Plastic influence functions for calculating J-integral of complex-cracks in pipe
International Nuclear Information System (INIS)
Jeong, Jae-Uk; Choi, Jae-Boong; Kim, Moon-Ki; Huh, Nam-Su; Kim, Yun-Jae
2016-01-01
In this study, the plastic influence functions, h_1, for estimates of J-integral of a pipe with a complex crack were newly proposed based on the systematic 3-dimensional (3-D) elastic-plastic finite element (FE) analyses by using Ramberg-Osgood (R-O) relation, in which global bending moment, axial tension and internal pressure were considered as loading conditions. Based on the present plastic influence functions, the GE/EPRI-type J-estimation scheme for complex-cracked pipes was suggested, and the results from the proposed J-estimation were compared with the FE results using both R-O fit parameters and actual tensile data of SA376 TP304 stainless steel. The comparison results demonstrate that although the proposed scheme provided sensitive J estimations according to fitting ranges of R-O parameters, it showed overall good agreements with the FE results using R-O relation. Thus, the proposed engineering J prediction method can be utilized to assess instability of a complex crack in pipes for R-O material. - Highlights: • New h_1values of GE/EPRI method for complex-cracked pipes are proposed. • The plastic limit loads of complex-cracked pipes using Mises yield criterion are provided. • The new J estimates of complex-cracked pipes are proposed based on GE/EPRI concept. • The proposed estimates for J are validated against 3-D finite element results.
Integrated piping structural analysis system
International Nuclear Information System (INIS)
Motoi, Toshio; Yamadera, Masao; Horino, Satoshi; Idehata, Takamasa
1979-01-01
Structural analysis of the piping system for nuclear power plants has become larger in scale and in quantity. In addition, higher quality analysis is regarded as of major importance nowadays from the point of view of nuclear plant safety. In order to fulfill to the above requirements, an integrated piping structural analysis system (ISAP-II) has been developed. Basic philosophy of this system is as follows: 1. To apply the date base system. All information is concentrated. 2. To minimize the manual process in analysis, evaluation and documentation. Especially to apply the graphic system as much as possible. On the basis of the above philosophy four subsystems were made. 1. Data control subsystem. 2. Analysis subsystem. 3. Plotting subsystem. 4. Report subsystem. Function of the data control subsystem is to control all information of the data base. Piping structural analysis can be performed by using the analysis subsystem. Isometric piping drawing and mode shape, etc. can be plotted by using the plotting subsystem. Total analysis report can be made without the manual process through the reporting subsystem. (author)
Functional capability of piping systems
International Nuclear Information System (INIS)
Terao, D.; Rodabaugh, E.C.
1992-11-01
General Design Criterion I of Appendix A to Part 50 of Title 10 of the Code of Federal Regulations requires, in part, that structures, systems, and components important to safety be designed to withstand the effects of earthquakes without a loss of capability to perform their safety function. ne function of a piping system is to convey fluids from one location to another. The functional capability of a piping system might be lost if, for example, the cross-sectional flow area of the pipe were deformed to such an extent that the required flow through the pipe would be restricted. The objective of this report is to examine the present rules in the American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section III, and potential changes to these rules, to determine if they are adequate for ensuring the functional capability of safety-related piping systems in nuclear power plants
International Nuclear Information System (INIS)
Park, Jeong Soon; Choi, Young Hwan; Im, Seyoung
2014-01-01
Fracture mechanics parameters such as the J-integral and crack opening displacement (COD), are necessary for Leak-Before-Break (LBB) evaluation. The famous two estimation methods, the GE/EPRI and the Reference Stress Method (RSM), have their applicability limit with regard to the ratio of a pipe mean radius to thickness (R m /t). In order to extend their applicability limit to a thin walled pipe, several finite element analyses are performed for the J-integral and COD, and then new plastic influence functions are developed for thin-walled pipes with a short circumferential through-wall crack. With the newly generated plastic influence functions, the GE/EPRI and the RSM give closer results with those obtained from detailed finite element analyses. In addition, C*-integral and COD rate are estimated by using the new plastic influence functions and they are well matched with elastic–creep finite element analysis results under the power-law creep condition. Since the LBB concept can be applied to a piping system in a Korean Sodium-cooled Fast Reactor (SFR) which is designed to have thin-walled pipes and to operate in high temperature enough to cause creep, this paper can be applied for the LBB assessment of thin-walled pipes with a short through-wall crack in the SFR
Piping data retrieval system (PDRS): An integrated package to aid piping layout
International Nuclear Information System (INIS)
Vyas, K.N.; Sharma, A.; Susandhi, R.; Basu, S.
1986-01-01
An integrated package to aid piping layout has been developed and implemented on PDP-11/34 system at Hall 7. The package allows various equipments to be modelled, consisting of primitive equipment components. The equipment layout for the plant can then be reproduced in the form of drawings such as plan, elevation, isometric or perspective. The package has the built in function to perform hidden line removal among equipments. Once the equipment layout is finalised, the package aids in superimposing the piping as per the specified pipe routine. The report discusses the general capabilities and the major input requirements for the package. (author)
Structural integrity assessment of piping components
International Nuclear Information System (INIS)
Kushwaha, H.S.; Chattopadhyay, J.
2008-01-01
Integrity assessment of piping components is very essential for safe and reliable operation of power plants. Over the last several decades, considerable work has been done throughout the world to develop a methodology for integrity assessment of pipes and elbows, appropriate for the material involved. However, there is scope of further development/improvement of issues, particularly for pipe bends, that are important for accurate integrity assessment of piping. Considering this aspect, a comprehensive Component Integrity Test Program was initiated in 1998 at Bhabha Atomic Research Centre (BARC), India. In this program, both theoretical and experimental investigations were undertaken to address various issues related to the integrity assessment of pipes and elbows. Under the experimental investigations, fracture mechanics tests have been conducted on pipes and elbows of 200-400 mm nominal bore (NB) diameter with various crack configurations and sizes under different loading conditions. Tests on small tensile and three point bend specimens, machined from the tested pipes, have also been done to evaluate the actual stress-strain and fracture resistance properties of pipe/elbow material. The load-deflection curve and crack initiation loads predicted by non-linear finite element analysis matched well with the experimental results. The theoretical collapse moments of throughwall circumferentially cracked elbows, predicted by the recently developed equations, are found to be closer to the test data compared to the other existing equations. The role of stress triaxialities ahead of crack tip is also shown in the transferability of J-Resistance curve from specimen to component. The cyclic loading and system compliance effect on the load carrying capacity of piping components are investigated and new recommendations are made. (author)
Flexible heat pipes with integrated bioinspired design
Directory of Open Access Journals (Sweden)
Chao Yang
2015-02-01
Full Text Available In this work we report the facile fabrication and performance evaluation of flexible heat pipes that have integrated bioinspired wick structures and flexible polyurethane polymer connector design between the copper condenser and evaporator. Inside the heat pipe, a bioinspired superhydrophilic strong-base-oxidized copper mesh with multi-scale micro/nano-structures was used as the wicking material and deionized water was selected as working fluid. Thermal resistances of the fabricated flexible heat pipes charged with different filling ratios were measured under thermal power inputs ranging from 2 W to 12 W while the device was bent at different angles. The fabricated heat pipes with a 30% filling ratio demonstrated a low thermal resistance less than 0.01 K/W. Compared with the vertically oriented straight heat pipes, bending from 30° up to 120° has negligible influence on the heat-transfer performance. Furthermore, repeated heating tests indicated that the fabricated flexible heat pipes have consistent and reliable heat-transfer performance, thus would have important applications for advanced thermal management in three dimensional and flexible electronic devices.
International piping integrity research group (IPIRG) program final report
International Nuclear Information System (INIS)
Schmidt, R.; Wilkowski, G.; Scott, P.; Olsen, R.; Marschall, C.; Vieth, P.; Paul, D.
1992-04-01
This is the final report of the International Piping Integrity Research Group (IPIRG) Programme. The IPIRG Programme was an international group programme managed by the U.S. Nuclear Regulatory Commission and funded by a consortium of organizations from nine nations: Canada, France, Italy, Japan, Sweden, Switzerland, Taiwan, the United Kingdom, and the United states. The objective of the programme was to develop data needed to verify engineering methods for assessing the integrity of nuclear power plant piping that contains circumferential defects. The primary focus was an experimental task that investigated the behaviour of circumferentially flawed piping and piping systems to high-rate loading typical of seismic events. To accomplish these objectives a unique pipe loop test facility was designed and constructed. The pipe system was an expansion loop with over 30 m of 406-mm diameter pipe and five long radius elbows. Five experiments on flawed piping were conducted to failure in this facility with dynamic excitation. The report: provides background information on leak-before-break and flaw evaluation procedures in piping; summarizes the technical results of the programme; gives a relatively detailed assessment of the results from the various pipe fracture experiments and complementary analyses; and, summarizes the advances in the state-of-the-art of pipe fracture technology resulting from the IPIRG Program
J-integral estimation analysis for circumferential throughwall cracked pipes
International Nuclear Information System (INIS)
Zahoor, A.
1988-01-01
J-integral estimation solution is derived for pipes containing a circumferential throughwall crack. Bending moment and axial tension loadings are considered. These solutions are useful for calculating J from single load-displacement record obtained as part of pipe fracture testing, and are applicable for a wide range of flaw length to pipe circumference ratios. Results for J at initiation of crack growth generated using the solution developed in this paper agree well with J results from finite elements analyses. (orig.)
J-integral estimation analysis for circumferential throughwall cracked pipes
Energy Technology Data Exchange (ETDEWEB)
Zahoor, A.
J-integral estimation solution is derived for pipes containing a circumferential throughwall crack. Bending moment and axial tension loadings are considered. These solutions are useful for calculating J from single load-displacement record obtained as part of pipe fracture testing, and are applicable for a wide range of flaw length to pipe circumference ratios. Results for J at initiation of crack growth generated using the solution developed in this paper agree well with J results from finite elements analyses.
International Piping Integrity Research Group (IPIRG) Program. Final report
International Nuclear Information System (INIS)
Wilkowski, G.; Schmidt, R.; Scott, P.
1997-06-01
This is the final report of the International Piping Integrity Research Group (IPIRG) Program. The IPIRG Program was an international group program managed by the U.S. Nuclear Regulatory Commission and funded by a consortium of organizations from nine nations: Canada, France, Italy, Japan, Sweden, Switzerland, Taiwan, the United Kingdom, and the United States. The program objective was to develop data needed to verify engineering methods for assessing the integrity of circumferentially-cracked nuclear power plant piping. The primary focus was an experimental task that investigated the behavior of circumferentially flawed piping systems subjected to high-rate loadings typical of seismic events. To accomplish these objectives a pipe system fabricated as an expansion loop with over 30 meters of 16-inch diameter pipe and five long radius elbows was constructed. Five dynamic, cyclic, flawed piping experiments were conducted using this facility. This report: (1) provides background information on leak-before-break and flaw evaluation procedures for piping, (2) summarizes technical results of the program, (3) gives a relatively detailed assessment of the results from the pipe fracture experiments and complementary analyses, and (4) summarizes advances in the state-of-the-art of pipe fracture technology resulting from the IPIRG program
International Piping Integrity Research Group (IPIRG) Program. Final report
Energy Technology Data Exchange (ETDEWEB)
Wilkowski, G.; Schmidt, R.; Scott, P. [and others
1997-06-01
This is the final report of the International Piping Integrity Research Group (IPIRG) Program. The IPIRG Program was an international group program managed by the U.S. Nuclear Regulatory Commission and funded by a consortium of organizations from nine nations: Canada, France, Italy, Japan, Sweden, Switzerland, Taiwan, the United Kingdom, and the United States. The program objective was to develop data needed to verify engineering methods for assessing the integrity of circumferentially-cracked nuclear power plant piping. The primary focus was an experimental task that investigated the behavior of circumferentially flawed piping systems subjected to high-rate loadings typical of seismic events. To accomplish these objectives a pipe system fabricated as an expansion loop with over 30 meters of 16-inch diameter pipe and five long radius elbows was constructed. Five dynamic, cyclic, flawed piping experiments were conducted using this facility. This report: (1) provides background information on leak-before-break and flaw evaluation procedures for piping, (2) summarizes technical results of the program, (3) gives a relatively detailed assessment of the results from the pipe fracture experiments and complementary analyses, and (4) summarizes advances in the state-of-the-art of pipe fracture technology resulting from the IPIRG program.
On the integrity of flexible pipes for subsea applications
Energy Technology Data Exchange (ETDEWEB)
Almeida, Marcos C. de; Brack, Marcelo; Lontra Filho, Lauro L.; Jorge, Nilo de M. [PETROBRAS, Rio de Janeiro, RJ (Brazil)
2005-07-01
Most of PETROBRAS offshore oil and gas production is conveyed through Flexible Pipes (FPs) used for gathering, exporting and importing functions. PETROBRAS is the greatest user of FPs worldwide and, due to the complexity of the FP, a composite structure having many steel and polymeric layers and end fittings, it implies a huge number of possible failure mechanisms, much more than those expected for steel pipes. The use of FP demands a special approach over all life cycle phases, from the basic engineering up to the operation/reuse/decommission, by evaluating the application feasibility together with potential failures. This paper accounts some of PETROBRAS experience on FPs, mainly a current approach on their integrity and planned measures in order to assure production and prevent accidents, based on the most relevant failure mechanisms. The preventive actions includes review on failures and their causes and, consequently, improvement on specifications, FP design verification, prototype qualification, inspection and monitoring of integrity key parameters during installation and operation, as well as, maintenance. A FPs Company Integrity Directives and Database will allow a continuous improvement of field systems reliability through to a periodic assessment of performances and feedback to activities for the whole FP life cycle. (author)
Phase 2 of the International Piping Integrity Research Group programme
International Nuclear Information System (INIS)
Darlaston, B.J.
1994-01-01
The results of phase 1 of the International Piping Integrity Research Group (IPIRG-1) programme have been widely reported. The significance of the results is reviewed briefly, in order to put the phase 2 programme into perspective. The success of phase 1 led the participants to consider further development and validation of pipe and pipe component fracture analysis technology as part of another international group programme (IPIRG-2). The benefits of combined funding and of the technical exchanges and interactions are considered to be of significant advantage and value. The phase 2 programme has been designed with the overall objective of developing and experimentally validating methods of predicting the fracture behaviour of nuclear reactor safety-related piping, to both normal operating and accident loads. The programme will add to the engineering estimation analysis methods that have been developed for straight pipes. The pipe system tests will expand the database to include seismic loadings and flaws in fittings, such as bends, elbows and tees, as well as ''short'' cracks. The results will be used to validate further the analytical methods, expand the capability to make fittings and extend the quasi-static results for the USNRC's new programme on short cracks in piping and piping welds. The IPIRG-2 programme is described to provide a clear understanding of the content, strategy, potential benefits and likely significance of the work. ((orig.))
Structural integrity evaluation of FTL in-pool piping
Energy Technology Data Exchange (ETDEWEB)
Kim, J. Y
1998-05-01
HANARO fuel test loop will be equipped in HANARO to obtain the development betterment of advanced fuel and materials through the irradiation test. The object of this study is to evaluate the structural integrity of FTL in-pool piping by investigating a dynamic analysis of the loop containing a postulated rupture section. The method to perform the dynamic analysis and structural integrity evaluation caused by the pipe whip in water environment can be a reference for a similar structural integrity evaluation. (author). 7 refs., 39 tabs., 34 figs.
Structural integrity evaluation of nuclear piping cracket
International Nuclear Information System (INIS)
Cadiz Deleito, J.C.
1985-01-01
The methodology to evaluation of cracks in nuclear piping is exposed. Linear elastic fracture mechanic is used to prediction of growing crack and the net section collapse theory compared with acceptation criteria of both ASME III and ASME XI code. A case allowable under ASME XI criteria is analysed under ASME III requirements. Consideration must be given to local phenomenon in crack area and local stress evaluated and compared with ASME III acceptation criteria. (author)
Integrated CAE system for nuclear power plants. Development of piping design check system
International Nuclear Information System (INIS)
Narikawa, Noboru; Sato, Teruaki
1994-01-01
Toshiba Corporation has developed and operated the integrated CAE system for nuclear power plants, the core of which is the engineering data base to manage accurately and efficiently enormous amount of data on machinery, equipment and piping. As the first step of putting knowledge base system to practical use, piping design check system has been developed. By automatically checking up piping design, this system aims at the prevention of overlooking mistakes, efficient design works and the overall quality improvement of design. This system is based on the thought that it supports designers, and final decision is made by designers. This system is composed of the integrated data base, a two-dimensional CAD system and three-dimensional CAD system. The piping design check system is one of the application systems of the integrated CAE system. Object-oriented programming is the base of the piping design check system, and design knowledge and CAD data are necessary. As to the method of realizing the check system, the flow of piping design, the checkup functions, the checkup of interference and attribute base, and the integration of the system are explained. (K.I)
Structural integrity investigations of feeder pipe ice plugging procedures
International Nuclear Information System (INIS)
Flaman, M.T.; Shah, N.N.
