the target parameters of environment system. Fixed assets investment of three industries, total energy consumption, and investment in environmental pollution control are selected as the decision variables. By regarding the parameters of 3Es system optimization as fuzzy numbers, a fuzzy chance-constrained goal programming (FCCGP model is constructed, and a hybrid intelligent algorithm including fuzzy simulation and genetic algorithm is proposed for solving it. The results of empirical analysis on Shandong province of China show that the FCCGP model can reflect the inherent relationship and evolution law of 3Es system and provide the effective decision-making support for 3Es system optimization.

  12. An Improved Task Scheduling Algorithm for Intelligent Control in Tiny Mechanical System

    Directory of Open Access Journals (Sweden)

    Jialiang Wang

    2014-01-01

    Full Text Available Wireless sensor network (WSN has been already widely used in many fields in terms of industry, agriculture, and military, and so forth. The basic composition is WSN nodes that are capable of performing processing, gathering information, and communicating with other connected nodes in the network. The main components of a WSN node are microcontroller, transceiver, and some sensors. Undoubtedly, it also can be added with some actuators to form a tiny mechanical system. Under this case, the existence of task preemption while executing operating system will not only cost more energy for WSN nodes themselves, but also bring unacceptable system states caused by vibrations. However for these nodes, task I/O delays are inevitable due to the existence of task preemption, which will bring extra overhead for the whole system, and even bring unacceptable system states caused by vibrations. This paper mainly considers the earliest deadline first (EDF task preemption algorithm executed in WSN OS and proposes an improved task preemption algorithm so as to lower the preemption overhead and I/O delay and then improve the system performance. The experimental results show that the improved task preemption algorithm can reduce the I/O delay effectively, so the real-time processing ability of the system is enhanced.

  13. Effectively Tackling Reinsurance Problems by Using Evolutionary and Swarm Intelligence Algorithms

    Directory of Open Access Journals (Sweden)

    Sancho Salcedo-Sanz

    2014-04-01

    Full Text Available This paper is focused on solving different hard optimization problems that arise in the field of insurance and, more specifically, in reinsurance problems. In this area, the complexity of the models and assumptions considered in the definition of the reinsurance rules and conditions produces hard black-box optimization problems (problems in which the objective function does not have an algebraic expression, but it is the output of a system (usually a computer program, which must be solved in order to obtain the optimal output of the reinsurance. The application of traditional optimization approaches is not possible in this kind of mathematical problem, so new computational paradigms must be applied to solve these problems. In this paper, we show the performance of two evolutionary and swarm intelligence techniques (evolutionary programming and particle swarm optimization. We provide an analysis in three black-box optimization problems in reinsurance, where the proposed approaches exhibit an excellent behavior, finding the optimal solution within a fraction of the computational cost used by inspection or enumeration methods.

  14. The Design of Artificial Intelligence Robot Based on Fuzzy Logic Controller Algorithm

    Science.gov (United States)

    Zuhrie, M. S.; Munoto; Hariadi, E.; Muslim, S.

    2018-04-01

    Artificial Intelligence Robot is a wheeled robot driven by a DC motor that moves along the wall using an ultrasonic sensor as a detector of obstacles. This study uses ultrasonic sensors HC-SR04 to measure the distance between the robot with the wall based ultrasonic wave. This robot uses Fuzzy Logic Controller to adjust the speed of DC motor. When the ultrasonic sensor detects a certain distance, sensor data is processed on ATmega8 then the data goes to ATmega16. From ATmega16, sensor data is calculated based on Fuzzy rules to drive DC motor speed. The program used to adjust the speed of a DC motor is CVAVR program (Code Vision AVR). The readable distance of ultrasonic sensor is 3 cm to 250 cm with response time 0.5 s. Testing of robots on walls with a setpoint value of 9 cm to 10 cm produce an average error value of -12% on the wall of L, -8% on T walls, -8% on U wall, and -1% in square wall.

  15. Application of algorithms and artificial-intelligence approach for locating multiple harmonics in distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Y.-Y.; Chen, Y.-C. [Chung Yuan University (China). Dept. of Electrical Engineering

    1999-05-01

    A new method is proposed for locating multiple harmonic sources in distribution systems. The proposed method first determines the proper locations for metering measurement using fuzzy clustering. Next, an artificial neural network based on the back-propagation approach is used to identify the most likely location for multiple harmonic sources. A set of systematic algorithmic steps is developed until all harmonic locations are identified. The simulation results for an 18-busbar system show that the proposed method is very efficient in locating the multiple harmonics in a distribution system. (author)

  16. Preliminary Evaluation of Intelligent Intention Estimation Algorithms for an Actuated Lower-Limb Exoskeleton

    Directory of Open Access Journals (Sweden)

    Mervin Chandrapal

    2013-02-01

    Full Text Available This paper describes the experimental testing of an actuated lower-limb exoskeleton. The exoskeleton is designed to alleviate the loading at the knee joint by supplying assistive torque. It is hypothesized that the support provided will reduce the muscular effort required to perform activities of daily living and thus facilitate the execution of these movements by those who previously had limited mobility. The exoskeleton is actuated by four pneumatic artificial muscles, each providing 150N of pulling force to assist in the flexion and extension of the knee joint. The exoskeleton system estimates the user's intended motion using muscle activity information recorded from five thigh muscles, together with the knee angle. To experimentally evaluate the performance of the device, the exoskeleton was worn by an able-bodied user, whilst performing the sit-to-stand-to-sit movement. In addition, the three intention estimation algorithms were also tested to determine the influence of the various algorithms on the support provided. The results show a significant reduction in the user's muscle activity (≈ 20% when assisted by the exoskeleton in a predictable manner.

  17. Optimal Management Of Renewable-Based Mgs An Intelligent Approach Through The Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Mehdi Nafar

    2015-08-01

    Full Text Available Abstract- This article proposes a probabilistic frame built on Scenario fabrication to considerate the uncertainties in the finest action managing of Micro Grids MGs. The MG contains different recoverable energy resources such as Wind Turbine WT Micro Turbine MT Photovoltaic PV Fuel Cell FC and one battery as the storing device. The advised frame is based on scenario generation and Roulette wheel mechanism to produce different circumstances for handling the uncertainties of altered factors. It habits typical spreading role as a probability scattering function of random factors. The uncertainties which are measured in this paper are grid bid alterations cargo request calculating error and PV and WT yield power productions. It is well-intentioned to asset that solving the MG difficult for 24 hours of a day by considering diverse uncertainties and different constraints needs one powerful optimization method that can converge fast when it doesnt fall in local optimal topic. Simultaneously single Group Search Optimization GSO system is presented to vision the total search space globally. The GSO algorithm is instigated from group active of beasts. Also the GSO procedure one change is similarly planned for this algorithm. The planned context and way is applied o one test grid-connected MG as a typical grid.

  18. Computational Intelligence Based Data Fusion Algorithm for Dynamic sEMG and Skeletal Muscle Force Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekhar Potluri,; Madhavi Anugolu; Marco P. Schoen; D. Subbaram Naidu

    2013-08-01

    In this work, an array of three surface Electrography (sEMG) sensors are used to acquired muscle extension and contraction signals for 18 healthy test subjects. The skeletal muscle force is estimated using the acquired sEMG signals and a Non-linear Wiener Hammerstein model, relating the two signals in a dynamic fashion. The model is obtained from using System Identification (SI) algorithm. The obtained force models for each sensor are fused using a proposed fuzzy logic concept with the intent to improve the force estimation accuracy and resilience to sensor failure or misalignment. For the fuzzy logic inference system, the sEMG entropy, the relative error, and the correlation of the force signals are considered for defining the membership functions. The proposed fusion algorithm yields an average of 92.49% correlation between the actual force and the overall estimated force output. In addition, the proposed fusionbased approach is implemented on a test platform. Experiments indicate an improvement in finger/hand force estimation.

  19. Algorithms

    Indian Academy of Sciences (India)

    to as 'divide-and-conquer'. Although there has been a large effort in realizing efficient algorithms, there are not many universally accepted algorithm design paradigms. In this article, we illustrate algorithm design techniques such as balancing, greedy strategy, dynamic programming strategy, and backtracking or traversal of ...

  20. The Spatio-Temporal Modeling of Urban Growth Using Remote Sensing and Intelligent Algorithms, Case of Mahabad, Iran

    Directory of Open Access Journals (Sweden)

    Alì Soltani

    2013-06-01

    Full Text Available The simulation of urban growth can be considered as a useful way for analyzing the complex process of urban physical evolution. The aim of this study is to model and simulate the complex patterns of land use change by utilizing remote sensing and artificial intelligence techniques in the fast growing city of Mahabad, north-west of Iran which encountered with several environmental subsequences. The key subject is how to allocate optimized weight into effective parameters upon urban growth and subsequently achieving an improved simulation. Artificial Neural Networks (ANN algorithm was used to allocate the weight via an iteration approach. In this way, weight allocation was carried out by the ANN training accomplishing through time-series satellite images representing urban growth process. Cellular Automata (CA was used as the principal motor of the model and then ANN applied to find suitable scale of parameters and relations between potential factors affecting urban growth. The general accuracy of the suggested model and obtained Fuzzy Kappa Coefficient confirms achieving better results than classic CA models in simulating nonlinear urban evolution process.

  1. Intelligent Modeling Combining Adaptive Neuro Fuzzy Inference System and Genetic Algorithm for Optimizing Welding Process Parameters

    Science.gov (United States)

    Gowtham, K. N.; Vasudevan, M.; Maduraimuthu, V.; Jayakumar, T.

    2011-04-01

    Modified 9Cr-1Mo ferritic steel is used as a structural material for steam generator components of power plants. Generally, tungsten inert gas (TIG) welding is preferred for welding of these steels in which the depth of penetration achievable during autogenous welding is limited. Therefore, activated flux TIG (A-TIG) welding, a novel welding technique, has been developed in-house to increase the depth of penetration. In modified 9Cr-1Mo steel joints produced by the A-TIG welding process, weld bead width, depth of penetration, and heat-affected zone (HAZ) width play an important role in determining the mechanical properties as well as the performance of the weld joints during service. To obtain the desired weld bead geometry and HAZ width, it becomes important to set the welding process parameters. In this work, adaptative neuro fuzzy inference system is used to develop independent models correlating the welding process parameters like current, voltage, and torch speed with weld bead shape parameters like depth of penetration, bead width, and HAZ width. Then a genetic algorithm is employed to determine the optimum A-TIG welding process parameters to obtain the desired weld bead shape parameters and HAZ width.

  2. A novel approach of battery pack state of health estimation using artificial intelligence optimization algorithm

    Science.gov (United States)

    Zhang, Xu; Wang, Yujie; Liu, Chang; Chen, Zonghai

    2018-02-01

    An accurate battery pack state of health (SOH) estimation is important to characterize the dynamic responses of battery pack and ensure the battery work with safety and reliability. However, the different performances in battery discharge/charge characteristics and working conditions in battery pack make the battery pack SOH estimation difficult. In this paper, the battery pack SOH is defined as the change of battery pack maximum energy storage. It contains all the cells' information including battery capacity, the relationship between state of charge (SOC) and open circuit voltage (OCV), and battery inconsistency. To predict the battery pack SOH, the method of particle swarm optimization-genetic algorithm is applied in battery pack model parameters identification. Based on the results, a particle filter is employed in battery SOC and OCV estimation to avoid the noise influence occurring in battery terminal voltage measurement and current drift. Moreover, a recursive least square method is used to update cells' capacity. Finally, the proposed method is verified by the profiles of New European Driving Cycle and dynamic test profiles. The experimental results indicate that the proposed method can estimate the battery states with high accuracy for actual operation. In addition, the factors affecting the change of SOH is analyzed.

  3. Prediction of Drug-Plasma Protein Binding Using Artificial Intelligence Based Algorithms.

    Science.gov (United States)

    Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar

    2018-01-01

    Plasma protein binding (PPB) has vital importance in the characterization of drug distribution in the systemic circulation. Unfavorable PPB can pose a negative effect on clinical development of promising drug candidates. The drug distribution properties should be considered at the initial phases of the drug design and development. Therefore, PPB prediction models are receiving an increased attention. In the current study, we present a systematic approach using Support vector machine, Artificial neural network, k- nearest neighbor, Probabilistic neural network, Partial least square and Linear discriminant analysis to relate various in vitro and in silico molecular descriptors to a diverse dataset of 736 drugs/drug-like compounds. The overall accuracy of Support vector machine with Radial basis function kernel came out to be comparatively better than the rest of the applied algorithms. The training set accuracy, validation set accuracy, precision, sensitivity, specificity and F1 score for the Suprort vector machine was found to be 89.73%, 89.97%, 92.56%, 87.26%, 91.97% and 0.898, respectively. This model can potentially be useful in screening of relevant drug candidates at the preliminary stages of drug design and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. The Novel Artificial Intelligence Based Sub-Surface Inclusion Detection Device and Algorithm

    Directory of Open Access Journals (Sweden)

    Jong-Ha LEE

    2017-05-01

    Full Text Available We design, implement, and test a novel tactile elasticity imaging sensor to detect the elastic modulus of a contacted object. Emulating a human finger, a multi-layer polydimethylsiloxane waveguide has been fabricated as the sensing probe. The light is illuminated under the critical angle to totally reflect within the flexible and transparent waveguide. When a waveguide is compressed by an object, the contact area of the waveguide deforms and causes the light to scatter. The scattered light is captured by a high resolution camera. Multiple images are taken from slightly different loading values. The distributed forces have been estimated using the integrated pixel values of diffused lights. The displacements of the contacted object deformation have been estimated by matching the series of tactile images. For this purpose, a novel pattern matching algorithm is developed. The salient feature of this sensor is that it is capable of measuring the absolute elastic modulus value of soft materials without additional measurement units. The measurements were validated by comparing the measured elasticity of the commercial rubber samples with the known elasticity. The evaluation results showed that this type of sensor can measure elasticity within ±5.38 %.

  5. Performance improvement of an active vibration absorber subsystem for an aircraft model using a bees algorithm based on multi-objective intelligent optimization

    Science.gov (United States)

    Zarchi, Milad; Attaran, Behrooz

    2017-11-01

    This study develops a mathematical model to investigate the behaviour of adaptable shock absorber dynamics for the six-degree-of-freedom aircraft model in the taxiing phase. The purpose of this research is to design a proportional-integral-derivative technique for control of an active vibration absorber system using a hydraulic nonlinear actuator based on the bees algorithm. This optimization algorithm is inspired by the natural intelligent foraging behaviour of honey bees. The neighbourhood search strategy is used to find better solutions around the previous one. The parameters of the controller are adjusted by minimizing the aircraft's acceleration and impact force as the multi-objective function. The major advantages of this algorithm over other optimization algorithms are its simplicity, flexibility and robustness. The results of the numerical simulation indicate that the active suspension increases the comfort of the ride for passengers and the fatigue life of the structure. This is achieved by decreasing the impact force, displacement and acceleration significantly.

  6. An intelligent approach to optimize the EDM process parameters using utility concept and QPSO algorithm

    Directory of Open Access Journals (Sweden)

    Chinmaya P. Mohanty

    2017-04-01

    Full Text Available Although significant research has gone into the field of electrical discharge machining (EDM, analysis related to the machining efficiency of the process with different electrodes has not been adequately made. Copper and brass are frequently used as electrode materials but graphite can be used as a potential electrode material due to its high melting point temperature and good electrical conductivity. In view of this, the present work attempts to compare the machinability of copper, graphite and brass electrodes while machining Inconel 718 super alloy. Taguchi’s L27 orthogonal array has been employed to collect data for the study and analyze effect of machining parameters on performance measures. The important performance measures selected for this study are material removal rate, tool wear rate, surface roughness and radial overcut. Machining parameters considered for analysis are open circuit voltage, discharge current, pulse-on-time, duty factor, flushing pressure and electrode material. From the experimental analysis, it is observed that electrode material, discharge current and pulse-on-time are the important parameters for all the performance measures. Utility concept has been implemented to transform a multiple performance characteristics into an equivalent performance characteristic. Non-linear regression analysis is carried out to develop a model relating process parameters and overall utility index. Finally, the quantum behaved particle swarm optimization (QPSO and particle swarm optimization (PSO algorithms have been used to compare the optimal level of cutting parameters. Results demonstrate the elegance of QPSO in terms of convergence and computational effort. The optimal parametric setting obtained through both the approaches is validated by conducting confirmation experiments.

  7. Algorithms

    Indian Academy of Sciences (India)

    ticians but also forms the foundation of computer science. Two ... with methods of developing algorithms for solving a variety of problems but ... applications of computers in science and engineer- ... numerical calculus are as important. We will ...

  8. Algorithms

    Indian Academy of Sciences (India)

    algorithm design technique called 'divide-and-conquer'. One of ... Turtle graphics, September. 1996. 5. ... whole list named 'PO' is a pointer to the first element of the list; ..... Program for computing matrices X and Y and placing the result in C *).

  9. Algorithms

    Indian Academy of Sciences (India)

    algorithm that it is implicitly understood that we know how to generate the next natural ..... Explicit comparisons are made in line (1) where maximum and minimum is ... It can be shown that the function T(n) = 3/2n -2 is the solution to the above ...

  10. A novel proton exchange membrane fuel cell based power conversion system for telecom supply with genetic algorithm assisted intelligent interfacing converter

    International Nuclear Information System (INIS)

    Kaur, Rajvir; Krishnasamy, Vijayakumar; Muthusamy, Kaleeswari; Chinnamuthan, Periasamy

    2017-01-01

    Highlights: • Proton exchange membrane fuel cell based telecom tower supply is proposed. • The use of diesel generator is eliminated and battery size is reduced. • Boost converter based intelligent interfacing unit is implemented. • The genetic algorithm assisted controller is proposed for effective interfacing. • The controller is robust against input and output disturbance rejection. - Abstract: This paper presents the fuel cell based simple electric energy conversion system for supplying the telecommunication towers to reduce the operation and maintenance cost of telecom companies. The telecom industry is at the boom and is penetrating deep into remote rural areas having unreliable or no grid supply. The telecom industry is getting heavily dependent on a diesel generator set and battery bank as a backup for continuously supplying a base transceiver station of telecom towers. This excessive usage of backup supply resulted in increased operational expenditure, the unreliability of power supply and had become a threat to the environment. A significant development and concern of clean energy sources, proton exchange membrane fuel cell based supply for base transceiver station is proposed with intelligent interfacing unit. The necessity of the battery bank capacity is significantly reduced as compared with the earlier solutions. Further, a simple closed loop and genetic algorithm assisted controller is proposed for intelligent interfacing unit which consists of power electronic boost converter for power conditioning. The proposed genetic algorithm assisted controller would ensure the tight voltage regulation at the DC distribution bus of the base transceiver station. Also, it will provide the robust performance of the base transceiver station under telecom load variation and proton exchange membrane fuel cell output voltage fluctuations. The complete electric energy conversion system along with telecom loads is simulated in MATLAB/Simulink platform and

  11. Algorithms

    Indian Academy of Sciences (India)

    will become clear in the next article when we discuss a simple logo like programming language. ... Rod B may be used as an auxiliary store. The problem is to find an algorithm which performs this task. ... No disks are moved from A to Busing C as auxiliary rod. • move _disk (A, C);. (No + l)th disk is moved from A to C directly ...

  12. 光电智能车过弯控制算法的研究%Research of Photoelectric Intelligent Car Cornering Control Algorithm

    Institute of Scientific and Technical Information of China (English)

    潘潇; 刘勇; 吴文池; 刘国华

    2015-01-01

    In order to improve the stability of the intelligent car when it turns around, a control algorithm is proposed. The algorithm focuses on the following information such as information acquisition of racing track, velocity control, mounting and control of suspend steering engine. The test results show that the scheme enhances the stability and flexibility of the intelligent car’s cornering.%针对智能车过弯的稳定性问题,本文从赛道信息采集、速度控制、悬挂舵机安装与控制等方面进行了研究,并提出了一种方向与悬挂舵机控制相结合的控制算法。通过测试,提升了智能小车过弯时的稳定性和灵活性,提高了综合速度。

  13. Swarm intelligence-based approach for optimal design of CMOS differential amplifier and comparator circuit using a hybrid salp swarm algorithm

    Science.gov (United States)

    Asaithambi, Sasikumar; Rajappa, Muthaiah

    2018-05-01

    In this paper, an automatic design method based on a swarm intelligence approach for CMOS analog integrated circuit (IC) design is presented. The hybrid meta-heuristics optimization technique, namely, the salp swarm algorithm (SSA), is applied to the optimal sizing of a CMOS differential amplifier and the comparator circuit. SSA is a nature-inspired optimization algorithm which mimics the navigating and hunting behavior of salp. The hybrid SSA is applied to optimize the circuit design parameters and to minimize the MOS transistor sizes. The proposed swarm intelligence approach was successfully implemented for an automatic design and optimization of CMOS analog ICs using Generic Process Design Kit (GPDK) 180 nm technology. The circuit design parameters and design specifications are validated through a simulation program for integrated circuit emphasis simulator. To investigate the efficiency of the proposed approach, comparisons have been carried out with other simulation-based circuit design methods. The performances of hybrid SSA based CMOS analog IC designs are better than the previously reported studies.

  14. Intelligent simulated annealing algorithm applied to the optimization of the main magnet for magnetic resonance imaging machine

    International Nuclear Information System (INIS)

    Sanchez Lopez, Hector

    2001-01-01

    This work describes an alternative algorithm of Simulated Annealing applied to the design of the main magnet for a Magnetic Resonance Imaging machine. The algorithm uses a probabilistic radial base neuronal network to classify the possible solutions, before the objective function evaluation. This procedure allows reducing up to 50% the number of iterations required by simulated annealing to achieve the global maximum, when compared with the SA algorithm. The algorithm was applied to design a 0.1050 Tesla four coil resistive magnet, which produces a magnetic field 2.13 times more uniform than the solution given by SA. (author)

  15. Optimum Performances for Non-Linear Finite Elements Model of 8/6 Switched Reluctance Motor Based on Intelligent Routing Algorithms

    Directory of Open Access Journals (Sweden)

    Chouaib Labiod

    2017-01-01

    Full Text Available This paper presents torque ripple reduction with speed control of 8/6 Switched Reluctance Motor (SRM by the determination of the optimal parameters of the turn on, turn off angles Theta_(on, Theta_(off, and the supply voltage using Particle Swarm Optimization (PSO algorithm and steady state Genetic Algorithm (ssGA. With SRM model, there is difficulty in the control relapsed into highly non-linear static characteristics. For this, the Finite Elements Method (FEM has been used because it is a powerful tool to get a model closer to reality. The mechanism used in this kind of machine control consists of a speed controller in order to determine current reference which must be produced to get the desired speed, hence, hysteresis controller is used to compare current reference with current measured up to achieve switching signals needed in the inverter. Depending on this control, the intelligent routing algorithms get the fitness equation from torque ripple and speed response so as to give the optimal parameters for better results. Obtained results from the proposed strategy based on metaheuristic methods are compared with the basic case without considering the adjustment of specific parameters. Optimized results found clearly confirmed the ability and the efficiency of the proposed strategy based on metaheuristic methods in improving the performances of the SRM control considering different torque loads.

  16. Structure and weights optimisation of a modified Elman network emotion classifier using hybrid computational intelligence algorithms: a comparative study

    Science.gov (United States)

    Sheikhan, Mansour; Abbasnezhad Arabi, Mahdi; Gharavian, Davood

    2015-10-01

    Artificial neural networks are efficient models in pattern recognition applications, but their performance is dependent on employing suitable structure and connection weights. This study used a hybrid method for obtaining the optimal weight set and architecture of a recurrent neural emotion classifier based on gravitational search algorithm (GSA) and its binary version (BGSA), respectively. By considering the features of speech signal that were related to prosody, voice quality, and spectrum, a rich feature set was constructed. To select more efficient features, a fast feature selection method was employed. The performance of the proposed hybrid GSA-BGSA method was compared with similar hybrid methods based on particle swarm optimisation (PSO) algorithm and its binary version, PSO and discrete firefly algorithm, and hybrid of error back-propagation and genetic algorithm that were used for optimisation. Experimental tests on Berlin emotional database demonstrated the superior performance of the proposed method using a lighter network structure.

  17. Intelligence in Artificial Intelligence

    OpenAIRE

    Datta, Shoumen Palit Austin

    2016-01-01

    The elusive quest for intelligence in artificial intelligence prompts us to consider that instituting human-level intelligence in systems may be (still) in the realm of utopia. In about a quarter century, we have witnessed the winter of AI (1990) being transformed and transported to the zenith of tabloid fodder about AI (2015). The discussion at hand is about the elements that constitute the canonical idea of intelligence. The delivery of intelligence as a pay-per-use-service, popping out of ...

  18. How to Improve Artificial Intelligence through Web

    OpenAIRE

    Adrian Lupasc

    2005-01-01

    Intelligent agents, intelligent software applications and artificial intelligent applications from artificial intelligence service providers may make their way onto the Web in greater number as adaptive software, dynamic programming languages and Learning Algorithms are introduced into Web Services. The evolution of Web architecture may allow intelligent applications to run directly on the Web by introducing XML, RDF and logic layer. The Intelligent Wireless Web’s significant potential for ra...

  19. Plant intelligence

    Science.gov (United States)

    Lipavská, Helena; Žárský, Viktor

    2009-01-01

    The concept of plant intelligence, as proposed by Anthony Trewavas, has raised considerable discussion. However, plant intelligence remains loosely defined; often it is either perceived as practically synonymous to Darwinian fitness, or reduced to a mere decorative metaphor. A more strict view can be taken, emphasizing necessary prerequisites such as memory and learning, which requires clarifying the definition of memory itself. To qualify as memories, traces of past events have to be not only stored, but also actively accessed. We propose a criterion for eliminating false candidates of possible plant intelligence phenomena in this stricter sense: an “intelligent” behavior must involve a component that can be approximated by a plausible algorithmic model involving recourse to stored information about past states of the individual or its environment. Re-evaluation of previously presented examples of plant intelligence shows that only some of them pass our test. “You were hurt?” Kumiko said, looking at the scar. Sally looked down. “Yeah.” “Why didn't you have it removed?” “Sometimes it's good to remember.” “Being hurt?” “Being stupid.”—(W. Gibson: Mona Lisa Overdrive) PMID:19816094

  20. Simulation Research Framework with Embedded Intelligent Algorithms for Analysis of Multi-Target, Multi-Sensor, High-Cluttered Environments

    Science.gov (United States)

    Hanlon, Nicholas P.

    The National Air Space (NAS) can be easily described as a complex aviation system-of-systems that seamlessly works in harmony to provide safe transit for all aircraft within its domain. The number of aircraft within the NAS is growing and according the FAA, "[o]n any given day, more than 85,000 flights are in the skies in the United States...This translates into roughly 5,000 planes in the skies above the United States at any given moment. More than 15,000 federal air traffic controllers in airport traffic control towers, terminal radar approach control facilities and air route traffic control centers guide pilots through the system". The FAA is currently rolling out the Next Generation Air Transportation System (NextGen) to handle projected growth while leveraging satellite-based navigation for improved tracking. A key component to instantiating NextGen lies in the equipage of Automatic Dependent Surveillance-Broadcast (ADS-B), a performance based surveillance technology that uses GPS navigation for more precise positioning than radars providing increased situational awareness to air traffic controllers. Furthermore, the FAA is integrating UAS into the NAS, further congesting the airways and information load on air traffic controllers. The expected increase in aircraft density due to NextGen implementation and UAS integration will require innovative algorithms to cope with the increase data flow and to support air traffic controllers in their decision-making. This research presents a few innovative algorithms to support increased aircraft density and UAS integration into the NAS. First, it is imperative that individual tracks are correlated prior to fusing to ensure a proper picture of the environment is correct. However, current approaches do not scale well as the number of targets and sensors are increased. This work presents a fuzzy clustering design to hierarchically break the problem down into smaller subspaces prior to correlation. This approach provides

  1. Powertrain Matching and Optimization of Dual-Motor Hybrid Driving System for Electric Vehicle Based on Quantum Genetic Intelligent Algorithm

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2014-01-01

    Full Text Available In order to increase the driving range and improve the overall performance of all-electric vehicles, a new dual-motor hybrid driving system with two power sources was proposed. This system achieved torque-speed coupling between the two power sources and greatly improved the high performance working range of the motors; at the same time, continuously variable transmission (CVT was achieved to efficiently increase the driving range. The power system parameters were determined using the “global optimization method”; thus, the vehicle’s dynamics and economy were used as the optimization indexes. Based on preliminary matches, quantum genetic algorithm was introduced to optimize the matching in the dual-motor hybrid power system. Backward simulation was performed on the combined simulation platform of Matlab/Simulink and AVL-Cruise to optimize, simulate, and verify the system parameters of the transmission system. Results showed that quantum genetic algorithms exhibited good global optimization capability and convergence in dealing with multiobjective and multiparameter optimization. The dual-motor hybrid-driving system for electric cars satisfied the dynamic performance and economy requirements of design, efficiently increasing the driving range of the car, having high performance, and reducing energy consumption of 15.6% compared with the conventional electric vehicle with single-speed reducers.

  2. A New Hybrid Model Based on Data Preprocessing and an Intelligent Optimization Algorithm for Electrical Power System Forecasting

    Directory of Open Access Journals (Sweden)

    Ping Jiang

    2015-01-01

    Full Text Available The establishment of electrical power system cannot only benefit the reasonable distribution and management in energy resources, but also satisfy the increasing demand for electricity. The electrical power system construction is often a pivotal part in the national and regional economic development plan. This paper constructs a hybrid model, known as the E-MFA-BP model, that can forecast indices in the electrical power system, including wind speed, electrical load, and electricity price. Firstly, the ensemble empirical mode decomposition can be applied to eliminate the noise of original time series data. After data preprocessing, the back propagation neural network model is applied to carry out the forecasting. Owing to the instability of its structure, the modified firefly algorithm is employed to optimize the weight and threshold values of back propagation to obtain a hybrid model with higher forecasting quality. Three experiments are carried out to verify the effectiveness of the model. Through comparison with other traditional well-known forecasting models, and models optimized by other optimization algorithms, the experimental results demonstrate that the hybrid model has the best forecasting performance.

  3. Ring Fusion of Fisheye Images Based on Corner Detection Algorithm for Around View Monitoring System of Intelligent Driving

    Directory of Open Access Journals (Sweden)

    Jianhui Zhao

    2018-01-01

    Full Text Available In order to improve the visual effect of the around view monitor (AVM, we propose a novel ring fusion method to reduce the brightness difference among fisheye images and achieve a smooth transition around stitching seam. Firstly, an integrated corner detection is proposed to automatically detect corner points for image registration. Then, we use equalization processing to reduce the brightness among images. And we match the color of images according to the ring fusion method. Finally, we use distance weight to blend images around stitching seam. Through this algorithm, we have made a Matlab toolbox for image blending. 100% of the required corner is accurately and fully automatically detected. The transition around the stitching seam is very smooth, with no obvious stitching trace.

  4. A model for Intelligent Random Access Memory architecture (IRAM) cellular automata algorithms on the Associative String Processing machine (ASTRA)

    CERN Document Server

    Rohrbach, F; Vesztergombi, G

    1997-01-01

    In the near future, the computer performance will be completely determined by how long it takes to access memory. There are bottle-necks in memory latency and memory-to processor interface bandwidth. The IRAM initiative could be the answer by putting Processor-In-Memory (PIM). Starting from the massively parallel processing concept, one reached a similar conclusion. The MPPC (Massively Parallel Processing Collaboration) project and the 8K processor ASTRA machine (Associative String Test bench for Research \\& Applications) developed at CERN \\cite{kuala} can be regarded as a forerunner of the IRAM concept. The computing power of the ASTRA machine, regarded as an IRAM with 64 one-bit processors on a 64$\\times$64 bit-matrix memory chip machine, has been demonstrated by running statistical physics algorithms: one-dimensional stochastic cellular automata, as a simple model for dynamical phase transitions. As a relevant result for physics, the damage spreading of this model has been investigated.

  5. Developing a Reading Concentration Monitoring System by Applying an Artificial Bee Colony Algorithm to E-Books in an Intelligent Classroom

    Directory of Open Access Journals (Sweden)

    Yueh-Min Huang

    2012-10-01

    Full Text Available A growing number of educational studies apply sensors to improve student learning in real classroom settings. However, how can sensors be integrated into classrooms to help instructors find out students’ reading concentration rates and thus better increase learning effectiveness? The aim of the current study was to develop a reading concentration monitoring system for use with e-books in an intelligent classroom and to help instructors find out the students’ reading concentration rates. The proposed system uses three types of sensor technologies, namely a webcam, heartbeat sensor, and blood oxygen sensor to detect the learning behaviors of students by capturing various physiological signals. An artificial bee colony (ABC optimization approach is applied to the data gathered from these sensors to help instructors understand their students’ reading concentration rates in a classroom learning environment. The results show that the use of the ABC algorithm in the proposed system can effectively obtain near-optimal solutions. The system has a user-friendly graphical interface, making it easy for instructors to clearly understand the reading status of their students.

  6. Developing a reading concentration monitoring system by applying an artificial bee colony algorithm to e-books in an intelligent classroom.

