WorldWideScience

Sample records for integrin coordinately regulate

  1. Integrin extension enables ultrasensitive regulation by cytoskeletal force.

    Science.gov (United States)

    Li, Jing; Springer, Timothy A

    2017-05-02

    Integrins undergo large-scale conformational changes upon activation. Signaling events driving integrin activation have previously been discussed conceptually, but not quantitatively. Here, recent measurements of the intrinsic ligand-binding affinity and free energy of each integrin conformational state on the cell surface, together with the length scales of conformational change, are used to quantitatively compare models of activation. We examine whether binding of cytoskeletal adaptors to integrin cytoplasmic domains is sufficient for activation or whether exertion of tensile force by the actin cytoskeleton across the integrin-ligand complex is also required. We find that only the combination of adaptor binding and cytoskeletal force provides ultrasensitive regulation. Moreover, switch-like activation by force depends on the large, >130 Å length-scale change in integrin extension, which is well tailored to match the free-energy difference between the inactive (bent-closed) and active (extended-open) conformations. The length scale and energy cost in integrin extension enable activation by force in the low pN range and appear to be the key specializations that enable cell adhesion through integrins to be coordinated with cytoskeletal dynamics.

  2. The alpha3 laminin subunit, alpha6beta4 and alpha3beta1 integrin coordinately regulate wound healing in cultured epithelial cells and in the skin

    DEFF Research Database (Denmark)

    Goldfinger, L E; Hopkinson, S B; deHart, G W

    1999-01-01

    . In these cells, integrin alpha3beta1 occasionally colocalizes with the staining generated by the 12C4 antibody but alpha6beta4 integrin does not. In wounded MCF-10A cell cultures, the 12C4 antibody stains the extracellular matrix beneath those cells at the very edge of the cellular sheet that moves to cover......Previously, we demonstrated that proteolytic processing within the globular domain of the alpha3 subunit of laminin-5 (LN5) converts LN5 from a cell motility-inducing factor to a protein complex that can trigger the formation of hemidesmosomes, certain cell-matrix attachment sites found...... in epithelial cells. We have prepared a monoclonal antibody (12C4) whose epitope is located toward the carboxy terminus of the globular domain of the alpha3 laminin subunit. This epitope is lost from the alpha3 subunit as a consequence of proteolytic processing. Antibody 12C4 stains throughout the matrix...

  3. The alpha3 laminin subunit, alpha6beta4 and alpha3beta1 integrin coordinately regulate wound healing in cultured epithelial cells and in the skin

    DEFF Research Database (Denmark)

    Goldfinger, L E; Hopkinson, S B; deHart, G W

    1999-01-01

    Previously, we demonstrated that proteolytic processing within the globular domain of the alpha3 subunit of laminin-5 (LN5) converts LN5 from a cell motility-inducing factor to a protein complex that can trigger the formation of hemidesmosomes, certain cell-matrix attachment sites found in epithe......-inhibiting antibodies, we provide evidence that LN5 and its two integrin receptors (alpha6beta4 and alpha3beta1) appear necessary for wound healing to occur in MCF-10A cell culture wounds. We propose a model for healing of wounded epithelial tissues based on these results....... in epithelial cells. We have prepared a monoclonal antibody (12C4) whose epitope is located toward the carboxy terminus of the globular domain of the alpha3 laminin subunit. This epitope is lost from the alpha3 subunit as a consequence of proteolytic processing. Antibody 12C4 stains throughout the matrix...... the wound site. A similar phenomenon is observed in human skin wounds, since we also detect expression of the unprocessed alpha3 laminin subunit at the leading tip of the sheet of epidermal cells that epithelializes skin wounds in vivo. In addition, using alpha3 laminin subunit and integrin function...

  4. Integrins Regulate Apical Constriction via Microtubule Stabilization in the Drosophila Eye Disc Epithelium

    Directory of Open Access Journals (Sweden)

    Vilaiwan M. Fernandes

    2014-12-01

    Full Text Available During morphogenesis, extracellular signals trigger actomyosin contractility in subpopulations of cells to coordinate changes in cell shape. To illuminate the link between signaling-mediated tissue patterning and cytoskeletal remodeling, we study the progression of the morphogenetic furrow (MF, the wave of apical constriction that traverses the Drosophila eye imaginal disc preceding photoreceptor neurogenesis. Apical constriction depends on actomyosin contractility downstream of the Hedgehog (Hh and bone morphogenetic protein (BMP pathways. We identify a role for integrin adhesion receptors in MF progression. We show that Hh and BMP regulate integrin expression, the loss of which disrupts apical constriction and slows furrow progression; conversely, elevated integrins accelerate furrow progression. We present evidence that integrins regulate MF progression by promoting microtubule stabilization, since reducing microtubule stability rescues integrin-mediated furrow acceleration. Thus, integrins act as a genetic link between tissue-level signaling events and morphological change at the cellular level, leading to morphogenesis and neurogenesis in the eye.

  5. Bidirectional remodeling of β1-integrin adhesions during chemotropic regulation of nerve growth

    Directory of Open Access Journals (Sweden)

    Carlstrom Lucas P

    2011-11-01

    Full Text Available Abstract Background Chemotropic factors in the extracellular microenvironment guide nerve growth by acting on the growth cone located at the tip of extending axons. Growth cone extension requires the coordination of cytoskeleton-dependent membrane protrusion and dynamic adhesion to the extracellular matrix, yet how chemotropic factors regulate these events remains an outstanding question. We demonstrated previously that the inhibitory factor myelin-associated glycoprotein (MAG triggers endocytic removal of the adhesion receptor β1-integrin from the growth cone surface membrane to negatively remodel substrate adhesions during chemorepulsion. Here, we tested how a neurotrophin might affect integrin adhesions. Results We report that brain-derived neurotropic factor (BDNF positively regulates the formation of substrate adhesions in axonal growth cones during stimulated outgrowth and prevents removal of β1-integrin adhesions by MAG. Treatment of Xenopus spinal neurons with BDNF rapidly triggered β1-integrin clustering and induced the dynamic formation of nascent vinculin-containing adhesion complexes in the growth cone periphery. Both the formation of nascent β1-integrin adhesions and the stimulation of axon extension by BDNF required cytoplasmic calcium ion signaling and integrin activation at the cell surface. Exposure to MAG decreased the number of β1-integrin adhesions in the growth cone during inhibition of axon extension. In contrast, the BDNF-induced adhesions were resistant to negative remodeling by MAG, correlating with the ability of BDNF pretreatment to counteract MAG-inhibition of axon extension. Pre-exposure to MAG prevented the BDNF-induced formation of β1-integrin adhesions and blocked the stimulation of axon extension by BDNF. Conclusions Altogether, these findings demonstrate the neurotrophin-dependent formation of integrin-based adhesions in the growth cone and reveal how a positive regulator of substrate adhesions can block

  6. Integrin LFA-1 regulates cell adhesion via transient clutch formation.

    Science.gov (United States)

    Ishibashi, Munenori; Miyanaga, Yukihiro; Matsuoka, Satomi; Kozuka, Jun; Togashi, Yuichi; Kinashi, Tatsuo; Ueda, Masahiro

    2015-08-21

    Integrin LFA-1 regulates immune cell adhesion and trafficking by binding to ICAM-1 upon chemokine stimulation. Integrin-mediated clutch formation between extracellular ICAM-1 and the intracellular actin cytoskeleton is important for cell adhesion. We applied single-molecule tracking analysis to LFA-1 and ICAM-1 in living cells to examine the ligand-binding kinetics and mobility of the molecular clutch under chemokine-induced physiological adhesion and Mn(2+)-induced tight adhesion. Our results show a transient LFA-1-mediated clutch formation that lasts a few seconds and leads to a transient lower-mobility is sufficient to promote cell adhesion. Stable clutch formation was observed for Mn(2+)-induced high affinity LFA-1, but was not required for physiological adhesion. We propose that fast cycling of the clutch formation by intermediate-affinity integrin enables dynamic cell adhesion and migration. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Integrin-linked kinase regulates interphase and mitotic microtubule dynamics.

    Directory of Open Access Journals (Sweden)

    Simin Lim

    Full Text Available Integrin-linked kinase (ILK localizes to both focal adhesions and centrosomes in distinct multiprotein complexes. Its dual function as a kinase and scaffolding protein has been well characterized at focal adhesions, where it regulates integrin-mediated cell adhesion, spreading, migration and signaling. At the centrosomes, ILK regulates mitotic spindle organization and centrosome clustering. Our previous study showed various spindle defects after ILK knockdown or inhibition that suggested alteration in microtubule dynamics. Since ILK expression is frequently elevated in many cancer types, we investigated the effects of ILK overexpression on microtubule dynamics. We show here that overexpressing ILK in HeLa cells was associated with a shorter duration of mitosis and decreased sensitivity to paclitaxel, a chemotherapeutic agent that suppresses microtubule dynamics. Measurement of interphase microtubule dynamics revealed that ILK overexpression favored microtubule depolymerization, suggesting that microtubule destabilization could be the mechanism behind the decreased sensitivity to paclitaxel, which is known to stabilize microtubules. Conversely, the use of a small molecule inhibitor selective against ILK, QLT-0267, resulted in suppressed microtubule dynamics, demonstrating a new mechanism of action for this compound. We further show that treatment of HeLa cells with QLT-0267 resulted in higher inter-centromere tension in aligned chromosomes during mitosis, slower microtubule regrowth after cold depolymerization and the presence of a more stable population of spindle microtubules. These results demonstrate that ILK regulates microtubule dynamics in both interphase and mitotic cells.

  8. Astroglial Integrins in the Development and Regulation of Neurovascular Units

    Directory of Open Access Journals (Sweden)

    Hironobu Tanigami

    2012-01-01

    Full Text Available In the neurovascular units of the central nervous system, astrocytes form extensive networks that physically and functionally connect the neuronal synapses and the cerebral vascular vessels. This astrocytic network is thought to be critically important for coupling neuronal signaling activity and energy demand with cerebral vascular tone and blood flow. To establish and maintain this elaborate network, astrocytes must precisely calibrate their perisynaptic and perivascular processes in order to sense and regulate neuronal and vascular activities, respectively. Integrins, a prominent family of cell-adhesion molecules that support astrocytic migration in the brain during developmental and normal adult stages, have been implicated in regulating the integrity of the blood brain barrier and the tripartite synapse to facilitate the formation of a functionally integrated neurovascular unit. This paper describes the significant roles that integrins and connexins play not only in regulating astrocyte migration during the developmental and adult stages of the neurovascular unit, but also in general health and in such diseases as hepatic encephalopathy.

  9. CD151 accelerates breast cancer by regulating alpha 6 integrin function, signaling, and molecular organization.

    Science.gov (United States)

    Yang, Xiuwei H; Richardson, Andrea L; Torres-Arzayus, Maria I; Zhou, Pengcheng; Sharma, Chandan; Kazarov, Alexander R; Andzelm, Milena M; Strominger, Jack L; Brown, Myles; Hemler, Martin E

    2008-05-01

    CD151, a master regulator of laminin-binding integrins (alpha(6)beta(4), alpha(6)beta(1), and alpha(3)beta(1)), assembles these integrins into complexes called tetraspanin-enriched microdomains. CD151 protein expression is elevated in 31% of human breast cancers and is even more elevated in high-grade (40%) and estrogen receptor-negative (45%) subtypes. The latter includes triple-negative (estrogen receptor, progesterone receptor, and HER2 negative) basal-like tumors. CD151 ablation markedly reduced basal-like mammary cell migration, invasion, spreading, and signaling (through FAK, Rac1, and lck) while disrupting epidermal growth factor receptor (EGFR)-alpha(6) integrin collaboration. Underlying these defects, CD151 ablation redistributed alpha(6)beta(4) integrins subcellularly and severed molecular links between integrins and tetraspanin-enriched microdomains. In a prototypical basal-like mammary tumor line, CD151 ablation notably delayed tumor progression in ectopic and orthotopic xenograft models. These results (a) establish that CD151-alpha(6) integrin complexes play a functional role in basal-like mammary tumor progression; (b) emphasize that alpha(6) integrins function via CD151 linkage in the context of tetraspanin-enriched microdomains; and (c) point to potential relevance of CD151 as a high-priority therapeutic target, with relative selectivity (compared with laminin-binding integrins) for pathologic rather than normal physiology.

  10. Developmental control of integrin expression regulates Th2 effector homing

    Science.gov (United States)

    Integrin CD18, a component of the LFA-1 complex that also includes CD11a, is essential for Th2, but not Th1, cell homing, but the explanation for this phenomenon remains obscure. In this study, we investigate the mechanism by which Th2 effector responses require the LFA-1 complex. CD11a-deficient T ...

  11. Neuropilin-2 regulates α6β1 integrin in the formation of focal adhesions and signaling.

    Science.gov (United States)

    Goel, Hira Lal; Pursell, Bryan; Standley, Clive; Fogarty, Kevin; Mercurio, Arthur M

    2012-01-15

    The neuropilins (NRPs) contribute to the function of cancer cells in their capacity as VEGF receptors. Given that NRP2 is induced in breast cancer and correlates with aggressive disease, we examined the role of NRP2 in regulating the interaction of breast cancer cells with the ECM. Using epithelial cells from breast tumors, we defined NRP2(high) and NRP2(low) populations that differed in integrin expression and adhesion to laminin. Specifically, the NRP2(high) population adhered more avidly to laminin and expressed high levels of the α6β1 integrin than the NRP2(low) population. The NRP2(high) population formed numerous focal adhesions on laminin that were not seen in the NRP2(low) population. These results were substantiated using breast carcinoma cell lines that express NRP2 and α6β1 integrin. Depletion experiments revealed that adhesive strength on laminin but not collagen is dependent on NRP2, and that VEGF is needed for adhesion on laminin. A specific interaction between NRP2 and α6β1 integrin was detected by co-immunoprecipitation. NRP2 is necessary for focal adhesion formation on laminin and for the association of α6β1 integrin with the cytoskeleton. NRP2 also facilitates α6β1-integrin-mediated activation of FAK and Src. Unexpectedly, we discovered that NRP2 is located in focal adhesions on laminin. The mechanism by which NRP2 regulates the interaction of α6β1 integrin with laminin to form focal adhesions involves PKC activation. Together, our data reveal a new VEGF-NRP2 signaling pathway that activates the α6β1 integrin and enables it to form focal adhesions and signal. This pathway is important in the pathogenesis of breast cancer.

  12. CD177 modulates human neutrophil migration through activation-mediated integrin and chemoreceptor regulation.

    Science.gov (United States)

    Bai, Ming; Grieshaber-Bouyer, Ricardo; Wang, Junxia; Schmider, Angela B; Wilson, Zachary S; Zeng, Liling; Halyabar, Olha; Godin, Matthew D; Nguyen, Hung N; Levescot, Anaïs; Cunin, Pierre; Lefort, Craig T; Soberman, Roy J; Nigrovic, Peter A

    2017-11-09

    CD177 is a glycosylphosphatidylinositol (GPI)-anchored protein expressed by a variable proportion of human neutrophils that mediates surface expression of the antineutrophil cytoplasmic antibody antigen proteinase 3. CD177 associates with β2 integrins and recognizes platelet endothelial cell adhesion molecule 1 (PECAM-1), suggesting a role in neutrophil migration. However, CD177 pos neutrophils exhibit no clear migratory advantage in vivo, despite interruption of in vitro transendothelial migration by CD177 ligation. We sought to understand this paradox. Using a PECAM-1-independent transwell system, we found that CD177 pos and CD177 neg neutrophils migrated comparably. CD177 ligation selectively impaired migration of CD177 pos neutrophils, an effect mediated through immobilization and cellular spreading on the transwell membrane. Correspondingly, CD177 ligation enhanced its interaction with β2 integrins, as revealed by fluorescence lifetime imaging microscopy, leading to integrin-mediated phosphorylation of Src and extracellular signal-regulated kinase (ERK). CD177-driven cell activation enhanced surface β2 integrin expression and affinity, impaired internalization of integrin attachments, and resulted in ERK-mediated attenuation of chemokine signaling. We conclude that CD177 signals in a β2 integrin-dependent manner to orchestrate a set of activation-mediated mechanisms that impair human neutrophil migration. © 2017 by The American Society of Hematology.

  13. Integrin αβ1, αvβ, α6β effectors p130Cas, Src and talin regulate carcinoma invasion and chemoresistance

    International Nuclear Information System (INIS)

    Sansing, Hope A.; Sarkeshik, Ali; Yates, John R.; Patel, Vyomesh; Gutkind, J. Silvio; Yamada, Kenneth M.; Berrier, Allison L.

    2011-01-01

    Research highlights: → Proteomics of clustered integrin αβ1, α v β, α 6 β receptors in oral carcinoma. → p130Cas, Dek, Src and talin regulate oral carcinoma invasion. → p130Cas, talin, Src and zyxin regulate oral carcinoma resistance to cisplatin. -- Abstract: Ligand engagement by integrins induces receptor clustering and formation of complexes at the integrin cytoplasmic face that controls cell signaling and cytoskeletal dynamics critical for adhesion-dependent processes. This study searches for a subset of integrin effectors that coordinates both tumor cell invasion and resistance to the chemotherapeutic drug cisplatin in oral carcinomas. Candidate integrin effectors were identified in a proteomics screen of proteins recruited to clustered integrin αβ1, α v β or α 6 β receptors in oral carcinomas. Proteins with diverse functions including microtubule and actin binding proteins, and factors involved in trafficking, transcription and translation were identified in oral carcinoma integrin complexes. Knockdown of effectors in the oral carcinoma HN12 cells revealed that p130Cas, Dek, Src and talin were required for invasion through Matrigel. Disruption of talin or p130Cas by RNA interference increased resistance to cisplatin, whereas targeting Dek, Src or zyxin reduced HN12 resistance to cisplatin. Analysis of the spreading of HN12 cells on collagen I and laminin I revealed that a decrease in p130Cas or talin expression inhibited spreading on both matrices. Interestingly, a reduction in zyxin expression enhanced spreading on laminin I and inhibited spreading on collagen I. Reduction of Dek, Src, talin or zyxin expression reduced HN12 proliferation by 30%. Proliferation was not affected by a reduction in p130Cas expression. We conclude that p130Cas, Src and talin function in both oral carcinoma invasion and resistance to cisplatin.

  14. Integrin and GPCR Crosstalk in the Regulation of ASM Contraction Signaling in Asthma.

    Science.gov (United States)

    Teoh, Chun Ming; Tam, John Kit Chung; Tran, Thai

    2012-01-01

    Airway hyperresponsiveness (AHR) is one of the cardinal features of asthma. Contraction of airway smooth muscle (ASM) cells that line the airway wall is thought to influence aspects of AHR, resulting in excessive narrowing or occlusion of the airway. ASM contraction is primarily controlled by agonists that bind G protein-coupled receptor (GPCR), which are expressed on ASM. Integrins also play a role in regulating ASM contraction signaling. As therapies for asthma are based on symptom relief, better understanding of the crosstalk between GPCRs and integrins holds good promise for the design of more effective therapies that target the underlying cellular and molecular mechanism that governs AHR. In this paper, we will review current knowledge about integrins and GPCRs in their regulation of ASM contraction signaling and discuss the emerging concept of crosstalk between the two and the implication of this crosstalk on the development of agents that target AHR.

  15. Alpha1 and Alpha2 Integrins Mediate Invasive Activity of Mouse Mammary Carcinoma Cells through Regulation of Stromelysin-1 Expression

    Energy Technology Data Exchange (ETDEWEB)

    Lochter, Andre; Navre, Marc; Werb, Zena; Bissell, Mina J

    1998-06-29

    Tumor cell invasion relies on cell migration and extracellular matrix proteolysis. We investigated the contribution of different integrins to the invasive activity of mouse mammary carcinoma cells. Antibodies against integrin subunits {alpha}6 and {beta}1, but not against {alpha}1 and {alpha}2, inhibited cell locomotion on a reconstituted basement membrane in two-dimensional cell migration assays, whereas antibodies against {beta}1, but not against a6 or {alpha}2, interfered with cell adhesion to basement membrane constituents. Blocking antibodies against {alpha}1 integrins impaired only cell adhesion to type IV collagen. Antibodies against {alpha}1, {alpha}2, {alpha}6, and {beta}1, but not {alpha}5, integrin subunits reduced invasion of a reconstituted basement membrane. Integrins {alpha}1 and {alpha}2, which contributed only marginally to motility and adhesion, regulated proteinase production. Antibodies against {alpha}1 and {alpha}2, but not {alpha}6 and {beta}1, integrin subunits inhibited both transcription and protein expression of the matrix metalloproteinase stromelysin-1. Inhibition of tumor cell invasion by antibodies against {alpha}1 and {alpha}2 was reversed by addition of recombinant stromelysin-1. In contrast, stromelysin-1 could not rescue invasion inhibited by anti-{alpha}6 antibodies. Our data indicate that {alpha}1 and {alpha}2 integrins confer invasive behavior by regulating stromelysin-1 expression, whereas {alpha}6 integrins regulate cell motility. These results provide new insights into the specific functions of integrins during tumor cell invasion.

  16. Phosphatase of regenerating liver-3 directly interacts with integrin β1 and regulates its phosphorylation at tyrosine 783

    Directory of Open Access Journals (Sweden)

    Tian Wei

    2012-10-01

    Full Text Available Abstract Background Phosphatase of regenerating liver-3 (PRL-3 or PTP4A3 has been implicated in controlling cancer cell proliferation, motility, metastasis, and angiogenesis. Deregulated expression of PRL-3 is highly correlated with cancer progression and predicts poor survival. Although PRL-3 was categorized as a tyrosine phosphatase, its cellular substrates remain largely unknown. Results We demonstrated that PRL-3 interacts with integrin β1 in cancer cells. Recombinant PRL-3 associates with the intracellular domain of integrin β1 in vitro. Silencing of integrin α1 enhances PRL-3-integrin β1 interaction. Furthermore, PRL-3 diminishes tyrosine phosphorylation of integrin β1 in vitro and in vivo. With site-specific anti-phosphotyrosine antibodies against residues in the intracellular domain of integrin β1, tyrosine-783, but not tyrosine-795, is shown to be dephosphorylated by PRL-3 in a catalytic activity-dependant manner. Phosphorylation of Y783 is potentiated by ablation of PRL-3 or by treatment with a chemical inhibitor of PRL-3. Conversely, depletion of integrin α1 decreases the phosphorylation of this site. Conclusions Our results revealed a direct interaction between PRL-3 and integrin β1 and characterized Y783 of integrin β1 as a bona fide substrate of PRL-3, which is negatively regulated by integrin α1.

  17. Regulation of Glioblastoma Tumor-Propagating Cells by the Integrin Partner Tetraspanin CD151

    Directory of Open Access Journals (Sweden)

    Jessica Tilghman

    2016-03-01

    Full Text Available Glioblastoma (GBM stem cells (GSCs represent tumor-propagating cells with stem-like characteristics (stemness that contribute disproportionately to GBM drug resistance and tumor recurrence. Understanding the mechanisms supporting GSC stemness is important for developing therapeutic strategies for targeting GSC-dependent oncogenic mechanisms. Using GBM-derived neurospheres, we identified the cell surface tetraspanin family member CD151 as a novel regulator of glioma cell stemness, GSC self-renewal capacity, migration, and tumor growth. CD151 was found to be overexpressed in GBM tumors and GBM neurospheres enriched in GSCs. Silencing CD151 inhibited neurosphere forming capacity, neurosphere cell proliferation, and migration and attenuated the expression of markers and transcriptional drivers of the GSC phenotype. Conversely, forced CD151 expression promoted neurosphere self-renewal, cell migration, and expression of stemness-associated transcription factors. CD151 was found to complex with integrins α3, α6, and β1 in neurosphere cells, and blocking CD151 interactions with integrins α3 and α6 inhibited AKT phosphorylation, a downstream effector of integrin signaling, and impaired sphere formation and neurosphere cell migration. Additionally, targeting CD151 in vivo inhibited the growth of GBM neurosphere-derived xenografts. These findings identify CD151 and its interactions with integrins α3 and α6 as potential therapeutic targets for inhibiting stemness-driving mechanisms and stem cell populations in GBM.

  18. Fibroblast α11β1 Integrin Regulates Tensional Homeostasis in Fibroblast/A549 Carcinoma Heterospheroids

    Science.gov (United States)

    Lu, Ning; Karlsen, Tine V.; Reed, Rolf K.; Kusche-Gullberg, Marion; Gullberg, Donald

    2014-01-01

    We have previously shown that fibroblast expression of α11β1 integrin stimulates A549 carcinoma cell growth in a xenograft tumor model. To understand the molecular mechanisms whereby a collagen receptor on fibroblast can regulate tumor growth we have used a 3D heterospheroid system composed of A549 tumor cells and fibroblasts without (α11+/+) or with a deletion (α11-/-) in integrin α11 gene. Our data show that α11-/-/A549 spheroids are larger than α11+/+/A549 spheroids, and that A549 cell number, cell migration and cell invasion in a collagen I gel are decreased in α11-/-/A549 spheroids. Gene expression profiling of differentially expressed genes in fibroblast/A549 spheroids identified CXCL5 as one molecule down-regulated in A549 cells in the absence of α11 on the fibroblasts. Blocking CXCL5 function with the CXCR2 inhibitor SB225002 reduced cell proliferation and cell migration of A549 cells within spheroids, demonstrating that the fibroblast integrin α11β1 in a 3D heterospheroid context affects carcinoma cell growth and invasion by stimulating autocrine secretion of CXCL5. We furthermore suggest that fibroblast α11β1 in fibroblast/A549 spheroids regulates interstitial fluid pressure by compacting the collagen matrix, in turn implying a role for stromal collagen receptors in regulating tensional hemostasis in tumors. In summary, blocking stromal α11β1 integrin function might thus be a stroma-targeted therapeutic strategy to increase the efficacy of chemotherapy. PMID:25076207

  19. A transmembrane polar interaction is involved in the functional regulation of integrin alpha L beta 2.

    Science.gov (United States)

    Vararattanavech, Ardcharaporn; Chng, Choon-Peng; Parthasarathy, Krupakar; Tang, Xiao-Yan; Torres, Jaume; Tan, Suet-Mien

    2010-05-14

    Integrins are heterodimeric transmembrane (TM) receptors formed by noncovalent associations of alpha and beta subunits. Each subunit contains a single alpha-helical TM domain. Inside-out activation of an integrin involves the separation of its cytoplasmic tails, leading to disruption of alphabeta TM packing. The leukocyte integrin alpha L beta 2 is required for leukocyte adhesion, migration, proliferation, cytotoxic function, and antigen presentation. In this study, we show by mutagenesis experiments that the packing of alpha L beta 2 TMs is consistent with that of the integrin alpha IIb beta 3 TMs. However, molecular dynamics simulations of alpha L beta 2 TMs in lipids predicted a polar interaction involving the side chains of alpha L Ser1071 and beta2 Thr686 in the outer-membrane association clasp (OMC). This is supported by carbonyl vibrational shifts observed in isotope-labeled alpha L beta 2 TM peptides that were incorporated into lipid bilayers. Molecular dynamics studies simulating the separation of alpha L beta 2 tails showed the presence of polar interaction during the initial perturbation of the inner-membrane association clasp. When the TMs underwent further separation, the polar interaction was disrupted. OMC polar interaction is important in regulating the functions of beta2 integrins because mutations that disrupt the OMC polar interaction generated constitutively activated alpha L beta 2, alpha M beta 2, and alpha X beta 2 in 293T transfectants. We also show that the expression of mutant beta2 Thr686Gly in beta2-deficient T cells rescued cell adhesion to intercellular adhesion molecule 1, but the cells showed overt elongated morphologies in response to chemokine stromal-cell-derived factor 1 alpha treatment as compared to wild-type beta2-expressing cells. These two TM polar residues are totally conserved in other members of the beta2 integrins in humans and across different species. Our results provide an example of the stabilizing effect of polar

  20. Expression of collagen-binding integrin receptors in the mammalian sclera and their regulation during the development of myopia.

    Science.gov (United States)

    McBrien, Neville A; Metlapally, Ravikanth; Jobling, Andrew I; Gentle, Alex

    2006-11-01

    (-41%). The mammalian sclera expresses the major collagen-binding integrin subunits. The alpha1 and beta1 subunit expression was decreased early during the development of myopia, whereas the regulation of alpha2 integrin occurred at a later time point. The differential regulation of alpha1beta1 and alpha2beta1 during the development of myopia may reflect specific roles for these receptors in the scleral extracellular matrix and biomechanical remodeling that accompanies myopic eye growth.

  1. Phospho-Caveolin-1 Mediates Integrin-Regulated Membrane Domain Internalisation

    Science.gov (United States)

    del Pozo, Miguel A.; Alderson, Nazilla B.; Grande-García, Araceli; Balasubramanian, Nagaraj; Schwartz, Martin A.; Kiosses, William B.; Anderson, Richard G.W.

    2005-01-01

    Growth of normal cells is anchorage-dependent because signalling through multiple pathways including Erk, PI 3-kinase and Rac requires integrin-mediated cell adhesion 1. Components of these pathways localize to low density, cholesterol-rich domains in the plasma membrane named “lipid rafts” 2,3 or “cholesterol enriched membrane microdomains” (CEMM) 4. We previously reported that integrin-mediated adhesion regulates CEMM trafficking such that cell detachment from the extracellular matrix (ECM) triggers CEMM internalisation and clearance from the plasma membrane 5. We now report that this internalisation is mediated by dynamin-2 and caveolin-1. Internalisation requires phosphorylation of caveolin-1 on tyrosine 14. A shift in localisation of phospho-caveolin-1 from focal adhesions to caveolae induces CEMM internalisation upon cell detachment, which mediates inhibition of Erk, PI 3-kinase and Rac. These data define a novel molecular mechanism for growth and tumour suppression by caveolin-1. PMID:16113676

  2. Integrin-dependent response to laminin-511 regulates breast tumor cell invasion and metastasis.

    Science.gov (United States)

    Kusuma, Nicole; Denoyer, Delphine; Eble, Johannes A; Redvers, Richard P; Parker, Belinda S; Pelzer, Rebecca; Anderson, Robin L; Pouliot, Normand

    2012-02-01

    The basement membrane protein, laminin (LM)-511, is a potent adhesive and migratory substrate for metastatic breast tumor cells in vitro. Its expression correlates with tumor grade and metastatic potential in vivo. These observations suggest that responsiveness to autocrine or paracrine-derived LM-511 may be an important property regulating breast cancer metastasis in vivo. To address this, we compared the metastatic potential of 4T1 mammary carcinoma cells to that of 4T1 variants isolated by repeated chemotactic migration toward LM-511 in vitro (4T1LMF4) followed by serial injection into the mammary gland and recovery of spontaneous metastases from bone (4T1BM2). Variant subpopulations exhibited a distinct morphology on LM-511 and increased expression of β1 and β4 integrins compared to parental 4T1 cells. Importantly, mice inoculated with 4T1LMF4 and 4T1BM2 variants showed a 2.5- to 4-fold increase in the incidence of spontaneous metastasis to bone compared to 4T1 tumor-bearing mice. Functionally, 4T1BM2 variants were more adherent and more invasive toward LM-511 than parental 4T1 cells. Treatment of 4T1BM2 cells with lebein-1, a disintegrin with selectivity toward LM-type integrin receptors, potently inhibited their migration and invasion toward LM-511. Similarly, α3β1 integrin-dependent migration and invasion of human MDA-MB-231 breast carcinoma cells toward LM-511 were significantly inhibited by lebein-1. Taken together, these results provide strong evidence that LM-511 contributes to the metastasis of breast tumors and suggest that targeting integrin-LM-511 interactions with lebein-1 or other inhibitors of LM-511 receptors may have therapeutic potential for patients with advanced breast cancer. Copyright © 2011 UICC.

  3. Laminin isoforms differentially regulate adhesion, spreading, proliferation, and ERK activation of β1 integrin-null cells

    International Nuclear Information System (INIS)

    Kikkawa, Yamato; Yu, Hao; Genersch, Elke; Sanzen, Noriko; Sekiguchi, Kiyotoshi; Faessler, Reinhard; Campbell, Kevin P.; Talts, Jan F.; Ekblom, Peter

    2004-01-01

    The presence of many laminin receptors of the β1 integrin family on most cells makes it difficult to define the biological functions of other major laminin receptors such as integrin α6β4 and dystroglycan. We therefore tested the binding of a β1 integrin-null cell line GD25 to four different laminin variants. The cells were shown to produce dystroglycan, which based on affinity chromatography bound to laminin-1, -2/4, and -10/11, but not to laminin-5. The cells also expressed the integrin α6Aβ4A variant. GD25 β1 integrin-null cells are known to bind poorly to laminin-1, but we demonstrate here that these cells bind avidly to laminin-2/4, -5, and -10/11. The initial binding at 20 min to each of these laminins could be inhibited by an integrin α6 antibody, but not by a dystroglycan antibody. Hence, integrin α6Aβ4A of GD25 cells was identified as a major receptor for initial GD25 cell adhesion to three out of four tested laminin isoforms. Remarkably, cell adhesion to laminin-5 failed to promote cell spreading, proliferation, and extracellular signal-regulated kinase (ERK) activation, whereas all these responses occurred in response to adhesion to laminin-2/4 or -10/11. The data establish GD25 cells as useful tools to define the role integrin α6Aβ4A and suggest that laminin isoforms have distinctly different capacities to promote cell adhesion and signaling via integrin α6Aβ4A

  4. Regulated expression and binding of three VLA (β1) integrin receptors on T cells

    Science.gov (United States)

    Shimizu, Yoji; van Seventer, Gijs A.; Horgan, Kevin J.; Shaw, Stephen

    1990-05-01

    REGULATED adhesion of T cells to extracellular matrix (ECM) proteins is likely to be essential in T cell migration. Constitutive binding of various other cell types to ECM components is mediated by members of the VLA (very late antigen) subfamily of integrins1-4. We describe here the regulated binding of resting CD4+ human T cells to ECM through three VLA integrins: VLA-4 (refs 5, 6) and VLA-5 (réf. 7) binding to fibronectin (FN), and a novel pathway of VLA-6 binding to laminin (LN). Binding to ECM is regulated in two ways. First, unlike other VLA-mediated interactions, VLA binding activity of the T cells is rapidly and dramatically augmented with cell activation without change in level of expression of the VLA molecules. Second, binding is regulated with T-cell differentiation ; memory T cells express three- to fourfold more VLA-4, VLA-5, and VLA-6 than do naive cells, and bind more efficiently through them to FN and LN.

  5. Integrin Beta 3 Regulates Cellular Senescence by Activating the TGF-β Pathway

    Directory of Open Access Journals (Sweden)

    Valentina Rapisarda

    2017-03-01

    Full Text Available Cellular senescence is an important in vivo mechanism that prevents the propagation of damaged cells. However, the precise mechanisms regulating senescence are not well characterized. Here, we find that ITGB3 (integrin beta 3 or β3 is regulated by the Polycomb protein CBX7. β3 expression accelerates the onset of senescence in human primary fibroblasts by activating the transforming growth factor β (TGF-β pathway in a cell-autonomous and non-cell-autonomous manner. β3 levels are dynamically increased during oncogene-induced senescence (OIS through CBX7 Polycomb regulation, and downregulation of β3 levels overrides OIS and therapy-induced senescence (TIS, independently of its ligand-binding activity. Moreover, cilengitide, an αvβ3 antagonist, has the ability to block the senescence-associated secretory phenotype (SASP without affecting proliferation. Finally, we show an increase in β3 levels in a subset of tissues during aging. Altogether, our data show that integrin β3 subunit is a marker and regulator of senescence.

  6. Regulation of ionizing radiation-induced adhesion of breast cancer cells to fibronectin by alpha5beta1 integrin.

    Science.gov (United States)

    Lee, Shin Hee; Cheng, Huiwen; Yuan, Ye; Wu, Shiyong

    2014-06-01

    Ionizing radiation (IR) is commonly used for cancer therapy, however, its potential influence on cancer metastatic potential remains controversial. In this study, we elucidated the role of integrins in regulation of IR-altered adhesion between breast cancer cells and extracellular matrix (ECM) proteins, which is a key step in the initial phase of metastasis. Our data suggest that the extent of effect that ionizing radiation had on cell adhesion depended on the genetic background of the breast cancer cells. Ionizing radiation was a better adhesion inducer for p53-mutated cells, such as MDA-MB-231 cells, than for p53 wild-type cells, such as MCF-7 cells. While IR-induced adhesions between MDA-MB-231 cells to fibronectin, laminin, collagen I and collagen IV, only blocking of the adhesion between α5β1 integrin and fibronectin using anti-α5β1 integrin antibody could completely inhibit the radiation-induced adhesion of the cells. A soluble Arg-Gly-Asp peptide, the binding motif for fibronectin binding integrins, could also reduce the adhesion of the cells to fibronectin with or without ionizing radiation exposure. The inhibition of the cell-fibronectin interaction also affected, but did not always correlate with, transwell migration of the cancer cells. In addition, our data showed that the total expression of α5 integrin and surface expression of α5β1 integrin were increased in the cells treated with ionizing radiation. The increased surface expression of α5β1 integrin, along with the adhesion between the cells and fibronectin, could be inhibited by both ataxia telangiectasia mutated (ATM) and Rad3-related (ATR) kinase inhibitors. These results suggested that ATM/ATR-mediated surface expression of α5β1 integrin might play a central role in regulation of ionizing radiation-altered adhesion.

  7. Down-regulation of integrin β1 and focal adhesion kinase in renal glomeruli under various hemodynamic conditions.

    Directory of Open Access Journals (Sweden)

    Xiaoli Yuan

    Full Text Available Given that integrin β1 is an important component of the connection to maintain glomerular structural integrity, by binding with multiple extracellular matrix proteins and mediating intracellular signaling. Focal adhesion kinase (FAK is the most essential intracellular integrator in the integrin β1-FAK signalling pathway. Here, we investigated the changes of the two molecules and visualized the possible interaction between them under various hemodynamic conditions in podocytes. Mice kidney tissues were prepared using in vivo cryotechnique (IVCT and then were stained and observed using light microscopy, confocal laser scanning microscopy and immunoelectron microscopy. The expression of these molecules were examined by western blot. Under the normal condition, integrin β1 stained continually and evenly at the membrane, and FAK was located in the cytoplasm and nuclei of the podocytes. There were significant colocalized plaques of two molecules. But under acute hypertensive and cardiac arrest conditions, integrin β1 decreased and stained intermittently. Similarly, FAK decreased and appeared uneven. Additionally, FAK translocated to the nuclei of the podocytes. As a result, the colocalization of integrin β1 and FAK reduced obviously under these conditions. Western blot assay showed a consistent result with the immunostaining. Collectively, the abnormal redistribution and decreased expressions of integrin β1 and FAK are important molecular events in regulating the functions of podocytes under abnormal hemodynamic conditions. IVCT could offer considerable advantages for morphological analysis when researching renal diseases.

  8. NF-κB regulates radioresistance mediated by β1-integrin in three-dimensional culture of breast cancer cells.

    Science.gov (United States)

    Ahmed, Kazi Mokim; Zhang, Hui; Park, Catherine C

    2013-06-15

    β1-integrin induction enhances breast cancer cell survival after exposure to ionizing radiation (IR), but the mechanisms of this effect remain unclear. Although NF-κB initiates prosurvival signaling pathways post-IR, the molecular function of NF-κB with other key elements in radioresistance, particularly with respect to extracellular matrix-induced signaling, is not known. We discovered a typical NF-κB-binding site in the β1-integrin promoter region, indicating a possible regulatory role for NF-κB. Using three-dimensional laminin-rich extracellular matrix (3D lrECM) culture, we show that NF-κB is required for β1-integrin transactivation in T4-2 breast cancer cells post-IR. Inhibition of NF-κB reduced clonogenic survival and induced apoptosis and cytostasis in formed tumor colonies. In addition, T4-2 tumors with inhibition of NF-κB activity exhibit decreased growth in athymic mice, which was further reduced by IR with downregulated β1-integrin expression. Direct interactions between β1-integrin and NF-κB p65 were induced in nonmalignant breast epithelial cells, but not in malignant cells, indicating context-specific regulation. As β1-integrin also activates NF-κB, our findings reveal a novel forward feedback pathway that could be targeted to enhance therapy. ©2013 AACR.

  9. L-type calcium channels regulate filopodia stability and cancer cell invasion downstream of integrin signalling

    Science.gov (United States)

    Jacquemet, Guillaume; Baghirov, Habib; Georgiadou, Maria; Sihto, Harri; Peuhu, Emilia; Cettour-Janet, Pierre; He, Tao; Perälä, Merja; Kronqvist, Pauliina; Joensuu, Heikki; Ivaska, Johanna

    2016-01-01

    Mounting in vitro, in vivo and clinical evidence suggest an important role for filopodia in driving cancer cell invasion. Using a high-throughput microscopic-based drug screen, we identify FDA-approved calcium channel blockers (CCBs) as potent inhibitors of filopodia formation in cancer cells. Unexpectedly, we discover that L-type calcium channels are functional and frequently expressed in cancer cells suggesting a previously unappreciated role for these channels during tumorigenesis. We further demonstrate that, at filopodia, L-type calcium channels are activated by integrin inside-out signalling, integrin activation and Src. Moreover, L-type calcium channels promote filopodia stability and maturation into talin-rich adhesions through the spatially restricted regulation of calcium entry and subsequent activation of the protease calpain-1. Altogether we uncover a novel and clinically relevant signalling pathway that regulates filopodia formation in cancer cells and propose that cycles of filopodia stabilization, followed by maturation into focal adhesions, directs cancer cell migration and invasion. PMID:27910855

  10. β1 integrin mediates colorectal cancer cell proliferation and migration through regulation of the Hedgehog pathway.

    Science.gov (United States)

    Song, Jia; Zhang, Jixiang; Wang, Jing; Wang, Jun; Guo, Xufeng; Dong, Weiguo

    2015-03-01

    β1 integrin (ITGB1) is the major expressed integrin protein of normal cells and tumor-associated cells. It is often up-regulated in human malignancies and is involved in many developmental processes, such as tumor progression and metastasis. However, little is known about the function of ITGB1 in colorectal cancer. We constructed lentiviral vectors expressing ITGB1 or ITGB1-specific RNA interference (RNAi) and an unrelated control vector. After infecting HT29 cells in vitro, proliferation and migration were evaluated by Cell Counting Kit 8 (CCK-8) assays, transwell invasion assays, and Western blots. The influence of lentivirus infection on the tumor development capacity of HT29 cells in vivo was examined by xenografting the tumor cells. The expression of ITGB1 in the xenografted tumor cells was analyzed by immunohistochemistry. The up-regulation of ITGB1 significantly increased the proliferation in HT29 cells in vitro. Moreover, we found that the overexpression of ITGB1 up-regulated sonic hedgehog (Shh) while down-regulating Gli1 and SuFu in HT29-ITGB1 cells compared to controls. Moreover, the levels of c-myc and cyclin D1 proteins were up-regulated. Transwell assays showed that the number of migrating HT29-RNAi cells was lower than that in the other cell groups, indicating that ITGB1 significantly enhances the invasive ability of HT29 cells. In addition to these in vitro results, ITGB1 was found to be a significantly effective growth factor in a xenografted tumor mouse model. These results suggest that ITGB1 induces growth and invasion in a human colorectal cancer cell line through the hedgehog (Hh) signaling pathway in vitro and in vivo.

  11. Translation of myelin basic protein mRNA in oligodendrocytes is regulated by integrin activation and hnRNP-K

    DEFF Research Database (Denmark)

    Laursen, Lisbeth Schmidt; Chan, Colin W; ffrench-Constant, Charles

    2011-01-01

    Myelination in the central nervous system provides a unique example of how cells establish asymmetry. The myelinating cell, the oligodendrocyte, extends processes to and wraps multiple axons of different diameter, keeping the number of wraps proportional to the axon diameter. Local regulation...... of protein synthesis represents one mechanism used to control the different requirements for myelin sheath at each axo–glia interaction. Prior work has established that β1-integrins are involved in the axoglial interactions that initiate myelination. Here, we show that integrin activation regulates...... translation of a key sheath protein, myelin basic protein (MBP), by reversing the inhibitory effect of the mRNA 3′UTR. During oligodendrocyte differentiation and myelination α6β1-integrin interacts with hnRNP-K, an mRNA-binding protein, which binds to MBP mRNA and translocates from the nucleus to the myelin...

  12. VANGL2 interacts with integrin αv to regulate matrix metalloproteinase activity and cell adhesion to the extracellular matrix.

    Science.gov (United States)

    Jessen, Tammy N; Jessen, Jason R

    2017-12-15

    Planar cell polarity (PCP) proteins are implicated in a variety of morphogenetic processes including embryonic cell migration and potentially cancer progression. During zebrafish gastrulation, the transmembrane protein Vang-like 2 (VANGL2) is required for PCP and directed cell migration. These cell behaviors occur in the context of a fibrillar extracellular matrix (ECM). While it is thought that interactions with the ECM regulate cell migration, it is unclear how PCP proteins such as VANGL2 influence these events. Using an in vitro cell culture model system, we previously showed that human VANGL2 negatively regulates membrane type-1 matrix metalloproteinase (MMP14) and activation of secreted matrix metalloproteinase 2 (MMP2). Here, we investigated the functional relationship between VANGL2, integrin αvβ3, and MMP2 activation. We provide evidence that VANGL2 regulates cell surface integrin αvβ3 expression and adhesion to fibronectin, laminin, and vitronectin. Inhibition of MMP14/MMP2 activity suppressed the cell adhesion defect in VANGL2 knockdown cells. Furthermore, our data show that MMP14 and integrin αv are required for increased proteolysis by VANGL2 knockdown cells. Lastly, we have identified integrin αvβ3 as a novel VANGL2 binding partner. Together, these findings begin to dissect the molecular underpinnings of how VANGL2 regulates MMP activity and cell adhesion to the ECM. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. The Integrin-Regulated Kinase PYK-2: A Therapeutic Target for Prostate Cancer

    National Research Council Canada - National Science Library

    Edlund, Magnus

    2001-01-01

    ...) . A number of promising therapeutic targets for androgen-independent and metastatic prostate cancers are contained within the signaling cascades downstream of the ECM-binding Integrin molecules...

  14. Regulation of TGFβ in the immune system: an emerging role for integrins and dendritic cells.

    Science.gov (United States)

    Worthington, John J; Fenton, Thomas M; Czajkowska, Beata I; Klementowicz, Joanna E; Travis, Mark A

    2012-12-01

    Regulation of an immune response requires complex crosstalk between cells of the innate and adaptive immune systems, via both cell-cell contact and secretion of cytokines. An important cytokine with a broad regulatory role in the immune system is transforming growth factor-β (TGF-β). TGF-β is produced by and has effects on many different cells of the immune system, and plays fundamental roles in the regulation of immune responses during homeostasis, infection and disease. Although many cells can produce TGFβ, it is always produced as an inactive complex that must be activated to bind to the TGFβ receptor complex and promote downstream signalling. Thus, regulation of TGFβ activation is a crucial step in controlling TGFβ function. This review will discuss how TGFβ controls diverse immune responses and how TGFβ function is regulated, with a focus on recent work highlighting a critical role for the integrin αvβ8 expressed by dendritic cells in activating TGFβ. Copyright © 2012 Elsevier GmbH. All rights reserved.

  15. Interactions of the integrin subunit beta1A with protein kinase B/Akt, p130Cas and paxillin contribute to regulation of radiation survival

    DEFF Research Database (Denmark)

    Seidler, Julia; Durzok, Rita; Brakebusch, Cord

    2005-01-01

    substrates. PI3K inhibition moderately or strongly radiosensitized GD25beta1A or GD25beta1B cells, respectively. The pro-survival effects detected in serum starved GD25beta1A cells were due to direct, PI3K-mediated stimulation of PKB/Akt activity by beta1-integrins and induced p130Cas and paxillin......BACKGROUND AND PURPOSE: Cell adhesion-mediated radioresistance is a common phenomenon particularly relevant in tumor cells, which might hamper anticancer therapies. To analyze the role of adhesion-mediating beta1-integrins, stably transfected functional beta1A-integrin-expressing GD25beta1A and GD...... phosphorylation. Phosphorylated p130Cas and paxillin subsequently prevented activation of cell death-regulating JNK. CONCLUSIONS: The data show that beta1-integrin-mediated signaling through the cytoplasmic integrin domains is critical for efficient pro-survival regulation after irradiation. Profound knowledge...

  16. β1 integrins regulate chondrogenesis and rock signaling in adipose stem cells

    NARCIS (Netherlands)

    Lu, Z.F.; Doulabi, B.Z.; Huang, C.L.; Bank, R.A.; Helder, M.N.

    2008-01-01

    β1 integrins play a controversial role during chondrogenesis. Since the maturation of chondrocytes relies on a signaling switch from cell-cell to cell-matrix interactions, we hypothesized that β1 integrins play a different role at the earlier (mainly cell-cell interaction) from the later stage

  17. Integrin-linked kinase regulates cellular mechanics facilitating the motility in 3D extracellular matrices.

    Science.gov (United States)

    Kunschmann, Tom; Puder, Stefanie; Fischer, Tony; Perez, Jeremy; Wilharm, Nils; Mierke, Claudia Tanja

    2017-03-01

    The motility of cells plays an important role for many processes such as wound healing and malignant progression of cancer. The efficiency of cell motility is affected by the microenvironment. The connection between the cell and its microenvironment is facilitated by cell-matrix adhesion receptors and upon their activation focal adhesion proteins such as integrin-linked kinase (ILK) are recruited to sites of focal adhesion formation. In particular, ILK connects cell-matrix receptors to the actomyosin cytoskeleton. However, ILK's role in cell mechanics regulating cellular motility in 3D collagen matrices is still not well understood. We suggest that ILK facilitates 3D motility by regulating cellular mechanical properties such as stiffness and force transmission. Thus, ILK wild-type and knock-out cells are analyzed for their ability to migrate on 2D substrates serving as control and in dense 3D extracellular matrices. Indeed, ILK wild-type cells migrated faster on 2D substrates and migrated more numerous and deeper in 3D matrices. Hence, we analyzed cellular deformability, Young's modulus (stiffness) and adhesion forces. We found that ILK wild-type cells are less deformable (stiffer) and produce higher cell-matrix adhesion forces compared to ILK knock-out cells. Finally, ILK is essential for providing cellular mechanical stiffness regulating 3D motility. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Variation in one residue associated with the metal ion-dependent adhesion site regulates αIIbβ3 integrin ligand binding affinity.

    Directory of Open Access Journals (Sweden)

    Joel Raborn

    Full Text Available The Asp of the RGD motif of the ligand coordinates with the β I domain metal ion dependent adhesion site (MIDAS divalent cation, emphasizing the importance of the MIDAS in ligand binding. There appears to be two distinct groups of integrins that differ in their ligand binding affinity and adhesion ability. These differences may be due to a specific residue associated with the MIDAS, particularly the β3 residue Ala(252 and corresponding Ala in the β1 integrin compared to the analogous Asp residue in the β2 and β7 integrins. Interestingly, mutations in the adjacent to MIDAS (ADMIDAS of integrins α4β7 and αLβ2 increased the binding and adhesion abilities compared to the wild-type, while the same mutations in the α2β1, α5β1, αVβ3, and αIIbβ3 integrins demonstrated decreased ligand binding and adhesion. We introduced a mutation in the αIIbβ3 to convert this MIDAS associated Ala(252 to Asp. By combination of this mutant with mutations of one or two ADMIDAS residues, we studied the effects of this residue on ligand binding and adhesion. Then, we performed molecular dynamics simulations on the wild-type and mutant αIIbβ3 integrin β I domains, and investigated the dynamics of metal ion binding sites in different integrin-RGD complexes. We found that the tendency of calculated binding free energies was in excellent agreement with the experimental results, suggesting that the variation in this MIDAS associated residue accounts for the differences in ligand binding and adhesion among different integrins, and it accounts for the conflicting results of ADMIDAS mutations within different integrins. This study sheds more light on the role of the MIDAS associated residue pertaining to ligand binding and adhesion and suggests that this residue may play a pivotal role in integrin-mediated cell rolling and firm adhesion.

  19. Interaction of Src and Alpha-V Integrin Regulates Fibroblast Migration and Modulates Lung Fibrosis in A Preclinical Model of Lung Fibrosis

    Science.gov (United States)

    Lu, Yin-Ying; Zhao, Xue-Ke; Yu, Lei; Qi, Fei; Zhai, Bing; Gao, Chang-Qing; Ding, Qiang

    2017-01-01

    Src kinase is known to regulate fibroblast migration. However, the contribution of integrin and Src kinase interaction to lung fibrosis has not been mechanistically investigated. Our data demonstrate that integrin alpha v (αV) recruited Src kinase and that leads to subsequent Src activation in fibroblasts plated on fibrotic matrix, osteopontin. Src interaction with integrin αV is required for integrin αV-mediated Src activation, and the subsequent fibroblast migration. The study identified that β5 and β3 are the major integrins for this effect on osteopontin. In contrast, integrins β1, β6, and β8 did not have a critical role in this phenomenon. Importantly, Src inhibitor significantly reduces fibroblast migration stimulated by PDGF-BB and reduced in vivo lung fibrosis in mice. Src inhibitor reduced Src activation and blocked the signaling transduction by integrin αV, inhibited migration signaling pathways and reduced extracellular matrix protein production, and blocked myofibroblast differentiation in vivo in mouse lung tissues. The present study supports that the interaction of Src Kinase and integrins plays a critical role in the development of lung fibrosis and the signaling involved may present a novel opportunity to target deadly fibrotic diseases. PMID:28397850

  20. Alteration of Pituitary Tumor Transforming Gene-1 Regulates Trophoblast Invasion via the Integrin/Rho-Family Signaling Pathway.

    Directory of Open Access Journals (Sweden)

    Seung Mook Lim

    Full Text Available Trophoblast invasion ability is an important factor in early implantation and placental development. Recently, pituitary tumor transforming gene 1 (PTTG1 was shown to be involved in invasion and proliferation of cancer. However, the role of PTTG1 in trophoblast invasion remains unknown. Thus, in this study we analyzed PTTG1 expression in trophoblasts and its effect on trophoblast invasion activity and determined the mechanism through which PTTG1 regulates trophoblast invasion. Trophoblast proliferation and invasion abilities, regardless of PTTG1 expression, were analyzed by quantitative real-time polymerase chain reaction, fluorescence-activated cell sorting analysis, invasion assay, western blot, and zymography after treatment with small interfering RNA against PTTG1 (siPTTG1. Additionally, integrin/Rho-family signaling in trophoblasts by PTTG1 alteration was analyzed. Furthermore, the effect of PTTG1 on trophoblast invasion was evaluated by microRNA (miRNA mimic and inhibitor treatment. Trophoblast invasion was significantly reduced through decreased matrix metalloproteinase (MMP-2 and MMP-9 expression when PTTG1 expression was inhibited by siPTTG1 (p < 0.05. Furthermore, knockdown of PTTG1 increased expression of integrin alpha 4 (ITGA4, ITGA5, and integrin beta 1 (ITGB1; otherwise, RhoA expression was significantly decreased (p < 0.05. Treatment of miRNA-186-5p mimic and inhibitor controlled trophoblast invasion ability by altering PTTG1 and MMP expression. PTTG1 can control trophoblast invasion ability via regulation of MMP expression through integrin/Rho-family signaling. In addition, PTTG1 expression and its function were regulated by miRNA-186-5p. These results help in understanding the mechanism through which PTTG1 regulates trophoblast invasion and thereby implantation and placental development.

  1. Co-ordinate expression of the alpha-6 integrin laminin receptor sub-unit and laminin in breast cancer.

    Science.gov (United States)

    D'Ardenne, A J; Richman, P I; Horton, M A; Mcaulay, A E; Jordan, S

    1991-11-01

    Interactions between cells and extracellular matrices are mediated in part by a family of heterodimeric molecules known as integrins. We have investigated, using immunohistology, the distribution of six integrin alpha sub-units in normal breast tissue and 26 breast carcinomas. Alpha-1 integrin (collagen/laminin receptor sub-unit) was detected in myoepithelium, but not in luminal epithelium nor in most (20/26) carcinomas. Its expression on fibroblasts was enhanced in desmoplastic stroma. Both benign and malignant epithelium showed uniform positive staining for alpha-2 (collagen receptor sub-unit) and for alpha-3 (collagen/fibronectin/laminin receptor sub-unit). All epithelium was negative for alpha-4 (sub-unit of a fibronectin receptor). Epithelial staining for alpha-5 (fibronectin receptor sub-unit) was weak in all samples. Alpha-6 (sub-unit of two integrin laminin receptors) showed conspicuous changes in all invasive carcinomas. In normal tissues, there was weak staining of epithelial cytoplasm with alpha-6 antibody and moderate cell membrane staining. Strongest staining was present in a basement membrane distribution. In carcinomas, loss of cytoplasmic and cell membrane staining was variable, but basal membrane staining was diminished or absent in all tumours. Loss of basal membrane staining for alpha-6 integrin corresponded closely to loss of immunoreactivity for its ligand laminin in invasive breast cancer.

  2. α4 integrin is a regulator of leukocyte recruitment after experimental intracerebral hemorrhage.

    Science.gov (United States)

    Hammond, Matthew D; Ambler, William G; Ai, Youxi; Sansing, Lauren H

    2014-08-01

    Intracerebral hemorrhage (ICH) is swiftly followed by an inflammatory response. A key component of this response is the recruitment of leukocytes into the brain, which promotes neurological injury in rodent models. However, the mechanisms by which leukocytes transmigrate across the endothelium into the injured brain are unclear. The present study examines leukocyte adhesion molecules (α4 integrin, L-selectin, and αLβ2 integrin) on 4 leukocyte subtypes to determine which are important for leukocyte recruitment after ICH. We used the blood injection mouse model of ICH, whereby 25 μL of blood was injected into the striatum. Flow cytometry was used to quantify leukocyte populations and adhesion molecule expression in brain and blood. An α4 integrin-blocking antibody was administered to evaluate the contribution of α4 integrin in leukocyte migration and neurological injury. α4 integrin was elevated on all leukocyte populations in brain after ICH, whereas L-selectin was unchanged and αLβ2 was increased only on T cells. Antagonism of α4 resulted in decreased leukocyte transmigration and lessened neurobehavioral disability. α4 integrin is an important cell adhesion molecule involved in neuroinflammation after ICH. © 2014 American Heart Association, Inc.

  3. Up-regulation of integrin β3 in radioresistant pancreatic cancer impairs adenovirus-mediated gene therapy

    International Nuclear Information System (INIS)

    Egami, Takuya; Ohuchida, Kenoki; Yasui, Takaharu; Onimaru, Manabu; Toma, Hiroki; Sato, Norihiro; Tanaka, Masao; Mizumoto, Kazuhiro; Matsumoto, Kunio

    2009-01-01

    Adenovirus-mediated gene therapy is a promising approach for the treatment of pancreatic cancer. We previously reported that radiation enhanced adenovirus-mediated gene expression in pancreatic cancer, suggesting that adenoviral gene therapy might be more effective in radioresistant pancreatic cancer cells. In the present study, we compared the transduction efficiency of adenovirus-delivered genes in radiosensitive and radioresistant cells, and investigated the underlying mechanisms. We used an adenovirus expressing the hepatocyte growth factor antagonist, NK4 (Ad-NK4), as a representative gene therapy. We established two radioresistant human pancreatic cancer cell lines using fractionated irradiation. Radiosensitive and radioresistant pancreatic cancer cells were infected with Ad-NK4, and NK4 levels in the cells were measured. In order to investigate the mechanisms responsible for the differences in the transduction efficiency between these cells, we measured expression of the genes mediating adenovirus infection and endocytosis. The results revealed that NK4 levels in radioresistant cells were significantly lower (P<0.01) than those in radiosensitive cells, although there were no significant differences in adenovirus uptake between radiosensitive cells and radioresistant cells. Integrin β3 was up-regulated and the Coxsackie virus and adenovirus receptor was down-regulated in radioresistant cells, and inhibition of integrin β3 promoted adenovirus gene transfer. These results suggest that inhibition of integrin β3 in radioresistant pancreatic cancer cells could enhance adenovirus-mediated gene therapy. (author)

  4. Regulation of Integrin α6 Recycling by Calcium-independent Phospholipase A2 (iPLA2) to Promote Microglia Chemotaxis on Laminin.

    Science.gov (United States)

    Lee, Sang-Hyun; Sud, Neetu; Lee, Narae; Subramaniyam, Selvaraj; Chung, Chang Y

    2016-11-04

    Microglia are the immune effector cells that are activated in response to pathological changes in the central nervous system. Microglial activation is accompanied by the alteration of integrin expression on the microglia surface. However, changes of integrin expression upon chemoattractant (ADP) stimulation still remain unknown. In this study, we investigated whether ADP induces the alteration of integrin species on the cell surface, leading to changes in chemotactic ability on different extracellular matrix proteins. Flow cytometry scans and on-cell Western assays showed that ADP stimulation induced a significant increase of α6 integrin-GFP, but not α5, on the surface of microglia cells. Microglia also showed a greater motility increase on laminin than fibronectin after ADP stimulation. Time lapse microscopy and integrin endocytosis assay revealed the essential role of calcium-independent phospholipase A 2 activity for the recycling of α6 integrin-GFP from the endosomal recycling complex to the plasma membrane. Lack of calcium-independent phospholipase A 2 activity caused a reduced rate of focal adhesion formation on laminin at the leading edge. Our results suggest that the alteration of integrin-mediated adhesion may regulate the extent of microglial infiltration into the site of damage by controlling their chemotactic ability. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Electric Signals Regulate the Directional Migration of Oligodendrocyte Progenitor Cells (OPCs via β1 Integrin

    Directory of Open Access Journals (Sweden)

    Bangfu Zhu

    2016-11-01

    Full Text Available The guided migration of neural cells is essential for repair in the central nervous system (CNS. Oligodendrocyte progenitor cells (OPCs will normally migrate towards an injury site to re-sheath demyelinated axons; however the mechanisms underlying this process are not well understood. Endogenous electric fields (EFs are known to influence cell migration in vivo, and have been utilised in this study to direct the migration of OPCs isolated from neonatal Sprague-Dawley rats. The OPCs were exposed to physiological levels of electrical stimulation, and displayed a marked electrotactic response that was dependent on β1 integrin, one of the key subunits of integrin receptors. We also observed that F-actin, an important component of the cytoskeleton, was re-distributed towards the leading edge of the migrating cells, and that this asymmetric rearrangement was associated with β1 integrin function.

  6. Tissue inhibitor of metalloproteinase-2 (TIMP-2) regulates myogenesis and β1 integrin expression in vitro

    International Nuclear Information System (INIS)

    Lluri, Gentian; Langlois, Garret D.; Soloway, Paul D.; Jaworski, Diane M.

    2008-01-01

    Myogenesis in vitro involves myoblast cell cycle arrest, migration, and fusion to form multinucleated myotubes. Extracellular matrix (ECM) integrity during these processes is maintained by the opposing actions of matrix metalloproteinase (MMP) proteases and their inhibitors, the tissue inhibitor of metalloproteinases (TIMPs). Here, we report that TIMP-2, MMP-2, and MT1-MMP are differentially expressed during mouse myoblast differentiation in vitro. A specific role for TIMP-2 in myogenesis is demonstrated by altered TIMP-2 -/- myotube formation. When differentiated in horse serum-containing medium, TIMP-2 -/- myotubes are larger than wild-type myotubes. In contrast, when serum-free medium is used, TIMP-2 -/- myotubes are smaller than wild-type myotubes. Regardless of culture condition, myotube size is directly correlated with MMP activity and inversely correlated with β1 integrin expression. Treatment with recombinant TIMP-2 rescues reduced TIMP-2 -/- myotube size and induces increased MMP-9 activation and decreased β1 integrin expression. Treatment with either MMP-2 or MMP-9 similarly rescues reduced myotube size, but has no effect on β1 integrin expression. These data suggest a specific regulatory relationship between TIMP-2 and β1 integrin during myogenesis. Elucidating the role of TIMP-2 in myogenesis in vitro may lead to new therapeutic options for the use of TIMP-2 in myopathies and muscular dystrophies in vivo

  7. PRL-3/PTP4A3 phosphatase regulates integrin β1 in adhesion structures during migration of human ocular melanoma cells.

    Science.gov (United States)

    Foy, Malika; Anézo, Océane; Saule, Simon; Planque, Nathalie

    2017-04-15

    In a previous transcriptomic analysis of 63 ocular melanomas of the uvea, we found that expression of the PRL-3/PTP4A3 gene, encoding a phosphatase that is anchored to the plasma membrane, was associated with the risk of metastasis, and a poor prognosis. We also showed that PRL-3 overexpression in OCM-1 ocular melanoma cells significantly increased cell migration in vitro and invasiveness in vivo, suggesting a direct role for PRL-3 in the metastatic spreading of uveal melanoma. Here, we aimed to identify PRL-3 substrates at the plasma membrane involved in adhesion to the extracellular matrix. We focused on integrin β1, which is the most highly expressed integrin in our cohort of uveal melanomas. We show that preventing PRL-3 anchorage to the plasma membrane i) abolishes PRL-3-induced migration in OCM-1 cells, ii) specifically enhances the spreading of OCM-1 cells overexpressing PRL-3, and iii) favors the maturation of large focal adhesions (FAs) containing integrin β1 on collagen I. Knockdown experiments confirmed integrin β1 involvement in PRL3-induced migration. We identified interactions between PRL-3 and integrin β1, as well as with FAK P-Y397, an auto-activated form of Focal Adhesion Kinase found in FAs. We also show that integrin β1 may be dephosphorylated by PRL-3 in its intracytoplasmic S/T region, an important motif for integrin-mediated cell adhesion. Finally, we observed that PRL-3 regulated the clustering of integrin β1 in FAs on collagen I but not on fibronectin. This work identifies PRL-3 as a new regulator of cell adhesion structures to the extracellular matrix, and further supports PRL-3 as a key actor of metastasis in uveal melanoma, of which molecular mechanisms are still poorly understood. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Glomerular extracellular matrix components and integrins

    NARCIS (Netherlands)

    Sterk, L. M.; de Melker, A. A.; Kramer, D.; Kuikman, I.; Chand, A.; Claessen, N.; Weening, J. J.; Sonnenberg, A.

    1998-01-01

    It has become apparent that extracellular matrix components and their cellular receptors, the integrins, are important regulators of glomerular development and function. In this rapidly evolving field we studied the production of extracellular matrix components and integrins by rat glomerular

  9. An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens.

    Directory of Open Access Journals (Sweden)

    Victoria A Meliopoulos

    2016-08-01

    Full Text Available The healthy lung maintains a steady state of immune readiness to rapidly respond to injury from invaders. Integrins are important for setting the parameters of this resting state, particularly the epithelial-restricted αVβ6 integrin, which is upregulated during injury. Once expressed, αVβ6 moderates acute lung injury (ALI through as yet undefined molecular mechanisms. We show that the upregulation of β6 during influenza infection is involved in disease pathogenesis. β6-deficient mice (β6 KO have increased survival during influenza infection likely due to the limited viral spread into the alveolar spaces leading to reduced ALI. Although the β6 KO have morphologically normal lungs, they harbor constitutively activated lung CD11b+ alveolar macrophages (AM and elevated type I IFN signaling activity, which we traced to the loss of β6-activated transforming growth factor-β (TGF-β. Administration of exogenous TGF-β to β6 KO mice leads to reduced numbers of CD11b+ AMs, decreased type I IFN signaling activity and loss of the protective phenotype during influenza infection. Protection extended to other respiratory pathogens such as Sendai virus and bacterial pneumonia. Our studies demonstrate that the loss of one epithelial protein, αVβ6 integrin, can alter the lung microenvironment during both homeostasis and respiratory infection leading to reduced lung injury and improved survival.

  10. Laminin and integrin expression in the ventral ectodermal ridge of the mouse embryo: implications for regulation of BMP signalling

    Science.gov (United States)

    Lopez-Escobar, Beatriz; de Felipe, Beatriz; Sanchez-Alcazar, Jose Antonio; Sasaki, Takako; Copp, Andrew J.; Ybot-Gonzalez, Patricia

    2013-01-01

    Background The ventral ectodermal ridge (VER) is an important signalling centre in the mouse tail-bud following completion of gastrulation. BMP regulation is essential for VER function, but how these signals are transmitted between adjacent tissues is unclear. Results We investigated the idea that extracellular matrix components might be involved, using immunohistochemistry and in situ hybridisation to detect all known α, β and γ laminin chains and their mRNAs in the early tail bud. We identified an apparently novel laminin variant, comprising α5, β3 and γ2 chains, as a major component of the VER basement membrane at E9.5. Strikingly, only the mRNAs for these chains were co-expressed in VER cells, suggesting that lamin532 may be the sole basement membrane laminin at this stage. Since α6 integrin was also expressed in VER cells, this raises the possibility of cell-matrix interactions regulating BMP signalling at this site of caudal morphogenesis. Conclusions Laminin532 could interact with α6-containing integrin to direct differentiation of the specialised VER cells from surface ectoderm. PMID:22911573

  11. Chemokines fail to up-regulate beta 1 integrin-dependent adhesion in human Th2 T lymphocytes.

    Science.gov (United States)

    Clissi, B; D'Ambrosio, D; Geginat, J; Colantonio, L; Morrot, A; Freshney, N W; Downward, J; Sinigaglia, F; Pardi, R

    2000-03-15

    Th1 and Th2 cells are functionally distinct subsets of CD4+ T lymphocytes whose tissue-specific homing to sites of inflammation is regulated in part by the differential expression of P- and E-selectin ligands and selected chemokine receptors. Here we investigated the expression and function of beta 1 integrins in Th1 and Th2 cells polarized in vitro. Th1 lymphocytes adhere transiently to the extracellular matrix ligands laminin 1 and fibronectin in response to chemokines such as RANTES and stromal cell-derived factor-1, and this process is paralleled by the activation of the Rac1 GTPase and by a rapid burst of actin polymerization. Selective inhibitors of phosphoinositide-3 kinase prevent efficiently all of the above processes, whereas the protein kinase C inhibitor bisindolylmaleimide prevents chemokine-induced adhesion without affecting Rac1 activation and actin polymerization. Notably, chemokine-induced adhesion to beta 1 integrin ligands is markedly reduced in Th2 cells. Such a defect cannot be explained by a reduced sensitivity to chemokine stimulation in this T cell subset, nor by a defective activation of the signaling cascade involving phosphoinositide-3 kinase, Rac1, and actin turnover, as all these processes are activated at comparable levels by chemokines in the two subsets. We propose that reduced beta 1 integrin-mediated adhesion in Th2 cells may restrain their ability to invade and/or reside in sites of chronic inflammation, which are characterized by thickening of basement membranes and extensive fibrosis, requiring efficient interaction with organized extracellular matrices.

  12. The tail of integrin activation

    Science.gov (United States)

    Anthis, Nicholas J; Campbell, Iain D

    2010-01-01

    Integrins are essential adhesion receptors found on the surfaces of all metazoan cells. As regulators of cell migration and extracellular matrix assembly, these membrane-spanning heterodimers are critical for embryonic development, tissue repair and immune responses. Signals transmitted by integrins from outside to inside the cell promote cell survival and proliferation, but integrin affinity for extracellular ligands can also be controlled by intracellular cues. This bidirectional signaling is mediated by the short cytoplasmic tails of the two integrin subunits. Recent structural and functional studies of various integrin fragments and complexes between the cytoplasmic tails and intracellular proteins, such as talin, have provided new insight into the signaling processes centered around the tails, particularly inside-out integrin activation. PMID:21216149

  13. Regulated Splicing of the α6 Integrin Cytoplasmic Domain Determines the Fate of Breast Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Hira Lal Goel

    2014-05-01

    Full Text Available Although the α6β1 integrin has been implicated in the function of breast and other cancer stem cells (CSCs, little is known about its regulation and relationship to mechanisms involved in the genesis of CSCs. We report that a CD44high/CD24low population, enriched for CSCs, is comprised of distinct epithelial and mesenchymal populations that differ in expression of the two α6 cytoplasmic domain splice variants: α6A and α6B. α6Bβ1 expression defines the mesenchymal population and is necessary for CSC function, a function that cannot be executed by α6A integrins. The generation of α6Bβ1 is tightly controlled and occurs as a consequence of an autocrine vascular endothelial growth factor (VEGF signaling that culminates in the transcriptional repression of a key RNA-splicing factor. These data alter our understanding of how α6β1 contributes to breast cancer, and they resolve ambiguities regarding the use of total α6 (CD49f expression as a biomarker for CSCs.

  14. The Rho-family GTPase Rac1 regulates integrin localization in Drosophila immunosurveillance cells.

    Directory of Open Access Journals (Sweden)

    Miguel J Xavier

    Full Text Available BACKGROUND: When the parasitoid wasp Leptopilina boulardi lays an egg in a Drosophila larva, phagocytic cells called plasmatocytes and specialized cells known as lamellocytes encapsulate the egg. The Drosophila β-integrin Myospheroid (Mys is necessary for lamellocytes to adhere to the cellular capsule surrounding L. boulardi eggs. Integrins are heterodimeric adhesion receptors consisting of α and β subunits, and similar to other plasma membrane receptors undergo ligand-dependent endocytosis. In mammalian cells it is known that integrin binding to the extracellular matrix induces the activation of Rac GTPases, and we have previously shown that Rac1 and Rac2 are necessary for a proper encapsulation response in Drosophila larvae. We wanted to test the possibility that Myospheroid and Rac GTPases interact during the Drosophila anti-parasitoid immune response. RESULTS: In the current study we demonstrate that Rac1 is required for the proper localization of Myospheroid to the cell periphery of haemocytes after parasitization. Interestingly, the mislocalization of Myospheroid in Rac1 mutants is rescued by hyperthermia, involving the heat shock protein Hsp83. From these results we conclude that Rac1 and Hsp83 are required for the proper localization of Mys after parasitization. SIGNIFICANCE: We show for the first time that the small GTPase Rac1 is required for Mysopheroid localization. Interestingly, the necessity of Rac1 in Mys localization was negated by hyperthermia. This presents a problem, in Drosophila we quite often raise larvae at 29°C when using the GAL4/UAS misexpression system. If hyperthermia rescues receptor endosomal recycling defects, raising larvae in hyperthermic conditions may mask potentially interesting phenotypes.

  15. Interactions of the integrin subunit β1A with protein kinase B/Akt, p130Cas and paxillin contribute to regulation of radiation survival

    International Nuclear Information System (INIS)

    Seidler, Julia; Durzok, Rita; Brakebusch, Cord; Cordes, Nils

    2005-01-01

    Background and purpose: Cell adhesion-mediated radioresistance is a common phenomenon particularly relevant in tumor cells, which might hamper anticancer therapies. To analyze the role of adhesion-mediating β1-integrins, stably transfected functional β1A-integrin-expressing GD25β1A and GD25β1B cells, which express mutant β1B-integrins, were compared in terms of radiation survival and β1-integrin signaling. Materials and methods: Cells grown on fibronectin, collagen-III, laminin, vitronectin, anti-β1-integrin-IgG (β1-IgG) or poly-L-lysine were irradiated with 0-6 Gy in presence or absence of growth factors or inhibitors for phosphatidylinositol-3 kinase (PI3K), i.e. Ly294002 and wortmannin. In addition to colony formation, protein kinase B/Akt (PKB/Akt) kinase activity, focal adhesion kinase (FAK), p130Cas, paxillin and c-Jun N 2 -terminal kinase (JNK) expression and phosphorylation were analyzed by Western blot technique. Results: Adhesion of GD25β1A cells to extracellular matrix proteins or β1-IgG resulted in growth factor-independent radiation survival. In contrast, serum starved GD25β1B cells showed a significant (P<0.01) reduction in radiation survival on all substrates. PI3K inhibition moderately or strongly radiosensitized GD25β1A or GD25β1B cells, respectively. The pro-survival effects detected in serum starved GD25β1A cells were due to direct, PI3K-mediated stimulation of PKB/Akt activity by β1-integrins and induced p130Cas and paxillin phosphorylation. Phosphorylated p130Cas and paxillin subsequently prevented activation of cell death-regulating JNK. Conclusions: The data show that β1-integrin-mediated signaling through the cytoplasmic integrin domains is critical for efficient pro-survival regulation after irradiation. Profound knowledge of the underlying mechanisms of integrin-mediated cellular radioresistance could foster the design of new molecular-targeted anticancer therapies

  16. Regulation of integrin adhesions by varying the density of substrate-bound epidermal growth factor.

    Science.gov (United States)

    Shahal, Tamar; Geiger, Benjamin; Dunlop, Iain E; Spatz, Joachim P

    2012-12-01

    Substrates coated with specific bioactive ligands are important for tissue engineering, enabling the local presentation of extracellular stimulants at controlled positions and densities. In this study, we examined the cross-talk between integrin and epidermal growth factor (EGF) receptors following their interaction with surface-immobilized Arg-Gly-Asp (RGD) and EGF ligands, respectively. Surfaces of glass coverslips, modified with biotinylated silane-polyethylene glycol, were functionalized by either biotinylated RGD or EGF (or both) via the biotin-NeutrAvidin interaction. Fluorescent labeling of the adhering A431 epidermoid carcinoma cells for zyxin or actin indicated that EGF had a dual effect on focal adhesions (FA) and stress fibers: at low concentrations (0.1; 1 ng/ml), it stimulated their growth; whereas at higher concentrations, on surfaces with low to intermediate RGD densities, it induced their disassembly, leading to cell detachment. The EGF-dependent dissociation of FAs was, however, attenuated on higher RGD density surfaces. Simultaneous stimulation by both immobilized RGD and EGF suggest a strong synergy between integrin and EGFR signaling, in FA induction and cell spreading. A critical threshold level of EGF was required to induce significant variation in cell adhesion; beyond this critical density, the immobilized molecule had a considerably stronger effect on cell adhesion than did soluble EGF. The mechanisms underlying this synergy between the adhesion ligand and EGF are discussed.

  17. Integrin α3β1-CD151 complex regulates dimerization of ErbB2 via RhoA.

    Science.gov (United States)

    Novitskaya, V; Romanska, H; Kordek, R; Potemski, P; Kusińska, R; Parsons, M; Odintsova, E; Berditchevski, F

    2014-05-22

    Integrin α3β1 regulates adhesive interactions of cells with laminins and have a critical role in adhesion-dependent cellular responses. Here, we examined the role of α3β1-integrin in ErbB2-dependent proliferation of breast cancer cells in three-dimensional laminin-rich extracellular matrix (3D lr-ECM). Depletion of α3β1 in ErbB2-overexpressing breast cancer cells suppressed growth and restore cell polarity in 3D lr-ECM. The phenotype of α3β1-depleted cells was reproduced upon depletion of tetraspanin CD151 and mirrored that of the cells treated with Herceptin, an established ErbB2 antagonist. Breast cancer cells expressing the α3β1-CD151 complex have higher steady-state phosphorylation of ErbB2 and show enhanced dimerization of the protein when compared with α3β1-/CD151-depleted cells. Furthermore, Herceptin-dependent dephosphorylation of ErbB2 was only observed in α3β1-CD151-expressing cells. Importantly, the inhibitory activity of Herceptin was more pronounced when cells expressed both α3β1 and CD151. We also found that the level of active RhoA was increased in α3β1- and CD151-depleted cells and that Rho controls dimerization of ErbB2. Expression of α3β1 alone did not have significant prognostic value in patients with invasive ductal carcinoma of the breast. However, expression of α3β1 in combination with CD151 represented a more stringent indicator of poor survival than CD151 alone. Taken together, these results demonstrate that the α3β1-CD151 complex has a critical regulatory role in ErbB2-dependent signalling and thereby may be involved in breast cancer progression.