1985-03-01
A procedure involving the use of a liquid nitrogen cooled heat exchanger to form internal ice plugs in feeder pipes is routinely used in nuclear generating stations. The use of this procedure has caused concerns with regard to the safety of station maintenance personnel, and in regard to the integrity of the feeder pipes. This report describes the results of laboratory stress and pressure measurements which were performed on a feeder pipe section during ice plugging operations to investigate these concerns. From the results of this study, and from the results of previous studies of material behaviour at low temperatures, it has been determined that the ice plugging procedure can be performed on feeder pipes in a safe and effective manner
Kołowrocki, Krzysztof; Kuligowska, Ewa; Soszyńska-Budny, Joanna
2017-01-01
The paper presents an integrated general model of complex technical system, linking its multistate safety model and the model of its operation process including operating environment threats and considering variable at different operation states its safety structures and its components safety parameters. Under the assumption that the system has exponential safety function, the safety characteristics of the port oil piping transportation system are determined.
Cartier, Pierre; DeWitt-Morette, Cecile
2010-06-01
Acknowledgements; List symbols, conventions, and formulary; Part I. The Physical and Mathematical Environment: 1. The physical and mathematical environment; Part II. Quantum Mechanics: 2. First lesson: gaussian integrals; 3. Selected examples; 4. Semiclassical expansion: WKB; 5. Semiclassical expansion: beyond WKB; 6. Quantum dynamics: path integrals and operator formalism; Part III. Methods from Differential Geometry: 7. Symmetries; 8. Homotopy; 9. Grassmann analysis: basics; 10. Grassmann analysis: applications; 11. Volume elements, divergences, gradients; Part IV. Non-Gaussian Applications: 12. Poisson processes in physics; 13. A mathematical theory of Poisson processes; 14. First exit time: energy problems; Part V. Problems in Quantum Field Theory: 15. Renormalization 1: an introduction; 16. Renormalization 2: scaling; 17. Renormalization 3: combinatorics; 18. Volume elements in quantum field theory Bryce DeWitt; Part VI. Projects: 19. Projects; Appendix A. Forward and backward integrals: spaces of pointed paths; Appendix B. Product integrals; Appendix C. A compendium of gaussian integrals; Appendix D. Wick calculus Alexander Wurm; Appendix E. The Jacobi operator; Appendix F. Change of variables of integration; Appendix G. Analytic properties of covariances; Appendix H. Feynman's checkerboard; Bibliography; Index.
DATYS integrates piping and supports engineering
International Nuclear Information System (INIS)
Rendon, J.G.; Fraile, A.R.
1990-01-01
Empresarios Agrupados of Spain has developed an interactive software package which computerizes and integrates the whole range of tasks involved in pipework engineering; including drawing, design, analysis and support calculations. Its strength lies in its modularity and in the ability to re-evaluate and modify existing projects. (author)
Buried piping integrity management at fossil power plants
Energy Technology Data Exchange (ETDEWEB)
Shulder, Stephen J. [Structural Integrity Associates, Annapolis, MD (United States); Biagiotti, Steve [Structural Integrity Associates, Inc., Centennial, CO (United States)
2011-07-15
In the last decade several industries (oil and gas pipelines, nuclear power, and municipal water) have experienced an increase in the frequency and public scrutiny of leaks and failures associated with buried piping and tank assets. In several industries, regulatory pressure has resulted in the mandated need for databases and inspection programs to document and ensure the continued integrity of these assets. Power plants are being extended beyond their design life and the condition of below grade assets is essential toward continued operation. This article shares the latest advances in managing design, operation, process, inspection, and historical data for power plant piping. Applications have also been developed to help with risk prioritization, inspection method selection, managing cathodic protection data for external corrosion control, and a wide variety of other information. This data can be managed in a GIS environment allowing two and three dimensional (2D and 3D) access to the database information. (orig.)
Safety evaluation of socket weld integrity in nuclear piping
International Nuclear Information System (INIS)
Choi, Y.H.; Kim, H.J.; Choi, S.Y.; Kim, Y.J.; Kim, Y.J.
2004-01-01
The purposes of this paper are to evaluate the integrity of socket weld in nuclear piping and prepare the technical basis for a new guideline on radiographic testing (RT) for the socket weld. Recently, the integrity of the socket weld is regarded as a safety concern in nuclear power plants because lots of failures and leaks have been reported in the socket weld. The root causes of the socket weld failure are known as unanticipated loadings such as vibration or thermal fatigue and improper weld joint during construction. The ASME Code sec. III requires 1/16 inch gap between the pipe and fitting in the socket weld. Many failure cases, however, showed that the gap requirement was not satisfied. The Code also requires magnetic particle examination (MT) or liquid penetration examination (PT) on the socket weld, but not radiographic examination (RT). It means that it is not easy to examine the 1/16 inch gap in the socket weld by using the NDE methods currently required in the Code. In this paper, the effects of the requirements in the ASME Code sec. III on the socket weld integrity were evaluated by using finite element method. The crack behavior in the socket weld was also investigated under vibration event in nuclear power plants. The results showed that the socket weld was very susceptible to the vibration if the requirements in ASME Code were not satisfied. The constraint between the pipe and fitting due to the contact significantly affects the integrity of the socket weld. This paper also suggests a new guideline on the RT for the socket weld during construction stage in nuclear power plants. (orig.)
Development of integrated insulation joint for cooling pipe in tokamak reactor
International Nuclear Information System (INIS)
Nishio, Satoshi; Abe, Tetsuya; Kawamura, Masashi; Yamazaki, Seiichiro.
1994-08-01
In a tokamak fusion reactor, an electrically insulated part is needed for an in-vessel piping system in order to break an electric circuit loop. When a closed loop is formed in the piping system, large induced electromagnetic forces during a plasma disruption (rapid plasma current quench) could give damages on the piping system. Ceramic brazing joint is a conventional method for the electric circuit break, but an application to the fusion reactor is not feasible due to its brittleness. Here, a stainless steel/ceramics/stainless steel functionally gradient material (FGM) has been proposed and developed as an integrated insulation joint of the piping system. Both sides of the joint can be welded to the main pipes, and expected to be reliable even in the fusion reactor environment. When the FGM joint is manufactured by way of a sintering process, a residual thermal stress is the key issue. Through detailed computations of the residual thermal stress and several trial productions, tubular elements of FGM joints have been successfully manufactured. (author)
Directory of Open Access Journals (Sweden)
Kołowrocki Krzysztof
2017-06-01
Full Text Available The paper presents an integrated general model of complex technical system, linking its multistate safety model and the model of its operation process including operating environment threats and considering variable at different operation states its safety structures and its components safety parameters. Under the assumption that the system has exponential safety function, the safety characteristics of the port oil piping transportation system are determined.
Determination of the pipe stemming load
International Nuclear Information System (INIS)
Cowin, S.C.
1979-01-01
A mechanical model for the emplacement pipe system is developed. The model is then employed to determine the force applied to the surface collar of the emplacement pipe, the pipe-stemming load, and the stress along the emplacement pipe as a function of stemming height. These results are presented as integrals and a method for their numerical integration is given
Socket weld integrity in nuclear piping under fatigue loading condition
International Nuclear Information System (INIS)
Choi, Young Hwan; Choi, Sun Yeong
2007-01-01
The purpose of this paper is to evaluate the integrity of socket weld in nuclear piping under the fatigue loading. The integrity of socket weld is regarded as a safety concern in nuclear power plants because many failures have been world-widely reported in the socket weld. Recently, socket weld failures in the chemical and volume control system (CVCS) and the primary sampling system (PSS) were reported in Korean nuclear power plants. The root causes of the socket weld failures were known as the fatigue due to the pressure and/or temperature loading transients and the vibration during the plant operation. The ASME boiler and pressure vessel (B and PV) Code Sec. III requires 1/16 in. gap between the pipe and fitting in the socket weld with the weld leg size of 1.09 x t 1 , where t 1 is the pipe wall thickness. Many failure cases, however, showed that the gap requirement was not satisfied. In addition, industry has demanded the reduction of weld leg size from 1.09 x t 1 to 0.75 x t 1 . In this paper, the socket weld integrity under the fatigue loading was evaluated using three-dimensional finite element analysis considering the requirements in the ASME Code. Three types of loading conditions such as the deflection due to vibration, the pressure transient ranging from P = 0 to 15.51 MPa, and the thermal transient ranging from T = 25 to 288 deg. C were considered. The results are as follows; (1) the socket weld is susceptible to the vibration where the vibration levels exceed the requirement in the ASME operation and maintenance (OM) code. (2) The effect of pressure or temperature transient load on socket weld in CVCS and PSS is not significant owing to the low frequency of transient during plant operation. (3) 'No gap' is very risky to the socket weld integrity for the systems having the vibration condition to exceed the requirement specified in the ASME OM Code and/or the transient loading condition from P = 0 and T = 25 deg. C to P = 15.51 MPa and T = 288 deg. C. (4
International Nuclear Information System (INIS)
Roos, E.; Herter, K.-H.; Julisch, P.; Otremba, F.; Schuler, X.
2003-01-01
The determination of critical crack sizes or permissible/allowable loading levels in pipes with degraded pipe sections (circumferential cracks) for the assurance of component integrity is usually based on deterministic approaches. Therefore along with numerical calculational methods (finite element (FE) analyses) limit load calculations, such as e.g. the 'Plastic limit load concept' and the 'Flow stress concept' as well as fracture mechanics approximation methods as e.g. the R-curve method or the 'Ductile fracture handbook' and the R6-Method are currently used for practical application. Numerous experimental tests on both ferritic and austenitic pipes with different pipe dimensions were investigated at MPA Stuttgart. The geometries of the pipes were comparable to actual piping systems in Nuclear Power Plants, both BWR as well as PWR. Through wall cracks and part wall through cracks on the inside surface of the pipes were considered. The results of these tests were used to determine the flow stresses used within the limit load calculations. Therefore the deterministic concepts assessing the integrity of degraded pipes are available A new post-calculation of the above mentioned tests was performed using probabilistic approaches to assure the component integrity of degraded piping systems. As a result the calculated probability of failure was compared to experimental behaviour during the pipe test. Different reliability techniques were used for the verification of the probabilistic approaches. (author)
Development of engineering program for integrity evaluation of pipes with local wall thinned defects
International Nuclear Information System (INIS)
Park, Chi Yong; Lee, Sung Ho; Kim, Tae Ryong; Park, Sang Kyu
2008-01-01
Integrity evaluation of pipes with local wall thinning by erosion and corrosion is increasingly important in maintenance of wall thinned carbon steel pipes in nuclear power plants. Though a few program for integrity assessment of wall thinned pipes have been developed in domestic nuclear field, however those are limited to straight pipes and methodology proposed in ASME Sec.XI Code Case N-597. Recently, the engineering program for integrity evaluation of pipes with all kinds of local wall defects such as straight, elbow, reducer and branch pipes was developed successfully. The program was designated as PiTEP (Pipe Thinning Evaluation Program), which name was registered as a trademark in the Korea Intellectual Property Office. A developed program is carried out by sequential step of four integrity evaluation methodologies, which are composed of construction code, code case N-597, its engineering method and two developed owner evaluation method. As PiTEP program will be performed through GUI (Graphic User Interface) with user's familiarity, it would be conveniently used by plant engineers with only measured thickness data, basic operation conditions and pipe data
Evaluation of effective J-integral value for 3-D TWC pipe in ABAQUS code
International Nuclear Information System (INIS)
Yang, J. S.; You, K. W.; Sung, K. B.; Jung, W. T.; Kim, B. N.
1999-01-01
This paper suggests a simple method to estimate the effective J-integral values in applying Leak-Before-Break (LBB) technology to nuclear piping system. In this paper, the effective J-integral estimates were calculated using energy domain integral approach with ABAQUS computer program. In this case, there existed a apparent variation of J-integral values along the crack line through the thickness of pipe. For this reason, several case studies have been performed to evaluate the effective J-integral value. From the results, it was concluded that the simple method suggested in this paper can be effectively used in estimating the effective J-integral value
Utilizing clad piping to improve process plant piping integrity, reliability, and operations
International Nuclear Information System (INIS)
Chakravarti, B.
1996-01-01
During the past four years carbon steel piping clad with type 304L (UNS S30403) stainless steel has been used to solve the flow accelerated corrosion (FAC) problem in nuclear power plants with exceptional success. The product is designed to allow ''like for like'' replacement of damaged carbon steel components where the carbon steel remains the pressure boundary and type 304L (UNS S30403) stainless steel the corrosion allowance. More than 3000 feet of piping and 500 fittings in sizes from 6 to 36-in. NPS have been installed in the extraction steam and other lines of these power plants to improve reliability, eliminate inspection program, reduce O and M costs and provide operational benefits. This concept of utilizing clad piping in solving various corrosion problems in industrial and process plants by conservatively selecting a high alloy material as cladding can provide similar, significant benefits in controlling corrosion problems, minimizing maintenance cost, improving operation and reliability to control performance and risks in a highly cost effective manner. This paper will present various material combinations and applications that appear ideally suited for use of the clad piping components in process plants
75 FR 15485 - Pipeline Safety: Workshop on Guidelines for Integrity Assessment of Cased Pipe
2010-03-29
... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID...: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: Notice of workshop. SUMMARY... ``Guidelines for Integrity Assessment of Cased Pipe in Gas Transmission Pipelines'' and related Frequently...
An integrated heat pipe-thermal storage design for a solar receiver
Keddy, E.; Sena, J. T.; Woloshun, K.; Merrigan, M. A.; Heidenreich, G.
Light-weight heat pipe wall elements that incorporate a thermal storage subassembly within the vapor space are being developed as part of the Organic Rankine Cycle Solar Dynamic Power System (ORC-SDPS) receiver for the Space Station application. The operating temperature of the heat pipe elements is in the 770 to 810 K range with a design power throughput of 4.8 kW per pipe. The total heat pipe length is 1.9 M. The Rankine cycle boiler heat transfer surfaces are positioned within the heat pipe vapor space, providing a relatively constant temperature input to the vaporizer. The heat pipe design employs axial arteries and distribution wicked thermal storage units with potassium as the working fluid. Performance predictions for this configuration have been conducted and the design characterized as a function of artery geometry, distribution wick thickness, porosity, pore size, and permeability.
xLPR - a probabilistic approach to piping integrity analysis
International Nuclear Information System (INIS)
Harrington, C.; Rudland, D.; Fyfitch, S.
2015-01-01
The xLPR Code is a probabilistic fracture mechanics (PFM) computational tool that can be used to quantitatively determine a best-estimate probability of failure with well characterized uncertainties for reactor coolant system components, beginning with the piping systems and including the effects of relevant active degradation mechanisms. The initial application planned for xLPR is somewhat narrowly focused on validating LBB (leak-before-break) compliance in PWSCC-susceptible systems such as coolant systems of PWRs. The xLPR code incorporates a set of deterministic models that represent the full range of physical phenomena necessary to evaluate both fatigue and PWSCC degradation modes from crack initiation through failure. These models are each implemented in a modular form and linked together by a probabilistic framework that contains the logic for xLPR execution, exercises the individual modules as required, and performs necessary administrative and bookkeeping functions. The completion of the first production version of the xLPR code in a fully documented, releasable condition is presently planned for spring 2015
Babusci, D.; Dattoli, G.; Germano, B.; Martinelli, M. R.; Ricci, P. E.
2011-01-01
We use the operator method to evaluate a class of integrals involving Bessel or Bessel-type functions. The technique we propose is based on the formal reduction of these family of functions to Gaussians.
Zou, Huiming; Wang, Wei; Zhang, Guiying; Qin, Fei; Tian, Changqing; Yan, Yuying
2016-01-01
An integrated thermal management system combining a heat pipe battery cooling/preheating system with the heat pump air conditioning system is presented to fulfill the comprehensive energy utilization for electric vehicles. A test bench with battery heat pipe heat exchanger and heat pump air conditioning for a regular five-chair electric car is set up to research the performance of this integrated system under different working conditions. The investigation results show that as the system is d...
Development of an integrated heat pipe-thermal storage system for a solar receiver
Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.
1987-07-01
The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.
Development of an integrated heat pipe-thermal storage system for a solar receiver
Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.
1987-01-01
The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.
