WorldWideScience

Sample records for integro-differential equation describing

  1. Analysis of stability for stochastic delay integro-differential equations.

    Science.gov (United States)

    Zhang, Yu; Li, Longsuo

    2018-01-01

    In this paper, we concern stability of numerical methods applied to stochastic delay integro-differential equations. For linear stochastic delay integro-differential equations, it is shown that the mean-square stability is derived by the split-step backward Euler method without any restriction on step-size, while the Euler-Maruyama method could reproduce the mean-square stability under a step-size constraint. We also confirm the mean-square stability of the split-step backward Euler method for nonlinear stochastic delay integro-differential equations. The numerical experiments further verify the theoretical results.

  2. Lipschitz Regularity of Solutions for Mixed Integro-Differential Equations

    OpenAIRE

    Barles, Guy; Chasseigne, Emmanuel; Ciomaga, Adina; Imbert, Cyril

    2011-01-01

    We establish new Hoelder and Lipschitz estimates for viscosity solutions of a large class of elliptic and parabolic nonlinear integro-differential equations, by the classical Ishii-Lions's method. We thus extend the Hoelder regularity results recently obtained by Barles, Chasseigne and Imbert (2011). In addition, we deal with a new class of nonlocal equations that we term mixed integro-differential equations. These equations are particularly interesting, as they are degenerate both in the loc...

  3. Integro-differential equation approach extended to larger nuclei

    International Nuclear Information System (INIS)

    Adam, R.M.; Sofianos, S.A.; Fiedeldey, H.; Fabre de la Ripelle, M.

    1992-01-01

    We extend the integro-differential equation approach (IDEA) from few-nucleon to closed-shell and closed-subshell nuclei and outline the analytical methods required for the calculation of the density functions, which enter into the integro-differential equations. These contain all the physics for a system of fermions associated with the Pauli principle. In order to test the accuracy of the IDEA comparisons are made of the binding energies of 4 He, 12 C and 16 O obtained with effective potentials using the hypercentral approximation (HCA) providing a variational solution without correlations, the IDEA which fully includes the two-body correlations, the S-states integro-differential equation (SIDE) valid for potentials operating only on pairs in the S-state and those calculated by several variational or perturbative methods in the literature. (author)

  4. Singularly perturbed volterra integro-differential equations | Bijura ...

    African Journals Online (AJOL)

    Several investigations have been made on singularly perturbed integral equations. This paper aims at presenting an algorithm for the construction of asymptotic solutions and then provide a proof asymptotic correctness to singularly perturbed systems of Volterra integro-differential equations. Mathematics Subject

  5. Approximate solution of integro-differential equation of fractional (arbitrary order

    Directory of Open Access Journals (Sweden)

    Asma A. Elbeleze

    2016-01-01

    Full Text Available In the present paper, we study the integro-differential equations which are combination of differential and Fredholm–Volterra equations that have the fractional order with constant coefficients by the homotopy perturbation and the variational iteration. The fractional derivatives are described in Caputo sense. Some illustrative examples are presented.

  6. New continual analogs of two-dimensional Toda lattices related with nonlinear integro-differential equations

    International Nuclear Information System (INIS)

    Savel'ev, M.V.

    1988-01-01

    Continual ''extensions'' of two-dimensional Toda lattices are proposed. They are described by integro-differential equations, generally speaking, with singular kernels, depending on new (third) variable. The problem of their integrability on the corresponding class of the initial discrete system solutions is discussed. The latter takes place, in particular, for the kernel coinciding with the causal function

  7. Symmetry groups of integro-differential equations for linear thermoviscoelastic materials with memory

    Science.gov (United States)

    Zhou, L.-Q.; Meleshko, S. V.

    2017-07-01

    The group analysis method is applied to a system of integro-differential equations corresponding to a linear thermoviscoelastic model. A recently developed approach for calculating the symmetry groups of such equations is used. The general solution of the determining equations for the system is obtained. Using subalgebras of the admitted Lie algebra, two classes of partially invariant solutions of the considered system of integro-differential equations are studied.

  8. Dielectric metasurfaces solve differential and integro-differential equations.

    Science.gov (United States)

    Abdollahramezani, Sajjad; Chizari, Ata; Dorche, Ali Eshaghian; Jamali, Mohammad Vahid; Salehi, Jawad A

    2017-04-01

    Leveraging subwavelength resonant nanostructures, plasmonic metasurfaces have recently attracted much attention as a breakthrough concept for engineering optical waves both spatially and spectrally. However, inherent ohmic losses concomitant with low coupling efficiencies pose fundamental impediments over their practical applications. Not only can all-dielectric metasurfaces tackle such substantial drawbacks, but also their CMOS-compatible configurations support both Mie resonances that are invariant to the incident angle. Here, we report on a transmittive metasurface comprising arrayed silicon nanodisks embedded in a homogeneous dielectric medium to manipulate phase and amplitude of incident light locally and almost independently. By taking advantage of the interplay between the electric/magnetic resonances and employing general concepts of spatial Fourier transformation, a highly efficient metadevice is proposed to perform mathematical operations including solution of ordinary differential and integro-differential equations with constant coefficients. Our findings further substantiate dielectric metasurfaces as promising candidates for miniaturized, two-dimensional, and planar optical analog computing systems that are much thinner than their conventional lens-based counterparts.

  9. Method for solving the periodic problem for integro-differential equations

    Directory of Open Access Journals (Sweden)

    Snezhana G. Hristova

    1989-05-01

    Full Text Available In the paper a monotone-iterative method for approximate finding a couple of minimal and maximal quasisolutions of the periodic problem for a system of integro-differential equations of Volterra type is justified.

  10. Stability analysis of Runge-Kutta methods for nonlinear neutral delay integro-differential equations

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The sufficient conditions for the stability and asymptotic stability of Runge-Kutta methods for nonlinear neutral delay integro-differential equations are derived. A numerical test that confirms the theoretical results is given in the end.

  11. Integro-differential equations of fractional order with nonlocal fractional boundary conditions associated with financial asset model

    Directory of Open Access Journals (Sweden)

    Bashir Ahmad

    2013-02-01

    Full Text Available In this article, we discuss the existence of solutions for a boundary-value problem of integro-differential equations of fractional order with nonlocal fractional boundary conditions by means of some standard tools of fixed point theory. Our problem describes a more general form of fractional stochastic dynamic model for financial asset. An illustrative example is also presented.

  12. ADM For Solving Linear Second-Order Fredholm Integro-Differential Equations

    Science.gov (United States)

    Karim, Mohd F.; Mohamad, Mahathir; Saifullah Rusiman, Mohd; Che-Him, Norziha; Roslan, Rozaini; Khalid, Kamil

    2018-04-01

    In this paper, we apply Adomian Decomposition Method (ADM) as numerically analyse linear second-order Fredholm Integro-differential Equations. The approximate solutions of the problems are calculated by Maple package. Some numerical examples have been considered to illustrate the ADM for solving this equation. The results are compared with the existing exact solution. Thus, the Adomian decomposition method can be the best alternative method for solving linear second-order Fredholm Integro-Differential equation. It converges to the exact solution quickly and in the same time reduces computational work for solving the equation. The result obtained by ADM shows the ability and efficiency for solving these equations.

  13. Shifted Legendre method with residual error estimation for delay linear Fredholm integro-differential equations

    Directory of Open Access Journals (Sweden)

    Şuayip Yüzbaşı

    2017-03-01

    Full Text Available In this paper, we suggest a matrix method for obtaining the approximate solutions of the delay linear Fredholm integro-differential equations with constant coefficients using the shifted Legendre polynomials. The problem is considered with mixed conditions. Using the required matrix operations, the delay linear Fredholm integro-differential equation is transformed into a matrix equation. Additionally, error analysis for the method is presented using the residual function. Illustrative examples are given to demonstrate the efficiency of the method. The results obtained in this study are compared with the known results.

  14. Biorthogonal Systems Approximating the Solution of the Nonlinear Volterra Integro-Differential Equation

    Directory of Open Access Journals (Sweden)

    Berenguer MI

    2010-01-01

    Full Text Available This paper deals with obtaining a numerical method in order to approximate the solution of the nonlinear Volterra integro-differential equation. We define, following a fixed-point approach, a sequence of functions which approximate the solution of this type of equation, due to some properties of certain biorthogonal systems for the Banach spaces and .

  15. N-th order impulsive integro-differential equations in Banach spaces

    Directory of Open Access Journals (Sweden)

    Manfeng Hu

    2004-03-01

    Full Text Available We investigate the maximal and minimal solutions of initial value problem for N-th order nonlinear impulsive integro-differential equation in Banach space by establishing a comparison result and using the upper and lower solutions methods.

  16. Integral Boundary Value Problems for Fractional Impulsive Integro Differential Equations in Banach Spaces

    Directory of Open Access Journals (Sweden)

    A. Anguraj

    2014-02-01

    Full Text Available We study in this paper,the existence of solutions for fractional integro differential equations with impulsive and integral conditions by using fixed point method. We establish the Sufficient conditions and unique solution for given problem. An Example is also explained to the main results.

  17. Weighted asymptotic behavior of solutions to semilinear integro-differential equations in Banach spaces

    Directory of Open Access Journals (Sweden)

    Yan-Tao Bian

    2014-04-01

    Full Text Available In this article, we study weighted asymptotic behavior of solutions to the semilinear integro-differential equation $$ u'(t=Au(t+\\alpha\\int_{-\\infty}^{t}e^{-\\beta(t-s}Au(sds+f(t,u(t, \\quad t\\in \\mathbb{R}, $$ where $\\alpha, \\beta \\in \\mathbb{R}$, with $\\beta > 0, \\alpha \

  18. New stability and boundedness results to Volterra integro-differential equations with delay

    Directory of Open Access Journals (Sweden)

    Cemil Tunç

    2016-04-01

    Full Text Available In this paper, we consider a certain non-linear Volterra integro-differential equations with delay. We study stability and boundedness of solutions. The technique of proof involves defining suitable Lyapunov functionals. Our results improve and extend the results obtained in literature.

  19. Triple positive  solutions of nth order impulsive integro-differential equations

    Directory of Open Access Journals (Sweden)

    Zeyong Qiu

    2011-07-01

    Full Text Available In this paper, we prove the existence of at least three positive solutions of boundary value problems for nth order nonlinear impulsive integro-differential equations of mixed type on infinite interval with infinite number of impulsive times. Our results are obtained by applying a new fixed point theorem introduced by Avery and Peterson.

  20. A remark on the stability and boundedness criteria in retarded Volterra integro-differential equations

    Directory of Open Access Journals (Sweden)

    Cemil Tunç

    2017-10-01

    Full Text Available In this article, the authors obtain some clear assumptions for the asymptotic stability (AS and boundedness (B of solutions of non-linear retarded Volterra integro-differential equations (VIDEs of first order by constructing a new Lyapunov functional (LF. The results obtained are new and differ from those found in the literature, and they also contain and improve a result found in the literature under more less restrictive conditions. We establish an example and give a discussion to indicate the applicability of the weaker conditions obtained. We also employ MATLAB-Simulink to display the behaviors of the orbits of the (VIDEs considered. Keywords: Nonlinear, Volterra integro-differential equations, First order, Asymptotic stability, Boundedness, Lyapunov functional, MSC: 34D05, 34K20, 45J05

  1. Abstract fractional integro-differential equations involving nonlocal initial conditions in α-norm

    Directory of Open Access Journals (Sweden)

    Wang Rong-Nian

    2011-01-01

    Full Text Available Abstract In the present paper, we deal with the Cauchy problems of abstract fractional integro-differential equations involving nonlocal initial conditions in α-norm, where the operator A in the linear part is the generator of a compact analytic semigroup. New criterions, ensuring the existence of mild solutions, are established. The results are obtained by using the theory of operator families associated with the function of Wright type and the semigroup generated by A, Krasnoselkii's fixed point theorem and Schauder's fixed point theorem. An application to a fractional partial integro-differential equation with nonlocal initial condition is also considered. Mathematics subject classification (2000 26A33, 34G10, 34G20

  2. Fibonacci collocation method with a residual error Function to solve linear Volterra integro differential equations

    Directory of Open Access Journals (Sweden)

    Salih Yalcinbas

    2016-01-01

    Full Text Available In this paper, a new collocation method based on the Fibonacci polynomials is introduced to solve the high-order linear Volterra integro-differential equations under the conditions. Numerical examples are included to demonstrate the applicability and validity of the proposed method and comparisons are made with the existing results. In addition, an error estimation based on the residual functions is presented for this method. The approximate solutions are improved by using this error estimation.

  3. A variational Integro-Differential Equation for three identical particles in an S-state

    International Nuclear Information System (INIS)

    Fabre de la Ripelle, M.; Braun, M.; Sofianos, S.A.

    1997-01-01

    Starting from the Schroedinger equation, a new Variational Integro-Differential Equation (VIDE) for three bosons in S-state is derived. The wave function has the simple structure of a sum of two-body amplitudes. It is shown that the new equation gives results which are three orders of magnitude better than the corresponding results obtained from a single Faddeev equation, where the pairs are in an S-state. The latter equation generates an exact solution only for S-state projected potentials. Moreover, the ghost contributions occurring in the Faddeev amplitudes for three bosons in an S-state do not exist in the new equation. (author)

  4. Matrix form of Legendre polynomials for solving linear integro-differential equations of high order

    Science.gov (United States)

    Kammuji, M.; Eshkuvatov, Z. K.; Yunus, Arif A. M.

    2017-04-01

    This paper presents an effective approximate solution of high order of Fredholm-Volterra integro-differential equations (FVIDEs) with boundary condition. Legendre truncated series is used as a basis functions to estimate the unknown function. Matrix operation of Legendre polynomials is used to transform FVIDEs with boundary conditions into matrix equation of Fredholm-Volterra type. Gauss Legendre quadrature formula and collocation method are applied to transfer the matrix equation into system of linear algebraic equations. The latter equation is solved by Gauss elimination method. The accuracy and validity of this method are discussed by solving two numerical examples and comparisons with wavelet and methods.

  5. A Numerical Algorithm for Solving a Four-Point Nonlinear Fractional Integro-Differential Equations

    OpenAIRE

    Gao, Er; Song, Songhe; Zhang, Xinjian

    2012-01-01

    We provide a new algorithm for a four-point nonlocal boundary value problem of nonlinear integro-differential equations of fractional order q∈(1,2] based on reproducing kernel space method. According to our work, the analytical solution of the equations is represented in the reproducing kernel space which we construct and so the n-term approximation. At the same time, the n-term approximation is proved to converge to the analytical solution. An illustrative example is also presented, which sh...

  6. A Numerical Algorithm for Solving a Four-Point Nonlinear Fractional Integro-Differential Equations

    Directory of Open Access Journals (Sweden)

    Er Gao

    2012-01-01

    Full Text Available We provide a new algorithm for a four-point nonlocal boundary value problem of nonlinear integro-differential equations of fractional order q∈(1,2] based on reproducing kernel space method. According to our work, the analytical solution of the equations is represented in the reproducing kernel space which we construct and so the n-term approximation. At the same time, the n-term approximation is proved to converge to the analytical solution. An illustrative example is also presented, which shows that the new algorithm is efficient and accurate.

  7. Reproducing kernel method with Taylor expansion for linear Volterra integro-differential equations

    Directory of Open Access Journals (Sweden)

    Azizallah Alvandi

    2017-06-01

    Full Text Available This research aims of the present a new and single algorithm for linear integro-differential equations (LIDE. To apply the reproducing Hilbert kernel method, there is made an equivalent transformation by using Taylor series for solving LIDEs. Shown in series form is the analytical solution in the reproducing kernel space and the approximate solution $ u_{N} $ is constructed by truncating the series to $ N $ terms. It is easy to prove the convergence of $ u_{N} $ to the analytical solution. The numerical solutions from the proposed method indicate that this approach can be implemented easily which shows attractive features.

  8. A pertinent approach to solve nonlinear fuzzy integro-differential equations.

    Science.gov (United States)

    Narayanamoorthy, S; Sathiyapriya, S P

    2016-01-01

    Fuzzy integro-differential equations is one of the important parts of fuzzy analysis theory that holds theoretical as well as applicable values in analytical dynamics and so an appropriate computational algorithm to solve them is in essence. In this article, we use parametric forms of fuzzy numbers and suggest an applicable approach for solving nonlinear fuzzy integro-differential equations using homotopy perturbation method. A clear and detailed description of the proposed method is provided. Our main objective is to illustrate that the construction of appropriate convex homotopy in a proper way leads to highly accurate solutions with less computational work. The efficiency of the approximation technique is expressed via stability and convergence analysis so as to guarantee the efficiency and performance of the methodology. Numerical examples are demonstrated to verify the convergence and it reveals the validity of the presented numerical technique. Numerical results are tabulated and examined by comparing the obtained approximate solutions with the known exact solutions. Graphical representations of the exact and acquired approximate fuzzy solutions clarify the accuracy of the approach.

  9. Controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with delay and Poisson jumps

    Directory of Open Access Journals (Sweden)

    Diem Dang Huan

    2015-12-01

    Full Text Available The current paper is concerned with the controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with infinite delay and Poisson jumps in Hilbert spaces. Using the theory of a strongly continuous cosine family of bounded linear operators, stochastic analysis theory and with the help of the Banach fixed point theorem, we derive a new set of sufficient conditions for the controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with infinite delay and Poisson jumps. Finally, an application to the stochastic nonlinear wave equation with infinite delay and Poisson jumps is given.

  10. Effective quadrature formula in solving linear integro-differential equations of order two

    Science.gov (United States)

    Eshkuvatov, Z. K.; Kammuji, M.; Long, N. M. A. Nik; Yunus, Arif A. M.

    2017-08-01

    In this note, we solve general form of Fredholm-Volterra integro-differential equations (IDEs) of order 2 with boundary condition approximately and show that proposed method is effective and reliable. Initially, IDEs is reduced into integral equation of the third kind by using standard integration techniques and identity between multiple and single integrals then truncated Legendre series are used to estimate the unknown function. For the kernel integrals, we have applied Gauss-Legendre quadrature formula and collocation points are chosen as the roots of the Legendre polynomials. Finally, reduce the integral equations of the third kind into the system of algebraic equations and Gaussian elimination method is applied to get approximate solutions. Numerical examples and comparisons with other methods reveal that the proposed method is very effective and dominated others in many cases. General theory of existence of the solution is also discussed.

  11. OPTIMAL ESTIMATES FOR THE SEMIDISCRETE GALERKIN METHOD APPLIED TO PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS WITH NONSMOOTH DATA

    KAUST Repository

    GOSWAMI, DEEPJYOTI; PANI, AMIYA K.; YADAV, SANGITA

    2014-01-01

    AWe propose and analyse an alternate approach to a priori error estimates for the semidiscrete Galerkin approximation to a time-dependent parabolic integro-differential equation with nonsmooth initial data. The method is based on energy arguments combined with repeated use of time integration, but without using parabolic-type duality techniques. An optimal L2-error estimate is derived for the semidiscrete approximation when the initial data is in L2. A superconvergence result is obtained and then used to prove a maximum norm estimate for parabolic integro-differential equations defined on a two-dimensional bounded domain. © 2014 Australian Mathematical Society.

  12. An hp-local Discontinuous Galerkin Method for Parabolic Integro-Differential Equations

    KAUST Repository

    Pani, Amiya K.

    2010-06-06

    In this article, a priori error bounds are derived for an hp-local discontinuous Galerkin (LDG) approximation to a parabolic integro-differential equation. It is shown that error estimates in L 2-norm of the gradient as well as of the potential are optimal in the discretizing parameter h and suboptimal in the degree of polynomial p. Due to the presence of the integral term, an introduction of an expanded mixed type Ritz-Volterra projection helps us to achieve optimal estimates. Further, it is observed that a negative norm estimate of the gradient plays a crucial role in our convergence analysis. As in the elliptic case, similar results on order of convergence are established for the semidiscrete method after suitably modifying the numerical fluxes. The optimality of these theoretical results is tested in a series of numerical experiments on two dimensional domains. © 2010 Springer Science+Business Media, LLC.

  13. An hp-local Discontinuous Galerkin Method for Parabolic Integro-Differential Equations

    KAUST Repository

    Pani, Amiya K.; Yadav, Sangita

    2010-01-01

    In this article, a priori error bounds are derived for an hp-local discontinuous Galerkin (LDG) approximation to a parabolic integro-differential equation. It is shown that error estimates in L 2-norm of the gradient as well as of the potential are optimal in the discretizing parameter h and suboptimal in the degree of polynomial p. Due to the presence of the integral term, an introduction of an expanded mixed type Ritz-Volterra projection helps us to achieve optimal estimates. Further, it is observed that a negative norm estimate of the gradient plays a crucial role in our convergence analysis. As in the elliptic case, similar results on order of convergence are established for the semidiscrete method after suitably modifying the numerical fluxes. The optimality of these theoretical results is tested in a series of numerical experiments on two dimensional domains. © 2010 Springer Science+Business Media, LLC.

  14. Optimal Error Estimates of Two Mixed Finite Element Methods for Parabolic Integro-Differential Equations with Nonsmooth Initial Data

    KAUST Repository

    Goswami, Deepjyoti; Pani, Amiya K.; Yadav, Sangita

    2013-01-01

    In the first part of this article, a new mixed method is proposed and analyzed for parabolic integro-differential equations (PIDE) with nonsmooth initial data. Compared to the standard mixed method for PIDE, the present method does not bank on a

  15. Statistical mechanics of normal grain growth in one dimension: A partial integro-differential equation model

    International Nuclear Information System (INIS)

    Ng, Felix S.L.

    2016-01-01

    We develop a statistical-mechanical model of one-dimensional normal grain growth that does not require any drift-velocity parameterization for grain size, such as used in the continuity equation of traditional mean-field theories. The model tracks the population by considering grain sizes in neighbour pairs; the probability of a pair having neighbours of certain sizes is determined by the size-frequency distribution of all pairs. Accordingly, the evolution obeys a partial integro-differential equation (PIDE) over ‘grain size versus neighbour grain size’ space, so that the grain-size distribution is a projection of the PIDE's solution. This model, which is applicable before as well as after statistically self-similar grain growth has been reached, shows that the traditional continuity equation is invalid outside this state. During statistically self-similar growth, the PIDE correctly predicts the coarsening rate, invariant grain-size distribution and spatial grain size correlations observed in direct simulations. The PIDE is then reducible to the standard continuity equation, and we derive an explicit expression for the drift velocity. It should be possible to formulate similar parameterization-free models of normal grain growth in two and three dimensions.

  16. Existence and Analytic Approximation of Solutions of Duffing Type Nonlinear Integro-Differential Equation with Integral Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Alsaedi Ahmed

    2009-01-01

    Full Text Available A generalized quasilinearization technique is developed to obtain a sequence of approximate solutions converging monotonically and quadratically to a unique solution of a boundary value problem involving Duffing type nonlinear integro-differential equation with integral boundary conditions. The convergence of order for the sequence of iterates is also established. It is found that the work presented in this paper not only produces new results but also yields several old results in certain limits.

  17. Aumann Fuzzy Improper Integral and Its Application to Solve Fuzzy Integro-Differential Equations by Laplace Transform Method

    Directory of Open Access Journals (Sweden)

    Elhassan Eljaoui

    2018-01-01

    Full Text Available We introduce the Aumann fuzzy improper integral to define the convolution product of a fuzzy mapping and a crisp function in this paper. The Laplace convolution formula is proved in this case and used to solve fuzzy integro-differential equations with kernel of convolution type. Then, we report and correct an error in the article by Salahshour et al. dealing with the same topic.

  18. Applicability of angular flux discontinuity factor preserving region-wise leakage for integro-differential transport equation

    International Nuclear Information System (INIS)

    Sakamoto, Tatsuya; Endo, Tomohiro; Yamamoto, Akio

    2014-01-01

    In the current core analysis, spatial homogenization is utilized to reduce the computational time. The discontinuity factor (DF) is one of the effective correction factors to reduce spatial homogenization error. The DF in diffusion equation is widely used; on the other hand the DF in transport equation has not been put to practical use although several efforts have been carried out. In this paper, the angular flux discontinuity factor (AFDF) as the DF for the integro-differential transport equation (e.g., the discrete-ordinate method, the method of characteristics) is theoretically described and its applicability is discussed. The AFDF is used to preserve the region-wise neutron leakage at each spatial mesh and defined as a ratio of heterogeneous and homogeneous angular fluxes at the homogenized region surface. In a homogeneous calculation with the AFDF, the angular flux is discontinuous at the region surface. In this paper the applicability of the AFDF to fuel pin cell homogenization is verified for one-dimensional slab geometry. As a result of this verification, it is confirmed that the AFDF has the capability to reduce the spatial homogenization error of fuel pin cell homogenization. (author)

  19. Incremental localized boundary-domain integro-differential equations of elastic damage mechanics for inhomogeneous body

    OpenAIRE

    Mikhailov, SE

    2006-01-01

    Copyright @ 2006 Tech Science Press A quasi-static mixed boundary value problem of elastic damage mechanics for a continuously inhomogeneous body is considered. Using the two-operator Green-Betti formula and the fundamental solution of an auxiliary homogeneous linear elasticity with frozen initial, secant or tangent elastic coe±cients, a boundary-domain integro-differential formulation of the elasto-plastic problem with respect to the displacement rates and their gradients is derived. Usin...

  20. A direct method for numerical solution of a class of nonlinear Volterra integro-differential equations and its application to the nonlinear fission and fusion reactor kinetics

    International Nuclear Information System (INIS)

    Nakahara, Yasuaki; Ise, Takeharu; Kobayashi, Kensuke; Itoh, Yasuyuki

    1975-12-01

    A new method has been developed for numerical solution of a class of nonlinear Volterra integro-differential equations with quadratic nonlinearity. After dividing the domain of the variable into subintervals, piecewise approximations are applied in the subintervals. The equation is first integrated over a subinterval to obtain the piecewise equation, to which six approximate treatments are applied, i.e. fully explicit, fully implicit, Crank-Nicolson, linear interpolation, quadratic and cubic spline. The numerical solution at each time step is obtained directly as a positive root of the resulting algebraic quadratic equation. The point reactor kinetics with a ramp reactivity insertion, linear temperature feedback and delayed neutrons can be described by one of this type of nonlinear Volterra integro-differential equations. The algorithm is applied to the Argonne benchmark problem and a model problem for a fast reactor without delayed neutrons. The fully implicit method has been found to be unconditionally stable in the sense that it always gives the positive real roots. The cubic spline method is divergent, and the other four methods are intermediate in between. From the estimation of the stability, convergency, accuracy and CPU time, it is concluded that the Crank-Nicolson method is best, then the linear interpolation method comes closely next to it. Discussions are also made on the possibility of applying the algorithm to the fusion reactor kinetics in the form of a nonlinear partial differential equation. (auth.)

  1. Multi-soliton management by the integrable nonautonomous nonlinear integro-differential Schrödinger equation

    International Nuclear Information System (INIS)

    Zhang, Yu-Juan; Zhao, Dun; Luo, Hong-Gang

    2014-01-01

    We consider a wide class of integrable nonautonomous nonlinear integro-differential Schrödinger equation which contains the models for the soliton management in Bose–Einstein condensates, nonlinear optics, and inhomogeneous Heisenberg spin chain. With the help of the nonisospectral AKNS hierarchy, we obtain the N-fold Darboux transformation and the N-fold soliton-like solutions for the equation. The soliton management, especially the synchronized dispersive and nonlinear management in optical fibers is discussed. It is found that in the situation without external potential, the synchronized dispersive and nonlinear management can keep the integrability of the nonlinear Schrödinger equation; this suggests that in optical fibers, the synchronized dispersive and nonlinear management can control and maintain the propagation of a multi-soliton. - Highlights: • We consider a unified model for soliton management by an integrable integro-differential Schrödinger equation. • Using Lax pair, the N-fold Darboux transformation for the equation is presented. • The multi-soliton management is considered. • The synchronized dispersive and nonlinear management is suggested

  2. Numerical Solution of Nonlinear Fredholm Integro-Differential Equations Using Spectral Homotopy Analysis Method

    Directory of Open Access Journals (Sweden)

    Z. Pashazadeh Atabakan

    2013-01-01

    Full Text Available Spectral homotopy analysis method (SHAM as a modification of homotopy analysis method (HAM is applied to obtain solution of high-order nonlinear Fredholm integro-differential problems. The existence and uniqueness of the solution and convergence of the proposed method are proved. Some examples are given to approve the efficiency and the accuracy of the proposed method. The SHAM results show that the proposed approach is quite reasonable when compared to homotopy analysis method, Lagrange interpolation solutions, and exact solutions.

  3. On a numerical method for solving integro-differential equations with variable coefficients with applications in finance

    Science.gov (United States)

    Kudryavtsev, O.; Rodochenko, V.

    2018-03-01

    We propose a new general numerical method aimed to solve integro-differential equations with variable coefficients. The problem under consideration arises in finance where in the context of pricing barrier options in a wide class of stochastic volatility models with jumps. To handle the effect of the correlation between the price and the variance, we use a suitable substitution for processes. Then we construct a Markov-chain approximation for the variation process on small time intervals and apply a maturity randomization technique. The result is a system of boundary problems for integro-differential equations with constant coefficients on the line in each vertex of the chain. We solve the arising problems using a numerical Wiener-Hopf factorization method. The approximate formulae for the factors are efficiently implemented by means of the Fast Fourier Transform. Finally, we use a recurrent procedure that moves backwards in time on the variance tree. We demonstrate the convergence of the method using Monte-Carlo simulations and compare our results with the results obtained by the Wiener-Hopf method with closed-form expressions of the factors.

  4. Nonlinear Stability and Convergence of Two-Step Runge-Kutta Methods for Volterra Delay Integro-Differential Equations

    Directory of Open Access Journals (Sweden)

    Haiyan Yuan

    2013-01-01

    Full Text Available This paper introduces the stability and convergence of two-step Runge-Kutta methods with compound quadrature formula for solving nonlinear Volterra delay integro-differential equations. First, the definitions of (k,l-algebraically stable and asymptotically stable are introduced; then the asymptotical stability of a (k,l-algebraically stable two-step Runge-Kutta method with 0

  5. Integro-differential transport approaches

    International Nuclear Information System (INIS)

    Stepanek, J.; Arkuszewski, J.; Boffi, V.; Matausek, M.V.

    1981-01-01

    This chapter summarizes the work done in Italy, Poland, Switzerland and Yugoslavia in the field of integro-differential neutron transport theory. It reflects different viewpoints in the handling of the subject. Some of the methods are based only on the solution of the integro-differential equation, others use only the integral form of the transport equation. Use of the characteristic solution closely related to the integral equation (ARKUSZEWSKI et al.,(1979)) seems to be a rather effective way to accelerate the 2 dimensional discrete ordinates (Ssub(n)) transport methods and supress one of the main disadvantages, the ray effect. The advanced ''Surface Currents'' (MAEDER (1975)) and ''Surface Flux'' (STEPANEK (1979)) methods are based on the solution of both the integro-differential and integral form of the transport equation. As long as the spatial fluxes were considered to be flat in each region only the integral form of the transport equation was considered. The solution seems to be the best method of simple handling the higher order Legendre polynomials used to approximate spatial and angular flux distribution. The coupling of the Bsub(n) integral transport equations with the related Psub(n) equations removes the greatest disadvantage of the Psub(n) theory and closes the system of the Psub(n) equations (LIGOU, STEPANEK (1974))

  6. Rapid Fourier space solution of linear partial integro-differential equations in toroidal magnetic confinement geometries

    International Nuclear Information System (INIS)

    McMillan, B.F.; Jolliet, S.; Tran, T.M.; Villard, L.; Bottino, A.; Angelino, P.

    2010-01-01

    Fluctuating quantities in magnetic confinement geometries often inherit a strong anisotropy along the field lines. One technique for describing these structures is the use of a certain set of Fourier components on the tori of nested flux surfaces. We describe an implementation of this approach for solving partial differential equations, like Poisson's equation, where a different set of Fourier components may be chosen on each surface according to the changing safety factor profile. Allowing the resolved components to change to follow the anisotropy significantly reduces the total number of degrees of freedom in the description. This can permit large gains in computational performance. We describe, in particular, how this approach can be applied to rapidly solve the gyrokinetic Poisson equation in a particle code, ORB5 (Jolliet et al. (2007) [5]), with a regular (non-field-aligned) mesh. (authors)

  7. Analytical solution to DGLAP integro-differential equation in a simple toy-model with a fixed gauge coupling

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Gustavo [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Concepcion Univ. (Chile). Dept. de Fisica; Cvetic, Gorazd [Univ. Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. de Fisica; Kniehl, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kondrashuk, Igor [Univ. del Bio-Bio, Chillan (Chile). Grupo de Matematica Aplicada; Univ. del Bio-Bio, Chillan (Chile). Grupo de Fisica de Altas Energias; Parra-Ferrada, Ivan [Talca Univ. (Chile). Inst. de Matematica y Fisica

    2016-11-15

    We consider a simple model for QCD dynamics in which DGLAP integro-differential equation may be solved analytically. This is a gauge model which possesses dominant evolution of gauge boson (gluon) distribution and in which the gauge coupling does not run. This may be N=4 supersymmetric gauge theory with softly broken supersymmetry, other finite supersymmetric gauge theory with lower level of supersymmetry, or topological Chern-Simons field theories. We maintain only one term in the splitting function of unintegrated gluon distribution and solve DGLAP analytically for this simplified splitting function. The solution is found by use of the Cauchy integral formula. The solution restricts form of the unintegrated gluon distribution as function of transfer momentum and of Bjorken x. Then we consider an almost realistic splitting function of unintegrated gluon distribution as an input to DGLAP equation and solve it by the same method which we have developed to solve DGLAP equation for the toy-model. We study a result obtained for the realistic gluon distribution and find a singular Bessel-like behaviour in the vicinity of the point x=0 and a smooth behaviour in the vicinity of the point x=1.

  8. Optimal Error Estimates of Two Mixed Finite Element Methods for Parabolic Integro-Differential Equations with Nonsmooth Initial Data

    KAUST Repository

    Goswami, Deepjyoti

    2013-05-01

    In the first part of this article, a new mixed method is proposed and analyzed for parabolic integro-differential equations (PIDE) with nonsmooth initial data. Compared to the standard mixed method for PIDE, the present method does not bank on a reformulation using a resolvent operator. Based on energy arguments combined with a repeated use of an integral operator and without using parabolic type duality technique, optimal L2 L2-error estimates are derived for semidiscrete approximations, when the initial condition is in L2 L2. Due to the presence of the integral term, it is, further, observed that a negative norm estimate plays a crucial role in our error analysis. Moreover, the proposed analysis follows the spirit of the proof techniques used in deriving optimal error estimates for finite element approximations to PIDE with smooth data and therefore, it unifies both the theories, i.e., one for smooth data and other for nonsmooth data. Finally, we extend the proposed analysis to the standard mixed method for PIDE with rough initial data and provide an optimal error estimate in L2, L 2, which improves upon the results available in the literature. © 2013 Springer Science+Business Media New York.

  9. The Form of the Solutions of the Linear Integro-Differential Equations of Subsonic Aeroelasticity.

    Science.gov (United States)

    1979-09-01

    coefficients w (0) are given in Table 3; it V follows that, for T > 0 and (E - K v2) non-singular, the inverse transform of M- ) has the form, using (B-I) V...degree of freedom system by expanding )M- I in the form of equation (35), obtaining its inverse transform using the v -1results of Appendix A and hence...obtaining the inverse transform of M- l . The two-dimensional case, when the characteristic equation has a zero root, is not as simple. * Assuming all

  10. Integro-differential equation analysis and radioisotope imaging systems. Research proposal

    International Nuclear Information System (INIS)

    Hart, H.

    1976-01-01

    Design modifications of a five-probe focusing collimator coincidence radioisotope scanning system are described. Clinical applications of the system were tested in phantoms using radioisotopes with short biological half-lives, including 75 Se, 192 Ir, 43 K, 130 I, and 82 Br. Data processing methods are also described

  11. A bridge between hyperspherical and integro-differential approaches to the many-body bound states

    International Nuclear Information System (INIS)

    Fabre de la Ripelle, M.

    1986-01-01

    The solution of the Schroedinger equation can be obtained from the one of a system of coupled differential equations generated from the potential harmonic expansion of the bound-state wave function of a system of identical particles governed by two-body central interactions. It is shown that the system of coupled equations can be transformed into an equivalent integro-differential equation. For three bosons in S states this equation is identical to the Faddeev equation as written by Noyes. The integro-differential equations describing the triton for non-central realistic N-N forces are explicitly given. (Auth.)

  12. Quarter-Sweep Iteration Concept on Conjugate Gradient Normal Residual Method via Second Order Quadrature - Finite Difference Schemes for Solving Fredholm Integro-Differential Equations

    International Nuclear Information System (INIS)

    Aruchunan, E.

    2015-01-01

    In this paper, we have examined the effectiveness of the quarter-sweep iteration concept on conjugate gradient normal residual (CGNR) iterative method by using composite Simpson's (CS) and finite difference (FD) discretization schemes in solving Fredholm integro-differential equations. For comparison purposes, Gauss- Seidel (GS) and the standard or full- and half-sweep CGNR methods namely FSCGNR and HSCGNR are also presented. To validate the efficacy of the proposed method, several analyses were carried out such as computational complexity and percentage reduction on the proposed and existing methods. (author)

  13. The method of normal forms for singularly perturbed systems of Fredholm integro-differential equations with rapidly varying kernels

    Energy Technology Data Exchange (ETDEWEB)

    Bobodzhanov, A A; Safonov, V F [National Research University " Moscow Power Engineering Institute" , Moscow (Russian Federation)

    2013-07-31

    The paper deals with extending the Lomov regularization method to classes of singularly perturbed Fredholm-type integro-differential systems, which have not so far been studied. In these the limiting operator is discretely noninvertible. Such systems are commonly known as problems with unstable spectrum. Separating out the essential singularities in the solutions to these problems presents great difficulties. The principal one is to give an adequate description of the singularities induced by 'instability points' of the spectrum. A methodology for separating singularities by using normal forms is developed. It is applied to the above type of systems and is substantiated in these systems. Bibliography: 10 titles.

  14. Continuous Multistep Methods for Volterra Integro-Differential

    African Journals Online (AJOL)

    Kamoh et al.

    DIFFERENTIAL EQUATIONS OF THE SECOND ORDER. 1Kamoh N.M. ... methods, Volterra integro-differential equation, Convergent, ...... Research of a Multistep Method Applied to Numerical Solution of. Volterra ... Congress on Engineering.

  15. An analytical theory of a scattering of radio waves on meteoric ionization - II. Solution of the integro-differential equation in case of backscatter

    Science.gov (United States)

    Pecina, P.

    2016-12-01

    The integro-differential equation for the polarization vector P inside the meteor trail, representing the analytical solution of the set of Maxwell equations, is solved for the case of backscattering of radio waves on meteoric ionization. The transversal and longitudinal dimensions of a typical meteor trail are small in comparison to the distances to both transmitter and receiver and so the phase factor appearing in the kernel of the integral equation is large and rapidly changing. This allows us to use the method of stationary phase to obtain an approximate solution of the integral equation for the scattered field and for the corresponding generalized radar equation. The final solution is obtained by expanding it into the complete set of Bessel functions, which results in solving a system of linear algebraic equations for the coefficients of the expansion. The time behaviour of the meteor echoes is then obtained using the generalized radar equation. Examples are given for values of the electron density spanning a range from underdense meteor echoes to overdense meteor echoes. We show that the time behaviour of overdense meteor echoes using this method is very different from the one obtained using purely numerical solutions of the Maxwell equations. Our results are in much better agreement with the observations performed e.g. by the Ondřejov radar.

  16. Superconvergence of Finite Element Approximations to Parabolic and Hyperbolic Integro-Differential Equations%抛物型和双曲型积分-微分方程有限元逼近的超收敛性质

    Institute of Scientific and Technical Information of China (English)

    张铁; 李长军

    2001-01-01

    The object of this paper is to investigate the superconvergence properties of finite element approximations to parabolic and hyperbolic integro-differential equations. The quasi projection technique introduced earlier by Douglas et al. is developed to derive the O(h2r) order knot superconvergence in the case of a single space variable, and to show the optimal order negative norm estimates in the case of several space variables.

  17. Development and Retrospective Clinical Assessment of a Patient-Specific Closed-Form Integro-Differential Equation Model of Plasma Dilution.

    Science.gov (United States)

    Atlas, Glen; Li, John K-J; Amin, Shawn; Hahn, Robert G

    2017-01-01

    A closed-form integro-differential equation (IDE) model of plasma dilution (PD) has been derived which represents both the intravenous (IV) infusion of crystalloid and the postinfusion period. Specifically, PD is mathematically represented using a combination of constant ratio, differential, and integral components. Furthermore, this model has successfully been applied to preexisting data, from a prior human study, in which crystalloid was infused for a period of 30 minutes at the beginning of thyroid surgery. Using Euler's formula and a Laplace transform solution to the IDE, patients could be divided into two distinct groups based on their response to PD during the infusion period. Explicitly, Group 1 patients had an infusion-based PD response which was modeled using an exponentially decaying hyperbolic sine function, whereas Group 2 patients had an infusion-based PD response which was modeled using an exponentially decaying trigonometric sine function. Both Group 1 and Group 2 patients had postinfusion PD responses which were modeled using the same combination of hyperbolic sine and hyperbolic cosine functions. Statistically significant differences, between Groups 1 and 2, were noted with respect to the area under their PD curves during both the infusion and postinfusion periods. Specifically, Group 2 patients exhibited a response to PD which was most likely consistent with a preoperative hypovolemia. Overall, this IDE model of PD appears to be highly "adaptable" and successfully fits clinically-obtained human data on a patient-specific basis, during both the infusion and postinfusion periods. In addition, patient-specific IDE modeling of PD may be a useful adjunct in perioperative fluid management and in assessing clinical volume kinetics, of crystalloid solutions, in real time.

  18. Integro-differential equation analysis and radioisotope imaging systems. Research proposal. [Testing of radioisotope imaging system in phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Hart, H.

    1976-03-09

    Design modifications of a five-probe focusing collimator coincidence radioisotope scanning system are described. Clinical applications of the system were tested in phantoms using radioisotopes with short biological half-lives, including /sup 75/Se, /sup 192/Ir, /sup 43/K, /sup 130/I, and /sup 82/Br. Data processing methods are also described. (CH)

  19. Continuous multistep methods for volterra integro-differential ...

    African Journals Online (AJOL)

    A new class of numerical methods for Volterra integro-differential equations of the second order is developed. The methods are based on interpolation and collocation of the shifted Legendre polynomial as basis function with Trapezoidal quadrature rules. The convergence analysis revealed that the methods are consistent ...

  20. Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces

    OpenAIRE

    Barrera, Begoña Barrios; Figalli, Alessio; Valdinoci, Enrico

    2012-01-01

    We prove that $C^{1,\\alpha}$ $s$-minimal surfaces are automatically $C^\\infty$. For this, we develop a new bootstrap regularity theory for solutions of integro-differential equations of very general type, which we believe is of independent interest.

  1. On choice of trial functions in integro-differential variational principles of transport theory

    International Nuclear Information System (INIS)

    Loyalka, S.K.; Cipolla, J.W. Jr.

    1988-01-01

    In several problems of particle transport, quantities of macroscopic interest can be related to stationary values of variational functionals based on general integro-differential equations and boundary conditions. Within the context of the jump (Milne's) problem, it is shown how highly accurate results can be obtained by using trial functions based on the eigenfunctions of the relevant integrodifferential equations. Such choices of trial functions should apply equally effectively to problems in curved geometries, both internal and external

  2. Existence results for fractional integro-differential inclusions with state-dependent delay

    Directory of Open Access Journals (Sweden)

    Siracusa Giovana

    2017-10-01

    Full Text Available In this paper we are concerned with a class of abstract fractional integro-differential inclusions with infinite state-dependent delay. Our approach is based on the existence of a resolvent operator for the homogeneous equation.We establish the existence of mild solutions using both contractive maps and condensing maps. Finally, an application to the theory of heat conduction in materials with memory is given.

  3. On an integro-differential model for pest control in a heterogeneous environment.

    Science.gov (United States)

    Rodríguez, Nancy

    2015-04-01

    Insect pests pose a major threat to a balanced ecology as it can threaten local species as well as spread human diseases; thus, making the study of pest control extremely important. In practice, the sterile insect release method (SIRM), where a sterile population is introduced into the wild population with the aim of significantly reducing the growth of the population, has been a popular technique used to control pest invasions. In this work we introduce an integro-differential equation to model the propagation of pests in a heterogeneous environment, where this environment is divided into three regions. In one region SIRM is not used making this environment conducive to propagation of the insects. A second region is the eradication zone where there is an intense release of sterile insects, leading to decay of the population in this region. In the final region we explore two scenarios. In the first case, there is a small release of sterile insects and we prove that if the eradication zone is sufficiently large the pests will not invade. In the second case, when SIRM is not used at all in this region we show that invasions always occur regardless of the size of the eradication zone. Finally, we consider the limiting equation of the integro-differential equation and prove that in this case there is a critical length of the eradication zone which separates propagation from obstruction. Moreover, we provide some upper and lower bound for the critical length.