  18. Activated Integrin-Linked Kinase Negatively Regulates Muscle Cell Enhancement Factor 2C in C2C12 Cells

    Directory of Open Access Journals (Sweden)

    Zhenguo Dong

    2015-01-01

    Full Text Available Our previous study reported that muscle cell enhancement factor 2C (MEF2C was fully activated after inhibition of the phosphorylation activity of integrin-linked kinase (ILK in the skeletal muscle cells of goats. It enhanced the binding of promoter or enhancer of transcription factor related to proliferation of muscle cells and then regulated the expression of these genes. In the present investigation, we explored whether ILK activation depended on PI3K to regulate the phosphorylation and transcriptional activity of MEF2C during C2C12 cell proliferation. We inhibited PI3K activity in C2C12 with LY294002 and then found that ILK phosphorylation levels and MEF2C phosphorylation were decreased and that MCK mRNA expression was suppressed significantly. After inhibiting ILK phosphorylation activity with Cpd22 and ILK-shRNA, we found MEF2C phosphorylation activity and MCK mRNA expression were increased extremely significantly. In the presence of Cpd22, PI3K activity inhibition increased MEF2C phosphorylation and MCK mRNA expression indistinctively. We conclude that ILK negatively and independently of PI3K regulated MEF2C phosphorylation activity and MCK mRNA expression in C2C12 cells. The results provide new ideas for the study of classical signaling pathway of PI3K-ILK-related proteins and transcription factors.

  19. LNK (SH2B3) is a key regulator of integrin signaling in endothelial cells and targets α-parvin to control cell adhesion and migration

    Science.gov (United States)

    Devallière, Julie; Chatelais, Mathias; Fitau, Juliette; Gérard, Nathalie; Hulin, Philippe; Velazquez, Laura; Turner, Christopher E.; Charreau, Béatrice

    2012-01-01

    Focal adhesion (FA) formation and disassembly play an essential role in adherence and migration of endothelial cells. These processes are highly regulated and involve various signaling molecules that are not yet completely identified. Lnk [Src homology 2-B3 (SH2B3)] belongs to a family of SH2-containing proteins with important adaptor functions. In this study, we showed that Lnk distribution follows that of vinculin, localizing Lnk in FAs. Inhibition of Lnk by RNA interference resulted in decreased spreading, whereas sustained expression dramatically increases the number of focal and cell-matrix adhesions. We demonstrated that Lnk expression impairs FA turnover and cell migration and regulates β1-integrin-mediated signaling via Akt and GSK3β phosphorylation. Moreover, the α-parvin protein was identified as one of the molecular targets of Lnk responsible for impaired FA dynamics and cell migration. Finally, we established the ILK protein as a new molecular partner for Lnk and proposed a model in which Lnk regulates α-parvin expression through its interaction with ILK. Collectively, our results underline the adaptor Lnk as a novel and effective key regulator of integrin-mediated signaling controlling endothelial cell adhesion and migration.—Devallière, J., Chatelais, M., Fitau, J., Gérard, N., Hulin, P., Velazquez, L., Turner, C. E. Charreau, B. LNK (SH2B3) is a key regulator of integrin signaling in endothelial cells and targets α-parvin to control cell adhesion and migration. PMID:22441983

  20. Galectin-3 Negatively Regulates Hippocampus-Dependent Memory Formation through Inhibition of Integrin Signaling and Galectin-3 Phosphorylation

    Directory of Open Access Journals (Sweden)

    Yan-Chu Chen

    2017-07-01

    Full Text Available Galectin-3, a member of the galectin protein family, has been found to regulate cell proliferation, inhibit apoptosis and promote inflammatory responses. Galectin-3 is also expressed in the adult rat hippocampus, but its role in learning and memory function is not known. Here, we found that contextual fear-conditioning training, spatial training or injection of NMDA into the rat CA1 area each dramatically decreased the level of endogenous galectin-3 expression. Overexpression of galectin-3 impaired fear memory, whereas galectin-3 knockout (KO enhanced fear retention, spatial memory and hippocampal long-term potentiation. Galectin-3 was further found to associate with integrin α3, an association that was decreased after fear-conditioning training. Transfection of the rat CA1 area with small interfering RNA against galectin-3 facilitated fear memory and increased phosphorylated focal adhesion kinase (FAK levels, effects that were blocked by co-transfection of the FAK phosphorylation-defective mutant Flag-FAKY397F. Notably, levels of serine-phosphorylated galectin-3 were decreased by fear conditioning training. In addition, blockade of galectin-3 phosphorylation at Ser-6 facilitated fear memory, whereas constitutive activation of galectin-3 at Ser-6 impaired fear memory. Interestingly galectin-1 plays a role in fear-memory formation similar to that of galectin-3. Collectively, our data provide the first demonstration that galectin-3 is a novel negative regulator of memory formation that exerts its effects through both extracellular and intracellular mechanisms.

  1. Up-regulation of integrin α6β4 expression by mitogens involved in dairy cow mammary development.

    Science.gov (United States)

    Zhao, Feng; Liu, Chang; Hao, Yu-Meng; Qu, Bo; Cui, Ying-Jun; Zhang, Na; Gao, Xue-Jun; Li, Qing-Zhang

    2015-03-01

    In dairy cows, the extracellular microenvironment varies significantly from the virgin state to lactation. The function of integrin α6β4 is dependent on cell type and extracellular microenvironment, and the precise expression profile of α6β4 and its effects on mammary development remain to be determined. In the present study, real-time PCR and immunohistochemistry were used to analyze the expression and localization of integrin α6β4 in Holstein dairy cow mammary glands. The effects of integrin α6β4 on the proliferation induced by mammogenic mitogens were identified by blocking integrin function in purified dairy cow mammary epithelial cells (DCMECs). The results showed that the localization of β4 subunit and its exclusive partner the α6 subunit were not consistent but were co-localized in basal luminal cells and myoepithelial cells, appearing to prefer the basal surface of the plasma membrane. Moreover, α6 and β4 subunit messenger RNA (mRNA) levels changed throughout the stages of dairy cow mammary development, reflected well by protein levels, and remained higher in the virgin and pregnancy states, with duct/alveolus morphogenesis and active cell proliferation, than during lactation, when growth arrest is essential for mammary epithelial cell differentiation. Finally, the upregulation of integrin expression by both mammogenic growth hormone and insulin-like growth factor-1 and the inhibited growth of DCMECs by function-blocking integrin antibodies confirmed that integrin α6β4 was indeed involved in dairy cow mammary development.

  2. Chondroitin sulfate proteoglycans regulate the growth, differentiation and migration of multipotent neural precursor cells through the integrin signaling pathway

    Directory of Open Access Journals (Sweden)

    Lü He-Zuo

    2009-10-01

    Full Text Available Abstract Background Neural precursor cells (NPCs are defined by their ability to proliferate, self-renew, and retain the potential to differentiate into neurons and glia. Deciphering the factors that regulate their behaviors will greatly aid in their use as potential therapeutic agents or targets. Chondroitin sulfate proteoglycans (CSPGs are prominent components of the extracellular matrix (ECM in the central nervous system (CNS and are assumed to play important roles in controlling neuronal differentiation and development. Results In the present study, we demonstrated that CSPGs were constitutively expressed on the NPCs isolated from the E16 rat embryonic brain. When chondroitinase ABC was used to abolish the function of endogenous CSPGs on NPCs, it induced a series of biological responses including the proliferation, differentiation and migration of NPCs, indicating that CSPGs may play a critical role in NPC development and differentiation. Finally, we provided evidence suggesting that integrin signaling pathway may be involved in the effects of CSPGs on NPCs. Conclusion The present study investigating the influence and mechanisms of CSPGs on the differentiation and migration of NPCs should help us to understand the basic biology of NPCs during CNS development and provide new insights into developing new strategies for the treatment of the neurological disorders in the CNS.

  3. Breast Cancer Cells in Three-dimensional Culture Display an Enhanced Radioresponse after Coordinate Targeting of Integrin ?5?1 and Fibronectin

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Jin-Min; Onodera, Yasuhito; Bissell, Mina J; Park, Catherine C

    2010-04-07

    Tactics to selectively enhance cancer radioresponse are of great interest. Cancer cells actively elaborate and remodel their extracellular matrix (ECM) to aid in survival and progression. Previous work has shown that {beta}1-integrin inhibitory antibodies can enhance the growth-inhibitory and apoptotic responses of human breast cancer cell lines to ionizing radiation, either when cells are cultured in three-dimensional laminin-rich ECM (3D lrECM) or grown as xenografts in mice. Here, we show that a specific {alpha} heterodimer of {beta}1-integrin preferentially mediates a prosurvival signal in human breast cancer cells that can be specifically targeted for therapy. 3D lrECM culture conditions were used to compare {alpha}-integrin heterodimer expression in malignant and nonmalignant cell lines. Under these conditions, we found that expression of {alpha}5{beta}1-integrin was upregulated in malignant cells compared with nonmalignant breast cells. Similarly, we found that normal and oncofetal splice variants of fibronectin, the primary ECM ligand of {alpha}5{beta}1-integrin, were also strikingly upregulated in malignant cell lines compared with nonmalignant acini. Cell treatment with a peptide that disrupts the interactions of {alpha}5{beta}1-integrin with fibronectin promoted apoptosis in malignant cells and further heightened the apoptotic effects of radiation. In support of these results, an analysis of gene expression array data from breast cancer patients revealed an association of high levels of {alpha}5-integrin expression with decreased survival. Our findings offer preclinical validation of fibronectin and {alpha}5{beta}1-integrin as targets for breast cancer therapy.

  4. Breast cancer cells in three-dimensional culture display an enhanced radioresponse after coordinate targeting of integrin alpha5beta1 and fibronectin.

    Science.gov (United States)

    Nam, Jin-Min; Onodera, Yasuhito; Bissell, Mina J; Park, Catherine C

    2010-07-01

    Tactics to selectively enhance cancer radioresponse are of great interest. Cancer cells actively elaborate and remodel their extracellular matrix (ECM) to aid in survival and progression. Previous work has shown that beta1-integrin inhibitory antibodies can enhance the growth-inhibitory and apoptotic responses of human breast cancer cell lines to ionizing radiation, either when cells are cultured in three-dimensional laminin-rich ECM (3D lrECM) or grown as xenografts in mice. Here, we show that a specific alpha heterodimer of beta1-integrin preferentially mediates a prosurvival signal in human breast cancer cells that can be specifically targeted for therapy. 3D lrECM culture conditions were used to compare alpha-integrin heterodimer expression in malignant and nonmalignant cell lines. Under these conditions, we found that expression of alpha5beta1-integrin was upregulated in malignant cells compared with nonmalignant breast cells. Similarly, we found that normal and oncofetal splice variants of fibronectin, the primary ECM ligand of alpha5beta1-integrin, were also strikingly upregulated in malignant cell lines compared with nonmalignant acini. Cell treatment with a peptide that disrupts the interactions of alpha5beta1-integrin with fibronectin promoted apoptosis in malignant cells and further heightened the apoptotic effects of radiation. In support of these results, an analysis of gene expression array data from breast cancer patients revealed an association of high levels of alpha5-integrin expression with decreased survival. Our findings offer preclinical validation of fibronectin and alpha5beta1-integrin as targets for breast cancer therapy. Copyright 2010 AACR.

  5. In vitro regulation of human breast cancer cell adhesion and invasion via integrin receptors to the extracellular matrix.

    Science.gov (United States)

    Gui, G P; Puddefoot, J R; Vinson, G P; Wells, C A; Carpenter, R

    1995-09-01

    The extracellular matrix consists of the interstitium and the basement membrane. Cellular interaction with fibronectin, laminin and collagen provides a possible mechanism by which cancer cells adhere, invade and metastasize. The integrins are a major family of adhesion molecules that recognize epitopes on the extracellular matrix as ligands. These include the alpha 2 beta 1, alpha 3 beta 1, alpha v beta 1 and alpha v beta 5 integrins, most of which were found to be expressed on MCF-7, T47D, MDA-MB-231, ZR75-1 and Hs578T breast cancer cell lines. Each cell line adhered to the matrix proteins in a dose-dependent manner and was inhibited by monoclonal antibodies against relevant integrins. Only Hs578T was significantly invasive through fibronectin but both Hs578T and MDA-MB-231 invaded through laminin and type IV collagen in an in vitro assay. The invasive potential of these cell lines could be inhibited by integrin antibodies added to cells before incubation, but the addition of antibodies after cells were allowed to adhere to the matrix failed to inhibit invasion. Inhibition of cellular adhesion to the matrix reduced the invasive potential of breast cancer cell lines. As integrin antibodies inhibit cell invasion in vitro, the integrins may be of potential value as antitumour therapeutic agents.

  6. Osteopontin promotes the invasive growth of melanoma cells by activating integrin αvβ3 and down-regulating tetraspanin CD9.

    Science.gov (United States)

    Yin, Miao; Soikkeli, Johanna; Jahkola, Tiina; Virolainen, Susanna; Saksela, Olli; Hölttä, Erkki

    2014-03-01

    Overexpression of osteopontin (OPN) is strongly associated with the invasiveness/metastasis of many cancers, including melanomas. However, the molecular mechanisms of OPN in these processes remain poorly understood. We found that forced expression of OPN in early vertical-growth-phase melanoma cells dramatically increased their migration/invasion and growth/survival in a three-dimensional collagen I gel. Neutralizing antibodies to OPN, integrin β1, and integrin αvβ3, but not to CD44, negated the effects of OPN. Conversely, knocking down OPN in metastatic melanoma cells abrogated the invasive growth. OPN overexpression activated and OPN knockdown inactivated αvβ3 and αvβ5 integrins, negligibly affecting their expression. We further found OPN expression to inversely correlate with tetraspanin CD9 expression. Early-stage melanoma cells displayed low OPN and high CD9 expression, and conversely, metastatic cells displayed high OPN and low CD9 expression. Overexpression of OPN in vertical-growth-phase melanoma cells induced down-regulation of CD9, and knockdown of OPN in metastatic melanoma cells up-regulated CD9. Reversion of these CD9 changes abolished the effects of OPN. Furthermore, knockdown of CD9 in early-stage melanoma cells stimulated their invasive capacity in three-dimensional collagen. Similarly, microarray analyses of benign nevi and primary melanomas from different stages revealed an inverse correlation between OPN and CD9. These data suggest that OPN promotes melanoma cell invasion by activating integrin αvβ3 and down-regulating CD9, a putative metastasis suppressor. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  7. MYC Regulates α6 Integrin Subunit Expression and Splicing Under Its Pro-Proliferative ITGA6A Form in Colorectal Cancer Cells.

    Science.gov (United States)

    Groulx, Jean-François; Boudjadi, Salah; Beaulieu, Jean-François

    2018-02-03

    The α6 integrin subunit ( ITGA6 ) pre-mRNA undergoes alternative splicing to form two splicing variants, named ITGA6A and ITGA6B. In primary human colorectal cancer cells, the levels of both ITGA6 and β4 integrin subunit (ITGB4) subunits of the α6β4 integrin are increased. We previously found that the upregulation of ITGA6 is a direct consequence of the increase of the pro-proliferative ITGA6A variant. However, the mechanisms that control ITGA6 expression and splicing into the ITGA6A variant over ITGA6B in colorectal cancer cells remain poorly understood. Here, we show that the promoter activity of the ITGA6 gene is regulated by MYC. Pharmacological inhibition of MYC activity with the MYC inhibitor (MYCi) 10058-F4 or knockdown of MYC expression by short hairpin RNA (shRNA) both lead to a decrease in ITGA6 and ITGA6A levels in colorectal cancer cells, while overexpression of MYC enhances ITGA6 promoter activity. We also found that MYC inhibition decreases the epithelial splicing regulatory protein 2 (ESRP2) splicing factor at both the mRNA and protein levels. Chromatin immunoprecipitation revealed that the proximal promoter sequences of ITGA6 and ESRP2 were occupied by MYC and actively transcribed in colorectal cancer cells. Furthermore, expression studies in primary colorectal tumors and corresponding resection margins confirmed that the up-regulation of the ITGA6A subunit can be correlated with the increase in MYC and ESRP2 . Taken together, our results demonstrate that the proto-oncogene MYC can regulate the promoter activation and splicing of the ITGA6 integrin gene through ESRP2 to favor the production of the pro-proliferative ITGA6A variant in colorectal cancer cells.

  8. Libraries of RGD analogs, labeled through ReO3+ or TcO3+ coordination, targeting αVβ3 integrin: development of tracers for the early detection of tumor neo-angiogenesis

    International Nuclear Information System (INIS)

    Aufort, M.

    2008-11-01

    Integrins form a family of hetero-dimeric integral glycoproteins which play a central role in cell-cell adhesion and cell-matrix interactions. In particular, they are over expressed during tumor neo-angiogenesis. About 10 of them recognize a structured RGD (Arg-Gly-Asp) sequence. Analogs of this sequence can be used for the early detection of tumors and metastases. We developed new tracers, labeled with 99m Tc, for the molecular imaging of α V β 3 integrin. Until recently, there was no reliable ab initio structure prediction of complex molecules containing Re and Tc chelates. Therefore, we preferred a combinatorial approach to develop potential ligands of α V β 3 integrin and we attempted to identify efficient tracers by in vivo screening. This method would account for biodistribution and pharmacokinetics properties in the early steps of the study. Tracers were obtained according two strategies: i) cyclization of linear RGD analogs; ii) combinatorial assembling of independent modules through metal core coordination by the well-known NS 2 +S motif. After synthesis and labeling, the stability of the tracers was investigated in presence of glutathione and in murine plasma. In vitro screening on purified integrin showed that a cyclic rhenium coordinate binds specifically α V β 3 . A tumor model (U87-MG tumor on nude mice) was validated in the laboratory and a method was developed to analyze in vivo experiments. Biodistribution data and percentage of activity found in tumors are encouraging for cyclic compounds though identification of efficient tracers is difficult due to their instability in the conditions of analyses. (author)

  9. Disintegrins: integrin selective ligands which activate integrin-coupled signaling and modulate leukocyte functions

    Directory of Open Access Journals (Sweden)

    Barja-Fidalgo C.

    2005-01-01

    Full Text Available Extracellular matrix proteins and cell adhesion receptors (integrins play essential roles in the regulation of cell adhesion and migration. Interactions of integrins with the extracellular matrix proteins lead to phosphorylation of several intracellular proteins such as focal adhesion kinase, activating different signaling pathways responsible for the regulation of a variety of cell functions, including cytoskeleton mobilization. Once leukocytes are guided to sites of infection, inflammation, or antigen presentation, integrins can participate in the initiation, maintenance, or termination of the immune and inflammatory responses. The modulation of neutrophil activation through integrin-mediated pathways is important in the homeostatic control of the resolution of inflammatory states. In addition, during recirculation, T lymphocyte movement through distinct microenvironments is mediated by integrins, which are critical for cell cycle, differentiation and gene expression. Disintegrins are a family of low-molecular weight, cysteine-rich peptides first identified in snake venom, usually containing an RGD (Arg-Gly-Asp motif, which confers the ability to selectively bind to integrins, inhibiting integrin-related functions in different cell systems. In this review we show that, depending on the cell type and the microenvironment, disintegrins are able to antagonize the effects of integrins or to act agonistically by activating integrin-mediated signaling. Disintegrins have proven useful as tools to improve the understanding of the molecular events regulated by integrin signaling in leukocytes and prototypes in order to design therapies able to interfere with integrin-mediated effects.

  10. Regulation of TGFβ in the immune system: An emerging role for integrins and dendritic cells

    OpenAIRE

    Worthington, John J.; Fenton, Thomas M.; Czajkowska, Beata I.; Klementowicz, Joanna E.; Travis, Mark A.

    2012-01-01

    Regulation of an immune response requires complex crosstalk between cells of the innate and adaptive immune systems, via both cell?cell contact and secretion of cytokines. An important cytokine with a broad regulatory role in the immune system is transforming growth factor-? (TGF-?). TGF-? is produced by and has effects on many different cells of the immune system, and plays fundamental roles in the regulation of immune responses during homeostasis, infection and disease. Although many cells ...

  11. Syndecan-4 Phosphorylation Is a Control Point for Integrin Recycling

    Science.gov (United States)

    Morgan, Mark R.; Hamidi, Hellyeh; Bass, Mark D.; Warwood, Stacey; Ballestrem, Christoph; Humphries, Martin J.

    2013-01-01

    Summary Precise spatiotemporal coordination of integrin adhesion complex dynamics is essential for efficient cell migration. For cells adherent to fibronectin, differential engagement of α5β1 and αVβ3 integrins is used to elicit changes in adhesion complex stability, mechanosensation, matrix assembly, and migration, but the mechanisms responsible for receptor regulation have remained largely obscure. We identify phosphorylation of the membrane-intercalated proteoglycan syndecan-4 as an essential switch controlling integrin recycling. Src phosphorylates syndecan-4 and, by driving syntenin binding, leads to suppression of Arf6 activity and recycling of αVβ3 to the plasma membrane at the expense of α5β1. The resultant elevation in αVβ3 engagement promotes stabilization of focal adhesions. Conversely, abrogation of syndecan-4 phosphorylation drives surface expression of α5β1, destabilizes adhesion complexes, and disrupts cell migration. These data identify the dynamic spatiotemporal regulation of Src-mediated syndecan-4 phosphorylation as an essential switch controlling integrin trafficking and adhesion dynamics to promote efficient cell migration. PMID:23453597

  12. Anti-Integrin Therapy for Multiple Sclerosis

    OpenAIRE

    Eiji Kawamoto; Susumu Nakahashi; Takayuki Okamoto; Hiroshi Imai; Motomu Shimaoka

    2012-01-01

    Integrins are the foremost family of cell adhesion molecules that regulate immune cell trafficking in health and diseases. Integrin alpha4 mediates organ-specific migration of immune cells to the inflamed brain, thereby playing the critical role in the pathogenesis of multiple sclerosis. Anti-alpha4 integrin therapy aiming to block infiltration of autoreactive lymphocytes to the inflamed brain has been validated in several clinical trials for the treatment of multiple sclerosis. This paper pr...

  13. Galphas-coupled receptor signaling actively down-regulates α4β1-integrin affinity: A possible mechanism for cell de-adhesion

    Directory of Open Access Journals (Sweden)

    Amit Or

    2008-06-01

    Full Text Available Abstract Background Activation of integrins in response to inside-out signaling serves as a basis for leukocyte arrest on endothelium, and migration of immune cells. Integrin-dependent adhesion is controlled by the conformational state of the molecule (i.e. change in the affinity for the ligand and molecular unbending (extension, which is regulated by seven-transmembrane Guanine nucleotide binding Protein-Coupled Receptors (GPCRs. α4β1-integrin (CD49d/CD29, Very Late Antigen-4, VLA-4 is expressed on leukocytes, hematopoietic stem cells, hematopoietic cancer cells, and others. Affinity and extension of VLA-4 are both rapidly up-regulated by inside-out signaling through several Gαi-coupled GPCRs. The goal of the current report was to study the effect of Gαs-coupled GPCRs upon integrin activation. Results Using real-time fluorescent ligand binding to assess affinity and a FRET based assay to probe α4β1-integrin unbending, we show that two Gαs-coupled GPCRs (H2-histamine receptor and β2-adrenergic receptor as well as several cAMP agonists can rapidly down modulate the affinity of VLA-4 activated through two Gαi-coupled receptors (CXCR4 and FPR in U937 cells and primary human peripheral blood monocytes. This down-modulation can be blocked by receptor-specific antagonists. The Gαs-induced responses were not associated with changes in the expression level of the Gαi-coupled receptors. In contrast, the molecular unbending of VLA-4 was not significantly affected by Gαs-coupled GPCR signaling. In a VLA-4/VCAM-1-specific myeloid cell adhesion system, inhibition of the VLA-4 affinity change by Gαs-coupled GPCR had a statistically significant effect upon cell aggregation. Conclusion We conclude that Gαs-coupled GPCRs can rapidly down modulate the affinity state of VLA-4 binding pocket through a cAMP dependent pathway. This plays an essential role in the regulation of cell adhesion. We discuss several possible implications of this described

  14. Regulation of the Contribution of Integrin to Cell Attachment on Poly(2-Methoxyethyl Acrylate (PMEA Analogous Polymers for Attachment-Based Cell Enrichment.

    Directory of Open Access Journals (Sweden)

    Takashi Hoshiba

    Full Text Available Cell enrichment is currently in high demand in medical engineering. We have reported that non-blood cells can attach to a blood-compatible poly(2-methoxyethyl acrylate (PMEA substrate through integrin-dependent and integrin-independent mechanisms because the PMEA substrate suppresses protein adsorption. Therefore, we assumed that PMEA analogous polymers can change the contribution of integrin to cell attachment through the regulation of protein adsorption. In the present study, we investigated protein adsorption, cell attachment profiles, and attachment mechanisms on PMEA analogous polymer substrates. Additionally, we demonstrated the possibility of attachment-based cell enrichment on PMEA analogous polymer substrates. HT-1080 and MDA-MB-231 cells started to attach to poly(butyl acrylate (PBA and poly(tetrahydrofurfuryl acrylate (PTHFA, on which proteins could adsorb well, within 1 h. HepG2 cells started to attach after 1 h. HT-1080, MDA-MB-231, and HepG2 cells started to attach within 30 min to PMEA, poly(2-(2-methoxyethoxy ethyl acrylate-co-butyl acrylate (30:70 mol%, PMe2A and poly(2-(2-methoxyethoxy ethoxy ethyl acrylate-co-butyl acrylate (30:70 mol%, PMe3A, which suppress protein adsorption. Moreover, the ratio of attached cells from a cell mixture can be changed on PMEA analogous polymers. These findings suggested that PMEA analogous polymers can be used for attachment-based cell enrichment.

  15. ADAM12 induces actin cytoskeleton and extracellular matrix reorganization during early adipocyte differentiation by regulating beta1 integrin function

    DEFF Research Database (Denmark)

    Kawaguchi, Nobuko; Sundberg, Christina; Kveiborg, Marie

    2003-01-01

    . Moreover, ADAM12-expressing cells were more prone to apoptosis, which could be prevented by treating the cells with beta1-activating antibodies. A reduced and re-organized fibronectin-rich extracellular matrix accompanied these changes. In addition, beta1 integrin was more readily extracted with Triton X......-100 from cells overexpressing ADAM12 than from control cells. Collectively, these results show that surface expression of ADAM12 impairs the function of beta1 integrins and, consequently, alters the organization of the actin cytoskeleton and extracellular matrix. These events may be necessary...

  16. Anti-integrin therapy for multiple sclerosis.

    Science.gov (United States)

    Kawamoto, Eiji; Nakahashi, Susumu; Okamoto, Takayuki; Imai, Hiroshi; Shimaoka, Motomu

    2012-01-01

    Integrins are the foremost family of cell adhesion molecules that regulate immune cell trafficking in health and diseases. Integrin alpha4 mediates organ-specific migration of immune cells to the inflamed brain, thereby playing the critical role in the pathogenesis of multiple sclerosis. Anti-alpha4 integrin therapy aiming to block infiltration of autoreactive lymphocytes to the inflamed brain has been validated in several clinical trials for the treatment of multiple sclerosis. This paper provides readers with an overview of the molecular and structural bases of integrin activation as well as rationale for using anti-alpha4 integrin therapy for multiple sclerosis and then chronicles the rise and fall of this treatment strategy using natalizumab, a humanized anti-alpha4 integrin.

  17. Anti-Integrin Therapy for Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Eiji Kawamoto

    2012-01-01

    Full Text Available Integrins are the foremost family of cell adhesion molecules that regulate immune cell trafficking in health and diseases. Integrin alpha4 mediates organ-specific migration of immune cells to the inflamed brain, thereby playing the critical role in the pathogenesis of multiple sclerosis. Anti-alpha4 integrin therapy aiming to block infiltration of autoreactive lymphocytes to the inflamed brain has been validated in several clinical trials for the treatment of multiple sclerosis. This paper provides readers with an overview of the molecular and structural bases of integrin activation as well as rationale for using anti-alpha4 integrin therapy for multiple sclerosis and then chronicles the rise and fall of this treatment strategy using natalizumab, a humanized anti-alpha4 integrin.

  18. Structural Insights into Ca2+-Calmodulin Regulation of Plectin 1a-Integrin beta 4 Interaction in Hemidesmosomes

    Czech Academy of Sciences Publication Activity Database

    Song, J.G.; Kostan, J.; Drepper, F.; Knapp, B.; Ribeiro, E.D.; Konarev, P.V.; Grishkovskaya, I.; Wiche, G.; Gregor, Martin; Svergun, D.I.; Warscheid, B.; Djinovic-Carugo, K.

    2015-01-01

    Roč. 23, č. 3 (2015), s. 558-570 ISSN 0969-2126 R&D Projects: GA MŠk 7AMB13AT012; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378050 Keywords : plectin * integrin * hemidesmosomes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.237, year: 2015

  19. The β3-Integrin Binding Protein β3-Endonexin Is a Novel Negative Regulator of Hypoxia-Inducible Factor-1

    Science.gov (United States)

    Kračun, Damir; Rieß, Florian; Kanchev, Ivan; Gawaz, Meinrad

    2014-01-01

    Abstract Aims: Integrins are multifunctional heterodimeric adhesion receptors that mediate the attachment between a cell and the extracellular matrix or other surrounding cells. In endothelial cells, integrins can modulate cell migration and motility. In particular, β3-integrin is expressed in angiogenic vessels. Signal transduction by β3-integrins requires the recruitment of intracellular signaling molecules. β3-endonexin is a highly spliced molecule that has been identified as a β3-integrin binding protein. β3-endonexin isoforms are expressed in endothelial cells and have been suggested to act as shuttle proteins between the membrane and the nucleus. However, their functional role in angiogenesis is unclear. In this study, we investigated whether β3-endonexin isoforms are involved in endothelial angiogenic processes under hypoxia. Results: The overexpression of β3-endonexin isoforms decreased endothelial proliferation and tube formation under hypoxia, while the depletion of β3-endonexin by RNAi promoted angiogenic responses in vitro and in vivo. In hypoxia, β3-endonexin accumulated in the nucleus, and prevention of this response by depletion of β3-endonexin increased hypoxic activation and induction of the hypoxia-inducible factor (HIF)-1 and its target genes VEGF and PAI-1. β3-endonexin diminished nuclear factor kappa B (NFκB) activation and decreased NFκB binding to the HIF-1α promoter under hypoxia, subsequently diminishing NFκB-dependent transcription of HIF-1α under hypoxia. Innovation: Our results indicate for the first time that the overexpression of β3-endonexin can decrease hypoxic induction and activation of HIF-1α and can prevent hypoxic endothelial proliferation and angiogenic responses. Conclusion: β3-endonexin can act as a novel anti-angiogenic factor specifically in the response to hypoxia due to its negative impact on the activation of HIF-1. Antioxid. Redox Signal. 20, 1964–1976. PMID:24386901

  20. Characterization of Laminin Binding Integrin Internalization in Prostate Cancer Cells†

    Science.gov (United States)

    Das, Lipsa; Anderson, Todd A.; Gard, Jaime M.C.; Sroka, Isis C.; Strautman, Stephanie R.; Nagle, Raymond B.; Morrissey, Colm; Knudsen, Beatrice S.; Cress, Anne E.

    2017-01-01

    Laminin binding integrins α6 (CD49f) and α3 (CD49c) are persistently but differentially expressed in prostate cancer (PCa). Integrin internalization is an important determinant of their cell surface expression and function. Using flow cytometry, and first order kinetic modelling, we quantitated the intrinsic internalization rates of integrin subunits in a single cycle of internalization. In PCa cell line DU145, α6 integrin internalized with a rate constant (kactual) of 3.25min−1, 3-fold faster than α3 integrin (1.0 min−1), 1.5-fold faster than the vitronectin binding αv integrin (CD51) (2.2 min−1), and significantly slower than the unrelated transferrin receptor (CD71) (15 min−1). Silencing of α3 integrin protein expression in DU145, PC3 and PC3B1 cells resulted in up to a 1.71-fold increase in kactual for α6 integrin. The internalized α6 integrin was targeted to early endosomes but not to lamp1 vesicles. Depletion of α3 integrin expression resulted in redistribution of α6β4 integrin to an observed cell-cell staining pattern that is consistent with a suprabasal distribution observed in epidermis and early PIN lesions in PCa. Depletion of α3 integrin increased cell migration by 1.8 fold, which was dependent on α6β1 integrin. Silencing of α6 integrin expression however, had no significant effect on the kactual of α3 integrin or its distribution in early endosomes. These results indicate that α3 and α6 integrins have significantly different internalization kinetics and that coordination exists between them for internalization. This article is protected by copyright. All rights reserved PMID:27509031

  1. Characterization of Laminin Binding Integrin Internalization in Prostate Cancer Cells.

    Science.gov (United States)

    Das, Lipsa; Anderson, Todd A; Gard, Jaime M C; Sroka, Isis C; Strautman, Stephanie R; Nagle, Raymond B; Morrissey, Colm; Knudsen, Beatrice S; Cress, Anne E

    2017-05-01

    Laminin binding integrins α6 (CD49f) and α3 (CD49c) are persistently but differentially expressed in prostate cancer (PCa). Integrin internalization is an important determinant of their cell surface expression and function. Using flow cytometry, and first order kinetic modeling, we quantitated the intrinsic internalization rates of integrin subunits in a single cycle of internalization. In PCa cell line DU145, α6 integrin internalized with a rate constant (k actual ) of 3.25 min -1 , threefold faster than α3 integrin (1.0 min -1 ), 1.5-fold faster than the vitronectin binding αv integrin (CD51) (2.2 min -1 ), and significantly slower than the unrelated transferrin receptor (CD71) (15 min -1 ). Silencing of α3 integrin protein expression in DU145, PC3, and PC3B1 cells resulted in up to a 1.71-fold increase in k actual for α6 integrin. The internalized α6 integrin was targeted to early endosomes but not to lamp1 vesicles. Depletion of α3 integrin expression resulted in redistribution of α6β4 integrin to an observed cell-cell staining pattern that is consistent with a suprabasal distribution observed in epidermis and early PIN lesions in PCa. Depletion of α3 integrin increased cell migration by 1.8-fold, which was dependent on α6β1 integrin. Silencing of α6 integrin expression however, had no significant effect on the k actual of α3 integrin or its distribution in early endosomes. These results indicate that α3 and α6 integrins have significantly different internalization kinetics and that coordination exists between them for internalization. J. Cell. Biochem. 118: 1038-1049, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Integrin laminin receptors and breast carcinoma progression.

    Science.gov (United States)

    Mercurio, A M; Bachelder, R E; Chung, J; O'Connor, K L; Rabinovitz, I; Shaw, L M; Tani, T

    2001-07-01

    This review explores the mechanistic basis of breast carcinoma progression by focusing on the contribution of integrins. Integrins are essential for progression not only for their ability to mediate physical interactions with extracellular matrices but also for their ability to regulate signaling pathways that control actin dynamics and cell movement, as well as for growth and survival. Our comments center on the alpha6 integrins (alpha6beta1 and alpha6beta4), which are receptors for the laminin family of basement membrane components. Numerous studies have implicated these integrins in breast cancer progression and have provided a rationale for studying the mechanistic basis of their contribution to aggressive disease. Recent work by our group and others on mechanisms of breast carcinoma invasion and survival that are influenced by the alpha6 integrins are discussed.

  3. Coordinate regulation of DNA methyltransferase expression during oogenesis

    Directory of Open Access Journals (Sweden)

    Bestor Timothy H

    2007-04-01

    Full Text Available Abstract Background Normal mammalian development requires the action of DNA methyltransferases (DNMTs for the establishment and maintenance of DNA methylation within repeat elements and imprinted genes. Here we report the expression dynamics of Dnmt3a and Dnmt3b, as well as a regulator of DNA methylation, Dnmt3L, in isolated female germ cells. Results Our results indicate that these enzymes are coordinately regulated and that their expression peaks during the stage of postnatal oocyte development when maternal methylation imprints are established. We find that Dnmt3a, Dnmt3b, Dnmt3L and Dnmt1o transcript accumulation is related to oocyte diameter. Furthermore, DNMT3L deficient 15 dpp oocytes have aberrantly methylated Snrpn, Peg3 and Igf2r DMRs, but normal IAP and LINE-1 methylation levels, thereby highlighting a male germ cell specific role for DNMT3L in the establishment of DNA methylation at repeat elements. Finally, real-time RT-PCR analysis indicates that the depletion of either DNMT3L or DNMT1o in growing oocytes results in the increased expression of the de novo methyltransferase Dnmt3b, suggesting a potential compensation mechanism by this enzyme for the loss of one of the other DNA methyltransferases. Conclusion Together these results provide a better understanding of the developmental regulation of Dnmt3a, Dnmt3b and Dnmt3L at the time of de novo methylation during oogenesis and demonstrate that the involvement of DNMT3L in retrotransposon silencing is restricted to the male germ line. This in turn suggests the existence of other factors in the oocyte that direct DNA methylation to transposons.

  4. A laminin 511 matrix is regulated by TAZ and functions as the ligand for the α6Bβ1 integrin to sustain breast cancer stem cells.

    Science.gov (United States)

    Chang, Cheng; Goel, Hira Lal; Gao, Huijie; Pursell, Bryan; Shultz, Leonard D; Greiner, Dale L; Ingerpuu, Sulev; Patarroyo, Manuel; Cao, Shiliang; Lim, Elgene; Mao, Junhao; McKee, Karen Kulju; Yurchenco, Peter D; Mercurio, Arthur M

    2015-01-01

    Understanding how the extracellular matrix impacts the function of cancer stem cells (CSCs) is a significant but poorly understood problem. We report that breast CSCs produce a laminin (LM) 511 matrix that promotes self-renewal and tumor initiation by engaging the α6Bβ1 integrin and activating the Hippo transducer TAZ. Although TAZ is important for the function of breast CSCs, the mechanism is unknown. We observed that TAZ regulates the transcription of the α5 subunit of LM511 and the formation of a LM511 matrix. These data establish a positive feedback loop involving TAZ and LM511 that contributes to stemness in breast cancer. © 2015 Chang et al.; Published by Cold Spring Harbor Laboratory Press.

  5. Data on the regulation of moesin and merlin by the urokinase receptor (uPAR: Model explaining distal activation of integrins by uPAR

    Directory of Open Access Journals (Sweden)

    Bernard Degryse

    2017-12-01

    Full Text Available The data presented herein are connected to our research article (doi: 10.1016/j.biocel.2017.04.012 [1], in which we investigated the functional connections between the urokinase receptor (uPAR, and the ezrin/radixin/moesin (ERM proteins, moesin and merlin [1]. Firstly, a model of action is proposed that enlightens how uPAR regulates distal integrins. In addition, data show the effects of expressing wild-type moesin or permanently active T558D mutant of moesin on angiogenesis and morphology of human aortic endothelial cells (HAEC. Additional data compare the effects of urokinase (uPA, the main ligand of uPAR on the same cells. Lastly, we provide technical data demonstrating the effects of specific siRNA for moesin and merlin on moesin and merlin expression, respectively. Keywords: Urokinase receptor, Moesin, Merlin, Angiogenesis, siRNA

  6. Genetic analysis of beta1 integrin "activation motifs" in mice

    DEFF Research Database (Denmark)

    Czuchra, Aleksandra; Meyer, Hannelore; Legate, Kyle R

    2006-01-01

    Akey feature of integrins is their ability to regulate the affinity for ligands, a process termed integrin activation. The final step in integrin activation is talin binding to the NPXY motif of the integrin beta cytoplasmic domains. Talin binding disrupts the salt bridge between the alpha....../beta tails, leading to tail separation and integrin activation. We analyzed mice in which we mutated the tyrosines of the beta1 tail and the membrane-proximal aspartic acid required for the salt bridge. Tyrosine-to-alanine substitutions abolished beta1 integrin functions and led to a beta1 integrin...... and the membrane-proximal salt bridge between alpha and beta1 tails have no apparent function under physiological conditions in vivo....

  7. c-Abl is an upstream regulator of acid sphingomyelinase in apoptosis induced by inhibition of integrins αvβ3 and αvβ5.

    Directory of Open Access Journals (Sweden)

    Xiuhai Ren

    Full Text Available Inhibition of integrins αvβ3/αvβ5 by the cyclic function-blocking peptide, RGDfV (Arg-Gly-Asp-Phe-Val can induce apoptosis in both normal cells and tumor cells. We show that RGDfV induced apoptosis in ECV-304 carcinoma cells, increased activity and mRNA expression of acid sphingomyelinase (ASM, and increased ceramides C(16, C(18:0, C(24:0 and C(24:1 while decreasing the corresponding sphingomyelins. siRNA to ASM decreased RGDfV-induced apoptosis as measured by TUNEL, PARP cleavage, mitochondrial depolarization, and caspase-3 and caspase-8 activities, as well as by annexinV in a 3D collagen model. These findings indicate a causal role for ASM in RGDfV-induced apoptosis in ECV-304. We have shown that c-Abl, a non-receptor tyrosine kinase, also mediates RGDfV-induced apoptosis. However, c-Abl, has not been previously linked to ASM in any system. Here we show that STI-571 (imatinib, inhibitor of c-Abl inhibited RGDfV-induced ASM activity. Furthermore, STI-571 and c-Abl-siRNA both inhibited RGDfV-induced increase in ASM mRNA, but ASM-siRNA did not affect c-Abl phosphorylation or expression, supporting that c-Abl regulates the RGDfV-induced increase in ASM expression. These studies implicate ASM as a mediator of apoptosis induced by inhibition of integrins αvβ3/αvβ5, and for the first time place c-Abl as an upstream regulator of ASM expression and activity.

  8. Co-ordinate regulation of the cytoskeleton in 3T3 cells overexpressing thymosin-beta4.

    Science.gov (United States)

    Golla, R; Philp, N; Safer, D; Chintapalli, J; Hoffman, R; Collins, L; Nachmias, V T

    1997-01-01

    In several cell types, short-term increases in the concentration of the G-actin-sequestering peptide thymosin-beta4 (Tbeta4) cause the disassembly of F-actin bundles. To determine the extent of cell adaptability to these reductions in F-actin, we overexpressed Tbeta4 in NIH 3T3 cells. In cell lines with Tbeta4 levels twice those of vector controls, G-actin increased approximately twofold as expected. However, F-actin did not decrease as in short-term experiments but rather also increased approximately twofold so that the G-F ratio remained constant. Surprisingly, the cytoskeletal proteins myosin IIA, alpha-actinin, and tropomyosin also increased nearly twofold. These increases were specific; DNA, total protein, lactic dehydrogenase, profilin, and actin depolymerizing factor levels were unchanged in the overexpressing cells. The Tbeta4 lines spread more fully and adhered to the dish more strongly than vector controls; this altered phenotype correlated with a twofold increase in talin and alpha5-integrin and a nearly threefold increase in vinculin. Focal adhesions, detected by indirect immunofluorescence with antivinculin, were increased in size over the controls. Northern blotting showed that mRNAs for both beta-actin and vinculin were increased twofold in the overexpressing lines. We conclude that 1) NIH 3T3 cells adapt to increased levels of G-actin sequestered by increased Tbeta4 by increasing their total actin so that the F-actin/G-actin ratio remains constant; 2) these cells coordinately increase several cytoskeletal and adhesion plaque proteins; and 3) at least for actin and vinculin, this regulation is at the transcriptional level. We therefore propose that the proteins of this multimember interacting complex making up the actin-based cytoskeleton, are coordinately regulated by factors that control the expression of several proteins. The mechanism may bear similarities to the control of synthesis of another multimember interacting complex, the myofibril of

  9. Selective binding and lateral clustering of α5β1 and αvβ3 integrins: Unraveling the spatial requirements for cell spreading and focal adhesion assembly.

    Science.gov (United States)

    Schaufler, Viktoria; Czichos-Medda, Helmi; Hirschfeld-Warnecken, Vera; Neubauer, Stefanie; Rechenmacher, Florian; Medda, Rebecca; Kessler, Horst; Geiger, Benjamin; Spatz, Joachim P; Cavalcanti-Adam, E Ada

    2016-09-02

    Coordination of the specific functions of α5β1 and αvβ3 integrins is crucial for the precise regulation of cell adhesion, spreading and migration, yet the contribution of differential integrin-specific crosstalk to these processes remains unclear. To determine the specific functions of αvβ3 and α5β1 integrins, we used nanoarrays of gold particles presenting immobilized, integrin-selective peptidomimetic ligands. Integrin binding to the peptidomimetics is highly selective, and cells can spread on both ligands. However, spreading is faster and the projected cell area is greater on α5β1 ligand; both depend on ligand spacing. Quantitative analysis of adhesion plaques shows that focal adhesion size is increased in cells adhering to αvβ3 ligand at 30 and 60 nm spacings. Analysis of αvβ3 and α5β1 integrin clusters indicates that fibrillar adhesions are more prominent in cells adhering to α5β1 ligand, while clusters are mostly localized at the cell margins in cells adhering to αvβ3 ligand. αvβ3 integrin clusters are more pronounced on αvβ3 ligand, though they can also be detected in cells adhering to α5β1 ligand. Furthermore, α5β1 integrin clusters are present in cells adhering to α5β1 ligand, and often colocalize with αvβ3 clusters. Taken together, these findings indicate that the activation of αvβ3 integrin by ligand binding is dispensable for initial adhesion and spreading, but essential to formation of stable focal adhesions.

  10. ADAM-9 (MDC-9/meltrin-gamma), a member of the a disintegrin and metalloproteinase family, regulates myeloma-cell-induced interleukin-6 production in osteoblasts by direct interaction with the alpha(v)beta5 integrin.

    Science.gov (United States)

    Karadag, Abdullah; Zhou, Min; Croucher, Peter I

    2006-04-15

    ADAM-9, a member of the a disintegrin and metalloproteinase family, contains both metalloproteinase and disintegrin domains. Myeloma cell lines express ADAM-9; however, its function and role in the pathophysiology of multiple myeloma is unknown. The aim of this study was to establish whether primary myeloma cells express ADAM-9, whether ADAM-9 regulates IL-6 production in human osteoblasts (hOBs), whether ADAM-9 interacts with specific integrin heterodimers, and the identity of downstream signaling pathways. Primary myeloma cells demonstrated increased expression of ADAM-9 (P hOBs (P induction was inhibited by an antibody to the alpha(v)beta5 integrin (P hOBs. Antibodies to ADAM-9 and alpha(v)beta5 integrin inhibited myeloma cell-induced IL-6 production by hOBs (P hOBs (P hOBs by binding the alpha(v)beta5 integrin. This may have important consequences for the growth and survival of myeloma cells in bone.

  11. ADAM-9 (MDC-9/meltrin-γ), a member of the a disintegrin and metalloproteinase family, regulates myeloma-cell–induced interleukin-6 production in osteoblasts by direct interaction with the αvβ5 integrin

    Science.gov (United States)

    Karadag, Abdullah; Zhou, Min; Croucher, Peter I.

    2006-01-01

    ADAM-9, a member of the a disintegrin and metalloproteinase family, contains both metalloproteinase and disintegrin domains. Myeloma cell lines express ADAM-9; however, its function and role in the pathophysiology of multiple myeloma is unknown. The aim of this study was to establish whether primary myeloma cells express ADAM-9, whether ADAM-9 regulates IL-6 production in human osteoblasts (hOBs), whether ADAM-9 interacts with specific integrin heterodimers, and the identity of downstream signaling pathways. Primary myeloma cells demonstrated increased expression of ADAM-9 (P hOBs (P induction was inhibited by an antibody to the αvβ5 integrin (P hOBs. Antibodies to ADAM-9 and αvβ5 integrin inhibited myeloma cell–induced IL-6 production by hOBs (P hOBs (P hOBs by binding the αvβ5 integrin. This may have important consequences for the growth and survival of myeloma cells in bone. PMID:16373656

  12. Integrin α3β1 as a breast cancer target.

    Science.gov (United States)

    Subbaram, Sita; Dipersio, C Michael

    2011-10-01

    Integrin receptors for cell adhesion to the extracellular matrix have important roles in all stages of cancer progression and metastasis. Since the integrin family was discovered in the early 1980's, many studies have identified critical adhesion and signaling functions for integrins expressed on tumor cells, endothelial cells and other cell types of the tumor microenvironment, in controlling proliferation, survival, migration and angiogenesis. In recent years, the laminin-binding integrin α3β1 has emerged as a potentially promising anti-cancer target on breast cancer cells. Studies from the past decade that implicate integrins as promising anti-cancer targets and the development of integrin antagonists as anti-cancer therapeutics. Recent preclinical studies that have identified the laminin-binding integrin α3β1 as an appealing anti-cancer target and the knowledge gaps that must be closed to fully exploit this integrin as a therapeutic target for breast cancer. Although the tumor-promoting functions of α3β1 implicate this integrin as a promising therapeutic target on breast cancer cells, successful exploitation of this integrin as an anti-cancer target will require a better understanding of the molecular mechanisms whereby it regulates specific tumor cell behaviors and the identification of the most appropriate α3β1 functions to antagonize on breast cancer cells.

  13. The newcomer in the integrin family: Integrin α9 in biology and cancer

    DEFF Research Database (Denmark)

    Høye, Anette Melissa; Couchman, John Robert; Wewer, Ulla M.

    2012-01-01

    Integrins are heterodimeric transmembrane receptors regulating cell-cell and cell-extracellular matrix interactions. Of the 24 integrin heterodimers identified in humans, a9ß1 integrin is one of the least studied. a9, together with a4, comprise a more recent evolutionary sub-family of integrins...... of cell types, interacts with many ligands for example fibronectin, tenascin-C and ADAM12, and has been shown to have important functions in processes such as cell adhesion and migration, lung development, lymphatic and venous valve development, and in wound healing. This has sparked an interest...... to investigate a9ß1-mediated signaling and its regulation. This review gives an overview of the recent progress in a9ß1-mediated biological and pathological processes, and discusses its potential as a target for cancer diagnosis and therapy....

  14. ADAM-9 (MDC-9/meltrin-γ), a member of the a disintegrin and metalloproteinase family, regulates myeloma-cell–induced interleukin-6 production in osteoblasts by direct interaction with the αvβ5 integrin

    OpenAIRE

    Karadag, Abdullah; Zhou, Min; Croucher, Peter I.

    2006-01-01

    ADAM-9, a member of the a disintegrin and metalloproteinase family, contains both metalloproteinase and disintegrin domains. Myeloma cell lines express ADAM-9; however, its function and role in the pathophysiology of multiple myeloma is unknown. The aim of this study was to establish whether primary myeloma cells express ADAM-9, whether ADAM-9 regulates IL-6 production in human osteoblasts (hOBs), whether ADAM-9 interacts with specific integrin heterodimers, and the identity of downstream sig...

  15. The Integrin Receptor in Biologically Relevant Bilayers: Insights from Molecular Dynamics Simulations.

    Science.gov (United States)

    Kalli, Antreas C; Rog, Tomasz; Vattulainen, Ilpo; Campbell, Iain D; Sansom, Mark S P

    2017-08-01

    Integrins are heterodimeric (αβ) cell surface receptors that are potential therapeutic targets for a number of diseases. Despite the existence of structural data for all parts of integrins, the structure of the complete integrin receptor is still not available. We have used available structural data to construct a model of the complete integrin receptor in complex with talin F2-F3 domain. It has been shown that the interactions of integrins with their lipid environment are crucial for their function but details of the integrin/lipid interactions remain elusive. In this study an integrin/talin complex was inserted in biologically relevant bilayers that resemble the cell plasma membrane containing zwitterionic and charged phospholipids, cholesterol and sphingolipids to study the dynamics of the integrin receptor and its effect on bilayer structure and dynamics. The results of this study demonstrate the dynamic nature of the integrin receptor and suggest that the presence of the integrin receptor alters the lipid organization between the two leaflets of the bilayer. In particular, our results suggest elevated density of cholesterol and of phosphatidylserine lipids around the integrin/talin complex and a slowing down of lipids in an annulus of ~30 Å around the protein due to interactions between the lipids and the integrin/talin F2-F3 complex. This may in part regulate the interactions of integrins with other related proteins or integrin clustering thus facilitating signal transduction across cell membranes.

  16. Alpha8 Integrin (Itga8 Signalling Attenuates Chronic Renal Interstitial Fibrosis by Reducing Fibroblast Activation, Not by Interfering with Regulation of Cell Turnover.

    Directory of Open Access Journals (Sweden)

    Ines Marek

    Full Text Available The α8 integrin (Itga8 chain contributes to the regulation of cell proliferation and apoptosis in renal glomerular cells. In unilateral ureteral obstruction Itga8 is de novo expressed in the tubulointerstitium and a deficiency of Itga8 results in more severe renal fibrosis after unilateral ureteral obstruction. We hypothesized that the increased tubulointerstitial damage after unilateral ureteral obstruction observed in mice deficient for Itga8 is associated with altered tubulointerstitial cell turnover and apoptotic mechanisms resulting from the lack of Itga8 in cells of the tubulointerstitium. Induction of unilateral ureteral obstruction was achieved by ligation of the right ureter in mice lacking Itga8. Unilateral ureteral obstruction increased proliferation and apoptosis rates of tubuloepithelial and interstitial cells, however, no differences were observed in the tubulointerstitium of mice lacking Itga8 and wild type controls regarding fibroblast or proliferating cell numbers as well as markers of endoplasmic reticulum stress and apoptosis after unilateral ureteral obstruction. In contrast, unilateral ureteral obstruction in mice lacking Itga8 led to more pronounced tubulointerstitial cell activation i.e. to the appearance of more phospho-SMAD2/3-positive cells and more α-smooth muscle actin-positive cells in the tubulointerstitium. Furthermore, a more severe macrophage and T-cell infiltration was observed in these animals compared to controls. Thus, Itga8 seems to attenuate tubulointerstitial fibrosis in unilateral ureteral obstruction not via regulation of cell turnover, but via regulation of TGF-β signalling, fibroblast activation and/or immune cell infiltration.

  17. Role of integrin-linked kinase in regulating the protein stability of the MUC1-C oncoprotein in pancreatic cancer cells

    Science.gov (United States)

    Huang, H-L; Wu, H-Y; Chu, P-C; Lai, I-L; Huang, P-H; Kulp, S K; Pan, S-L; Teng, C-M; Chen, C-S

    2017-01-01

    MUC1-C overexpression has been associated with the progression of pancreatic tumors by promoting the aggressive and metastatic phenotypes. As MUC1 is a STAT3 target gene, STAT3 plays a major role in regulating MUC1-C expression. In this study, we report an alternative mechanism by which integrin-linked kinase (ILK) post-transcriptionally modulates the expression of MUC1-C by maintaining its protein stability in pancreatic cancer cells. We found that ILK acts in concert with STAT3 to facilitate IL-6-mediated upregulation of MUC1-C; ILK depletion was equally effective as STAT3 depletion in abolishing IL-6-induced MUC1-C overexpression without disturbing the phosphorylation or cellular distribution of STAT3. Conversely, ectopic expression of constitutively active ILK increased MUC1-C expression, though this increase was not noted with kinase-dead ILK. This finding suggests the requirement of the kinase activity of ILK in regulating MUC1-C stability, which was confirmed by using the ILK kinase inhibitor T315. Furthermore, our data suggest the involvement of protein kinase C (PKC)δ in mediating the suppressive effect of ILK inhibition on MUC1-C repression. For example, co-immunoprecipitation analysis indicated that ILK depletion-mediated MUC1-C phosphorylation was accompanied by increased phosphorylation of PKCδ at the activation loop Thr-507 and increased binding of PKCδ to MUC1-C. Conversely, ILK overexpression resulted in decreased PKCδ phosphorylation. From a mechanistic perspective, the present finding, together with our recent report that ILK controls the expression of oncogenic KRAS through a regulatory loop, underscores the pivotal role of ILK in promoting pancreatic cancer progression. PMID:28692035

  18. Driving Skills of Young Adults with Developmental Coordination Disorder: Regulating Speed and Coping with Distraction

    Science.gov (United States)

    de Oliveira, Rita F.; Wann, John P.

    2011-01-01

    In two experiments, we used an automatic car simulator to examine the steering control, speed regulation and response to hazards of young adults with developmental coordination disorder (DCD) and limited driving experience. In Experiment 1 participants either used the accelerator pedal to regulate their speed, or used the brake pedal when they…

  19. Exosomes derived from human macrophages suppress endothelial cell migration by controlling integrin trafficking.

    Science.gov (United States)

    Lee, Hee Doo; Kim, Yeon Hyang; Kim, Doo-Sik

    2014-04-01

    Integrin trafficking, including internalization, recycling, and lysosomal degradation, is crucial for the regulation of cellular functions. Exosomes, nano-sized extracellular vesicles, are believed to play important roles in intercellular communications. This study demonstrates that exosomes released from human macrophages negatively regulate endothelial cell migration through control of integrin trafficking. Macrophage-derived exosomes promote internalization of integrin β1 in primary HUVECs. The internalized integrin β1 persistently accumulates in the perinuclear region and is not recycled back to the plasma membrane. Experimental results indicate that macrophage-derived exosomes stimulate trafficking of internalized integrin β1 to lysosomal compartments with a corresponding decrease in the integrin destined for recycling endosomes, resulting in proteolytic degradation of the integrin. Moreover, ubiquitination of HUVEC integrin β1 is enhanced by the exosomes, and exosome-mediated integrin degradation is blocked by bafilomycin A, a lysosomal degradation inhibitor. Macrophage-derived exosomes were also shown to effectively suppress collagen-induced activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway and HUVEC migration, which are both dependent on integrin β1. These observations provide new insight into the functional significance of exosomes in the regulation of integrin trafficking. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The colocalization potential of HIV-specific CD8+ and CD4+ T-cells is mediated by integrin β7 but not CCR6 and regulated by retinoic acid.

    Directory of Open Access Journals (Sweden)

    Vanessa Sue Wacleche

    Full Text Available CD4(+ T-cells from gut-associated lymphoid tissues (GALT are major targets for HIV-1 infection. Recruitment of excess effector CD8(+ T-cells in the proximity of target cells is critical for the control of viral replication. Here, we investigated the colocalization potential of HIV-specific CD8(+ and CD4(+ T-cells into the GALT and explored the role of retinoic acid (RA in regulating this process in a cohort of HIV-infected subjects with slow disease progression. The expression of the gut-homing molecules integrin β7, CCR6, and CXCR3 was identified as a "signature" for HIV-specific but not CMV-specific CD4(+ T-cells thus providing a new explanation for their enhanced permissiveness to infection in vivo. HIV-specific CD8(+ T-cells also expressed high levels of integrin β7 and CXCR3; however CCR6 was detected at superior levels on HIV-specific CD4(+ versus CD8(+ T-cells. All trans RA (ATRA upregulated the expression of integrin β7 but not CCR6 on HIV-specific T-cells. Together, these results suggest that HIV-specific CD8(+ T-cells may colocalize in excess with CD4(+ T-cells into the GALT via integrin β7 and CXCR3, but not via CCR6. Considering our previous findings that CCR6(+CD4(+ T-cells are major cellular targets for HIV-DNA integration in vivo, a limited ability of CD8(+ T-cells to migrate in the vicinity of CCR6(+CD4(+ T-cells may facilitate HIV replication and dissemination at mucosal sites.

  1. Identifying options for regulating the coordination of network investments with investments in distributed electricity generation

    International Nuclear Information System (INIS)

    Nisten, E.

    2010-02-01

    The increase in the distributed generation of electricity, with wind turbines and solar panels, necessitates investments in the distribution network. The current tariff regulation in the Dutch electricity industry, with its ex post evaluation of the efficiency of investments and the frontier shift in the x-factor, delays these investments. In the unbundled electricity industry, the investments in the network need to be coordinated with those in the distributed generation of electricity to enable the DSOs to build enough network capacity. The current Dutch regulations do not provide for a sufficient information exchange between the generators and the system operators to coordinate the investments. This paper analyses these two effects of the Dutch regulation, and suggests improvements to the regulation of the network connection and transportation tariffs to allow for sufficient network capacity and coordination between the investments in the network and in the generation of electricity. These improvements include locally differentiated tariffs that increase with an increasing concentration of distributed generators.

  2. Caffeine, Calories, and Coordination: Jurisdictional Developments in Federal Alcohol Regulation

    OpenAIRE

    Ellis, Rebecca Disson

    2012-01-01

    Even though alcoholic beverages fall under the definition of “food” in the Federal Food, Drug & Cosmetic Act, the Food and Drug Administration (FDA) does not regulate such beverages’ ingredient and nutrition labeling as it does for other foods. Instead, jurisdiction over alcoholic beverage labeling falls to the Alcohol and Tobacco Tax and Trade Bureau (TTB), a division of the Department of Treasury. The present system of divided jurisdiction is the product of a series of historically contin...

  3. Coordination between Differentially Regulated Circadian Clocks Generates Rhythmic Behavior.

    Science.gov (United States)

    Top, Deniz; Young, Michael W

    2017-09-11

    Specialized groups of neurons in the brain are key mediators of circadian rhythms, receiving daily environmental cues and communicating those signals to other tissues in the organism for entrainment and to organize circadian physiology. In Drosophila , the "circadian clock" is housed in seven neuronal clusters, which are defined by their expression of the main circadian proteins, Period, Timeless, Clock, and Cycle. These clusters are distributed across the fly brain and are thereby subject to the respective environments associated with their anatomical locations. While these core components are universally expressed in all neurons of the circadian network, additional regulatory proteins that act on these components are differentially expressed, giving rise to "local clocks" within the network that nonetheless converge to regulate coherent behavioral rhythms. In this review, we describe the communication between the neurons of the circadian network and the molecular differences within neurons of this network. We focus on differences in protein-expression patterns and discuss how such variation can impart functional differences in each local clock. Finally, we summarize our current understanding of how communication within the circadian network intersects with intracellular biochemical mechanisms to ultimately specify behavioral rhythms. We propose that additional efforts are required to identify regulatory mechanisms within each neuronal cluster to understand the molecular basis of circadian behavior. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  4. Soft Regulation with Crowd Recommendation: Coordinating Self-Interested Agents in Sociotechnical Systems under Imperfect Information.

    Directory of Open Access Journals (Sweden)

    Yu Luo

    Full Text Available Regulating emerging industries is challenging, even controversial at times. Under-regulation can result in safety threats to plant personnel, surrounding communities, and the environment. Over-regulation may hinder innovation, progress, and economic growth. Since one typically has limited understanding of, and experience with, the novel technology in practice, it is difficult to accomplish a properly balanced regulation. In this work, we propose a control and coordination policy called soft regulation that attempts to strike the right balance and create a collective learning environment. In soft regulation mechanism, individual agents can accept, reject, or partially accept the regulator's recommendation. This non-intrusive coordination does not interrupt normal operations. The extent to which an agent accepts the recommendation is mediated by a confidence level (from 0 to 100%. Among all possible recommendation methods, we investigate two in particular: the best recommendation wherein the regulator is completely informed and the crowd recommendation wherein the regulator collects the crowd's average and recommends that value. We show by analysis and simulations that soft regulation with crowd recommendation performs well. It converges to optimum, and is as good as the best recommendation for a wide range of confidence levels. This work sheds a new theoretical perspective on the concept of the wisdom of crowds.

  5. 22 CFR 209.12 - Effect on other regulations; supervision and coordination.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Effect on other regulations; supervision and coordination. 209.12 Section 209.12 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT NON-DISCRIMINATION... on the ground of race, color, or national origin under any program to which this part applies, and...

  6. Leader cells regulate collective cell migration via Rac activation in the downstream signaling of integrin β1 and PI3K.

    Science.gov (United States)

    Yamaguchi, Naoya; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi

    2015-01-07

    Collective cell migration plays a crucial role in several biological processes, such as embryonic development, wound healing, and cancer metastasis. Here, we focused on collectively migrating Madin-Darby Canine Kidney (MDCK) epithelial cells that follow a leader cell on a collagen gel to clarify the mechanism of collective cell migration. First, we removed a leader cell from the migrating collective with a micromanipulator. This then caused disruption of the cohesive migration of cells that followed in movement, called "follower" cells, which showed the importance of leader cells. Next, we observed localization of active Rac, integrin β1, and PI3K. These molecules were clearly localized in the leading edge of leader cells, but not in follower cells. Live cell imaging using active Rac and active PI3K indicators was performed to elucidate the relationship between Rac, integrin β1, and PI3K. Finally, we demonstrated that the inhibition of these molecules resulted in the disruption of collective migration. Our findings not only demonstrated the significance of a leader cell in collective cell migration, but also showed that Rac, integrin β1, and PI3K are upregulated in leader cells and drive collective cell migration.

  7. Proteomic analysis of integrin adhesion complexes.

    Science.gov (United States)

    Byron, Adam; Humphries, Jonathan D; Bass, Mark D; Knight, David; Humphries, Martin J

    2011-04-05

    Integrin receptors regulate cell fate by coupling the binding of extracellular adhesion proteins to the assembly of intracellular cytoskeletal and signaling complexes. A detailed, integrative view of adhesion complexes will provide insight into the molecular mechanisms that control cell morphology, survival, movement, and differentiation. To date, membrane receptor-associated signaling complexes have been refractory to proteomic analysis because of their inherent lability and inaccessibility. We developed a methodology to isolate ligand-induced integrin adhesion complexes, and we used this technique to analyze the composition of complexes associated with multiple receptor-ligand pairs and define core and receptor-specific subnetworks. In particular, we identified regulator of chromosome condensation-2 (RCC2) as a component of fibronectin-activated signaling pathways that regulate directional cell movement. The development of this proteomics pipeline provides the means to investigate the molecular composition and function of various adhesion complexes.

  8. Identification of a cis-regulatory element by transient analysis of co-ordinately regulated genes

    Directory of Open Access Journals (Sweden)

    Allan Andrew C

    2008-07-01

    Full Text Available Abstract Background Transcription factors (TFs co-ordinately regulate target genes that are dispersed throughout the genome. This co-ordinate regulation is achieved, in part, through the interaction of transcription factors with conserved cis-regulatory motifs that are in close proximity to the target genes. While much is known about the families of transcription factors that regulate gene expression in plants, there are few well characterised cis-regulatory motifs. In Arabidopsis, over-expression of the MYB transcription factor PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT 1 leads to transgenic plants with elevated anthocyanin levels due to the co-ordinated up-regulation of genes in the anthocyanin biosynthetic pathway. In addition to the anthocyanin biosynthetic genes, there are a number of un-associated genes that also change in expression level. This may be a direct or indirect consequence of the over-expression of PAP1. Results Oligo array analysis of PAP1 over-expression Arabidopsis plants identified genes co-ordinately up-regulated in response to the elevated expression of this transcription factor. Transient assays on the promoter regions of 33 of these up-regulated genes identified eight promoter fragments that were transactivated by PAP1. Bioinformatic analysis on these promoters revealed a common cis-regulatory motif that we showed is required for PAP1 dependent transactivation. Conclusion Co-ordinated gene regulation by individual transcription factors is a complex collection of both direct and indirect effects. Transient transactivation assays provide a rapid method to identify direct target genes from indirect target genes. Bioinformatic analysis of the promoters of these direct target genes is able to locate motifs that are common to this sub-set of promoters, which is impossible to identify with the larger set of direct and indirect target genes. While this type of analysis does not prove a direct interaction between protein and DNA

  9. Beyond the Matrix: The Many Non-ECM Ligands for Integrins

    Directory of Open Access Journals (Sweden)

    Bryce LaFoya

    2018-02-01

    Full Text Available The traditional view of integrins portrays these highly conserved cell surface receptors as mediators of cellular attachment to the extracellular matrix (ECM, and to a lesser degree, as coordinators of leukocyte adhesion to the endothelium. These canonical activities are indispensable; however, there is also a wide variety of integrin functions mediated by non-ECM ligands that transcend the traditional roles of integrins. Some of these unorthodox roles involve cell-cell interactions and are engaged to support immune functions such as leukocyte transmigration, recognition of opsonization factors, and stimulation of neutrophil extracellular traps. Other cell-cell interactions mediated by integrins include hematopoietic stem cell and tumor cell homing to target tissues. Integrins also serve as cell-surface receptors for various growth factors, hormones, and small molecules. Interestingly, integrins have also been exploited by a wide variety of organisms including viruses and bacteria to support infectious activities such as cellular adhesion and/or cellular internalization. Additionally, the disruption of integrin function through the use of soluble integrin ligands is a common strategy adopted by several parasites in order to inhibit blood clotting during hematophagy, or by venomous snakes to kill prey. In this review, we strive to go beyond the matrix and summarize non-ECM ligands that interact with integrins in order to highlight these non-traditional functions of integrins.

  10. Transmembrane collagen XVII modulates integrin dependent keratinocyte migration via PI3K/Rac1 signaling.

    Directory of Open Access Journals (Sweden)

    Stefanie Löffek

    Full Text Available The hemidesmosomal transmembrane component collagen XVII (ColXVII plays an important role in the anchorage of the epidermis to the underlying basement membrane. However, this adhesion protein seems to be also involved in the regulation of keratinocyte migration, since its expression in these cells is strongly elevated during reepithelialization of acute wounds and in the invasive front of squamous cell carcinoma, while its absence in ColXVII-deficient keratinocytes leads to altered cell motility. Using a genetic model of murine Col17a1⁻/⁻ keratinocytes we elucidated ColXVII mediated signaling pathways in cell adhesion and migration. Col17a1⁻/⁻ keratinocytes exhibited increased spreading on laminin 332 and accelerated, but less directed cell motility. These effects were accompanied by increased expression of the integrin subunits β4 and β1. The migratory phenotype, as evidenced by formation of multiple unstable lamellipodia, was associated with enhanced phosphoinositide 3-kinase (PI3K activity. Dissection of the signaling pathway uncovered enhanced phosphorylation of the β4 integrin subunit and the focal adhesion kinase (FAK as activators of PI3K. This resulted in elevated Rac1 activity as a downstream consequence. These results provide mechanistic evidence that ColXVII coordinates keratinocyte adhesion and directed motility by interfering integrin dependent PI3K activation and by stabilizing lamellipodia at the leading edge of reepithelializing wounds and in invasive squamous cell carcinoma.

  11. Non-Cooperative Regulation Coordination Based on Game Theory for Wind Farm Clusters during Ramping Events

    DEFF Research Database (Denmark)

    Qi, Yongzhi; Liu, Yutian; Wu, Qiuwei

    2017-01-01

    With increasing penetration of wind power in power systems, it is important to track scheduled wind power output as much as possible during ramping events to ensure security of the system. In this paper, a non‐cooperative coordination strategy based on the game theory is proposed for the regulation...... of wind farm clusters (WFCs) in order to track scheduled wind power of the WFC during ramping events. In the proposed strategy, a non‐cooperative game is formulated and wind farms compete to provide regulation to the WFC during ramping events. A regulation revenue function is proposed to evaluate...

  12. LFA-1 and Mac-1 integrins bind to the serine/threonine-rich domain of thrombomodulin

    Energy Technology Data Exchange (ETDEWEB)

    Kawamoto, Eiji [Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 (Japan); Emergency and Critical Care Center, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507 (Japan); Okamoto, Takayuki, E-mail: okamotot@doc.medic.mie-u.ac.jp [Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 (Japan); Takagi, Yoshimi [Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 (Japan); Honda, Goichi [Medical Affairs Department, Asahi Kasei Pharma Corporation, 1-105 Kanda Jinbo-cho, Chiyoda-ku, Tokyo 101-8101 (Japan); Suzuki, Koji [Faculty of Pharmaceutical Science, Suzuka University of Medical Science, 3500-3, Minamitamagaki-cho, Suzuka, Mie 513-8679 (Japan); Imai, Hiroshi [Emergency and Critical Care Center, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507 (Japan); Shimaoka, Motomu, E-mail: shimaoka@doc.medic.mie-u.ac.jp [Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 (Japan)

    2016-05-13

    LFA-1 (αLβ2) and Mac-1 (αMβ2) integrins regulate leukocyte trafficking in health and disease by binding primarily to IgSF ligand ICAM-1 and ICAM-2 on endothelial cells. Here we have shown that the anti-coagulant molecule thrombomodulin (TM), found on the surface of endothelial cells, functions as a potentially new ligand for leukocyte integrins. We generated a recombinant extracellular domain of human TM and Fc fusion protein (TM-domains 123-Fc), and showed that pheripheral blood mononuclear cells (PBMCs) bind to TM-domains 123-Fc dependent upon integrin activation. We then demonstrated that αL integrin-blocking mAb, αM integrin-blocking mAb, and β2 integrin-blocking mAb inhibited the binding of PBMCs to TM-domains 123-Fc. Furthermore, we show that the serine/threonine-rich domain (domain 3) of TM is required for the interaction with the LFA-1 (αLβ2) and Mac-1 (αMβ2) integrins to occur on PBMCs. These results demonstrate that the LFA-1 and Mac-1 integrins on leukocytes bind to TM, thereby establishing the molecular and structural basis underlying LFA-1 and Mac-1 integrin interaction with TM on endothelial cells. In fact, integrin-TM interactions might be involved in the dynamic regulation of leukocyte adhesion with endothelial cells. - Highlights: • LFA-1 and Mac-1 integrins bind to the anti-coagulant molecule thrombomodulin. • The serine/threonine-rich domain of thrombomodulin is essential to interact with the LFA-1 and Mac-1 integrins on PBMCs. • Integrin-TM interactions might be involved in the dynamic regulation of leukocyte adhesion with endothelial cells.

  13. Biochemical methods to study the interactions between integrins and ion channels.

    Science.gov (United States)

    Crociani, Olivia

    2010-01-01

    Protein-protein interactions between integrins and ion channels consist in a complicated bidirectional talk, not yet understood in detail, which triggers a downstream signaling network. Such a coordinated process occurs in discrete, localized microcompartments and involves different membrane and cytoplasmic proteins. Since the early nineties, when the first functional association between integrins and ion channels was characterized, the number of similar examples is constantly increasing. Identifying the components of this pathway has general importance for cell physiology and will eventually lead to fully understand the role of ion channels in the physiological processes typically controlled by integrin receptors, such as cell adhesion, migration and proliferation. Here, we detail the main experimental methods currently available to study these processes and discuss their advantages and disadvantages. Biochemical copurification and genetic interaction studies, as well as high-throughput screening, can be performed to initially identify the interacting proteins. Successively, in vitro binding assays such as pull-down and immunoprecipitation-based techniques allow to verify and better characterize these partnerships, possibly in combination with mass spectrometry methods. When transient interactions are involved, more sophisticated techniques, such as photoaffinity labelingprocedures, are necessary to detect the multiprotein complexes by having them covalently bound together as they interact. To provide even more thorough analyses of the formation, function and composition of protein complexes, other technologies such as confocal microscopy, fluorescence resonance energy transfer microscopy and site directed mutagenesis (possibly in murine models) have to be performed. The progressive accumulation of data defining novel protein-protein interactions has been considerably accelerated by the identification of specific sequence motifs that regulate integrin binding to

  14. Detecting coordinated regulation of multi-protein complexes using logic analysis of gene expression

    Directory of Open Access Journals (Sweden)

    Yeates Todd O

    2009-12-01

    Full Text Available Abstract Background Many of the functional units in cells are multi-protein complexes such as RNA polymerase, the ribosome, and the proteasome. For such units to work together, one might expect a high level of regulation to enable co-appearance or repression of sets of complexes at the required time. However, this type of coordinated regulation between whole complexes is difficult to detect by existing methods for analyzing mRNA co-expression. We propose a new methodology that is able to detect such higher order relationships. Results We detect coordinated regulation of multiple protein complexes using logic analysis of gene expression data. Specifically, we identify gene triplets composed of genes whose expression profiles are found to be related by various types of logic functions. In order to focus on complexes, we associate the members of a gene triplet with the distinct protein complexes to which they belong. In this way, we identify complexes related by specific kinds of regulatory relationships. For example, we may find that the transcription of complex C is increased only if the transcription of both complex A AND complex B is repressed. We identify hundreds of examples of coordinated regulation among complexes under various stress conditions. Many of these examples involve the ribosome. Some of our examples have been previously identified in the literature, while others are novel. One notable example is the relationship between the transcription of the ribosome, RNA polymerase and mannosyltransferase II, which is involved in N-linked glycan processing in the Golgi. Conclusions The analysis proposed here focuses on relationships among triplets of genes that are not evident when genes are examined in a pairwise fashion as in typical clustering methods. By grouping gene triplets, we are able to decipher coordinated regulation among sets of three complexes. Moreover, using all triplets that involve coordinated regulation with the ribosome

  15. The CD9/CD81 tetraspanin complex and tetraspanin CD151 regulate α3β1 integrin-dependent tumor cell behaviors by overlapping but distinct mechanisms.

    Directory of Open Access Journals (Sweden)

    Elisabeth Gustafson-Wagner

    Full Text Available Integrin α3β1 potently promotes cell motility on its ligands, laminin-332 and laminin-511, and this may help to explain why α3β1 has repeatedly been linked to breast carcinoma progression and metastasis. The pro-migratory functions of α3β1 depend strongly on lateral interactions with cell surface tetraspanin proteins. Tetraspanin CD151 interacts directly with the α3 integrin subunit and links α3β1 integrin to other tetraspanins, including CD9 and CD81. Loss of CD151 disrupts α3β1 association with other tetraspanins and impairs α3β1-dependent motility. However, the extent to which tetraspanins other than CD151 are required for specific α3β1 functions is unclear. To begin to clarify which aspects of α3β1 function require which tetraspanins, we created breast carcinoma cells depleted of both CD9 and CD81 by RNA interference. Silencing both of these closely related tetraspanins was required to uncover their contributions to α3β1 function. We then directly compared our CD9/CD81-silenced cells to CD151-silenced cells. Both CD9/CD81-silenced cells and CD151-silenced cells showed delayed α3β1-dependent cell spreading on laminin-332. Surprisingly, however, once fully spread, CD9/CD81-silenced cells, but not CD151-silenced cells, displayed impaired α3β1-dependent directed motility and altered front-rear cell morphology. Also unexpectedly, the CD9/CD81 complex, but not CD151, was required to promote α3β1 association with PKCα in breast carcinoma cells, and a PKC inhibitor mimicked aspects of the CD9/CD81-silenced cell motility defect. Our data reveal overlapping, but surprisingly distinct contributions of specific tetraspanins to α3β1 integrin function. Importantly, some of CD9/CD81's α3β1 regulatory functions may not require CD9/CD81 to be physically linked to α3β1 by CD151.

  16. Coordinated frequency regulation by offshore wind farms and VSC-HVDC transmission

    DEFF Research Database (Denmark)

    Liu, Hongzhi; Chen, Zhe

    2014-01-01

    With the increasing wind penetration, large-scale offshore wind farms exert significant impact on power system security and operation, and thus are required to contribute to system frequency regulation. This paper develops a coordinated control strategy for offshore wind farms with voltage source...... converter-based HVDC (VSC-HVDC) transmission system to participate in power system frequency regulation. The strategy explores the frequency support capability of offshore wind farms and VSC-HVDC. By implementing the proposed coordinated control, the VSCHVDC link is able to provide quick virtual inertial...... response to onshore grid frequency drops. Shortly afterwards, the offshore wind farm detects the frequency changes and start to participate in inertial response and primary frequency control. The offshore wind farms, in this study, consist of full-converter wind turbines (FCWTs). Simulation results...