    Science.gov (United States)

    Hsu, Chia-Cheng; Chen, Hsin-Chin; Su, Yen-Ning; Huang, Kuo-Kuang; Huang, Yueh-Min

    2012-10-22

    A growing number of educational studies apply sensors to improve student learning in real classroom settings. However, how can sensors be integrated into classrooms to help instructors find out students' reading concentration rates and thus better increase learning effectiveness? The aim of the current study was to develop a reading concentration monitoring system for use with e-books in an intelligent classroom and to help instructors find out the students' reading concentration rates. The proposed system uses three types of sensor technologies, namely a webcam, heartbeat sensor, and blood oxygen sensor to detect the learning behaviors of students by capturing various physiological signals. An artificial bee colony (ABC) optimization approach is applied to the data gathered from these sensors to help instructors understand their students' reading concentration rates in a classroom learning environment. The results show that the use of the ABC algorithm in the proposed system can effectively obtain near-optimal solutions. The system has a user-friendly graphical interface, making it easy for instructors to clearly understand the reading status of their students.

  7. An intelligent algorithm for identification of optimum mix of demographic features for trust in medical centers in Iran.

    Science.gov (United States)

    Yazdanparast, R; Zadeh, S Abdolhossein; Dadras, D; Azadeh, A

    2018-06-01

    Healthcare quality is affected by various factors including trust. Patients' trust to healthcare providers is one of the most important factors for treatment outcomes. The presented study identifies optimum mixture of patient demographic features with respect to trust in three large and busy medical centers in Tehran, Iran. The presented algorithm is composed of adaptive neuro-fuzzy inference system and statistical methods. It is used to deal with data and environmental uncertainty. The required data are collected from three large hospitals using standard questionnaires. The reliability and validity of the collected data is evaluated using Cronbach's Alpha, factor analysis and statistical tests. The results of this study indicate that middle age patients with low level of education and moderate illness severity and young patients with high level of education, moderate illness severity and moderate to weak financial status have the highest trust to the considered medical centers. To the best of our knowledge this the first study that investigates patient demographic features using adaptive neuro-fuzzy inference system in healthcare sector. Second, it is a practical approach for continuous improvement of trust features in medical centers. Third, it deals with the existing uncertainty through the unique neuro-fuzzy approach. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. ARTIFICIAL INTELLIGENCE APPLICATIONS IN THE FINANCIAL SECTOR

    OpenAIRE

    Adrian Cozgarea; Gabriel Cozgarea; Andrei Stanciu

    2008-01-01

    The present paper exposes some of artificial intelligence specific technologies regarding financial sector. Through non-deterministic solutions and simple algorithms, artificial intelligence could become a base alternative for solving financial problems which require complex mathematic calculations or complex optimization.

  9. Method of immersion of a problem of comparison financial conditions of the enterprises in an expert cover in a class algorithms of artificial intelligence

    Directory of Open Access Journals (Sweden)

    S. V. Bukharin

    2016-01-01

    Full Text Available The financial condition of the enterprise can be estimated by a set of characteristics (solvency and liquidity, structure of the capital, profitability, etc.. The part of financial coefficients is low-informative, and other part contains the interconnected sizes. Therefore for elimination of ambiguity we will pass to the generalized indicators – rating numbers, and as the main means of research it is offered to use the theory of expert systems. As characteristic of the modern theory of expert systems it is necessary to consider application of intellectual ways of data processing of data mining, or simply data mining. The method of immersion of a problem of comparison of a financial condition of economic objects in an expert cover in a class of systems of artificial intelligence is offered (algorithms of a method of the analysis of hierarchies, contiguity leaning of a neural network, algorithm of training with function of activation softmax. The generalized indicator of structure of the capital in the form of rating number is entered and the sign (factorial space for seven concrete enterprises is created. Quantitative signs (financial coefficients of structure of the capital are allocated and their normalization by rules of the theory of expert systems is carried out. To the received set of the generalized indicators the method of the analysis of hierarchies is applied: on the basis of a linguistic scale of T. Saaty the ranks of signs reflecting the relative importance of various financial coefficients are defined and the matrix of pair comparisons is constructed. The vector of priority signs on the basis of the solution of the equation for own numbers and own vectors of the mentioned matrix is calculated. As a result the visualization of the received results which has allowed to eliminate difficulties of interpretation of small and negative values of the generalized indicator is carried out. The neural network with contiguity leaning and

  10. Artificial intelligence in cardiology

    OpenAIRE

    Bonderman, Diana

    2017-01-01

    Summary Decision-making is complex in modern medicine and should ideally be based on available data, structured knowledge and proper interpretation in the context of an individual patient. Automated algorithms, also termed artificial intelligence that are able to extract meaningful patterns from data collections and build decisions upon identified patterns may be useful assistants in clinical decision-making processes. In this article, artificial intelligence-based studies in clinical cardiol...

  11. Intelligent Lighting Control System

    OpenAIRE

    García, Elena; Rodríguez González, Sara; de Paz Santana, Juan F.; Bajo Pérez, Javier

    2014-01-01

    This paper presents an adaptive architecture that allows centralized control of public lighting and intelligent management, in order to economise on lighting and maintain maximum comfort status of the illuminated areas. To carry out this management, architecture merges various techniques of artificial intelligence (AI) and statistics such as artificial neural networks (ANN), multi-agent systems (MAS), EM algorithm, methods based on ANOVA and a Service Oriented Aproach (SOA). It performs optim...

  12. Intelligent environmental sensing

    CERN Document Server

    Mukhopadhyay, Subhas

    2015-01-01

    Developing environmental sensing and monitoring technologies become essential especially for industries that may cause severe contamination. Intelligent environmental sensing uses novel sensor techniques, intelligent signal and data processing algorithms, and wireless sensor networks to enhance environmental sensing and monitoring. It finds applications in many environmental problems such as oil and gas, water quality, and agriculture. This book addresses issues related to three main approaches to intelligent environmental sensing and discusses their latest technological developments. Key contents of the book include:   Agricultural monitoring Classification, detection, and estimation Data fusion Geological monitoring Motor monitoring Multi-sensor systems Oil reservoirs monitoring Sensor motes Water quality monitoring Wireless sensor network protocol  

  13. Soft computing in artificial intelligence

    CERN Document Server

    Matson, Eric

    2014-01-01

    This book explores the concept of artificial intelligence based on knowledge-based algorithms. Given the current hardware and software technologies and artificial intelligence theories, we can think of how efficient to provide a solution, how best to implement a model and how successful to achieve it. This edition provides readers with the most recent progress and novel solutions in artificial intelligence. This book aims at presenting the research results and solutions of applications in relevance with artificial intelligence technologies. We propose to researchers and practitioners some methods to advance the intelligent systems and apply artificial intelligence to specific or general purpose. This book consists of 13 contributions that feature fuzzy (r, s)-minimal pre- and β-open sets, handling big coocurrence matrices, Xie-Beni-type fuzzy cluster validation, fuzzy c-regression models, combination of genetic algorithm and ant colony optimization, building expert system, fuzzy logic and neural network, ind...

  14. Artificial intelligence in cardiology.

    Science.gov (United States)

    Bonderman, Diana

    2017-12-01

    Decision-making is complex in modern medicine and should ideally be based on available data, structured knowledge and proper interpretation in the context of an individual patient. Automated algorithms, also termed artificial intelligence that are able to extract meaningful patterns from data collections and build decisions upon identified patterns may be useful assistants in clinical decision-making processes. In this article, artificial intelligence-based studies in clinical cardiology are reviewed. The text also touches on the ethical issues and speculates on the future roles of automated algorithms versus clinicians in cardiology and medicine in general.

  15. Artificial intelligence

    CERN Document Server

    Hunt, Earl B

    1975-01-01

    Artificial Intelligence provides information pertinent to the fundamental aspects of artificial intelligence. This book presents the basic mathematical and computational approaches to problems in the artificial intelligence field.Organized into four parts encompassing 16 chapters, this book begins with an overview of the various fields of artificial intelligence. This text then attempts to connect artificial intelligence problems to some of the notions of computability and abstract computing devices. Other chapters consider the general notion of computability, with focus on the interaction bet

  16. Intelligent mechatronics; Intelligent mechatronics

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, H. [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science

    1995-10-01

    Intelligent mechatronics (IM) was explained as follows: a study of IM essentially targets realization of a robot namely, but in the present stage the target is a creation of new values by intellectualization of machine, that is, a combination of the information infrastructure and the intelligent machine system. IM is also thought to be constituted of computers positively used and micromechatronics. The paper next introduces examples of IM study, mainly those the author is concerned with as shown below: sensor gloves, robot hands, robot eyes, tele operation, three-dimensional object recognition, mobile robot, magnetic bearing, construction of remote controlled unmanned dam, robot network, sensitivity communication using neuro baby, etc. 27 figs.

  17. Handbook of Intelligent Vehicles

    CERN Document Server

    2012-01-01

    The Handbook of Intelligent Vehicles provides a complete coverage of the fundamentals, new technologies, and sub-areas essential to the development of intelligent vehicles; it also includes advances made to date, challenges, and future trends. Significant strides in the field have been made to date; however, so far there has been no single book or volume which captures these advances in a comprehensive format, addressing all essential components and subspecialties of intelligent vehicles, as this book does. Since the intended users are engineering practitioners, as well as researchers and graduate students, the book chapters do not only cover fundamentals, methods, and algorithms but also include how software/hardware are implemented, and demonstrate the advances along with their present challenges. Research at both component and systems levels are required to advance the functionality of intelligent vehicles. This volume covers both of these aspects in addition to the fundamentals listed above.

  18. Hybrid intelligent engineering systems

    CERN Document Server

    Jain, L C; Adelaide, Australia University of

    1997-01-01

    This book on hybrid intelligent engineering systems is unique, in the sense that it presents the integration of expert systems, neural networks, fuzzy systems, genetic algorithms, and chaos engineering. It shows that these new techniques enhance the capabilities of one another. A number of hybrid systems for solving engineering problems are presented.

  19. An overview of smart grid routing algorithms

    Science.gov (United States)

    Wang, Junsheng; OU, Qinghai; Shen, Haijuan

    2017-08-01

    This paper summarizes the typical routing algorithm in smart grid by analyzing the communication business and communication requirements of intelligent grid. Mainly from the two kinds of routing algorithm is analyzed, namely clustering routing algorithm and routing algorithm, analyzed the advantages and disadvantages of two kinds of typical routing algorithm in routing algorithm and applicability.

  20. Artificial Intelligence and Moral intelligence

    OpenAIRE

    Laura Pana

    2008-01-01

    We discuss the thesis that the implementation of a moral code in the behaviour of artificial intelligent systems needs a specific form of human and artificial intelligence, not just an abstract intelligence. We present intelligence as a system with an internal structure and the structural levels of the moral system, as well as certain characteristics of artificial intelligent agents which can/must be treated as 1- individual entities (with a complex, specialized, autonomous or selfdetermined,...

  1. Opposite Degree Algorithm and Its Applications

    Directory of Open Access Journals (Sweden)

    Xiao-Guang Yue

    2015-12-01

    Full Text Available The opposite (Opposite Degree, referred to as OD algorithm is an intelligent algorithm proposed by Yue Xiaoguang et al. Opposite degree algorithm is mainly based on the concept of opposite degree, combined with the idea of design of neural network and genetic algorithm and clustering analysis algorithm. The OD algorithm is divided into two sub algorithms, namely: opposite degree - numerical computation (OD-NC algorithm and opposite degree - Classification computation (OD-CC algorithm.

  2. Development and validation of an intelligent algorithm for synchronizing a low-environmental-impact electricity supply with a building’s electricity consumption

    OpenAIRE

    Schafer, Thibaut; Niederhauser, Elena-Lavinia; Magnin, Gabriel; Vuarnoz, Didier

    2018-01-01

    Standard algorithm of building’s energy strategy often use electricity and its tariff as the sole criterion of choice. This paper introduced an algorithmic regulation using global warming potential (GWP) of energy flux, to select which installation will satisfy the building energy demand (BED). In the frame of the Correlation Carbon project conducted by the Smart Living Lab (SLL), a research center dedicated to the building of the future, this paper presents the algorithm behind the design, t...

  3. Complex of probabilistic-entropy and intelligent algorithms for emotiveness-thematic analysis of the evolution of public opinion in the Internet network

    International Nuclear Information System (INIS)

    Moloshnikov, I.A.; Rybka, R.B.; Gudovskikh, D.V.; Sboev, A.G.

    2016-01-01

    The composite algorithm integrating, on one hand, the algorithm of finding documents on a given topic, and, on the other hand, the method of emotiveness evaluation of topical texts has been presented. Some examples of such analysis have been demonstrated and discussed [ru

  4. A New Modified Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    Medha Gupta

    2016-07-01

    Full Text Available Nature inspired meta-heuristic algorithms studies the emergent collective intelligence of groups of simple agents. Firefly Algorithm is one of the new such swarm-based metaheuristic algorithm inspired by the flashing behavior of fireflies. The algorithm was first proposed in 2008 and since then has been successfully used for solving various optimization problems. In this work, we intend to propose a new modified version of Firefly algorithm (MoFA and later its performance is compared with the standard firefly algorithm along with various other meta-heuristic algorithms. Numerical studies and results demonstrate that the proposed algorithm is superior to existing algorithms.

  5. Advertising and algorithms – the obvious gains and hidden losses of using software with intelligent agent capabilities in the creative process of art directors and copywriters

    OpenAIRE

    Barker, Richie

    2017-01-01

    Situated at the intersection of information technology, advertising and creativity theory, this thesis presents a detailed picture of the influence of autonomous software applications on the creative process of advertising art directors and copywriters. These applications, which are known in the field of information technology as ‘intelligent agents,’ commonly possess the ability to learn from the user and autonomously pursue their own goals. The search engine Google, which employs intelligen...

  6. Artificial Intelligence.

    Science.gov (United States)

    Information Technology Quarterly, 1985

    1985-01-01

    This issue of "Information Technology Quarterly" is devoted to the theme of "Artificial Intelligence." It contains two major articles: (1) Artificial Intelligence and Law" (D. Peter O'Neill and George D. Wood); (2) "Artificial Intelligence: A Long and Winding Road" (John J. Simon, Jr.). In addition, it contains two sidebars: (1) "Calculating and…

  7. Competitive Intelligence.

    Science.gov (United States)

    Bergeron, Pierrette; Hiller, Christine A.

    2002-01-01

    Reviews the evolution of competitive intelligence since 1994, including terminology and definitions and analytical techniques. Addresses the issue of ethics; explores how information technology supports the competitive intelligence process; and discusses education and training opportunities for competitive intelligence, including core competencies…

  8. Bayesian artificial intelligence

    CERN Document Server

    Korb, Kevin B

    2003-01-01

    As the power of Bayesian techniques has become more fully realized, the field of artificial intelligence has embraced Bayesian methodology and integrated it to the point where an introduction to Bayesian techniques is now a core course in many computer science programs. Unlike other books on the subject, Bayesian Artificial Intelligence keeps mathematical detail to a minimum and covers a broad range of topics. The authors integrate all of Bayesian net technology and learning Bayesian net technology and apply them both to knowledge engineering. They emphasize understanding and intuition but also provide the algorithms and technical background needed for applications. Software, exercises, and solutions are available on the authors' website.

  9. Intelligent Extruder

    Energy Technology Data Exchange (ETDEWEB)

    AlperEker; Mark Giammattia; Paul Houpt; Aditya Kumar; Oscar Montero; Minesh Shah; Norberto Silvi; Timothy Cribbs

    2003-04-24

    ''Intelligent Extruder'' described in this report is a software system and associated support services for monitoring and control of compounding extruders to improve material quality, reduce waste and energy use, with minimal addition of new sensors or changes to the factory floor system components. Emphasis is on process improvements to the mixing, melting and de-volatilization of base resins, fillers, pigments, fire retardants and other additives in the :finishing'' stage of high value added engineering polymer materials. While GE Plastics materials were used for experimental studies throughout the program, the concepts and principles are broadly applicable to other manufacturers materials. The project involved a joint collaboration among GE Global Research, GE Industrial Systems and Coperion Werner & Pleiderer, USA, a major manufacturer of compounding equipment. Scope of the program included development of a algorithms for monitoring process material viscosity without rheological sensors or generating waste streams, a novel detection scheme for rapid detection of process upsets and an adaptive feedback control system to compensate for process upsets where at line adjustments are feasible. Software algorithms were implemented and tested on a laboratory scale extruder (50 lb/hr) at GE Global Research and data from a production scale system (2000 lb/hr) at GE Plastics was used to validate the monitoring and detection software. Although not evaluated experimentally, a new concept for extruder process monitoring through estimation of high frequency drive torque without strain gauges is developed and demonstrated in simulation. A plan to commercialize the software system is outlined, but commercialization has not been completed.

  10. Intelligence Ethics:

    DEFF Research Database (Denmark)

    Rønn, Kira Vrist

    2016-01-01

    Questions concerning what constitutes a morally justified conduct of intelligence activities have received increased attention in recent decades. However, intelligence ethics is not yet homogeneous or embedded as a solid research field. The aim of this article is to sketch the state of the art...... of intelligence ethics and point out subjects for further scrutiny in future research. The review clusters the literature on intelligence ethics into two groups: respectively, contributions on external topics (i.e., the accountability of and the public trust in intelligence agencies) and internal topics (i.......e., the search for an ideal ethical framework for intelligence actions). The article concludes that there are many holes to fill for future studies on intelligence ethics both in external and internal discussions. Thus, the article is an invitation – especially, to moral philosophers and political theorists...

  11. Intelligence Naturelle et Intelligence Artificielle

    OpenAIRE

    Dubois, Daniel

    2011-01-01

    Cet article présente une approche systémique du concept d’intelligence naturelle en ayant pour objectif de créer une intelligence artificielle. Ainsi, l’intelligence naturelle, humaine et animale non-humaine, est une fonction composée de facultés permettant de connaître et de comprendre. De plus, l'intelligence naturelle reste indissociable de la structure, à savoir les organes du cerveau et du corps. La tentation est grande de doter les systèmes informatiques d’une intelligence artificielle ...

  12. 1st International Conference on Intelligent Computing and Communication

    CERN Document Server

    Satapathy, Suresh; Sanyal, Manas; Bhateja, Vikrant

    2017-01-01

    The book covers a wide range of topics in Computer Science and Information Technology including swarm intelligence, artificial intelligence, evolutionary algorithms, and bio-inspired algorithms. It is a collection of papers presented at the First International Conference on Intelligent Computing and Communication (ICIC2) 2016. The prime areas of the conference are Intelligent Computing, Intelligent Communication, Bio-informatics, Geo-informatics, Algorithm, Graphics and Image Processing, Graph Labeling, Web Security, Privacy and e-Commerce, Computational Geometry, Service Orient Architecture, and Data Engineering.

  13. Intelligent control systems 1990

    International Nuclear Information System (INIS)

    Shoureshi, R.

    1991-01-01

    The field of artificial intelligence (Al) has generated many useful ideas and techniques that can be integrated into the design of control systems. It is believed and, for special cases, has been demonstrated, that integration of Al into control systems would provide the necessary tools for solving many of the complex problems that present control techniques and Al algorithms are unable to do, individually. However, this integration requires the development of basic understanding and new fundamentals to provide scientific bases for achievement of its potential. This book presents an overview of some of the latest research studies in the area of intelligent control systems. These papers present techniques for formulation of intelligent control, and development of the rule-based control systems. Papers present applications of control systems in nuclear power plants and HVAC systems

  14. Artificial Intelligence in Cardiology.

    Science.gov (United States)

    Johnson, Kipp W; Torres Soto, Jessica; Glicksberg, Benjamin S; Shameer, Khader; Miotto, Riccardo; Ali, Mohsin; Ashley, Euan; Dudley, Joel T

    2018-06-12

    Artificial intelligence and machine learning are poised to influence nearly every aspect of the human condition, and cardiology is not an exception to this trend. This paper provides a guide for clinicians on relevant aspects of artificial intelligence and machine learning, reviews selected applications of these methods in cardiology to date, and identifies how cardiovascular medicine could incorporate artificial intelligence in the future. In particular, the paper first reviews predictive modeling concepts relevant to cardiology such as feature selection and frequent pitfalls such as improper dichotomization. Second, it discusses common algorithms used in supervised learning and reviews selected applications in cardiology and related disciplines. Third, it describes the advent of deep learning and related methods collectively called unsupervised learning, provides contextual examples both in general medicine and in cardiovascular medicine, and then explains how these methods could be applied to enable precision cardiology and improve patient outcomes. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Artificial Intelligence in Civil Engineering

    Directory of Open Access Journals (Sweden)

    Pengzhen Lu

    2012-01-01

    Full Text Available Artificial intelligence is a branch of computer science, involved in the research, design, and application of intelligent computer. Traditional methods for modeling and optimizing complex structure systems require huge amounts of computing resources, and artificial-intelligence-based solutions can often provide valuable alternatives for efficiently solving problems in the civil engineering. This paper summarizes recently developed methods and theories in the developing direction for applications of artificial intelligence in civil engineering, including evolutionary computation, neural networks, fuzzy systems, expert system, reasoning, classification, and learning, as well as others like chaos theory, cuckoo search, firefly algorithm, knowledge-based engineering, and simulated annealing. The main research trends are also pointed out in the end. The paper provides an overview of the advances of artificial intelligence applied in civil engineering.

  16. The promise of cyborg intelligence.

    Science.gov (United States)

    Brown, Michael F; Brown, Alexander A

    2017-03-01

    Yu et al. (2016) demonstrated that algorithms designed to find efficient routes in standard mazes can be integrated with the natural processes controlling rat navigation and spatial choices, and they pointed out the promise of such "cyborg intelligence" for biorobotic applications. Here, we briefly describe Yu et al.'s work, explore its relevance to the study of comparative cognition, and indicate how work involving cyborg intelligence would benefit from interdisciplinary collaboration between behavioral scientists and engineers.

  17. Artificial Intelligence in Space Platforms.

    Science.gov (United States)

    1984-12-01

    computer algorithms, there still appears to be a need for Artificial Inteligence techniques in the navigation area. The reason is that navigaion, in...RD-RI32 679 ARTIFICIAL INTELLIGENCE IN SPACE PLRTFORNSMU AIR FORCE 1/𔃼 INST OF TECH WRIGHT-PRTTERSON AFB OH SCHOOL OF ENGINEERING M A WRIGHT DEC 94...i4 Preface The purpose of this study was to analyze the feasibility of implementing Artificial Intelligence techniques to increase autonomy for

  18. Special Issue on Intelligent Robots

    Directory of Open Access Journals (Sweden)

    Genci Capi

    2013-08-01

    Full Text Available The research on intelligent robots will produce robots that are able to operate in everyday life environments, to adapt their program according to environment changes, and to cooperate with other team members and humans. Operating in human environments, robots need to process, in real time, a large amount of sensory data—such as vision, laser, microphone—in order to determine the best action. Intelligent algorithms have been successfully applied to link complex sensory data to robot action. This editorial briefly summarizes recent findings in the field of intelligent robots as described in the articles published in this special issue.

  19. Genome-Wide Association Mapping for Intelligence in Military Working Dogs: Canine Cohort, Canine Intelligence Assessment Regimen, Genome-Wide Single Nucleotide Polymorphism (SNP) Typing, and Unsupervised Classification Algorithm for Genome-Wide Association Data Analysis

    Science.gov (United States)

    2011-09-01

    SNP Array v2. A ‘proof-of-concept’ advanced data mining algorithm for unsupervised analysis of genome-wide association study (GWAS) dataset was... Opal F AUS Yes U141 Peggs F AUS Yes U142 Taxi F AUS Yes U143 Riso MI MAL Yes U144 Szarik MI GSD Yes U145 Astor MI MAL Yes U146 Roy MC MAL Yes... mining of genetic studies in general, and especially GWAS. As a proof-of-concept, a classification analysis of the WG SNP typing dataset of a

  20. International Conference on Computational Intelligence 2015

    CERN Document Server

    Saha, Sujan

    2017-01-01

    This volume comprises the proceedings of the International Conference on Computational Intelligence 2015 (ICCI15). This book aims to bring together work from leading academicians, scientists, researchers and research scholars from across the globe on all aspects of computational intelligence. The work is composed mainly of original and unpublished results of conceptual, constructive, empirical, experimental, or theoretical work in all areas of computational intelligence. Specifically, the major topics covered include classical computational intelligence models and artificial intelligence, neural networks and deep learning, evolutionary swarm and particle algorithms, hybrid systems optimization, constraint programming, human-machine interaction, computational intelligence for the web analytics, robotics, computational neurosciences, neurodynamics, bioinspired and biomorphic algorithms, cross disciplinary topics and applications. The contents of this volume will be of use to researchers and professionals alike....

  1. Autodriver algorithm

    Directory of Open Access Journals (Sweden)

    Anna Bourmistrova

    2011-02-01

    Full Text Available The autodriver algorithm is an intelligent method to eliminate the need of steering by a driver on a well-defined road. The proposed method performs best on a four-wheel steering (4WS vehicle, though it is also applicable to two-wheel-steering (TWS vehicles. The algorithm is based on coinciding the actual vehicle center of rotation and road center of curvature, by adjusting the kinematic center of rotation. The road center of curvature is assumed prior information for a given road, while the dynamic center of rotation is the output of dynamic equations of motion of the vehicle using steering angle and velocity measurements as inputs. We use kinematic condition of steering to set the steering angles in such a way that the kinematic center of rotation of the vehicle sits at a desired point. At low speeds the ideal and actual paths of the vehicle are very close. With increase of forward speed the road and tire characteristics, along with the motion dynamics of the vehicle cause the vehicle to turn about time-varying points. By adjusting the steering angles, our algorithm controls the dynamic turning center of the vehicle so that it coincides with the road curvature center, hence keeping the vehicle on a given road autonomously. The position and orientation errors are used as feedback signals in a closed loop control to adjust the steering angles. The application of the presented autodriver algorithm demonstrates reliable performance under different driving conditions.

  2. Use of Artificial Intelligence and Machine Learning Algorithms with Gene Expression Profiling to Predict Recurrent Nonmuscle Invasive Urothelial Carcinoma of the Bladder.

    Science.gov (United States)

    Bartsch, Georg; Mitra, Anirban P; Mitra, Sheetal A; Almal, Arpit A; Steven, Kenneth E; Skinner, Donald G; Fry, David W; Lenehan, Peter F; Worzel, William P; Cote, Richard J

    2016-02-01

    Due to the high recurrence risk of nonmuscle invasive urothelial carcinoma it is crucial to distinguish patients at high risk from those with indolent disease. In this study we used a machine learning algorithm to identify the genes in patients with nonmuscle invasive urothelial carcinoma at initial presentation that were most predictive of recurrence. We used the genes in a molecular signature to predict recurrence risk within 5 years after transurethral resection of bladder tumor. Whole genome profiling was performed on 112 frozen nonmuscle invasive urothelial carcinoma specimens obtained at first presentation on Human WG-6 BeadChips (Illumina®). A genetic programming algorithm was applied to evolve classifier mathematical models for outcome prediction. Cross-validation based resampling and gene use frequencies were used to identify the most prognostic genes, which were combined into rules used in a voting algorithm to predict the sample target class. Key genes were validated by quantitative polymerase chain reaction. The classifier set included 21 genes that predicted recurrence. Quantitative polymerase chain reaction was done for these genes in a subset of 100 patients. A 5-gene combined rule incorporating a voting algorithm yielded 77% sensitivity and 85% specificity to predict recurrence in the training set, and 69% and 62%, respectively, in the test set. A singular 3-gene rule was constructed that predicted recurrence with 80% sensitivity and 90% specificity in the training set, and 71% and 67%, respectively, in the test set. Using primary nonmuscle invasive urothelial carcinoma from initial occurrences genetic programming identified transcripts in reproducible fashion, which were predictive of recurrence. These findings could potentially impact nonmuscle invasive urothelial carcinoma management. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  3. Artificial Intelligence.

    Science.gov (United States)

    Wash, Darrel Patrick

    1989-01-01

    Making a machine seem intelligent is not easy. As a consequence, demand has been rising for computer professionals skilled in artificial intelligence and is likely to continue to go up. These workers develop expert systems and solve the mysteries of machine vision, natural language processing, and neural networks. (Editor)

  4. Intelligent Design

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    2005-01-01

    Forestillingen om at naturen er designet af en guddommelig 'intelligens' er et smukt filosofisk princip. Teorier om Intelligent Design som en naturvidenskabeligt baseret teori er derimod helt forfærdelig.......Forestillingen om at naturen er designet af en guddommelig 'intelligens' er et smukt filosofisk princip. Teorier om Intelligent Design som en naturvidenskabeligt baseret teori er derimod helt forfærdelig....

  5. Recent Advances on Hybrid Intelligent Systems

    CERN Document Server

    Melin, Patricia; Kacprzyk, Janusz

    2013-01-01

    This book presents recent advances on hybrid intelligent systems using soft computing techniques for intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems. Soft Computing (SC) consists of several intelligent computing paradigms, including fuzzy logic, neural networks, and bio-inspired optimization algorithms, which can be used to produce powerful hybrid intelligent systems. The book is organized in five main parts, which contain groups of papers around a similar subject. The first part consists of papers with the main theme of hybrid intelligent systems for control and robotics, which are basically state of the art papers that propose new models and concepts, which can be the basis for achieving intelligent control and mobile robotics. The second part contains papers with the main theme of hybrid intelligent systems for pattern recognition and time series prediction, which are basically papers using nature-inspired techniques, like evolutionary algo...

  6. Intelligent control systems: an introduction with examples

    National Research Council Canada - National Science Library

    Hangos, K. M; Lakner, Rozália; Gerzson, Miklós

    2001-01-01

    ... The structure of the knowledge base 1.2 The reasoning algorithm 1.3 Conflict resolution 31 31 32 33 36 viiviii INTELLIGENT CONTROL SYSTEMS 2. 3. 4. 5. 1.4 Explanation of the reasoning Forward r...

  7. Intelligent playgrounds

    DEFF Research Database (Denmark)

    Larsen, Lasse Juel

    2009-01-01

    This paper examines play, gaming and learning in regard to intelligent playware developed for outdoor use. The key questions are how does these novel artefacts influence the concept of play, gaming and learning. Up until now play and game have been understood as different activities. This paper...... examines if the sharp differentiation between the two can be uphold in regard to intelligent playware for outdoor use. Play and game activities will be analysed and viewed in conjunction with learning contexts. This paper will stipulate that intelligent playware facilitates rapid shifts in contexts...

  8. Artificial intelligence

    CERN Document Server

    Ennals, J R

    1987-01-01

    Artificial Intelligence: State of the Art Report is a two-part report consisting of the invited papers and the analysis. The editor first gives an introduction to the invited papers before presenting each paper and the analysis, and then concludes with the list of references related to the study. The invited papers explore the various aspects of artificial intelligence. The analysis part assesses the major advances in artificial intelligence and provides a balanced analysis of the state of the art in this field. The Bibliography compiles the most important published material on the subject of

  9. Artificial Intelligence

    CERN Document Server

    Warwick, Kevin

    2011-01-01

    if AI is outside your field, or you know something of the subject and would like to know more then Artificial Intelligence: The Basics is a brilliant primer.' - Nick Smith, Engineering and Technology Magazine November 2011 Artificial Intelligence: The Basics is a concise and cutting-edge introduction to the fast moving world of AI. The author Kevin Warwick, a pioneer in the field, examines issues of what it means to be man or machine and looks at advances in robotics which have blurred the boundaries. Topics covered include: how intelligence can be defined whether machines can 'think' sensory

  10. System for intelligent teleoperation research

    International Nuclear Information System (INIS)

    Orlando, N.E.

    1983-01-01

    The Automation Technology Branch of NASA Langley Research Center is developing a research capability in the field of artificial intelligence, particularly as applicable in teleoperator/robotics development for remote space operations. As a testbed for experimentation in these areas, a system concept has been developed and is being implemented. This system, termed DAISIE (Distributed Artificially Intelligent System for Interacting with the Environment), interfaces the key processes of perception, reasoning, and manipulation by linking hardware sensors and manipulators to a modular artificial intelligence (AI) software system in a hierarchical control structure. Verification experiments have been performed: one experiment used a blocksworld database and planner embedded in the DAISIE system to intelligently manipulate a simple physical environment; the other experiment implemented a joint-space collision avoidance algorithm. Continued system development is planned

  11. Computational Intelligence in Image Processing

    CERN Document Server

    Siarry, Patrick

    2013-01-01

    Computational intelligence based techniques have firmly established themselves as viable, alternate, mathematical tools for more than a decade. They have been extensively employed in many systems and application domains, among these signal processing, automatic control, industrial and consumer electronics, robotics, finance, manufacturing systems, electric power systems, and power electronics. Image processing is also an extremely potent area which has attracted the atten­tion of many researchers who are interested in the development of new computational intelligence-based techniques and their suitable applications, in both research prob­lems and in real-world problems. Part I of the book discusses several image preprocessing algorithms; Part II broadly covers image compression algorithms; Part III demonstrates how computational intelligence-based techniques can be effectively utilized for image analysis purposes; and Part IV shows how pattern recognition, classification and clustering-based techniques can ...