Generic safety evaluation report regarding integrity of BWR scram system piping
International Nuclear Information System (INIS)
1981-08-01
Safety concerns associated with postulated pipe breaks in the boiling water reactor (BWR) scram system were identified during the staff's continuing investigation of the Browns Ferry Unit 3 control rod partial insertion failure on June 28, 1980. This report includes an evaluation of the licensing basis for the BWR scram discharge volume (SDV) piping and an assessment of the potential for the SDV piping to fail while in service. A discussion of the means available for mitigation an unlikely SDV system failure is provided. Generic recommendations are made to improve mitigation capability and ensure that system integrity is maintained in service
Advances in Integrated Heat Pipe Technology for Printed Circuit Boards
Wits, Wessel Willems; te Riele, Gert Jan
2010-01-01
Designing thermal control systems for electronic products has become very challenging due to the continuous miniaturization and increasing performance demands. Two-phase cooling solutions, such as heat pipes or vapor chambers, are increasingly used as they offer higher thermal coefficients for heat
Evaluation of J-integral estimation scheme for flawed throughwall pipes
Energy Technology Data Exchange (ETDEWEB)
Zahoor, A.
1987-02-01
The accuracy of the EPRI J-integral estimation scheme for pipes with throughwall cracks and subjected to pure bending was assessed using available experimental data on circumferentially flawed throughwall pipes. The evaluations were performed using elastic plastic J-integral (J) and tearing modulus (T) analysis methods. The results indicated that the EPRI J estimation scheme solutions are unnecessarily conservative compared to results from pipe experiments. As a result of these evaluations an improved J estimation scheme is developed, which is shown to have improved accuracy compared to the original EPRI J estimation scheme. These results imply that the flaw evaluation procedures in the ASME Code on austenitic piping welds are conservative. These results also have applications to the leak before break fracture mechanics analyses.
Evaluation of J-integral estimation scheme for flawed throughwall pipes
International Nuclear Information System (INIS)
Zahoor, A.
1987-01-01
The accuracy of the EPRI J-integral estimation scheme for pipes with throughwall cracks and subjected to pure bending was assessed using available experimental data on circumferentially flawed throughwall pipes. The evaluations were performed using elastic plastic J-integral (J) and tearing modulus (T) analysis methods. The results indicated that the EPRI J estimation scheme solutions are unnecessarily conservative compared to results from pipe experiments. As a result of these evaluations an improved J estimation scheme is developed, which is shown to have improved accuracy compared to the original EPRI J estimation scheme. These results imply that the flaw evaluation procedures in the ASME Code on austenitic piping welds are conservative. These results also have applications to the leak before break fracture mechanics analyses. (orig.)
Functional integration over geometries
International Nuclear Information System (INIS)
Mottola, E.
1995-01-01
The geometric construction of the functional integral over coset spaces M/G is reviewed. The inner product on the cotangent space of infinitesimal deformations of M defines an invariant distance and volume form, or functional integration measure on the full configuration space. Then, by a simple change of coordinates parameterizing the gauge fiber G, the functional measure on the coset space M/G is deduced. This change of integration variables leads to a Jacobian which is entirely equivalent to the Faddeev--Popov determinant of the more traditional gauge fixed approach in non-abelian gauge theory. If the general construction is applied to the case where G is the group of coordinate reparameterizations of spacetime, the continuum functional integral over geometries, i.e. metrics modulo coordinate reparameterizations may be defined. The invariant functional integration measure is used to derive the trace anomaly and effective action for the conformal part of the metric in two and four dimensional spacetime. In two dimensions this approach generates the Polyakov--Liouville action of closed bosonic non-critical string theory. In four dimensions the corresponding effective action leads to novel conclusions on the importance of quantum effects in gravity in the far infrared, and in particular, a dramatic modification of the classical Einstein theory at cosmological distance scales, signaled first by the quantum instability of classical de Sitter spacetime. Finite volume scaling relations for the functional integral of quantum gravity in two and four dimensions are derived, and comparison with the discretized dynamical triangulation approach to the integration over geometries are discussed. Outstanding unsolved problems in both the continuum definition and the simplicial approach to the functional integral over geometries are highlighted
Integrity of austenitic stainless steel piping welds for nuclear service
International Nuclear Information System (INIS)
Canalini, A.; Lopes, L.R.
1983-01-01
A criterion applying K 1d concept was developed to determine the fracture mechanics properties of austenitic stainless steel nuclear piping welds. The critical dimensions, lenght and depth, for crack initiation were established and plotted in a chart. This study enables the dimensions of a discontinuity detected in an in-service inspection to be compared to the critical dimensions for crack initiation, and the indication can be judged critical or non-critical for the component. (author) [pt
Function integrated track system
Hohnecker, Eberhard
2010-01-01
The paper discusses a function integrated track system that focuses on the reduction of acoustic emissions from railway lines. It is shown that the combination of an embedded rail system (ERS), a sound absorbing track surface, and an integrated mini sound barrier has significant acoustic advantages compared to a standard ballast superstructure. The acoustic advantages of an embedded rail system are particularly pronounced in the case of railway bridges. Finally, it is shown that a...
Regulated functions and integrability
Directory of Open Access Journals (Sweden)
Ján Gunčaga
2009-04-01
Full Text Available Properties of functions defined on a bounded closed interval, weaker than continuity, have been considered by many mathematicians. Functions having both sides limits at each point are called regulated and were considered by J. Dieudonné [2], D. Fraňková [3] and others (see for example S. Banach [1], S. Saks [8]. The main class of functions we deal with consists of piece-wise constant ones. These functions play a fundamental role in the integration theory which had been developed by Igor Kluvanek (see Š. Tkacik [9]. We present an outline of this theory.
International Nuclear Information System (INIS)
Zou, Huiming; Wang, Wei; Zhang, Guiying; Qin, Fei; Tian, Changqing; Yan, Yuying
2016-01-01
Highlights: • An integrated thermal management system is proposed for electric vehicle. • The parallel branch of battery chiller can supply additional cooling capacity. • Heat pipe performance on preheating mode is better than that on cooling mode. • Heat pipe heat exchanger is a feasible choice for battery thermal management. - Abstract: An integrated thermal management system combining a heat pipe battery cooling/preheating system with the heat pump air conditioning system is presented to fulfill the comprehensive energy utilization for electric vehicles. A test bench with battery heat pipe heat exchanger and heat pump air conditioning for a regular five-chair electric car is set up to research the performance of this integrated system under different working conditions. The investigation results show that as the system is designed to meet the basic cabinet cooling demand, the additional parallel branch of battery chiller is a good way to solve the battery group cooling problem, which can supply about 20% additional cooling capacity without input power increase. Its coefficient of performance for cabinet heating is around 1.34 at −20 °C out-car temperature and 20 °C in-car temperature. The specific heat of the battery group is tested about 1.24 kJ/kg °C. There exists a necessary temperature condition for the heat pipe heat exchanger to start action. The heat pipe heat transfer performance is around 0.87 W/°C on cooling mode and 1.11 W/°C on preheating mode. The gravity role makes the heat transfer performance of the heat pipe on preheating mode better than that on cooling mode.
Integration a functional approach
Bichteler, Klaus
1998-01-01
This book covers Lebesgue integration and its generalizations from Daniell's point of view, modified by the use of seminorms. Integrating functions rather than measuring sets is posited as the main purpose of measure theory. From this point of view Lebesgue's integral can be had as a rather straightforward, even simplistic, extension of Riemann's integral; and its aims, definitions, and procedures can be motivated at an elementary level. The notion of measurability, for example, is suggested by Littlewood's observations rather than being conveyed authoritatively through definitions of (sigma)-algebras and good-cut-conditions, the latter of which are hard to justify and thus appear mysterious, even nettlesome, to the beginner. The approach taken provides the additional benefit of cutting the labor in half. The use of seminorms, ubiquitous in modern analysis, speeds things up even further. The book is intended for the reader who has some experience with proofs, a beginning graduate student for example. It might...
International Nuclear Information System (INIS)
Choi, Geun Suk; Lee, Jong Eun; Ryu, Jung Hoon; Cho, Kyoung Youn; Sohn, Myoung Sung; Lee, Sanghoon; Sung, Gi Ho; Cho, Hong Seok
2016-01-01
It has been reported leakage accident of small-bore piping in Korea. Leakage accident of small-bore pipes are those that will increase due to the aging of the nuclear power plant. And if leakage of the pipe is repaired by using the clamping device when it occur accident, it is economically benefits. The clamping device is a fastening device used to hold or secure objects tightly together to prevent movement or separation through the application of inward pressure. However, when the accident occurs, it can't immediately respond because maintenance and repairing technology are not institutionalized in KEPIC. Thus it appears an economic loss. The technology for corresponding thereto is necessary for the safety of the operation of nuclear power plants. The purpose of this research is to develop an online repairing technology of socket welded pipe and vibration monitoring system of small-bore pipe in the nuclear power plant. Specifically, detailed studies are as follows : • Development of weld overlay method of safety class socket welded connections • Development of Mechanical Clamping Devices for Safety Class 2, 3 small-bore pipe. The purpose of this study is to develop an online repairing technology of socket welded pipe and vibration monitoring system of small-bore pipe, resulting in degraded plant systems. And it is necessary to institutionalize the technology. The fatigue crack testing of socket welded overlay will be performed and fatigue life evaluation method will be developed in second year. Also prototype fabrication of mechanical clamping device will be completed. Base on final goal, the intent is to propose practical evaluation tools, design and fabrication methods for socket welded connection integrity. And result of this study is to development of KEPIC code case approved technology for on-line repairing system of socket welded connection and fabrication of mechanical clamping device
Pair Correlation Function Integrals
DEFF Research Database (Denmark)
Wedberg, Nils Hejle Rasmus Ingemar; O'Connell, John P.; Peters, Günther H.J.
2011-01-01
We describe a method for extending radial distribution functions obtained from molecular simulations of pure and mixed molecular fluids to arbitrary distances. The method allows total correlation function integrals to be reliably calculated from simulations of relatively small systems. The long......-distance behavior of radial distribution functions is determined by requiring that the corresponding direct correlation functions follow certain approximations at long distances. We have briefly described the method and tested its performance in previous communications [R. Wedberg, J. P. O’Connell, G. H. Peters......, and J. Abildskov, Mol. Simul. 36, 1243 (2010); Fluid Phase Equilib. 302, 32 (2011)], but describe here its theoretical basis more thoroughly and derive long-distance approximations for the direct correlation functions. We describe the numerical implementation of the method in detail, and report...
International Nuclear Information System (INIS)
Wang, Zhong-Min; Liu, Yan-Zhuang
2016-01-01
Highlights: • We investigate the transverse vibration of FGM pipe conveying fluid. • The FGM pipe conveying fluid can be classified into two cases. • The variations between the frequency and the power law exponent are obtained. • “Case 1” is relatively more reasonable than “case 2”. - Abstract: Problems related to the transverse vibration of pipe conveying fluid made of functionally graded material (FGM) are addressed. Based on inside and outside surface material compositions of the pipe, FGM pipe conveying fluid can be classified into two cases. It is hypothesized that the physical parameters of the material along the direction of the pipe wall thickness change in the simple power law. A differential equation of motion expressed in non-dimensional quantities is derived by using Hamilton's principle for systems of changing mass. Using the assuming modal method, the pipe deflection function is expanded into a series, in which each term is expressed to admissible function multiplied by generalized coordinate. Then, the differential equation of motion is discretized into the two order differential equations expressed in the generalized coordinates. Based on symplectic elastic theory and the introduction of dual system and dual variable, Hamilton's dual equations are derived, and the original problem is reduced to eigenvalue and eigenvector problem in the symplectic space. Finally, a symplectic method is employed to analyze the vibration and stability of FGM pipe conveying fluid. For a clamped–clamped FGM pipe conveying fluid in “case 1” and “case 2”, the dimensionless critical flow velocity for first-mode divergence and the critical coupled-mode flutter flow velocity are obtained, and the variations between the real part and imaginary part of dimensionless complex frequency and fluid velocity, mass ratio and the power law exponent (or graded index, volume fraction) for FGM pipe conveying fluid are analyzed.
Energy Technology Data Exchange (ETDEWEB)
Wang, Zhong-Min, E-mail: wangzhongm@xaut.edu.cn; Liu, Yan-Zhuang
2016-03-15
Highlights: • We investigate the transverse vibration of FGM pipe conveying fluid. • The FGM pipe conveying fluid can be classified into two cases. • The variations between the frequency and the power law exponent are obtained. • “Case 1” is relatively more reasonable than “case 2”. - Abstract: Problems related to the transverse vibration of pipe conveying fluid made of functionally graded material (FGM) are addressed. Based on inside and outside surface material compositions of the pipe, FGM pipe conveying fluid can be classified into two cases. It is hypothesized that the physical parameters of the material along the direction of the pipe wall thickness change in the simple power law. A differential equation of motion expressed in non-dimensional quantities is derived by using Hamilton's principle for systems of changing mass. Using the assuming modal method, the pipe deflection function is expanded into a series, in which each term is expressed to admissible function multiplied by generalized coordinate. Then, the differential equation of motion is discretized into the two order differential equations expressed in the generalized coordinates. Based on symplectic elastic theory and the introduction of dual system and dual variable, Hamilton's dual equations are derived, and the original problem is reduced to eigenvalue and eigenvector problem in the symplectic space. Finally, a symplectic method is employed to analyze the vibration and stability of FGM pipe conveying fluid. For a clamped–clamped FGM pipe conveying fluid in “case 1” and “case 2”, the dimensionless critical flow velocity for first-mode divergence and the critical coupled-mode flutter flow velocity are obtained, and the variations between the real part and imaginary part of dimensionless complex frequency and fluid velocity, mass ratio and the power law exponent (or graded index, volume fraction) for FGM pipe conveying fluid are analyzed.
Energy Technology Data Exchange (ETDEWEB)
Kaup, C. [Howatherm, Bruecken (Germany)
1995-09-18
Integrated circuit systems and heat pipes are both known to be low-efficiency systems, but this shortcoming can be eliminated by constructive measures. (orig.) [Deutsch] Die beiden Verfahren - Kreislaufverbundsystem und das Waermerohr - sind als WRG-Systeme mit geringen Wirkungsgraden bekannt. Doch dieser Nachteil kann durch spezielle Konstruktionsmassnahmen eliminiert werden. (orig.)
International Nuclear Information System (INIS)
Sudardjo; Histori; Triyadi, Ari
1998-01-01
The evaluation of material integrity on electricity generator component has been done. That component was main steam pipe of Unit II Suralaya Coal Fired Power Plant. evaluation was done by replication technique. The damage was found are two porosity's, from two point samples of six points sample population. Based on cavity evaluation in steels, which proposed by Neubauer and Wedel that porosity's still at class A damage. For class A damage, its means no remedial action would be required until next major scheduled maintenance outage. That porosity's was grouped on isolated cavities and not need ti repair that main steam pipe component less than three year after replication test
Energy Technology Data Exchange (ETDEWEB)
Tarallo, Andrea, E-mail: andrea.tarallo@unina.it [CREATE, University of Naples Federico II, DII, P.le Tecchio, 80, 80125 Naples (Italy); Mozzillo, Rocco; Di Gironimo, Giuseppe [CREATE, University of Naples Federico II, DII, P.le Tecchio, 80, 80125 Naples (Italy); Aiello, Antonio; Utili, Marco [ENEA UTIS, C.R. Brasimone, Bacino del Brasimone, I-40032 Camugnano, BO (Italy); Ricapito, Italo [TBM& MD Project, Fusion for Energy, EU Commission, Carrer J. Pla, 2, Building B3, 08019 Barcelona (Spain)
2015-04-15
Highlights: • The use of human modeling tools for piping design in view of maintenance is discussed. • A possible preliminary layout for TBM subsystems in CVCS area has been designed with CATIA. • A DHM-based method to quickly check for maintainability of piping systems is suggested. - Abstract: This paper explores a possible integration of some ancillary systems of helium-cooled lithium lead (HCLL) and helium-cooled pebble-bed (HCPB) test blanket modules in ITER CVCS area. Computer-aided design and ergonomics simulation tools have been fundamental not only to define suitable routes for pipes, but also to quickly check for maintainability of equipment and in-line components. In particular, accessibility of equipment and systems has been investigated from the very first stages of the design using digital human models. In some cases, the digital simulations have resulted in changes in the initial space reservations.
International Nuclear Information System (INIS)
Elfelsoufi, Z.; Azrar, L.