  17. Tyrosine kinase Btk regulates E-selectin–mediated integrin activation and neutrophil recruitment by controlling phospholipase C (PLC) γ2 and PI3Kγ pathways

    Science.gov (United States)

    Mueller, Helena; Stadtmann, Anika; Van Aken, Hugo; Hirsch, Emilio; Wang, Demin; Ley, Klaus

    2010-01-01

    Selectins mediate leukocyte rolling, trigger β2-integrin activation, and promote leukocyte recruitment into inflamed tissue. E-selectin binding to P-selectin glycoprotein ligand 1 (PSGL-1) leads to activation of an immunoreceptor tyrosine-based activation motif (ITAM)–dependent pathway, which in turn activates the spleen tyrosine kinase (Syk). However, the signaling pathway linking Syk to integrin activation after E-selectin engagement is unknown. To identify the pathway, we used different gene-deficient mice in autoperfused flow chamber, intravital microscopy, peritonitis, and biochemical studies. We report here that the signaling pathway downstream of Syk divides into a phospholipase C (PLC) γ2– and phosphoinositide 3-kinase (PI3K) γ–dependent pathway. The Tec family kinase Bruton tyrosine kinase (Btk) is required for activating both pathways, generating inositol-3,4,5-trisphosphate (IP3), and inducing E-selectin–mediated slow rolling. Inhibition of this signal-transduction pathway diminished Gαi-independent leukocyte adhesion to and transmigration through endothelial cells in inflamed postcapillary venules of the cremaster. Gαi-independent neutrophil recruitment into the inflamed peritoneal cavity was reduced in Btk−/− and Plcg2−/− mice. Our data demonstrate the functional importance of this newly identified signaling pathway mediated by E-selectin engagement. PMID:20167705

  18. Ethanolic extract of Ficus carica leave Suppresses Angiogenesis by Regulating VEGF-A and Integrin β3 mRNA Expression in Human umbilical vein endothelial cells.

    Science.gov (United States)

    Ghambarali, Zahra; Bidmeshkipouri, Ali; Akrami, Hassan; Azadbakht, Mehri; Rabzia, Arezo

    2014-01-01

    In the present study, we investigated the anti-angiogenic effects of the ethanol extract of Ficus carica leave on human umbilical vein endothelial cells (HUVECs). HUVECs were used in this study. The cells were cultured in DMEM medium and then incubated with different concentrations of ethanolic extract of Ficus carica leave (0-25 μg\\ml) in the presence or absence of the extract for 24 hours. Cell viability was analyzed using neutral red assay. Endothelial cell tube formation was measured with the Matrigel basement membrane matrix. The level of VEGF and Integrin β3 mRNA expression in the HUVECs was measured with reverse-transcription quantitative real-time polymerase chain reaction (RT-q real time PCR). We observed that the extract dose dependently inhibited the tube formation of HUVECs. Furthermore, the extract significantly decreased mRNA expression levels of VEGF-A and Integrin β3 in HUVECs at 20 μg\\ml concentration of the extract compared to untreated control cells (P Ficus carica leave contains anti-angiogenic activities and could be a candidate as a potential agent for the prevention of angiogenesis related disorders.

  19. Ube2w and ataxin-3 coordinately regulate the ubiquitin ligase CHIP

    Science.gov (United States)

    Scaglione, K. Matthew; Zavodszky, Eszter; Todi, Sokol V.; Patury, Srikanth; Xu, Ping; Rodríguez-Lebrón, Edgardo; Fischer, Svetlana; Konen, John; Djarmati, Ana; Peng, Junmin; Gestwicki, Jason E.; Paulson, Henry L.

    2011-01-01

    Summary The mechanisms by which ubiquitin ligases are regulated remain poorly understood. Here we describe a series of molecular events that coordinately regulate CHIP, a neuroprotective E3 implicated in protein quality control. Through their opposing activities, the initiator E2, Ube2w, and the specialized deubiquitinating enzyme (DUB), ataxin-3, participate in initiating, regulating and terminating the CHIP ubiquitination cycle. Monoubiquitination of CHIP by Ube2w stabilizes the interaction between CHIP and ataxin-3, which through its DUB activity limits the length of chains attached to CHIP substrates. Upon completion of substrate ubiquitination ataxin-3 deubiquitinates CHIP, effectively terminating the reaction. Our results suggest that functional pairing of E3s with ataxin-3 or similar DUBs represents an important point of regulation in ubiquitin-dependent protein quality control. In addition, the results shed light on disease pathogenesis in SCA3, a neurodegenerative disorder caused by polyglutamine expansion in ataxin-3. PMID:21855799

  20. Alpha9beta1 integrin in melanoma cells can signal different adhesion states for migration and anchorage

    DEFF Research Database (Denmark)

    Lydolph, Magnus C; Morgan-Fisher, Marie; Høye, Anette M

    2009-01-01

    Cell surface integrins are the primary receptors for cell migration on extracellular matrix, and exist in several activation states regulated in part by ectodomain conformation. The alpha9 integrin subunit, which pairs only with beta1, has specific roles in the immune system and may regulate cell...... migration. Melanoma cells express abundant alpha9beta1 integrin, and its role in cell migration was assessed. Ligands derived from Tenascin-C and ADAM12 supported alpha9beta1 integrin-mediated cell attachment and GTP-Rac dependent migration, but not focal adhesion formation. Manganese ions induced alpha9......beta1 integrin- and Rho kinase-dependent focal adhesion and stress fibre formation, suggesting that the activation status of alpha9beta1 integrin was altered. The effect of manganese ions in promoting focal adhesion formation was reproduced by beta1 integrin activating antibody. The alpha9beta1...

  1. Engineering Metal Ion Coordination to Regulate Amyloid Fibril Assembly And Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Dong, J.; Canfield, J.M.; Mehta, A.K.; Shokes, J.E.; Tian, B.; Childers, W.S.; Simmons, J.A.; Mao, Z.; Scott, R.A.; Warncke, K.; Lynn, D.G.

    2009-06-02

    Protein and peptide assembly into amyloid has been implicated in functions that range from beneficial epigenetic controls to pathological etiologies. However, the exact structures of the assemblies that regulate biological activity remain poorly defined. We have previously used Zn{sup 2+} to modulate the assembly kinetics and morphology of congeners of the amyloid {beta} peptide (A{beta}) associated with Alzheimer's disease. We now reveal a correlation among A{beta}-Cu{sup 2+} coordination, peptide self-assembly, and neuronal viability. By using the central segment of A{beta}, HHQKLVFFA or A{beta}(13-21), which contains residues H13 and H14 implicated in A{beta}-metal ion binding, we show that Cu{sup 2+} forms complexes with A{beta}(13-21) and its K16A mutant and that the complexes, which do not self-assemble into fibrils, have structures similar to those found for the human prion protein, PrP. N-terminal acetylation and H14A substitution, Ac-A{beta}(13-21)H14A, alters metal coordination, allowing Cu{sup 2+} to accelerate assembly into neurotoxic fibrils. These results establish that the N-terminal region of A{beta} can access different metal-ion-coordination environments and that different complexes can lead to profound changes in A{beta} self-assembly kinetics, morphology, and toxicity. Related metal-ion coordination may be critical to the etiology of other neurodegenerative diseases.

  2. Coordinated risk informed regulation: a conceptual approach illustrated by the industry of phytosanitary radiation treatment

    International Nuclear Information System (INIS)

    Wieland, Patricia

    2012-01-01

    Regulatory bodies control areas such as health, environment, safety, transportation, finance or any other area of strategic importance to the national sustainable development, where the free activity of economic agents will not lead to socially desirable results. In Brazil, industrial activities impacting on different social and economic segments may be subject to regulation by several governmental agencies, with different cultures, requirements, procedures, and deadlines. To approve an industrial undertaking, most often each regulator analyzes in isolation the aspect of its concern. Also in monitoring and enforcement, the agencies usually act individually. The proliferation and fragmentation of regulation have, in some cases, delayed or even inhibited the development of industrial activities, and thus, working against the very purpose of regulation. This thesis illustrates the current situation with the regulation on food irradiation services, proposes and justifies an organizational structure to enhance coordination among regulatory agencies by aligning their activities and avoiding inconsistencies, overlaps and omissions. This structure comprises, among other mechanisms, a single Internet portal on Federal Regulation, an integrated and dynamic risk analysis and the harmonization of decision-making. The purpose is to promote regulation predictability, regulatory action consistency, optimization of public resources, transparency in the agencies' decision making, and to bring benefits to the entrepreneurs by offering them real-time monitoring and more agile processes. (author)

  3. Multiple diguanylate cyclase-coordinated regulation of pyoverdine synthesis in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Chen, Yicai; Yuan, Mingjun; Mohanty, Anee

    2015-01-01

    intrinsic feature of c-di-GMP signalling is the abundance of DGCs and PDEs encoded by many bacterial species. It is unclear whether the different DGCs or PDEs coordinately establish the c-di-GMP regulation or function independently of each other. Here, we provide evidence that multiple DGCs are involved......The nucleotide signalling molecule bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) plays an essential role in regulating microbial virulence and biofilm formation. C-di-GMP is synthesized by diguanylate cyclase (DGC) enzymes and degraded by phosphodiesterase (PDE) enzymes. One...... in regulation of c-di-GMP on synthesis of the major iron siderophore pyoverdine in Pseudomonas aeruginosa. Constitutive expression of the WspG or YedQ DGC in P.aeruginosa is able to induce its pyoverdine synthesis. Induction of pyoverdine synthesis by high intracellular c-di-GMP depends on the synthesis...

  4. Islet Coordinately Regulates Motor Axon Guidance and Dendrite Targeting through the Frazzled/DCC Receptor

    Directory of Open Access Journals (Sweden)

    Celine Santiago

    2017-02-01

    Full Text Available Motor neuron axon targeting in the periphery is correlated with the positions of motor neuron inputs in the CNS, but how these processes are coordinated to form a myotopic map remains poorly understood. We show that the LIM homeodomain factor Islet (Isl controls targeting of both axons and dendrites in Drosophila motor neurons through regulation of the Frazzled (Fra/DCC receptor. Isl is required for fra expression in ventrally projecting motor neurons, and isl and fra mutants have similar axon guidance defects. Single-cell labeling indicates that isl and fra are also required for dendrite targeting in a subset of motor neurons. Finally, overexpression of Fra rescues axon and dendrite targeting defects in isl mutants. These results indicate that Fra acts downstream of Isl in both the periphery and the CNS, demonstrating how a single regulatory relationship is used in multiple cellular compartments to coordinate neural circuit wiring.

  5. MicroRNAs-103/107 coordinately regulate macropinocytosis and autophagy

    Science.gov (United States)

    Peng, Han; Katsnelson, Julia; Yang, Wending; Rappoport, Joshua Z.

    2016-01-01

    Macropinocytosis, by which cells ingest large amounts of fluid, and autophagy, the lysosome-based catabolic process, involve vesicular biogenesis (early stage) and turnover (end stage). Much is known about early-stage events; however, our understanding of how the end stages of these processes are governed is incomplete. Here we demonstrate that the microRNA-103/107(miR-103/107) family, which is preferentially expressed in the stem cell–enriched limbal epithelium, coordinately regulates aspects of both these activities. Loss of miR-103/107 causes dysregulation of macropinocytosis with the formation of large vacuoles, primarily through up-regulation of Src, Ras, and Ankfy1. Vacuole accumulation is not a malfunction of early-stage autophagy; rather, miR-103/107 ensure proper end-stage autophagy by regulating diacylglycerol/protein kinase C and cyclin-dependent kinase 5 signaling, which enables dynamin to function in vacuole clearance. Our findings unveil a key biological function for miR-103/107 in coordinately suppressing macropinocytosis and preserving end-stage autophagy, thereby contributing to maintenance of a stem cell–enriched epithelium. PMID:27872138

  6. MicroRNAs-103/107 coordinately regulate macropinocytosis and autophagy.

    Science.gov (United States)

    Park, Jong Kook; Peng, Han; Katsnelson, Julia; Yang, Wending; Kaplan, Nihal; Dong, Ying; Rappoport, Joshua Z; He, CongCong; Lavker, Robert M

    2016-12-05

    Macropinocytosis, by which cells ingest large amounts of fluid, and autophagy, the lysosome-based catabolic process, involve vesicular biogenesis (early stage) and turnover (end stage). Much is known about early-stage events; however, our understanding of how the end stages of these processes are governed is incomplete. Here we demonstrate that the microRNA-103/107(miR-103/107) family, which is preferentially expressed in the stem cell-enriched limbal epithelium, coordinately regulates aspects of both these activities. Loss of miR-103/107 causes dysregulation of macropinocytosis with the formation of large vacuoles, primarily through up-regulation of Src, Ras, and Ankfy1. Vacuole accumulation is not a malfunction of early-stage autophagy; rather, miR-103/107 ensure proper end-stage autophagy by regulating diacylglycerol/protein kinase C and cyclin-dependent kinase 5 signaling, which enables dynamin to function in vacuole clearance. Our findings unveil a key biological function for miR-103/107 in coordinately suppressing macropinocytosis and preserving end-stage autophagy, thereby contributing to maintenance of a stem cell-enriched epithelium. © 2016 Park et al.

  7. The changing integrin expression and a role for integrin β8 in the chondrogenic differentiation of mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Vanessa L S LaPointe

    Full Text Available Many cartilage tissue engineering approaches aim to differentiate human mesenchymal stem cells (hMSCs into chondrocytes and develop cartilage in vitro by targeting cell-matrix interactions. We sought to better inform the design of cartilage tissue engineering scaffolds by understanding how integrin expression changes during chondrogenic differentiation. In three models of in vitro chondrogenesis, we studied the temporal change of cartilage phenotype markers and integrin subunits during the differentiation of hMSCs. We found that transcript expression of most subunits was conserved across the chondrogenesis models, but was significantly affected by the time-course of differentiation. In particular, ITGB8 was up-regulated and its importance in chondrogenesis was further established by a knockdown of integrin β8, which resulted in a non-hyaline cartilage phenotype, with no COL2A1 expression detected. In conclusion, we performed a systematic study of the temporal changes of integrin expression during chondrogenic differentiation in multiple chondrogenesis models, and revealed a role for integrin β8 in chondrogenesis. This work enhances our understanding of the changing adhesion requirements of hMSCs during chondrogenic differentiation and underlines the importance of integrins in establishing a cartilage phenotype.

  8. Coordinated Regulation of Virulence during Systemic Infection of Salmonella enterica serovar Typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyunjin; McDermott, Jason E.; Porwollik, Steffen; Mcclelland, Michael; Heffron, Fred

    2009-02-20

    Salmonella must respond to a myriad of environmental cues during infection of a mouse and express specific subsets of genes in a temporal and spatial manner to subvert the host defense mechanisms but these regulatory pathways are poorly established. To unravel how micro-environmental signals are processed and integrated into coordinated action, we constructed in-frame non-polar deletions of 84 regulators inferred to play a role in Salmonella typhimurium virulence and tested them in three virulence assays (intraperitoneal (i.p.), and intragastric (i.g.) infection in BALB/c mice, and persistence in SvJ129 mice). Overall 36 regulators were identified that were less virulent in at least one assay, and of those, 15 regulators were required for systemic mouse infection in an acute infection model. As a first step towards understanding the interplay between a pathogen and its host from a systems biology standpoint we focused on these 15 genes. Transcriptional profiles were obtained for each of these 15 regulators from strains grown under four different environmental conditions. These results as well as publicly available transcriptional profiles were analyzed using both network inference and cluster analysis algorithms. The analysis predicts a regulatory network in which all 15 regulators control a specific set of genes necessary for Salmonella to cause systemic infection. We tested the regulatory model by expressing a subset of the regulators in trans and monitoring transcription of 7 known virulence factors located within Salmonella pathogenicity island 2 (SPI-2). These experiments validated the regulatory model and showed that, for these 7 genes, the response regulator SsrB and the marR type regulator SlyA co-regulate in a regulatory cascade by integrating multiple signals.

  9. T-Cadherin Expression in Melanoma Cells Stimulates Stromal Cell Recruitment and Invasion by Regulating the Expression of Chemokines, Integrins and Adhesion Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Rubina, Kseniya A., E-mail: rkseniya@mail.ru; Surkova, Ekaterina I.; Semina, Ekaterina V.; Sysoeva, Veronika Y.; Kalinina, Natalia I. [Department of Biochemistry and Molecular Medicine, Faculty of Medicine, M.V. Lomonosov Moscow State University, Lomonosovsky av., 31/5, Moscow 119192 (Russian Federation); Poliakov, Alexei A. [Division of Developmental Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA (United Kingdom); Treshalina, Helena M. [Federal State Budgetary Scietific Institution «N.N. Blokhin Russian Cancer Research Center» (FSBSI “N.N.Blokhin RCRC”), Kashirskoe Shosse 24, Moscow 115478 (Russian Federation); Tkachuk, Vsevolod A. [Department of Biochemistry and Molecular Medicine, Faculty of Medicine, M.V. Lomonosov Moscow State University, Lomonosovsky av., 31/5, Moscow 119192 (Russian Federation)

    2015-07-21

    T-cadherin is a glycosyl-phosphatidylinositol (GPI) anchored member of the cadherin superfamily involved in the guidance of migrating cells. We have previously shown that in vivo T-cadherin overexpression leads to increased melanoma primary tumor growth due to the recruitment of mesenchymal stromal cells as well as the enhanced metastasis. Since tumor progression is highly dependent upon cell migration and invasion, the aim of the present study was to elucidate the mechanisms of T-cadherin participation in these processes. Herein we show that T-cadherin expression results in the increased invasive potential due to the upregulated expression of pro-oncogenic integrins, chemokines, adhesion molecules and extracellular matrix components. The detected increase in chemokine expression could be responsible for the stromal cell recruitment. At the same time our previous data demonstrated that T-cadherin expression inhibited neoangiogenesis in the primary tumors. We demonstrate that T-cadherin overexpression leads to the increase in the expression of anti-angiogenic molecules and reduction in pro-angiogenic factors. Thus, T-cadherin plays a dual role in melanoma growth and progression: T-cadherin expression results in anti-angiogenic effects in melanoma, however, this also stimulates transcription of genes responsible for migration and invasion of melanoma cells.

  10. The integrin-linked kinase gene up-regulated by hypoxia plays its pro-survival role in colorectal cancer cells.

    Science.gov (United States)

    Xiao, Lei; Yue, Xiaolong; Ming, Xiaodong; Xu, Lishan; Ding, Mingfeng; Xu, Jun; Liu, Qian

    2014-02-01

    Colorectal cancer (CRC) is a leading cause of cancer death in recent years. It is believed that there are hypoxic regions in both early and advanced stage of tumor and hypoxia is able to reinforce the aggressiveness of tumor cells and accelerate the progression of cancer. Until now the mechanisms by which hypoxia promotes the progression of CRC are far from well understood. Integrin-linked kinase (ILK) is a crucial mediator and over-expressed in CRC patients. But whether ILK is involved in the process that hypoxia promotes CRC cells growth and silencing the ILK gene results in CRC cells apoptosis is not clear. Lentivirus transfection, invasion assay, TUNEL assay, Bromodeoxyuridine incorporation and mitochondrial function assay were applied to demonstrate our hypothesis. In this study, we found that hypoxia induced the expression of ILK in a time-dependent manner, and after knocking down ILK expression with ILK shRNA, the cells proliferation promoted by hypoxia was inhibited in HT29 cell line. Moreover, blocking the ILK pathway led to caspase-3 and caspase-9 activations, the decrease of mitochondrial membrane potential, and cells apoptosis. And the inhibitory effects of hypoxia on cells apoptosis were mediated by the ILK pathway. In addition, hypoxia promoted HT29 cells metastasis and invasion through the ILK pathway. Therefore, we conclude that the CRC cells survival and invasion enhanced by hypoxia are mediated by ILK, and ILK may be an important potential therapeutic target for CRC.

  11. Inflammation-sensitive super enhancers form domains of coordinately regulated enhancer RNAs.

    Science.gov (United States)

    Hah, Nasun; Benner, Chris; Chong, Ling-Wa; Yu, Ruth T; Downes, Michael; Evans, Ronald M

    2015-01-20

    Enhancers are critical genomic elements that define cellular and functional identity through the spatial and temporal regulation of gene expression. Recent studies suggest that key genes regulating cell type-specific functions reside in enhancer-dense genomic regions (i.e., super enhancers, stretch enhancers). Here we report that enhancer RNAs (eRNAs) identified by global nuclear run-on sequencing are extensively transcribed within super enhancers and are dynamically regulated in response to cellular signaling. Using Toll-like receptor 4 (TLR4) signaling in macrophages as a model system, we find that transcription of super enhancer-associated eRNAs is dynamically induced at most of the key genes driving innate immunity and inflammation. Unexpectedly, genes repressed by TLR4 signaling are also associated with super enhancer domains and accompanied by massive repression of eRNA transcription. Furthermore, we find each super enhancer acts as a single regulatory unit within which eRNA and genic transcripts are coordinately regulated. The key regulatory activity of these domains is further supported by the finding that super enhancer-associated transcription factor binding is twice as likely to be conserved between human and mouse than typical enhancer sites. Our study suggests that transcriptional activities at super enhancers are critical components to understand the dynamic gene regulatory network.

  12. Coordinated Evolution of Transcriptional and Post-Transcriptional Regulation for Mitochondrial Functions in Yeast Strains.

    Directory of Open Access Journals (Sweden)

    Xuepeng Sun

    Full Text Available Evolution of gene regulation has been proposed to play an important role in environmental adaptation. Exploring mechanisms underlying coordinated evolutionary changes at various levels of gene regulation could shed new light on how organism adapt in nature. In this study, we focused on regulatory differences between a laboratory Saccharomyces cerevisiae strain BY4742 and a pathogenic S. cerevisiae strain, YJM789. The two strains diverge in many features, including growth rate, morphology, high temperature tolerance, and pathogenicity. Our RNA-Seq and ribosomal footprint profiling data showed that gene expression differences are pervasive, and genes functioning in mitochondria are mostly divergent between the two strains at both transcriptional and translational levels. Combining functional genomics data from other yeast strains, we further demonstrated that significant divergence of expression for genes functioning in the electron transport chain (ETC was likely caused by differential expression of a transcriptional factor, HAP4, and that post-transcriptional regulation mediated by an RNA-binding protein, PUF3, likely led to expression divergence for genes involved in mitochondrial translation. We also explored mito-nuclear interactions via mitochondrial DNA replacement between strains. Although the two mitochondrial genomes harbor substantial sequence divergence, neither growth nor gene expression were affected by mitochondrial DNA replacement in both fermentative and respiratory growth media, indicating compatible mitochondrial and nuclear genomes between these two strains in the tested conditions. Collectively, we used mitochondrial functions as an example to demonstrate for the first time that evolution at both transcriptional and post-transcriptional levels could lead to coordinated regulatory changes underlying strain specific functional variations.

  13. Low pH induces co-ordinate regulation of gene expression in oesophageal cells.

    Science.gov (United States)

    Duggan, Shane P; Gallagher, William M; Fox, Edward J P; Abdel-Latif, Mohammed M; Reynolds, John V; Kelleher, Dermot

    2006-02-01

    The development of gastro-oesophageal reflux disease (GORD) is known to be a causative risk factor in the evolution of adenocarcinoma of the oesophagus. The major component of this reflux is gastric acid. However, the impact of low pH on gene expression has not been extensively studied in oesophageal cells. This study utilizes a transcriptomic and bioinformatic approach to assess regulation of gene expression in response to low pH. In more detail, oesophageal adenocarcinoma cell lines were exposed to a range of pH environments. Affymetrix microarrays were used for gene-expression analysis and results were validated using cycle limitation and real-time RT-PCR analysis, as well as northern and western blotting. Comparative promoter transcription factor binding site (TFBS) analysis (MatInspector) of hierarchically clustered gene-expression data was employed to identify the elements which may co-ordinately regulate individual gene clusters. Initial experiments demonstrated maximal induction of EGR1 gene expression at pH 6.5. Subsequent array experimentation revealed significant induction of gene expression from such functional categories as DNA damage response (EGR1-4, ATF3) and cell-cycle control (GADD34, GADD45, p57). Changes in expression of EGR1, EGR3, ATF3, MKP-1, FOSB, CTGF and CYR61 were verified in separate experiments and in a variety of oesophageal cell lines. TFBS analysis of promoters identified transcription factors that may co-ordinately regulate gene-expression clusters, Cluster 1: Oct-1, AP4R; Cluster 2: NF-kB, EGRF; Cluster 3: IKRS, AP-1F. Low pH has the ability to induce genes and pathways which can provide an environment suitable for the progression of malignancy. Further functional analysis of the genes and clusters identified in this low pH study is likely to lead to new insights into the pathogenesis and therapeutics of GORD and oesophageal cancer.

  14. The primacy of β1 integrin activation in the metastatic cascade.

    Directory of Open Access Journals (Sweden)

    Hisashi Kato

    Full Text Available After neoplastic cells leave the primary tumor and circulate, they may extravasate from the vasculature and colonize tissues to form metastases. β1 integrins play diverse roles in tumorigenesis and tumor progression, including extravasation. In blood cells, activation of β1 integrins can be regulated by "inside-out" signals leading to extravasation from the circulation into tissues. However, a role for inside-out β1 activation in tumor cell metastasis is uncertain. Here we show that β1 integrin activation promotes tumor metastasis and that activated β1 integrin may serve as a biomarker of metastatic human melanoma. To determine whether β1 integrin activation can influence tumor cell metastasis, the β1 integrin subunit in melanoma and breast cancer cell lines was stably knocked down with shRNA and replaced with wild-type or constitutively-active β1. When tumor cells expressing constitutively-active β1 integrins were injected intravenously into chick embryos or mice, they demonstrated increased colonization of the liver when compared to cells expressing wild-type β1 integrins. Rescue expression with mutant β1 integrins revealed that tumor cell extravasation and hepatic colonization required extracellular ligand binding to β1 as well as β1 interaction with talin, an intracellular mediator of integrin activation by the Rap1 GTPase. Furthermore, shRNA-mediated knock down of talin reduced hepatic colonization by tumor cells expressing wild-type β1, but not constitutively-active β1. Overexpression in tumor cells of the tumor suppressor, Rap1GAP, inhibited Rap1 and β1 integrin activation as well as hepatic colonization. Using an antibody that detects activated β1 integrin, we found higher levels of activated β1 integrins in human metastatic melanomas compared to primary melanomas, suggesting that activated β1 integrin may serve as a biomarker of invasive tumor cells. Altogether, these studies establish that inside-out activation of

  15. Coordinate regulation between expression levels of telomere-binding proteins and telomere length in breast carcinomas

    International Nuclear Information System (INIS)

    Butler, Kimberly S; Hines, William C; Heaphy, Christopher M; Griffith, Jeffrey K

    2012-01-01

    Telomere dysregulation occurs in both the in situ and invasive stages of many carcinomas, including breast. Knockout experiments have identified several telomere-associated proteins required for proper telomere function and maintenance, including telomere repeat-binding factor 1 and 2 (TRF1 and TRF2), protection of telomeres (POT1), and TRF1-interacting nuclear factor 2 (TIN2). Using telomere content assays and quantitative reverse transcription-polymerase chain reaction (RT-PCR), we examined the relationship between telomere length and the mRNA levels of telomere-associated proteins in breast tumors. The levels of TRF2, TRF1, TIN2, and POT1 mRNA, but not telomerase reverse transcriptase (TERT) RNA, are inversely correlated with telomere content in breast tumors. Significant associations were identified between the mRNA levels of TRF1, TIN2, and POT1; however, there were no significant associations with the mRNA levels of TRF2 or TERT. These associations suggest that a complex transcriptional program coordinately regulates the expression of these mRNAs. We examined the promoter regions of the telomere-associated proteins to identify transcription factors consistent with the observed patterns of presumed coordinate expression. We demonstrated in human breast cancer cell lines that expressions of TRF1, TIN2, and POT1 are upregulated by dexamethasone, suggesting activation of the glucocorticoid receptor, whereas TERT, TRF2, TRF1, TIN2, and POT1 are upregulated by tumor necrosis factor-α (TNF-α), suggesting activation of the nuclear factor kappa B transcription factor. These findings link telomere content in breast tumors to the coordinate expression of several telomere-associated proteins previously shown to be negative regulators of telomere length in cell lines. The results further suggest a possible link between the expressions of the telomere-associated proteins and mediators of stress and inflammation. Telomere content assays and quantitative RT-PCR demonstrate

  16. Vascular expression of angiopoietin1, α5β1 integrin and tight junction proteins is tightly regulated during vascular remodeling in the post-ischemic brain.

    Science.gov (United States)

    Sun, Jialan; Yu, Liming; Huang, Shu; Lai, Xiaoyin; Milner, Richard; Li, Longxuan

    2017-10-24

    The post-stroke angiogenic response is accompanied by changes of tight junctions (TJs) of the blood-brain barrier (BBB). However, the precise dynamic change of TJ proteins (TJPs) in the different stages of stroke-induced vascular remodeling and the molecules mediating these processes have yet to be fully defined. To investigate the temporal relationship between changes in TJPs, the pro-angiogenic factor α5β1 integrin and the anti-permeability factor Ang1 in cerebral vessels following cerebral ischemic stroke, male C57Bl/6 mice were subject to 90min of ischemia by temporary occlusion of the middle cerebral artery followed by reperfusion and their brains analyzed 0, 1, 2, 4, 7 and 14days post-ischemia. Immunofluorescent studies demonstrated that in the ischemic penumbra, TJPs claudin-5 and ZO-1 levels decreased during the early stages of vascular remodeling, but then increased in the later stages. In contrast, within the ischemic core, TJPs levels decreased over the 14-day time-course, plateaued at day 4, and remained at low levels up to day 14. In the penumbra, Ang1 expression was induced, peaking at the same time point as α5β1 expression. Consistent with these findings, oxygen glucose deprivation/reperfusion induced expression of α5β1 and Ang1 on brain endothelial cell (BEC) in a similar manner in vitro, which correlated closely with BEC proliferation and increased expression of TJPs. Our results demonstrate that in the post-ischemic penumbra, a tight temporal correlation exists between the angiogenic markers α5β1 and Ang1 and the TJPs, suggesting a potential role for Ang1 and α5β1 in promoting BBB integrity following ischemic stroke. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Loss of ADAM9 expression impairs β1 integrin endocytosis, focal adhesion formation and cancer cell migration

    DEFF Research Database (Denmark)

    Mygind, Kasper J; Schwarz, Jeanette; Sahgal, Pranshu

    2018-01-01

    The transmembrane protease ADAM9 is frequently upregulated in human cancers, and it promotes tumour progression in mice.In vitro, ADAM9 regulates cancer cell adhesion and migration by interacting with integrins. However, how ADAM9 modulates integrin functions is not known. We here show that ADAM9......, and both internalization and subsequent degradation of β1 integrin are significantly decreased in ADAM9-silenced cells, with no effect on β1 integrin recycling. Accordingly, the formation of focal adhesions and actin stress fibres in ADAM9-silenced cells is altered, possibly explaining the reduction...... in cell adhesion and migration in these cells. Taken together, our data provide mechanistic insight into the ADAM9-integrin interaction, demonstrating that ADAM9 regulates β1 integrin endocytosis. Moreover, our findings indicate that the reduced migration of ADAM9-silenced cells is, at least in part...

  18. Zinc coordination is required for and regulates transcription activation by Epstein-Barr nuclear antigen 1.

    Directory of Open Access Journals (Sweden)

    Siddhesh Aras

    2009-06-01

    Full Text Available Epstein-Barr Nuclear Antigen 1 (EBNA1 is essential for Epstein-Barr virus to immortalize naïve B-cells. Upon binding a cluster of 20 cognate binding-sites termed the family of repeats, EBNA1 transactivates promoters for EBV genes that are required for immortalization. A small domain, termed UR1, that is 25 amino-acids in length, has been identified previously as essential for EBNA1 to activate transcription. In this study, we have elucidated how UR1 contributes to EBNA1's ability to transactivate. We show that zinc is necessary for EBNA1 to activate transcription, and that UR1 coordinates zinc through a pair of essential cysteines contained within it. UR1 dimerizes upon coordinating zinc, indicating that EBNA1 contains a second dimerization interface in its amino-terminus. There is a strong correlation between UR1-mediated dimerization and EBNA1's ability to transactivate cooperatively. Point mutants of EBNA1 that disrupt zinc coordination also prevent self-association, and do not activate transcription cooperatively. Further, we demonstrate that UR1 acts as a molecular sensor that regulates the ability of EBNA1 to activate transcription in response to changes in redox and oxygen partial pressure (pO(2. Mild oxidative stress mimicking such environmental changes decreases EBNA1-dependent transcription in a lymphoblastoid cell-line. Coincident with a reduction in EBNA1-dependent transcription, reductions are observed in EBNA2 and LMP1 protein levels. Although these changes do not affect LCL survival, treated cells accumulate in G0/G1. These findings are discussed in the context of EBV latency in body compartments that differ strikingly in their pO(2 and redox potential.

  19. System properties, feedback control and effector coordination of human temperature regulation.

    Science.gov (United States)

    Werner, Jürgen

    2010-05-01

    The aim of human temperature regulation is to protect body processes by establishing a relative constancy of deep body temperature (regulated variable), in spite of external and internal influences on it. This is basically achieved by a distributed multi-sensor, multi-processor, multi-effector proportional feedback control system. The paper explains why proportional control implies inherent deviations of the regulated variable from the value in the thermoneutral zone. The concept of feedback of the thermal state of the body, conveniently represented by a high-weighted core temperature (T (c)) and low-weighted peripheral temperatures (T (s)) is equivalent to the control concept of "auxiliary feedback control", using a main (regulated) variable (T (c)), supported by an auxiliary variable (T (s)). This concept implies neither regulation of T (s) nor feedforward control. Steady-states result in the closed control-loop, when the open-loop properties of the (heat transfer) process are compatible with those of the thermoregulatory processors. They are called operating points or balance points and are achieved due to the inherent property of dynamical stability of the thermoregulatory feedback loop. No set-point and no comparison of signals (e.g. actual-set value) are necessary. Metabolic heat production and sweat production, though receiving the same information about the thermal state of the body, are independent effectors with different thresholds and gains. Coordination between one of these effectors and the vasomotor effector is achieved by the fact that changes in the (heat transfer) process evoked by vasomotor control are taken into account by the metabolic/sweat processor.

  20. Stripy Ftz target genes are coordinately regulated by Ftz-F1.

    Science.gov (United States)

    Hou, Hui Ying; Heffer, Alison; Anderson, W Ray; Liu, Jingnan; Bowler, Timothy; Pick, Leslie

    2009-11-15

    During development, cascades of regulatory genes act in a hierarchical fashion to subdivide the embryo into increasingly specified body regions. This has been best characterized in Drosophila, where genes encoding regulatory transcription factors form a network to direct the development of the basic segmented body plan. The pair-rule genes are pivotal in this process as they are responsible for the first subdivision of the embryo into repeated metameric units. The Drosophila pair-rule gene fushi tarazu (ftz) is a derived Hox gene expressed in and required for the development of alternate parasegments. Previous studies suggested that Ftz achieves its distinct regulatory specificity as a segmentation protein by interacting with a ubiquitously expressed cofactor, the nuclear receptor Ftz-F1. However, the downstream target genes regulated by Ftz and other pair-rule genes to direct segment formation are not known. In this study, we selected candidate Ftz targets by virtue of their early expression in Ftz-like stripes. This identified two new Ftz target genes, drumstick (drm) and no ocelli (noc), and confirmed that Ftz regulates a serotonin receptor (5-HT2). These are the earliest Ftz targets identified to date and all are coordinately regulated by Ftz-F1. Engrailed (En), the best-characterized Ftz/Ftz-F1 downstream target, is not an intermediate in regulation. The drm genomic region harbors two separate seven-stripe enhancers, identified by virtue of predicted Ftz-F1 binding sites, and these sites are necessary for stripe expression in vivo. We propose that pair-rule genes, exemplified by Ftz/Ftz-F1, promote segmentation by acting at different hierarchical levels, regulating first, other segmentation genes; second, other regulatory genes that in turn control specific cellular processes such as tissue differentiation; and, third, 'segmentation realizator genes' that are directly involved in morphogenesis.

  1. Co-ordinate regulation of genes involved in storage lipid mobilization in Arabidopsis thaliana.

    Science.gov (United States)

    Rylott, E L; Hooks, M A; Graham, I A

    2001-05-01

    Molecular genetic approaches in the model plant Arabidopsis thaliana (Col0) are shedding new light on the role and control of the pathways associated with the mobilization of lipid reserves during oilseed germination and post-germinative growth. Numerous independent studies have reported on the expression of individual genes encoding enzymes from the three major pathways: beta-oxidation, the glyoxylate cycle and gluconeogenesis. However, a single comprehensive study of representative genes and enzymes from the different pathways in a single plant species has not been done. Here we present results from Arabidopsis that demonstrate the co-ordinate regulation of gene expression and enzyme activities for the acyl-CoA oxidase- and 3-ketoacyl-CoA thiolase-mediated steps of beta-oxidation, the isocitrate lyase and malate synthase steps of the glyoxylate cycle and the phosphoenolpyruvate carboxykinase step of gluconeogenesis. The mRNA abundance and enzyme activities increase to a peak at stage 2, 48 h after the onset of seed germination, and decline thereafter either to undetectable levels (for malate synthase and isocitrate lyase) or low basal levels (for the genes of beta-oxidation and gluconeogenesis). The co-ordinate induction of all these genes at the onset of germination raises the possibility that a global regulatory mechanism operates to induce the expression of genes associated with the mobilization of storage reserves during the heterotrophic growth period.

  2. Balancing Water Uptake and Loss through the Coordinated Regulation of Stomatal and Root Development

    Science.gov (United States)

    Hepworth, Christopher; Turner, Carla; Landim, Marcela Guimaraes; Cameron, Duncan; Gray, Julie E.

    2016-01-01

    Root development is influenced by nutrient and water availabilities. Plants are able to adjust many attributes of their root in response to environmental signals including the size and shape of the primary root, lateral roots and root hairs. Here we investigated the response of roots to changes in the levels of leaf transpiration associated with altered stomatal frequency. We found that plants with high stomatal density and conductance produce a larger rooting area and as a result have enhanced phosphate uptake capacity whereas plants with low stomatal conductance produce a smaller root. Manipulating the growth environment of plants indicated that enhanced root growth is most likely a result of an increased demand for water rather than phosphate. Plants manipulated to have an increase or reduction in root hair growth show a reduction or increase respectively, in stomatal conductance and density. Our results demonstrate that plants can balance their water uptake and loss through coordinated regulation of both stomatal and root development. PMID:27275842

  3. KSR1 is coordinately regulated with Notch signaling and oxidative phosphorylation in thyroid cancer.

    Science.gov (United States)

    Lee, Jandee; Seol, Mi-Youn; Jeong, Seonhyang; Kwon, Hyeong Ju; Lee, Cho Rok; Ku, Cheol Ryong; Kang, Sang-Wook; Jeong, Jong Ju; Shin, Dong Yeob; Nam, Kee-Hyun; Lee, Eun Jig; Chung, Woong Youn; Jo, Young Suk

    2015-04-01

    Kinase suppressor of RAS1 (KSR1) is a scaffold protein implicated in RAS-mediated RAF activation. However, the molecular function of KSR in papillary thyroid cancer (PTC) is unknown. Thus, this study aimed to characterize the role of KSR1 in patients with PTC. qRT-PCR and immunohistochemistry (IHC) revealed inter-tumor heterogeneities in the expression of KSR1 in PTC tissues. Interestingly, BRAFV600E-positive PTC showed higher KSR1 mRNA expression than BRAFV600E-negative PTC (PCNKSR2 was associated with downregulation of the OxPhos gene set (nominal P<0.0001, FDR q-value <0.0001). In conclusion, KSR1 is coordinately regulated with Notch signaling and OxPhos in PTC, because its scaffold function might be required to sustain the proliferative signaling and metabolic remodeling associated with this type of cancer. © 2015 Society for Endocrinology.

  4. Regulation of grasping forces during bimanual in-phase and anti-phase coordination.

    Science.gov (United States)

    Serrien, D J; Wiesendanger, M

    2001-01-01

    When a hand-held object is moved, grip force is adapted in an anticipatory manner to load force due to a dynamic coupling between both forces. The present study addressed the issue of grip-load force regulation when moving rhythmically two hand-held objects in the vertical dimension, and more specifically the divergence of force control when performing according to the in-phase versus anti-phase mode. Results revealed that grip-load force ratio profiles were similar in both bimanual conditions. That is, force ratio was not constant throughout the movement cycles but followed a fairly regular pattern with maxima and minima, attained at upward and downward hand positions, respectively. However, anti-phase patterns showed an increased maximum grip-load force ratio as compared to in-phase patterns, whereas the latter did not differ from unimanual movements. The magnification of maximum force ratio during anti-phase movements suggests that rescaling occurred. This is likely due to the complexity of the anti-phase mode that necessitates increased monitoring and attention relative to the other performance conditions, creating a coordinative situation that imposes an additional degree of uncertainty. Therefore, the safety margin is amplified during anti-phase movements, probably as a strategy to prevent a potential destabilization of the grip during an asymmetrical load condition. Accordingly, these findings also demonstrate that grip-load force regulation is more proficiently controlled during bimanual in-phase than anti-phase movements. Herewith, the data add content to earlier work illustrating kinematic dissimilarities between both coordination modes.

  5. Function of Integrin-Linked Kinase in Modulating the Stemness of IL-6–Abundant Breast Cancer Cells by Regulating γ-Secretase–Mediated Notch1 Activation in Caveolae

    Directory of Open Access Journals (Sweden)

    En-Chi Hsu

    2015-06-01

    Full Text Available Interleukin-6 (IL-6 and Notch signaling are important regulators of breast cancer stem cells (CSCs, which drive the malignant phenotype through self-renewal, differentiation, and development of therapeutic resistance. We investigated the role of integrin-linked kinase (ILK in regulating IL-6–driven Notch1 activation and the ability to target breast CSCs through ILK inhibition. Ectopic expression/short hairpin RNA-mediated knockdown of ILK, pharmacological inhibition of ILK with the small molecule T315, Western blot analysis, immunofluorescence, and luciferase reporter assays were used to evaluate the regulation of IL-6–driven Notch1 activation by ILK in IL-6–producing triple-negative breast cancer cell lines (MDA-MB-231, SUM-159 and in MCF-7 and MCF-7IL-6 cells. The effects of ILK on γ-secretase complex assembly and cellular localization were determined by immunofluorescence, Western blots of membrane fractions, and immunoprecipitation. In vivo effects of T315-induced ILK inhibition on CSCs in SUM-159 xenograft models were assessed by mammosphere assays, flow cytometry, and tumorigenicity assays. Results show that the genetic knockdown or pharmacological inhibition of ILK suppressed Notch1 activation and the abundance of the γ-secretase components presenilin-1, nicastrin, and presenilin enhancer 2 at the posttranscriptional level via inhibition of caveolin-1-dependent membrane assembly of the γ-secretase complex. Accordingly, knockdown of ILK inhibited breast CSC-like properties in vitro and the breast CSC subpopulation in vivo in xenograft tumor models. Based on these findings, we propose a novel function of ILK in regulating γ-secretase–mediated Notch1 activation, which suggests the targeting of ILK as a therapeutic approach to suppress IL-6–induced breast CSCs.

  6. Targeting ILK and β4 integrin abrogates the invasive potential of ovarian cancer

    International Nuclear Information System (INIS)

    Choi, Yoon Pyo; Kim, Baek Gil; Gao, Ming-Qing; Kang, Suki; Cho, Nam Hoon

    2012-01-01

    Highlights: ► The potential of targeting ILK and integrins for highly aggressive ovarian cancer. ► Unanticipated synergistic effect for the combination of ILK/β4 integrin. ► Combination of ILK/β4 integrin effectively inhibited the PI3K/Akt/Rac1 cascade. ► Targeting of β4 integrin/ILK had potent inhibitory effects in ovarian cancer. -- Abstract: Integrins and integrin-linked kinase (ILK) are essential to cancerous invasion because they mediate physical interactions with the extracellular matrix, and regulate oncogenic signaling pathways. The purpose of our study is to determine whether deletion of β1 and β4 integrin and ILK, alone or in combination, has antitumoral effects in ovarian cancer. Expression of β1 and β4 integrin and ILK was analyzed by immunohistochemistry in 196 ovarian cancer tissue samples. We assessed the effects of depleting these molecules with shRNAs in ovarian cancer cells by Western blot, conventional RT-PCR, cell proliferation, migration, invasion, and in vitro Rac1 activity assays, and in vivo xenograft formation assays. Overexpression of β4 integrin and ILK in human ovarian cancer specimens was found to correlate with tumor aggressiveness. Depletion of these targets efficiently suppresses ovarian cancer cell proliferation, migration, and invasion in vitro and xenograft tumor formation in vivo. We also demonstrated that single depletion of ILK or combination depletion of β4 integrin/ILK inhibits phosphorylation of downstream signaling targets, p-Ser 473 Akt and p-Thr202/Tyr204 Erk1/2, and activation of Rac1, as well as reduce expression of MMP-2 and MMP-9 and increase expression of caspase-3 in vitro. In conclusion, targeting β4 integrin combined with ILK can instigate the latent tumorigenic potential and abrogate the invasive potential in ovarian cancer.

  7. Targeting ILK and {beta}4 integrin abrogates the invasive potential of ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yoon Pyo; Kim, Baek Gil [BK21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of); Department of Pathology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Gao, Ming-Qing; Kang, Suki [Department of Pathology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Cho, Nam Hoon, E-mail: cho1988@yuhs.ac [BK21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of); Department of Pathology, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer The potential of targeting ILK and integrins for highly aggressive ovarian cancer. Black-Right-Pointing-Pointer Unanticipated synergistic effect for the combination of ILK/{beta}4 integrin. Black-Right-Pointing-Pointer Combination of ILK/{beta}4 integrin effectively inhibited the PI3K/Akt/Rac1 cascade. Black-Right-Pointing-Pointer Targeting of {beta}4 integrin/ILK had potent inhibitory effects in ovarian cancer. -- Abstract: Integrins and integrin-linked kinase (ILK) are essential to cancerous invasion because they mediate physical interactions with the extracellular matrix, and regulate oncogenic signaling pathways. The purpose of our study is to determine whether deletion of {beta}1 and {beta}4 integrin and ILK, alone or in combination, has antitumoral effects in ovarian cancer. Expression of {beta}1 and {beta}4 integrin and ILK was analyzed by immunohistochemistry in 196 ovarian cancer tissue samples. We assessed the effects of depleting these molecules with shRNAs in ovarian cancer cells by Western blot, conventional RT-PCR, cell proliferation, migration, invasion, and in vitro Rac1 activity assays, and in vivo xenograft formation assays. Overexpression of {beta}4 integrin and ILK in human ovarian cancer specimens was found to correlate with tumor aggressiveness. Depletion of these targets efficiently suppresses ovarian cancer cell proliferation, migration, and invasion in vitro and xenograft tumor formation in vivo. We also demonstrated that single depletion of ILK or combination depletion of {beta}4 integrin/ILK inhibits phosphorylation of downstream signaling targets, p-Ser 473 Akt and p-Thr202/Tyr204 Erk1/2, and activation of Rac1, as well as reduce expression of MMP-2 and MMP-9 and increase expression of caspase-3 in vitro. In conclusion, targeting {beta}4 integrin combined with ILK can instigate the latent tumorigenic potential and abrogate the invasive potential in ovarian cancer.

  8. Coordinate regulation of stromelysin and collagenase genes determined with cDNA probes

    International Nuclear Information System (INIS)

    Frisch, S.M.; Clark, E.J.; Werb, Z.

    1987-01-01

    Secreted proteinases are required for tumor metastasis, angiogenesis, and tissue remodeling during wound healing and embryonic growth. Thus, the regulation of the genes of secreted proteinases may serve as an interesting model for growth-controlled genes in general. The authors studied the genes of the secreted proteinases stromelysin and collagenase by using molecularly cloned cDNAs from each proteinase. Stromelysin cDNA was cloned by differential screening of a total cDNA library from rabbit synovial cells treated with phorbol 12-myristate 13-acetate, which yielded a clone of 1.2 kilobase pairs; collagenase cDNA was obtained by cloning reverse transcripts of anti-collagenase-immunoadsorbed polysomal mRNA, which yielded a clone of 0.8 kilobase pairs. Stromelysin and collagenase mRNA species of 2.2 and 2.4 kilobases, respectively, were detected on hybridization blots of RNA from phorbol 12-myristate 13-acetate-treated but not untreated rabbit synovial cells. Expression of stromelysin mRNA was also induced in rabbit alveolar macrophages and rabbit brain capillary endothelial cells treated with phorbol 12-myristate 13-acetate. Stromelysin and collagenase mRNA were both induced by phorbol 12-myristate 13-acetate and cytochalasin B at a constant ratio of the two gene products; this suggest coordinate regulation. The fact that induction was blocked after inhibition of protein synthesis by cycloheximide implicates an indirect signal transduction pathway that requires new protein synthesis

  9. Coordinate regulation of the mother centriole component nlp by nek2 and plk1 protein kinases.

    Science.gov (United States)

    Rapley, Joseph; Baxter, Joanne E; Blot, Joelle; Wattam, Samantha L; Casenghi, Martina; Meraldi, Patrick; Nigg, Erich A; Fry, Andrew M

    2005-02-01

    Mitotic entry requires a major reorganization of the microtubule cytoskeleton. Nlp, a centrosomal protein that binds gamma-tubulin, is a G(2)/M target of the Plk1 protein kinase. Here, we show that human Nlp and its Xenopus homologue, X-Nlp, are also phosphorylated by the cell cycle-regulated Nek2 kinase. X-Nlp is a 213-kDa mother centriole-specific protein, implicating it in microtubule anchoring. Although constant in abundance throughout the cell cycle, it is displaced from centrosomes upon mitotic entry. Overexpression of active Nek2 or Plk1 causes premature displacement of Nlp from interphase centrosomes. Active Nek2 is also capable of phosphorylating and displacing a mutant form of Nlp that lacks Plk1 phosphorylation sites. Importantly, kinase-inactive Nek2 interferes with Plk1-induced displacement of Nlp from interphase centrosomes and displacement of endogenous Nlp from mitotic spindle poles, while active Nek2 stimulates Plk1 phosphorylation of Nlp in vitro. Unlike Plk1, Nek2 does not prevent association of Nlp with gamma-tubulin. Together, these results provide the first example of a protein involved in microtubule organization that is coordinately regulated at the G(2)/M transition by two centrosomal kinases. We also propose that phosphorylation by Nek2 may prime Nlp for phosphorylation by Plk1.

  10. Integrin β3 is required in infection and proliferation of classical swine fever virus.

    Directory of Open Access Journals (Sweden)

    Weiwei Li

    Full Text Available Classical Swine Fever (CSF is a highly infectious fatal pig disease, resulting in huge economic loss to the swine industry. Integrins are membrane-bound signal mediators, expressed on a variety of cell surfaces and are known as receptors or co-receptors for many viruses. However, the role of integrin β3 in CSFV infection is unknown. Here, through quantitive PCR, immunofluorescence (IFC and immunocytohistochemistry (ICC, we revealed that ST (swine testicles epithelial cells have a prominent advantage in CSFV proliferation as compared to EC (swine umbilical vein endothelial cell, IEC (swine intestinal epithelial cell and PK (porcine kidney epithelial cells. Meanwhile, ST cells had remarkably more integrin β3 expression as compared to EC, IEC and PK cells, which was positively correlated with CSFV infection and proliferation. Integrin β3 was up-regulated post CSFV infection in all the four cell lines, while the CSFV proliferation rate was decreased in integrin β3 function-blocked cells. ShRNA1755 dramatically decreased integrin β3, with a deficiency of 96% at the mRNA level and 80% at the protein level. CSFV proliferation was dramatically reduced in integrin β3 constantly-defected cells (ICDC, with the deficiencies of 92.6%, 99% and 81.7% at 24 h, 48 h and 72 h post CSFV infection, respectively. These results demonstrate that integrin β3 is required in CSFV infection and proliferation, which provide a new insight into the mechanism of CSFV infection.

  11. Integrins team up with tyrosine kinase receptors and plexins to control angiogenesis.

    Science.gov (United States)

    Serini, Guido; Napione, Lucia; Bussolino, Federico

    2008-05-01

    Understanding the role of integrins in the formation of vascular bed is important for designing new therapeutic approaches to ameliorate or inhibit pathological vascularization. Besides regulating cell adhesion and migration, integrins dynamically participate in a network with soluble molecules and their receptors. This study summarizes recent progress in the understanding of the reciprocal interactions between integrins, tyrosine kinase, and semaphorin receptors. During angiogenic remodeling, endothelial cells that line blood vessel walls dynamically modify their integrin-mediated adhesive contacts with the surrounding extracellular matrix. During angiogenesis, opposing autocrine and paracrine loops of growth factors and semaphorins regulate endothelial integrin activation and function through tyrosine kinase receptors and the neuropilin/plexins system. Moreover, proangiogenic and antiangiogenic factors can directly bind integrins and regulate endothelial cell behavior. Studies describing these intense research areas are discussed. Alteration in the balance between the angiogenic growth factors and semaphorins results in an impairment of integrin functions and could account for cardiovascular malformation and structural and functional abnormalities of the tumor vasculature.

  12. Integrins and epithelial cell polarity.

    Science.gov (United States)

    Lee, Jessica L; Streuli, Charles H

    2014-08-01

    Cell polarity is characterised by differences in structure, composition and function between at least two poles of a cell. In epithelial cells, these spatial differences allow for the formation of defined apical and basal membranes. It has been increasingly recognised that cell-matrix interactions and integrins play an essential role in creating epithelial cell polarity, although key gaps in our knowledge remain. This Commentary will discuss the mounting evidence for the role of integrins in polarising epithelial cells. We build a model in which both inside-out signals to polarise basement membrane assembly at the basal surface, and outside-in signals to control microtubule apical-basal orientation and vesicular trafficking are required for establishing and maintaining the orientation of epithelial cell polarity. Finally, we discuss the relevance of the basal integrin polarity axis to cancer. This article is part of a Minifocus on Establishing polarity. © 2014. Published by The Company of Biologists Ltd.

  13. Coordinated Regulation of Species-Specific Hydroxycinnamic Acid Degradation and Siderophore Biosynthesis Pathways in Agrobacterium fabrum

    Science.gov (United States)

    Baude, Jessica; Vial, Ludovic; Villard, Camille; Campillo, Tony; Lavire, Céline; Nesme, Xavier

    2016-01-01

    ABSTRACT The rhizosphere-inhabiting species Agrobacterium fabrum (genomospecies G8 of the Agrobacterium tumefaciens species complex) is known to degrade hydroxycinnamic acids (HCAs), especially ferulic acid and p-coumaric acid, via the novel A. fabrum HCA degradation pathway. Gene expression profiles of A. fabrum strain C58 were investigated in the presence of HCAs, using a C58 whole-genome oligoarray. Both ferulic acid and p-coumaric acid caused variations in the expression of more than 10% of the C58 genes. Genes of the A. fabrum HCA degradation pathway, together with the genes involved in iron acquisition, were among the most highly induced in the presence of HCAs. Two operons coding for the biosynthesis of a particular siderophore, as well as genes of the A. fabrum HCA degradation pathway, have been described as being specific to the species. We demonstrate here their coordinated expression, emphasizing the interdependence between the iron concentration in the growth medium and the rate at which ferulic acid is degraded by cells. The coordinated expression of these functions may be advantageous in HCA-rich but iron-starved environments in which microorganisms have to compete for both iron and carbon sources, such as in plant roots. The present results confirm that there is cooperation between the A. fabrum-specific genes, defining a particular ecological niche. IMPORTANCE We previously identified seven genomic regions in Agrobacterium fabrum that were specifically present in all of the members of this species only. Here we demonstrated that two of these regions, encoding the hydroxycinnamic acid degradation pathway and the iron acquisition pathway, were regulated in a coordinated manner. The coexpression of these functions may be advantageous in hydroxycinnamic acid-rich but iron-starved environments in which microorganisms have to compete for both iron and carbon sources, such as in plant roots. These data support the view that bacterial genomic species

  14. Leukocyte integrins and their ligand interactions

    Science.gov (United States)

    Hyun, Young-Min; Lefort, Craig T.; Kim, Minsoo

    2010-01-01

    Although critical for cell adhesion and migration during normal immune-mediated reactions, leukocyte integrins are also involved in the pathogenesis of diverse clinical conditions including autoimmune diseases and chronic inflammation. Leukocyte integrins therefore have been targets for anti-adhesive therapies to treat the inflammatory disorders. Recently, the therapeutic potential of integrin antagonists has been demonstrated in psoriasis and multiple sclerosis. However, current therapeutics broadly affect integrin functions and, thus, yield unfavorable side effects. This review discusses the major leukocyte integrins and the anti-adhesion strategies for treating immune diseases. PMID:19184539

  15. The Phosphorylation and Distribution of Cortactin Downstream of Integrin α9β1 Affects Cancer Cell Behaviour

    DEFF Research Database (Denmark)

    Høye, Anette M; Couchman, John R; Wewer, Ulla M

    2016-01-01

    localises, upon integrin activation. This was commensurate with reduced migration. The localisation and phosphorylation of cortactin Y470 was regulated by Yes kinase and PTEN phosphatase. Cortactin levels influenced fibronectin matrix assembly and active β1 integrin on the cell surface, being inversely...

  16. The Aspergillus fumigatus Damage Resistance Protein Family Coordinately Regulates Ergosterol Biosynthesis and Azole Susceptibility

    Directory of Open Access Journals (Sweden)

    Jinxing Song

    2016-02-01

    Full Text Available Ergosterol is a major and specific component of the fungal plasma membrane, and thus, the cytochrome P450 enzymes (Erg proteins that catalyze ergosterol synthesis have been selected as valuable targets of azole antifungals. However, the opportunistic pathogen Aspergillus fumigatus has developed worldwide resistance to azoles largely through mutations in the cytochrome P450 enzyme Cyp51 (Erg11. In this study, we demonstrate that a cytochrome b5-like heme-binding damage resistance protein (Dap family, comprised of DapA, DapB, and DapC, coordinately regulates the functionality of cytochrome P450 enzymes Erg5 and Erg11 and oppositely affects susceptibility to azoles. The expression of all three genes is induced in an azole concentration-dependent way, and the decreased susceptibility to azoles requires DapA stabilization of cytochrome P450 protein activity. In contrast, overexpression of DapB and DapC causes dysfunction of Erg5 and Erg11, resulting in abnormal accumulation of sterol intermediates and further accentuating the sensitivity of ΔdapA strains to azoles. The results of exogenous-hemin rescue and heme-binding-site mutagenesis experiments demonstrate that the heme binding of DapA contributes the decreased azole susceptibility, while DapB and -C are capable of reducing the activities of Erg5 and Erg11 through depletion of heme. In vivo data demonstrate that inactivated DapA combined with activated DapB yields an A. fumigatus mutant that is easily treatable with azoles in an immunocompromised mouse model of invasive pulmonary aspergillosis. Compared to the single Dap proteins found in Saccharomyces cerevisiae and Schizosaccharomyces pombe, we suggest that this complex Dap family regulatory system emerged during the evolution of fungi as an adaptive means to regulate ergosterol synthesis in response to environmental stimuli.

  17. Ascl1 Coordinately Regulates Gene Expression and the Chromatin Landscape during Neurogenesis

    Directory of Open Access Journals (Sweden)

    Alexandre A.S.F. Raposo

    2015-03-01

    Full Text Available The proneural transcription factor Ascl1 coordinates gene expression in both proliferating and differentiating progenitors along the neuronal lineage. Here, we used a cellular model of neurogenesis to investigate how Ascl1 interacts with the chromatin landscape to regulate gene expression when promoting neuronal differentiation. We find that Ascl1 binding occurs mostly at distal enhancers and is associated with activation of gene transcription. Surprisingly, the accessibility of Ascl1 to its binding sites in neural stem/progenitor cells remains largely unchanged throughout their differentiation, as Ascl1 targets regions of both readily accessible and closed chromatin in proliferating cells. Moreover, binding of Ascl1 often precedes an increase in chromatin accessibility and the appearance of new regions of open chromatin, associated with de novo gene expression during differentiation. Our results reveal a function of Ascl1 in promoting chromatin accessibility during neurogenesis, linking the chromatin landscape at Ascl1 target regions with the temporal progression of its transcriptional program.

  18. The coordinating role of IQGAP1 in the regulation of local, endosome-specific actin networks.

    Science.gov (United States)

    Samson, Edward B; Tsao, David S; Zimak, Jan; McLaughlin, R Tyler; Trenton, Nicholaus J; Mace, Emily M; Orange, Jordan S; Schweikhard, Volker; Diehl, Michael R

    2017-06-15

    IQGAP1 is a large, multi-domain scaffold that helps orchestrate cell signaling and cytoskeletal mechanics by controlling interactions among a spectrum of receptors, signaling intermediates, and cytoskeletal proteins. While this coordination is known to impact cell morphology, motility, cell adhesion, and vesicular traffic, among other functions, the spatiotemporal properties and regulatory mechanisms of IQGAP1 have not been fully resolved. Herein, we describe a series of super-resolution and live-cell imaging analyses that identified a role for IQGAP1 in the regulation of an actin cytoskeletal shell surrounding a novel membranous compartment that localizes selectively to the basal cortex of polarized epithelial cells (MCF-10A). We also show that IQGAP1 appears to both stabilize the actin coating and constrain its growth. Loss of compartmental IQGAP1 initiates a disassembly mechanism involving rapid and unconstrained actin polymerization around the compartment and dispersal of its vesicle contents. Together, these findings suggest IQGAP1 achieves this control by harnessing both stabilizing and antagonistic interactions with actin. They also demonstrate the utility of these compartments for image-based investigations of the spatial and temporal dynamics of IQGAP1 within endosome-specific actin networks. © 2017. Published by The Company of Biologists Ltd.

  19. The coordinating role of IQGAP1 in the regulation of local, endosome-specific actin networks

    Directory of Open Access Journals (Sweden)

    Edward B. Samson

    2017-06-01

    Full Text Available IQGAP1 is a large, multi-domain scaffold that helps orchestrate cell signaling and cytoskeletal mechanics by controlling interactions among a spectrum of receptors, signaling intermediates, and cytoskeletal proteins. While this coordination is known to impact cell morphology, motility, cell adhesion, and vesicular traffic, among other functions, the spatiotemporal properties and regulatory mechanisms of IQGAP1 have not been fully resolved. Herein, we describe a series of super-resolution and live-cell imaging analyses that identified a role for IQGAP1 in the regulation of an actin cytoskeletal shell surrounding a novel membranous compartment that localizes selectively to the basal cortex of polarized epithelial cells (MCF-10A. We also show that IQGAP1 appears to both stabilize the actin coating and constrain its growth. Loss of compartmental IQGAP1 initiates a disassembly mechanism involving rapid and unconstrained actin polymerization around the compartment and dispersal of its vesicle contents. Together, these findings suggest IQGAP1 achieves this control by harnessing both stabilizing and antagonistic interactions with actin. They also demonstrate the utility of these compartments for image-based investigations of the spatial and temporal dynamics of IQGAP1 within endosome-specific actin networks.

  20. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation.

    Science.gov (United States)

    Carr, Erikka L; Kelman, Alina; Wu, Glendon S; Gopaul, Ravindra; Senkevitch, Emilee; Aghvanyan, Anahit; Turay, Achmed M; Frauwirth, Kenneth A

    2010-07-15

    Activation of a naive T cell is a highly energetic event, which requires a substantial increase in nutrient metabolism. Upon stimulation, T cells increase in size, rapidly proliferate, and differentiate, all of which lead to a high demand for energetic and biosynthetic precursors. Although amino acids are the basic building blocks of protein biosynthesis and contribute to many other metabolic processes, the role of amino acid metabolism in T cell activation has not been well characterized. We have found that glutamine in particular is required for T cell function. Depletion of glutamine blocks proliferation and cytokine production, and this cannot be rescued by supplying biosynthetic precursors of glutamine. Correlating with the absolute requirement for glutamine, T cell activation induces a large increase in glutamine import, but not glutamate import, and this increase is CD28-dependent. Activation coordinately enhances expression of glutamine transporters and activities of enzymes required to allow the use of glutamine as a Krebs cycle substrate in T cells. The induction of glutamine uptake and metabolism requires ERK function, providing a link to TCR signaling. Together, these data indicate that regulation of glutamine use is an important component of T cell activation. Thus, a better understanding of glutamine sensing and use in T cells may reveal novel targets for immunomodulation.

  1. Balancing Water Uptake and Loss through the Coordinated Regulation of Stomatal and Root Development.

    Directory of Open Access Journals (Sweden)

    Christopher Hepworth

    Full Text Available Root development is influenced by nutrient and water availabilities. Plants are able to adjust many attributes of their root in response to environmental signals including the size and shape of the primary root, lateral roots and root hairs. Here we investigated the response of roots to changes in the levels of leaf transpiration associated with altered stomatal frequency. We found that plants with high stomatal density and conductance produce a larger rooting area and as a result have enhanced phosphate uptake capacity whereas plants with low stomatal conductance produce a smaller root. Manipulating the growth environment of plants indicated that enhanced root growth is most likely a result of an increased demand for water rather than phosphate. Plants manipulated to have an increase or reduction in root hair growth show a reduction or increase respectively, in stomatal conductance and density. Our results demonstrate that plants can balance their water uptake and loss through coordinated regulation of both stomatal and root development.

  2. Tumor targeting via integrin ligands

    Directory of Open Access Journals (Sweden)

    Udaya Kiran eMarelli

    2013-08-01

    Full Text Available Selective and targeted delivery of drugs to tumors is a major challenge for an effective cancer therapy and also to overcome the side effects associated with current treatments. Overexpression of various receptors on tumor cells is a characteristic structural and biochemical aspect of tumors and distinguishes them from physiologically normal cells. This abnormal feature is therefore suitable for selectively directing anticancer molecules to tumors by using ligands that can preferentially recognize such receptors. Several subtypes of integrin receptors that are crucial for cell adhesion, cell signaling, cell viability and motility have been shown to have an upregulated expression on cancer cells. Thus, ligands that recognize specific integrin subtypes represent excellent candidates to be conjugated to drugs or drug carrier systems and be targeted to tumors. In this regard, integrins recognizing the RGD cell adhesive sequence have been extensively targeted for tumor specific drug delivery. Here we review key recent examples on the presentation of RGD-based integrin ligands by means of distinct drug delivery systems, and discuss the prospects of such therapies to specifically target tumor cells.

  3. Galectin-3 alters the lateral mobility and clustering of β1-integrin receptors.

    Directory of Open Access Journals (Sweden)

    Esther H Yang

    Full Text Available Glycoprotein receptors are influenced by myriad intermolecular interactions at the cell surface. Specific glycan structures may interact with endogenous lectins that enforce or disrupt receptor-receptor interactions. Glycoproteins bound by multivalent lectins may form extended oligomers or lattices, altering the lateral mobility of the receptor and influencing its function through endocytosis or changes in activation. In this study, we have examined the interaction of Galectin-3 (Gal-3, a human lectin, with adhesion receptors. We measured the effect of recombinant Gal-3 added exogenously on the lateral mobility of the α5β1 integrin on HeLa cells. Using single-particle tracking (SPT we detected increased lateral mobility of the integrin in the presence of Gal-3, while its truncated C-terminal domain (Gal-3C showed only minor reductions in lateral mobility. Treatment of cells with Gal-3 increased β1-integrin mediated migration with no apparent changes in viability. In contrast, Gal-3C decreased both cell migration and viability. Fluorescence microscopy allowed us to confirm that exogenous Gal-3 resulted in reorganization of the integrin into larger clusters. We used a proteomics analysis to confirm that cells expressed endogenous Gal-3, and found that addition of competitive oligosaccharide ligands for the lectin altered the lateral mobility of the integrin. Together, our results are consistent with a Gal-3-integrin lattice model of binding and confirm that the lateral mobility of integrins is natively regulated, in part, by galectins.

  4. Applications of snake venom components to modulate integrin activities in cell-matrix interactions

    Science.gov (United States)

    Marcinkiewicz, Cezary

    2013-01-01

    Snake venom proteins are broadly investigated in the different areas of life science. Direct interaction of these compounds with cells may involve a variety of mechanisms that result in diverse cellular responses leading to the activation or blocking of physiological functions of the cell. In this review, the snake venom components interacting with integrins will be characterized in context of their effect on cellular response. Currently, two major families of snake venom proteins are considered as integrin-binding molecules. The most attention has been devoted to the disintegrin family, which binds certain types of integrins through specific motifs recognized as a tri-peptide structurally localized on an integrin-binding loop. Other snake venom integrin-binding proteins belong to the C-type lectin family. Snake venom molecules bind to the cellular integrins resulting in a modulation of cell signaling and in consequence, the regulation of cell proliferation, migration and apoptosis. Therefore, snake venom research on the integrin-binding molecules may have significance in biomedicine and basic cell biology. PMID:23811033

  5. Beta1 integrin-mediated adhesion signalling is essential for epidermal progenitor cell expansion.

    Directory of Open Access Journals (Sweden)

    Aleksandra Piwko-Czuchra

    Full Text Available BACKGROUND: There is a major discrepancy between the in vitro and in vivo results regarding the role of beta1 integrins in the maintenance of epidermal stem/progenitor cells. Studies of mice with skin-specific ablation of beta1 integrins suggested that epidermis can form and be maintained in their absence, while in vitro data have shown a fundamental role for these adhesion receptors in stem/progenitor cell expansion and differentiation. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate this discrepancy we generated hypomorphic mice expressing reduced beta1 integrin levels on keratinocytes that developed similar, but less severe defects than mice with beta1-deficient keratinocytes. Surprisingly we found that upon aging these abnormalities attenuated due to a rapid expansion of cells, which escaped or compensated for the down-regulation of beta1 integrin expression. A similar phenomenon was observed in aged mice with a complete, skin-specific ablation of the beta1 integrin gene, where cells that escaped Cre-mediated recombination repopulated the mutant skin in a very short time period. The expansion of beta1 integrin expressing keratinocytes was even further accelerated in situations of increased keratinocyte proliferation such as wound healing. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that expression of beta1 integrins is critically important for the expansion of epidermal progenitor cells to maintain epidermal homeostasis.

  6. Recommendations for a coordinated approach to regulating the uranium recovery industry

    International Nuclear Information System (INIS)

    Sweeney, K.; Thompson, A.J.; Lehrenbaum, W.U.; Gormley, P.; Kim, D.H.

    2001-01-01

    A number of regulatory positions that are of central importance to the uranium recovery industry today have their origins in regulatory interpretations that were developed by Nuclear Regulatory Commission (NRC or Commission) staff almost two decades ago, shortly after Congress first granted the Commission the direct authority to regulate uranium mill tailings and related wastes by enacting the Uranium Mill Tailings Radiation Control Act (UMTRCA) as an amendment to the Atomic Energy Act of 1954 (AEA). Consequently, several key regulatory positions that govern uranium recovery activities today were developed at a time when the regulatory programme for uranium milling operations, including the management and disposition of uranium mill tailings and related wastes, was in the earliest stages of conception, and when the uranium recovery industry was at or near peak levels of production. Often, the policies and positions that were developed by the Commission staff dining this period, and subsequently, were developed in an ad hoc manner, rather than being formulated as part of a deliberate, coordinated regulatory strategy. Moreover, many of these positions and policies were based on assumptions that would later turn out to be completely incorrect regarding the future development of the uranium recovery industry and of the regulatory programme governing the industry. In the twenty years that have elapsed since Congress first enacted UMTRCA, a robust programme has been created for the comprehensive regulation of uranium recovery activities. At the same time, the nature of the uranium recovery industry has changed dramatically. As a result, some of the policies and positions that were developed by Commission staff almost two decades ago, that may have seemed reasonable at the time they were developed, appear increasingly unreasonable and inappropriate today, given the current regulatory framework and the realities of the modern uranium recovery industry. This raises concerns

  7. Simulation of Cell Group Formation Regulated by Coordination Number, Cell Cycle and Duplication Frequency

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2013-08-01

    Full Text Available The effects of coordination number, a cell cycle and duplication frequency on cell-group formation have been investigated in a computer simulation. In the simulation, multiplication occurs in the last three steps of a cell cycle with a probability function to give variations in the interval. Each cell has a constant coordination number: four or six. When a cell gets surrounded by adjacent cells, its status changes from an active stage to a resting stage. Each cell repeats multiplication, and disappears when the times of multiplication reach to the limit. Variation was made in the coordination number, in the interval of multiplication and in the limited times of multiplication. The cells of the colony, which have the larger number of coordination, have reached the larger maximum population and disappeared earlier.

  8. Integrin Inhibitors in Prostate Cancer

    OpenAIRE

    Maylein C. Juan-Rivera; Magaly Martínez-Ferrer

    2018-01-01

    Prostate cancer (PCa) is the most frequently diagnosed cancer and the third highest cause of cancer-related deaths in men in the U.S. The development of chemotherapeutic agents that can bind PCa tumor cells with high specificity is critical in order to increase treatment effectiveness. Integrin receptors and their corresponding ligands have different expression patterns in PCa cells. They have been identified as promising targets to inhibit pathways involved in PCa progression. Currently, sev...

  9. Laminin-332-integrin interaction: a target for cancer therapy?

    Science.gov (United States)

    Tsuruta, Daisuke; Kobayashi, Hiromi; Imanishi, Hisayoshi; Sugawara, Koji; Ishii, Masamitsu; Jones, Jonathan C R

    2008-01-01

    For many years, extracellular matrix (ECM) was considered to function as a tissue support and filler. However, we now know that ECM proteins control many cellular events through their interaction with cell-surface receptors and cytoplasmic signaling pathways. For example, they regulate cell proliferation, cell division, cell adhesion, cell migration, and apoptosis. We focus in this review on a laminin isoform, laminin-332 (formerly termed laminin-5), a major component of the basement membrane (BM) of skin and other epithelial tissues. It is composed of 3 subunits (alpha3beta3 and gamma3 and interacts with at least two integrin receptors expressed by epithelial cells (alpha3beta1 and alpha6beta4 integrin. Mutations in either laminin-332 or integrin alpha6beta4 result in junctional epidermolysis bullosa, a blistering skin disease, while targeting of laminin-332 by autoantibodies in cicatricial pemphigoid leads to dysadhesion of epithelial cells from their underlying connective tissue. Abnormal expression of laminin-332 and its integrin receptors is also a hallmark of certain tumor types and is believed to promote invasion of colon, breast and skin cancer cells. Moreover, there is emerging evidence that laminin-332 and its protease degradation products are not only found at the leading front of several tumors but also likely induce and/or promote tumor cell migration. Thus, in this review, we focus specifically on the role of laminin-332 and its integrin receptors in adhesion, proliferation, and migration/invasion of cancer cells. Finally, we discuss strategies for the development of laminin-332-based antagonists for the treatment of malignant tumors.

  10. Outside-In Signal Transmission by Conformational Changes in Integrin Mac-11

    Science.gov (United States)

    Lefort, Craig T.; Hyun, Young-Min; Schultz, Joanne B.; Law, Foon-Yee; Waugh, Richard E.; Knauf, Philip A.; Kim, Minsoo

    2010-01-01

    Intracellular signals associated with or triggered by integrin ligation can control cell survival, differentiation, proliferation, and migration. Despite accumulating evidence that conformational changes regulate integrin affinity to its ligands, how integrin structure regulates signal transmission from the outside to the inside of the cell remains elusive. Using fluorescence resonance energy transfer, we addressed whether conformational changes in integrin Mac-1 are sufficient to transmit outside-in signals in human neutrophils. Mac-1 conformational activation induced by ligand occupancy or activating Ab binding, but not integrin clustering, triggered similar patterns of intracellular protein tyrosine phosphorylation, including Akt phosphorylation, and inhibited spontaneous neutrophil apoptosis, indicating that global conformational changes are critical for Mac-1-dependent outside-in signal transduction. In neutrophils and myeloid K562 cells, ligand ICAM-1 or activating Ab binding promoted switchblade-like extension of the Mac-1 extracellular domain and separation of the αM and β2 subunit cytoplasmic tails, two structural hallmarks of integrin activation. These data suggest the primacy of global conformational changes in the generation of Mac-1 outside-in signals. PMID:19864611

  11. IGF-IR promotes prostate cancer growth by stabilizing α5β1 integrin protein levels.

    Directory of Open Access Journals (Sweden)

    Aejaz Sayeed

    Full Text Available Dynamic crosstalk between growth factor receptors, cell adhesion molecules and extracellular matrix is essential for cancer cell migration and invasion. Integrins are transmembrane receptors that bind extracellular matrix proteins and enable cell adhesion and cytoskeletal organization. They also mediate signal transduction to regulate cell proliferation and survival. The type 1 insulin-like growth factor receptor (IGF-IR mediates tumor cell growth, adhesion and inhibition of apoptosis in several types of cancer. We have previously demonstrated that β1 integrins regulate anchorage-independent growth of prostate cancer (PrCa cells by regulating IGF-IR expression and androgen receptor-mediated transcriptional functions. Furthermore, we have recently reported that IGF-IR regulates the expression of β1 integrins in PrCa cells. We have dissected the mechanism through which IGF-IR regulates β1 integrin expression in PrCa. Here we report that IGF-IR is crucial for PrCa cell growth and that β1 integrins contribute to the regulation of proliferation by IGF-IR. We demonstrate that β1 integrin regulation by IGF-IR does not occur at the mRNA level. Exogenous expression of a CD4 - β1 integrin cytoplasmic domain chimera does not interfere with such regulation and fails to stabilize β1 integrin expression in the absence of IGF-IR. This appears to be due to the lack of interaction between the β1 cytoplasmic domain and IGF-IR. We demonstrate that IGF-IR stabilizes the β1 subunit by protecting it from proteasomal degradation. The α5 subunit, one of the binding partners of β1, is also downregulated along with β1 upon IGF-IR knockdown while no change is observed in the expression of the α2, α3, α4, α6 and α7 subunits. Our results reveal a crucial mechanistic role for the α5β1 integrin, downstream of IGF-IR, in regulating cancer growth.

  12. Cerebellar Shank2 Regulates Excitatory Synapse Density, Motor Coordination, and Specific Repetitive and Anxiety-Like Behaviors.