  12. Intelligent Advertising

    OpenAIRE

    Díaz Pinedo, Edilfredo Eliot

    2012-01-01

    Intelligent Advertisement diseña e implementa un sistema de publicidad para dispositivos móviles en un centro comercial, donde los clientes reciben publicidad de forma pasiva en sus dispositivos mientras están dentro.

  13. BUSINESS INTELLIGENCE

    OpenAIRE

    Bogdan Mohor Dumitrita

    2011-01-01

    The purpose of this work is to present business intelligence systems. These systems can be extremely complex and important in modern market competition. Its effectiveness also reflects in price, so we have to exlore their financial potential before investment. The systems have 20 years long history and during that time many of such tools have been developed, but they are rarely still in use. Business intelligence system consists of three main areas: Data Warehouse, ETL tools and tools f...

  14. Intelligent indexing

    International Nuclear Information System (INIS)

    Farkas, J.

    1992-01-01

    In this paper we discuss the relevance of artificial intelligence to the automatic indexing of natural language text. We describe the use of domain-specific semantically-based thesauruses and address the problem of creating adequate knowledge bases for intelligent indexing systems. We also discuss the relevance of the Hilbert space ι 2 to the compact representation of documents and to the definition of the similarity of natural language texts. (author). 17 refs., 2 figs

  15. Intelligent indexing

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, J

    1993-12-31

    In this paper we discuss the relevance of artificial intelligence to the automatic indexing of natural language text. We describe the use of domain-specific semantically-based thesauruses and address the problem of creating adequate knowledge bases for intelligent indexing systems. We also discuss the relevance of the Hilbert space {iota}{sup 2} to the compact representation of documents and to the definition of the similarity of natural language texts. (author). 17 refs., 2 figs.

  16. Research and Application of a Novel Hybrid Model Based on Data Selection and Artificial Intelligence Algorithm for Short Term Load Forecasting

    Directory of Open Access Journals (Sweden)

    Wendong Yang

    2017-01-01

    Full Text Available Machine learning plays a vital role in several modern economic and industrial fields, and selecting an optimized machine learning method to improve time series’ forecasting accuracy is challenging. Advanced machine learning methods, e.g., the support vector regression (SVR model, are widely employed in forecasting fields, but the individual SVR pays no attention to the significance of data selection, signal processing and optimization, which cannot always satisfy the requirements of time series forecasting. By preprocessing and analyzing the original time series, in this paper, a hybrid SVR model is developed, considering periodicity, trend and randomness, and combined with data selection, signal processing and an optimization algorithm for short-term load forecasting. Case studies of electricity power data from New South Wales and Singapore are regarded as exemplifications to estimate the performance of the developed novel model. The experimental results demonstrate that the proposed hybrid method is not only robust but also capable of achieving significant improvement compared with the traditional single models and can be an effective and efficient tool for power load forecasting.

  17. Determining the most important physiological and agronomic traits contributing to maize grain yield through machine learning algorithms: a new avenue in intelligent agriculture.

    Directory of Open Access Journals (Sweden)

    Avat Shekoofa

    Full Text Available Prediction is an attempt to accurately forecast the outcome of a specific situation while using input information obtained from a set of variables that potentially describe the situation. They can be used to project physiological and agronomic processes; regarding this fact, agronomic traits such as yield can be affected by a large number of variables. In this study, we analyzed a large number of physiological and agronomic traits by screening, clustering, and decision tree models to select the most relevant factors for the prospect of accurately increasing maize grain yield. Decision tree models (with nearly the same performance evaluation were the most useful tools in understanding the underlying relationships in physiological and agronomic features for selecting the most important and relevant traits (sowing date-location, kernel number per ear, maximum water content, kernel weight, and season duration corresponding to the maize grain yield. In particular, decision tree generated by C&RT algorithm was the best model for yield prediction based on physiological and agronomical traits which can be extensively employed in future breeding programs. No significant differences in the decision tree models were found when feature selection filtering on data were used, but positive feature selection effect observed in clustering models. Finally, the results showed that the proposed model techniques are useful tools for crop physiologists to search through large datasets seeking patterns for the physiological and agronomic factors, and may assist the selection of the most important traits for the individual site and field. In particular, decision tree models are method of choice with the capability of illustrating different pathways of yield increase in breeding programs, governed by their hierarchy structure of feature ranking as well as pattern discovery via various combinations of features.

  18. Intelligent bioinformatics : the application of artificial intelligence techniques to bioinformatics problems

    National Research Council Canada - National Science Library

    Keedwell, Edward

    2005-01-01

    ... Intelligence and Computer Science 3.1 Introduction to search 3.2 Search algorithms 3.3 Heuristic search methods 3.4 Optimal search strategies 3.5 Problems with search techniques 3.6 Complexity of...

  19. Intelligent Electricity Broker

    DEFF Research Database (Denmark)

    Grode, Jesper Nicolai Riis; Væggemose, Poul Erik; Kulik, Tomas

    The Intelligent Electricity Broker (IEB) is a new energy storage and energy broker facility that serves two purposes. Firstly, it allows for storing excessive energy in the Smart Grid [1, 2, 3] it is connected to. Secondly, it runs a broker-algorithm that ensures that energy is purchased and sold...... when feasible to the system owner. This paper describes how the IEB can be used by house owners, in building clusters, and/or by energy providers to take advantage of electricity stock market prices and weather forecasts to control energy surplus storage suffers as well as to lower electricity bills...

  20. An Intelligent System For Arabic Text Categorization

    NARCIS (Netherlands)

    Syiam, M.M.; Tolba, Mohamed F.; Fayed, Z.T.; Abdel-Wahab, Mohamed S.; Ghoniemy, Said A.; Habib, Mena Badieh

    Text Categorization (classification) is the process of classifying documents into a predefined set of categories based on their content. In this paper, an intelligent Arabic text categorization system is presented. Machine learning algorithms are used in this system. Many algorithms for stemming and

  1. Intelligent systems

    CERN Document Server

    Irwin, J David

    2011-01-01

    Technology has now progressed to the point that intelligent systems are replacing humans in the decision making processes as well as aiding in the solution of very complex problems. In many cases intelligent systems are already outperforming human activities. Artificial neural networks are not only capable of learning how to classify patterns, such images or sequence of events, but they can also effectively model complex nonlinear systems. Their ability to classify sequences of events is probably more popular in industrial applications where there is an inherent need to model nonlinear system

  2. Intelligent Universe

    Energy Technology Data Exchange (ETDEWEB)

    Hoyle, F

    1983-01-01

    The subject is covered in chapters, entitled: chance and the universe (synthesis of proteins; the primordial soup); the gospel according to Darwin (discussion of Darwin theory of evolution); life did not originate on earth (fossils from space; life in space); the interstellar connection (living dust between the stars; bacteria in space falling to the earth; interplanetary dust); evolution by cosmic control (microorganisms; genetics); why aren't the others here (a cosmic origin of life); after the big bang (big bang and steady state); the information rich universe; what is intelligence up to; the intelligent universe.

  3. Artificial intelligence

    International Nuclear Information System (INIS)

    Perret-Galix, D.

    1992-01-01

    A vivid example of the growing need for frontier physics experiments to make use of frontier technology is in the field of artificial intelligence and related themes. This was reflected in the second international workshop on 'Software Engineering, Artificial Intelligence and Expert Systems in High Energy and Nuclear Physics' which took place from 13-18 January at France Telecom's Agelonde site at La Londe des Maures, Provence. It was the second in a series, the first having been held at Lyon in 1990

  4. Learning algorithms and automatic processing of languages

    International Nuclear Information System (INIS)

    Fluhr, Christian Yves Andre

    1977-01-01

    This research thesis concerns the field of artificial intelligence. It addresses learning algorithms applied to automatic processing of languages. The author first briefly describes some mechanisms of human intelligence in order to describe how these mechanisms are simulated on a computer. He outlines the specific role of learning in various manifestations of intelligence. Then, based on the Markov's algorithm theory, the author discusses the notion of learning algorithm. Two main types of learning algorithms are then addressed: firstly, an 'algorithm-teacher dialogue' type sanction-based algorithm which aims at learning how to solve grammatical ambiguities in submitted texts; secondly, an algorithm related to a document system which structures semantic data automatically obtained from a set of texts in order to be able to understand by references to any question on the content of these texts

  5. Artificial Intelligence and Moral intelligence

    Directory of Open Access Journals (Sweden)

    Laura Pana

    2008-07-01

    Full Text Available We discuss the thesis that the implementation of a moral code in the behaviour of artificial intelligent systems needs a specific form of human and artificial intelligence, not just an abstract intelligence. We present intelligence as a system with an internal structure and the structural levels of the moral system, as well as certain characteristics of artificial intelligent agents which can/must be treated as 1- individual entities (with a complex, specialized, autonomous or selfdetermined, even unpredictable conduct, 2- entities endowed with diverse or even multiple intelligence forms, like moral intelligence, 3- open and, even, free-conduct performing systems (with specific, flexible and heuristic mechanisms and procedures of decision, 4 – systems which are open to education, not just to instruction, 5- entities with “lifegraphy”, not just “stategraphy”, 6- equipped not just with automatisms but with beliefs (cognitive and affective complexes, 7- capable even of reflection (“moral life” is a form of spiritual, not just of conscious activity, 8 – elements/members of some real (corporal or virtual community, 9 – cultural beings: free conduct gives cultural value to the action of a ”natural” or artificial being. Implementation of such characteristics does not necessarily suppose efforts to design, construct and educate machines like human beings. The human moral code is irremediably imperfect: it is a morality of preference, of accountability (not of responsibility and a morality of non-liberty, which cannot be remedied by the invention of ethical systems, by the circulation of ideal values and by ethical (even computing education. But such an imperfect morality needs perfect instruments for its implementation: applications of special logic fields; efficient psychological (theoretical and technical attainments to endow the machine not just with intelligence, but with conscience and even spirit; comprehensive technical

  6. Artificial intelligence techniques in Prolog

    CERN Document Server

    Shoham, Yoav

    1993-01-01

    Artificial Intelligence Techniques in Prolog introduces the reader to the use of well-established algorithmic techniques in the field of artificial intelligence (AI), with Prolog as the implementation language. The techniques considered cover general areas such as search, rule-based systems, and truth maintenance, as well as constraint satisfaction and uncertainty management. Specific application domains such as temporal reasoning, machine learning, and natural language are also discussed.Comprised of 10 chapters, this book begins with an overview of Prolog, paying particular attention to Prol

  7. Speech Intelligibility

    Science.gov (United States)

    Brand, Thomas

    Speech intelligibility (SI) is important for different fields of research, engineering and diagnostics in order to quantify very different phenomena like the quality of recordings, communication and playback devices, the reverberation of auditoria, characteristics of hearing impairment, benefit using hearing aids or combinations of these things.

  8. Artificial Intelligence for the Bang! Game

    OpenAIRE

    Daniláková, Monika

    2017-01-01

    This work explores artificial intelligence (AI) algorithms for the game Bang!, a Wild West-themed card game created by Italian game designer Emiliano Sciarra. The aim of this work was to design three different AIs for this game and to compare them theoretically and experimentally. First, we analyzed game Bang! with regards to game theory, and researched some of the AI algorithms used in similar games. We then designed three different AIs algorithms and compared their advantages and disadvanta...

  9. Swarm Intelligence systems

    International Nuclear Information System (INIS)

    Beni, G.

    1994-01-01

    We review the characteristics of Swarm Intelligence and discuss systems exhibiting it. The recently developed mathematical description of Swarm behavior is also reviewed and discussed. The self-organization of Swarms is described as the reconfiguring asynchronously and conservatively of a distribution. Swarm reconfigurations are based on producing distributions that are solutions to systems of linear equations. Conservation and asynchronicity are related, respectively, to the global and local nature of the Swarm problem. The conditions for the convergence of the Swarm algorithm are presented. The important point is that, under very general conditions, the Swarm reconfigures in a time which is independent of the size of the Swarm. This fact implies that a centralized controller can never reconfigure as fast as a Swarm provided the size of the Swarm is large enough. This result is related to the unpredictability of the Swarm, a basic property of Swarm Intelligence. Finally, the conditions under which Swarm algorithms become of practical importance are discussed and examples given. (author)

  10. Prospective Algorithms for Quantum Evolutionary Computation

    OpenAIRE

    Sofge, Donald A.

    2008-01-01

    This effort examines the intersection of the emerging field of quantum computing and the more established field of evolutionary computation. The goal is to understand what benefits quantum computing might offer to computational intelligence and how computational intelligence paradigms might be implemented as quantum programs to be run on a future quantum computer. We critically examine proposed algorithms and methods for implementing computational intelligence paradigms, primarily focused on ...

  11. Deductive Synthesis of the Unification Algorithm,

    Science.gov (United States)

    1981-06-01

    DEDUCTIVE SYNTHESIS OF THE I - UNIFICATION ALGORITHM Zohar Manna Richard Waldinger I F? Computer Science Department Artificial Intelligence Center...theorem proving," Artificial Intelligence Journal, Vol. 9, No. 1, pp. 1-35. Boyer, R. S. and J S. Moore [Jan. 19751, "Proving theorems about LISP...d’Intelligence Artificielle , U.E.R. de Luminy, Universit6 d’ Aix-Marseille II. Green, C. C. [May 1969], "Application of theorem proving to problem

  12. Reliability analysis in intelligent machines

    Science.gov (United States)

    Mcinroy, John E.; Saridis, George N.

    1990-01-01

    Given an explicit task to be executed, an intelligent machine must be able to find the probability of success, or reliability, of alternative control and sensing strategies. By using concepts for information theory and reliability theory, new techniques for finding the reliability corresponding to alternative subsets of control and sensing strategies are proposed such that a desired set of specifications can be satisfied. The analysis is straightforward, provided that a set of Gaussian random state variables is available. An example problem illustrates the technique, and general reliability results are presented for visual servoing with a computed torque-control algorithm. Moreover, the example illustrates the principle of increasing precision with decreasing intelligence at the execution level of an intelligent machine.

  13. Recent Advances in Intelligent Engineering Systems

    CERN Document Server

    Klempous, Ryszard; Araujo, Carmen

    2012-01-01

    This volume is a collection of 19 chapters on intelligent engineering systems written by respectable experts of the fields. The book consists of three parts. The first part is devoted to the foundational aspects of computational intelligence. It consists of 8 chapters that include studies in genetic algorithms, fuzzy logic connectives, enhanced intelligence in product models, nature-inspired optimization technologies, particle swarm optimization, evolution algorithms, model complexity of neural networks, and fitness landscape analysis. The second part contains contributions to intelligent computation in networks, presented in 5 chapters. The covered subjects include the application of self-organizing maps for early detection of denial of service attacks, combating security threats via immunity and adaptability in cognitive radio networks, novel modifications in WSN network design for improved SNR and reliability, a conceptual framework for the design of audio based cognitive infocommunication channels, and a ...

  14. Advances in chaos theory and intelligent control

    CERN Document Server

    Vaidyanathan, Sundarapandian

    2016-01-01

    The book reports on the latest advances in and applications of chaos theory and intelligent control. Written by eminent scientists and active researchers and using a clear, matter-of-fact style, it covers advanced theories, methods, and applications in a variety of research areas, and explains key concepts in modeling, analysis, and control of chaotic and hyperchaotic systems. Topics include fractional chaotic systems, chaos control, chaos synchronization, memristors, jerk circuits, chaotic systems with hidden attractors, mechanical and biological chaos, and circuit realization of chaotic systems. The book further covers fuzzy logic controllers, evolutionary algorithms, swarm intelligence, and petri nets among other topics. Not only does it provide the readers with chaos fundamentals and intelligent control-based algorithms; it also discusses key applications of chaos as well as multidisciplinary solutions developed via intelligent control. The book is a timely and comprehensive reference guide for graduate s...

  15. Intelligent Decision Technologies : Proceedings of the 4th International Conference on Intelligent Decision Technologies

    CERN Document Server

    Watanabe, Toyohide; Phillips-Wren, Gloria; Howlett, Robert; Jain, Lakhmi

    2012-01-01

    The Intelligent Decision Technologies (IDT) International Conference encourages an interchange of research on intelligent systems and intelligent technologies that enhance or improve decision making. The focus of IDT is interdisciplinary and includes research on all aspects of intelligent decision technologies, from fundamental development to real applications. IDT has the potential to expand their support of decision making in such areas as finance, accounting, marketing, healthcare, medical and diagnostic systems, military decisions, production and operation, networks, traffic management, crisis response, human-machine interfaces, financial and stock market monitoring and prediction, and robotics. Intelligent decision systems implement advances in intelligent agents, fuzzy logic, multi-agent systems, artificial neural networks, and genetic algorithms, among others.  Emerging areas of active research include virtual decision environments, social networking, 3D human-machine interfaces, cognitive interfaces,...

  16. Artificial Intelligence.

    Science.gov (United States)

    Lawrence, David R; Palacios-González, César; Harris, John

    2016-04-01

    It seems natural to think that the same prudential and ethical reasons for mutual respect and tolerance that one has vis-à-vis other human persons would hold toward newly encountered paradigmatic but nonhuman biological persons. One also tends to think that they would have similar reasons for treating we humans as creatures that count morally in our own right. This line of thought transcends biological boundaries-namely, with regard to artificially (super)intelligent persons-but is this a safe assumption? The issue concerns ultimate moral significance: the significance possessed by human persons, persons from other planets, and hypothetical nonorganic persons in the form of artificial intelligence (AI). This article investigates why our possible relations to AI persons could be more complicated than they first might appear, given that they might possess a radically different nature to us, to the point that civilized or peaceful coexistence in a determinate geographical space could be impossible to achieve.

  17. Dynamic traffic assignment : genetic algorithms approach

    Science.gov (United States)

    1997-01-01

    Real-time route guidance is a promising approach to alleviating congestion on the nations highways. A dynamic traffic assignment model is central to the development of guidance strategies. The artificial intelligence technique of genetic algorithm...

  18. Intelligent computing systems emerging application areas

    CERN Document Server

    Virvou, Maria; Jain, Lakhmi

    2016-01-01

    This book at hand explores emerging scientific and technological areas in which Intelligent Computing Systems provide efficient solutions and, thus, may play a role in the years to come. It demonstrates how Intelligent Computing Systems make use of computational methodologies that mimic nature-inspired processes to address real world problems of high complexity for which exact mathematical solutions, based on physical and statistical modelling, are intractable. Common intelligent computational methodologies are presented including artificial neural networks, evolutionary computation, genetic algorithms, artificial immune systems, fuzzy logic, swarm intelligence, artificial life, virtual worlds and hybrid methodologies based on combinations of the previous. The book will be useful to researchers, practitioners and graduate students dealing with mathematically-intractable problems. It is intended for both the expert/researcher in the field of Intelligent Computing Systems, as well as for the general reader in t...

  19. New trends in computational collective intelligence

    CERN Document Server

    Kim, Sang-Wook; Trawiński, Bogdan

    2015-01-01

    This book consists of 20 chapters in which the authors deal with different theoretical and practical aspects of new trends in Collective Computational Intelligence techniques. Computational Collective Intelligence methods and algorithms are one the current trending research topics from areas related to Artificial Intelligence, Soft Computing or Data Mining among others. Computational Collective Intelligence is a rapidly growing field that is most often understood as an AI sub-field dealing with soft computing methods which enable making group decisions and processing knowledge among autonomous units acting in distributed environments. Web-based Systems, Social Networks, and Multi-Agent Systems very often need these tools for working out consistent knowledge states, resolving conflicts and making decisions. The chapters included in this volume cover a selection of topics and new trends in several domains related to Collective Computational Intelligence: Language and Knowledge Processing, Data Mining Methods an...

  20. Using Cultural Algorithms to Improve Intelligent Logistics

    Science.gov (United States)

    Ochoa, Alberto; García, Yazmani; Yañez, Javier; Teymanoglu, Yaddik

    Today the issue of logistics is a very important within companies to the extent that some have departments devoted exclusively to it. This has evolved over time and today is a fundamental aspect in the fight business seeking to consolidate or remain leaders in their field. With the above we know that logistics can be divided into different classes, however, in this regard, our study is based on the timely distribution to the customer with a lower cost, higher sales and better utilization of space resulting in excellent service. Finally, prepare a comparative analysis of the results with respect to another method of optimization solution space.

  1. Intelligent Shuttle Management and Routing Algorithm

    Science.gov (United States)

    Thomas, Toshen M.; Subashanthini, S.

    2017-11-01

    Nowadays, most of the big Universities and campuses have Shuttle cabs running in them to cater the transportational needs of the students and faculties. While some shuttle services ask for a meagre sum to be paid for the usage, no digital payment system is onboard these vehicles to go truly cashless. Even more troublesome is the fact that sometimes during the day, some of these cabs run with bare number of passengers, which can result in unwanted budget loss to the shuttle operator. The main purpose of this paper is to create a system with two types of applications: A web portal and an Android app, to digitize the Shuttle cab industry. This system can be used for digital cashless payment feature, tracking passengers, tracking cabs and more importantly, manage the number of shuttle cabs in every route to maximize profit. This project is built upon an ASP.NET website connected to a cloud service along with an Android app that tracks and reads the passengers ID using an attached barcode reader along with the current GPS coordinates, and sends these data to the cloud for processing using the phone’s internet connectivity.

  2. Intelligent Tutor

    Science.gov (United States)

    1990-01-01

    NASA also seeks to advance American education by employing the technology utilization process to develop a computerized, artificial intelligence-based Intelligent Tutoring System (ITS) to help high school and college physics students. The tutoring system is designed for use with the lecture and laboratory portions of a typical physics instructional program. Its importance lies in its ability to observe continually as a student develops problem solutions and to intervene when appropriate with assistance specifically directed at the student's difficulty and tailored to his skill level and learning style. ITS originated as a project of the Johnson Space Center (JSC). It is being developed by JSC's Software Technology Branch in cooperation with Dr. R. Bowen Loftin at the University of Houston-Downtown. Program is jointly sponsored by NASA and ACOT (Apple Classrooms of Tomorrow). Other organizations providing support include Texas Higher Education Coordinating Board, the National Research Council, Pennzoil Products Company and the George R. Brown Foundation. The Physics I class of Clear Creek High School, League City, Texas are providing the classroom environment for test and evaluation of the system. The ITS is a spinoff product developed earlier to integrate artificial intelligence into training/tutoring systems for NASA astronauts flight controllers and engineers.

  3. Learning algorithms and automatic processing of languages; Algorithmes a apprentissage et traitement automatique des langues

    Energy Technology Data Exchange (ETDEWEB)

    Fluhr, Christian Yves Andre

    1977-06-15

    This research thesis concerns the field of artificial intelligence. It addresses learning algorithms applied to automatic processing of languages. The author first briefly describes some mechanisms of human intelligence in order to describe how these mechanisms are simulated on a computer. He outlines the specific role of learning in various manifestations of intelligence. Then, based on the Markov's algorithm theory, the author discusses the notion of learning algorithm. Two main types of learning algorithms are then addressed: firstly, an 'algorithm-teacher dialogue' type sanction-based algorithm which aims at learning how to solve grammatical ambiguities in submitted texts; secondly, an algorithm related to a document system which structures semantic data automatically obtained from a set of texts in order to be able to understand by references to any question on the content of these texts.

  4. Application of ant colony Algorithm and particle swarm optimization in architectural design

    Science.gov (United States)

    Song, Ziyi; Wu, Yunfa; Song, Jianhua

    2018-02-01

    By studying the development of ant colony algorithm and particle swarm algorithm, this paper expounds the core idea of the algorithm, explores the combination of algorithm and architectural design, sums up the application rules of intelligent algorithm in architectural design, and combines the characteristics of the two algorithms, obtains the research route and realization way of intelligent algorithm in architecture design. To establish algorithm rules to assist architectural design. Taking intelligent algorithm as the beginning of architectural design research, the authors provide the theory foundation of ant colony Algorithm and particle swarm algorithm in architectural design, popularize the application range of intelligent algorithm in architectural design, and provide a new idea for the architects.

  5. Animation of planning algorithms

    OpenAIRE

    Sun, Fan

    2014-01-01

    Planning is the process of creating a sequence of steps/actions that will satisfy a goal of a problem. The partial order planning (POP) algorithm is one of Artificial Intelligence approach for problem planning. By learning G52PAS module, I find that it is difficult for students to understand this planning algorithm by just reading its pseudo code and doing some exercise in writing. Students cannot know how each actual step works clearly and might miss some steps because of their confusion. ...

  6. Important Themas in Artificial Intelligence

    OpenAIRE

    Šudoma, Petr

    2013-01-01

    The paper studies description logics as a method of field of artificial intelligence, describes history of knowledge representation as series of events leading to founding of description logics. Furthermore the paper compares description logics with their predecessor, the frame systems. Syntax, semantics and description logics naming convention is also presented and algorithms solving common knowledge representation tasks with usage of description logics are described. Paper compares computat...

  7. Intelligent Design and Intelligent Failure

    Science.gov (United States)

    Jerman, Gregory

    2015-01-01

    Good Evening, my name is Greg Jerman and for nearly a quarter century I have been performing failure analysis on NASA's aerospace hardware. During that time I had the distinct privilege of keeping the Space Shuttle flying for two thirds of its history. I have analyzed a wide variety of failed hardware from simple electrical cables to cryogenic fuel tanks to high temperature turbine blades. During this time I have found that for all the time we spend intelligently designing things, we need to be equally intelligent about understanding why things fail. The NASA Flight Director for Apollo 13, Gene Kranz, is best known for the expression "Failure is not an option." However, NASA history is filled with failures both large and small, so it might be more accurate to say failure is inevitable. It is how we react and learn from our failures that makes the difference.

  8. Opposition-Based Adaptive Fireworks Algorithm

    OpenAIRE

    Chibing Gong

    2016-01-01

    A fireworks algorithm (FWA) is a recent swarm intelligence algorithm that is inspired by observing fireworks explosions. An adaptive fireworks algorithm (AFWA) proposes additional adaptive amplitudes to improve the performance of the enhanced fireworks algorithm (EFWA). The purpose of this paper is to add opposition-based learning (OBL) to AFWA with the goal of further boosting performance and achieving global optimization. Twelve benchmark functions are tested in use of an opposition-based a...

  9. Business Intelligence

    OpenAIRE

    Petersen, Anders

    2001-01-01

    Cílem této bakalářské práce je seznámení s Business Intelligence a zpracování vývojového trendu, který ovlivňuje podobu řešení Business Intelligence v podniku ? Business Activity Monitoring. Pro zpracování tohoto tématu byla použita metoda studia odborných pramenů, a to jak v českém, tak v anglickém jazyce. Hlavním přínosem práce je ucelený, v českém jazyce zpracovaný materiál pojednávající o Business Activity Monitoring. Práce je rozdělena do šesti hlavních kapitol. Prvních pět je věnováno p...

  10. Compression in Working Memory and Its Relationship With Fluid Intelligence.

    Science.gov (United States)

    Chekaf, Mustapha; Gauvrit, Nicolas; Guida, Alessandro; Mathy, Fabien

    2018-06-01

    Working memory has been shown to be strongly related to fluid intelligence; however, our goal is to shed further light on the process of information compression in working memory as a determining factor of fluid intelligence. Our main hypothesis was that compression in working memory is an excellent indicator for studying the relationship between working-memory capacity and fluid intelligence because both depend on the optimization of storage capacity. Compressibility of memoranda was estimated using an algorithmic complexity metric. The results showed that compressibility can be used to predict working-memory performance and that fluid intelligence is well predicted by the ability to compress information. We conclude that the ability to compress information in working memory is the reason why both manipulation and retention of information are linked to intelligence. This result offers a new concept of intelligence based on the idea that compression and intelligence are equivalent problems. Copyright © 2018 Cognitive Science Society, Inc.

  11. Web Intelligence and Artificial Intelligence in Education

    Science.gov (United States)

    Devedzic, Vladan

    2004-01-01

    This paper surveys important aspects of Web Intelligence (WI) in the context of Artificial Intelligence in Education (AIED) research. WI explores the fundamental roles as well as practical impacts of Artificial Intelligence (AI) and advanced Information Technology (IT) on the next generation of Web-related products, systems, services, and…

  12. The role of soft computing in intelligent machines.

    Science.gov (United States)

    de Silva, Clarence W

    2003-08-15

    An intelligent machine relies on computational intelligence in generating its intelligent behaviour. This requires a knowledge system in which representation and processing of knowledge are central functions. Approximation is a 'soft' concept, and the capability to approximate for the purposes of comparison, pattern recognition, reasoning, and decision making is a manifestation of intelligence. This paper examines the use of soft computing in intelligent machines. Soft computing is an important branch of computational intelligence, where fuzzy logic, probability theory, neural networks, and genetic algorithms are synergistically used to mimic the reasoning and decision making of a human. This paper explores several important characteristics and capabilities of machines that exhibit intelligent behaviour. Approaches that are useful in the development of an intelligent machine are introduced. The paper presents a general structure for an intelligent machine, giving particular emphasis to its primary components, such as sensors, actuators, controllers, and the communication backbone, and their interaction. The role of soft computing within the overall system is discussed. Common techniques and approaches that will be useful in the development of an intelligent machine are introduced, and the main steps in the development of an intelligent machine for practical use are given. An industrial machine, which employs the concepts of soft computing in its operation, is presented, and one aspect of intelligent tuning, which is incorporated into the machine, is illustrated.

  13. An intelligent clustering based methodology for confusable diseases ...

    African Journals Online (AJOL)

    Journal of Computer Science and Its Application ... In this paper, an intelligent system driven by fuzzy clustering algorithm and Adaptive Neuro-Fuzzy Inference System for ... Data on patients diagnosed and confirmed by laboratory tests of viral ...

  14. Handling risk attitudes for preference learning and intelligent decision support

    DEFF Research Database (Denmark)

    Franco de los Ríos, Camilo; Hougaard, Jens Leth; Nielsen, Kurt

    2015-01-01

    Intelligent decision support should allow integrating human knowledge with efficient algorithms for making interpretable and useful recommendations on real world decision problems. Attitudes and preferences articulate and come together under a decision process that should be explicitly modeled...

  15. Herd Clustering: A synergistic data clustering approach using collective intelligence

    KAUST Repository

    Wong, Kachun; Peng, Chengbin; Li, Yue; Chan, Takming

    2014-01-01

    , this principle is used to develop a new clustering algorithm. Inspired by herd behavior, the clustering method is a synergistic approach using collective intelligence called Herd Clustering (HC). The novel part is laid in its first stage where data instances

  16. Intelligent nesting system

    Directory of Open Access Journals (Sweden)

    Đuričić Zoran

    2003-01-01

    Full Text Available The economy of the process for the manufacture of parts from sheet metal plates depends on successful solution of the process of cutting various parts from sheet metal plates. Essentially, the problem is to arrange contours within a defined space so that they take up minimal surface. When taken in this way, the considered problem assumes a more general nature; it refers to the utilization of a flat surface, and it can represent a general principle of arranging 2D contours on a certain surface. The paper presents a conceptual solution and a prototypal intelligent nesting system for optimal cutting. The problem of nesting can generally be divided into two intellectual phases: recognition and classification of shapes, and arrangement of recognized shapes on a given surface. In solving these problems, methods of artificial intelligence are applied. In the paper, trained neural network is used for recognition of shapes; on the basis of raster record of a part's drawing, it recognizes the part's shape and which class it belongs to. By means of the expert system, based on rules defined on the basis of acquisition of knowledge from manufacturing sections, as well as on the basis of certain mathematical algorithms, parts are arranged on the arrangement surface. Both systems can also work independently, having been built on the modular principle. The system uses various product models as elements of integration for the entire system. .

  17. An Intelligent Weather Station

    Science.gov (United States)

    Mestre, Gonçalo; Ruano, Antonio; Duarte, Helder; Silva, Sergio; Khosravani, Hamid; Pesteh, Shabnam; Ferreira, Pedro M.; Horta, Ricardo

    2015-01-01

    Accurate measurements of global solar radiation, atmospheric temperature and relative humidity, as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight, self-powered and portable sensor was developed, using a nearest-neighbors (NEN) algorithm and artificial neural network (ANN) models as the time-series predictor mechanisms. The hardware and software design of the implemented prototype are described, as well as the forecasting performance related to the three atmospheric variables, using both approaches, over a prediction horizon of 48-steps-ahead. PMID:26690433

  18. Intelligent robotic tracker

    Science.gov (United States)

    Otaguro, W. S.; Kesler, L. O.; Land, K. C.; Rhoades, D. E.

    1987-01-01

    An intelligent tracker capable of robotic applications requiring guidance and control of platforms, robotic arms, and end effectors has been developed. This packaged system capable of supervised autonomous robotic functions is partitioned into a multiple processor/parallel processing configuration. The system currently interfaces to cameras but has the capability to also use three-dimensional inputs from scanning laser rangers. The inputs are fed into an image processing and tracking section where the camera inputs are conditioned for the multiple tracker algorithms. An executive section monitors the image processing and tracker outputs and performs all the control and decision processes. The present architecture of the system is presented with discussion of its evolutionary growth for space applications. An autonomous rendezvous demonstration of this system was performed last year. More realistic demonstrations in planning are discussed.