  4. A semigroup approach to equations with infinite delay and application to a problem of viscoelasticity

    Science.gov (United States)

    Renardy, M.

    1981-10-01

    A semigroup approach to differential-delay equations is developed which seems more suitable for certain partial integro-differential equations than the standard theory. On a formal level, it is demonstrated that the stretching of filaments of viscoelastic liquids can be described by an equation of this form.

  5. Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy

    KAUST Repository

    Pouchol, Camille

    2017-10-27

    We consider a system of two coupled integro-differential equations modelling populations of healthy and cancer cells under chemotherapy. Both populations are structured by a phenotypic variable, representing their level of resistance to the treatment. We analyse the asymptotic behaviour of the model under constant infusion of drugs. By designing an appropriate Lyapunov function, we prove that both cell densities converge to Dirac masses. We then define an optimal control problem, by considering all possible infusion protocols and minimising the number of cancer cells over a prescribed time frame. We provide a quasi-optimal strategy and prove that it solves this problem for large final times. For this modelling framework, we illustrate our results with numerical simulations, and compare our optimal strategy with periodic treatment schedules.

  6. On a non classical oblique derivative problem for parabolic singular integro-differential operators

    International Nuclear Information System (INIS)

    Nguyen Minh Chuong; Le Quang Trung

    1989-10-01

    In this paper an oblique derivative problem for parabolic singular integro-differential operators was studied. In this problem the direction of the derivative may be tangent to the boundary of the domain. By the large parameter method theorems of existence and uniqueness of solutions of the problem were obtained. (author). 10 refs

  7. Existence of Mild Solutions for Impulsive Fractional Integro-Differential Inclusions with State-Dependent Delay

    Directory of Open Access Journals (Sweden)

    Selvaraj Suganya

    2017-01-01

    Full Text Available In this manuscript, we implement Bohnenblust–Karlin’s fixed point theorem to demonstrate the existence of mild solutions for a class of impulsive fractional integro-differential inclusions (IFIDI with state-dependent delay (SDD in Banach spaces. An example is provided to illustrate the obtained abstract results.

  8. Some properties for integro-differential operator defined by a fractional formal.

    Science.gov (United States)

    Abdulnaby, Zainab E; Ibrahim, Rabha W; Kılıçman, Adem

    2016-01-01

    Recently, the study of the fractional formal (operators, polynomials and classes of special functions) has been increased. This study not only in mathematics but extended to another topics. In this effort, we investigate a generalized integro-differential operator [Formula: see text] defined by a fractional formal (fractional differential operator) and study some its geometric properties by employing it in new subclasses of analytic univalent functions.

  9. Using fundamental equations to describe basic phenomena

    DEFF Research Database (Denmark)

    Jakobsen, Arne; Rasmussen, Bjarne D.

    1999-01-01

    When the fundamental thermodynamic balance equations (mass, energy, and momentum) are used to describe the processes in a simple refrigeration system, then one finds that the resulting equation system will have a degree of freedom equal to one. Further investigations reveal that it is the equatio...

  10. The two modes extension to the Berk-Breizman equation: Delayed differential equations and asymptotic solutions

    International Nuclear Information System (INIS)

    Marczynski, Slawomir

    2011-01-01

    The integro-differential Berk-Breizman (BB) equation, describing the evolution of particle-driven wave mode is transformed into a simple delayed differential equation form ν∂a(τ)/∂τ=a(τ) -a 2 (τ- 1) a(τ- 2). This transformation is also applied to the two modes extension of the BB theory. The obtained solutions are presented together with the derived asymptotic analytical solutions and the numerical results.

  11. Modern nonlinear equations

    CERN Document Server

    Saaty, Thomas L

    1981-01-01

    Covers major types of classical equations: operator, functional, difference, integro-differential, and more. Suitable for graduate students as well as scientists, technologists, and mathematicians. "A welcome contribution." - Math Reviews. 1964 edition.

  12. Thermoacoustic tomography for an integro-differential wave equation modeling attenuation

    Science.gov (United States)

    Acosta, Sebastián; Palacios, Benjamín

    2018-02-01

    In this article we study the inverse problem of thermoacoustic tomography (TAT) on a medium with attenuation represented by a time-convolution (or memory) term, and whose consideration is motivated by the modeling of ultrasound waves in heterogeneous tissue via fractional derivatives with spatially dependent parameters. Under the assumption of being able to measure data on the whole boundary, we prove uniqueness and stability, and propose a convergent reconstruction method for a class of smooth variable sound speeds. By a suitable modification of the time reversal technique, we obtain a Neumann series reconstruction formula.

  13. Qualitative analysis of an integro-differential equation model of periodic chemotherapy

    KAUST Repository

    Jain, Harsh Vardhan; Byrne, Helen M.

    2012-01-01

    An existing model of tumor growth that accounts for cell cycle arrest and cell death induced by chemotherapy is extended to simulate the response to treatment of a tumor growing in vivo. The tumor is assumed to undergo logistic growth in the absence

  14. Singular Cauchy Initial Value Problem for Certain Classes of Integro-Differential Equations

    Directory of Open Access Journals (Sweden)

    Zdeněk Šmarda

    2010-01-01

    Full Text Available The existence and uniqueness of solutions and asymptotic estimate of solution formulas are studied for the following initial value problem: g(ty′(t=ay(t[1+f(t,y(t,∫0+tK(t,s,y(t,y(sds], y(0+=0, t∈(0,t0], where a>0 is a constant and t0>0. An approach which combines topological method of T. Ważewski and Schauder's fixed point theorem is used.

  15. Singular Cauchy Initial Value Problem for Certain Classes of Integro-Differential Equations

    Directory of Open Access Journals (Sweden)

    Šmarda Zdeněk

    2010-01-01

    Full Text Available The existence and uniqueness of solutions and asymptotic estimate of solution formulas are studied for the following initial value problem: , , , where is a constant and . An approach which combines topological method of T. Ważewski and Schauder's fixed point theorem is used.

  16. Qualitative analysis of an integro-differential equation model of periodic chemotherapy

    KAUST Repository

    Jain, Harsh Vardhan

    2012-12-01

    An existing model of tumor growth that accounts for cell cycle arrest and cell death induced by chemotherapy is extended to simulate the response to treatment of a tumor growing in vivo. The tumor is assumed to undergo logistic growth in the absence of therapy, and treatment is administered periodically rather than continuously. Necessary and sufficient conditions for the global stability of the cancer-free equilibrium are derived and conditions under which the system evolves to periodic solutions are determined. © 2012 Elsevier Ltd. All rights reserved.

  17. Stability analysis of nonlinear integro-differential equations arising in age-dependent epidemic models

    International Nuclear Information System (INIS)

    El Doma, M.

    1995-05-01

    An age-structured epidemic model of an SI type that incorporate vertical transmission is investigated when the fertility and mortality rates depend on age. We determine the steady states and examine their stabilities. (author). 13 refs

  18. Model calculations of doubly closed shell nuclei in the integral-differential equation approach describing the two body correlations

    International Nuclear Information System (INIS)

    Brizzi, R.; Fabre de la Ripelle, M.; Lassaut, M.

    1999-01-01

    The binding energies and root mean square radii obtained from the Integro-Differential Equation Approach (IDEA) and from the Weight Function Approximation (WFA) of the IDEA for an even number of bosons and for 12 C, 16 O and 40 Ca are compared to those recently obtained by the Variational Monte Carlo, Fermi Hypernetted Chain and Coupled Cluster expansion method with model potentials. The IDEA provides numbers very similar to those obtained by other methods although it takes only two-body correlations into account. The analytical expression of the wave function for the WFA is given for bosons in ground state when the interaction pair is outside the potential range. Due to its simple structure, the equations of the IDEA can easily be extended to realistic interaction for nuclei like it has already been done for the tri-nucleon and the 4 He. (authors)

  19. A class of quasilinear parabolic equations with infinite delay and application to a problem of viscoelasticity

    Science.gov (United States)

    Renardy, M.

    A semigroup approach to differential-delay equations is developed which reduces such equations to ordinary differential equations on a Banach space of histories and seems more suitable for certain partial integro-differential equations than the standard theory. The method is applied to prove a local-time existence theorem for equations of the form utt = g( uxt, uxt) x, where {∂g}/{∂u xt} > 0 . On a formal level, it is demonstrated that the stretching of filaments of viscoelastic liquids can be described by an equation of this form.

  20. A generalised groundwater flow equation using the concept of non ...

    African Journals Online (AJOL)

    2006-01-01

    Jan 1, 2006 ... 2 Institute for Groundwater Studies, University of the Free State, PO Box 339, Bloemfontein, South Africa. Abstract ... Keywords: porous media, Darcy Law, integro-differential equations .... f(x) satisfies the boundary conditions.

  1. A stochastic model of multiple scattering of charged particles: process, transport equation and solutions

    International Nuclear Information System (INIS)

    Papiez, L.; Moskvin, V.; Tulovsky, V.

    2001-01-01

    The process of angular-spatial evolution of multiple scattering of charged particles can be described by a special case of Boltzmann integro-differential equation called Lewis equation. The underlying stochastic process for this evolution is the compound Poisson process on the surface of the unit sphere. The significant portion of events that constitute compound Poisson process that describes multiple scattering have diffusional character. This property allows to analyze the process of angular-spatial evolution of multiple scattering of charged particles as combination of soft and hard collision processes and compute appropriately its transition densities. These computations provide a method of the approximate solution to the Lewis equation. (orig.)

  2. Neutron transport equation - indications on homogenization and neutron diffusion

    International Nuclear Information System (INIS)

    Argaud, J.P.

    1992-06-01

    In PWR nuclear reactor, the practical study of the neutrons in the core uses diffusion equation to describe the problem. On the other hand, the most correct method to describe these neutrons is to use the Boltzmann equation, or neutron transport equation. In this paper, we give some theoretical indications to obtain a diffusion equation from the general transport equation, with some simplifying hypothesis. The work is organised as follows: (a) the most general formulations of the transport equation are presented: integro-differential equation and integral equation; (b) the theoretical approximation of this Boltzmann equation by a diffusion equation is introduced, by the way of asymptotic developments; (c) practical homogenization methods of transport equation is then presented. In particular, the relationships with some general and useful methods in neutronic are shown, and some homogenization methods in energy and space are indicated. A lot of other points of view or complements are detailed in the text or the remarks

  3. Deterministic factor analysis: methods of integro-differentiation of non-integral order

    Directory of Open Access Journals (Sweden)

    Valentina V. Tarasova

    2016-12-01

    described by the Cobb ndash Douglas production function since these methods allow to more accurately describe the total influence of the factors in comparison with the standard method. The proposed methods can be used in the study of economic processes described by equations with a powerlaw nonlocality in factor space and in state space.

  4. Asymptotic and spectral analysis of the gyrokinetic-waterbag integro-differential operator in toroidal geometry

    Energy Technology Data Exchange (ETDEWEB)

    Besse, Nicolas, E-mail: Nicolas.Besse@oca.eu [Laboratoire J.-L. Lagrange, UMR CNRS/OCA/UCA 7293, Université Côte d’Azur, Observatoire de la Côte d’Azur, Bd de l’Observatoire CS 34229, 06304 Nice Cedex 4 (France); Institut Jean Lamour, UMR CNRS/UL 7198, Université de Lorraine, BP 70239 54506 Vandoeuvre-lès-Nancy Cedex (France); Coulette, David, E-mail: David.Coulette@ipcms.unistra.fr [Institut Jean Lamour, UMR CNRS/UL 7198, Université de Lorraine, BP 70239 54506 Vandoeuvre-lès-Nancy Cedex (France); Institut de Physique et Chimie des Matériaux de Strasbourg, UMR CNRS/US 7504, Université de Strasbourg, 23 Rue du Loess, 67034 Strasbourg (France)

    2016-08-15

    Achieving plasmas with good stability and confinement properties is a key research goal for magnetic fusion devices. The underlying equations are the Vlasov–Poisson and Vlasov–Maxwell (VPM) equations in three space variables, three velocity variables, and one time variable. Even in those somewhat academic cases where global equilibrium solutions are known, studying their stability requires the analysis of the spectral properties of the linearized operator, a daunting task. We have identified a model, for which not only equilibrium solutions can be constructed, but many of their stability properties are amenable to rigorous analysis. It uses a class of solution to the VPM equations (or to their gyrokinetic approximations) known as waterbag solutions which, in particular, are piecewise constant in phase-space. It also uses, not only the gyrokinetic approximation of fast cyclotronic motion around magnetic field lines, but also an asymptotic approximation regarding the magnetic-field-induced anisotropy: the spatial variation along the field lines is taken much slower than across them. Together, these assumptions result in a drastic reduction in the dimensionality of the linearized problem, which becomes a set of two nested one-dimensional problems: an integral equation in the poloidal variable, followed by a one-dimensional complex Schrödinger equation in the radial variable. We show here that the operator associated to the poloidal variable is meromorphic in the eigenparameter, the pulsation frequency. We also prove that, for all but a countable set of real pulsation frequencies, the operator is compact and thus behaves mostly as a finite-dimensional one. The numerical algorithms based on such ideas have been implemented in a companion paper [D. Coulette and N. Besse, “Numerical resolution of the global eigenvalue problem for gyrokinetic-waterbag model in toroidal geometry” (submitted)] and were found to be surprisingly close to those for the original

  5. Some stability and boundedness criteria for a class of Volterra integro-differential systems

    Directory of Open Access Journals (Sweden)

    Jito Vanualailai

    2002-01-01

    Full Text Available Using Lyapunov and Lyapunov-like functionals, we study the stability and boundedness of the solutions of a system of Volterra integrodifferential equations. Our results, also extending some of the more well-known criteria, give new sufficient conditions for stability of the zero solution of the nonperturbed system, and prove that the same conditions for the perturbed system yield boundedness when the perturbation is $L^2$.

  6. New constitutive equations to describe infinitesimal elastic-plastic deformations

    International Nuclear Information System (INIS)

    Boecke, B.; Link, F.; Schneider, G.; Bruhns, O.T.

    1983-01-01

    A set of constitutive equations is presented to describe infinitesimal elastic-plastic deformations of austenitic steel in the range up to 600 deg C. This model can describe the hardening behaviour in the case of mechanical loading and hardening, and softening behaviour in the case of thermal loading. The loading path can be either monotonic or cyclic. For this purpose, the well-known isotropic hardening model is continually transferred into the kinematic model according to Prager, whereby suitable internal variables are chosen. The occurring process-dependent material functions are to be determined by uniaxial experiments. The hardening function g and the translation function c are determined by means of a linearized stress-strain behaviour in the plastic range, whereby a coupling condition must be taken into account. As a linear hardening process is considered to be too unrealistic, nonlinearity is achieved by introducing a small function w, the determination procedure of which is given. (author)

  7. Nonchaoticity of Ordinary Differential Equations Describing Autonomous Transcriptional Regulatory Circuits

    International Nuclear Information System (INIS)

    Li Pengfei; Hu Gang; Chen Runsheng

    2008-01-01

    Gene transcriptional regulation (TR) processes are often described by coupled nonlinear ordinary differential equations (ODEs). When the dimension of TR circuits is high (e.g. n ≥ 3) the motions of the corresponding ODEs may, very probably, show self-sustained oscillations and chaos. On the other hand, chaoticity may be harmful for the normal biological functions of TR processes. In this letter we numerically study the dynamics of 3-gene TR ODEs in great detail, and investigate many 4-, 5-, and 10-gene TR systems by randomly choosing figures and parameters in the conventionally accepted ranges. And we find that oscillations are very seldom and no chaotic motion is observed, even if the dimension of systems is sufficiently high (n ≥ 3). It is argued that the observation of nonchaoticity of these ODEs agrees with normal functions of actual TR processes

  8. Application of a Lie group admitted by a homogeneous equation for group classification of a corresponding inhomogeneous equation

    Science.gov (United States)

    Long, Feng-Shan; Karnbanjong, Adisak; Suriyawichitseranee, Amornrat; Grigoriev, Yurii N.; Meleshko, Sergey V.

    2017-07-01

    This paper proposes an algorithm for group classification of a nonhomogeneous equation using the group analysis provided for the corresponding homogeneous equation. The approach is illustrated by a partial differential equation, an integro-differential equation, and a delay partial differential equation.

  9. Numerical treatment of linearized equations describing inhomogeneous collisionless plasmas

    International Nuclear Information System (INIS)

    Lewis, H.R.

    1979-01-01

    The equations governing the small-signal response of spatially inhomogeneous collisionless plasmas have practical significance in physics, for example in controlled thermonuclear fusion research. Although the solutions are very complicated and the equations are different to solve numerically, effective methods for them are being developed which are applicable when the equilibrium involves only one nonignorable coordinate. The general theoretical framework probably will provide a basis for progress when there are two or three nonignorable coordinates

  10. Study of nonlinear waves described by the cubic Schroedinger equation

    International Nuclear Information System (INIS)

    Walstead, A.E.

    1980-01-01

    The cubic Schroedinger equation (CSE) is ubiquitous as a model equation for the long-time evolution of finite-amplitude near-monochromatic dispersive waves. It incorporates the effects of the radiation field pressure on the constitutive properties of the supporting medium in a self-consistent manner. The properties of the uniformly transiating periodic wave solutions of the one-dimensional CSE are studied here. These (so-called cnoidal) waves are characterized by the values of four parameters. Whitham's averaged variational principle is used to derive a system of quasilinear evolution equations (the modulational equations) for the values of these parameters when they are slowly varying in space and time. Explicit expressions for the characteristic velocities of the modulational equations are obtained for the full set of cnoidal waves. Riemann invariants are obtained for several limits for the stable case, and growth rates are obtained for several limits, including the solitary wave chain, for the unstable case. The results for several nontrivial limiting cases agree with those obtained by independent methods by others. The dynamics of the CSE generalized to two spatial dimensions are studied for the unstable case. A large class of similarity solutions with cylindrical symmetry are obtained systematically using infinitesimal transformation group techniques. The methods are adapted to obtain the symmetries of the action functional of the CSE and to deduce nine integral invariants. A numerical study of the self-similar solutions reveals that they are modulationally unstable and that singularities dominate the dynamics of the CSE in two dimensions. The CSE is derived using perturbation theory for a specific problem in plasma physics: the evolution of the envelope of a near-monochromatic electromagnetic wave in a cold magnetized plasma. 13 figures, 2 tables

  11. Study of nonlinear waves described by the cubic Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Walstead, A.E.

    1980-03-12

    The cubic Schroedinger equation (CSE) is ubiquitous as a model equation for the long-time evolution of finite-amplitude near-monochromatic dispersive waves. It incorporates the effects of the radiation field pressure on the constitutive properties of the supporting medium in a self-consistent manner. The properties of the uniformly transiating periodic wave solutions of the one-dimensional CSE are studied here. These (so-called cnoidal) waves are characterized by the values of four parameters. Whitham's averaged variational principle is used to derive a system of quasilinear evolution equations (the modulational equations) for the values of these parameters when they are slowly varying in space and time. Explicit expressions for the characteristic velocities of the modulational equations are obtained for the full set of cnoidal waves. Riemann invariants are obtained for several limits for the stable case, and growth rates are obtained for several limits, including the solitary wave chain, for the unstable case. The results for several nontrivial limiting cases agree with those obtained by independent methods by others. The dynamics of the CSE generalized to two spatial dimensions are studied for the unstable case. A large class of similarity solutions with cylindrical symmetry are obtained systematically using infinitesimal transformation group techniques. The methods are adapted to obtain the symmetries of the action functional of the CSE and to deduce nine integral invariants. A numerical study of the self-similar solutions reveals that they are modulationally unstable and that singularities dominate the dynamics of the CSE in two dimensions. The CSE is derived using perturbation theory for a specific problem in plasma physics: the evolution of the envelope of a near-monochromatic electromagnetic wave in a cold magnetized plasma. 13 figures, 2 tables.

  12. Boundary value problemfor multidimensional fractional advection-dispersion equation

    Directory of Open Access Journals (Sweden)

    Khasambiev Mokhammad Vakhaevich

    2015-05-01

    Full Text Available In recent time there is a very great interest in the study of differential equations of fractional order, in which the unknown function is under the symbol of fractional derivative. It is due to the development of the theory of fractional integro-differential theory and application of it in different fields.The fractional integrals and derivatives of fractional integro-differential equations are widely used in modern investigations of theoretical physics, mechanics, and applied mathematics. The fractional calculus is a very powerful tool for describing physical systems, which have a memory and are non-local. Many processes in complex systems have nonlocality and long-time memory. Fractional integral operators and fractional differential operators allow describing some of these properties. The use of the fractional calculus will be helpful for obtaining the dynamical models, in which integro-differential operators describe power long-time memory by time and coordinates, and three-dimensional nonlocality for complex medium and processes.Differential equations of fractional order appear when we use fractal conception in physics of the condensed medium. The transfer, described by the operator with fractional derivatives at a long distance from the sources, leads to other behavior of relatively small concentrations as compared with classic diffusion. This fact redefines the existing ideas about safety, based on the ideas on exponential velocity of damping. Fractional calculus in the fractal theory and the systems with memory have the same importance as the classic analysis in mechanics of continuous medium.In recent years, the application of fractional derivatives for describing and studying the physical processes of stochastic transfer is very popular too. Many problems of filtration of liquids in fractal (high porous medium lead to the need to study boundary value problems for partial differential equations in fractional order.In this paper the

  13. Alternative formulation of the monokinetic transport equation

    International Nuclear Information System (INIS)

    Coppa, G.; Ravetto, P.; Sumini, M.

    1985-01-01

    After recalling a technique already exploited in stationary neutron transport, the dynamic linear monokinetic equation for general geometry is cast into an integro-differential form where a second order space Laplace operator and both a second and first time derivatives appear. The introduced unknowns are given a physical interpretation for plane geometry and their relations with the total flux and current are derived

  14. Diffusion equations and hard collisions in multiple scattering of charged particles

    International Nuclear Information System (INIS)

    Papiez, Lech; Tulovsky, Vladimir

    1998-01-01

    The processes of angular-spatial evolution of multiple scattering of charged particles are described by the Lewis (special case of Boltzmann) integro-differential equation. The underlying stochastic process for this evolution is the compound Poisson process with transition densities satisfying the Lewis equation. In this paper we derive the Lewis equation from the compound Poisson process and show that the effective method of the solution of this equation can be based on the idea of decomposition of the compound Poisson process into processes of soft and hard collisions. Formulas for transition densities of soft and hard collision processes are provided in this paper together with the formula expressing the general solution of the Lewis equation in terms of those transition densities

  15. Diffusion equations and hard collisions in multiple scattering of charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Papiez, Lech [Department of Radiation Oncology, Indiana University, Indianapolis, IN (United States); Tulovsky, Vladimir [Department of Mathematics, St. John' s College, Staten Island, New York, NY (United States)

    1998-09-01

    The processes of angular-spatial evolution of multiple scattering of charged particles are described by the Lewis (special case of Boltzmann) integro-differential equation. The underlying stochastic process for this evolution is the compound Poisson process with transition densities satisfying the Lewis equation. In this paper we derive the Lewis equation from the compound Poisson process and show that the effective method of the solution of this equation can be based on the idea of decomposition of the compound Poisson process into processes of soft and hard collisions. Formulas for transition densities of soft and hard collision processes are provided in this paper together with the formula expressing the general solution of the Lewis equation in terms of those transition densities.

  16. On nonlocal symmetries of some shallow water equations

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Enrique G [Departamento de Matematicas y Ciencia de la Computacion, Universidad de Santiago de Chile, Casilla 307 Correo 2 Santiago (Chile)

    2007-04-27

    A recent construction of nonlocal symmetries for the Korteweg-de Vries, Camassa-Holm and Hunter-Saxton equations is reviewed, and it is pointed out that-in the Camassa-Holm and Hunter-Saxton case-these symmetries can be considered as (nonlocal) symmetries of integro-differential equations.

  17. Functional equations with causal operators

    CERN Document Server

    Corduneanu, C

    2003-01-01

    Functional equations encompass most of the equations used in applied science and engineering: ordinary differential equations, integral equations of the Volterra type, equations with delayed argument, and integro-differential equations of the Volterra type. The basic theory of functional equations includes functional differential equations with causal operators. Functional Equations with Causal Operators explains the connection between equations with causal operators and the classical types of functional equations encountered by mathematicians and engineers. It details the fundamentals of linear equations and stability theory and provides several applications and examples.

  18. A numerical study of the integral equations for the laser fields in free-electron lasers

    International Nuclear Information System (INIS)

    Yoo, J. G.; Park, S. H.; Jeong, Y. U.; Lee, B. C.; Rhee, Y. J.; Cho, S. O.

    2004-01-01

    The dynamics of the radiation fields in free-electron lasers is investigated on the basis of the integro-differential equations in the one-dimensional formulation. For simple cases we solved the integro-differential equations analytically and numerically to test our numerical procedures developed on the basis of the Filon method. The numerical results showed good agreement with the analytical solutions. To confirm the legitimacy of the numerical package, we carried out numerical studies on the inhomogeneous broadening effects, where no analytic solutions are available, due to the energy spread and the emittance of the electron beam.

  19. Analytical solutions of mushy layer equations describing directional solidification in the presence of nucleation

    Science.gov (United States)

    Alexandrov, Dmitri V.; Ivanov, Alexander A.; Alexandrova, Irina V.

    2018-01-01

    The processes of particle nucleation and their evolution in a moving metastable layer of phase transition (supercooled liquid or supersaturated solution) are studied analytically. The transient integro-differential model for the density distribution function and metastability level is solved for the kinetic and diffusionally controlled regimes of crystal growth. The Weber-Volmer-Frenkel-Zel'dovich and Meirs mechanisms for nucleation kinetics are used. We demonstrate that the phase transition boundary lying between the mushy and pure liquid layers evolves with time according to the following power dynamic law: , where Z1(t)=βt7/2 and Z1(t)=βt2 in cases of kinetic and diffusionally controlled scenarios. The growth rate parameters α, β and ε are determined analytically. We show that the phase transition interface in the presence of crystal nucleation and evolution propagates slower than in the absence of their nucleation. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.

  20. The H-N method for solving linear transport equation: theory and application

    International Nuclear Information System (INIS)

    Kaskas, A.; Gulecyuz, M.C.; Tezcan, C.

    2002-01-01

    The system of singular integral equation which is obtained from the integro-differential form of the linear transport equation as a result of Placzec lemma is solved. Application are given using the exit distributions and the infinite medium Green's function. The same theoretical results are also obtained with the use of the singular eigenfunction of the method of elementary solutions

  1. Solutions to the equations describing materials with competing quadratic and cubic nonlinearities

    International Nuclear Information System (INIS)

    Li-Na, Zhao; Ji, Lin; Zi-Shuang, Tong

    2009-01-01

    The Lie group theoretical method is used to study the equations describing materials with competing quadratic and cubic nonlinearities. The equations share some of the nice properties of soliton equations. From the elliptic functions expansion method, we obtain large families of analytical solutions, in special cases, we have the periodic, kink and solitary solutions of the equations. Furthermore, we investigate the stability of these solutions under the perturbation of amplitude noises by numerical simulation

  2. Single particle dynamics of many-body systems described by Vlasov-Fokker-Planck equations

    International Nuclear Information System (INIS)

    Frank, T.D.

    2003-01-01

    Using Langevin equations we describe the random walk of single particles that belong to particle systems satisfying Vlasov-Fokker-Planck equations. In doing so, we show that Haissinski distributions of bunched particles in electron storage rings can be derived from a particle dynamics model

  3. Equations describing coherent and partially coherent multilevel molecular excitation induced by pulsed Raman transitions: III

    International Nuclear Information System (INIS)

    Shore, B.W.; Sacks, R.; Karr, T.

    1987-01-01

    This memo discusses the equations of motion used to describe multilevel molecular excitation induced by Raman transitions. These equations are based upon the time-dependent Schroedinger equation expressed in a basis of molecular energy states. A partition of these states is made into two sets, those that are far from resonance (and hence unpopulated) and those that are close to resonance, either by one-photon transition or two-photon (Raman) processes. By adiabatic elimination an effective Schroedinger equation is obtained for the resonance states alone. The effective Hamiltonian is expressible in terms of a polarizibility operator

  4. An hp-adaptive strategy for the solution of the exact kernel curved wire Pocklington equation

    NARCIS (Netherlands)

    D.J.P. Lahaye (Domenico); P.W. Hemker (Piet)

    2007-01-01

    textabstractIn this paper we introduce an adaptive method for the numerical solution of the Pocklington integro-differential equation with exact kernel for the current induced in a smoothly curved thin wire antenna. The hp-adaptive technique is based on the representation of the discrete solution,

  5. The analysis of solutions behaviour of Van der Pol Duffing equation describing local brain hemodynamics

    Science.gov (United States)

    Cherevko, A. A.; Bord, E. E.; Khe, A. K.; Panarin, V. A.; Orlov, K. J.

    2017-10-01

    This article proposes the generalized model of Van der Pol — Duffing equation for describing the relaxation oscillations in local brain hemodynamics. This equation connects the velocity and pressure of blood flow in cerebral vessels. The equation is individual for each patient, since the coefficients are unique. Each set of coefficients is built based on clinical data obtained during neurosurgical operation in Siberian Federal Biomedical Research Center named after Academician E. N. Meshalkin. The equation has solutions of different structure defined by the coefficients and right side. We investigate the equations for different patients considering peculiarities of their vessel systems. The properties of approximate analytical solutions are studied. Amplitude-frequency and phase-frequency characteristics are built for the small-dimensional solution approximations.

  6. An analytical theory of a scattering of radio waves on meteoric ionization - II. Solution of the integro-differential equation in case of backscatter

    Czech Academy of Sciences Publication Activity Database

    Pecina, Petr

    2016-01-01

    Roč. 463, č. 2 (2016), s. 1185-1198 ISSN 0035-8711 Institutional support: RVO:67985815 Keywords : scattering * radar astronomy * meteorites * meteors * meteoroids Subject RIV: BN - Astronomy , Celestial Mechanics, Astrophysics Impact factor: 4.961, year: 2016

  7. Asymmetric systems described by a pair of local covariant wave equations

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, S [Bern Univ. (Switzerland). Inst. fuer Theoretische Physik

    1979-07-16

    A class of asymmetric solutions of the integrability conditions for systems obeying the Leutwyler-Stern pair of covariant wave equations is obtained. The class of unequal-mass systems described by these solutions does not embed the particle-antiparticle system behaving as a relativistic harmonic oscillator.

  8. A simple equation for describing the temperature dependent growth of free-floating macrophytes

    NARCIS (Netherlands)

    Heide, van Tj.; Roijackers, R.M.M.; Nes, van E.H.; Peeters, E.T.H.M.

    2006-01-01

    Temperature is one of the most important factors determining growth rates of free-floating macrophytes in the field. To analyse and predict temperature dependent growth rates of these pleustophytes, modelling may play an important role. Several equations have been published for describing

  9. Numerical solution of the transport equation describing the radon transport from subsurface soil to buildings

    International Nuclear Information System (INIS)

    Savovic, S.; Djordjevich, A.; Ristic, G.

    2012-01-01

    A theoretical evaluation of the properties and processes affecting the radon transport from subsurface soil into buildings is presented in this work. The solution of the relevant transport equation is obtained using the explicit finite difference method (EFDM). Results are compared with analytical steady-state solution reported in the literature. Good agreement is found. It is shown that EFDM is effective and accurate for solving the equation that describes radon diffusion, advection and decay during its transport from subsurface to buildings, which is especially important when arbitrary initial and boundary conditions are required. (authors)

  10. A comparison analysis of Sivashinsky's type evolution equations describing flame propagation in channels

    International Nuclear Information System (INIS)

    Guidi, Leonardo F.; Marchetti, D.H.U.

    2003-01-01

    We establish a comparison between Rakib-Sivashinsky and Michelson-Sivashinsky quasilinear parabolic differential equations governing the weak thermal limit of flame front propagating in channels. For the former equation, we give a complete description of all steady solutions and present their local and global stability analysis. For the latter, bi-coalescent and interpolating unstable steady solutions are introduced and shown to be more numerous than the previous known coalescent solutions. These facts are argued to be responsible for the disagreement between the observed dynamics in numerical experiments and the exact (linear) stability analysis and give ingredients to construct quasi-stable solutions describing parabolic steadily propagating flame with centered tip

  11. Constitutive equations for describing high-temperature inelastic behavior of structural alloys

    International Nuclear Information System (INIS)

    Robinson, D.N.; Pugh, C.E.; Corum, J.M.

    1976-01-01

    This paper addresses constitutive equations for the description of inelastic behavior of LMFBR structural alloys at elevated temperatures. Both elastic-plastic (time-independent) and creep (time-dependent) deformations are considered for types 304 and 316 stainless steel and 2 1 / 4 Cr--1 Mo steel. The constitutive equations identified for interim use in design analyses are described along with the assumptions and data on which they are based. Areas where improvements are needed are identified, and some alternate theories that are being pursued are outlined

  12. Workshop on Numerical Methods for Ordinary Differential Equations

    CERN Document Server

    Gear, Charles; Russo, Elvira

    1989-01-01

    Developments in numerical initial value ode methods were the focal topic of the meeting at L'Aquila which explord the connections between the classical background and new research areas such as differental-algebraic equations, delay integral and integro-differential equations, stability properties, continuous extensions (interpolants for Runge-Kutta methods and their applications, effective stepsize control, parallel algorithms for small- and large-scale parallel architectures). The resulting proceedings address many of these topics in both research and survey papers.

  13. Stability analysis of solutions to nonlinear stiff Volterra functional differential equations in Banach spaces

    Institute of Scientific and Technical Information of China (English)

    LI Shoufu

    2005-01-01

    A series of stability, contractivity and asymptotic stability results of the solutions to nonlinear stiff Volterra functional differential equations (VFDEs) in Banach spaces is obtained, which provides the unified theoretical foundation for the stability analysis of solutions to nonlinear stiff problems in ordinary differential equations(ODEs), delay differential equations(DDEs), integro-differential equations(IDEs) and VFDEs of other type which appear in practice.

  14. Saturation behavior: a general relationship described by a simple second-order differential equation.

    Science.gov (United States)

    Kepner, Gordon R

    2010-04-13

    The numerous natural phenomena that exhibit saturation behavior, e.g., ligand binding and enzyme kinetics, have been approached, to date, via empirical and particular analyses. This paper presents a mechanism-free, and assumption-free, second-order differential equation, designed only to describe a typical relationship between the variables governing these phenomena. It develops a mathematical model for this relation, based solely on the analysis of the typical experimental data plot and its saturation characteristics. Its utility complements the traditional empirical approaches. For the general saturation curve, described in terms of its independent (x) and dependent (y) variables, a second-order differential equation is obtained that applies to any saturation phenomena. It shows that the driving factor for the basic saturation behavior is the probability of the interactive site being free, which is described quantitatively. Solving the equation relates the variables in terms of the two empirical constants common to all these phenomena, the initial slope of the data plot and the limiting value at saturation. A first-order differential equation for the slope emerged that led to the concept of the effective binding rate at the active site and its dependence on the calculable probability the interactive site is free. These results are illustrated using specific cases, including ligand binding and enzyme kinetics. This leads to a revised understanding of how to interpret the empirical constants, in terms of the variables pertinent to the phenomenon under study. The second-order differential equation revealed the basic underlying relations that describe these saturation phenomena, and the basic mathematical properties of the standard experimental data plot. It was shown how to integrate this differential equation, and define the common basic properties of these phenomena. The results regarding the importance of the slope and the new perspectives on the empirical

  15. A didactically novel derivation of the telegraph equation to describe sound propagation in rigid tubes

    International Nuclear Information System (INIS)

    Till, Bernie C; Driessen, Peter F

    2014-01-01

    Starting from first principles, we derive the telegraph equation to describe the propagation of sound waves in rigid tubes by using a simple approach that yields a lossy transmission line model with frequency-independent parameters. The approach is novel in the sense that it has not been found in the literature or textbooks. To derive the lossy acoustic telegraph equation from the lossless wave equation, we need only to relax the assumption that the dynamical variables are constant over the entire cross-sectional area of the tube. In this paper, we do this by introducing a relatively narrow boundary layer at the wall of the tube, over which the dynamical variables decrease linearly from the constant value to zero. This allows us to make very simple corrections to the lossless case, and to express them in terms of two parameters, namely the viscous diffusion time constant and the thermal diffusion time constant. The coefficients of the resulting telegraph equation are frequency-independent. A comparison with the telegraph equation for the electrical transmission line establishes precise relationships between the electrical circuit elements and the physical properties of the fluid. These relationships are thus proven a posteriori rather than asserted a priori. In this way, we arrive at an instructive and useful derivation of the acoustic telegraph equation, which takes viscous damping and thermal dissipation into account, and is accessible to students at the undergraduate level. This derivation does not resort to the combined heavy machinery of fluid dynamics and thermodynamics, does not assume that the waveforms are sinusoidal, and does not assume any particular cross-sectional shape of the tube. Surprisingly, we have been unable to find a comparable treatment in the standard introductory physics and acoustics texts, or in the literature. (paper)

  16. Muscle activation described with a differential equation model for large ensembles of locally coupled molecular motors.

    Science.gov (United States)

    Walcott, Sam

    2014-10-01

    Molecular motors, by turning chemical energy into mechanical work, are responsible for active cellular processes. Often groups of these motors work together to perform their biological role. Motors in an ensemble are coupled and exhibit complex emergent behavior. Although large motor ensembles can be modeled with partial differential equations (PDEs) by assuming that molecules function independently of their neighbors, this assumption is violated when motors are coupled locally. It is therefore unclear how to describe the ensemble behavior of the locally coupled motors responsible for biological processes such as calcium-dependent skeletal muscle activation. Here we develop a theory to describe locally coupled motor ensembles and apply the theory to skeletal muscle activation. The central idea is that a muscle filament can be divided into two phases: an active and an inactive phase. Dynamic changes in the relative size of these phases are described by a set of linear ordinary differential equations (ODEs). As the dynamics of the active phase are described by PDEs, muscle activation is governed by a set of coupled ODEs and PDEs, building on previous PDE models. With comparison to Monte Carlo simulations, we demonstrate that the theory captures the behavior of locally coupled ensembles. The theory also plausibly describes and predicts muscle experiments from molecular to whole muscle scales, suggesting that a micro- to macroscale muscle model is within reach.

  17. Kraus operator solutions to a fermionic master equation describing a thermal bath and their matrix representation

    Science.gov (United States)

    Xiang-Guo, Meng; Ji-Suo, Wang; Hong-Yi, Fan; Cheng-Wei, Xia

    2016-04-01

    We solve the fermionic master equation for a thermal bath to obtain its explicit Kraus operator solutions via the fermionic state approach. The normalization condition of the Kraus operators is proved. The matrix representation for these solutions is obtained, which is incongruous with the result in the book completed by Nielsen and Chuang [Quantum Computation and Quantum Information, Cambridge University Press, 2000]. As especial cases, we also present the Kraus operator solutions to master equations for describing the amplitude-decay model and the diffusion process at finite temperature. Project supported by the National Natural Science Foundation of China (Grant No. 11347026), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2013AM012 and ZR2012AM004), and the Research Fund for the Doctoral Program and Scientific Research Project of Liaocheng University, Shandong Province, China.

  18. Application of Peleg's equation to describe creep responses of potatoes under constant and variable storage conditions.

    Science.gov (United States)

    Solomon, W K; Jindal, V K

    2017-06-01

    The application of Peleg's equation to characterize creep behavior of potatoes during storage was investigated. Potatoes were stored at 25, 15, 5C, and variable (fluctuating) temperature for 16 or 26 weeks. The Peleg equation adequately described the creep response of potatoes during storage at all storage conditions (R 2  = .97to .99). Peleg constant k 1 exhibited a significant (p creep responses during storage or processing will be potentially helpful to better understand the phenomenon. The model parameters from such model could be used to relate rheological properties of raw and cooked potatoes. Moreover, the model parameters could be used to establish relationship between instrumental and sensory attributes which will help in the prediction of sensory attributes from instrumental data. © 2016 Wiley Periodicals, Inc.

  19. On kinetic Boltzmann equations and related hydrodynamic flows with dry viscosity

    Directory of Open Access Journals (Sweden)

    Nikolai N. Bogoliubov (Jr.

    2007-01-01

    Full Text Available A two-component particle model of Boltzmann-Vlasov type kinetic equations in the form of special nonlinear integro-differential hydrodynamic systems on an infinite-dimensional functional manifold is discussed. We show that such systems are naturally connected with the nonlinear kinetic Boltzmann-Vlasov equations for some one-dimensional particle flows with pointwise interaction potential between particles. A new type of hydrodynamic two-component Benney equations is constructed and their Hamiltonian structure is analyzed.

  20. Integral transform method for solving time fractional systems and fractional heat equation

    Directory of Open Access Journals (Sweden)

    Arman Aghili

    2014-01-01

    Full Text Available In the present paper, time fractional partial differential equation is considered, where the fractional derivative is defined in the Caputo sense. Laplace transform method has been applied to obtain an exact solution. The authors solved certain homogeneous and nonhomogeneous time fractional heat equations using integral transform. Transform method is a powerful tool for solving fractional singular Integro - differential equations and PDEs. The result reveals that the transform method is very convenient and effective.

  1. Solution of spatially homogeneous model Boltzmann equations by means of Lie groups of transformations

    International Nuclear Information System (INIS)

    Foroutan, A.

    1992-05-01

    The essential mathematical challenge in transport theory is based on the nonlinearity of the integro-differential equations governing classical thermodynamic systems on molecular kinetic level. It is the aim of this thesis to gain exact analytical solutions to the model Boltzmann equation suggested by Tjon and Wu. Such solutions afford a deeper insight into the dynamics of rarefied gases. Tjon and Wu have provided a stochastic model of a Boltzmann equation. Its transition probability depends only on the relative speed of the colliding particles. This assumption leads in the case of two translational degrees of freedom to an integro-differential equation of convolution type. According to this convolution structure the integro-differential equation is Laplace transformed. The result is a nonlinear partial differential equation. The investigation of the symmetries of this differential equation by means of Lie groups of transformation enables us to transform the originally nonlinear partial differential equation into ordinary differential equation into ordinary differential equations of Bernoulli type. (author)

  2. On a functional equation related to the intermediate long wave equation

    International Nuclear Information System (INIS)

    Hone, A N W; Novikov, V S

    2004-01-01

    We resolve an open problem stated by Ablowitz et al (1982 J. Phys. A: Math. Gen. 15 781) concerning the integral operator appearing in the intermediate long wave equation. We explain how this is resolved using the perturbative symmetry approach introduced by one of us with Mikhailov. By solving a certain functional equation, we prove that the intermediate long wave equation and the Benjamin-Ono equation are the unique integrable cases within a particular class of integro-differential equations. Furthermore, we explain how the perturbative symmetry approach is naturally extended to treat equations on a periodic domain. (letter to the editor)

  3. Second-order differential-delay equation to describe a hybrid bistable device

    Science.gov (United States)

    Vallee, R.; Dubois, P.; Cote, M.; Delisle, C.

    1987-08-01

    The problem of a dynamical system with delayed feedback, a hybrid bistable device, characterized by n response times and described by an nth-order differential-delay equation (DDE) is discussed. Starting from a linear-stability analysis of the DDE, the effects of the second-order differential terms on the position of the first bifurcation and on the frequency of the resulting self-oscillation are shown. The effects of the third-order differential terms on the first bifurcation are also considered. Experimental results are shown to support the linear analysis.