2016-01-01
In this paper, a mathematical modeling of flutter and divergence analyses of fluid conveying pipes based on integral equation formulations is presented. Dynamic stability problems related to fluid pressure, velocity, tension, topography slope and viscoelastic supports and foundations are formulated. A methodological approach is presented and the required matrices, associated to the influencing fluid and pipe parameters, are explicitly given. Internal discretizations are used allowing to investigate the deformation, the bending moment, slope and shear force at internal points. Velocity–frequency, pressure-frequency and tension-frequency curves are analyzed for various fluid parameters and internal elastic supports. Critical values of divergence and flutter behaviors with respect to various fluid parameters are investigated. This model is general and allows the study of dynamic stability of tubes crossed by stationary and instationary fluid on various types of supports. Accurate predictions can be obtained and are of particular interest for a better performance and for an optimal safety of piping system installations. - Highlights: • Modeling the flutter and divergence of fluid conveying pipes based on RBF. • Dynamic analysis of a fluid conveying pipe with generalized boundary conditions. • Considered parameters fluid are the pressure, tension, slopes topography, velocity. • Internal support increase the critical velocity value. • This methodologies determine the fluid parameters effects.
Integrity assessment of the cold leg piping system in a PWR
International Nuclear Information System (INIS)
Mayfield, M.E.; Leis, B.N.
1981-01-01
The purpose of this paper is to examine the integrity of a nuclear piping system, designed in accordance with Section III, in the context of a damage tolerance analysis procedure. Such a procedure directly addresses the defects and cyclic loadings that are responsible for the above noted exceptions. The analysis and results reported here are for a fatigue life analysis of the Cold Leg piping in a PWR. This piping system is particularly important from a safety standpoint since a large break is a possible initiator of a core meltdown accident. The analysis employs LEFM concepts to determine the time between the initial start-up and (1) formation of a leak, (2) detection of the leak, and (3) the final fracture of the piping. Both longitudinal and circumferential defects are considered. The defects are assumed to propagate from the pipe I.D. in a self-similar manner. Inputs to the analysis were derived from information supplied by plant operators and vendors, published data, and 'expert opinions'. The life was computed using a linear damage accumulation. (orig./GL)
Energy Technology Data Exchange (ETDEWEB)
Son, Seok-Kwon; Lee, Hyeong-Yeon; Eoh, JaeHyuk; Kim, Jong-Bum; Jeong, Ji-Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ju, Yong-Sun [KOASIS Inc., Daejeon (Korea, Republic of)
2016-09-15
In this study, elevated temperature design and integrity evaluation have been conducted using two different piping design codes for the high-temperature piping systems of sodium integral effect test loop for safety simulation and assessment(STELLA-2) being developed by KAERI(Korea Atomic Energy Research Institute). The design code of ASME B31.1 for power piping and French nuclear grade piping design guideline, RCC-MRx RD-3600 were applied, and conservatism of those codes was quantified based on the piping integrity evaluation results. The piping system of Model DHRS, Model IHTS and PSLS are to be installed in STELLA-2. The integrity evaluation results for the three piping systems according to the two design codes showed that integrity of the piping system was confirmed. As a code comparison result, ASME B31.1 was shown to be more conservative for sustained loads while RD-3600 was more conservative for thermal loads compared to B31.1.
International Nuclear Information System (INIS)
Ito, Tomohiro; Michiue, Masashi; Fujita, Katsuhisa
2009-01-01
In this study, the optimal seismic design methodology that can consider the structural integrity of not only the piping systems but also elasto-plastic supporting devices is developed. This methodology employs a genetic algorithm and can search the optimal conditions such as the supporting location, capacity and stiffness of the supporting devices. Here, a lead extrusion damper is treated as a typical elasto-plastic damper. Four types of evaluation functions are considered. It is found that the proposed optimal seismic design methodology is very effective and can be applied to the actual seismic design for piping systems supported by elasto-plastic dampers. The effectiveness of the evaluation functions is also clarified. (author)
International Nuclear Information System (INIS)
Saarenheimo, A.; Silde, A.; Calonius, K.
2002-05-01
Structural integrity of a reinforced concrete wall and a pipe penetration under detonation conditions in a selected reactor building room of Olkiluoto BWR were studied. Hydrogen leakage from the pressurised containment to the sur rounding reactor building is possible during a severe accident. Leaked hydrogen tends to accumulate in the reactor building rooms where the leak is located leading to a stable stratification and locally very high hydrogen concentration. If ignited, a possibility to flame acceleration and detonation cannot be ruled out. The structure may survive the peak detonation transient because the eigenperiod of the structure is considerably longer than the duration of the peak detonation. However, the relatively slowly decreasing static type pressure after a peak detonation damages the wall more severely. Elastic deformations in reinforcement are recoverable and cracks in these areas will close after the pressure decrease. But there will be remarkable compression crushing and the static type slowly decreasing over pressure clearly exceeds the loading capacity of the wall. Structural integrity of a pipe outlet was considered also under detonation conditions. The effect of drag forces was taken into account. Damping and strain rate dependence of yield strength were not taken into consideration. The boundary condition at the end of the pipe line model was varied in order to find out the effect of the stiffness of the pipeline outside the calculation model. The calculation model where the lower pipe end is free to move axially, is conservative from the pipe penetration integrity point of view. Even in this conservative study, the highest peak value for the maximum plastic deformation is 3.5%. This is well below the success criteria found in literature. (au)
Casing of preinsulated district heating pipes. Functional Requirements. Scientific report
Energy Technology Data Exchange (ETDEWEB)
Bryder, K.L.; Feld, T.; Randloev, P.; Vestergaard, J.B.; Noergaard Pedersen, H.; Palle, S.; Amby, L.
1996-10-01
Requirements for the wall thickness of the casing pipes in Europe were formulated to clarify the laying conditions, representative for the European district heating areas. We achieved a broad estimate by defining four scenarios for the laying of district heating pipes. It is common to the four scenarios that that all bends, branches etc. are always laid in sand. The four scenarios are differentiated by soil types. The soil types include: Uniform sand, Well graded gravel, Sand with fines and Sand with crushed stone. In the following analysis it was possible to examine the influence from following parameters: Casing thickness; Diameter of steel pipe; Diameter of casing; Material properties (PUR and PE); Soil type. The results from the model showed that uniform sand is the absolute best soil type. Based on the results from and earlier project a laboratory method has been developed. The result was a test method based on the indentation of three mandrels with a diameter of {phi}30 mm with a taper with an angle of 45 deg. and with roundings on the apex of R5 mm, R10 mm and R15 mm, respectively. The mandrels simulate stones. The examinations among other things showed that even a 1.5 mm casing demands an indentation of 20 mm with a R5 mm mandrel before it is perforated. The demanded force is 1.6 kN, which is considerably higher than the theoretically highest force in an actual situation. On this background it is recommended that the minimum requirement for the wall thickness of the casings with diameters less than 200 mm should still follow the EN 253, whereas the minimum requirement for the larger casing pipes securely can be reduced. Based on the tests and an evaluation of the safety factors it is proposed that the wall thickness for the largest pipes can be reduced 50%. Thus the wall thickness of an 800 mm casing should be 6.6 mm with a linear reduction down to 3 mm for 180 mm casing. (EG)
Casing of preinsulated district heating pipes. Functional Requirements. Enclosures
Energy Technology Data Exchange (ETDEWEB)
Bryder, K.L.; Feld, T.; Randloev, P.; Vestergaard, J.B.; Noergaard Pedersen, H.; Palle, S.; Amby, L.
1996-10-01
Requirements for the wall thickness of the casing pipes in Europe were formulated. In order to clarify the laying conditions, representative for the European district heating areas. It was possible to achieve a sufficiently broad estimate by defining four scenarios for the laying of district heating pipes. It is common to the four scenarios that that all bends, branches etc. are always laid in sand. The four scenarios are differentiated by soil types. The soil types include: Uniform sand, Well graded gravel, Sand with fines and Sand with crushed stone. In the following analysis it was possible to examine the influence from following parameters: Casing thickness; Diameter of steel pipe; Diameter of casing; Material properties (PUR and PE); Soil type. The results from the model showed that uniform sand is the absolute best soil type. Based on the results from and earlier project a laboratory method has been developed. The result was a test method based on the indentation of three mandrels with a diameter of {phi}30 mm with a taper with an angle of 45 deg. and with roundings on the apex of R5 mm, R10 mm and R15 mm, respectively. The mandrels simulate stones. The examinations among other things showed that even a 1.5 mm casing demands an indentation of 20 mm with a R5 mm mandrel before it is perforated. The demanded force is 1.6 kN, which is considerably higher than the theoretically highest force in an actual situation. On this background it is recommended that the minimum requirement for the wall thickness of the casings with diameters less than 200 mm should still follow the EN 253, whereas the minimum requirement for the larger casing pipes securely can be reduced. Based on the tests and an evaluation of the safety factors it is proposed that the wall thickness for the largest pipes can be reduced 50%. Thus the wall thickness of an 800 mm casing should be 6.6 mm with a linear reduction down to 3 mm for 180 mm casing. (EG)
US NRC research on the integrity of piping in nuclear reactor primary systems
International Nuclear Information System (INIS)
Serpan, C.Z. Jr.
1983-01-01
This paper has attempted to provide a ''snapshot'' of the activities underway in NRC on the subject of LWR piping integrity as of the summer and fall of 1983. The paper is necessarily vague on certain topics of policy because they are either under review or are under development and the outcome cannot be accurately forecast at this time. Particularly in the area of BWR pipe cracking, events are very rapid so that positions and actions described in this paper may well be obsolete by the time it is published. Nevertheless, the activities and positions are as accurate as possible at the time of writing. Certainly the longer-range aspects of the research program represent the current direction and intent of NRC; nevertheless, as results come in and actions occur in the licensing and regulation arena of operating reactors, the emphasis of the research programs will necessarily shift to accommodate them so as to remain as relevant as possible. Thus, this paper is useful to show the intentions of NRC in the area of research for LWR piping, and it is also useful to document the status of the regulations on piping for which the research is being performed. (orig.)
Applied methodology for replacement pipe arcs in integral pipelines TE 'Oslomej'
Directory of Open Access Journals (Sweden)
Temelkoska Bratica K.
2016-01-01
Full Text Available The integral pipelines in thermal power plants present a linear spatial bearing construction with high operating parameters, complex static and dynamic load. The integral pipelines along its entire length are hanging on construction spring hangers from the boiler building, where the boiler is placed, next to the machine hall where the turbine is placed. Therefore, it is important to monitor the condition and to remove any possible defects from the applied methods. This paper describes the methodology of replacement of the pipe arch on one of the integral pipelines-the line for hot superheated steam. In addition, in this paper are given the method methods that led to this methodology for testing and evaluation of the condition of the pipe arch material that had been in exploitation and the new pipe arch that will be embedded. Furthermore the approach, the technology of replacement, anchoring of the steam line, technology of welding etc., as well as the preparation of the final design of constructed condition are also covered in this paper.
Domains of bosonic functional integrals
International Nuclear Information System (INIS)
Botelho, Luiz C.L.; Para Univ., Belem, PA
1998-07-01
We propose a mathematical framework for bosonic Euclidean quantum field functional integrals based on the theory of integration on the dual algebraic vector space of classical field sources. We present a generalization of the Minlos-Dao Xing theorem and apply it to determine exactly the domain of integration associated to the functional integral representation of the two-dimensional quantum electrodynamics Schwinger generating functional. (author)
Application of cyclic J-integral to low cycle fatigue crack growth of Japanese carbon steel pipe
Energy Technology Data Exchange (ETDEWEB)
Miura, N.; Fujioka, T.; Kashima, K. [and others
1997-04-01
Piping for LWR power plants is required to satisfy the LBB concept for postulated (not actual) defects. With this in mind, research has so far been conducted on the fatigue crack growth under cyclic loading, and on the ductile crack growth under excessive loading. It is important, however, for the evaluation of the piping structural integrity under seismic loading condition, to understand the fracture behavior under dynamic and cyclic loading conditions, that accompanies large-scale yielding. CRIEPI together with Hitachi have started a collaborative research program on dynamic and/or cyclic fracture of Japanese carbon steel (STS410) pipes in 1991. Fundamental tensile property tests were conducted to examine the effect of strain rate on tensile properties. Cracked pipe fracture tests under some loading conditions were also performed to investigate the effect of dynamic and/or cyclic loading on fracture behavior. Based on the analytical considerations for the above tests, the method to evaluate the failure life for a cracked pipe under cyclic loading was developed and verified. Cyclic J-integral was introduced to predict cyclic crack growth up to failure. This report presents the results of tensile property tests, cracked pipe fracture tests, and failure life analysis. The proposed method was applied to the cracked pipe fracture tests. The effect of dynamic and/or cyclic loading on pipe fracture was also investigated.
Integral transform solutions of dynamic response of a clamped–clamped pipe conveying fluid
International Nuclear Information System (INIS)
Gu Jijun; An Chen; Duan Menglan; Levi, Carlos; Su Jian
2013-01-01
Highlights: ► Dynamic response of pipe conveying fluid was studied numerically. ► The generalized integral transform technique (GITT) was applied. ► Numerical solutions with automatic global accuracy control were obtained. ► Excellent convergence behavior was shown. ► Modal separation analysis was carried out and the influence of mass ratio was analyzed. - Abstract: Analysis of dynamic response of pipe conveying fluid is an important aspect in nuclear power plant design. In the present paper, dynamic response of a clamped–clamped pipe conveying fluid was solved by the generalized integral transform technique (GITT). The governing partial differential equation was transformed into a set of second-order ordinary differential equations which is then numerically solved by making use of the subroutine DIVPAG from IMSL Library. A thorough convergence analysis was performed to yield sets of reference results of the transverse deflection at different time and spanwise position. We found good agreement between the computed natural frequencies at mode 1–3 and those obtained by previous theoretical study. Besides, modal separation analysis was carried out and the influence of mass ratio on deflection and natural frequencies was qualitatively and quantitatively assessed.
Technology of application of pipe's arc of the integral pipeline in power plant 'Oslomej'
Directory of Open Access Journals (Sweden)
Cvetanoski Radomir
2017-01-01
Full Text Available Pipe connections allow interconnection of individual pipes to obtain pipeline and pipe connection with the equipment and their connection to the valve. The pipe connector should have the same strength of the pipe, impermeability and possibility of easy assembly and disassembly. Connecting of pipes of such construction is carried out by welding due to the work in conditions of maximum operating pressures and temperatures. The pipes can be joined at the ends. When welding the pipe lines should take into account the condition that the flow resistance of the fluid must to be as small as possible. Therefore, special preparation for pipe welding it is often necessary, as well as for the welding processes itself not to have any internal height differences of the joint or unevenness of the internal diameter of the pipe.
International Nuclear Information System (INIS)
Hong, S.Y.; Yeater, M.L.
1985-01-01
This paper discusses stress intensity factor calculations and fatigue analysis for a PWR primary coolant piping system. The influence function method is applied to evaluate ASME Code Section XI Appendix A ''analysis of flaw indication'' for the application to a PWR primary piping. Results of the analysis are discussed in detail. (orig.)
International Nuclear Information System (INIS)
Streit, R.D.