  19. Artificial intelligence in radiology.

    Science.gov (United States)

    Hosny, Ahmed; Parmar, Chintan; Quackenbush, John; Schwartz, Lawrence H; Aerts, Hugo J W L

    2018-05-17

    Artificial intelligence (AI) algorithms, particularly deep learning, have demonstrated remarkable progress in image-recognition tasks. Methods ranging from convolutional neural networks to variational autoencoders have found myriad applications in the medical image analysis field, propelling it forward at a rapid pace. Historically, in radiology practice, trained physicians visually assessed medical images for the detection, characterization and monitoring of diseases. AI methods excel at automatically recognizing complex patterns in imaging data and providing quantitative, rather than qualitative, assessments of radiographic characteristics. In this Opinion article, we establish a general understanding of AI methods, particularly those pertaining to image-based tasks. We explore how these methods could impact multiple facets of radiology, with a general focus on applications in oncology, and demonstrate ways in which these methods are advancing the field. Finally, we discuss the challenges facing clinical implementation and provide our perspective on how the domain could be advanced.

  20. An Intelligent Weather Station

    Directory of Open Access Journals (Sweden)

    Gonçalo Mestre

    2015-12-01

    Full Text Available Accurate measurements of global solar radiation, atmospheric temperature and relative humidity, as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight, self-powered and portable sensor was developed, using a nearest-neighbors (NEN algorithm and artificial neural network (ANN models as the time-series predictor mechanisms. The hardware and software design of the implemented prototype are described, as well as the forecasting performance related to the three atmospheric variables, using both approaches, over a prediction horizon of 48-steps-ahead.

  1. Algorithming the Algorithm

    DEFF Research Database (Denmark)

    Mahnke, Martina; Uprichard, Emma

    2014-01-01

    Imagine sailing across the ocean. The sun is shining, vastness all around you. And suddenly [BOOM] you’ve hit an invisible wall. Welcome to the Truman Show! Ever since Eli Pariser published his thoughts on a potential filter bubble, this movie scenario seems to have become reality, just with slight...... changes: it’s not the ocean, it’s the internet we’re talking about, and it’s not a TV show producer, but algorithms that constitute a sort of invisible wall. Building on this assumption, most research is trying to ‘tame the algorithmic tiger’. While this is a valuable and often inspiring approach, we...

  2. Intelligence and negotiating

    International Nuclear Information System (INIS)

    George, D.G.

    1990-01-01

    This paper discusses the role of US intelligence during arms control negotiations between 1982 and 1987. It also covers : the orchestration of intelligence projects; an evaluation of the performance of intelligence activities; the effect intelligence work had on actual arms negotiations; and suggestions for improvements in the future

  3. Intelligent products : A survey

    NARCIS (Netherlands)

    Meyer, G.G.; Främling, K.; Holmström, J.

    This paper presents an overview of the field of Intelligent Products. As Intelligent Products have many facets, this paper is mainly focused on the concept behind Intelligent Products, the technical foundations, and the achievable practical goals of Intelligent Products. A novel classification of

  4. Intelligence Issues for Congress

    Science.gov (United States)

    2013-04-23

    open source information— osint (newspapers...by user agencies. Section 1052 of the Intelligence Reform Act expressed the sense of Congress that there should be an open source intelligence ...center to coordinate the collection, analysis, production, and dissemination of open source intelligence to other intelligence agencies. An Open Source

  5. Adaptation and hybridization in computational intelligence

    CERN Document Server

    Jr, Iztok

    2015-01-01

      This carefully edited book takes a walk through recent advances in adaptation and hybridization in the Computational Intelligence (CI) domain. It consists of ten chapters that are divided into three parts. The first part illustrates background information and provides some theoretical foundation tackling the CI domain, the second part deals with the adaptation in CI algorithms, while the third part focuses on the hybridization in CI. This book can serve as an ideal reference for researchers and students of computer science, electrical and civil engineering, economy, and natural sciences that are confronted with solving the optimization, modeling and simulation problems. It covers the recent advances in CI that encompass Nature-inspired algorithms, like Artificial Neural networks, Evolutionary Algorithms and Swarm Intelligence –based algorithms.  

  6. Crowd-Sourced Intelligence Agency: Prototyping counterveillance

    Directory of Open Access Journals (Sweden)

    Jennifer Gradecki

    2017-02-01

    Full Text Available This paper discusses how an interactive artwork, the Crowd-Sourced Intelligence Agency (CSIA, can contribute to discussions of Big Data intelligence analytics. The CSIA is a publicly accessible Open Source Intelligence (OSINT system that was constructed using information gathered from technical manuals, research reports, academic papers, leaked documents, and Freedom of Information Act files. Using a visceral heuristic, the CSIA demonstrates how the statistical correlations made by automated classification systems are different from human judgment and can produce false-positives, as well as how the display of information through an interface can affect the judgment of an intelligence agent. The public has the right to ask questions about how a computer program determines if they are a threat to national security and to question the practicality of using statistical pattern recognition algorithms in place of human judgment. Currently, the public’s lack of access to both Big Data and the actual datasets intelligence agencies use to train their classification algorithms keeps the possibility of performing effective sous-dataveillance out of reach. Without this data, the results returned by the CSIA will not be identical to those of intelligence agencies. Because we have replicated how OSINT is processed, however, our results will resemble the type of results and mistakes made by OSINT systems. The CSIA takes some initial steps toward contributing to an informed public debate about large-scale monitoring of open source, social media data and provides a prototype for counterveillance and sousveillance tools for citizens.

  7. Intelligent Governmentality

    Directory of Open Access Journals (Sweden)

    Willem de Lint

    2008-10-01

    Full Text Available Recently, within liberal democracies, the post-Westphalian consolidation of security and intelligence has ushered in the normalization not only of security in ‘securitization’ but also of intelligence in what is proposed here as ‘intelligencification.’ In outlining the features of intelligencified governance, my aim is to interrogate the view that effects or traces, and productivity rather than negation is as persuasive as commonly thought by the constructivists. After all, counter-intelligence is both about purging and reconstructing the archive for undisclosed values. In practice, what is being normalized is the authorized and legalized use of release and retention protocols of politically actionable information. The intelligencification of governmentality affords a sovereignty shell-game or the instrumentalization of sovereign power by interests that are dependent on, yet often inimical to, the power of state, national, and popular sovereignty. On voit le politique et le social comme dépendant de contingences exclusives. Récemment, au sein des démocraties libérales, la consolidation de la sécurité et des services de renseignements de sécurité qui a suivi les traités de la Westphalie a donné lieu à la normalisation non seulement de la sécurité en «sécurisation» mais aussi des services de renseignements de sécurité en ce qui est proposé ici comme «intelligencification» [terme anglais créé par l’auteur, dérivé du mot anglais «intelligence» dans le sens de renseignements des écurité]. En particulier, ce que l’on normalise dans le but de contourner des contingences exclusives est l’utilisation autorisée et légalisée de protocoles de communication et de rétention d’information qui, politiquement, pourrait mener à des poursuites. En esquissant les traits de la gouvernance «intelligencifiée», mon but est d’interroger le point de vue que les effets ou les traces, et la productivité plutôt que la

  8. Pathogen intelligence

    Directory of Open Access Journals (Sweden)

    Michael eSteinert

    2014-01-01

    Full Text Available Different species inhabit different sensory worlds and thus have evolved diverse means of processing information, learning and memory. In the escalated arms race with host defense, each pathogenic bacterium not only has evolved its individual cellular sensing and behaviour, but also collective sensing, interbacterial communication, distributed information processing, joint decision making, dissociative behaviour, and the phenotypic and genotypic heterogeneity necessary for epidemiologic success. Moreover, pathogenic populations take advantage of dormancy strategies and rapid evolutionary speed, which allow them to save co-generated intelligent traits in a collective genomic memory. This review discusses how these mechanisms add further levels of complexity to bacterial pathogenicity and transmission, and how mining for these mechanisms could help to develop new anti-infective strategies.

  9. Intelligent Routines

    CERN Document Server

    Anastassiou, George A

    Intelligent Routines II: Solving Linear Algebra and Differential Geometry with Sage” contains numerous of examples and problems as well as many unsolved problems. This book extensively applies the successful software Sage, which can be found free online http://www.sagemath.org/. Sage is a recent and popular software for mathematical computation, available freely and simple to use. This book is useful to all applied scientists in mathematics, statistics and engineering, as well for late undergraduate and graduate students of above subjects. It is the first such book in solving symbolically with Sage problems in Linear Algebra and Differential Geometry. Plenty of SAGE applications are given at each step of the exposition.

  10. Intelligent Vehicle Health Management

    Science.gov (United States)

    Paris, Deidre E.; Trevino, Luis; Watson, Michael D.

    2005-01-01

    objectives: Guidance and Navigation; Communications and Tracking; Vehicle Monitoring; Information Transport and Integration; Vehicle Diagnostics; Vehicle Prognostics; Vehicle mission Planning; Automated Repair and Replacement; Vehicle Control; Human Computer Interface; and Onboard Verification and Validation. Furthermore, the presented framework provides complete vehicle management which not only allows for increased crew safety and mission success through new intelligence capabilities, but also yields a mechanism for more efficient vehicle operations. The representative IVHM technologies for computer platform using heterogeneous communication, 3) coupled electromagnetic oscillators for enhanced communications, 4) Linux-based real-time systems, 5) genetic algorithms, 6) Bayesian Networks, 7) evolutionary algorithms, 8) dynamic systems control modeling, and 9) advanced sensing capabilities. This paper presents IVHM technologies developed under NASA's NFFP pilot project and the integration of these technologies forms the framework for IIVM.

  11. Handbook of Memetic Algorithms

    CERN Document Server

    Cotta, Carlos; Moscato, Pablo

    2012-01-01

    Memetic Algorithms (MAs) are computational intelligence structures combining multiple and various operators in order to address optimization problems.  The combination and interaction amongst operators evolves and promotes the diffusion of the most successful units and generates an algorithmic behavior which can handle complex objective functions and hard fitness landscapes.   “Handbook of Memetic Algorithms” organizes, in a structured way, all the the most important results in the field of MAs since their earliest definition until now.  A broad review including various algorithmic solutions as well as successful applications is included in this book. Each class of optimization problems, such as constrained optimization, multi-objective optimization, continuous vs combinatorial problems, uncertainties, are analysed separately and, for each problem,  memetic recipes for tackling the difficulties are given with some successful examples. Although this book contains chapters written by multiple authors, ...

  12. Intelligence: Real or artificial?

    OpenAIRE

    Schlinger, Henry D.

    1992-01-01

    Throughout the history of the artificial intelligence movement, researchers have strived to create computers that could simulate general human intelligence. This paper argues that workers in artificial intelligence have failed to achieve this goal because they adopted the wrong model of human behavior and intelligence, namely a cognitive essentialist model with origins in the traditional philosophies of natural intelligence. An analysis of the word “intelligence” suggests that it originally r...

  13. Computational intelligence, medicine and biology selected links

    CERN Document Server

    Zaitseva, Elena

    2015-01-01

    This book contains an interesting and state-of the art collection of chapters presenting several examples of attempts to developing modern tools utilizing computational intelligence in different real life problems encountered by humans. Reasoning, prediction, modeling, optimization, decision making, etc. need modern, soft and intelligent algorithms, methods and methodologies to solve, in the efficient ways, problems appearing in human activity. The contents of the book is divided into two parts. Part I, consisting of four chapters, is devoted to selected links of computational intelligence, medicine, health care and biomechanics. Several problems are considered: estimation of healthcare system reliability, classification of ultrasound thyroid images, application of fuzzy logic to measure weight status and central fatness, and deriving kinematics directly from video records. Part II, also consisting of four chapters, is devoted to selected links of computational intelligence and biology. The common denominato...

  14. How to Improve Artificial Intelligence through Web

    Directory of Open Access Journals (Sweden)

    Adrian LUPASC

    2005-10-01

    Full Text Available Intelligent agents, intelligent software applications and artificial intelligent applications from artificial intelligence service providers maymake their way onto the Web in greater number as adaptive software, dynamic programming languages and Learning Algorithms are introduced intoWeb Services. The evolution of Web architecture may allow intelligent applications to run directly on the Web by introducing XML, RDF and logiclayer. The Intelligent Wireless Web’s significant potential for rapidly completing information transactions may take an important contribution toglobal worker productivity. Artificial intelligence can be defined as the study of the ways in which computers can be made to perform cognitivetasks. Examples of such tasks include understanding natural language statements, recognizing visual patterns or scenes, diagnosing diseases orillnesses, solving mathematical problems, performing financial analyses, learning new procedures for solving problems. The term expert system canbe considered to be a particular type of knowledge-based system. An expert system is a system in which the knowledge is deliberately represented“as it is”. Expert systems are applications that make decisions in real-life situations that would otherwise be performed by a human expert. They areprograms designed to mimic human performance at specialized, constrained problem-solving tasks. They are constructed as a collection of IF-THENproduction rules combined with a reasoning engine that applies those rules, either in a forward or backward direction, to specific problems.

  15. International Conference on Frontiers of Intelligent Computing : Theory and Applications

    CERN Document Server

    Udgata, Siba; Biswal, Bhabendra

    2014-01-01

    This volume contains the papers presented at the Second International Conference on Frontiers in Intelligent Computing: Theory and Applications (FICTA-2013) held during 14-16 November 2013 organized by Bhubaneswar Engineering College (BEC), Bhubaneswar, Odisha, India. It contains 63 papers focusing on application of intelligent techniques which includes evolutionary computation techniques like genetic algorithm, particle swarm optimization techniques, teaching-learning based optimization etc  for various engineering applications such as data mining, Fuzzy systems, Machine Intelligence and ANN, Web technologies and Multimedia applications and Intelligent computing and Networking etc.

  16. Applications of artificial intelligence in engineering problems

    Energy Technology Data Exchange (ETDEWEB)

    Sriram, D; Adey, R

    1986-01-01

    This book presents the papers given at a conference on the use of artificial intelligence in engineering. Topics considered at the conference included Prolog logic, expert systems, knowledge representation and acquisition, knowledge bases, machine learning, robotics, least-square algorithms, vision systems for robots, natural language, probability, mechanical engineering, civil engineering, and electrical engineering.

  17. Intelligent simulated annealing algorithm applied to the optimization of the main magnet for magnetic resonance imaging machine; Algoritmo simulated annealing inteligente aplicado a la optimizacion del iman principal de una maquina de resonancia magnetica de imagenes

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Lopez, Hector [Universidad de Oriente, Santiago de Cuba (Cuba). Centro de Biofisica Medica]. E-mail: hsanchez@cbm.uo.edu.cu

    2001-08-01

    This work describes an alternative algorithm of Simulated Annealing applied to the design of the main magnet for a Magnetic Resonance Imaging machine. The algorithm uses a probabilistic radial base neuronal network to classify the possible solutions, before the objective function evaluation. This procedure allows reducing up to 50% the number of iterations required by simulated annealing to achieve the global maximum, when compared with the SA algorithm. The algorithm was applied to design a 0.1050 Tesla four coil resistive magnet, which produces a magnetic field 2.13 times more uniform than the solution given by SA. (author)

  18. Advances in Collective Intelligence 2011

    CERN Document Server

    Baumöl, Ulrike; Krämer, Bernd

    2012-01-01

    Collective intelligence has become an attractive subject of interest for both academia and industry. More and more conferences and workshops discuss the impact of the users‘ motivation to participate in the value creation process, the enabling role of leading-edge information and communication technologies and the need for better algorithms to deal with the growing amount of shared data. There are many interesting and challenging topics that need to be researched and discussed with respect to knowledge creation, creativity and innovation processes carried forward in the emerging communities of practice. COLLIN is on the path to become the flagship conference in the areas of collective intelligence and ICT-enabled social networking. We were delighted to again receive contributions from different parts of the world including Australia, Europe, Asia, and the United States. Encouraged by the positive response, we plan COLLIN 2012 to be held next year end of August at FernUniverstität in Hagen. In order to guar...

  19. Faith in the algorithm, part 1: beyond the turing test

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Marko A [Los Alamos National Laboratory; Pepe, Alberto [UCLA

    2009-01-01

    Since the Turing test was first proposed by Alan Turing in 1950, the goal of artificial intelligence has been predicated on the ability for computers to imitate human intelligence. However, the majority of uses for the computer can be said to fall outside the domain of human abilities and it is exactly outside of this domain where computers have demonstrated their greatest contribution. Another definition for artificial intelligence is one that is not predicated on human mimicry, but instead, on human amplification, where the algorithms that are best at accomplishing this are deemed the most intelligent. This article surveys various systems that augment human and social intelligence.

  20. Modeling of biological intelligence for SCM system optimization.

    Science.gov (United States)

    Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang

    2012-01-01

    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.

  1. Modeling of Biological Intelligence for SCM System Optimization

    Directory of Open Access Journals (Sweden)

    Shengyong Chen

    2012-01-01

    Full Text Available This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.

  2. Modeling of Biological Intelligence for SCM System Optimization

    Science.gov (United States)

    Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang

    2012-01-01

    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms. PMID:22162724

  3. Recent advances in swarm intelligence and evolutionary computation

    CERN Document Server

    2015-01-01

    This timely review volume summarizes the state-of-the-art developments in nature-inspired algorithms and applications with the emphasis on swarm intelligence and bio-inspired computation. Topics include the analysis and overview of swarm intelligence and evolutionary computation, hybrid metaheuristic algorithms, bat algorithm, discrete cuckoo search, firefly algorithm, particle swarm optimization, and harmony search as well as convergent hybridization. Application case studies have focused on the dehydration of fruits and vegetables by the firefly algorithm and goal programming, feature selection by the binary flower pollination algorithm, job shop scheduling, single row facility layout optimization, training of feed-forward neural networks, damage and stiffness identification, synthesis of cross-ambiguity functions by the bat algorithm, web document clustering, truss analysis, water distribution networks, sustainable building designs and others. As a timely review, this book can serve as an ideal reference f...

  4. Educational Programs for Intelligence Professionals.

    Science.gov (United States)

    Miller, Jerry P.

    1994-01-01

    Discusses the need for education programs for competitive intelligence professionals. Highlights include definitions of intelligence functions, focusing on business intelligence; information utilization by decision makers; information sources; competencies for intelligence professionals; and the development of formal education programs. (38…

  5. A New Dimension of Business Intelligence: Location-based Intelligence

    OpenAIRE

    Zeljko Panian

    2012-01-01

    Through the course of this paper we define Locationbased Intelligence (LBI) which is outgrowing from process of amalgamation of geolocation and Business Intelligence. Amalgamating geolocation with traditional Business Intelligence (BI) results in a new dimension of BI named Location-based Intelligence. LBI is defined as leveraging unified location information for business intelligence. Collectively, enterprises can transform location data into business intelligence applic...

  6. Biomimetics in Intelligent Sensor and Actuator Automation Systems

    Science.gov (United States)

    Bruckner, Dietmar; Dietrich, Dietmar; Zucker, Gerhard; Müller, Brit

    Intelligent machines are really an old mankind's dream. With increasing technological development, the requirements for intelligent devices also increased. However, up to know, artificial intelligence (AI) lacks solutions to the demands of truly intelligent machines that have no problems to integrate themselves into daily human environments. Current hardware with a processing power of billions of operations per second (but without any model of human-like intelligence) could not substantially contribute to the intelligence of machines when compared with that of the early AI times. There are great results, of course. Machines are able to find the shortest path between far apart cities on the map; algorithms let you find information described only by few key words. But no machine is able to get us a cup of coffee from the kitchen yet.

  7. 7th International Symposium on Intelligent Distributed Computing

    CERN Document Server

    Jung, Jason; Badica, Costin

    2014-01-01

    This book represents the combined peer-reviewed proceedings of the Seventh International Symposium on Intelligent Distributed Computing - IDC-2013, of the Second Workshop on Agents for Clouds - A4C-2013, of the Fifth International Workshop on Multi-Agent Systems Technology and Semantics - MASTS-2013, and of the International Workshop on Intelligent Robots - iR-2013. All the events were held in Prague, Czech Republic during September 4-6, 2013. The 41 contributions published in this book address many topics related to theory and applications of intelligent distributed computing and multi-agent systems, including: agent-based data processing, ambient intelligence, bio-informatics, collaborative systems, cryptography and security, distributed algorithms, grid and cloud computing, information extraction, intelligent robotics, knowledge management, linked data, mobile agents, ontologies, pervasive computing, self-organizing systems, peer-to-peer computing, social networks and trust, and swarm intelligence.  .

  8. Sound algorithms

    OpenAIRE

    De Götzen , Amalia; Mion , Luca; Tache , Olivier

    2007-01-01

    International audience; We call sound algorithms the categories of algorithms that deal with digital sound signal. Sound algorithms appeared in the very infancy of computer. Sound algorithms present strong specificities that are the consequence of two dual considerations: the properties of the digital sound signal itself and its uses, and the properties of auditory perception.

  9. Genetic algorithms

    Science.gov (United States)

    Wang, Lui; Bayer, Steven E.

    1991-01-01

    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.

  10. Opposition-Based Adaptive Fireworks Algorithm

    Directory of Open Access Journals (Sweden)

    Chibing Gong

    2016-07-01

    Full Text Available A fireworks algorithm (FWA is a recent swarm intelligence algorithm that is inspired by observing fireworks explosions. An adaptive fireworks algorithm (AFWA proposes additional adaptive amplitudes to improve the performance of the enhanced fireworks algorithm (EFWA. The purpose of this paper is to add opposition-based learning (OBL to AFWA with the goal of further boosting performance and achieving global optimization. Twelve benchmark functions are tested in use of an opposition-based adaptive fireworks algorithm (OAFWA. The final results conclude that OAFWA significantly outperformed EFWA and AFWA in terms of solution accuracy. Additionally, OAFWA was compared with a bat algorithm (BA, differential evolution (DE, self-adapting control parameters in differential evolution (jDE, a firefly algorithm (FA, and a standard particle swarm optimization 2011 (SPSO2011 algorithm. The research results indicate that OAFWA ranks the highest of the six algorithms for both solution accuracy and runtime cost.

  11. INTELLIGENT DECISION SUPPORT ON FOREX

    Directory of Open Access Journals (Sweden)

    V. A. Rybak

    2014-01-01

    Full Text Available A new technology of intelligent decision support on Forex, including forming algorithms of trading signals, rules for the training sample based on technical indicators, which have the highest correlation with the price, the method of reducing the number of losing trades, is proposed. The last is based on an analysis of the wave structure of the market, while the beginning of the cycle (the wave number one is offered to be identified using Bill Williams Oscillator (Awesome oscillator. The process chain of constructing neuro-fuzzy model using software package MatLab is described.

  12. Intelligent Mission Controller Node

    National Research Council Canada - National Science Library

    Perme, David

    2002-01-01

    The goal of the Intelligent Mission Controller Node (IMCN) project was to improve the process of translating mission taskings between real-world Command, Control, Communications, Computers, and Intelligence (C41...

  13. Advanced intelligent systems

    CERN Document Server

    Ryoo, Young; Jang, Moon-soo; Bae, Young-Chul

    2014-01-01

    Intelligent systems have been initiated with the attempt to imitate the human brain. People wish to let machines perform intelligent works. Many techniques of intelligent systems are based on artificial intelligence. According to changing and novel requirements, the advanced intelligent systems cover a wide spectrum: big data processing, intelligent control, advanced robotics, artificial intelligence and machine learning. This book focuses on coordinating intelligent systems with highly integrated and foundationally functional components. The book consists of 19 contributions that features social network-based recommender systems, application of fuzzy enforcement, energy visualization, ultrasonic muscular thickness measurement, regional analysis and predictive modeling, analysis of 3D polygon data, blood pressure estimation system, fuzzy human model, fuzzy ultrasonic imaging method, ultrasonic mobile smart technology, pseudo-normal image synthesis, subspace classifier, mobile object tracking, standing-up moti...

  14. An Artificial Intelligence Approach to Transient Stability Assessment

    OpenAIRE

    Akella, Vijay Ahaskar; Khincha, HP; Kumar, Sreerama R

    1991-01-01

    An artificial intelligence approach to online transient stability assessment is briefly discussed, and some crucial requirements for this algorithm are identified. Solutions to these are proposed. Some new attributes are suggested so as to reflect machine dynamics and changes in the network. Also a new representative learning set algorithm has been developed.

  15. Artificial Intelligence Project

    Science.gov (United States)

    1990-01-01

    Symposium on Aritificial Intelligence and Software Engineering Working Notes, March 1989. Blumenthal, Brad, "An Architecture for Automating...Artificial Intelligence Project Final Technical Report ARO Contract: DAAG29-84-K-OGO Artificial Intelligence LaboratO"ry The University of Texas at...Austin N>.. ~ ~ JA 1/I 1991 n~~~ Austin, Texas 78712 ________k A,.tificial Intelligence Project i Final Technical Report ARO Contract: DAAG29-84-K-0060

  16. Orchestrating Multiple Intelligences

    Science.gov (United States)

    Moran, Seana; Kornhaber, Mindy; Gardner, Howard

    2006-01-01

    Education policymakers often go astray when they attempt to integrate multiple intelligences theory into schools, according to the originator of the theory, Howard Gardner, and his colleagues. The greatest potential of a multiple intelligences approach to education grows from the concept of a profile of intelligences. Each learner's intelligence…

  17. Designing with computational intelligence

    CERN Document Server

    Lopes, Heitor; Mourelle, Luiza

    2017-01-01

    This book discusses a number of real-world applications of computational intelligence approaches. Using various examples, it demonstrates that computational intelligence has become a consolidated methodology for automatically creating new competitive solutions to complex real-world problems. It also presents a concise and efficient synthesis of different systems using computationally intelligent techniques.

  18. Reflection on robotic intelligence

    NARCIS (Netherlands)

    Bartneck, C.

    2006-01-01

    This paper reflects on the development or robots, both their physical shape as well as their intelligence. The later strongly depends on the progress made in the artificial intelligence (AI) community which does not yet provide the models and tools necessary to create intelligent robots. It is time

  19. Artificial intelligence for Mariáš

    OpenAIRE

    Kaštánková, Petra

    2016-01-01

    This thesis focuses on the implementation of a card game, Mariáš, and an artificial intelligence for this game. The game is designed for three players and it can be played with either other human players, or with a computer adversary. The game is designed as a client-server application, whereby the player connects to the game using a web page. The basis of the artificial intelligence is the Minimax algorithm. To speed it up we use the Alpha-Beta pruning, hash tables for storing equivalent sta...

  20. Algorithmic cryptanalysis

    CERN Document Server

    Joux, Antoine

    2009-01-01

    Illustrating the power of algorithms, Algorithmic Cryptanalysis describes algorithmic methods with cryptographically relevant examples. Focusing on both private- and public-key cryptographic algorithms, it presents each algorithm either as a textual description, in pseudo-code, or in a C code program.Divided into three parts, the book begins with a short introduction to cryptography and a background chapter on elementary number theory and algebra. It then moves on to algorithms, with each chapter in this section dedicated to a single topic and often illustrated with simple cryptographic applic

  1. Intelligent control of dynamic LED lighting; Intelligent styring af dynamisk LED belysning. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Thorseth, A.; Corell, D.; Hansen, Soeren S.; Dam-Hansen, C.; Petersen, Paul Michael

    2013-01-15

    The project has resulted in a prototype of a new intelligent lighting control system. The control system enables the end user to control his or her own local lighting environment (lighting zone) according to individual preferences and needs. The report provides a description of how the developed intelligent lighting system is composed and functions. The system is designed as a work lamp that enables dynamic change of the light color scheme according to a number of light control algorithms. It is specifically designed in relation to user tests of the intelligent lighting system, which is carried out in the final part of the project. An intelligent and advanced control of LED lighting was developed, which enables optimization of the user's light conditions in a given situation. Based on a number of known parameters, the system can control lighting so that at any time optimal light conditions are created, using a minimum of electric power. (LN)

  2. Applications of Algorithmic Probability to the Philosophy of Mind

    OpenAIRE

    Leuenberger, Gabriel

    2014-01-01

    This paper presents formulae that can solve various seemingly hopeless philosophical conundrums. We discuss the simulation argument, teleportation, mind-uploading, the rationality of utilitarianism, and the ethics of exploiting artificial general intelligence. Our approach arises from combining the essential ideas of formalisms such as algorithmic probability, the universal intelligence measure, space-time-embedded intelligence, and Hutter's observer localization. We argue that such universal...

  3. Algorithmic mathematics

    CERN Document Server

    Hougardy, Stefan

    2016-01-01

    Algorithms play an increasingly important role in nearly all fields of mathematics. This book allows readers to develop basic mathematical abilities, in particular those concerning the design and analysis of algorithms as well as their implementation. It presents not only fundamental algorithms like the sieve of Eratosthenes, the Euclidean algorithm, sorting algorithms, algorithms on graphs, and Gaussian elimination, but also discusses elementary data structures, basic graph theory, and numerical questions. In addition, it provides an introduction to programming and demonstrates in detail how to implement algorithms in C++. This textbook is suitable for students who are new to the subject and covers a basic mathematical lecture course, complementing traditional courses on analysis and linear algebra. Both authors have given this "Algorithmic Mathematics" course at the University of Bonn several times in recent years.

  4. Social intelligence, human intelligence and niche construction.

    Science.gov (United States)

    Sterelny, Kim

    2007-04-29

    This paper is about the evolution of hominin intelligence. I agree with defenders of the social intelligence hypothesis in thinking that externalist models of hominin intelligence are not plausible: such models cannot explain the unique cognition and cooperation explosion in our lineage, for changes in the external environment (e.g. increasing environmental unpredictability) affect many lineages. Both the social intelligence hypothesis and the social intelligence-ecological complexity hybrid I outline here are niche construction models. Hominin evolution is hominin response to selective environments that earlier hominins have made. In contrast to social intelligence models, I argue that hominins have both created and responded to a unique foraging mode; a mode that is both social in itself and which has further effects on hominin social environments. In contrast to some social intelligence models, on this view, hominin encounters with their ecological environments continue to have profound selective effects. However, though the ecological environment selects, it does not select on its own. Accidents and their consequences, differential success and failure, result from the combination of the ecological environment an agent faces and the social features that enhance some opportunities and suppress others and that exacerbate some dangers and lessen others. Individuals do not face the ecological filters on their environment alone, but with others, and with the technology, information and misinformation that their social world provides.

  5. Quantum Behaved Particle Swarm Optimization Algorithm Based on Artificial Fish Swarm

    OpenAIRE

    Yumin, Dong; Li, Zhao

    2014-01-01

    Quantum behaved particle swarm algorithm is a new intelligent optimization algorithm; the algorithm has less parameters and is easily implemented. In view of the existing quantum behaved particle swarm optimization algorithm for the premature convergence problem, put forward a quantum particle swarm optimization algorithm based on artificial fish swarm. The new algorithm based on quantum behaved particle swarm algorithm, introducing the swarm and following activities, meanwhile using the a...

  6. Total algorithms

    NARCIS (Netherlands)

    Tel, G.

    We define the notion of total algorithms for networks of processes. A total algorithm enforces that a "decision" is taken by a subset of the processes, and that participation of all processes is required to reach this decision. Total algorithms are an important building block in the design of

  7. Report on dynamic speed harmonization and queue warning algorithm design.

    Science.gov (United States)

    2014-02-01

    This report provides a detailed description of the algorithms that will be used to generate harmonized recommended speeds : and queue warning information in the proposed Intelligent Network Flow Optimization (INFLO) prototype. This document : describ...

  8. Intelligent Fish Freshness Assessment

    Directory of Open Access Journals (Sweden)

    Hamid Gholam Hosseini

    2008-01-01

    Full Text Available Fish species identification and automated fish freshness assessment play important roles in fishery industry applications. This paper describes a method based on support vector machines (SVMs to improve the performance of fish identification systems. The result is used for the assessment of fish freshness using artificial neural network (ANN. Identification of the fish species involves processing of the images of fish. The most efficient features were extracted and combined with the down-sampled version of the images to create a 1D input vector. Max-Win algorithm applied to the SVM-based classifiers has enhanced the reliability of sorting to 96.46%. The realisation of Cyranose 320 Electronic nose (E-nose, in order to evaluate the fish freshness in real-time, is experimented. Intelligent processing of the sensor patterns involves the use of a dedicated ANN for each species under study. The best estimation of freshness was provided by the most sensitive sensors. Data was collected from four selected species of fishes over a period of ten days. It was concluded that the performance can be increased using individual trained ANN for each specie. The proposed system has been successful in identifying the number of days after catching the fish with an accuracy of up to 91%.

  9. Quality control of intelligence research

    International Nuclear Information System (INIS)

    Lu Yan; Xin Pingping; Wu Jian

    2014-01-01

    Quality control of intelligence research is the core issue of intelligence management, is a problem in study of information science This paper focuses on the performance of intelligence to explain the significance of intelligence research quality control. In summing up the results of the study on the basis of the analysis, discusses quality control methods in intelligence research, introduces the experience of foreign intelligence research quality control, proposes some recommendations to improve quality control in intelligence research. (authors)

  10. Ortho Image and DTM Generation with Intelligent Methods

    Science.gov (United States)

    Bagheri, H.; Sadeghian, S.