  4. Cosmological model with viscosity media (dark fluid) described by an effective equation of state

    International Nuclear Information System (INIS)

    Ren Jie; Meng Xinhe

    2006-01-01

    A generally parameterized equation of state (EOS) is investigated in the cosmological evolution with bulk viscosity media modelled as dark fluid, which can be regarded as a unification of dark energy and dark matter. Compared with the case of the perfect fluid, this EOS has possessed four additional parameters, which can be interpreted as the case of the non-perfect fluid with time-dependent viscosity or the model with variable cosmological constant. From this general EOS, a completely integrable dynamical equation to the scale factor is obtained with its solution explicitly given out. (i) In this parameterized model of cosmology, for a special choice of the parameters we can explain the late-time accelerating expansion universe in a new view. The early inflation, the median (relatively late time) deceleration, and the recently cosmic acceleration may be unified in a single equation. (ii) A generalized relation of the Hubble parameter scaling with the redshift is obtained for some cosmology interests. (iii) By using the SNe Ia data to fit the effective viscosity model we show that the case of matter described by p=0 plus with effective viscosity contributions can fit the observational gold data in an acceptable level

  5. Coarse-grained forms for equations describing the microscopic motion of particles in a fluid.

    Science.gov (United States)

    Das, Shankar P; Yoshimori, Akira

    2013-10-01

    Exact equations of motion for the microscopically defined collective density ρ(x,t) and the momentum density ĝ(x,t) of a fluid have been obtained in the past starting from the corresponding Langevin equations representing the dynamics of the fluid particles. In the present work we average these exact equations of microscopic dynamics over the local equilibrium distribution to obtain stochastic partial differential equations for the coarse-grained densities with smooth spatial and temporal dependence. In particular, we consider Dean's exact balance equation for the microscopic density of a system of interacting Brownian particles to obtain the basic equation of the dynamic density functional theory with noise. Our analysis demonstrates that on thermal averaging the dependence of the exact equations on the bare interaction potential is converted to dependence on the corresponding thermodynamic direct correlation functions in the coarse-grained equations.

  6. Application of Boltzmann equation to electron transmission and seconary electron emission

    International Nuclear Information System (INIS)

    Lanteri, H.; Bindi, R.; Rostaing, P.

    1979-01-01

    A method is presented for numerical treatment of integro-differential equation, based upon finite difference techniques. This method allows to formulate in a satisfactory manner the Boltzmann's equation applied to backscattering, transmission and secondary emission of metallic targets, avoiding must of the restrictive hypothesis, used until now in these models. For aluminium, the calculated energy spectra, angular distribution, transmission and backscattering coefficients, and secondary emission yield, are found to be in good agreement with experiment [fr

  7. On realization of nonlinear systems described by higher-order differential equations

    NARCIS (Netherlands)

    van der Schaft, Arjan

    1987-01-01

    We consider systems of smooth nonlinear differential and algebraic equations in which some of the variables are distinguished as “external variables.” The realization problem is to replace the higher-order implicit differential equations by first-order explicit differential equations and the

  8. Filtering of sound from the Navier-Stokes equations. [An approximation for describing thermal convection in a compressible fluid

    Energy Technology Data Exchange (ETDEWEB)

    Paolucci, S.

    1982-12-01

    An approximation leading to anelastic equations capable of describing thermal convection in a compressible fluid is given. These equations are more general than the Oberbeck-Boussinesq equations and different than the standard anelastic equations in that they can be used for the computation of convection in a fluid with large density gradients present. We show that the equations do not contain acoustic waves, while at the same time they can still describe the propagation of internal waves. Throughout we show that the filtering of acoustic waves, within the limits of the approximation, does not appreciably alter the description of the physics.

  9. Non-Archimedean reaction-ultradiffusion equations and complex hierarchic systems

    Science.gov (United States)

    Zúñiga-Galindo, W. A.

    2018-06-01

    We initiate the study of non-Archimedean reaction-ultradiffusion equations and their connections with models of complex hierarchic systems. From a mathematical perspective, the equations studied here are the p-adic counterpart of the integro-differential models for phase separation introduced by Bates and Chmaj. Our equations are also generalizations of the ultradiffusion equations on trees studied in the 1980s by Ogielski, Stein, Bachas, Huberman, among others, and also generalizations of the master equations of the Avetisov et al models, which describe certain complex hierarchic systems. From a physical perspective, our equations are gradient flows of non-Archimedean free energy functionals and their solutions describe the macroscopic density profile of a bistable material whose space of states has an ultrametric structure. Some of our results are p-adic analogs of some well-known results in the Archimedean setting, however, the mechanism of diffusion is completely different due to the fact that it occurs in an ultrametric space.

  10. Generalized Fokker-Planck equations for coloured, multiplicative Gaussian noise

    International Nuclear Information System (INIS)

    Cetto, A.M.; Pena, L. de la; Velasco, R.M.

    1984-01-01

    With the help of Novikov's theorem, it is possible to derive a master equation for a coloured, multiplicative, Gaussian random process; the coefficients of this master equation satisfy a complicated auxiliary integro-differential equation. For small values of the Kubo number, the master equation reduces to an approximate generalized Fokker-Planck equation. The diffusion coefficient is explicitly written in terms of correlation functions. Finally, a straightforward and elementary second order perturbative treatment is proposed to derive the same approximate Fokker-Planck equation. (author)

  11. Equation of motion method to describe quasiparticle structures in transitional and deformed nuclei

    International Nuclear Information System (INIS)

    Doenau, F.

    1985-01-01

    The development of the experimental techniques will supply one with more and more complete level schemes and transition matrix elements. This is a great challenge for the theorists to put the right questions and to work out the models accordingly. In this respect the method of equation of motion (EQM) seems to be a sulitable approach the inherent possibilities of which are yet not fully explored. The EQM is sketched for the case of one-quasiparticle (1qp) excitation in odd-mass nuclei. The coupling of a particle to the quasrupole and pair field is treated using the IBA for the collective degrees of freedom. Physical implications are shortly discussed. The selfconsistent aspects of the theory are considered. A perturbational treatment is proposed to construct the physical subspace that is necessary to perform selfconsistent calculations of the collective core energies. The EQM is formulated for the two-quasiparticle (2qp) excitations in transitional nuclei inclusive the coupling to the collective excitations (0 qp space). EQM can be widely applied to describe the complicated interplay between collective degrees of freedom and quasiparticle configurations are concluded

  12. Transport methods: general. 7. Formulation of a Fourier-Boltzmann Transformation to Solve the Three-Dimensional Transport Equation

    International Nuclear Information System (INIS)

    Stancic, V.

    2001-01-01

    This paper presents some elements of a new approach to solve analytically the linearized three-dimensional (3-D) transport equation of neutral particles. Since this task is of such special importance, we present some results of a paper that is still in progress. The most important is that using this transformation, an integro-differential equation with an analytical solution is obtained. For this purpose, a simplest 3-D equation is being considered which describes the transport process in an infinite medium. Until now, this equation has been analytically considered either using the Laplace transform with respect to time parameter t or applying the Fourier transform over the space coordinate. Both of them reduce the number of differential terms in the equation; however, evaluation of the inverse transformation is complicated. In this paper, we introduce for the first time a Fourier transform induced by the Boltzmann operator. For this, we use a complete set of 3-D eigenfunctions of the Boltzmann transport operator defined in a similar way as those that have been already used in 3-D transport theory as a basic set to transform the transport equation. This set consists of a continuous part and a discrete one with spectral measure. The density distribution equation shows the known form asymptotic behavior. Several applications are to be performed using this equation and compared to the benchmark one. Such an analysis certainly would be out of the available space

  13. Numerical solution of integral equations, describing mass spectrum of vector mesons

    International Nuclear Information System (INIS)

    Zhidkov, E.P.; Nikonov, E.G.; Sidorov, A.V.; Skachkov, N.B.; Khoromskij, B.N.

    1988-01-01

    The description of the numerical algorithm for solving quasipotential integral equation in impulse space is presented. The results of numerical computations of the vector meson mass spectrum and the leptonic decay width are given in comparison with the experimental data

  14. Equations describing contamination of run of mine coal with dirt in the Upper Silesian Coalfield

    Energy Technology Data Exchange (ETDEWEB)

    Winiewski, J J

    1977-12-01

    Statistical analysis proved that contamination with dirt of run of mine coal from seams in the series 200 to 600 of the Upper Silesian Coalfield depends on the average ash content of a given raw coal. A regression equation is deduced for coarse and fine sizes of each coal. These equations can be used to predict the degree of contamination of run of mine coal to an accuracy sufficient for coal preparation purposes.

  15. Tracer kinetics: Modelling by partial differential equations of inhomogeneous compartments with age-dependent elimination rates. Pt. 2

    International Nuclear Information System (INIS)

    Winkler, E.

    1991-01-01

    The general theory of inhomogeneous compartments with age-dependent elimination rates is illustrated by examples. Mathematically, it turns out that models consisting of partial differential equations include ordinary, delayed and integro-differential equations, a general fact which is treated here in the context of linear tracer kinetics. The examples include standard compartments as a degenerate case, systems of standard compartments (compartment blocks), models resulting in special residence time distributions, models with pipes, and systems with heterogeneous particles. (orig./BBR) [de

  16. Non self-similar collapses described by the non-linear Schroedinger equation

    International Nuclear Information System (INIS)

    Berge, L.; Pesme, D.

    1992-01-01

    We develop a rapid method in order to find the contraction rates of the radially symmetric collapsing solutions of the nonlinear Schroedinger equation defined for space dimensions exceeding a threshold value. We explicitly determine the asymptotic behaviour of these latter solutions by solving the non stationary linear problem relative to the nonlinear Schroedinger equation. We show that the self-similar states associated with the collapsing solutions are characterized by a spatial extent which is bounded from the top by a cut-off radius

  17. On a Mixed Nonlinear One Point Boundary Value Problem for an Integrodifferential Equation

    Directory of Open Access Journals (Sweden)

    Mesloub Said

    2008-01-01

    Full Text Available This paper is devoted to the study of a mixed problem for a nonlinear parabolic integro-differential equation which mainly arise from a one dimensional quasistatic contact problem. We prove the existence and uniqueness of solutions in a weighted Sobolev space. Proofs are based on some a priori estimates and on the Schauder fixed point theorem. we also give a result which helps to establish the regularity of a solution.

  18. Stationary distributions of stochastic processes described by a linear neutral delay differential equation

    International Nuclear Information System (INIS)

    Frank, T D

    2005-01-01

    Stationary distributions of processes are derived that involve a time delay and are defined by a linear stochastic neutral delay differential equation. The distributions are Gaussian distributions. The variances of the Gaussian distributions are either monotonically increasing or decreasing functions of the time delays. The variances become infinite when fixed points of corresponding deterministic processes become unstable. (letter to the editor)

  19. Conformal invariance of the Lungren-Monin-Novikov equations for vorticity fields in 2D turbulence

    Science.gov (United States)

    Grebenev, V. N.; Wacławczyk, M.; Oberlack, M.

    2017-10-01

    We study the statistical properties of the vorticity field in two-dimensional turbulence. The field is described in terms of the infinite Lundgren-Monin-Novikov (LMN) chain of equations for multi-point probability density functions (pdf’s) of vorticity. We perform a Lie group analysis of the first equation in this chain using the direct method based on the canonical Lie-Bäcklund transformations devised for integro-differential equations. We analytically show that the conformal group is broken for the first LMN equation i.e. for the 1-point pdf at least for the inviscid case but the equation is still conformally invariant on the associated characteristic with zero-vorticity. Then, we demonstrate that this characteristic is conformally transformed. We find this outcome coincides with the numerical results about the conformal invariance of the statistics of zero-vorticity isolines, see e.g. Falkovich (2007 Russian Math. Surv. 63 497-510). The conformal symmetry can be understood as a ‘local scaling’ and its traces in two-dimensional turbulence were already discussed in the literature, i.e. it was conjectured more than twenty years ago in Polyakov (1993 Nucl. Phys. B 396 367-85) and clearly validated experimentally in Bernard et al (2006 Nat. Phys. 2 124-8).

  20. Mathematical problems in the one-velocity theory of particle transport

    International Nuclear Information System (INIS)

    Vladimirov, V.S.

    1963-01-01

    This paper describes kinetic (transport) equations which describe the process of neutron transport in a substance. These equations are linear, integro-differential equations in partial derivatives of first order.

  1. Mathematical problems in the one-velocity theory of particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Vladimirov, V S

    1963-01-15

    This paper describes kinetic (transport) equations which describe the process of neutron transport in a substance. These equations are linear, integro-differential equations in partial derivatives of first order.

  2. QCD evolution equations for high energy partons in nuclear matter

    CERN Document Server

    Kinder-Geiger, Klaus; Geiger, Klaus; Mueller, Berndt

    1994-01-01

    We derive a generalized form of Altarelli-Parisi equations to decribe the time evolution of parton distributions in a nuclear medium. In the framework of the leading logarithmic approximation, we obtain a set of coupled integro- differential equations for the parton distribution functions and equations for the virtuality (``age'') distribution of partons. In addition to parton branching processes, we take into account fusion and scattering processes that are specific to QCD in medium. Detailed balance between gain and loss terms in the resulting evolution equations correctly accounts for both real and virtual contributions which yields a natural cancellation of infrared divergences.

  3. Method of mechanical quadratures for solving singular integral equations of various types

    Science.gov (United States)

    Sahakyan, A. V.; Amirjanyan, H. A.

    2018-04-01

    The method of mechanical quadratures is proposed as a common approach intended for solving the integral equations defined on finite intervals and containing Cauchy-type singular integrals. This method can be used to solve singular integral equations of the first and second kind, equations with generalized kernel, weakly singular equations, and integro-differential equations. The quadrature rules for several different integrals represented through the same coefficients are presented. This allows one to reduce the integral equations containing integrals of different types to a system of linear algebraic equations.

  4. Application of Rational Second Kind Chebyshev Functions for System of Integrodifferential Equations on Semi-Infinite Intervals

    Directory of Open Access Journals (Sweden)

    M. Tavassoli Kajani

    2012-01-01

    Full Text Available Rational Chebyshev bases and Galerkin method are used to obtain the approximate solution of a system of high-order integro-differential equations on the interval [0,∞. This method is based on replacement of the unknown functions by their truncated series of rational Chebyshev expansion. Test examples are considered to show the high accuracy, simplicity, and efficiency of this method.

  5. A rapid numerical method for solving Serre-Green-Naghdi equations describing long free surface gravity waves

    Science.gov (United States)

    Favrie, N.; Gavrilyuk, S.

    2017-07-01

    A new numerical method for solving the Serre-Green-Naghdi (SGN) equations describing dispersive waves on shallow water is proposed. From the mathematical point of view, the SGN equations are the Euler-Lagrange equations for a ‘master’ lagrangian submitted to a differential constraint which is the mass conservation law. One major numerical challenge in solving the SGN equations is the resolution of an elliptic problem at each time instant. This is the most time-consuming part of the numerical method. The idea is to replace the ‘master’ lagrangian by a one-parameter family of ‘augmented’ lagrangians, depending on a greater number of variables, for which the corresponding Euler-Lagrange equations are hyperbolic. In such an approach, the ‘master’ lagrangian is recovered by the augmented lagrangian in some limit (for example, when the corresponding parameter is large). The choice of such a family of augmented lagrangians is proposed and discussed. The corresponding hyperbolic system is numerically solved by a Godunov type method. Numerical solutions are compared with exact solutions to the SGN equations. It appears that the computational time in solving the hyperbolic system is much lower than in the case where the elliptic operator is inverted. The new method is applied, in particular, to the study of ‘Favre waves’ representing non-stationary undular bores produced after reflection of the fluid flow with a free surface at an immobile wall.

  6. Matrix Methods for Solving Hartree-Fock Equations in Atomic Structure Calculations and Line Broadening

    Directory of Open Access Journals (Sweden)

    Thomas Gomez

    2018-04-01

    Full Text Available Atomic structure of N-electron atoms is often determined by solving the Hartree-Fock equations, which are a set of integro-differential equations. The integral part of the Hartree-Fock equations treats electron exchange, but the Hartree-Fock equations are not often treated as an integro-differential equation. The exchange term is often approximated as an inhomogeneous or an effective potential so that the Hartree-Fock equations become a set of ordinary differential equations (which can be solved using the usual shooting methods. Because the Hartree-Fock equations are an iterative-refinement method, the inhomogeneous term relies on the previous guess of the wavefunction. In addition, there are numerical complications associated with solving inhomogeneous differential equations. This work uses matrix methods to solve the Hartree-Fock equations as an integro-differential equation. It is well known that a derivative operator can be expressed as a matrix made of finite-difference coefficients; energy eigenvalues and eigenvectors can be obtained by using linear-algebra packages. The integral (exchange part of the Hartree-Fock equation can be approximated as a sum and written as a matrix. The Hartree-Fock equations can be solved as a matrix that is the sum of the differential and integral matrices. We compare calculations using this method against experiment and standard atomic structure calculations. This matrix method can also be used to solve for free-electron wavefunctions, thus improving how the atoms and free electrons interact. This technique is important for spectral line broadening in two ways: it improves the atomic structure calculations, and it improves the motion of the plasma electrons that collide with the atom.

  7. On quantization, the generalised Schroedinger equation and classical mechanics

    International Nuclear Information System (INIS)

    Jones, K.R.W.

    1991-01-01

    A ψ-dependent linear functional operator, was defined, which solves the problem of quantization in non-relativistic quantum mechanics. Weyl ordering is implemented automatically and permits derivation of many of the quantum to classical correspondences. The parameter λ presents a natural C ∞ deformation of the dynamical structure of quantum mechanics via a non-linear integro-differential 'Generalised Schroedinger Equation', admitting an infinite family of soliton solutions. All these solutions are presented and it is shown that this equation gives an exact dynamic and energetic reproduction of classical mechanics with the correct measurement theoretic limit. 23 refs

  8. Approximate solutions for the two-dimensional integral transport equation. The critically mixed methods of resolution

    International Nuclear Information System (INIS)

    Sanchez, Richard.

    1980-11-01

    This work is divided into two part the first part (note CEA-N-2165) deals with the solution of complex two-dimensional transport problems, the second one treats the critically mixed methods of resolution. These methods are applied for one-dimensional geometries with highly anisotropic scattering. In order to simplify the set of integral equation provided by the integral transport equation, the integro-differential equation is used to obtain relations that allow to lower the number of integral equation to solve; a general mathematical and numerical study is presented [fr

  9. New and old symmetries of the Maxwell and Dirac equations

    International Nuclear Information System (INIS)

    Fushchich, V.I.; Nikitin, A.G.

    1983-01-01

    The symmetry properties of Maxwell's equations for the electromagnetic field and also of the Dirac and Kemmer-Duffin-Petiau equations are analyzed. In the framework of a ''non-Lie'' approach it is shown that, besides the well-known invariance with respect to the conformal group and the Heaviside-Larmor-Rainich transformations, Maxwell's equations have an additional symmetry with respect to the group U(2)xU(2) and with respect to the 23-dimensional Lie algebra A 23 . The transformations of the additional symmetry are given by nonlocal (integro-differential) operators. The symmetry of the Dirac equation in the class of differential and integro-differential transformations is investigated. It is shown that this equation is invariant with respect to an 18-parameter group, which includes the Poincare group as a subgroup. A 28-parameter invariance group of the Kemmer-Duffin-Petiau equation is found. Finite transformations of the conformal group for a massless field with arbitrary spin are obtained. The explicit form of conformal transformations for the electromagnetic field and also for the Dirac and Weyl fields is given

  10. Estimates for Solutions of Differential Equations in a Banach Space via Commutators

    Directory of Open Access Journals (Sweden)

    Gil’ Michael

    2018-02-01

    Full Text Available In a Banach space we consider the equation dx(t/dt = (A + B(t×(t (t ≥ 0, where A is a constant bounded operator, and B(t is a bounded variable operator.Norm estimates for the solutions of the considered equation are derived in terms of the commutator AB(t − B(tA. These estimates give us sharp stability conditions. Our results are new even in the finite dimensional case.We also discuss applications of the obtained results to a class of integro-differential equations.

  11. On new and old symmetries of Maxwell and Dirac equations

    International Nuclear Information System (INIS)

    Fushchich, V.I.; Nikitin, A.G.

    1983-01-01

    Symmetry properties of the Maxwell equation for the electromagnetic field are analysed as well as of the Dirac and Kemmer-Duffin-Petiau one. In the frame of the non-geometrical approach it is demonstrated, that besides to the well-known invariance under the conformal group and Heaviside-Larmor-Rainich transformation, Maxwell equation possess the additional symmetry under the group U(2)xU(2) and under the 23-dimensional Lie algebra A 23 . The additional symmetry transformations are realized by the non-local (integro-differential) operators. The symmetry of the Dirac. equation under the differential and integro-differential transformations is investio.ated. It is shown that this equation is invariant under the 18-parametrical group, which includes the Poincare group as a subgroup. The 28-parametrical invariance group of the Kemmer-Duffin-Petiau equation is found. The finite conformal group transformations for a massless field of any spin are obtained. The explicit form of the conformal transformations for the electromagnetic field as well as for the Dirac and Weyl fields is given

  12. Numerical treatment for solving two-dimensional space-fractional advection-dispersion equation using meshless method

    Science.gov (United States)

    Cheng, Rongjun; Sun, Fengxin; Wei, Qi; Wang, Jufeng

    2018-02-01

    Space-fractional advection-dispersion equation (SFADE) can describe particle transport in a variety of fields more accurately than the classical models of integer-order derivative. Because of nonlocal property of integro-differential operator of space-fractional derivative, it is very challenging to deal with fractional model, and few have been reported in the literature. In this paper, a numerical analysis of the two-dimensional SFADE is carried out by the element-free Galerkin (EFG) method. The trial functions for the SFADE are constructed by the moving least-square (MLS) approximation. By the Galerkin weak form, the energy functional is formulated. Employing the energy functional minimization procedure, the final algebraic equations system is obtained. The Riemann-Liouville operator is discretized by the Grünwald formula. With center difference method, EFG method and Grünwald formula, the fully discrete approximation schemes for SFADE are established. Comparing with exact results and available results by other well-known methods, the computed approximate solutions are presented in the format of tables and graphs. The presented results demonstrate the validity, efficiency and accuracy of the proposed techniques. Furthermore, the error is computed and the proposed method has reasonable convergence rates in spatial and temporal discretizations.

  13. Wave equations on a de Sitter fiber bundle. [Semiclassical wave function, bundle space, L-S coupling

    Energy Technology Data Exchange (ETDEWEB)

    Drechsler, W [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (F.R. Germany)

    1975-01-01

    A gauge theory of strong interaction is developed based on fields defined on a fiber bundle. The structural group of the bundle is taken to be the Lsub(4,1) de Sitter group. An internal variable xi, varying in the fiber over a space-time point x, is introduced as a means to describe - with the help of a semiclassical wave function psi(x,xi) defined on the bundle space - the internal structure of extended hadrons in a framework using differential geometric techniques. Three basic nonlinear wave equations for psi(x,xi) are established which are of integro-differential type. The nonlinear coupling terms in these de Sitter gauge invariant equations represent physically a generalized spin orbit coupling or a generalized spin coupling for the motion taking place in the fiber. The motivation for using a bigger space for the definition of hadronic matter wave functions as well as the implications of this geometric approach to strong interaction physics is discussed in detail, in particular with respect to the problem of hadronic constituents. The proposed fiber bundle formalism allows a dynamical description of extended structures for hadrons without implying the necessity of introducing any constituents.

  14. Error analysis in Fourier methods for option pricing for exponential Lévy processes

    KAUST Repository

    Crocce, Fabian; Hä ppö lä , Juho; Keissling, Jonas; Tempone, Raul

    2015-01-01

    We derive an error bound for utilising the discrete Fourier transform method for solving Partial Integro-Differential Equations (PIDE) that describe european option prices for exponential Lévy driven asset prices. We give sufficient conditions

  15. Error Analysis for Fourier Methods for Option Pricing

    KAUST Repository

    Hä ppö lä , Juho

    2016-01-01

    We provide a bound for the error committed when using a Fourier method to price European options when the underlying follows an exponential Levy dynamic. The price of the option is described by a partial integro-differential equation (PIDE

  16. Nonmaxwell relaxation in disordered media: Physical mechanisms and fractional relaxation equations

    International Nuclear Information System (INIS)

    Arkhincheev, V.E.

    2004-12-01

    The problem of charge relaxation in disordered systems has been solved. It is shown, that due to the inhomogeneity of the medium the charge relaxation has a non-Maxwell character. The two physical mechanisms of a such behavior have been founded. The first one is connected with the 'fractality' of conducting ways. The second mechanism of nonexponential non-Maxwell behavior is connected with the frequency dispersion of effective conductivity of heterogeneous medium, initially consisting of conducting phases without dispersion. The new generalized relaxation equations in the form of fractional temporal integro-differential equations are deduced. (author)

  17. The Landau-Lifshitz equation describes the Ising spin correlation function in the free-fermion model

    CERN Document Server

    Rutkevich, S B

    1998-01-01

    We consider time and space dependence of the Ising spin correlation function in a continuous one-dimensional free-fermion model. By the Ising spin we imply the 'sign' variable, which takes alternating +-1 values in adjacent domains bounded by domain walls (fermionic world paths). The two-point correlation function is expressed in terms of the solution of the Cauchy problem for a nonlinear partial differential equation, which is proved to be equivalent to the exactly solvable Landau-Lifshitz equation. A new zero-curvature representation for this equation is presented. In turn, the initial condition for the Cauchy problem is given by the solution of a nonlinear ordinary differential equation, which has also been derived. In the Ising limit the above-mentioned partial and ordinary differential equations reduce to the sine-Gordon and Painleve III equations, respectively. (author)

  18. Describing model of empowering managers by applying structural equation modeling: A case study of universities in Ardabil

    Directory of Open Access Journals (Sweden)

    Maryam Ghahremani Germi

    2015-06-01

    Full Text Available Empowerment is still on the agenda as a management concept and has become a widely used management term in the last decade or so. The purpose of this research was describing model of empowering managers by applying structural equation modeling (SEM at Ardabil universities. Two hundred and twenty managers of Ardabil universities including chancellors, managers, and vice presidents of education, research, and studies participated in this study. Clear and challenging goals, evaluation of function, access to resources, and rewarding were investigated. The results indicated that the designed SEM for empowering managers at university reflects a good fitness level. As it stands out, the conceptual model in the society under investigation was used appropriately. Among variables, access to resources with 88 per cent of load factor was known as the affective variable. Evaluation of function containing 51 per cent of load factor was recognized to have less effect. Results of average rating show that evaluation of function and access to resources with 2.62 coefficients stand at first level. Due to this, they had great impact on managers' empowerment. The results of the analysis provided compelling evidence that model of empowering managers was desirable at Ardabil universities.

  19. A scale-entropy diffusion equation to describe the multi-scale features of turbulent flames near a wall

    Science.gov (United States)

    Queiros-Conde, D.; Foucher, F.; Mounaïm-Rousselle, C.; Kassem, H.; Feidt, M.

    2008-12-01

    Multi-scale features of turbulent flames near a wall display two kinds of scale-dependent fractal features. In scale-space, an unique fractal dimension cannot be defined and the fractal dimension of the front is scale-dependent. Moreover, when the front approaches the wall, this dependency changes: fractal dimension also depends on the wall-distance. Our aim here is to propose a general geometrical framework that provides the possibility to integrate these two cases, in order to describe the multi-scale structure of turbulent flames interacting with a wall. Based on the scale-entropy quantity, which is simply linked to the roughness of the front, we thus introduce a general scale-entropy diffusion equation. We define the notion of “scale-evolutivity” which characterises the deviation of a multi-scale system from the pure fractal behaviour. The specific case of a constant “scale-evolutivity” over the scale-range is studied. In this case, called “parabolic scaling”, the fractal dimension is a linear function of the logarithm of scale. The case of a constant scale-evolutivity in the wall-distance space implies that the fractal dimension depends linearly on the logarithm of the wall-distance. We then verified experimentally, that parabolic scaling represents a good approximation of the real multi-scale features of turbulent flames near a wall.

  20. Non-Markovianity in the optimal control of an open quantum system described by hierarchical equations of motion

    Science.gov (United States)

    Mangaud, E.; Puthumpally-Joseph, R.; Sugny, D.; Meier, C.; Atabek, O.; Desouter-Lecomte, M.

    2018-04-01

    Optimal control theory is implemented with fully converged hierarchical equations of motion (HEOM) describing the time evolution of an open system density matrix strongly coupled to the bath in a spin-boson model. The populations of the two-level sub-system are taken as control objectives; namely, their revivals or exchange when switching off the field. We, in parallel, analyze how the optimal electric field consequently modifies the information back flow from the environment through different non-Markovian witnesses. Although the control field has a dipole interaction with the central sub-system only, its indirect influence on the bath collective mode dynamics is probed through HEOM auxiliary matrices, revealing a strong correlation between control and dissipation during a non-Markovian process. A heterojunction is taken as an illustrative example for modeling in a realistic way the two-level sub-system parameters and its spectral density function leading to a non-perturbative strong coupling regime with the bath. Although, due to strong system-bath couplings, control performances remain rather modest, the most important result is a noticeable increase of the non-Markovian bath response induced by the optimally driven processes.

  1. An extended model based on the modified Nernst-Planck equation for describing transdermal iontophoresis of weak electrolytes.

    Science.gov (United States)

    Imanidis, Georgios; Luetolf, Peter

    2006-07-01

    An extended model for iontophoretic enhancement of transdermal drug permeation under constant voltage is described based on the previously modified Nernst-Planck equation, which included the effect of convective solvent flow. This model resulted in an analytical expression for the enhancement factor as a function of applied voltage, convective flow velocity due to electroosmosis, ratio of lipid to aqueous pathway passive permeability, and weighted average net ionic valence of the permeant in the aqueous epidermis domain. The shift of pH in the epidermis compared to bulk caused by the electrical double layer at the lipid-aqueous domain interface was evaluated using the Poisson-Boltzmann equation. This was solved numerically for representative surface charge densities and yielded pH differences between bulk and epidermal aqueous domain between 0.05 and 0.4 pH units. The developed model was used to analyze the experimental enhancement of an amphoteric weak electrolyte measured in vitro using human cadaver epidermis and a voltage of 250 mV at different pH values. Parameter values characterizing the involved factors were determined that yielded the experimental enhancement factors and passive permeability coefficients at all pH values. The model provided a very good agreement between experimental and calculated enhancement and passive permeability. The deduced parameters showed (i) that the pH shift in the aqueous permeation pathway had a notable effect on the ionic valence and the partitioning of the drug in this domain for a high surface charge density and depending on the pK(a) and pI of the drug in relation to the bulk pH; (ii) the magnitude and the direction of convective transport due to electroosmosis typically reflected the density and sign, respectively, of surface charge of the tissue and its effect on enhancement was substantial for bulk pH values differing from the pI of epidermal tissue; (iii) the aqueous pathway predominantly determined passive

  2. Item response theory and structural equation modelling for ordinal data: Describing the relationship between KIDSCREEN and Life-H.

    Science.gov (United States)

    Titman, Andrew C; Lancaster, Gillian A; Colver, Allan F

    2016-10-01

    Both item response theory and structural equation models are useful in the analysis of ordered categorical responses from health assessment questionnaires. We highlight the advantages and disadvantages of the item response theory and structural equation modelling approaches to modelling ordinal data, from within a community health setting. Using data from the SPARCLE project focussing on children with cerebral palsy, this paper investigates the relationship between two ordinal rating scales, the KIDSCREEN, which measures quality-of-life, and Life-H, which measures participation. Practical issues relating to fitting models, such as non-positive definite observed or fitted correlation matrices, and approaches to assessing model fit are discussed. item response theory models allow properties such as the conditional independence of particular domains of a measurement instrument to be assessed. When, as with the SPARCLE data, the latent traits are multidimensional, structural equation models generally provide a much more convenient modelling framework. © The Author(s) 2013.

  3. An analytical method for solving exact solutions of a nonlinear evolution equation describing the dynamics of ionic currents along microtubules

    Directory of Open Access Journals (Sweden)

    Md. Nur Alam

    2017-11-01

    Full Text Available In this article, a variety of solitary wave solutions are observed for microtubules (MTs. We approach the problem by treating the solutions as nonlinear RLC transmission lines and then find exact solutions of Nonlinear Evolution Equations (NLEEs involving parameters of special interest in nanobiosciences and biophysics. We determine hyperbolic, trigonometric, rational and exponential function solutions and obtain soliton-like pulse solutions for these equations. A comparative study against other methods demonstrates the validity of the technique that we developed and demonstrates that our method provides additional solutions. Finally, using suitable parameter values, we plot 2D and 3D graphics of the exact solutions that we observed using our method. Keywords: Analytical method, Exact solutions, Nonlinear evolution equations (NLEEs of microtubules, Nonlinear RLC transmission lines

  4. Hadamard-type fractional differential equations, inclusions and inequalities

    CERN Document Server

    Ahmad, Bashir; Ntouyas, Sotiris K; Tariboon, Jessada

    2017-01-01

    This book focuses on the recent development of fractional differential equations, integro-differential equations, and inclusions and inequalities involving the Hadamard derivative and integral. Through a comprehensive study based in part on their recent research, the authors address the issues related to initial and boundary value problems involving Hadamard type differential equations and inclusions as well as their functional counterparts. The book covers fundamental concepts of multivalued analysis and introduces a new class of mixed initial value problems involving the Hadamard derivative and Riemann-Liouville fractional integrals. In later chapters, the authors discuss nonlinear Langevin equations as well as coupled systems of Langevin equations with fractional integral conditions. Focused and thorough, this book is a useful resource for readers and researchers interested in the area of fractional calculus.

  5. An integral equation method for discrete and continuous distribution of centres in thermoluminescence kinetics

    International Nuclear Information System (INIS)

    Kantorovich, L.N.; Fogel, G.M.; Gotlib, V.I.

    1990-01-01

    Thermoluminescence kinetics is discussed within the framework of a band model containing an arbitrary number of types of recombination and trapping centres at an arbitrary correlation of all centre parameters. It is shown that the initial system of kinetic equations is reduced to an equivalent system consisting of two integro-differential equations which permit one to perform an accurate generalisation, in the case of a continuous centre distribution, to their parameters for the description of irradiation and thermoluminescence, taking into account charge carrier redistribution to both types of centre. In addition, if only one electron (hole) channel is taken into account, only one integro-differential equation is obtained. On the basis of this equation a precise algebraic equation is obtained for calculation of the area of an arbitrary part of the thermoluminescence curve (TLC), consisting of one or several peaks, which slightly overlap with other peaks. It is shown that at doses which are less than the saturation dose, when the centres are not completely filled by the charge carriers, the dose dependences of such a part of the TLC may have a non-linear character at a simultaneous linear dependence of the area of the whole TLC. At doses which are greater than the saturation dose, the dose dependences of the area of the whole TLC, as well as of its separate parts, undergo breaks at the saturation doses. (author)

  6. A family of solutions to the Einstein-Maxwell system of equations describing relativistic charged fluid spheres

    Science.gov (United States)

    Komathiraj, K.; Sharma, Ranjan

    2018-05-01

    In this paper, we present a formalism to generate a family of interior solutions to the Einstein-Maxwell system of equations for a spherically symmetric relativistic charged fluid sphere matched to the exterior Reissner-Nordström space-time. By reducing the Einstein-Maxwell system to a recurrence relation with variable rational coefficients, we show that it is possible to obtain closed-form solutions for a specific range of model parameters. A large class of solutions obtained previously are shown to be contained in our general class of solutions. We also analyse the physical viability of our new class of solutions.

  7. The analysis of the derivation principles of kinetic equations based on exactly solvable models of the bulk reaction A + B → Product

    International Nuclear Information System (INIS)

    Kipriyanov, A.A.; Doktorov, A.B.

    2005-01-01

    We have considered two many-particle models of the irreversible reaction A + B → Product for which closed kinetic equations for the mean concentration N A (t) of A species can be exactly obtained. These equations are identically recast into a unified form of integro-differential equation of general kinetic theory. It is shown that the memory functions for both models under consideration can be represented as a sum of the Markovian and non-Markovian parts. It is essential that the Markovian part of the Laplace transform of any kernel can be obtained using the Laplace transform of the kernel itself, and is the root of the non-Markovian part of the Laplace transform of the kernel. The properties established allowed us to perform correct approximation of the memory functions at small concentrations [B] of B species and derive the binary non-Markovian integro-differential equation. Within the binary theory accuracy this equation has been rewritten in a regular frame of a familiar rate equation satisfying general principles of binary kinetic equations. Thus using particular exactly solvable many-particle models, we have reproduced the most essential steps of the known general way for the derivation of the binary kinetic equation avoiding the sophisticated many-particle technique and the corresponding approximations. Besides, the results obtained can serve as an additional evidence of the approximations made in a general many-particle approach to the derivation of the binary kinetic equation

  8. Examination of the Validity of the Saha Equation in a Gas Discharge

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, J. F.; Kruger, C. H.; Mitchner, M.; Viegas, J. R. [Stanford University, CA (United States)

    1966-11-15

    The electron number density, n{sub e} , and the number densities of the various states, n{sub k} , in a steady-state partially-ionized gas are determined by a set of rate equations which describe the collisional and radiative rates at which the various states are populated and depopulated. Symbolically, these algebraic equations in n{sub e} and n{sub k} have the form F{sub e} [n{sub e}, n{sub k}; f(v)] = 0, F{sub k} [n{sub e}, n{sub k}; f(v)] with k = 1, 2, . . . N, and where f(v) is the free electron velocity distribution function. On the other hand, f(v) is determined by the electron Boltzmann equation. In the case of an applied electron field E, this is an integro-differential equation which may be written symbolically G[f(v); n{sub e}, n{sub k}; T, E] = 0, where T denotes the temperature of the heavy particles. It is apparent that a rigorous solution for the degree of ionization (and consequently the electrical conductivity) requires simultaneous solution of these coupled equations. In previous work, these equations have been examined separately. For example, Ben-Daniel and Tamor have solved the rate equations but have assumed f(v) to be Maxwellian. However, Dewan has shown that the solution of the rate equations is very sensitive to the form of f(v), particularly at large velocities. The solution of the Boltzmann equation with inelastic collisions (which presumably are important in determining the large velocity behaviour of f(v)) has been considered by Engelhardt and Phelps, as well as others, and it is known that even in the absence of inelastic collisions,' f(v)may depart significantly from a Maxwellian. Using numerical procedures, these coupled equations have been solved to give solutions which describe an alkali-metal-seeded noble gas at atmospheric pressure. Results are presented showing the effect of non-equilibrium phenomena on the degree of ionization and the electrical conductivity of the plasma. The effects, both of photon escape and of non

  9. Equation of motion approach for describing allowed transitions in Ne and Al3+ under classical and quantum plasmas

    Science.gov (United States)

    Chaudhuri, Supriya K.; Mukherjee, Prasanta K.; Chaudhuri, Rajat K.; Chattopadhyay, Sudip

    2018-04-01

    The equation of motion coupled cluster methodology within relativistic framework has been applied to analyze the electron correlation effects on the low lying dipole allowed excited states of Ne and Al3+ under classical and quantum plasma environments. The effect of confinement due to classical plasma has been incorporated through screened Coulomb potential, while that of quantum plasma has been treated by exponential cosine screened Coulomb potential. The confined structural properties investigated are the depression of ionization potential, low lying excitation energies (dipole allowed), oscillator strengths, transition probabilities, and frequency dependent polarizabilities under systematic variation of the plasma-atom coupling strength determined through the screening parameter. Specific atomic systems are chosen for their astrophysical importance and availability of experimental data related to laboratory plasma with special reference to Al3+ ion. Here, we consider 1 s22 s22 p6(1S0)→1 s22 s22 p5 n s /n d (1P1) (n =3 ,4 ) dipole allowed transitions of Ne and Al3+. Results for the free (isolated) atomic systems agree well with those available in the literature. Spectroscopic properties under confinement show systematic and interesting pattern with respect to plasma screening parameter.

  10. Comparison of stationary and oscillatory dynamics described by differential equations and Boolean maps in transcriptional regulatory circuits

    Science.gov (United States)

    Ye, Weiming; Li, Pengfei; Huang, Xuhui; Xia, Qinzhi; Mi, Yuanyuan; Chen, Runsheng; Hu, Gang

    2010-10-01

    Exploring the principle and relationship of gene transcriptional regulations (TR) has been becoming a generally researched issue. So far, two major mathematical methods, ordinary differential equation (ODE) method and Boolean map (BM) method have been widely used for these purposes. It is commonly believed that simplified BMs are reasonable approximations of more realistic ODEs, and both methods may reveal qualitatively the same essential features though the dynamical details of both systems may show some differences. In this Letter we exhaustively enumerated all the 3-gene networks and many autonomous randomly constructed TR networks with more genes by using both the ODE and BM methods. In comparison we found that both methods provide practically identical results in most of cases of steady solutions. However, to our great surprise, most of network structures showing periodic cycles with the BM method possess only stationary states in ODE descriptions. These observations strongly suggest that many periodic oscillations and other complicated oscillatory states revealed by the BM rule may be related to the computational errors of variable and time discretizations and rarely have correspondence in realistic biology transcriptional regulatory circuits.

  11. Solving the equation of neutron transport

    International Nuclear Information System (INIS)

    Nasfi, Rim

    2009-01-01

    This work is devoted to the study of some numerical methods of resolution of the problem of transport of the neutrons. We started by introducing the equation integro-differential transport of the neutrons. Then we applied the finite element method traditional for stationary and nonstationary linear problems in 2D. A great part is reserved for the presentation of the mixed numerical diagram and mixed hybrid with two types of uniform grids: triangular and rectangular. Thereafter we treated some numerical examples by implementations in Matlab in order to test the convergence of each method. To finish, we had results of simulation by the Monte Carlo method on a problem of two-dimensional transport with an aim of comparing them with the results resulting from the finite element method mixed hybrids. Some remarks and prospects conclude this work.

  12. Birth–death process of local structures in defect turbulence described by the one-dimensional complex Ginzburg–Landau equation

    Energy Technology Data Exchange (ETDEWEB)

    Uchiyama, Yusuke, E-mail: r1230160@risk.tsukuba.ac.jp; Konno, Hidetoshi

    2014-04-01

    Defect turbulence described by the one-dimensional complex Ginzburg–Landau equation is investigated and analyzed via a birth–death process of the local structures composed of defects, holes, and modulated amplitude waves (MAWs). All the number statistics of each local structure, in its stationary state, are subjected to Poisson statistics. In addition, the probability density functions of interarrival times of defects, lifetimes of holes, and MAWs show the existence of long-memory and some characteristic time scales caused by zigzag motions of oscillating traveling holes. The corresponding stochastic process for these observations is fully described by a non-Markovian master equation.

  13. Is Brenner's Modification to the Classical Navier–Stokes Equations Able to Describe Sound Propagation in Gases?

    International Nuclear Information System (INIS)

    Marques, W. Jr.

    2008-01-01

    We analyse the problem concerning the propagation of sound waves in gases by using the modified hydrodynamic theory proposed recently by Brenner for single-component fluids. The modifications introduced by Brenner are based on his proposal that the translational momentum in fluid motion is not given by the mass flux. Comparison of the sound propagation results derived from Brenner's theory with available experimental data for monatomic gases shows that this modified continuum theory is unable to describe the acoustic measurements not even in the low-frequency limit, a result that from our point of view makes Brenner's proposal questionable

  14. Extension of the GroIMP modelling platform to allow easy specification of differential equations describing biological processes within plant models

    NARCIS (Netherlands)

    Hemmerling, R.; Evers, J.B.; Smolenova, K.; Buck-Sorlin, G.H.; Kurth, W.

    2013-01-01

    In simulation models of plant development, physiological processes taking place in plants are typically described in terms of ODEs (Ordinary Differential Equations). On the one hand, those processes drive the development of the plant structure and on the other hand, the developed structure again

  15. Integrability and soliton solutions for an inhomogeneous generalized fourth-order nonlinear Schrödinger equation describing the inhomogeneous alpha helical proteins and Heisenberg ferromagnetic spin chains

    International Nuclear Information System (INIS)

    Wang, Pan; Tian, Bo; Jiang, Yan; Wang, Yu-Feng

    2013-01-01

    For describing the dynamics of alpha helical proteins with internal molecular excitations, nonlinear couplings between lattice vibrations and molecular excitations, and spin excitations in one-dimensional isotropic biquadratic Heisenberg ferromagnetic spin with the octupole–dipole interactions, we consider an inhomogeneous generalized fourth-order nonlinear Schrödinger equation. Based on the Ablowitz–Kaup–Newell–Segur system, infinitely many conservation laws for the equation are derived. Through the auxiliary function, bilinear forms and N-soliton solutions for the equation are obtained. Interactions of solitons are discussed by means of the asymptotic analysis. Effects of linear inhomogeneity on the interactions of solitons are also investigated graphically and analytically. Since the inhomogeneous coefficient of the equation h=α x+β, the soliton takes on the parabolic profile during the evolution. Soliton velocity is related to the parameter α, distance scale coefficient and biquadratic exchange coefficient, but has no relation with the parameter β. Soliton amplitude and width are only related to α. Soliton position is related to β

  16. Methods of Investigation of Equations that Describe Waves in Tubes with Elastic Walls and Application of the Theory of Reversible and Weak Dissipative Shocks

    Science.gov (United States)

    Bakholdin, Igor

    2018-02-01

    Various models of a tube with elastic walls are investigated: with controlled pressure, filled with incompressible fluid, filled with compressible gas. The non-linear theory of hyperelasticity is applied. The walls of a tube are described with complete membrane model. It is proposed to use linear model of plate in order to take the bending resistance of walls into account. The walls of the tube were treated previously as inviscid and incompressible. Compressibility of material of walls and viscosity of material, either gas or liquid are considered. Equations are solved numerically. Three-layer time and space centered reversible numerical scheme and similar two-layer space reversible numerical scheme with approximation of time derivatives by Runge-Kutta method are used. A method of correction of numerical schemes by inclusion of terms with highorder derivatives is developed. Simplified hyperbolic equations are derived.