1981-01-01
The failure evaluation of Pressurized Water Reactor (PWR) primary coolant loop pipe is often based on a plastic limit load criterion; i.e., failure occurs when the stress on the pipe section exceeds the material flow stress. However, in addition the piping system must be safe against crack propagation at stresses less than those leading to plastic instability. In this paper, elastic, elastic-plastic, and fully-plastic failure models are evaluated, and the requirements for piping integrity based on these models are compared. The model yielding the 'more' critical criteria for the given geometry and loading conditions defines the appropriate failure criterion. The pipe geometry and loading used in this study was choosen based on an evaluation of a guillotine break in a PWR primary coolant loop. It is assumed that the piping may contain cracks. Since a deep circumferential crack, can lead to a guillotine pipe break without prior leaking and thus without warning it is the focus of the failure model comparison study. The hot leg pipe, a 29 in. I.D. by 2.5 in. wall thickness stainless pipe, was modeled in this investigation. Cracks up to 90% through the wall were considered. The loads considered in this evaluation result from the internal pressure, dead weight, and seismic stresses. For the case considered, the internal pressure contributes the most to the failure loading. The maximum moment stress due to the dead weight and seismic moments are simply added to the pressure stress. Thus, with the circumferential crack geometry and uniform pressure stress, the problem is axisymmetric. It is analyzed using NIKE2D--an implicit, finite deformation, finite element code for analyzing two-dimensional elastic-plastic problems. (orig./GL)
Directory of Open Access Journals (Sweden)
Funda Karaduman Yalcin
2017-10-01
Full Text Available Objectives: A water pipe (hookah is a tobacco smoking tool which is thought to be more harmless than a cigarette, and there are no adequate studies about its hazards to health. Water-pipe smoking is threatening health of the youth in the world today. The objective of this study has been to investigate the carbon monoxide (CO levels in breath, examine the changes in pulmonary function tests (PFT and to assess the change of the oxidative stress parameters in blood after smoking a water pipe. Material and Methods: This study is a cross-sectional analytical study that has included 50 volunteers who smoke a water pipe and the control group of 50 volunteers who smoke neither a cigarette nor a water pipe. Carbon monoxide levels were measured in the breath and pulmonary function tests (PFTs were performed before and after smoking a water pipe. Blood samples were taken from either the volunteer control group or water-pipe smokers group after smoking a water pipe for the purpose of evaluation of the parameters of oxidative stress. Results: Carbon monoxide values were measured to be 8.08±7.4 ppm and 28.08±16.5 ppm before and after smoking a water pipe, respectively. This increment was found statistically significant. There were also significant reductions in PFTs after smoking a water pipe. Total oxidative status (TOS, total antioxidant status (TAS and oxidative stress index (OSI were found prominently higher after smoking a water pipe for the group of water-pipe smokers than for the control group. Conclusions: This study has shown that water-pipe smoking leads to deterioration in pulmonary function and increases oxidative stress. To the best of our knowledge this study is the only one that has shown the effect of water-pipe smoking on oxidative stress. More studies must be planned to show the side effects of water-pipe habit and protective policies should be planned especially for young people in Europe. Int J Occup Med Environ Health 2017;30(5:731
Nonlocal kinetic energy functionals by functional integration
Mi, Wenhui; Genova, Alessandro; Pavanello, Michele
2018-05-01
Since the seminal studies of Thomas and Fermi, researchers in the Density-Functional Theory (DFT) community are searching for accurate electron density functionals. Arguably, the toughest functional to approximate is the noninteracting kinetic energy, Ts[ρ], the subject of this work. The typical paradigm is to first approximate the energy functional and then take its functional derivative, δ/Ts[ρ ] δ ρ (r ) , yielding a potential that can be used in orbital-free DFT or subsystem DFT simulations. Here, this paradigm is challenged by constructing the potential from the second-functional derivative via functional integration. A new nonlocal functional for Ts[ρ] is prescribed [which we dub Mi-Genova-Pavanello (MGP)] having a density independent kernel. MGP is constructed to satisfy three exact conditions: (1) a nonzero "Kinetic electron" arising from a nonzero exchange hole; (2) the second functional derivative must reduce to the inverse Lindhard function in the limit of homogenous densities; (3) the potential is derived from functional integration of the second functional derivative. Pilot calculations show that MGP is capable of reproducing accurate equilibrium volumes, bulk moduli, total energy, and electron densities for metallic (body-centered cubic, face-centered cubic) and semiconducting (crystal diamond) phases of silicon as well as of III-V semiconductors. The MGP functional is found to be numerically stable typically reaching self-consistency within 12 iterations of a truncated Newton minimization algorithm. MGP's computational cost and memory requirements are low and comparable to the Wang-Teter nonlocal functional or any generalized gradient approximation functional.
International Nuclear Information System (INIS)
Nakamura, Izumi; Otani, Akihito; Shiratori, Masaki
2005-01-01
In order to clarify the behavior of thinned wall pipes under seismic events, cyclic in-plane and/or out-of-plane bending tests on thinned straight pipe and elbow and also shaking table tests using degraded piping system models were conducted. Relation between the failure mode and thinned condition and the influence of the final failure mode of degraded piping systems were investigated. In addition to these experiments, elastic-plastic FEM analysis using ABAQUS were conducted on thinned piping elements. It has been found that the strain concentrated point could be predicted and the cause of its generation could be explained by the simulated deformation behavior of the pipe. In order to predict the piping system's maximum response under elastic-plastic response, a simple response prediction method was proposed. Further tests and safety margin analyses of thinned pipes against seismic loading will be performed. (T. Tanaka)
International Nuclear Information System (INIS)
Miura, Naoki
2005-01-01
The BINP(Battelle Integrity of Nuclear Piping) program was proposed by Battelle to elaborate pipe fracture evaluation methods and to improve LBB and in-service flaw evaluation criteria. The program has been conducted from October 1998 to September 2003. In Japan, CRIEPI participated in the program on behalf of electric utilities and fabricators to catch up the technical backgrounds for possible future revision of LBB and in-service flaw evaluation standards and to investigate the issues needed to be reflected to current domestic standards. A series of the results obtained from the program has been well utilized for the new LBB Regulatory Guide Program by USNRC and for proposal of revised in-service flaw evaluation criteria to the ASME Code Committee. The results were assessed whether they had implications for the existing or future domestic standards. As a result, the impact of many of these issues, which were concerned to be adversely affected to LBB approval or allowable flaw sizes in flaw evaluation criteria, was found to be relatively minor under actual plant conditions. At the same time, some issues that needed to be resolved to address advanced and rational standards in the future were specified. (author)
International Nuclear Information System (INIS)
Naghavi, M.S.; Ong, K.S.; Badruddin, I.A.; Mehrali, M.; Silakhori, M.; Metselaar, H.S.C.
2015-01-01
The purpose of this paper is to model theoretically a solar hot water system consisting of an array of ETHPSC (evacuated tube heat pipe solar collectors) connected to a common manifold filled with phase change material and acting as a LHTES (latent heat thermal energy storage) tank. Solar energy incident on the ETHPSC is collected and stored in the LHTES tank. The stored heat is then transferred to the domestic hot water supply via a finned heat exchanger pipe placed inside the tank. A combination of mathematical algorithms is used to model a complete process of the heat absorption, storage and release modes of the proposed system. The results show that for a large range of flow rates, the thermal performance of the ETHPSC-LHTES system is higher than that of a similar system without latent heat storage. Furthermore, the analysis shows that the efficiency of the introduced system is less sensitive to the draw off water flowrate than a conventional system. Analysis indicates that this system could be applicable as a complementary part to conventional ETHPSC systems to be able to produce hot water at night time or at times with weak radiation. - Highlights: • The ETHPSC is integrated with PCM at manifold side for night hot water demands. • The thermal performance of the ETHPSC-PCM is often higher than the baseline model. • The efficiency of the proposed model is stable for different flow rates. • Using PCM as thermal storage increases reliability on the performance of the system.
Energy Technology Data Exchange (ETDEWEB)
Zahoor, A.; Kanninen, M.F.
1981-11-01
A method of evaluating the J-integral for a circumferentially cracked pipe in bending is proposed. The method allows a J-resistance curve to be evaluated directly from the load-displacement record obtained in a pipe fracture experiment. It permits an analysis for fracture instability in a circumferential crack growth using a J-resistance curve and the tearing modulus parameter. The influence of the system compliance on fracture instability is discussed in conjunction with the latter application. The importance of using a J-resistance curve that is consistent with the type of constraint for a given application is emphasized. The possibility of a pipe fracture emanating from a stress corrosion crack in the heat-affected zones of girth-welds in Type 304 stainless steel pipes was investigated. The J-resistance curve was employed. A pipe fracture experiment was performed using a spring-loaded four-point bending system that simulated an 8.8-m long section of unsupported 102-mm-dia pipe. An initial through-wall crack of length equal to 104 mm was used. Fracture instability was predicted to occur between 15.2 and 22.1 mm of stable crack growth at each tip. In the actual experiment, the onset of fracture instability occurred beyond maximum load at an average stable crack growth of 11.7 to 19 mm at each tip. 24 refs.
International Nuclear Information System (INIS)
Zahoor, A.; Kanninen, M.F.
1981-01-01
A method of evaluating the J-integral for a circumferentially cracked pipe in bending is proposed. The method allows a J-resistance curve to be evaluated directly from the load-displacement record obtained in a pipe fracture experiment. It permits an analysis for fracture instability in a circumferential crack growth using a J-resistance curve and the tearing modulus parameter. The influence of the system compliance on fracture instability is discussed in conjunction with the latter application. The importance of using a J-resistance curve that is consistent with the type of constraint for a given application is emphasized. The possibility of a pipe fracture emanating from a stress corrosion crack in the heat-affected zones of girth-welds in Type 304 stainless steel pipes was investigated. The J-resistance curve was employed. A pipe fracture experiment was performed using a spring-loaded four-point bending system that simulated an 8.8-m long section of unsupported 102-mm-dia pipe. An initial through-wall crack of length equal to 104 mm was used. Fracture instability was predicted to occur between 15.2 and 22.1 mm of stable crack growth at each tip. In the actual experiment, the onset of fracture instability occurred beyond maximum load at an average stable crack growth of 11.7 to 19 mm at each tip. 24 refs
Functional representations of integrable hierarchies
International Nuclear Information System (INIS)
Dimakis, Aristophanes; Mueller-Hoissen, Folkert
2006-01-01
We consider a general framework for integrable hierarchies in Lax form and derive certain universal equations from which 'functional representations' of particular hierarchies (such as KP, discrete KP, mKP, AKNS), i.e. formulations in terms of functional equations, are systematically and quite easily obtained. The formalism genuinely applies to hierarchies where the dependent variables live in a noncommutative (typically matrix) algebra. The obtained functional representations can be understood as 'noncommutative' analogues of 'Fay identities' for the KP hierarchy
Yusop, Hanafi M.; Ghazali, M. F.; Yusof, M. F. M.; Remli, M. A. Pi; Kamarulzaman, M. H.
2017-10-01
In a recent study, the analysis of pressure transient signals could be seen as an accurate and low-cost method for leak and feature detection in water distribution systems. Transient phenomena occurs due to sudden changes in the fluid’s propagation in pipelines system caused by rapid pressure and flow fluctuation due to events such as closing and opening valves rapidly or through pump failure. In this paper, the feasibility of the Hilbert-Huang transform (HHT) method/technique in analysing the pressure transient signals in presented and discussed. HHT is a way to decompose a signal into intrinsic mode functions (IMF). However, the advantage of HHT is its difficulty in selecting the suitable IMF for the next data postprocessing method which is Hilbert Transform (HT). This paper reveals that utilizing the application of an integrated kurtosis-based algorithm for a z-filter technique (I-Kaz) to kurtosis ratio (I-Kaz-Kurtosis) allows/contributes to/leads to automatic selection of the IMF that should be used. This technique is demonstrated on a 57.90-meter medium high-density polyethylene (MDPE) pipe installed with a single artificial leak. The analysis results using the I-Kaz-kurtosis ratio revealed/confirmed that the method can be used as an automatic selection of the IMF although the noise level ratio of the signal is low. Therefore, the I-Kaz-kurtosis ratio method is recommended as a means to implement an automatic selection technique of the IMF for HHT analysis.
DENSE CORES IN THE PIPE NEBULA: AN IMPROVED CORE MASS FUNCTION
International Nuclear Information System (INIS)
Rathborne, J. M.; Lada, C. J.; Muench, A. A.; Alves, J. F.; Kainulainen, J.; Lombardi, M.
2009-01-01
In this paper, we derive an improved core mass function (CMF) for the Pipe Nebula from a detailed comparison between measurements of visual extinction and molecular-line emission. We have compiled a refined sample of 201 dense cores toward the Pipe Nebula using a two-dimensional threshold identification algorithm informed by recent simulations of dense core populations. Measurements of radial velocities using complimentary C 18 O (1-0) observations enable us to cull out from this sample those 43 extinction peaks that are either not associated with dense gas or are not physically associated with the Pipe Nebula. Moreover, we use the derived C 18 O central velocities to differentiate between single cores with internal structure and blends of two or more physically distinct cores, superposed along the same line of sight. We then are able to produce a more robust dense core sample for future follow-up studies and a more reliable CMF than was possible previously. We confirm earlier indications that the CMF for the Pipe Nebula departs from a single power-law-like form with a break or knee at M ∼ 2.7 ± 1.3 M sun . Moreover, we also confirm that the CMF exhibits a similar shape to the stellar initial mass function (IMF), but is scaled to higher masses by a factor of ∼4.5. We interpret this difference in scaling to be a measure of the star formation efficiency (22% ± 8%). This supports earlier suggestions that the stellar IMF may originate more or less directly from the CMF.
Deterministic computation of functional integrals
International Nuclear Information System (INIS)
Lobanov, Yu.Yu.
1995-09-01
A new method of numerical integration in functional spaces is described. This method is based on the rigorous definition of a functional integral in complete separable metric space and on the use of approximation formulas which we constructed for this kind of integral. The method is applicable to solution of some partial differential equations and to calculation of various characteristics in quantum physics. No preliminary discretization of space and time is required in this method, as well as no simplifying assumptions like semi-classical, mean field approximations, collective excitations, introduction of ''short-time'' propagators, etc are necessary in our approach. The constructed approximation formulas satisfy the condition of being exact on a given class of functionals, namely polynomial functionals of a given degree. The employment of these formulas replaces the evaluation of a functional integral by computation of the ''ordinary'' (Riemannian) integral of a low dimension, thus allowing to use the more preferable deterministic algorithms (normally - Gaussian quadratures) in computations rather than traditional stochastic (Monte Carlo) methods which are commonly used for solution of the problem under consideration. The results of application of the method to computation of the Green function of the Schroedinger equation in imaginary time as well as the study of some models of Euclidean quantum mechanics are presented. The comparison with results of other authors shows that our method gives significant (by an order of magnitude) economy of computer time and memory versus other known methods while providing the results with the same or better accuracy. The funcitonal measure of the Gaussian type is considered and some of its particular cases, namely conditional Wiener measure in quantum statistical mechanics and functional measure in a Schwartz distribution space in two-dimensional quantum field theory are studied in detail. Numerical examples demonstrating the
International Nuclear Information System (INIS)
Motohashi, Kazuhiko
2009-01-01
After an integration with ADLPipe, AutoPIPE V8i (ver.9.1) became the structural analysis program of plant piping system featured with analysis capability for the ASME NB Class 1 and JSME PPC-Class 2 piping codes including ASME NC Class 2 and ASME ND Class 3. This article described analysis capability for the JSME PPC-Class 2 piping code as well as new general features such as static analysis up to 100 thermal, 10 seismic and 10 wind load cases including different loading scenarios and pipe segment edit function: join, split, reverse and re-order segments. (T. Tanaka)
International Nuclear Information System (INIS)
Zahoor, A.; Kanninen, M.F.
1980-01-01
A method of evaluating the J-integral for a circumferentially cracked pipe in bending is proposed. The method allows a J-resistance curve to be evaluated directly from the load-displacement record obtained in a pipe fracture experiment. This method also permits an analysis for fracture instability in a circumferential crack growth using a J-resistance curve and the tearing modulus parameter. The importance of using a J-resistance curve that is consistent with the type of constraint for a given application is emphasized. 18 refs
Energy Technology Data Exchange (ETDEWEB)
Zhou, Shiyuan, E-mail: redaple@bit.edu.cn; Sun, Haoyu, E-mail: redaple@bit.edu.cn; Xu, Chunguang, E-mail: redaple@bit.edu.cn; Cao, Xiandong, E-mail: redaple@bit.edu.cn; Cui, Liming, E-mail: redaple@bit.edu.cn; Xiao, Dingguo, E-mail: redaple@bit.edu.cn [School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China NO.5 Zhongguancun South Street, Haidian District, Beijing 100081 (China)
2015-03-31
The echo signal energy is directly affected by the incident sound beam eccentricity or angle for thick-walled pipes inner longitudinal cracks detection. A method for analyzing the relationship between echo signal energy between the values of incident eccentricity is brought forward, which can be used to estimate echo signal energy when testing inside wall longitudinal crack of pipe, using mode-transformed compression wave adaptation of shear wave with water-immersion method, by making a two-dimension integration of “energy coefficient” in both circumferential and axial directions. The calculation model is founded for cylinder sound beam case, in which the refraction and reflection energy coefficients of different rays in the whole sound beam are considered different. The echo signal energy is calculated for a particular cylinder sound beam testing different pipes: a beam with a diameter of 0.5 inch (12.7mm) testing a φ279.4mm pipe and a φ79.4mm one. As a comparison, both the results of two-dimension integration and one-dimension (circumferential direction) integration are listed, and only the former agrees well with experimental results. The estimation method proves to be valid and shows that the usual method of simplifying the sound beam as a single ray for estimating echo signal energy and choosing optimal incident eccentricity is not so appropriate.
International Nuclear Information System (INIS)
Reuter, W.G.; Place, T.A.
1981-01-01
An accurate assessment of the influence of defects on structural component integrity is needed. Generally accepted analytical techniques are not available for the very ductile materials used in many nuclear reactor components. Some results are presented from a test programme to obtain data by which to evaluate proposed models. Plate and pipe specimens containing surface flaws were fabricated from annealed Type 304 stainless steel and tested at room temperature. An evaluation of an empirical equation based on flow stress is presented. In essentially all instances the flow stress is not a constant but varies as a function of the size of the surface flaw. (author)
Energy Technology Data Exchange (ETDEWEB)
Hinson-Rider, G.