    2013-10-01

    Nowadays the artificial intelligent algorithms has considered in GIS and remote sensing. Genetic algorithm and artificial neural network are two intelligent methods that are used for optimizing of image processing programs such as edge extraction and etc. these algorithms are very useful for solving of complex program. In this paper, the ability and application of genetic algorithm and artificial neural network in geospatial production process like geometric modelling of satellite images for ortho photo generation and height interpolation in raster Digital Terrain Model production process is discussed. In first, the geometric potential of Ikonos-2 and Worldview-2 with rational functions, 2D & 3D polynomials were tested. Also comprehensive experiments have been carried out to evaluate the viability of the genetic algorithm for optimization of rational function, 2D & 3D polynomials. Considering the quality of Ground Control Points, the accuracy (RMSE) with genetic algorithm and 3D polynomials method for Ikonos-2 Geo image was 0.508 pixel sizes and the accuracy (RMSE) with GA algorithm and rational function method for Worldview-2 image was 0.930 pixel sizes. For more another optimization artificial intelligent methods, neural networks were used. With the use of perceptron network in Worldview-2 image, a result of 0.84 pixel sizes with 4 neurons in middle layer was gained. The final conclusion was that with artificial intelligent algorithms it is possible to optimize the existing models and have better results than usual ones. Finally the artificial intelligence methods, like genetic algorithms as well as neural networks, were examined on sample data for optimizing interpolation and for generating Digital Terrain Models. The results then were compared with existing conventional methods and it appeared that these methods have a high capacity in heights interpolation and that using these networks for interpolating and optimizing the weighting methods based on inverse

  11. Improved Bat Algorithm Applied to Multilevel Image Thresholding

    Directory of Open Access Journals (Sweden)

    Adis Alihodzic

    2014-01-01

    Full Text Available Multilevel image thresholding is a very important image processing technique that is used as a basis for image segmentation and further higher level processing. However, the required computational time for exhaustive search grows exponentially with the number of desired thresholds. Swarm intelligence metaheuristics are well known as successful and efficient optimization methods for intractable problems. In this paper, we adjusted one of the latest swarm intelligence algorithms, the bat algorithm, for the multilevel image thresholding problem. The results of testing on standard benchmark images show that the bat algorithm is comparable with other state-of-the-art algorithms. We improved standard bat algorithm, where our modifications add some elements from the differential evolution and from the artificial bee colony algorithm. Our new proposed improved bat algorithm proved to be better than five other state-of-the-art algorithms, improving quality of results in all cases and significantly improving convergence speed.

  12. Brain Intelligence: Go Beyond Artificial Intelligence

    OpenAIRE

    Lu, Huimin; Li, Yujie; Chen, Min; Kim, Hyoungseop; Serikawa, Seiichi

    2017-01-01

    Artificial intelligence (AI) is an important technology that supports daily social life and economic activities. It contributes greatly to the sustainable growth of Japan's economy and solves various social problems. In recent years, AI has attracted attention as a key for growth in developed countries such as Europe and the United States and developing countries such as China and India. The attention has been focused mainly on developing new artificial intelligence information communication ...

  13. Intelligent computational control of multi-fingered dexterous robotic hand

    OpenAIRE

    Chen, Disi; Li, Gongfa; Jiang, Guozhang; Fang, Yinfeng; Ju, Zhaojie; Liu, Honghai

    2015-01-01

    We discuss the intelligent computational control theory and introduce the hardware structure of HIT/DLR II dexterous robotic hand, which is the typical dexterous robotic hand. We show that how DSP or FPGA controller can be used in the dexterous robotic hand. A popular intelligent dexterous robotic hand control system, which named Electromyography (EMG) control is investigated. We introduced some mathematical algorithms in EMG controlling, such as Gauss mixture model (GMM), artificial neural n...

  14. Intelligent Sensors for Integrated Systems Health Management (ISHM)

    Science.gov (United States)

    Schmalzel, John L.

    2008-01-01

    IEEE 1451 Smart Sensors contribute to a number of ISHM goals including cost reduction achieved through: a) Improved configuration management (TEDS); and b) Plug-and-play re-configuration. Intelligent Sensors are adaptation of Smart Sensors to include ISHM algorithms; this offers further benefits: a) Sensor validation. b) Confidence assessment of measurement, and c) Distributed ISHM processing. Space-qualified intelligent sensors are possible a) Size, mass, power constraints. b) Bus structure/protocol.

  15. Human Brain inspired Artificial Intelligence & Developmental Robotics: A Review

    Directory of Open Access Journals (Sweden)

    Suresh Kumar

    2017-06-01

    Full Text Available Along with the developments in the field of the robotics, fascinating contributions and developments can be seen in the field of Artificial intelligence (AI. In this paper we will discuss about the developments is the field of artificial intelligence focusing learning algorithms inspired from the field of Biology, particularly large scale brain simulations, and developmental Psychology. We will focus on the emergence of the Developmental robotics and its significance in the field of AI.

  16. Business and Social Behaviour Intelligence Analysis Using PSO

    OpenAIRE

    Vinay S Bhaskar; Abhishek Kumar Singh; Jyoti Dhruw; Anubha Parashar; Mradula Sharma

    2014-01-01

    The goal of this paper is to elaborate swarm intelligence for business intelligence decision making and the business rules management improvement. The paper introduces the decision making model which is based on the application of Artificial Neural Networks (ANNs) and Particle Swarm Optimization (PSO) algorithm. Essentially the business spatial data illustrate the group behaviors. The swarm optimization, which is highly influenced by the behavior of creature, performs in group. The Spatial dat...

  17. Load Forecasting with Artificial Intelligence on Big Data

    OpenAIRE

    Glauner, Patrick; State, Radu

    2016-01-01

    In the domain of electrical power grids, there is a particular interest in time series analysis using artificial intelligence. Machine learning is the branch of artificial intelligence giving computers the ability to learn patterns from data without being explicitly programmed. Deep Learning is a set of cutting-edge machine learning algorithms that are inspired by how the human brain works. It allows to self-learn feature hierarchies from the data rather than modeling hand-crafted features. I...

  18. Artificial intelligence (AI) systems for interpreting complex medical datasets.

    Science.gov (United States)

    Altman, R B

    2017-05-01

    Advances in machine intelligence have created powerful capabilities in algorithms that find hidden patterns in data, classify objects based on their measured characteristics, and associate similar patients/diseases/drugs based on common features. However, artificial intelligence (AI) applications in medical data have several technical challenges: complex and heterogeneous datasets, noisy medical datasets, and explaining their output to users. There are also social challenges related to intellectual property, data provenance, regulatory issues, economics, and liability. © 2017 ASCPT.

  19. Intelligent system for lighting control in smart cities

    OpenAIRE

    de Paz Santana, Juan F.; Bajo Pérez, Javier; Rodríguez González, Sara; Villarrubia González, Gabriel; Corchado Rodríguez, Juan M.

    2017-01-01

    This paper presents an adaptive architecture that centralizes the control of public lighting and intelligent management to economize lighting and maintain maximum visual comfort in illuminated areas. To carry out this management, the architecture merges various techniques of artificial intelligence (AI) and statistics such as artificial neural networks (ANN), multi-agent systems (MAS), EM algorithm, methods based on ANOVA, and a Service Oriented Approach (SOA). It achieves optimization in ter...

  20. Management Intelligent Systems : 2nd International Symposium

    CERN Document Server

    Martínez-López, Francisco; Vicari, Rosa; Prieta, Fernando

    2013-01-01

    This symposium was born as a research forum to present and discuss original, rigorous and significant contributions on Artificial Intelligence-based (AI) solutions—with a strong, practical logic and, preferably, with empirical applications—developed to aid the management of organizations in multiple areas, activities, processes and problem-solving; what we call Management Intelligent Systems (MiS).   This volume presents the proceedings of these activities in a collection of contributions with many original approaches. They address diverse Management and Business areas of application such as decision support, segmentation of markets, CRM, product design, service personalization, organizational design, e-commerce, credit scoring, workplace integration, innovation management, business database analysis, workflow management, location of stores, etc. A wide variety of AI techniques have been applied to these areas such as multi-objective optimization and evolutionary algorithms, classification algorithms, an...

  1. Quo Vadis, Artificial Intelligence?

    OpenAIRE

    Berrar, Daniel; Sato, Naoyuki; Schuster, Alfons

    2010-01-01

    Since its conception in the mid 1950s, artificial intelligence with its great ambition to understand and emulate intelligence in natural and artificial environments alike is now a truly multidisciplinary field that reaches out and is inspired by a great diversity of other fields. Rapid advances in research and technology in various fields have created environments into which artificial intelligence could embed itself naturally and comfortably. Neuroscience with its desire to understand nervou...

  2. Principles of artificial intelligence

    CERN Document Server

    Nilsson, Nils J

    1980-01-01

    A classic introduction to artificial intelligence intended to bridge the gap between theory and practice, Principles of Artificial Intelligence describes fundamental AI ideas that underlie applications such as natural language processing, automatic programming, robotics, machine vision, automatic theorem proving, and intelligent data retrieval. Rather than focusing on the subject matter of the applications, the book is organized around general computational concepts involving the kinds of data structures used, the types of operations performed on the data structures, and the properties of th

  3. Intelligence of programs

    Energy Technology Data Exchange (ETDEWEB)

    Novak, D

    1982-01-01

    A general discussion about the level of artificial intelligence in computer programs is presented. The suitability of various languages for the development of complex, intelligent programs is discussed, considering fourth-generation language as well as the well established structured COBOL language. It is concluded that the success of automation in many administrative fields depends to a large extent on the development of intelligent programs.

  4. Intelligent techniques in engineering management theory and applications

    CERN Document Server

    Onar, Sezi

    2015-01-01

    This book presents recently developed intelligent techniques with applications and theory in the area of engineering management. The involved applications of intelligent techniques such as neural networks, fuzzy sets, Tabu search, genetic algorithms, etc. will be useful for engineering managers, postgraduate students, researchers, and lecturers. The book has been written considering the contents of a classical engineering management book but intelligent techniques are used for handling the engineering management problem areas. This comprehensive characteristics of the book makes it an excellent reference for the solution of complex problems of engineering management. The authors of the chapters are well-known researchers with their previous works in the area of engineering management.

  5. Development of intelligent system for a thermal analysis instrument

    International Nuclear Information System (INIS)

    Xu Xiaoli; Wu Guoxin; Shi Yongchao

    2005-01-01

    The key techniques for the intelligent analysis instrument developed are proposed. Based on the technique of virtual instrumentation, the intelligent PID control algorithm to control the temperature of thermal analysis instrument is described. The dynamic character and the robust performance of traditional PID controls are improved through the dynamic gain factor, temperature rate change factor, the forecast factor, and the temperature correction factor is introduced. Using the graphic development environment of LabVIEW, the design of system modularization and the graphic display are implemented. By means of multiple mathematical modules, intelligent data processing is realized

  6. Intelligent decision making in quality management theory and applications

    CERN Document Server

    Yanık, Seda

    2016-01-01

      This book presents recently developed intelligent techniques with applications and theory in the area of quality management. The involved applications of intelligence include techniques such as fuzzy sets, neural networks, genetic algorithms, etc. The book consists of classical quality management topics dealing with intelligent techniques for solving the complex quality management problems. The book will serve as an excellent reference for quality managers, researchers, lecturers and postgraduate students in this area. The authors of the chapters are well-known researchers in the area of quality management.  .

  7. Correlation between crystallographic computing and artificial intelligence research

    Energy Technology Data Exchange (ETDEWEB)

    Feigenbaum, E A [Stanford Univ., CA; Engelmore, R S; Johnson, C K

    1977-01-01

    Artificial intelligence research, as a part of computer science, has produced a variety of programs of experimental and applications interest: programs for scientific inference, chemical synthesis, planning robot control, extraction of meaning from English sentences, speech understanding, interpretation of visual images, and so on. The symbolic manipulation techniques used in artificial intelligence provide a framework for analyzing and coding the knowledge base of a problem independently of an algorithmic implementation. A possible application of artificial intelligence methodology to protein crystallography is described. 2 figures, 2 tables.

  8. Employing Artificial Intelligence To Minimise Internet Fraud

    Directory of Open Access Journals (Sweden)

    Edward Wong Sek Khin

    2009-12-01

    Full Text Available Internet fraud is increasing on a daily basis with new methods for extracting funds from government, corporations, businesses in general, and persons appearing almost hourly. The increases in on-line purchasing and the constant vigilance of both seller and buyer have meant that the criminal seems to be one-step ahead at all times. To pre-empt or to stop fraud before it can happen occurs in the non-computer based daily transactions of today because of the natural intelligence of the players, both seller and buyer. Currently, even with advances in computing techniques, intelligence is not the current strength of any computing system of today, yet techniques are available which may reduce the occurrences of fraud, and are usually referred to as artificial intelligence systems.This paper provides an overview of the use of current artificial intelligence (AI techniques as a means of combating fraud.Initially the paper describes how artificial intelligence techniques are employed in systems for detecting credit card fraud (online and offline fraud and insider trading.Following this, an attempt is made to propose the using of MonITARS (Monitoring Insider Trading and Regulatory Surveillance Systems framework which use a combination of genetic algorithms, neural nets and statistical analysis in detecting insider dealing. Finally, the paper discusses future research agenda to the role of using MonITARS system.

  9. Intelligence analysis – the royal discipline of Competitive Intelligence

    OpenAIRE

    František Bartes

    2011-01-01

    The aim of this article is to propose work methodology for Competitive Intelligence teams in one of the intelligence cycle’s specific area, in the so-called “Intelligence Analysis”. Intelligence Analysis is one of the stages of the Intelligence Cycle in which data from both the primary and secondary research are analyzed. The main result of the effort is the creation of added value for the information collected. Company Competiitve Intelligence, correctly understood and implemented in busines...

  10. Glowworm swarm optimization theory, algorithms, and applications

    CERN Document Server

    Kaipa, Krishnanand N

    2017-01-01

    This book provides a comprehensive account of the glowworm swarm optimization (GSO) algorithm, including details of the underlying ideas, theoretical foundations, algorithm development, various applications, and MATLAB programs for the basic GSO algorithm. It also discusses several research problems at different levels of sophistication that can be attempted by interested researchers. The generality of the GSO algorithm is evident in its application to diverse problems ranging from optimization to robotics. Examples include computation of multiple optima, annual crop planning, cooperative exploration, distributed search, multiple source localization, contaminant boundary mapping, wireless sensor networks, clustering, knapsack, numerical integration, solving fixed point equations, solving systems of nonlinear equations, and engineering design optimization. The book is a valuable resource for researchers as well as graduate and undergraduate students in the area of swarm intelligence and computational intellige...

  11. Machine listening intelligence

    Science.gov (United States)

    Cella, C. E.

    2017-05-01

    This manifesto paper will introduce machine listening intelligence, an integrated research framework for acoustic and musical signals modelling, based on signal processing, deep learning and computational musicology.

  12. STANFORD ARTIFICIAL INTELLIGENCE PROJECT.

    Science.gov (United States)

    ARTIFICIAL INTELLIGENCE , GAME THEORY, DECISION MAKING, BIONICS, AUTOMATA, SPEECH RECOGNITION, GEOMETRIC FORMS, LEARNING MACHINES, MATHEMATICAL MODELS, PATTERN RECOGNITION, SERVOMECHANISMS, SIMULATION, BIBLIOGRAPHIES.

  13. Intelligent Optics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Intelligent Optics Laboratory supports sophisticated investigations on adaptive and nonlinear optics; advancedimaging and image processing; ground-to-ground and...

  14. Intelligence and childlessness.

    Science.gov (United States)

    Kanazawa, Satoshi

    2014-11-01

    Demographers debate why people have children in advanced industrial societies where children are net economic costs. From an evolutionary perspective, however, the important question is why some individuals choose not to have children. Recent theoretical developments in evolutionary psychology suggest that more intelligent individuals may be more likely to prefer to remain childless than less intelligent individuals. Analyses of the National Child Development Study show that more intelligent men and women express preference to remain childless early in their reproductive careers, but only more intelligent women (not more intelligent men) are more likely to remain childless by the end of their reproductive careers. Controlling for education and earnings does not at all attenuate the association between childhood general intelligence and lifetime childlessness among women. One-standard-deviation increase in childhood general intelligence (15 IQ points) decreases women's odds of parenthood by 21-25%. Because women have a greater impact on the average intelligence of future generations, the dysgenic fertility among women is predicted to lead to a decline in the average intelligence of the population in advanced industrial nations. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Swarm Intelligence for Urban Dynamics Modelling

    International Nuclear Information System (INIS)

    Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gerard H. E.

    2009-01-01

    In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.

  16. Swarm Intelligence for Urban Dynamics Modelling

    Science.gov (United States)

    Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gérard H. E.

    2009-04-01

    In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.

  17. Intelligent discrete particle swarm optimization for multiprocessor task scheduling problem

    Directory of Open Access Journals (Sweden)

    S Sarathambekai

    2017-03-01

    Full Text Available Discrete particle swarm optimization is one of the most recently developed population-based meta-heuristic optimization algorithm in swarm intelligence that can be used in any discrete optimization problems. This article presents a discrete particle swarm optimization algorithm to efficiently schedule the tasks in the heterogeneous multiprocessor systems. All the optimization algorithms share a common algorithmic step, namely population initialization. It plays a significant role because it can affect the convergence speed and also the quality of the final solution. The random initialization is the most commonly used method in majority of the evolutionary algorithms to generate solutions in the initial population. The initial good quality solutions can facilitate the algorithm to locate the optimal solution or else it may prevent the algorithm from finding the optimal solution. Intelligence should be incorporated to generate the initial population in order to avoid the premature convergence. This article presents a discrete particle swarm optimization algorithm, which incorporates opposition-based technique to generate initial population and greedy algorithm to balance the load of the processors. Make span, flow time, and reliability cost are three different measures used to evaluate the efficiency of the proposed discrete particle swarm optimization algorithm for scheduling independent tasks in distributed systems. Computational simulations are done based on a set of benchmark instances to assess the performance of the proposed algorithm.

  18. Routledge companion to intelligence studies

    CERN Document Server

    Dover, Robert; Hillebrand, Claudia

    2013-01-01

    The Routledge Companion to Intelligence Studies provides a broad overview of the growing field of intelligence studies. The recent growth of interest in intelligence and security studies has led to an increased demand for popular depictions of intelligence and reference works to explain the architecture and underpinnings of intelligence activity. Divided into five comprehensive sections, this Companion provides a strong survey of the cutting-edge research in the field of intelligence studies: Part I: The evolution of intelligence studies; Part II: Abstract approaches to intelligence; Part III: Historical approaches to intelligence; Part IV: Systems of intelligence; Part V: Contemporary challenges. With a broad focus on the origins, practices and nature of intelligence, the book not only addresses classical issues, but also examines topics of recent interest in security studies. The overarching aim is to reveal the rich tapestry of intelligence studies in both a sophisticated and accessible way. This Companion...

  19. Accelerating artificial intelligence with reconfigurable computing

    Science.gov (United States)

    Cieszewski, Radoslaw

    Reconfigurable computing is emerging as an important area of research in computer architectures and software systems. Many algorithms can be greatly accelerated by placing the computationally intense portions of an algorithm into reconfigurable hardware. Reconfigurable computing combines many benefits of both software and ASIC implementations. Like software, the mapped circuit is flexible, and can be changed over the lifetime of the system. Similar to an ASIC, reconfigurable systems provide a method to map circuits into hardware. Reconfigurable systems therefore have the potential to achieve far greater performance than software as a result of bypassing the fetch-decode-execute operations of traditional processors, and possibly exploiting a greater level of parallelism. Such a field, where there is many different algorithms which can be accelerated, is an artificial intelligence. This paper presents example hardware implementations of Artificial Neural Networks, Genetic Algorithms and Expert Systems.

  20. Virtual Enterprise Risk Management Using Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2010-01-01

    Full Text Available Virtual enterprise (VE has to manage its risk effectively in order to guarantee the profit. However, restricting the risk in a VE to the acceptable level is considered difficult due to the agility and diversity of its distributed characteristics. First, in this paper, an optimization model for VE risk management based on distributed decision making model is introduced. This optimization model has two levels, namely, the top model and the base model, which describe the decision processes of the owner and the partners of the VE, respectively. In order to solve the proposed model effectively, this work then applies two powerful artificial intelligence optimization techniques known as evolutionary algorithms (EA and swarm intelligence (SI. Experiments present comparative studies on the VE risk management problem for one EA and three state-of-the-art SI algorithms. All of the algorithms are evaluated against a test scenario, in which the VE is constructed by one owner and different partners. The simulation results show that the PS2O algorithm, which is a recently developed SI paradigm simulating symbiotic coevolution behavior in nature, obtains the superior solution for VE risk management problem than the other algorithms in terms of optimization accuracy and computation robustness.

  1. Artificial Consciousness or Artificial Intelligence

    OpenAIRE

    Spanache Florin

    2017-01-01

    Artificial intelligence is a tool designed by people for the gratification of their own creative ego, so we can not confuse conscience with intelligence and not even intelligence in its human representation with conscience. They are all different concepts and they have different uses. Philosophically, there are differences between autonomous people and automatic artificial intelligence. This is the difference between intelligence and artificial intelligence, autonomous versus a...

  2. 2015 Chinese Intelligent Systems Conference

    CERN Document Server

    Du, Junping; Li, Hongbo; Zhang, Weicun; CISC’15

    2016-01-01

    This book presents selected research papers from the 2015 Chinese Intelligent Systems Conference (CISC’15), held in Yangzhou, China. The topics covered include multi-agent systems, evolutionary computation, artificial intelligence, complex systems, computation intelligence and soft computing, intelligent control, advanced control technology, robotics and applications, intelligent information processing, iterative learning control, and machine learning. Engineers and researchers from academia, industry and the government can gain valuable insights into solutions combining ideas from multiple disciplines in the field of intelligent systems.

  3. The intelligent plant

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Firth [CSIRO Energy Technology (Australia)

    2009-06-15

    The current advances in electronics and smart sensors, coupled with the large amount of information that modern distributed control systems can create, provide opportunities but posses some significant problems. The potential suite of data measurements could provide plant operators, maintenance staff and supervisors with a comprehensive understanding of the current health of a coal preparation plant. Analysis of this issue would also provide a tool for the recognition of where important data is not or poorly (timeframe and/or quality) currently available. A suitable system for categorisation of the information associated with the description of the 'Health of a Plant' has been developed. A relational data base model for these categories was derived. The process and performance information relationships were established via the use of models derived from the wide body of literature available. Given the availability of the above model relationships and measurements, the best way to utilise this information in a simple intelligent manner was addressed. It involved the construction of a high level fuzzy set diagnosis chart and an underlying set of unit operation diagnostic charts. These charts provided the basis for the implementation of a generic diagnosis system. This was deliberately developed in EXCEL so that it can be used and/or modified to suit a particular plant. A sensing system which combines a limited set of measurements with an algorithm or logic system for optimisation of a process can be termed a smart sensor. These are vey useful in the optimisation of difficult process situations, and can be used to supplement expert systems. It is believed that the models developed in this project can also provide the basis for appropriate smart sensors when access to appropriate measurements is available.

  4. Artificial intelligence in hematology.

    Science.gov (United States)

    Zini, Gina

    2005-10-01

    Artificial intelligence (AI) is a computer based science which aims to simulate human brain faculties using a computational system. A brief history of this new science goes from the creation of the first artificial neuron in 1943 to the first artificial neural network application to genetic algorithms. The potential for a similar technology in medicine has immediately been identified by scientists and researchers. The possibility to store and process all medical knowledge has made this technology very attractive to assist or even surpass clinicians in reaching a diagnosis. Applications of AI in medicine include devices applied to clinical diagnosis in neurology and cardiopulmonary diseases, as well as the use of expert or knowledge-based systems in routine clinical use for diagnosis, therapeutic management and for prognostic evaluation. Biological applications include genome sequencing or DNA gene expression microarrays, modeling gene networks, analysis and clustering of gene expression data, pattern recognition in DNA and proteins, protein structure prediction. In the field of hematology the first devices based on AI have been applied to the routine laboratory data management. New tools concern the differential diagnosis in specific diseases such as anemias, thalassemias and leukemias, based on neural networks trained with data from peripheral blood analysis. A revolution in cancer diagnosis, including the diagnosis of hematological malignancies, has been the introduction of the first microarray based and bioinformatic approach for molecular diagnosis: a systematic approach based on the monitoring of simultaneous expression of thousands of genes using DNA microarray, independently of previous biological knowledge, analysed using AI devices. Using gene profiling, the traditional diagnostic pathways move from clinical to molecular based diagnostic systems.

  5. Machine Learning-based Intelligent Formal Reasoning and Proving System

    Science.gov (United States)

    Chen, Shengqing; Huang, Xiaojian; Fang, Jiaze; Liang, Jia

    2018-03-01

    The reasoning system can be used in many fields. How to improve reasoning efficiency is the core of the design of system. Through the formal description of formal proof and the regular matching algorithm, after introducing the machine learning algorithm, the system of intelligent formal reasoning and verification has high efficiency. The experimental results show that the system can verify the correctness of propositional logic reasoning and reuse the propositional logical reasoning results, so as to obtain the implicit knowledge in the knowledge base and provide the basic reasoning model for the construction of intelligent system.

  6. Intelligent holographic databases

    Science.gov (United States)

    Barbastathis, George

    Memory is a key component of intelligence. In the human brain, physical structure and functionality jointly provide diverse memory modalities at multiple time scales. How could we engineer artificial memories with similar faculties? In this thesis, we attack both hardware and algorithmic aspects of this problem. A good part is devoted to holographic memory architectures, because they meet high capacity and parallelism requirements. We develop and fully characterize shift multiplexing, a novel storage method that simplifies disk head design for holographic disks. We develop and optimize the design of compact refreshable holographic random access memories, showing several ways that 1 Tbit can be stored holographically in volume less than 1 m3, with surface density more than 20 times higher than conventional silicon DRAM integrated circuits. To address the issue of photorefractive volatility, we further develop the two-lambda (dual wavelength) method for shift multiplexing, and combine electrical fixing with angle multiplexing to demonstrate 1,000 multiplexed fixed holograms. Finally, we propose a noise model and an information theoretic metric to optimize the imaging system of a holographic memory, in terms of storage density and error rate. Motivated by the problem of interfacing sensors and memories to a complex system with limited computational resources, we construct a computer game of Desert Survival, built as a high-dimensional non-stationary virtual environment in a competitive setting. The efficacy of episodic learning, implemented as a reinforced Nearest Neighbor scheme, and the probability of winning against a control opponent improve significantly by concentrating the algorithmic effort to the virtual desert neighborhood that emerges as most significant at any time. The generalized computational model combines the autonomous neural network and von Neumann paradigms through a compact, dynamic central representation, which contains the most salient features

  7. Fireworks algorithm for mean-VaR/CVaR models

    Science.gov (United States)

    Zhang, Tingting; Liu, Zhifeng

    2017-10-01

    Intelligent algorithms have been widely applied to portfolio optimization problems. In this paper, we introduce a novel intelligent algorithm, named fireworks algorithm, to solve the mean-VaR/CVaR model for the first time. The results show that, compared with the classical genetic algorithm, fireworks algorithm not only improves the optimization accuracy and the optimization speed, but also makes the optimal solution more stable. We repeat our experiments at different confidence levels and different degrees of risk aversion, and the results are robust. It suggests that fireworks algorithm has more advantages than genetic algorithm in solving the portfolio optimization problem, and it is feasible and promising to apply it into this field.

  8. Distributed intelligence in CAMAC

    International Nuclear Information System (INIS)

    Kunz, P.F.

    1977-01-01

    The CAMAC digital interface standard has served us well since 1969. During this time there have been enormous advances in digital electronics. In particular, low cost microprocessors now make it feasible to consider use of distributed intelligence even in simple data acquisition systems. This paper describes a simple extension of the CAMAC standard which allows distributed intelligence at the crate level

  9. Intelligent design som videnskab?

    DEFF Research Database (Denmark)

    Klausen, Søren Harnow

    2007-01-01

    Diskuterer hvorvidt intelligent design kan betegnes som videnskab; argumenterer for at dette grundet fraværet af klare demarkationskriterier næppe kan afvises.......Diskuterer hvorvidt intelligent design kan betegnes som videnskab; argumenterer for at dette grundet fraværet af klare demarkationskriterier næppe kan afvises....

  10. Distributed intelligence in CAMAC

    International Nuclear Information System (INIS)

    Kunz, P.F.

    1977-01-01

    A simple extension of the CAMAC standard is described which allows distributed intelligence at the crate level. By distributed intelligence is meant that there is more than one source of control in a system. This standard is just now emerging from the NIM Dataway Working Group and its European counterpart. 1 figure

  11. Intelligence and treaty ratification

    International Nuclear Information System (INIS)

    Cahn, A.H.

    1990-01-01

    This paper reports that there are two sets of questions applicable to the ratification phase: what is the role of intelligence in the ratification process? What effect did intelligence have on that process. The author attempts to answer these and other questions

  12. Applying Multiple Intelligences

    Science.gov (United States)

    Christodoulou, Joanna A.

    2009-01-01

    The ideas of multiple intelligences introduced by Howard Gardner of Harvard University more than 25 years ago have taken form in many ways, both in schools and in other sometimes-surprising settings. The silver anniversary of Gardner's learning theory provides an opportunity to reflect on the ways multiple intelligences theory has taken form and…

  13. Next generation Emotional Intelligence

    Science.gov (United States)

    J. Saveland

    2012-01-01

    Emotional Intelligence has been a hot topic in leadership training since Dan Goleman published his book on the subject in 1995. Emotional intelligence competencies are typically focused on recognition and regulation of emotions in one's self and social situations, yielding four categories: self-awareness, self-management, social awareness and relationship...

  14. Intelligence by consent

    DEFF Research Database (Denmark)

    Diderichsen, Adam; Rønn, Kira Vrist

    2017-01-01

    This article contributes to the current discussions concerning an adequate framework for intelligence ethics. The first part critically scrutinises the use of Just War Theory in intelligence ethics with specific focus on the just cause criterion. We argue that using self-defence as justifying cau...

  15. Intelligence and Physical Attractiveness

    Science.gov (United States)

    Kanazawa, Satoshi

    2011-01-01

    This brief research note aims to estimate the magnitude of the association between general intelligence and physical attractiveness with large nationally representative samples from two nations. In the United Kingdom, attractive children are more intelligent by 12.4 IQ points (r=0.381), whereas in the United States, the correlation between…

  16. Intelligence and treaty ratification

    International Nuclear Information System (INIS)

    Naftzinger, J.E.

    1990-01-01

    This paper describes the atmosphere leading up to the Senate INF hearings and then surveys the broad issues they raised. After that, the author highlights several aspects of the intelligence community's involvement and discusses the specific intelligence-related issues as the Senate committees saw them, notes their impact on the outcome, and finally draws several conclusions and lessons pertinent to the future

  17. Intelligence, Race, and Genetics

    Science.gov (United States)

    Sternberg, Robert J.; Grigorenko, Elena L.; Kidd, Kenneth K.

    2005-01-01

    In this article, the authors argue that the overwhelming portion of the literature on intelligence, race, and genetics is based on folk taxonomies rather than scientific analysis. They suggest that because theorists of intelligence disagree as to what it is, any consideration of its relationships to other constructs must be tentative at best. They…

  18. Multiple Intelligences in Action.

    Science.gov (United States)

    Campbell, Bruce

    1992-01-01

    Describes the investigation of the effects of a four-step model program used with third through fifth grade students to implement Gardener's concepts of seven human intelligences--linguistic, logical/mathematical, visual/spatial, musical, kinesthetic, intrapersonal, and interpersonal intelligence--into daily learning. (BB)

  19. The Reproduction of Intelligence

    Science.gov (United States)

    Meisenberg, Gerhard

    2010-01-01

    Although a negative relationship between fertility and education has been described consistently in most countries of the world, less is known about the relationship between intelligence and reproductive outcomes. Also the paths through which intelligence influences reproductive outcomes are uncertain. The present study uses the NLSY79 to analyze…

  20. Intelligent robot action planning

    Energy Technology Data Exchange (ETDEWEB)

    Vamos, T; Siegler, A

    1982-01-01

    Action planning methods used in intelligent robot control are discussed. Planning is accomplished through environment understanding, environment representation, task understanding and planning, motion analysis and man-machine communication. These fields are analysed in detail. The frames of an intelligent motion planning system are presented. Graphic simulation of the robot's environment and motion is used to support the planning. 14 references.

  1. Computational Intelligence in Intelligent Data Analysis

    CERN Document Server

    Nürnberger, Andreas

    2013-01-01

    Complex systems and their phenomena are ubiquitous as they can be found in biology, finance, the humanities, management sciences, medicine, physics and similar fields. For many problems in these fields, there are no conventional ways to mathematically or analytically solve them completely at low cost. On the other hand, nature already solved many optimization problems efficiently. Computational intelligence attempts to mimic nature-inspired problem-solving strategies and methods. These strategies can be used to study, model and analyze complex systems such that it becomes feasible to handle them. Key areas of computational intelligence are artificial neural networks, evolutionary computation and fuzzy systems. As only a few researchers in that field, Rudolf Kruse has contributed in many important ways to the understanding, modeling and application of computational intelligence methods. On occasion of his 60th birthday, a collection of original papers of leading researchers in the field of computational intell...