    Science.gov (United States)

    Ha, Seungmin; Lee, Dongwon; Cho, Yi Sul; Chung, Changuk; Yoo, Ye-Eun; Kim, Jihye; Lee, Jiseok; Kim, Woohyun; Kim, Hyosang; Bae, Yong Chul; Tanaka-Yamamoto, Keiko; Kim, Eunjoon

    2016-11-30

    Shank2 is a multidomain scaffolding protein implicated in the structural and functional coordination of multiprotein complexes at excitatory postsynaptic sites as well as in psychiatric disorders, including autism spectrum disorders. While Shank2 is strongly expressed in the cerebellum, whether Shank2 regulates cerebellar excitatory synapses, or contributes to the behavioral abnormalities observed in Shank2 -/- mice, remains unexplored. Here we show that Shank2 -/- mice show reduced excitatory synapse density in cerebellar Purkinje cells in association with reduced levels of excitatory postsynaptic proteins, including GluD2 and PSD-93, and impaired motor coordination in the Erasmus test. Shank2 deletion restricted to Purkinje cells (Pcp2-Cre;Shank2 fl/fl mice) leads to similar reductions in excitatory synapse density, synaptic protein levels, and motor coordination. Pcp2-Cre;Shank2 fl/fl mice do not recapitulate autistic-like behaviors observed in Shank2 -/- mice, such as social interaction deficits, altered ultrasonic vocalizations, repetitive behaviors, and hyperactivity. However, Pcp2-Cre;Shank2 fl/fl mice display enhanced repetitive behavior in the hole-board test and anxiety-like behavior in the light-dark test, which are not observed in Shank2 -/- mice. These results implicate Shank2 in the regulation of cerebellar excitatory synapse density, motor coordination, and specific repetitive and anxiety-like behaviors. The postsynaptic side of excitatory synapses contains multiprotein complexes, termed the postsynaptic density, which contains receptors, scaffolding/adaptor proteins, and signaling molecules. Shank2 is an excitatory postsynaptic scaffolding protein implicated in the formation and functional coordination of the postsynaptic density and has been linked to autism spectrum disorders. Using Shank2-null mice and Shank2-conditional knock-out mice with a gene deletion restricted to cerebellar Purkinje cells, we explored functions of Shank2 in the cerebellum

  13. Co-ordinate transcriptional regulation of dopamine synthesis genes by alpha-synuclein in human neuroblastoma cell lines.

    Science.gov (United States)

    Baptista, Melisa J; O'Farrell, Casey; Daya, Sneha; Ahmad, Rili; Miller, David W; Hardy, John; Farrer, Matthew J; Cookson, Mark R

    2003-05-01

    Abnormal accumulation of alpha-synuclein in Lewy bodies is a neuropathological hallmark of both sporadic and familial Parkinson's disease (PD). Although mutations in alpha-synuclein have been identified in autosomal dominant PD, the mechanism by which dopaminergic cell death occurs remains unknown. We investigated transcriptional changes in neuroblastoma cell lines transfected with either normal or mutant (A30P or A53T) alpha-synuclein using microarrays, with confirmation of selected genes by quantitative RT-PCR. Gene products whose expression was found to be significantly altered included members of diverse functional groups such as stress response, transcription regulators, apoptosis-inducing molecules, transcription factors and membrane-bound proteins. We also found evidence of altered expression of dihydropteridine reductase, which indirectly regulates the synthesis of dopamine. Because of the importance of dopamine in PD, we investigated the expression of all the known genes in dopamine synthesis. We found co-ordinated downregulation of mRNA for GTP cyclohydrolase, sepiapterin reductase (SR), tyrosine hydroxylase (TH) and aromatic acid decarboxylase by wild-type but not mutant alpha-synuclein. These were confirmed at the protein level for SR and TH. Reduced expression of the orphan nuclear receptor Nurr1 was also noted, suggesting that the co-ordinate regulation of dopamine synthesis is regulated through this transcription factor.

  14. TNF-alpha stimulation increases dental pulp stem cell migration in vitro through integrin alpha-6 subunit upregulation.

    Science.gov (United States)

    Shi, Lei; Fu, Shanqi; Fahim, Sidra; Pan, Shuang; Lina, He; Mu, Xiaodan; Niu, Yumei

    2017-03-01

    The dissemination of stem cells into tissues requiring inflammatory and reparative response is fundamentally dependent upon their chemotactic migration. Expression of TNF-α is up regulated in inflamed pulps. Dental pulp cells are also known to express integrin α6 subunit. Expression of integrin subunit α6 has been linked to the acquisition of migratory potential in a wide variety of cell types in both pathological and physiological capacities. Therefore, in this study we examined the effects of a pleiotropic cytokine TNF-α on the migration of hDPSCs and investigated its relationship with expression of integrin α6 in hDPSCs during chemotactic migration. hDPSC cultures were established. Protein expression profile of α6 integrin subunit was determined. Effect of exogenous TNF-α (50ng/mL) on hDPSCs' migration potential was evaluated by transwell inserts and in vitro scratch assay. Upregulation/downregulation of TNF-α mediated migration was assayed in presence/absence of integrin α6 respectively. To suppress integrin α6 expression, cells were transfected with integrin α6 siRNA and then cell migration and cytoskeletal changes were evaluated. Our results showed significant increase of hDPSCs' migration after stimulation with TNF-α. By knockdown of integrin α6, which is upregulated by TNF-α, we observed a decrease in the TNF-α directed chemotaxis of hDPSCs. In this study, we show that activation of integrin α6 brought about by TNF-α led to an increase in migratory activity in DPSCs in vitro thus describing a novel association between a cytokine TNF-α and α6 chain of an adhesion receptor integrin in regulating migration of hDPSCs. Copyright © 2016. Published by Elsevier Ltd.

  15. Multiple Signaling Pathways Coordinately Regulate Forgetting of Olfactory Adaptation through Control of Sensory Responses in Caenorhabditis elegans.

    Science.gov (United States)

    Kitazono, Tomohiro; Hara-Kuge, Sayuri; Matsuda, Osamu; Inoue, Akitoshi; Fujiwara, Manabi; Ishihara, Takeshi

    2017-10-18

    Forgetting memories is important for animals to properly respond to continuously changing environments. To elucidate the mechanisms of forgetting, we used one of the behavioral plasticities of Caenorhabditis elegans hermaphrodite, olfactory adaptation to an attractive odorant, diacetyl, as a simple model of learning. In C. elegans, the TIR-1/JNK-1 pathway accelerates forgetting of olfactory adaptation by facilitating neural secretion from AWC sensory neurons. In this study, to identify the downstream effectors of the TIR-1/JNK-1 pathway, we conducted a genetic screen for suppressors of the gain-of-function mutant of tir-1 ( ok1052 ), which shows excessive forgetting. Our screening showed that three proteins-a membrane protein, MACO-1; a receptor tyrosine kinase, SCD-2; and its putative ligand, HEN-1-regulated forgetting downstream of the TIR-1/JNK-1 pathway. We further demonstrated that MACO-1 and SCD-2/HEN-1 functioned in parallel genetic pathways, and only MACO-1 regulated forgetting of olfactory adaptation to isoamyl alcohol, which is an attractive odorant sensed by different types of sensory neurons. In olfactory adaptation, odor-evoked Ca 2+ responses in olfactory neurons are attenuated by conditioning and recovered thereafter. A Ca 2+ imaging study revealed that this attenuation is sustained longer in maco-1 and scd-2 mutant animals than in wild-type animals like the TIR-1/JNK-1 pathway mutants. Furthermore, temporal silencing by histamine-gated chloride channels revealed that the neuronal activity of AWC neurons after conditioning is important for proper forgetting. We propose that distinct signaling pathways, each of which has a specific function, may coordinately and temporally regulate forgetting by controlling sensory responses. SIGNIFICANCE STATEMENT Active forgetting is an important process to understand the whole mechanisms of memories. Recent papers have reported that the noncell autonomous regulations are required for proper forgetting in

  16. Integrin Regulation of Apoptosis in Breast Cancer

    National Research Council Canada - National Science Library

    Hu, Dana

    1997-01-01

    ...?, a disintegrin domain comprising highly conserved cysteine arrangement paftern found in all soluble snake venom disintegrins and previously identified ADAMs, a cysteine-rich domain that contains...

  17. Thyroid hormone coordinately regulates Na sup + -K sup + -ATPase. alpha. - and. beta. -subunit mRNA levels in kidney

    Energy Technology Data Exchange (ETDEWEB)

    McDonough, A.A.; Brown, T.A.; Horowitz, B.; Chiu, R.; Schlotterbeck, J.; Bowen, J.; Schmitt, C.A. (Univ. of Southern California School of Medicine, Los Angeles (USA))

    1988-02-01

    Synthesis of the sodium pump, Na{sup +}-K{sup +}-ATPase, is regulated by thyroid hormone in responsive tissues. The purpose of this study was to determine if triiodothyronine (T{sub 3}) regulates the concentration of the mRNAs coding for the two enzyme subunits, {alpha} and {beta}, and the time course of the response. A single dose of T{sub 3} was administered to hypothyroid rats that were killed at various times after injection. In the kidney cortexes of the T{sub 3}-injected animals, as well as hypothyroid and euthyroid rats, {alpha}- and {beta}-mRNA concentrations were measured by dot blot using cDNAs corresponding to the two mRNAs; {alpha}-subunit abundance was measured by Western blot using antibodies to the enzyme, and Na{sup +}-K{sup +}-ATPase activity was measured enzymatically. {alpha}- and {beta}-mRNAs increased coordinately to 1.6-fold over hypothyroid levels by 12 h after T{sub 3}. The authors conclude that T{sub 3} regulates Na{sup +}-K{sup +}-ATPase synthesis and activity by coordinately increasing the mRNAs of both the {alpha}- and {beta}-subunits of the enzyme.

  18. Transmission of integrin β7 transmembrane domain topology enables gut lymphoid tissue development.

    Science.gov (United States)

    Sun, Hao; Lagarrigue, Frederic; Gingras, Alexandre R; Fan, Zhichao; Ley, Klaus; Ginsberg, Mark H

    2018-04-02

    Integrin activation regulates adhesion, extracellular matrix assembly, and cell migration, thereby playing an indispensable role in development and in many pathological processes. A proline mutation in the central integrin β3 transmembrane domain (TMD) creates a flexible kink that uncouples the topology of the inner half of the TMD from the outer half. In this study, using leukocyte integrin α4β7, which enables development of gut-associated lymphoid tissue (GALT), we examined the biological effect of such a proline mutation and report that it impairs agonist-induced talin-mediated activation of integrin α4β7, thereby inhibiting rolling lymphocyte arrest, a key step in transmigration. Furthermore, the α4β7(L721P) mutation blocks lymphocyte homing to and development of the GALT. These studies show that impairing the ability of an integrin β TMD to transmit talin-induced TMD topology inhibits agonist-induced physiological integrin activation and biological function in development. © 2018 Sun et al.

  19. Beta1 integrin-mediated adhesion signalling is essential for epidermal progenitor cell expansion

    DEFF Research Database (Denmark)

    Piwko-Czuchra, Aleksandra; Koegel, Heidi; Meyer, Hannelore

    2009-01-01

    BACKGROUND: There is a major discrepancy between the in vitro and in vivo results regarding the role of beta1 integrins in the maintenance of epidermal stem/progenitor cells. Studies of mice with skin-specific ablation of beta1 integrins suggested that epidermis can form and be maintained in thei...... of increased keratinocyte proliferation such as wound healing. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that expression of beta1 integrins is critically important for the expansion of epidermal progenitor cells to maintain epidermal homeostasis....... that developed similar, but less severe defects than mice with beta1-deficient keratinocytes. Surprisingly we found that upon aging these abnormalities attenuated due to a rapid expansion of cells, which escaped or compensated for the down-regulation of beta1 integrin expression. A similar phenomenon...... was observed in aged mice with a complete, skin-specific ablation of the beta1 integrin gene, where cells that escaped Cre-mediated recombination repopulated the mutant skin in a very short time period. The expansion of beta1 integrin expressing keratinocytes was even further accelerated in situations...

  20. Dominant Suppression of β1 Integrin by Ectopic CD98-ICD Inhibits Hepatocellular Carcinoma Progression

    Directory of Open Access Journals (Sweden)

    Bo Wu

    2016-11-01

    Full Text Available Hepatocellular carcinoma (HCC is currently the third most common cause of cancer-related death in the Asia-Pacific region. Our previous work showed that knockdown of CD98 significantly inhibits malignant HCC cell phenotypes in vitro and in vivo. The level of CD98 in the membrane is tightly regulated to mediate complex processes associated with cell–cell communication and intracellular signaling. In addition, the intracellular domain of CD98 (CD98-ICD seems to be of vital importance for recycling CD98 to the membrane after it is endocytosed. The intracellular and transmembrane domains of CD98 associate with β-integrins (primarily β1 but also β3, and this association is essential for CD98 mediation of integrin-like signaling and complements dominant suppression of β1-integrin. We speculated that isolated CD98-ICD would similarly suppress β1-integrin activation and inhibit the malignant behaviors of cancer cells. In particular, the exact role of CD98-ICD has not been studied independently in HCC. In this study, we found that ectopic expression of CD98-ICD inhibited the malignant phenotypes of HCC cells, and the mechanism possibly involves β1-integrin suppression. Moreover, the expression levels of CD98, β1-integrin-A (the activated form of β1-integrin and Ki-67 were significantly increased in HCC tissues relative to those of normal liver tissues. Therefore, our preliminary study indicates that ectopic CD98-ICD has an inhibitory role in the malignant development of HCC, and shows that CD98-ICD acts as a dominant negative mutant of CD98 that attenuates β1-integrin activation. CD98-ICD may emerge as a promising candidate for antitumor treatment.

  1. Expression and ligand binding of alpha 2 beta 1 integrin on breast carcinoma cells.

    Science.gov (United States)

    Maemura, M; Akiyama, S K; Woods, V L; Dickson, R B

    1995-07-01

    We examined the expression and ligand specificity of the alpha 2 beta 1 integrin on human mammary epithelial cells (HMEC) and a panel of breast carcinoma cell lines in vitro. We found that the alpha 2 beta 1 integrin was universally, but quite variably expressed on these cells by FACS analysis. No significant correlation was observed between its expression and other known cellular phenotypes. Substrate attachment assays using blocking antibodies demonstrated that alpha 2 beta 1 integrin served as a receptor for collagen on HMEC and almost all breast carcinoma cells. However, its contribution to laminin binding of these cells appeared to be related to cellular differentiation as evaluated by sex steroid receptor status and by markers of epithelial-mesenchymal transition, i.e. loss of E-cadherin and expression of vimentin. Two different populations of non-malignant immortalized HMEC (184A1N4 and MCF-10A) contained cells capable of using alpha 2 beta 1 integrin as a laminin receptor. Breast cancer cell lines positive for estrogen receptor (ER) and E-cadherin (MCF-7, T47D, ZR75-1) could also use alpha 2 beta 1 integrin as a laminin receptor. Conversely, alpha 2 beta 1 integrin appeared to be incapable of binding to laminin or to be a very minor receptor for laminin on metastatic ER-negative breast carcinoma cells that expressed vimentin (MDA-MB 231, MDA-MB 435, and MDA-MB 436). These findings suggest that the ligand specificity of alpha 2 beta 1 integrin, i.e. its function as a laminin receptor, may be regulated during the malignant progression of breast carcinoma cells. A reduced contribution of alpha 2 beta 1 integrin to the cellular laminin binding appears to be associated with an increased malignant phenotype and with an epithelial-mesenchymal transition of breast carcinoma cells.

  2. Co-ordinate regulation of the cystic fibrosis and multidrug resistance genes in cystic fibrosis knockout mice.

    Science.gov (United States)

    Trezise, A E; Ratcliff, R; Hawkins, T E; Evans, M J; Freeman, T C; Romano, P R; Higgins, C F; Colledge, W H

    1997-04-01

    The cystic fibrosis (Cftr and multidrug resistance (Mdr1) genes encode structurally similar proteins which are members of the ABC transporter superfamily. These genes exhibit complementary patterns of expression in vivo, suggesting that the regulation of their expression may be co-ordinated. We have tested this hypothesis in vivo by examining Cftr and Mdr1 expression in cystic fibrosis knockout transgenic mice (Cftr(tm1CAM)). Cftr mRNA expression in Cftr(tm1CAM)/Cftr(tm1CAM) mice was 4-fold reduced in the intestine, as compared with littermate wild-type mice. All other Cftr(tm1CAM)/Cftr(tm1CAM) mouse tissues examined showed similar reductions in Cftr expression. In contrast, we observed a 4-fold increase in Mdr1 mRNA expression in the intestines of neonatal and 3- to 4-week-old Cftr(tm1CAM)/Cftr(tm1CAM) mice, as compared with age-matched +/+ mice, and an intermediate level of Mdr1 mRNA in heterozygous Cftr(tm1CAM) mice. In 10-week-old, Cftr(tm1CAM)/Cftr(tm1CAM) mice and in contrast to the younger mice, Mdr1 mRNA expression was reduced, by 3-fold. The expression of two control genes, Pgk-1 and Mdr2, was similar in all genotypes, suggesting that the changes in Mdr1 mRNA levels observed in the Cftr(tm1CAM)/Cftr(tm1CAM) mice are specific to the loss of Cftr expression and/or function. These data provide further evidence supporting the hypothesis that the regulation Cftr and Mdr1 expression is co-ordinated in vivo, and that this co-ordinate regulation is influenced by temporal factors.

  3. The effect of conditional inactivation of beta 1 integrins using twist 2 Cre, Osterix Cre and osteocalcin Cre lines on skeletal phenotype.

    Science.gov (United States)

    Shekaran, Asha; Shoemaker, James T; Kavanaugh, Taylor E; Lin, Angela S; LaPlaca, Michelle C; Fan, Yuhong; Guldberg, Robert E; García, Andrés J

    2014-11-01

    Skeletal development and growth are complex processes regulated by multiple microenvironmental cues, including integrin-ECM interactions. The β1 sub-family of integrins is the largest integrin sub-family and constitutes the main integrin binding partners of collagen I, the major ECM component of bone. As complete β1 integrin knockout results in embryonic lethality, studies of β1 integrin function in vivo rely on tissue-specific gene deletions. While multiple in vitro studies indicate that β1 integrins are crucial regulators of osteogenesis and mineralization, in vivo osteoblast-specific perturbations of β1 integrins have resulted in mild and sometimes contradictory skeletal phenotypes. To further investigate the role of β1 integrins on skeletal phenotype, we used the Twist2-Cre, Osterix-Cre and osteocalcin-Cre lines to generate conditional β1 integrin deletions, where Cre is expressed primarily in mesenchymal condensation, pre-osteoblast, and mature osteoblast lineage cells respectively within these lines. Mice with Twist2-specific β1 integrin disruption were smaller, had impaired skeletal development, especially in the craniofacial and vertebral tissues at E19.5, and did not survive beyond birth. Osterix-specific β1 integrin deficiency resulted in viable mice which were normal at birth but displayed early defects in calvarial ossification, incisor eruption and growth as well as femoral bone mineral density, structure, and mechanical properties. Although these defects persisted into adulthood, they became milder with age. Finally, a lack of β1 integrins in mature osteoblasts and osteocytes resulted in minor alterations to femur structure but had no effect on mineral density, biomechanics or fracture healing. Taken together, our data indicate that β1 integrin expression in early mesenchymal condensations play an important role in skeletal ossification, while β1 integrin-ECM interactions in pre-osteoblast, odontoblast- and hypertrophic chondryocyte

  4. Functional consequences of integrin gene mutations in mice

    DEFF Research Database (Denmark)

    Bouvard, D; Brakebusch, C; Gustafsson, E

    2001-01-01

    Integrins are cell-surface receptors responsible for cell attachment to extracellular matrices and to other cells. The application of mouse genetics has significantly increased our understanding of integrin function in vivo. In this review, we summarize the phenotypes of mice carrying mutant inte...... integrin genes and compare them with phenotypes of mice lacking the integrin ligands....

  5. Coordinated regulation of niche and stem cell precursors by hormonal signaling.

    Directory of Open Access Journals (Sweden)

    Dana Gancz

    2011-11-01

    Full Text Available Stem cells and their niches constitute units that act cooperatively to achieve adult body homeostasis. How such units form and whether stem cell and niche precursors might be coordinated already during organogenesis are unknown. In fruit flies, primordial germ cells (PGCs, the precursors of germ line stem cells (GSCs, and somatic niche precursors develop within the larval ovary. Together they form the 16-20 GSC units of the adult ovary. We show that ecdysone receptors are required to coordinate the development of niche and GSC precursors. At early third instar, ecdysone receptors repress precocious differentiation of both niches and PGCs. Early repression is required for correct morphogenesis of the ovary and for protecting future GSCs from differentiation. At mid-third instar, ecdysone signaling is required for niche formation. Finally, and concurrent with the initiation of wandering behavior, ecdysone signaling initiates PGC differentiation by allowing the expression of the differentiation gene bag of marbles in PGCs that are not protected by the newly formed niches. All the ovarian functions of ecdysone receptors are mediated through early repression, and late activation, of the ecdysone target gene broad. These results show that, similar to mammals, a brain-gland-gonad axis controls the initiation of oogenesis in insects. They further exemplify how a physiological cue coordinates the formation of a stem cell unit within an organ: it is required for niche establishment and to ensure that precursor cells to adult stem cells remain undifferentiated until the niches can accommodate them. Similar principles might govern the formation of additional stem cell units during organogenesis.

  6. Taurine up-regulated gene 1 functions as a master regulator to coordinate glycolysis and metastasis in hepatocellular carcinoma.

    Science.gov (United States)

    Lin, Yang-Hsiang; Wu, Meng-Han; Huang, Ya-Hui; Yeh, Chau-Ting; Cheng, Mei-Ling; Chi, Hsiang-Cheng; Tsai, Chung-Ying; Chung, I-Hsiao; Chen, Ching-Ying; Lin, Kwang-Huei

    2018-01-01

    Cancer cells display altered glucose metabolism characterized by a preference for aerobic glycolysis. The aerobic glycolytic phenotype of hepatocellular carcinoma (HCC) is often correlated with tumor progression and poorer clinical outcomes. However, the issue of whether glycolytic metabolism influences metastasis in HCC remains unclear. In the current study, we showed that knockdown of taurine up-regulated gene 1 (TUG1) induces marked inhibition of cell migration, invasion, and glycolysis through suppression of microRNA (miR)-455-3p. MiR-455-3p, which is transcriptionally repressed by p21, directly targets the 3' untranslated region of adenosine monophosphate-activated protein kinase subunit beta 2 (AMPKβ2). The TUG1/miR-455-3p/AMPKβ2 axis regulates cell growth, metastasis, and glycolysis through regulation of hexokinase 2 (HK2). TUG1 is clearly associated with HK2 overexpression and unfavorable prognosis in HCC patients. Our data collectively highlight that novel regulatory associations among TUG1, miR-455-3p, AMPKβ2, and HK2 are an important determinant of glycolytic metabolism and metastasis in HCC cells and support the potential utility of targeting TUG1/HK2 as a therapeutic strategy for HCC. (Hepatology 2018;67:188-203). © 2017 by the American Association for the Study of Liver Diseases.

  7. Metabolic regulation is sufficient for global and robust coordination of glucose uptake, catabolism, energy production and growth in Escherichia coli.

    Science.gov (United States)

    Millard, Pierre; Smallbone, Kieran; Mendes, Pedro

    2017-02-01

    The metabolism of microorganisms is regulated through two main mechanisms: changes of enzyme capacities as a consequence of gene expression modulation ("hierarchical control") and changes of enzyme activities through metabolite-enzyme interactions. An increasing body of evidence indicates that hierarchical control is insufficient to explain metabolic behaviors, but the system-wide impact of metabolic regulation remains largely uncharacterized. To clarify its role, we developed and validated a detailed kinetic model of Escherichia coli central metabolism that links growth to environment. Metabolic control analyses confirm that the control is widely distributed across the network and highlight strong interconnections between all the pathways. Exploration of the model solution space reveals that several robust properties emerge from metabolic regulation, from the molecular level (e.g. homeostasis of total metabolite pool) to the overall cellular physiology (e.g. coordination of carbon uptake, catabolism, energy and redox production, and growth), while allowing a large degree of flexibility at most individual metabolic steps. These properties have important physiological implications for E. coli and significantly expand the self-regulating capacities of its metabolism.

  8. Metabolic regulation is sufficient for global and robust coordination of glucose uptake, catabolism, energy production and growth in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Pierre Millard

    2017-02-01

    Full Text Available The metabolism of microorganisms is regulated through two main mechanisms: changes of enzyme capacities as a consequence of gene expression modulation ("hierarchical control" and changes of enzyme activities through metabolite-enzyme interactions. An increasing body of evidence indicates that hierarchical control is insufficient to explain metabolic behaviors, but the system-wide impact of metabolic regulation remains largely uncharacterized. To clarify its role, we developed and validated a detailed kinetic model of Escherichia coli central metabolism that links growth to environment. Metabolic control analyses confirm that the control is widely distributed across the network and highlight strong interconnections between all the pathways. Exploration of the model solution space reveals that several robust properties emerge from metabolic regulation, from the molecular level (e.g. homeostasis of total metabolite pool to the overall cellular physiology (e.g. coordination of carbon uptake, catabolism, energy and redox production, and growth, while allowing a large degree of flexibility at most individual metabolic steps. These properties have important physiological implications for E. coli and significantly expand the self-regulating capacities of its metabolism.

  9. Co-ordinate regulation of sterol biosynthesis enzyme activity during accumulation of sterols in developing rape and tobacco seed.

    Science.gov (United States)

    Harker, Mark; Hellyer, Amanda; Clayton, John C; Duvoix, Annelyse; Lanot, Alexandra; Safford, Richard

    2003-02-01

    The activities of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, sterol methyl transferase 1 and sterol acyltransferase, key enzymes involved in phytosterol biosynthesis were shown to be co-ordinately regulated during oilseed rape ( Brassica napus L.) and tobacco ( Nicotiana tabacum L.) seed development. In both plants, enzyme activities were low during the initial stages of seed development, increasing towards mid-maturation where they remained stable for a time, before declining rapidly as the oilseeds reached maturity. During seed development, the level of total sterols increased 12-fold in tobacco and 9-fold in rape, primarily due to an increase in steryl ester production. In both seed tissues, stages of maximum enzyme activity coincided with periods of high rates of sterol production, indicating developmental regulation of the enzymes to be responsible for the increases in the sterol content observed during seed development. Consistent with previous studies the data presented suggest that sterol biosynthesis is regulated by two key steps, although there may be others. The first is the regulation of carbon flux into the isoprenoid pathway to cycloartenol. The second is the flux from cycloartenol to Delta(5)-end-product sterols. The implications of the results in terms of enhancing seed sterol levels by genetic modification are also discussed.

  10. Voltage regulation in LV grids by coordinated volt-var control strategies

    DEFF Research Database (Denmark)

    Juamperez Goñi, Miguel Angel; Yang, Guangya; Kjær, Søren Bækhøj

    2014-01-01

    The increasing penetration level of photovoltaic (PV) power generation in low voltage (LV) networks results in voltage rise issues, particularly at the end of the feeders. In order to mitigate this problem, several strategies, such as grid reinforcement, transformer tap change, demand-side...... management, active power curtailment, and reactive power optimization methods, show their contribution to voltage support, yet still limited. This paper proposes a coordinated volt-var control architecture between the LV distribution transformer and solar inverters to optimize the PV power penetration level...... in a representative LV network in Bornholm Island using a multi-objective genetic algorithm. The approach is to increase the reactive power contribution of the inverters closest to the transformer during overvoltage conditions. Two standard reactive power control concepts, cosΦ(P) and Q(U), are simulated and compared...

  11. Mice lacking integrin β3 expression exhibit altered response to chronic stress

    Directory of Open Access Journals (Sweden)

    Seth Varney

    2015-01-01

    Full Text Available Recent studies indicate multiple roles for integrin αvβ3 in adult neurons, including response to pharmacological agents such as cocaine and selective serotonin reuptake inhibitors. In this study, we examined the role of the integrin β3 gene (Itgb3 in the response to environmental stimuli by subjecting Itgb3+/+ and Itgb3−/− mice to unpredictable chronic mild stressors. We found that genetic abrogation of integrin β3 expression elicits an exaggerated vulnerability to chronic unpredictable stress in the open field test. In this test, chronic stress elicited significant decreases in stereotypic behavior and horizontal locomotor activity, including increases in anxiety behaviors. Mild chronic stress led to reductions in dopamine turnover in midbrains of Itgb3+/+, but not Itgb3−/− mice, suggesting a disruption of stress-dependent regulation of DA homeostasis. Chronic stress elicited altered synaptic expression of syntaxin and synaptophysin in midbrains of Itgb3−/− mice, when compared to Itgb3+/+. Semi-quantitative Western blot studies revealed that the synaptic expression, but not total tissue expression, of multiple signaling proteins is correlated with integrin αv levels in the midbrain. Moreover, loss of integrin β3 expression modifies this correlation network. Together, these findings demonstrate that Itgb3−/− mice display a pattern of changes indicating disrupted regulation of midbrain synaptic systems involved in conferring resilience to mild stressors.

  12. Coordinated Voltage Control of Distributed PV Inverters for Voltage Regulation in Low Voltage Distribution Networks

    DEFF Research Database (Denmark)

    Nainar, Karthikeyan; Pokhrel, Basanta Raj; Pillai, Jayakrishnan Radhakrishna

    2017-01-01

    on measured local voltages. The advantage of the proposed method is that the calculated reactive power and active power droop settings enable fair contribution of the PV inverters at each node to the voltage regulation. Simulation studies are conducted using DigSilent Power factory software on a simplified...

  13. Proteomic Analysis Reveals Coordinated Regulation of Anthocyanin Biosynthesis through Signal Transduction and Sugar Metabolism in Black Rice Leaf

    Directory of Open Access Journals (Sweden)

    Linghua Chen

    2017-12-01

    Full Text Available Black rice (Oryza sativa L. is considered to be a healthy food due to its high content of anthocyanins in the pericarp. The synthetic pathway of anthocyanins in black rice grains has been identified, however, the proteomic profile of leaves during grain development is still unclear. Here, isobaric Tags Relative and Absolute Quantification (iTRAQ MS/MS was carried out to identify statistically significant changes of leaf proteome in the black rice during grain development. Throughout three sequential developmental stages, a total of 3562 proteins were detected and 24 functional proteins were differentially expressed 3–10 days after flowering (DAF. The detected proteins are known to be involved in various biological processes and most of these proteins were related to gene expression regulatory (33.3%, signal transduction (16.7% and developmental regulation and hormone-like proteins (12.5%. The coordinated changes were consistent with changes in regulatory proteins playing a leading role in leaves during black rice grain development. This indicated that signal transduction between leaves and grains may have an important role in anthocyanin biosynthesis and accumulation during grain development of black rice. In addition, four identified up-regulated proteins associated with starch metabolism suggested that the remobilization of nutrients for starch synthesis plays a potential role in anthocyanin biosynthesis of grain. The mRNA transcription for eight selected proteins was validated with quantitative real-time PCR. Our results explored the proteomics of the coordination between leaf and grain in anthocyanins biosynthesis of grain, which might be regulated by signal transduction and sugar metabolism in black rice leaf.

  14. Characterization of 14-3-3-ζ Interactions with Integrin Tails

    Science.gov (United States)

    Bonet, Roman; Vakonakis, Ioannis; Campbell, Iain D.

    2013-01-01

    Integrins are a family of heterodimeric (α+β) adhesion receptors that play key roles in many cellular processes. Integrins are unusual in that their functions can be modulated from both outside and inside the cell. Inside-out signaling is mediated by binding adaptor proteins to the flexible cytoplasmic tails of the α- and β-integrin subunits. Talin is one well-known intracellular activator, but various other adaptors bind to integrin tails, including 14-3-3-ζ, a member of the 14-3-3 family of dimeric proteins that have a preference for binding phosphorylated sequence motifs. Phosphorylation of a threonine in the β2 integrin tail has been shown to modulate β2/14-3-3-ζ interactions, and recently, the α4 integrin tail was reported to bind to 14-3-3-ζ and associate with paxillin in a ternary complex that is regulated by serine phosphorylation. Here, we use a range of biophysical techniques to characterize interactions between 14-3-3-ζ and the cytoplasmic tails of α4, β1, β2 and β3 integrins. The X-ray structure of the 14-3-3-ζ/α4 complex indicates a canonical binding mode for the α4 phospho-peptide, but unexpected features are also observed: residues outside the consensus 14-3-3-ζ binding motif are shown to be essential for an efficient interaction; in contrast, a short β2 phospho-peptide is sufficient for high-affinity binding to 14-3-3-ζ. In addition, we report novel 14-3-3-ζ/integrin tail interactions that are independent of phosphorylation. Of the integrin tails studied, the strongest interaction with 14-3-3-ζ is observed for the β1A variant. In summary, new insights about 14-3-3-ζ/integrin tail interactions that have implications for the role of these molecular associations in cells are described. PMID:23763993

  15. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress.

    Science.gov (United States)

    Ambavaram, Madana M R; Basu, Supratim; Krishnan, Arjun; Ramegowda, Venkategowda; Batlang, Utlwang; Rahman, Lutfor; Baisakh, Niranjan; Pereira, Andy

    2014-10-31

    Plants capture solar energy and atmospheric carbon dioxide (CO2) through photosynthesis, which is the primary component of crop yield, and needs to be increased considerably to meet the growing global demand for food. Environmental stresses, which are increasing with climate change, adversely affect photosynthetic carbon metabolism (PCM) and limit yield of cereals such as rice (Oryza sativa) that feeds half the world. To study the regulation of photosynthesis, we developed a rice gene regulatory network and identified a transcription factor HYR (HIGHER YIELD RICE) associated with PCM, which on expression in rice enhances photosynthesis under multiple environmental conditions, determining a morpho-physiological programme leading to higher grain yield under normal, drought and high-temperature stress conditions. We show HYR is a master regulator, directly activating photosynthesis genes, cascades of transcription factors and other downstream genes involved in PCM and yield stability under drought and high-temperature environmental stress conditions.

  16. Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion.

    Science.gov (United States)

    Younes, Jessica A; Klappe, Karin; Kok, Jan Willem; Busscher, Henk J; Reid, Gregor; van der Mei, Henny C

    2016-04-01

    Vaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether and how adhesion is regulated over cell membrane regions. Here, we show that bacterial adhesion forces with cell membrane regions not located above the nucleus are stronger than with regions above the nucleus both for vaginal pathogens and different commensal and probiotic lactobacillus strains involved in health. Importantly, adhesion force ratios over membrane regions away from and above the nucleus coincided with the ratios between numbers of adhering bacteria over both regions. Bacterial adhesion forces were dramatically decreased by depleting the epithelial cell membrane of cholesterol or sub-membrane cortical actin. Thus, epithelial cells can regulate membrane regions to which bacterial adhesion is discouraged, possibly to protect the nucleus. © 2015 John Wiley & Sons Ltd.

  17. MiR-155 Enhances Insulin Sensitivity by Coordinated Regulation of Multiple Genes in Mice.

    Directory of Open Access Journals (Sweden)

    Xiaolin Lin

    2016-10-01

    Full Text Available miR-155 plays critical roles in numerous physiological and pathological processes, however, its function in the regulation of blood glucose homeostasis and insulin sensitivity and underlying mechanisms remain unknown. Here, we reveal that miR-155 levels are downregulated in serum from type 2 diabetes (T2D patients, suggesting that miR-155 might be involved in blood glucose control and diabetes. Gain-of-function and loss-of-function studies in mice demonstrate that miR-155 has no effects on the pancreatic β-cell proliferation and function. Global transgenic overexpression of miR-155 in mice leads to hypoglycaemia, improved glucose tolerance and insulin sensitivity. Conversely, miR-155 deficiency in mice causes hyperglycemia, impaired glucose tolerance and insulin resistance. In addition, consistent with a positive regulatory role of miR-155 in glucose metabolism, miR-155 positively modulates glucose uptake in all cell types examined, while mice overexpressing miR-155 transgene show enhanced glycolysis, and insulin-stimulated AKT and IRS-1 phosphorylation in liver, adipose tissue or skeletal muscle. Furthermore, we reveal these aforementioned phenomena occur, at least partially, through miR-155-mediated repression of important negative regulators (i.e. C/EBPβ, HDAC4 and SOCS1 of insulin signaling. Taken together, these findings demonstrate, for the first time, that miR-155 is a positive regulator of insulin sensitivity with potential applications for diabetes treatment.

  18. Coordinated Regulations of mRNA Synthesis and Decay during Cold Acclimation in Arabidopsis Cells.

    KAUST Repository

    Arae, Toshihiro

    2017-04-18

    Plants possess a cold acclimation system to acquire freezing tolerance through pre-exposure to non-freezing low temperatures. The transcriptional cascade of C-repeat binding factors (CBFs)/dehydration response element-binding factors (DREBs) is considered a major transcriptional regulatory pathway during cold acclimation. However, little is known regarding the functional significance of mRNA stability regulation in the response of gene expression to cold stress. The actual level of individual mRNAs is determined by a balance between mRNA synthesis and degradation. Therefore, it is important to assess the regulatory steps to increase our understanding of gene regulation. Here, we analyzed temporal changes in mRNA amounts and half-lives in response to cold stress in Arabidopsis cell cultures based on genome-wide analysis. In this mRNA decay array method, mRNA half-life measurements and microarray analyses were combined. In addition, temporal changes in the integrated value of transcription rates were estimated from the above two parameters using a mathematical approach. Our results showed that several cold-responsive genes, including Cold-regulated 15a, were relatively destabilized, whereas the mRNA amounts were increased during cold treatment by accelerating the transcription rate to overcome the destabilization. Considering the kinetics of mRNA synthesis and degradation, this apparently contradictory result supports that mRNA destabilization is advantageous for the swift increase in CBF-responsive genes in response to cold stress.

  19. β-Integrin de-phosphorylation by the Density-Enhanced Phosphatase DEP-1 attenuates EGFR signaling in C. elegans.

    Directory of Open Access Journals (Sweden)

    Michael Walser

    2017-01-01

    Full Text Available Density-Enhanced Phosphatase-1 (DEP-1 de-phosphorylates various growth factor receptors and adhesion proteins to regulate cell proliferation, adhesion and migration. Moreover, dep-1/scc1 mutations have been detected in various types of human cancers, indicating a broad tumor suppressor activity. During C. elegans development, DEP-1 mediates binary cell fate decisions by negatively regulating EGFR signaling. Using a substrate-trapping DEP-1 mutant in a proteomics approach, we have identified the C. elegans β-integrin subunit PAT-3 as a specific DEP-1 substrate. DEP-1 selectively de-phosphorylates tyrosine 792 in the membrane-proximal NPXY motif to promote integrin activation via talin recruitment. The non-phosphorylatable β-integrin mutant pat-3(Y792F partially suppresses the hyperactive EGFR signaling phenotype caused by loss of dep-1 function. Thus, DEP-1 attenuates EGFR signaling in part by de-phosphorylating Y792 in the β-integrin cytoplasmic tail, besides the direct de-phosphorylation of the EGFR. Furthermore, in vivo FRAP analysis indicates that the αβ-integrin/talin complex attenuates EGFR signaling by restricting receptor mobility on the basolateral plasma membrane. We propose that DEP-1 regulates EGFR signaling via two parallel mechanisms, by direct receptor de-phosphorylation and by restricting receptor mobility through αβ-integrin activation.

  20. The Histone Demethylase UTX Promotes Brown Adipocyte Thermogenic Program Via Coordinated Regulation of H3K27 Demethylation and Acetylation.

    Science.gov (United States)

    Zha, Lin; Li, Fenfen; Wu, Rui; Artinian, Liana; Rehder, Vincent; Yu, Liqing; Liang, Houjie; Xue, Bingzhong; Shi, Hang

    2015-10-09

    Brown adipocytes function to dissipate energy as heat through adaptive thermogenesis. Understanding the molecular mechanisms underlying the brown fat thermogenic program may provide insights for the development of therapeutic approaches in the treatment of obesity. Most studies investigating the mechanisms underlying brown fat development focus on genetic mechanisms; little is known about the epigenetic mechanisms in this process. We have discovered that ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX), a histone demethylase for di- or tri-methylated histone 3 lysine 27 (H3K27me2/3), plays a potential role in regulating brown adipocyte thermogenic program. We found that UTX is up-regulated during brown adipocyte differentiation and by cold exposure in both brown adipose tissue (BAT) and white adipose tissue (WAT) of mice, suggesting a potential role in thermogenesis. Inactivation of UTX down-regulates brown fat specific gene expression, while overexpression of UTX does the opposite. Notably, activation of β adrenergic signaling recruits UTX to the UCP1 and PGC1α promoters, leading to decreased H3K27me3, a histone transcriptional repressive mark. UTX demethylates H3K27me3 and subsequently interacts with the histone acetyltransferase (HAT) protein CBP, resulting in increased H3K27 acetylation (H3K27ac), a histone transcriptional active mark. UTX positively regulate brown adipocyte thermogenic program through coordinated control of demethylating H3K27me3 and acetylating H3K27, switching the transcriptional repressive state to the transcriptional active state at the promoters of UCP1 and PGC1α. We conclude that UTX may play a potential role in regulation of brown adipocyte gene expression and may mediate β adrenergic activation of brown fat function. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. The ERK1/2 pathway regulates testosterone synthesis by coordinately regulating the expression of steroidogenic genes in Leydig cells.

    Science.gov (United States)

    Matzkin, Maria Eugenia; Yamashita, Soichi; Ascoli, Mario

    2013-05-06

    Adult mice with a Leydig cell specific deletion of MAPK kinase (MEK) 1 and 2 (Mek1(f)(/)(f);Mek2(-/-);Cre(+)) mice display Leydig cell hypoplasia and hypergonadotropic hypogonadism. We used radioimmunoassays and quantitative PCR to evaluate the function and expression of the Leydig cell genes involved in the conversion of cholesterol to testosterone (Star, Cyp11a1, Hsd3b6, Cyp17a1 and Hsd17b3), androgen metabolism (Srda1 and Dhrs9), and four transcription factors (Creb1, Nr5a1, Nr4a1 and Nr0b1) that regulate the expression of steroidogenic genes. We show that Star, Hsd3b6, Cyp17a1 and Hsd17b3 are downregulated in Ledyig cells of adult Mek1(f)(/)(f);Mek2(-/-);Cre(+) mice whereas Srda1 and Dhrs9 are upregulated and Creb1, Nr5a1, Nr4a1 and Nr0b1 are unchanged or upregulated. Functionally, all the downregulated genes but none of the upregulated genes contribute to the decrease in testosterone synthesis in Leydig cells of adult Mek1(f)(/)(f);Mek2(-/-);Cre(+) mice because they produce low testosterone and dihydrotestosterone when stimulated with hCG or when incubated with testosterone precursors such as progesterone or androstenedione. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Metals on the move: zinc ions in cellular regulation and in the coordination dynamics of zinc proteins.

    Science.gov (United States)

    Maret, Wolfgang

    2011-06-01

    Homeostatic control maintains essential transition metal ions at characteristic cellular concentrations to support their physiological functions and to avoid adverse effects. Zinc is especially widely used as a catalytic or structural cofactor in about 3000 human zinc proteins. In addition, the homeostatic control of zinc in eukaryotic cells permits functions of zinc(II) ions in regulation and in paracrine and intracrine signaling. Zinc ions are released from proteins through ligand-centered reactions in zinc/thiolate coordination environments, and from stores in cellular organelles, where zinc transporters participate in zinc loading and release. Muffling reactions allow zinc ions to serve as signaling ions (second messengers) in the cytosol that is buffered to picomolar zinc ion concentrations at steady-state. Muffling includes zinc ion binding to metallothioneins, cellular translocations of metallothioneins, delivery of zinc ions to transporter proteins, and zinc ion fluxes through cellular membranes with the result of removing the additional zinc ions from the cytosol and restoring the steady-state. Targets of regulatory zinc ions are proteins with sites for transient zinc binding, such as membrane receptors, enzymes, protein-protein interactions, and sensor proteins that control gene expression. The generation, transmission, targets, and termination of zinc ion signals involve proteins that use coordination dynamics in the inner and outer ligand spheres to control metal ion association and dissociation. These new findings establish critically important functions of zinc ions and zinc metalloproteins in cellular control.

  3. Chicken muscle mitochondrial content appears co-ordinately regulated and is associated with performance phenotypes

    Directory of Open Access Journals (Sweden)

    Antonio Reverter

    2017-01-01

    Full Text Available Mitochondrial content is a fundamental cellular bioenergetic phenotype. Previous work has hypothesised possible links between variation in muscle mitochondrial content and animal performance. However, no population screens have been performed in any production species. Here, we have designed a high throughput molecular approach to estimate mitochondrial content in commercial broilers. Technical validity was established using several approaches, including its performance in monoclonal DF-1 cells, cross-tissue comparisons in tissues with differing metabolic demands (white fatcoordinate regulatory control across the musculature. Further, breast muscle mitochondrial content is negatively correlated with breast muscle yield (−0.27; P=0.037, abdominal fat content (−0.31; P=0.017 and carcass yield (−0.26; P=0.045. Therefore, low breast muscle mitochondrial content is associated with more muscular birds possessing higher abdominal fat, the latter being in line with biomedical models of obesity. Finally, thigh mitochondrial content is negatively correlated with the bow out leg defect (−0.30; P=0.011. Overall, our data point to mitochondrial content as a promising consideration in predictive modelling of production traits.

  4. Syntheses, structures and properties of four Cd(II) coordination polymers induced by the pH regulator

    Science.gov (United States)

    Xu, Yun; Ding, Fang; Liu, Dong; Yang, Pei-Pei; Zhu, Li-Li

    2018-03-01

    Four new coordination polymers [Cd2(CHDC)2(APYZ)(H2O)2](H2O) (1), [Cd(HCHDC)2(APYZ) (H2O)] (2), [Cd2(CHDC)2(PYZ)(H2O)2](H2O) (3), and [Cd(HCHDC)2(PYZ)(H2O)] (4) (H2CHDC = 1,4-cyclohexanedicarboxylic acid, APYZ = 2-aminopyrazine, PYZ = pyrazine) have been synthesized under the hydrothermal conditions by changing the pH regulator and the N-containing ligands. The pH regulator impacted on the degree of deprotonation of the 1,4-cyclohexanedicarboxylic acid ligand and resulted in the formation of the two pairs of different networks. Polymers 1 and 3 crystallize in monoclinic, space group P21/c, exhibit two dimensional 63 net, which further formed three-dimensional supramolecular structure by the Csbnd H⋯O hydrogen bond interactions. While polymers 2 and 4 possess one dimensional chain structures and further link into two dimensional layered supramolecular structures by intermolecular hydrogen bonding interactions. From all three conformers of H2CHDC, e,a-cis is consistently present in the Cd coordination polymers. Furthermore, photoluminescence properties of four polymers are also investigated, the luminescent intensity of polymer 1 (or 2) with amino group in pyrazine is dramatically stronger than that of the similar structure of polymer 3 (or 4) without amino group in pyrazine, the results shown that the presence of the amino group from 2-aminopyrazine play a key role in increasing the luminescence properties.

  5. Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor.

    Science.gov (United States)

    Niu, Shan-Shan; Xu, Chang-Jie; Zhang, Wang-Shu; Zhang, Bo; Li, Xian; Lin-Wang, Kui; Ferguson, Ian B; Allan, Andrew C; Chen, Kun-Song

    2010-03-01

    Chinese bayberry (Myrica rubra) is a fruit crop with cultivars producing fruit ranging from white (Shuijing, SJ) to red (Dongkui, DK) and dark red-purple (Biqi, BQ), as a result of different levels of anthocyanin accumulation. Genes encoding the anthocyanin biosynthesis enzymes chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase (F3H), flavonoid 3'-hydroxylase (F3'H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS) and UDPglucose: flavonoid 3-O-glucosyltransferase (UFGT), as well as MrMYB1, a R2R3 MYB transcription factor homologous to known activators of anthocyanin biosynthesis, were isolated from ripe fruit of BQ. Differences in mRNA abundance of MrF3H, MrF3'H, MrDFR1, MrANS and MrUFGT were highly correlated with differential accumulation of anthocyanins between cultivars, suggesting coordinated regulation by transcription factors. The transcript level of MrMYB1 was strongly associated with the anthocyanin content in ripe fruit of the three cultivars, as well as different anthocyanin containing tissues of BQ fruit. Fruit bagging strongly inhibited anthocyanin accumulation in fruit as well as the expression of all anthocyanin biosynthetic genes and MrMYB1. Overexpression of MrMYB1 stimulated both anthocyanin accumulation and activated an Arabidopsis-DFR promoter in tobacco (Nicotiana tabacum). MrMYB1d, an allele with a 1 bp deletion at nucleotide 30 of coding sequence, was observed in SJ and DK fruit, suggesting that a nonsense mutation of the MYB1 protein may be responsible for no or low expression of MYB1 in the white and red fruit. These results show that coordinated expression of multiple biosynthetic genes is involved in anthocyanin accumulation in Chinese bayberry fruit, and this is regulated by MrMYB1.

  6. IAPs Regulate Distinct Innate Immune Pathways to Co-ordinate the Response to Bacterial Peptidoglycans.

    Science.gov (United States)

    Stafford, Che A; Lawlor, Kate E; Heim, Valentin J; Bankovacki, Aleksandra; Bernardini, Jonathan P; Silke, John; Nachbur, Ueli

    2018-02-06

    Inhibitors of apoptosis (IAPs) proteins are critical regulators of innate immune signaling pathways and therefore have potential as drug targets. X-linked IAP (XIAP) and cellular IAP1 and IAP2 (cIAP1 and cIAP2) are E3 ligases that have been shown to be required for signaling downstream of NOD2, an intracellular receptor for bacterial peptidoglycan. We used genetic and biochemical approaches to compare the responses of IAP-deficient mice and cells to NOD2 stimulation. In all cell types tested, XIAP is the only IAP required for signaling immediately downstream of NOD2, while cIAP1 and cIAP2 are dispensable for NOD2-induced nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) activation. However, mice lacking cIAP1 or TNFR1 have a blunted cytokine response to NOD2 stimulation. We conclude that cIAPs regulate NOD2-dependent autocrine TNF signaling in vivo and highlight the importance of physiological context in the interplay of innate immune signaling pathways. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Coordination and decision making of regulation, operation, and market activities in power systems

    Science.gov (United States)

    Nakashima, Tomoaki

    Electric power has been traditionally supplied to customers at regulated rates by vertically integrated utilities (VIUs), which own generation, transmission, and distribution systems. However, the regulatory authorities of VIUs are promoting competition in their businesses to lower the price of electric energy. Consequently, in new deregulated circumstances, many suppliers and marketers compete in the generation market, and conflict of interest may often occur over transmission. Therefore, a neutral entity, called an independent system operator (ISO), which operates the power system independently, has been established to give market participants nondiscriminatory access to transmission sectors with a natural monopoly, and to facilitate competition in generation sectors. Several types of ISOs are established at present, with their respective regions and authorities. The ISO receives many requests from market participants to transfer power, and must evaluate the feasibility of their requests under the system's condition. In the near future, regulatory authorities may impose various objectives on the ISOs. Then, based on the regulators' policies, the ISO must determine the optimal schedules from feasible solutions, or change the market participants' requests. In a newly developed power market, market participants will conduct their transactions in order to maximize their profit. The most crucial information in conducting power transactions is price and demand. A direct transaction between suppliers and consumers may become attractive because of its stability of price, while in a power exchange market, gaming and speculation of participants may push up electricity prices considerably. To assist the consumers in making effective decisions, suitable methods for forecasting volatile market price are necessary. This research has been approached from three viewpoints: Firstly, from the system operator's point of view, desirable system operation and power market structure

  8. Modulation of SF1 Neuron Activity Coordinately Regulates Both Feeding Behavior and Associated Emotional States

    Directory of Open Access Journals (Sweden)

    Paulius Viskaitis

    2017-12-01

    Full Text Available Feeding requires the integration of homeostatic drives with emotional states relevant to food procurement in potentially hostile environments. The ventromedial hypothalamus (VMH regulates feeding and anxiety, but how these are controlled in a concerted manner remains unclear. Using pharmacogenetic, optogenetic, and calcium imaging approaches with a battery of behavioral assays, we demonstrate that VMH steroidogenic factor 1 (SF1 neurons constitute a nutritionally sensitive switch, modulating the competing motivations of feeding and avoidance of potentially dangerous environments. Acute alteration of SF1 neuronal activity alters food intake via changes in appetite and feeding-related behaviors, including locomotion, exploration, anxiety, and valence. In turn, intrinsic SF1 neuron activity is low during feeding and increases with both feeding termination and stress. Our findings identify SF1 neurons as a key part of the neurocircuitry that controls both feeding and related affective states, giving potential insights into the relationship between disordered eating and stress-associated psychological disorders in humans.

  9. Coordinated regulation of nuclear receptor CAR by CCRP/DNAJC7, HSP70 and the ubiquitin-proteasome system.

    Directory of Open Access Journals (Sweden)

    Yoav E Timsit

    Full Text Available The constitutive active/androstane receptor (CAR plays an important role as a coordinate transcription factor in the regulation of various hepatic metabolic pathways for chemicals such as drugs, glucose, fatty acids, bilirubin, and bile acids. Currently, it is known that in its inactive state, CAR is retained in the cytoplasm in a protein complex with HSP90 and the tetratricopeptide repeat protein cytosoplasmic CAR retention protein (CCRP. Upon activation by phenobarbital (PB or the PB-like inducer 1,4-bis[2-(3,5-dichloropyridyloxy]-benzene (TCPOBOP, CAR translocates into the nucleus. We have identified two new components to the cytoplasmic regulation of CAR: ubiquitin-dependent degradation of CCRP and protein-protein interaction with HSP70. Treatment with the proteasome inhibitor MG132 (5 µM causes CAR to accumulate in the cytoplasm of transfected HepG2 cells. In the presence of MG132, TCPOBOP increases CCRP ubiquitination in HepG2 cells co-expressing CAR, while CAR ubiquitination was not detected. MG132 treatment of HepG2 also attenuated of TCPOBOP-induced CAR transcriptional activation on reporter constructs which contain CAR-binding DNA elements derived from the human CYP2B6 gene. The elevation of cytoplasmic CAR protein with MG132 correlated with an increase of HSP70, and to a lesser extent HSP60. Both CCRP and CAR were found to interact with endogenous HSP70 in HepG2 cells by immunoprecipitation analysis. Induction of HSP70 levels by heat shock also increased cytoplasmic CAR levels, similar to the effect of MG132. Lastly, heat shock attenuated TCPOBOP-induced CAR transcriptional activation, also similar to the effect of MG132. Collectively, these data suggest that ubiquitin-proteasomal regulation of CCRP and HSP70 are important contributors to the regulation of cytoplasmic CAR levels, and hence the ability of CAR to respond to PB or PB-like inducers.

  10. TCP transcription factors are critical for the coordinated regulation of isochorismate synthase 1 expression in Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Xiaoyan; Gao, Jiong; Zhu, Zheng; Dong, Xianxin; Wang, Xiaolei; Ren, Guodong; Zhou, Xin; Kuai, Benke

    2015-04-01

    Salicylic acid (SA) plays an important role in various aspects of plant development and responses to stresses. To elucidate the sophisticated regulatory mechanism of SA synthesis and signaling, we used a yeast one-hybrid system to screen for regulators of isochorismate synthase 1 (ICS1), a gene encoding the key enzyme in SA biosynthesis in Arabidopsis thaliana. A TCP family transcription factor AtTCP8 was initially identified as a candidate regulator of ICS1. The regulation of ICS1 by TCP proteins is supported by the presence of a typical TCP binding site in the ICS1 promoter. The binding of TCP8 to this site was confirmed by in vitro and in vivo assays. Expression patterns of TCP8 and its corresponding gene TCP9 largely overlapped with ICS1 under pathogen attack. A significant reduction in the expression of ICS1 during immune responses was observed in the tcp8 tcp9 double mutant. We also detected strong interactions between TCP8 and SAR deficient 1 (SARD1), WRKY family transcription factor 28 (WRKY28), NAC (NAM/ATAF1,ATAF2/CUC2) family transcription factor 019 (NAC019), as well as among TCP8, TCP9 and TCP20, suggesting a complex coordinated regulatory mechanism underlying ICS1 expression. Our results collectively demonstrate that TCP proteins are involved in the orchestrated regulation of ICS1 expression, with TCP8 and TCP9 being verified as major representatives. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  11. Role of β1 Integrin in Tissue Homing of Neutrophils During Sepsis

    Science.gov (United States)

    Sarangi, Pranita P.; Hyun, Young-Min; Lerman, Yelena V.; Pietropaoli, Anthony P.; Kim, Minsoo

    2012-01-01

    Aberrant activation of neutrophils during sepsis results in the widespread release of pro-inflammatory mediators, leading to multi-organ system failure and death. However, aberrant activation of neutrophils during sepsis results in the widespread release of harmful inflammatory mediators causing host tissue injuries that can lead to multi organ system failure and death. One of the pivotal components of neutrophil migration during inflammation is the expression of surface integrins. In this study, we show that administration of a cyclic analog of RGD peptide (Arg-Gly-Asp) significantly reduced the number of tissue-invading neutrophils and the degree of sepsis-induced lethality in mice as compared to control peptide. Secondly, β1 integrin (CD29) was highly up-regulated on the neutrophils isolated from both septic patients and animals. Finally, conditional genetic ablation of β1 integrin from granulocytes also improved survival and bacterial clearance in septic animals Thus, our results indicate that expression of β1 integrin is important for modulating neutrophil trafficking during sepsis, and that therapeutics designed against β1 integrins may be beneficial. PMID:22683734

  12. Integrin activation dynamics between the RGD-binding site and the headpiece hinge.

    Science.gov (United States)

    Puklin-Faucher, Eileen; Vogel, Viola

    2009-12-25

    Integrins form mechanical links between the extracellular matrix and the cytoskeleton. Although integrin activation is known to be regulated by an allosteric conformational change, which can be induced from the extracellular or intracellular end of the molecule, little is known regarding the sequence of structural events by which signals propagate between distant sites. Here, we reveal with molecular dynamics simulations of the FnIII(10)-bound alpha(V)beta(3) integrin headpiece how the binding pocket and interdomain betaA/hybrid domain hinge on the distal end of the betaA domain are allosterically linked via a hydrophobic T-junction between the middle of the alpha1 helix and top of the alpha7 helix. The key results of this study are: 1) that this T-junction is induced by ligand binding and hinge opening, and thus displays bidirectionality; 2) that formation of this junction can be accelerated by ligand-mediated force; and 3) how formation of this junction is inhibited by Ca(2+) in place of Mg(2+) at the site adjacent to the metal ion-dependent adhesion site ("ADMIDAS"). Together with recent experimental evidence that integrin complexes can form catch bonds (i.e. become strengthened under force), as well as earlier evidence that Ca(2+) at the ADMIDAS results in lower binding affinity, these simulations provide a common structural model for the dynamic process by which integrins become activated.

  13. Integrin Activation Dynamics between the RGD-binding Site and the Headpiece Hinge*

    Science.gov (United States)

    Puklin-Faucher, Eileen; Vogel, Viola

    2009-01-01

    Integrins form mechanical links between the extracellular matrix and the cytoskeleton. Although integrin activation is known to be regulated by an allosteric conformational change, which can be induced from the extracellular or intracellular end of the molecule, little is known regarding the sequence of structural events by which signals propagate between distant sites. Here, we reveal with molecular dynamics simulations of the FnIII10-bound αVβ3 integrin headpiece how the binding pocket and interdomain βA/hybrid domain hinge on the distal end of the βA domain are allosterically linked via a hydrophobic T-junction between the middle of the α1 helix and top of the α7 helix. The key results of this study are: 1) that this T-junction is induced by ligand binding and hinge opening, and thus displays bidirectionality; 2) that formation of this junction can be accelerated by ligand-mediated force; and 3) how formation of this junction is inhibited by Ca2+ in place of Mg2+ at the site adjacent to the metal ion-dependent adhesion site (“ADMIDAS”). Together with recent experimental evidence that integrin complexes can form catch bonds (i.e. become strengthened under force), as well as earlier evidence that Ca2+ at the ADMIDAS results in lower binding affinity, these simulations provide a common structural model for the dynamic process by which integrins become activated. PMID:19762919

  14. Normal Platelet Integrin Function in Mice Lacking Hydrogen Peroxide-Induced Clone-5 (Hic-5.

    Directory of Open Access Journals (Sweden)

    Michael Popp

    Full Text Available Integrin αIIbβ3 plays a central role in the adhesion and aggregation of platelets and thus is essential for hemostasis and thrombosis. Integrin activation requires the transmission of a signal from the small cytoplasmic tails of the α or β subunit to the large extracellular domains resulting in conformational changes of the extracellular domains to enable ligand binding. Hydrogen peroxide-inducible clone-5 (Hic-5, a member of the paxillin family, serves as a focal adhesion adaptor protein associated with αIIbβ3 at its cytoplasmic tails. Previous studies suggested Hic-5 as a novel regulator of integrin αIIbβ3 activation and platelet aggregation in mice. To assess this in more detail, we generated Hic-5-null mice and analyzed activation and aggregation of their platelets in vitro and in vivo. Surprisingly, lack of Hic-5 had no detectable effect on platelet integrin activation and function in vitro and in vivo under all tested conditions. These results indicate that Hic-5 is dispensable for integrin αIIbβ3 activation and consequently for arterial thrombosis and hemostasis in mice.

  15. The small GTPase, Rap1, mediates CD31-induced integrin adhesion

    NARCIS (Netherlands)

    Reedquist, K. A.; Ross, E.; Koop, E. A.; Wolthuis, R. M.; Zwartkruis, F. J.; van Kooyk, Y.; Salmon, M.; Buckley, C. D.; Bos, J. L.

    2000-01-01

    Integrin-mediated leukocyte adhesion is a critical aspect of leukocyte function that is tightly regulated by diverse stimuli, including chemokines, antigen receptors, and adhesion receptors. How cellular signals from CD31 and other adhesion amplifiers are integrated with those from classical

  16. Integrins are required for tissue organization and restriction of neurogenesis in regenerating planarians.

    Science.gov (United States)

    Seebeck, Florian; März, Martin; Meyer, Anna-Wiebke; Reuter, Hanna; Vogg, Matthias C; Stehling, Martin; Mildner, Karina; Zeuschner, Dagmar; Rabert, Franziska; Bartscherer, Kerstin

    2017-03-01

    Tissue regeneration depends on proliferative cells and on cues that regulate cell division, differentiation, patterning and the restriction of these processes once regeneration is complete. In planarians, flatworms with high regenerative potential, muscle cells express some of these instructive cues. Here, we show that members of the integrin family of adhesion molecules are required for the integrity of regenerating tissues, including the musculature. Remarkably, in regenerating β1-integrin RNAi planarians, we detected increased numbers of mitotic cells and progenitor cell types, as well as a reduced ability of stem cells and lineage-restricted progenitor cells to accumulate at wound sites. These animals also formed ectopic spheroid structures of neural identity in regenerating heads. Interestingly, those polarized assemblies comprised a variety of neural cells and underwent continuous growth. Our study indicates that integrin-mediated cell adhesion is required for the regenerative formation of organized tissues and for restricting neurogenesis during planarian regeneration. © 2017. Published by The Company of Biologists Ltd.

  17. α2 Integrin, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase-3 act sequentially to induce differentiation of mouse embryonic stem cells into odontoblast-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Kawai, Rie; Hase, Naoko; Hiyama, Taiki; Yamaguchi, Hideyuki [Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651 (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan); Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651 (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan)

    2015-02-01

    We previously reported that interleukin 1β acts via matrix metalloproteinase (MMP)-3 to regulate cell proliferation and suppress apoptosis in α2 integrin-positive odontoblast-like cells differentiated from mouse embryonic stem (ES) cells. Here we characterize the signal cascade underpinning odontoblastic differentiation in mouse ES cells. The expression of α2 integrin, extracellular matrix metalloproteinase inducer (Emmprin), and MMP-3 mRNA and protein were all potently increased during odontoblastic differentiation. Small interfering RNA (siRNA) disruption of the expression of these effectors potently suppressed the expression of the odontoblastic biomarkers dentin sialophosphoprotein, dentin matrix protein-1 and alkaline phosphatase, and blocked odontoblast calcification. Our siRNA, western blot and blocking antibody analyses revealed a unique sequential cascade involving α2 integrin, Emmprin and MMP-3 that drives ES cell differentiation into odontoblasts. This cascade requires the interaction between α2 integrin and Emmprin and is potentiated by exogenous MMP-3. Finally, although odontoblast-like cells potently express α2, α6, αV, β1, and β3, integrins, we confirmed that β1 integrin acts as the trigger for ES cell differentiation, apparently in complex with α2 integrin. These results demonstrate a unique and unanticipated role for an α2 integrin-, Emmprin-, and MMP-3-mediated signaling cascade in driving mouse ES cell differentiation into odontoblast-like cells. - Highlights: • Odontoblast differentiation requires activation of α2 integrin, Emmprin and MMP-3. • α2 integrin, Emmprin and MMP-3 form a sequential signaling cascade. • β1 integrin acts a specific trigger for odontoblast differentiation. • The role of these effectors is highly novel and unanticipated.

  18. Coordinated control of wind generation and energy storage for power system frequency regulation

    Science.gov (United States)

    Baone, Chaitanya Ashok

    Large-scale centralized synchronous generators have long been the primary actors in exercising active power and frequency control, and much of the existing grid control framework is predicated upon their dynamic terminal characteristics. Important among these characteristics is the inertia of such generators. These play key roles in determining the electromechanical stability of the electric power grid. Modern wind generator systems are partially or fully connected to the grid through power electronic interfaces, and hence do not present the same level of inertial coupling. The absence of inertial frequency response from modern wind generator systems is a topic of growing concern in power engineering practice, as the penetration of wind generation is expected to grow dramatically in the next few years. Solutions proposed in the literature have sought to address this problem by seeking to mimic the inherent inertial response characteristics of traditional synchronous generators via control loops added to wind generators. Recent literature has raised concerns regarding this approach, and the work here will further examine its shortcomings, motivating approaches that seek to optimally design for the characteristics of the equipment exercising the control, rather than forcing new technologies to mimic the characteristics of synchronous machines. In particular, this work will develop a new approach to power system frequency regulation, with features suited to distributed energy storage devices such as grid-scale batteries and wind turbine speed and blade pitch control. The dynamic characteristics of these new technologies are treated along with existing mechanisms, such as synchronous machine governor control, to develop a comprehensive multi-input control design approach. To make the method practically feasible for geographically distributed power systems, an observer-based distributed control design utilizing phasor measurement unit (PMU) signals along with local

  19. ROCK1-directed basement membrane positioning coordinates epithelial tissue polarity.

    Science.gov (United States)

    Daley, William P; Gervais, Elise M; Centanni, Samuel W; Gulfo, Kathryn M; Nelson, Deirdre A; Larsen, Melinda

    2012-01-01

    The basement membrane is crucial for epithelial tissue organization and function. However, the mechanisms by which basement membrane is restricted to the basal periphery of epithelial tissues and the basement membrane-mediated signals that regulate coordinated tissue organization are not well defined. Here, we report that Rho kinase (ROCK) controls coordinated tissue organization by restricting basement membrane to the epithelial basal periphery in developing mouse submandibular salivary glands, and that ROCK inhibition results in accumulation of ectopic basement membrane throughout the epithelial compartment. ROCK-regulated restriction of PAR-1b (MARK2) localization in the outer basal epithelial cell layer is required for basement membrane positioning at the tissue periphery. PAR-1b is specifically required for basement membrane deposition, as inhibition of PAR-1b kinase activity prevents basement membrane deposition and disrupts overall tissue organization, and suppression of PAR-1b together with ROCK inhibition prevents interior accumulations of basement membrane. Conversely, ectopic overexpression of wild-type PAR-1b results in ectopic interior basement membrane deposition. Significantly, culture of salivary epithelial cells on exogenous basement membrane rescues epithelial organization in the presence of ROCK1 or PAR-1b inhibition, and this basement membrane-mediated rescue requires functional integrin β1 to maintain epithelial cell-cell adhesions. Taken together, these studies indicate that ROCK1/PAR-1b-dependent regulation of basement membrane placement is required for the coordination of tissue polarity and the elaboration of tissue structure in the developing submandibular salivary gland.

  20. Novel role of Y1 receptors in the coordinated regulation of bone and energy homeostasis.

    Science.gov (United States)

    Baldock, Paul A; Allison, Susan J; Lundberg, Pernilla; Lee, Nicola J; Slack, Katy; Lin, En-Ju D; Enriquez, Ronaldo F; McDonald, Michelle M; Zhang, Lei; During, Matthew J; Little, David G; Eisman, John A; Gardiner, Edith M; Yulyaningsih, Ernie; Lin, Shu; Sainsbury, Amanda; Herzog, Herbert

    2007-06-29

    The importance of neuropeptide Y (NPY) and Y2 receptors in the regulation of bone and energy homeostasis has recently been demonstrated. However, the contributions of the other Y receptors are less clear. Here we show that Y1 receptors are expressed on osteoblastic cells. Moreover, bone and adipose tissue mass are elevated in Y1(-/-) mice with a generalized increase in bone formation on cortical and cancellous surfaces. Importantly, the inhibitory effects of NPY on bone marrow stromal cells in vitro are absent in cells derived from Y1(-/-) mice, indicating a direct action of NPY on bone cells via this Y receptor. Interestingly, in contrast to Y2 receptor or germ line Y1 receptor deletion, conditional deletion of hypothalamic Y1 receptors in adult mice did not alter bone homeostasis, food intake, or adiposity. Furthermore, deletion of both Y1 and Y2 receptors did not produce additive effects in bone or adiposity. Thus Y1 receptor pathways act powerfully to inhibit bone production and adiposity by nonhypothalamic pathways, with potentially direct effects on bone tissue through a single pathway with Y2 receptors.

  1. AP-3 and Rabip4’ Coordinately Regulate Spatial Distribution of Lysosomes

    Science.gov (United States)

    Ivan, Viorica; Martinez-Sanchez, Emma; Sima, Livia E.; Oorschot, Viola; Klumperman, Judith; Petrescu, Stefana M.; van der Sluijs, Peter

    2012-01-01

    The RUN and FYVE domain proteins rabip4 and rabip4’ are encoded by RUFY1 and differ in a 108 amino acid N-terminal extension in rabip4’. Their identical C terminus binds rab5 and rab4, but the function of rabip4s is incompletely understood. We here found that silencing RUFY1 gene products promoted outgrowth of plasma membrane protrusions, and polarized distribution and clustering of lysosomes at their tips. An interactor screen for proteins that function together with rabip4’ yielded the adaptor protein complex AP-3, of which the hinge region in the β3 subunit bound directly to the FYVE domain of rabip4’. Rabip4’ colocalized with AP-3 on a tubular subdomain of early endosomes and the extent of colocalization was increased by a dominant negative rab4 mutant. Knock-down of AP-3 had an ever more dramatic effect and caused accumulation of lysosomes in protrusions at the plasma membrane. The most peripheral lysosomes were localized beyond microtubules, within the cortical actin network. Our results uncover a novel function for AP-3 and rabip4’ in regulating lysosome positioning through an interorganellar pathway. PMID:23144738

  2. Coordination of matrix attachment and ATP-dependent chromatin remodeling regulate auxin biosynthesis and Arabidopsis hypocotyl elongation.

    Directory of Open Access Journals (Sweden)

    Kyounghee Lee

    Full Text Available Hypocotyl elongation is extensively controlled by hormone signaling networks. In particular, auxin metabolism and signaling play key roles in light-dependent hypocotyl growth. The nuclear matrix facilitates organization of DNA within the nucleus, and dynamic interactions between nuclear matrix and DNA are related to gene regulation. Conserved scaffold/matrix attachment regions (S/MARs are anchored to the nuclear matrix by the AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED (AHL proteins in Arabidopsis. Here, we found that ESCAROLA (ESC/AHL27 and SUPPRESSOR OF PHYTOCHROME B-4 #3 (SOB3/AHL29 redundantly regulate auxin biosynthesis in the control of hypocotyl elongation. The light-inducible AHL proteins bind directly to an S/MAR region of the YUCCA 9 (YUC9 promoter and suppress its expression to inhibit hypocotyl growth in light-grown seedlings. In addition, they recruit the SWI2/SNF2-RELATED 1 (SWR1 complex and promote exchange of H2A with the histone variant H2A.Z at the YUC9 locus to further elaborately control auxin biosynthesis. Consistent with these results, the long hypocotyl phenotypes of light-grown genetic mutants of the AHLs and H2A.Z-exchanging components were suppressed by potent chemical inhibitors of auxin transport and YUC enzymes. These results suggest that the coordination of matrix attachment and chromatin modification underlies auxin biosynthesis in light-dependent hypocotyl growth.

  3. SRSF3 represses the expression of PDCD4 protein by coordinated regulation of alternative splicing, export and translation.

    Science.gov (United States)

    Park, Seung Kuk; Jeong, Sunjoo

    2016-02-05

    Gene expression is regulated at multiple steps, such as transcription, splicing, export, degradation and translation. Considering diverse roles of SR proteins, we determined whether the tumor-related splicing factor SRSF3 regulates the expression of the tumor-suppressor protein, PDCD4, at multiple steps. As we have reported previously, knockdown of SRSF3 increased the PDCD4 protein level in SW480 colon cancer cells. More interestingly, here we showed that the alternative splicing and the nuclear export of minor isoforms of pdcd4 mRNA were repressed by SRSF3, but the translation step was unaffected. In contrast, only the translation step of the major isoform of pdcd4 mRNA was repressed by SRSF3. Therefore, overexpression of SRSF3 might be relevant to the repression of all isoforms of PDCD4 protein levels in most types of cancer cell. We propose that SRSF3 could act as a coordinator of the expression of PDCD4 protein via two mechanisms on two alternatively spliced mRNA isoforms. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. SRSF3 represses the expression of PDCD4 protein by coordinated regulation of alternative splicing, export and translation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Kuk; Jeong, Sunjoo, E-mail: sjsj@dankook.ac.kr

    2016-02-05

    Gene expression is regulated at multiple steps, such as transcription, splicing, export, degradation and translation. Considering diverse roles of SR proteins, we determined whether the tumor-related splicing factor SRSF3 regulates the expression of the tumor-suppressor protein, PDCD4, at multiple steps. As we have reported previously, knockdown of SRSF3 increased the PDCD4 protein level in SW480 colon cancer cells. More interestingly, here we showed that the alternative splicing and the nuclear export of minor isoforms of pdcd4 mRNA were repressed by SRSF3, but the translation step was unaffected. In contrast, only the translation step of the major isoform of pdcd4 mRNA was repressed by SRSF3. Therefore, overexpression of SRSF3 might be relevant to the repression of all isoforms of PDCD4 protein levels in most types of cancer cell. We propose that SRSF3 could act as a coordinator of the expression of PDCD4 protein via two mechanisms on two alternatively spliced mRNA isoforms.

  5. CD151 promotes α3β1 integrin-dependent organization of carcinoma cell junctions and restrains collective cell invasion.

    Science.gov (United States)

    Zevian, Shannin C; Johnson, Jessica L; Winterwood, Nicole E; Walters, Katherine S; Herndon, Mary E; Henry, Michael D; Stipp, Christopher S

    2015-01-01

    Integrins function in collective migration both as major receptors for extracellular matrix and by crosstalk to adherens junctions. Despite extensive research, important questions remain about how integrin signaling mechanisms are integrated into collective migration programs. Tetraspanins form cell surface complexes with a subset of integrins and thus are good candidates for regulating the balance of integrin functional inputs into cell-matrix and cell-cell interactions. For example, tetraspanin CD151 directly associates with α3β1 integrin in carcinoma cells and promotes rapid α3β1-dependent single cell motility, but CD151 also promotes organized adherens junctions and restrains collective carcinoma cell migration on 2D substrates. However, the individual roles of CD151s integrin partners in CD151s pro-junction activity in carcinoma cells were not well understood. Here we find that CD151 promotes organized carcinoma cell junctions via α3β1 integrin, by a mechanism that requires the a3b1 ligand, laminin-332. Loss of CD151 promotes collective 3D invasion and growth in vitro and in vivo, and the enhanced invasion of CD151-silenced cells is α3 integrin dependent, suggesting that CD151 can regulate the balance between α3β1s pro-junction and pro-migratory activities in collective invasion. An analysis of human cancer cases revealed that changes in CD151 expression can be linked to either better or worse clinical outcomes depending on context, including potentially divergent roles for CD151 in different subsets of breast cancer cases. Thus, the role of the CD151-α3β1 complex in carcinoma progression is context dependent, and may depend on the mode of tumor cell invasion.

  6. Endocytosis of Integrin-Binding Human Picornaviruses

    Directory of Open Access Journals (Sweden)

    Pirjo Merilahti

    2012-01-01

    Full Text Available Picornaviruses that infect humans form one of the largest virus groups with almost three hundred virus types. They include significant enteroviral pathogens such as rhino-, polio-, echo-, and coxsackieviruses and human parechoviruses that cause wide range of disease symptoms. Despite the economic importance of picornaviruses, there are no antivirals. More than ten cellular receptors are known to participate in picornavirus infection, but experimental evidence of their role in cellular infection has been shown for only about twenty picornavirus types. Three enterovirus types and one parechovirus have experimentally been shown to bind and use integrin receptors in cellular infection. These include coxsackievirus A9 (CV-A9, echovirus 9, and human parechovirus 1 that are among the most common and epidemic human picornaviruses and bind to αV-integrins via RGD motif that resides on virus capsid. In contrast, echovirus 1 (E-1 has no RGD and uses integrin α2β1 as cellular receptor. Endocytosis of CV-A9 has recently been shown to occur via a novel Arf6- and dynamin-dependent pathways, while, contrary to collagen binding, E-1 binds inactive β1 integrin and enters via macropinocytosis. In this paper, we review what is known about receptors and endocytosis of integrin-binding human picornaviruses.

  7. Intracellular Modifiers of Integrin Alpha 6p Production in Aggressive Prostate and Breast Cancer Cell Lines

    Science.gov (United States)

    Kacsinta, Apollo D.; Rubenstein, Cynthia S.; Sroka, Isis C.; Pawar, Sangita; Gard, Jaime M.; Nagle, Raymond B.; Cress, Anne E.

    2014-01-01

    Cancer metastasis is a multi-step process in which tumor cells gain the ability to invade beyond the primary tumor and colonize distant sites. The mechanisms regulating the metastatic process confer changes to cell adhesion receptors including the integrin family of receptors. Our group previously discovered that the α6 integrin (ITGA6/CD49f) is post translationally modified by urokinase plasminogen activator (uPA) and its receptor, urokinase plasminogen activator receptor (uPAR), to form the variant ITGA6p. This variant of ITGA6 is a cleaved form of the receptor that lacks the ligand-binding domain. Although it is established that the uPA/uPAR axis drives ITGA6 cleavage, the mechanisms regulating cleavage have not been defined. Intracellular integrin dependent “inside-out” signaling is a major regulator of integrin function and the uPA/uPAR axis. We hypothesized that intracellular signaling molecules play a role in formation of ITGA6p to promote cell migration during cancer metastasis. In order to test our hypothesis, DU145 and PC3B1 prostate cancer and MDA-MB-231 breast cancer cell lines were treated with small interfering RNA targeting actin and the intracellular signaling regulators focal adhesion kinase (FAK), integrin linked kinase (ILK), and paxillin. The results demonstrated that inhibition of actin, FAK, and ILK expression resulted in significantly increased uPAR expression and ITGA6p production. Inhibition of actin increased ITGA6p, although inhibition of paxillin did not affect ITGA6p formation. Taken together, these results suggest that FAK and ILK dependent “inside-out” signaling, and actin dynamics regulate extracellular production of ITGA6p and the aggressive phenotype. PMID:25450398

  8. Histone Deacetylase 1 (HDAC1) Negatively Regulates Thermogenic Program in Brown Adipocytes via Coordinated Regulation of Histone H3 Lysine 27 (H3K27) Deacetylation and Methylation.