  17. Gaussian approximations for stochastic systems with delay: Chemical Langevin equation and application to a Brusselator system

    International Nuclear Information System (INIS)

    Brett, Tobias; Galla, Tobias

    2014-01-01

    We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation, a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period

  18. Gaussian approximations for stochastic systems with delay: chemical Langevin equation and application to a Brusselator system.

    Science.gov (United States)

    Brett, Tobias; Galla, Tobias

    2014-03-28

    We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation, a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period.

  19. Korteweg-deVries-Burgers (KdVB) equation in a five component cometary plasma with kappa described electrons and ions

    Science.gov (United States)

    Michael, Manesh; Willington, Neethu T.; Jayakumar, Neethu; Sebastian, Sijo; Sreekala, G.; Venugopal, Chandu

    2016-12-01

    We investigate the existence of ion-acoustic shock waves in a five component cometary plasma consisting of positively and negatively charged oxygen ions, kappa described hydrogen ions, hot solar electrons, and slightly colder cometary electrons. The KdVB equation has been derived for the system, and its solution plotted for different kappa values, oxygen ion densities, as well as the temperature ratios for the ions. It is found that the amplitude of the shock wave decreases with increasing kappa values. The strength of the shock profile decreases with increasing temperatures of the positively charged oxygen ions and densities of negatively charged oxygen ions.

  20. Simultaneous release of diclofenac sodium and papaverine hydrochloride from tablets and pellets using the flow-through cell apparatus described by dimensionless equations.

    Science.gov (United States)

    Kasperek, Regina

    2011-01-01

    The release of diclofenac sodium and papaverine hydrochloride from tablets and pellets using the flow-through cell apparatus was studied. The influence of excipients and of a size of the solid dosage forms on the amount of the released substances at the intervals of time using the different rates of flow of the dissolution medium was investigated. Physical parameters corresponding to the dissolution process as the mass transfer coefficient, the thickness of the boundary diffusion layer and the concentration of the saturated solution at this layer were calculated. The results of release were described by dimensionless equations.

  1. Using non-linear analogue of Nyquist diagrams for analysis of the equation describing the hemodynamics in blood vessels near pathologies

    Science.gov (United States)

    Cherevko, A. A.; Bord, E. E.; Khe, A. K.; Panarin, V. A.; Orlov, K. J.; Chupakhin, A. P.

    2016-06-01

    This article considers method of describing the behaviour of hemodynamic parameters near vascular pathologies. We study the influence of arterial aneurysms and arteriovenous malformations on the vascular system. The proposed method involves using generalized model of Van der Pol-Duffing to find out the characteristic behaviour of blood flow parameters. These parameters are blood velocity and pressure in the vessel. The velocity and pressure are obtained during the neurosurgery measurements. It is noted that substituting velocity on the right side of the equation gives good pressure approximation. Thus, the model reproduces clinical data well enough. In regard to the right side of the equation, it means external impact on the system. The harmonic functions with various frequencies and amplitudes are substituted on the right side of the equation to investigate its properties. Besides, variation of the right side parameters provides additional information about pressure. Non-linear analogue of Nyquist diagrams is used to find out how the properties of solution depend on the parameter values. We have analysed 60 cases with aneurysms and 14 cases with arteriovenous malformations. It is shown that the diagrams are divided into classes. Also, the classes are replaced by another one in the definite order with increasing of the right side amplitude.

  2. Microscopic tunneling theory of long Josephson junctions

    DEFF Research Database (Denmark)

    Grønbech-Jensen, N.; Hattel, Søren A.; Samuelsen, Mogens Rugholm

    1992-01-01

    We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate that the detai......We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate...

  3. Invariant and partially-invariant solutions of the equations describing a non-stationary and isentropic flow for an ideal and compressible fluid in (3 + 1) dimensions

    Science.gov (United States)

    Grundland, A. M.; Lalague, L.

    1996-04-01

    This paper presents a new method of constructing, certain classes of solutions of a system of partial differential equations (PDEs) describing the non-stationary and isentropic flow for an ideal compressible fluid. A generalization of the symmetry reduction method to the case of partially-invariant solutions (PISs) has been formulated. We present a new algorithm for constructing PISs and discuss in detail the necessary conditions for the existence of non-reducible PISs. All these solutions have the defect structure 0305-4470/29/8/019/img1 and are computed from four-dimensional symmetric subalgebras. These theoretical considerations are illustrated by several examples. Finally, some new classes of invariant solutions obtained by the symmetry reduction method are included. These solutions represent central, conical, rational, spherical, cylindrical and non-scattering double waves.

  4. Solution of the Multigroup-Diffusion equation by the response matrix method

    International Nuclear Information System (INIS)

    Oliveira, C.R.E.

    1980-10-01

    A preliminary analysis of the response matrix method is made, considering its application to the solution of the multigroup diffusion equations. The one-dimensional formulation is presented and used to test some flux expansions, seeking the application of the method to the two-dimensional problem. This formulation also solves the equations that arise from the integro-differential synthesis algorithm. The slow convergence of the power method, used to solve the eigenvalue problem, and its acceleration by means of the Chebyshev polynomial method, are also studied. An algorithm for the estimation of the dominance ratio is presented, based on the residues of two successive iteration vectors. This ratio, which is not known a priori, is fundamental for the efficiency of the method. Some numerical problems are solved, testing the 1D formulation of the response matrix method, its application to the synthesis algorithm and also, at the same time, the algorithm to accelerate the source problem. (Author) [pt

  5. Defect induced intermittency in the transit time dynamics generates 1/f noise in a trimer described by the discrete nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Pando L, C.L.; Doedel, E.J.

    2006-08-01

    We investigate the nonlinear dynamics in a trimer, described by the one-dimensional discrete nonlinear Schrodinger equation (DNLSE), with periodic boundary conditions in the presence of a single on-site defect. We make use of numerical continuation to study different families of stationary and periodic solutions, which allows us to consider suitable perturbations. Taking into account a Poincare section, we are able to study the dynamics in both a thin stochastic layer solution and a global stochasticity solution. We find that the time series of the transit times, the time intervals to traverse some suitable sets in phase space, generate 1/f noise for both stochastic solutions. In the case of the thin stochastic layer solution, we find that transport between two almost invariant sets along with intermittency in small and large time scales are relevant features of the dynamics. These results are reflected in the behaviour of the standard map with suitable parameters. In both chaotic solutions, the distribution of transit times has a maximum and a tail with exponential decay in spite of the presence of long-range correlations in the time series. We motivate our study by considering a ring of weakly-coupled Bose-Einstein condensates (BEC) with attractive interactions, where inversion of populations between two spatially symmetric sites and phase locking take place in both chaotic solutions. (author)

  6. Intermediate modeling between kinetic equations and hydrodynamic limits: derivation, analysis and simulations

    International Nuclear Information System (INIS)

    Parisot, M.

    2011-01-01

    This work is dedicated study of a problem resulting from plasma physics: the thermal transfer of electrons in a plasma close to equilibrium Maxwellian. Firstly, a dimensional study of the Vlasov-Fokker-Planck-Maxwell system is performed, allowing one hand to identify a physically relevant parameter of scale and also to define mathematically the contours of validity domain. The asymptotic regime called Spitzer-Harm is studied for a relatively general class of collision operator. The following part of this work is devoted to the derivation and study of the hydrodynamic limit of the system of Vlasov-Maxwell-Landau outside the strictly asymptotic. A model proposed by Schurtz and Nicolais located in this context and analyzed. The particularity of this model lies in the application of a delocalization operation in the heat flux. The link with non-local models of Luciani and Mora is established as well as mathematics properties as the principle of maximum and entropy dissipation. Then a formal derivation from the Vlasov equations with a simplified collision operator, is proposed. The derivation, inspired by the recent work of D. Levermore, involves decomposition methods according to the spherical harmonics and methods of closing called diffusion methods. A hierarchy of intermediate models between the kinetic equations and the hydrodynamic limit is described. In particular a new hydrodynamic system integro-differential by nature, is proposed. The Schurtz and Nicolai model appears as a simplification of the system resulting from the derivation, assuming a steady flow of heat. The above results are then generalized to account for the internal energy dependence which appears naturally in the equation establishment. The existence and uniqueness of the solution of the nonstationary system are established in a simplified framework. The last part is devoted was the implementation of a specific numerical scheme to solve these models. We propose a finite volume approach can be

  7. The validity of quantum-classical multi-channel diffusion equations describing interlevel transitions in the condensed phase. The adiabatic representation

    CERN Document Server

    Basilevsky, M V

    2002-01-01

    We develop an approach for derivation of quantum-classical relaxation equations for a two-channel problem. The treatment is based on the adiabatic channel wavefunctions and the system-bath coupling is modelled as a bilinear interaction in momentum representation. In the quantum-classical limit we obtain Liouville equations with the relaxation operator containing diffusion terms diagonal in Liouvillian space and the off-diagonal part which is responsible for thermal interlevel transitions. The high-frequency interlevel quantum beats are fully taken into account in this relaxation term. In the framework of the present formulation and as a consequence of the momentum-dependent interaction the Smoluchovsky diffusion limit can be reached without invoking Fokker-Planck equations as an intermediate step. The inherent property of equations so obtained is that the partial rates of interlevel transitions obey the principle of detailed balance. This result could not be gained in earlier treatments of the two-level diffu...

  8. A Coupled System of Integrodifferential Equations Arising in Liquidity Risk Model

    International Nuclear Information System (INIS)

    Pham, Huyen; Tankov, Peter

    2009-01-01

    We study the mathematical aspects of the portfolio/consumption choice problem in a market model with liquidity risk introduced in (Pham and Tankov, Math. Finance, 2006, to appear). In this model, the investor can trade and observe stock prices only at exogenous Poisson arrival times. He may also consume continuously from his cash holdings, and his goal is to maximize his expected utility from consumption. This is a mixed discrete/continuous time stochastic control problem, nonstandard in the literature. We show how the dynamic programming principle leads to a coupled system of Integro-Differential Equations (IDE), and we prove an analytic characterization of this control problem by adapting the concept of viscosity solutions. This coupled system of IDE may be numerically solved by a decoupling algorithm, and this is the topic of a companion paper (Pham and Tankov, Math. Finance, 2006, to appear)

  9. Application of Reproducing Kernel Method for Solving Nonlinear Fredholm-Volterra Integrodifferential Equations

    Directory of Open Access Journals (Sweden)

    Omar Abu Arqub

    2012-01-01

    Full Text Available This paper investigates the numerical solution of nonlinear Fredholm-Volterra integro-differential equations using reproducing kernel Hilbert space method. The solution ( is represented in the form of series in the reproducing kernel space. In the mean time, the n-term approximate solution ( is obtained and it is proved to converge to the exact solution (. Furthermore, the proposed method has an advantage that it is possible to pick any point in the interval of integration and as well the approximate solution and its derivative will be applicable. Numerical examples are included to demonstrate the accuracy and applicability of the presented technique. The results reveal that the method is very effective and simple.

  10. Simulation, optimal control and parametric sensitivity analysis of a molten carbonate fuel cell using a partial differential algebraic dynamic equation system; Simulation, Optimale Steuerung und Sensitivitaetsanalyse einer Schmelzkarbonat-Brennstoffzelle mithilfe eines partiellen differential-algebraischen dynamischen Gleichungssystems

    Energy Technology Data Exchange (ETDEWEB)

    Sternberg, K

    2007-02-08

    Molten carbonate fuel cells (MCFCs) allow an efficient and environmentally friendly energy production by converting the chemical energy contained in the fuel gas in virtue of electro-chemical reactions. In order to predict the effect of the electro-chemical reactions and to control the dynamical behavior of the fuel cell a mathematical model has to be found. The molten carbonate fuel cell (MCFC) can indeed be described by a highly complex,large scale, semi-linear system of partial differential algebraic equations. This system includes a reaction-diffusion-equation of parabolic type, several reaction-transport-equations of hyperbolic type, several ordinary differential equations and finally a system of integro-differential algebraic equations which describes the nonlinear non-standard boundary conditions for the entire partial differential algebraic equation system (PDAE-system). The existence of an analytical or the computability of a numerical solution for this high-dimensional PDAE-system depends on the kind of the differential equations and their special characteristics. Apart from theoretical investigations, the real process has to be controlled, more precisely optimally controlled. Hence, on the basis of the PDAE-system an optimal control problem is set up, whose analytical and numerical solvability is closely linked to the solvability of the PDAE-system. Moreover the solution of that optimal control problem is made more difficult by inaccuracies in the underlying database, which does not supply sufficiently accurate values for the model parameters. Therefore the optimal control problem must also be investigated with respect to small disturbances of model parameters. The aim of this work is to analyze the relevant dynamic behavior of MCFCs and to develop concepts for their optimal process control. Therefore this work is concerned with the simulation, the optimal control and the sensitivity analysis of a mathematical model for MCDCs, which can be characterized

  11. Nonlinear Maxwell's and Schrodinger equations for describing the volumetric interaction of femtosecond laser pulses with transparent solid dielectrics: effect of the boundary conditions

    Czech Academy of Sciences Publication Activity Database

    Zhukov, V.P.; Bulgakova, Nadezhda M.; Fedoruk, M.P.

    2017-01-01

    Roč. 84, č. 7 (2017), s. 439-446 ISSN 1070-9762 R&D Projects: GA MŠk LO1602; GA ČR GA16-12960S Institutional support: RVO:68378271 Keywords : glass * femtosecond laser pulses * Maxwell's and Schrdinger equations Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 0.299, year: 2016

  12. Pilot-wave hydrodynamics in a rotating frame: Exotic orbits

    DEFF Research Database (Denmark)

    Oza, Anand U.; Wind-Willassen, Øistein; Harris, Daniel M.

    2014-01-01

    We present the results of a numerical investigation of droplets walking on a rotating vibrating fluid bath. The drop’s trajectory is described by an integro-differential equation, which is simulated numerically in various parameter regimes. As the forcing acceleration is progressively increased, ...

  13. Power spectrum analysis with least-squares fitting: Amplitude bias and its elimination, with application to optical tweezers and atomic force microscope cantilevers

    DEFF Research Database (Denmark)

    Nørlykke, Simon F.; Flyvbjerg, Henrik

    2010-01-01

    of the characteristic frequency and the diffusion coefficient. We give analytical results for the weight-dependent bias for the wide class of systems whose dynamics is described by a linear (integro)differential equation with additive noise, white or colored. Examples are optical tweezers with hydrodynamic self...

  14. Application of a Crossover Equation of State to Describe Phase Equilibrium and Critical Properties of n-Alkanes and Methane/n-Alkane Mixtures

    DEFF Research Database (Denmark)

    P. C. M. Vinhal, Andre; Yan, Wei; Kontogeorgis, Georgios M.

    2018-01-01

    and the asymptotic one near the critical point. Although several crossover EOSs have been developed in the last decades their use in modeling industrial processes is rather limited. In this work, we use the crossover Soave–Redlich–Kwong (CSRK) to describe phase equilibrium and critical properties of pure n......-alkanes and methane/n-alkane binary mixtures and compare the results to two other modeling approaches of the SRK EOS. In the case of the pure fluids, CSRK gives an accurate overall description of the phase equilibrium and critical properties; nevertheless, a minor increase in the deviation of the saturation pressure...

  15. How Mathematics Describes Life

    Science.gov (United States)

    Teklu, Abraham

    2017-01-01

    The circle of life is something we have all heard of from somewhere, but we don't usually try to calculate it. For some time we have been working on analyzing a predator-prey model to better understand how mathematics can describe life, in particular the interaction between two different species. The model we are analyzing is called the Holling-Tanner model, and it cannot be solved analytically. The Holling-Tanner model is a very common model in population dynamics because it is a simple descriptor of how predators and prey interact. The model is a system of two differential equations. The model is not specific to any particular set of species and so it can describe predator-prey species ranging from lions and zebras to white blood cells and infections. One thing all these systems have in common are critical points. A critical point is a value for both populations that keeps both populations constant. It is important because at this point the differential equations are equal to zero. For this model there are two critical points, a predator free critical point and a coexistence critical point. Most of the analysis we did is on the coexistence critical point because the predator free critical point is always unstable and frankly less interesting than the coexistence critical point. What we did is consider two regimes for the differential equations, large B and small B. B, A, and C are parameters in the differential equations that control the system where B measures how responsive the predators are to change in the population, A represents predation of the prey, and C represents the satiation point of the prey population. For the large B case we were able to approximate the system of differential equations by a single scalar equation. For the small B case we were able to predict the limit cycle. The limit cycle is a process of the predator and prey populations growing and shrinking periodically. This model has a limit cycle in the regime of small B, that we solved for

  16. Real-time Identification and Control of Satellite Signal Impairments Solution and Application of the Stratonovich Equation Part 1. Theoretical Development

    Science.gov (United States)

    Manning, Robert M.

    2016-01-01

    into the future. This is all accomplished by the use of the well-known Stratonovich integro-differential equation that results from the model of the measured signal fade that is also tailored to adaptively adjust the values of the parameters used in the statistical models of the individual fade mechanisms. Three examples of increasing complexity are addressed and solved for the iterative determination of fade component levels from the measured composite signal fade in the presence of measurement error and, in the last case, with uncertainty in the model parameters.

  17. Analytical solution for the transport equation for neutral particles in cylindrical and Cartesian geometry

    International Nuclear Information System (INIS)

    Goncalves, Glenio Aguiar

    2003-01-01

    In this work, we are reported analytical solutions for the transport equation for neutral particles in cylindrical and cartesian geometry. For the cylindrical geometry, it is applied the Hankel transform of order zero in the S N approximation of the one-dimensional cylindrical transport equation, assuming azimuthal symmetry and isotropic scattering. This procedure is coined HTSN method. The anisotropic problem is handled using the decomposition method, generating a recursive approach, which the HTSN solution is used as initial condition. For cartesian geometry, the one and two dimensional transport equation is derived in the angular variable as many time as the degree of the anisotropic scattering. This procedure leads to set of integro-differential plus one differential equation that can be really solved by the variable separation method. Following this procedure, it was possible to come out with the Case solution for the one-dimensional problem. Numerical simulations are reported for the cylindrical transport problem both isotropic and anisotropic case of quadratic degree. (author)

  18. Numerical simulation of liquid film flow on revolution surfaces with momentum integral method

    International Nuclear Information System (INIS)

    Bottoni Maurizio

    2005-01-01

    The momentum integral method is applied in the frame of safety analysis of pressure water reactors under hypothetical loss of coolant accident (LOCA) conditions to simulate numerically film condensation, rewetting and vaporization on the inner surface of pressure water reactor containment. From the conservation equations of mass and momentum of a liquid film arising from condensation of steam upon the inner of the containment during a LOCA in a pressure water reactor plant, an integro-differential equation is derived, referring to an arbitrary axisymmetric surface of revolution. This equation describes the velocity distribution of the liquid film along a meridian of a surface of revolution. From the integro-differential equation and ordinary differential equation of first order for the film velocity is derived and integrated numerically. From the velocity distribution the film thickness distribution is obtained. The solution of the enthalpy equation for the liquid film yields the temperature distribution on the inner surface of the containment. (authors)

  19. Specular reflection treatment for the 3D radiative transfer equation solved with the discrete ordinates method

    Energy Technology Data Exchange (ETDEWEB)

    Le Hardy, D. [Université de Nantes, LTN UMR CNRS 6607 (France); Favennec, Y., E-mail: yann.favennec@univ-nantes.fr [Université de Nantes, LTN UMR CNRS 6607 (France); Rousseau, B. [Université de Nantes, LTN UMR CNRS 6607 (France); Hecht, F. [Sorbonne Universités, UPMC Université Paris 06, UMR 7598, inria de Paris, Laboratoire Jacques-Louis Lions, F-75005, Paris (France)

    2017-04-01

    The contribution of this paper relies in the development of numerical algorithms for the mathematical treatment of specular reflection on borders when dealing with the numerical solution of radiative transfer problems. The radiative transfer equation being integro-differential, the discrete ordinates method allows to write down a set of semi-discrete equations in which weights are to be calculated. The calculation of these weights is well known to be based on either a quadrature or on angular discretization, making the use of such method straightforward for the state equation. Also, the diffuse contribution of reflection on borders is usually well taken into account. However, the calculation of accurate partition ratio coefficients is much more tricky for the specular condition applied on arbitrary geometrical borders. This paper presents algorithms that calculate analytically partition ratio coefficients needed in numerical treatments. The developed algorithms, combined with a decentered finite element scheme, are validated with the help of comparisons with analytical solutions before being applied on complex geometries.

  20. Wilsonian Renormalization Group and the Lippmann-Schwinger Equation with a Multitude of Cutoff Parameters

    Science.gov (United States)

    Epelbaum, E.; Gegelia, J.; Meißner, Ulf-G.

    2018-03-01

    The Wilsonian renormalization group approach to the Lippmann-Schwinger equation with a multitude of cutoff parameters is introduced. A system of integro-differential equations for the cutoff-dependent potential is obtained. As an illustration, a perturbative solution of these equations with two cutoff parameters for a simple case of an S-wave low-energy potential in the form of a Taylor series in momenta is obtained. The relevance of the obtained results for the effective field theory approach to nucleon-nucleon scattering is discussed. Supported in part by BMBF under Grant No. 05P2015 - NUSTAR R&D), DFG and NSFC through Funds Provided to the Sino- German CRC 110 “Symmetries and the Emergence of Structure in QCD”, National Natural Science Foundation of China under Grant No. 11621131001, DFG Grant No. TRR110, the Georgian Shota Rustaveli National Science Foundation (grant FR/417/6-100/14) and the CAS President’s International Fellowship Initiative (PIFI) under Grant No. 2017VMA0025

  1. Angular finite volume method for solving the multigroup transport equation with piecewise average scattering cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Calloo, A.; Vidal, J.F.; Le Tellier, R.; Rimpault, G., E-mail: ansar.calloo@cea.fr, E-mail: jean-francois.vidal@cea.fr, E-mail: romain.le-tellier@cea.fr, E-mail: gerald.rimpault@cea.fr [CEA, DEN, DER/SPRC/LEPh, Saint-Paul-lez-Durance (France)

    2011-07-01

    This paper deals with the solving of the multigroup integro-differential form of the transport equation for fine energy group structure. In that case, multigroup transfer cross sections display strongly peaked shape for light scatterers and the current Legendre polynomial expansion is not well-suited to represent them. Furthermore, even if considering an exact scattering cross sections representation, the scattering source in the discrete ordinates method (also known as the Sn method) being calculated by sampling the angular flux at given directions, may be wrongly computed due to lack of angular support for the angular flux. Hence, following the work of Gerts and Matthews, an angular finite volume solver has been developed for 2D Cartesian geometries. It integrates the multigroup transport equation over discrete volume elements obtained by meshing the unit sphere with a product grid over the polar and azimuthal coordinates and by considering the integrated flux per solid angle element. The convergence of this method has been compared to the S{sub n} method for a highly anisotropic benchmark. Besides, piecewise-average scattering cross sections have been produced for non-bound Hydrogen atoms using a free gas model for thermal neutrons. LWR lattice calculations comparing Legendre representations of the Hydrogen scattering multigroup cross section at various orders and piecewise-average cross sections for this same atom are carried out (while keeping a Legendre representation for all other isotopes). (author)

  2. Angular finite volume method for solving the multigroup transport equation with piecewise average scattering cross sections

    International Nuclear Information System (INIS)

    Calloo, A.; Vidal, J.F.; Le Tellier, R.; Rimpault, G.

    2011-01-01

    This paper deals with the solving of the multigroup integro-differential form of the transport equation for fine energy group structure. In that case, multigroup transfer cross sections display strongly peaked shape for light scatterers and the current Legendre polynomial expansion is not well-suited to represent them. Furthermore, even if considering an exact scattering cross sections representation, the scattering source in the discrete ordinates method (also known as the Sn method) being calculated by sampling the angular flux at given directions, may be wrongly computed due to lack of angular support for the angular flux. Hence, following the work of Gerts and Matthews, an angular finite volume solver has been developed for 2D Cartesian geometries. It integrates the multigroup transport equation over discrete volume elements obtained by meshing the unit sphere with a product grid over the polar and azimuthal coordinates and by considering the integrated flux per solid angle element. The convergence of this method has been compared to the S_n method for a highly anisotropic benchmark. Besides, piecewise-average scattering cross sections have been produced for non-bound Hydrogen atoms using a free gas model for thermal neutrons. LWR lattice calculations comparing Legendre representations of the Hydrogen scattering multigroup cross section at various orders and piecewise-average cross sections for this same atom are carried out (while keeping a Legendre representation for all other isotopes). (author)

  3. Absorption of low-frequency electromagnetic waves by plasma in electromagnetic trap

    International Nuclear Information System (INIS)

    D'yakov, V.E.

    1984-01-01

    Absorption of electromagnetic waves in plasma of the electromagnetic trap is investigated. An integro-differential equation describing the behaviour of the electrical and magnetic fields of the wave is obtained. The wave has a component along the plasma inhomogeneity axis. Solution of this equation is found within the low frequency range corresponding to the anomalous skin-effect. The possibility of ion-acoustic waves excitation is demonstrated. Expressions are found for reflection, absorption and transformation coefficients

  4. Birth-jump processes and application to forest fire spotting.

    Science.gov (United States)

    Hillen, T; Greese, B; Martin, J; de Vries, G

    2015-01-01

    Birth-jump models are designed to describe population models for which growth and spatial spread cannot be decoupled. A birth-jump model is a nonlinear integro-differential equation. We present two different derivations of this equation, one based on a random walk approach and the other based on a two-compartmental reaction-diffusion model. In the case that the redistribution kernels are highly concentrated, we show that the integro-differential equation can be approximated by a reaction-diffusion equation, in which the proliferation rate contributes to both the diffusion term and the reaction term. We completely solve the corresponding critical domain size problem and the minimal wave speed problem. Birth-jump models can be applied in many areas in mathematical biology. We highlight an application of our results in the context of forest fire spread through spotting. We show that spotting increases the invasion speed of a forest fire front.

  5. Nonlinear wave propagation through a ferromagnet with damping in ...

    Indian Academy of Sciences (India)

    magnetic waves in a ferromagnet can be reduced to an integro-differential equation. Keywords. Solitons; integro-differential equations; reductive perturbation method. PACS Nos 41.20 Jb; 05.45 Yv; 03.50 De; 78.20 Ls. 1. Introduction. The phenomenon of propagation of electromagnetic waves in ferromagnets are not only.

  6. A novel technique to solve nonlinear higher-index Hessenberg differential-algebraic equations by Adomian decomposition method.

    Science.gov (United States)

    Benhammouda, Brahim

    2016-01-01

    Since 1980, the Adomian decomposition method (ADM) has been extensively used as a simple powerful tool that applies directly to solve different kinds of nonlinear equations including functional, differential, integro-differential and algebraic equations. However, for differential-algebraic equations (DAEs) the ADM is applied only in four earlier works. There, the DAEs are first pre-processed by some transformations like index reductions before applying the ADM. The drawback of such transformations is that they can involve complex algorithms, can be computationally expensive and may lead to non-physical solutions. The purpose of this paper is to propose a novel technique that applies the ADM directly to solve a class of nonlinear higher-index Hessenberg DAEs systems efficiently. The main advantage of this technique is that; firstly it avoids complex transformations like index reductions and leads to a simple general algorithm. Secondly, it reduces the computational work by solving only linear algebraic systems with a constant coefficient matrix at each iteration, except for the first iteration where the algebraic system is nonlinear (if the DAE is nonlinear with respect to the algebraic variable). To demonstrate the effectiveness of the proposed technique, we apply it to a nonlinear index-three Hessenberg DAEs system with nonlinear algebraic constraints. This technique is straightforward and can be programmed in Maple or Mathematica to simulate real application problems.

  7. Self-consistent theory of steady-state lamellar solidification in binary eutectic systems

    International Nuclear Information System (INIS)

    Nash, G.E.; Glicksman, M.E.

    1976-01-01

    The potential theoretic methods developed recently at NRL for solving the diffusion equation are applied to the free-boundary problem describing lamellar eutectic solidification. Using these techniques, the original boundary value problem is reduced to a set of coupled integro-differential equations for the shape of the solid/liquid interface and various quantities defined on the interface. The behavior of the solutions is discussed in a qualitative fashion, leading to some interesting inferences regarding the nature of the eutectic solidification process. Using the information obtained from the analysis referred to above, an approximate theory of the lamellar-rod transition is formulated. The predictions of the theory are shown to be in qualitative agreement with experimental observations of this transition. In addition, a simplified version of the general integro-differential equations is developed and is used to assess the effect of interface curvature on the interfacial solute concentrations, and to check the new theory for consistency with experiment

  8. Finite-difference solution of the space-angle-lethargy-dependent slowing-down transport equation

    Energy Technology Data Exchange (ETDEWEB)

    Matausek, M V [Boris Kidric Vinca Institute of Nuclear Sciences, Vinca, Belgrade (Yugoslavia)

    1972-07-01

    A procedure has been developed for solving the slowing-down transport equation for a cylindrically symmetric reactor system. The anisotropy of the resonance neutron flux is treated by the spherical harmonics formalism, which reduces the space-angle-Iethargy-dependent transport equation to a matrix integro-differential equation in space and lethargy. Replacing further the lethargy transfer integral by a finite-difference form, a set of matrix ordinary differential equations is obtained, with lethargy-and space dependent coefficients. If the lethargy pivotal points are chosen dense enough so that the difference correction term can be ignored, this set assumes a lower block triangular form and can be solved directly by forward block substitution. As in each step of the finite-difference procedure a boundary value problem has to be solved for a non-homogeneous system of ordinary differential equations with space-dependent coefficients, application of any standard numerical procedure, for example, the finite-difference method or the method of adjoint equations, is too cumbersome and would make the whole procedure practically inapplicable. A simple and efficient approximation is proposed here, allowing analytical solution for the space dependence of the spherical-harmonics flux moments, and hence the derivation of the recurrence relations between the flux moments at successive lethargy pivotal points. According to the procedure indicated above a computer code has been developed for the CDC -3600 computer, which uses the KEDAK nuclear data file. The space and lethargy distribution of the resonance neutrons can be computed in such a detailed fashion as the neutron cross-sections are known for the reactor materials considered. The computing time is relatively short so that the code can be efficiently used, either autonomously, or as part of some complex modular scheme. Typical results will be presented and discussed in order to prove and illustrate the applicability of the

  9. Long Time Evolution of Populations under Selection and Vanishing Mutations

    KAUST Repository

    Raoul, Gaël

    2011-02-08

    In this paper, we consider a long time and vanishing mutations limit of an integro-differential model describing the evolution of a population structured with respect to a continuous phenotypic trait. We show that the asymptotic population is a steady-state of the evolution equation without mutations, and satisfies an evolutionary stability condition. © 2011 Springer Science+Business Media B.V.

  10. Long Time Evolution of Populations under Selection and Vanishing Mutations

    KAUST Repository

    Raoul, Gaë l

    2011-01-01

    In this paper, we consider a long time and vanishing mutations limit of an integro-differential model describing the evolution of a population structured with respect to a continuous phenotypic trait. We show that the asymptotic population is a steady-state of the evolution equation without mutations, and satisfies an evolutionary stability condition. © 2011 Springer Science+Business Media B.V.

  11. Fast Fourier Transform Pricing Method for Exponential Lévy Processes

    KAUST Repository

    Crocce, Fabian

    2014-05-04

    We describe a set of partial-integro-differential equations (PIDE) whose solutions represent the prices of european options when the underlying asset is driven by an exponential L´evy process. Exploiting the L´evy -Khintchine formula, we give a Fourier based method for solving this class of PIDEs. We present a novel L1 error bound for solving a range of PIDEs in asset pricing and use this bound to set parameters for numerical methods.

  12. Fast Fourier Transform Pricing Method for Exponential Lévy Processes

    KAUST Repository

    Crocce, Fabian; Happola, Juho; Kiessling, Jonas; Tempone, Raul

    2014-01-01

    We describe a set of partial-integro-differential equations (PIDE) whose solutions represent the prices of european options when the underlying asset is driven by an exponential L´evy process. Exploiting the L´evy -Khintchine formula, we give a Fourier based method for solving this class of PIDEs. We present a novel L1 error bound for solving a range of PIDEs in asset pricing and use this bound to set parameters for numerical methods.

  13. About peculiarities of application of the method of fast expansions in the solution of the Navier-Stokes equations

    Directory of Open Access Journals (Sweden)

    A. D. Chernyshov

    2017-01-01

    Full Text Available The brief presentation of the method of fast expansions is given to solve nonlinear differential equations. Application  rules of the operator of fast expansions are specified for solving differential equations. According to the method of fast expansions, an unknown function can be represented as the sum of the boundary function and Fourier series sines and cosines for one variable. The special construction of the boundary functions leads to reasonably fast convergence of the Fourier series, so that for engineering calculations, it is sufficient to consider only the first three members. The method is applicable both to linear and nonlinear integro-differential systems. By means of applying the method of fast expansions to nonlinear Navier-Stokes equations the problem is reduced to a closed system of ordinary differential equations, which solution doesn't represent special difficulties. We can reapply the method of fast expansions to the resulting system of differential equations and reduce the original problem to a system of algebraic equations. If the problem is n-dimensional, then after n-fold application of the method of fast expansions the problem will be reduced to a closed algebraic system. Finally, we obtain an analytic-form solution of complicated boundary value problem in partial derivatives. The flow of an incompressible viscous fluid of Navier–Stokes is considered in a curvilinear pipe. The problem is reduced to solving a closed system of ordinary differential equations with boundary conditions by the method of fast expansions. The article considers peculiarities of finding the coefficients of boundary functions and Fourier coefficients for the zero-order and first-order operators of fast expansions. Obtaining the analytic-form solution is of great interest, because it allows to analyze and to investigate the influence of various factors on the properties of the viscous fluid in specific cases.

  14. Calculation of radiation effects in solids by direct numerical solution of the adjoint transport equation

    International Nuclear Information System (INIS)

    Matthes, W.K.

    1998-01-01

    The 'adjoint transport equation in its integro-differential form' is derived for the radiation damage produced by atoms injected into solids. We reduce it to the one-dimensional form and prepare it for a numerical solution by: --discretizing the continuous variables energy, space and direction, --replacing the partial differential quotients by finite differences and --evaluating the collision integral by a double sum. By a proper manipulation of this double sum the adjoint transport equation turns into a (very large) set of linear equations with tridiagonal matrix which can be solved by a special (simple and fast) algorithm. The solution of this set of linear equations contains complete information on a specified damage type (e.g. the energy deposited in a volume V) in terms of the function D(i,E,c,x) which gives the damage produced by all particles generated in a cascade initiated by a particle of type i starting at x with energy E in direction c. It is essential to remark that one calculation gives the damage function D for the complete ranges of the variables {i,E,c and x} (for numerical reasons of course on grid-points in the {E,c,x}-space). This is most useful to applications where a general source-distribution S(i,E,c,x) of particles is given by the experimental setup (e.g. beam-window and and target in proton accelerator work. The beam-protons along their path through the window--or target material generate recoil atoms by elastic collisions or nuclear reactions. These recoil atoms form the particle source S). The total damage produced then is eventually given by: D = (Σ)i ∫ ∫ ∫ S(i, E, c, x)*D(i, E, c, x)*dE*dc*dx A Fortran-77 program running on a PC-486 was written for the overall procedure and applied to some problems

  15. Nodal approximations of varying order by energy group for solving the diffusion equation

    International Nuclear Information System (INIS)

    Broda, J.T.

    1992-02-01

    The neutron flux across the nuclear reactor core is of interest to reactor designers and others. The diffusion equation, an integro-differential equation in space and energy, is commonly used to determine the flux level. However, the solution of a simplified version of this equation when automated is very time consuming. Since the flux level changes with time, in general, this calculation must be made repeatedly. Therefore solution techniques that speed the calculation while maintaining accuracy are desirable. One factor that contributes to the solution time is the spatial flux shape approximation used. It is common practice to use the same order flux shape approximation in each energy group even though this method may not be the most efficient. The one-dimensional, two-energy group diffusion equation was solved, for the node average flux and core k-effective, using two sets of spatial shape approximations for each of three reactor types. A fourth-order approximation in both energy groups forms the first set of approximations used. The second set used combines a second-order approximation with a fourth-order approximation in energy group two. Comparison of the results from the two approximation sets show that the use of a different order spatial flux shape approximation results in considerable loss in accuracy for the pressurized water reactor modeled. However, the loss in accuracy is small for the heavy water and graphite reactors modeled. The use of different order approximations in each energy group produces mixed results. Further investigation into the accuracy and computing time is required before any quantitative advantage of the use of the second-order approximation in energy group one and the fourth-order approximation in energy group two can be determined

  16. Extended rate equations

    International Nuclear Information System (INIS)

    Shore, B.W.

    1981-01-01

    The equations of motion are discussed which describe time dependent population flows in an N-level system, reviewing the relationship between incoherent (rate) equations, coherent (Schrodinger) equations, and more general partially coherent (Bloch) equations. Approximations are discussed which replace the elaborate Bloch equations by simpler rate equations whose coefficients incorporate long-time consequences of coherence

  17. A computer software system for the generation of global ocean tides including self-gravitation and crustal loading effects

    Science.gov (United States)

    Estes, R. H.

    1977-01-01

    A computer software system is described which computes global numerical solutions of the integro-differential Laplace tidal equations, including dissipation terms and ocean loading and self-gravitation effects, for arbitrary diurnal and semidiurnal tidal constituents. The integration algorithm features a successive approximation scheme for the integro-differential system, with time stepping forward differences in the time variable and central differences in spatial variables. Solutions for M2, S2, N2, K2, K1, O1, P1 tidal constituents neglecting the effects of ocean loading and self-gravitation and a converged M2, solution including ocean loading and self-gravitation effects are presented in the form of cotidal and corange maps.

  18. Pole solutions for flame front propagation

    CERN Document Server

    Kupervasser, Oleg

    2015-01-01

    This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration combustion have remarkable properties: the complex nonlinear integro-differential equations for these problems have exact analytical solutions described by the motion of poles in a complex plane. Instead of complex equations, a finite set of ordinary differential equations is applied. These solutions help to investigate analytically and numerically properties of the flame front propagation equations.

  19. Role of Many-Body Effects in Describing Low-Lying Excited States of pi-Conjugated Chromophores: High-Level Equation-of-Motion Coupled-Cluster Studies of Fused Porphyrin Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, Karol; Olson, Ryan M.; Krishnamoorthy, Sriram; Tipparaju, Vinod; Apra, Edoardo

    2011-07-12

    The unusual photophysical properties of the pi-conjugated chrompohores makes them potential building blocks of various molecular devices. In particular, significant narrowing of the HOMO-LUMO gaps can be observed as an effect of functionalization chromophores with polycyclic aromatic hydrocabrons (PAHs). In this paper we present equation-of-motion coupled cluster calculations for vertical excitation energies of several functionalized forms of porphyrins. The results of free-base porphyrin (FBP) clearly demonstrate significant differences between functionalization of FBP with one- (anthracene) and two-dimensional (coronene) structures. We also compare the EOMCC results with the experimentally available results for the anthracene fused zinc porphyrin. The impact of various-type correlation effects is illustrated on several benchmark models where the comparison with the experiment is possible. In particular, we demonstrate that for all excited states considered in this paper, all of them being dominated by single excitations, the inclusion of triply excited configurations is crucial for attaining qualitative agreement with the experiment. We also demonstrate the parallel performance of the most computationally intensive part of the completely renormalized EOMCCSD(T) approach (CR-EOMCCSD(T)) across 120,000 cores.

  20. The role of many-body effects in describing low-lying excited states of pi-conjugated chromophores: high-level equation-of-motion coupled-cluster studies of fused porphyrin systems

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, Karol [Pacific Northwest National Laboratory (PNNL); Olson, Ryan M [Cray, Inc.; Krishnamoorthy, Sriram [Pacific Northwest National Laboratory (PNNL); Tipparaju, Vinod [ORNL; Apra, Edoardo [ORNL

    2011-01-01

    The unusual photophysical properties of the {pi}-conjugated chromophores make them potential building blocks of various molecular devices. In particular, significant narrowing of the HOMO-LUMO gaps can be observed as an effect of functionalization chromophores with polycyclic aromatic hydrocarbons (PAHs). In this paper we present equation-of-motion coupled cluster (EOMCC) calculations for vertical excitation energies of several functionalized forms of porphyrins. The results for free-base porphyrin (FBP) clearly demonstrate significant differences between functionalization of FBP with one- (anthracene) and two-dimensional (coronene) structures. We also compare the EOMCC results with the experimentally available results for anthracene fused zinc-porphyrin. The impact of various types of correlation effects is illustrated on several benchmark models, where the comparison with the experiment is possible. In particular, we demonstrate that for all excited states considered in this paper, all of them being dominated by single excitations, the inclusion of triply excited configurations is crucial for attaining qualitative agreement with experiment. We also demonstrate the parallel performance of the most computationally intensive part of the completely renormalized EOMCCSD(T) approach (CR-EOMCCSD(T)) across 120000 cores.

  1. Analytical Solutions To Describe Juxtaposed Sands | Adeniji ...

    African Journals Online (AJOL)

    Mathematical (linear diffusion) equations are presented for two pseudoreservoir regions intersected by fault that describe the effects of partial communicating fault on pressure transient behaviour for each fault block. Green's and source function technique solve these equations. A two-well system is considered for the ...

  2. Pharmacobezoars described and demystified.

    Science.gov (United States)

    Simpson, Serge-Emile

    2011-02-01

    A bezoar is a concretion of foreign material that forms and persists in the gastrointestinal tract. Bezoars are classified by their material origins. Phytobezoars contain plant material, trichobezoars contain hair, lactobezoars contain milk proteins, and pharmacobezoars contain pharmaceutical products. Tablets, suspensions, and even insoluble drug delivery vehicles can, on rare occasions, and sometimes under specific circumstances, form pharmacobezoars. The goal of this review is to catalog and examine all of the available reports in the English language medical literature that convincingly describe the formation and management of pharmacobezoars. Articles included in this review were identified by performing searches using the terms "bezoar," "pharmacobezoar," and "concretion" in the following databases: OVID MEDLINE, PubMed, and JSTOR. The complete MEDLINE and JSTOR holdings were included in the search without date ranges. The results were limited to English language publications. Articles that described nonmedication bezoars were not included in the review. Articles describing phytobezoars, food bezoars, fecal impactions, illicit drug packet ingestions, enteral feeding material bezoars, and hygroscopic diet aid bezoars were excluded. The bibliographic references within the articles already accumulated were then examined in order to gather additional pharmacobezoar cases. The cases are grouped by pharmaceutical agent that formed the bezoar, and groupings are arranged in alphabetical order. Discussions and conclusions specific to each pharmaceutical agent are included in that agent's subheading. Patterns and themes that emerged in the review of the assembled case reports are reviewed and presented in a more concise format. Pharmacobezoars form under a wide variety of circumstances and in a wide variety of patients. They are difficult to diagnose reliably. Rules for suspecting, diagnosing, and properly managing a pharmacobezoar are highly dependent on the

  3. [Deep mycoses rarely described].

    Science.gov (United States)

    Charles, D

    1986-01-01

    Beside deep mycoses very well known: histoplasmosis, candidosis, cryptococcosis, there are other mycoses less frequently described. Some of them are endemic in some countries: South American blastomycosis in Brazil, coccidioidomycosis in California; some others are cosmopolitan and may affect everyone: sporotrichosis, or may affect only immunodeficient persons: mucormycosis. They do not spare Africa, we may encounter basidiobolomycosis, rhinophycomycosis, dermatophytosis, sporotrichosis and, more recently reported, rhinosporidiosis. Important therapeutic progresses have been accomplished with amphotericin B and with antifungus imidazole compounds (miconazole and ketoconazole). Surgical intervention is sometime recommended in chromomycosis and rhinosporidiosis.

  4. A hybrid iterative scheme for optimal control problems governed by ...

    African Journals Online (AJOL)

    MRT

    KEY WORDS: Optimal control problem; Fredholm integral equation; ... control problems governed by Fredholm integral and integro-differential equations is given in (Brunner and Yan, ..... The exact optimal trajectory and control functions are. 2.

  5. Symmetries and casimir of an extended classical long wave system

    Indian Academy of Sciences (India)

    Keywords. Dispersionless equations; symmetries; casimir; conserved quantities. ... Application of Lie symmetry analysis to integro-differential equations or infinite systems ..... The financial support in the form of Senior Research Fellowship.