  2. Investigation of empirical correlations on the determination of condensation heat transfer characteristics during downward annular flow of R134a inside a vertical smooth tube using artificial intelligence algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Balcilar, Muhammet; Dalkilic, Ahmet Selim; Bolat, Berna [Yildiz Technical University, Istanbul (Turkmenistan); Wongwises, Somchai [King Mongkut' s University of Technology Thonburi, Bangkok (Thailand)

    2011-10-15

    The heat transfer characteristics of R134a during downward condensation are investigated experimentally and numerically. While the convective heat transfer coefficient, two-phase multiplier and frictional pressure drop are considered to be the significant variables as output for the analysis, inputs of the computational numerical techniques include the important two-phase flow parameters such as equivalent Reynolds number, Prandtl number, Bond number, Froude number, Lockhart and Martinelli number. Genetic algorithm technique (GA), unconstrained nonlinear minimization algorithm-Nelder-Mead method (NM) and non-linear least squares error method (NLS) are applied for the optimization of these significant variables in this study. Regression analysis gave convincing correlations on the prediction of condensation heat transfer characteristics using {+-}30% deviation band for practical applications. The most suitable coefficients of the proposed correlations are depicted to be compatible with the large number of experimental data by means of the computational numerical methods. Validation process of the proposed correlations is accomplished by means of the comparison between the various correlations reported in the literature.

  3. Intelligence and Prosocial Behavior

    DEFF Research Database (Denmark)

    Han, Ru; Shi, Jiannong; Yong, W.

    2012-01-01

    Results of prev ious studies of the relationship between prosocial behav ior and intelligence hav e been inconsistent. This study attempts to distinguish the dif f erences between sev eral prosocial tasks, and explores the way s in which cognitiv e ability inf luences prosocial behav ior. In Study...... One and Two, we reexamined the relationship between prosocial behav ior and intelligence by employ ing a costly signaling theory with f our games. The results rev ealed that the prosocial lev el of smarter children is higher than that of other children in more complicated tasks but not so in simple...... tasks. In Study Three, we tested the moderation ef f ect of the av erage intelligence across classes, and the results did not show any group intelligence ef f ect on the relationship between intelligence and prosocial behav ior....

  4. Business Intelligence Systems

    Directory of Open Access Journals (Sweden)

    Bogdan NEDELCU

    2014-02-01

    Full Text Available The aim of this article is to show the importance of business intelligence and its growing influence. It also shows when the concept of business intelligence was used for the first time and how it evolved over time. The paper discusses the utility of a business intelligence system in any organization and its contribution to daily activities. Furthermore, we highlight the role and the objectives of business intelligence systems inside an organization and the needs to grow the incomes and reduce the costs, to manage the complexity of the business environment and to cut IT costs so that the organization survives in the current competitive climate. The article contains information about architectural principles of a business intelligence system and how such a system can be achieved.

  5. Computational intelligence in automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Prokhorov, Danil (ed.) [Toyota Motor Engineering and Manufacturing (TEMA), Ann Arbor, MI (United States). Toyota Technical Center

    2008-07-01

    What is computational intelligence (CI)? Traditionally, CI is understood as a collection of methods from the fields of neural networks (NN), fuzzy logic and evolutionary computation. This edited volume is the first of its kind, suitable to automotive researchers, engineers and students. It provides a representative sample of contemporary CI activities in the area of automotive technology. The volume consists of 13 chapters, including but not limited to these topics: vehicle diagnostics and vehicle system safety, control of vehicular systems, quality control of automotive processes, driver state estimation, safety of pedestrians, intelligent vehicles. All chapters contain overviews of state of the art, and several chapters illustrate their methodologies on examples of real-world systems. About the Editor: Danil Prokhorov began his technical career in St. Petersburg, Russia, after graduating with Honors from Saint Petersburg State University of Aerospace Instrumentation in 1992 (MS in Robotics). He worked as a research engineer in St. Petersburg Institute for Informatics and Automation, one of the institutes of the Russian Academy of Sciences. He came to the US in late 1993 for Ph.D. studies. He became involved in automotive research in 1995 when he was a Summer intern at Ford Scientific Research Lab in Dearborn, MI. Upon his graduation from the EE Department of Texas Tech University, Lubbock, in 1997, he joined Ford to pursue application-driven research on neural networks and other machine learning algorithms. While at Ford, he took part in several production-bound projects including neural network based engine misfire detection. Since 2005 he is with Toyota Technical Center, Ann Arbor, MI, overseeing important mid- and long-term research projects in computational intelligence. (orig.)

  6. Warehouse stocking optimization based on dynamic ant colony genetic algorithm

    Science.gov (United States)

    Xiao, Xiaoxu

    2018-04-01

    In view of the various orders of FAW (First Automotive Works) International Logistics Co., Ltd., the SLP method is used to optimize the layout of the warehousing units in the enterprise, thus the warehouse logistics is optimized and the external processing speed of the order is improved. In addition, the relevant intelligent algorithms for optimizing the stocking route problem are analyzed. The ant colony algorithm and genetic algorithm which have good applicability are emphatically studied. The parameters of ant colony algorithm are optimized by genetic algorithm, which improves the performance of ant colony algorithm. A typical path optimization problem model is taken as an example to prove the effectiveness of parameter optimization.

  7. Evaluation of Intelligent Grouping Based on Learners' Collaboration Competence Level in Online Collaborative Learning Environment

    Science.gov (United States)

    Muuro, Maina Elizaphan; Oboko, Robert; Wagacha, Waiganjo Peter

    2016-01-01

    In this paper we explore the impact of an intelligent grouping algorithm based on learners' collaborative competency when compared with (a) instructor based Grade Point Average (GPA) method level and (b) random method, on group outcomes and group collaboration problems in an online collaborative learning environment. An intelligent grouping…

  8. i-Car: An Intelligent and Interactive Interface for Driver Assistance ...

    African Journals Online (AJOL)

    i-Car: An Intelligent and Interactive Interface for Driver Assistance System. ... techniques with pattern recognition, feature extraction, machine learning, object recognition, ... The system uses eye closure based decision algorithm to detect driver ...

  9. Intelligent Prediction of Ship Maneuvering

    Directory of Open Access Journals (Sweden)

    Miroslaw Lacki

    2016-09-01

    Full Text Available In this paper the author presents an idea of the intelligent ship maneuvering prediction system with the usage of neuroevolution. This may be also be seen as the ship handling system that simulates a learning process of an autonomous control unit, created with artificial neural network. The control unit observes input signals and calculates the values of required parameters of the vessel maneuvering in confined waters. In neuroevolution such units are treated as individuals in population of artificial neural networks, which through environmental sensing and evolutionary algorithms learn to perform given task efficiently. The main task of the system is to learn continuously and predict the values of a navigational parameters of the vessel after certain amount of time, regarding an influence of its environment. The result of a prediction may occur as a warning to navigator to aware him about incoming threat.

  10. Recent contributions in intelligent systems

    CERN Document Server

    Yager, Ronald; Kacprzyk, Janusz; Atanassov, Krassimir

    2017-01-01

    This volume is a brief, yet comprehensive account of new development, tools, techniques and solutions in the broadly perceived “intelligent systems”. New concepts and ideas concern the development of effective and efficient models which would make it possible to effectively and efficiently describe and solve processes in various areas of science and technology. Special emphasis is on the dealing with uncertainty and imprecision that permeates virtually all real world processes and phenomena, and has to properly be modeled by formal and algorithmic tools and techniques so that they be adequate and useful. The papers in this volume concern a wide array of possible techniques exemplified by, on the one hand, logic, probabilistic, fuzzy, intuitionistic fuzzy, neuro-fuzzy, etc. approaches. On the other hand, they represent the use of such systems modeling tools as generalized nets, optimization and control models, systems analytic models, etc. They concerns a variety of approaches, from pattern recognition, im...

  11. An intelligent fetal monitoring system

    International Nuclear Information System (INIS)

    Inaba, J.; Akatsuka, T.; Kubo, T.; Iwasaki, H.

    1986-01-01

    An intelligent monitoring system is constructed by a multi-micro-computer system. The monitoring signals are fetal heart rate (FHR) and uterine contraction (UC) through the conventional monitoring device for a day until the delivery. These signals are fed to a micro-computer in digital format, and evaluated by the computer in real time according to the diagnostic algorithm of the expert physician. Monitoring signals are always displayed on the CRT screen and in the case of dangerous state of the fetus, warning signal will appear on the screen and the doctor or nurse will be called. All these signals are sent to the next micro-computer with 10MB hard disk system. On this computer, the doctor and nurse can retrieve and inspect the details of the process by clock-key and/or events-key. After finishing monitoring process, summarized report is constructed and printed out on the paper

  12. A Functional Programming Approach to AI Search Algorithms

    Science.gov (United States)

    Panovics, Janos

    2012-01-01

    The theory and practice of search algorithms related to state-space represented problems form the major part of the introductory course of Artificial Intelligence at most of the universities and colleges offering a degree in the area of computer science. Students usually meet these algorithms only in some imperative or object-oriented language…

  13. Learning from nature: Nature-inspired algorithms

    DEFF Research Database (Denmark)

    Albeanu, Grigore; Madsen, Henrik; Popentiu-Vladicescu, Florin

    2016-01-01

    .), genetic and evolutionary strategies, artificial immune systems etc. Well-known examples of applications include: aircraft wing design, wind turbine design, bionic car, bullet train, optimal decisions related to traffic, appropriate strategies to survive under a well-adapted immune system etc. Based......During last decade, the nature has inspired researchers to develop new algorithms. The largest collection of nature-inspired algorithms is biology-inspired: swarm intelligence (particle swarm optimization, ant colony optimization, cuckoo search, bees' algorithm, bat algorithm, firefly algorithm etc...... on collective social behaviour of organisms, researchers have developed optimization strategies taking into account not only the individuals, but also groups and environment. However, learning from nature, new classes of approaches can be identified, tested and compared against already available algorithms...

  14. Business Intelligence & Analytical Intelligence: hou het zakelijk

    OpenAIRE

    Van Nieuwenhuyse, Dries

    2013-01-01

    Technologie democratiseert, de markt consolideert, terwijl de hoeveelheid data explodeert. Het lijkt een ideale voedingsbodem voor projecten rond business intelligence en analytics. “Hoe minder de technologie het verschil zal maken, hoe prominenter de business aanwezig zal zijn.”

  15. Social Intelligence Design in Ambient Intelligence

    NARCIS (Netherlands)

    Nijholt, Antinus; Stock, Oliviero; Stock, O.; Nishida, T.; Nishida, Toyoaki

    2009-01-01

    This Special Issue of AI and Society contains a selection of papers presented at the 6th Social Intelligence Design Workshop held at ITC-irst, Povo (Trento, Italy) in July 2007. Being the 6th in a series means that there now is a well-established and also a growing research area. The interest in

  16. Spiritual Intelligence, Emotional Intelligence and Auditor’s Performance

    OpenAIRE

    Hanafi, Rustam

    2010-01-01

    The objective of this research was to investigate empirical evidence about influence audi-tor spiritual intelligence on the performance with emotional intelligence as a mediator variable. Linear regression models are developed to examine the hypothesis and path analysis. The de-pendent variable of each model is auditor performance, whereas the independent variable of model 1 is spiritual intelligence, of model 2 are emotional intelligence and spiritual intelligence. The parameters were estima...

  17. Naturalist Intelligence Among the Other Multiple Intelligences [In Bulgarian

    Directory of Open Access Journals (Sweden)

    R. Genkov

    2007-09-01

    Full Text Available The theory of multiple intelligences was presented by Gardner in 1983. The theory was revised later (1999 and among the other intelligences a naturalist intelligence was added. The criteria for distinguishing of the different types of intelligences are considered. While Gardner restricted the analysis of the naturalist intelligence with examples from the living nature only, the present paper considered this problem on wider background including objects and persons of the natural sciences.

  18. Intelligence and treaty ratification

    International Nuclear Information System (INIS)

    Sojka, G.L.

    1990-01-01

    What did the intelligence community and the Intelligence Committee di poorly in regard to the treaty ratification process for arms control? We failed to solve the compartmentalization problem/ This is a second-order problem, and, in general, analysts try to be very open; but there are problems nevertheless. There are very few, if any, people within the intelligence community who are cleared for everything relevant to our monitoring capability emdash short of probably the Director of Central Intelligence and the president emdash and this is a major problem. The formal monitoring estimates are drawn up by individuals who do not have access to all the information to make the monitoring judgements. This paper reports that the intelligence community did not present a formal document on either Soviet incentives of disincentives to cheat or on the possibility of cheating scenarios, and that was a mistake. However, the intelligence community was very responsive in producing those types of estimates, and, ultimately, the evidence behind them in response to questions. Nevertheless, the author thinks the intelligence community would do well to address this issue up front before a treaty is submitted to the Senate for advice and consent

  19. The Epistemic Status of Intelligence

    DEFF Research Database (Denmark)

    Rønn, Kira Vrist; Høffding, Simon

    2012-01-01

    We argue that the majority of intelligence definitions fail to recognize that the normative epistemic status of intelligence is knowledge and not an inferior alternative. We refute the counter-arguments that intelligence ought not to be seen as knowledge because of 1) its action-oriented scope...... and robustness of claims to intelligence-knowledge can be assessed....

  20. Moral Intelligence in the Schools

    Science.gov (United States)

    Clarken, Rodney H.

    2009-01-01

    Moral intelligence is newer and less studied than the more established cognitive, emotional and social intelligences, but has great potential to improve our understanding of learning and behavior. Moral intelligence refers to the ability to apply ethical principles to personal goals, values and actions. The construct of moral intelligence consists…

  1. Classical methods for interpreting objective function minimization as intelligent inference

    Energy Technology Data Exchange (ETDEWEB)

    Golden, R.M. [Univ. of Texas, Dallas, TX (United States)

    1996-12-31

    Most recognition algorithms and neural networks can be formally viewed as seeking a minimum value of an appropriate objective function during either classification or learning phases. The goal of this paper is to argue that in order to show a recognition algorithm is making intelligent inferences, it is not sufficient to show that the recognition algorithm is computing (or trying to compute) the global minimum of some objective function. One must explicitly define a {open_quotes}relational system{close_quotes} for the recognition algorithm or neural network which identifies the: (i) sample space, (ii) the relevant sigmafield of events generated by the sample space, and (iii) the {open_quotes}relation{close_quotes} for that relational system. Only when such a {open_quotes}relational system{close_quotes} is properly defined, is it possible to formally establish the sense in which computing the global minimum of an objective function is an intelligent, inference.

  2. Routing Optimization of Intelligent Vehicle in Automated Warehouse

    Directory of Open Access Journals (Sweden)

    Yan-cong Zhou

    2014-01-01

    Full Text Available Routing optimization is a key technology in the intelligent warehouse logistics. In order to get an optimal route for warehouse intelligent vehicle, routing optimization in complex global dynamic environment is studied. A new evolutionary ant colony algorithm based on RFID and knowledge-refinement is proposed. The new algorithm gets environmental information timely through the RFID technology and updates the environment map at the same time. It adopts elite ant kept, fallback, and pheromones limitation adjustment strategy. The current optimal route in population space is optimized based on experiential knowledge. The experimental results show that the new algorithm has higher convergence speed and can jump out the U-type or V-type obstacle traps easily. It can also find the global optimal route or approximate optimal one with higher probability in the complex dynamic environment. The new algorithm is proved feasible and effective by simulation results.

  3. A Survey of Collective Intelligence

    Science.gov (United States)

    Wolpert, David H.; Tumer, Kagan

    1999-01-01

    This chapter presents the science of "COllective INtelligence" (COIN). A COIN is a large multi-agent systems where: i) the agents each run reinforcement learning (RL) algorithms; ii) there is little to no centralized communication or control; iii) there is a provided world utility function that, rates the possible histories of tile full system. Tile conventional approach to designing large distributed systems to optimize a world utility does not use agents running RL algorithms. Rather that approach begins with explicit modeling of the overall system's dynamics, followed by detailed hand-tuning of the interactions between the components to ensure that they "cooperate" as far as the world utility is concerned. This approach is labor-intensive, often results in highly non-robust systems, and usually results in design techniques that, have limited applicability. In contrast, with COINs we wish to solve the system design problems implicitly, via the 'adaptive' character of the RL algorithms of each of the agents. This COIN approach introduces an entirely new, profound design problem: Assuming the RL algorithms are able to achieve high rewards, what reward functions for the individual agents will, when pursued by those agents, result in high world utility? In other words, what reward functions will best ensure that we do not have phenomena like the tragedy of the commons, or Braess's paradox? Although still very young, the science of COINs has already resulted in successes in artificial domains, in particular in packet-routing, the leader-follower problem, and in variants of Arthur's "El Farol bar problem". It is expected that as it matures not only will COIN science expand greatly the range of tasks addressable by human engineers, but it will also provide much insight into already established scientific fields, such as economics, game theory, or population biology.

  4. Advanced intelligence and mechanism approach

    Institute of Scientific and Technical Information of China (English)

    ZHONG Yixin

    2007-01-01

    Advanced intelligence will feature the intelligence research in next 50 years.An understanding of the concept of advanced intelligence as well as its importance will be provided first,and detailed analysis on an approach,the mechanism approach.suitable to the advanced intelligence research will then be flolowed.And the mutual relationship among mechanism approach,traditional approaches existed in artificial intelligence research,and the cognitive informatics will be discussed.It is interesting to discover that mechanism approach is a good one to the Advanced Intelligence research and a tmified form of the existed approaches to artificial intelligence.

  5. Is Intelligence Artificial?

    OpenAIRE

    Greer, Kieran

    2014-01-01

    Our understanding of intelligence is directed primarily at the level of human beings. This paper attempts to give a more unifying definition that can be applied to the natural world in general. The definition would be used more to verify a degree of intelligence, not to quantify it and might help when making judgements on the matter. A version of an accepted test for AI is then put forward as the 'acid test' for Artificial Intelligence itself. It might be what a free-thinking program or robot...

  6. Hybrid Intelligent Warning System for Boiler tube Leak Trips

    Directory of Open Access Journals (Sweden)

    Singh Deshvin

    2017-01-01

    Full Text Available Repeated boiler tube leak trips in coal fired power plants can increase operating cost significantly. An early detection and diagnosis of boiler trips is essential for continuous safe operations in the plant. In this study two artificial intelligent monitoring systems specialized in boiler tube leak trips have been proposed. The first intelligent warning system (IWS-1 represents the use of pure artificial neural network system whereas the second intelligent warning system (IWS-2 represents merging of genetic algorithms and artificial neural networks as a hybrid intelligent system. The Extreme Learning Machine (ELM methodology was also adopted in IWS-1 and compared with traditional training algorithms. Genetic algorithm (GA was adopted in IWS-2 to optimize the ANN topology and the boiler parameters. An integrated data preparation framework was established for 3 real cases of boiler tube leak trip based on a thermal power plant in Malaysia. Both the IWSs were developed using MATLAB coding for training and validation. The hybrid IWS-2 performed better than IWS-1.The developed system was validated to be able to predict trips before the plant monitoring system. The proposed artificial intelligent system could be adopted as a reliable monitoring system of the thermal power plant boilers.

  7. Solving Optimization Problems via Vortex Optimization Algorithm and Cognitive Development Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Ahmet Demir

    2017-01-01

    Full Text Available In the fields which require finding the most appropriate value, optimization became a vital approach to employ effective solutions. With the use of optimization techniques, many different fields in the modern life have found solutions to their real-world based problems. In this context, classical optimization techniques have had an important popularity. But after a while, more advanced optimization problems required the use of more effective techniques. At this point, Computer Science took an important role on providing software related techniques to improve the associated literature. Today, intelligent optimization techniques based on Artificial Intelligence are widely used for optimization problems. The objective of this paper is to provide a comparative study on the employment of classical optimization solutions and Artificial Intelligence solutions for enabling readers to have idea about the potential of intelligent optimization techniques. At this point, two recently developed intelligent optimization algorithms, Vortex Optimization Algorithm (VOA and Cognitive Development Optimization Algorithm (CoDOA, have been used to solve some multidisciplinary optimization problems provided in the source book Thomas' Calculus 11th Edition and the obtained results have compared with classical optimization solutions. 

  8. Multiple Intelligences and quotient spaces

    OpenAIRE

    Malatesta, Mike; Quintana, Yamilet

    2006-01-01

    The Multiple Intelligence Theory (MI) is one of the models that study and describe the cognitive abilities of an individual. In [7] is presented a referential system which allows to identify the Multiple Intelligences of the students of a course and to classify the level of development of such Intelligences. Following this tendency, the purpose of this paper is to describe the model of Multiple Intelligences as a quotient space, and also to study the Multiple Intelligences of an individual in...

  9. Business Intelligence using Software Agents

    OpenAIRE

    Ana-Ramona BOLOGA; Razvan BOLOGA

    2011-01-01

    This paper presents some ideas about business intelligence today and the importance of developing real time business solutions. The authors make an exploration of links between business intelligence and artificial intelligence and focuses specifically on the implementation of software agents-based systems in business intelligence. There are briefly presented some of the few solutions proposed so far that use software agents properties for the benefit of business intelligence. The authors then...

  10. Syndrome Diagnosis: Human Intuition or Machine Intelligence?

    Science.gov (United States)

    Braaten, Øivind; Friestad, Johannes

    2008-01-01

    The aim of this study was to investigate whether artificial intelligence methods can represent objective methods that are essential in syndrome diagnosis. Most syndromes have no external criterion standard of diagnosis. The predictive value of a clinical sign used in diagnosis is dependent on the prior probability of the syndrome diagnosis. Clinicians often misjudge the probabilities involved. Syndromology needs objective methods to ensure diagnostic consistency, and take prior probabilities into account. We applied two basic artificial intelligence methods to a database of machine-generated patients - a ‘vector method’ and a set method. As reference methods we ran an ID3 algorithm, a cluster analysis and a naive Bayes’ calculation on the same patient series. The overall diagnostic error rate for the the vector algorithm was 0.93%, and for the ID3 0.97%. For the clinical signs found by the set method, the predictive values varied between 0.71 and 1.0. The artificial intelligence methods that we used, proved simple, robust and powerful, and represent objective diagnostic methods. PMID:19415142

  11. Artificial intelligence based modeling and optimization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production process by using Azohydromonas lata MTCC 2311 from cane molasses supplemented with volatile fatty acids: a genetic algorithm paradigm.

    Science.gov (United States)

    Zafar, Mohd; Kumar, Shashi; Kumar, Surendra; Dhiman, Amit K

    2012-01-01

    The present work describes the optimization of medium variables for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] by Azohydromonas lata MTCC 2311 using cane molasses supplemented with propionic acid. Genetic algorithm (GA) has been used for the optimization of P(3HB-co-3HV) production through the simulation of artificial neural network (ANN) and response surface methodology (RSM). The predictions by ANN are better than those of RSM and in good agreement with experimental findings. The highest P(3HB-co-3HV) concentration and 3HV content have been reported as 7.35 g/l and 16.84 mol%, respectively by hybrid ANN-GA. Upon validation, 7.20 g/l and 16.30 mol% of P(3HB-co-3HV) concentration and 3HV content have been found in the shake flask, whereas 6.70 g/l and 16.35 mol%, have been observed in a 3 l bioreactor, respectively. The specific growth rate and P(3HB-co-3HV) accumulation rate of 0.29 per h and 0.16 g/lh determined with cane molasses are comparable to those observed on pure substrates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Artificial Intelligence based technique for BTS placement

    Science.gov (United States)

    Alenoghena, C. O.; Emagbetere, J. O.; Aibinu, A. M.

    2013-12-01

    The increase of the base transceiver station (BTS) in most urban areas can be traced to the drive by network providers to meet demand for coverage and capacity. In traditional network planning, the final decision of BTS placement is taken by a team of radio planners, this decision is not fool proof against regulatory requirements. In this paper, an intelligent based algorithm for optimal BTS site placement has been proposed. The proposed technique takes into consideration neighbour and regulation considerations objectively while determining cell site. The application will lead to a quantitatively unbiased evaluated decision making process in BTS placement. An experimental data of a 2km by 3km territory was simulated for testing the new algorithm, results obtained show a 100% performance of the neighbour constrained algorithm in BTS placement optimization. Results on the application of GA with neighbourhood constraint indicate that the choices of location can be unbiased and optimization of facility placement for network design can be carried out.

  13. Artificial Intelligence based technique for BTS placement

    International Nuclear Information System (INIS)

    Alenoghena, C O; Emagbetere, J O; 1 Minna (Nigeria))" data-affiliation=" (Department of Telecommunications Engineering, Federal University of Techn.1 Minna (Nigeria))" >Aibinu, A M

    2013-01-01

    The increase of the base transceiver station (BTS) in most urban areas can be traced to the drive by network providers to meet demand for coverage and capacity. In traditional network planning, the final decision of BTS placement is taken by a team of radio planners, this decision is not fool proof against regulatory requirements. In this paper, an intelligent based algorithm for optimal BTS site placement has been proposed. The proposed technique takes into consideration neighbour and regulation considerations objectively while determining cell site. The application will lead to a quantitatively unbiased evaluated decision making process in BTS placement. An experimental data of a 2km by 3km territory was simulated for testing the new algorithm, results obtained show a 100% performance of the neighbour constrained algorithm in BTS placement optimization. Results on the application of GA with neighbourhood constraint indicate that the choices of location can be unbiased and optimization of facility placement for network design can be carried out

  14. An intelligent detecting system for permeability prediction of MBR.

    Science.gov (United States)

    Han, Honggui; Zhang, Shuo; Qiao, Junfei; Wang, Xiaoshuang

    2018-01-01

    The membrane bioreactor (MBR) has been widely used to purify wastewater in wastewater treatment plants. However, a critical difficulty of the MBR is membrane fouling. To reduce membrane fouling, in this work, an intelligent detecting system is developed to evaluate the performance of MBR by predicting the membrane permeability. This intelligent detecting system consists of two main parts. First, a soft computing method, based on the partial least squares method and the recurrent fuzzy neural network, is designed to find the nonlinear relations between the membrane permeability and the other variables. Second, a complete new platform connecting the sensors and the software is built, in order to enable the intelligent detecting system to handle complex algorithms. Finally, the simulation and experimental results demonstrate the reliability and effectiveness of the proposed intelligent detecting system, underlying the potential of this system for the online membrane permeability for detecting membrane fouling of MBR.

  15. 1st International Conference on Intelligent Communication, Control and Devices

    CERN Document Server

    Choudhury, Sushabhan

    2017-01-01

    The book presents high-quality research papers presented at the first international conference, ICICCD 2016, organised by the Department of Electronics, Instrumentation and Control Engineering of University of Petroleum and Energy Studies, Dehradun on 2nd and 3rd April, 2016. The book is broadly divided into three sections: Intelligent Communication, Intelligent Control and Intelligent Devices. The areas covered under these sections are wireless communication and radio technologies, optical communication, communication hardware evolution, machine-to-machine communication networks, routing techniques, network analytics, network applications and services, satellite and space communications, technologies for e-communication, wireless Ad-Hoc and sensor networks, communications and information security, signal processing for communications, communication software, microwave informatics, robotics and automation, optimization techniques and algorithms, intelligent transport, mechatronics system, guidance and navigat...

  16. New approaches in intelligent image analysis techniques, methodologies and applications

    CERN Document Server

    Nakamatsu, Kazumi

    2016-01-01

    This book presents an Introduction and 11 independent chapters, which are devoted to various new approaches of intelligent image processing and analysis. The book also presents new methods, algorithms and applied systems for intelligent image processing, on the following basic topics: Methods for Hierarchical Image Decomposition; Intelligent Digital Signal Processing and Feature Extraction; Data Clustering and Visualization via Echo State Networks; Clustering of Natural Images in Automatic Image Annotation Systems; Control System for Remote Sensing Image Processing; Tissue Segmentation of MR Brain Images Sequence; Kidney Cysts Segmentation in CT Images; Audio Visual Attention Models in Mobile Robots Navigation; Local Adaptive Image Processing; Learning Techniques for Intelligent Access Control; Resolution Improvement in Acoustic Maps. Each chapter is self-contained with its own references. Some of the chapters are devoted to the theoretical aspects while the others are presenting the practical aspects and the...

  17. 4th Workshop on Combinations of Intelligent Methods and Applications

    CERN Document Server

    Palade, Vasile; Prentzas, Jim

    2016-01-01

    This volume includes extended and revised versions of the papers presented at the 4th Workshop on “Combinations of Intelligent Methods and Applications” (CIMA 2014) which was intended to become a forum for exchanging experience and ideas among researchers and practitioners dealing with combinations of different intelligent methods in Artificial Intelligence. The aim is to create integrated or hybrid methods that benefit from each of their components. Some of the existing presented efforts combine soft computing methods (fuzzy logic, neural networks and genetic algorithms). Another stream of efforts integrates case-based reasoning or machine learning with soft-computing methods. Some of the combinations have been more widely explored, like neuro-symbolic methods, neuro-fuzzy methods and methods combining rule-based and case-based reasoning. CIMA 2014 was held in conjunction with the 26th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2014). .

  18. Convergence Analysis of a Class of Computational Intelligence Approaches

    Directory of Open Access Journals (Sweden)

    Junfeng Chen

    2013-01-01

    Full Text Available Computational intelligence approaches is a relatively new interdisciplinary field of research with many promising application areas. Although the computational intelligence approaches have gained huge popularity, it is difficult to analyze the convergence. In this paper, a computational model is built up for a class of computational intelligence approaches represented by the canonical forms of generic algorithms, ant colony optimization, and particle swarm optimization in order to describe the common features of these algorithms. And then, two quantification indices, that is, the variation rate and the progress rate, are defined, respectively, to indicate the variety and the optimality of the solution sets generated in the search process of the model. Moreover, we give four types of probabilistic convergence for the solution set updating sequences, and their relations are discussed. Finally, the sufficient conditions are derived for the almost sure weak convergence and the almost sure strong convergence of the model by introducing the martingale theory into the Markov chain analysis.

  19. Engineering general intelligence

    CERN Document Server

    Goertzel, Ben; Geisweiller, Nil

    2014-01-01

    The work outlines a novel conceptual and theoretical framework for understanding Artificial General Intelligence and based on this framework outlines a practical roadmap for the development of AGI with capability at the human level and ultimately beyond.

  20. Understanding US National Intelligence

    DEFF Research Database (Denmark)

    Leander, Anna

    2014-01-01

    In July 2010, the Washington Post (WP) published the results of a project on “Top Secret America” on which twenty investigative journalists had been working for two years. The project drew attention to the change and growth in National Intelligence following 9/11 (Washington Post 2010a......). The initial idea had been to work on intelligence generally, but given that this proved overwhelming, the team narrowed down to focus only on intelligence qualified as “top secret.” Even so, the growth in this intelligence activity is remarkable. This public is returning, or in this case expanding...... at an impressive speed confirming the general contention of this volume. Between 2001 and 2010 the budget had increased by 250 percent, reaching $75 billion (the GDP of the Czech Republic). Thirty-three building complexes for top secret work had been or were under construction in the Washington area; 1...

  1. Engineering general intelligence

    CERN Document Server

    Goertzel, Ben; Geisweiller, Nil

    2014-01-01

    The work outlines a detailed blueprint for the creation of an Artificial General Intelligence system with capability at the human level and ultimately beyond, according to the Cog Prime AGI design and the Open Cog software architecture.

  2. Intelligence Issues for Congress

    National Research Council Canada - National Science Library

    Best, Jr, Richard A

    2007-01-01

    To address the challenges facing the U.S. Intelligence Community in the 21st century, congressional and executive branch initiatives have sought to improve coordination among the different agencies and to encourage better analysis...

  3. Intelligence Issues for Congress

    National Research Council Canada - National Science Library

    Best, Jr, Richard A

    2006-01-01

    To address the challenges facing the U.S. Intelligence Community in the 21st Century, congressional and executive branch initiatives have sought to improve coordination among the different agencies and to encourage better analysis...

  4. Intelligence Issues for Congress

    National Research Council Canada - National Science Library

    Best, Jr, Richard A

    2008-01-01

    To address the challenges facing the U.S. Intelligence Community in the 21st century, congressional and executive branch initiatives have sought to improve coordination among the different agencies and to encourage better analysis...

  5. Intelligent Information Systems Institute

    National Research Council Canada - National Science Library

    Gomes, Carla

    2004-01-01

    ...) at Cornell during the first three years of operation. IISI's mandate is threefold: To perform and stimulate research in computational and data-intensive methods for intelligent decision making systems...

  6. Quo vadis, Intelligent Machine?

    Directory of Open Access Journals (Sweden)

    Rosemarie Velik

    2010-09-01

    Full Text Available Artificial Intelligence (AI is a branch of computer science concerned with making computers behave like humans. At least this was the original idea. However, it turned out that this is no task easy to be solved. This article aims to give a comprehensible review on the last 60 years of artificial intelligence taking a philosophical viewpoint. It is outlined what happened so far in AI, what is currently going on in this research area, and what can be expected in future. The goal is to mediate an understanding for the developments and changes in thinking in course of time about how to achieve machine intelligence. The clear message is that AI has to join forces with neuroscience and other brain disciplines in order to make a step towards the development of truly intelligent machines.