    Science.gov (United States)

    Li, Fenfen; Wu, Rui; Cui, Xin; Zha, Lin; Yu, Liqing; Shi, Hang; Xue, Bingzhong

    2016-02-26

    Inhibiting class I histone deacetylases (HDACs) increases energy expenditure, reduces adiposity, and improves insulin sensitivity in obese mice. However, the precise mechanism is poorly understood. Here, we demonstrate that HDAC1 is a negative regulator of the brown adipocyte thermogenic program. The Hdac1 level is lower in mouse brown fat (BAT) than white fat, is suppressed in mouse BAT during cold exposure or β3-adrenergic stimulation, and is down-regulated during brown adipocyte differentiation. Remarkably, overexpressing Hdac1 profoundly blocks, whereas deleting Hdac1 significantly enhances, β-adrenergic activation-induced BAT-specific gene expression in brown adipocytes. β-Adrenergic activation in brown adipocytes results in a dissociation of HDAC1 from promoters of BAT-specific genes, including uncoupling protein 1 (Ucp1) and peroxisome proliferator-activated receptor γ co-activator 1α (Pgc1α), leading to increased acetylation of histone H3 lysine 27 (H3K27), an epigenetic mark of gene activation. This is followed by dissociation of the polycomb repressive complexes, including the H3K27 methyltransferase enhancer of zeste homologue (EZH2), suppressor of zeste 12 (SUZ12), and ring finger protein 2 (RNF2) from (and concomitant recruitment of H3K27 demethylase ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX) to) Ucp1 and Pgc1α promoters, leading to decreased H3K27 trimethylation, a histone transcriptional repression mark. Thus, HDAC1 negatively regulates the brown adipocyte thermogenic program, and inhibiting Hdac1 promotes BAT-specific gene expression through a coordinated control of increased acetylation and decreased methylation of H3K27, thereby switching the transcriptional repressive state to the active state at the promoters of Ucp1 and Pgc1α. Targeting HDAC1 may be beneficial in prevention and treatment of obesity by enhancing BAT thermogenesis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Integrins as Therapeutic Targets: Successes and Cancers

    Directory of Open Access Journals (Sweden)

    Sabine Raab-Westphal

    2017-08-01

    Full Text Available Integrins are transmembrane receptors that are central to the biology of many human pathologies. Classically mediating cell-extracellular matrix and cell-cell interaction, and with an emerging role as local activators of TGFβ, they influence cancer, fibrosis, thrombosis and inflammation. Their ligand binding and some regulatory sites are extracellular and sensitive to pharmacological intervention, as proven by the clinical success of seven drugs targeting them. The six drugs on the market in 2016 generated revenues of some US$3.5 billion, mainly from inhibitors of α4-series integrins. In this review we examine the current developments in integrin therapeutics, especially in cancer, and comment on the health economic implications of these developments.

  10. Separate and shared sympathetic outflow to white and brown fat coordinately regulates thermoregulation and beige adipocyte recruitment

    Science.gov (United States)

    Nguyen, Ngoc Ly T.; Barr, Candace L.; Ryu, Vitaly; Cao, Qiang; Bartness, Timothy J.

    2017-01-01

    White adipose tissue (WAT) and brown adipose tissue (BAT) are innervated and regulated by the sympathetic nervous system (SNS). It is not clear, however, whether there are shared or separate central SNS outflows to WAT and BAT that regulate their function. We injected two isogenic strains of pseudorabies virus, a retrograde transneuronal viral tract tracer, with unique fluorescent reporters into interscapular BAT (IBAT) and inguinal WAT (IWAT) of the same Siberian hamsters to define SNS pathways to both. To test the functional importance of SNS coordinated control of BAT and WAT, we exposed hamsters with denervated SNS nerves to IBAT to 4°C for 16–24 h and measured core and fat temperatures and norepinephrine turnover (NETO) and uncoupling protein 1 (UCP1) expression in fat tissues. Overall, there were more SNS neurons innervating IBAT than IWAT across the neuroaxis. However, there was a greater percentage of singly labeled IWAT neurons in midbrain reticular nuclei than singly labeled IBAT neurons. The hindbrain had ~30–40% of doubly labeled neurons while the forebrain had ~25% suggesting shared SNS circuitry to BAT and WAT across the brain. The raphe nucleus, a key region in thermoregulation, had ~40% doubly labeled neurons. Hamsters with IBAT SNS denervation maintained core body temperature during acute cold challenge and had increased beige adipocyte formation in IWAT. They also had increased IWAT NETO, temperature, and UCP1 expression compared with intact hamsters. These data provide strong neuroanatomical and functional evidence of WAT and BAT SNS cross talk for thermoregulation and beige adipocyte formation. PMID:27881398

  11. Integrin-mediated transactivation of P2X7R via hemichannel-dependent ATP release stimulates astrocyte migration.

    Science.gov (United States)

    Alvarez, Alvaro; Lagos-Cabré, Raúl; Kong, Milene; Cárdenas, Areli; Burgos-Bravo, Francesca; Schneider, Pascal; Quest, Andrew F G; Leyton, Lisette

    2016-09-01

    Our previous reports indicate that ligand-induced αVβ3 integrin and Syndecan-4 engagement increases focal adhesion formation and migration of astrocytes. Additionally, ligated integrins trigger ATP release through unknown mechanisms, activating P2X7 receptors (P2X7R), and the uptake of Ca(2+) to promote cell adhesion. However, whether the activation of P2X7R and ATP release are required for astrocyte migration and whether αVβ3 integrin and Syndecan-4 receptors communicate with P2X7R via ATP remains unknown. Here, cells were stimulated with Thy-1, a reported αVβ3 integrin and Syndecan-4 ligand. Results obtained indicate that ATP was released by Thy-1 upon integrin engagement and required the participation of phosphatidylinositol-3-kinase (PI3K), phospholipase-C gamma (PLCγ) and inositol trisphosphate (IP3) receptors (IP3R). IP3R activation leads to increased intracellular Ca(2+), hemichannel (Connexin-43 and Pannexin-1) opening, and ATP release. Moreover, silencing of the P2X7R or addition of hemichannel blockers precluded Thy-1-induced astrocyte migration. Finally, Thy-1 lacking the integrin-binding site did not stimulate ATP release, whereas Thy-1 mutated in the Syndecan-4-binding domain increased ATP release, albeit to a lesser extent and with delayed kinetics compared to wild-type Thy-1. Thus, hemichannels activated downstream of an αVβ3 integrin-PI3K-PLCγ-IP3R pathway are responsible for Thy-1-induced, hemichannel-mediated and Syndecan-4-modulated ATP release that transactivates P2X7Rs to induce Ca(2+) entry. These findings uncover a hitherto unrecognized role for hemichannels in the regulation of astrocyte migration via P2X7R transactivation induced by integrin-mediated ATP release. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Coordinated transcriptional regulation of bone homeostasis by Ebf1 and Zfp521 in both mesenchymal and hematopoietic lineages.

    Science.gov (United States)

    Kiviranta, Riku; Yamana, Kei; Saito, Hiroaki; Ho, Daniel K; Laine, Julius; Tarkkonen, Kati; Nieminen-Pihala, Vappu; Hesse, Eric; Correa, Diego; Määttä, Jorma; Tessarollo, Lino; Rosen, Evan D; Horne, William C; Jenkins, Nancy A; Copeland, Neal G; Warming, Soren; Baron, Roland

    2013-05-06

    Bone homeostasis is maintained by the coupled actions of hematopoietic bone-resorbing osteoclasts (OCs) and mesenchymal bone-forming osteoblasts (OBs). Here we identify early B cell factor 1 (Ebf1) and the transcriptional coregulator Zfp521 as components of the machinery that regulates bone homeostasis through coordinated effects in both lineages. Deletion of Zfp521 in OBs led to impaired bone formation and increased OB-dependent osteoclastogenesis (OC-genesis), and deletion in hematopoietic cells revealed a strong cell-autonomous role for Zfp521 in OC progenitors. In adult mice, the effects of Zfp521 were largely caused by repression of Ebf1, and the bone phenotype of Zfp521(+/-) mice was rescued in Zfp521(+/-):Ebf1(+/-) mice. Zfp521 interacted with Ebf1 and repressed its transcriptional activity. Accordingly, deletion of Zfp521 led to increased Ebf1 activity in OBs and OCs. In vivo, Ebf1 overexpression in OBs resulted in suppressed bone formation, similar to the phenotype seen after OB-targeted deletion of Zfp521. Conversely, Ebf1 deletion led to cell-autonomous defects in both OB-dependent and cell-intrinsic OC-genesis, a phenotype opposite to that of the Zfp521 knockout. Thus, we have identified the interplay between Zfp521 and Ebf1 as a novel rheostat for bone homeostasis.

  13. Stress-induced cytokinin synthesis increases drought tolerance through the coordinated regulation of carbon and nitrogen assimilation in rice.

    Science.gov (United States)

    Reguera, Maria; Peleg, Zvi; Abdel-Tawab, Yasser M; Tumimbang, Ellen B; Delatorre, Carla A; Blumwald, Eduardo

    2013-12-01

    The effects of water deficit on carbon and nitrogen metabolism were investigated in flag leaves of wild-type and transgenic rice (Oryza sativa japonica 'Kitaake') plants expressing ISOPENTENYLTRANSFERASE (IPT; encoding the enzyme that mediates the rate-limiting step in cytokinin synthesis) under the control of P(SARK), a maturation- and stress-induced promoter. While the wild-type plants displayed inhibition of photosynthesis and nitrogen assimilation during water stress, neither carbon nor nitrogen assimilation was affected by stress in the transgenic P(SARK)::IPT plants. In the transgenic plants, photosynthesis was maintained at control levels during stress and the flag leaf showed increased sucrose (Suc) phosphate synthase activity and reduced Suc synthase and invertase activities, leading to increased Suc contents. The sustained carbon assimilation in the transgenic P(SARK)::IPT plants was well correlated with enhanced nitrate content, higher nitrate reductase activity, and sustained ammonium contents, indicating that the stress-induced cytokinin synthesis in the transgenic plants played a role in maintaining nitrate acquisition. Protein contents decreased and free amino acids increased in wild-type plants during stress, while protein content was preserved in the transgenic plants. Our results indicate that the stress-induced cytokinin synthesis in the transgenic plants promoted sink strengthening through a cytokinin-dependent coordinated regulation of carbon and nitrogen metabolism that facilitates an enhanced tolerance of the transgenic plants to water deficit.

  14. Inhibition of a novel specific neuroglial integrin signaling pathway increases STAT3-mediated CNTF expression

    Science.gov (United States)

    2013-01-01

    Background Ciliary neurotrophic factor (CNTF) expression is repressed in astrocytes by neuronal contact in the CNS and is rapidly induced by injury. Here, we defined an inhibitory integrin signaling pathway. Results The integrin substrates laminin, fibronectin and vitronectin, but not collagen, thrombospondin or fibrinogen, reduced CNTF expression in C6 astroglioma cells. Antibodies against αv and β5, but not α6 or β1, integrin induced CNTF. Together, the ligand and antibody specificity suggests that CNTF is repressed by αvβ5 integrin. Antibodies against Thy1, an abundant neuronal surface protein whose function is unclear, induced CNTF in neuron-astrocyte co-cultures indicating that it is a neuroglial CNTF repressor. Inhibition of the integrin signaling molecule Focal Adhesion Kinase (FAK) or the downstream c-Jun N-terminal kinase (JNK), but not extracellular regulated kinase (ERK) or p38 MAPK, greatly induced CNTF mRNA and protein expression within 4 hours. This selective inhibitory pathway phosphorylated STAT3 on its inhibitory ser-727 residue interfering with activity of the pro-transcription Tyr-705 residue. STAT3 can activate CNTF transcription because it bound to its promoter and FAK antagonist-induced CNTF was reduced by blocking STAT3. Microinjection of FAK inhibitor directly into the brain or spinal cord in adult mice rapidly induced CNTF mRNA and protein expression. Importantly, systemic treatment with FAK inhibitors over 3 days induced CNTF in the subventricular zone and increased neurogenesis. Conclusions Neuron-astroglia contact mediated by integrins serves as a sensor to enable rapid neurotrophic responses and provides a new pharmacological avenue to exploit the neuroprotective properties of endogenous CNTF. PMID:23693126

  15. Convergent signalling in the action of integrins, neuropeptides, growth factors and oncogenes.

    Science.gov (United States)

    Rozengurt, E

    1995-01-01

    These findings have important implications for signal transduction and cell regulation. Most obviously, they suggest that tyrosine phosphorylation of a novel type of tyrosine kinase p125FAK is a point of convergence in the action of integrins, oncogenic forms of pp60src, mitogenic neuropeptides and growth factors (Fig. 3). One inference is that the signal transduction pathways initiated by these diverse groups of molecules have, at least in part, similar consequences for cellular function. The notion of convergence is reinforced by the striking similarity in the overall pattern of tyrosine phosphorylation produced through these different pathways. It is tempting to speculate that p125FAK, paxillin and p130 are components in a common programme of phosphorylation events stimulated by integrins, mitogenic neuropeptides and growth factors. The localization of p125FAK to focal adhesions is clearly consistent with a role for this protein as a junction point in the transduction of signals that regulate cell substrate adhesion and ultimately cell motility and cell shape, as suggested in Fig. 3. The existence of distinct pathways leading to p125FAK phosphorylation raises the possibility of synergistic interactions between integrins and G protein coupled receptors. In fact, integrin mediated p125FAK tyrosine phosphorylation appears to be mediated by a PKC dependent pathway (Vuori and Ruoslathi, 1993). By contrast, bombesin and LPA induce tyrosine phosphorylation of p125FAK and paxillin through a PKC independent pathway (Sinnett-Smith et al, 1993; Zachary et al, 1993; Seufferlein and Rozengurt, 1994). It is possible that tyrosine phosphorylation of p125FAK by bombesin, LPA and pp60v-src bypasses and perhaps mimics the phosphorylation caused by integrin activation. Further experimental work will be required to elucidate whether integrins and neuropeptides increase the autophosphorylation of Tyr-397 in p125FAK, as has been recently demonstrated in src-transformed cells

  16. Coordinate developmental expression of genes regulating sterol economy and cholesterol side-chain cleavage in the porcine ovary.

    Science.gov (United States)

    LaVoie, H A; Benoit, A M; Garmey, J C; Dailey, R A; Wright, D J; Veldhuis, J D

    1997-08-01

    showed a dramatic decline by Day 20 post-hCG (p = 0.002, p = 0.003, p = 0.006, respectively, compared with CL) corresponding with functional regression of the CL. In summary, P450scc and StAR message expression are coordinately amplified during the pig follicular and luteal phase, whereas LDL receptor message after an initial increase is expressed at constitutively high levels, thus indicating a differential regulation of ovarian sterol-metabolizing genes during the steroidogenic life of the follicle and CL.

  17. Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression.

    Science.gov (United States)

    Bajaj, V; Lucas, R L; Hwang, C; Lee, C A

    1996-11-01

    During infection of their hosts, salmonellae enter intestinal epithelial cells. It has been proposed that when Salmonella typhimurium is present in the intestinal lumen, several environmental and regulatory conditions modulate the expression of invasion factors required for bacterial entry into host cells. We report here that the expression of six different S. typhimurium invasion genes encoded on SPI1 (Salmonella pathogenicity island 1) is co-ordinately regulated by oxygen, osmolarity, pH, PhoPQ, and HilA. HilA is a transcriptional activator of the OmpR/ToxR family that is also encoded on SPI1. We have found that HilA plays a central role in the co-ordinated regulation of invasion genes by environmental and regulatory conditions. HilA can activate the expression of two invasion gene-lacZY fusions on reporter plasmids in Escherichia coll, suggesting that HilA acts directly at invasion-gene promoters in S. typhimurium. We have found that the regulation of invasion genes by oxygen, osmolarity, pH, and PhoPQ is indirect and is mediated by regulation of hilA expression by these environmental and regulatory factors. We hypothesize that the complex and co-ordinate regulation of Invasion genes by HilA is an important feature of salmonella pathogenesis and allows salmonellae to enter intestinal epithelial cells.

  18. Alterated integrin expression in lichen planopilaris

    Directory of Open Access Journals (Sweden)

    Erriquez Roberta

    2007-02-01

    Full Text Available Abstract Background Lichen planopilaris (LPP is an inflammatory disease characterized by a lymphomononuclear infiltrate surrounding the isthmus and infundibulum of the hair follicle of the scalp, that evolves into atrophic/scarring alopecia. In the active phase of the disease hairs are easily plucked with anagen-like hair-roots. In this study we focused on the expression of integrins and basement membrane components of the hair follicle in active LPP lesions. Methods Scalp biopsies were taken in 10 patients with LPP and in 5 normal controls. Using monoclonal antibodies against α3β1 and α6β4 integrins we showed the expression of these integrins and of the basement membrane components of the hair follicle in active LPP lesions and in healthy scalp skin. Results In the LPP involved areas, α3β1 was distributed in a pericellular pattern, the α6 subunit was present with a basolateral distribution while the β4 subunit showed discontinuous expression at the basal pole and occasionally, basolateral staining of the hair follicle. Conclusion: An altered distribution of the integrins in active LPP lesions can explain the phenomenon of easy pulling-out of the hair with a "gelatinous" root-sheath.

  19. Muscle-specific integrins in masseter muscle fibers of chimpanzees: an immunohistochemical study.

    Directory of Open Access Journals (Sweden)

    Gianluigi Vaccarino

    2010-05-01

    Full Text Available Most notably, recent comparative genomic analyses strongly indicate that the marked differences between modern human and chimpanzees are likely due more to changes in gene regulation than to modifications of the genes. The most peculiar aspect of hominoid karyotypes is that human have 46 chromosomes whereas gorillas and chimpanzees have 48. Interestingly, human and chimpanzees do share identical inversions on chromosome 7 and 9 that are not evident in the gorilla karyotype. Thus, the general phylogeny suggests that humans and chimpanzees are sister taxa; based on this, it seems that human-chimpanzee sequence similarity is an astonishing 99%. At this purpose, of particular interest is the inactivation of the myosin heavy chain 16 (MYH16 gene, most prominently expressed in the masticatory muscle of mammals. It has been showed that the loss of this gene in humans may have resulted in smaller masticatory muscle and consequential changes to cranio-facial morphology and expansion of the human brain case. Powerful masticatory muscles are found in most primates; contrarily, in both modern and fossil member Homo, these muscles are considerably smaller. The evolving hominid masticatory apparatus shifted towards a pattern of gracilization nearly simultaneously with accelerated encephalization in early Homo. To better comprehend the real role of the MYH16 gene, we studied the primary proteins present in the muscle fibers of humans and non-humans, in order to understand if they really can be influenced by MYH16 gene. At this aim we examined the muscle-specific integrins, alpha 7B and beta 1D-integrins, and their relative fetal isoforms, alpha 7A and beta 1A-integrins, analyzing, by immunohistochemistry, muscle biopsies of two components of a chimpanzee's group in captivity, an alpha male and a non-alpha male subjects; all these integrins participate in vital biological processes such as maintenance of tissue integrity, embryonic development, cell

  20. The Gain-of-Function Integrin β3 Pro33 Variant Alters the Serotonin System in the Mouse Brain.

    Science.gov (United States)

    Dohn, Michael R; Kooker, Christopher G; Bastarache, Lisa; Jessen, Tammy; Rinaldi, Capria; Varney, Seth; Mazalouskas, Matthew D; Pan, Hope; Oliver, Kendra H; Velez Edwards, Digna R; Sutcliffe, James S; Denny, Joshua C; Carneiro, Ana M D

    2017-11-15

    Engagement of integrins by the extracellular matrix initiates signaling cascades that drive a variety of cellular functions, including neuronal migration and axonal pathfinding in the brain. Multiple lines of evidence link the ITGB3 gene encoding the integrin β3 subunit with the serotonin (5-HT) system, likely via its modulation of the 5-HT transporter (SERT). The ITGB3 coding polymorphism Leu33Pro (rs5918, Pl A2 ) produces hyperactive αvβ3 receptors that influence whole-blood 5-HT levels and may influence the risk for autism spectrum disorder (ASD). Using a phenome-wide scan of psychiatric diagnoses, we found significant, male-specific associations between the Pro33 allele and attention-deficit hyperactivity disorder and ASDs. Here, we used knock-in (KI) mice expressing an Itgb3 variant that phenocopies the human Pro33 variant to elucidate the consequences of constitutively enhanced αvβ3 signaling to the 5-HT system in the brain. KI mice displayed deficits in multiple behaviors, including anxiety, repetitive, and social behaviors. Anatomical studies revealed a significant decrease in 5-HT synapses in the midbrain, accompanied by decreases in SERT activity and reduced localization of SERTs to integrin adhesion complexes in synapses of KI mice. Inhibition of focal adhesion kinase (FAK) rescued SERT function in synapses of KI mice, demonstrating that constitutive active FAK signaling downstream of the Pro32Pro33 integrin αvβ3 suppresses SERT activity. Our studies identify a complex regulation of 5-HT homeostasis and behaviors by integrin αvβ3, revealing an important role for integrins in modulating risk for neuropsychiatric disorders. SIGNIFICANCE STATEMENT The integrin β3 Leu33Pro coding polymorphism has been associated with autism spectrum disorders (ASDs) within a subgroup of patients with elevated blood 5-HT levels, linking integrin β3, 5-HT, and ASD risk. We capitalized on these interactions to demonstrate that the Pro33 coding variation in the murine

  1. Integrin α6Bβ4 inhibits colon cancer cell proliferation and c-Myc activity

    International Nuclear Information System (INIS)

    Dydensborg, Anders Bondo; Teller, Inga C; Groulx, Jean-François; Basora, Nuria; Paré, Fréderic; Herring, Elizabeth; Gauthier, Rémy; Jean, Dominique; Beaulieu, Jean-François

    2009-01-01

    Integrins are known to be important contributors to cancer progression. We have previously shown that the integrin β4 subunit is up-regulated in primary colon cancer. Its partner, the integrin α6 subunit, exists as two different mRNA splice variants, α6A and α6B, that differ in their cytoplasmic domains but evidence for distinct biological functions of these α6 splice variants is still lacking. In this work, we first analyzed the expression of integrin α6A and α6B at the protein and transcript levels in normal human colonic cells as well as colorectal adenocarcinoma cells from both primary tumors and established cell lines. Then, using forced expression experiments, we investigated the effect of α6A and α6B on the regulation of cell proliferation in a colon cancer cell line. Using variant-specific antibodies, we observed that α6A and α6B are differentially expressed both within the normal adult colonic epithelium and between normal and diseased colonic tissues. Proliferative cells located in the lower half of the glands were found to predominantly express α6A, while the differentiated and quiescent colonocytes in the upper half of the glands and surface epithelium expressed α6B. A relative decrease of α6B expression was also identified in primary colon tumors and adenocarcinoma cell lines suggesting that the α6A/α6B ratios may be linked to the proliferative status of colonic cells. Additional studies in colon cancer cells showed that experimentally restoring the α6A/α6B balance in favor of α6B caused a decrease in cellular S-phase entry and repressed the activity of c-Myc. The findings that the α6Bβ4 integrin is expressed in quiescent normal colonic cells and is significantly down-regulated in colon cancer cells relative to its α6Aβ4 counterpart are consistent with the anti-proliferative influence and inhibitory effect on c-Myc activity identified for this α6Bβ4 integrin. Taken together, these findings point out the importance of integrin

  2. The synthesis and biological evaluation of integrin receptor targeting molecules as potential radiopharmaceuticals

    Science.gov (United States)

    Pellegrini, Paul

    This thesis reports on the synthesis, characterisation and biological evaluation of a number of metal complexes designed to interact with the alphavbeta3 integrin receptor, an important biological target that is heavily involved in angiogenesis, and thus cancer related processes. Two approaches were used to synthesise the integrin-avid targets. The first was to attach a variety of bifunctional chelators (BFC's) for the incorporation of different metal centres to a known integrin antagonist, L-748,415, developed by Merck. The BFC's used were the hydrazinonicotinamide (HYNIC) and monoamine monoamide dithiol (MAMA) systems for coordination to Tc-99m and rhenium of which was used as a characterization surrogate for the unstable Tc core. The 1,4,7,10-tetraazacyclotridecanetetraacetic acid (TRITA) BFC was attached for the inclusion of copper and lutetium. This 'conjugate' approach was designed to yield information on how the BFC and the linker length would affect the affinity for the integrin receptor. The second approach was an 'integrated' method where the chelation moiety was integral to the biologically relevant part of the molecule, which in the case of the alphavbeta3 integrin receptor, is the arginine-glycine-aspartic acid (RGD) mimicking sequence. Two complexes were created with a modified MAMA derivative placed between a benzimidazole moiety (arginine mimick) and the aspartic acid mimicking terminal carboxylic acid to see how it would affect binding while keeping the molecular weight relatively low. The molecules were tested in vitro against purified human alphavbeta3 integrin receptor protein in a solid phase receptor binding assay to evaluate their inhibition constants against a molecule of known high affinity and selectivity in [I125]L-775,219, the I125 labelled alphavbeta3 integrin antagonist. The radiolabelled analogues were also tested in vivo against the A375 human melanoma cell line transplanted into balb/c nude mice as well as Fischer rats implanted

  3. α-Hemolysin enhances Staphylococcus aureus internalization and survival within mast cells by modulating the expression of β1 integrin.

    Science.gov (United States)

    Goldmann, Oliver; Tuchscherr, Lorena; Rohde, Manfred; Medina, Eva

    2016-06-01

    Mast cells (MCs) are important sentinels of the host defence against invading pathogens. We previously reported that Staphylococcus aureus evaded the extracellular antimicrobial activities of MCs by promoting its internalization within these cells via β1 integrins. Here, we investigated the molecular mechanisms governing this process. We found that S. aureus responded to the antimicrobial mediators released by MCs by up-regulating the expression of α-hemolysin (Hla), fibronectin-binding protein A and several regulatory systems. We also found that S. aureus induced the up-regulation of β1 integrin expression on MCs and that this effect was mediated by Hla-ADAM10 (a disintegrin and metalloproteinase 10) interaction. Thus, deletion of Hla or inhibition of Hla-ADAM10 interaction significantly impaired S. aureus internalization within MCs. Furthermore, purified Hla but not the inactive HlaH35L induced up-regulation of β1 integrin expression in MCs in a dose-dependent manner. Our data support a model in which S. aureus counter-reacts the extracellular microbicidal mechanisms of MCs by increasing expression of fibronectin-binding proteins and by inducing Hla-ADAM10-mediated up-regulation of β1 integrin in MCs. The up-regulation of bacterial fibronectin-binding proteins, concomitantly with the increased expression of its receptor β1 integrin on the MCs, resulted in enhanced S. aureus internalization through the binding of fibronectin-binding proteins to integrin β1 via fibronectin. © 2016 John Wiley & Sons Ltd.

  4. Nitric oxide and reactive oxygen species coordinately regulate the germination of Puccinia striiformis f. sp. tritici urediniospores

    Directory of Open Access Journals (Sweden)

    Shuining eYin

    2016-02-01

    Full Text Available Nitric oxide (NO and reactive oxygen species (ROS function as signaling molecules in a number of critical signal transduction pathways in plants, including plant biotic interactions. In addition to the role of plant-derived NO and ROS in plant resistance, which has been well documented, pathogen-produced NO and ROS have recently emerged as important players in fungal development and pathogenesis. However, the effects of pathogenic fungi-derived NO and ROS on signaling pathways during fungal pre-infection development remain unknown. Here, using a combination of pharmacological approaches and confocal microscopy, we investigated the roles of NO and ROS during the germination of Puccinia striiformis Westend f. sp. tritici (Pst the wheat stripe rust pathogen. Both NO and ROS have a crucial role in uredinial germination. The scavengers of NO and ROS delayed spore germination and decreased the lengths of germ tubes. A similar phenotype was produced after treatment with the promoter. However, the spores germinated and grew normally when the levels of NO and ROS were simultaneously elevated by the application of a promoter of NO and a donor of ROS. Confocal laser microscopy indicated that both NO and ROS preferentially localized at the germ pores and apexes of growing germ tubes when the ROS/NO ratio in the spores was maintained in a specific range. We concluded that both NO and ROS are critical signaling molecules in the pre-infection development of Pst and that the polar growth of the germ tube is coordinately regulated by NO and ROS.

  5. Mio/dChREBP coordinately increases fat mass by regulating lipid synthesis and feeding behavior in Drosophila

    Science.gov (United States)

    Sassu, Eric D.; McDermott, Jacqueline E.; Keys, Brendan J.; Esmaeili, Melody; Keene, Alex C.; Birnbaum, Morris J.; DiAngelo, Justin R.

    2012-01-01

    During nutrient excess, triglycerides are synthesized and stored to provide energy during times of famine. The presence of high glucose leads to the activation of carbohydrate response element binding protein (ChREBP), a transcription factor that induces the expression of a number of glycolytic and lipogenic enzymes. ChREBP is expressed in major metabolic tissues and while we have a basic understanding of ChREBP function in liver, in vivo genetic systems to study the function of ChREBP in other tissues are lacking. In this study, we characterized the role of the Drosophila homolog of ChREBP, Mlx interactor (Mio), in controlling fat accumulation in larvae and adult flies. In Mio mutants, high sugar-induced lipogenic enzyme mRNA expression is blunted and lowering Mio levels specifically in the fat body using RNA interference leads to a lean phenotype. A lean phenotype is also observed when the gene bigmax, the fly homolog of ChREBP’s binding partner Mlx, is decreased in the larval fat body. Interestingly, depleting Mio in the fat body results in decreased feeding providing a potential cause of the lowered triglycerides observed in these animals. However, Mio does not seem to function as a general regulator of hunger-induced behaviors as decreasing fat body Mio levels has no effect on sleep under fed or starved conditions. Together, these data implicate a role for Mio in controlling fat accumulation in Drosophila and suggests that it may act as a nutrient sensor in the fat body to coordinate feeding behavior with nutrient availability. PMID:22910416

  6. Co-ordinate regulation of distinct host cell signalling pathways by multifunctional enteropathogenic Escherichia coli effector molecules.

    Science.gov (United States)

    Kenny, Brendan; Ellis, Sarah; Leard, Alan D; Warawa, Jonathan; Mellor, Harry; Jepson, Mark A

    2002-05-01

    Enteropathogenic Escherichia coli (EPEC) is a major cause of paediatric diarrhoea and a model for the family of attaching and effacing (A/E) pathogens. A/E pathogens encode a type III secretion system to transfer effector proteins into host cells. The EPEC Tir effector protein acts as a receptor for the bacterial surface protein intimin and is involved in the formation of Cdc42-independent, actin-rich pedestal structures beneath the adhered bacteria. In this paper, we demonstrate that EPEC binding to HeLa cells also induces Tir-independent, cytoskeletal rearrangement evidenced by the early, transient formation of filopodia-like structures at sites of infection. Filopodia formation is dependent on expression of the EPEC Map effector molecule - a protein that targets mitochondria and induces their dysfunction. We show that Map-induced filopodia formation is independent of mitochondrial targeting and is abolished by cellular expression of the Cdc42 inhibitory WASP-CRIB domain, demonstrating that Map has at least two distinct functions in host cells. The transient nature of the filopodia is related to an ability of EPEC to downregulate Map-induced cell signalling that, like pedestal formation, was dependent on both Tir and intimin proteins. The ability of Tir to downregulate filopodia was impaired by disrupting a putative GTPase-activating protein (GAP) motif, suggesting that Tir may possess such a function, with its interaction with intimin triggering this activity. Furthermore, we also found that Map-induced cell signalling inhibits pedestal formation, revealing that the cellular effects of Tir and Map must be co-ordinately regulated during infection. Possible implications of the multifunctional nature of EPEC effector molecules in pathogenesis are discussed.

  7. A computational analysis of the dynamic roles of talin, Dok1, and PIPKI for integrin activation.

    Directory of Open Access Journals (Sweden)

    Florian Geier

    Full Text Available Integrin signaling regulates cell migration and plays a pivotal role in developmental processes and cancer metastasis. Integrin signaling has been studied extensively and much data is available on pathway components and interactions. Yet the data is fragmented and an integrated model is missing. We use a rule-based modeling approach to integrate available data and test biological hypotheses regarding the role of talin, Dok1 and PIPKI in integrin activation. The detailed biochemical characterization of integrin signaling provides us with measured values for most of the kinetics parameters. However, measurements are not fully accurate and the cellular concentrations of signaling proteins are largely unknown and expected to vary substantially across different cellular conditions. By sampling model behaviors over the physiologically realistic parameter range we find that the model exhibits only two different qualitative behaviors and these depend mainly on the relative protein concentrations, which offers a powerful point of control to the cell. Our study highlights the necessity to characterize model behavior not for a single parameter optimum, but to identify parameter sets that characterize different signaling modes.

  8. Atypical interactions of integrin αVβ8with pro-TGF-β1.

    Science.gov (United States)

    Wang, Jianchuan; Dong, Xianchi; Zhao, Bo; Li, Jing; Lu, Chafen; Springer, Timothy A

    2017-05-23

    Integrins α V β 6 and α V β 8 are specialized for recognizing pro-TGF-β and activating its growth factor by releasing it from the latency imposed by its surrounding prodomain. The integrin α V β 8 is atypical among integrins in lacking sites in its cytoplasmic domain for binding to actin cytoskeleton adaptors. Here, we examine α V β 8 for atypical binding to pro-TGF-β1. In contrast to α V β 6 , α V β 8 has a constitutive extended-closed conformation, and binding to pro-TGF-β1 does not stabilize the open conformation of its headpiece. Although Mn 2+ potently activates other integrins and increases affinity of α V β 6 for pro-TGF-β1 25- to 55-fold, it increases α V β 8 affinity only 2- to 3-fold. This minimal effect correlates with the inability of Mn 2+ and pro-TGF-β1 to stabilize the open conformation of the α V β 8 headpiece. Moreover, α V β 8 was inhibited by high concentrations of Mn 2+ and was stimulated and inhibited at markedly different Ca 2+ concentrations than α V β 6 These unusual characteristics are likely to be important in the still incompletely understood physiologic mechanisms that regulate α V β 8 binding to and activation of pro-TGF-β.

  9. β-1 Integrin-Mediated Adhesion May Be Initiated by Multiple Incomplete Bonds, Thus Accounting for the Functional Importance of Receptor Clustering

    OpenAIRE

    Vitte, Joana; Benoliel, Anne-Marie; Eymeric, Philippe; Bongrand, Pierre; Pierres, Anne

    2004-01-01

    The regulation of cell integrin receptors involves modulation of membrane expression, shift between different affinity states, and topographical redistribution on the cell membrane. Here we attempted to assess quantitatively the functional importance of receptor clustering. We studied β-1 integrin-mediated attachment of THP-1 cells to fibronectin-coated surfaces under low shear flow. Cells displayed multiple binding events with a half-life of the order of 1 s. The duration of binding events a...

  10. Microfilament-coordinated adhesion dynamics drives single cell migration and shapes whole tissues [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Rocio Aguilar-Cuenca

    2017-02-01

    Full Text Available Cell adhesion to the substratum and/or other cells is a crucial step of cell migration. While essential in the case of solitary migrating cells (for example, immune cells, it becomes particularly important in collective cell migration, in which cells maintain contact with their neighbors while moving directionally. Adhesive coordination is paramount in physiological contexts (for example, during organogenesis but also in pathology (for example, tumor metastasis. In this review, we address the need for a coordinated regulation of cell-cell and cell-matrix adhesions during collective cell migration. We emphasize the role of the actin cytoskeleton as an intracellular integrator of cadherin- and integrin-based adhesions and the emerging role of mechanics in the maintenance, reinforcement, and turnover of adhesive contacts. Recent advances in understanding the mechanical regulation of several components of cadherin and integrin adhesions allow us to revisit the adhesive clutch hypothesis that controls the degree of adhesive engagement during protrusion. Finally, we provide a brief overview of the major impact of these discoveries when using more physiological three-dimensional models of single and collective cell migration.

  11. High integrin αVβ6affinity reached by hybrid domain deletion slows ligand-binding on-rate.

    Science.gov (United States)

    Dong, Xianchi; Zhao, Bo; Lin, Fu-Yang; Lu, Chafen; Rogers, Bruce N; Springer, Timothy A

    2018-02-13

    The role of the hybrid domain in integrin affinity regulation is unknown, as is whether the kinetics of ligand binding is modulated by integrin affinity state. Here, we compare cell surface and soluble integrin α V β 6 truncation mutants for ligand-binding affinity, kinetics, and thermodynamics. Removal of the integrin transmembrane/cytoplasmic domains or lower legs has little effect on α V β 6 affinity, in contrast to β 1 integrins. In integrin opening, rearrangement at the interface between the βI and hybrid domains is linked to remodeling at the ligand-binding site at the opposite end of the βI domain, which greatly increases in affinity in the open conformation. The larger size of the βI-hybrid interface in the closed state suggests that the hybrid domain stabilizes closing. In agreement, deletion of the hybrid domain raised affinity by 50-fold. Surface plasmon resonance and isothermal titration calorimetry gave similar results and the latter revealed tradeoffs between enthalpy and entropy not apparent from affinity. At extremely high affinity reached in Mn 2+ with hybrid domain truncation, α V β 6 on-rate for both pro-TGF-β1 and fibronectin declined. The results suggest that the open conformation of α V β 6 has lower on-rate than the closed conformation, correlate with constriction of the ligand-binding pocket in open α V β 6 structures, and suggest that the extended-closed conformation is kinetically selected for ligand binding. Subsequent transition to the extended-open conformation is stabilized by its much higher affinity for ligand and would also be stabilized by force exerted across ligand-bound integrins by the actin cytoskeleton.

  12. The Coordinated Activities of nAChR and Wnt Signaling Regulate Intestinal Stem Cell Function in Mice

    Directory of Open Access Journals (Sweden)

    Toshio Takahashi

    2018-03-01

    Full Text Available Cholinergic signaling, which modulates cell activities via nicotinic and muscarinic acetylcholine receptors (n- and mAChRs in response to internal or external stimuli, has been demonstrated in mammalian non-neuronal cells that synthesize acetylcholine (ACh. One of the major pathways of excitatory transmission in the enteric nervous system (ENS is mediated by cholinergic transmission, with the transmitter ACh producing excitatory potentials in postsynaptic effector cells. In addition to ACh-synthesizing and ACh-metabolizing elements in the ENS, the presence of non-neuronal ACh machinery has been reported in epithelial cells of the small and large intestines of rats and humans. However, little is known about how non-neuronal ACh controls physiological function in the intestine. Here, experiments using crypt–villus organoids that lack nerve and immune cells in culture suggest that endogenous ACh is synthesized in the intestinal epithelium to drive organoid growth and differentiation through activation of nAChRs. Treatment of organoids with nicotine enhanced cell growth and the expression of marker genes for stem and epithelial cells. On the other hand, the nAChR antagonist mecamylamine strongly inhibited the growth and differentiation of organoids, suggesting the involvement of nAChRs in the regulation of proliferation and differentiation of Lgr5-positive stem cells. More specifically, RNA sequencing analysis revealed that Wnt5a expression was dramatically upregulated after nicotine treatment, and Wnt5a rescued organoid growth and differentiation in response to mecamylamine. Taken together, our results indicate that coordinated activities of nAChR and Wnt signaling maintain Lgr5-positive stem cell activity and balanced differentiation. Furthermore, we could clearly separate the two groups, neuronal ACh in the ENS and non-neuronal ACh in the intestinal epithelium. Dysfunction of the non-neuronal cholinergic system is involved in the pathogenesis

  13. Coordinated Regulation of Anthocyanin Biosynthesis Genes Confers Varied Phenotypic and Spatial-Temporal Anthocyanin Accumulation in Radish (Raphanus sativus L.).

    Science.gov (United States)

    Muleke, Everlyne M'mbone; Fan, Lianxue; Wang, Yan; Xu, Liang; Zhu, Xianwen; Zhang, Wei; Cao, Yang; Karanja, Benard K; Liu, Liwang

    2017-01-01

    Anthocyanins are natural pigments that have important functions in plant growth and development. Radish taproots are rich in anthocyanins which confer different taproot colors and are potentially beneficial to human health. The crop differentially accumulates anthocyanin during various stages of growth, yet molecular mechanisms underlying this differential anthocyanin accumulation remains unknown. In the present study, transcriptome analysis was used to concisely identify putative genes involved in anthocyanin biosynthesis in radish. Spatial-temporal transcript expressions were then profiled in four color variant radish cultivars. From the total transcript sequences obtained through illumina sequencing, 102 assembled unigenes, and 20 candidate genes were identified to be involved in anthocyanin biosynthesis. Fifteen genomic sequences were isolated and sequenced from radish taproot. The length of these sequences was between 900 and 1,579 bp, and the unigene coverage to all of the corresponding cloned sequences was more than 93%. Gene structure analysis revealed that RsF3 ' H is intronless and anthocyanin biosynthesis genes (ABGs) bear asymmetrical exons, except RsSAM . Anthocyanin accumulation showed a gradual increase in the leaf of the red radish and the taproot of colored cultivars during development, with a rapid increase at 30 days after sowing (DAS), and the highest content at maturity. Spatial-temporal transcriptional analysis of 14 genes revealed detectable expressions of 12 ABGs in various tissues at different growth levels. The investigation of anthocyanin accumulation and gene expression in four color variant radish cultivars, at different stages of development, indicated that total anthocyanin correlated with transcript levels of ABGs, particularly RsUFGT, RsF3H, RsANS, RsCHS3 and RsF3 ' H1 . Our results suggest that these candidate genes play key roles in phenotypic and spatial-temporal anthocyanin accumulation in radish through coordinated regulation

  14. Coordinated Regulation of Anthocyanin Biosynthesis Genes Confers Varied Phenotypic and Spatial-Temporal Anthocyanin Accumulation in Radish (Raphanus sativus L.

    Directory of Open Access Journals (Sweden)

    Everlyne M'mbone Muleke

    2017-07-01

    coordinated regulation and the major control point in anthocyanin biosynthesis in radish is RsUFGT. The present findings lend invaluable insights into anthocyanin biosynthesis and may facilitate genetic manipulation for enhanced anthocyanin content in radish.

  15. Hydrostatic Compress Force Enhances the Viability and Decreases the Apoptosis of Condylar Chondrocytes through Integrin-FAK-ERK/PI3K Pathway

    Directory of Open Access Journals (Sweden)

    Dandan Ma

    2016-11-01

    Full Text Available Reduced mechanical stimuli in many pathological cases, such as hemimastication and limited masticatory movements, can significantly affect the metabolic activity of mandibular condylar chondrocytes and the growth of mandibles. However, the molecular mechanisms for these phenomena remain unclear. In this study, we hypothesized that integrin-focal adhesion kinase (FAK-ERK (extracellular signal–regulated kinase/PI3K (phosphatidylinositol-3-kinase signaling pathway mediated the cellular response of condylar chondrocytes to mechanical loading. Primary condylar chondrocytes were exposed to hydrostatic compressive forces (HCFs of different magnitudes (0, 50, 100, 150, 200, and 250 kPa for 2 h. We measured the viability, morphology, and apoptosis of the chondrocytes with different treatments as well as the gene, protein expression, and phosphorylation of mechanosensitivity-related molecules, such as integrin α2, integrin α5, integrin β1, FAK, ERK, and PI3K. HCFs could significantly increase the viability and surface area of condylar chondrocytes and decrease their apoptosis in a dose-dependent manner. HCF of 250 kPa resulted in a 1.51 ± 0.02-fold increase of cell viability and reduced the ratio of apoptotic cells from 18.10% ± 0.56% to 7.30% ± 1.43%. HCFs could significantly enhance the mRNA and protein expression of integrin α2, integrin α5, and integrin β1 in a dose-dependent manner, but not ERK1, ERK2, or PI3K. Instead, HCF could significantly increase phosphorylation levels of FAK, ERK1/2, and PI3K in a dose-dependent manner. Cilengitide, the potent integrin inhibitor, could dose-dependently block such effects of HCFs. HCFs enhances the viability and decreases the apoptosis of condylar chondrocytes through the integrin-FAK-ERK/PI3K pathway.

  16. Sulfur mustard disrupts human α3β1-integrin receptors in concert with α6β4-integrin receptors and collapse of the keratin K5/K14 cytoskeleton

    Science.gov (United States)

    Werrlein, Robert J.; Braue, Catherine R.

    2004-06-01

    Sulfur mustard (SM; bis(2-chloroethyl) sulfide) is a chemical warfare agent that produces persistent, incapacitating blisters of the skin. The lesions inducing vesication remain elusive, and there is no completely effective treatment. Using mulitphoton microscopy and immunofluorescent staining, we found that exposing human epidermal keratinocytes (HEK) and intact epidermis to SM (400 μm for 5 min) caused progressive collapse of the keratin (K5/K14) cytoskeleton and depletion of α6β integrins. We now report that SM causes concomitant disruption nad collapse of the basal cell's α3β1-integrin receptors. At 1 h postexposure, images of Alexa488-conjugated HEK/α3β1 integrins showed almost complete withdrawal and disappearance of retraction fibers and a progressive loss of polarized mobility. With stero imaging, in vitro expression of this SM effect was characterized by collapse and abutment of adjacent cell membranes. At 2 h postexposure, there was an average 13% dorso-ventral collapse of HEK membranes that paralleled progressive collapse of the K5/K14 cytoskeleton. α3β1 integrin, like α6β4 integrin, is a regulator of cytoskeletal assembly, a receptor for laminin 5 and a mediator of HEK attachment to the basement membrane. Our images indicate that SM disrupts these receptors. We suggest that the progressive disruption destabilizes and potentiates blistering of the epidermal-dermal junction.

  17. Mandibular appliance modulates condylar growth through integrins.

    Science.gov (United States)

    Marques, M Rubia; Hajjar, D; Franchini, K Gomes; Moriscot, A Sigari; Santos, M Fagundes

    2008-02-01

    Functional orthopedic therapy corrects growth discrepancies between the maxilla and mandible, possibly through postural changes in the musculature and modulation of the mandibular condylar cartilage growth. Using Wistar rats, we tested the hypothesis that chondrocytes respond to forces generated by a mandibular propulsor appliance by changes in gene expression, and that integrins are important mediators in this response. Immunohistochemical analyses demonstrated that the use of the appliance for different periods of time modulated the expression of fibronectin, alpha5 and alphav integrin subunits, as well as cell proliferation in the cartilage. In vitro, cyclic distension of condylar cartilage-derived cells increased fibronectin mRNA, as well as Insulin-like Growth Factor-I and II mRNA and cell proliferation. A peptide containing the Arginine-Glycine-Asparagine sequence (RGD), the main cell-binding sequence in fibronectin, blocked almost all these effects, confirming that force itself modulates the growth of the rat condylar cartilage, and that RGD-binding integrins participate in mechanotransduction.

  18. Crosstalk between EGFR and integrin affects invasion and proliferation of gastric cancer cell line, SGC7901

    Directory of Open Access Journals (Sweden)

    Dan L

    2012-10-01

    Full Text Available Li Dan,1,* Ding Jian,2,* Lin Na,1 Wang Xiaozhong,1 1Digestive Department, the Union Hospital of Fujian Medical University, Fujian, People’s Republic of China; 2Digestive Department, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China*These authors contributed equally to this workBackground/objective: To investigate the crosstalk between epidermal growth factor receptor (EGFR and integrin-mediated signal transduction pathways in human gastric adenocarcinoma cells.Methods: EGF was used as a ligand of EGFR to stimulate the gastric adenocarcinoma cell, SGC7901. Signal molecules downstream of the integrin, FAK(Y397 and p130cas(Y410 phosphorylation, were measured by immunoprecipitation and western blot. Fibronectin (Fn was used as a ligand of integrin to stimulate the same cell line. Signal molecules downstream of EGFR and extracellular signal-regulated kinase (ERK general phosphorylation were also measured. Focal adhesion kinase (FAK small-interfering RNA was designed and transfected into SGC7901 cells to decrease the expression of FAK. Modified Boyden chambers and MTT assay were used to examine the effect of FAK inhibition on the invasiveness and proliferation of SGC7901.Results: EGF activated FAK(Y397 and p130cas(Y410 phosphorylation, while Fn activated ERK general phosphorylation. Inhibition of FAK expression decreased p130cas(Y410 phosphorylation activated by EGF and ERK general phosphorylation activated by Fn, also decreased the invasiveness and proliferation of SGC7901 cells activated by EGF or Fn.Conclusion: There is crosstalk between EGFR and integrin signal transduction. FAK may be a key cross point of the two signal pathways and acts as a potential target for human gastric cancer therapy.Keywords: gastric adenocarcinoma, epidermal growth factor receptor, integrin, focal adhesion kinase, crosstalk

  19. Stabilization of the activated alphaMbeta2 integrin by a small molecule inhibits leukocyte migration and recruitment.

    Science.gov (United States)

    Björklund, Mikael; Aitio, Olli; Stefanidakis, Michael; Suojanen, Juho; Salo, Tuula; Sorsa, Timo; Koivunen, Erkki

    2006-03-07

    Integrins are potential targets for the development of antiinflammatory agents. Here we develop a novel high-throughput assay by allowing a chemical library to compete with phage display peptide binding and identify a novel small-molecule ligand to the leukocyte-specific alpha(M)beta(2) integrin. The identified thioxothiazolidine-containing compound, IMB-10, had an unexpected activity in that it stabilized binding of alpha(M)beta(2) to its endogenous ligands proMMP-9 and fibrinogen. Single amino acid substitutions in the activity-regulating C-terminal helix and the underlying region in the ligand-binding I domain of the integrin suppressed the effect of IMB-10. A computational model indicated that IMB-10 occupies a distinct cavity present only in the activated form of the integrin I domain. IMB-10 inhibited alpha(M)beta(2)-dependent migration in vitro and inflammation-induced neutrophil emigration in vivo. Stabilization of integrin-mediated adhesion by a small molecule is a novel means to inhibit cell migration and may have a utility in treatment of inflammatory diseases involving leukocyte recruitment.

  20. Migration of breast epithelial cells on Laminin-5: differential role of integrins in normal and transformed cell types.

    Science.gov (United States)

    Plopper, G E; Domanico, S Z; Cirulli, V; Kiosses, W B; Quaranta, V

    1998-09-01

    We examined the role of Laminin-5 (Ln-5) an extracellular matrix component of breast gland basement membrane, in supporting migration of normal (HUMEC), immortalized (MCF-10A), and malignant breast epithelial cells that exhibit different degrees of metastatic potential (MDA-MB-435>MDA-MB-231>MCF-7). HUMEC, MCF-10A, and MCF-7 cells all adhered to purified Ln-5 through the alpha3beta1 integrin receptor in adhesion assays. However, HUMEC and MCF-10A cells remained statically adherent, while MCF-7 cells migrated on Ln-5 in Transwell and colloidal gold displacement assays. Anti-alpha3 integrin antibodies blocked migration of MCF-7 cells on Ln-5. MDA-MB-231 and MDA-MB-435 cells bound and migrated on Ln-5 through a beta1 integrin receptor that is insensitive to antibodies that block the function of alpha1, alpha2, alpha3, alpha4, alpha5, alpha6, and alphaV integrin subunits. Migration of all cell types tested was blocked by CM6, a monoclonal antibody directed to a cell adhesion site on the alpha3 chain of Ln-5. Thus, Ln-5 may play an important role in regulating adhesion and migration in normal and transformed breast epithelium. Our results indicate that the type of integrin utilized by breast cells to interact with Ln-5, as well as its functional state, may determine whether cells will be statically adherent or migratory on Ln-5.

  1. The journey of integrins and partners in a complex interactions landscape studied by super-resolution microscopy and single protein tracking

    Energy Technology Data Exchange (ETDEWEB)

    Rossier, Olivier; Giannone, Grégory [Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000 Bordeaux (France); CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000 Bordeaux (France)

    2016-04-10

    Cells adjust their adhesive and cytoskeletal organizations according to changes in the biochemical and physical nature of their surroundings. In return, by adhering and generating forces on the extracellular matrix (ECM) cells organize their microenvironment. Integrin-dependent focal adhesions (FAs) are the converging zones integrating biochemical and biomechanical signals arising from the ECM and the actin cytoskeleton. Thus, integrin-mediated adhesion and mechanotransduction, the conversion of mechanical forces into biochemical signals, are involved in critical cellular functions such as migration, proliferation and differentiation, and their deregulation contributes to pathologies including cancer. A challenging problem is to decipher how stochastic protein movements and interactions lead to formation of dynamic architecture such as integrin-dependent adhesive structures. In this review, we will describe recent advances made possible by super-resolution microscopies and single molecule tracking approaches that provided new understanding on the organization and the dynamics of integrins and intracellular regulators at the nanoscale in living cells.

  2. Structural basis of activation-dependent binding of ligand-mimetic antibody AL-57 to integrin LFA-1

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongmin; Liu, Jin-huan; Yang, Wei; Springer, Timothy; Shimaoka, Motomu; Wang, Jia-huai; (CH-Boston); (DFCI)

    2010-09-21

    The activity of integrin LFA-1 ({alpha}{sub L}{beta}{sub 2}) to its ligand ICAM-1 is regulated through the conformational changes of its ligand-binding domain, the I domain of {alpha}{sub L} chain, from an inactive, low-affinity closed form (LA), to an intermediate-affinity form (IA), and then finally, to a high-affinity open form (HA). A ligand-mimetic human monoclonal antibody AL-57 (activated LFA-1 clone 57) was identified by phage display to specifically recognize the affinity-upregulated I domain. Here, we describe the crystal structures of the Fab fragment of AL-57 in complex with IA, as well as in its unligated form. We discuss the structural features conferring AL-57's strong selectivity for the high affinity, open conformation of the I domain. The AL-57-binding site overlaps the ICAM-1 binding site on the I domain. Furthermore, an antibody Asp mimics an ICAM Glu by forming a coordination to the metal-ion dependent adhesion site (MIDAS). The structure also reveals better shape complementarity and a more hydrophobic interacting interface in AL-57 binding than in ICAM-1 binding. The results explain AL-57's antagonistic mimicry of LFA-1's natural ligands, the ICAM molecules.

  3. Joint Decision-Making and the Coordination of a Sustainable Supply Chain in the Context of Carbon Tax Regulation and Fairness Concerns.

    Science.gov (United States)

    Liu, Zhi; Zheng, Xiao-Xue; Gong, Ben-Gang; Gui, Yun-Miao

    2017-11-27

    Carbon tax regulation and consumers' low-carbon preference act as incentives for firms to abate emissions. Manufacturers can improve product sustainability and retailers can strengthen the promotion of low-carbon products as part of such abatement. Current incomplete rationality also affects product sustainability and low-carbon promotion level. In this context, we consider a supply chain with a manufacturer and a retailer and investigate the impacts of the manufacturer's and the retailer's fairness concerns on their production sustainability level, low-carbon promotion level and profitability. We also explore the coordination contract. The results show that the manufacturer's and the retailer's fairness concerns decrease their product sustainability and low-carbon promotion level, together with the profits of the system and the manufacturer. With regard to the retailer's fairness concern, the product sustainability level and the manufacturer's profit are lower; moreover, the low-carbon promotion level and the profits of the supply chain and the retailer are higher. A revenue-sharing contract can coordinate the supply chain perfectly; however, members' fairness concerns increase the difficulty of coordination. Finally, the numerical results reveal that carbon tax regulation can encourage the manufacturer to enhance the product sustainability level. Further, the impacts on the low-carbon promotion level and firms' profitability are related to the cost coefficients of product sustainability.

  4. Joint Decision-Making and the Coordination of a Sustainable Supply Chain in the Context of Carbon Tax Regulation and Fairness Concerns

    Directory of Open Access Journals (Sweden)

    Zhi Liu

    2017-11-01

    Full Text Available Carbon tax regulation and consumers’ low-carbon preference act as incentives for firms to abate emissions. Manufacturers can improve product sustainability and retailers can strengthen the promotion of low-carbon products as part of such abatement. Current incomplete rationality also affects product sustainability and low-carbon promotion level. In this context, we consider a supply chain with a manufacturer and a retailer and investigate the impacts of the manufacturer’s and the retailer’s fairness concerns on their production sustainability level, low-carbon promotion level and profitability. We also explore the coordination contract. The results show that the manufacturer’s and the retailer’s fairness concerns decrease their product sustainability and low-carbon promotion level, together with the profits of the system and the manufacturer. With regard to the retailer’s fairness concern, the product sustainability level and the manufacturer’s profit are lower; moreover, the low-carbon promotion level and the profits of the supply chain and the retailer are higher. A revenue-sharing contract can coordinate the supply chain perfectly; however, members’ fairness concerns increase the difficulty of coordination. Finally, the numerical results reveal that carbon tax regulation can encourage the manufacturer to enhance the product sustainability level. Further, the impacts on the low-carbon promotion level and firms’ profitability are related to the cost coefficients of product sustainability.

  5. Can alterations in integrin and laminin-5 expression be used as markers of malignancy?

    DEFF Research Database (Denmark)

    Thorup, Alis Karabulut; Reibel, J.; Schjødt, Morten

    1998-01-01

    Integrins, laminin-5, cell adhesion molecules, oral, leukoplakia, premalignant, squamous cell carcinomas......Integrins, laminin-5, cell adhesion molecules, oral, leukoplakia, premalignant, squamous cell carcinomas...

  6. Requirements for the approval of dosimetry services under the Ionising Radiations Regulations 1985: Pt. 3: Coordination and record-keeping

    International Nuclear Information System (INIS)

    1991-01-01

    Guidance for dosimetry services on the requirements for approval by the Health and Safety Executive (HSE) is provided in three parts. This part sets out the procedures and criteria that will be used by HSE in the assessment of dosimetry services seeking approval for coordination and record keeping. (author)

  7. The Maize MID-COMPLEMENTING ACTIVITY homolog CELL NUMBER REGULATOR13/NARROW ODD DWARF, coordinates organ growth and tissue patterning

    Science.gov (United States)

    Organogenesis occurs from cell division, expansion and differentiation. How these cellular processes are coordinated remains elusive. The maize leaf provides an excellent system to study cellular differentiation because it has several different tissues and cell types. The narrow odd dwarf (nod) mut...

  8. The role of integrin αv in proliferation and differentiation of human dental pulp cell response to calcium silicate cement.

    Science.gov (United States)

    Hung, Chi-Jr; Hsu, Hsin-I; Lin, Chi-Chang; Huang, Tsui-Hsien; Wu, Buor-Chang; Kao, Chia-Tze; Shie, Ming-You

    2014-11-01

    It has been proved that integrin αv activity is related to cell proliferation, differentiation, migration, and organ development. However, the biological functions of integrin αv in human dental pulp cells (hDPCs) cultured on silicate-based materials have not been explored. The aim of this study was to investigate the role of integrin αv in the proliferation and odontogenic differentiation of hDPCs cultured with the effect of calcium silicate (CS) cement and β-tricalcium phosphate (TCP) cement. In this study, hDPCs were cultured on CS and TCP materials, and we evaluated fibronectin (FN) secretion and integrin αv expression during the cell attachment stage. After small interfering RNA transfection targeting integrin αv, the proliferation and odontogenesis differentiation behavior of hDPCs were analyzed. The results indicate that CS releases Si ion-increased FN secretion and adsorption, which promote cell attachment more effectively than TCP. The CS cement facilitates FN and αv subintegrin expression. However, the FN adsorption and integrin expression of TCP are similar to that observed in the control dish. Integrin αv small interfering RNA inhibited odontogenic differentiation of hDPCs with the decreased formation of mineralized nodules on CS. It also down-regulated the protein expression of multiple markers of odontogenesis and the expression of dentin sialophosphoprotein protein. These results establish composition-dependent differences in integrin binding and its effectiveness as a mechanism regulating cellular responses to biomaterial surface. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Acute Podocyte Vascular Endothelial Growth Factor (VEGF-A) Knockdown Disrupts alphaVbeta3 Integrin Signaling in the Glomerulus

    Science.gov (United States)

    Veron, Delma; Villegas, Guillermo; Aggarwal, Pardeep Kumar; Bertuccio, Claudia; Jimenez, Juan; Velazquez, Heino; Reidy, Kimberly; Abrahamson, Dale R.; Moeckel, Gilbert; Kashgarian, Michael; Tufro, Alda

    2012-01-01

    Podocyte or endothelial cell VEGF-A knockout causes thrombotic microangiopathy in adult mice. To study the mechanism involved in acute and local injury caused by low podocyte VEGF-A we developed an inducible, podocyte-specific VEGF-A knockdown mouse, and we generated an immortalized podocyte cell line (VEGFKD) that downregulates VEGF-A upon doxycycline exposure. Tet-O-siVEGF:podocin-rtTA mice express VEGF shRNA in podocytes in a doxycycline-regulated manner, decreasing VEGF-A mRNA and VEGF-A protein levels in isolated glomeruli to ∼20% of non-induced controls and urine VEGF-A to ∼30% of control values a week after doxycycline induction. Induced tet-O-siVEGF:podocin-rtTA mice developed acute renal failure and proteinuria, associated with mesangiolysis and microaneurisms. Glomerular ultrastructure revealed endothelial cell swelling, GBM lamination and podocyte effacement. VEGF knockdown decreased podocyte fibronectin and glomerular endothelial alphaVbeta3 integrin in vivo. VEGF receptor-2 (VEGFR2) interacts with beta3 integrin and neuropilin-1 in the kidney in vivo and in VEGFKD podocytes. Podocyte VEGF knockdown disrupts alphaVbeta3 integrin activation in glomeruli, detected by WOW1-Fab. VEGF silencing in cultured VEGFKD podocytes downregulates fibronectin and disrupts alphaVbeta3 integrin activation cell-autonomously. Collectively, these studies indicate that podocyte VEGF-A regulates alphaVbeta3 integrin signaling in the glomerulus, and that podocyte VEGF knockdown disrupts alphaVbeta3 integrin activity via decreased VEGFR2 signaling, thereby damaging the three layers of the glomerular filtration barrier, causing proteinuria and acute renal failure. PMID:22808199

  10. Exocrine gland dysfunction in MC5-R-deficient mice: evidence for coordinated regulation of exocrine gland function by melanocortin peptides.

    Science.gov (United States)

    Chen, W; Kelly, M A; Opitz-Araya, X; Thomas, R E; Low, M J; Cone, R D

    1997-12-12

    The effects of pituitary-derived melanocortin peptides are primarily attributed to ACTH-mediated adrenocortical glucocorticoid production. Identification of a widely distributed receptor for ACTH/MSH peptides, the melanocortin-5 receptor (MC5-R), suggested non-steroidally mediated systemic effects of these peptides. Targeted disruption of the MC5-R produced mice with a severe defect in water repulsion and thermoregulation due to decreased production of sebaceous lipids. High levels of MC5-R was found in multiple exocrine tissues, including Harderian, preputial, lacrimal, and sebaceous glands, and was also shown to be required for production and stress-regulated synthesis of porphyrins by the Harderian gland and ACTH/MSH-regulated protein secretion by the lacrimal gland. These data show a requirement for the MC5-R in multiple exocrine glands for the production of numerous products, indicative of a coordinated system for regulation of exocrine gland function by melanocortin peptides.

  11. Integrin-directed modulation of macrophage responses to biomaterials.

    Science.gov (United States)

    Zaveri, Toral D; Lewis, Jamal S; Dolgova, Natalia V; Clare-Salzler, Michael J; Keselowsky, Benjamin G

    2014-04-01

    Macrophages are the primary mediator of chronic inflammatory responses to implanted biomaterials, in cases when the material is either in particulate or bulk form. Chronic inflammation limits the performance and functional life of numerous implanted medical devices, and modulating macrophage interactions with biomaterials to mitigate this response would be beneficial. The integrin family of cell surface receptors mediates cell adhesion through binding to adhesive proteins nonspecifically adsorbed onto biomaterial surfaces. In this work, the roles of integrin Mac-1 (αMβ2) and RGD-binding integrins were investigated using model systems for both particulate and bulk biomaterials. Specifically, the macrophage functions of phagocytosis and inflammatory cytokine secretion in response to a model particulate material, polystyrene microparticles were investigated. Opsonizing proteins modulated microparticle uptake, and integrin Mac-1 and RGD-binding integrins were found to control microparticle uptake in an opsonin-dependent manner. The presence of adsorbed endotoxin did not affect microparticle uptake levels, but was required for the production of inflammatory cytokines in response to microparticles. Furthermore, it was demonstrated that integrin Mac-1 and RGD-binding integrins influence the in vivo foreign body response to a bulk biomaterial, subcutaneously implanted polyethylene terephthalate. A thinner foreign body capsule was formed when integrin Mac-1 was absent (~30% thinner) or when RGD-binding integrins were blocked by controlled release of a blocking peptide (~45% thinner). These findings indicate integrin Mac-1 and RGD-binding integrins are involved and may serve as therapeutic targets to mitigate macrophage inflammatory responses to both particulate and bulk biomaterials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Ligand and cation-induced structural alterations of the leukocyte integrin LFA-1.

    Science.gov (United States)

    Sen, Mehmet; Koksal, Adem C; Yuki, Koichi; Wang, Jianchuan; Springer, Timothy A

    2018-03-05

    In αI integrins including leukocyte function-associated antigen-1 (LFA-1), ligand-binding function is delegated to the αI domain, requiring extra steps in the relay of signals that activate ligand binding and coordinate it with cytoplasmic signals. Crystal structures reveal great variation in orientation between the αI domain and the remainder of the integrin head. Here, we investigated the mechanisms involved in signal relay to the αI domain, including whether binding of the ligand intercellular adhesion molecule-1 (ICAM-1) to the αI domain is linked to headpiece opening and engenders a preferred αI domain orientation. Using small-angle X-ray scattering (SAXS) and negative-stain EM we define structures of ICAM-1, LFA-1, and their complex, and the effect of activation by Mn 2+ Headpiece opening was substantially stabilized by substitution of Mg 2+ with Mn 2+ and became complete upon ICAM-1 addition. These agents stabilized αI-headpiece orientation, resulting in a well-defined orientation of ICAM-1 such that its tandem Ig-like domains pointed in the opposite direction from the β-subunit leg of LFA-1. Mutations in the integrin βI domain α1/α1` helix stabilizing either the open or the closed βI-domain conformation indicated that α1/α1` helix movements are linked to ICAM-1 binding by the αI domain and to the extended-open conformation of the ectodomain. The LFA-1--ICAM-1 orientation described here with ICAM-1 pointing anti-parallel to the LFA-1 β-subunit leg is the same orientation that would be stabilized by tensile force transmitted between the ligand and the actin cytoskeleton, and is consistent with the cytoskeletal force model of integrin activation. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Functional consequences of integrin gene mutations in mice

    DEFF Research Database (Denmark)

    Bouvard, D; Brakebusch, C; Gustafsson, E

    2001-01-01

    Integrins are cell-surface receptors responsible for cell attachment to extracellular matrices and to other cells. The application of mouse genetics has significantly increased our understanding of integrin function in vivo. In this review, we summarize the phenotypes of mice carrying mutant inte...

  14. Dataset of integrin-linked kinase protein: Protein interactions in cardiomyocytes identified by mass spectrometry

    Directory of Open Access Journals (Sweden)

    Alexandra Traister

    2016-06-01

    Full Text Available Using hearts from mice overexpressing integrin linked kinase (ILK behind the cardiac specific promoter αMHC, we have performed immunoprecipitation and mass spectrometry to identify novel ILK protein:protein interactions that regulate cardiomyocyte activity and calcium flux. Integrin linked kinase complexes were captured from mouse heart lysates using a commercial antibody, with subsequent liquid chromatography tandem mass spectral analysis. Interacting partners were identified using the MASCOT server, and important interactions verified using reverse immunoprecipitation and mass spectrometry. All ILK interacting proteins were identified in a non-biased manner, and are stored in the ProteomeXchange Consortium via the PRIDE partner repository (reference ID PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD001053. The functional role of identified ILK interactions in cardiomyocyte function and arrhythmia were subsequently confirmed in human iPSC-cardiomyocytes.

  15. Dataset of integrin-linked kinase protein: Protein interactions in cardiomyocytes identified by mass spectrometry.

    Science.gov (United States)

    Traister, Alexandra; Lu, Mingliang; Coles, John G; Maynes, Jason T

    2016-06-01

    Using hearts from mice overexpressing integrin linked kinase (ILK) behind the cardiac specific promoter αMHC, we have performed immunoprecipitation and mass spectrometry to identify novel ILK protein:protein interactions that regulate cardiomyocyte activity and calcium flux. Integrin linked kinase complexes were captured from mouse heart lysates using a commercial antibody, with subsequent liquid chromatography tandem mass spectral analysis. Interacting partners were identified using the MASCOT server, and important interactions verified using reverse immunoprecipitation and mass spectrometry. All ILK interacting proteins were identified in a non-biased manner, and are stored in the ProteomeXchange Consortium via the PRIDE partner repository (reference ID PRIDE: PXD001053). The functional role of identified ILK interactions in cardiomyocyte function and arrhythmia were subsequently confirmed in human iPSC-cardiomyocytes.

  16. Polo-Like Kinase 2 is Dynamically Regulated to Coordinate Proliferation and Early Lineage Specification Downstream of Yes-Associated Protein 1 in Cardiac Progenitor Cells.

    Science.gov (United States)

    Mochizuki, Michika; Lorenz, Vera; Ivanek, Robert; Della Verde, Giacomo; Gaudiello, Emanuele; Marsano, Anna; Pfister, Otmar; Kuster, Gabriela M

    2017-10-24

    Recent studies suggest that adult cardiac progenitor cells (CPCs) can produce new cardiac cells. Such cell formation requires an intricate coordination of progenitor cell proliferation and commitment, but the molecular cues responsible for this regulation in CPCs are ill defined. Extracellular matrix components are important instructors of cell fate. Using laminin and fibronectin, we induced two slightly distinct CPC phenotypes differing in proliferation rate and commitment status and analyzed the early transcriptomic response to CPC adhesion (<2 hours). Ninety-four genes were differentially regulated on laminin versus fibronectin, consisting of mostly downregulated genes that were enriched for Yes-associated protein (YAP) conserved signature and TEA domain family member 1 (TEAD1)-related genes. This early gene regulation was preceded by the rapid cytosolic sequestration and degradation of YAP on laminin. Among the most strongly regulated genes was polo-like kinase 2 ( Plk2 ). Plk2 expression depended on YAP stability and was enhanced in CPCs transfected with a nuclear-targeted mutant YAP. Phenotypically, the early downregulation of Plk2 on laminin was succeeded by lower cell proliferation, enhanced lineage gene expression (24 hours), and facilitated differentiation (3 weeks) compared with fibronectin. Finally, overexpression of Plk2 enhanced CPC proliferation and knockdown of Plk2 induced the expression of lineage genes. Plk2 acts as coordinator of cell proliferation and early lineage commitment in CPCs. The rapid downregulation of Plk2 on YAP inactivation marks a switch towards enhanced commitment and facilitated differentiation. These findings link early gene regulation to cell fate and provide novel insights into how CPC proliferation and differentiation are orchestrated. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  17. Complementary roles of KCa3.1 channels and β1-integrin during alveolar epithelial repair.

    Science.gov (United States)

    Girault, Alban; Chebli, Jasmine; Privé, Anik; Trinh, Nguyen Thu Ngan; Maillé, Emilie; Grygorczyk, Ryszard; Brochiero, Emmanuelle

    2015-09-04

    Extensive alveolar epithelial injury and remodelling is a common feature of acute lung injury and acute respiratory distress syndrome (ARDS) and it has been established that epithelial regeneration, and secondary lung oedema resorption, is crucial for ARDS resolution. Much evidence indicates that K(+) channels are regulating epithelial repair processes; however, involvement of the KCa3.1 channels in alveolar repair has never been investigated before. Wound-healing assays demonstrated that the repair rates were increased in primary rat alveolar cell monolayers grown on a fibronectin matrix compared to non-coated supports, whereas an anti-β1-integrin antibody reduced it. KCa3.1 inhibition/silencing impaired the fibronectin-stimulated wound-healing rates, as well as cell migration and proliferation, but had no effect in the absence of coating. We then evaluated a putative relationship between KCa3.1 channel and the migratory machinery protein β1-integrin, which is activated by fibronectin. Co-immunoprecipitation and immunofluorescence experiments indicated a link between the two proteins and revealed their cellular co-distribution. In addition, we demonstrated that KCa3.1 channel and β1-integrin membrane expressions were increased on a fibronectin matrix. We also showed increased intracellular calcium concentrations as well as enhanced expression of TRPC4, a voltage-independent calcium channel belonging to the large TRP channel family, on a fibronectin matrix. Finally, wound-healing assays showed additive effects of KCa3.1 and TRPC4 inhibitors on alveolar epithelial repair. Taken together, our data demonstrate for the first time complementary roles of KCa3.1 and TRPC4 channels with extracellular matrix and β1-integrin in the regulation of alveolar repair processes.

  18. [Effect of Jingang Jiangu pill (see text) on expression of integrin beta1 and alphavbeta3 in ovariectomized osteoporosis model rats].

    Science.gov (United States)

    Yang, Shao-Feng; Li, Ling-Hui; Chen, Qing; Yao, Gong-He; Deng, Bo; Xiang, Jian-Feng; Nie, Ying; Luo, Zhen-Hua; Guo, Yan-Tao

    2013-02-01

    To investigate the regulatory effect of Jingang Jiangu pill (see text, JGJG) on expression of integrin in ovariectomized rats. Fifty ovariectomized 10 months old female rats were randomly divided into 5 groups: Fushanmei group (FSM), Jingang Jiangu pill (see text) group (JGJG), Gusongbao granule group (GSB), Model group (OVX), Sham group. After ovariectomized,the rats were raised in the same environment for 13 weeks. The rats in JGJG group took 0.13 g JGJG pill orally each day for each rat; the rats in GSB group took 0.86 g GSB granule orally each day for each rat; the rats in FSM group took 0.28 mg FSM orally each day for each rat; and the rats in OVX and sham groups took sodium. The treatment duration of rats in above 5 groups was 13 weeks. Bone mineral density (BMD) and the expression of integrin beta1 and alphavbeta3 were detected in each group after the treatment. RESYKTS: The BMD and the expression of integrin beta1 in FSM group, JGJG group and GSB group improved obviously than that of OVX group. There were statistical difference between these groups (P<0.05). The expression of integrin alphavbeta3 of the three treating groups significantly depressed. The JGJG pill improves BMD and express of integrin beta1, in ovariectomized rats and reduces express of integrin alphavbeta3 through the regulation of the coupling of osteoblasts and osteoclasts.

  19. Increased expression of fibronectin and the α5β1 integrin in angiogenic cerebral blood vessels of mice subject to hypobaric hypoxia

    Science.gov (United States)

    Milner, Richard; Hung, Stephanie; Erokwu, Bernadette; Dore-Duffy, Paula; LaManna, Joseph C.; del Zoppo, Gregory J.

    2008-01-01

    The extracellular matrix (ECM) is an important regulator of angiogenesis and vascular remodeling. We showed previously that angiogenic capillaries in the developing CNS express high levels of fibronectin and its receptor α5β1 integrin, and that this expression is developmentally downregulated. As cerebral hypoxia leads to an angiogenic response, we sought to determine whether angiogenic vessels in the adult CNS re-express fibronectin and the α5β1 integrin. Ten-week old mice were subject to hypobaric hypoxia for 0, 4, 7 and 14 days, and fibronectin/integrin expression examined. Fibronectin and the α5 integrin subunit were strongly upregulated on capillaries in the hypoxic CNS, with the effect maximal at the earliest time point examined (4 days). Immunofluorescent studies demonstrated that the α5 integrin was expressed by angiogenic endothelial cells. In light of the defined angiogenic role for fibronectin in other systems, this work suggests that induction of fibronectin-α5β1 integrin expression may be an important molecular switch driving angiogenesis in the hypoxic CNS. PMID:18343155

  20. Integrin-β1, not integrin-β5, mediates osteoblastic differentiation and ECM formation promoted by mechanical tensile strain

    Directory of Open Access Journals (Sweden)

    Qiangcheng Zeng

    2015-01-01

    Full Text Available BACKGROUND: Mechanical strain plays a great role in growth and differentiation of osteoblast. A previous study indicated that integrin-β (β1, β5 mediated osteoblast proliferation promoted by mechanical tensile strain. However, the involvement of integrin-β in osteoblastic differentiation and extracellular matrix (ECM formation induced by mechanical tensile strain, remains unclear. RESULTS: After transfection with integrin-β1 siRNA or integrin-β5 siRNA, mouse MC3T3-E1 preosteoblasts were cultured in cell culture dishes and stimulated with mechanical tensile strain of 2500 microstrain (µε at 0.5 Hz applied once a day for 1 h over 3 or 5 consecutive days. The cyclic tensile strain promoted osteoblastic differentiation of MC3T3-E1 cells. Transfection with integrin-β1 siRNA attenuated the osteoblastic diffenentiation induced by the tensile strain. By contrast, transfection with integrin-β5 siRNA had little effect on the osteoblastic differentiation induced by thestrain. At thesametime, theresultofECM formation promoted by the strain, was similar to the osteoblastic differentiation. CONCLUSION: Integrin-β1 mediates osteoblast differentiation and osteoblastic ECM formation promoted by cyclic tensile strain, and integrin-β5 is not involved in the osteoblasts response to the tensile strain.

  1. Oroxylin A reverses CAM-DR of HepG2 cells by suppressing Integrinβ1 and its related pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Binbin; Zhao, Li; Zhu, Litao; Wang, Hu; Sha, Yunying; Yao, Jing [State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009 (China); Li, Zhiyu [Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009 (China); You, Qidong, E-mail: youqidong@gmail.com [Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009 (China); Guo, Qinglong, E-mail: anticancer_drug@yahoo.com.cn [State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009 (China)

    2012-03-15

    Oroxylin A, a naturally occurring monoflavonoid extracted from Scutellariae radix, shows effective anticancer activities and low toxicities both in vivo and in vitro in previous studies. In this study, we investigated whether the CAM-DR model of HepG2 cells showed resistance to cytotoxic agents compared with normally cultured HepG2 cells. Furthermore, after the treatment of Paclitaxel, less inhibitory effects and decreased apoptosis rate were detected in the model. Data also revealed increased expression of Integrinβ1 might be responsible for the resistance ability. Moreover, Integrinβ1-siRNA-transfected CAM-DR HepG2 cells exhibited more inhibitory effects and higher levels of apoptosis than the non-transfected CAM-DR cells. The data corroborated that Integrinβ1 played a significant role in CAM-DR. After the treatment of weakly-toxic concentrations of Oroxylin A, the apoptosis induced by Paclitaxel in the CAM-DR model increased dramatically. Western blot assay revealed Oroxylin A markedly down-regulated the expression of Integrinβ1 and the activity of related pathway. As a conclusion, Oroxylin A can reverse the resistance of CAM-DR via inhibition of Integrinβ1 and its related pathway. Oroxylin A may be a potential candidate of a CAM-DR reversal agent. Highlights: ► Adhesion of HepG2 cells to fibronectin exhibited resistance to Paclitaxel. ► The resistance was associated with the increased expression of Integrinβ1. ► Knocking down Integrinβ1 can increase the toxicity of Paclitaxel on CAM-DR model. ► Oroxylin A reversed the resistance by suppressing Integrinβ1 and related pathway.