  6. Spectral finite element methods for solving fractional differential equations with applications in anomalous transport

    Energy Technology Data Exchange (ETDEWEB)

    Carella, Alfredo Raul

    2012-09-15

    Quantifying species transport rates is a main concern in chemical and petrochemical industries. In particular, the design and operation of many large-scale industrial chemical processes is as much dependent on diffusion as it is on reaction rates. However, the existing diffusion models sometimes fail to predict experimentally observed behaviors and their accuracy is usually insufficient for process optimization purposes. Fractional diffusion models offer multiple possibilities for generalizing Flick's law in a consistent manner in order to account for history dependence and nonlocal effects. These models have not been extensively applied to the study of real systems, mainly due to their computational cost and mathematical complexity. A least squares spectral formulation was developed for solving fractional differential equations. The proposed method was proven particularly well-suited for dealing with the numerical difficulties inherent to fractional differential operators. The practical implementation was explained in detail in order to enhance reproducibility, and directions were specified for extending it to multiple dimensions and arbitrarily shaped domains. A numerical framework based on the least-squares spectral element method was developed for studying and comparing anomalous diffusion models in pellets. This simulation tool is capable of solving arbitrary integro-differential equations and can be effortlessly adapted to various problems in any number of dimensions. Simulations of the flow around a cylindrical particle were achieved by extending the functionality of the developed framework. A test case was analyzed by coupling the boundary condition yielded by the fluid model with two families of anomalous diffusion models: hyperbolic diffusion and fractional diffusion. Qualitative guidelines for determining the suitability of diffusion models can be formulated by complementing experimental data with the results obtained from this approach.(Author)

  7. New Described Dermatological Disorders

    Directory of Open Access Journals (Sweden)

    Müzeyyen Gönül

    2014-01-01

    Full Text Available Many advances in dermatology have been made in recent years. In the present review article, newly described disorders from the last six years are presented in detail. We divided these reports into different sections, including syndromes, autoinflammatory diseases, tumors, and unclassified disease. Syndromes included are “circumferential skin creases Kunze type” and “unusual type of pachyonychia congenita or a new syndrome”; autoinflammatory diseases include “chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE syndrome,” “pyoderma gangrenosum, acne, and hidradenitis suppurativa (PASH syndrome,” and “pyogenic arthritis, pyoderma gangrenosum, acne, and hidradenitis suppurativa (PAPASH syndrome”; tumors include “acquired reactive digital fibroma,” “onychocytic matricoma and onychocytic carcinoma,” “infundibulocystic nail bed squamous cell carcinoma,” and “acral histiocytic nodules”; unclassified disorders include “saurian papulosis,” “symmetrical acrokeratoderma,” “confetti-like macular atrophy,” and “skin spicules,” “erythema papulosa semicircularis recidivans.”

  8. Use of the gamma function in equations which describe ruminal ...

    African Journals Online (AJOL)

    McDonald, 1981; Pond, Matis & Ellis, 1982; Mahlooji,. Ellis, Matis & Pond, 1984; Pienaar & Roux, 1984), which consist of a phase of increasing activity at the onset of both the outflow and fermentation processes. Mertens & Loften (1980) and McDonald (1981) accom- modated this deviation from first-order kinetics in their.

  9. The order parameter equations of superfluid Fermi-liquid with spin-triplet pairing near Tc in magnetic field

    International Nuclear Information System (INIS)

    Tarasov, A.N.

    1995-01-01

    The article is devoted to description of equilibrium properties of superfluid phases of 3 He in magnetic field at temperatures near the normal-superfluid point T c . The Landau Fermi-liquid (F-L) approach generalized to superfluid Fermi-liquids (SFLs) is used. Equations for the order parameter paramagnetic SFL with spin-triplet pairing in static and uniform (DC) moderately strong magnetic field are derived without taking into account strong-coupling (SC) effects. An integro-differential equation is deduced for the order parameter in the general case of spin-triplet pairing (spin of a pair is s = 1, orbital moment l of a pair is any odd number). It is valid in the approximation of small space inhomogeneities of the SFL for external DC magnetic field at temperatures near T c . In the case of spin-triplet p-wave pairing a Ginzburg-Landau (GL) equation is derived for the order parameter A αj (complex 3 x 3 matrix). Corrections to the coefficients in the GL eq. are resulted from taking into account the influence of moderately strong DC magnetic field and spin-exchange F-L interaction by the theory of permutations. In such fields these corrections can be of the same order of magnitude as the so-called > SC corrections to the GL eq. (or even exceed them) and are much higher than the particle-hole asymmetric contribution. The above corrections are connected with deformation of the order parameter in moderate magnetic fields and are of interest at description of 3 He - B at low pressures

  10. Tentative purely geometrical Machian framework for describing gravity and inertia

    Energy Technology Data Exchange (ETDEWEB)

    Goldoni, R [Pisa Univ. (Italy). Ist. di Matematica

    1979-03-03

    The purely geometrical Machian approach to gravitation presented in this letter improves an already published one. In any non vacuum cosmos the gravitational equations in gravitational units are identical to Einstein's equations, while the equations describing the gravitational field in local atomic units are integrodifferential equations in agreement with the available experimental data.

  11. Introduction to differential equations

    CERN Document Server

    Taylor, Michael E

    2011-01-01

    The mathematical formulations of problems in physics, economics, biology, and other sciences are usually embodied in differential equations. The analysis of the resulting equations then provides new insight into the original problems. This book describes the tools for performing that analysis. The first chapter treats single differential equations, emphasizing linear and nonlinear first order equations, linear second order equations, and a class of nonlinear second order equations arising from Newton's laws. The first order linear theory starts with a self-contained presentation of the exponen

  12. Contribution of non integer integro-differential operators (NIDO) to the geometrical understanding of Riemann's conjecture-(II)

    International Nuclear Information System (INIS)

    Le Mehaute, Alain; El Kaabouchi, Abdelaziz; Nivanen, Laurent

    2008-01-01

    Advances in fractional analysis suggest a new way for the physics understanding of Riemann's conjecture. It asserts that, if s is a complex number, the non trivial zeros of zeta function 1/(ζ(s)) =Σ n=1 ∞ (μ(n))/(n s ) in the gap [0, 1], is characterized by s=1/2 (1+2iθ). This conjecture can be understood as a consequence of 1/2-order fractional differential characteristics of automorph dynamics upon opened punctuated torus with an angle at infinity equal to π/4. This physical interpretation suggests new opportunities for revisiting the cryptographic methodologies

  13. Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy

    KAUST Repository

    Pouchol, Camille; Clairambault, Jean; Lorz, Alexander; Tré lat, Emmanuel

    2017-01-01

    to the treatment. We analyse the asymptotic behaviour of the model under constant infusion of drugs. By designing an appropriate Lyapunov function, we prove that both cell densities converge to Dirac masses. We then define an optimal control problem, by considering

  14. Optical-potential model for electron-atom scattering

    International Nuclear Information System (INIS)

    Callaway, J.; Oza, D.H.

    1985-01-01

    It is proposed that the addition of a matrix optical potential to a close-coupling calculation should lead to improved results in studies of electron-atom scattering. This procedure is described with use of a pseudostate expansion to evaluate the optical potential. The integro-differential equations are solved by a linear-algebraic method. As a test case, applications are made to electron-hydrogen scattering, and the results are compared with those obtained by other calculational procedures, and with experiment

  15. Symbolic Solution Approach to Wind Turbine based on Doubly Fed Induction Generator Model

    DEFF Research Database (Denmark)

    Cañas–Carretón, M.; Gómez–Lázaro, E.; Martín–Martínez, S.

    2015-01-01

    –order induction generator is selected to model the electric machine, being this approach suitable to estimate the DFIG performance under transient conditions. The corresponding non–linear integro-differential equation system has been reduced to a linear state-space system by using an ad-hoc local linearization......This paper describes an alternative approach based on symbolic computations to simulate wind turbines equipped with Doubly–Fed Induction Generator (DFIG). The actuator disk theory is used to represent the aerodynamic part, and the one-mass model simulates the mechanical part. The 5th...

  16. Error analysis in Fourier methods for option pricing for exponential Lévy processes

    KAUST Repository

    Crocce, Fabian

    2015-01-07

    We derive an error bound for utilising the discrete Fourier transform method for solving Partial Integro-Differential Equations (PIDE) that describe european option prices for exponential Lévy driven asset prices. We give sufficient conditions for the existence of a L? bound that separates the dynamical contribution from that arising from the type of the option n in question. The bound achieved does not rely on information of the asymptotic behaviour of option prices at extreme asset values. In addition, we demonstrate improved numerical performance for select examples of practical relevance when compared to established bounding methods.

  17. Unified theory of the exciplex formation/dissipation.

    Science.gov (United States)

    Khokhlova, Svetlana S; Burshtein, Anatoly I

    2010-11-04

    The natural extension and reformulation of the unified theory (UT) proposed here makes it integro-differential and capable of describing the distant quenching of excitation by electron transfer, accompanied with contact but reversible exciplex formation. The numerical solution of the new UT equations allows specifying the kinetics of the fluorescence quenching and exciplex association/dissociation as well as those reactions' quantum yields. It was demonstrated that the distant electron transfer in either the normal or inverted Marcus regions screens the contact reaction of exciplex formation, especially at slow diffusion.

  18. Five Describing Factors of Dyslexia

    Science.gov (United States)

    Tamboer, Peter; Vorst, Harrie C. M.; Oort, Frans J.

    2016-01-01

    Two subtypes of dyslexia (phonological, visual) have been under debate in various studies. However, the number of symptoms of dyslexia described in the literature exceeds the number of subtypes, and underlying relations remain unclear. We investigated underlying cognitive features of dyslexia with exploratory and confirmatory factor analyses. A…

  19. Procedure to describe clavicular motion.

    Science.gov (United States)

    Gutierrez Delgado, Guivey; De Beule, Matthieu; Ortega Cardentey, Dolgis R; Segers, Patrick; Iznaga Benítez, Arsenio M; Rodríguez Moliner, Tania; Verhegghe, Benedict; Palmans, Tanneke; Van Hoof, Tom; Van Tongel, Alexander

    2017-03-01

    For many years, researchers have attempted to describe shoulder motions by using different mathematical methods. The aim of this study was to describe a procedure to quantify clavicular motion. The procedure proposed for the kinematic analysis consists of 4 main processes: 3 transcortical pins in the clavicle, motion capture, obtaining 3-dimensional bone models, and data processing. Clavicular motion by abduction (30° to 150°) and flexion (55° to 165°) were characterized by an increment of retraction of 27° to 33°, elevation of 25° to 28°, and posterior rotation of 14° to 15°, respectively. In circumduction, clavicular movement described an ellipse, which was reflected by retraction and elevation. Kinematic analysis shows that the articular surfaces move by simultaneously rolling and sliding on the convex surface of the sternum for the 3 movements of abduction, flexion, and circumduction. The use of 3 body landmarks in the clavicle and the direct measurement of bone allowed description of the osteokinematic and arthrokinematic movement of the clavicle. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  20. On separable Pauli equations

    International Nuclear Information System (INIS)

    Zhalij, Alexander

    2002-01-01

    We classify (1+3)-dimensional Pauli equations for a spin-(1/2) particle interacting with the electro-magnetic field, that are solvable by the method of separation of variables. As a result, we obtain the 11 classes of vector-potentials of the electro-magnetic field A(t,x(vector sign))=(A 0 (t,x(vector sign)), A(vector sign)(t,x(vector sign))) providing separability of the corresponding Pauli equations. It is established, in particular, that the necessary condition for the Pauli equation to be separable into second-order matrix ordinary differential equations is its equivalence to the system of two uncoupled Schroedinger equations. In addition, the magnetic field has to be independent of spatial variables. We prove that coordinate systems and the vector-potentials of the electro-magnetic field providing the separability of the corresponding Pauli equations coincide with those for the Schroedinger equations. Furthermore, an efficient algorithm for constructing all coordinate systems providing the separability of Pauli equation with a fixed vector-potential of the electro-magnetic field is developed. Finally, we describe all vector-potentials A(t,x(vector sign)) that (a) provide the separability of Pauli equation, (b) satisfy vacuum Maxwell equations without currents, and (c) describe non-zero magnetic field

  1. Use of conformal mapping to describe MHD wave propagation

    International Nuclear Information System (INIS)

    Bulanov, S.V.; Pegoraro, F.

    1993-01-01

    A method is proposed for finding explicit exact solutions of the magnetohydrodynamic equations describing the propagation of magnetoacoustic waves in a plasma in a magnetic potential that depends on two spatial coordinates. This method is based on the use of conformal mappings to transform the wave equation into an equation describing the propagation of waves in a uniform magnetic field. The basic properties of magnetoacoustic and Alfven waves near the critical points, magnetic separatrices, and in configuration with magnetic islands are discussed. Expressions are found for the dimensionless parameters which determine the relative roles of the plasma pressure, nonlinearity, and dissipation near the critical points. 30 refs

  2. Describing treatment effects to patients.

    Science.gov (United States)

    Moxey, Annette; O'Connell, Dianne; McGettigan, Patricia; Henry, David

    2003-11-01

    To examine the impact of different presentations of equivalent information (framing) on treatment decisions faced by patients. A systematic review of the published literature was conducted. English language publications allocating participants to different frames were retrieved using electronic and bibliographic searches. Two reviewers examined each article for inclusion, and assessed methodological quality. Study characteristics were tabulated and where possible, relative risks (RR; 95% confidence intervals) were calculated to estimate intervention effects. Thirty-seven articles, yielding 40 experimental studies, were included. Studies examined treatment (N = 24), immunization (N = 5), or health behavior scenarios (N = 11). Overall, active treatments were preferred when outcomes were described in terms of relative rather than absolute risk reductions or number needed to treat. Surgery was preferred to other treatments when treatment efficacy was presented in a positive frame (survival) rather than a negative frame (mortality) (relative risk [RR] = 1.51, 95% confidence interval [CI], 1.39 to 1.64). Framing effects were less obvious for immunization and health behavior scenarios. Those with little interest in the behavior at baseline were influenced by framing, particularly when information was presented as gains. In studies judged to be of good methodological quality and/or examining actual decisions, the framing effect, although still evident, was less convincing compared to the results of all included studies. Framing effects varied with the type of scenario, responder characteristics, scenario manipulations, and study quality. When describing treatment effects to patients, expressing the information in more than one way may present a balanced view to patients and enable them to make informed decisions.

  3. Describing function theory as applied to thermal and neutronic problems

    International Nuclear Information System (INIS)

    Nassersharif, B.

    1983-01-01

    Describing functions have traditionally been used to obtain the solutions of systems of ordinary differential equations. In this work the describing function concept has been extended to include nonlinear, distributed parameter partial differential equations. A three-stage solution algorithm is presented which can be applied to any nonlinear partial differential equation. Two generalized integral transforms were developed as the T-transform for the time domain and the B-transform for the spatial domain. The thermal diffusion describing function (TDDF) is developed for conduction of heat in solids and a general iterative solution along with convergence criteria is presented. The proposed solution method is used to solve the problem of heat transfer in nuclear fuel rods with annular fuel pellets. As a special instance the solid cylindrical fuel pellet is examined. A computer program is written which uses the describing function concept for computing fuel pin temperatures in the radial direction during reactor transients. The second problem investigated was the neutron diffusion equation which is intrinsically different from the first case. Although, for most situations, it can be treated as a linear differential equation, the describing function method is still applicable. A describing function solution is derived for two possible cases: constant diffusion coefficient and variable diffusion coefficient. Two classes of describing functions are defined for each case which portray the leakage and absorption phenomena. For the specific case of a slab reactor criticality problem the comparison between analytical and describing function solutions revealed an excellent agreement

  4. Fully implicit kinetic modelling of collisional plasmas

    International Nuclear Information System (INIS)

    Mousseau, V.A.

    1996-05-01

    This dissertation describes a numerical technique, Matrix-Free Newton Krylov, for solving a simplified Vlasov-Fokker-Planck equation. This method is both deterministic and fully implicit, and may not have been a viable option before current developments in numerical methods. Results are presented that indicate the efficiency of the Matrix-Free Newton Krylov method for these fully-coupled, nonlinear integro-differential equations. The use and requirement for advanced differencing is also shown. To this end, implementations of Chang-Cooper differencing and flux limited Quadratic Upstream Interpolation for Convective Kinematics (QUICK) are presented. Results are given for a fully kinetic ion-electron problem with a self consistent electric field calculated from the ion and electron distribution functions. This numerical method, including advanced differencing, provides accurate solutions, which quickly converge on workstation class machines. It is demonstrated that efficient steady-state solutions can be achieved to the non-linear integro-differential equation, obtaining quadratic convergence, without incurring the large memory requirements of an integral operator. Model problems are presented which simulate plasma impinging on a plate with both high and low neutral particle recycling typical of a divertor in a Tokamak device. These model problems demonstrate the performance of the new solution method

  5. Controlling chaos in dynamical systems described by maps

    International Nuclear Information System (INIS)

    Crispin, Y.; Marduel, C.

    1994-01-01

    The problem of suppressing chaotic behavior in dynamical systems is treated using a feedback control method with limited control effort. The proposed method is validated on archetypal systems described by maps, i.e. discrete-time difference equations. The method is also applicable to dynamical systems described by flows, i.e. by systems of ordinary differential equations. Results are presented for the one-dimensional logistic map and for a two-dimensional Lotka-Volterra map describing predator-prey population dynamics. It is shown that chaos can be suppressed and the system stabilized about a period-1 fixed point of the maps

  6. Integral equations

    CERN Document Server

    Moiseiwitsch, B L

    2005-01-01

    Two distinct but related approaches hold the solutions to many mathematical problems--the forms of expression known as differential and integral equations. The method employed by the integral equation approach specifically includes the boundary conditions, which confers a valuable advantage. In addition, the integral equation approach leads naturally to the solution of the problem--under suitable conditions--in the form of an infinite series.Geared toward upper-level undergraduate students, this text focuses chiefly upon linear integral equations. It begins with a straightforward account, acco

  7. Theory of the chemical effects of high-energy electrons

    International Nuclear Information System (INIS)

    Magee, J.L.; Chatterjee, A.

    1978-01-01

    The general nature of radiation chemical yields arising from electron irradiations is examined. A relationship between the G value of an arbitrary radiation product and the initial electron energy (greater than 20 keV) in the form of an integro-differential equation is derived. G values for the water decomposition products in acid solution are obtained by numerical solution of the equation and the use of a model. A differential equation equivalent to the integro-differential equation for the case of Rutherford scattering is introduced and an approximate analytical solution is found (eq 10). The latter turns out to be in agreement with the numerical solution of the integro-differential equation obtained with the more accurate Moeller cross section. Experimental data for ferrous sulfate oxidation (Fricke dosimeter) are examined and found to be in agreement with the relationships obtained here. Primary yields of the water decomposition products are also given. 4 figures, 2 tables, 35 references

  8. On generalized fractional vibration equation

    International Nuclear Information System (INIS)

    Dai, Hongzhe; Zheng, Zhibao; Wang, Wei

    2017-01-01

    Highlights: • The paper presents a generalized fractional vibration equation for arbitrary viscoelastically damped system. • Some classical vibration equations can be derived from the developed equation. • The analytic solution of developed equation is derived under some special cases. • The generalized equation is particularly useful for developing new fractional equivalent linearization method. - Abstract: In this paper, a generalized fractional vibration equation with multi-terms of fractional dissipation is developed to describe the dynamical response of an arbitrary viscoelastically damped system. It is shown that many classical equations of motion, e.g., the Bagley–Torvik equation, can be derived from the developed equation. The Laplace transform is utilized to solve the generalized equation and the analytic solution under some special cases is derived. Example demonstrates the generalized transfer function of an arbitrary viscoelastic system.

  9. Auxiliary equation method for solving nonlinear partial differential equations

    International Nuclear Information System (INIS)

    Sirendaoreji,; Jiong, Sun

    2003-01-01

    By using the solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct several kinds of exact travelling wave solutions for some nonlinear partial differential equations. By this method some physically important nonlinear equations are investigated and new exact travelling wave solutions are explicitly obtained with the aid of symbolic computation

  10. Direct 'delay' reductions of the Toda equation

    International Nuclear Information System (INIS)

    Joshi, Nalini

    2009-01-01

    A new direct method of obtaining reductions of the Toda equation is described. We find a canonical and complete class of all possible reductions under certain assumptions. The resulting equations are ordinary differential-difference equations, sometimes referred to as delay-differential equations. The representative equation of this class is hypothesized to be a new version of one of the classical Painleve equations. The Lax pair associated with this equation is obtained, also by reduction. (fast track communication)

  11. Reduction operators of Burgers equation.

    Science.gov (United States)

    Pocheketa, Oleksandr A; Popovych, Roman O

    2013-02-01

    The solution of the problem on reduction operators and nonclassical reductions of the Burgers equation is systematically treated and completed. A new proof of the theorem on the special "no-go" case of regular reduction operators is presented, and the representation of the coefficients of operators in terms of solutions of the initial equation is constructed for this case. All possible nonclassical reductions of the Burgers equation to single ordinary differential equations are exhaustively described. Any Lie reduction of the Burgers equation proves to be equivalent via the Hopf-Cole transformation to a parameterized family of Lie reductions of the linear heat equation.

  12. Application of the Sumudu Transform to Discrete Dynamic Systems

    Science.gov (United States)

    Asiru, Muniru Aderemi

    2003-01-01

    The Sumudu transform is an integral transform introduced to solve differential equations and control engineering problems. The transform possesses many interesting properties that make visualization easier and application has been demonstrated in the solution of partial differential equations, integral equations, integro-differential equations and…

  13. Differential equations

    CERN Document Server

    Tricomi, FG

    2013-01-01

    Based on his extensive experience as an educator, F. G. Tricomi wrote this practical and concise teaching text to offer a clear idea of the problems and methods of the theory of differential equations. The treatment is geared toward advanced undergraduates and graduate students and addresses only questions that can be resolved with rigor and simplicity.Starting with a consideration of the existence and uniqueness theorem, the text advances to the behavior of the characteristics of a first-order equation, boundary problems for second-order linear equations, asymptotic methods, and diff

  14. Differential equations

    CERN Document Server

    Barbu, Viorel

    2016-01-01

    This textbook is a comprehensive treatment of ordinary differential equations, concisely presenting basic and essential results in a rigorous manner. Including various examples from physics, mechanics, natural sciences, engineering and automatic theory, Differential Equations is a bridge between the abstract theory of differential equations and applied systems theory. Particular attention is given to the existence and uniqueness of the Cauchy problem, linear differential systems, stability theory and applications to first-order partial differential equations. Upper undergraduate students and researchers in applied mathematics and systems theory with a background in advanced calculus will find this book particularly useful. Supplementary topics are covered in an appendix enabling the book to be completely self-contained.

  15. Computing generalized Langevin equations and generalized Fokker-Planck equations.

    Science.gov (United States)

    Darve, Eric; Solomon, Jose; Kia, Amirali

    2009-07-07

    The Mori-Zwanzig formalism is an effective tool to derive differential equations describing the evolution of a small number of resolved variables. In this paper we present its application to the derivation of generalized Langevin equations and generalized non-Markovian Fokker-Planck equations. We show how long time scales rates and metastable basins can be extracted from these equations. Numerical algorithms are proposed to discretize these equations. An important aspect is the numerical solution of the orthogonal dynamics equation which is a partial differential equation in a high dimensional space. We propose efficient numerical methods to solve this orthogonal dynamics equation. In addition, we present a projection formalism of the Mori-Zwanzig type that is applicable to discrete maps. Numerical applications are presented from the field of Hamiltonian systems.

  16. Linear Plasma Oscillation Described by Superposition of Normal Modes

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1974-01-01

    The existence of steady‐state solutions to the linearized ion and electron Vlasov equation is demonstrated for longitudinal waves in an initially stable plasma. The evolution of an arbitrary initial perturbation can be described by superposition of these solutions. Some common approximations...

  17. Reggeons in pQCD

    International Nuclear Information System (INIS)

    Griffiths, S.

    1999-06-01

    We consider the description of deep inelastic scattering by perturbative quantum chromo dynamics in the Regge-limit, specifically via the Reggeization of fundamental particles (gluons and quarks) and the description of processes by integro-differential equations such as the BFKL equation. We review the Reggeization of the gluon via Feynman diagrams in the leading-log approximation and then extend this to an original demonstration of the quark's Reggeization. In analogy to the hard Pomeron's description in terms of Reggeized gluons we consider the ρ-meson's trajectory in terms of the exchange of Reggeized quarks and derive the evolution equation describing this. The solutions of this equation, both analytic and numeric, are then looked at in some detail, and we demonstrate how the low-x behaviour is enhanced. We then make modifications to include a running coupling constant and massive propagators, and investigate the effects that these have on the asymptotics of the ρ-trajectory. (author)

  18. Extraction of dynamical equations from chaotic data

    International Nuclear Information System (INIS)

    Rowlands, G.; Sprott, J.C.

    1991-02-01

    A method is described for extracting from a chaotic time series a system of equations whose solution reproduces the general features of the original data even when these are contaminated with noise. The equations facilitate calculation of fractal dimension, Lyapunov exponents and short-term predictions. The method is applied to data derived from numerical solutions of the Logistic equation, the Henon equations, the Lorenz equations and the Roessler equations. 10 refs., 5 figs

  19. Bernoulli's Equation

    Indian Academy of Sciences (India)

    regarding nature of forces hold equally for liquids, even though the ... particle. Figure A. A fluid particle is a very small imaginary blob of fluid, here shown sche- matically in .... picture gives important information about the flow field. ... Bernoulli's equation is derived assuming ideal flow, .... weight acting in the flow direction S is.

  20. Relativistic equations

    International Nuclear Information System (INIS)

    Gross, F.

    1986-01-01

    Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs

  1. Approximate and renormgroup symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Ibragimov, Nail H. [Blekinge Institute of Technology, Karlskrona (Sweden). Dept. of Mathematics Science; Kovalev, Vladimir F. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Mathematical Modeling

    2009-07-01

    ''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)

  2. Approximate and renormgroup symmetries

    International Nuclear Information System (INIS)

    Ibragimov, Nail H.; Kovalev, Vladimir F.

    2009-01-01

    ''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)

  3. Dunkl Hyperbolic Equations

    Directory of Open Access Journals (Sweden)

    Hatem Mejjaoli

    2008-12-01

    Full Text Available We introduce and study the Dunkl symmetric systems. We prove the well-posedness results for the Cauchy problem for these systems. Eventually we describe the finite speed of it. Next the semi-linear Dunkl-wave equations are also studied.

  4. Balancing Chemical Equations.

    Science.gov (United States)

    Savoy, L. G.

    1988-01-01

    Describes a study of students' ability to balance equations. Answers to a test on this topic were analyzed to determine the level of understanding and processes used by the students. Presented is a method to teach this skill to high school chemistry students. (CW)

  5. Equations of radiation hydrodynamics

    International Nuclear Information System (INIS)

    Mihalas, D.

    1982-01-01

    The purpose of this paper is to give an overview of the role of radiation in the transport of energy and momentum in a combined matter-radiation fluid. The transport equation for a moving radiating fluid is presented in both a fully Eulerian and a fully Lagrangian formulation, along with conservation equations describing the dynamics of the fluid. Special attention is paid to the problem of deriving equations that are mutually consistent in each frame, and between frames, to 0(v/c). A detailed analysis is made to show that in situations of broad interest, terms that are formally of 0(v/c) actually dominate the solution, demonstrating that it is esential (1) to pay scrupulous attention to the question of the frame dependence in formulating the equations; and (2) to solve the equations to 0(v/c) in quite general circumstances. These points are illustrated in the context of the nonequilibrium radiation diffusion limit, and a sketch of how the Lagrangian equations are to be solved will be presented

  6. Quantum linear Boltzmann equation

    International Nuclear Information System (INIS)

    Vacchini, Bassano; Hornberger, Klaus

    2009-01-01

    We review the quantum version of the linear Boltzmann equation, which describes in a non-perturbative fashion, by means of scattering theory, how the quantum motion of a single test particle is affected by collisions with an ideal background gas. A heuristic derivation of this Lindblad master equation is presented, based on the requirement of translation-covariance and on the relation to the classical linear Boltzmann equation. After analyzing its general symmetry properties and the associated relaxation dynamics, we discuss a quantum Monte Carlo method for its numerical solution. We then review important limiting forms of the quantum linear Boltzmann equation, such as the case of quantum Brownian motion and pure collisional decoherence, as well as the application to matter wave optics. Finally, we point to the incorporation of quantum degeneracies and self-interactions in the gas by relating the equation to the dynamic structure factor of the ambient medium, and we provide an extension of the equation to include internal degrees of freedom.

  7. Development of kinetics equations from the Boltzmann equation; Etablissement des equations de la cinetique a partir de l'equation de Boltzmann

    Energy Technology Data Exchange (ETDEWEB)

    Plas, R.

    1962-07-01

    The author reports a study on kinetics equations for a reactor. He uses the conventional form of these equations but by using a dynamic multiplication factor. Thus, constants related to delayed neutrons are not modified by efficiency factors. The author first describes the theoretic kinetic operation of a reactor and develops the associated equations. He reports the development of equations for multiplication factors.

  8. Invariant imbedding equations for linear scattering problems

    International Nuclear Information System (INIS)

    Apresyan, L.

    1988-01-01

    A general form of the invariant imbedding equations is investigated for the linear problem of scattering by a bounded scattering volume. The conditions for the derivability of such equations are described. It is noted that the possibility of the explicit representation of these equations for a sphere and for a layer involves the separation of variables in the unperturbed wave equation

  9. Introduction to ordinary differential equations

    CERN Document Server

    Rabenstein, Albert L

    1966-01-01

    Introduction to Ordinary Differential Equations is a 12-chapter text that describes useful elementary methods of finding solutions using ordinary differential equations. This book starts with an introduction to the properties and complex variable of linear differential equations. Considerable chapters covered topics that are of particular interest in applications, including Laplace transforms, eigenvalue problems, special functions, Fourier series, and boundary-value problems of mathematical physics. Other chapters are devoted to some topics that are not directly concerned with finding solutio

  10. 3D optical digitation applied to orthodontics: analysis of unilateral cleft lip and palate in newborn infants

    Science.gov (United States)

    Canal, Fernando; Garcia-Mateos, Jorge; Rodriguez-Larena, Jorge; Rivera, Alejandro; Aparicio, E.

    2000-12-01

    Medical therapeutic applications using lasers involves understanding the light tissue interaction, in particular the rate ofphotochemical and thermal reactions. Tissue is composed ofa mix ofturbid media. Light propagation in turbid media can be described by the so-called Equation of Radiative Transfer, an integro-differential equation where scattering, absorption and internal reflection are significant factors in determining the light distribution in tissue. The Equation of Radiative Transfer however can not commonly be solved analytically.' In order to visualize and simulate the effects of laser light on heart tissues (myocardium) in relation to the treatment of irregular heart rates or so called arrhythmias, a fast interactive computer program has been developed in Java.

  11. Pedestrian Flow in the Mean Field Limit

    KAUST Repository

    Haji Ali, Abdul Lateef

    2012-01-01

    -dependent density of two-dimensional pedestrians satisfies a four-dimensional integro-differential Fokker-Planck equation. To approximate the solution of the Fokker-Planck equation we use a time-splitting approach and solve the diffusion part using a Crank

  12. Bounds of Certain Dynamic Inequalities on Time Scales

    Directory of Open Access Journals (Sweden)

    Deepak B. Pachpatte

    2014-10-01

    Full Text Available In this paper we study explicit bounds of certain dynamic integral inequalities on time scales. These estimates give the bounds on unknown functions which can be used in studying the qualitative aspects of certain dynamic equations. Using these inequalities we prove the uniqueness of some partial integro-differential equations on time scales.

  13. On convergence of homotopy analysis method and its application to ...

    African Journals Online (AJOL)

    In this paper, we have used the homotopy analysis method (HAM) to obtain approximate solution of fractional integro-differential equations (FIDEs). Convergence of HAM is considered for this kind of equations. Also some examples are given to illustrate the high efficiency and precision of HAM. Keywords: Fractional ...

  14. Accurate Evaluation of European and American Options Under the CGMY Process

    NARCIS (Netherlands)

    Almendral, A.; Oosterlee, C.W.

    2007-01-01

    A finite?difference method for integro?differential equations arising from Lévy driven asset processes in finance is discussed. The equations are discretized in space by the collocation method and in time by an explicit backward differentiation formula. The discretization is shown to be second?order

  15. A mathematical framework for inverse wave problems in heterogeneous media

    NARCIS (Netherlands)

    Blazek, K.D.; Stolk, C.; Symes, W.W.

    2013-01-01

    This paper provides a theoretical foundation for some common formulations of inverse problems in wave propagation, based on hyperbolic systems of linear integro-differential equations with bounded and measurable coefficients. The coefficients of these time-dependent partial differential equations

  16. Kinetics of chemical reactions initiated by hot atoms

    International Nuclear Information System (INIS)

    Firsova, L.P.

    1977-01-01

    Modern ideas about kinetics of chemical reactions of hot atoms are generalized. The main points of the phenomenological theories (''kinetic theory'' of Wolfgang-Estrup hot reactions and the theory of ''reactions integral probability'' of Porter) are given. Physico-chemical models of elastic and non-elastic collisions are considered which are used in solving Boltzmann integro-differential equations and stochastic equations in the Porter theory. The principal formulas are given describing probabilities or yields of chemical reactions, initiated with hot atoms, depending on the distribution functions of hot particles with respect to energy. Briefly described are the techniques and the results of applying the phenomenological theories for interpretation of the experimental data obtained during nuclear reactions with hot atoms, photochemical investigations, etc. 96 references are given

  17. Differential Equations Compatible with KZ Equations

    International Nuclear Information System (INIS)

    Felder, G.; Markov, Y.; Tarasov, V.; Varchenko, A.

    2000-01-01

    We define a system of 'dynamical' differential equations compatible with the KZ differential equations. The KZ differential equations are associated to a complex simple Lie algebra g. These are equations on a function of n complex variables z i taking values in the tensor product of n finite dimensional g-modules. The KZ equations depend on the 'dual' variable in the Cartan subalgebra of g. The dynamical differential equations are differential equations with respect to the dual variable. We prove that the standard hypergeometric solutions of the KZ equations also satisfy the dynamical equations. As an application we give a new determinant formula for the coordinates of a basis of hypergeometric solutions

  18. Kinks and the Dirac equation

    International Nuclear Information System (INIS)

    Skyrme, T.H.R.

    1994-01-01

    In a model quantum theory of interacting mesons, the motion of certain conserved particle-like structures is discussed. It is shown how collective coordinates may be introduced to describe them, leading, in lowest approximation, to a Dirac equation. (author)

  19. Generalized Lorentz-Force equations

    International Nuclear Information System (INIS)

    Yamaleev, R.M.

    2001-01-01

    Guided by Nambu (n+1)-dimensional phase space formalism we build a new system of dynamic equations. These equations describe a dynamic state of the corporeal system composed of n subsystems. The dynamic equations are formulated in terms of dynamic variables of the subsystems as well as in terms of dynamic variables of the corporeal system. These two sets of variables are related respectively as roots and coefficients of the n-degree polynomial equation. In the special n=2 case, this formalism reproduces relativistic dynamics for the charged spinning particles

  20. The forced nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Kaup, D.J.; Hansen, P.J.

    1985-01-01

    The nonlinear Schroedinger equation describes the behaviour of a radio frequency wave in the ionosphere near the reflexion point where nonlinear processes are important. A simple model of this phenomenon leads to the forced nonlinear Schroedinger equation in terms of a nonlinear boundary value problem. A WKB analysis of the time evolution equations for the nonlinear Schroedinger equation in the inverse scattering transform formalism gives a crude order of magnitude estimation of the qualitative behaviour of the solutions. This estimation is compared with the numerical solutions. (D.Gy.)

  1. Damped nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Nicholson, D.R.; Goldman, M.V.

    1976-01-01

    High frequency electrostatic plasma oscillations described by the nonlinear Schrodinger equation in the presence of damping, collisional or Landau, are considered. At early times, Landau damping of an initial soliton profile results in a broader, but smaller amplitude soliton, while collisional damping reduces the soliton size everywhere; soliton speeds at early times are unchanged by either kind of damping. For collisional damping, soliton speeds are unchanged for all time

  2. The modified simplest equation method to look for exact solutions of nonlinear partial differential equations

    OpenAIRE

    Efimova, Olga Yu.

    2010-01-01

    The modification of simplest equation method to look for exact solutions of nonlinear partial differential equations is presented. Using this method we obtain exact solutions of generalized Korteweg-de Vries equation with cubic source and exact solutions of third-order Kudryashov-Sinelshchikov equation describing nonlinear waves in liquids with gas bubbles.

  3. Observations on the properties of second and general-order kinetics equations describing the thermoluminescence processes

    International Nuclear Information System (INIS)

    Kitis, G.; Furetta, C.; Azorin, J.

    2003-01-01

    Synthetic thermoluminescent (Tl) glow peaks, following a second and general kinetics order have been generated by computer. The general properties of the so generated peaks have been investigated over several order of magnitude of simulated doses. Some non usual results which, at the best knowledge of the authors, are not reported in the literature, are obtained and discussed. (Author)

  4. Vibration suppression in ultrasonic machining described by non-linear differential equations

    International Nuclear Information System (INIS)

    Kamel, M. M.; El-Ganaini, W. A. A.; Hamed, Y. S.

    2009-01-01

    Vibrations are usually undesired phenomena as they may cause damage or destruction of the system. However, sometimes they are desirable, as in ultrasonic machining (USM). In such case, the problem is a complicated one, as it is required to reduce the vibration of the machine head and have reasonable amplitude for the tool. In the present work, the coupling of two non-linear oscillators of the tool holder and tool representing ultrasonic cutting process is investigated. This leads to a two-degree-of-freedom system subjected to multi-external excitation force. The aim of this work is to control the tool holder behavior at simultaneous primary and internal resonance condition and have high amplitude for the tool. Multiple scale perturbation method is applied to obtain a solution up to the second order approximations. Other different resonance cases are reported and studied numerically. The stability of the system is investigated applying both phase-plane and frequency response techniques. The effects of the different parameters of the tool on the system behavior are studied numerically. Comparison with the available published work is reported

  5. Simplified stock markets described by number operators

    Science.gov (United States)

    Bagarello, F.

    2009-06-01

    In this paper we continue our systematic analysis of the operatorial approach previously proposed in an economical context and we discuss a mixed toy model of a simplified stock market, i.e. a model in which the price of the shares is given as an input. We deduce the time evolution of the portfolio of the various traders of the market, as well as of other observable quantities. As in a previous paper, we solve the equations of motion by means of a fixed point like approximation.

  6. Comparison of european computer codes relative to the aerosol behavior in PWR containment buildings during severe core damage accidents

    International Nuclear Information System (INIS)

    Fermandjian, J.; Beonio-Brocchieri, F.

    1986-09-01

    The present study concerns a comparative exercise, performed within the framework of the Commission of the European Communities, of the computer codes used in reactor safety in order to assess their capability of realistically describing the aerosol behavior in PWR reactor containment buildings during severe accidents. The codes included in the present study are the following: AEROSIM-M, AEROSOLS/Bl, CORRAL-2, NAUA Mod5. In AEROSIM-M, AEROSOLS/Bl and NAUA Mod5, the integro-differential equation for the evolution of the particle mass distribution is approximated by a set of coupled first order differential equations. To this end, the particle distribution function is replaced by a number of discrete monodisperse fractions. The CORRAL-2 has an essentially empirical basis (processes not explicitely modelled, but their net effects accounted for). The physical processes taken into account in the codes are shown finally

  7. On Impedance Spectroscopy of Supercapacitors

    Science.gov (United States)

    Uchaikin, V. V.; Sibatov, R. T.; Ambrozevich, A. S.

    2016-10-01

    Supercapacitors are often characterized by responses measured by methods of impedance spectroscopy. In the frequency domain these responses have the form of power-law functions or their linear combinations. The inverse Fourier transform leads to relaxation equations with integro-differential operators of fractional order under assumption that the frequency response is independent of the working voltage. To compare long-term relaxation kinetics predicted by these equations with the observed one, charging-discharging of supercapacitors (with nominal capacitances of 0.22, 0.47, and 1.0 F) have been studied by means of registration of the current response to a step voltage signal. It is established that the reaction of devices under study to variations of the charging regime disagrees with the model of a homogeneous linear response. It is demonstrated that relaxation is well described by a fractional stretched exponent.

  8. Zdeněk Kopal: Numerical Analyst

    Science.gov (United States)

    Křížek, M.

    2015-07-01

    We give a brief overview of Zdeněk Kopal's life, his activities in the Czech Astronomical Society, his collaboration with Vladimír Vand, and his studies at Charles University, Cambridge, Harvard, and MIT. Then we survey Kopal's professional life. He published 26 monographs and 20 conference proceedings. We will concentrate on Kopal's extensive monograph Numerical Analysis (1955, 1961) that is widely accepted to be the first comprehensive textbook on numerical methods. It describes, for instance, methods for polynomial interpolation, numerical differentiation and integration, numerical solution of ordinary differential equations with initial or boundary conditions, and numerical solution of integral and integro-differential equations. Special emphasis will be laid on error analysis. Kopal himself applied numerical methods to celestial mechanics, in particular to the N-body problem. He also used Fourier analysis to investigate light curves of close binaries to discover their properties. This is, in fact, a problem from mathematical analysis.

  9. Standing and travelling waves in a spherical brain model: The Nunez model revisited

    Science.gov (United States)

    Visser, S.; Nicks, R.; Faugeras, O.; Coombes, S.

    2017-06-01

    The Nunez model for the generation of electroencephalogram (EEG) signals is naturally described as a neural field model on a sphere with space-dependent delays. For simplicity, dynamical realisations of this model either as a damped wave equation or an integro-differential equation, have typically been studied in idealised one dimensional or planar settings. Here we revisit the original Nunez model to specifically address the role of spherical topology on spatio-temporal pattern generation. We do this using a mixture of Turing instability analysis, symmetric bifurcation theory, centre manifold reduction and direct simulations with a bespoke numerical scheme. In particular we examine standing and travelling wave solutions using normal form computation of primary and secondary bifurcations from a steady state. Interestingly, we observe spatio-temporal patterns which have counterparts seen in the EEG patterns of both epileptic and schizophrenic brain conditions.

  10. Angular momentum and torque described with the complex octonion

    International Nuclear Information System (INIS)

    Weng, Zi-Hua

    2014-01-01

    The paper aims to adopt the complex octonion to formulate the angular momentum, torque, and force etc in the electromagnetic and gravitational fields. Applying the octonionic representation enables one single definition of angular momentum (or torque, force) to combine some physics contents, which were considered to be independent of each other in the past. J. C. Maxwell used simultaneously two methods, the vector terminology and quaternion analysis, to depict the electromagnetic theory. It motivates the paper to introduce the quaternion space into the field theory, describing the physical feature of electromagnetic and gravitational fields. The spaces of electromagnetic field and of gravitational field can be chosen as the quaternion spaces, while the coordinate component of quaternion space is able to be the complex number. The quaternion space of electromagnetic field is independent of that of gravitational field. These two quaternion spaces may compose one octonion space. Contrarily, one octonion space can be separated into two subspaces, the quaternion space and S-quaternion space. In the quaternion space, it is able to infer the field potential, field strength, field source, angular momentum, torque, and force etc in the gravitational field. In the S-quaternion space, it is capable of deducing the field potential, field strength, field source, current continuity equation, and electric (or magnetic) dipolar moment etc in the electromagnetic field. The results reveal that the quaternion space is appropriate to describe the gravitational features, including the torque, force, and mass continuity equation etc. The S-quaternion space is proper to depict the electromagnetic features, including the dipolar moment and current continuity equation etc. In case the field strength is weak enough, the force and the continuity equation etc can be respectively reduced to that in the classical field theory

  11. Metamaterial characterization using Boltzmann's kinetic equation for electrons

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Zhukovsky, Sergei; Novitsky, D.

    2013-01-01

    Statistical properties of electrons in metals are taken into consideration to describe the microscopic motion of electrons. Assuming degenerate electron gas in metal, we introduce the Boltzmann kinetic equation to supplement Maxwell's equations. The solution of these equations clearly shows...

  12. Turbulent Evolution of a Plasma Described Through Classical Mechanics Only

    International Nuclear Information System (INIS)

    Escande, D.F.; Elskens, Y.