  7. Bibliography: Artificial Intelligence.

    Science.gov (United States)

    Smith, Richard L.

    1986-01-01

    Annotates reference material on artificial intelligence, mostly at an introductory level, with applications to education and learning. Topics include: (1) programing languages; (2) expert systems; (3) language instruction; (4) tutoring systems; and (5) problem solving and reasoning. (JM)

  8. Genes, evolution and intelligence.

    Science.gov (United States)

    Bouchard, Thomas J

    2014-11-01

    I argue that the g factor meets the fundamental criteria of a scientific construct more fully than any other conception of intelligence. I briefly discuss the evidence regarding the relationship of brain size to intelligence. A review of a large body of evidence demonstrates that there is a g factor in a wide range of species and that, in the species studied, it relates to brain size and is heritable. These findings suggest that many species have evolved a general-purpose mechanism (a general biological intelligence) for dealing with the environments in which they evolved. In spite of numerous studies with considerable statistical power, we know of very few genes that influence g and the effects are very small. Nevertheless, g appears to be highly polygenic. Given the complexity of the human brain, it is not surprising that that one of its primary faculties-intelligence-is best explained by the near infinitesimal model of quantitative genetics.

  9. Modelling intelligent behavior

    Science.gov (United States)

    Green, H. S.; Triffet, T.

    1993-01-01

    An introductory discussion of the related concepts of intelligence and consciousness suggests criteria to be met in the modeling of intelligence and the development of intelligent materials. Methods for the modeling of actual structure and activity of the animal cortex have been found, based on present knowledge of the ionic and cellular constitution of the nervous system. These have led to the development of a realistic neural network model, which has been used to study the formation of memory and the process of learning. An account is given of experiments with simple materials which exhibit almost all properties of biological synapses and suggest the possibility of a new type of computer architecture to implement an advanced type of artificial intelligence.

  10. Emotional Intelligence: Requiring Attention

    Directory of Open Access Journals (Sweden)

    Monica Tudor

    2016-01-01

    Full Text Available This article aims to highlight the need for emotional intelligence. Two methods of measurementare presented in this research, in order to better understand the necessity of a correct result. Theresults of research can lead to recommendations for improving levels of emotional intelligence andare useful for obtaining data to better compare past and present result. The papers presented inthis research are significant for future study of this subject. The first paper presents the evolutionof emotional intelligence in the past two years, more specifically its decrease concerning certaincharacteristics. The second one presents a research on the differences between generations. Thethird one shows a difference in emotional intelligence levels of children from rural versus urbanenvironments and the obstacles that they encounter in their own development.

  11. Intelligence Issues for Congress

    National Research Council Canada - National Science Library

    Best. Jr, Richard A

    2006-01-01

    To address the challenges facing the U.S. Intelligence Community in the 21st century, congressional and executive branch initiatives have sought to improve coordination among the different agencies and to encourage better analysis...

  12. Towards Intelligent Supply Chains

    DEFF Research Database (Denmark)

    Siurdyban, Artur; Møller, Charles

    2012-01-01

    applied to the context of organizational processes can increase the success rate of business operations. The framework is created using a set of theoretical based constructs grounded in a discussion across several streams of research including psychology, pedagogy, artificial intelligence, learning...... of deploying inapt operations leading to deterioration of profits. To address this problem, we propose a unified business process design framework based on the paradigm of intelligence. Intelligence allows humans and human-designed systems cope with environmental volatility, and we argue that its principles......, business process management and supply chain management. It outlines a number of system tasks combined in four integrated management perspectives: build, execute, grow and innovate, put forward as business process design propositions for Intelligent Supply Chains....

  13. Business Intelligence Integrated Solutions

    Directory of Open Access Journals (Sweden)

    Cristescu Marian Pompiliu

    2017-01-01

    Full Text Available This paper shows how businesses make decisions better and faster in terms of customers, partners and operations by turning data into valuable business information. The paper describes how to bring together people's and business intelligence information to achieve successful business strategies. There is the possibility of developing business intelligence projects in large and medium-sized organizations only with the Microsoft product described in the paper, and possible alternatives can be discussed according to the required features.

  14. Artificial intelligence in medicine.

    OpenAIRE

    Ramesh, A. N.; Kambhampati, C.; Monson, J. R. T.; Drew, P. J.

    2004-01-01

    INTRODUCTION: Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. METHODS: Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of ...

  15. Artificial Intelligence Study (AIS).

    Science.gov (United States)

    1987-02-01

    ARTIFICIAL INTELLIGNECE HARDWARE ....... 2-50 AI Architecture ................................... 2-49 AI Hardware ....................................... 2...ftf1 829 ARTIFICIAL INTELLIGENCE STUDY (RIS)(U) MAY CONCEPTS 1/3 A~NLYSIS AGENCY BETHESA RD R B NOJESKI FED 6? CM-RP-97-1 NCASIFIED /01/6 M |K 1.0...p/ - - ., e -- CAA- RP- 87-1 SAOFŔ)11 I ARTIFICIAL INTELLIGENCE STUDY (AIS) tNo DTICFEBRUARY 1987 LECT 00 I PREPARED BY RESEARCH AND ANALYSIS

  16. Artificial Intelligence in Astronomy

    Science.gov (United States)

    Devinney, E. J.; Prša, A.; Guinan, E. F.; Degeorge, M.

    2010-12-01

    From the perspective (and bias) as Eclipsing Binary researchers, we give a brief overview of the development of Artificial Intelligence (AI) applications, describe major application areas of AI in astronomy, and illustrate the power of an AI approach in an application developed under the EBAI (Eclipsing Binaries via Artificial Intelligence) project, which employs Artificial Neural Network technology for estimating light curve solution parameters of eclipsing binary systems.

  17. Minimally Naturalistic Artificial Intelligence

    OpenAIRE

    Hansen, Steven Stenberg

    2017-01-01

    The rapid advancement of machine learning techniques has re-energized research into general artificial intelligence. While the idea of domain-agnostic meta-learning is appealing, this emerging field must come to terms with its relationship to human cognition and the statistics and structure of the tasks humans perform. The position of this article is that only by aligning our agents' abilities and environments with those of humans do we stand a chance at developing general artificial intellig...

  18. Intelligent distributed computing

    CERN Document Server

    Thampi, Sabu

    2015-01-01

    This book contains a selection of refereed and revised papers of the Intelligent Distributed Computing Track originally presented at the third International Symposium on Intelligent Informatics (ISI-2014), September 24-27, 2014, Delhi, India.  The papers selected for this Track cover several Distributed Computing and related topics including Peer-to-Peer Networks, Cloud Computing, Mobile Clouds, Wireless Sensor Networks, and their applications.

  19. The intelligent data recorder

    International Nuclear Information System (INIS)

    Kojima, Mamoru; Hidekuma, Sigeru.

    1985-01-01

    The intelligent data recorder has been developed to data acquisition for a microwave interferometer. The 'RS-232C' which is the standard interface is used for data transmission to the host computer. Then, it's easy to connect with any computer which has general purpose serial port. In this report, the charcteristics of the intelligent data recorder and the way of developing the software are described. (author)

  20. Automatic food detection in egocentric images using artificial intelligence technology

    Science.gov (United States)

    Our objective was to develop an artificial intelligence (AI)-based algorithm which can automatically detect food items from images acquired by an egocentric wearable camera for dietary assessment. To study human diet and lifestyle, large sets of egocentric images were acquired using a wearable devic...

  1. Evolving intelligent vehicle control using multi-objective NEAT

    NARCIS (Netherlands)

    Willigen, W.H. van; Haasdijk, E.; Kester, L.J.H.M.

    2013-01-01

    The research in this paper is inspired by a vision of intelligent vehicles that autonomously move along motorways: they join and leave trains of vehicles (platoons), overtake other vehicles, etc. We propose a multi-objective algorithm based on NEAT and SPEA2 that evolves controllers for such

  2. Analysis for Performance of Symbiosis Co-evolutionary Algorithm

    OpenAIRE

    根路銘, もえ子; 遠藤, 聡志; 山田, 孝治; 宮城, 隼夫; Nerome, Moeko; Endo, Satoshi; Yamada, Koji; Miyagi, Hayao

    2000-01-01

    In this paper, we analyze the behavior of symbiotic evolution algorithm for the N-Queens problem as benchmark problem for search methods in the field of aritificial intelligence. It is shown that this algorithm improves the ability of evolutionary search method. When the problem is solved by Genetic Algorithms (GAs), an ordinal representation is often used as one of gene conversion methods which convert from phenotype to genotype and reconvert. The representation can hinder occurrence of leth...

  3. Algoritmo inteligente para evaluar el impacto de la introducción masiva de cocinas de inducción; Intelligent algorithm for evaluating the impact of the introduction of mass induction

    Directory of Open Access Journals (Sweden)

    Jorge Enrique Carrión González

    2015-09-01

    Full Text Available El Ministerio de Electricidad y Energía Renovable de Ecuador (MEER está implementando el plan nacional de coccióneficiente, en el país y en la región Sur. El plan se basa en reemplazar las cocinas que usan gas licuado de petróleo (GLPpor cocinas eléctricas de inducción, estos cambios representan un aumento considerable en la demanda eléctrica delsector residencial. Los estudios de los sistemas eléctricos de distribución realizados permiten evaluar el comportamientoactual de las redes eléctricas y analizar futuros escenarios para poder determinar las mejoras de carácter técnico yorganizativo que deben introducirse. Seelaboró un algoritmo genético especializado para evaluar el efecto querepresenta en los transformadores de distribución la introducción masiva de las cocinas de inducción, con vistas aresolver el problema de un crecimiento brusco de la demanda de energía, minimizando los costos de inversión en nuevosequipos de transformación.The Ministry of Electricity and Renewable Energy of Ecuador (MEER is implement in the national plan for efficient cooking in thesouthern region and the country. The planes based on replacing kitchens using liquefied petroleum gas (LPG for induction cookers,representing an increase in electricity demanding the residential sector. Studies of electrical distribution systems made it possible toassess the current behavior of electrical networks and analyze future scenarios to determinism provident in technical and organizationalmeasures to be introduced. A genetic algorithm to evaluate the effect on distribution transformer soft he massive introduction ofinduction cookers, with view to resolving the problem of sharp growthin demand for energy while minimizing the costs of investment innew equipment was developed.

  4. Intelligent medical information filtering.

    Science.gov (United States)

    Quintana, Y

    1998-01-01

    This paper describes an intelligent information filtering system to assist users to be notified of updates to new and relevant medical information. Among the major problems users face is the large volume of medical information that is generated each day, and the need to filter and retrieve relevant information. The Internet has dramatically increased the amount of electronically accessible medical information and reduced the cost and time needed to publish. The opportunity of the Internet for the medical profession and consumers is to have more information to make decisions and this could potentially lead to better medical decisions and outcomes. However, without the assistance from professional medical librarians, retrieving new and relevant information from databases and the Internet remains a challenge. Many physicians do not have access to the services of a medical librarian. Most physicians indicate on surveys that they do not prefer to retrieve the literature themselves, or visit libraries because of the lack of recent materials, poor organisation and indexing of materials, lack of appropriate and available material, and lack of time. The information filtering system described in this paper records the online web browsing behaviour of each user and creates a user profile of the index terms found on the web pages visited by the user. A relevance-ranking algorithm then matches the user profiles to the index terms of new health care web pages that are added each day. The system creates customised summaries of new information for each user. A user can then connect to the web site to read the new information. Relevance feedback buttons on each page ask the user to rate the usefulness of the page to their immediate information needs. Errors in relevance ranking are reduced in this system by having both the user profile and medical information represented in the same representation language using a controlled vocabulary. This system also updates the user profiles

  5. Professionalizing Intelligence Analysis

    Directory of Open Access Journals (Sweden)

    James B. Bruce

    2015-09-01

    Full Text Available This article examines the current state of professionalism in national security intelligence analysis in the U.S. Government. Since the introduction of major intelligence reforms directed by the Intelligence Reform and Terrorism Prevention Act (IRTPA in December, 2004, we have seen notable strides in many aspects of intelligence professionalization, including in analysis. But progress is halting, uneven, and by no means permanent. To consolidate its gains, and if it is to continue improving, the U.S. intelligence community (IC should commit itself to accomplishing a new program of further professionalization of analysis to ensure that it will develop an analytic cadre that is fully prepared to deal with the complexities of an emerging multipolar and highly dynamic world that the IC itself is forecasting. Some recent reforms in intelligence analysis can be assessed against established standards of more fully developed professions; these may well fall short of moving the IC closer to the more fully professionalized analytical capability required for producing the kind of analysis needed now by the United States.

  6. GABA predicts visual intelligence.

    Science.gov (United States)

    Cook, Emily; Hammett, Stephen T; Larsson, Jonas

    2016-10-06

    Early psychological researchers proposed a link between intelligence and low-level perceptual performance. It was recently suggested that this link is driven by individual variations in the ability to suppress irrelevant information, evidenced by the observation of strong correlations between perceptual surround suppression and cognitive performance. However, the neural mechanisms underlying such a link remain unclear. A candidate mechanism is neural inhibition by gamma-aminobutyric acid (GABA), but direct experimental support for GABA-mediated inhibition underlying suppression is inconsistent. Here we report evidence consistent with a global suppressive mechanism involving GABA underlying the link between sensory performance and intelligence. We measured visual cortical GABA concentration, visuo-spatial intelligence and visual surround suppression in a group of healthy adults. Levels of GABA were strongly predictive of both intelligence and surround suppression, with higher levels of intelligence associated with higher levels of GABA and stronger surround suppression. These results indicate that GABA-mediated neural inhibition may be a key factor determining cognitive performance and suggests a physiological mechanism linking surround suppression and intelligence. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  7. Alzheimer's disease and intelligence.

    Science.gov (United States)

    Yeo, R A; Arden, R; Jung, R E

    2011-06-01

    A significant body of evidence has accumulated suggesting that individual variation in intellectual ability, whether assessed directly by intelligence tests or indirectly through proxy measures, is related to risk of developing Alzheimer's disease (AD) in later life. Important questions remain unanswered, however, such as the specificity of risk for AD vs. other forms of dementia, and the specific links between premorbid intelligence and development of the neuropathology characteristic of AD. Lower premorbid intelligence has also emerged as a risk factor for greater mortality across myriad health and mental health diagnoses. Genetic covariance contributes importantly to these associations, and pleiotropic genetic effects may impact diverse organ systems through similar processes, including inefficient design and oxidative stress. Through such processes, the genetic underpinnings of intelligence, specifically, mutation load, may also increase the risk of developing AD. We discuss how specific neurobiologic features of relatively lower premorbid intelligence, including reduced metabolic efficiency, may facilitate the development of AD neuropathology. The cognitive reserve hypothesis, the most widely accepted account of the intelligence-AD association, is reviewed in the context of this larger literature.

  8. Event detection intelligent camera development

    International Nuclear Information System (INIS)

    Szappanos, A.; Kocsis, G.; Molnar, A.; Sarkozi, J.; Zoletnik, S.

    2008-01-01

    A new camera system 'event detection intelligent camera' (EDICAM) is being developed for the video diagnostics of W-7X stellarator, which consists of 10 distinct and standalone measurement channels each holding a camera. Different operation modes will be implemented for continuous and for triggered readout as well. Hardware level trigger signals will be generated from real time image processing algorithms optimized for digital signal processor (DSP) and field programmable gate array (FPGA) architectures. At full resolution a camera sends 12 bit sampled 1280 x 1024 pixels with 444 fps which means 1.43 Terabyte over half an hour. To analyse such a huge amount of data is time consuming and has a high computational complexity. We plan to overcome this problem by EDICAM's preprocessing concepts. EDICAM camera system integrates all the advantages of CMOS sensor chip technology and fast network connections. EDICAM is built up from three different modules with two interfaces. A sensor module (SM) with reduced hardware and functional elements to reach a small and compact size and robust action in harmful environment as well. An image processing and control unit (IPCU) module handles the entire user predefined events and runs image processing algorithms to generate trigger signals. Finally a 10 Gigabit Ethernet compatible image readout card functions as the network interface for the PC. In this contribution all the concepts of EDICAM and the functions of the distinct modules are described

  9. Algorithmic alternatives

    International Nuclear Information System (INIS)

    Creutz, M.

    1987-11-01

    A large variety of Monte Carlo algorithms are being used for lattice gauge simulations. For purely bosonic theories, present approaches are generally adequate; nevertheless, overrelaxation techniques promise savings by a factor of about three in computer time. For fermionic fields the situation is more difficult and less clear. Algorithms which involve an extrapolation to a vanishing step size are all quite closely related. Methods which do not require such an approximation tend to require computer time which grows as the square of the volume of the system. Recent developments combining global accept/reject stages with Langevin or microcanonical updatings promise to reduce this growth to V/sup 4/3/

  10. Combinatorial algorithms

    CERN Document Server

    Hu, T C

    2002-01-01

    Newly enlarged, updated second edition of a valuable text presents algorithms for shortest paths, maximum flows, dynamic programming and backtracking. Also discusses binary trees, heuristic and near optimums, matrix multiplication, and NP-complete problems. 153 black-and-white illus. 23 tables.Newly enlarged, updated second edition of a valuable, widely used text presents algorithms for shortest paths, maximum flows, dynamic programming and backtracking. Also discussed are binary trees, heuristic and near optimums, matrix multiplication, and NP-complete problems. New to this edition: Chapter 9

  11. Computational intelligence and quantitative software engineering

    CERN Document Server

    Succi, Giancarlo; Sillitti, Alberto

    2016-01-01

    In a down-to-the earth manner, the volume lucidly presents how the fundamental concepts, methodology, and algorithms of Computational Intelligence are efficiently exploited in Software Engineering and opens up a novel and promising avenue of a comprehensive analysis and advanced design of software artifacts. It shows how the paradigm and the best practices of Computational Intelligence can be creatively explored to carry out comprehensive software requirement analysis, support design, testing, and maintenance. Software Engineering is an intensive knowledge-based endeavor of inherent human-centric nature, which profoundly relies on acquiring semiformal knowledge and then processing it to produce a running system. The knowledge spans a wide variety of artifacts, from requirements, captured in the interaction with customers, to design practices, testing, and code management strategies, which rely on the knowledge of the running system. This volume consists of contributions written by widely acknowledged experts ...

  12. 78 FR 90 - Defense Intelligence Agency National Intelligence University Board of Visitors Closed Meeting

    Science.gov (United States)

    2013-01-02

    ... DEPARTMENT OF DEFENSE Office of the Secretary Defense Intelligence Agency National Intelligence University Board of Visitors Closed Meeting AGENCY: National Intelligence University, Defense Intelligence... hereby given that a closed meeting of the National Intelligence University Board of Visitors has been...

  13. Route planning algorithms: Planific@ Project

    Directory of Open Access Journals (Sweden)

    Gonzalo Martín Ortega

    2009-12-01

    Full Text Available Planific@ is a route planning project for the city of Madrid (Spain. Its main aim is to develop an intelligence system capable of routing people from one place in the city to any other using the public transport. In order to do this, it is necessary to take into account such things as: time, traffic, user preferences, etc. Before beginning to design the project is necessary to make a comprehensive study of the variety of main known route planning algorithms suitable to be used in this project.

  14. The Study of Intelligent Vehicle Navigation Path Based on Behavior Coordination of Particle Swarm.

    Science.gov (United States)

    Han, Gaining; Fu, Weiping; Wang, Wen

    2016-01-01

    In the behavior dynamics model, behavior competition leads to the shock problem of the intelligent vehicle navigation path, because of the simultaneous occurrence of the time-variant target behavior and obstacle avoidance behavior. Considering the safety and real-time of intelligent vehicle, the particle swarm optimization (PSO) algorithm is proposed to solve these problems for the optimization of weight coefficients of the heading angle and the path velocity. Firstly, according to the behavior dynamics model, the fitness function is defined concerning the intelligent vehicle driving characteristics, the distance between intelligent vehicle and obstacle, and distance of intelligent vehicle and target. Secondly, behavior coordination parameters that minimize the fitness function are obtained by particle swarm optimization algorithms. Finally, the simulation results show that the optimization method and its fitness function can improve the perturbations of the vehicle planning path and real-time and reliability.

  15. Interated Intelligent Industrial Process Sensing and Control: Applied to and Demonstrated on Cupola Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed Abdelrahman; roger Haggard; Wagdy Mahmoud; Kevin Moore; Denis Clark; Eric Larsen; Paul King

    2003-02-12

    The final goal of this project was the development of a system that is capable of controlling an industrial process effectively through the integration of information obtained through intelligent sensor fusion and intelligent control technologies. The industry of interest in this project was the metal casting industry as represented by cupola iron-melting furnaces. However, the developed technology is of generic type and hence applicable to several other industries. The system was divided into the following four major interacting components: 1. An object oriented generic architecture to integrate the developed software and hardware components @. Generic algorithms for intelligent signal analysis and sensor and model fusion 3. Development of supervisory structure for integration of intelligent sensor fusion data into the controller 4. Hardware implementation of intelligent signal analysis and fusion algorithms

  16. Proceedings of the International Conference on Information Systems Design and Intelligent Applications 2012

    CERN Document Server

    Avadhani, P; Abraham, Ajith

    2012-01-01

    This volume contains the papers presented at INDIA-2012: International conference on  Information system Design and Intelligent Applications held on January 5-7, 2012 in Vishakhapatnam, India. This conference was organized by Computer Society of India (CSI), Vishakhapatnam chapter well supported by Vishakhapatnam Steel, RINL, Govt of India. It contains 108 papers contributed by authors from six different countries across four continents. These research papers mainly focused on intelligent applications and various system design issues. The papers cover a wide range of topics of computer science and information technology discipline ranging from image processing, data base application, data mining, grid and cloud computing, bioinformatics among many others. The various intelligent tools like swarm intelligence, artificial intelligence, evolutionary algorithms, bio-inspired algorithms have been applied in different papers for solving various challenging IT related problems.

  17. Firefly Algorithm for Cardinality Constrained Mean-Variance Portfolio Optimization Problem with Entropy Diversity Constraint

    Directory of Open Access Journals (Sweden)

    Nebojsa Bacanin

    2014-01-01

    portfolio model with entropy constraint. Firefly algorithm is one of the latest, very successful swarm intelligence algorithm; however, it exhibits some deficiencies when applied to constrained problems. To overcome lack of exploration power during early iterations, we modified the algorithm and tested it on standard portfolio benchmark data sets used in the literature. Our proposed modified firefly algorithm proved to be better than other state-of-the-art algorithms, while introduction of entropy diversity constraint further improved results.

  18. Bio-inspired algorithms applied to molecular docking simulations.

    Science.gov (United States)

    Heberlé, G; de Azevedo, W F

    2011-01-01

    Nature as a source of inspiration has been shown to have a great beneficial impact on the development of new computational methodologies. In this scenario, analyses of the interactions between a protein target and a ligand can be simulated by biologically inspired algorithms (BIAs). These algorithms mimic biological systems to create new paradigms for computation, such as neural networks, evolutionary computing, and swarm intelligence. This review provides a description of the main concepts behind BIAs applied to molecular docking simulations. Special attention is devoted to evolutionary algorithms, guided-directed evolutionary algorithms, and Lamarckian genetic algorithms. Recent applications of these methodologies to protein targets identified in the Mycobacterium tuberculosis genome are described.

  19. Wind power systems. Applications of computational intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lingfeng [Toledo Univ., OH (United States). Dept. of Electrical Engineering and Computer Science; Singh, Chanan [Texas A and M Univ., College Station, TX (United States). Electrical and Computer Engineering Dept.; Kusiak, Andrew (eds.) [Iowa Univ., Iowa City, IA (United States). Mechanical and Industrial Engineering Dept.

    2010-07-01

    Renewable energy sources such as wind power have attracted much attention because they are environmentally friendly, do not produce carbon dioxide and other emissions, and can enhance a nation's energy security. For example, recently more significant amounts of wind power are being integrated into conventional power grids. Therefore, it is necessary to address various important and challenging issues related to wind power systems, which are significantly different from the traditional generation systems. This book is a resource for engineers, practitioners, and decision-makers interested in studying or using the power of computational intelligence based algorithms in handling various important problems in wind power systems at the levels of power generation, transmission, and distribution. Researchers have been developing biologically-inspired algorithms in a wide variety of complex large-scale engineering domains. Distinguished from the traditional analytical methods, the new methods usually accomplish the task through their computationally efficient mechanisms. Computational intelligence methods such as evolutionary computation, neural networks, and fuzzy systems have attracted much attention in electric power systems. Meanwhile, modern electric power systems are becoming more and more complex in order to meet the growing electricity market. In particular, the grid complexity is continuously enhanced by the integration of intermittent wind power as well as the current restructuring efforts in electricity industry. Quite often, the traditional analytical methods become less efficient or even unable to handle this increased complexity. As a result, it is natural to apply computational intelligence as a powerful tool to deal with various important and pressing problems in the current wind power systems. This book presents the state-of-the-art development in the field of computational intelligence applied to wind power systems by reviewing the most up

  20. Detection of Intelligent Intruders in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2016-01-01

    Full Text Available Most of the existing research works on the intrusion detection problem in a wireless sensor network (WSN assume linear or random mobility patterns in abstracting intruders’ models in traversing the WSN field. However, in real-life WSN applications, an intruder is usually an intelligent mobile robot with environment learning and detection avoidance capability (i.e., the capability to avoid surrounding sensors. Due to this, the literature results based on the linear or random mobility models may not be applied to the real-life WSN design and deployment for efficient and effective intrusion detection in practice. This motivates us to investigate the impact of intruder’s intelligence on the intrusion detection problem in a WSN for various applications. To be specific, we propose two intrusion algorithms, the pinball and flood-fill algorithms, to mimic the intelligent motion and behaviors of a mobile intruder in detecting and circumventing nearby sensors for detection avoidance while heading for its destination. The two proposed algorithms are integrated into a WSN framework for intrusion detection analysis in various circumstances. Monte Carlo simulations are conducted, and the results indicate that: (1 the performance of a WSN drastically changes as a result of the intruder’s intelligence in avoiding sensor detections and intrusion algorithms; (2 network parameters, including node density, sensing range and communication range, play a crucial part in the effectiveness of the intruder’s intrusion algorithms; and (3 it is imperative to integrate intruder’s intelligence in the WSN research for intruder detection problems under various application circumstances.

  1. Firefly Mating Algorithm for Continuous Optimization Problems

    Directory of Open Access Journals (Sweden)

    Amarita Ritthipakdee

    2017-01-01

    Full Text Available This paper proposes a swarm intelligence algorithm, called firefly mating algorithm (FMA, for solving continuous optimization problems. FMA uses genetic algorithm as the core of the algorithm. The main feature of the algorithm is a novel mating pair selection method which is inspired by the following 2 mating behaviors of fireflies in nature: (i the mutual attraction between males and females causes them to mate and (ii fireflies of both sexes are of the multiple-mating type, mating with multiple opposite sex partners. A female continues mating until her spermatheca becomes full, and, in the same vein, a male can provide sperms for several females until his sperm reservoir is depleted. This new feature enhances the global convergence capability of the algorithm. The performance of FMA was tested with 20 benchmark functions (sixteen 30-dimensional functions and four 2-dimensional ones against FA, ALC-PSO, COA, MCPSO, LWGSODE, MPSODDS, DFOA, SHPSOS, LSA, MPDPGA, DE, and GABC algorithms. The experimental results showed that the success rates of our proposed algorithm with these functions were higher than those of other algorithms and the proposed algorithm also required fewer numbers of iterations to reach the global optima.

  2. An Educational System for Learning Search Algorithms and Automatically Assessing Student Performance

    Science.gov (United States)

    Grivokostopoulou, Foteini; Perikos, Isidoros; Hatzilygeroudis, Ioannis

    2017-01-01

    In this paper, first we present an educational system that assists students in learning and tutors in teaching search algorithms, an artificial intelligence topic. Learning is achieved through a wide range of learning activities. Algorithm visualizations demonstrate the operational functionality of algorithms according to the principles of active…

  3. Business Intelligence using Software Agents

    Directory of Open Access Journals (Sweden)

    Ana-Ramona BOLOGA

    2011-12-01

    Full Text Available This paper presents some ideas about business intelligence today and the importance of developing real time business solutions. The authors make an exploration of links between business intelligence and artificial intelligence and focuses specifically on the implementation of software agents-based systems in business intelligence. There are briefly presented some of the few solutions proposed so far that use software agents properties for the benefit of business intelligence. The authors then propose some basic ideas for developing real-time agent-based software system for business intelligence in supply chain management, using Case Base Reasoning Agents.

  4. Fluid intelligence: A brief history.

    Science.gov (United States)

    Kent, Phillip

    2017-01-01

    The concept of fluid and crystallized intelligence was introduced to the psychological community approximately 75 years ago by Raymond B. Cattell, and it continues to be an area of active research and controversy. The purpose of this paper is to provide a brief overview of the origin of the concept, early efforts to define intelligence and uses of intelligence tests to address pressing social issues, and the ongoing controversies associated with fluid intelligence and the structure of intelligence. The putative neuropsychological underpinnings and neurological substrates of fluid intelligence are discussed.

  5. Artificial intelligence methods applied in the controlled synthesis of polydimethilsiloxane - poly (methacrylic acid) copolymer networks with imposed properties

    Science.gov (United States)

    Rusu, Teodora; Gogan, Oana Marilena

    2016-05-01

    This paper describes the use of artificial intelligence method in copolymer networks design. In the present study, we pursue a hybrid algorithm composed from two research themes in the genetic design framework: a Kohonen neural network (KNN), path (forward problem) combined with a genetic algorithm path (backward problem). The Tabu Search Method is used to improve the performance of the genetic algorithm path.

  6. New Perspectives on Intelligence Collection and Processing

    Science.gov (United States)

    2016-06-01

    MASINT Measurement and Signature Intelligence NPS Naval Postgraduate School OSINT Open Source Intelligence pdf Probability Density Function SIGINT...MASINT): different types of sensors • Open Source Intelligence ( OSINT ): from all open sources • Signals Intelligence (SIGINT): intercepting the

  7. Trends in ambient intelligent systems the role of computational intelligence

    CERN Document Server

    Khan, Mohammad; Abraham, Ajith

    2016-01-01

    This book demonstrates the success of Ambient Intelligence in providing possible solutions for the daily needs of humans. The book addresses implications of ambient intelligence in areas of domestic living, elderly care, robotics, communication, philosophy and others. The objective of this edited volume is to show that Ambient Intelligence is a boon to humanity with conceptual, philosophical, methodical and applicative understanding. The book also aims to schematically demonstrate developments in the direction of augmented sensors, embedded systems and behavioral intelligence towards Ambient Intelligent Networks or Smart Living Technology. It contains chapters in the field of Ambient Intelligent Networks, which received highly positive feedback during the review process. The book contains research work, with in-depth state of the art from augmented sensors, embedded technology and artificial intelligence along with cutting-edge research and development of technologies and applications of Ambient Intelligent N...

  8. Intelligent System Design Using Hyper-Heuristics

    Directory of Open Access Journals (Sweden)

    Nelishia Pillay

    2015-07-01

    Full Text Available Determining the most appropriate search method or artificial intelligence technique to solve a problem is not always evident and usually requires implementation of the different approaches to ascertain this. In some instances a single approach may not be sufficient and hybridization of methods may be needed to find a solution. This process can be time consuming. The paper proposes the use of hyper-heuristics as a means of identifying which method or combination of approaches is needed to solve a problem. The research presented forms part of a larger initiative aimed at using hyper-heuristics to develop intelligent hybrid systems. As an initial step in this direction, this paper investigates this for classical artificial intelligence uninformed and informed search methods, namely depth first search, breadth first search, best first search, hill-climbing and the A* algorithm. The hyper-heuristic determines the search or combination of searches to use to solve the problem. An evolutionary algorithm hyper-heuristic is implemented for this purpose and its performance is evaluated in solving the 8-Puzzle, Towers of Hanoi and Blocks World problems. The hyper-heuristic employs a generational evolutionary algorithm which iteratively refines an initial population using tournament selection to select parents, which the mutation and crossover operators are applied to for regeneration. The hyper-heuristic was able to identify a search or combination of searches to produce solutions for the twenty 8-Puzzle, five Towers of Hanoi and five Blocks World problems. Furthermore, admissible solutions were produced for all problem instances.

  9. Social Representations of Intelligence

    Directory of Open Access Journals (Sweden)

    Elena Zubieta

    2016-02-01

    Full Text Available The article stresses the relationship between Explicit and Implicit theories of Intelligence. Following the line of common sense epistemology and the theory of Social Representations, a study was carried out in order to analyze naive’s explanations about Intelligence Definitions. Based on Mugny & Carugati (1989 research, a self-administered questionnaire was designed and filled in by 286 subjects. Results are congruent with the main hyphotesis postulated: A general overlap between explicit and implicit theories showed up. According to the results Intelligence appears as both, a social attribute related to social adaptation and as a concept defined in relation with contextual variables similar to expert’s current discourses. Nevertheless, conceptions based on “gifted ideology” still are present stressing the main axes of Intelligence debate: biological and sociological determinism. In the same sense, unfamiliarity and social identity are reaffirmed as organizing principles of social representation. The distance with the object -measured as the belief in intelligence differences as a solve/non solve problem- and the level of implication with the topic -teachers/no teachers- appear as discriminating elements at the moment of supporting specific dimensions. 