  2. Visualization of integrin Mac-1 in vivo.

    Science.gov (United States)

    Lim, Kihong; Hyun, Young-Min; Lambert-Emo, Kris; Topham, David J; Kim, Minsoo

    2015-11-01

    β2 integrins play critical roles in migration of immune cells and in the interaction with other cells, pathogens, and the extracellular matrix. Among the β2 integrins, Mac-1 (Macrophage antigen-1), composed of CD11b and CD18, is mainly expressed in innate immune cells and plays a major role in cell migration and trafficking. In order to image Mac-1-expressing cells both in live cells and mouse, we generated a knock-in (KI) mouse strain expressing CD11b conjugated with monomeric yellow fluorescent protein (mYFP). Expression of CD11b-mYFP protein was confirmed by Western blot and silver staining of CD11b-immunoprecipitates and total cell lysates from the mouse splenocytes. Mac-1-mediated functions of the KI neutrophils were comparable with those in WT cells. The fluorescence intensity of CD11b-mYFP was sufficient to image CD11b expressing cells in live mice using intravital two-photon microscopy. In vitro, dynamic changes in the intracellular localization of CD11b molecules could be measured by epifluorescent microscopy. Finally, CD11b-expressing immune cells from tissue were easily detected by flow cytometry without anti-CD11b antibody staining. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Coordinated Regulation of the EIIMan and fruRKI Operons of Streptococcus mutans by Global and Fructose-Specific Pathways.

    Science.gov (United States)

    Zeng, Lin; Chakraborty, Brinta; Farivar, Tanaz; Burne, Robert A

    2017-11-01

    The glucose/mannose-phosphotransferase system (PTS) permease EII Man encoded by manLMN in the dental caries pathogen Streptococcus mutans has a dominant influence on sugar-specific, CcpA-independent catabolite repression (CR). Mutations in manL affect energy metabolism and virulence-associated traits, including biofilm formation, acid tolerance, and competence. Using promoter::reporter fusions, expression of the manLMN and the fruRKI operons, encoding a transcriptional regulator, a fructose-1-phosphate kinase and a fructose-PTS permease EII Fru , respectively, was monitored in response to carbohydrate source and in mutants lacking CcpA, FruR, and components of EII Man Expression of genes for EII Man and EII Fru was directly regulated by CcpA and CR, as evinced by in vivo and in vitro methods. Unexpectedly, not only was the fruRKI operon negatively regulated by FruR, but also so was manLMN Carbohydrate transport by EII Man had a negative influence on expression of manLMN but not fruRKI In agreement with the proposed role of FruR in regulating these PTS operons, loss of fruR or fruK substantially altered growth on a number of carbohydrates, including fructose. RNA deep sequencing revealed profound changes in gene regulation caused by deletion of fruK or fruR Collectively, these findings demonstrate intimate interconnection of the regulation of two major PTS permeases in S. mutans and reveal novel and important contributions of fructose metabolism to global regulation of gene expression. IMPORTANCE The ability of Streptococcus mutans and other streptococcal pathogens to survive and cause human diseases is directly dependent upon their capacity to metabolize a variety of carbohydrates, including glucose and fructose. Our research reveals that metabolism of fructose has broad influences on the regulation of utilization of glucose and other sugars, and mutants with changes in certain genes involved in fructose metabolism display profoundly different abilities to grow and

  4. Complex Interplay between FleQ, Cyclic Diguanylate and Multiple σ Factors Coordinately Regulates Flagellar Motility and Biofilm Development in Pseudomonas putida.

    Directory of Open Access Journals (Sweden)

    Alicia Jiménez-Fernández

    Full Text Available Most bacteria alternate between a free living planktonic lifestyle and the formation of structured surface-associated communities named biofilms. The transition between these two lifestyles requires a precise and timely regulation of the factors involved in each of the stages that has been likened to a developmental process. Here we characterize the involvement of the transcriptional regulator FleQ and the second messenger cyclic diguanylate in the coordinate regulation of multiple functions related to motility and surface colonization in Pseudomonas putida. Disruption of fleQ caused strong defects in flagellar motility, biofilm formation and surface attachment, and the ability of this mutation to suppress multiple biofilm-related phenotypes associated to cyclic diguanylate overproduction suggests that FleQ mediates cyclic diguanylate signaling critical to biofilm growth. We have constructed a library containing 94 promoters potentially involved in motility and biofilm development fused to gfp and lacZ, screened this library for FleQ and cyclic diguanylate regulation, and assessed the involvement of alternative σ factors σN and FliA in the transcription of FleQ-regulated promoters. Our results suggest a dual mode of action for FleQ. Low cyclic diguanylate levels favor FleQ interaction with σN-dependent promoters to activate the flagellar cascade, encompassing the flagellar cluster and additional genes involved in cyclic diguanylate metabolism, signal transduction and gene regulation. On the other hand, characterization of the FleQ-regulated σN- and FliA-independent PlapA and PbcsD promoters revealed two disparate regulatory mechanisms leading to a similar outcome: the synthesis of biofilm matrix components in response to increased cyclic diguanylate levels.

  5. Activated integrin VLA-4 localizes to the lamellipodia and mediates T cell migration on VCAM-11

    Science.gov (United States)

    Hyun, Young-Min; Chung, Hung-Li; McGrath, James L.; Waugh, Richard E.; Kim, Minsoo

    2009-01-01

    Lymphocyte migration from blood into lymphoid tissues or to sites of inflammation occurs through interactions between cell surface integrins and their ligands expressed on the vascular endothelium and the extracellular matrix. Very Late Antigen-4 (VLA-4, α4β1) is a key integrin in the effective trafficking of lymphocytes. Although it has been well established that integrins undergo functionally significant conformational changes to mediate cell adhesion, there is no mechanistic information that explains how these are dynamically and spatially regulated during lymphocyte polarization and migration. Using dynamic fluorescence resonance energy transfer (FRET) analysis of a novel VLA-4 FRET sensor under total internal reflection fluorescence (TIRF) microscopy, we show that VLA-4 activation localizes to the lamellipodium in living cells. During T cell migration on VCAM-1, VLA-4 activation concurs with spatial redistribution of chemokine receptor and active Rap1 at the leading edge. Selective inhibition of the activated VLA-4 at leading edge with a small molecule inhibitor is sufficient to block T cell migration. These data suggest that a subpopulation of activated VLA-4 is mainly localized to the leading edge of polarized human T cells, and is critical for T cell migration on VCAM-1. PMID:19542447

  6. Lateral spacing of integrin ligands influences cell spreading and focal adhesion assembly.

    Science.gov (United States)

    Cavalcanti-Adam, Elisabetta A; Micoulet, Alexandre; Blümmel, Jacques; Auernheimer, Jörg; Kessler, Horst; Spatz, Joachim P

    2006-04-01

    Cell-extracellular matrix (cell-ECM) interactions mediated by integrin receptors are essential for providing positional and environmental information necessary for many cell functions, such as proliferation, differentiation and survival. In vitro studies on cell adhesion to randomly adsorbed molecules on substrates have been limited to sub-micrometer patches, thus preventing the detailed study of structural arrangement of integrins and their ligands. In this article, we illustrate the role of the distance between integrin ligands, namely the RGD (arginine-glycine-aspartate) sequence present in ECM proteins, in the control of cell adhesion. By using substrates, which carry cyclic RGD peptides arranged in highly defined nanopatterns, we investigated the dynamics of cell spreading and the molecular composition of adhesion sites in relation to a fixed spacing between the peptides on the surface. Our novel approach for in vitro studies on cell adhesion indicates that not only the composition, but also the spatial organization of the extracellular environment is important in regulating cell-ECM interactions.

  7. Stabilizing plug-and-play regulators and secondary coordinated control for AC islanded microgrids with bus-connected topology

    DEFF Research Database (Denmark)

    Riverso, Stefano; Tucci, Michele; Vasquez, Juan C.

    2018-01-01

    . In this work, we focus on islanded microgrids with bus-connected topology and enhance the primary plug-and-play layer with local virtual impedance loops and secondary coordinated controllers ensuring bus voltage tracking and reactive power sharing. In particular, the secondary control architecture...... is distributed, hence mirroring the modularity of the primary control layer. We validate primary and secondary controllers by performing experiments with both linear and nonlinear loads, on a setup composed of three bus-connected distributed generation units. Most importantly, the stability of the microgrid...... after the addition/removal of distributed generation units is assessed. Overall, the experimental results show the feasibility of the proposed modular control design framework, where generation units can be added/removed on the fly, thus enabling the deployment of virtual power plants that can...

  8. Functional regulation of an immobilized redox protein on an oriented metal coordinated peptide monolayer as an electron mediator.

    Science.gov (United States)

    Wang, Xinxin; Nagata, Kenji; Higuchi, Masahiro

    2011-10-18

    We fabricated a vertically and unidirectionally oriented metal coordinated α-helical peptide monolayer, Leu(2)Ala(Pyri)(Co(II))Leu(6)Ala(4-Pyri)(Co(II))Leu(6), by stepwise polymerization on a mixed self-assembled monolayer consisting of amino-alkanethiol, dialkyl disulfide, and ferrocenyl alkanethiol acted as a photoresponsive electron donor. Redox-active protein, nitrate reductase (NR), was fixed on the surface of the peptide monolayer. By contrast, we fixed NR on the mixed self-assembled monolayer directly. Upon photoirradiation, electron flow occurred from the excited ferrocenyl group on the substrate to the electron acceptor, NR, on the surface of the molecular layers. The activated NR on the molecular layers reduced the nitrate to nitrite. The amount of the bioelectrocatalytic product, nitrite, generated by the immobilized NR on the peptide monolayer was larger than that produced by the immobilized NR on the mixed self-assembled monolayer directly. That is to say, the NR on the peptide monolayer has been more activated rather than that on the peptide absent monolayer by photoirradiation. The effective activation of the NR on the peptide monolayer can be explained in terms of enhancement of the vectorial electron flow along the macro-dipole moment of the α-helical peptide that arranged unidirectionally. It suggested that the ordered metal coordinated α-helical peptide monolayer acted as an efficient electron mediator to achieve a communication between the electron donor and the redox-active moiety. Such a hybrid molecular system looks promising for novel nanodevices, such as nano-photoreactors. © 2011 American Chemical Society

  9. beta 1 integrin inhibition dramatically enhances radiotherapy efficacy in human breast cancer xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Park, Catherine C.; Park, Catherine C.; Zhang, Hui J.; Yao, Evelyn S.; Park, Chong J.; Bissell, Mina J.

    2008-06-02

    {beta}1 integrin signaling has been shown to mediate cellular resistance to apoptosis after exposure to ionizing radiation (IR). Other signaling molecules that increase resistance include Akt, which promotes cell survival downstream of {beta}1 integrin signaling. We showed previously that {beta}1 integrin inhibitory antibodies, AIIB2, enhance apoptosis and decrease growth in human breast cancer cells in 3 dimensional laminin-rich extracellular matrix (3D lrECM) cultures and in vivo. Here we asked whether AIIB2 could synergize with IR to modify Akt-mediated IR resistance. We used 3D lrECM cultures to test the optimal combination of AIIB2 with IR treatment of two breast cancer cell lines, MCF-7 and HMT3522-T4-2, as well as T4-2 myr-Akt breast cancer colonies or HMT3522-S-1, which form normal organotypic structures in 3D lrECM. Colonies were assayed for apoptosis and {beta}1 integrin/Akt signaling pathways were evaluated using western blot. In addition, mice bearing MCF-7 xenografts were used to validate the findings in 3D lrECM. We report that AIIB2 increased apoptosis optimally post-IR by down regulating Akt in breast cancer colonies in 3D lrECM. In vivo, addition of AIIB2 after IR significantly enhanced tumor growth inhibition and apoptosis compared to either treatment alone. Remarkably, the degree of tumor growth inhibition using AIIB2 plus 2 Gy radiation was similar to that of 8 Gy alone. We showed previously that AIIB2 had no discernible toxicity in mice; here, its addition allowed for a significant reduction in the IR dose that was necessary to achieve comparable growth inhibition and apoptosis in breast cancer xenografts in vivo.

  10. Beta1 integrin inhibition dramatically enhances radiotherapy efficacy in human breast cancer xenografts.

    Science.gov (United States)

    Park, Catherine C; Zhang, Hui J; Yao, Evelyn S; Park, Chong J; Bissell, Mina J

    2008-06-01

    Beta(1) integrin signaling has been shown to mediate cellular resistance to apoptosis after exposure to ionizing radiation (IR). Other signaling molecules that increase resistance include Akt, which promotes cell survival downstream of beta(1) integrin signaling. We previously showed that beta(1) integrin inhibitory antibodies (e.g., AIIB2) enhance apoptosis and decrease growth in human breast cancer cells in three-dimensional laminin-rich extracellular matrix (lrECM) cultures and in vivo. Here, we asked whether AIIB2 could synergize with IR to modify Akt-mediated IR resistance. We used three-dimensional lrECM cultures to test the optimal combination of AIIB2 with IR treatment of two breast cancer cell lines, MCF-7 and HMT3522-T4-2, as well as T4-2 myr-Akt breast cancer colonies or HMT3522-S-1, which form normal organotypic structures in three-dimensional lrECM. Colonies were assayed for apoptosis and beta(1) integrin/Akt signaling pathways were evaluated using Western blot. In addition, mice bearing MCF-7 xenografts were used to validate the findings in three-dimensional lrECM. We report that AIIB2 increased apoptosis optimally post-IR by down-regulating Akt in breast cancer colonies in three-dimensional lrECM. In vivo, addition of AIIB2 after IR significantly enhanced tumor growth inhibition and apoptosis compared with either treatment alone. Remarkably, the degree of tumor growth inhibition using AIIB2 plus 2 Gy radiation was similar to that of 8 Gy alone. We previously showed that AIIB2 had no discernible toxicity in mice; here, its addition allowed for a significant reduction in the IR dose that was necessary to achieve comparable growth inhibition and apoptosis in breast cancer xenografts in vivo.

  11. Epitope mapping for monoclonal antibody reveals the activation mechanism for αVβ3 integrin.

    Directory of Open Access Journals (Sweden)

    Tetsuji Kamata

    Full Text Available Epitopes for a panel of anti-αVβ3 monoclonal antibodies (mAbs were investigated to explore the activation mechanism of αVβ3 integrin. Experiments utilizing αV/αIIb domain-swapping chimeras revealed that among the nine mAbs tested, five recognized the ligand-binding β-propeller domain and four recognized the thigh domain, which is the upper leg of the αV chain. Interestingly, the four mAbs included function-blocking as well as non-functional mAbs, although they bound at a distance from the ligand-binding site. The epitopes for these four mAbs were further determined using human-to-mouse αV chimeras. Among the four, P3G8 recognized an amino acid residue, Ser-528, located on the side of the thigh domain, while AMF-7, M9, and P2W7 all recognized a common epitope, Ser-462, that was located close to the α-genu, where integrin makes a sharp bend in the crystal structure. Fibrinogen binding studies for cells expressing wild-type αVβ3 confirmed that AMF-7, M9, and P2W7 were inhibitory, while P3G8 was non-functional. However, these mAbs were all unable to block binding when αVβ3 was constrained in its extended conformation. These results suggest that AMF-7, M9, and P2W7 block ligand binding allosterically by stabilizing the angle of the bend in the bent conformation. Thus, a switchblade-like movement of the integrin leg is indispensable for the affinity regulation of αVβ3 integrin.

  12. beta 1 integrin inhibition dramatically enhances radiotherapy efficacy in human breast cancer xenografts

    International Nuclear Information System (INIS)

    Park, Catherine C.; Park, Catherine C.; Zhang, Hui J.; Yao, Evelyn S.; Park, Chong J.; Bissell, Mina J.

    2008-01-01

    β1 integrin signaling has been shown to mediate cellular resistance to apoptosis after exposure to ionizing radiation (IR). Other signaling molecules that increase resistance include Akt, which promotes cell survival downstream of β1 integrin signaling. We showed previously that β1 integrin inhibitory antibodies, AIIB2, enhance apoptosis and decrease growth in human breast cancer cells in 3 dimensional laminin-rich extracellular matrix (3D lrECM) cultures and in vivo. Here we asked whether AIIB2 could synergize with IR to modify Akt-mediated IR resistance. We used 3D lrECM cultures to test the optimal combination of AIIB2 with IR treatment of two breast cancer cell lines, MCF-7 and HMT3522-T4-2, as well as T4-2 myr-Akt breast cancer colonies or HMT3522-S-1, which form normal organotypic structures in 3D lrECM. Colonies were assayed for apoptosis and β1 integrin/Akt signaling pathways were evaluated using western blot. In addition, mice bearing MCF-7 xenografts were used to validate the findings in 3D lrECM. We report that AIIB2 increased apoptosis optimally post-IR by down regulating Akt in breast cancer colonies in 3D lrECM. In vivo, addition of AIIB2 after IR significantly enhanced tumor growth inhibition and apoptosis compared to either treatment alone. Remarkably, the degree of tumor growth inhibition using AIIB2 plus 2 Gy radiation was similar to that of 8 Gy alone. We showed previously that AIIB2 had no discernible toxicity in mice; here, its addition allowed for a significant reduction in the IR dose that was necessary to achieve comparable growth inhibition and apoptosis in breast cancer xenografts in vivo

  13. Co-ordinate regulation of lactate metabolism genes in yeast: the role of the lactate permease gene JEN1.

    Science.gov (United States)

    Lodi, T; Fontanesi, F; Guiard, B

    2002-01-01

    In the yeast Saccharomyces cerevisiae, the first step in lactate metabolism is its transport across the plasma membrane, a proton symport process mediated by the product of the gene JEN1. Under aerobic conditions, the expression of JEN1 is regulated by the carbon source: the gene is repressed by glucose and induced by non-fermentable substrates. JEN1 expression is also controlled by oxygen availability, but is unaffected by the absence of haem biosynthesis. JEN1 is negatively regulated by the repressors Mig1p and Mig2p, and requires Cat8p for full derepression. In this report we demonstrate that, in addition to these regulators, the Hap2/3/4/5 complex interacts specifically with a CAAT-box element in the JEN1 promoter, and acts to derepress JEN1 expression. We also provide evidence for transcriptional stimulation of JEN1 by the protein kinase Snf1p. Data are presented which provide a better understanding of the molecular mechanisms implicated in the co-regulation of genes involved in the metabolism of lactate.

  14. The Caenorhabditis elegans HNF4alpha Homolog, NHR-31, mediates excretory tube growth and function through coordinate regulation of the vacuolar ATPase.

    Directory of Open Access Journals (Sweden)

    Annett Hahn-Windgassen

    2009-07-01

    Full Text Available Nuclear receptors of the Hepatocyte Nuclear Factor-4 (HNF4 subtype have been linked to a host of developmental and metabolic functions in animals ranging from worms to humans; however, the full spectrum of physiological activities carried out by this nuclear receptor subfamily is far from established. We have found that the Caenorhabditis elegans nuclear receptor NHR-31, a homolog of mammalian HNF4 receptors, is required for controlling the growth and function of the nematode excretory cell, a multi-branched tubular cell that acts as the C. elegans renal system. Larval specific RNAi knockdown of nhr-31 led to significant structural abnormalities along the length of the excretory cell canal, including numerous regions of uncontrolled growth at sites near to and distant from the cell nucleus. nhr-31 RNAi animals were sensitive to acute challenge with ionic stress, implying that the osmoregulatory function of the excretory cell was also compromised. Gene expression profiling revealed a surprisingly specific role for nhr-31 in the control of multiple genes that encode subunits of the vacuolar ATPase (vATPase. RNAi of these vATPase genes resulted in excretory cell defects similar to those observed in nhr-31 RNAi animals, demonstrating that the influence of nhr-31 on excretory cell growth is mediated, at least in part, through coordinate regulation of the vATPase. Sequence analysis revealed a stunning enrichment of HNF4alpha type binding sites in the promoters of both C. elegans and mouse vATPase genes, arguing that coordinate regulation of the vATPase by HNF4 receptors is likely to be conserved in mammals. Our study establishes a new pathway for regulation of excretory cell growth and reveals a novel role for HNF4-type nuclear receptors in the development and function of a renal system.

  15. The Caenorhabditis elegans HNF4alpha Homolog, NHR-31, mediates excretory tube growth and function through coordinate regulation of the vacuolar ATPase.

    Science.gov (United States)

    Hahn-Windgassen, Annett; Van Gilst, Marc R

    2009-07-01

    Nuclear receptors of the Hepatocyte Nuclear Factor-4 (HNF4) subtype have been linked to a host of developmental and metabolic functions in animals ranging from worms to humans; however, the full spectrum of physiological activities carried out by this nuclear receptor subfamily is far from established. We have found that the Caenorhabditis elegans nuclear receptor NHR-31, a homolog of mammalian HNF4 receptors, is required for controlling the growth and function of the nematode excretory cell, a multi-branched tubular cell that acts as the C. elegans renal system. Larval specific RNAi knockdown of nhr-31 led to significant structural abnormalities along the length of the excretory cell canal, including numerous regions of uncontrolled growth at sites near to and distant from the cell nucleus. nhr-31 RNAi animals were sensitive to acute challenge with ionic stress, implying that the osmoregulatory function of the excretory cell was also compromised. Gene expression profiling revealed a surprisingly specific role for nhr-31 in the control of multiple genes that encode subunits of the vacuolar ATPase (vATPase). RNAi of these vATPase genes resulted in excretory cell defects similar to those observed in nhr-31 RNAi animals, demonstrating that the influence of nhr-31 on excretory cell growth is mediated, at least in part, through coordinate regulation of the vATPase. Sequence analysis revealed a stunning enrichment of HNF4alpha type binding sites in the promoters of both C. elegans and mouse vATPase genes, arguing that coordinate regulation of the vATPase by HNF4 receptors is likely to be conserved in mammals. Our study establishes a new pathway for regulation of excretory cell growth and reveals a novel role for HNF4-type nuclear receptors in the development and function of a renal system.

  16. The Caenorhabditis elegans HNF4α Homolog, NHR-31, Mediates Excretory Tube Growth and Function through Coordinate Regulation of the Vacuolar ATPase

    Science.gov (United States)

    Hahn-Windgassen, Annett; Van Gilst, Marc R.

    2009-01-01

    Nuclear receptors of the Hepatocyte Nuclear Factor-4 (HNF4) subtype have been linked to a host of developmental and metabolic functions in animals ranging from worms to humans; however, the full spectrum of physiological activities carried out by this nuclear receptor subfamily is far from established. We have found that the Caenorhabditis elegans nuclear receptor NHR-31, a homolog of mammalian HNF4 receptors, is required for controlling the growth and function of the nematode excretory cell, a multi-branched tubular cell that acts as the C. elegans renal system. Larval specific RNAi knockdown of nhr-31 led to significant structural abnormalities along the length of the excretory cell canal, including numerous regions of uncontrolled growth at sites near to and distant from the cell nucleus. nhr-31 RNAi animals were sensitive to acute challenge with ionic stress, implying that the osmoregulatory function of the excretory cell was also compromised. Gene expression profiling revealed a surprisingly specific role for nhr-31 in the control of multiple genes that encode subunits of the vacuolar ATPase (vATPase). RNAi of these vATPase genes resulted in excretory cell defects similar to those observed in nhr-31 RNAi animals, demonstrating that the influence of nhr-31 on excretory cell growth is mediated, at least in part, through coordinate regulation of the vATPase. Sequence analysis revealed a stunning enrichment of HNF4α type binding sites in the promoters of both C. elegans and mouse vATPase genes, arguing that coordinate regulation of the vATPase by HNF4 receptors is likely to be conserved in mammals. Our study establishes a new pathway for regulation of excretory cell growth and reveals a novel role for HNF4-type nuclear receptors in the development and function of a renal system. PMID:19668342

  17. Elucidating the role of select cytoplasmic proteins in altering diffusion of integrin receptors.

    Science.gov (United States)

    Sander, Suzanne; Arora, Neha; Smith, Emily A

    2012-06-01

    Cytoplasmic proteins that affect integrin diffusion in the cell membrane are identified using a combination of fluorescence recovery after photobleaching (FRAP) and RNA interference. Integrin receptors are essential for many cellular events, and alterations in lateral diffusion are one mechanism for modulating their function. In cells expressing native cytoplasmic protein concentrations and spread on a slide containing integrin extracellular ligand, 45 ± 2% of the integrin is mobile with a time-dependent 5.2 ± 0.9 × 10(-9) cm(2)/s diffusion coefficient at 1 s. The time exponent is 0.90 ± 0.07, indicating integrin diffusion moderately slows at longer times. The role of a specific cytoplasmic protein in altering integrin diffusion is revealed through changes in the FRAP curve after reducing the cytoplasmic protein's expression. Decreased expression of cytoplasmic proteins rhea, focal adhesion kinase (FAK), or steamer duck decreases the integrin mobile fraction. For rhea and FAK, there is a concomitant shift to Brownian (i.e., time-independent) diffusion at reduced concentrations of these proteins. In contrast, when the expression of actin 42A, dreadlocks, paxillin, integrin-linked kinase (ILK), or vinculin is reduced, integrin diffusion generally becomes more constrained with an increase in the integrin mobile fraction. This same change in integrin diffusion is measured in the absence of integrin extracellular ligand. The results indicate breaking the extracellular ligand-integrin-cytoskeletal linkage alters integrin diffusion properties, and, in most cases, there is no correlation between integrin and lipid diffusion properties.

  18. Global Regulator of Virulence A (GrvA) Coordinates Expression of Discrete Pathogenic Mechanisms in Enterohemorrhagic Escherichia coli through Interactions with GadW-GadE.

    Science.gov (United States)

    Morgan, Jason K; Carroll, Ronan K; Harro, Carly M; Vendura, Khoury W; Shaw, Lindsey N; Riordan, James T

    2016-02-01

    Global regulator of virulence A (GrvA) is a ToxR-family transcriptional regulator that activates locus of enterocyte effacement (LEE)-dependent adherence in enterohemorrhagic Escherichia coli (EHEC). LEE activation by GrvA requires the Rcs phosphorelay response regulator RcsB and is sensitive to physiologically relevant concentrations of bicarbonate, a known stimulant of virulence systems in intestinal pathogens. This study determines the genomic scale of GrvA-dependent regulation and uncovers details of the molecular mechanism underlying GrvA-dependent regulation of pathogenic mechanisms in EHEC. In a grvA-null background of EHEC strain TW14359, RNA sequencing analysis revealed the altered expression of over 700 genes, including the downregulation of LEE- and non-LEE-encoded effectors and the upregulation of genes for glutamate-dependent acid resistance (GDAR). Upregulation of GDAR genes corresponded with a marked increase in acid resistance. GrvA-dependent regulation of GDAR and the LEE required gadE, the central activator of GDAR genes and a direct repressor of the LEE. Control of gadE by GrvA was further determined to occur through downregulation of the gadE activator GadW. This interaction of GrvA with GadW-GadE represses the acid resistance phenotype, while it concomitantly activates the LEE-dependent adherence and secretion of immune subversion effectors. The results of this study significantly broaden the scope of GrvA-dependent regulation and its role in EHEC pathogenesis. Enterohemorrhagic Escherichia coli (EHEC) is an intestinal human pathogen causing acute hemorrhagic colitis and life-threatening hemolytic-uremic syndrome. For successful transmission and gut colonization, EHEC relies on the glutamate-dependent acid resistance (GDAR) system and a type III secretion apparatus, encoded on the LEE pathogenicity island. This study investigates the mechanism whereby the DNA-binding regulator GrvA coordinates activation of the LEE with repression of GDAR

  19. Effective approaches to regulate mobile advertising: moving towards a co-ordinated legal, self-regulatory, and technical response

    DEFF Research Database (Denmark)

    Cleff, Evelyne Beatrix

    2009-01-01

    This article aims to contribute to the ongoing discourse about the issue of privacy in the mobile advertising domain. The article discusses the fundamental principles and information practices used in digital environments for protecting individuals' private data. Major challenges are identified......, such as legislation, self-regulation and technical approaches. It is intended to promote an effective approach to improve consumer privacy in the mobile advertising domain....... that should be addressed, so that fair information principles can be applied in the context of m-advertising. It also points out the limitations of these principles. Furthermore, the article discusses a range of models that is available for regulating the collection, use and disclosure of personal data...

  20. Coordination and collaboration between National Regulators for the Safety and Security of International Shipments of Radioactive Materials

    International Nuclear Information System (INIS)

    Whittingham, Stephen

    2016-01-01

    The safety record of transporting radioactive material is remarkable; globally with tens of millions of packages transported; each year with approximately 2-3% is related to the nuclear industry. Much of this success is due to the ongoing commitment made by the IAEA and its Member States to maintain over the past 50 years the prescriptive regulations for the transport of radioactive material (TS-R-1) and its associated guidance documents. TS-R-1 is by far the most popular IAEA document in terms of downloads and sales with some Member States adopting them directly into their domestic legal framework whilst others adopt them due to all of the TS-R-1 requirements being incorporated into the UN Model Regulations

  1. Kaempferol inhibits the production of ROS to modulate OPN-αvβ3 integrin pathway in HUVECs.

    Science.gov (United States)

    Xiao, Hong-Bo; Lu, Xiang-Yang; Liu, Zi-Kui; Luo, Zhi-Feng

    2016-06-01

    In the present study, we tested the hypothesis that aldosterone regulates osteopontin (OPN)-related signaling pathways to promote nuclear factor κB (NF-κB) activation in primary human umbilical vein endothelial cells (HUVECs) and that kaempferol, a flavonoid compound, blocks those changes. Aldosterone induced productions of reactive oxygen species (ROS), OPN, interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α) and expression of nicotinamide adenine dinucleotide phosphate-oxidase 4 (Nox4), NF-κB, OPN, alphavbeta3 (αvβ3) integrin, and inhibitor of NF-κB alpha phosphorylation (P-IκBα) in HUVEC. HUVECs were pretreated with kaempferol (0, 1, 3, or 10 μM) for 1 h and exposed to aldosterone (10(-6) M) for 24 h. Kaempferol reduced ROS, OPN, NF-κB, IL-6, and TNF-α levels; Nox4, αvβ3 integrin; and P-IκBα expressions. The effect of aldosterone was also abrogated by spironolactone (10(-6) M). In addition, vitamin C (20 mmol/L) reduced ROS production. Vitamin C and LM609 (10 μg/mL) treatment decreased expressions of OPN, αvβ3 integrin, and NF-κB (P kaempferol may modulate OPN-αvβ3 integrin pathway to inhibit NF-κB activation in HUVECs.

  2. Water-extracted Perilla frutescens increases endometrial receptivity though leukemia inhibitory factor-dependent expression of integrins

    Directory of Open Access Journals (Sweden)

    Eun-Yeong Kim

    2016-08-01

    Full Text Available The leaves and stems of Perilla frutescens var. acuta Kudo (PF have been used to prevent threatened abortion in traditional medicine in the East Asian countries. Because reduced receptivity of endometrium is a cause of abortion, we analyzed the action of PF on the endometrial receptivity. PF increased the level of leukemia inhibitory factor (LIF, a major cytokine regulating endometrial receptivity, and LIF receptor in human endometrial Ishikawa cells. The PF-induced LIF expression was mediated by c-jun N-terminal kinase (JNK and p38 pathways. Adhesion between Ishikawa cells and trophoblastic JAr cells stimulated by PF treatment was abolished by knock down of LIF expression or antagonism of LIFR. In addition, the expressions of integrin β3 and β5 were increased by PF treatment in Ishikawa cells. The PF-induced expression of integrin β3 and β5 was reduced with an LIFR antagonist. Neutralization of both integrins successfully blocked PF-stimulated adhesion of JAr cells and Ishikawa cells. These results suggest that PF enhanced the adhesion between Ishikawa cells and JAr cells by increasing the expression of integrin β3 and β5 via an LIF-dependent pathway. Given the importance of endometrial receptivity in successful pregnancy, PF can be a novel and effective candidate for improving pregnancy rate.

  3. Alpha5beta1 integrin-fibronectin interactions specify liquid to solid phase transition of 3D cellular aggregates.

    Directory of Open Access Journals (Sweden)

    Carlos E Caicedo-Carvajal

    2010-07-01

    Full Text Available Tissue organization during embryonic development and wound healing depends on the ability of cells on the one hand to exchange adhesive bonds during active rearrangement and on the other to become fixed in place as tissue homeostasis is reached. Cells achieve these contradictory tasks by regulating either cell-cell adhesive bonds, mediated by cadherins, or cell-extracellular matrix (ECM connections, regulated by integrins. Integrin alpha5beta1 and soluble fibronectin (sFN are key players in cell-ECM force generation and in ECM polymerization. Here, we explore the interplay between integrin alpha5beta1 and sFN and its influence on tissue mechanical properties and cell sorting behavior.We generated a series of cell lines varying in alpha5beta1 receptor density. We then systematically explored the effects of different sFN concentrations on aggregate biomechanical properties using tissue surface tensiometry. We found previously unreported complex behaviors including the observation that interactions between fibronectin and integrin alpha5beta1 generates biphasic tissue cohesion profiles. Specifically, we show that at constant sFn concentration, aggregate cohesion increases linearly as alpha5beta1 receptor density is increased from low to moderate levels, producing a transition from viscoelastic-liquid to pseudo viscoelastic-solid behavior. However, further increase in receptor density causes an abrupt drop in tissue cohesion and a transition back to viscoelastic-liquid properties. We propose that this may be due to depletion of sFn below a critical value in the aggregate microenvironment at high alpha5beta1 levels. We also show that differential expression of alpha5beta1 integrin can promote phase-separation between cells.The interplay between alpha5-integrin and sFn contributes significantly to tissue cohesion and, depending on their level of expression, can mediate a shift from liquid to elastic behavior. This interplay represents a tunable level

  4. ATX and LPA receptor 3 are coordinately up-regulated in lipopolysaccharide-stimulated THP-1 cells through PKR and SPK1-mediated pathways.

    Science.gov (United States)

    Li, Song; Xiong, Chaoyang; Zhang, Junjie

    2012-03-23

    Lysophosphatidic acid (LPA) is an important phospholipid mediator in inflammation and immunity. Previously, we showed that autotaxin (ATX), the enzyme producing LPA from lysophosphatidylcholine (LPC), is induced by LPS in THP-1 cells via the activation of PKR, JNK and p38 MAPK. In this study, we find that ATX and LPA receptor 3 (LPA(3)) are coordinately up-regulated in LPS-stimulated THP-1 cells. PKR-mediated activation of JNK1 and p38 MAPK is required for both ATX and LPA(3) up-regulation. SPK1-mediated activation of the PI3K-AKT-β-catenin pathway is essential for ATX induction, while SPK1-mediated ERK activation is required for LPA(3) up-regulation. Either ATX or LPA(3) knockdown inhibited CCL8 induction by LPS, suggesting that ATX and LPA(3) are involved in CCL8 induction during the inflammatory process against bacterial infection. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. Limb immobilization induces a coordinate down-regulation of mitochondrial and other metabolic pathways in men and women.

    Directory of Open Access Journals (Sweden)

    Arkan Abadi

    Full Text Available Advancements in animal models and cell culture techniques have been invaluable in the elucidation of the molecular mechanisms that regulate muscle atrophy. However, few studies have examined muscle atrophy in humans using modern experimental techniques. The purpose of this study was to examine changes in global gene transcription during immobilization-induced muscle atrophy in humans and then explore the effects of the most prominent transcriptional alterations on protein expression and function. Healthy men and women (N = 24 were subjected to two weeks of unilateral limb immobilization, with muscle biopsies obtained before, after 48 hours (48 H and 14 days (14 D of immobilization. Muscle cross sectional area (approximately 5% and strength (10-20% were significantly reduced in men and women (approximately 5% and 10-20%, respectively after 14 D of immobilization. Micro-array analyses of total RNA extracted from biopsy samples at 48 H and 14 D uncovered 575 and 3,128 probes, respectively, which were significantly altered during immobilization. As a group, genes involved in mitochondrial bioenergetics and carbohydrate metabolism were predominant features at both 48 H and 14 D, with genes involved in protein synthesis and degradation significantly down-regulated and up-regulated, respectively, at 14 D of muscle atrophy. There was also a significant decrease in the protein content of mitochondrial cytochrome c oxidase, and the enzyme activity of cytochrome c oxidase and citrate synthase after 14 D of immobilization. Furthermore, protein ubiquitination was significantly increased at 48 H but not 14 D of immobilization. These results suggest that transcriptional and post-transcriptional suppression of mitochondrial processes is sustained throughout 14 D of immobilization, while protein ubiquitination plays an early but transient role in muscle atrophy following short-term immobilization in humans.

  6. Effective approaches to regulate mobile advertising: moving towards a co-ordinated legal, self-regulatory, and technical response

    DEFF Research Database (Denmark)

    Cleff, Evelyne Beatrix

    2010-01-01

    This article aims to contribute to the ongoing discourse about the issue of privacy in the mobile advertising domain. The article discusses the fundamental principles and information practices used in digital environments for protecting individuals' private data. Major challenges are identified t......, such as legislation, self-regulation and technical approaches. It is intended to promote an effective approach to improve consumer privacy in the mobile advertising domain.......This article aims to contribute to the ongoing discourse about the issue of privacy in the mobile advertising domain. The article discusses the fundamental principles and information practices used in digital environments for protecting individuals' private data. Major challenges are identified...

  7. A dynamic Shh expression pattern, regulated by SHH and BMP signaling, coordinates fusion of primordia in the amniote face

    Science.gov (United States)

    Hu, Diane; Young, Nathan M.; Li, Xin; Xu, Yanhua; Hallgrímsson, Benedikt; Marcucio, Ralph S.

    2015-01-01

    The mechanisms of morphogenesis are not well understood, yet shaping structures during development is essential for establishing correct organismal form and function. Here, we examine mechanisms that help to shape the developing face during the crucial period of facial primordia fusion. This period of development is a time when the faces of amniote embryos exhibit the greatest degree of similarity, and it probably results from the necessity for fusion to occur to establish the primary palate. Our results show that hierarchical induction mechanisms, consisting of iterative signaling by Sonic hedgehog (SHH) followed by Bone morphogenetic proteins (BMPs), regulate a dynamic expression pattern of Shh in the ectoderm covering the frontonasal (FNP) and maxillary (MxP) processes. Furthermore, this Shh expression domain contributes to the morphogenetic processes that drive the directional growth of the globular process of the FNP toward the lateral nasal process and MxP, in part by regulating cell proliferation in the facial mesenchyme. The nature of the induction mechanism that we discovered suggests that the process of fusion of the facial primordia is intrinsically buffered against producing maladaptive morphologies, such as clefts of the primary palate, because there appears to be little opportunity for variation to occur during expansion of the Shh expression domain in the ectoderm of the facial primordia. Ultimately, these results might explain why this period of development constitutes a phylotypic stage of facial development among amniotes. PMID:25605783

  8. RhoB controls coordination of adult angiogenesis and lymphangiogenesis following injury by regulating VEZF1-mediated transcription

    Science.gov (United States)

    Gerald, Damien; Adini, Irit; Shechter, Sharon; Perruzzi, Carole; Varnau, Joseph; Hopkins, Benjamin; Kazerounian, Shiva; Kurschat, Peter; Blachon, Stephanie; Khedkar, Santosh; Bagchi, Mandrita; Sherris, David; Prendergast, George C.; Klagsbrun, Michael; Stuhlmann, Heidi; Rigby, Alan C.; Nagy, Janice A.; Benjamin, Laura E.

    2013-11-01

    Mechanisms governing the distinct temporal dynamics that characterize post-natal angiogenesis and lymphangiogenesis elicited by cutaneous wounds and inflammation remain unclear. RhoB, a stress-induced small GTPase, modulates cellular responses to growth factors, genotoxic stress and neoplastic transformation. Here we show, using RhoB null mice, that loss of RhoB decreases pathological angiogenesis in the ischaemic retina and reduces angiogenesis in response to cutaneous wounding, but enhances lymphangiogenesis following both dermal wounding and inflammatory challenge. We link these unique and opposing roles of RhoB in blood versus lymphatic vasculatures to the RhoB-mediated differential regulation of sprouting and proliferation in primary human blood versus lymphatic endothelial cells. We demonstrate that nuclear RhoB-GTP controls expression of distinct gene sets in each endothelial lineage by regulating VEZF1-mediated transcription. Finally, we identify a small-molecule inhibitor of VEZF1-DNA interaction that recapitulates RhoB loss in ischaemic retinopathy. Our findings establish the first intra-endothelial molecular pathway governing the phased response of angiogenesis and lymphangiogenesis following injury.

  9. A mechanism for the coordination of proliferation and differentiation by spatial regulation of Fus2p in budding yeast

    Science.gov (United States)

    Kim, Junwon; Rose, Mark D.

    2012-01-01

    Yeast cells induce the genes required for mating prior to the completion of mitosis. To ensure proper cell cycle progression prior to mating differentiation, a key cytoplasmic regulator of cell fusion, Fus2p, is sequestered in the nucleus by cyclin-dependent kinase (Cdk). In response to pheromone signaling, the mitogen-activated protein kinase Fus3p phosphorylates Ser 84 in Fus2p to drive nuclear export. We found that Fus3p becomes active and phosphorylates S84 as early as S phase, raising the question of how Cdk prevents inappropriate activation of Fus2p. Countering Fus3p, Cdk and a p21-activated kinase, Cla4p, maintain Fus2p's nuclear localization by phosphorylating Ser 67, which drives nuclear import and inhibits nuclear export. When Cdk and Cla4p activities drop after cell division, Fus3p promotes Fus2p export both via S84 phosphorylation and by down-regulating S67 phosphorylation. Thus, potential premature activation of Fus2p in mitosis is prevented by cell cycle-dependent phosphorylation that overrides the mating pheromone-induced phosphorylation that drives nuclear export. PMID:22588722

  10. Integrin expression on normal and neoplastic human breast epithelium.

    Science.gov (United States)

    Damjanovich, L; Fülöp, B; Adány, R; Nemes, Z

    1997-01-01

    Integrin adhesion receptor expression of different benign and malignant breast tumours was examined by means of immunohistochemical techniques. A panel of seven different anti-alpha and two different anti-beta subunit antibodies was used. Normal breast epithelium displayed a well characterized and constant pattern of integrin expression consisting of strong alpha 1,2,3,6 and alpha v, and a relatively weaker beta 1 and beta 3 staining. No staining for alpha 4 or alpha 5 could be detected on the epithelial cells. Benign fibroadenomas did not show changes in their receptor expression compared to normal tissues. In the cases of different types of breast cancer, there was a significant downregulation of all subunits. The staining pattern was distinct if there could a basement membrane like structure be detected around the invading tumour nodules. When laminin and collagen type IV surrounded the tumour cells, those cells in contact with the extracellular matrix components still displayed strong positivity for the integrin subunits. Other cells inside the tumour cell nests or not surrounded by basement membrane did not express integrins. The positively staining cells might be more differentiated owing to the effect the basement membrane. Myoepithelial labeling of the integrin expressing cells gave negative results. The observed integrin expression heterogeneity renders the histologic picture difficult to interpret with regard to clinical behavior of the tumour.

  11. Differences in the regulation of the classical and the alternative pathway for bile acid synthesis in human liver. No coordinate regulation of CYP7A1 and CYP27A1.

    Science.gov (United States)

    Björkhem, Ingemar; Araya, Zufan; Rudling, Mats; Angelin, Bo; Einarsson, Curt; Wikvall, Kjell

    2002-07-26

    It has been reported that there is a coordinate regulation of sterol 27-hydroxylase (CYP27A1) and cholesterol 7alpha-hydroxylase (CYP7A1) in rats. Thus, the levels of the mRNA corresponding to these two enzymes were found to change in the same direction in rat liver and in isolated rat hepatocytes. In contrast, other groups have not seen such regulation of CYP27A1 in rabbit liver or in rat liver when using an activity assay. In the present work, the effect of bile acid treatment on human CYP27A1/luciferase reporter activity was studied in a transient transfection assay in human liver-derived HepG2 cells. Neither the endogenous 27-hydroxylase activity nor the CYP27A1/luciferase reporter activity were down-regulated by treatment of HepG2 cells with chenodeoxycholic acid or taurochenodeoxycholic acid. We also measured CYP27A1 mRNA and CYP7A1 mRNA in liver of humans subjected to treatment with chenodeoxycholic acid, ursodeoxycholic acid, hydroxymethylglutaryl (HMG)-CoA reductase inhibitor and a combination of HMG-CoA reductase inhibitor and cholestyramine. There was a 60-fold variation in the levels of CYP7A1 mRNA but only a 5-fold variation in the levels of CYP27A1 mRNA. There was no correlation between the two mRNA species. It is concluded that, in humans, there is little or no coordinate regulation of CYP7A1 and CYP27A1 at the transcriptional level, and that CYP27A1 is not subject to a negative feedback control by bile acids. The results underline that marked species differences may exist in mechanisms for control of synthesis of bile acids and cholesterol homeostasis.

  12. Polarization of the epithelial layer and apical localization of integrins are required for engulfment of apoptotic cells in the Drosophila ovary.

    Science.gov (United States)

    Meehan, Tracy L; Kleinsorge, Sarah E; Timmons, Allison K; Taylor, Jeffrey D; McCall, Kimberly

    2015-12-01

    Inefficient clearance of dead cells or debris by epithelial cells can lead to or exacerbate debilitating conditions such as retinitis pigmentosa, macular degeneration, chronic obstructive pulmonary disease and asthma. Despite the importance of engulfment by epithelial cells, little is known about the molecular changes that are required within these cells. The misregulation of integrins has previously been associated with disease states, suggesting that a better understanding of the regulation of receptor trafficking could be key to treating diseases caused by defects in phagocytosis. Here, we demonstrate that the integrin heterodimer αPS3/βPS becomes apically enriched and is required for engulfment by the epithelial follicle cells of the Drosophila ovary. We found that integrin heterodimer localization and function is largely directed by the α-subunit. Moreover, proper cell polarity promotes asymmetric integrin enrichment, suggesting that αPS3/βPS trafficking occurs in a polarized fashion. We show that several genes previously known for their roles in trafficking and cell migration are also required for engulfment. Moreover, as in mammals, the same α-integrin subunit is required by professional and non-professional phagocytes and migrating cells in Drosophila. Our findings suggest that migrating and engulfing cells use common machinery, and demonstrate a crucial role for integrin function and polarized trafficking of integrin subunits during engulfment. This study also establishes the epithelial follicle cells of the Drosophila ovary as a powerful model for understanding the molecular changes required for engulfment by a polarized epithelium. © 2015. Published by The Company of Biologists Ltd.

  13. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status.

    Science.gov (United States)

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0-20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20-30 cm layer. Soil moisture in the 20-50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20-50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants' ability to access nutrients and water. An optimal

  14. Transcriptomic comparison of Aspergillus niger growing on two different sugars reveals coordinated regulation of the secretory pathway

    DEFF Research Database (Denmark)

    Jørgensen, Thomas R; Goosen, Theo; Hondel, Cees A M J J van den

    2009-01-01

    . The production rate of extracellular proteins per gram dry mycelium was about three times higher on maltose compared to xylose. The defined culture conditions resulted in high reproducibility, discriminating even low-fold differences in transcription, which is characteristic of genes encoding basal cellular...... reticulum (ER), folding, N-glycosylation, quality control, and vesicle packaging and transport between ER and Golgi. The induction effect of maltose resembles the unfolded protein response (UPR), which results from ER-stress and has previously been defined by treatment with chemicals interfering...... with folding of glycoproteins or by expression of heterologous proteins. CONCLUSION: We show that upregulation of secretory pathway genes also occurs in conditions inducing secretion of endogenous glycoproteins - representing a more normal physiological state. Transcriptional regulation of protein synthesis...

  15. Ribosomal protein S6 kinase1 coordinates with TOR-Raptor2 to regulate thylakoid membrane biosynthesis in rice.

    Science.gov (United States)

    Sun, Linxiao; Yu, Yonghua; Hu, Weiqin; Min, Qiming; Kang, Huiling; Li, Yilu; Hong, Yue; Wang, Xuemin; Hong, Yueyun

    2016-07-01

    Ribosomal protein S6 kinase (S6K) functions as a key component in the target of rapamycin (TOR) pathway involved in multiple processes in eukaryotes. The role and regulation of TOR-S6K in lipid metabolism remained unknown in plants. Here we provide genetic and pharmacological evidence that TOR-Raptor2-S6K1 is important for thylakoid galactolipid biosynthesis and thylakoid grana modeling in rice (Oryza sativa L.). Genetic suppression of S6K1 caused pale yellow-green leaves, defective thylakoid grana architecture. S6K1 directly interacts with Raptor2, a core component in TOR signaling, and S6K1 activity is regulated by Raptor2 and TOR. Plants with suppressed Raptor2 expression or reduced TOR activity by inhibitors mimicked the S6K1-deficient phenotype. A significant reduction in galactolipid content was found in the s6k1, raptor2 mutant or TOR-inhibited plants, which was accompanied by decreased transcript levels of the set of genes such as lipid phosphate phosphatase α5 (LPPα5), MGDG synthase 1 (MGD1), and DGDG synthase 1 (DGD1) involved in galactolipid synthesis, compared to the control plants. Moreover, loss of LPPα5 exhibited a similar phenotype with pale yellow-green leaves. These results suggest that TOR-Raptor2-S6K1 is important for modulating thylakoid membrane lipid biosynthesis, homeostasis, thus enhancing thylakoid grana architecture and normal photosynthesis ability in rice. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. RGD peptides protects against acute lung injury in septic mice through Wisp1-integrin β6 pathway inhibition.

    Science.gov (United States)

    Ding, Xibing; Wang, Xin; Zhao, Xiang; Jin, Shuqing; Tong, Yao; Ren, Hao; Chen, Zhixia; Li, Quan

    2015-04-01

    Acute lung injury is a common consequence of sepsis, a life-threatening inflammatory response caused by severe infection. In this study, we elucidate the attenuating effects of synthetic Arg-Gly-Asp-Ser peptides (RGDs) on acute lung injury in a sepsis mouse model. We further reveal that the beneficial effects of RGDs stem from their negative regulation of the Wisp1 (WNT1-inducible signaling pathway)-integrin β6 pathway. After inducing sepsis using cecal ligation and puncture (CLP), mice were randomized into experimental and control groups, and survival rates were recorded over 7 days, whereas only 20% of mice subjected to CLP survived when compared with untreated controls; the addition of RGDs to this treatment regimen dramatically increased the survival rate to 80%. Histological analysis revealed acute lung injury in CLP-treated mice, whereas those subjected to the combined treatment of CLP and RGDs showed a considerable decrease in lung injury severity. The addition of RGDs also dramatically attenuated other common sepsis-associated effects, such as increased white blood cell number in bronchoalveolar lavage fluid and decreased pulmonary capillary barrier function. Furthermore, treatment with RGDs decreased the serum and bronchoalveolar lavage fluid levels of inflammatory cytokines such as tumor necrosis factor α and interleukin 6, contrary to the CLP treatment alone that increased the levels of these proteins. Interestingly, however, RGDs had no detectable effect on bacterial invasion following sepsis induction. In addition, mice treated with RGDs showed decreased levels of wisp1 and integrin β6 when compared with CLP-treated mice. In the present study, a linkage between Wisp1 and integrin β6 was evaluated in vivo. Most strikingly, RGDs resulted in a decreased association of Wisp1 with integrin β6 based on coimmunoprecipitation analyses. These data suggest that RGDs ameliorate acute lung injury in a sepsis mouse model by inhibiting the Wisp1-integrin β6

  17. Co-ordinate regulation of growth factor receptors and lipid phosphate phosphatase-1 controls cell activation by exogenous lysophosphatidate.

    Science.gov (United States)

    Pilquil, C; Ling, Z C; Singh, I; Buri, K; Zhang, Q X; Brindley, D N

    2001-11-01

    The serum-derived lipid growth factors, lysophosphatidate (LPA) and sphingosine 1-phosphate (S1P), activate cells selectively through different members of a family of endothelial differentiation gene (EDG) receptors. Activation of EDG receptors by LPA and S1P provides a variety of signalling cascades depending upon the G-protein coupling of the different EDG receptors. This leads to chemotactic and mitogenic responses, which are important in wound healing. For example, LPA stimulates fibroblast division and S1P stimulates the chemotaxis and division of endothelial cells leading to angiogenesis. Counteracting these effects of LPA and S1P, are the actions of lipid phosphate phosphatases (LPP, or phosphatidate phosphohydrolases, Type 2). The isoform LPP-1 is expressed in the plasma membrane with its active site outside the cell. This enzyme is responsible for 'ecto-phosphatase' activity leading to the degradation of exogenous lipid phosphate mediators, particularly LPA. Expression of LPP-1 decreases cell activation by exogenous LPA. The mechanism for this is controversial and several mechanisms have been proposed. Evidence will be presented that the LPPs cross-talk with EDG and other growth factor receptors, thus, regulating the responses of the cells to lipid phosphate mediators of signal transduction.

  18. Regulation of stomatal tropism and infection by light in Cercospora zeae-maydis: evidence for coordinated host/pathogen responses to photoperiod?

    Directory of Open Access Journals (Sweden)

    Hun Kim

    2011-07-01

    Full Text Available Cercospora zeae-maydis causes gray leaf spot of maize, which has become one of the most widespread and destructive diseases of maize in the world. C. zeae-maydis infects leaves through stomata, which is predicated on the ability of the pathogen to perceive stomata and reorient growth accordingly. In this study, the discovery that light was required for C. zeae-maydis to perceive stomata and infect leaves led to the identification of CRP1, a gene encoding a putative blue-light photoreceptor homologous to White Collar-1 (WC-1 of Neurospora crassa. Disrupting CRP1 via homologous recombination revealed roles in multiple aspects of pathogenesis, including tropism of hyphae to stomata, the formation of appressoria, conidiation, and the biosynthesis of cercosporin. CRP1 was also required for photoreactivation after lethal doses of UV exposure. Intriguingly, putative orthologs of CRP1 are central regulators of circadian clocks in other filamentous fungi, raising the possibility that C. zeae-maydis uses light as a key environmental input to coordinate pathogenesis with maize photoperiodic responses. This study identified a novel molecular mechanism underlying stomatal tropism in a foliar fungal pathogen, provides specific insight into how light regulates pathogenesis in C. zeae-maydis, and establishes a genetic framework for the molecular dissection of infection via stomata and the integration of host and pathogen responses to photoperiod.

  19. Regulation of stomatal tropism and infection by light in Cercospora zeae-maydis: evidence for coordinated host/pathogen responses to photoperiod?

    Science.gov (United States)

    Kim, Hun; Ridenour, John B; Dunkle, Larry D; Bluhm, Burton H

    2011-07-01

    Cercospora zeae-maydis causes gray leaf spot of maize, which has become one of the most widespread and destructive diseases of maize in the world. C. zeae-maydis infects leaves through stomata, which is predicated on the ability of the pathogen to perceive stomata and reorient growth accordingly. In this study, the discovery that light was required for C. zeae-maydis to perceive stomata and infect leaves led to the identification of CRP1, a gene encoding a putative blue-light photoreceptor homologous to White Collar-1 (WC-1) of Neurospora crassa. Disrupting CRP1 via homologous recombination revealed roles in multiple aspects of pathogenesis, including tropism of hyphae to stomata, the formation of appressoria, conidiation, and the biosynthesis of cercosporin. CRP1 was also required for photoreactivation after lethal doses of UV exposure. Intriguingly, putative orthologs of CRP1 are central regulators of circadian clocks in other filamentous fungi, raising the possibility that C. zeae-maydis uses light as a key environmental input to coordinate pathogenesis with maize photoperiodic responses. This study identified a novel molecular mechanism underlying stomatal tropism in a foliar fungal pathogen, provides specific insight into how light regulates pathogenesis in C. zeae-maydis, and establishes a genetic framework for the molecular dissection of infection via stomata and the integration of host and pathogen responses to photoperiod.

  20. Regulation of Stomatal Tropism and Infection by Light in Cercospora zeae-maydis: Evidence for Coordinated Host/Pathogen Responses to Photoperiod?

    Science.gov (United States)

    Kim, Hun; Ridenour, John B.; Dunkle, Larry D.; Bluhm, Burton H.

    2011-01-01

    Cercospora zeae-maydis causes gray leaf spot of maize, which has become one of the most widespread and destructive diseases of maize in the world. C. zeae-maydis infects leaves through stomata, which is predicated on the ability of the pathogen to perceive stomata and reorient growth accordingly. In this study, the discovery that light was required for C. zeae-maydis to perceive stomata and infect leaves led to the identification of CRP1, a gene encoding a putative blue-light photoreceptor homologous to White Collar-1 (WC-1) of Neurospora crassa. Disrupting CRP1 via homologous recombination revealed roles in multiple aspects of pathogenesis, including tropism of hyphae to stomata, the formation of appressoria, conidiation, and the biosynthesis of cercosporin. CRP1 was also required for photoreactivation after lethal doses of UV exposure. Intriguingly, putative orthologs of CRP1 are central regulators of circadian clocks in other filamentous fungi, raising the possibility that C. zeae-maydis uses light as a key environmental input to coordinate pathogenesis with maize photoperiodic responses. This study identified a novel molecular mechanism underlying stomatal tropism in a foliar fungal pathogen, provides specific insight into how light regulates pathogenesis in C. zeae-maydis, and establishes a genetic framework for the molecular dissection of infection via stomata and the integration of host and pathogen responses to photoperiod. PMID:21829344

  1. Coordinated transcriptional regulation of two key genes in the lignin branch pathway--CAD and CCR--is mediated through MYB- binding sites.

    Science.gov (United States)

    Rahantamalala, Anjanirina; Rech, Philippe; Martinez, Yves; Chaubet-Gigot, Nicole; Grima-Pettenati, Jacqueline; Pacquit, Valérie

    2010-06-28

    Cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the final steps in the biosynthesis of monolignols, the monomeric units of the phenolic lignin polymers which confer rigidity, imperviousness and resistance to biodegradation to cell walls. We have previously shown that the Eucalyptus gunnii CCR and CAD2 promoters direct similar expression patterns in vascular tissues suggesting that monolignol production is controlled, at least in part, by the coordinated transcriptional regulation of these two genes. Although consensus motifs for MYB transcription factors occur in most gene promoters of the whole phenylpropanoid pathway, functional evidence for their contribution to promoter activity has only been demonstrated for a few of them. Here, in the lignin-specific branch, we studied the functional role of MYB elements as well as other cis-elements identified in the regulatory regions of EgCAD2 and EgCCR promoters, in the transcriptional activity of these gene promoters. By using promoter deletion analysis and in vivo footprinting, we identified an 80 bp regulatory region in the Eucalyptus gunnii EgCAD2 promoter that contains two MYB elements, each arranged in a distinct module with newly identified cis-elements. A directed mutagenesis approach was used to introduce block mutations in all putative cis-elements of the EgCAD2 promoter and in those of the 50 bp regulatory region previously delineated in the EgCCR promoter. We showed that the conserved MYB elements in EgCAD2 and EgCCR promoters are crucial both for the formation of DNA-protein complexes in EMSA experiments and for the transcriptional activation of EgCAD2 and EgCCR promoters in vascular tissues in planta. In addition, a new regulatory cis-element that modulates the balance between two DNA-protein complexes in vitro was found to be important for EgCAD2 expression in the cambial zone. Our assignment of functional roles to the identified cis-elements clearly demonstrates the

  2. Mechanically enforced bond dissociation reports synergistic influence of Mn2+ and Mg2+ on the interaction between integrin α7β1 and invasin

    DEFF Research Database (Denmark)

    Ligezowska, Agnieszka; Boye, Kristian; Eble, Johannes A.

    2011-01-01

    addition of these cations to the measurement buffer, we observe a pronounced increase in the force necessary to separate integrin and invasin coated beads. Both ions were found to work synergistically. With free invasin in the measurement buffer we furthermore observe that competitive blocking of binding...... sites overrides the increase in binding strength of individual beads. We show that this is due to a very strong dependence of bond affinity on divalent ions. Our study illustrates the importance of divalent ions for the regulation of force transmission by integrin ligand bonds on the molecular level...

  3. Killing two birds with one stone: dual blockade of integrin and FGF signaling through targeting syndecan-4 in postoperative capsular opacification.

    Science.gov (United States)

    Qin, Yingyan; Zhu, Yi; Luo, Furong; Chen, Chuan; Chen, Xiaoyun; Wu, Mingxing

    2017-07-13

    The most common complication after cataract surgery is postoperative capsular opacification, which includes anterior capsular opacification (ACO) and posterior capsular opacification (PCO). Increased adhesion of lens epithelial cells (LECs) to the intraocular lens material surface promotes ACO formation, whereas proliferation and migration of LECs to the posterior capsule lead to the development of PCO. Cell adhesion is mainly mediated by the binding of integrin to extracellular matrix proteins, while cell proliferation and migration are regulated by fibroblast growth factor (FGF). Syndecan-4 (SDC-4) is a co-receptor for both integrin and FGF signaling pathways. Therefore, SDC-4 may be an ideal therapeutic target for the prevention and treatment of postoperative capsular opacification. However, how SDC-4 contributes to FGF-mediated proliferation, migration, and integrin-mediated adhesion of LECs is unclear. Here, we found that downregulation of SDC-4 inhibited FGF signaling through the blockade of ERK1/2 and PI3K/Akt/mTOR activation, thus suppressing cell proliferation and migration. In addition, downregulation of SDC-4 suppressed integrin-mediated cell adhesion through inhibiting focal adhesion kinase (FAK) phosphorylation. Moreover, SDC-4 knockout mice exhibited normal lens morphology, but had significantly reduced capsular opacification after injury. Finally, SDC-4 expression level was increased in the anterior capsule LECs of age-related cataract patients. Taken together, we for the first time characterized the key regulatory role of SDC-4 in FGF and integrin signaling in human LECs, and provided the basis for future pharmacological interventions of capsular opacification.

  4. Suppression of integrin α3β1 by α9β1 in the epidermis controls the paracrine resolution of wound angiogenesis.

    Science.gov (United States)

    Longmate, Whitney M; Lyons, Scott P; Chittur, Sridar V; Pumiglia, Kevin M; Van De Water, Livingston; DiPersio, C Michael

    2017-05-01

    Development of wound therapies is hindered by poor understanding of combinatorial integrin function in the epidermis. In this study, we generated mice with epidermis-specific deletion of α3β1, α9β1, or both integrins as well as keratinocyte lines expressing these integrin combinations. Consistent with proangiogenic roles for α3β1, α3-null keratinocytes showed reduced paracrine stimulation of endothelial cell migration and survival, and wounds of epidermis-specific α3 knockout mice displayed impaired angiogenesis. Interestingly, α9β1 in keratinocytes suppressed α3β1-mediated stimulation of endothelial cells, and wounds of epidermis-specific α9 knockout mice displayed delayed vascular normalization and reduced endothelial apoptosis, indicating that α9β1 cross-suppresses α3β1 proangiogenic functions. Moreover, α9β1 inhibited α3β1 signaling downstream of focal adhesion kinase (FAK) autoactivation at the point of Src-mediated phosphorylation of FAK Y861/Y925. Finally, α9β1 cross-suppressed many α3β1-dependent genes, including the gene that encodes MMP-9, which we implicated as a regulator of integrin-dependent cross talk to endothelial cells. Our findings identify a novel physiological context for combinatorial integrin signaling, laying the foundation for therapeutic strategies that manipulate α9β1 and/or α3β1 during wound healing. © 2017 Longmate et al.

  5. Enhanced photosynthetic capacity increases nitrogen metabolism through the coordinated regulation of carbon and nitrogen assimilation in Arabidopsis thaliana.

    Science.gov (United States)

    Otori, Kumi; Tanabe, Noriaki; Maruyama, Toshiki; Sato, Shigeru; Yanagisawa, Shuichi; Tamoi, Masahiro; Shigeoka, Shigeru

    2017-09-01

    Plant growth and productivity depend on interactions between the metabolism of carbon and nitrogen. The sensing ability of internal carbon and nitrogen metabolites (the C/N balance) enables plants to regulate metabolism and development. In order to investigate the effects of an enhanced photosynthetic capacity on the metabolism of carbon and nitrogen in photosynthetically active tissus (source leaves), we herein generated transgenic Arabidopsis thaliana plants (ApFS) that expressed cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in their chloroplasts. The phenotype of ApFS plants was indistinguishable from that of wild-type plants at the immature stage. However, as plants matured, the growth of ApFS plants was superior to that of wild-type plants. Starch levels were higher in ApFS plants than in wild-type plants at 2 and 5 weeks. Sucrose levels were also higher in ApFS plants than in wild-type plants, but only at 5 weeks. On the other hand, the contents of various free amino acids were lower in ApFS plants than in wild-type plants at 2 weeks, but were similar at 5 weeks. The total C/N ratio was the same in ApFS plants and wild-type plants, whereas nitrite levels increased in parallel with elevations in nitrate reductase activity at 5 weeks in ApFS plants. These results suggest that increases in the contents of photosynthetic intermediates at the early growth stage caused a temporary imbalance in the free-C/free-N ratio and, thus, the feedback inhibition of the expression of genes involved in the Calvin cycle and induction of the expression of those involved in nitrogen metabolism due to supply deficient free amino acids for maintenance of the C/N balance in source leaves of ApFS plants.

  6. Co-ordinate regulation of cytokinin gene family members during flag leaf and reproductive development in wheat.

    Science.gov (United States)

    Song, Jiancheng; Jiang, Lijun; Jameson, Paula Elizabeth

    2012-06-06

    As the global population continues to expand, increasing yield in bread wheat is of critical importance as 20% of the world's food supply is sourced from this cereal. Several recent studies of the molecular basis of grain yield indicate that the cytokinins are a key factor in determining grain yield. In this study, cytokinin gene family members in bread wheat were isolated from four multigene families which regulate cytokinin synthesis and metabolism, the isopentenyl transferases (IPT), cytokinin oxidases (CKX), zeatin O-glucosyltransferases (ZOG), and β-glucosidases (GLU). As bread wheat is hexaploid, each gene family is also likely to be represented on the A, B and D genomes. By using a novel strategy of qRT-PCR with locus-specific primers shared among the three homoeologues of each family member, detailed expression profiles are provided of family members of these multigene families expressed during leaf, spike and seed development. The expression patterns of individual members of the IPT, CKX, ZOG, and GLU multigene families in wheat are shown to be tissue- and developmentally-specific. For instance, TaIPT2 and TaCKX1 were the most highly expressed family members during early seed development, with relative expression levels of up to 90- and 900-fold higher, respectively, than those in the lowest expressed samples. The expression of two cis-ZOG genes was sharply increased in older leaves, while an extremely high mRNA level of TaGLU1-1 was detected in young leaves. Key genes with tissue- and developmentally-specific expression have been identified which would be prime targets for genetic manipulation towards yield improvement in bread wheat breeding programmes, utilising TILLING and MAS strategies.

  7. Cellular growth and survival are mediated by beta 1 integrins in normal human breast epithelium but not in breast carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Howlett, Anthony R; Bailey, Nina; Damsky, Caroline; Petersen, Ole W; Bissell, Mina J

    1994-11-28

    We previously established a rapid three-dimensional assay for discrimination of normal and malignant human breast epithelial cells using a laminin-rich reconstituted basement membrane. In this assay, normal epithelial cells differentiate into well-organized acinar structures whereas tumor cells fail to recapitulate this process and produce large, disordered colonies. The data suggest that breast acinar morphogenesis and differentiation is regulated by cell-extracellular matrix (ECM) interactions and that these interactions are altered in malignancy. Here, we investigated the role of ECM receptors (integrins) in these processes and report on the expression and function of potential laminin receptors in normal and tumorigenic breast epithelial cells. Immmunocytochemical analysis showed that normal and carcinoma cells in a three-dimensional substratum express profiles of integrins similar to normal and malignant breast tissues in situ. Normal cells express {alpha}1, {alpha}2, {alpha}3, {alpha}6, {beta}1 and {beta}4 integrin subunits, whereas breast carcinoma cells show variable losses, disordered expression, or down regulation of these subunits. Function-blocking experiments using inhibitory antiintegrin subunit antibodies showed a >5-fold inhibition of the formation of acinar structures by normal cells in the presence of either anti-{beta}1 or anti-{alpha}3 antibodies, whereas anti-{alpha}2 or -{alpha}6 had little or no effect. In experiments where collagen type I gels were used instead of basement membrane, acinar morphogenesis was blocked by anti-{beta}1 and -{alpha}2 antibodies but not by anti-{alpha}3. These data suggest a specificity of integrin utilization dependent on the ECM ligands encountered by the cell. The interruption of normal acinar morphogenesis by anti-integrin antibodies was associated with an inhibition of cell growth and induction of apoptosis. Function-blocking antibodies had no inhibitory effect on the rate of tumor cell growth, survival or

  8. Meta-analysis of breast cancer microarray studies in conjunction with conserved cis-elements suggest patterns for coordinate regulation

    Directory of Open Access Journals (Sweden)

    Lundberg Cathryn

    2008-01-01

    Full Text Available Abstract Background Gene expression measurements from breast cancer (BrCa tumors are established clinical predictive tools to identify tumor subtypes, identify patients showing poor/good prognosis, and identify patients likely to have disease recurrence. However, diverse breast cancer datasets in conjunction with diagnostic clinical arrays show little overlap in the sets of genes identified. One approach to identify a set of consistently dysregulated candidate genes in these tumors is to employ meta-analysis of multiple independent microarray datasets. This allows one to compare expression data from a diverse collection of breast tumor array datasets generated on either cDNA or oligonucleotide arrays. Results We gathered expression data from 9 published microarray studies examining estrogen receptor positive (ER+ and estrogen receptor negative (ER- BrCa tumor cases from the Oncomine database. We performed a meta-analysis and identified genes that were universally up or down regulated with respect to ER+ versus ER- tumor status. We surveyed both the proximal promoter and 3' untranslated regions (3'UTR of our top-ranking genes in each expression group to test whether common sequence elements may contribute to the observed expression patterns. Utilizing a combination of known transcription factor binding sites (TFBS, evolutionarily conserved mammalian promoter and 3'UTR motifs, and microRNA (miRNA seed sequences, we identified numerous motifs that were disproportionately represented between the two gene classes suggesting a common regulatory network for the observed gene expression patterns. Conclusion Some of the genes we identified distinguish key transcripts previously seen in array studies, while others are newly defined. Many of the genes identified as overexpressed in ER- tumors were previously identified as expression markers for neoplastic transformation in multiple human cancers. Moreover, our motif analysis identified a collection of

  9. Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression

    Science.gov (United States)

    2012-01-01

    Background Vitis vinifera berry development is characterised by an initial phase where the fruit is small, hard and acidic, followed by a lag phase known as veraison. In the final phase, berries become larger, softer and sweeter and accumulate an array of organoleptic compounds. Since the physiological and biochemical makeup of grape berries at harvest has a profound impact on the characteristics of wine, there is great interest in characterising the molecular and biophysical changes that occur from flowering through veraison and ripening, including the coordination and temporal regulation of metabolic gene pathways. Advances in deep-sequencing technologies, combined with the availability of increasingly accurate V. vinifera genomic and transcriptomic data, have enabled us to carry out RNA-transcript expression analysis on a global scale at key points during berry development. Results A total of 162 million 100-base pair reads were generated from pooled Vitis vinifera (cv. Shiraz) berries sampled at 3-weeks post-anthesis, 10- and 11-weeks post-anthesis (corresponding to early and late veraison) and at 17-weeks post-anthesis (harvest). Mapping reads from each developmental stage (36-45 million) onto the NCBI RefSeq transcriptome of 23,720 V. vinifera mRNAs revealed that at least 75% of these transcripts were detected in each sample. RNA-Seq analysis uncovered 4,185 transcripts that were significantly upregulated at a single developmental stage, including 161 transcription factors. Clustering transcripts according to distinct patterns of transcription revealed coordination in metabolic pathways such as organic acid, stilbene and terpenoid metabolism. From the phenylpropanoid/stilbene biosynthetic pathway at least 46 transcripts were upregulated in ripe berries when compared to veraison and immature berries, and 12 terpene synthases were predominantly detected only in a single sample. Quantitative real-time PCR was used to validate the expression pattern of 12

  10. Alterations in integrin expression modulates invasion of pancreatic cancer cells.

    LENUS (Irish Health Repository)

    Walsh, Naomi

    2009-01-01

    BACKGROUND: Factors mediating the invasion of pancreatic cancer cells through the extracellular matrix (ECM) are not fully understood. METHODS: In this study, sub-populations of the human pancreatic cancer cell line, MiaPaCa-2 were established which displayed differences in invasion, adhesion, anoikis, anchorage-independent growth and integrin expression. RESULTS: Clone #3 displayed higher invasion with less adhesion, while Clone #8 was less invasive with increased adhesion to ECM proteins compared to MiaPaCa-2. Clone #8 was more sensitive to anoikis than Clone #3 and MiaPaCa-2, and displayed low colony-forming efficiency in an anchorage-independent growth assay. Integrins beta 1, alpha 5 and alpha 6 were over-expressed in Clone #8. Using small interfering RNA (siRNA), integrin beta1 knockdown in Clone #8 cells increased invasion through matrigel and fibronectin, increased motility, decreased adhesion and anoikis. Integrin alpha 5 and alpha 6 knockdown also resulted in increased motility, invasion through matrigel and decreased adhesion. CONCLUSION: Our results suggest that altered expression of integrins interacting with different extracellular matrixes may play a significant role in suppressing the aggressive invasive phenotype. Analysis of these clonal populations of MiaPaCa-2 provides a model for investigations into the invasive properties of pancreatic carcinoma.

  11. Beta1 integrin promotes but is not essential for metastasis of ras-myc transformed fibroblasts

    DEFF Research Database (Denmark)

    Brakebusch, C; Wennerberg, K; Krell, H W

    1999-01-01

    To investigate the role of beta1 integrin during tumor metastasis, we established a ras-myc transformed fibroblastoid cell line with a disrupted beta1 integrin gene on both alleles (GERM 11). Stable transfection of this cell line with an expression vector encoding beta1A integrin resulted in beta1A......, and collagen type I. Beta1 integrin, therefore, increases but is not essential for metastasis of ras-myc transformed fibroblasts....

  12. Synaptic Plasticity and NO-cGMP-PKG Signaling Coordinately Regulate ERK-Driven Gene Expression in the Lateral Amygdala and in the Auditory Thalamus Following Pavlovian Fear Conditioning

    Science.gov (United States)

    Ota, Kristie T.; Monsey, Melissa S.; Wu, Melissa S.; Young, Grace J.; Schafe, Glenn E.

    2010-01-01

    We have recently hypothesized that NO-cGMP-PKG signaling in the lateral nucleus of the amygdala (LA) during auditory fear conditioning coordinately regulates ERK-driven transcriptional changes in both auditory thalamic (MGm/PIN) and LA neurons that serve to promote pre- and postsynaptic alterations at thalamo-LA synapses, respectively. In the…

  13. Cloning and characterization of the human integrin β6 gene promoter.

    Directory of Open Access Journals (Sweden)

    Mingyan Xu

    Full Text Available The integrin β6 (ITGB6 gene, which encodes the limiting subunit of the integrin αvβ6 heterodimer, plays an important role in wound healing and carcinogenesis. The mechanism underlying ITGB6 regulation, including the identification of DNA elements and cognate transcription factors responsible for basic transcription of human ITGB6 gene, remains unknown. This report describes the cloning and characterization of the human ITGB6 promoter. Using 5'-RACE (rapid amplification of cDNA ends analysis, the transcriptional initiation site was identified. Promoter deletion analysis identified and functionally validated a TATA box located in the region -24 to -18 base pairs upstream of the ITGB6 promoter. The regulatory elements for transcription of the ITGB6 gene were predominantly located -289 to -150 from the ITGB6 promoter and contained putative binding sites for transcription factors such as STAT3 and C/EBPα. Using chromatin immunoprecipitation assays, this study has demonstrated, for the first time, that transcription factors STAT3 and C/EBPα are involved in the positive regulation of ITGB6 transcription in oral squamous cell carcinoma cells. These findings have important implications for unraveling the mechanism of abnormal ITGB6 activation in tissue remodeling and tumorigenesis.

  14. Receptor protein tyrosine phosphatase alpha activates Src-family kinases and controls integrin-mediated responses in fibroblasts

    DEFF Research Database (Denmark)

    Su, J; Muranjan, M; Sap, J

    1999-01-01

    BACKGROUND: Fyn and c-Src are two of the most widely expressed Src-family kinases. Both are strongly implicated in the control of cytoskeletal organization and in the generation of integrin-dependent signalling responses in fibroblasts. These proteins are representative of a large family of tyros......BACKGROUND: Fyn and c-Src are two of the most widely expressed Src-family kinases. Both are strongly implicated in the control of cytoskeletal organization and in the generation of integrin-dependent signalling responses in fibroblasts. These proteins are representative of a large family...... established, no corresponding phosphatases have been identified that, under physiological conditions, function as positive regulators of c-Src and Fyn in fibroblasts. RESULTS: Receptor protein tyrosine phosphatase alpha (RPTPalpha) was inactivated by homologous recombination. Fibroblasts derived from...

  15. The therapeutic potential of I-domain integrins.

    Science.gov (United States)

    Brennan, Marian; Cox, Dermot

    2014-01-01

    Due to their role in processes central to cancer and autoimmune disease I-domain integrins are an attractive drug target. Both antibodies and small molecule antagonists have been discovered and tested in the clinic. Much of the effort has focused on αLβ2 antagonists. Maybe the most successful was the monoclonal antibody efalizumab, which was approved for the treatment of psoriasis but subsequently withdrawn from the market due to the occurrence of a serious adverse effect (progressive multifocal leukoencephalopathy). Other monoclonal antibodies were tested for the treatment of reperfusion injury, post-myocardial infarction, but failed to progress due to lack of efficacy. New potent small molecule inhibitors of αv integrins are promising reagents for treating fibrotic disease. Small molecule inhibitors targeting collagen-binding integrins have been discovered and future work will focus on identifying molecules selectively targeting each of the collagen receptors and identifying appropriate target diseases for future clinical studies.

  16. Targeting of beta 1 integrins impairs DNA repair for radiosensitization of head and neck cancer cells

    NARCIS (Netherlands)

    Dickreuter, E.; Eke, I.; Krause, M.; Borgmann, K.; van Vugt, M. A.; Cordes, N.

    2016-01-01

    beta 1 Integrin-mediated cell-extracellular matrix interactions allow cancer cell survival and confer therapy resistance. It was shown that inhibition of beta 1 integrins sensitizes cells to radiotherapy. Here, we examined the impact of beta 1 integrin targeting on the repair of radiation-induced

  17. Skin and hair follicle integrity is crucially dependent on beta 1 integrin expression on keratinocytes

    DEFF Research Database (Denmark)

    Brakebusch, C; Grose, R; Quondamatteo, F

    2000-01-01

    beta 1 integrins are ubiquitously expressed receptors that mediate cell-cell and cell-extracellular matrix interactions. To analyze the function of beta1 integrin in skin we generated mice with a keratinocyte-restricted deletion of the beta 1 integrin gene using the cre-loxP system. Mutant mice...

  18. Synthesis and biological evaluation of potent alphavbeta3-integrin receptor antagonists.

    NARCIS (Netherlands)

    Dijkgraaf, I.; Kruijtzer, J.A.; Frielink, C.; Soede, A.C.; Hilbers, H.W.; Oyen, W.J.G.; Corstens, F.H.M.; Liskamp, R.M.; Boerman, O.C.