    2003-01-01

    For the first time an old dream of the XIXth century comes true: the non trivial evolution of a macroscopic many-body system is described through classical mechanics only. This is done for the relaxation of a warm electron beam in a plasma, which results in the generation of Langmuir turbulence and in the formation of a plateau in the velocity distribution function of the electrons. Our derivation starts from the hamiltonian describing the one-dimensional N-body system corresponding to the beam and plasma bulk electrons in electrostatic interaction. For such a system, the dynamics can be reduced to the resonant interaction of M Langmuir waves with N'( > 1 Langmuir waves with N' >> 1 beam particles. This yields the proof of the classical quasilinear equations describing the coupled evolution of the wave spectrum and of the beam velocity distribution function in the strongly nonlinear regime where their validity is the matter of a longstanding controversy

  13. Phenomenological approach to describe logistic growth and ...

    Indian Academy of Sciences (India)

    2016-10-18

    Oct 18, 2016 ... Gompertz function, used to describe biological growth processes undergoing atrophy or a demographic and ... recognizing the characteristic feature of a system and .... demonstrated with the help of a thought experiment by.

  14. describing a collaborative clothing design process between

    African Journals Online (AJOL)

    user

    ISSN 0378-5254 Journal of Family Ecology and Consumer Sciences, Vol 43, 2015. Designing success: describing a ... PROCESS BETWEEN APPRENTICE DESIGNERS AND EXPERT DESIGN .... 5 Evaluation and decisions. (a) Outcomes.

  15. Processes of aggression described by kinetic method

    Science.gov (United States)

    Aristov, V. V.; Ilyin, O.

    2014-12-01

    In the last decades many investigations have been devoted to theoretical models in new areas concerning description of different biological, sociological and historical processes. In the present paper we suggest a model of the Nazi Germany invasion of Poland, France and USSR based on the kinetic theory. We model this process with the Cauchy boundary problem for the two-element kinetic equations with spatial initial conditions. The solution of the problem is given in the form of traveling wave. The propagation velocity of a frontline depends on the quotient between initial forces concentrations. Moreover it is obtained that the general solution of the model can be expressed in terms of quadratures and elementary functions. Finally it is shown that the frontline velocities are complied with the historical data.

  16. Processes of aggression described by kinetic method

    International Nuclear Information System (INIS)

    Aristov, V. V.; Ilyin, O.

    2014-01-01

    In the last decades many investigations have been devoted to theoretical models in new areas concerning description of different biological, sociological and historical processes. In the present paper we suggest a model of the Nazi Germany invasion of Poland, France and USSR based on the kinetic theory. We model this process with the Cauchy boundary problem for the two-element kinetic equations with spatial initial conditions. The solution of the problem is given in the form of traveling wave. The propagation velocity of a frontline depends on the quotient between initial forces concentrations. Moreover it is obtained that the general solution of the model can be expressed in terms of quadratures and elementary functions. Finally it is shown that the frontline velocities are complied with the historical data

  17. Processes of aggression described by kinetic method

    Energy Technology Data Exchange (ETDEWEB)

    Aristov, V. V.; Ilyin, O. [Dorodnicyn Computing Centre of Russian Academy of Sciences, Vavilova str. 40, Moscow, 119333 (Russian Federation)

    2014-12-09

    In the last decades many investigations have been devoted to theoretical models in new areas concerning description of different biological, sociological and historical processes. In the present paper we suggest a model of the Nazi Germany invasion of Poland, France and USSR based on the kinetic theory. We model this process with the Cauchy boundary problem for the two-element kinetic equations with spatial initial conditions. The solution of the problem is given in the form of traveling wave. The propagation velocity of a frontline depends on the quotient between initial forces concentrations. Moreover it is obtained that the general solution of the model can be expressed in terms of quadratures and elementary functions. Finally it is shown that the frontline velocities are complied with the historical data.

  18. Equations of state for light water

    International Nuclear Information System (INIS)

    Rubin, G.A.; Granziera, M.R.

    1983-01-01

    The equations of state for light water were developed, based on the tables of Keenan and Keyes. Equations are presented, describing the specific volume, internal energy, enthalpy and entropy of saturated steam, superheated vapor and subcooled liquid as a function of pressure and temperature. For each property, several equations are shown, with different precisions and different degress of complexity. (Author) [pt

  19. Loop equations in the theory of gravitation

    International Nuclear Information System (INIS)

    Makeenko, Yu.M.; Voronov, N.A.

    1981-01-01

    Loop-space variables (matrices of parallel transport) for the theory of gravitation are described. Loop equations, which are equivalent to the Einstein equations, are derived in the classical case. Loop equations are derived for gravity with cosmological constant as well. An analogy with the loop-space approach in Yang-Mills theory is discussed [ru

  20. Solving Absolute Value Equations Algebraically and Geometrically

    Science.gov (United States)

    Shiyuan, Wei

    2005-01-01

    The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

  1. Flavored quantum Boltzmann equations

    International Nuclear Information System (INIS)

    Cirigliano, Vincenzo; Lee, Christopher; Ramsey-Musolf, Michael J.; Tulin, Sean

    2010-01-01

    We derive from first principles, using nonequilibrium field theory, the quantum Boltzmann equations that describe the dynamics of flavor oscillations, collisions, and a time-dependent mass matrix in the early universe. Working to leading nontrivial order in ratios of relevant time scales, we study in detail a toy model for weak-scale baryogenesis: two scalar species that mix through a slowly varying time-dependent and CP-violating mass matrix, and interact with a thermal bath. This model clearly illustrates how the CP asymmetry arises through coherent flavor oscillations in a nontrivial background. We solve the Boltzmann equations numerically for the density matrices, investigating the impact of collisions in various regimes.

  2. Polygons of differential equations for finding exact solutions

    International Nuclear Information System (INIS)

    Kudryashov, Nikolai A.; Demina, Maria V.

    2007-01-01

    A method for finding exact solutions of nonlinear differential equations is presented. Our method is based on the application of polygons corresponding to nonlinear differential equations. It allows one to express exact solutions of the equation studied through solutions of another equation using properties of the basic equation itself. The ideas of power geometry are used and developed. Our approach has a pictorial interpretation, which is illustrative and effective. The method can be also applied for finding transformations between solutions of differential equations. To demonstrate the method application exact solutions of several equations are found. These equations are: the Korteveg-de Vries-Burgers equation, the generalized Kuramoto-Sivashinsky equation, the fourth-order nonlinear evolution equation, the fifth-order Korteveg-de Vries equation, the fifth-order modified Korteveg-de Vries equation and the sixth-order nonlinear evolution equation describing turbulent processes. Some new exact solutions of nonlinear evolution equations are given

  3. Partial differential equations for scientists and engineers

    CERN Document Server

    Farlow, Stanley J

    1993-01-01

    Most physical phenomena, whether in the domain of fluid dynamics, electricity, magnetism, mechanics, optics, or heat flow, can be described in general by partial differential equations. Indeed, such equations are crucial to mathematical physics. Although simplifications can be made that reduce these equations to ordinary differential equations, nevertheless the complete description of physical systems resides in the general area of partial differential equations.This highly useful text shows the reader how to formulate a partial differential equation from the physical problem (constructing th

  4. The problem of evolution of toroidal plasma equilibrium

    International Nuclear Information System (INIS)

    Kostomarov, D.; Zaitsev, F.; Shishkin, A.

    1999-03-01

    This paper is devoted to an advanced mathematical model for a self-consistent description of the evolution of free boundary toroidal plasmas, with a description of numerical algorithms for the solution of the appropriate non-linear system of integro-differential equations, and discussion of some results from the model. (author)

  5. A new treatment of transient grain growth

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jiří; Fratzl, P.; Zickler, G. A.; Fischer, F. D.

    2016-01-01

    Roč. 115, AUG (2016), s. 442-447 ISSN 1359-6454 R&D Projects: GA ČR(CZ) GA15-06390S Institutional support: RVO:68081723 Keywords : Grain size distribution * Grain growth * Growth kinetics * Thermodynamic modelling * Numerical solution of integro-differential equations Subject RIV: BJ - Thermodynamic s Impact factor: 5.301, year: 2016

  6. Application of New Variational Homotopy Perturbation Method For ...

    African Journals Online (AJOL)

    This paper discusses the application of the New Variational Homotopy Perturbation Method (NVHPM) for solving integro-differential equations. The advantage of the new Scheme is that it does not require discretization, linearization or any restrictive assumption of any form be fore it is applied. Several test problems are ...

  7. Proceedings – Mathematical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    In this article, we study the concept of Stepanov-like weighted pseudo almost automorphic solutions to fractional order abstract integro-differential equations. We establish the results with Lipschitz condition and without Lipschitz condition on the forcing term. An interesting example is presented to illustrate the main findings.

  8. Stepanov-like weighted pseudo almost automorphic solutions to ...

    Indian Academy of Sciences (India)

    Abstract. In this article, we study the concept of Stepanov-like weighted pseudo almost automorphic solutions to fractional order abstract integro-differential equations. We establish the results with Lipschitz condition and without Lipschitz condition on the forcing term. An interesting example is presented to illustrate the main ...

  9. Multiple positive solutions for second order impulsive boundary value problems in Banach spaces

    Directory of Open Access Journals (Sweden)

    Zhi-Wei Lv

    2010-06-01

    Full Text Available By means of the fixed point index theory of strict set contraction operators, we establish new existence theorems on multiple positive solutions to a boundary value problem for second-order impulsive integro-differential equations with integral boundary conditions in a Banach space. Moreover, an application is given to illustrate the main result.

  10. The use of symbolic computation in radiative, energy, and neutron transport calculations. Final report

    International Nuclear Information System (INIS)

    Frankel, J.I.

    1997-01-01

    This investigation used sysmbolic manipulation in developing analytical methods and general computational strategies for solving both linear and nonlinear, regular and singular integral and integro-differential equations which appear in radiative and mixed-mode energy transport. Contained in this report are seven papers which present the technical results as individual modules

  11. AUTHOR INDEX

    Indian Academy of Sciences (India)

    automorphic solutions to fractional order abstract integro-differential equations. 323. Afrouzi G A see Ala Samira ... 521. Agarwal Praveen. Certain fractional integral operators and the generalized multi-index Mittag- ... of positive solutions for sys- tems of second order multi-point bound- ary value problems on time scales 353.

  12. Sensorimotor Interference When Reasoning About Described Environments

    Science.gov (United States)

    Avraamides, Marios N.; Kyranidou, Melina-Nicole

    The influence of sensorimotor interference was examined in two experiments that compared pointing with iconic arrows and verbal responding in a task that entailed locating target-objects from imagined perspectives. Participants studied text narratives describing objects at locations around them in a remote environment and then responded to targets from memory. Results revealed only minor differences between the two response modes suggesting that bodily cues do not exert severe detrimental interference on spatial reasoning from imagined perspective when non-immediate described environments are used. The implications of the findings are discussed.

  13. Stochastic GARCH dynamics describing correlations between stocks

    Science.gov (United States)

    Prat-Ortega, G.; Savel'ev, S. E.

    2014-09-01

    The ARCH and GARCH processes have been successfully used for modelling price dynamics such as stock returns or foreign exchange rates. Analysing the long range correlations between stocks, we propose a model, based on the GARCH process, which is able to describe the main characteristics of the stock price correlations, including the mean, variance, probability density distribution and the noise spectrum.

  14. How Digital Native Learners Describe Themselves

    Science.gov (United States)

    Thompson, Penny

    2015-01-01

    Eight university students from the "digital native" generation were interviewed about the connections they saw between technology use and learning, and also their reactions to the popular press claims about their generation. Themes that emerged from the interviews were coded to show patterns in how digital natives describe themselves.…

  15. Did goethe describe attention deficit hyperactivity disorder?

    Science.gov (United States)

    Bonazza, Sara; Scaglione, Cesa; Poppi, Massimo; Rizzo, Giovanni

    2011-01-01

    As early as 1846, the typical symptoms of attention deficit hyperactivity disorder (ADHD) were described by Heinrich Hoffmann (1809-1894). However, in Goethe's masterpiece Faust (1832), the character of Euphorion strongly suggests ADHD diagnosis. Copyright © 2011 S. Karger AG, Basel.

  16. Soliton equations and Hamiltonian systems

    CERN Document Server

    Dickey, L A

    2002-01-01

    The theory of soliton equations and integrable systems has developed rapidly during the last 30 years with numerous applications in mechanics and physics. For a long time, books in this field have not been written but the flood of papers was overwhelming: many hundreds, maybe thousands of them. All this output followed one single work by Gardner, Green, Kruskal, and Mizura on the Korteweg-de Vries equation (KdV), which had seemed to be merely an unassuming equation of mathematical physics describing waves in shallow water. Besides its obvious practical use, this theory is attractive also becau

  17. A methodology to describe process control requirements

    International Nuclear Information System (INIS)

    Carcagno, R.; Ganni, V.

    1994-01-01

    This paper presents a methodology to describe process control requirements for helium refrigeration plants. The SSC requires a greater level of automation for its refrigeration plants than is common in the cryogenics industry, and traditional methods (e.g., written descriptions) used to describe process control requirements are not sufficient. The methodology presented in this paper employs tabular and graphic representations in addition to written descriptions. The resulting document constitutes a tool for efficient communication among the different people involved in the design, development, operation, and maintenance of the control system. The methodology is not limited to helium refrigeration plants, and can be applied to any process with similar requirements. The paper includes examples

  18. Generating and Describing Affective Eye Behaviors

    Science.gov (United States)

    Mao, Xia; Li, Zheng

    The manner of a person's eye movement conveys much about nonverbal information and emotional intent beyond speech. This paper describes work on expressing emotion through eye behaviors in virtual agents based on the parameters selected from the AU-Coded facial expression database and real-time eye movement data (pupil size, blink rate and saccade). A rule-based approach to generate primary (joyful, sad, angry, afraid, disgusted and surprise) and intermediate emotions (emotions that can be represented as the mixture of two primary emotions) utilized the MPEG4 FAPs (facial animation parameters) is introduced. Meanwhile, based on our research, a scripting tool, named EEMML (Emotional Eye Movement Markup Language) that enables authors to describe and generate emotional eye movement of virtual agents, is proposed.

  19. How do consumers describe wine astringency?

    Science.gov (United States)

    Vidal, Leticia; Giménez, Ana; Medina, Karina; Boido, Eduardo; Ares, Gastón

    2015-12-01

    Astringency is one of the most important sensory characteristics of red wine. Although a hierarchically structured vocabulary to describe the mouthfeel sensations of red wine has been proposed, research on consumers' astringency vocabulary is lacking. In this context, the aim of this work was to gain an insight on the vocabulary used by wine consumers to describe the astringency of red wine and to evaluate the influence of wine involvement on consumers' vocabulary. One hundred and twenty-five wine consumers completed and on-line survey with five tasks: an open-ended question about the definition of wine astringency, free listing the sensations perceived when drinking an astringent wine, free listing the words they would use to describe the astringency of a red wine, a CATA question with 44 terms used in the literature to describe astringency, and a wine involvement questionnaire. When thinking about wine astringency consumers freely elicited terms included in the Mouth-feel Wheel, such as dryness and harsh. The majority of the specific sub-qualities of the Mouth-feel Wheel were not included in consumer responses. Also, terms not classified as astringency descriptors were elicited (e.g. acid and bitter). Only 17 out of the 31 terms from the Mouth-feel Wheel were used by more than 10% of participants when answering the CATA question. There were no large differences in the responses of consumer segments with different wine involvement. Results from the present work suggest that most of the terms of the Mouth-feel Wheel might not be adequate to communicate the astringency characteristics of red wine to consumers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Partial Differential Equations

    CERN Document Server

    1988-01-01

    The volume contains a selection of papers presented at the 7th Symposium on differential geometry and differential equations (DD7) held at the Nankai Institute of Mathematics, Tianjin, China, in 1986. Most of the contributions are original research papers on topics including elliptic equations, hyperbolic equations, evolution equations, non-linear equations from differential geometry and mechanics, micro-local analysis.

  1. Equating error in observed-score equating

    NARCIS (Netherlands)

    van der Linden, Willem J.

    2006-01-01

    Traditionally, error in equating observed scores on two versions of a test is defined as the difference between the transformations that equate the quantiles of their distributions in the sample and population of test takers. But it is argued that if the goal of equating is to adjust the scores of

  2. Wave equations for pulse propagation

    International Nuclear Information System (INIS)

    Shore, B.W.

    1987-01-01

    Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity. The memo discusses various ways of characterizing the polarization characteristics of plane waves, that is, of parameterizing a transverse unit vector, such as the Jones vector, the Stokes vector, and the Poincare sphere. It discusses the connection between macroscopically defined quantities, such as the intensity or, more generally, the Stokes parameters, and microscopic field amplitudes. The material presented here is a portion of a more extensive treatment of propagation to be presented separately. The equations presented here have been described in various books and articles. They are collected here as a summary and review of theory needed when treating pulse propagation

  3. A functional language for describing reversible logic

    DEFF Research Database (Denmark)

    Thomsen, Michael Kirkedal

    2012-01-01

    Reversible logic is a computational model where all gates are logically reversible and combined in circuits such that no values are lost or duplicated. This paper presents a novel functional language that is designed to describe only reversible logic circuits. The language includes high....... Reversibility of descriptions is guaranteed with a type system based on linear types. The language is applied to three examples of reversible computations (ALU, linear cosine transformation, and binary adder). The paper also outlines a design flow that ensures garbage- free translation to reversible logic...... circuits. The flow relies on a reversible combinator language as an intermediate language....

  4. Equations of multiparticle dynamics

    International Nuclear Information System (INIS)

    Chao, A.W.

    1987-01-01

    The description of the motion of charged-particle beams in an accelerator proceeds in steps of increasing complexity. The first step is to consider a single-particle picture in which the beam is represented as a collection on non-interacting test particles moving in a prescribed external electromagnetic field. Knowing the external field, it is then possible to calculate the beam motion to a high accuracy. The real beam consists of a large number of particles, typically 10 11 per beam bunch. It is sometimes inconvenient, or even impossible, to treat the real beam behavior using the single particle approach. One way to approach this problem is to supplement the single particle by another qualitatively different picture. The commonly used tools in accelerator physics for this purpose are the Vlasov and the Fokker-Planck equations. These equations assume smooth beam distributions and are therefore strictly valid in the limit of infinite number of micro-particles, each carrying an infinitesimal charge. The hope is that by studying the two extremes -- the single particle picture and the picture of smooth beam distributions -- we will be able to describe the behavior of our 10 11 -particle system. As mentioned, the most notable use of the smooth distribution picture is the study of collective beam instabilities. However, the purpose of this lecture is not to address this more advanced subject. Rather, it has the limited goal to familiarize the reader with the analytical tools, namely the Vlasov and the Fokker-Planck equations, as a preparation for dealing with the more advanced problems at later times. We will first derive these equations and then illustrate their applications by several examples which allow exact solutions

  5. Using neural networks to describe tracer correlations

    Directory of Open Access Journals (Sweden)

    D. J. Lary

    2004-01-01

    Full Text Available Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and methane volume mixing ratio (v.m.r.. In this study a neural network using Quickprop learning and one hidden layer with eight nodes was able to reproduce the CH4-N2O correlation with a correlation coefficient between simulated and training values of 0.9995. Such an accurate representation of tracer-tracer correlations allows more use to be made of long-term datasets to constrain chemical models. Such as the dataset from the Halogen Occultation Experiment (HALOE which has continuously observed CH4  (but not N2O from 1991 till the present. The neural network Fortran code used is available for download.

  6. On Redundancy in Describing Linguistic Systems

    Directory of Open Access Journals (Sweden)

    Vladimir Borissov Pericliev

    2015-12-01

    Full Text Available On Redundancy in Describing Linguistic Systems The notion of system of linguistic elements figures prominently in most post-Saussurian linguistics up to the present. A “system” is the network of the contrastive (or, distinctive features each element in the system bears to the remaining elements. The meaning (valeur of each element in the system is the set of features that are necessary and jointly sufficient to distinguish this element from all others. The paper addresses the problems of “redundancy”, i.e. the occurrence of features that are not strictly necessary in describing an element in a system. Redundancy is shown to smuggle into the description of linguistic systems, this infelicitous practice illustrated with some examples from the literature (e.g. the classical phonemic analysis of Russian by Cherry, Halle, and Jakobson, 1953. The logic and psychology of the occurrence of redundancy are briefly sketched and it is shown that, in addition to some other problems, redundancy leads to a huge and unresolvable ambiguity of descriptions of linguistic systems (the Buridan’s ass problem.

  7. Is an eclipse described in the Odyssey?

    Science.gov (United States)

    Baikouzis, Constantino; Magnasco, Marcelo O

    2008-07-01

    Plutarch and Heraclitus believed a certain passage in the 20th book of the Odyssey ("Theoclymenus's prophecy") to be a poetic description of a total solar eclipse. In the late 1920s, Schoch and Neugebauer computed that the solar eclipse of 16 April 1178 B.C.E. was total over the Ionian Islands and was the only suitable eclipse in more than a century to agree with classical estimates of the decade-earlier sack of Troy around 1192-1184 B.C.E. However, much skepticism remains about whether the verses refer to this, or any, eclipse. To contribute to the issue independently of the disputed eclipse reference, we analyze other astronomical references in the Epic, without assuming the existence of an eclipse, and search for dates matching the astronomical phenomena we believe they describe. We use three overt astronomical references in the epic: to Boötes and the Pleiades, Venus, and the New Moon; we supplement them with a conjectural identification of Hermes's trip to Ogygia as relating to the motion of planet Mercury. Performing an exhaustive search of all possible dates in the span 1250-1115 B.C., we looked to match these phenomena in the order and manner that the text describes. In that period, a single date closely matches our references: 16 April 1178 B.C.E. We speculate that these references, plus the disputed eclipse reference, may refer to that specific eclipse.

  8. Calculation of a hydrogen molecule in the adiabatic approximation

    International Nuclear Information System (INIS)

    Vukajlovich, F.R.; Mogilevskij, O.A.; Ponomarev, L.I.

    1979-01-01

    The adiabatic approximation js used for calculating the energy levels of a hydrogen molecule, i.e. of the simplest four-body system with a Coulomb interaction. The aim of this paper is the investigation of the possible use of the adiabatic method in the molecular problems. The most effective regions of its application are discussed. An infinite system of integro-differential equations is constructed, which describes the hydrogen molecule in the adiabatic approximation with the effective potentials taking into account the corrections to the nuclear motion. The energy of the first three vibrational states of the hydrogen molecule is calculated and compared with the experimental data. The convergence of the method is discussed

  9. Bushes of vibrational modes for Fermi-Pasta-Ulam chains

    Science.gov (United States)

    Chechin, G. M.; Novikova, N. V.; Abramenko, A. A.

    2002-06-01

    Some exact solutions and multimode invariant submanifolds were found for the Fermi-Pasta-Ulam (FPU)- β model by Poggi and Ruffo [Physica D 103 (1997) 251]. In the present paper we demonstrate how results of such a type can be obtained for an arbitraryN-particle chain with periodic boundary conditions with the aid of our group-theoretical approach [Physica D 117 (1998) 43] based on the concept of bushes of normal modes in mechanical systems with discrete symmetry. The integro-differential equation describing the FPU- α dynamics in the modal space is derived. The loss of stability of the bushes of modes for the FPU- α model, in particular, for the limiting case N→∞ for the dynamical regime with displacement pattern having period twice the lattice spacing ( π-mode) is studied. Our results for the FPU- α chain are compared with those by Poggi and Ruffo for the FPU- β chain.

  10. Studying the perturbative Reggeon

    International Nuclear Information System (INIS)

    Griffiths, S.; Ross, D.A.

    2000-01-01

    We consider the flavour non-singlet Reggeon within the context of perturbative QCD. This consists of ladders built out of ''reggeized'' quarks. We propose a method for the numerical solution of the integro-differential equation for the amplitude describing the exchange of such a Reggeon. The solution is known to have a sharp rise at low values of Bjorken-x when applied to non-singlet quantities in deep-inelastic scattering. We show that when the running of the coupling is taken into account this sharp rise is further enhanced, although the Q 2 dependence is suppressed by the introduction of the running coupling. We also investigate the effects of simulating non-perturbative physics by introducing a constituent mass for the soft quarks and an effective mass for the soft gluons exchanged in the t-channel. (orig.)

  11. Electron inertia effects on the planar plasma sheath problem

    International Nuclear Information System (INIS)

    Duarte, V. N.; Clemente, R. A.

    2011-01-01

    The steady one-dimensional planar plasma sheath problem, originally considered by Tonks and Langmuir, is revisited. Assuming continuously generated free-falling ions and isothermal electrons and taking into account electron inertia, it is possible to describe the problem in terms of three coupled integro-differential equations that can be numerically integrated. The inclusion of electron inertia in the model allows us to obtain the value of the plasma floating potential as resulting from an electron density discontinuity at the walls, where the electrons attain sound velocity and the electric potential is continuous. Results from numerical computation are presented in terms of plots for densities, electric potential, and particles velocities. Comparison with results from literature, corresponding to electron Maxwell-Boltzmann distribution (neglecting electron inertia), is also shown.

  12. Dynamic modelling and control of a rotating Euler-Bernoulli beam

    Science.gov (United States)

    Yang, J. B.; Jiang, L. J.; Chen, D. CH.

    2004-07-01

    Flexible motion of a uniform Euler-Bernoulli beam attached to a rotating rigid hub is investigated. Fully coupled non-linear integro-differential equations, describing axial, transverse and rotational motions of the beam, are derived by using the extended Hamilton's principle. The centrifugal stiffening effect is included in the derivation. A finite-dimensional model, including couplings of axial and transverse vibrations, and of elastic deformations and rigid motions, is obtained by the finite element method. By neglecting the axial motion, a simplified modelling, suitable for studying the transverse vibration and control of a beam with large angle and high-speed rotation, is presented. And suppressions of transverse vibrations of a rotating beam are simulated with the model by combining positive position feedback and momentum exchange feedback control laws. It is indicated that an improved performance for vibration control can be achieved with the method.

  13. Frameworks for understanding and describing business models

    DEFF Research Database (Denmark)

    Nielsen, Christian; Roslender, Robin

    2014-01-01

    This chapter provides in a chronological fashion an introduction to six frameworks that one can apply to describing, understanding and also potentially innovating business models. These six frameworks have been chosen carefully as they represent six very different perspectives on business models...... and in this manner “complement” each other. There are a multitude of varying frameworks that could be chosen from and we urge the reader to search and trial these for themselves. The six chosen models (year of release in parenthesis) are: • Service-Profit Chain (1994) • Strategic Systems Auditing (1997) • Strategy...... Maps (2001) • Intellectual Capital Statements (2003) • Chesbrough’s framework for Open Business Models (2006) • Business Model Canvas (2008)...

  14. Does Guru Granth Sahib describe depression?

    Science.gov (United States)

    Kalra, Gurvinder; Bhui, Kamaldeep; Bhugra, Dinesh

    2013-01-01

    Sikhism is a relatively young religion, with Guru Granth Sahib as its key religious text. This text describes emotions in everyday life, such as happiness, sadness, anger, hatred, and also more serious mental health issues such as depression and psychosis. There are references to the causation of these emotional disturbances and also ways to get out of them. We studied both the Gurumukhi version and the English translation of the Guru Granth Sahib to understand what it had to say about depression, its henomenology, and religious prescriptions for recovery. We discuss these descriptions in this paper and understand its meaning within the context of clinical depression. Such knowledge is important as explicit descriptions about depression and sadness can help encourage culturally appropriate assessment and treatment, as well as promote public health through education.

  15. Describing chaotic attractors: Regular and perpetual points

    Science.gov (United States)

    Dudkowski, Dawid; Prasad, Awadhesh; Kapitaniak, Tomasz

    2018-03-01

    We study the concepts of regular and perpetual points for describing the behavior of chaotic attractors in dynamical systems. The idea of these points, which have been recently introduced to theoretical investigations, is thoroughly discussed and extended into new types of models. We analyze the correlation between regular and perpetual points, as well as their relation with phase space, showing the potential usefulness of both types of points in the qualitative description of co-existing states. The ability of perpetual points in finding attractors is indicated, along with its potential cause. The location of chaotic trajectories and sets of considered points is investigated and the study on the stability of systems is shown. The statistical analysis of the observing desired states is performed. We focus on various types of dynamical systems, i.e., chaotic flows with self-excited and hidden attractors, forced mechanical models, and semiconductor superlattices, exhibiting the universality of appearance of the observed patterns and relations.

  16. Geophysical interpretation using integral equations

    CERN Document Server

    Eskola, L

    1992-01-01

    Along with the general development of numerical methods in pure and applied to apply integral equations to geophysical modelling has sciences, the ability improved considerably within the last thirty years or so. This is due to the successful derivation of integral equations that are applicable to the modelling of complex structures, and efficient numerical algorithms for their solution. A significant stimulus for this development has been the advent of fast digital computers. The purpose of this book is to give an idea of the principles by which boundary-value problems describing geophysical models can be converted into integral equations. The end results are the integral formulas and integral equations that form the theoretical framework for practical applications. The details of mathematical analysis have been kept to a minimum. Numerical algorithms are discussed only in connection with some illustrative examples involving well-documented numerical modelling results. The reader is assu­ med to have a back...

  17. Quantum-statistical kinetic equations

    International Nuclear Information System (INIS)

    Loss, D.; Schoeller, H.

    1989-01-01

    Considering a homogeneous normal quantum fluid consisting of identical interacting fermions or bosons, the authors derive an exact quantum-statistical generalized kinetic equation with a collision operator given as explicit cluster series where exchange effects are included through renormalized Liouville operators. This new result is obtained by applying a recently developed superoperator formalism (Liouville operators, cluster expansions, symmetrized projectors, P q -rule, etc.) to nonequilibrium systems described by a density operator ρ(t) which obeys the von Neumann equation. By means of this formalism a factorization theorem is proven (being essential for obtaining closed equations), and partial resummations (leading to renormalized quantities) are performed. As an illustrative application, the quantum-statistical versions (including exchange effects due to Fermi-Dirac or Bose-Einstein statistics) of the homogeneous Boltzmann (binary collisions) and Choh-Uhlenbeck (triple collisions) equations are derived

  18. Plans should abstractly describe intended behavior

    Energy Technology Data Exchange (ETDEWEB)

    Pfleger, K.; Hayes-Roth, B. [Stanford Univ., CA (United States)

    1996-12-31

    Planning is the process of formulating a potential course of action. How courses of action (plans) produced by a planning module are represented and how they are used by execution-oriented modules of a complex agent to influence or dictate behavior are critical architectural issues. In contrast to the traditional model of plans as executable programs that dictate precise behaviors, we claim that autonomous agents inhabiting dynamic, unpredictable environments can make better use of plans that only abstractly describe their intended behavior. Such plans only influence or constrain behavior, rather than dictating it. This idea has been discussed in a variety of contexts, but it is seldom incorporated into working complex agents. Experiments involving instantiations of our Adaptive Intelligent Systems architecture in a variety of domains have demonstrated the generality and usefulness of the approach, even with our currently simple plan representation and mechanisms for plan following. The behavioral benefits include (1) robust improvisation of goal-directed behavior in response to dynamic situations, (2) ready exploitation of dynamically acquired knowledge or behavioral capabilities, and (3) adaptation based on dynamic aspects of coordinating diverse behaviors to achieve multiple goals. In addition to these run-time advantages, the approach has useful implications for the design and configuration of agents. Indeed, the core ideas of the approach are natural extensions of fundamental ideas in software engineering.

  19. Describing and Enhancing Collaboration at the Computer

    Directory of Open Access Journals (Sweden)

    Ken Beatty

    2002-06-01

    Full Text Available Computer-based learning materials differ from classroom practice in that they seldom explicitly offer opportunities for collaboration. Despite this, students do collaborate, helping one another through the content and affordances of computer materials. But, in doing so, students meet with challenges. Paradoxically, these challenges can either inspire or discourage learning and second-language acquisition. This paper, based on research with twenty Hong Kong university students in a controlled experiment, evaluates challenges to collaboration at the computer as evidenced by discourse. The students were videotaped and their discourse transcribed and evaluated both qualitatively and quantitatively, according to a set of discourse markers created to describe collaborative, non-collaborative and ambiguous strategies. The paper begins by exploring the differences between collaboration and similar terms such as teamwork and cooperative learning then goes on to define collaboration in the context of computer-assisted learning. It ends by presenting practical suggestions for software designers, teachers and students to enhance collaboration at the computer.

  20. DBH Prediction Using Allometry Described by Bivariate Copula Distribution

    Science.gov (United States)

    Xu, Q.; Hou, Z.; Li, B.; Greenberg, J. A.

    2017-12-01

    Forest biomass mapping based on single tree detection from the airborne laser scanning (ALS) usually depends on an allometric equation that relates diameter at breast height (DBH) with per-tree aboveground biomass. The incapability of the ALS technology in directly measuring DBH leads to the need to predict DBH with other ALS-measured tree-level structural parameters. A copula-based method is proposed in the study to predict DBH with the ALS-measured tree height and crown diameter using a dataset measured in the Lassen National Forest in California. Instead of exploring an explicit mathematical equation that explains the underlying relationship between DBH and other structural parameters, the copula-based prediction method utilizes the dependency between cumulative distributions of these variables, and solves the DBH based on an assumption that for a single tree, the cumulative probability of each structural parameter is identical. Results show that compared with the bench-marking least-square linear regression and the k-MSN imputation, the copula-based method obtains better accuracy in the DBH for the Lassen National Forest. To assess the generalization of the proposed method, prediction uncertainty is quantified using bootstrapping techniques that examine the variability of the RMSE of the predicted DBH. We find that the copula distribution is reliable in describing the allometric relationship between tree-level structural parameters, and it contributes to the reduction of prediction uncertainty.

  1. Complex centers of polynomial differential equations

    Directory of Open Access Journals (Sweden)

    Mohamad Ali M. Alwash

    2007-07-01

    Full Text Available We present some results on the existence and nonexistence of centers for polynomial first order ordinary differential equations with complex coefficients. In particular, we show that binomial differential equations without linear terms do not have complex centers. Classes of polynomial differential equations, with more than two terms, are presented that do not have complex centers. We also study the relation between complex centers and the Pugh problem. An algorithm is described to solve the Pugh problem for equations without complex centers. The method of proof involves phase plane analysis of the polar equations and a local study of periodic solutions.

  2. Describing pediatric dysphonia with nonlinear dynamic parameters

    Science.gov (United States)

    Meredith, Morgan L.; Theis, Shannon M.; McMurray, J. Scott; Zhang, Yu; Jiang, Jack J.

    2008-01-01

    Objective Nonlinear dynamic analysis has emerged as a reliable and objective tool for assessing voice disorders. However, it has only been tested on adult populations. In the present study, nonlinear dynamic analysis was applied to normal and dysphonic pediatric populations with the goal of collecting normative data. Jitter analysis was also applied in order to compare nonlinear dynamic and perturbation measures. This study’s findings will be useful in creating standards for the use of nonlinear dynamic analysis as a tool to describe dysphonia in the pediatric population. Methods The study included 38 pediatric subjects (23 children with dysphonia and 15 without). Recordings of sustained vowels were obtained from each subject and underwent nonlinear dynamic analysis and percent jitter analysis. The resulting correlation dimension (D2) and percent jitter values were compared across the two groups using t-tests set at a significance level of p = 0.05. Results It was shown that D2 values covary with the presence of pathology in children. D2 values were significantly higher in dysphonic children than in normal children (p = 0.002). Standard deviations indicated a higher level of variation in normal children’s D2 values than in dysphonic children’s D2 values. Jitter analysis showed markedly higher percent jitter in dysphonic children than in normal children (p = 0.025) and large standard deviations for both groups. Conclusion This study indicates that nonlinear dynamic analysis could be a viable tool for the detection and assessment of dysphonia in children. Further investigations and more normative data are needed to create standards for using nonlinear dynamic parameters for the clinical evaluation of pediatric dysphonia. PMID:18947887

  3. On the Existence and the Applications of Modified Equations for Stochastic Differential Equations

    KAUST Repository

    Zygalakis, K. C.

    2011-01-01

    In this paper we describe a general framework for deriving modified equations for stochastic differential equations (SDEs) with respect to weak convergence. Modified equations are derived for a variety of numerical methods, such as the Euler or the Milstein method. Existence of higher order modified equations is also discussed. In the case of linear SDEs, using the Gaussianity of the underlying solutions, we derive an SDE which the numerical method solves exactly in the weak sense. Applications of modified equations in the numerical study of Langevin equations is also discussed. © 2011 Society for Industrial and Applied Mathematics.

  4. Reduction of the equation for lower hybrid waves in a plasma to a nonlinear Schroedinger equation

    Science.gov (United States)

    Karney, C. F. F.

    1977-01-01

    Equations describing the nonlinear propagation of waves in an anisotropic plasma are rarely exactly soluble. However it is often possible to make approximations that reduce the exact equations into a simpler equation. The use of MACSYMA to make such approximations, and so reduce the equation describing lower hybrid waves into the nonlinear Schrodinger equation which is soluble by the inverse scattering method is demonstrated. MACSYMA is used at several stages in the calculation only because there is a natural division between calculations that are easiest done by hand, and those that are easiest done by machine.

  5. Chemical Equation Balancing.

    Science.gov (United States)

    Blakley, G. R.

    1982-01-01

    Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)

  6. Handbook of integral equations

    CERN Document Server

    Polyanin, Andrei D

    2008-01-01

    This handbook contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equations that arise in mathematics, physics, engineering, the sciences, and economics. This second edition includes new chapters on mixed multidimensional equations and methods of integral equations for ODEs and PDEs, along with over 400 new equations with exact solutions. With many examples added for illustrative purposes, it presents new material on Volterra, Fredholm, singular, hypersingular, dual, and nonlinear integral equations, integral transforms, and special functions.

  7. Variational linear algebraic equations method

    International Nuclear Information System (INIS)

    Moiseiwitsch, B.L.

    1982-01-01

    A modification of the linear algebraic equations method is described which ensures a variational bound on the phaseshifts for potentials having a definite sign at all points. The method is illustrated by the elastic scattering of s-wave electrons by the static field of atomic hydrogen. (author)

  8. A generalized advection dispersion equation

    Indian Academy of Sciences (India)

    This paper examines a possible effect of uncertainties, variability or heterogeneity of any dynamic system when being included in its evolution rule; the notion is illustrated with the advection dispersion equation, which describes the groundwater pollution model. An uncertain derivative is defined; some properties of.

  9. Vapor-droplet flow equations

    International Nuclear Information System (INIS)

    Crowe, C.T.

    1975-01-01

    General features of a vapor-droplet flow are discussed and the equations expressing the conservation of mass, momentum, and energy for the vapor, liquid, and mixture using the control volume approach are derived. The phenomenological laws describing the exchange of mass, momentum, and energy between phases are also reviewed. The results have application to development of water-dominated geothermal resources

  10. Wave equation of hydrogen atom

    International Nuclear Information System (INIS)

    Suwito.

    1977-01-01

    The calculation of the energy levels of the hydrogen atom using Bohr, Schroedinger and Dirac theories is reviewed. The result is compared with that obtained from infinite component wave equations theory which developed recently. The conclusion can be stated that the latter theory is better to describe the composit system than the former. (author)

  11. Deriving average soliton equations with a perturbative method

    International Nuclear Information System (INIS)

    Ballantyne, G.J.; Gough, P.T.; Taylor, D.P.

    1995-01-01

    The method of multiple scales is applied to periodically amplified, lossy media described by either the nonlinear Schroedinger (NLS) equation or the Korteweg--de Vries (KdV) equation. An existing result for the NLS equation, derived in the context of nonlinear optical communications, is confirmed. The method is then applied to the KdV equation and the result is confirmed numerically

  12. Equations of macrotransport in reactor fuel assemblies

    International Nuclear Information System (INIS)

    Sorokin, A.P.; Zhukov, A.V.; Kornienko, Yu.N.; Ushakov, P.A.

    1986-01-01

    The rigorous statement of equations of macrotransport is obtained. These equations are bases for channel-by-channel methods of thermohydraulic calculations of reactor fuel assemblies within the scope of the model of discontinuous multiphase coolant flow (including chemical reactions); they also describe a wide range of problems on thermo-physical reactor fuel assembly justification. It has been carried out by smoothing equations of mass, momentum and enthalpy transfer in cross section of each phase of the elementary fuel assembly subchannel. The equation for cross section flows is obtaind by smoothing the equation of momentum transfer on the interphase. Interaction of phases on the channel boundary is described using the Stanton number. The conclusion is performed using the generalized equation of substance transfer. The statement of channel-by-channel method without the scope of homogeneous flow model is given

  13. On integrability of the Killing equation

    Science.gov (United States)

    Houri, Tsuyoshi; Tomoda, Kentaro; Yasui, Yukinori

    2018-04-01

    Killing tensor fields have been thought of as describing the hidden symmetry of space(-time) since they are in one-to-one correspondence with polynomial first integrals of geodesic equations. Since many problems in classical mechanics can be formulated as geodesic problems in curved space and spacetime, solving the defining equation for Killing tensor fields (the Killing equation) is a powerful way to integrate equations of motion. Thus it has been desirable to formulate the integrability conditions of the Killing equation, which serve to determine the number of linearly independent solutions and also to restrict the possible forms of solutions tightly. In this paper, we show the prolongation for the Killing equation in a manner that uses Young symmetrizers. Using the prolonged equations, we provide the integrability conditions explicitly.

  14. A Kinetic Model Describing Injury-Burden in Team Sports.

    Science.gov (United States)

    Fuller, Colin W

    2017-12-01

    Injuries in team sports are normally characterised by the incidence, severity, and location and type of injuries sustained: these measures, however, do not provide an insight into the variable injury-burden experienced during a season. Injury burden varies according to the team's match and training loads, the rate at which injuries are sustained and the time taken for these injuries to resolve. At the present time, this time-based variation of injury burden has not been modelled. To develop a kinetic model describing the time-based injury burden experienced by teams in elite team sports and to demonstrate the model's utility. Rates of injury were quantified using a large eight-season database of rugby injuries (5253) and exposure (60,085 player-match-hours) in English professional rugby. Rates of recovery from injury were quantified using time-to-recovery analysis of the injuries. The kinetic model proposed for predicting a team's time-based injury burden is based on a composite rate equation developed from the incidence of injury, a first-order rate of recovery from injury and the team's playing load. The utility of the model was demonstrated by examining common scenarios encountered in elite rugby. The kinetic model developed describes and predicts the variable injury-burden arising from match play during a season of rugby union based on the incidence of match injuries, the rate of recovery from injury and the playing load. The model is equally applicable to other team sports and other scenarios.

  15. Fractional hydrodynamic equations for fractal media

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2005-01-01

    We use the fractional integrals in order to describe dynamical processes in the fractal medium. We consider the 'fractional' continuous medium model for the fractal media and derive the fractional generalization of the equations of balance of mass density, momentum density, and internal energy. The fractional generalization of Navier-Stokes and Euler equations are considered. We derive the equilibrium equation for fractal media. The sound waves in the continuous medium model for fractional media are considered

  16. Nonlinear evolution equations

    CERN Document Server

    Uraltseva, N N

    1995-01-01

    This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrödinger equation). The book will be useful to researchers and graduate students working in p

  17. A direct algebraic method applied to obtain complex solutions of some nonlinear partial differential equations

    International Nuclear Information System (INIS)

    Zhang Huiqun

    2009-01-01

    By using some exact solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct the exact complex solutions for nonlinear partial differential equations. The method is implemented for the NLS equation, a new Hamiltonian amplitude equation, the coupled Schrodinger-KdV equations and the Hirota-Maccari equations. New exact complex solutions are obtained.

  18. Modeling animal movements using stochastic differential equations

    Science.gov (United States)

    Haiganoush K. Preisler; Alan A. Ager; Bruce K. Johnson; John G. Kie

    2004-01-01

    We describe the use of bivariate stochastic differential equations (SDE) for modeling movements of 216 radiocollared female Rocky Mountain elk at the Starkey Experimental Forest and Range in northeastern Oregon. Spatially and temporally explicit vector fields were estimated using approximating difference equations and nonparametric regression techniques. Estimated...

  19. xRage Equation of State

    Energy Technology Data Exchange (ETDEWEB)

    Grove, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-16

    The xRage code supports a variety of hydrodynamic equation of state (EOS) models. In practice these are generally accessed in the executing code via a pressure-temperature based table look up. This document will describe the various models supported by these codes and provide details on the algorithms used to evaluate the equation of state.

  20. Benney's long wave equations

    International Nuclear Information System (INIS)

    Lebedev, D.R.