  10. MANAGEMENT OPTIMISATION OF MASS CUSTOMISATION MANUFACTURING USING COMPUTATIONAL INTELLIGENCE

    Directory of Open Access Journals (Sweden)

    Louwrens Butler

    2018-05-01

    Full Text Available Computational intelligence paradigms can be used for advanced manufacturing system optimisation. A static simulation model of an advanced manufacturing system was developed in order to simulate a manufacturing system. The purpose of this advanced manufacturing system was to mass-produce a customisable product range at a competitive cost. The aim of this study was to determine whether this new algorithm could produce a better performance than traditional optimisation methods. The algorithm produced a lower cost plan than that for a simulated annealing algorithm, and had a lower impact on the workforce.

  11. Nature-inspired design of hybrid intelligent systems

    CERN Document Server

    Castillo, Oscar; Kacprzyk, Janusz

    2017-01-01

    This book highlights recent advances in the design of hybrid intelligent systems based on nature-inspired optimization and their application in areas such as intelligent control and robotics, pattern recognition, time series prediction, and optimization of complex problems. The book is divided into seven main parts, the first of which addresses theoretical aspects of and new concepts and algorithms based on type-2 and intuitionistic fuzzy logic systems. The second part focuses on neural network theory, and explores the applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The book’s third part presents enhancements to meta-heuristics based on fuzzy logic techniques and describes new nature-inspired optimization algorithms that employ fuzzy dynamic adaptation of parameters, while the fourth part presents diverse applications of nature-inspired optimization algorithms. In turn, the fifth part investigates applications of fuzzy logic in diverse areas, such as...

  12. Algorithmic Self

    DEFF Research Database (Denmark)

    Markham, Annette

    This paper takes an actor network theory approach to explore some of the ways that algorithms co-construct identity and relational meaning in contemporary use of social media. Based on intensive interviews with participants as well as activity logging and data tracking, the author presents a richly...... layered set of accounts to help build our understanding of how individuals relate to their devices, search systems, and social network sites. This work extends critical analyses of the power of algorithms in implicating the social self by offering narrative accounts from multiple perspectives. It also...... contributes an innovative method for blending actor network theory with symbolic interaction to grapple with the complexity of everyday sensemaking practices within networked global information flows....

  13. Modelling traffic flows with intelligent cars and intelligent roads

    NARCIS (Netherlands)

    van Arem, Bart; Tampere, Chris M.J.; Malone, Kerry

    2003-01-01

    This paper addresses the modeling of traffic flows with intelligent cars and intelligent roads. It will describe the modeling approach MIXIC and review the results for different ADA systems: Adaptive Cruise Control, a special lane for Intelligent Vehicles, cooperative following and external speed

  14. Intelligence analysis – the royal discipline of Competitive Intelligence

    Directory of Open Access Journals (Sweden)

    František Bartes

    2011-01-01

    Full Text Available The aim of this article is to propose work methodology for Competitive Intelligence teams in one of the intelligence cycle’s specific area, in the so-called “Intelligence Analysis”. Intelligence Analysis is one of the stages of the Intelligence Cycle in which data from both the primary and secondary research are analyzed. The main result of the effort is the creation of added value for the information collected. Company Competiitve Intelligence, correctly understood and implemented in business practice, is the “forecasting of the future”. That is forecasting about the future, which forms the basis for strategic decisions made by the company’s top management. To implement that requirement in corporate practice, the author perceives Competitive Intelligence as a systemic application discipline. This approach allows him to propose a “Work Plan” for Competitive Intelligence as a fundamental standardized document to steer Competitive Intelligence team activities. The author divides the Competitive Intelligence team work plan into five basic parts. Those parts are derived from the five-stage model of the intelligence cycle, which, in the author’s opinion, is more appropriate for complicated cases of Competitive Intelligence.

  15. From the social learning theory to a social learning algorithm for global optimization

    OpenAIRE

    Gong, Yue-Jiao; Zhang, Jun; Li, Yun

    2014-01-01

    Traditionally, the Evolutionary Computation (EC) paradigm is inspired by Darwinian evolution or the swarm intelligence of animals. Bandura's Social Learning Theory pointed out that the social learning behavior of humans indicates a high level of intelligence in nature. We found that such intelligence of human society can be implemented by numerical computing and be utilized in computational algorithms for solving optimization problems. In this paper, we design a novel and generic optimization...

  16. Intelligent Power Control of DC Microgrid

    DEFF Research Database (Denmark)

    Hajizadeh, Amin; N. Soltani, Mohsen; Norum, Lars

    2017-01-01

    In this paper, an intelligent power management strategy is proposed for hybrid DC microgrid, including wind turbine, fuel cell and battery energy storage. The considered wind turbine has a permanent magnet synchronous generator (PMSG). In the considered structure, wind turbine operates as the main...... condition and fuel cell will not generate excessive power. The proposed control scheme is based on the fuzzy algorithm. All simulations in variant operational modes are performed by MATLAB/Simulink and results show the effectiveness of the proposed control strategy....

  17. Intelligent video surveillance systems and technology

    CERN Document Server

    Ma, Yunqian

    2009-01-01

    From the streets of London to subway stations in New York City, hundreds of thousands of surveillance cameras ubiquitously collect hundreds of thousands of videos, often running 24/7. How can such vast volumes of video data be stored, analyzed, indexed, and searched? How can advanced video analysis and systems autonomously recognize people and detect targeted activities real-time? Collating and presenting the latest information Intelligent Video Surveillance: Systems and Technology explores these issues, from fundamentals principle to algorithmic design and system implementation.An Integrated

  18. Quantum neuromorphic hardware for quantum artificial intelligence

    Science.gov (United States)

    Prati, Enrico

    2017-08-01

    The development of machine learning methods based on deep learning boosted the field of artificial intelligence towards unprecedented achievements and application in several fields. Such prominent results were made in parallel with the first successful demonstrations of fault tolerant hardware for quantum information processing. To which extent deep learning can take advantage of the existence of a hardware based on qubits behaving as a universal quantum computer is an open question under investigation. Here I review the convergence between the two fields towards implementation of advanced quantum algorithms, including quantum deep learning.

  19. The Literature of Competitive Intelligence.

    Science.gov (United States)

    Walker, Thomas D.

    1994-01-01

    Describes competitive intelligence (CI) literature in terms of its location, quantity, authorship, length, and problems of bibliographic access. Highlights include subject access; competitive intelligence research; espionage and security; monographs; and journals. (21 references) (LRW)

  20. Artificial intelligence in nanotechnology.

    Science.gov (United States)

    Sacha, G M; Varona, P

    2013-11-15

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  1. Artificial intelligence in nanotechnology

    Science.gov (United States)

    Sacha, G. M.; Varona, P.

    2013-11-01

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  2. Intelligent environmental data warehouse

    International Nuclear Information System (INIS)

    Ekechukwu, B.

    1998-01-01

    Making quick and effective decisions in environment management are based on multiple and complex parameters, a data warehouse is a powerful tool for the over all management of massive environmental information. Selecting the right data from a warehouse is an important factor consideration for end-users. This paper proposed an intelligent environmental data warehouse system. It consists of data warehouse to feed an environmental researchers and managers with desire environmental information needs to their research studies and decision in form of geometric and attribute data for study area, and a metadata for the other sources of environmental information. In addition, the proposed intelligent search engine works according to a set of rule, which enables the system to be aware of the environmental data wanted by the end-user. The system development process passes through four stages. These are data preparation, warehouse development, intelligent engine development and internet platform system development. (author)

  3. Artificial intelligence in nanotechnology

    International Nuclear Information System (INIS)

    Sacha, G M; Varona, P

    2013-01-01

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines. (topical review)

  4. A hybrid artificial bee colony algorithm for numerical function optimization

    Science.gov (United States)

    Alqattan, Zakaria N.; Abdullah, Rosni

    2015-02-01

    Artificial Bee Colony (ABC) algorithm is one of the swarm intelligence algorithms; it has been introduced by Karaboga in 2005. It is a meta-heuristic optimization search algorithm inspired from the intelligent foraging behavior of the honey bees in nature. Its unique search process made it as one of the most competitive algorithm with some other search algorithms in the area of optimization, such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). However, the ABC performance of the local search process and the bee movement or the solution improvement equation still has some weaknesses. The ABC is good in avoiding trapping at the local optimum but it spends its time searching around unpromising random selected solutions. Inspired by the PSO, we propose a Hybrid Particle-movement ABC algorithm called HPABC, which adapts the particle movement process to improve the exploration of the original ABC algorithm. Numerical benchmark functions were used in order to experimentally test the HPABC algorithm. The results illustrate that the HPABC algorithm can outperform the ABC algorithm in most of the experiments (75% better in accuracy and over 3 times faster).

  5. Intelligent Integration between Human Simulated Intelligence and Expert Control Technology for the Combustion Process of Gas Heating Furnace

    Directory of Open Access Journals (Sweden)

    Yucheng Liu

    2014-01-01

    Full Text Available Due to being poor in control quality of the combustion process of gas heating furnace, this paper explored a sort of strong robust control algorithm in order to improve the control quality of the combustion process of gas heating furnace. The paper analyzed the control puzzle in the complex combustion process of gas heating furnace, summarized the cybernetics characteristic of the complex combustion process, researched into control strategy of the uncertainty complex control process, discussed the control model of the complex process, presented a sort of intelligent integration between human-simulated intelligence and expert control technology, and constructed the control algorithm for the combustion process controlling of gas heating furnace. The simulation results showed that the control algorithm proposed in the paper is not only better in dynamic and steady quality of the combustion process, but also obvious in energy saving effect, feasible, and effective in control strategy.

  6. Understanding the Globalization of Intelligence

    DEFF Research Database (Denmark)

    Svendsen, Adam David Morgan

    "This book provides an introduction to the complexities of contemporary Western Intelligence and its dynamics during an era of globalization. Towards an understanding of the globalization of intelligence process, Svendsen focuses on the secretive phenomenon of international or foreign intelligence...... cooperation ('liaison'), as it occurs in both theory and practice. Reflecting a complex coexistence plurality of several different and overlapping concepts in action, the challenging process of the globalization of intelligence emerges as essential for complex issue management purposes during a globalized era...

  7. Artificial Intelligence and Economic Theories

    OpenAIRE

    Marwala, Tshilidzi; Hurwitz, Evan

    2017-01-01

    The advent of artificial intelligence has changed many disciplines such as engineering, social science and economics. Artificial intelligence is a computational technique which is inspired by natural intelligence such as the swarming of birds, the working of the brain and the pathfinding of the ants. These techniques have impact on economic theories. This book studies the impact of artificial intelligence on economic theories, a subject that has not been extensively studied. The theories that...

  8. AntStar: Enhancing Optimization Problems by Integrating an Ant System and A⁎ Algorithm

    Directory of Open Access Journals (Sweden)

    Mohammed Faisal

    2016-01-01

    Full Text Available Recently, nature-inspired techniques have become valuable to many intelligent systems in different fields of technology and science. Among these techniques, Ant Systems (AS have become a valuable technique for intelligent systems in different fields. AS is a computational system inspired by the foraging behavior of ants and intended to solve practical optimization problems. In this paper, we introduce the AntStar algorithm, which is swarm intelligence based. AntStar enhances the optimization and performance of an AS by integrating the AS and A⁎ algorithm. Applying the AntStar algorithm to the single-source shortest-path problem has been done to ensure the efficiency of the proposed AntStar algorithm. The experimental result of the proposed algorithm illustrated the robustness and accuracy of the AntStar algorithm.

  9. Simulation Study of Swarm Intelligence Based on Life Evolution Behavior

    Directory of Open Access Journals (Sweden)

    Yanmin Liu

    2015-01-01

    Full Text Available Swarm intelligence (SI is a new evolutionary computation technology, and its performance efficacy is usually affected by each individual behavior in the swarm. According to the genetic and sociological theory, the life evolution behavior process is influenced by the external and internal factors, so the mechanisms of external and internal environment change must be analyzed and explored. Therefore, in this paper, we used the thought of the famous American genetic biologist Morgan, “life = DNA + environment + interaction of environment + gene,” to propose the mutation and crossover operation of DNA fragments by the environmental change to improve the performance efficiency of intelligence algorithms. Additionally, PSO is a random swarm intelligence algorithm with the genetic and sociological property, so we embed the improved mutation and crossover operation to particle swarm optimization (PSO and designed DNA-PSO algorithm to optimize single and multiobjective optimization problems. Simulation experiments in single and multiobjective optimization problems show that the proposed strategies can effectively improve the performance of swarm intelligence.

  10. Collective Intelligence in Crises

    DEFF Research Database (Denmark)

    Büscher, Monika; Liegl, Michael; Thomas, Vanessa

    2014-01-01

    New practices of social media use in emergency response seem to enable broader `situation awareness' and new forms of crisis management. The scale and speed of innovation in this field engenders disruptive innovation or a reordering of social, political, economic practices of emergency response....... By examining these dynamics with the concept of social collective intelligence, important opportunities and challenges can be examined. In this chapter we focus on socio-technical aspects of social collective intelligence in crises to discuss positive and negative frictions and avenues for innovation...

  11. Artificial intelligence executive summary

    International Nuclear Information System (INIS)

    Wamsley, S.J.; Purvis, E.E. III

    1984-01-01

    Artificial intelligence (AI) is a high technology field that can be used to provide problem solving diagnosis, guidance and for support resolution of problems. It is not a stand alone discipline, but can also be applied to develop data bases for retention of the expertise that is required for its own knowledge base. This provides a way to retain knowledge that otherwise may be lost. Artificial Intelligence Methodology can provide an automated construction management decision support system, thereby restoring the manager's emphasis to project management

  12. Intelligent Freigth Transport Systems

    DEFF Research Database (Denmark)

    Overø, Helene Martine; Larsen, Allan; Røpke, Stefan

    2009-01-01

    is to enhance the efficiency and lower the environmental impact in freight transport. In this paper, a pilot project involving real-time waste collection at a Danish waste collection company is described, and a solution approach is proposed. The problem corresponds to the dynamic version of the waste collection......The Danish innovation project entitled “Intelligent Freight Transport Systems” aims at developing prototype systems integrating public intelligent transport systems (ITS) with the technology in vehicles and equipment as well as the IT-systems at various transport companies. The objective...

  13. Business Intelligence Integrated Solutions

    Directory of Open Access Journals (Sweden)

    Cristescu Marian Pompiliu

    2017-12-01

    Full Text Available A Business Intelligence solution concerns the simple, real-time access to complete information about the business shown in a relevant format of the report, graphic or dashboard type in order help the taking of strategic decisions regarding the direction in which the company goes. Business Intelligence does not produce data, but uses the data produced by the company’s applications. BI solutions extract their data from ERP (Enterprise Resource Planning, CRM (Customer Relationship Management, HCM (Human Capital Management, and Retail, eCommerce or other databases used in the company.

  14. The intelligent Universe

    International Nuclear Information System (INIS)

    Hoyle, F.

    1983-01-01

    The subject is covered in chapters, entitled: chance and the universe (synthesis of proteins; the 'primordial soup'); the gospel according to Darwin (discussion of Darwin theory of evolution); life did not originate on earth (fossils from space; life in space); the interstellar connection (living dust between the stars; bacteria in space falling to the earth; interplanetary dust); evolution by cosmic control (microorganisms; genetics); why aren't the others here (a cosmic origin of life); after the big bang (big bang and steady state); the information rich universe; what is intelligence up to; the intelligent universe. (U.K.)

  15. Harmonizing intelligence terminologies in business: Literature review

    Directory of Open Access Journals (Sweden)

    Sivave Mashingaidze

    2014-11-01

    Full Text Available The principal objective of this article is to do a literature review of different intelligence terminology with the aim of establishing the common attributes and differences, and to propose a universal and comprehensive definition of intelligence for common understanding amongst users. The findings showed that Competitive Intelligence has the broadest scope of intelligence activities covering the whole external operating environment of the company and targeting all levels of decision-making for instance; strategic intelligence, tactical intelligence and operative intelligence. Another terminology was found called Cyber IntelligenceTM which encompasses competitor intelligence, strategic intelligence, market intelligence and counterintelligence. In conclusion although CI has the broadest scope of intelligence and umbrella to many intelligence concepts, still Business Intelligence, and Corporate Intelligence are often used interchangeably as CI

  16. Dental ethics and emotional intelligence.

    Science.gov (United States)

    Rosenblum, Alvin B; Wolf, Steve

    2014-01-01

    Dental ethics is often taught, viewed, and conducted as an intell enterprise, uninformed by other noncognitive factors. Emotional intelligence (EQ) is defined distinguished from the cognitive intelligence measured by Intelligence Quotient (IQ). This essay recommends more inclusion of emotional, noncognitive input to the ethical decision process in dental education and dental practice.

  17. Political Orientations, Intelligence and Education

    Science.gov (United States)

    Rindermann, Heiner; Flores-Mendoza, Carmen; Woodley, Michael A.

    2012-01-01

    The social sciences have traditionally assumed that education is a major determinant of citizens' political orientations and behavior. Several studies have also shown that intelligence has an impact. According to a theory that conceptualizes intelligence as a "burgher" (middle-class, civil) phenomenon--intelligence should promote civil…

  18. What Is Artificial Intelligence Anyway?

    Science.gov (United States)

    Kurzweil, Raymond

    1985-01-01

    Examines the past, present, and future status of Artificial Intelligence (AI). Acknowledges the limitations of AI but proposes possible areas of application and further development. Urges a concentration on the unique strengths of machine intelligence rather than a copying of human intelligence. (ML)

  19. Competitive Intelligence and Social Advantage.

    Science.gov (United States)

    Davenport, Elisabeth; Cronin, Blaise

    1994-01-01

    Presents an overview of issues concerning civilian competitive intelligence (CI). Topics discussed include competitive advantage in academic and research environments; public domain information and libraries; covert and overt competitive intelligence; data diversity; use of the Internet; cooperative intelligence; and implications for library and…

  20. Intelligent engineering and technology for nuclear power plant operation

    International Nuclear Information System (INIS)

    Wang, P.P.; Gu, X.

    1996-01-01

    The Three-Mile-Island accident has drawn considerable attention by the engineering, scientific, management, financial, and political communities as well as society at large. This paper surveys possible causes of the accident studied by various groups. Research continues in this area with many projects aimed at specifically improving the performance and operation of a nuclear power plant using the contemporary technologies available. In addition to the known cause of the accident and suggest a strategy for coping with these problems in the future. With the increased use of intelligent methodologies called computational intelligence or soft-computing, a substantially larger collection of powerful tools are now available for our designers to use in order to tackle these sensitive and difficult issues. These intelligent methodologies consists of fuzzy logic, genetic algorithms, neural networks, artificial intelligence and expert systems, pattern recognition, machine intelligence, and fuzzy constraint networks. Using the Three-Mile-Island experience, this paper offers a set of specific recommendations for future designers to take advantage of the powerful tools of intelligent technologies that we are now able to master and encourages the adoption of a novel methodology called fuzzy constraint network

  1. Intelligent query processing for semantic mediation of information systems

    Directory of Open Access Journals (Sweden)

    Saber Benharzallah

    2011-11-01

    Full Text Available We propose an intelligent and an efficient query processing approach for semantic mediation of information systems. We propose also a generic multi agent architecture that supports our approach. Our approach focuses on the exploitation of intelligent agents for query reformulation and the use of a new technology for the semantic representation. The algorithm is self-adapted to the changes of the environment, offers a wide aptitude and solves the various data conflicts in a dynamic way; it also reformulates the query using the schema mediation method for the discovered systems and the context mediation for the other systems.

  2. International Conference on Frontiers of Intelligent Computing : Theory and Applications

    CERN Document Server

    Udgata, Siba; Biswal, Bhabendra

    2013-01-01

    The volume contains the papers presented at FICTA 2012: International Conference on Frontiers in Intelligent Computing: Theory and Applications held on December 22-23, 2012 in Bhubaneswar engineering College, Bhubaneswar, Odissa, India. It contains 86 papers contributed by authors from the globe. These research papers mainly focused on application of intelligent techniques which includes evolutionary computation techniques like genetic algorithm, particle swarm optimization techniques, teaching-learning based optimization etc  for various engineering applications such as data mining, image processing, cloud computing, networking etc.

  3. #%Applications of artificial intelligence in intelligent manufacturing: a review

    Institute of Scientific and Technical Information of China (English)

    #

    2017-01-01

    #%Based on research into the applications of artificial intelligence (AI) technology in the manufacturing industry in recent years, we analyze the rapid development of core technologies in the new era of 'Internet plus AI', which is triggering a great change in the models, means, and ecosystems of the manufacturing industry, as well as in the development of AI. We then propose new models, means, and forms of intelligent manufacturing, intelligent manufacturing system architecture, and intelligent man-ufacturing technology system, based on the integration of AI technology with information communications, manufacturing, and related product technology. Moreover, from the perspectives of intelligent manufacturing application technology, industry, and application demonstration, the current development in intelligent manufacturing is discussed. Finally, suggestions for the appli-cation of AI in intelligent manufacturing in China are presented.

  4. Systematic review of dermoscopy and digital dermoscopy/ artificial intelligence for the diagnosis of melanoma.

    Science.gov (United States)

    Rajpara, S M; Botello, A P; Townend, J; Ormerod, A D

    2009-09-01

    Dermoscopy improves diagnostic accuracy of the unaided eye for melanoma, and digital dermoscopy with artificial intelligence or computer diagnosis has also been shown useful for the diagnosis of melanoma. At present there is no clear evidence regarding the diagnostic accuracy of dermoscopy compared with artificial intelligence. To evaluate the diagnostic accuracy of dermoscopy and digital dermoscopy/artificial intelligence for melanoma diagnosis and to compare the diagnostic accuracy of the different dermoscopic algorithms with each other and with digital dermoscopy/artificial intelligence for the detection of melanoma. A literature search on dermoscopy and digital dermoscopy/artificial intelligence for melanoma diagnosis was performed using several databases. Titles and abstracts of the retrieved articles were screened using a literature evaluation form. A quality assessment form was developed to assess the quality of the included studies. Heterogeneity among the studies was assessed. Pooled data were analysed using meta-analytical methods and comparisons between different algorithms were performed. Of 765 articles retrieved, 30 studies were eligible for meta-analysis. Pooled sensitivity for artificial intelligence was slightly higher than for dermoscopy (91% vs. 88%; P = 0.076). Pooled specificity for dermoscopy was significantly better than artificial intelligence (86% vs. 79%; P artificial intelligence, which were not significantly different (P = 0.783). There were no significance differences in diagnostic odds ratio among the different dermoscopic diagnostic algorithms. Dermoscopy and artificial intelligence performed equally well for diagnosis of melanocytic skin lesions. There was no significant difference in the diagnostic performance of various dermoscopy algorithms. The three-point checklist, the seven-point checklist and Menzies score had better diagnostic odds ratios than the others; however, these results need to be confirmed by a large-scale high

  5. Parallel algorithms

    CERN Document Server

    Casanova, Henri; Robert, Yves

    2008-01-01

    ""…The authors of the present book, who have extensive credentials in both research and instruction in the area of parallelism, present a sound, principled treatment of parallel algorithms. … This book is very well written and extremely well designed from an instructional point of view. … The authors have created an instructive and fascinating text. The book will serve researchers as well as instructors who need a solid, readable text for a course on parallelism in computing. Indeed, for anyone who wants an understandable text from which to acquire a current, rigorous, and broad vi

  6. Algorithm 865

    DEFF Research Database (Denmark)

    Gustavson, Fred G.; Reid, John K.; Wasniewski, Jerzy

    2007-01-01

    We present subroutines for the Cholesky factorization of a positive-definite symmetric matrix and for solving corresponding sets of linear equations. They exploit cache memory by using the block hybrid format proposed by the authors in a companion article. The matrix is packed into n(n + 1)/2 real...... variables, and the speed is usually better than that of the LAPACK algorithm that uses full storage (n2 variables). Included are subroutines for rearranging a matrix whose upper or lower-triangular part is packed by columns to this format and for the inverse rearrangement. Also included is a kernel...

  7. Information granularity, big data, and computational intelligence

    CERN Document Server

    Chen, Shyi-Ming

    2015-01-01

    The recent pursuits emerging in the realm of big data processing, interpretation, collection and organization have emerged in numerous sectors including business, industry, and government organizations. Data sets such as customer transactions for a mega-retailer, weather monitoring, intelligence gathering, quickly outpace the capacities of traditional techniques and tools of data analysis. The 3V (volume, variability and velocity) challenges led to the emergence of new techniques and tools in data visualization, acquisition, and serialization. Soft Computing being regarded as a plethora of technologies of fuzzy sets (or Granular Computing), neurocomputing and evolutionary optimization brings forward a number of unique features that might be instrumental to the development of concepts and algorithms to deal with big data. This carefully edited volume provides the reader with an updated, in-depth material on the emerging principles, conceptual underpinnings, algorithms and practice of Computational Intelligenc...

  8. Applications of computational intelligence in biomedical technology

    CERN Document Server

    Majernik, Jaroslav; Pancerz, Krzysztof; Zaitseva, Elena

    2016-01-01

    This book presents latest results and selected applications of Computational Intelligence in Biomedical Technologies. Most of contributions deal with problems of Biomedical and Medical Informatics, ranging from theoretical considerations to practical applications. Various aspects of development methods and algorithms in Biomedical and Medical Informatics as well as Algorithms for medical image processing, modeling methods are discussed. Individual contributions also cover medical decision making support, estimation of risks of treatments, reliability of medical systems, problems of practical clinical applications and many other topics  This book is intended for scientists interested in problems of Biomedical Technologies, for researchers and academic staff, for all dealing with Biomedical and Medical Informatics, as well as PhD students. Useful information is offered also to IT companies, developers of equipment and/or software for medicine and medical professionals.  .

  9. Intelligent sizing of a series hybrid electric power-train system based on Chaos-enhanced accelerated particle swarm optimization

    International Nuclear Information System (INIS)

    Zhou, Quan; Zhang, Wei; Cash, Scott; Olatunbosun, Oluremi; Xu, Hongming; Lu, Guoxiang

    2017-01-01

    Highlights: • A novel algorithm for hybrid electric powertrain intelligent sizing is introduced and applied. • The proposed CAPSO algorithm is capable of finding the real optimal result with much higher reputation. • Logistic mapping is the most effective strategy to build CAPSO. • The CAPSO gave more reliable results and increased the efficiency by 1.71%. - Abstract: This paper firstly proposed a novel HEV sizing method using the Chaos-enhanced Accelerated Particle Swarm Optimization (CAPSO) algorithm and secondly provided a demonstration on sizing a series hybrid electric powertrain with investigations of chaotic mapping strategies to achieve the global optimization. In this paper, the intelligent sizing of a series hybrid electric powertrain is formulated as an integer multi-objective optimization issue by modelling the powertrain system. The intelligent sizing mechanism based on APSO is then introduced, and 4 types of the most effective chaotic mapping strategy are investigated to upgrade the standard APSO into CAPSO algorithms for intelligent sizing. The evaluation of the intelligent sizing systems based on standard APSO and CAPSOs are then performed. The Monte Carlo analysis and reputation evaluation indicate that the CAPSO outperforms the standard APSO for finding the real optimal sizing result with much higher reputation, and CAPSO with logistic mapping strategy is the most effective algorithm for HEV powertrain components intelligent sizing. In addition, this paper also performs the sensitivity analysis and Pareto analysis to help engineers customize the intelligent sizing system.

  10. Artificial intelligence approach to accelerator control systems

    International Nuclear Information System (INIS)

    Schultz, D.E.; Hurd, J.W.; Brown, S.K.

    1987-01-01

    An experiment was recently started at LAMPF to evaluate the power and limitations of using artificial intelligence techniques to solve problems in accelerator control and operation. A knowledge base was developed to describe the characteristics and the relationships of the first 30 devices in the LAMPF H+ beam line. Each device was categorized and pertinent attributes for each category defined. Specific values were assigned in the knowledge base to represent each actual device. Relationships between devices are modeled using the artificial intelligence techniques of rules, active values, and object-oriented methods. This symbolic model, built using the Knowledge Engineering Environment (KEE) system, provides a framework for analyzing faults, tutoring trainee operators, and offering suggestions to assist in beam tuning. Based on information provided by the domain expert responsible for tuning this portion of the beam line, additional rules were written to describe how he tunes, how he analyzes what is actually happening, and how he deals with failures. Initial results have shown that artificial intelligence techniques can be a useful adjunct to traditional methods of numerical simulation. Successful and efficient operation of future accelerators may depend on the proper merging of symbolic reasoning and conventional numerical control algorithms

  11. Priming Ability Emotional Intelligence

    Science.gov (United States)

    Schutte, Nicola S.; Malouff, John M.

    2012-01-01

    Two studies examined whether priming self-schemas relating to successful emotional competency results in better emotional intelligence performance. In the first study participants were randomly assigned to a successful emotional competency self-schema prime condition or a control condition and then completed an ability measure of emotional…

  12. Generality in Artificial Intelligence

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 3. Generality in Artificial Intelligence. John McCarthy. Classics Volume 19 Issue 3 March 2014 pp 283-296. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/019/03/0283-0296. Author Affiliations.

  13. Business process intelligence

    NARCIS (Netherlands)

    Castellanos, M.; Alves De Medeiros, A.K.; Mendling, J.; Weber, B.; Weijters, A.J.M.M.; Cardoso, J.; Aalst, van der W.M.P.

    2009-01-01

    Business Process Intelligence (BPI,) is an emerging area that is getting increasingly popularfor enterprises. The need to improve business process efficiency, to react quickly to changes and to meet regulatory compliance is among the main drivers for BPI. BPI refers to the application of Business

  14. Clinical Process Intelligence

    DEFF Research Database (Denmark)

    Vilstrup Pedersen, Klaus

    2006-01-01

    .e. local guidelines. From a knowledge management point of view, this externalization of generalized processes, gives the opportunity to learn from, evaluate and optimize the processes. "Clinical Process Intelligence" (CPI), will denote the goal of getting generalized insight into patient centered health...

  15. Splunk operational intelligence cookbook

    CERN Document Server

    Diakun, Josh; Mock, Derek

    2014-01-01

    This book is intended for users of all levels who are looking to leverage the Splunk Enterprise platform as a valuable operational intelligence tool. The recipes provided in this book will appeal to individuals from all facets of a business - IT, Security, Product, Marketing, and many more!

  16. Intelligent Environmental Nanomaterials

    KAUST Repository

    Chang, Jian

    2018-01-30

    Due to the inherent complexity of environmental problems, especially water and air pollution, the utility of single-function environmental nanomaterials used in conventional and unconventional environmental treatment technologies are gradually reaching their limits. Intelligent nanomaterials with environmentally-responsive functionalities have shown potential to improve the performance of existing and new environmental technologies. By rational design of their structures and functionalities, intelligent nanomaterials can perform different tasks in response to varying application scenarios for the purpose of achieving the best performance. This review offers a critical analysis of the design concepts and latest progresses on the intelligent environmental nanomaterials in filtration membranes with responsive gates, materials with switchable wettability for selective and on-demand oil/water separation, environmental materials with self-healing capability, and emerging nanofibrous air filters for PM2.5 removal. We hope that this review will inspire further research efforts to develop intelligent environmental nanomaterials for the enhancement of the overall quality of environmental or human health.

  17. Defense Intelligence Agency

    Science.gov (United States)

    Management Office Management and Infrastructure Security Science and Technology Pre-Employment Forms Intelligence Community Wounded Warrior Internship Program News Articles Videos Contact DIA DIA in the News observed the legacy of Dr. Martin Luther King, Jr. in an event Jan. 26, at the DIA headquarters. Story DIA

  18. Toepassen van Business Intelligence

    NARCIS (Netherlands)

    Z.F.M. (Rien) Hamers

    2004-01-01

    Het is niet altijd even duidelijk wat het begrip 'business intelligence' precies inhoudt. BI kent namelijk een diversiteit aan definities en is vanuit verschillende organisatorische en ICT-disciplines te benaderen. Deze checklist wil deze aanpak op pragmatische maar toch intelligente wijze

  19. Artificial Intelligence in Education.

    Science.gov (United States)

    Ruyle, Kim E.

    Expert systems have made remarkable progress in areas where the knowledge of an expert can be codified and represented, and these systems have many potentially useful applications in education. Expert systems seem "intelligent" because they do not simply repeat a set of predetermined questions during a consultation session, but will have…

  20. Intelligent Speed Assistance (ISA).

    NARCIS (Netherlands)

    2015-01-01

    Intelligent Speed Assistance (ISA) has been a promising type of advanced driver support system for some decades. From a technical point of view, large scale ISA implementation is possible in the short term. The different types of ISA are expected to have different effects on behaviour and traffic