    2006-01-01

    INTRODUCTION: alpha(v)beta(3) Integrin is expressed in sprouting endothelial cells in growing tumors, whereas it is absent in quiescent blood vessels. In addition, various tumor cell types express alpha(v)beta(3) integrin. alpha(v)beta(3) Integrin, a transmembrane heterodimeric protein, binds to the

  19. Evidence for intercellular communication in mosquito renal tubules: a putative role of gap junctions in coordinating and regulating the rapid diuretic effects of neuropeptides.

    Science.gov (United States)

    Piermarini, Peter M; Calkins, Travis L

    2014-07-01

    Adult female mosquitoes require a blood meal from a vertebrate host to successfully reproduce. During a single blood feeding, a female may ingest more than the equivalent of her own body mass, resulting in an acute stress to osmotic and ionic homeostasis. In response to this stress, the renal (Malpighian) tubules mediate a rapid diuresis that commences as soon as blood is ingested. The diuresis is regulated by neuropeptides (e.g., kinins, calcitonin-like peptide) that act on receptors in the Malpighian tubule epithelium. Interestingly, the expression of these receptors is discontinuous throughout the epithelium, which raises the question as to how Malpighian tubules mount such a rapid and synchronized response to neuropeptide stimulation. Here we propose a hypothesis that gap junctions functionally couple the epithelial cells of Malpighian tubules, resulting in a coordinated physiological response to the binding of neuropeptides. We review recent, relevant literature on the electrophysiology, physiology, and molecular biology of mosquito Malpighian tubules that indicate the presence of gap junctions in the epithelium. We also provide new physiological and immunochemical data that are consistent with the proposed hypothesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Coordinated Proliferation and Differentiation of Human-Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells Depend on Bone Morphogenetic Protein Signaling Regulation by GREMLIN 2.

    Science.gov (United States)

    Bylund, Jeffery B; Trinh, Linh T; Awgulewitsch, Cassandra P; Paik, David T; Jetter, Christopher; Jha, Rajneesh; Zhang, Jianhua; Nolan, Kristof; Xu, Chunhui; Thompson, Thomas B; Kamp, Timothy J; Hatzopoulos, Antonis K

    2017-05-01

    Heart development depends on coordinated proliferation and differentiation of cardiac progenitor cells (CPCs), but how the two processes are synchronized is not well understood. Here, we show that the secreted Bone Morphogenetic Protein (BMP) antagonist GREMLIN 2 (GREM2) is induced in CPCs shortly after cardiac mesoderm specification during differentiation of human pluripotent stem cells. GREM2 expression follows cardiac lineage differentiation independently of the differentiation method used, or the origin of the pluripotent stem cells, suggesting that GREM2 is linked to cardiogenesis. Addition of GREM2 protein strongly increases cardiomyocyte output compared to established procardiogenic differentiation methods. Our data show that inhibition of canonical BMP signaling by GREM2 is necessary to promote proliferation of CPCs. However, canonical BMP signaling inhibition alone is not sufficient to induce cardiac differentiation, which depends on subsequent JNK pathway activation specifically by GREM2. These findings may have broader implications in the design of approaches to orchestrate growth and differentiation of pluripotent stem cell-derived lineages that depend on precise regulation of BMP signaling.

  1. Stress-Induced Cytokinin Synthesis Increases Drought Tolerance through the Coordinated Regulation of Carbon and Nitrogen Assimilation in Rice1[C][W][OPEN

    Science.gov (United States)

    Reguera, Maria; Peleg, Zvi; Abdel-Tawab, Yasser M.; Tumimbang, Ellen B.; Delatorre, Carla A.; Blumwald, Eduardo

    2013-01-01

    The effects of water deficit on carbon and nitrogen metabolism were investigated in flag leaves of wild-type and transgenic rice (Oryza sativa japonica ‘Kitaake’) plants expressing ISOPENTENYLTRANSFERASE (IPT; encoding the enzyme that mediates the rate-limiting step in cytokinin synthesis) under the control of PSARK, a maturation- and stress-induced promoter. While the wild-type plants displayed inhibition of photosynthesis and nitrogen assimilation during water stress, neither carbon nor nitrogen assimilation was affected by stress in the transgenic PSARK::IPT plants. In the transgenic plants, photosynthesis was maintained at control levels during stress and the flag leaf showed increased sucrose (Suc) phosphate synthase activity and reduced Suc synthase and invertase activities, leading to increased Suc contents. The sustained carbon assimilation in the transgenic PSARK::IPT plants was well correlated with enhanced nitrate content, higher nitrate reductase activity, and sustained ammonium contents, indicating that the stress-induced cytokinin synthesis in the transgenic plants played a role in maintaining nitrate acquisition. Protein contents decreased and free amino acids increased in wild-type plants during stress, while protein content was preserved in the transgenic plants. Our results indicate that the stress-induced cytokinin synthesis in the transgenic plants promoted sink strengthening through a cytokinin-dependent coordinated regulation of carbon and nitrogen metabolism that facilitates an enhanced tolerance of the transgenic plants to water deficit. PMID:24101772

  2. p120-catenin differentially regulates cell migration by Rho-dependent intracellular and secreted signals

    DEFF Research Database (Denmark)

    Epifano, Carolina; Megias, Diego; Perez-Moreno, Mirna

    2014-01-01

    The adherens junction protein p120-catenin is implicated in the regulation of cadherin stability, cell migration and inflammatory responses in mammalian epithelial tissues. How these events are coordinated to promote wound repair is not understood. We show that p120 catenin regulates the intrinsic...... migratory properties of primary mouse keratinocytes, but also influences the migratory behavior of neighboring cells by secreted signals. These events are rooted in the ability of p120-catenin to regulate RhoA GTPase activity, which leads to a two-tiered control of cell migration. One restrains cell...... motility via an increase in actin stress fibers, reduction in integrin turnover and an increase in the robustness of focal adhesions. The other is coupled to the secretion of inflammatory cytokines including interleukin-24, which causally enhances randomized cell movements. Taken together, our results...

  3. Integrin-Associated CD151 Drives ErbB2-Evoked Mammary Tumor Onset and Metastasis

    Directory of Open Access Journals (Sweden)

    Xinyu Deng

    2012-08-01

    Full Text Available ErbB2+ human breast cancer is a major clinical problem. Prior results have suggested that tetraspanin CD151 might contribute to ErbB2-driven breast cancer growth, survival, and metastasis. In other cancer types, CD151 sometimes supports tumor growth and metastasis. However, a definitive test of CD151 effects on de novo breast cancer initiation, growth, and metastasis has not previously been done. We used CD151 gene-deleted mice expressing the MMTV-ErbB2 transgene to show that CD151 strongly supports ErbB2+ mammary tumor initiation and metastasis. Delayed tumor onset (by 70–100 days in the absence of CD151 was accompanied by reduced survival of mammary epithelial cells and impaired activation of FAK- and MAPK-dependent pathways. Both primary tumors and metastatic nodules showed smooth, regular borders, consistent with a less invasive phenotype. Furthermore, consistent with impaired oncogenesis and decreased metastasis, CD151-targeted MCF-10A/ErbB2 cells showed substantial decreases in three-dimensional colony formation, EGF-stimulated tumor cell motility, invasion, and transendothelial migration. These CD151-dependent functions were largely mediated through α6β4 integrin. Moreover, CD151 ablation substantially prevented PKC- and EGFR/ERK-dependent α6β4 integrin phosphorylation, consistent with retention of epithelial cell polarity and intermediate filament cytoskeletal connections, which helps to explain diminished metastasis. Finally, clinical data analyses revealed a strong correlation between CD151 and ErbB2 expression and metastasis-free survival of breast cancer patients. In conclusion, we provide strong evidence that CD151 collaborates with LB integrins (particularly α6β4 and ErbB2 (and EGFR receptors to regulate multiple signaling pathways, thereby driving mammary tumor onset, survival, and metastasis. Consequently, CD151 is a useful therapeutic target in malignant ErbB2+ breast cancer.

  4. Kaposi's Sarcoma-Associated Herpesvirus K8 Is an RNA Binding Protein That Regulates Viral DNA Replication in Coordination with a Noncoding RNA.

    Science.gov (United States)

    Liu, Dongcheng; Wang, Yan; Yuan, Yan

    2018-01-10

    KSHV lytic replication and constant primary infection of fresh cells are crucial for viral tumorigenicity. Virus-encoded b-Zip family protein K8 plays an important role in viral DNA replication in both viral reactivation and de novo infection. The mechanism underlying the functional role of K8 in the viral life cycle is elusive. Here we report that K8 is a RNA binding protein, which also associates with many proteins including other RNA binding proteins. Many K8-involved protein-protein interactions are mediated by RNA. Using a c ross l inking and i mmuno p recipitation (CLIP) procedure combined with high-throughput sequencing, RNAs that are associated with K8 in BCBL-1 cells were identified, that include both viral (PAN, T1.4, T0.7 and etc.) and cellular (MALAT-1, MRP, 7SK and etc.) RNAs. An RNA-binding motif in K8 was defined, and mutation of the motif abolished the ability of K8 binding to many noncoding RNAs as well as viral DNA replication during de novo infection, suggesting that the K8 functions in viral replication are carried out through RNA association. The function of K8 and associated T1.4 RNA was investigated in details and results showed that T1.4 mediates the binding of K8 with ori-Lyt DNA. T1.4-K8 complex physically bound to KSHV ori-Lyt DNA and recruited other proteins and cofactors to assemble replication complex. Depletion of T1.4 abolished the DNA replication in primary infection. These findings provide mechanistic insights into the role of K8 in coordination with T1.4 RNA in regulating KSHV DNA replication during de novo infection. Importance Genome wide analyses of the mammalian transcriptome revealed that a large proportion of sequence previously annotated as noncoding region are actually transcribed and give rise to stable RNAs. Emergence of a large number of noncoding RNAs suggests that functional RNA-protein complexes exampled by ribosome or spliceosome are not ancient relics of the last riboorganism but would be well adapted for

  5. Beta-1 integrin-mediated adhesion may be initiated by multiple incomplete bonds, thus accounting for the functional importance of receptor clustering.

    Science.gov (United States)

    Vitte, Joana; Benoliel, Anne-Marie; Eymeric, Philippe; Bongrand, Pierre; Pierres, Anne

    2004-06-01

    The regulation of cell integrin receptors involves modulation of membrane expression, shift between different affinity states, and topographical redistribution on the cell membrane. Here we attempted to assess quantitatively the functional importance of receptor clustering. We studied beta-1 integrin-mediated attachment of THP-1 cells to fibronectin-coated surfaces under low shear flow. Cells displayed multiple binding events with a half-life of the order of 1 s. The duration of binding events after the first second after arrest was quantitatively accounted for by a model assuming the existence of a short-time intermediate binding state with 3.6 s(-1) dissociation rate and 1.3 s(-1) transition frequency toward a more stable state. Cell binding to surfaces coated with lower fibronectin densities was concluded to be mediated by single molecular interactions, whereas multiple bonds were formed Cell treatment with microfilament inhibitors or a neutral antiintegrin antibody decreased bond number without changing aforementioned kinetic parameters whereas a function enhancing antibody increased the rate of bond formation and/or the lifetime of intermediate state. Receptor aggregation was induced by treating cells with neutral antiintegrin antibody and antiimmunoglobulin antibodies. A semiquantitative confocal microscopy study suggested that this treatment increased between 40% and 100% the average number of integrin receptors located in a volume of approximately 0.045 microm(3) surrounding each integrin. This aggregation induced up to 2.7-fold increase of the average number of bonds. Flow cytometric analysis of fluorescent ligand binding showed that THP-1 cells displayed low-affinity beta-1 integrins with a dissociation constant in the micromolar range. It is concluded that the initial step of cell adhesion was mediated by multiple incomplete bonds rather than a single equilibrium-state ligand receptor association. This interpretation accounts for the functional

  6. Age-specific function of α5β1 integrin in microglial migration during early colonization of the developing mouse cortex.

    Science.gov (United States)

    Smolders, Sophie Marie-Thérèse; Swinnen, Nina; Kessels, Sofie; Arnauts, Kaline; Smolders, Silke; Le Bras, Barbara; Rigo, Jean-Michel; Legendre, Pascal; Brône, Bert

    2017-07-01

    Microglia, the immune cells of the central nervous system, take part in brain development and homeostasis. They derive from primitive myeloid progenitors that originate in the yolk sac and colonize the brain mainly through intensive migration. During development, microglial migration speed declines which suggests that their interaction with the microenvironment changes. However, the matrix-cell interactions allowing dispersion within the parenchyma are unknown. Therefore, we aimed to better characterize the migration behavior and to assess the role of matrix-integrin interactions during microglial migration in the embryonic brain ex vivo. We focused on microglia-fibronectin interactions mediated through the fibronectin receptor α5β1 integrin because in vitro work indirectly suggested a role for this ligand-receptor pair. Using 2-photon time-lapse microscopy on acute ex vivo embryonic brain slices, we found that migration occurs in a saltatory pattern and is developmentally regulated. Most importantly, there is an age-specific function of the α5β1 integrin during microglial cortex colonization. At embryonic day (E) 13.5, α5β1 facilitates migration while from E15.5, it inhibits migration. These results indicate a developmentally regulated function of α5β1 integrin in microglial migration during colonization of the embryonic brain. © 2017 Wiley Periodicals, Inc.

  7. Endotoxin/lipopolysaccharide activates NF-kappa B and enhances tumor cell adhesion and invasion through a beta 1 integrin-dependent mechanism.

    LENUS (Irish Health Repository)

    Wang, Jiang Huai

    2012-02-03

    Beta(1) integrins play a crucial role in supporting tumor cell attachment to and invasion into the extracellular matrix. Endotoxin\\/LPS introduced by surgery has been shown to enhance tumor metastasis in a murine model. Here we show the direct effect of LPS on tumor cell adhesion and invasion in extracellular matrix proteins through a beta(1) integrin-dependent pathway. The human colorectal tumor cell lines SW480 and SW620 constitutively expressed high levels of the beta(1) subunit, whereas various low levels of alpha(1), alpha(2), alpha(4), and alpha(6) expression were detected. SW480 and SW620 did not express membrane-bound CD14; however, LPS in the presence of soluble CD14 (sCD14) significantly up-regulated beta(1) integrin expression; enhanced tumor cell attachment to fibronectin, collagen I, and laminin; and strongly promoted tumor cell invasion through the Matrigel. Anti-beta(1) blocking mAbs (4B4 and 6S6) abrogated LPS- plus sCD14-induced tumor cell adhesion and invasion. Furthermore, LPS, when combined with sCD14, resulted in NF-kappaB activation in both SW480 and SW620 cells. Inhibition of the NF-kappaB pathway significantly attenuated LPS-induced up-regulation of beta(1) integrin expression and prevented tumor cell adhesion and invasion. These results provide direct evidence that although SW480 and SW620 cells do not express membrane-bound CD14, LPS in the presence of sCD14 can activate NF-kappaB, up-regulate beta(1) integrin expression, and subsequently promote tumor cell adhesion and invasion. Moreover, LPS-induced tumor cell attachment to and invasion through extracellular matrix proteins is beta(1) subunit-dependent.

  8. The roles of integrins and extracellular matrix proteins in the insulin-like growth factor I-stimulated chemotaxis of human breast cancer cells.

    Science.gov (United States)

    Doerr, M E; Jones, J I

    1996-02-02

    The effects of insulin-like growth factor I (IGF-I) on the migration of two human breast cancer cell lines, MCF-7 and MDA-231, were examined using a modified Boyden chamber. 10 ng/ml was the optimal IGF-I concentration for stimulation of migration. The majority of IGF-I-stimulated migration in both cell types was due to chemotaxis. MCF-7 cells failed to migrate on membranes coated with gelatin or fibronectin and migrated only in small numbers on laminin. In contrast, when vitronectin- or type IV collagen-coated membranes were used, the MCF-7 cells migrated in large numbers specifically in response to IGF-I but not to 10% fetal calf serum, epidermal growth factor, fibroblast growth factor, or platelet derived growth factor-BB. An IGF-I receptor-blocking antibody inhibited IGF-I-stimulated migration in both cell types. In addition, a blocking antibody to the alpha v beta 5 integrin (a vitronectin receptor) inhibited migration of MCF-7 cells in response to IGF-I through vitronectin but not through type IV collagen. Similarly, blocking antibodies specific for alpha 2 and beta 1 integrins significantly inhibited migration of both cell types through type IV collagen-coated membranes but not through vitronectin-coated membranes. We conclude that: 1) IGF-I stimulates migration of these two cell types through the IGF-I receptor; 2) interaction of vitronectin with the alpha v beta 5 integrin or collagen with the alpha 2 beta 1 integrin is necessary for the complete IGF-I response in MCF-7 cells, and 3) because migration represents an in vitro model for metastatic spread, integrins, extracellular matrix proteins, and IGF-I may play coordinated roles in the metastasis of breast cancer in vivo.

  9. Direction of actin flow dictates integrin LFA-1 orientation during leukocyte migration.

    Science.gov (United States)

    Nordenfelt, Pontus; Moore, Travis I; Mehta, Shalin B; Kalappurakkal, Joseph Mathew; Swaminathan, Vinay; Koga, Nobuyasu; Lambert, Talley J; Baker, David; Waters, Jennifer C; Oldenbourg, Rudolf; Tani, Tomomi; Mayor, Satyajit; Waterman, Clare M; Springer, Timothy A

    2017-12-11

    Integrin αβ heterodimer cell surface receptors mediate adhesive interactions that provide traction for cell migration. Here, we test whether the integrin, when engaged to an extracellular ligand and the cytoskeleton, adopts a specific orientation dictated by the direction of actin flow on the surface of migrating cells. We insert GFP into the rigid, ligand-binding head of the integrin, model with Rosetta the orientation of GFP and its transition dipole relative to the integrin head, and measure orientation with fluorescence polarization microscopy. Cytoskeleton and ligand-bound integrins orient in the same direction as retrograde actin flow with their cytoskeleton-binding β-subunits tilted by applied force. The measurements demonstrate that intracellular forces can orient cell surface integrins and support a molecular model of integrin activation by cytoskeletal force. Our results place atomic, Å-scale structures of cell surface receptors in the context of functional and cellular, μm-scale measurements.

  10. Integrin α5β1, the Fibronectin Receptor, as a Pertinent Therapeutic Target in Solid Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, Florence; Ray, Anne Marie; Dontenwill, Monique, E-mail: monique.dontenwill@unistra.fr [UMR 7213 CNRS, Laboratoire de Biophotonique et Pharmacologie, Tumoral signaling and therapeutic targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch (France)

    2013-01-15

    Integrins are transmembrane heterodimeric proteins sensing the cell microenvironment and modulating numerous signalling pathways. Changes in integrin expression between normal and tumoral cells support involvement of specific integrins in tumor progression and aggressiveness. This review highlights the current knowledge about α5β1 integrin, also called the fibronectin receptor, in solid tumors. We summarize data showing that α5β1 integrin is a pertinent therapeutic target expressed by tumoral neovessels and tumoral cells. Although mainly evaluated in preclinical models, α5β1 integrin merits interest in particular in colon, breast, ovarian, lung and brain tumors where its overexpression is associated with a poor prognosis for patients. Specific α5β1 integrin antagonists will be listed that may represent new potential therapeutic agents to fight defined subpopulations of particularly aggressive tumors.

  11. Development of maternal seed tissue in barley is mediated by regulated cell expansion and cell disintegration and coordinated with endosperm growth.

    Science.gov (United States)

    Radchuk, Volodymyr; Weier, Diana; Radchuk, Ruslana; Weschke, Winfriede; Weber, Hans

    2011-01-01

    After fertilization, filial grain organs are surrounded by the maternal nucellus embedded within the integuments and pericarp. Rapid early endosperm growth must be coordinated with maternal tissue development. Parameters of maternal tissue growth and development were analysed during early endosperm formation. In the pericarp, cell proliferation is accomplished around the time of fertilization, followed by cell elongation predominantly in longitudinal directions. The rapid cell expansion coincides with endosperm cellularization. Distribution of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling)-positive nuclei reveals distinct patterns starting in the nucellus at anthesis and followed later by the inner cell rows of the pericarp, then spreading to the whole pericarp. The pattern suggests timely and spatially regulated programmed cell death (PCD) processes in maternal seed tissues. When the endosperm is coenocytic, PCD events are only observed within the nucellus. Thereby, remobilization of nucellar storage compounds by PCD could nourish the early developing endosperm when functional interconnections are absent between maternal and filial seed organs. Specific proteases promote PCD events. Characterization of the barley vacuolar processing enzyme (VPE) gene family identified seven gene members specifically expressed in the developing grain. HvVPE2a (known as nucellain) together with closely similar HvVPE2b and HvVPE2d might be involved in nucellar PCD. HvVPE4 is strongly cell specific for pericarp parenchyma. Correlative evidence suggests that HvVPE4 plays a role in PCD events in the pericarp. Possible functions of PCD in the maternal tissues imply a potential nutritive role or the relief of a physical restraint for endosperm growth. PCD could also activate post-phloem transport functions.

  12. Microbial pathogenesis in cystic fibrosis: co-ordinate regulation of heat-shock response and conversion to mucoidy in Pseudomonas aeruginosa.

    Science.gov (United States)

    Schurr, M J; Deretic, V

    1997-04-01

    Conversion of Pseudomonas aeruginosa to the mucoid phenotype plays a major role in the pathogenesis of respiratory infections in cystic fibrosis (CF). One mechanism responsible for mucoidy is based on mutations that inactivate the anti-sigma factor, MucA, which normally inhibits the alternative sigma factor, AIgU. The loss of MucA allows AIgU to freely direct transcription of the genes responsible for the production of the exopolysaccharide alginate resulting in mucoid colony morphology. In Escherichia coli, a close homologue of AIgU, sigma(E), directs transcription of several genes under conditions of extreme heat shock. Here we examined whether AIgU, besides its role in controlling alginate production, affects the heat-shock response in P. aeruginosa. The P. aeruginosa rpoH gene encoding a homologue of the major heat-shock sigma factor, sigma32, was found to be transcribed by AIgU containing RNA polymerase from one of its promoters (P3) identified in this study. Transcription of rpoH from P3 was elevated upon exposure to extreme heat shock in an aIgU-dependent manner. Importantly, the AIgU-dependent promoter of rpoH was found to be activated in mucoid mucA mutants. In keeping with this observation, introduction of a wild-type mucA gene abrogated AIgU-dependent rpoH transcription in mucoid P. aeruginosa laboratory isolates and CF isolates. These results suggest that conversion to mucoidy and the heat-shock response are co-ordinately regulated in P. aeruginosa. The simultaneous activation of both systems in mucA mutants, selected in the lungs of CF patients, may have significance for the inflammatory processes characteristic of the establishment of chronic infection and ensuing clinical deterioration in CF.

  13. (ALPHA)2(BETA)1 Integrin-Induced Breast Cancer Differentiation

    National Research Council Canada - National Science Library

    Kamata, Tetsuji

    1998-01-01

    .... The integrin alpha 2 beta 1 functions as a collagen and/or laminin receptor. Previous reports suggest that alpha 2 beta 1 plays a critical role in normal mammary cell differentiation as well as in the pathogenesis of breast cancer...

  14. Function of the alpha 6 Integrins in Breast Carcinoma

    Science.gov (United States)

    2001-10-01

    not in the lungs of mice injected with the 34-ACYT transfectants (B) with the exception of two mice (Table 2). However, perivascular, granuloma -like...Rac and cdc42 are re- ment of specific integrins in adhesion-dependent RhoA quired to maintain apical -basal polarity in epithelia (Jou activation or

  15. Integrin and Defensin Modulate the Mechanical Properties of Adenovirus

    NARCIS (Netherlands)

    Snijder, Joost; Reddy, Vijay S.; May, Eric R.; Roos, Wouter H.; Nemerow, Glen R.; Wuite, Gijs J. L.

    The propensity for capsid disassembly and uncoating of human adenovirus is modulated by interactions with host cell molecules like integrins and alpha defensins. Here, we use atomic force microscopy (AFM) nanoindentation to elucidate, at the single-particle level, the mechanism by which binding of

  16. Integrin alphavbeta3 is expressed in selected microvessels after focal cerebral ischemia.

    Science.gov (United States)

    Okada, Y.; Copeland, B. R.; Hamann, G. F.; Koziol, J. A.; Cheresh, D. A.; del Zoppo, G. J.

    1996-01-01

    The endothelial and smooth muscle integrin alphaVbeta3, a receptor for vitronectin and fibrinogen, participates in angiogenesis associated with wound healing and tumorigenicity. The microvascular expression of alphavbeta3 and fibrin during experimental middle cerebral artery occlusion and reperfusion in a nonhuman primate model was examined by computer-assisted video imaging microscopy. No microvascular expression of alphavbeta3 was seen in the control subjects (n = 3) or the non-ischemic basal ganglia of subjects undergoing 2-hour MCA:O (middle cerebral artery occlusion) or 3-hour occlusion with 1-hour (n = 3), 4-hour (n = 3), and 24-hour (n = 3) reperfusion. In the ischemic territory, alphavbeta3 appeared initially at 2 hours of middle cerebral artery occlusion. Up-regulation of alphavbeta3 was confined to the media of 30.0- to 50.0-micron-diameter arterioles in the ischemic core and correlated significantly with fibrin deposition in those vessels (P < 0.0005). Integrin alphavbeta3 and its ligand fibrinogen appear in a subpopulation of microvessels after focal cerebral ischemia. Images Figure 3 PMID:8686760

  17. Expression of the Alpha8 Integrin Chain Facilitates Phagocytosis by Renal Mesangial Cells

    Directory of Open Access Journals (Sweden)

    Ines Marek

    2018-03-01

    Full Text Available Background/Aims: Healing of mesangioproliferative glomerulonephritis involves degradation of excess extracellular matrix, resolution of hypercellularity by apoptosis and phagocytosis of apoptotic cells. Integrin receptors participate in the regulation of phagocytosis. In mice deficient for alpha8 integrin (Itga8-/- healing of glomerulonephritis is delayed. As Itga8 is abundant in mesangial cells (MC which are non-professional phagocytes, we hypothesized that Itga8 facilitates phagocytosis of apoptotic cells and matrix components by MC. Methods: MC were isolated from wild type (WT and Itga8-/- mice. Latex beads were coated with matrix components. Apoptosis was induced by cisplatin in macrophages and in DiI-stained MC. After coincubation of latex beads or apoptotic cells with MC, the phagocytosis rate was detected in WT and Itga8-/- MC via fluorescence microscopy and FACS analysis. Results: Itga8-/- MC showed reduced phagocytosis of matrix-coated beads and apoptotic cells compared to WT MC. Reduction of stress fibers was observed in Itga8-/- compared to WT MC. Inhibition of cytoskeletal reorganization by inhibition of Rac1 or ROCK during phagocytosis significantly decreased the rate of phagocytosis by WT MC but not by Itga8-/- MC. Conclusion: The expression of Itga8 facilitates phagocytosis in MC, likely mediated by Itga8-cytoskeleton interactions. An impairment of MC phagocytosis might thus contribute to a delayed glomerular regeneration in Itga8-/- mice.

  18. Differential gene expression by integrin β7+ and β7- memory T helper cells

    Directory of Open Access Journals (Sweden)

    Yang Yee

    2004-07-01

    Full Text Available Abstract Background The cell adhesion molecule integrin α4β7 helps direct the migration of blood lymphocytes to the intestine and associated lymphoid tissues. We hypothesized that β7+ and β7- blood memory T helper cells differ in their expression of genes that play a role in the adhesion or migration of T cells. Results RNA was prepared from β7+ and β7- CD4+ CD45RA- blood T cells from nine normal human subjects and analyzed using oligonucleotide microarrays. Of 21357 genes represented on the arrays, 16 were more highly expressed in β7+ cells and 18 were more highly expressed in β7- cells (≥1.5 fold difference and adjusted P + memory/effector T cells than on β7- cells. Conclusions Memory/effector T cells that express integrin β7 have a distinct pattern of expression of a set of gene transcripts. Several of these molecules can affect cell adhesion or chemotaxis and are therefore likely to modulate the complex multistep process that regulates trafficking of CD4+ memory T cell subsets with different homing behaviors.

  19. SNARE-mediated trafficking of α5β1 integrin is required for spreading in CHO cells

    International Nuclear Information System (INIS)

    Skalski, Michael; Coppolino, Marc G.

    2005-01-01

    In this study, the role of SNARE-mediated membrane traffic in regulating integrin localization was examined and the requirement for SNARE function in cellular spreading was quantitatively assessed. Membrane traffic was inhibited with the VAMP-specific catalytic light chain from tetanus toxin (TeTx-LC), a dominant-negative form (E329Q) of N-ethylmaleimide-sensitive fusion protein (NSF), and brefeldin A (BfA). Inhibition of membrane traffic with either E329Q-NSF or TeTx-LC, but not BfA, significantly inhibited spreading of CHO cells on fibronectin. Spreading was rescued in TeTx-LC-expressing cells by co-transfection with a TeTx-resistant cellubrevin/VAMP3. E329Q-NSF, a general inhibitor of SNARE function, was a more potent inhibitor of cell spreading than TeTx-LC, suggesting that tetanus toxin-insensitive SNAREs contribute to adhesion. It was found that E329Q-NSF prevented trafficking of α 5 β 1 integrins from a central Rab11-containing compartment to sites of protrusion during cell adhesion, while TeTx-LC delayed this trafficking. These results are consistent with a model of cellular adhesion that implicates SNARE function as an important component of integrin trafficking during the process of cell spreading

  20. Genetic analysis of beta1 integrin function: confirmed, new and revised roles for a crucial family of cell adhesion molecules

    DEFF Research Database (Denmark)

    Brakebusch, C; Hirsch, E; Potocnik, A

    1997-01-01

    . Of more than 20 known integrins, 10 contain the nearly ubiquitously expressed beta1 integrin subunit. Disruption of the beta1 integrin gene by homologous recombination allows us to assess the supposed functions of beta1 containing integrins in vivo in a new way. This review will present and discuss recent...... and new functions found, significantly changing the previous view of beta1 integrin function in vivo....

  1. 9-cis-retinoic Acid and troglitazone impacts cellular adhesion, proliferation, and integrin expression in K562 cells.

    Science.gov (United States)

    Hanson, Amanda M; Gambill, Jessica; Phomakay, Venusa; Staten, C Tyler; Kelley, Melissa D

    2014-01-01

    Retinoids are established pleiotropic regulators of both adaptive and innate immune responses. Recently, troglitazone, a PPAR gamma agonist, has been demonstrated to have anti-inflammatory effects. Separately, retinoids and troglitazone are implicated in immune related processes; however, their combinatory role in cellular adhesion and proliferation has not been well established. In this study, the effect of 9-cis-retinoic acid (9-cis-RA) and troglitazone on K562 cellular adhesion and proliferation was investigated. Troglitazone exposure decreased K562 cellular adhesion to RGD containing extracellular matrix proteins fibronectin, FN-120, and vitronectin in a concentration and time-dependent manner. In the presence of troglitazone, 9-cis-retinoic acid restores cellular adhesion to levels comparable to vehicle treatment alone on fibronectin, FN-120, and vitronectin substrates within 72 hours. Due to the prominent role of integrins in attachment to extracellular matrix proteins, we evaluated the level of integrin α5 subunit expression. Troglitazone treatment results in decrease in α5 subunit expression on the cell surface. In the presence of both agonists, cell surface α5 subunit expression was restored to levels comparable to vehicle treatment alone. Additionally, troglitazone and 9-cis-RA mediated cell adhesion was decreased in the presence of a function blocking integrin alpha 5 inhibitor. Further, through retinoid metabolic profiling and HPLC analysis, our study demonstrates that troglitazone augments retinoid availability in K562 cells. Finally, we demonstrate that troglitazone and 9-cis-retinoic acid synergistically dampen cellular proliferation in K562 cells. Our study is the first to report that the combination of troglitazone and 9-cis-retinoic acid restores cellular adhesion, alters retinoid availability, impacts integrin expression, and dampens cellular proliferation in K562 cells.

  2. Salt bridge interactions within the β2integrin α7helix mediate force-induced binding and shear resistance ability.

    Science.gov (United States)

    Zhang, Xiao; Li, Linda; Li, Ning; Shu, Xinyu; Zhou, Lüwen; Lü, Shouqin; Chen, Shenbao; Mao, Debin; Long, Mian

    2018-01-01

    The functional performance of the αI domain α 7 helix in β 2 integrin activation depends on the allostery of the α 7 helix, which axially slides down; therefore, it is critical to elucidate what factors regulate the allostery. In this study, we determined that there were two conservative salt bridge interaction pairs that constrain both the upper and bottom ends of the α 7 helix. Molecular dynamics (MD) simulations for three β 2 integrin members, lymphocyte function-associated antigen-1 (LFA-1; α L β 2 ), macrophage-1 antigen (Mac-1; α M β 2 ) and α x β 2 , indicated that the magnitude of the salt bridge interaction is related to the stability of the αI domain and the strength of the corresponding force-induced allostery. The disruption of the salt bridge interaction, especially with double mutations in both salt bridges, significantly reduced the force-induced allostery time for all three members. The effects of salt bridge interactions of the αI domain α 7 helix on β 2 integrin conformational stability and allostery were experimentally validated using Mac-1 constructs. The results demonstrated that salt bridge mutations did not alter the conformational state of Mac-1, but they did increase the force-induced ligand binding and shear resistance ability, which was consistent with MD simulations. This study offers new insight into the importance of salt bridge interaction constraints of the αI domain α 7 helix and external force for β 2 integrin function. © 2017 Federation of European Biochemical Societies.

  3. N-cadherin and integrin blockade inhibit arteriolar myogenic reactivity but not pressure-induced increases in intracellular Ca2+

    Directory of Open Access Journals (Sweden)

    Teresa Y. Jackson

    2010-12-01

    Full Text Available The vascular myogenic response is characterized by arterial constriction in response to an increase in intraluminal pressure and dilatation to a decrease in pressure. This mechanism is important for the regulation of blood flow, capillary pressure and arterial pressure. The identity of the mechanosensory mechanism(s for this response is incompletely understood but has been shown to include the integrins as cell-extracellular matrix receptors. The possibility that a cell-cell adhesion receptor is involved has not been studied. Thus, we tested the hypothesis that N-cadherin, a cell-cell adhesion molecule in vascular smooth muscle cells (VSMCs, was important for myogenic responsiveness. The purpose of this study was to investigate:
    1. whether cadherin inhibition blocks myogenic responses to increases in intraluminal pressure and 2. the effect of the cadherin or integrin blockade on pressure-induced changes in [Ca2+]i. Cadherin blockade was tested in isolated rat cremaster arterioles on myogenic responses to acute pressure steps from 60 – 100 mmHg and changes in VSMC Ca2+ were measured using fura-2. In the presence of a synthetic cadherin inhibitory peptide or a function blocking antibody, myogenic responses were inhibited. In contrast, during N-cadherin blockade, pressure-induced changes in [Ca2+]i were not altered. Similarly, vessels treated with function-blocking β1- or β3-integrin antibodies maintained pressure-induced [Ca2+]i responses despite inhibition of myogenic constriction. Collectively, these data suggest that both cadherins and integrins play a fundamental role in mediating myogenic constriction but argue against their direct involvement in mediating pressure-induced [Ca2+]i increases.

  4. Lymphocyte integrin expression differences between SIRS and sepsis patients.

    Science.gov (United States)

    Heffernan, D S; Monaghan, S F; Ayala, Alfred

    2017-11-01

    Systemic Inflammatory Response Syndrome (SIRS) and sepsis remain leading causes of death. Despite many similarities, the two entities are very distinct clinically and immunologically. T-Lymphocytes play a key pivotal role in the pathogenesis and ultimately outcome following both SIRS and sepsis. Integrins are essential in the trafficking and migration of lymphocytes. They also serve vital roles in efficient wound healing and clearance of infections. Here, we investigate whether integrin expression, specifically β1 (CD29) and β2 (CD18), are disrupted in SIRS and sepsis, and assess differences in integrin expression between these two critically ill clinical categories. T-Lymphocytes were isolated from whole blood collected from ICU patients exhibiting SIRS or sepsis. Samples were analyzed for CD18 (β2) and CD29 (β1) on CD3 + T cells through flow cytometry. Septic patients were stratified into either exclusively abdominal or non-abdominal sources of sepsis. CD18 was almost ubiquitously expressed on CD3 + T cells irrespective of clinical condition. However, CD29 (β1 integrin) was lowest in SIRS patients (20.4% of CD3 + T cells) when compared with either septic patients (35.5%) or healthy volunteers (54.1%). Furthermore, there was evidence of compartmentalization in septic patients, where abdominal sources had a greater percentage of CD3 + CD29 + T cells (41.7%) when compared with those with non-abdominal sources (29.5%). Distinct differences in T-cell integrin expression exists between patients in SIRS versus sepsis, as well as relative to the source of sepsis. Further work is needed to understand cause and effect relative to the progression from SIRS into sepsis.

  5. A Yin and Yang in Epithelial Immunology: The Roles of the αE(CD103)β7Integrin in T Cells.

    Science.gov (United States)

    Hardenberg, Jan-Hendrik B; Braun, Andrea; Schön, Michael P

    2018-01-01

    The proper function(s) of cell-surface receptors is crucial for the regulation of adaptive immune responses. One such receptor is the α E (CD103)β 7 integrin, whose history in science is closely linked with the evolution of our knowledge of immune regulation. Initially described as a marker of intraepithelial T-lymphocytes, this leukocyte integrin is now seen as a dynamically regulated receptor involved in the functional differentiation of some cytotoxic T cells as well as regulatory T cells, thus presumably contributing to the fine-tuning of immune reactions in epithelial compartments. In this brief overview, we delineate our current view on α E (CD103)β 7 in T-cell-mediated immune responses. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Coordination cycles

    Czech Academy of Sciences Publication Activity Database

    Steiner, Jakub

    2008-01-01

    Roč. 63, č. 1 (2008), s. 308-327 ISSN 0899-8256 Institutional research plan: CEZ:AV0Z70850503 Keywords : global games * coordination * crises * cycles and fluctuations Subject RIV: AH - Economics Impact factor: 1.333, year: 2008

  7. Coordination cycles

    Czech Academy of Sciences Publication Activity Database

    Steiner, Jakub

    -, č. 274 (2005), s. 1-26 ISSN 1211-3298 Institutional research plan: CEZ:AV0Z70850503 Keywords : coordination * crises * cycles and fluctuations Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp274.pdf

  8. Alternagin-C, a disintegrin-like protein from the venom of Bothrops alternatus, modulates a2ß1 integrin-mediated cell adhesion, migration and proliferation

    Directory of Open Access Journals (Sweden)

    Selistre-de-Araujo H.S.

    2005-01-01

    Full Text Available The alpha2ß1 integrin is a major collagen receptor that plays an essential role in the adhesion of normal and tumor cells to the extracellular matrix. Alternagin-C (ALT-C, a disintegrin-like protein purified from the venom of the Brazilian snake Bothrops alternatus, competitively interacts with the alpha2ß1 integrin, thereby inhibiting collagen binding. When immobilized in plate wells, ALT-C supports the adhesion of fibroblasts as well as of human vein endothelial cells (HUVEC and does not detach cells previously bound to collagen I. ALT-C is a strong inducer of HUVEC proliferation in vitro. Gene expression analysis was done using an Affimetrix HU-95A probe array with probe sets of ~10,000 human genes. In human fibroblasts growing on collagen-coated plates, ALT-C up-regulates the expression of several growth factors including vascular endothelial growth factor, as well as some cell cycle control genes. Up-regulation of the vascular endothelial growth factor gene and other growth factors could explain the positive effect on HUVEC proliferation. ALT-C also strongly activates protein kinase B phosphorylation, a signaling event involved in endothelial cell survival and angiogenesis. In human neutrophils, ALT-C has a potent chemotactic effect modulated by the intracellular signaling cascade characteristic of integrin-activated pathways. Thus, ALT-C acts as a survival factor, promoting adhesion, migration and endothelial cell proliferation after binding to alpha2ß1 integrin on the cell surface. The biological activities of ALT-C may be helpful as a therapeutic strategy in tissue regeneration as well as in the design of new therapeutic agents targeting alpha2ß1 integrin.

  9. Serum Metabolite Profiles Are Altered by Erlotinib Treatment and the Integrin α1-Null Genotype but Not by Post-Traumatic Osteoarthritis.

    Science.gov (United States)

    Mickiewicz, Beata; Shin, Sung Y; Pozzi, Ambra; Vogel, Hans J; Clark, Andrea L

    2016-03-04

    The risk of developing post-traumatic osteoarthritis (PTOA) following joint injury is high. Furthering our understanding of the molecular mechanisms underlying PTOA and/or identifying novel biomarkers for early detection may help to improve treatment outcomes. Increased expression of integrin α1β1 and inhibition of epidermal growth factor receptor (EGFR) signaling protect the knee from spontaneous OA; however, the impact of the integrin α1β1/EGFR axis on PTOA is currently unknown. We sought to determine metabolic changes in serum samples collected from wild-type and integrin α1-null mice that underwent surgery to destabilize the medial meniscus and were treated with the EGFR inhibitor erlotinib. Following (1)H nuclear magnetic resonance spectroscopy, we generated multivariate statistical models that distinguished between the metabolic profiles of erlotinib- versus vehicle-treated mice and the integrin α1-null versus wild-type mouse genotype. Our results show the sex-dependent effects of erlotinib treatment and highlight glutamine as a metabolite that counteracts this treatment. Furthermore, we identified a set of metabolites associated with increased reactive oxygen species production, susceptibility to OA, and regulation of TRP channels in α1-null mice. Our study indicates that systemic pharmacological and genetic factors have a greater effect on serum metabolic profiles than site-specific factors such as surgery.

  10. Serum metabolite profiles are altered by erlotinib treatment and the integrin α1-null genotype, but not by post traumatic osteoarthritis

    Science.gov (United States)

    Mickiewicz, Beata; Shin, Sung Y.; Pozzi, Ambra; Vogel, Hans J.; Clark, Andrea L.

    2016-01-01

    The risk of developing post traumatic osteoarthritis (PTOA) following joint injury is high. Furthering our understanding of the molecular mechanisms underlying PTOA and/or identifying novel biomarkers for early detection may help improve treatment outcomes. Increased expression of integrin α1β1 and inhibition of epidermal growth factor receptor (EGFR) signaling protect the knee from spontaneous OA, however the impact of the integrin α1β1/EGFR axis on PTOA is currently unknown. We sought to determine metabolic changes in serum samples collected from wild type and integrin α1-null mice that underwent surgery to destabilize the medial meniscus and were treated with the EGFR inhibitor erlotinib. Following 1H nuclear magnetic resonance spectroscopy we generated multivariate statistical models that distinguished between the metabolic profiles of erlotinib- versus vehicle-treated mice, and the integrin α1-null versus wild type mouse genotype. Our results show the sex dependent effects of erlotinib treatment and highlight glutamine as a metabolite that counteracts this treatment. Furthermore, we identified a set of metabolites associated with increased reactive oxygen species production, susceptibility to OA and regulation of TRP channels in α1-null mice. Our study indicates that systemic pharmacological and genetic factors have a greater effect on serum metabolic profiles than site specific factors such as surgery. PMID:26784366

  11. Human U87 astrocytoma cell invasion induced by interaction of βig-h3 with integrin α5β1 involves calpain-2.

    Directory of Open Access Journals (Sweden)

    Jie Ma

    Full Text Available It is known that βig-h3 is involved in the invasive process of many types of tumors, but its mechanism in glioma cells has not been fully clarified. Using immunofluorescent double-staining and confocal imaging analysis, and co-immunoprecipitation assays, we found that βig-h3 co-localized with integrin α5β1 in U87 cells. We sought to elucidate the function of this interaction by performing cell invasion assays and gelatin zymography experiments. We found that siRNA knockdowns of βig-h3 and calpain-2 impaired cell invasion and MMP secretion. Moreover, βig-h3, integrins and calpain-2 are known to be regulated by Ca(2+, and they are also involved in tumor cell invasion. Therefore, we further investigated if calpain-2 was relevant to βig-h3-integrin α5β1 interaction to affect U87 cell invasion. Our data showed that βig-h3 co-localized with integrin α5β1 to enhance the invasion of U87 cells, and that calpain-2, is involved in this process, acting as a downstream molecule.

  12. Titin-Based Nanoparticle Tension Sensors Map High-Magnitude Integrin Forces within Focal Adhesions.

    Science.gov (United States)

    Galior, Kornelia; Liu, Yang; Yehl, Kevin; Vivek, Skanda; Salaita, Khalid

    2016-01-13

    Mechanical forces transmitted through integrin transmembrane receptors play important roles in a variety of cellular processes ranging from cell development to tumorigenesis. Despite the importance of mechanics in integrin function, the magnitude of integrin forces within adhesions remains unclear. Literature suggests a range from 1 to 50 pN, but the upper limit of integrin forces remains unknown. Herein we challenge integrins with the most mechanically stable molecular tension probe, which is comprised of the immunoglobulin 27th (I27) domain of cardiac titin flanked with a fluorophore and gold nanoparticle. Cell experiments show that integrin forces unfold the I27 domain, suggesting that integrin forces exceed ∼30-40 pN. The addition of a disulfide bridge within I27 "clamps" the probe and resists mechanical unfolding. Importantly, incubation with a reducing agent initiates SH exchange, thus unclamping I27 at a rate that is dependent on the applied force. By recording the rate of S-S reduction in clamped I27, we infer that integrins apply 110 ± 9 pN within focal adhesions of rat embryonic fibroblasts. The rates of S-S exchange are heterogeneous and integrin subtype-dependent. Nanoparticle titin tension sensors along with kinetic analysis of unfolding demonstrate that a subset of integrins apply tension many fold greater than previously reported.

  13. Osteopontin binding to the alpha 4 integrin requires highest affinity integrin conformation, but is independent of post-translational modifications of osteopontin

    DEFF Research Database (Denmark)

    Hui, Tommy; Sørensen, Esben Skipper; Rittling, Susan R.

    2015-01-01

    with α4 integrin to that of VCAM and fibronectin. Jurkat cells, whose α4 integrins are inherently activated, adhered to different preparations of OPN in the presence of Mn2+: the EC50 of adhesion was not affected by phosphorylation or glycosylation status. Thrombin cleavage of OPN at the C...

  14. TECHNICAL COORDINATION

    CERN Multimedia

    A. Ball

    Overview From a technical perspective, CMS has been in “beam operation” state since 6th November. The detector is fully closed with all components operational and the magnetic field is normally at the nominal 3.8T. The UXC cavern is normally closed with the radiation veto set. Access to UXC is now only possible during downtimes of LHC. Such accesses must be carefully planned, documented and carried out in agreement with CMS Technical Coordination, Experimental Area Management, LHC programme coordination and the CCC. Material flow in and out of UXC is now strictly controlled. Access to USC remains possible at any time, although, for safety reasons, it is necessary to register with the shift crew in the control room before going down.It is obligatory for all material leaving UXC to pass through the underground buffer zone for RP scanning, database entry and appropriate labeling for traceability. Technical coordination (notably Stephane Bally and Christoph Schaefer), the shift crew and run ...

  15. Phoyunnanin E inhibits migration of non-small cell lung cancer cells via suppression of epithelial-to-mesenchymal transition and integrin αv and integrin β3.

    Science.gov (United States)

    Petpiroon, Nareerat; Sritularak, Boonchoo; Chanvorachote, Pithi

    2017-12-29

    The conversion of the epithelial phenotype of cancer cells into cells with a mesenchymal phenotype-so-called epithelial-mesenchymal transition (EMT)-has been shown to enhance the capacity of the cells to disseminate throughout the body. EMT is therefore becoming a potential target for anti-cancer drug discovery. Here, we showed that phoyunnanin E, a compound isolated from Dendrobium venustum, possesses anti-migration activity and addressed its mechanism of action. The cytotoxic and proliferative effects of phoyunnanin E on human non-small cell lung cancer-derived H460, H292, and A549 cells and human keratinocyte HaCaT cells were investigated by MTT assay. The effect of phoyunnanin E on EMT was evaluated by determining the colony formation and EMT markers. The migration and invasion of H460, H292, A549 and HaCaT cells was evaluated by wound healing assay and transwell invasion assay, respectively. EMT markers, integrins and migration-associated proteins were examined by western blot analysis. Phoyunnanin E at the concentrations of 5 and 10 μM, which are non-toxic to H460, H292, A549 and HaCaT cells showed good potential to inhibit the migratory activity of three types of human lung cancer cells. The anti-migration effect of phoyunnanin E was shown to relate to the suppressed EMT phenotypes, including growth in anchorage-independent condition, cell motility, and EMT-specific protein markers (N-cadherin, vimentin, slug, and snail). In addition to EMT suppression, we found that phoyunnanin E treatment with 5 and 10 μM could decrease the cellular level of integrin αv and integrin β3, these integrins are frequently up-regulated in highly metastatic tumor cells. We further characterized the regulatory proteins in cell migration and found that the cells treated with phoyunnanin E exhibited a significantly lower level of phosphorylated focal adhesion kinase (p-FAK) and phosphorylated ATP-dependent tyrosine kinase (p-AKT), and their downstream effectors (including

  16. Three-dimensional collagen represses cyclin E1 via β1 integrin in invasive breast cancer cells.

    Science.gov (United States)

    Wu, Yuehan; Guo, Xun; Brandt, Yekaterina; Hathaway, Helen J; Hartley, Rebecca S

    2011-06-01

    The behavior of breast epithelial cells is influenced by their microenvironment which includes stromal cells and extracellular matrix (ECM). During cancer progression, the tissue microenvironment fails to control proliferation and differentiation, resulting in uncontrolled growth and invasion. Upon invasion, the ECM encountered by breast cancer cells changes from primarily laminin and collagen IV to primarily collagen I. We show here that culturing invasive breast cancer cells in 3-dimensional (3D) collagen I inhibits proliferation through direct regulation of cyclin E1, a G(1)/S regulator that is overexpressed in breast cancer. When the breast cancer cell line MDA-MB-231 was cultured within 3D collagen I gels, the G(1)/S transition was inhibited as compared to cells cultured on conventional 2D collagen or plastic dishes. Cells in 3D collagen downregulated cyclin E1 protein and mRNA, with no change in cyclin D1 level. Cyclin D1 was primarily cytoplasmic in 3D cultures, and this was accompanied by decreased phosphorylation of Rb, a nuclear target for both cyclin E1- and cyclin D1-associated kinases. Positive regulators of cyclin E1 expression, the transcription factor c-Myc and cold-inducible RNA binding protein (CIRP), were decreased in 3D collagen cultures, while the collagen I receptor β1 integrin was greatly increased. Inhibition of β1 integrin function rescued proliferation and cyclin E1 expression as well as c-Myc expression and Rb phosphorylation, but cyclin D1 remained cytoplasmic. We conclude that cyclin E1 is repressed independent of effects on cyclin D1 in a 3D collagen environment and dependent on β1 integrin interaction with collagen I, reducing proliferation of invasive breast cancer cells.

  17. Blocking TGFβ via Inhibition of the αvβ6 Integrin: A Possible Therapy for Systemic Sclerosis Interstitial Lung Disease

    Directory of Open Access Journals (Sweden)

    Tamiko R. Katsumoto

    2011-01-01

    Full Text Available Interstitial lung disease (ILD is a commonly encountered complication of systemic sclerosis (SSc and accounts for a significant proportion of SSc-associated morbidity and mortality. Its pathogenesis remains poorly understood, and therapies that treat SSc ILD are suboptimal, at best. SSc ILD pathogenesis may share some common mechanisms with other fibrotic lung diseases, in which dysregulation of lung epithelium can contribute to pathologic fibrosis via recruitment or in situ generation and activation of fibroblasts. TGFβ, a master regulator of fibrosis, is tightly regulated in the lung by the integrin αvβ6, which is expressed at low levels on healthy alveolar epithelial cells but is highly induced in the setting of lung injury or fibrosis. Here we discuss the biology of αvβ6 and present this integrin as a potentially attractive target for inhibition in the setting of SSc ILD.

  18. Integrin αβ3-Targeted Imaging of Lung Cancer

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Chen

    2005-03-01

    Full Text Available A series of radiolabeled cyclic arginine-glycineaspartic acid (RGD peptide ligands for cell adhesion molecule integrin αβ3-targeted tumor angiogenesis targeting are being developed in our laboratory. In this study, this effort continues by applying a positron emitter 64Cu-labeled PEGylated dimeric RGD peptide radiotracer 64Cu-DOTA-PEG-E[c(RGDyK]2 for lung cancer imaging. The PEGylated RGD peptide indicated integrin αβ3 avidity, but the PEGylation reduced the receptor binding affinity of this ligand compared to the unmodified RGD dimer. The radiotracer revealed rapid blood clearance and predominant renal clearance route. The minimum nonspecific activity accumulation in normal lung tissue and heart rendered high-quality orthotopic lung cancer tumor images, enabling clear demarcation of both the primary tumor at the upper lobe of the left lung, as well as metastases in the mediastinum, contralateral lung, diaphragm. As a comparison, fluorodeoxyglucose (FDG scans on the same mice were only able to identify the primary tumor, with the metastatic lesions masked by intense cardiac uptake and high lung background. 64Cu-DOTA-PEGE[c(RGDyK]2 is an excellent positron emission tomography (PET tracer for integrin-positive tumor imaging. Further studies to improve the receptor binding affinity of the tracer and subsequently to increase the magnitude of tumor uptake without comprising the favorable in vivo kinetics are currently in progress.

  19. Coordinated unbundling

    DEFF Research Database (Denmark)

    Timmermans, Bram; Zabala-Iturriagagoitia, Jon Mikel

    2013-01-01

    Public procurement for innovation is a matter of using public demand to trigger innovation. Empirical studies have demonstrated that demand-based policy instruments can be considered to be a powerful tool in stimulating innovative processes among existing firms; however, the existing literature has...... not focused on the role this policy instrument can play in the promotion of (knowledge-intensive) entrepreneurship. This paper investigates this link in more detail and introduces the concept of coordinated unbundling as a strategy that can facilitate this purpose. We also present a framework on how...... to organise public procurement for innovation around this unbundling strategy and provide a set of challenges that need to be addressed....

  20. Global Regulator of Virulence A (GrvA) Coordinates Expression of Discrete Pathogenic Mechanisms in Enterohemorrhagic Escherichia coli through Interactions with GadW-GadE

    OpenAIRE

    Morgan, Jason K.; Carroll, Ronan K.; Harro, Carly M.; Vendura, Khoury W.; Shaw, Lindsey N.; Riordan, James T.

    2016-01-01

    Global regulator of virulence A (GrvA) is a ToxR-family transcriptional regulator that activates locus of enterocyte effacement (LEE)-dependent adherence in enterohemorrhagic Escherichia coli (EHEC). LEE activation by GrvA requires the Rcs phosphorelay response regulator RcsB and is sensitive to physiologically relevant concentrations of bicarbonate, a known stimulant of virulence systems in intestinal pathogens. This study determines the genomic scale of GrvA-dependent regulation and uncover...

  1. Leukocyte integrins: role in leukocyte recruitment and as therapeutic targets in inflammatory disease.

    Science.gov (United States)

    Mitroulis, Ioannis; Alexaki, Vasileia I; Kourtzelis, Ioannis; Ziogas, Athanassios; Hajishengallis, George; Chavakis, Triantafyllos

    2015-03-01

    Infection or sterile inflammation triggers site-specific attraction of leukocytes. Leukocyte recruitment is a process comprising several steps orchestrated by adhesion molecules, chemokines, cytokines and endogenous regulatory molecules. Distinct adhesive interactions between endothelial cells and leukocytes and signaling mechanisms contribute to the temporal and spatial fine-tuning of the leukocyte adhesion cascade. Central players in the leukocyte adhesion cascade include the leukocyte adhesion receptors of the β2-integrin family, such as the αLβ2 and αMβ2 integrins, or of the β1-integrin family, such as the α4β1-integrin. Given the central involvement of leukocyte recruitment in different inflammatory and autoimmune diseases, the leukocyte adhesion cascade in general, and leukocyte integrins in particular, represent key therapeutic targets. In this context, the present review focuses on the role of leukocyte integrins in the leukocyte adhesion cascade. Experimental evidence that has implicated leukocyte integrins as targets in animal models of inflammatory disorders, such as experimental autoimmune encephalomyelitis, psoriasis, inflammatory bone loss and inflammatory bowel disease as well as preclinical and clinical therapeutic applications of antibodies that target leukocyte integrins in various inflammatory disorders are presented. Finally, we review recent findings on endogenous inhibitors that modify leukocyte integrin function, which could emerge as promising therapeutic targets. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Planned development and coordination of public policies as a starting point in the harmonization of national regulations with the EU aquis

    Directory of Open Access Journals (Sweden)

    Jovanić Tatjana

    2014-01-01

    Full Text Available One of the most important aspects of harmonizing Serbian legislation with the EU law, however still neglected in Serbia, is the mutual relationship between the design and coordination of public policies on the one hand, and the harmonization of legislation in the course of negotiations for EU accession, on the other hand. This aspect has been largely neglected because of the misuse of emergency procedure for adopting legislation in order to assure compatibility with the EU law, but also due to underdeveloped regulatory policies, which has been reduced to the guillotine of legislation, instead of developing a cycle of policy and analytical phase that precedes the drafting of legislation. Although the negotiating structure of European integration has been improved, the Negotiation Team and Coordination Body certainly can not replace the role of policy makers in their creation. Since the new Law on Ministries envisaged the creation of the Secretariat for the coordination of public policies, an institutional prerequisite for the implementation of the function of harmonizing public policy proposals has been put forward, but is not yet clear what powers in the policy cycle this institution would have. In any case, this administrative body will certainly complement Serbian coordination structure in the negotiation process.

  3. TECHNICAL COORDINATION

    CERN Multimedia

    A. Ball

    2010-01-01

    Operational Experience At the end of the first full-year running period of LHC, CMS is established as a reliable, robust and mature experiment. In particular common systems and infrastructure faults accounted for <0.6 % CMS downtime during LHC pp physics. Technical operation throughout the entire year was rather smooth, the main faults requiring UXC access being sub-detector power systems and rack-cooling turbines. All such problems were corrected during scheduled technical stops, in the shadow of tunnel access needed by the LHC, or in negotiated accesses or access extensions. Nevertheless, the number of necessary accesses to the UXC averaged more than one per week and the technical stops were inevitably packed with work packages, typically 30 being executed within a few days, placing a high load on the coordination and area management teams. It is an appropriate moment for CMS Technical Coordination to thank all those in many CERN departments and in the Collaboration, who were involved in CMS techni...

  4. Drosophila tensin plays an essential role in cell migration and planar polarity formation during oogenesis by mediating integrin-dependent extracellular signals to actin organization.

    Science.gov (United States)

    Cha, In Jun; Lee, Jang Ho; Cho, Kyoung Sang; Lee, Sung Bae

    2017-03-11

    Oogenesis in Drosophila involves very dynamic cellular changes such as cell migration and polarity formation inside an ovary during short period. Previous studies identified a number of membrane-bound receptors directly receiving certain types of extracellular inputs as well as intracellular signalings to be involved in the regulation of these dynamic cellular changes. However, yet our understanding on exactly how these receptor-mediated extracellular inputs lead to dynamic cellular changes remains largely unclear. Here, we identified Drosophila tensin encoded by blistery (by) as a novel regulator of cell migration and planar polarity formation and characterized the genetic interaction between tensin and integrin during oogenesis. Eggs from by mutant showed decreased hatching rate and morphological abnormality, a round-shape, compared to the wild-type eggs. Further analyses revealed that obvious cellular defects such as defective border cell migration and planar polarity formation might be primarily associated with the decreased hatching rate and the round-shape phenotype of by mutant eggs, respectively. Moreover, by mutation also induced marked defects in F-actin organization closely associated with both cell migration and planar polarity formation during oogenesis of Drosophila. Notably, all these defective phenotypes observed in by mutant eggs became much severer by reduced level of integrin, indicative of a close functional association between integrin and tensin during oogenesis. Collectively, our findings suggest that tensin acts as a crucial regulator of dynamic cellular changes during oogenesis by bridging integrin-dependent extracellular signals to intracellular cytoskeletal organization. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Genetic analysis of beta1 integrin function: confirmed, new and revised roles for a crucial family of cell adhesion molecules

    DEFF Research Database (Denmark)

    Brakebusch, C; Hirsch, E; Potocnik, A

    1997-01-01

    Integrins are heterodimeric cell adhesion proteins connecting the extracellular matrix to the cytoskeleton and transmitting signals in both directions. These integrins are suggested to be involved in many different biological processes such as growth, differentiation, migration, and cell death...

  6. Evidence that activation of ASIC1a by acidosis increases osteoclast migration and adhesion by modulating integrin/Pyk2/Src signaling pathway.

    Science.gov (United States)

    Li, X; Ye, J-X; Xu, M-H; Zhao, M-D; Yuan, F-L

    2017-07-01

    Activated acid-sensing ion channel 1a (ASIC1a) is involved in acid-induced osteoclastogenesis by regulating activation of the transcription factor NFATc1. These results indicated that ASIC1a activation by extracellular acid may cause osteoclast migration and adhesion through Ca 2+ -dependent integrin/Pyk2/Src signaling pathway. Osteoclast adhesion and migration are responsible for osteoporotic bone loss. Acidic conditions promote osteoclastogenesis. ASIC1a in osteoclasts is associated with acid-induced osteoclastogenesis through modulating transcription factor NFATc1 activation. However, the influence and the detailed mechanism of ASIC1a in regulating osteoclast adhesion and migration, in response to extracellular acid, are not well characterized. In this study, knockdown of ASIC1a was achieved in bone marrow macrophage cells using small interfering RNA (siRNA). The adhesion and migration abilities of osteoclast precursors and osteoclasts were determined by adhesion and migration assays, in vitro. Bone resorption was performed to measure osteoclast function. Cytoskeletal changes were assessed by F-actin ring formation. αvβ3 integrin expression in osteoclasts was measured by flow cytometry. Western blotting and co-immunoprecipitation were performed to measure alterations in integrin/Pyk2/Src signaling pathway. Our results showed that blockade of ASIC1a using ASIC1a-siRNA inhibited acid-induced osteoclast precursor migration and adhesion, as well as osteoclast adhesion and bone resorption; we also demonstrated that inhibition of ASIC1a decreased the cell surface αvβ3 integrin and β3 protein expression. Moreover, blocking of ASIC1a inhibited acidosis-induced actin ring formation and reduced Pyk2 and Src phosphorylation in osteoclasts and also inhibited the acid-induced association of the αvβ3 integrin/Src/Pyk2. Together, these results highlight a key functional role of ASIC1a/αvβ3 integrin/Pyk2/Src signaling pathway in migration and adhesion of osteoclasts.

  7. None of the integrins known to be present on the mouse egg or to be ADAM receptors are essential for sperm-egg binding and fusion

    DEFF Research Database (Denmark)

    He, Zhi-Yong; Brakebusch, Cord; Fässler, Reinhard

    2003-01-01

    Antibody inhibition and alpha6beta1 ligand binding experiments indicate that the egg integrin alpha6beta1 functions as a receptor for sperm during gamete fusion; yet, eggs null for the alpha6 integrin exhibit normal fertilization. Alternative integrins may be involved in sperm-egg binding...... was not essential for sperm-egg binding and fusion. Oocyte-specific, beta1 integrin conditional knockout mice allowed us to obtain mature eggs lacking all beta1 integrins. We found that the beta1 integrin null eggs were fully functional in fertilization both in vivo and in vitro. Furthermore, neither anti......-mouse beta3 integrin function-blocking monoclonal antibody (mAb) nor alphav integrin function-blocking mAb inhibited sperm binding to or fusion with beta1 integrin null eggs. Thus, function of beta3 or alphav integrins does not seem to be involved in compensating for the absence of beta1 integrins...

  8. Entamoeba histolytica Cysteine Proteinase 5 Evokes Mucin Exocytosis from Colonic Goblet Cells via αvβ3 Integrin.

    Directory of Open Access Journals (Sweden)

    Steve Cornick

    2016-04-01

    Full Text Available Critical to the pathogenesis of intestinal amebiasis, Entamoeba histolytica (Eh induces mucus hypersecretion and degrades the colonic mucus layer at the site of invasion. The parasite component(s responsible for hypersecretion are poorly defined, as are regulators of mucin secretion within the host. In this study, we have identified the key virulence factor in live Eh that elicits the fast release of mucin by goblets cells as cysteine protease 5 (EhCP5 whereas, modest mucus secretion occurred with secreted soluble EhCP5 and recombinant CP5. Coupling of EhCP5-αvβ3 integrin on goblet cells facilitated outside-in signaling by activating SRC family kinases (SFK and focal adhesion kinase that resulted in the activation/phosphorlyation of PI3K at the site of Eh contact and production of PIP3. PKCδ was activated at the EhCP5-αvβ3 integrin contact site that specifically regulated mucin secretion though the trafficking vesicle marker myristoylated alanine-rich C-kinase substrate (MARCKS. This study has identified that EhCP5 coupling with goblet cell αvβ3 receptors can initiate a signal cascade involving PI3K, PKCδ and MARCKS to drive mucin secretion from goblet cells critical in disease pathogenesis.

  9. Endothelial cell-derived matrix promotes the metabolic functional maturation of hepatocyte via integrin-Src signalling.

    Science.gov (United States)

    Guo, Xinyue; Li, Weihong; Ma, Minghui; Lu, Xin; Zhang, Haiyan

    2017-11-01

    The extracellular matrix (ECM) microenvironment is involved in the regulation of hepatocyte phenotype and function. Recently, the cell-derived extracellular matrix has been proposed to represent the bioactive and biocompatible materials of the native ECM. Here, we show that the endothelial cell-derived matrix (EC matrix) promotes the metabolic maturation of human adipose stem cell-derived hepatocyte-like cells (hASC-HLCs) through the activation of the transcription factor forkhead box protein A2 (FOXA2) and the nuclear receptors hepatocyte nuclear factor 4 alpha (HNF4α) and pregnane X receptor (PXR). Reducing the fibronectin content in the EC matrix or silencing the expression of α5 integrin in the hASC-HLCs inhibited the effect of the EC matrix on Src phosphorylation and hepatocyte maturation. The inhibition of Src phosphorylation using the inhibitor PP2 or silencing the expression of Src in hASC-HLCs also attenuated the up-regulation of the metabolic function of hASC-HLCs in a nuclear receptor-dependent manner. These data elucidate integrin-Src signalling linking the extrinsic EC matrix signals and metabolic functional maturation of hepatocyte. This study provides a model for studying the interaction between hepatocytes and non-parenchymal cell-derived matrix. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  10. Cellular and substrate adhesion molecules (integrins) and their ligands in cerebral amyloid plaques in Alzheimer's disease

    NARCIS (Netherlands)

    Eikelenboom, P.; Zhan, S. S.; Kamphorst, W.; van der Valk, P.; Rozemuller, J. M.

    1994-01-01

    Integrins belonging to different subfamilies can be identified immunohistochemically in cerebral amyloid plaques. Monoclonal antibodies against the VLA family beta 1-integrins show staining of the corona of classical amyloid plaques for beta 1, alpha 3 and alpha 6. Immunostaining reveal also the

  11. Ligand-Occupied Integrin Internalization Links Nutrient Signaling to Invasive Migration

    Directory of Open Access Journals (Sweden)

    Elena Rainero

    2015-01-01

    Full Text Available Integrin trafficking is key to cell migration, but little is known about the spatiotemporal organization of integrin endocytosis. Here, we show that α5β1 integrin undergoes tensin-dependent centripetal movement from the cell periphery to populate adhesions located under the nucleus. From here, ligand-engaged α5β1 integrins are internalized under control of the Arf subfamily GTPase, Arf4, and are trafficked to nearby late endosomes/lysosomes. Suppression of centripetal movement or Arf4-dependent endocytosis disrupts flow of ligand-bound integrins to late endosomes/lysosomes and their degradation within this compartment. Arf4-dependent integrin internalization is required for proper lysosome positioning and for recruitment and activation of mTOR at this cellular subcompartment. Furthermore, nutrient depletion promotes subnuclear accumulation and endocytosis of ligand-engaged α5β1 integrins via inhibition of mTORC1. This two-way regulatory interaction between mTORC1 and integrin trafficking in combination with data describing a role for tensin in invasive cell migration indicate interesting links between nutrient signaling and metastasis.

  12. Beta1 integrin promotes but is not essential for metastasis of ras-myc transformed fibroblasts

    DEFF Research Database (Denmark)

    Brakebusch, C; Wennerberg, K; Krell, H W

    1999-01-01

    , tumors induced by the high expressing clones 1A10 and 2F2 were markedly smaller, suggesting an inverse correlation of tumor growth and beta1 integrin expression. The metastasis potential of all three beta1 integrin-expressing GERM 11 sublines tested was significantly higher than that of the beta1...

  13. Integrin αv in the mechanical response of osteoblast lineage cells

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Keiko [Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 (Japan); Ito, Masako [Medical Work-Life-Balance Center, Nagasaki University Hospital, Nagasaki 852-8501 (Japan); Naoe, Yoshinori [Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 (Japan); Lacy-Hulbert, Adam [Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114 (United States); Ikeda, Kyoji, E-mail: kikeda@ncgg.go.jp [Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 (Japan)

    2014-05-02

    Highlights: • Deletion of integrin αv in osteoblast lineage results in an impaired SOST response to loading in vivo. • c-Src–p130Cas–JNK–YAP/TAZ is activated via integrin αv on osteoblasts in response to FSS. • Deletion of integrin αv in osteoblasts results in impaired responses to mechanical stimulation. • Integrin αv is a key component of the mechanosensing machinery in bone. - Abstract: Although osteoblast lineage cells, especially osteocytes, are thought to be a primary mechanosensory cell in bone, the identity of the mechano-receptor and downstream mechano-signaling pathways remain largely unknown. Here we show using osteoblastic cell model of mechanical stimulation with fluid shear stress that in the absence of integrin αv, phosphorylation of the Src substrate p130Cas and JNK was impaired, culminating in an inhibition of nuclear translocation of YAP/TAZ and subsequent transcriptional activation of target genes. Targeted deletion of the integrin αv in osteoblast lineage cells results in an attenuated response to mechanical loading in terms of Sost gene expression, indicative of a role for integrin αv in mechanoreception in vivo. Thus, integrin αv may be integral to a mechanosensing machinery in osteoblastic cells and involved in activation of a Src–JNK–YAP/TAZ pathway in response to mechanical stimulation.

  14. Integrin αv in the mechanical response of osteoblast lineage cells

    International Nuclear Information System (INIS)

    Kaneko, Keiko; Ito, Masako; Naoe, Yoshinori; Lacy-Hulbert, Adam; Ikeda, Kyoji

    2014-01-01

    Highlights: • Deletion of integrin αv in osteoblast lineage results in an impaired SOST response to loading in vivo. • c-Src–p130Cas–JNK–YAP/TAZ is activated via integrin αv on osteoblasts in response to FSS. • Deletion of integrin αv in osteoblasts results in impaired responses to mechanical stimulation. • Integrin αv is a key component of the mechanosensing machinery in bone. - Abstract: Although osteoblast lineage cells, especially osteocytes, are thought to be a primary mechanosensory cell in bone, the identity of the mechano-receptor and downstream mechano-signaling pathways remain largely unknown. Here we show using osteoblastic cell model of mechanical stimulation with fluid shear stress that in the absence of integrin αv, phosphorylation of the Src substrate p130Cas and JNK was impaired, culminating in an inhibition of nuclear translocation of YAP/TAZ and subsequent transcriptional activation of target genes. Targeted deletion of the integrin αv in osteoblast lineage cells results in an attenuated response to mechanical loading in terms of Sost gene expression, indicative of a role for integrin αv in mechanoreception in vivo. Thus, integrin αv may be integral to a mechanosensing machinery in osteoblastic cells and involved in activation of a Src–JNK–YAP/TAZ pathway in response to mechanical stimulation

  15. Direct Thy-1/alphaVbeta3 integrin interaction mediates neuron to astrocyte communication.

    Science.gov (United States)

    Hermosilla, Tamara; Muñoz, Daniel; Herrera-Molina, Rodrigo; Valdivia, Alejandra; Muñoz, Nicolás; Nham, Sang-Uk; Schneider, Pascal; Burridge, Keith; Quest, Andrew F G; Leyton, Lisette

    2008-06-01

    Thy-1 is an abundant neuronal glycoprotein of poorly defined function. We recently provided evidence indicating that Thy-1 clusters a beta3-containing integrin in astrocytes to induce tyrosine phosphorylation, RhoA activation and the formation of focal adhesions and stress fibers. To date, the alpha subunit partner of beta3 integrin in DI TNC1 astrocytes is unknown. Similarly, the ability of neuronal, membrane-bound Thy-1 to trigger astrocyte signaling via integrin engagement remains speculation. Here, evidence that alphav forms an alphavbeta3 heterodimer in DI TNC1 astrocytes was obtained. In neuron-astrocyte association assays, the presence of either anti-alphav or anti-beta3 integrin antibodies reduced cell-cell interaction demonstrating the requirement of both integrin subunits for this association. Moreover, anti-Thy-1 antibodies blocked stimulation of astrocytes by neurons but not the binding of these two cell types. Thus, neuron-astrocyte association involved binding between molecular components in addition to the Thy-1-integrin; however, the signaling events leading to focal adhesion formation in astrocytes depended exclusively on the latter interaction. Additionally, wild-type (RLD) but not mutated (RLE) Thy-1 was shown to directly interact with alphavbeta3 integrin by Surface Plasmon Resonance analysis. This interaction was promoted by divalent cations and was species-independent. Together, these results demonstrate that the alphavbeta3 integrin heterodimer interacts directly with Thy-1 present on neuronal cells to stimulate astrocytes.

  16. Monophasic Pulsed 200-μA Current Promotes Galvanotaxis With Polarization of Actin Filament and Integrin α2β1 in Human Dermal Fibroblasts.

    Science.gov (United States)

    Uemura, Mikiko; Maeshige, Noriaki; Koga, Yuka; Ishikawa-Aoyama, Michiko; Miyoshi, Makoto; Sugimoto, Masaharu; Terashi, Hiroto; Usami, Makoto

    2016-01-01

    The monophasic pulsed microcurrent is used to promote wound healing, and galvanotaxis regulation has been reported as one of the active mechanisms in the promotion of tissue repair with monophasic pulsed microcurrent. However, the optimum monophasic pulsed microcurrent parameters and intracellular changes caused by the monophasic pulsed microcurrent have not been elucidated in human dermal fibroblasts. The purpose of this study was to investigate the optimum intensity for promoting galvanotaxis and the effects of electrical stimulation on integrin α2β1 and actin filaments in human dermal fibroblasts. Human dermal fibroblasts were treated with the monophasic pulsed microcurrent of 0, 100, 200, or 300 μA for 8 hours, and cell migration and cell viability were measured 24 hours after starting monophasic pulsed microcurrent stimulation. Polarization of integrin α2β1 and lamellipodia formation were detected by immunofluorescent staining 10 minutes after starting monophasic pulsed microcurrent stimulation. The migration toward the cathode was significantly higher in the cells treated with the 200-μA monophasic pulsed microcurrent than in the controls (P microcurrent did not alter the migration ratio. The electrostimulus of 200 μA also promoted integrin α2β1 polarization and lamellipodia formation at the cathode edge (P microcurrent intensity to promote migration toward the cathode, and this intensity could regulate polarization of migration-related intracellular factors in human dermal fibroblasts.

  17. RUN COORDINATION

    CERN Multimedia

    C. Delaere

    2013-01-01

    Since the LHC ceased operations in February, a lot has been going on at Point 5, and Run Coordination continues to monitor closely the advance of maintenance and upgrade activities. In the last months, the Pixel detector was extracted and is now stored in the pixel lab in SX5; the beam pipe has been removed and ME1/1 removal has started. We regained access to the vactank and some work on the RBX of HB has started. Since mid-June, electricity and cooling are back in S1 and S2, allowing us to turn equipment back on, at least during the day. 24/7 shifts are not foreseen in the next weeks, and safety tours are mandatory to keep equipment on overnight, but re-commissioning activities are slowly being resumed. Given the (slight) delays accumulated in LS1, it was decided to merge the two global runs initially foreseen into a single exercise during the week of 4 November 2013. The aim of the global run is to check that we can run (parts of) CMS after several months switched off, with the new VME PCs installed, th...

  18. RUN COORDINATION

    CERN Multimedia

    Christophe Delaere

    2013-01-01

    The focus of Run Coordination during LS1 is to monitor closely the advance of maintenance and upgrade activities, to smooth interactions between subsystems and to ensure that all are ready in time to resume operations in 2015 with a fully calibrated and understood detector. After electricity and cooling were restored to all equipment, at about the time of the last CMS week, recommissioning activities were resumed for all subsystems. On 7 October, DCS shifts began 24/7 to allow subsystems to remain on to facilitate operations. That culminated with the Global Run in November (GriN), which   took place as scheduled during the week of 4 November. The GriN has been the first centrally managed operation since the beginning of LS1, and involved all subdetectors but the Pixel Tracker presently in a lab upstairs. All nights were therefore dedicated to long stable runs with as many subdetectors as possible. Among the many achievements in that week, three items may be highlighted. First, the Strip...

  19. Albumin fibrillization induces apoptosis via integrin/FAK/Akt pathway

    Directory of Open Access Journals (Sweden)

    Liang Chi-Ming

    2009-01-01

    Full Text Available Abstract Background Numerous proteins can be converted to amyloid-like fibrils to increase cytotoxicity and induce apoptosis, but the methods generally require a high concentration of protein, vigorous shaking, or fibril seed. As well, the detailed mechanism of the cytotoxic effects is not well characterized. In this study, we have developed a novel process to convert native proteins into the fibrillar form. We used globular bovine serum albumin (BSA as a model protein to verify the properties of the fibrillar protein, investigated its cellular effects and studied the signaling cascade induced by the fibrillar protein. Results We induced BSA, a non-cytotoxic globular protein, to become fibril by a novel process involving Superdex-200 column chromatography in the presence of anionic or zwittergenic detergent(s. The column pore size was more important than column matrix composite in fibril formation. The fibrillar BSA induced apoptosis in BHK-21 cell as well as breast cancer cell line T47D. Pre-treating cells with anti-integrin antibodies blocked the apoptotic effect. Fibrillar BSA, but not globular BSA, bound to integrin, dephosphorylated focal adhesion kinase (FAK, Akt and glycogen synthase kinase-3β (GSK-3β. Conclusion We report on a novel process for converting globular proteins into fibrillar form to cause apoptosis by modulating the integrin/FAK/Akt/GSK-3β/caspase-3 signaling pathway. Our findings may be useful for understanding the pathogenesis of amyloid-like fibrils and applicable for the development of better therapeutic agents that target the underlying mechanism(s of the etiologic agents.

  20. Quantitative gene-expression of the tumor angiogenesis markers vascular endothelial growth factor, integrin alphaV and integrin beta3 in human neuroendocrine tumors

    DEFF Research Database (Denmark)

    Oxboel, Jytte; Binderup, Tina; Knigge, Ulrich

    2009-01-01

    compared to both colorectal liver metastases (p=0.10) and normal liver tissue (p=0.06). In neuroendocrine tumors, gene-expression was highly variable of VEGF (530-fold), integrin alphaV (23-fold) and integrin beta3 (106-fold). Quantitative gene-expression levels of the key angiogenesis molecules VEGF......, in neuroendocrine tumors. We used quantitative real-time PCR for measuring mRNA gene-expression of vascular endothelial growth factor (VEGF), integrin alphaV, and integrin beta3, and CD34 for a group of patients with neuroendocrine tumors (n=13). Tissue from patients with colorectal cancer liver metastases (n=14......) and normal liver tissues (n=16) was used as control. We found a lower mRNA level of VEGF in neuroendocrine tumors compared to both colorectal liver metastases (pbeta3 there was also a borderline significant lower level of mRNA in neuroendocrine tumors...