1977-10-04
A fluid carrying pipe is described having an integral transparent portion formed into a longitudinally extending cylindrical lens that focuses solar heat rays to a focal axis within the volume of the pipe. The pipe on the side opposite the lens has a heat ray absorbent coating for absorbing heat from light rays that pass through the focal axis.
International Nuclear Information System (INIS)
Hopper, A.; Wilowski, G.; Scott, P.; Olson, R.
1997-03-01
The IPIRG-2 program was an international group program managed by the US NRC and funded by organizations from 15 nations. The emphasis of the IPIRG-2 program was the development of data to verify fracture analyses for cracked pipes and fittings subjected to dynamic/cyclic load histories typical of seismic events. The scope included: (1) the study of more complex dynamic/cyclic load histories, i.e., multi-frequency, variable amplitude, simulated seismic excitations, than those considered in the IPIRG-1 program, (2) crack sizes more typical of those considered in Leak-Before-Break (LBB) and in-service flaw evaluations, (3) through-wall-cracked pipe experiments which can be used to validate LBB-type fracture analyses, (4) cracks in and around pipe fittings, such as elbows, and (5) laboratory specimen and separate effect pipe experiments to provide better insight into the effects of dynamic and cyclic load histories. Also undertaken were an uncertainty analysis to identify the issues most important for LBB or in-service flaw evaluations, updating computer codes and databases, the development and conduct of a series of round-robin analyses, and analyst's group meetings to provide a forum for nuclear piping experts from around the world to exchange information on the subject of pipe fracture technology. 17 refs., 104 figs., 41 tabs
International Nuclear Information System (INIS)
Park, Chang-Gyu; Kim, Jong-Bum; Lee, Jae-Han
2009-01-01
The SFR is adapting the IHTS(Intermediate Heat Transport System) to prevent the interaction of radioactive primary sodium and SG(Steam Generator) water. The IHTS hot leg piping connecting the IHX(Intermediate Heat eXchanger) to the SG of a 1200MWe pool-type SFR is an object component in this study. ASME Boiler and Pressure Vessel code Subsection NB provides rules for the design and analysis of the class 1 components. At an elevated temperature service, the ASME Subsection NH provides rules for the design and analysis of the Class 1 components but unfortunately, special rules for piping components are not provided until now. Therefore, the design and analysis of the IHTS hot leg piping shall comply with the design by analysis requirements of Subsection NH. The piping layout is proposed by considering the reactor component layout and reactor building space and the structural integrity is evaluated by considering two typical types of operating events in this study. Cycle type 1(CT-1) shows the refueling cycle event having a temperature history from a refueling temperature to a normal operating temperature via a hot standby temperature. Cycle type 2(CT-2) is a daily load follow operation. The structural integrity is evaluated by considering the enveloped CT-1 and CT-2 operating events per the ASME Subsection NH procedures. The SIE ASME-NH computer program, which has been developed to implement the ASME subsection NH rules, is used for the structural integrity evaluation by utilizing the finite element analysis results. (author)
Strain Limits within the Scope of the Integrity Assessment of Piping Systems
International Nuclear Information System (INIS)
Mutz, Alexander
2008-01-01
Allowable stresses in nuclear power plant piping resulting from loading conditions to be considered in Germany are determined on the basis of the German Safety Standards of the Nuclear Safety Standards Commission, KTA. The limitation of the different stress categories within the analysis of the mechanical behaviour is based on a linear elastic material behaviour. Because of the ductile material used in high energy nuclear piping, a more realistic assessment can be performed on the basis of allowable strains using elastic plastic material behaviour. In the present work comparison between the analysis of piping systems considering the elastic material model and the actual elastic plastic material behaviour is performed. The possibilities of allocating plastic strains to calculated elastic stresses is discussed. A parametric study on straight pipes with the actual elastic plastic material model under pure bending is the basis of deriving the elastic plastic strains for the calculated elastic stresses. Strain limits are suggested which correspond to the different stress categories. The aim is to utilize the deformation possibilities of ductile materials used in German nuclear piping and the allocation of maximum strains to different load categories. Keywords: strain limit, ductile material, stress category. (author)
Strain Limits within the Scope of the Integrity Assessment of Piping Systems
Energy Technology Data Exchange (ETDEWEB)
Mutz, Alexander [EnBW, Durlacher Allee 93, Karlsruhe 76131 (Germany)
2008-07-01
Allowable stresses in nuclear power plant piping resulting from loading conditions to be considered in Germany are determined on the basis of the German Safety Standards of the Nuclear Safety Standards Commission, KTA. The limitation of the different stress categories within the analysis of the mechanical behaviour is based on a linear elastic material behaviour. Because of the ductile material used in high energy nuclear piping, a more realistic assessment can be performed on the basis of allowable strains using elastic plastic material behaviour. In the present work comparison between the analysis of piping systems considering the elastic material model and the actual elastic plastic material behaviour is performed. The possibilities of allocating plastic strains to calculated elastic stresses is discussed. A parametric study on straight pipes with the actual elastic plastic material model under pure bending is the basis of deriving the elastic plastic strains for the calculated elastic stresses. Strain limits are suggested which correspond to the different stress categories. The aim is to utilize the deformation possibilities of ductile materials used in German nuclear piping and the allocation of maximum strains to different load categories. Keywords: strain limit, ductile material, stress category. (author)
Counting master integrals. Integration by parts vs. functional equations
International Nuclear Information System (INIS)
Kniehl, Bernd A.; Tarasov, Oleg V.
2016-01-01
We illustrate the usefulness of functional equations in establishing relationships between master integrals under the integration-by-parts reduction procedure by considering a certain two-loop propagator-type diagram as an example.
International Nuclear Information System (INIS)
Leonard, J.W.
1975-01-01
This work is concerned with the evaluation of a quasi-static method as applied to a swing check valve designed to provide emergency shut-off capability subsequent to a postulated break in a steam line. The impact analysis of swinging disk upon the valve seat is an asymmetric problem in dynamic elastoplasticity with potentially large displacements and strains resulting from the impact. To perform a quasi-static analysis for this component the disk and seat region of the valve was isolated from the piping system by special boundary elements and an elastic-plastic finite element model was generated assuming axisymmetric solid ring elements. An equivalent static axisymmetric incremental load system was used to approximate the nonsymmetric initial velocity of impact. Subsequent to the nonlinear incremental finite element analysis by a standard computer software package (MARC-CDC program), a special post-processing program was employed to calculate the incremental sum of external work due to the defined load system. Equating this external work to the initial kinetic energy of impact, parametric curves for displacements, stresses, and strains were obtained as functions of various levels of kinetic energy imparted to the valve at closure. To verify the conservative nature of the assumptions made in the quasi-static model, a comparison was made with a time-dependent, nonlinear, axisymmetric, elastic-plastic finite difference simulation. Another standard computer software package (PISCES-2DL) was used for this dynamic simulation. For a check-point value of initial impact kinetic energy, correlation between the quasi-static finite element and dynamic finite difference analyses is presented. Validations of the assumptions made in the quasi-static analysis and of the results obtained are discussed in detail
Energy Technology Data Exchange (ETDEWEB)
Alexandre, A [Ecole Nationale Superieure de Mecanique et d` Aerotechnique (ENSMA), 86 - Poitiers (France)
1997-12-31
The functioning of a heat pipe is complex. In this paper, a methodology for a detailed analysis of the functioning of a grooved heat pipe is developed in order to obtain the information required for a general analysis of such systems. (J.S.) 3 refs.
Energy Technology Data Exchange (ETDEWEB)
Alexandre, A. [Ecole Nationale Superieure de Mecanique et d`Aerotechnique (ENSMA), 86 - Poitiers (France)
1996-12-31
The functioning of a heat pipe is complex. In this paper, a methodology for a detailed analysis of the functioning of a grooved heat pipe is developed in order to obtain the information required for a general analysis of such systems. (J.S.) 3 refs.
International Nuclear Information System (INIS)
Friedrich, A.; Grune, J.; Sempert, K.; Stern, G.; Kuznetsov, M.; Redlinger, R.; Breitung, W.; Franke, T.
2008-01-01
The experiments described in this article were performed to study this comprehensive radiolysis gas scenario: - The relief pipe is filled completely with radiolysis gas (2H 2 +O 2 ). - After opening of the S and R valve, the radiolysis gas is compressed adiabatically by the incoming steam without mixing. - Roughly at the point of peak pressure in the relief pipe (20 bar) the radiolysis gas ignites. This dynamic scenario was studied in steady-state model experiments with a test pipe which corresponds to the relief pipes installed in KKP-1 in terms of materials, dimensions, and manufacturing control. The initial conditions and boundary conditions of the experiments were conservative. In the course of the tests, the maximum dynamic strain and the residual plastic deformation of the test pipe were measured via the transient detonation load. The maximum dynamic strain measured was 0.75%, the maximum residual plastic strain reached 0.15%. The pipe suffered no other deformation above and beyond this slight plastic strain. The radiolysis gas detonation was simulated very well numerically. Using the calculated pressure loads in a structural dynamics model also showed good agreement with the measured maximum dynamic pipe strains. In this way, the experimental findings were confirmed theoretically. The experiments and the calculations showed that postulated radiolysis gas reactions during pressure relief cannot jeopardize the integrity of the relief pipe. (orig.)
International Nuclear Information System (INIS)
Xu, Rong Ji; Zhang, Xiao Hui; Wang, Rui Xiang; Xu, Shu Hui; Wang, Hua Sheng
2017-01-01
Highlights: • Solar collector integrates compound parabolic concentrator and pulsating heat pipe. • Concentrator of a concentration ratio 3.4 matches well heat flux of heat pipe. • Solar collector efficiency increases with decreasing absorber thermal resistance. • Maximum 50% efficiency of the integrated solar collector has been achieved. - Abstract: The paper reports an experimental investigation of a newly proposed solar collector that integrates a closed-end pulsating heat pipe (PHP) and a compound parabolic concentrator (CPC). The PHP is used as an absorber due to its simple structure and high heat transfer capacity. The CPC has a concentration ratio of 3.4 and can be readily manufactured by three-dimensional printing. The CPC can significantly increase the incident solar irradiation intensity to the PHP absorber and also reduce the heat loss due to the decrease in the area of the hot surface. A prototype of the solar collector has been built, consisting of a PHP absorber bent by 4 mm diameter copper tube, CPC arrayed by 10 × 2 CPC units with the collection area of 300 × 427.6 mm 2 , a hot water tank and a glass cover. HFE7100 was utilized as the working fluid at a filling ratio of 40%. The operating characteristics and thermal efficiency of the solar collector were experimentally studied. The steady and periodic temperature fluctuations of the evaporation and condensation sections of the PHP absorber indicate that the absorber works well with a thermal resistance of about 0.26 °C/W. It is also found that, as the main factor to the the thermal performance of the collector, thermal resistance of the PHP absorber decreases with increasing evaporation temperature. The collector apparently shows start-up, operational and shutdown stages at the starting and ending temperatures of 75 °C. When the direct normal irradiance is 800 W/m 2 , the instantaneous thermal efficiency of the solar collector can reach up to 50%.
Advanced industrial ceramic heat pipe recuperators
Energy Technology Data Exchange (ETDEWEB)
Strumpf, H.J.; Stillwagon, T.L.; Kotchick, D.M.; Coombs, M.G.
1988-01-01
This paper summarizes the results of an investigation involving the use of ceramic heat pipe recuperators for high-temperature heat recovery from industrial furnaces. The function of the recuperator is to preheat combustion air with furnace exhaust gas. The heat pipe recuperator comprises a bundle of individual ceramic heat pipes acting in concert, with a partition separating the air and exhaust gas flow streams. Because each heat pipe is essentially an independent heat exchanger, the failure of a single tube does not compromise recuperator integrity, has only a minimal effect on overall heat exchanger performance and enables easier replacement of individual heat pipes. In addition, the heat pipe acts as an essentially isothermal heat transfer device, leading to a high thermodynamic efficiency. Cost estimates developed for heat pipe recuperator systems indicate favorable payback periods. Laboratory studies have demonstrated the feasibility of fabricating the required ceramic tubes, coating the inside of the tubes with CVD tungsten, and sealing the heat pipe with an electron-beam-welded or vacuum-brazed end cap.
International Nuclear Information System (INIS)
Guyette, M.; De Smet, M.
1995-01-01
In this paper we outline a methodology to assess the fatigue induced in piping systems submitted to thermal stratification. More specifically, the transformation from the measured outer wall temperature time histories to stress time histories in any point of the line is treated.By means of inverse transfer functions, the fluid temperature distribution is calculated from the outside wall temperatures measured in a limited number of temperature sections. Using direct transfer functions, the local stresses due to stratification may be determined as well as the pipe free curvatures and the pipe free axial strains. Using a finite beam element model of the line, the global response of the line (in terms of displacements or stresses) due to the applied curvatures, axial strains, end point displacements, internal pressure and possible contacts with the pipe environment may be determined.The method is illustrated for the surge lines of the Doel 2 and Doel 4 nuclear power plants. An excellent correlation is found between measured and calculated displacements. Typical stress time histories are shown for a plant cool down. ((orig.))
International Nuclear Information System (INIS)
Williams, Dennis K.; Ranson, William F.
2003-01-01
One of the paradigmatic classes of problems that frequently arise in piping stress analysis discipline is the effect of local stresses created by supports and restraints attachments. Over the past 20 years, concerns have been identified by both regulatory agencies in the nuclear power industry and others in the process and chemicals industries concerning the effect of various stiff clamping arrangements on the expected life of the pipe and its various piping components. In many of the commonly utilized geometries and arrangements of pipe clamps, the elasticity problem becomes the axisymmetric stress and deformation determination in a hollow cylinder (pipe) subjected to the appropriate boundary conditions and respective loads per se. One of the geometries that serve as a pipe anchor is comprised of two pipe clamps that are bolted tightly to the pipe and affixed to a modified shoe-type arrangement. The shoe is employed for the purpose of providing an immovable base that can be easily attached either by bolting or welding to a structural steel pipe rack. Over the past 50 years, the computational tools available to the piping analyst have changed dramatically and thereby have caused the implementation of solutions to the basic problems of elasticity to change likewise. The need to obtain closed form elasticity solutions, however, has always been a driving force in engineering. The employment of symbolic calculus that is currently available through numerous software packages makes closed form solutions very economical. This paper briefly traces the solutions over the past 50 years to a variety of axisymmetric stress problems involving hollow circular cylinders employing a Fourier series representation. In the present example, a properly chosen Fourier series represent the mathematical simulation of the imposed axial displacements on the outside diametrical surface. A general solution technique is introduced for the axisymmetric discontinuity stresses resulting from an
International Nuclear Information System (INIS)
Park, Jeong Soon; Jhung, Myung Jo
2012-01-01
Since the LBB(Leak-Before-Break) concept has been widely applied to high energy piping systems in the pressurized water reactors, a number of engineering estimation methods had been developed for J-integral and COD values. However, those estimation methods were mostly reliable for relatively thick-walled pipes about R m /t=5 or 10. As the LBB concept might be considered in the design stage of the SFR (Sodium-cooled Fast Reactor) which has relatively thin-walled pipes due to its low design pressure, the applicability of current estimation methods should be investigated for thin-walled pipes. Along with the J-integral and COD, the estimation method for creep fracture mechanics parameters, C*- integral and COD rate, is required because operating temperature of SFR is high enough to induce creep in the structural materials. In this study, the applicability of the current C*- integral and COD estimation methods to thin-walled pipes is studied for a circumferential through-wall crack using the finite element (FE) method. Based on the FE results, enhancement of the current estimation methods is made
Functional integral approach to classical statistical dynamics
International Nuclear Information System (INIS)
Jensen, R.V.
1980-04-01
A functional integral method is developed for the statistical solution of nonlinear stochastic differential equations which arise in classical dynamics. The functional integral approach provides a very natural and elegant derivation of the statistical dynamical equations that have been derived using the operator formalism of Martin, Siggia, and Rose
Poisson processes and a Bessel function integral
Steutel, F.W.
1985-01-01
The probability of winning a simple game of competing Poisson processes turns out to be equal to the well-known Bessel function integral J(x, y) (cf. Y. L. Luke, Integrals of Bessel Functions, McGraw-Hill, New York, 1962). Several properties of J, some of which seem to be new, follow quite easily
Weighted -Integral Representations of -Functions in
Directory of Open Access Journals (Sweden)
Arman H. Karapetyan
2012-01-01
Full Text Available For 1-functions , given in the complex space , integral representations of the form =(−( are obtained. Here, is the orthogonal projector of the space 2{;−||||(} onto its subspace of entire functions and the integral operator appears by means of explicitly constructed kernel Φ which is investigated in detail.