    1979-01-01

    Benney's equations of motion of incompressible nonviscous fluid with free surface in the approximation of long waves are analyzed. The connection between the Lie algebra of Hamilton plane vector fields and the Benney's momentum equations is shown

  1. Dynamics of partial differential equations

    CERN Document Server

    Wayne, C Eugene

    2015-01-01

    This book contains two review articles on the dynamics of partial differential equations that deal with closely related topics but can be read independently. Wayne reviews recent results on the global dynamics of the two-dimensional Navier-Stokes equations. This system exhibits stable vortex solutions: the topic of Wayne's contribution is how solutions that start from arbitrary initial conditions evolve towards stable vortices. Weinstein considers the dynamics of localized states in nonlinear Schrodinger and Gross-Pitaevskii equations that describe many optical and quantum systems. In this contribution, Weinstein reviews recent bifurcations results of solitary waves, their linear and nonlinear stability properties, and results about radiation damping where waves lose energy through radiation.   The articles, written independently, are combined into one volume to showcase the tools of dynamical systems theory at work in explaining qualitative phenomena associated with two classes of partial differential equ...

  2. Integration rules for scattering equations

    International Nuclear Information System (INIS)

    Baadsgaard, Christian; Bjerrum-Bohr, N.E.J.; Bourjaily, Jacob L.; Damgaard, Poul H.

    2015-01-01

    As described by Cachazo, He and Yuan, scattering amplitudes in many quantum field theories can be represented as integrals that are fully localized on solutions to the so-called scattering equations. Because the number of solutions to the scattering equations grows quite rapidly, the contour of integration involves contributions from many isolated components. In this paper, we provide a simple, combinatorial rule that immediately provides the result of integration against the scattering equation constraints for any Möbius-invariant integrand involving only simple poles. These rules have a simple diagrammatic interpretation that makes the evaluation of any such integrand immediate. Finally, we explain how these rules are related to the computation of amplitudes in the field theory limit of string theory.

  3. Fractional Schroedinger equation

    International Nuclear Information System (INIS)

    Laskin, Nick

    2002-01-01

    Some properties of the fractional Schroedinger equation are studied. We prove the Hermiticity of the fractional Hamilton operator and establish the parity conservation law for fractional quantum mechanics. As physical applications of the fractional Schroedinger equation we find the energy spectra of a hydrogenlike atom (fractional 'Bohr atom') and of a fractional oscillator in the semiclassical approximation. An equation for the fractional probability current density is developed and discussed. We also discuss the relationships between the fractional and standard Schroedinger equations

  4. Ordinary differential equations

    CERN Document Server

    Greenberg, Michael D

    2014-01-01

    Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps

  5. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2014-01-01

    A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible,combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger's equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is or

  6. Averaged RMHD equations

    International Nuclear Information System (INIS)

    Ichiguchi, Katsuji

    1998-01-01

    A new reduced set of resistive MHD equations is derived by averaging the full MHD equations on specified flux coordinates, which is consistent with 3D equilibria. It is confirmed that the total energy is conserved and the linearized equations for ideal modes are self-adjoint. (author)

  7. On the string equation at c=1

    International Nuclear Information System (INIS)

    Nakatsu, Toshio.

    1994-07-01

    The analogue of the string equation which specifies the partition function of c=1 string with a compactification radius β is an element of Z ≥1 is described in the framework of Toda lattice hierarchy. (author)

  8. A simple chaotic delay differential equation

    International Nuclear Information System (INIS)

    Sprott, J.C.

    2007-01-01

    The simplest chaotic delay differential equation with a sinusoidal nonlinearity is described, including the route to chaos, Lyapunov exponent spectrum, and chaotic diffusion. It is prototypical of many other high-dimensional chaotic systems

  9. New symmetries for the Dirac equation

    International Nuclear Information System (INIS)

    Linhares, C.A.; Mignaco, J.A.

    1990-01-01

    The Dirac equation in four dimension is studied describing fermions, both as 4 x 4 matrices and differential forms. It is discussed in both formalisms its properties under transformations of the group SU(4). (A.C.A.S.) [pt

  10. FDTD for Hydrodynamic Electron Fluid Maxwell Equations

    Directory of Open Access Journals (Sweden)

    Yingxue Zhao

    2015-05-01

    Full Text Available In this work, we develop a numerical method for solving the three dimensional hydrodynamic electron fluid Maxwell equations that describe the electron gas dynamics driven by an external electromagnetic wave excitation. Our numerical approach is based on the Finite-Difference Time-Domain (FDTD method for solving the Maxwell’s equations and an explicit central finite difference method for solving the hydrodynamic electron fluid equations containing both electron density and current equations. Numerical results show good agreement with the experiment of studying the second-harmonic generation (SHG from metallic split-ring resonator (SRR.

  11. Exponentially Convergent Algorithms for Abstract Differential Equations

    CERN Document Server

    Gavrilyuk, Ivan; Vasylyk, Vitalii

    2011-01-01

    This book presents new accurate and efficient exponentially convergent methods for abstract differential equations with unbounded operator coefficients in Banach space. These methods are highly relevant for the practical scientific computing since the equations under consideration can be seen as the meta-models of systems of ordinary differential equations (ODE) as well as the partial differential equations (PDEs) describing various applied problems. The framework of functional analysis allows one to obtain very general but at the same time transparent algorithms and mathematical results which

  12. Parabolized stability equations

    Science.gov (United States)

    Herbert, Thorwald

    1994-01-01

    The parabolized stability equations (PSE) are a new approach to analyze the streamwise evolution of single or interacting Fourier modes in weakly nonparallel flows such as boundary layers. The concept rests on the decomposition of every mode into a slowly varying amplitude function and a wave function with slowly varying wave number. The neglect of the small second derivatives of the slowly varying functions with respect to the streamwise variable leads to an initial boundary-value problem that can be solved by numerical marching procedures. The PSE approach is valid in convectively unstable flows. The equations for a single mode are closely related to those of the traditional eigenvalue problems for linear stability analysis. However, the PSE approach does not exploit the homogeneity of the problem and, therefore, can be utilized to analyze forced modes and the nonlinear growth and interaction of an initial disturbance field. In contrast to the traditional patching of local solutions, the PSE provide the spatial evolution of modes with proper account for their history. The PSE approach allows studies of secondary instabilities without the constraints of the Floquet analysis and reproduces the established experimental, theoretical, and computational benchmark results on transition up to the breakdown stage. The method matches or exceeds the demonstrated capabilities of current spatial Navier-Stokes solvers at a small fraction of their computational cost. Recent applications include studies on localized or distributed receptivity and prediction of transition in model environments for realistic engineering problems. This report describes the basis, intricacies, and some applications of the PSE methodology.

  13. Singular stochastic differential equations

    CERN Document Server

    Cherny, Alexander S

    2005-01-01

    The authors introduce, in this research monograph on stochastic differential equations, a class of points termed isolated singular points. Stochastic differential equations possessing such points (called singular stochastic differential equations here) arise often in theory and in applications. However, known conditions for the existence and uniqueness of a solution typically fail for such equations. The book concentrates on the study of the existence, the uniqueness, and, what is most important, on the qualitative behaviour of solutions of singular stochastic differential equations. This is done by providing a qualitative classification of isolated singular points, into 48 possible types.

  14. Linear causal modeling with structural equations

    CERN Document Server

    Mulaik, Stanley A

    2009-01-01

    Emphasizing causation as a functional relationship between variables that describe objects, Linear Causal Modeling with Structural Equations integrates a general philosophical theory of causation with structural equation modeling (SEM) that concerns the special case of linear causal relations. In addition to describing how the functional relation concept may be generalized to treat probabilistic causation, the book reviews historical treatments of causation and explores recent developments in experimental psychology on studies of the perception of causation. It looks at how to perceive causal

  15. LSZ asymptotic condition and dynamic equations in quantum field theory

    International Nuclear Information System (INIS)

    Arkhipov, A.A.; Savrin, V.I.

    1983-01-01

    Some techniques that may be appropriate for the derivation of dynamic equations in quantum field theory are considered. A new method of deriving equations based on the use of LSZ asymptotic condition is described. It is proved that with the help of this method it becomes possible to obtain equations for wave functions both of scattering and bound states. Work is described in several papers under the dame title. The first paper is devoted to the Bethe-Salpeter equation

  16. INVARIANTS OF GENERALIZED RAPOPORT-LEAS EQUATIONS

    Directory of Open Access Journals (Sweden)

    Elena N. Kushner

    2018-01-01

    Full Text Available For the generalized Rapoport-Leas equations, algebra of differential invariants is constructed with respect to point transformations, that is, transformations of independent and dependent variables. The finding of a general transformation of this type reduces to solving an extremely complicated functional equation. Therefore, following the approach of Sophus Lie, we restrict ourselves to the search for infinitesimal transformations which are generated by translations along the trajectories of vector fields. The problem of finding these vector fields reduces to the redefined system decision of linear differential equations with respect to their coefficients. The Rapoport-Leas equations arise in the study of nonlinear filtration processes in porous media, as well as in other areas of natural science: for example, these equations describe various physical phenomena: two-phase filtration in a porous medium, filtration of a polytropic gas, and propagation of heat at nuclear explosion. They are vital topic for research: in recent works of Bibikov, Lychagin, and others, the analysis of the symmetries of the generalized Rapoport-Leas equations has been carried out; finite-dimensional dynamics and conditions of attractors existence have been found. Since the generalized RapoportLeas equations are nonlinear partial differential equations of the second order with two independent variables; the methods of the geometric theory of differential equations are used to study them in this paper. According to this theory differential equations generate subvarieties in the space of jets. This makes it possible to use the apparatus of modern differential geometry to study differential equations. We introduce the concept of admissible transformations, that is, replacements of variables that do not derive equations outside the class of the Rapoport-Leas equations. Such transformations form a Lie group. For this Lie group there are differential invariants that separate

  17. Computer modeling describes gravity-related adaptation in cell cultures.

    Science.gov (United States)

    Alexandrov, Ludmil B; Alexandrova, Stoyana; Usheva, Anny

    2009-12-16

    Questions about the changes of biological systems in response to hostile environmental factors are important but not easy to answer. Often, the traditional description with differential equations is difficult due to the overwhelming complexity of the living systems. Another way to describe complex systems is by simulating them with phenomenological models such as the well-known evolutionary agent-based model (EABM). Here we developed an EABM to simulate cell colonies as a multi-agent system that adapts to hyper-gravity in starvation conditions. In the model, the cell's heritable characteristics are generated and transferred randomly to offspring cells. After a qualitative validation of the model at normal gravity, we simulate cellular growth in hyper-gravity conditions. The obtained data are consistent with previously confirmed theoretical and experimental findings for bacterial behavior in environmental changes, including the experimental data from the microgravity Atlantis and the Hypergravity 3000 experiments. Our results demonstrate that it is possible to utilize an EABM with realistic qualitative description to examine the effects of hypergravity and starvation on complex cellular entities.

  18. Using the MWC model to describe heterotropic interactions in hemoglobin

    Science.gov (United States)

    Rapp, Olga

    2017-01-01

    Hemoglobin is a classical model allosteric protein. Research on hemoglobin parallels the development of key cooperativity and allostery concepts, such as the ‘all-or-none’ Hill formalism, the stepwise Adair binding formulation and the concerted Monod-Wymann-Changuex (MWC) allosteric model. While it is clear that the MWC model adequately describes the cooperative binding of oxygen to hemoglobin, rationalizing the effects of H+, CO2 or organophosphate ligands on hemoglobin-oxygen saturation using the same model remains controversial. According to the MWC model, allosteric ligands exert their effect on protein function by modulating the quaternary conformational transition of the protein. However, data fitting analysis of hemoglobin oxygen saturation curves in the presence or absence of inhibitory ligands persistently revealed effects on both relative oxygen affinity (c) and conformational changes (L), elementary MWC parameters. The recent realization that data fitting analysis using the traditional MWC model equation may not provide reliable estimates for L and c thus calls for a re-examination of previous data using alternative fitting strategies. In the current manuscript, we present two simple strategies for obtaining reliable estimates for MWC mechanistic parameters of hemoglobin steady-state saturation curves in cases of both evolutionary and physiological variations. Our results suggest that the simple MWC model provides a reasonable description that can also account for heterotropic interactions in hemoglobin. The results, moreover, offer a general roadmap for successful data fitting analysis using the MWC model. PMID:28793329

  19. A new treatment of nonlocality in scattering process

    Science.gov (United States)

    Upadhyay, N. J.; Bhagwat, A.; Jain, B. K.

    2018-01-01

    Nonlocality in the scattering potential leads to an integro-differential equation. In this equation nonlocality enters through an integral over the nonlocal potential kernel. The resulting Schrödinger equation is usually handled by approximating r,{r}{\\prime }-dependence of the nonlocal kernel. The present work proposes a novel method to solve the integro-differential equation. The method, using the mean value theorem of integral calculus, converts the nonhomogeneous term to a homogeneous term. The effective local potential in this equation turns out to be energy independent, but has relative angular momentum dependence. This method is accurate and valid for any form of nonlocality. As illustrative examples, the total and differential cross sections for neutron scattering off 12C, 56Fe and 100Mo nuclei are calculated with this method in the low energy region (up to 10 MeV) and are found to be in reasonable accord with the experiments.

  20. From differential to difference equations for first order ODEs

    Science.gov (United States)

    Freed, Alan D.; Walker, Kevin P.

    1991-01-01

    When constructing an algorithm for the numerical integration of a differential equation, one should first convert the known ordinary differential equation (ODE) into an ordinary difference equation. Given this difference equation, one can develop an appropriate numerical algorithm. This technical note describes the derivation of two such ordinary difference equations applicable to a first order ODE. The implicit ordinary difference equation has the same asymptotic expansion as the ODE itself, whereas the explicit ordinary difference equation has an asymptotic that is similar in structure but different in value when compared with that of the ODE.

  1. Nonadiabatic quantum Vlasov equation for Schwinger pair production

    International Nuclear Information System (INIS)

    Kim, Sang Pyo; Schubert, Christian

    2011-01-01

    Using Lewis-Riesenfeld theory, we derive an exact nonadiabatic master equation describing the time evolution of the QED Schwinger pair-production rate for a general time-varying electric field. This equation can be written equivalently as a first-order matrix equation, as a Vlasov-type integral equation, or as a third-order differential equation. In the last version it relates to the Korteweg-de Vries equation, which allows us to construct an exact solution using the well-known one-soliton solution to that equation. The case of timelike delta function pulse fields is also briefly considered.

  2. General Relativity Exactly Described by Use of Newton's Laws within a Curved Geometry

    Science.gov (United States)

    Savickas, David

    2014-03-01

    The connection between general relativity and Newtonian mechanics is shown to be much closer than generally recognized. When Newton's second law is written in a curved geometry by using the physical components of a vector as defined in tensor calculus, and by replacing distance within the momentum's velocity by the vector metric ds in a curved geometry, the second law can then be easily shown to be exactly identical to the geodesic equation of motion occurring in general relativity. By using a time whose vector direction is constant, as similarly occurs in Newtonian mechanics, this equation can be separated into two equations one of which is a curved three-dimensional equation of motion and the other is an equation for energy. For the gravitational field of an isolated particle, they yield the Schwarzschild equations. They can be used to describe gravitation for any array of masses for which the Newtonian gravitational potential is known, and is applied here to describe motion in the gravitational field of a thin mass-rod.

  3. Introduction to complex theory of differential equations

    CERN Document Server

    Savin, Anton

    2017-01-01

    This book discusses the complex theory of differential equations or more precisely, the theory of differential equations on complex-analytic manifolds. Although the theory of differential equations on real manifolds is well known – it is described in thousands of papers and its usefulness requires no comments or explanations – to date specialists on differential equations have not focused on the complex theory of partial differential equations. However, as well as being remarkably beautiful, this theory can be used to solve a number of problems in real theory, for instance, the Poincaré balayage problem and the mother body problem in geophysics. The monograph does not require readers to be familiar with advanced notions in complex analysis, differential equations, or topology. With its numerous examples and exercises, it appeals to advanced undergraduate and graduate students, and also to researchers wanting to familiarize themselves with the subject.

  4. Recursive-operator method in vibration problems for rod systems

    Science.gov (United States)

    Rozhkova, E. V.

    2009-12-01

    Using linear differential equations with constant coefficients describing one-dimensional dynamical processes as an example, we show that the solutions of these equations and systems are related to the solution of the corresponding numerical recursion relations and one does not have to compute the roots of the corresponding characteristic equations. The arbitrary functions occurring in the general solution of the homogeneous equations are determined by the initial and boundary conditions or are chosen from various classes of analytic functions. The solutions of the inhomogeneous equations are constructed in the form of integro-differential series acting on the right-hand side of the equation, and the coefficients of the series are determined from the same recursion relations. The convergence of formal solutions as series of a more general recursive-operator construction was proved in [1]. In the special case where the solutions of the equation can be represented in separated variables, the power series can be effectively summed, i.e., expressed in terms of elementary functions, and coincide with the known solutions. In this case, to determine the natural vibration frequencies, one obtains algebraic rather than transcendental equations, which permits exactly determining the imaginary and complex roots of these equations without using the graphic method [2, pp. 448-449]. The correctness of the obtained formulas (differentiation formulas, explicit expressions for the series coefficients, etc.) can be verified directly by appropriate substitutions; therefore, we do not prove them here.

  5. Lectures on nonlinear evolution equations initial value problems

    CERN Document Server

    Racke, Reinhard

    2015-01-01

    This book mainly serves as an elementary, self-contained introduction to several important aspects of the theory of global solutions to initial value problems for nonlinear evolution equations. The book employs the classical method of continuation of local solutions with the help of a priori estimates obtained for small data. The existence and uniqueness of small, smooth solutions that are defined for all values of the time parameter are investigated. Moreover, the asymptotic behavior of the solutions is described as time tends to infinity. The methods for nonlinear wave equations are discussed in detail. Other examples include the equations of elasticity, heat equations, the equations of thermoelasticity, Schrödinger equations, Klein-Gordon equations, Maxwell equations and plate equations. To emphasize the importance of studying the conditions under which small data problems offer global solutions, some blow-up results are briefly described. Moreover, the prospects for corresponding initial-boundary value p...

  6. Partial differential equations

    CERN Document Server

    Evans, Lawrence C

    2010-01-01

    This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between funct...

  7. Nonlinear Dirac Equations

    Directory of Open Access Journals (Sweden)

    Wei Khim Ng

    2009-02-01

    Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.

  8. Differential equations for dummies

    CERN Document Server

    Holzner, Steven

    2008-01-01

    The fun and easy way to understand and solve complex equations Many of the fundamental laws of physics, chemistry, biology, and economics can be formulated as differential equations. This plain-English guide explores the many applications of this mathematical tool and shows how differential equations can help us understand the world around us. Differential Equations For Dummies is the perfect companion for a college differential equations course and is an ideal supplemental resource for other calculus classes as well as science and engineering courses. It offers step-by-step techniques, practical tips, numerous exercises, and clear, concise examples to help readers improve their differential equation-solving skills and boost their test scores.

  9. Degenerate nonlinear diffusion equations

    CERN Document Server

    Favini, Angelo

    2012-01-01

    The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...

  10. Stochastic optimal control, forward-backward stochastic differential equations and the Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Wolfgang; Koeppe, Jeanette [Institut fuer Physik, Martin Luther Universitaet, 06099 Halle (Germany); Grecksch, Wilfried [Institut fuer Mathematik, Martin Luther Universitaet, 06099 Halle (Germany)

    2016-07-01

    The standard approach to solve a non-relativistic quantum problem is through analytical or numerical solution of the Schroedinger equation. We show a way to go around it. This way is based on the derivation of the Schroedinger equation from conservative diffusion processes and the establishment of (several) stochastic variational principles leading to the Schroedinger equation under the assumption of a kinematics described by Nelson's diffusion processes. Mathematically, the variational principle can be considered as a stochastic optimal control problem linked to the forward-backward stochastic differential equations of Nelson's stochastic mechanics. The Hamilton-Jacobi-Bellmann equation of this control problem is the Schroedinger equation. We present the mathematical background and how to turn it into a numerical scheme for analyzing a quantum system without using the Schroedinger equation and exemplify the approach for a simple 1d problem.

  11. Drift-Diffusion Equation

    Directory of Open Access Journals (Sweden)

    K. Banoo

    1998-01-01

    equation in the discrete momentum space. This is shown to be similar to the conventional drift-diffusion equation except that it is a more rigorous solution to the Boltzmann equation because the current and carrier densities are resolved into M×1 vectors, where M is the number of modes in the discrete momentum space. The mobility and diffusion coefficient become M×M matrices which connect the M momentum space modes. This approach is demonstrated by simulating electron transport in bulk silicon.

  12. Solving Ordinary Differential Equations

    Science.gov (United States)

    Krogh, F. T.

    1987-01-01

    Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.

  13. Reactimeter dispersion equation

    OpenAIRE

    A.G. Yuferov

    2016-01-01

    The aim of this work is to derive and analyze a reactimeter metrological model in the form of the dispersion equation which connects reactimeter input/output signal dispersions with superimposed random noise at the inlet. It is proposed to standardize the reactimeter equation form, presenting the main reactimeter computing unit by a convolution equation. Hence, the reactimeter metrological characteristics are completely determined by this unit hardware function which represents a transient re...

  14. Differential equations I essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Differential Equations I covers first- and second-order equations, series solutions, higher-order linear equations, and the Laplace transform.

  15. A new evolution equation

    International Nuclear Information System (INIS)

    Laenen, E.

    1995-01-01

    We propose a new evolution equation for the gluon density relevant for the region of small x B . It generalizes the GLR equation and allows deeper penetration in dense parton systems than the GLR equation does. This generalization consists of taking shadowing effects more comprehensively into account by including multigluon correlations, and allowing for an arbitrary initial gluon distribution in a hadron. We solve the new equation for fixed α s . We find that the effects of multigluon correlations on the deep-inelastic structure function are small. (orig.)

  16. On solution to the problem of reactor kinetics with delayed neutrons by Monte Carlo method

    International Nuclear Information System (INIS)

    Kyncl, Jan

    2013-07-01

    The initial value problem is addressed for the neutron transport equation and for the system of equations that describe the behaviour of emitters of delayed neutrons. Examination of the solution to this problem is based on several main assumptions concerning the behaviour of macroscopic effective cross-sections describing the reaction of the neutron with the medium, the temperature of medium and the remaining parameters of the equations. Formulation of these assumptions is adequately general and is in agreement with the properties of all known models of the physical quantities involved. Among others, the assumptions admit dependence of the macroscopic effective cross-sections and temperature on spatial coordinates and time that can be arbitrary to a great extent. The problem starts from a set of integro-differential equations. This problem is first transposed into the equivalent problem of solving a linear integral equation for neutron flux. This integral equation is solved by the method of successive iterations and its uniqueness is demonstrated. Numeric solution to the integral equation by Monte Carlo method consists in finding a functional of the exact solution. For this, a random process is set up and some random variables are proposed. Then it is demonstrated that each of these variables is an unbiased estimator of that functional. (author)

  17. Oscillation results for certain fractional difference equations

    Directory of Open Access Journals (Sweden)

    Zhiyun WANG

    2017-08-01

    Full Text Available Fractional calculus is a theory that studies the properties and application of arbitrary order differentiation and integration. It can describe the physical properties of some systems more accurately, and better adapt to changes in the system, playing an important role in many fields. For example, it can describe the process of tumor growth (growth stimulation and growth inhibition in biomedical science. The oscillation of solutions of two kinds of fractional difference equations is studied, mainly using the proof by contradiction, that is, assuming the equation has a nonstationary solution. For the first kind of equation, the function symbol is firstly determined, and by constructing the Riccati function, the difference is calculated. Then the condition of the function is used to satisfy the contradiction, that is, the assumption is false, which verifies the oscillation of the solution. For the second kind of equation with initial condition, the equivalent fractional sum form of the fractional difference equation are firstly proved. With considering 0<α≤1 and α>1, respectively, by using the properties of Stirling formula and factorial function, the contradictory is got through enhanced processing, namely the assuming is not established, and the sufficient condition for the bounded solutions of the fractional difference equation is obtained. The above results will optimize the relevant conclusions and enrich the relevant results. The results are applied to the specific equations, and the oscillation of the solutions of equations is proved.

  18. Solitonlike solutions of the generalized discrete nonlinear Schrödinger equation

    DEFF Research Database (Denmark)

    Rasmussen, Kim; Henning, D.; Gabriel, H.

    1996-01-01

    We investigate the solution properties oi. a generalized discrete nonlinear Schrodinger equation describing a nonlinear lattice chain. The generalized equation interpolates between the integrable discrete Ablowitz-Ladik equation and the nonintegrable discrete Schrodinger equation. Special interes...... nonlinear Schrodinger equation. In this way eve are able to construct coherent solitonlike structures of profile determined by the map parameters.......We investigate the solution properties oi. a generalized discrete nonlinear Schrodinger equation describing a nonlinear lattice chain. The generalized equation interpolates between the integrable discrete Ablowitz-Ladik equation and the nonintegrable discrete Schrodinger equation. Special interest...

  19. Finite difference schemes for second order systems describing black holes

    International Nuclear Information System (INIS)

    Motamed, Mohammad; Kreiss, H-O.; Babiuc, M.; Winicour, J.; Szilagyi, B.

    2006-01-01

    In the harmonic description of general relativity, the principal part of Einstein's equations reduces to 10 curved space wave equations for the components of the space-time metric. We present theorems regarding the stability of several evolution-boundary algorithms for such equations when treated in second order differential form. The theorems apply to a model black hole space-time consisting of a spacelike inner boundary excising the singularity, a timelike outer boundary and a horizon in between. These algorithms are implemented as stable, convergent numerical codes and their performance is compared in a 2-dimensional excision problem

  20. Trajectory attractors of equations of mathematical physics

    International Nuclear Information System (INIS)

    Vishik, Marko I; Chepyzhov, Vladimir V

    2011-01-01

    In this survey the method of trajectory dynamical systems and trajectory attractors is described, and is applied in the study of the limiting asymptotic behaviour of solutions of non-linear evolution equations. This method is especially useful in the study of dissipative equations of mathematical physics for which the corresponding Cauchy initial-value problem has a global (weak) solution with respect to the time but the uniqueness of this solution either has not been established or does not hold. An important example of such an equation is the 3D Navier-Stokes system in a bounded domain. In such a situation one cannot use directly the classical scheme of construction of a dynamical system in the phase space of initial conditions of the Cauchy problem of a given equation and find a global attractor of this dynamical system. Nevertheless, for such equations it is possible to construct a trajectory dynamical system and investigate a trajectory attractor of the corresponding translation semigroup. This universal method is applied for various types of equations arising in mathematical physics: for general dissipative reaction-diffusion systems, for the 3D Navier-Stokes system, for dissipative wave equations, for non-linear elliptic equations in cylindrical domains, and for other equations and systems. Special attention is given to using the method of trajectory attractors in approximation and perturbation problems arising in complicated models of mathematical physics. Bibliography: 96 titles.

  1. Equational type logic

    NARCIS (Netherlands)

    Manca, V.; Salibra, A.; Scollo, Giuseppe

    1990-01-01

    Equational type logic is an extension of (conditional) equational logic, that enables one to deal in a single, unified framework with diverse phenomena such as partiality, type polymorphism and dependent types. In this logic, terms may denote types as well as elements, and atomic formulae are either

  2. Alternative equations of gravitation

    International Nuclear Information System (INIS)

    Pinto Neto, N.

    1983-01-01

    It is shown, trough a new formalism, that the quantum fluctuation effects of the gravitational field in Einstein's equations are analogs to the effects of a continuum medium in Maxwell's Electrodynamics. Following, a real example of the applications of these equations is studied. Qunatum fluctuations effects as perturbation sources in Minkowski and Friedmann Universes are examined. (L.C.) [pt

  3. Reduced Braginskii equations

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, M. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Horton, W. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies

    1993-11-01

    A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite {beta} that we solve the perpendicular component of Ohm`s law to conserve the physical energy while ensuring the relation {del} {center_dot} j = 0.

  4. Reduced Braginskii equations

    International Nuclear Information System (INIS)

    Yagi, M.; Horton, W.

    1993-11-01

    A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite β that we solve the perpendicular component of Ohm's law to conserve the physical energy while ensuring the relation ∇ · j = 0

  5. Reduced Braginskii equations

    International Nuclear Information System (INIS)

    Yagi, M.; Horton, W.

    1994-01-01

    A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite β that the perpendicular component of Ohm's law be solved to ensure ∇·j=0 for energy conservation

  6. Model Compaction Equation

    African Journals Online (AJOL)

    The currently proposed model compaction equation was derived from data sourced from the. Niger Delta and it relates porosity to depth for sandstones under hydrostatic pressure condition. The equation is useful in predicting porosity and compaction trend in hydrostatic sands of the. Niger Delta. GEOLOGICAL SETTING OF ...

  7. The Wouthuysen equation

    NARCIS (Netherlands)

    M. Hazewinkel (Michiel)

    1995-01-01

    textabstractDedication: I dedicate this paper to Prof. P.C. Baayen, at the occasion of his retirement on 20 December 1994. The beautiful equation which forms the subject matter of this paper was invented by Wouthuysen after he retired. The four complex variable Wouthuysen equation arises from an

  8. The generalized Fermat equation

    NARCIS (Netherlands)

    Beukers, F.

    2006-01-01

    This article will be devoted to generalisations of Fermat’s equation xn + yn = zn. Very soon after the Wiles and Taylor proof of Fermat’s Last Theorem, it was wondered what would happen if the exponents in the three term equation would be chosen differently. Or if coefficients other than 1 would

  9. Option Pricing under Risk-Minimization Criterion in an Incomplete Market with the Finite Difference Method

    Directory of Open Access Journals (Sweden)

    Xinfeng Ruan

    2013-01-01

    Full Text Available We study option pricing with risk-minimization criterion in an incomplete market where the dynamics of the risky underlying asset is governed by a jump diffusion equation with stochastic volatility. We obtain the Radon-Nikodym derivative for the minimal martingale measure and a partial integro-differential equation (PIDE of European option. The finite difference method is employed to compute the European option valuation of PIDE.

  10. 非局所的重力

    OpenAIRE

    Zhang, Ying-li

    2013-01-01

    The analysis of measurements of accelerated observers in Minkowski spacetime has led to the development of nonlocal special relativity theory. Inertia and gravitation are intimately connected in accordance with the principle of equivalence. We therefore seek a nonlocal generalization of the theory of gravitation such that in the new theory the field equations are integro-differential equations for the local gravitational field. We show that it is possible to develop a nonlocal generalization ...

  11. Extended symmetries of the kinetic plasma theory models

    International Nuclear Information System (INIS)

    Taranov, V.B.

    2005-01-01

    Symmetry extension of the kinetic theory of collisionless plasma containing particles with equal charge to mass ratio is considered. It is shown that this symmetry allows us to reduce the number of equations. Symmetries obtained for the integro-differential equations of the kinetic theory by the indirect algorithm are compared to those obtained by direct methods. The importance of additional conditions - positiveness and integrability of distribution functions, existence of their moments - is underlined

  12. On the renewal risk model under a threshold strategy

    Science.gov (United States)

    Dong, Yinghui; Wang, Guojing; Yuen, Kam C.

    2009-08-01

    In this paper, we consider the renewal risk process under a threshold dividend payment strategy. For this model, the expected discounted dividend payments and the Gerber-Shiu expected discounted penalty function are investigated. Integral equations, integro-differential equations and some closed form expressions for them are derived. When the claims are exponentially distributed, it is verified that the expected penalty of the deficit at ruin is proportional to the ruin probability.

  13. Applied partial differential equations

    CERN Document Server

    Logan, J David

    2004-01-01

    This primer on elementary partial differential equations presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs. What makes this book unique is that it is a brief treatment, yet it covers all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. Mathematical ideas are motivated from physical problems, and the exposition is presented in a concise style accessible to science and engineering students; emphasis is on motivation, concepts, methods, and interpretation, rather than formal theory. This second edition contains new and additional exercises, and it includes a new chapter on the applications of PDEs to biology: age structured models, pattern formation; epidemic wave fronts, and advection-diffusion processes. The student who reads through this book and solves many of t...

  14. Effective equations for the quantum pendulum from momentous quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Hector H.; Chacon-Acosta, Guillermo [Universidad Autonoma de Chihuahua, Facultad de Ingenieria, Nuevo Campus Universitario, Chihuahua 31125 (Mexico); Departamento de Matematicas Aplicadas y Sistemas, Universidad Autonoma Metropolitana-Cuajimalpa, Artificios 40, Mexico D. F. 01120 (Mexico)

    2012-08-24

    In this work we study the quantum pendulum within the framework of momentous quantum mechanics. This description replaces the Schroedinger equation for the quantum evolution of the system with an infinite set of classical equations for expectation values of configuration variables, and quantum dispersions. We solve numerically the effective equations up to the second order, and describe its evolution.

  15. Exact solutions to two higher order nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Xu Liping; Zhang Jinliang

    2007-01-01

    Using the homogeneous balance principle and F-expansion method, the exact solutions to two higher order nonlinear Schroedinger equations which describe the propagation of femtosecond pulses in nonlinear fibres are obtained with the aid of a set of subsidiary higher order ordinary differential equations (sub-equations for short)

  16. Numerical Solution of Parabolic Equations

    DEFF Research Database (Denmark)

    Østerby, Ole

    These lecture notes are designed for a one-semester course on finite-difference methods for parabolic equations. These equations which traditionally are used for describing diffusion and heat-conduction problems in Geology, Physics, and Chemistry have recently found applications in Finance Theory...... ? and how do boundary value approximations affect the overall order of the method. Knowledge of a reliable order and error estimate enables us to determine (near-)optimal step sizes to meet a prescribed error tolerance, and possibly to extrapolate to get (higher order and) better accuracy at a minimal...... expense. Problems in two space dimensions are effectively handled using the Alternating Direction Implicit (ADI) technique. We present a systematic way of incorporating inhomogeneous terms and derivative boundary conditions in ADI methods as well as mixed derivative terms....

  17. Ordinary differential equation for local accumulation time.

    Science.gov (United States)

    Berezhkovskii, Alexander M

    2011-08-21

    Cell differentiation in a developing tissue is controlled by the concentration fields of signaling molecules called morphogens. Formation of these concentration fields can be described by the reaction-diffusion mechanism in which locally produced molecules diffuse through the patterned tissue and are degraded. The formation kinetics at a given point of the patterned tissue can be characterized by the local accumulation time, defined in terms of the local relaxation function. Here, we show that this time satisfies an ordinary differential equation. Using this equation one can straightforwardly determine the local accumulation time, i.e., without preliminary calculation of the relaxation function by solving the partial differential equation, as was done in previous studies. We derive this ordinary differential equation together with the accompanying boundary conditions and demonstrate that the earlier obtained results for the local accumulation time can be recovered by solving this equation. © 2011 American Institute of Physics

  18. The Monge-Ampère equation: Hamiltonian and symplectic structures, recursions, and hierarchies

    NARCIS (Netherlands)

    Kersten, P.H.M.; Krasil'shchik, I.; Verbovetsky, A.V.

    2004-01-01

    Using methods of geometry and cohomology developed recently, we study the Monge-Ampère equation, arising as the first nontrivial equation in the associativity equations, or WDVV equations. We describe Hamiltonian and symplectic structures as well as recursion operators for this equation in its

  19. Development of the model describing highly excited states of odd deformed nuclei

    International Nuclear Information System (INIS)

    Malov, L.A.; Solov'ev, V.G.

    1975-01-01

    An approximate method is given for solving the system of equations obtained earlier for describing the structure of states with intermediate and high energies in the framework of the model taking into account the interaction of quasiparticles with phonons. The new method possesses a number of advantages over the approximate methods of solving the system of equations mentioned. The study is performed for the example of an odd deformed nucleus when several one-quasiparticle components are taken into account at the same time

  20. Hamiltonian aspects of three-wave resonant interactions in gas dynamics

    Science.gov (United States)

    Webb, G. M.; Zakharian, A.; Brio, M.; Zank, G. P.

    1997-06-01

    Equations describing three-wave resonant interactions in adiabatic gas dynamics in one Cartesian space dimension derived by Majda and Rosales are expressed in terms of Lagrangian and Hamiltonian variational principles. The equations consist of two coupled integro-differential Burgers equations for the backward and forward sound waves that are coupled by integral terms that describe the resonant reflection of a sound wave off an entropy wave disturbance to produce a reverse sound wave. Similarity solutions and conservation laws for the equations are derived using symmetry group methods for the special case where the entropy disturbance consists of a periodic saw-tooth profile. The solutions are used to illustrate the interplay between the nonlinearity represented by the Burgers self-wave interaction terms and wave dispersion represented by the three-wave resonant interaction terms. Hamiltonian equations in Fourier (p,t) space are also obtained where p is the Fourier space variable corresponding to the fast phase variable 0305-4470/30/12/013/img6 of the waves. The latter equations are transformed to normal form in order to isolate the normal modes of the system.

  1. A new approach to radiative transfer theory using Jones's vectors. I

    International Nuclear Information System (INIS)

    Fymat, A.L.; Vasudevan, R.

    1975-01-01

    Radiative transfer of partially polarized radiation in an anisotropically scattering, inhomogeneous atmosphere containing arbitrary polydispersion of particles is described using Jones's amplitude vectors and matrices. This novel approach exploits the close analogy between the quantum mechanical states of spin 1/2 systems and the polarization states of electromagnetic radiation described by Jones's vector, and draws on the methodology of such spin 1/2 systems. The complete equivalence between the transport equation for Jones's vectors and the classical radiative transfer equation for Stokes's intensity vectors is demonstrated in two independent ways after deriving the transport equations for the polarization coherency matrices and for the quaternions corresponding to the Jones's vectors. A compact operator formulation of the theory is provided, and used to derive the necessary equations for both a local and a global description of the transport of Jones's vectors. Lastly, the integro-differential equations for the amplitude reflection and transmission matrices are derived, and related to the usual corresponding equations. The present formulation is the most succinct and the most convenient one for both theoretical and experimental studies. It yields a simpler analysis than the classical formulation since it reduces by a factor of two the dimensionality of transfer problems. It preserves information on phases, and thus can be used directly across the entire electromagnetic spectrum without any further conversion into intensities. (Auth.)

  2. Theory of a wall sheath in a gas-discharge plasma

    International Nuclear Information System (INIS)

    Dvinin, S.A.; Dovzhenko, V.A.; Kuzovnikov, A.A.

    1999-01-01

    An integro-differential equation is proposed that generalizes the plasma-sheath (Langmuir-Tonks) equation to include charge exchange between ions and neutrals in a discharge plasma and makes it possible to correctly analyze how the discharge evolves from the regime of collisionless ion motion to the diffusive regime in pure gases with allowance for the space charge in the sheath at the plasma boundary. The integro-differential equation is solved numerically, and the ionization rate is calculated as a function of the ratio between the ion mean free path and the characteristic discharge dimension. The ion energy distribution function in the positive column of a discharge plasma is computed. The parameter range in which the positive column can exist is examined, and the limits of applicability of different discharge models are analyzed depending on the relations between the ion mean free path, Debye length, and discharge dimension

  3. The effect of a curvature-dependent surface tension on the singularities at the tips of a straight interface crack

    KAUST Repository

    Zemlyanova, A. Y.

    2013-03-08

    A problem of an interface crack between two semi-planes made out of different materials under an action of an in-plane loading of general tensile-shear type is treated in a semi-analytical manner with the help of Dirichlet-to-Neumann mappings. The boundaries of the crack and the interface between semi-planes are subjected to a curvature-dependent surface tension. The resulting system of six singular integro-differential equations is reduced to the system of three Fredholm equations. It is shown that the introduction of the curvature-dependent surface tension eliminates both classical integrable power singularity of the order 1/2 and an oscillating singularity present in a classical linear elasticity solutions. The numerical results are obtained by solving the original system of singular integro-differential equations by approximating unknown functions with Taylor polynomials. © 2013 The Author.

  4. On the expected discounted penalty functions for two classes of risk processes under a threshold dividend strategy

    Science.gov (United States)

    Lu, Zhaoyang; Xu, Wei; Sun, Decai; Han, Weiguo

    2009-10-01

    In this paper, the discounted penalty (Gerber-Shiu) functions for a risk model involving two independent classes of insurance risks under a threshold dividend strategy are developed. We also assume that the two claim number processes are independent Poisson and generalized Erlang (2) processes, respectively. When the surplus is above this threshold level, dividends are paid at a constant rate that does not exceed the premium rate. Two systems of integro-differential equations for discounted penalty functions are derived, based on whether the surplus is above this threshold level. Laplace transformations of the discounted penalty functions when the surplus is below the threshold level are obtained. And we also derive a system of renewal equations satisfied by the discounted penalty function with initial surplus above the threshold strategy via the Dickson-Hipp operator. Finally, analytical solutions of the two systems of integro-differential equations are presented.

  5. The breakdown of the weakly-nonlinear regime for kinetic instabilities

    Science.gov (United States)

    Sanz-Orozco, David; Berk, Herbert; Wang, Ge

    2017-10-01

    The evolution of marginally-unstable waves that interact resonantly with populations of energetic particles is governed by a well-known cubic integro-differential equation for the mode amplitude. One of the outcomes predicted by the equation is the so-called ``explosive'' regime, where the amplitude grows indefinitely, eventually taking the equation outside of its domain of validity. Beyond this point, only full Vlasov simulations will accurately describe the evolution of the mode amplitude. In this work, we study the breakdown of the cubic equation in detail. We find that, while the cubic equation is still valid, the distribution function of the energetic particles locally flattens or ``folds'' in phase space. This feature is unexpected in view of the assumptions of the theory that are given in. We also derive fifth-order terms in the wave equation, which not only give us a more accurate description of the marginally-unstable modes, but they also allow us to predict the breakdown of the cubic equation. Our findings allow us to better understand the transition between weakly-nonlinear modes and the long-term chirping modes that ultimately emerge.

  6. Differential Equations Models to Study Quorum Sensing.

    Science.gov (United States)

    Pérez-Velázquez, Judith; Hense, Burkhard A

    2018-01-01

    Mathematical models to study quorum sensing (QS) have become an important tool to explore all aspects of this type of bacterial communication. A wide spectrum of mathematical tools and methods such as dynamical systems, stochastics, and spatial models can be employed. In this chapter, we focus on giving an overview of models consisting of differential equations (DE), which can be used to describe changing quantities, for example, the dynamics of one or more signaling molecule in time and space, often in conjunction with bacterial growth dynamics. The chapter is divided into two sections: ordinary differential equations (ODE) and partial differential equations (PDE) models of QS. Rates of change are represented mathematically by derivatives, i.e., in terms of DE. ODE models allow describing changes in one independent variable, for example, time. PDE models can be used to follow changes in more than one independent variable, for example, time and space. Both types of models often consist of systems (i.e., more than one equation) of equations, such as equations for bacterial growth and autoinducer concentration dynamics. Almost from the onset, mathematical modeling of QS using differential equations has been an interdisciplinary endeavor and many of the works we revised here will be placed into their biological context.

  7. Adaptive integral equation methods in transport theory

    International Nuclear Information System (INIS)

    Kelley, C.T.

    1992-01-01

    In this paper, an adaptive multilevel algorithm for integral equations is described that has been developed with the Chandrasekhar H equation and its generalizations in mind. The algorithm maintains good performance when the Frechet derivative of the nonlinear map is singular at the solution, as happens in radiative transfer with conservative scattering and in critical neutron transport. Numerical examples that demonstrate the algorithm's effectiveness are presented

  8. Hyperbolic partial differential equations

    CERN Document Server

    Witten, Matthew

    1986-01-01

    Hyperbolic Partial Differential Equations III is a refereed journal issue that explores the applications, theory, and/or applied methods related to hyperbolic partial differential equations, or problems arising out of hyperbolic partial differential equations, in any area of research. This journal issue is interested in all types of articles in terms of review, mini-monograph, standard study, or short communication. Some studies presented in this journal include discretization of ideal fluid dynamics in the Eulerian representation; a Riemann problem in gas dynamics with bifurcation; periodic M

  9. Nonlinear diffusion equations

    CERN Document Server

    Wu Zhuo Qun; Li Hui Lai; Zhao Jun Ning

    2001-01-01

    Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which

  10. Differential equations problem solver

    CERN Document Server

    Arterburn, David R

    2012-01-01

    REA's Problem Solvers is a series of useful, practical, and informative study guides. Each title in the series is complete step-by-step solution guide. The Differential Equations Problem Solver enables students to solve difficult problems by showing them step-by-step solutions to Differential Equations problems. The Problem Solvers cover material ranging from the elementary to the advanced and make excellent review books and textbook companions. They're perfect for undergraduate and graduate studies.The Differential Equations Problem Solver is the perfect resource for any class, any exam, and

  11. Supersymmetric quasipotential equations

    International Nuclear Information System (INIS)

    Zaikov, R.P.

    1981-01-01

    A supersymmetric extension of the Logunov-Tavkhelidze quasipotential approach is suggested. The supersymmetric Bethe- Salpeter equation is an initial equation. The transition from the four-time to the two-time Green function is made in the super- center-of-mass system. The two-time Green function has no inverse function in the whole spinor space. The resolvent operator if found using the Majorana character of the spinor wave function. The supersymmetric quasipotential equation is written. The consideration is carried out in the framework of the theory of chiral scalar superfields [ru

  12. Local instant conservation equations

    International Nuclear Information System (INIS)

    Delaje, Dzh.