  1. Vesicle-associated membrane protein 2 mediates trafficking of {alpha}5{beta}1 integrin to the plasma membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Nazarul [Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, 319 Abraham Flexner Way, Room 515, Louisville, KY 40202 (United States); Hu, Chuan, E-mail: chuan.hu@louisville.edu [Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, 319 Abraham Flexner Way, Room 515, Louisville, KY 40202 (United States)

    2010-01-01

    Integrins are major receptors for cell adhesion to the extracellular matrix (ECM). As transmembrane proteins, the levels of integrins at the plasma membrane or the cell surface are ultimately determined by the balance between two vesicle trafficking events: endocytosis of integrins at the plasma membrane and exocytosis of the vesicles that transport integrins. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, is involved in the trafficking of {alpha}5{beta}1 integrin. VAMP2 was present on vesicles containing endocytosed {beta}1 integrin. Small interfering RNA (siRNA) silencing of VAMP2 markedly reduced cell surface {alpha}5{beta}1 and inhibited cell adhesion and chemotactic migration to fibronectin, the ECM ligand of {alpha}5{beta}1, without altering cell surface expression of {alpha}2{beta}1 integrin or {alpha}3{beta}1 integrin. By contrast, silencing of VAMP8, another SNARE protein, had no effect on cell surface expression of the integrins or cell adhesion to fibronectin. In addition, VAMP2-mediated trafficking is involved in cell adhesion to collagen but not to laminin. Consistent with disruption of integrin functions in cell proliferation and survival, VAMP2 silencing diminished proliferation and triggered apoptosis. Collectively, these data indicate that VAMP2 mediates the trafficking of {alpha}5{beta}1 integrin to the plasma membrane and VAMP2-dependent integrin trafficking is critical in cell adhesion, migration and survival.

  2. Alphavbeta integrins play an essential role in BMP-2 induction of osteoblast differentiation.

    Science.gov (United States)

    Lai, Chung-Fang; Cheng, Su-Li

    2005-02-01

    Both integrins and BMP-2 exert similar effects on osteoblasts. We examined the relationship between the alphav-containing integrins (alphavbeta) and BMP-2 in osteoblast function. BMP-2 stimulates alphavbeta expression. BMP-2 receptors co-localize/overlap with alphavbeta integrins, and the intact function of alphavbeta is essential in BMP-2 activity. Bone morphogenetic protein (BMP)-2 not only induces osteoblast differentiation and bone matrix mineralization, but also stimulates osteoblast migration on and adhesion to bone matrix proteins. The alphavbeta- and beta1- (alphabeta1) containing integrins mediate osteoblast interaction with many bone matrix proteins and play important roles in osteoblast adhesion, migration, and differentiation. Because alphavbeta integrins and BMP-2 share common effects on osteoblasts, we analyzed their relationship in osteoblast function. The effects of BMP-2 on integrin expression were determined by surface labeling/immunoprecipitation and cell adhesion to matrix proteins. Confocal analysis of the immunostained cells and co-immunoprecipitation of cell extracts were used to study the spatial relationship between integrins and BMP-2 receptors. A function-blocking anti-alphavbeta integrin antibody (L230) was employed to investigate the roles of alphavbeta integrins in BMP-2 function. Human osteoblasts (HOBs) express alphabeta1, alphavbeta3, alphavbeta5, alphavbeta6, and alphavbeta8 integrins at focal adhesion sites. BMP-2 increases the levels of these integrins on osteoblast surface and enhances HOB adhesion to osteopontin and vitronectin. Immunoprecipitation and immunostaining analyses show that BMP-2 receptors co-localize or overlap with alphavbeta and alphabeta1 integrins. Incubation of HOBs with L230 abolishes the antiproliferative effect of BMP-2 and reduces the capacity of BMP-2 to stimulate alkaline phosphatase activity and the expression of osteocalcin, osteopontin, and bone sialoprotein. Furthermore, L230 prevents BMP-2 induction

  3. The coordinated roles of miR-26a and miR-30c in regulating TGFβ1-induced epithelial-to-mesenchymal transition in diabetic nephropathy

    DEFF Research Database (Denmark)

    Zheng, Zongji; Guan, Meiping; Jia, Yijie

    2016-01-01

    MicroRNAs (miRNAs) play vital roles in the development of diabetic nephropathy. Here, we compared the protective efficacies of miR-26a and miR-30c in renal tubular epithelial cells (NRK-52E) and determined whether they demonstrated additive effects in the attenuation of renal fibrosis. TGFβ1...... and miR-30c targeted connective tissue growth factor (CTGF); additionally, Snail family zinc finger 1 (Snail1), a potent epithelial-to-mesenchymal transition (EMT) inducer, was targeted by miR-30c. Overexpression of miR-26a and miR-30c coordinately decreased CTGF protein levels and subsequently...

  4. β-Adrenergic Receptor-Stimulated Cardiac Myocyte Apoptosis: Role of β1 Integrins

    Directory of Open Access Journals (Sweden)

    Parthiv Amin

    2011-01-01

    Full Text Available Increased sympathetic nerve activity to the myocardium is a central feature in patients with heart failure. Accumulation of catecholamines plays an important role in the pathogenesis of heart disease. Acting via β-adrenergic receptors (β-AR, catecholamines (norepinephrine and isoproterenol increase cardiac myocyte apoptosis in vitro and in vivo. Specifically, β1-AR and β2-AR coupled to Gαs exert a proapoptotic action, while β2-AR coupled to Gi exerts an antiapoptotic action. β1 integrin signaling protects cardiac myocytes against β-AR-stimulated apoptosis in vitro and in vivo. Interaction of matrix metalloproteinase-2 (MMP-2 with β1 integrins interferes with the survival signals initiated by β1 integrins. This paper will discuss background information on β-AR and integrin signaling and summarize the role of β1 integrins in β-AR-stimulated cardiac myocyte apoptosis.

  5. The dermatan sulfate proteoglycan decorin modulates α2β1 integrin and the vimentin intermediate filament system during collagen synthesis.

    Directory of Open Access Journals (Sweden)

    Oliver Jungmann

    Full Text Available Decorin, a small leucine-rich proteoglycan harboring a dermatan sulfate chain at its N-terminus, is involved in regulating matrix organization and cell signaling. Loss of the dermatan sulfate of decorin leads to an Ehlers-Danlos syndrome characterized by delayed wound healing. Decorin-null (Dcn(-/- mice display a phenotype similar to that of EDS patients. The fibrillar collagen phenotype of Dcn(-/- mice could be rescued in vitro by decorin but not with decorin lacking the glycosaminoglycan chain. We utilized a 3D cell culture model to investigate the impact of the altered extracellular matrix on Dcn(-/- fibroblasts. Using 2D gel electrophoresis followed by mass spectrometry, we identified vimentin as one of the proteins that was differentially upregulated by the presence of decorin. We discovered that a decorin-deficient matrix leads to abnormal nuclear morphology in the Dcn(-/- fibroblasts. This phenotype could be rescued by the decorin proteoglycan but less efficiently by the decorin protein core. Decorin treatment led to a significant reduction of the α2β1 integrin at day 6 in Dcn(-/- fibroblasts, whereas the protein core had no effect on β1. Interestingly, only the decorin core induced mRNA synthesis, phosphorylation and de novo synthesis of vimentin indicating that the proteoglycan decorin in the extracellular matrix stabilizes the vimentin intermediate filament system. We could support these results in vivo, because the dermis of wild-type mice have more vimentin and less β1 integrin compared to Dcn(-/-. Furthermore, the α2β1 null fibroblasts also showed a reduced amount of vimentin compared to wild-type. These data show for the first time that decorin has an impact on the biology of α2β1 integrin and the vimentin intermediate filament system. Moreover, our findings provide a mechanistic explanation for the reported defects in wound healing associated with the Dcn(-/- phenotype.

  6. Binding of Autotaxin to Integrins Localizes Lysophosphatidic Acid Production to Platelets and Mammalian Cells*

    Science.gov (United States)

    Fulkerson, Zachary; Wu, Tao; Sunkara, Manjula; Kooi, Craig Vander; Morris, Andrew J.; Smyth, Susan S.

    2011-01-01

    Autotaxin (ATX) is a secreted lysophospholipase D that generates the bioactive lipid mediator lysophosphatidic acid (LPA). We and others have reported that ATX binds to integrins, but the function of ATX-integrin interactions is unknown. The recently reported crystal structure of ATX suggests a role for the solvent-exposed surface of the N-terminal tandem somatomedin B-like domains in binding to platelet integrin αIIbβ3. The opposite face of the somatomedin B-like domain interacts with the catalytic phosphodiesterase (PDE) domain to form a hydrophobic channel through which lysophospholipid substrates enter and leave the active site. Based on this structure, we hypothesize that integrin-bound ATX can access cell surface substrates and deliver LPA to cell surface receptors. To test this hypothesis, we investigated the integrin selectivity and signaling pathways that promote ATX binding to platelets. We report that both platelet β1 and β3 integrins interact in an activation-dependent manner with ATX via the SMB2 domain. ATX increases thrombin-stimulated LPA production by washed platelets ∼10-fold. When incubated under conditions to promote integrin activation, ATX generates LPA from CHO cells primed with bee venom phospholipase A2, and ATX-mediated LPA production is enhanced more than 2-fold by CHO cell overexpression of integrin β3. The effects of ATX on platelet and cell-associated LPA production, but not hydrolysis of small molecule or detergent-solubilized substrates, are attenuated by point mutations in the SMB2 that impair integrin binding. Integrin binding therefore localizes ATX activity to the cell surface, providing a mechanism to generate LPA in the vicinity of its receptors. PMID:21832043

  7. Integrin-mediated cell surface recruitment of autotaxin promotes persistent directional cell migration

    Science.gov (United States)

    Wu, Tao; Kooi, Craig Vander; Shah, Pritom; Charnigo, Richard; Huang, Cai; Smyth, Susan S.; Morris, Andrew J.

    2014-01-01

    Autotaxin (ATX) is a secreted lysophospholipase D (lysoPLD) that binds to integrin adhesion receptors. We dissected the roles of integrin binding and lysoPLD activity in stimulation of human breast cancer and mouse aortic vascular smooth muscle cell migration by ATX. We compared effects of wild-type human ATX, catalytically inactive ATX, an integrin binding-defective ATX variant with wild-type lysoPLD activity, the isolated ATX integrin binding N-terminal domain, and a potent ATX selective lysoPLD inhibitor on cell migration using transwell and single-cell tracking assays. Stimulation of transwell migration was reduced (18 or 27% of control, respectively) but not ablated by inactivation of integrin binding or inhibition of lysoPLD activity. The N-terminal domain increased transwell migration (30% of control). ATX lysoPLD activity and integrin binding were necessary for a 3.8-fold increase in the fraction of migrating breast cancer cell step velocities >0.7 μm/min. ATX increased the persistent directionality of single-cell migration 2-fold. This effect was lysoPLD activity independent and recapitulated by the integrin binding N-terminal domain. Integrin binding enables uptake and intracellular sequestration of ATX, which redistributes to the front of migrating cells. ATX binding to integrins and lysoPLD activity therefore cooperate to promote rapid persistent directional cell migration.—Wu, T., Kooi, C. V., Shah, P., Charnigo, R., Huang, C., Smyth, S. S., Morris, A. J. Integrin-mediated cell surface recruitment of autotaxin promotes persistent directional cell migration. PMID:24277575

  8. Expression of beta 2 integrin (CD18 in embryonic mouse and chicken heart

    Directory of Open Access Journals (Sweden)

    L.A.M. Oliveira

    2010-01-01

    Full Text Available Integrins are heterodimeric receptors composed of α and β transmembrane subunits that mediate attachment of cells to the extracellular matrix and counter-ligands such as ICAM-1 on adjacent cells. β2 integrin (CD18 associates with four different α (CD11 subunits to form an integrin subfamily, which has been reported to be expressed exclusively on leukocytes. However, recent studies indicate that β2 integrin is also expressed by other types of cells. Since the gene for β2 integrin is located in the region of human chromosome 21 associated with congenital heart defects, we postulated that it may be expressed in the developing heart. Here, we show the results from several different techniques used to test this hypothesis. PCR analyses indicated that β2 integrin and the αL, αM, and αX subunits are expressed during heart development. Immunohistochemical studies in both embryonic mouse and chicken hearts, using antibodies directed against the N- or C-terminal of β2 integrin or against its α subunit partners, showed that β2 integrin, as well as the αL, αM, and αX subunits, are expressed by the endothelial and mesenchymal cells of the atrioventricular canal and in the epicardium and myocardium during cardiogenesis. In situ hybridization studies further confirmed the presence of β2 integrin in these various locations in the embryonic heart. These results indicate that the β2 integrin subfamily may have other activities in addition to leukocyte adhesion, such as modulating the migration and differentiation of cells during the morphogenesis of the cardiac valves and myocardial walls of the heart.

  9. A cholinergic-regulated circuit coordinates the maintenance and bi-stable states of a sensory-motor behavior during Caenorhabditis elegans male copulation.

    Directory of Open Access Journals (Sweden)

    Yishi Liu

    2011-03-01

    Full Text Available Penetration of a male copulatory organ into a suitable mate is a conserved and necessary behavioral step for most terrestrial matings; however, the detailed molecular and cellular mechanisms for this distinct social interaction have not been elucidated in any animal. During mating, the Caenorhabditis elegans male cloaca is maintained over the hermaphrodite's vulva as he attempts to insert his copulatory spicules. Rhythmic spicule thrusts cease when insertion is sensed. Circuit components consisting of sensory/motor neurons and sex muscles for these steps have been previously identified, but it was unclear how their outputs are integrated to generate a coordinated behavior pattern. Here, we show that cholinergic signaling between the cloacal sensory/motor neurons and the posterior sex muscles sustains genital contact between the sexes. Simultaneously, via gap junctions, signaling from these muscles is transmitted to the spicule muscles, thus coupling repeated spicule thrusts with vulval contact. To transit from rhythmic to sustained muscle contraction during penetration, the SPC sensory-motor neurons integrate the signal of spicule's position in the vulva with inputs from the hook and cloacal sensilla. The UNC-103 K(+ channel maintains a high excitability threshold in the circuit, so that sustained spicule muscle contraction is not stimulated by fewer inputs. We demonstrate that coordination of sensory inputs and motor outputs used to initiate, maintain, self-monitor, and complete an innate behavior is accomplished via the coupling of a few circuit components.

  10. Enhanced Expression of Integrin αvβ3 Induced by TGF-β Is Required for the Enhancing Effect of Fibroblast Growth Factor 1 (FGF1 in TGF-β-Induced Epithelial-Mesenchymal Transition (EMT in Mammary Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Seiji Mori

    Full Text Available Epithelial-to-mesenchymal transition (EMT plays a critical role in cancer metastasis, and is regulated by growth factors such as transforming growth factor β (TGF-β and fibroblast growth factors (FGF secreted from the stromal and tumor cells. However, the role of growth factors in EMT has not been fully established. Several integrins are upregulated by TGF-β1 during EMT. Integrins are involved in growth factor signaling through integrin-growth factor receptor crosstalk. We previously reported that FGF1 directly binds to integrin αvβ3 and the interaction was required for FGF1 functions such as cell proliferation and migration. We studied the role of αvβ3 induced by TGF-β on TGF-β-induced EMT. Here, we describe that FGF1 augmented EMT induced by TGF-β1 in MCF10A and MCF12A mammary epithelial cells. TGF-β1 markedly amplified integrin αvβ3 and FGFR1 (but not FGFR2. We studied if the enhancing effect of FGF1 on TGF-β1-induced EMT requires enhanced levels of both integrin αvβ3 expression and FGFR1. Knockdown of β3 suppressed the enhancement by FGF1 of TGF-β1-induced EMT in MCF10A cells. Antagonists to FGFR suppressed the enhancing effect of FGF1 on EMT. Integrin-binding defective FGF1 mutant did not augment TGF-β1-induced EMT in MCF10A cells. These findings suggest that enhanced integrin αvβ3 expression in addition to enhanced FGFR1 expression is critical for FGF1 to augment TGF-β1-induced EMT in mammary epithelial cells.

  11. β1-Integrin via NF-κB signaling is essential for acquisition of invasiveness in a model of radiation treated in situ breast cancer.

    Science.gov (United States)

    Nam, Jin-Min; Ahmed, Kazi M; Costes, Sylvain; Zhang, Hui; Onodera, Yasuhito; Olshen, Adam B; Hatanaka, Kanako C; Kinoshita, Rumiko; Ishikawa, Masayori; Sabe, Hisataka; Shirato, Hiroki; Park, Catherine C

    2013-01-01

    Ductal carcinoma in situ (DCIS) is characterized by non-invasive cancerous cell growth within the breast ducts. Although radiotherapy is commonly used in the treatment of DCIS, the effect and molecular mechanism of ionizing radiation (IR) on DCIS are not well understood, and invasive recurrence following radiotherapy remains a significant clinical problem. This study investigated the effects of IR on a clinically relevant model of Akt-driven DCIS and identified possible molecular mechanisms underlying invasive progression in surviving cells. We measured the level of phosphorylated-Akt (p-Akt) in a cohort of human DCIS specimens by immunohistochemistry (IHC) and correlated it with recurrence risk. To model human DCIS, we used Akt overexpressing human mammary epithelial cells (MCF10A-Akt) which, in three-dimensional laminin-rich extracellular matrix (lrECM) and in vivo, form organotypic DCIS-like lesions with lumina expanded by pleiomorphic cells contained within an intact basement membrane. In a population of cells that survived significant IR doses in three-dimensional lrECM, a malignant phenotype emerged creating a model for invasive recurrence. P-Akt was up-regulated in clinical DCIS specimens and was associated with recurrent disease. MCF10A-Akt cells that formed DCIS-like structures in three-dimensional lrECM showed significant apoptosis after IR, preferentially in the luminal compartment. Strikingly, when cells that survived IR were repropagated in three-dimensional lrECM, a malignant phenotype emerged, characterized by invasive activity, up-regulation of fibronectin, α5β1-integrin, matrix metalloproteinase-9 (MMP-9) and loss of E-cadherin. In addition, IR induced nuclear translocation and binding of nuclear factor-kappa B (NF-κB) to the β1-integrin promoter region, associated with up-regulation of α5β1-integrins. Inhibition of NF-κB or β1-integrin signaling abrogated emergence of the invasive activity. P-Akt is up-regulated in some human DCIS lesions

  12. Inhibition of the αvβ6 integrin leads to limited alteration of TGF-α-induced pulmonary fibrosis

    Science.gov (United States)

    Madala, Satish K.; Korfhagen, Thomas R.; Schmidt, Stephanie; Davidson, Cynthia; Edukulla, Ramakrishna; Ikegami, Machiko; Violette, Shelia M.; Weinreb, Paul H.; Sheppard, Dean

    2014-01-01

    A number of growth factors and signaling pathways regulate matrix deposition and fibroblast proliferation in the lung. The epidermal growth factor receptor (EGFR) family of receptors and the transforming growth factor-β (TGF-β) family are active in diverse biological processes and are central mediators in the initiation and maintenance of fibrosis in many diseases. Transforming growth factor-α (TGF-α) is a ligand for the EGFR, and doxycycline (Dox)-inducible transgenic mice conditionally expressing TGF-α specifically in the lung epithelium develop progressive fibrosis accompanied with cachexia, changes in lung mechanics, and marked pleural thickening. Although recent studies demonstrate that EGFR activation modulates the fibroproliferative effects involved in the pathogenesis of TGF-β induced pulmonary fibrosis, in converse, the direct role of EGFR induction of the TGF-β pathway in the lung is unknown. The αvβ6 integrin is an important in vivo activator of TGF-β activation in the lung. Immunohistochemical analysis of αvβ6 protein expression and bronchoalveolar analysis of TGF-β pathway signaling indicates activation of the αvβ6/TGF-β pathway only at later time points after lung fibrosis was already established in the TGF-α model. To determine the contribution of the αvβ6/TGF-β pathway on the progression of established fibrotic disease, TGF-α transgenic mice were administered Dox for 4 wk, which leads to extensive fibrosis; these mice were then treated with a function-blocking anti-αvβ6 antibody with continued administration of Dox for an additional 4 wk. Compared with TGF-α transgenic mice treated with control antibody, αvβ6 inhibition significantly attenuated pleural thickening and altered the decline in lung mechanics. To test the effects of genetic loss of the β6 integrin, TGF-α transgenic mice were mated with β6-null mice and the degree of fibrosis was compared in adult mice following 8 wk of Dox administration. Genetic ablation of

  13. Nanotetrac targets integrin αvβ3 on tumor cells to disorder cell defense pathways and block angiogenesis

    Directory of Open Access Journals (Sweden)

    Davis PJ

    2014-09-01

    Full Text Available Paul J Davis,1,2 Hung-Yun Lin,2,3 Thangirala Sudha,2 Murat Yalcin,2,4 Heng-Yuan Tang,2 Aleck Hercbergs,5 John T Leith,6 Mary K Luidens,1 Osnat Ashur-Fabian,7,8 Sandra Incerpi,9 Shaker A Mousa2 1Department of Medicine, Albany Medical College, Albany, NY, USA; 2Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, USA; 3PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; 4Department of Physiology, Veterinary Medicine Faculty, Uludag University, Gorukle, Bursa, Turkey; 5Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA; 6Rhode Island Nuclear Science Center, Narragansett, RI, USA; 7Translational Hemato-oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel; 8Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; 9Department of Sciences, University of Roma Tre, Rome, Italy Abstract: The extracellular domain of integrin αvβ3 contains a receptor for thyroid hormone and hormone analogs. The integrin is amply expressed by tumor cells and dividing blood vessel cells. The proangiogenic properties of thyroid hormone and the capacity of the hormone to promote cancer cell proliferation are functions regulated nongenomically by the hormone receptor on αvβ3. An L-thyroxine (T4 analog, tetraiodothyroacetic acid (tetrac, blocks binding of T4 and 3,5,3'-triiodo-L-thyronine (T3 by αvβ3 and inhibits angiogenic activity of thyroid hormone. Covalently bound to a 200 nm nanoparticle that limits its activity to the cell exterior, tetrac reformulated as Nanotetrac has additional effects mediated by αvβ3 beyond the inhibition of binding of T4 and T3 to the integrin. These actions of Nanotetrac include disruption of transcription of cell survival pathway genes, promotion of apoptosis by multiple mechanisms, and interruption

  14. Coordinated Multi-Objective Control of Regulating Resources in Multi-Area Power Systems with Large Penetration of Wind Power Generation

    DEFF Research Database (Denmark)

    Nyeng, Preben; Yang, Bo; Ma, Jian

    2008-01-01

    This paper describes a control algorithm for a Wide Area Energy Storage and Management System (WAEMS). The WAEMS is designed to meet the demand for fast, accurate and reliable regulation services in multi-area power systems with a significant share of wind power and other intermittent generation...

  15. β1 integrin modulates tumor growth and apoptosis of human colorectal cancer.

    Science.gov (United States)

    Song, Jia; Zhang, Jixiang; Wang, Jing; Cao, Zhuo; Wang, Jun; Guo, Xufeng; Dong, Weiguo

    2014-07-01

    We aimed to ascertain whether β1 integrin (ITGB1) induces apoptosis of colorectal cancer (CRC) through regulation of the mitochondrial pathway in vitro and in vivo. We generated lentiviral vectors expressing ITGB1 or ITGB1-specific RNAi and an unrelated control vector. After infection of the HT29 cells, we used western blot analysis and flow cytometric analysis to validate the patterns of ITGB1 expression. Proliferation and apoptosis were evaluated by colony formation assay, flow cytometry and western blot analysis. Upregulation of ITGB1 significantly increased the proliferation of HT29 cells; however, the levels of Bcl-2 and cyclin D1 proteins were upregulated while Bax, caspase-3, caspase-9 and p21 were downregulated in the HT29-ITGB1 cells compared to these levels in the controls. Hoechst 33258 staining and flow cytometric analysis showed that ITGB1 may play a significant role in the apoptosis of CRC cells. Moreover, ITGB1 promoted the proliferation of cells in a xenograft tumor mouse model. TUNEL staining revealed a marked increase in the percentage of positive cells in the HT29-RNAi group (84.3 ± 4.0%), which were more significant than in the HT29-ITGB1 group (48.3 ± 2.9%) and the other two control groups, HT29 (52.0 ± 3.6%) and HT29-NC (49.7 ± 4.5%). These results suggest that ITGB1 regulates the growth and apoptosis of human colorectal cancer cells.

  16. Energy landscape differences among integrins establish the framework for understanding activation.

    Science.gov (United States)

    Li, Jing; Springer, Timothy A

    2018-01-02

    Why do integrins differ in basal activity, and how does affinity for soluble ligand correlate with cellular adhesiveness? We show that basal conformational equilibrium set points for integrin α 4 β 1 are cell type specific and differ from integrin α 5 β 1 when the two integrins are coexpressed on the same cell. Although α 4 β 1 is easier to activate, its high-affinity state binds vascular cell adhesion molecule and fibronectin 100- to 1,000-fold more weakly than α 5 β 1 binds fibronectin. Furthermore, the difference in affinity between the high- and low-affinity states is more compressed in α 4 β 1 (600- to 800-fold) than in α 5 β 1 (4,000- to 6,000-fold). α 4 β 1 basal conformational equilibria differ among three cell types, define affinity for soluble ligand and readiness for priming, and may reflect differences in interactions with intracellular adaptors but do not predict cellular adhesiveness for immobilized ligand. The measurements here provide a necessary framework for understanding integrin activation in intact cells, including activation of integrin adhesiveness by application of tensile force by the cytoskeleton, across ligand-integrin-adaptor complexes. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.

  17. Closed headpiece of integrin [alpah]IIb[beta]3 and its complex with an [alpha]IIb[beta]3-specific antagonist that does not induce opening

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jieqing; Zhu, Jianghai; Negri, Ana; Provasi, Davide; Filizola, Marta; Coller, Barry S.; Springer, Timothy A. (Sinai); (Rockefeller); (CH-Boston)

    2011-08-24

    The platelet integrin {alpha}{sub IIb}{beta}{sub 3} is essential for hemostasis and thrombosis through its binding of adhesive plasma proteins. We have determined crystal structures of the {alpha}{sub IIb}{beta}{sub 3} headpiece in the absence of ligand and after soaking in RUC-1, a novel small molecule antagonist. In the absence of ligand, the {alpha}{sub IIb}{beta}{sub 3} headpiece is in a closed conformation, distinct from the open conformation visualized in presence of Arg-Gly-Asp (RGD) antagonists. In contrast to RGD antagonists, RUC-1 binds only to the {alpha}{sub IIb} subunit. Molecular dynamics revealed nearly identical binding. Two species-specific residues, {alpha}{sub IIb} Y190 and {alpha}{sub aIIb} D232, in the RUC-1 binding site were confirmed as important by mutagenesis. In sharp contrast to RGD-based antagonists, RUC-1 did not induce {alpha}{sub IIb}{beta}{sub 3} to adopt an open conformation, as determined by gel filtration and dynamic light scattering. These studies provide insights into the factors that regulate integrin headpiece opening, and demonstrate the molecular basis for a novel mechanism of integrin antagonism.

  18. Different Phenotypes in Human Prostate Cancer: α6 or α3 Integrin in Cell-extracellular Adhesion Sites

    Directory of Open Access Journals (Sweden)

    Monika Schmelz

    2002-01-01

    Full Text Available The distribution of α6/α3 integrin in adhesion complexes at the basal membrane in human normal and cancer prostate glands was analyzed in 135 biopsies from 61 patients. The levels of the polarized α6/α3 integrin expression at the basal membrane of prostate tumor glands were determined by quantitative immunohistochemistry. The α6/α3 integrin expression was compared with Gleason sum score, pathological stage, and preoperative serum prostate-specific antigen (PSA. The associations were assessed by statistical methods. Eighty percent of the tumors expressed the α6 or α3 integrin and 20% was integrin-negative. Gleason sum score, but not serum PSA, was associated with the integrin expression. Low Gleason sum score correlated with increased integrin expression, high Gleason sum score with low and negative integrin expression. Three prostate tumor phenotypes were distinguished based on differential integrin expression. Type I coexpressed both α6 and α3 subunits, type II exclusively expressed a6 integrin, and type III expressed α3 integrin only. Fifteen cases were further examined for the codistribution of vinculin, paxillin, and CD 151 on frozen serial sections using confocal laser scanning microscopy. The α6/α3 integrins, CD151, paxillin, and vinculin were present within normal glands. In prostate carcinoma, α6 integrin was colocalized with CD 151, but not with vinculin or paxillin. In tumor phenotype I, the α6 subunit did not colocalize with the α3 subunit indicating the existence of two different adhesion complexes. Human prostate tumors display on their cell surface the α6β1 and/or α3β1 integrins. Three tumor phenotypes associated with two different adhesion complexes were identified, suggesting a reorganization of cell adhesion structures in prostate cancer.

  19. The novel synthetic ether lipid inositol-C2-PAF inhibits phosphorylation of the tyrosine kinases Src and FAK independent of integrin activation in transformed skin cells.

    Science.gov (United States)

    Semini, Geo; Hildmann, Annette; Reissig, Hans-Ulrich; Reutter, Werner; Danker, Kerstin

    2011-04-15

    New alkyl-phospholipids that are structurally derived from platelet-activating factor are promising candidates for anticancer treatment. The mechanism of action of derivatives of the platelet-activating factor is distinctly different from that of known DNA- or tubulin-targeting anticancer agents because they are incorporated into cell membranes, where they accumulate and interfere with a wide variety of key enzymes. We recently presented evidence of a novel group of alkyl-phospholipids, glycosidated phospholipids that efficiently inhibit cell proliferation. One member of this group, inositol-C2-PAF (Ino-C2-PAF), displays high efficacy and low cytotoxicity in HaCaT-cells, an immortalized non-tumorigenic skin keratinocyte cell line. Here, we show that Ino-C2-PAF also inhibits the motility of the skin-derived transformed cell lines HaCaT and squamous cell carcinoma (SCC)-25. This decrease in motility is accompanied by an altered F-actin cytoskeleton, increased clustering of integrins, and increased cell-matrix adhesion. Despite enhanced integrin clustering and matrix adhesion, we observed less phosphorylation of the cytoplasmic tyrosine kinases focal adhesion kinase (FAK) and Src, key regulators of cellular motility, at focal adhesion sites. Transient transfection of constitutively active variants of FAK and Src could at least in part bybass this inhibitory effect of Ino-C2-PAF. This fact indicates that Ino-C2-PAF interferes with the fine-tuned balance between adhesion and migration. Ino-C2-PAF at least partially uncouples integrin-mediated attachment from subsequent integrin-dependent signaling steps, which inhibits migration in transformed keratinocyte cell lines. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. In vitro effect of αVβ3 and αVβ5 integrin inhibitor cilengitide combined with ionizing radiation on human malignant tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Felipe H.S.; Sanchez, Eládio O.F.; Santos, Raquel G., E-mail: felipehssilva@gmail.com, E-mail: santosr@cdtn.br, E-mail: eladio.flores@funed.mg.gov.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Fundação Ezequiel Dias (FUNED), Belo Horizonte,MG (Brazil)

    2017-11-01

    Integrin play a role in growth, motility, regulating adhesion and survival, leading to the increase of the proliferation capacity, invasion and metastasis of the tumors. Cilengitide inhibits the integrin αVβ3 and αVβ5 and its effect is in clinical evaluation in gliomas, being promising based on its great anticancer potential. Thus, the combination of ionizing radiation with Cilengitide is an alternative therapeutic strategy. Studies have shown the effect of combined therapy on tumor lines, which may lead to a radiosensitization effect by inhibiting the interaction of matrix proteins with integrin receptors, increasing the cytotoxic effect of ionizing radiation. Therefore, in this study we determined the radiosensitizing effect of cilengitide in the treatment of resistant tumors and compare to the effect of combination therapy with cisplatin, a molecule already used in clinical practice. The radiosensitizing effect of the cilengitide was evaluated by the quantification of metabolic cell viability through the MTT assay. Inhibition of colony formation was investigated in clonogenic assays. Flow cytometer was used to investigate the induction the generation of ROS in monotherapy and combined treatments. We observed that in cell line examined, cilengitide promoted detachment, metabolic alterations and reduced proliferation, but also induced the generation of ROS. Combined treatment with cilengitide and ionizing radiation showed an synergistic effect further reducing proliferation and metabolism compared to the both monotherapies (Cilengitide and Cisplatin), but also potentiated the induction of the generation of ROS. Combined therapy with cilengitide was more potent than with cisplatin, evidencing that therapies with anti-integrin are excellent therapeutic strategies to radiosensitize tumors. (author)

  1. An integrin alpha4beta7•IgG heterodimeric chimera binds to MAdCAM-1 on high endothelial venules in gut-associated lymphoid tissue.

    Science.gov (United States)

    Hoshino, Hitomi; Kobayashi, Motohiro; Mitoma, Junya; Sato, Yoshiko; Fukuda, Minoru; Nakayama, Jun

    2011-06-01

    Lymphocyte homing is regulated by a multistep process mediated by sequential adhesive interactions between circulating lymphocytes and high endothelial venules (HEVs). In gut-associated lymphoid tissue (GALT), the initial interactive step, "tethering and rolling," is partly mediated by integrin α4β7 expressed on GALT-homing lymphocytes and its ligand MAdCAM-1, which is exclusively expressed on HEVs in GALT. To probe functional MAdCAM-1 in tissue sections, we developed a soluble integrin α4β7 heterodimeric IgG chimera by joining the extracellular region of mouse integrin α4 and β7 subunits to a human IgG Fc domain. Western blot analysis revealed that co-transfection of HEK 293T cells with expression vectors encoding integrin α4•IgG and β7•IgG results in the formation of α4β7•IgG heterodimeric chimeras. This complex preferentially binds to CHO cells expressing MAdCAM-1 and, to a lesser extent, to cells expressing VCAM-1, but not to cells expressing ICAM-1. Moreover, α4β7•IgG specifically binds to HEVs in GALT in situ in a divalent cation-dependent fashion and inhibits lymphocyte binding to HEVs in GALT. These findings indicate that α4β7•IgG can be used as a probe for functional MAdCAM-1 expressed on HEVs in GALT and could potentially serve as an anti-inflammatory drug inhibiting GALT-specific lymphocyte migration.

  2. Reciprocal interactions between Beta1-integrin and epidermal growth factor in three-dimensional basement membrane breast cultures: A different perspective in epithelial biology

    Energy Technology Data Exchange (ETDEWEB)

    Wang, F.; Weaver, V.M.; Petersen, O.W.; Larabell, C.A.; Dedhar, S.; Briand, P.; Lupu, R.; Bissell, M.J.

    1998-09-30

    Anchorage and growth factor independence are cardinal features of the transformed phenotype. Although it is logical that the two pathways must be coregulated in normal tissues to maintain homeostasis, this has not been demonstrated directly. We showed previously that down-modulation of {beta}1-integrin signaling reverted the malignant behavior of a human breast tumor cell line (T4-2) derived from phenotypically normal cells (HMT-3522) and led to growth arrest in a threedimensional (3D) basement membrane assay in which the cells formed tissue-like acini (14). Here, we show that there is a bidirectional cross-modulation of {beta}1-integrin and epidermal growth factor receptor (EGFR) signaling via the mitogenactivated protein kinase (MAPK) pathway. The reciprocal modulation does not occur in monolayer (2D) cultures. Antibodymediated inhibition of either of these receptors in the tumor cells, or inhibition of MAPK kinase, induced a concomitant downregulation of both receptors, followed by growth-arrest and restoration of normal breast tissue morphogenesis. Crossmodulation and tissue morphogenesis were associated with attenuation of EGF-induced transient MAPK activation. To specifically test EGFR and {beta}1-integrin interdependency, EGFR was overexpressed in nonmalignant cells, leading to disruption of morphogenesis and a compensatory up-regulation of {beta}1-integrin expression, again only in 3D. Our results indicate that when breast cells are spatially organized as a result of contact with basement membrane, the signaling pathways become coupled and bidirectional. They further explain why breast cells fail to differentiate in monolayer cultures in which these events are mostly uncoupled. Moreover, in a subset of tumor cells in which these pathways are misregulated but functional, the cells could be 'normalized' by manipulating either pathway.

  3. P-cadherin signals through the laminin receptor α6β4 integrin to induce stem cell and invasive properties in basal-like breast cancer cells.

    Science.gov (United States)

    Vieira, André Filipe; Ribeiro, Ana Sofia; Dionísio, Maria Rita; Sousa, Bárbara; Nobre, Ana Rita; Albergaria, André; Santiago-Gómez, Angélica; Mendes, Nuno; Gerhard, Renê; Schmitt, Fernando; Clarke, Robert B; Paredes, Joana

    2014-02-15

    P-cadherin is a classical cell-cell adhesion molecule that, in contrast to E-cadherin, has a positive role in breast cancer progression, being considered a poor prognostic factor in this disease. In previous reports, we have shown that this protein induces cancer stem cell and invasive properties to basal-like breast cancer cells. Here, we clarify the downstream signaling pathways that are triggered by P-cadherin to mediate these effects. We demonstrated that P-cadherin inhibition led to a significant decreased adhesion of cancer cells to the basement membrane substrate laminin, as well as to a major reduction in the expression of the laminin receptor α6β4 integrin. Remarkably, the expression of this heterodimer was required for the invasive capacity and increased mammosphere forming efficiency induced by P-cadherin expression. Moreover, we showed that P-cadherin transcriptionally up-regulates the α6 integrin subunit expression and directly interacts with the β4 integrin subunit. We still showed that P-cadherin downstream signaling, in response to laminin, involves the activation of focal adhesion (FAK), Src and AKT kinases. The association between the expression of P-cadherin, α6β4 heterodimer and the active FAK and Src phosphorylated forms was validated in vivo. Our data establish that there is a crosstalk between P-cadherin and the laminin receptor α6β4 integrin signaling pathway, which link has never been previously described. The activation of this heterodimer explains the stem cell and invasive properties induced by P-cadherin to breast cancer cells, pointing to a new molecular mechanism that may be targeted to counteract the effects induced by this adhesion molecule.

  4. In vitro effect of αVβ3 and αVβ5 integrin inhibitor cilengitide combined with ionizing radiation on human malignant tumor cells

    International Nuclear Information System (INIS)

    Silva, Felipe H.S.; Sanchez, Eládio O.F.; Santos, Raquel G.

    2017-01-01

    Integrin play a role in growth, motility, regulating adhesion and survival, leading to the increase of the proliferation capacity, invasion and metastasis of the tumors. Cilengitide inhibits the integrin αVβ3 and αVβ5 and its effect is in clinical evaluation in gliomas, being promising based on its great anticancer potential. Thus, the combination of ionizing radiation with Cilengitide is an alternative therapeutic strategy. Studies have shown the effect of combined therapy on tumor lines, which may lead to a radiosensitization effect by inhibiting the interaction of matrix proteins with integrin receptors, increasing the cytotoxic effect of ionizing radiation. Therefore, in this study we determined the radiosensitizing effect of cilengitide in the treatment of resistant tumors and compare to the effect of combination therapy with cisplatin, a molecule already used in clinical practice. The radiosensitizing effect of the cilengitide was evaluated by the quantification of metabolic cell viability through the MTT assay. Inhibition of colony formation was investigated in clonogenic assays. Flow cytometer was used to investigate the induction the generation of ROS in monotherapy and combined treatments. We observed that in cell line examined, cilengitide promoted detachment, metabolic alterations and reduced proliferation, but also induced the generation of ROS. Combined treatment with cilengitide and ionizing radiation showed an synergistic effect further reducing proliferation and metabolism compared to the both monotherapies (Cilengitide and Cisplatin), but also potentiated the induction of the generation of ROS. Combined therapy with cilengitide was more potent than with cisplatin, evidencing that therapies with anti-integrin are excellent therapeutic strategies to radiosensitize tumors. (author)

  5. The Expression of PHOSPHO1, nSMase2 and TNAP is Coordinately Regulated by Continuous PTH Exposure in Mineralising Osteoblast Cultures.

    Science.gov (United States)

    Houston, D A; Myers, K; MacRae, V E; Staines, K A; Farquharson, C

    2016-11-01

    Sustained exposure to high levels of parathyroid hormone (PTH), as observed in hyperparathyroidism, is catabolic to bone. The increase in the RANKL/OPG ratio in response to continuous PTH, resulting in increased osteoclastogenesis, is well established. However, the effects of prolonged PTH exposure on key regulators of skeletal mineralisation have yet to be investigated. This study sought to examine the temporal expression of PHOSPHO1, TNAP and nSMase2 in mineralising osteoblast-like cell cultures and to investigate the effects of continuous PTH exposure on the expression of these enzymes in vitro. PHOSPHO1, nSMase2 and TNAP expression in cultured MC3T3-C14 cells significantly increased from day 0 to day 10. PTH induced a rapid downregulation of Phospho1 and Smpd3 gene expression in MC3T3-C14 cells and cultured hemi-calvariae. Alpl was differentially regulated by PTH, displaying upregulation in cultured MC3T3-C14 cells and downregulation in hemi-calvariae. PTH was also able to abolish the stimulatory effects of bone morphogenic protein 2 (BMP-2) on Smpd3 and Phospho1 expression. The effects of PTH on Phospho1 expression were mimicked with the cAMP agonist forskolin and blocked by the PKA inhibitor PKI (5-24), highlighting a role for the cAMP/PKA pathway in this regulation. The potent down-regulation of Phospho1 and Smpd3 in osteoblasts in response to continuous PTH may provide a novel explanation for the catabolic effects on the skeleton of such an exposure. Furthermore, our findings support the hypothesis that PHOSPHO1, nSMase2 and TNAP function cooperatively in the initiation of skeletal mineralisation.

  6. 40 CFR 233.31 - Coordination requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Coordination requirements. 233.31 Section 233.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING 404 STATE PROGRAM REGULATIONS Program Operation § 233.31 Coordination requirements. (a) If a proposed...

  7. 7 CFR 624.5 - Coordination.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Coordination. 624.5 Section 624.5 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES EMERGENCY WATERSHED PROTECTION § 624.5 Coordination. (a) If the President declares...

  8. Beta 1 integrin is essential for teratoma growth and angiogenesis

    DEFF Research Database (Denmark)

    Bloch, W; Forsberg, E; Lentini, S

    1997-01-01

    Teratomas are benign tumors that form after ectopic injection of embryonic stem (ES) cells into mice and contain derivatives of all primitive germ layers. To study the role of beta 1 integrin during teratoma formation, we compared teratomas induced by normal and beta1-null ES cells. Injection...... of normal ES cells gave rise to large teratomas. In contrast, beta 1-null ES cells either did not grow or formed small teratomas with an average weight of beta 1-null teratomas revealed the presence of various differentiated cells, however, a much...... lower number of host-derived stromal cells than in normal teratomas. Fibronectin, collagen I, and nidogen were expressed but, in contrast to normal teratomas, diffusely deposited in beta1-null teratomas. Basement membranes were present but with irregular shape and detached from the cell surface. Normal...

  9. IRF-3, IRF-5, and IRF-7 coordinately regulate the type I IFN response in myeloid dendritic cells downstream of MAVS signaling.

    Directory of Open Access Journals (Sweden)

    Helen M Lazear

    2013-01-01

    Full Text Available Although the transcription factors IRF-3 and IRF-7 are considered master regulators of type I interferon (IFN induction and IFN stimulated gene (ISG expression, Irf3(-/-×Irf7(-/- double knockout (DKO myeloid dendritic cells (mDC produce relatively normal levels of IFN-β after viral infection. We generated Irf3(-/-×Irf5(-/-×Irf7(-/- triple knockout (TKO mice to test whether IRF-5 was the source of the residual induction of IFN-β and ISGs in mDCs. In pathogenesis studies with two unrelated positive-sense RNA viruses (West Nile virus (WNV and murine norovirus, TKO mice succumbed at rates greater than DKO mice and equal to or approaching those of mice lacking the type I IFN receptor (Ifnar(-/-. In ex vivo studies, after WNV infection or exposure to Toll-like receptor agonists, TKO mDCs failed to produce IFN-β or express ISGs. In contrast, this response was sustained in TKO macrophages following WNV infection. To define IRF-regulated gene signatures, we performed microarray analysis on WNV-infected mDC from wild type (WT, DKO, TKO, or Ifnar(-/- mice, as well as from mice lacking the RIG-I like receptor adaptor protein MAVS. Whereas the gene induction pattern in DKO mDC was similar to WT cells, remarkably, almost no ISG induction was detected in TKO or Mavs(-/- mDC. The relative equivalence of TKO and Mavs(-/- responses suggested that MAVS dominantly regulates ISG induction in mDC. Moreover, we showed that MAVS-dependent induction of ISGs can occur through an IRF-5-dependent yet IRF-3 and IRF-7-independent pathway. Our results establish IRF-3, -5, and -7 as the key transcription factors responsible for mediating the type I IFN and ISG response in mDC during WNV infection and suggest a novel signaling link between MAVS and IRF-5.

  10. Tuning Collective Cell Migration by Cell-Cell Junction Regulation.

    Science.gov (United States)

    Friedl, Peter; Mayor, Roberto

    2017-04-03

    Collective cell migration critically depends on cell-cell interactions coupled to a dynamic actin cytoskeleton. Important cell-cell adhesion receptor systems implicated in controlling collective movements include cadherins, immunoglobulin superfamily members (L1CAM, NCAM, ALCAM), Ephrin/Eph receptors, Slit/Robo, connexins and integrins, and an adaptive array of intracellular adapter and signaling proteins. Depending on molecular composition and signaling context, cell-cell junctions adapt their shape and stability, and this gradual junction plasticity enables different types of collective cell movements such as epithelial sheet and cluster migration, branching morphogenesis and sprouting, collective network migration, as well as coordinated individual-cell migration and streaming. Thereby, plasticity of cell-cell junction composition and turnover defines the type of collective movements in epithelial, mesenchymal, neuronal, and immune cells, and defines migration coordination, anchorage, and cell dissociation. We here review cell-cell adhesion systems and their functions in different types of collective cell migration as key regulators of collective plasticity. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  11. Isolation and characterization of cDNA clones for the gamma subunit of Xenopus fibrinogen, the product of a coordinately regulated gene family.

    Science.gov (United States)

    Bhattacharya, A; Shepard, A R; Moser, D R; Holland, L J

    1990-09-10

    Fibrinogen, the major structural protein involved in blood coagulation, is synthesized and secreted by the liver. In the frog Xenopus laevis, fibrinogen production is dramatically induced by glucocorticoids. The hormonal stimulation requires synthesis of three separate subunits, designated A alpha, B beta, and gamma. For investigation of the molecular mechanisms underlying this coordinate induction, we have isolated cDNA clones for the subunits of Xenopus fibrinogen. In this communication we describe the identification of clones for the gamma chain. Initially, a Xenopus liver cDNA library in pBR322 was screened with a rat gamma chain cDNA and a clone representing half of the 1600-base frog gamma mRNA was identified. This clone was shown to be complementary to gamma mRNA by hybrid selection of mRNA that translated in vitro into the gamma polypeptide. A clone about 1460 base pairs in length was then isolated from a Xenopus liver lambda gt10 cDNA library and subcloned into Bluescript SK-. This clone, designated X1 gamma 3, contains the entire 3'-end and lacks 38 bases at the 5'-end of gamma mRNA. The deduced amino acid sequence at the N-terminal is compatible with a signal peptide of 20-23 amino acids, in agreement with the calculated size of the frog gamma chain signal peptide. Following the signal sequence is a region of highly conserved amino acids that participate in disulfide bond formation critical for the maintenance of tertiary structure in mammalian fibrinogen. The gamma cDNA clone was used to measure gamma mRNA in purified Xenopus liver cells treated with glucocorticoids in primary culture.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Coordinative Modulation of Chlorothricin Biosynthesis by Binding of the Glycosylated Intermediates and End Product to a Responsive Regulator ChlF1.

    Science.gov (United States)

    Li, Yue; Li, Jingjing; Tian, Zhenhua; Xu, Yu; Zhang, Jihui; Liu, Wen; Tan, Huarong

    2016-03-04

    Chlorothricin, isolated from Streptomyces antibioticus, is a parent member of spirotetronate family of antibiotics that have long been appreciated for their remarkable biological activities. ChlF1 plays bifunctional roles in chlorothricin biosynthesis by binding to its target genes (chlJ, chlF1, chlG, and chlK). The dissociation constants of ChlF1 to these genes are ∼ 102-140 nm. A consensus sequence, 5'-GTAANNATTTAC-3', was found in these binding sites. ChlF1 represses the transcription of chlF1, chlG, and chlK but activates chlJ, which encodes a key enzyme acyl-CoA carboxyl transferase involved in the chlorothricin biosynthesis. We demonstrate that the end product chlorothricin and likewise its biosynthetic intermediates (demethylsalicycloyl chlorothricin and deschloro-chlorothricin) can act as signaling molecules to modulate the binding of ChlF1 to its target genes. Intriguingly, a correlation between the antibacterial activity and binding ability of signaling molecules to the regulator ChlF1 is clearly observed. These features of the signaling molecules are associated with the glycosylation of spirotetronate macrolide aglycone. The findings provide new insights into the TetR family regulators responding to special structure of signaling molecules, and we reveal the regulatory mini-network mediated by ChlF1 in chlorothricin biosynthesis for the first time. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Coordinative Modulation of Chlorothricin Biosynthesis by Binding of the Glycosylated Intermediates and End Product to a Responsive Regulator ChlF1*

    Science.gov (United States)

    Li, Yue; Li, Jingjing; Tian, Zhenhua; Xu, Yu; Zhang, Jihui; Liu, Wen; Tan, Huarong

    2016-01-01

    Chlorothricin, isolated from Streptomyces antibioticus, is a parent member of spirotetronate family of antibiotics that have long been appreciated for their remarkable biological activities. ChlF1 plays bifunctional roles in chlorothricin biosynthesis by binding to its target genes (chlJ, chlF1, chlG, and chlK). The dissociation constants of ChlF1 to these genes are ∼102–140 nm. A consensus sequence, 5′-GTAANNATTTAC-3′, was found in these binding sites. ChlF1 represses the transcription of chlF1, chlG, and chlK but activates chlJ, which encodes a key enzyme acyl-CoA carboxyl transferase involved in the chlorothricin biosynthesis. We demonstrate that the end product chlorothricin and likewise its biosynthetic intermediates (demethylsalicycloyl chlorothricin and deschloro-chlorothricin) can act as signaling molecules to modulate the binding of ChlF1 to its target genes. Intriguingly, a correlation between the antibacterial activity and binding ability of signaling molecules to the regulator ChlF1 is clearly observed. These features of the signaling molecules are associated with the glycosylation of spirotetronate macrolide aglycone. The findings provide new insights into the TetR family regulators responding to special structure of signaling molecules, and we reveal the regulatory mini-network mediated by ChlF1 in chlorothricin biosynthesis for the first time. PMID:26750095

  14. The master regulator PhoP coordinates phosphate and nitrogen metabolism, respiration, cell differentiation and antibiotic biosynthesis: comparison in Streptomyces coelicolor and Streptomyces avermitilis.

    Science.gov (United States)

    Martín, Juan F; Rodríguez-García, Antonio; Liras, Paloma

    2017-05-01

    Phosphate limitation is important for production of antibiotics and other secondary metabolites in Streptomyces. Phosphate control is mediated by the two-component system PhoR-PhoP. Following phosphate depletion, PhoP stimulates expression of genes involved in scavenging, transport and mobilization of phosphate, and represses the utilization of nitrogen sources. PhoP reduces expression of genes for aerobic respiration and activates nitrate respiration genes. PhoP activates genes for teichuronic acid formation and reduces expression of genes for phosphate-rich teichoic acid biosynthesis. In Streptomyces coelicolor, PhoP repressed several differentiation and pleiotropic regulatory genes, which affects development and indirectly antibiotic biosynthesis. A new bioinformatics analysis of the putative PhoP-binding sequences in Streptomyces avermitilis was made. Many sequences in S. avermitilis genome showed high weight values and were classified according to the available genetic information. These genes encode phosphate scavenging proteins, phosphate transporters and nitrogen metabolism genes. Among of the genes highlighted in the new studies was aveR, located in the avermectin gene cluster, encoding a LAL-type regulator, and afsS, which is regulated by PhoP and AfsR. The sequence logo for S. avermitilis PHO boxes is similar to that of S. coelicolor, with differences in the weight value for specific nucleotides in the sequence.

  15. Insulin promotes cell migration by regulating PSA-NCAM

    International Nuclear Information System (INIS)

    Monzo, Hector J.; Coppieters, Natacha; Park, Thomas I.H.; Dieriks, Birger V.; Faull, Richard L.M.; Dragunow, Mike; Curtis, Maurice A.

    2017-01-01

    Cellular interactions with the extracellular environment are modulated by cell surface polysialic acid (PSA) carried by the neural cell adhesion molecule (NCAM). PSA-NCAM is involved in cellular processes such as differentiation, plasticity, and migration, and is elevated in Alzheimer's disease as well as in metastatic tumour cells. Our previous work demonstrated that insulin enhances the abundance of cell surface PSA by inhibiting PSA-NCAM endocytosis. In the present study we have identified a mechanism for insulin-dependent inhibition of PSA-NCAM turnover affecting cell migration. Insulin enhanced the phosphorylation of the focal adhesion kinase leading to dissociation of αv-integrin/PSA-NCAM clusters, and promoted cell migration. Our results show that αv-integrin plays a key role in the PSA-NCAM turnover process. αv-integrin knockdown stopped PSA-NCAM from being endocytosed, and αv-integrin/PSA-NCAM clusters co-labelled intracellularly with Rab5, altogether indicating a role for αv-integrin as a carrier for PSA-NCAM during internalisation. Furthermore, inhibition of p-FAK caused dissociation of αv-integrin/PSA-NCAM clusters and counteracted the insulin-induced accumulation of PSA at the cell surface and cell migration was impaired. Our data reveal a functional association between the insulin/p-FAK-dependent regulation of PSA-NCAM turnover and cell migration through the extracellular matrix. Most importantly, they identify a novel mechanism for insulin-stimulated cell migration. - Highlights: • Insulin modulates PSA-NCAM turnover through upregulation of p-FAK. • P-FAK modulates αv-integrin/PSA-NCAM clustering. • αv-integrin acts as a carrier for PSA-NCAM endocytosis. • Cell migration is promoted by cell surface PSA. • Insulin promotes PSA-dependent migration in vitro.

  16. Insulin promotes cell migration by regulating PSA-NCAM

    Energy Technology Data Exchange (ETDEWEB)

    Monzo, Hector J.; Coppieters, Natacha [Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Park, Thomas I.H. [Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Dieriks, Birger V.; Faull, Richard L.M. [Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Dragunow, Mike [Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Curtis, Maurice A., E-mail: m.curtis@auckland.ac.nz [Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand)

    2017-06-01

    Cellular interactions with the extracellular environment are modulated by cell surface polysialic acid (PSA) carried by the neural cell adhesion molecule (NCAM). PSA-NCAM is involved in cellular processes such as differentiation, plasticity, and migration, and is elevated in Alzheimer's disease as well as in metastatic tumour cells. Our previous work demonstrated that insulin enhances the abundance of cell surface PSA by inhibiting PSA-NCAM endocytosis. In the present study we have identified a mechanism for insulin-dependent inhibition of PSA-NCAM turnover affecting cell migration. Insulin enhanced the phosphorylation of the focal adhesion kinase leading to dissociation of αv-integrin/PSA-NCAM clusters, and promoted cell migration. Our results show that αv-integrin plays a key role in the PSA-NCAM turnover process. αv-integrin knockdown stopped PSA-NCAM from being endocytosed, and αv-integrin/PSA-NCAM clusters co-labelled intracellularly with Rab5, altogether indicating a role for αv-integrin as a carrier for PSA-NCAM during internalisation. Furthermore, inhibition of p-FAK caused dissociation of αv-integrin/PSA-NCAM clusters and counteracted the insulin-induced accumulation of PSA at the cell surface and cell migration was impaired. Our data reveal a functional association between the insulin/p-FAK-dependent regulation of PSA-NCAM turnover and cell migration through the extracellular matrix. Most importantly, they identify a novel mechanism for insulin-stimulated cell migration. - Highlights: • Insulin modulates PSA-NCAM turnover through upregulation of p-FAK. • P-FAK modulates αv-integrin/PSA-NCAM clustering. • αv-integrin acts as a carrier for PSA-NCAM endocytosis. • Cell migration is promoted by cell surface PSA. • Insulin promotes PSA-dependent migration in vitro.

  17. Role of the beta1-integrin cytoplasmic tail in mediating invasin-promoted internalization of Yersinia

    DEFF Research Database (Denmark)

    Gustavsson, Anna; Armulik, Annika; Brakebusch, Cord

    2002-01-01

    Invasin of Yersinia pseudotuberculosis binds to beta1-integrins on host cells and triggers internalization of the bacterium. To elucidate the mechanism behind the beta1-integrin-mediated internalization of Yersinia, a beta1-integrin-deficient cell line, GD25, transfected with wild-type beta1A, beta......1B or different mutants of the beta1A subunit was used. Both beta1A and beta1B bound to invasin-expressing bacteria, but only beta1A was able to mediate internalization of the bacteria. The cytoplasmic region of beta1A, differing from beta1B, contains two NPXY motifs surrounding a double threonine...... noted that cells affected in bacterial internalization exhibited reduced spreading capability when seeded onto invasin, suggesting a correlation between the internalization of invasin-expressing bacteria and invasin-induced spreading. Likewise, integrins defective in forming peripheral focal complex...

  18. EFFECT OF METHYL MERCURY CHLORIDE EXPOSURE ON PC12 CELL INTEGRIN EXPRESSION AND FUNCTION.

    Science.gov (United States)

    Integrins are heterodimeric transmembrane cell adhesion proteins composed of a and b protein subunits. They are important during brain development in a number of critical functions, including cell migration (Georges-Labouesse, et al., 1998), axonal elongation (Murase and Hayashi...

  19. Phospho-Tyrosine(s) vs. Phosphatidylinositol Binding in Shc Mediated Integrin Signaling.

    Science.gov (United States)

    Lin, Xiaochen; Vinogradova, Olga

    2015-04-01

    The Shc adaptor protein, particularly its p52 isoform, has been identified as a primary signaling partner for the tyrosine(s)-phosphorylated cytoplasmic tails of activated β 3 integrins. Inspired by our recent structure of the Shc PTB domain in complex with a bi-phosphorylated peptide derived from β 3 cytoplasmic tail, we have initiated the investigation of Shc interaction with phospholipids of the membrane. We are particularly focused on PtdIns and their effects on Shc mediated integrin signaling in vitro . Here we present thermodynamic profiles and molecular details of the interactions between Shc, integrin, and PtdIns, all of which have been studied by ITC and solution NMR methods. A model of p52 Shc interaction with phosphorylated β 3 integrin cytoplasmic tail at the cytosolic face of the plasma membrane is proposed based on these data.

  20. Method of increasing radiation sensitivity by inhibition of beta one integrin

    Science.gov (United States)

    Park, Catherine [San Francisco, CA; Bissell, Mina J [Berkeley, CA

    2009-11-17

    A method for increasing or monitoring apoptosis in tumor cells by the co-administration of ionizing radiation and an anti-integrin antibody. Increasing apoptosis reduces tumor growth in vivo and in a cell culture model. The antibody is directed against the beta-1 integrin subunit and is inhibitory of beta-1 integrin signaling. Other molecules having an inhibitory effect on beta-1 integrin, either in signaling or in binding to its cognate extracellular receptors may also be used. The present method is particularly of interest in treatment of tumor cells associated with breast cancer, wherein radiation is currently used alone. The present method further contemplates a monoclonal antibody suitable for human administration that may further comprise a radioisotope attached thereto.

  1. The Adenovirus Type 3 Dodecahedron's RGD Loop Comprises an HSPG Binding Site That Influences Integrin Binding

    Directory of Open Access Journals (Sweden)

    E. Gout

    2010-01-01

    Full Text Available Human type 3 adenovirus dodecahedron (a virus like particle made of twelve penton bases features the ability to enter cells through Heparan Sulphate Proteoglycans (HSPGs and integrins interaction and is used as a versatile vector to deliver DNA or proteins. Cryo-EM reconstruction of the pseudoviral particle with Heparan Sulphate (HS oligosaccharide shows an extradensity on the RGD loop. A set of mutants was designed to study the respective roles of the RGD sequence (RGE mutant and of a basic sequence located just downstream. Results showed that the RGE mutant binding to the HS deficient CHO-2241 cells was abolished and unexpectedly, mutation of the basic sequence (KQKR to AQAS dramatically decreased integrin recognition by the viral pseudoparticle. This basic sequence is thus involved in integrin docking, showing a close interplay between HSPGs and integrin receptors.

  2. DDX3 directly regulates TRAF3 ubiquitination and acts as a scaffold to co-ordinate assembly of signalling complexes downstream from MAVS.

    Science.gov (United States)

    Gu, Lili; Fullam, Anthony; McCormack, Niamh; Höhn, Yvette; Schröder, Martina

    2017-02-15

    The human DEAD-box helicase 3 (DDX3) has been shown to contribute to type I interferon (IFN) induction downstream from antiviral pattern recognition receptors. It binds to TANK-binding kinase 1 and IκB-kinase-ε (IKKε), the two key kinases mediating activation of IFN regulatory factor (IRF) 3 and IRF7. We previously demonstrated that DDX3 facilitates IKKε activation downstream from RIG-I and then links the activated kinase to IRF3. In the present study, we probed the interactions between DDX3 and other key signalling molecules in the RIG-I pathway and identified a novel direct interaction between DDX3 and TNF receptor-associated factor 3 (TRAF3) mediated by a TRAF-interaction motif in the N-terminus of DDX3, which was required for TRAF3 ubiquitination. Interestingly, we observed two waves of K63-linked TRAF3 ubiquitination following RIG-I activation by Sendai virus (SeV) infection, both of which were suppressed by DDX3 knockdown. We also investigated the spatiotemporal formation of endogenous downstream signalling complexes containing the mitochondrial antiviral signalling (MAVS) adaptor, DDX3, IκB-kinase-ε (IKKε), TRAF3 and IRF3. DDX3 was recruited to MAVS early after SeV infection, suggesting that it might mediate subsequent recruitment of other molecules. Indeed, knockdown of DDX3 prevented the formation of TRAF3-MAVS and TRAF3-IKKε complexes. Based on our data, we propose that early TRAF3 ubiquitination is required for the formation of a stable MAVS-TRAF3 complex, while the second wave of TRAF3 ubiquitination mediates IRF3 recruitment and activation. Our study characterises DDX3 as a multifunctional adaptor molecule that co-ordinates assembly of different TRAF3, IKKε and IRF3-containing signalling complexes downstream from MAVS. Additionally, it provides novel insights into the role of TRAF3 in RIG-I signalling. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  3. Coordinated regulation by two VPS9 domain-containing guanine nucleotide exchange factors in small GTPase Rab5 signaling pathways in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, Yuta [Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501 (Japan); Kagiwada, Satoshi [Department of Biological Sciences, Faculty of Science, Nara Women' s University, Kitauoyanishi-machi, Nara 630-8506 (Japan); Shimazu, Sayuri [Center for Supports to Research and Education Activities, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501 (Japan); Takegawa, Kaoru [Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Noguchi, Tetsuko [Department of Biological Sciences, Faculty of Science, Nara Women' s University, Kitauoyanishi-machi, Nara 630-8506 (Japan); Miyamoto, Masaaki, E-mail: miya@kobe-u.ac.jp [Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501 (Japan); Center for Supports to Research and Education Activities, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501 (Japan)

    2015-03-20

    The small GTPase Rab5 is reported to regulate various cellular functions, such as vesicular transport and endocytosis. VPS9 domain-containing proteins are thought to activate Rab5(s) by their guanine-nucleotide exchange activities. Numerous VPS9 proteins have been identified and are structurally conserved from yeast to mammalian cells. However, the functional relationships among VPS9 proteins in cells remain unclear. Only one Rab5 and two VPS9 proteins were identified in the Schizosaccharomyces pombe genome. Here, we examined the cellular function of two VPS9 proteins and the relationship between these proteins in cellular functions. Vps901-GFP and Vps902-GFP exhibited dotted signals in vegetative and differentiated cells. vps901 deletion mutant (Δvps901) cells exhibited a phenotype deficient in the mating process and responses to high concentrations of ions, such as calcium and metals, and Δvps901Δvps902 double mutant cells exhibited round cell shapes similar to ypt5-909 (Rab5 mutant allele) cells. Deletion of both vps901 and vps902 genes completely abolished the mating process and responses to various stresses. A lack of vacuole formation and aberrant inner cell membrane structures were also observed in Δvps901Δvps902 cells by electron microscopy. These data strongly suggest that Vps901 and Vps902 are cooperatively involved in the regulation of cellular functions, such as cell morphology, sexual development, response to ion stresses, and vacuole formation, via Rab5 signaling pathways in fission yeast cells. - Highlights: • Roles of Rab5 activator VPS9 proteins in cellular functions. • Cooperation between VPS9 proteins in Rab5 signaling pathway. • Roles of each VPS9 protein in Rab5 signaling pathway are discussed.

  4. Coordinated regulation by two VPS9 domain-containing guanine nucleotide exchange factors in small GTPase Rab5 signaling pathways in fission yeast

    International Nuclear Information System (INIS)

    Tsukamoto, Yuta; Kagiwada, Satoshi; Shimazu, Sayuri; Takegawa, Kaoru; Noguchi, Tetsuko; Miyamoto, Masaaki

    2015-01-01

    The small GTPase Rab5 is reported to regulate various cellular functions, such as vesicular transport and endocytosis. VPS9 domain-containing proteins are thought to activate Rab5(s) by their guanine-nucleotide exchange activities. Numerous VPS9 proteins have been identified and are structurally conserved from yeast to mammalian cells. However, the functional relationships among VPS9 proteins in cells remain unclear. Only one Rab5 and two VPS9 proteins were identified in the Schizosaccharomyces pombe genome. Here, we examined the cellular function of two VPS9 proteins and the relationship between these proteins in cellular functions. Vps901-GFP and Vps902-GFP exhibited dotted signals in vegetative and differentiated cells. vps901 deletion mutant (Δvps901) cells exhibited a phenotype deficient in the mating process and responses to high concentrations of ions, such as calcium and metals, and Δvps901Δvps902 double mutant cells exhibited round cell shapes similar to ypt5-909 (Rab5 mutant allele) cells. Deletion of both vps901 and vps902 genes completely abolished the mating process and responses to various stresses. A lack of vacuole formation and aberrant inner cell membrane structures were also observed in Δvps901Δvps902 cells by electron microscopy. These data strongly suggest that Vps901 and Vps902 are cooperatively involved in the regulation of cellular functions, such as cell morphology, sexual development, response to ion stresses, and vacuole formation, via Rab5 signaling pathways in fission yeast cells. - Highlights: • Roles of Rab5 activator VPS9 proteins in cellular functions. • Cooperation between VPS9 proteins in Rab5 signaling pathway. • Roles of each VPS9 protein in Rab5 signaling pathway are discussed

  5. Regulation of human gamma-glutamylcysteine synthetase: co-ordinate induction of the catalytic and regulatory subunits in HepG2 cells.

    Science.gov (United States)

    Galloway, D C; Blake, D G; Shepherd, A G; McLellan, L I

    1997-11-15

    We have shown that in HepG2 cells treatment with 75 microM t-butylhydroquinone (tBHQ) results in a 2.5-fold increase in glutathione concentration, as part of an adaptive response to chemical stress. In these cells the elevation in intracellular glutathione level was found to be accompanied by an increase of between 2-fold and 3-fold in the level of the 73 kDa catalytic subunit of gamma-glutamylcysteine synthetase (heavy subunit, GCSh) and the 31 kDa regulatory subunit (light subunit, GCSl). Levels of GCSh and GCSl mRNA were increased by up to 5-fold in HepG2 cells in response to tBHQ. To study the transcriptional regulation of GCSl, we subcloned 6.7 kb of the upstream region of the human GCSl gene (GLCLR) from a genomic clone isolated from a P1 lymphoblastoid cell line genomic library. HepG2 cells were transfected with GLCLR promoter reporter constructs and treated with tBHQ. This resulted in an induction of between 1.5-fold and 3.5-fold in reporter activity, indicating that transcriptional regulation of GLCLR is likely to contribute to the induction of GCSl by tBHQ in HepG2 cells. Sequence analysis of the promoter region demonstrated the presence of putative enhancer elements including AP-1 sites and an antioxidant-responsive element, which might be involved in the observed induction of the GLCLR promoter.

  6. Transcriptional profiling of sugarcane leaves and roots under progressive osmotic stress reveals a regulated coordination of gene expression in a spatiotemporal manner.

    Directory of Open Access Journals (Sweden)

    Alejandro Pereira-Santana

    Full Text Available Sugarcane is one of the most important crops worldwide and is a key plant for the global production of sucrose. Sugarcane cultivation is severely affected by drought stress and it is considered as the major limiting factor for their productivity. In recent years, this plant has been subjected to intensive research focused on improving its resilience against water scarcity; particularly the molecular mechanisms in response to drought stress have become an underlying issue for its improvement. To better understand water stress and the molecular mechanisms we performed a de novo transcriptomic assembly of sugarcane (var. Mex 69-290. A total of 16 libraries were sequenced in a 2x100 bp configuration on a HiSeq-Illumina platform. A total of 536 and 750 genes were differentially up-regulated along with the stress treatments for leave and root tissues respectively, while 1093 and 531 genes were differentially down-regulated in leaves and roots respectively. Gene Ontology functional analysis showed that genes related to response of water deprivation, heat, abscisic acid, and flavonoid biosynthesis were enriched during stress treatment in our study. The reliability of the observed expression patterns was confirmed by RT-qPCR. Additionally, several physiological parameters of sugarcane were significantly affected due to stress imposition. The results of this study may help identify useful target genes and provide tissue-specific data set of genes that are differentially expressed in response to osmotic stress, as well as a complete analysis of the main groups is significantly enriched under this condition. This study provides a useful benchmark for improving drought tolerance in sugarcane and other economically important grass species.

  7. Phospho-Tyrosine(s) vs. Phosphatidylinositol Binding in Shc Mediated Integrin Signaling

    OpenAIRE

    Lin, Xiaochen; Vinogradova, Olga

    2015-01-01

    The Shc adaptor protein, particularly its p52 isoform, has been identified as a primary signaling partner for the tyrosine(s)-phosphorylated cytoplasmic tails of activated ? 3 integrins. Inspired by our recent structure of the Shc PTB domain in complex with a bi-phosphorylated peptide derived from ? 3 cytoplasmic tail, we have initiated the investigation of Shc interaction with phospholipids of the membrane. We are particularly focused on PtdIns and their effects on Shc mediated integrin sign...

  8. Disruption of integrin-fibronectin complexes by allosteric but not ligand-mimetic inhibitors.

    Science.gov (United States)

    Mould, A Paul; Craig, Susan E; Byron, Sarah K; Humphries, Martin J; Jowitt, Thomas A

    2014-12-15

    Failure of Arg-Gly-Asp (RGD)-based inhibitors to reverse integrin-ligand binding has been reported, but the prevalence of this phenomenon among integrin heterodimers is currently unknown. In the present study we have investigated the interaction of four different RGD-binding integrins (α5β1, αVβ1, αVβ3 and αVβ6) with fibronectin (FN) using surface plasmon resonance. The ability of inhibitors to reverse ligand binding was assessed by their capacity to increase the dissociation rate of pre-formed integrin-FN complexes. For all four receptors we showed that RGD-based inhibitors (such as cilengitide) were completely unable to increase the dissociation rate. Formation of the non-reversible state occurred very rapidly and did not rely on the time-dependent formation of a high-affinity state of the integrin, or the integrin leg regions. In contrast with RGD-based inhibitors, Ca2+ (but not Mg2+) was able to greatly increase the dissociation rate of integrin-FN complexes, with a half-maximal response at ~0.4 mM Ca2+ for αVβ3-FN. The effect of Ca2+ was overcome by co-addition of Mn2+, but not Mg2+. A stimulatory anti-β1 monoclonal antibody (mAb) abrogated the effect of Ca2+ on α5β1-FN complexes; conversely, a function-blocking mAb mimicked the effect of Ca2+. These results imply that Ca2+ acts allosterically, probably through binding to the adjacent metal-ion-dependent adhesion site (ADMIDAS), and that the α1 helix in the β subunit I domain is the key element affected by allosteric modulators. The data suggest an explanation for the limited clinical efficacy of RGD-based integrin antagonists, and we propose that allosteric antagonists could prove to be of greater therapeutic benefit.

  9. Beta1 integrins differentially control extravasation of inflammatory cell subsets into the CNS during autoimmunity

    DEFF Research Database (Denmark)

    Bauer, Martina; Brakebusch, Cord; Coisne, Caroline

    2009-01-01

    Inhibiting the alpha(4) subunit of the integrin heterodimers alpha(4)beta(1) and alpha(4)beta(7) with the monoclonal antibody natalizumab is an effective treatment for multiple sclerosis (MS). However, the pharmacological action of natalizumab is not understood conclusively. Previous studies...... to firmly adhere to CNS endothelium in vivo, whereas their priming and expansion remain unaffected. Collectively, these results suggest that the primary action of natalizumab is interference with T cell extravasation via inhibition of alpha(4)beta(1) integrins....

  10. Generation and characterization of a diabody targeting the αvβ6 integrin.

    Directory of Open Access Journals (Sweden)

    Heide Kogelberg

    Full Text Available The αvβ6 integrin is up-regulated in cancer and wound healing but it is not generally expressed in healthy adult tissue. There is increasing evidence that it has a role in cancer progression and will be a useful target for antibody-directed cancer therapies. We report a novel recombinant diabody antibody fragment that targets specifically αvβ6 and blocks its function. The diabody was engineered with a C-terminal hexahistidine tag (His tag, expressed in Pichia pastoris and purified by IMAC. Surface plasmon resonance (SPR analysis of the purified diabody showed affinity in the nanomolar range. Pre-treatment of αvβ6-expressing cells with the diabody resulted in a reduction of cell migration and adhesion to LAP, demonstrating biological function-blocking activity. After radio-labeling, using the His-tag for site-specific attachment of (99mTc, the diabody retained affinity and targeted specifically to αvβ6-expressing tumors in mice bearing isogenic αvβ6 +/- xenografts. Furthermore, the diabody was specifically internalized into αvβ6-expressing cells, indicating warhead targeting potential. Our results indicate that the new αvβ6 diabody has a range of potential applications in imaging, function blocking or targeted delivery/internalization of therapeutic agents.

  11. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease

    Science.gov (United States)

    Lamb, Christopher A.; Luo, Yang; Kennedy, Nicholas A.; Jostins, Luke; Rice, Daniel L.; Gutierrez-Achury, Javier; Ji, Sun-Gou; Heap, Graham; Nimmo, Elaine R.; Edwards, Cathryn; Henderson, Paul; Mowat, Craig; Sanderson, Jeremy; Satsangi, Jack; Simmons, Alison; Wilson, David C.; Tremelling, Mark; Hart, Ailsa; Mathew, Christopher G.; Newman, William G.; Parkes, Miles; Lees, Charlie W.; Uhlig, Holm; Hawkey, Chris; Prescott, Natalie J.; Ahmad, Tariq; Mansfield, John C.; Anderson, Carl A.; Barrett, Jeffrey C.

    2016-01-01

    Genetic association studies have identified 215 risk loci for inflammatory bowel disease 1–8, which have revealed fundamental aspects of its molecular biology. We performed a genome-wide association study of 25,305 individuals, and meta-analyzed with published summary statistics, yielding a total sample size of 59,957 subjects. We identified 25 new loci, three of which contain integrin genes that encode proteins in pathways identified as important therapeutic targets in inflammatory bowel disease. The associated variants are correlated with expression changes in response to immune stimulus at two of these genes (ITGA4, ITGB8) and at previously implicated loci (ITGAL, ICAM1). In all four cases, the expression increasing allele also increases disease risk. We also identified likely causal missense variants in the primary immune deficiency gene PLCG2 and a negative regulator of inflammation, SLAMF8. Our results demonstrate that new common variant associations continue to identify genes relevant to therapeutic target identification and prioritization. PMID:28067908

  12. Increased beta1 integrin is associated with decreased survival in invasive breast cancer.

    Science.gov (United States)

    Yao, Evelyn S; Zhang, Hui; Chen, Yunn-Yi; Lee, Brian; Chew, Karen; Moore, Dan; Park, Catherine

    2007-01-15

    Aberrant microenvironments and loss of balance in cell-extracellular matrix signaling are associated with breast cancer invasion, metastasis, and resistance to therapy. We have recently shown that increased beta1 integrin signaling is involved in malignant progression and that inhibitory antibody to beta1 integrin leads to selective apoptosis and decreased proliferation in three-dimensional cultures and in xenograft models of breast cancer in vivo. To investigate the clinical importance of these findings, in the present study we examined the expression of beta1 integrin and extracellular beta1 integrin ligands fibronectin and laminin-1 in a cohort of 249 breast cancer patients who had a median follow-up of 8.4 years. Among the 149 scorable cases, the highest beta1 integrin intensity score (3+ versus 0-2+) was associated with significantly decreased 10-year overall survival of 48% versus 71% (Pintegrin intensity score was significantly correlated with fibronectin expression (Kendall's tau-b=0.19; P=0.03). In a multivariate Cox proportional hazards model, beta1 integrin intensity score remained a significant independent predictor of overall survival [hazard ratio (HR), 1.69; 95% confidence interval (95% CI), 1.19-2.38; Pintegrin expression has potential prognostic value in invasive breast cancer and that coexpression of fibronectin may help identify patients with more aggressive tumors who may benefit from targeted therapy.

  13. Measuring Integrin Conformational Change on the Cell Surface with Super-Resolution Microscopy.

    Science.gov (United States)

    Moore, Travis I; Aaron, Jesse; Chew, Teng-Leong; Springer, Timothy A

    2018-02-13

    We use super-resolution interferometric photoactivation and localization microscopy (iPALM) and a constrained photoactivatable fluorescent protein integrin fusion to measure the displacement of the head of integrin lymphocyte function-associated 1 (LFA-1) resulting from integrin conformational change on the cell surface. We demonstrate that the distance of the LFA-1 head increases substantially between basal and ligand-engaged conformations, which can only be explained at the molecular level by integrin extension. We further demonstrate that one class of integrin antagonist maintains the bent conformation, while another antagonist class induces extension. Our molecular scale measurements on cell-surface LFA-1 are in excellent agreement with distances derived from crystallographic and electron microscopy structures of bent and extended integrins. Our distance measurements are also in excellent agreement with a previous model of LFA-1 bound to ICAM-1 derived from the orientation of LFA-1 on the cell surface measured using fluorescence polarization microscopy. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Hydrogels with precisely controlled integrin activation dictate vascular patterning and permeability

    Science.gov (United S