International Nuclear Information System (INIS)
Reuter, W.G.; Server, W.L.
1982-01-01
Data from flat-plate specimens containing either triangular-, ellipsoidal- or rectangular-shaped surface flaws were evaluated by several potential analytical techniques. These techniques were modified as needed to predict conditions for initiation of subcritical crack growth, for the defect to penetrate the 6.4 mm (0.25 in.) wall thickness, and for instability (plastic or unstable). The modified analytical techniques developed from the plate specimens were then used to make predictions which are compared with test results obtained from pipe specimens containing triangular-shaped surface flaws
Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min
2016-04-01
Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.
International Nuclear Information System (INIS)
1988-09-01
This document presents the piping research program plan for the Structural and Seismic Engineering Branch and the Materials Engineering Branch of the Division of Engineering, Office of Nuclear Regulatory Research. The plan describes the research to be performed in the areas of piping design criteria, environmentally assisted cracking, pipe fracture, and leak detection and leak rate estimation. The piping research program addresses the regulatory issues regarding piping design and piping integrity facing the NRC today and in the foreseeable future. The plan discusses the regulatory issues and needs for the research, the objectives, key aspects, and schedule for each research project, or group of projects focussing of a specific topic, and, finally, the integration of the research areas into the regulatory process is described. The plan presents a snap-shot of the piping research program as it exists today. However, the program plan will change as the regulatory issues and needs change. Consequently, this document will be revised on a bi-annual basis to reflect the changes in the piping research program. (author)
ZEROES OF GENERALIZED FRESNEL COMPLEMENTARY INTEGRAL FUNCTIONS
Directory of Open Access Journals (Sweden)
Jaime Lobo Segura
2016-08-01
Full Text Available Theoretical upper and lower bounds are established for zeroes of a parametric family of functions which are deﬁned by integrals of the same type as the Fresnel complementary integral. Asymptotic properties for these bounds are obtained as well as monotony properties of the localization intervals. Given the value of the parameter an analytical-numerical procedure is deduced to enclose all zeros of a given function with an a priori error.
International Nuclear Information System (INIS)
Datta, Debashis
2010-02-01
A nuclear piping system is composed of several straight pipes and elbows joined by welding. These weld sections are usually the most susceptible failure parts susceptible to various degradation mechanisms. Whereas a specific location of a reactor piping system might fail by a combination of different aging mechanisms, e.g. fatigue and/or stress corrosion cracking, the majority of the piping probabilistic fracture mechanics (PFM) codes can only consider a single aging mechanism at a time. So, a probabilistic fracture mechanics computer code capable of considering multiple aging mechanisms was developed for an accurate failure analysis of each specific component of a nuclear piping section. The newly proposed crack morphology based probabilistic leak flow rate module is introduced in this code to separately treat fatigue and SCC type cracks. Improved models e.g. stressors models, elbow failure model, SIFs model, local seismic occurrence probability model, performance based crack detection models, etc., are also included in this code. Recent probabilistic fatigue (S-N) and SCC crack initiation (S-T) and subsequent crack growth rate models are coded. An integrated probabilistic risk assessment and probabilistic fracture mechanics methodology is proposed. A complete flow chart regarding the combined aging mechanism model is presented. The combined aging mechanism based module can significantly reduce simulation efforts and time. Two NUREG benchmark problems, e.g. reactor pressure vessel outlet nozzle section and a surge line elbow located just below the pressurizer are reinvestigated by this code. The results showed that, contribution of pre-existing cracks in addition to initiating cracks, can significantly increase the overall failure probability. Inconel weld location of reactor pressure vessel outlet nozzle section showed the weakest point in terms of relative through-wall leak failure probability in the order of about 10 -2 at the 40-year plant life. Considering
International Nuclear Information System (INIS)
Adib-Ramezani, H.; Jeong, J.; Pluvinage, G.
2006-01-01
In the present study, the SINTAP procedure has been proposed as a general structural integrity tool for semi-spherical, semi-elliptical and long blunt notch defects. The notch stress intensity factor concept and SINTAP structural integrity procedure are employed to assess gas pipelines integrity. The external longitudinal defects have been investigated via elastic-plastic finite element method results. The notch stress intensity concept is implemented into SINTAP procedure. The safety factor is calculated via SINTAP procedure levels 0B and 1B. The extracted evaluations are compared with the limit load analysis based on ASME B31G, modified ASME B31G, DNV RP-F101 and recent proposed formulation [Choi JB, Goo BK, Kim JC, Kim YJ, Kim WS. Development of limit load solutions for corroded gas pipelines. Int J Pressure Vessel Piping 2003;80(2):121-128]. The comparison among extracted safety factors exhibits that SINTAP predictions are located between lower and upper safety factor bounds. The SINTAP procedure including notch-based assessment diagram or so-called 'NFAD' involves wide range of defect geometries with low, moderate and high stress concentrations and relative stress gradients. Finally, some inspired and advanced viewpoints have been investigated
Energy Technology Data Exchange (ETDEWEB)
Adib-Ramezani, H. [Ecole Polytechnique de l' Universite d' Orleans, CNRS-CRMD, 8 rue Leonard de Vinci, 45072 Orleans Cedex 2 (France)]. E-mail: hradib_2000@yahoo.com; Jeong, J. [Ecole Polytechnique de l' Universite d' Orleans, CNRS-CRMD, 8 rue Leonard de Vinci, 45072 Orleans Cedex 2 (France); Pluvinage, G. [Laboratoire de Fiabilite Mecanique (LFM), Universite de Metz-ENIM, 57045 Metz (France)
2006-06-15
In the present study, the SINTAP procedure has been proposed as a general structural integrity tool for semi-spherical, semi-elliptical and long blunt notch defects. The notch stress intensity factor concept and SINTAP structural integrity procedure are employed to assess gas pipelines integrity. The external longitudinal defects have been investigated via elastic-plastic finite element method results. The notch stress intensity concept is implemented into SINTAP procedure. The safety factor is calculated via SINTAP procedure levels 0B and 1B. The extracted evaluations are compared with the limit load analysis based on ASME B31G, modified ASME B31G, DNV RP-F101 and recent proposed formulation [Choi JB, Goo BK, Kim JC, Kim YJ, Kim WS. Development of limit load solutions for corroded gas pipelines. Int J Pressure Vessel Piping 2003;80(2):121-128]. The comparison among extracted safety factors exhibits that SINTAP predictions are located between lower and upper safety factor bounds. The SINTAP procedure including notch-based assessment diagram or so-called 'NFAD' involves wide range of defect geometries with low, moderate and high stress concentrations and relative stress gradients. Finally, some inspired and advanced viewpoints have been investigated.
International Nuclear Information System (INIS)
Pollono, L.P.
1979-01-01
A pipe support for high temperature, thin-walled piping runs such as those used in nuclear systems is described. A section of the pipe to be suppported is encircled by a tubular inner member comprised of two walls with an annular space therebetween. Compacted load-bearing thermal insulation is encapsulated within the annular space, and the inner member is clamped to the pipe by a constant clamping force split-ring clamp. The clamp may be connected to pipe hangers which provide desired support for the pipe
Yu, C.
1983-01-01
Flexible hollow metallic rectangular pipes and infrared fibers are proposed as alternate media for collection, guidance and manipulation of mid-infrared tunable diode laser (TDL) radiation. Certain features of such media are found to be useful for control of TDL far field patterns, polarization and possibly intensity fluctuations. Such improvement in dimension compatibility may eventually lead to laser heterodyne spectroscopy (LHS) and optical communication system compaction and integration. Infrared optical fiber and the compound parabolic coupling of light into a hollow pipe waveguide are discussed as well as the design of the waveguide.
Microcanonical functional integral for the gravitational field
International Nuclear Information System (INIS)
Brown, J.D.; York, J.W. Jr.
1993-01-01
The gravitational field in a spatially finite region is described as a microcanonical system. The density of states ν is expressed formally as a functional integral over Lorentzian metrics and is a functional of the geometrical boundary data that are fixed in the corresponding action. These boundary data are the thermodynamical extensive variables, including the energy and angular momentum of the system. When the boundary data are chosen such that the system is described semiclassically by any real stationary axisymmetric black hole, then in this same approximation lnν is shown to equal 1/4 the area of the black-hole event horizon. The canonical and grand canonical partition functions are obtained by integral transforms of ν that lead to ''imaginary-time'' functional integrals. A general form of the first law of thermodynamics for stationary black holes is derived. For the simpler case of nonrelativistic mechanics, the density of states is expressed as a real-time functional integral and then used to deduce Feynman's imaginary-time functional integral for the canonical partition function
Integrating individual movement behaviour into dispersal functions.
Heinz, Simone K; Wissel, Christian; Conradt, Larissa; Frank, Karin
2007-04-21
Dispersal functions are an important tool for integrating dispersal into complex models of population and metapopulation dynamics. Most approaches in the literature are very simple, with the dispersal functions containing only one or two parameters which summarise all the effects of movement behaviour as for example different movement patterns or different perceptual abilities. The summarising nature of these parameters makes assessing the effect of one particular behavioural aspect difficult. We present a way of integrating movement behavioural parameters into a particular dispersal function in a simple way. Using a spatial individual-based simulation model for simulating different movement behaviours, we derive fitting functions for the functional relationship between the parameters of the dispersal function and several details of movement behaviour. This is done for three different movement patterns (loops, Archimedean spirals, random walk). Additionally, we provide measures which characterise the shape of the dispersal function and are interpretable in terms of landscape connectivity. This allows an ecological interpretation of the relationships found.
Liu, G; Bakker, G L; Li, S; Vreeburg, J H G; Verberk, J Q J C; Medema, G J; Liu, W T; Van Dijk, J C
2014-05-20
The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected. Analyzing the composition and correlation of bacterial communities from different phases helped us to locate where most of the bacteria are and understand the interactions among these phases. In the present study, the bacteria from four critical phases of an unchlorinated DWDS, including bulk water, pipe wall biofilm, suspended solids, and loose deposits, were quantified and identified by adenosine triphosphate analysis and pyrosequencing, respectively. The results showed that the bulk water bacteria (including the contribution of suspended solids) contributed less than 2% of the total bacteria. The bacteria associated with loose deposits and pipe wall biofilm that accumulated in the DWDS accounted for over 98% of the total bacteria, and the contributions of bacteria in loose deposits and pipe wall biofilm were comparable. Depending on the amount of loose deposits, its contribution can be 7-fold higher than the pipe wall biofilm. Pyrosequencing revealed relatively stable bacterial communities in bulk water, pipe wall biofilm, and suspended solids throughout the distribution system; however, the communities present in loose deposits were dependent on the amount of loose deposits locally. Bacteria within the phases of suspended solids, loose deposits, and pipe wall biofilm were similar in phylogenetic composition. The bulk water bacteria (dominated by Polaromonas spp.) were clearly different from the bacteria from the other three phases (dominated by Sphingomonas spp.). This study highlighted that the integral DWDS ecology should include contributions from all of the four phases, especially the bacteria harbored by loose deposits. The accumulation of loose deposits and the aging process create variable microenvironments
Liu, G.
2014-05-20
The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected. Analyzing the composition and correlation of bacterial communities from different phases helped us to locate where most of the bacteria are and understand the interactions among these phases. In the present study, the bacteria from four critical phases of an unchlorinated DWDS, including bulk water, pipe wall biofilm, suspended solids, and loose deposits, were quantified and identified by adenosine triphosphate analysis and pyrosequencing, respectively. The results showed that the bulk water bacteria (including the contribution of suspended solids) contributed less than 2% of the total bacteria. The bacteria associated with loose deposits and pipe wall biofilm that accumulated in the DWDS accounted for over 98% of the total bacteria, and the contributions of bacteria in loose deposits and pipe wall biofilm were comparable. Depending on the amount of loose deposits, its contribution can be 7-fold higher than the pipe wall biofilm. Pyrosequencing revealed relatively stable bacterial communities in bulk water, pipe wall biofilm, and suspended solids throughout the distribution system; however, the communities present in loose deposits were dependent on the amount of loose deposits locally. Bacteria within the phases of suspended solids, loose deposits, and pipe wall biofilm were similar in phylogenetic composition. The bulk water bacteria (dominated by Polaromonas spp.) were clearly different from the bacteria from the other three phases (dominated by Sphingomonas spp.). This study highlighted that the integral DWDS ecology should include contributions from all of the four phases, especially the bacteria harbored by loose deposits. The accumulation of loose deposits and the aging process create variable microenvironments
Integration of functions in logic database systems
Lambrichts, E.; Nees, P.; Paredaens, J.; Peelman, P.; Tanca, L.
1990-01-01
We extend Datalog, a logic programming language for rule-based systems, by respectively integrating types, negation and functions. This extention of Datalog is called MilAnt. Furthermore, MilAnt consistency is defined as a stronger form of consistency for functions. It is known that consistency for
Hypergeometric Functions with Integral Parameter Differences
DEFF Research Database (Denmark)
Karlsson, Per W.
1971-01-01
For a generalized hypergeometric function pFq(z) with positive integral differences between certain numerator and denominator parameters, a formula expressing the pFq(z) as a finite sum of lower-order functions is proved. From this formula, Minton's two summation theorems for p = q + 1, z = 1...
Human Systems Integration: Requirements and Functional Decomposition
Berson, Barry; Gershzohn, Gary; Boltz, Laura; Wolf, Russ; Schultz, Mike
2005-01-01
This deliverable was intended as an input to the Access 5 Policy and Simulation Integrated Product Teams. This document contains high-level pilot functionality for operations in the National Airspace System above FL430. Based on the derived pilot functions the associated pilot information and control requirements are given.
International Nuclear Information System (INIS)
Charalambus, B.; Labes, M.
1993-01-01
It is postulated that a break of a thin-walled pipe does not cause a subsequent break in the pipe in the vicinity of a plastic hinge even when the wall is weakened by a 60 circumferential crack of a depth of 30% of the wall thickness on the tension side. This pipe behavior is the result of plastic buckling in the compression side and applies to pipes of diameter-to-thickness ratio larger than 20. For this type of pipe, the axial strains decrease with increasing diameter-to-thickness ratio in the tension side. As the pipe is only loaded in one direction, there is no cyclic behavior that can trigger a subsequent break. (orig.)
Integral transform techniques for Green's function
Watanabe, Kazumi
2015-01-01
This book describes mathematical techniques for integral transforms in a detailed but concise manner. The techniques are subsequently applied to the standard partial differential equations, such as the Laplace equation, the wave equation and elasticity equations. Green’s functions for beams, plates and acoustic media are also shown, along with their mathematical derivations. The Cagniard-de Hoop method for double inversion is described in detail, and 2D and 3D elastodynamic problems are treated in full. This new edition explains in detail how to introduce the branch cut for the multi-valued square root function. Further, an exact closed form Green’s function for torsional waves is presented, as well as an application technique of the complex integral, which includes the square root function and an application technique of the complex integral.
Parametric peak stress functions of 90o pipe bends with ovality under steady-state creep conditions
International Nuclear Information System (INIS)
Yaghi, A.H.; Hyde, T.H.; Becker, A.A.; Sun, W.
2009-01-01
Stress-based life prediction techniques are commonly used to estimate the failure life of pressurised pipe-related components, such as welds and bends, under creep conditions. Previous research has shown that reasonable life predictions can be obtained, based on the steady-state peak stresses, compared with the life predictions obtained from creep damage modelling. In this work, a series of parametric steady-state peak rupture stress functions of right-angled pipe bends with ovality are presented, which are based on the results obtained from finite element (FE) analyses, covering a number of material property and geometry parameters in practical ranges. Methods used to determine the stress functions are described. The FE analyses have been performed using axisymmetric models, subjected to internal pressure only, with a Norton creep law. Typical examples of parametric peak stress curve fitting are shown. In particular, the accuracy of the interpolation and extrapolation abilities of the stress functions is assessed. The results show that in most cases the interpolated and extrapolated peak stresses are accurate to within ±3% and ±5%, respectively.
International Nuclear Information System (INIS)
Santhanam, S.; Schilt, C.; Turker, B.; Woudstra, T.; Aravind, P.V.