    1984-01-01

    Local instant conservation equations for two-phase flow are derived. Derivation of the equation starts from the recording of integral laws of conservation for a fixed reference volume, containing both phases. Transformation of the laws, using the Leibniz rule and Gauss theory permits to obtain the sum of two integrals as to the volume and integral as to the surface. Integrals as to the volume result in local instant differential equations, in particular derivatives for each phase, and integrals as to the surface reflect local instant conditions of a jump on interface surface

  13. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2011-01-01

    A rigorous, yet accessible, introduction to partial differential equations-updated in a valuable new edition Beginning Partial Differential Equations, Second Edition provides a comprehensive introduction to partial differential equations (PDEs) with a special focus on the significance of characteristics, solutions by Fourier series, integrals and transforms, properties and physical interpretations of solutions, and a transition to the modern function space approach to PDEs. With its breadth of coverage, this new edition continues to present a broad introduction to the field, while also addres

  14. Ordinary differential equations

    CERN Document Server

    Miller, Richard K

    1982-01-01

    Ordinary Differential Equations is an outgrowth of courses taught for a number of years at Iowa State University in the mathematics and the electrical engineering departments. It is intended as a text for a first graduate course in differential equations for students in mathematics, engineering, and the sciences. Although differential equations is an old, traditional, and well-established subject, the diverse backgrounds and interests of the students in a typical modern-day course cause problems in the selection and method of presentation of material. In order to compensate for this diversity,

  15. Uncertain differential equations

    CERN Document Server

    Yao, Kai

    2016-01-01

    This book introduces readers to the basic concepts of and latest findings in the area of differential equations with uncertain factors. It covers the analytic method and numerical method for solving uncertain differential equations, as well as their applications in the field of finance. Furthermore, the book provides a number of new potential research directions for uncertain differential equation. It will be of interest to researchers, engineers and students in the fields of mathematics, information science, operations research, industrial engineering, computer science, artificial intelligence, automation, economics, and management science.

  16. Ermakov-Pinney equation in scalar field cosmologies

    International Nuclear Information System (INIS)

    Hawkins, Rachael M.; Lidsey, James E.

    2002-01-01

    It is shown that the dynamics of cosmologies sourced by a mixture of perfect fluids and self-interacting scalar fields are described by the nonlinear, Ermakov-Pinney equation. The general solution of this equation can be expressed in terms of particular solutions to a related, linear differential equation. This characteristic is employed to derive exact cosmologies in the inflationary and quintessential scenarios. The relevance of the Ermakov-Pinney equation to the braneworld scenario is discussed

  17. A note on Chudnovskyʼs Fuchsian equations

    Science.gov (United States)

    Brezhnev, Yurii V.

    We show that four exceptional Fuchsian equations, each determined by the four parabolic singularities, known as the Chudnovsky equations, are transformed into each other by algebraic transformations. We describe equivalence of these equations and their counterparts on tori. The latters are the Fuchsian equations on elliptic curves and their equivalence is characterized by transcendental transformations which are represented explicitly in terms of elliptic and theta functions.

  18. An integral equation arising in two group neutron transport theory

    International Nuclear Information System (INIS)

    Cassell, J S; Williams, M M R

    2003-01-01

    An integral equation describing the fuel distribution necessary to maintain a flat flux in a nuclear reactor in two group transport theory is reduced to the solution of a singular integral equation. The formalism developed enables the physical aspects of the problem to be better understood and its relationship with the corresponding diffusion theory model is highlighted. The integral equation is solved by reducing it to a non-singular Fredholm equation which is then evaluated numerically

  19. Generalization of the Knizhnik-Zamolodchikov-equations

    International Nuclear Information System (INIS)

    Alekseev, A.Yu.; Recknagel, A.; Schomerus, V.

    1996-09-01

    In this letter we introduce a generalization of the Knizhnik-Zamolodchikov equations from affine Lie algebras to a wide class of conformal field theories (not necessarily rational). The new equations describe correlation functions of primary fields and of a finite number of their descendents. Our proposal is based on Nahm's concept of small spaces which provide adequate substitutes for the lowest energy subspaces in modules of affine Lie algebras. We explain how to construct the first order differential equations and investigate properties of the associated connections, thereby preparing the grounds for an analysis of quantum symmetries. The general considerations are illustrated in examples of Virasoro minimal models. (orig.)

  20. Improved Durand-equation for multiple application

    International Nuclear Information System (INIS)

    Weber, M.

    1986-01-01

    The applicability of Durand's equation could be improved for general use by applying suitable parameters representing the grain-size distribution. Thus, the Durand equation cannot only describe polydisperse (pseudo)-homogeneous or heterogeneous transportation, but also solid-fluid mixtures containing a certain amount of fine particles. Even non-Newtonian influences can be taken into account. The applicability of the extended Durand equation for polydisperse mixtures will be demonstrated by measurement data. With respect to this, the transition between pseudohomogeneous and heterogeneous transport has been considered on the basis of measured concentration profiles

  1. Applied partial differential equations

    CERN Document Server

    Logan, J David

    2015-01-01

    This text presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs.  Emphasis is placed on motivation, concepts, methods, and interpretation, rather than on formal theory. The concise treatment of the subject is maintained in this third edition covering all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. In this third edition, text remains intimately tied to applications in heat transfer, wave motion, biological systems, and a variety other topics in pure and applied science. The text offers flexibility to instructors who, for example, may wish to insert topics from biology or numerical methods at any time in the course. The exposition is presented in a friendly, easy-to-read, style, with mathematical ideas motivated from physical problems. Many exercises and worked e...

  2. Nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.

  3. On Dust Charging Equation

    OpenAIRE

    Tsintsadze, Nodar L.; Tsintsadze, Levan N.

    2008-01-01

    A general derivation of the charging equation of a dust grain is presented, and indicated where and when it can be used. A problem of linear fluctuations of charges on the surface of the dust grain is discussed.

  4. Equations For Rotary Transformers

    Science.gov (United States)

    Salomon, Phil M.; Wiktor, Peter J.; Marchetto, Carl A.

    1988-01-01

    Equations derived for input impedance, input power, and ratio of secondary current to primary current of rotary transformer. Used for quick analysis of transformer designs. Circuit model commonly used in textbooks on theory of ac circuits.

  5. Problems in differential equations

    CERN Document Server

    Brenner, J L

    2013-01-01

    More than 900 problems and answers explore applications of differential equations to vibrations, electrical engineering, mechanics, and physics. Problem types include both routine and nonroutine, and stars indicate advanced problems. 1963 edition.

  6. Applied partial differential equations

    CERN Document Server

    DuChateau, Paul

    2012-01-01

    Book focuses mainly on boundary-value and initial-boundary-value problems on spatially bounded and on unbounded domains; integral transforms; uniqueness and continuous dependence on data, first-order equations, and more. Numerous exercises included.

  7. Nonlinear differential equations

    International Nuclear Information System (INIS)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics

  8. SIMULTANEOUS DIFFERENTIAL EQUATION COMPUTER

    Science.gov (United States)

    Collier, D.M.; Meeks, L.A.; Palmer, J.P.

    1960-05-10

    A description is given for an electronic simulator for a system of simultaneous differential equations, including nonlinear equations. As a specific example, a homogeneous nuclear reactor system including a reactor fluid, heat exchanger, and a steam boiler may be simulated, with the nonlinearity resulting from a consideration of temperature effects taken into account. The simulator includes three operational amplifiers, a multiplier, appropriate potential sources, and interconnecting R-C networks.

  9. Structural Equations and Causation

    OpenAIRE

    Hall, Ned

    2007-01-01

    Structural equations have become increasingly popular in recent years as tools for understanding causation. But standard structural equations approaches to causation face deep problems. The most philosophically interesting of these consists in their failure to incorporate a distinction between default states of an object or system, and deviations therefrom. Exploring this problem, and how to fix it, helps to illuminate the central role this distinction plays in our causal thinking.

  10. Thermodynamics of Triethylene Glycol and Tetraethylene Glycol Containing Systems Described by the Cubic-Plus-Association Equation of State

    DEFF Research Database (Denmark)

    Breil, Martin Peter; Kontogeorgis, Georgios

    2009-01-01

    A thorough investigation of triethylene glycol (TEG) containing systems has been performed. The introduction of a new six-site association scheme for the TEG molecule has shown to be advantageous. Glycols are often modeled using a four-site scheme (abbreviated as 4C) hence ignoring the internal...... lone pairs of oxygen. The new association scheme also takes these sites into account. The new parameters of TEG are based on the vapor pressure data, liquid density data, and liquid-liquid equilibria (LLE) data (n-heptane), and they are tested for binary systems (methane, n-octane, n-nonane, n...

  11. Fractional calculus phenomenology in two-dimensional plasma models

    Science.gov (United States)

    Gustafson, Kyle; Del Castillo Negrete, Diego; Dorland, Bill

    2006-10-01

    Transport processes in confined plasmas for fusion experiments, such as ITER, are not well-understood at the basic level of fully nonlinear, three-dimensional kinetic physics. Turbulent transport is invoked to describe the observed levels in tokamaks, which are orders of magnitude greater than the theoretical predictions. Recent results show the ability of a non-diffusive transport model to describe numerical observations of turbulent transport. For example, resistive MHD modeling of tracer particle transport in pressure-gradient driven turbulence for a three-dimensional plasma reveals that the superdiffusive (2̂˜t^α where α> 1) radial transport in this system is described quantitatively by a fractional diffusion equation Fractional calculus is a generalization involving integro-differential operators, which naturally describe non-local behaviors. Our previous work showed the quantitative agreement of special fractional diffusion equation solutions with numerical tracer particle flows in time-dependent linearized dynamics of the Hasegawa-Mima equation (for poloidal transport in a two-dimensional cold-ion plasma). In pursuit of a fractional diffusion model for transport in a gyrokinetic plasma, we now present numerical results from tracer particle transport in the nonlinear Hasegawa-Mima equation and a planar gyrokinetic model. Finite Larmor radius effects will be discussed. D. del Castillo Negrete, et al, Phys. Rev. Lett. 94, 065003 (2005).

  12. Covariant field equations in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Vanhecke, Bram [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium); Ghent University, Faculty of Physics, Gent (Belgium); Proeyen, Antoine van [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium)

    2017-12-15

    Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Covariant field equations in supergravity

    International Nuclear Information System (INIS)

    Vanhecke, Bram; Proeyen, Antoine van

    2017-01-01

    Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Mathieu functions describing particles evolving in electromagnetic waves

    Science.gov (United States)

    Mihu, Denisa-Andreea; Dariescu, Marina-Aura

    2017-12-01

    Solutions of Klein-Gordon equation for particles moving in a standing wave configuration bring into attention an intricate and complicated category of special functions, namely the Mathieu functions. The stability of the solutions governed by the intercorrelation between Mathieu equation' parameters is discussed. For specific intervals of the wave number, the instability regime installs, pointing out the tendency of exponential growth for the oscillatory wave functions, as a consequence of parametric resonance phenomenon. The expression of the wave function allows the computation of the four-dimensional conserved current density components.

  15. Differential Equation over Banach Algebra

    OpenAIRE

    Kleyn, Aleks

    2018-01-01

    In the book, I considered differential equations of order $1$ over Banach $D$-algebra: differential equation solved with respect to the derivative; exact differential equation; linear homogeneous equation. In noncommutative Banach algebra, initial value problem for linear homogeneous equation has infinitely many solutions.

  16. First-arrival Tomography Using the Double-square-root Equation Solver Stepping in Subsurface Offset

    KAUST Repository

    Serdyukov, A.S.; Duchkov, A.A.

    2013-01-01

    Double-square-root (DSR) equation can be viewed as a Hamilton-Jacobi equation describing kinematics of downward data continuation in depth. It describes simultaneous propagation of source and receiver rays assuming that they are nowhere horizontal

  17. Structural invariance of the Schroedinger equation and chronoprojective geometry

    International Nuclear Information System (INIS)

    Burdet, G.; Perrin, M.

    1983-07-01

    We describe an extension of the chronoprojective geometry and show how its automorphisms are related to the invariance properties of the Schroedinger equation describing a quantum test particle in any Newton-Cartan structure

  18. Double porosity model to describe both permeability change and dissolution processes

    International Nuclear Information System (INIS)

    Niibori, Yuichi; Usui, Hideo; Chida, Taiji

    2015-01-01

    Cement is a practical material for constructing the geological disposal system of radioactive wastes. The dynamic behavior of both permeability change and dissolution process caused by a high pH groundwater was explained using a double porosity model assuming that each packed particle consists of the sphere-shaped aggregation of smaller particles. This model assumes two kinds of porosities between the particle clusters and between the particles, where the former porosity change mainly controls the permeability change of the bed, and the latter porosity change controls the diffusion of OH"- ions inducing the dissolution of silica. The fundamental equations consist of a diffusion equation of spherical coordinates of OH"- ions including the first-order reaction term and some equations describing the size changes of both the particles and the particle clusters with time. The change of over-all permeability of the packed bed is evaluated by Kozeny-Carman equation and the calculated radii of particle clusters. The calculated result well describes the experimental result of both permeability change and dissolution processes. (author)

  19. Chaotic dynamics in the Maxwell-Bloch equations

    International Nuclear Information System (INIS)

    Holm, D.D.; Kovacic, G.

    1992-01-01

    In the slowly varying envelope approximation and the rotating wave approximation for the Maxwell-Bloch equations, we describe how the presence of a small-amplitude probe laser in an excited, two-level, resonant medium leads to homoclinic chaos in the laser-matter dynamics. We also describe a derivation of the Maxwell-Bloch equations from an action principle

  20. LCM 3.0: A Language for describing Conceptual Models

    NARCIS (Netherlands)

    Feenstra, Remco; Wieringa, Roelf J.

    1993-01-01

    The syntax of the conceptual model specification language LCM is defined. LCM uses equational logic to specify data types and order-sorted dynamic logic to specify objects with identity and mutable state. LCM specifies database transactions as finite sets of atomic object transitions.

  1. Modeling and Prediction Using Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Juhl, Rune; Møller, Jan Kloppenborg; Jørgensen, John Bagterp

    2016-01-01

    Pharmacokinetic/pharmakodynamic (PK/PD) modeling for a single subject is most often performed using nonlinear models based on deterministic ordinary differential equations (ODEs), and the variation between subjects in a population of subjects is described using a population (mixed effects) setup...... deterministic and can predict the future perfectly. A more realistic approach would be to allow for randomness in the model due to e.g., the model be too simple or errors in input. We describe a modeling and prediction setup which better reflects reality and suggests stochastic differential equations (SDEs...

  2. Unstructured characteristic method embedded with variational nodal method using domain decomposition techniques

    Energy Technology Data Exchange (ETDEWEB)

    Girardi, E.; Ruggieri, J.M. [CEA Cadarache (DER/SPRC/LEPH), 13 - Saint-Paul-lez-Durance (France). Dept. d' Etudes des Reacteurs; Santandrea, S. [CEA Saclay, Dept. Modelisation de Systemes et Structures DM2S/SERMA/LENR, 91 - Gif sur Yvette (France)

    2005-07-01

    This paper describes a recently-developed extension of our 'Multi-methods,multi-domains' (MM-MD) method for the solution of the multigroup transport equation. Based on a domain decomposition technique, our approach allows us to treat the one-group equation by cooperatively employing several numerical methods together. In this work, we describe the coupling between the Method of Characteristics (integro-differential equation, unstructured meshes) with the Variational Nodal Method (even parity equation, cartesian meshes). Then, the coupling method is applied to the benchmark model of the Phebus experimental facility (Cea Cadarache). Our domain decomposition method give us the capability to employ a very fine mesh in describing a particular fuel bundle with an appropriate numerical method (MOC), while using a much large mesh size in the rest of the core, in conjunction with a coarse-mesh method (VNM). This application shows the benefits of our MM-MD approach, in terms of accuracy and computing time: the domain decomposition method allows us to reduce the Cpu time, while preserving a good accuracy of the neutronic indicators: reactivity, core-to-bundle power coupling coefficient and flux error. (authors)

  3. Unstructured characteristic method embedded with variational nodal method using domain decomposition techniques

    International Nuclear Information System (INIS)

    Girardi, E.; Ruggieri, J.M.

    2005-01-01

    This paper describes a recently-developed extension of our 'Multi-methods,multi-domains' (MM-MD) method for the solution of the multigroup transport equation. Based on a domain decomposition technique, our approach allows us to treat the one-group equation by cooperatively employing several numerical methods together. In this work, we describe the coupling between the Method of Characteristics (integro-differential equation, unstructured meshes) with the Variational Nodal Method (even parity equation, cartesian meshes). Then, the coupling method is applied to the benchmark model of the Phebus experimental facility (Cea Cadarache). Our domain decomposition method give us the capability to employ a very fine mesh in describing a particular fuel bundle with an appropriate numerical method (MOC), while using a much large mesh size in the rest of the core, in conjunction with a coarse-mesh method (VNM). This application shows the benefits of our MM-MD approach, in terms of accuracy and computing time: the domain decomposition method allows us to reduce the Cpu time, while preserving a good accuracy of the neutronic indicators: reactivity, core-to-bundle power coupling coefficient and flux error. (authors)

  4. Wave propagation near cyclotron resonance in the presence of large Larmor radius particles

    International Nuclear Information System (INIS)

    Cairns, R.A.; Lashmore-Davies, C.N.; Holt, H.; McDonald, D.C.

    1995-02-01

    Absorption of waves propagating across an inhomogeneous magnetic field is of crucial importance for cyclotron resonance heating. When the Larmor radius of the resonant particles is small compared to the wavelength, then the propagation can be described by differential equations. These have been derived by a considerable number of authors, but a comparatively simple method of obtaining them has recently been given by Cairns et al [Phys. Fluids B3, 2953 (1991)] and, for the relativistic case which is relevant to electron cyclotron heating, by McDonald et al [Phys. Plasmas 1, 842 (1994)]. In a fusion plasma there may be a significant number of hot ions for which the Larmor radius is comparable to or larger than the perpendicular wavelength. It is important to be able to calculate the effect of these ions on ion cyclotron phenomena. In this case the system is described by integro-differential equations, the structure of which is essentially determined by the fact that the response at a given position is determined by the wave amplitude over a region whose width is of the order of a Larmor radius. The equations describing this situation have been obtained by Sauter and Vaclavik [Theory of Fusion Plasmas, Editrice Compositori, Bologna (1990) p. 403] and by Brambilla [Plasma Physics and Controlled Fusion 33, 1029 (1991)]. Here we show how the simplified method referred to above can be adapted to this case and used to find various alternative forms for the equations. (author)

  5. Transport equation solving methods

    International Nuclear Information System (INIS)

    Granjean, P.M.

    1984-06-01

    This work is mainly devoted to Csub(N) and Fsub(N) methods. CN method: starting from a lemma stated by Placzek, an equivalence is established between two problems: the first one is defined in a finite medium bounded by a surface S, the second one is defined in the whole space. In the first problem the angular flux on the surface S is shown to be the solution of an integral equation. This equation is solved by Galerkin's method. The Csub(N) method is applied here to one-velocity problems: in plane geometry, slab albedo and transmission with Rayleigh scattering, calculation of the extrapolation length; in cylindrical geometry, albedo and extrapolation length calculation with linear scattering. Fsub(N) method: the basic integral transport equation of the Csub(N) method is integrated on Case's elementary distributions; another integral transport equation is obtained: this equation is solved by a collocation method. The plane problems solved by the Csub(N) method are also solved by the Fsub(N) method. The Fsub(N) method is extended to any polynomial scattering law. Some simple spherical problems are also studied. Chandrasekhar's method, collision probability method, Case's method are presented for comparison with Csub(N) and Fsub(N) methods. This comparison shows the respective advantages of the two methods: a) fast convergence and possible extension to various geometries for Csub(N) method; b) easy calculations and easy extension to polynomial scattering for Fsub(N) method [fr

  6. Introduction to partial differential equations

    CERN Document Server

    Greenspan, Donald

    2000-01-01

    Designed for use in a one-semester course by seniors and beginning graduate students, this rigorous presentation explores practical methods of solving differential equations, plus the unifying theory underlying the mathematical superstructure. Topics include basic concepts, Fourier series, second-order partial differential equations, wave equation, potential equation, heat equation, approximate solution of partial differential equations, and more. Exercises appear at the ends of most chapters. 1961 edition.

  7. Lyapunov functionals and stability of stochastic functional differential equations

    CERN Document Server

    Shaikhet, Leonid

    2013-01-01

    Stability conditions for functional differential equations can be obtained using Lyapunov functionals. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations describes the general method of construction of Lyapunov functionals to investigate the stability of differential equations with delays. This work continues and complements the author’s previous book Lyapunov Functionals and Stability of Stochastic Difference Equations, where this method is described for discrete- and continuous-time difference equations. The text begins with a description of the peculiarities of deterministic and stochastic functional differential equations. There follow basic definitions for stability theory of stochastic hereditary systems, and a formal procedure of Lyapunov functionals construction is presented. Stability investigation is conducted for stochastic linear and nonlinear differential equations with constant and distributed delays. The proposed method is used for stability investigation of di...

  8. Quadratic Diophantine equations

    CERN Document Server

    Andreescu, Titu

    2015-01-01

    This monograph treats the classical theory of quadratic Diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. These new techniques combined with the latest increases in computational power shed new light on important open problems. The authors motivate the study of quadratic Diophantine equations with excellent examples, open problems, and applications. Moreover, the exposition aptly demonstrates many applications of results and techniques from the study of Pell-type equations to other problems in number theory. The book is intended for advanced undergraduate and graduate students as well as researchers. It challenges the reader to apply not only specific techniques and strategies, but also to employ methods and tools from other areas of mathematics, such as algebra and analysis.

  9. Stochastic porous media equations

    CERN Document Server

    Barbu, Viorel; Röckner, Michael

    2016-01-01

    Focusing on stochastic porous media equations, this book places an emphasis on existence theorems, asymptotic behavior and ergodic properties of the associated transition semigroup. Stochastic perturbations of the porous media equation have reviously been considered by physicists, but rigorous mathematical existence results have only recently been found. The porous media equation models a number of different physical phenomena, including the flow of an ideal gas and the diffusion of a compressible fluid through porous media, and also thermal propagation in plasma and plasma radiation. Another important application is to a model of the standard self-organized criticality process, called the "sand-pile model" or the "Bak-Tang-Wiesenfeld model". The book will be of interest to PhD students and researchers in mathematics, physics and biology.

  10. Boussinesq evolution equations

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Schaffer, H.; Madsen, Per A.

    2004-01-01

    This paper deals with the possibility of using methods and ideas from time domain Boussinesq formulations in the corresponding frequency domain formulations. We term such frequency domain models "evolution equations". First, we demonstrate that the numerical efficiency of the deterministic...... Boussinesq evolution equations of Madsen and Sorensen [Madsen, P.A., Sorensen, O.R., 1993. Bound waves and triad interactions in shallow water. Ocean Eng. 20 359-388] can be improved by using Fast Fourier Transforms to evaluate the nonlinear terms. For a practical example of irregular waves propagating over...... a submerged bar, it is demonstrated that evolution equations utilising FFT can be solved around 100 times faster than the corresponding time domain model. Use of FFT provides an efficient bridge between the frequency domain and the time domain. We utilise this by adapting the surface roller model for wave...

  11. Electron transfer dynamics: Zusman equation versus exact theory

    International Nuclear Information System (INIS)

    Shi Qiang; Chen Liping; Nan Guangjun; Xu Ruixue; Yan Yijing

    2009-01-01

    The Zusman equation has been widely used to study the effect of solvent dynamics on electron transfer reactions. However, application of this equation is limited by the classical treatment of the nuclear degrees of freedom. In this paper, we revisit the Zusman equation in the framework of the exact hierarchical equations of motion formalism, and show that a high temperature approximation of the hierarchical theory is equivalent to the Zusman equation in describing electron transfer dynamics. Thus the exact hierarchical formalism naturally extends the Zusman equation to include quantum nuclear dynamics at low temperatures. This new finding has also inspired us to rescale the original hierarchical equations and incorporate a filtering algorithm to efficiently propagate the hierarchical equations. Numerical exact results are also presented for the electron transfer reaction dynamics and rate constant calculations.

  12. B-splines and Faddeev equations

    International Nuclear Information System (INIS)

    Huizing, A.J.

    1990-01-01

    Two numerical methods for solving the three-body equations describing relativistic pion deuteron scattering have been investigated. For separable two body interactions these equations form a set of coupled one-dimensional integral equations. They are plagued by singularities which occur in the kernel of the integral equations as well as in the solution. The methods to solve these equations differ in the way they treat the singularities. First the Fuda-Stuivenberg method is discussed. The basic idea of this method is an one time iteration of the set of integral equations to treat the logarithmic singularities. In the second method, the spline method, the unknown solution is approximated by splines. Cubic splines have been used with cubic B-splines as basis. If the solution is approximated by a linear combination of basis functions, an integral equation can be transformed into a set of linear equations for the expansion coefficients. This set of linear equations is solved by standard means. Splines are determined by points called knots. A proper choice of splines to approach the solution stands for a proper choice of the knots. The solution of the three-body scattering equations has a square root behaviour at a certain point. Hence it was investigated how the knots should be chosen to approximate the square root function by cubic B-splines in an optimal way. Before applying this method to solve numerically the three-body equations describing pion-deuteron scattering, an analytically solvable example has been constructed with a singularity structure of both kernel and solution comparable to those of the three-body equations. The accuracy of the numerical solution was determined to a large extent by the accuracy of the approximation of the square root part. The results for a pion laboratory energy of 47.4 MeV agree very well with those from literature. In a complete calculation for 47.7 MeV the spline method turned out to be a factor thousand faster than the Fuda

  13. Swarm analysis by using transport equations

    International Nuclear Information System (INIS)

    Dote, Toshihiko.

    1985-01-01

    As the basis of weak ionization plasma phenomena, the motion, i.e. swarm, of charged particles in the gas is analyzed by use of the transport equations, from which basic nature of the swarm is discussed. The present report is an overview of the studies made in the past several years. Described are principally the most basic aspects concerning behaviors of the electrons and positive ions, that is, the basic equations and their significance, characteristics of the behaviors of the electron and positive ion swarms as revealed by solving the equations, and various characteristics of the swarm parameters. Contents are: Maxwell-Boltzmann's transport equations, behavior of the electron swarm, energy loss of the electrons, and behavior of the positive ion swarm. (Mori, K.)

  14. Nonlinear elliptic equations and nonassociative algebras

    CERN Document Server

    Nadirashvili, Nikolai; Vlăduţ, Serge

    2014-01-01

    This book presents applications of noncommutative and nonassociative algebras to constructing unusual (nonclassical and singular) solutions to fully nonlinear elliptic partial differential equations of second order. The methods described in the book are used to solve a longstanding problem of the existence of truly weak, nonsmooth viscosity solutions. Moreover, the authors provide an almost complete description of homogeneous solutions to fully nonlinear elliptic equations. It is shown that even in the very restricted setting of "Hessian equations", depending only on the eigenvalues of the Hessian, these equations admit homogeneous solutions of all orders compatible with known regularity for viscosity solutions provided the space dimension is five or larger. To the contrary, in dimension four or less the situation is completely different, and our results suggest strongly that there are no nonclassical homogeneous solutions at all in dimensions three and four. Thus this book gives a complete list of dimensions...

  15. Diffusive limits for linear transport equations

    International Nuclear Information System (INIS)

    Pomraning, G.C.

    1992-01-01

    The authors show that the Hibert and Chapman-Enskog asymptotic treatments that reduce the nonlinear Boltzmann equation to the Euler and Navier-Stokes fluid equations have analogs in linear transport theory. In this linear setting, these fluid limits are described by diffusion equations, involving familiar and less familiar diffusion coefficients. Because of the linearity extant, one can carry out explicitly the initial and boundary layer analyses required to obtain asymptotically consistent initial and boundary conditions for the diffusion equations. In particular, the effects of boundary curvature and boundary condition variation along the surface can be included in the boundary layer analysis. A brief review of heuristic (nonasymptotic) diffusion description derivations is also included in our discussion

  16. Modelling conjugation with stochastic differential equations

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Hasman, Henrik

    2010-01-01

    Enterococcus faecium strains in a rich exhaustible media. The model contains a new expression for a substrate dependent conjugation rate. A maximum likelihood based method is used to estimate the model parameters. Different models including different noise structure for the system and observations are compared......Conjugation is an important mechanism involved in the transfer of resistance between bacteria. In this article a stochastic differential equation based model consisting of a continuous time state equation and a discrete time measurement equation is introduced to model growth and conjugation of two...... using a likelihood-ratio test and Akaike's information criterion. Experiments indicating conjugation on the agar plates selecting for transconjugants motivates the introduction of an extended model, for which conjugation on the agar plate is described in the measurement equation. This model is compared...

  17. Equations of mathematical physics

    CERN Document Server

    Tikhonov, A N

    2011-01-01

    Mathematical physics plays an important role in the study of many physical processes - hydrodynamics, elasticity, and electrodynamics, to name just a few. Because of the enormous range and variety of problems dealt with by mathematical physics, this thorough advanced-undergraduate or graduate-level text considers only those problems leading to partial differential equations. The authors - two well-known Russian mathematicians - have focused on typical physical processes and the principal types of equations deailing with them. Special attention is paid throughout to mathematical formulation, ri

  18. Iteration of adjoint equations

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1994-01-01

    Adjoint functions are the basis of variational methods and now widely used for perturbation theory and its extension to higher order theory as used, for example, in modelling fuel burnup and optimization. In such models, the adjoint equation is to be solved in a critical system with an adjoint source distribution that is not zero but has special properties related to ratios of interest in critical systems. Consequently the methods of solving equations by iteration and accumulation are reviewed to show how conventional methods may be utilized in these circumstances with adequate accuracy. (author). 3 refs., 6 figs., 3 tabs

  19. Systematic Equation Formulation

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2007-01-01

    A tutorial giving a very simple introduction to the set-up of the equations used as a model for an electrical/electronic circuit. The aim is to find a method which is as simple and general as possible with respect to implementation in a computer program. The “Modified Nodal Approach”, MNA, and th......, and the “Controlled Source Approach”, CSA, for systematic equation formulation are investigated. It is suggested that the kernel of the P Spice program based on MNA is reprogrammed....

  20. Partial differential equations

    CERN Document Server

    Agranovich, M S

    2002-01-01

    Mark Vishik's Partial Differential Equations seminar held at Moscow State University was one of the world's leading seminars in PDEs for over 40 years. This book celebrates Vishik's eightieth birthday. It comprises new results and survey papers written by many renowned specialists who actively participated over the years in Vishik's seminars. Contributions include original developments and methods in PDEs and related fields, such as mathematical physics, tomography, and symplectic geometry. Papers discuss linear and nonlinear equations, particularly linear elliptic problems in angles and gener

  1. Generalized estimating equations

    CERN Document Server

    Hardin, James W

    2002-01-01

    Although powerful and flexible, the method of generalized linear models (GLM) is limited in its ability to accurately deal with longitudinal and clustered data. Developed specifically to accommodate these data types, the method of Generalized Estimating Equations (GEE) extends the GLM algorithm to accommodate the correlated data encountered in health research, social science, biology, and other related fields.Generalized Estimating Equations provides the first complete treatment of GEE methodology in all of its variations. After introducing the subject and reviewing GLM, the authors examine th

  2. Nonlinear wave equations

    CERN Document Server

    Li, Tatsien

    2017-01-01

    This book focuses on nonlinear wave equations, which are of considerable significance from both physical and theoretical perspectives. It also presents complete results on the lower bound estimates of lifespan (including the global existence), which are established for classical solutions to the Cauchy problem of nonlinear wave equations with small initial data in all possible space dimensions and with all possible integer powers of nonlinear terms. Further, the book proposes the global iteration method, which offers a unified and straightforward approach for treating these kinds of problems. Purely based on the properties of solut ions to the corresponding linear problems, the method simply applies the contraction mapping principle.

  3. Elliptic and solitary wave solutions for Bogoyavlenskii equations system, couple Boiti-Leon-Pempinelli equations system and Time-fractional Cahn-Allen equation

    Directory of Open Access Journals (Sweden)

    Mostafa M.A. Khater

    Full Text Available In this article and for the first time, we introduce and describe Khater method which is a new technique for solving nonlinear partial differential equations (PDEs.. We apply this method for each of the following models Bogoyavlenskii equation, couple Boiti-Leon-Pempinelli system and Time-fractional Cahn-Allen equation. Khater method is very powerful, Effective, felicitous and fabulous method to get exact and solitary wave solution of (PDEs.. Not only just like that but it considers too one of the general methods for solving that kind of equations since it involves some methods as we will see in our discuss of the results. We make a comparison between the results of this new method and another method. Keywords: Bogoyavlenskii equations system, Couple Boiti-Leon-Pempinelli equations system, Time-fractional Cahn-Allen equation, Khater method, Traveling wave solutions, Solitary wave solutions

  4. Action principles for the Vlasov equation

    International Nuclear Information System (INIS)

    Ye, H.; Morrison, P.J.

    1992-01-01

    Five action principles for the Vlasov--Poisson and Vlasov--Maxwell equations, which differ by the variables incorporated to describe the distribution of particles in phase space, are presented. Three action principles previously known for the Vlasov--Maxwell equations are altered so as to produce the Vlasov--Poisson equation upon variation with respect to only the particle variables, and one action principle previously known for the Vlasov--Poisson equation is altered to produce the Vlasov--Maxwell equations upon variations with respect to particle and field variables independently. Also, a new action principle for both systems, which is called the leaf action, is presented. This new action has the desirable features of using only a single generating function as the dynamical variable for describing the particle distribution, and manifestly preserving invariants of the system known as Casimir invariants. The relationships between the various actions are described, and it is shown that the leaf action is a link between actions written in terms of Lagrangian and Eulerian variables

  5. Analysis of wave equation in electromagnetic field by Proca equation

    International Nuclear Information System (INIS)

    Pamungkas, Oky Rio; Soeparmi; Cari

    2017-01-01

    This research is aimed to analyze wave equation for the electric and magnetic field, vector and scalar potential, and continuity equation using Proca equation. Then, also analyze comparison of the solution on Maxwell and Proca equation for scalar potential and electric field, both as a function of distance and constant wave number. (paper)

  6. Comparison of Kernel Equating and Item Response Theory Equating Methods

    Science.gov (United States)

    Meng, Yu

    2012-01-01

    The kernel method of test equating is a unified approach to test equating with some advantages over traditional equating methods. Therefore, it is important to evaluate in a comprehensive way the usefulness and appropriateness of the Kernel equating (KE) method, as well as its advantages and disadvantages compared with several popular item…

  7. Test equating methods and practices

    CERN Document Server

    Kolen, Michael J

    1995-01-01

    In recent years, many researchers in the psychology and statistical communities have paid increasing attention to test equating as issues of using multiple test forms have arisen and in response to criticisms of traditional testing techniques This book provides a practically oriented introduction to test equating which both discusses the most frequently used equating methodologies and covers many of the practical issues involved The main themes are - the purpose of equating - distinguishing between equating and related methodologies - the importance of test equating to test development and quality control - the differences between equating properties, equating designs, and equating methods - equating error, and the underlying statistical assumptions for equating The authors are acknowledged experts in the field, and the book is based on numerous courses and seminars they have presented As a result, educators, psychometricians, professionals in measurement, statisticians, and students coming to the subject for...

  8. On a perturbed Sparre Andersen risk model with multi-layer dividend strategy

    Science.gov (United States)

    Yang, Hu; Zhang, Zhimin

    2009-10-01

    In this paper, we consider a perturbed Sparre Andersen risk model, in which the inter-claim times are generalized Erlang(n) distributed. Under the multi-layer dividend strategy, piece-wise integro-differential equations for the discounted penalty functions are derived, and a recursive approach is applied to express the solutions. A numerical example to calculate the ruin probabilities is given to illustrate the solution procedure.

  9. Numerical analysis of energetic particle stabilization of ballooning modes in finite-aspect-ratio tokamaks

    International Nuclear Information System (INIS)

    He Qibing; Peng Qiyang; Qu Wenxiao

    1993-09-01

    The effect of energetic trapped particles on the stabilization of ballooning modes in finite-aspect-ratio tokamaks is numerically analyzed. The numerical solution of boundary value problem of an integro-differential equation is successfully obtained by RKF integral method with variable step size. The results show that the instability domain of ballooning modes becomes small along with the increase of energetic particles pressure. The energetic trapped particles can partially or completely suppress the instability of ballooning modes

  10. Advanced action in classical electrodynamics

    OpenAIRE

    Boozer, A. D.

    2008-01-01

    The time evolution of a charged point particle is governed by a second-order integro-differential equation that exhibits advanced effects, in which the particle responds to an external force before the force is applied. In this paper we give a simple physical argument that clarifies the origin and physical meaning of these advanced effects, and we compare ordinary electrodynamics with a toy model of electrodynamics in which advanced effects do not occur.

  11. Anisotropic generalization of well-known solutions describing relativistic self-gravitating fluid systems. An algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Thirukkanesh, S. [Eastern University, Department of Mathematics, Chenkalady (Sri Lanka); Ragel, F.C. [Eastern University, Department of Physics, Chenkalady (Sri Lanka); Sharma, Ranjan; Das, Shyam [P.D. Women' s College, Department of Physics, Jalpaiguri (India)

    2018-01-15

    We present an algorithm to generalize a plethora of well-known solutions to Einstein field equations describing spherically symmetric relativistic fluid spheres by relaxing the pressure isotropy condition on the system. By suitably fixing the model parameters in our formulation, we generate closed-form solutions which may be treated as an anisotropic generalization of a large class of solutions describing isotropic fluid spheres. From the resultant solutions, a particular solution is taken up to show its physical acceptability. Making use of the current estimate of mass and radius of a known pulsar, the effects of anisotropic stress on the gross physical behaviour of a relativistic compact star is also highlighted. (orig.)

  12. Quantum hydrodynamics and nonlinear differential equations for degenerate Fermi gas

    International Nuclear Information System (INIS)

    Bettelheim, Eldad; Abanov, Alexander G; Wiegmann, Paul B

    2008-01-01

    We present new nonlinear differential equations for spacetime correlation functions of Fermi gas in one spatial dimension. The correlation functions we consider describe non-stationary processes out of equilibrium. The equations we obtain are integrable equations. They generalize known nonlinear differential equations for correlation functions at equilibrium [1-4] and provide vital tools for studying non-equilibrium dynamics of electronic systems. The method we developed is based only on Wick's theorem and the hydrodynamic description of the Fermi gas. Differential equations appear directly in bilinear form. (fast track communication)

  13. Numerical solution of distributed order fractional differential equations

    Science.gov (United States)

    Katsikadelis, John T.

    2014-02-01

    In this paper a method for the numerical solution of distributed order FDEs (fractional differential equations) of a general form is presented. The method applies to both linear and nonlinear equations. The Caputo type fractional derivative is employed. The distributed order FDE is approximated with a multi-term FDE, which is then solved by adjusting appropriately the numerical method developed for multi-term FDEs by Katsikadelis. Several example equations are solved and the response of mechanical systems described by such equations is studied. The convergence and the accuracy of the method for linear and nonlinear equations are demonstrated through well corroborated numerical results.

  14. On some control problems of dynamic of reactor

    Science.gov (United States)

    Baskakov, A. V.; Volkov, N. P.

    2017-12-01

    The paper analyzes controllability of the transient processes in some problems of nuclear reactor dynamics. In this case, the mathematical model of nuclear reactor dynamics is described by a system of integro-differential equations consisting of the non-stationary anisotropic multi-velocity kinetic equation of neutron transport and the balance equation of delayed neutrons. The paper defines the formulation of the linear problem on control of transient processes in nuclear reactors with application of spatially distributed actions on internal neutron sources, and the formulation of the nonlinear problems on control of transient processes with application of spatially distributed actions on the neutron absorption coefficient and the neutron scattering indicatrix. The required control actions depend on the spatial and velocity coordinates. The theorems on existence and uniqueness of these control actions are proved in the paper. To do this, the control problems mentioned above are reduced to equivalent systems of integral equations. Existence and uniqueness of the solution for this system of integral equations is proved by the method of successive approximations, which makes it possible to construct an iterative scheme for numerical analyses of transient processes in a given nuclear reactor with application of the developed mathematical model. Sufficient conditions for controllability of transient processes are also obtained. In conclusion, a connection is made between the control problems and the observation problems, which, by to the given information, allow us to reconstruct either the function of internal neutron sources, or the neutron absorption coefficient, or the neutron scattering indicatrix....

  15. Closed form analytic solutions describing glow discharge plasma

    International Nuclear Information System (INIS)

    Pai, S.T.; Guo, X.M.; Zhou, T.D.

    1996-01-01

    On the basis of an analytic model developed previously [S. T. Pai, J. Appl. Phys. 71, 5820 (1992)], an improved version of the model for the description of dc glow discharge plasma was successfully developed. A set of closed form solutions was obtained from the governing equations. The two-dimensional, analytic solutions are functional and completely satisfy the governing equations, the actual boundary conditions, and Maxwell equations. They can be readily used to carry out numerical calculations without the necessity of employing any assumed boundary conditions. Results obtained from the model reveal that as the discharge gap spacing or pressure increases the maximum value in the electron density distribution moves toward the cathode. At a sufficiently large value of gap spacing, the positive column phenomenon begins to appear in the discharge region. The model has the capability of treating the positive column and negative glow as a continuous system without the necessity of studying them separately. The model also predicts a sharp rise of the positive ion density near the cathode and field reversal in the anode region. Variation of the electrode radius produces little effect on the axial spatial distribution of physical quantities studied. copyright 1996 American Institute of Physics

  16. The shallow water equations in Lagrangian coordinates

    International Nuclear Information System (INIS)

    Mead, J.L.

    2004-01-01

    Recent advances in the collection of Lagrangian data from the ocean and results about the well-posedness of the primitive equations have led to a renewed interest in solving flow equations in Lagrangian coordinates. We do not take the view that solving in Lagrangian coordinates equates to solving on a moving grid that can become twisted or distorted. Rather, the grid in Lagrangian coordinates represents the initial position of particles, and it does not change with time. We apply numerical methods traditionally used to solve differential equations in Eulerian coordinates, to solve the shallow water equations in Lagrangian coordinates. The difficulty with solving in Lagrangian coordinates is that the transformation from Eulerian coordinates results in solving a highly nonlinear partial differential equation. The non-linearity is mainly due to the Jacobian of the coordinate transformation, which is a precise record of how the particles are rotated and stretched. The inverse Jacobian must be calculated, thus Lagrangian coordinates cannot be used in instances where the Jacobian vanishes. For linear (spatial) flows we give an explicit formula for the Jacobian and describe the two situations where the Lagrangian shallow water equations cannot be used because either the Jacobian vanishes or the shallow water assumption is violated. We also prove that linear (in space) steady state solutions of the Lagrangian shallow water equations have Jacobian equal to one. In the situations where the shallow water equations can be solved in Lagrangian coordinates, accurate numerical solutions are found with finite differences, the Chebyshev pseudospectral method, and the fourth order Runge-Kutta method. The numerical results shown here emphasize the need for high order temporal approximations for long time integrations

  17. On the Raychaudhuri equation

    Indian Academy of Sciences (India)

    The Raychaudhuri equation is central to the understanding of gravitational attraction in ... of K Gödel on the ideas of shear and vorticity in cosmology (he defines the shear. (eq. (8) in [1]) .... which follows from the definition of the scale factor l.

  18. Generalized reduced magnetohydrodynamic equations

    International Nuclear Information System (INIS)

    Kruger, S.E.

    1999-01-01

    A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-Alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson. The equations have been programmed into a spectral initial value code and run with shear flow that is consistent with the equilibrium input into the code. Linear results of tearing modes with shear flow are presented which differentiate the effects of shear flow gradients in the layer with the effects of the shear flow decoupling multiple harmonics

  19. Calculus & ordinary differential equations

    CERN Document Server

    Pearson, David

    1995-01-01

    Professor Pearson's book starts with an introduction to the area and an explanation of the most commonly used functions. It then moves on through differentiation, special functions, derivatives, integrals and onto full differential equations. As with other books in the series the emphasis is on using worked examples and tutorial-based problem solving to gain the confidence of students.

  20. The Freudenstein Equation

    Indian Academy of Sciences (India)

    research, teaching and practice related to the analysis and design ... its variants, are present in a large number of ma- chines used in daily ... with advanced electronics, sensors, control systems and computing ... ted perfectly well with the rapidly developing comput- .... velopment of the Freudenstein equation using Figure 3.