2016-01-01
This study deals with the thermodynamic modeling of biomass Gasifier–SOFC (Solid Oxide Fuel Cell)–GT (Gas Turbine) systems on a small scale (100 kW_e). Evaluation of an existing biomass Gasifier–SOFC–GT system shows highest exergy losses in the gasifier, gas turbine and as waste heat. In order to reduce the exergy losses and increase the system's efficiency, improvements are suggested and the effects are analyzed. Changing the gasifying agent for air to anode gas gave the largest increase in the electrical efficiency. However, heat is required for an allothermal gasification to take place. A new and simple strategy for heat pipe integration is proposed, with heat pipes placed in between stacks in series, rather than the widely considered approach of integrating the heat pipes within the SOFC stacks. The developed system based on a Gasifier–SOFC–GT combination improved with heat pipes and anode gas recirculation, increases the electrical efficiency from approximately 55%–72%, mainly due to reduced exergy losses in the gasifier. Analysis of the improved system shows that operating the system at possibly higher operating pressures, yield higher efficiencies within the range of the operating pressures studied. Further the system was scaled up with an additional bottoming cycle achieved electrical efficiency of 73.61%. - Highlights: • A new and simple strategy for heat pipe integration between SOFC and Gasifier is proposed. • Anode exhaust gas is used as a gasifying agent. • The new proposed Gasifier–SOFC–GT system achieves electrical efficiency of 72%. • Addition of steam rankine bottoming cycle to proposed system increases electrical efficiency to 73.61%.
Simulation of flow structure in the suction pipe of a hydroturbine by integral characteristics
DEFF Research Database (Denmark)
Kuibin, P.A.; Okulov, Valery; Pylev, I.M.
2006-01-01
Within the framework of a model of a twisted flow of an inviscid incompressible liquid, we solve the problem of determining the frequency and amplitude of oscillations caused by the precession of a helical vortex core in the suction tube of a hydroturbine from the specified integral characteristics...
Analysis of time integration methods for the compressible two-fluid model for pipe flow simulations
B. Sanderse (Benjamin); I. Eskerud Smith (Ivar); M.H.W. Hendrix (Maurice)
2017-01-01
textabstractIn this paper we analyse different time integration methods for the two-fluid model and propose the BDF2 method as the preferred choice to simulate transient compressible multiphase flow in pipelines. Compared to the prevailing Backward Euler method, the BDF2 scheme has a significantly
Best practices for quality management of stormwater pipe construction.
2014-02-01
Stormwater pipe systems are integral features of transportation construction projects. Pipe culverts : direct stormwater away from roadway structures and towards designated discharge areas. The improper : installation of a pipe culvert can result in ...
Python Integration with a Functional DBMS
Zou, Hanzheng
2009-01-01
Python is an Object Oriented programming language and widely used nowadays. This report describes how to extend a functional database system Amos II for integration with Python. Several possibilities are analyzed to combine the Amos II C external interfaces with those of Python. Based on these discussions, new functionality has been added to the Python language by implementing a Python C external module. A basic API called PyAmos, interfacing Python and Amos II, is proposed and implemented in...
Functional integral in supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Ktitarev, D.V.
1990-01-01
The solution of the square root of the Schroedinger equation for the supersymmetric quantum mechanics is expressed in the form of series. The formula may be considered as a functional integral of the chronological exponent of the super-pseudodifferential operator symbol over the superspace. 10 refs
Implementation of the structural integrity analysis for PWR primary components and piping
International Nuclear Information System (INIS)
Pellissier-Tanon, A.
1982-01-01
The trends on the definition, the assessment and the application of fracture strength evaluation methodology, which have arisen through experience in the design, construction and operation of French 900-MW plants are reviewed. The main features of the methodology proposed in a draft of Appendix ZG of the RCC-M code of practice for the design verification of fracture strength of primary components are presented. The research programs are surveyed and discussed from four viewpoints, first implementation of the LEFM analysis, secondly implementation of the fatigue crack propagation analysis, thirdly analysis of vessel integrity during emergency core cooling, and fourthly methodology for tear fracture analysis. (author)
International Nuclear Information System (INIS)
Bauernfeind, V.; Bloem, T.; Pache, W.; Diederich, H.J.
1989-01-01
During the hot functional tests of the Muelheim--Kaerlich first-of-a-kind plant, vibration measurements were made on the reactor pressure vessel and its' internals and on the primary piping system and main coolant pumps. This paper contains results of the measurements taken on the pipes and the pumps with an interpretation of these measurements based on an analytical model of the primary system. The main aim of the measurement program is to confirm that the components, which are of new design, are adequately dimensioned for the operational vibration loads during the service life of the reactor. In addition, the vibrational modes of the hot lines, the steam generators and the pumps with the adjacent cold lines were determined. These values were compared with the analytically calculated resonance frequencies and eigenforms. Good agreement was found. In the course of these comparisons, information on the modelling of the supporting structures and the efficiency of the damping elements during normal operation was obtained
International Nuclear Information System (INIS)
Ware, A.G.
1985-01-01
Studies are being conducted at the Idaho National Engineering Laboratory to determine whether an increase in the damping values used in seismic structural analyses of nuclear piping systems is justified. Increasing the allowable damping would allow fewer piping supports which could lead to safer, more reliable, and less costly piping systems. Test data from availble literature were examined to determine the important parameters contributing to piping system damping, and each was investigated in separate-effects tests. From the combined results a world pipe damping data bank was established and multiple regression analyses performed to assess the relative contributions of the various parameters. The program is being extended to determine damping applicable to higher frequency (33 to 100 Hz) fluid-induced loadings. The goals of the program are to establish a methodology for predicting piping system damping and to recommend revised guidelines for the damping values to be included in analyses
Pipe support program at Pickering
International Nuclear Information System (INIS)
Sahazizian, L.A.; Jazic, Z.
1997-01-01
This paper describes the pipe support program at Pickering. The program addresses the highest priority in operating nuclear generating stations, safety. We present the need: safety, the process: managed and strategic, and the result: assurance of critical piping integrity. In the past, surveillance programs periodically inspected some systems, equipment, and individual components. This comprehensive program is based on a managed process that assesses risk to identify critical piping systems and supports and to develop a strategy for surveillance and maintenance. The strategy addresses all critical piping supports. Successful implementation of the program has provided assurance of critical piping and support integrity and has contributed to decreasing probability of pipe failure, reducing risk to worker and public safety, improving configuration management, and reducing probability of production losses. (author)
Study on concept of web-based reactor piping design data platform
International Nuclear Information System (INIS)
Wang Yu; Zhou Yu; Dong Jianling; Meng Yang
2005-01-01
For solving the piping design problems such as design data deficiency, designer communication inconvenience and design project inconsistence, Reactor Piping Design Database Platform, which is the main part of the Integrated Nuclear Project Research Platform, is proposed by analyzing the nuclear piping designs in detail. The functions and system structures of the platform are described in the paper for the sake of the realization of the Reactor Piping Design Database Platform. The platform is constituted by web-based management interface, AutoPlant selected as CAD software, and relation database management system (DBMS). (authors)
International Nuclear Information System (INIS)
Ware, A.G.; Arendts, J.G.
1984-01-01
A program has been developed to assess the available piping damping data, to generate additional data and conduct seperate effects tests, and to establish a plan for reporting and storing future test results into a data bank. This effort is providing some of the basis for developing higher allowable damping values for piping seismic analyses, which will potentially permit removal of a considerable number of piping supports, particularly snubbers. This in turn will lead to more flexible piping systems which will be less susceptible to thermal cracking, will be easier to maintain and inspect, as well as less costly
International Nuclear Information System (INIS)
Triggs, G.W.; Lightowlers, R.J.; Robinson, D.; Rice, G.
1986-01-01
A heat pipe for use in stabilising a specimen container for irradiation of specimens at substantially constant temperature within a liquid metal cooled fast reactor, comprises an evaporator section, a condenser section, an adiabatic section therebetween, and a gas reservoir, and contains a vapourisable substance such as sodium. The heat pipe further includes a three layer wick structure comprising an outer relatively fine mesh layer, a coarse intermediate layer and a fine mesh inner layer for promoting unimpeded return of condensate to the evaporation section of the heat pipe while enhancing heat transfer with the heat pipe wall and reducing entrainment of the condensate by the upwardly rising vapour. (author)
Integral equations of hadronic correlation functions a functional- bootstrap approach
Manesis, E K
1974-01-01
A reasonable 'microscopic' foundation of the Feynman hadron-liquid analogy is offered, based on a class of models for hadron production. In an external field formalism, the equivalence (complementarity) of the exclusive and inclusive descriptions of hadronic reactions is specifically expressed in a functional-bootstrap form, and integral equations between inclusive and exclusive correlation functions are derived. Using the latest CERN-ISR data on the two-pion inclusive correlation function, and assuming rapidity translational invariance for the exclusive one, the simplest integral equation is solved in the 'central region' and an exclusive correlation length in rapidity predicted. An explanation is also offered for the unexpected similarity observed between pi /sup +/ pi /sup -/ and pi /sup -/ pi /sup -/ inclusive correlations. (31 refs).
Integrated plant information technology design support functionality
International Nuclear Information System (INIS)
Kim, Yeon Seung; Kim, Dae Jin; Barber, P. W.; Goland, D.
1996-06-01
This technical report was written as a result of Integrated Plant Information System (IPIS) feasibility study on CANDU 9 project which had been carried out from January, 1994 to March, 1994 at AECL (Atomic Energy Canada Limited) in Canada. From 1987, AECL had done endeavour to change engineering work process from paper based work process to computer based work process through CANDU 3 project. Even though AECL had a lot of good results form computerizing the Process Engineering, Instrumentation Control and Electrical Engineering, Mechanical Engineering, Computer Aided Design and Drafting, and Document Management System, but there remains the problem of information isolation and integration. On this feasibility study, IPIS design support functionality guideline was suggested by evaluating current AECL CAE tools, analyzing computer aided engineering task and work flow, investigating request for implementing integrated computer aided engineering and describing Korean request for future CANDU design including CANDU 9. 6 figs. (Author)
Integrated plant information technology design support functionality
Energy Technology Data Exchange (ETDEWEB)
Kim, Yeon Seung; Kim, Dae Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Barber, P W; Goland, D [Atomic Energy Canada Ltd., (Canada)
1996-06-01
This technical report was written as a result of Integrated Plant Information System (IPIS) feasibility study on CANDU 9 project which had been carried out from January, 1994 to March, 1994 at AECL (Atomic Energy Canada Limited) in Canada. From 1987, AECL had done endeavour to change engineering work process from paper based work process to computer based work process through CANDU 3 project. Even though AECL had a lot of good results form computerizing the Process Engineering, Instrumentation Control and Electrical Engineering, Mechanical Engineering, Computer Aided Design and Drafting, and Document Management System, but there remains the problem of information isolation and integration. On this feasibility study, IPIS design support functionality guideline was suggested by evaluating current AECL CAE tools, analyzing computer aided engineering task and work flow, investigating request for implementing integrated computer aided engineering and describing Korean request for future CANDU design including CANDU 9. 6 figs. (Author).
Integrals of products of spherical functions
International Nuclear Information System (INIS)
Veverka, O.
1975-01-01
Various branches of mathematical physics use integral formulas of the products of spherical functions. In quantum mechanics and in transport theory the integrals ∫sub((4π))dΩ vectorYsub(s)sup(t)(Ω vector)Ysub(l)sup(k)(Ω vector)Ysub(n)sup(m)(Ω vector), ∫sub(-1)sup(1)dμPsub(s)sup(t)(μ)Psub(l)sup(k)(μ)Psub(n)sup(m)(μ), ∫sub(-1)sup(1)dμPsub(s)(μ)Psub(l)(μ)Psub(n)(μ) are generally applied, where Ysub(α)sup(β)(Ω vector) are spherical harmonics, Psub(α)sup(β)(μ) are associated Legendre functions, and Psub(α)(μ) are Legendre polynomials. In the paper, the general procedure of calculating the integrals of the products of any combination of spherical functions is given. The procedure is referred to in a report on the boundary conditions for the cylindrical geometry in neutron transport theory for both the outer and inner cylindrical boundaries. (author)
International Nuclear Information System (INIS)
Zheng Bin; Lu Yuechuan; Zang Fenggang; Sun Yingxue
2009-01-01
In order to widen the application of the engineering method of EPRI, with a series of analysis on the 3D elastic and elastic-plastic fracture mechanics finite element, the crack open displacements (COD) of cracked pipe were calculated and a key influence function h 2 in EPRI engineering method was studied against the COD results of FEM. A calculation method of h2 under the condition of tension and bending combined load was introduced in detail. In order to validate this method, the calculated h 2 results were compared with that of EPRI, and the calculated COD results based on the h 2 results were compared with that of PICEP. The compared results indicated that the calculated h 2 results as well as the COD results and the corresponding reference values were respectively accordant, and the calculation method in this paper was validated accordingly. (authors)
International Nuclear Information System (INIS)
Sullivan, T.E.; Pardini, J.A.
1978-01-01
A safety test facility for testing sodium-cooled nuclear reactor components includes a reactor vessel and a heat exchanger submerged in sodium in the tank. The reactor vessel and heat exchanger are connected by an expansion/deflection pipe coupling comprising a pair of coaxially and slidably engaged tubular elements having radially enlarged opposed end portions of which at least a part is of spherical contour adapted to engage conical sockets in the ends of pipes leading out of the reactor vessel and in to the heat exchanger. A spring surrounding the pipe coupling urges the end portions apart and into engagement with the spherical sockets. Since the pipe coupling is submerged in liquid a limited amount of leakage of sodium from the pipe can be tolerated
Penasa, Mauro; Colombo, Enrico; Giolfo, Mauro
1994-09-01
Due to the good performance shown by laser welded joints, to the quality and repeatability achievable by this welding technique and to its high process productivity, a feature inherent to the laser technology which, together with its high flexibility, allows different operations to be performed by a single source, consistent savings in a production line may be obtained. Therefore laser welding techniques may be of high relevance for industrial applications, provided that a sufficient attention is paid to avoiding a low utilization time to the operating laser source. The paper describes a feasibility study for the integration of a laser source as an automatic unit for circumferential butt welding of tubes in production lines of pipe coils, just before the cold bending station. Using a 6 kW CO2 source, thickness ranging from 3.5 to 11.2 mm in carbon, low alloyed Cr-Mo and austenitic stainless steels, have been successfully welded. Cr-Mo steels require on line preheating treatment, which however can be achieved by laser defocused passes just before welding. The results of the preliminary qualification performed on laser welded joints of the involved topologies of product (materials, diameters and thicknesses) are described together with technological tests required for approval: laser circumferential butt welding of tubes has proven to be effective, with satisfactory and repeatable results and good joint performances. An exhaustive comparison with current welding techniques (TIG, MIG) is then carried out, along with a detailed analysis of the potential advantages and benefits which may be expected by using the laser welding technique, as well as with a first estimation of the investments and running costs. Since laser productivity is saturated only at a rough 35% during the year, an accurate analysis of other possible applications and of a possible lay out of a laser working cell integrated in the factory production lines is performed. Usually little attention is
International Nuclear Information System (INIS)
Bauernfeind, V.; Bloem, T.; Pache, W.; Diederich, H.J.
1992-01-01
During the hot functional tests of the Muelheim-Kaerlich plant, which was the first plant of its type, vibration measurements were made on the reactor pressure vessel and its internal parts and on the primary piping system and the main coolant pumps. This paper contains the results of the measurements taken on the pipes and the pumps with an interpretation of these measurements based on an analytical model of the primary system. The main aim of the measurement programs is to confirm that the components, which are of new structural design, are adequately dimensioned for the operational vibration loads during the service life of the reactor. In addition, the vibrational modes of the hot lines, the steam generators and the pumps with the adjacent cold lines were determined. These values were compared with the analytically calculated resonance frequencies and eigenforms. A good correspondence was found. In the course of these comparisons, information about the modelling of the supporting structures and the efficiency of the damping elements during normal operation was obtained. The vibration of the main coolant pumps was also continuously monitored. The pump surveillance system for each pump includes two non-contacting displacement sensors for measuring the kinetic shaft orbit, as well as velocity sensors for recording the vibrational velocity of the pump motor housing. During the continuous monitoring, it was checked whether the signal amplitudes remained within the allowable limits. In addition the frequency content of the signals was determined periodically. In this way deviations could be detected immediately and be explained by means of subsequent correlation analysis. Thus amplitude changes resulting from resonance effects were identified. (orig.)
Dunn, Peter D
1994-01-01
It is approximately 10 years since the Third Edition of Heat Pipes was published and the text is now established as the standard work on the subject. This new edition has been extensively updated, with revisions to most chapters. The introduction of new working fluids and extended life test data have been taken into account in chapter 3. A number of new types of heat pipes have become popular, and others have proved less effective. This is reflected in the contents of chapter 5. Heat pipes are employed in a wide range of applications, including electronics cooling, diecasting and injection mo
Accelerating functional verification of an integrated circuit
Deindl, Michael; Ruedinger, Jeffrey Joseph; Zoellin, Christian G.
2015-10-27
Illustrative embodiments include a method, system, and computer program product for accelerating functional verification in simulation testing of an integrated circuit (IC). Using a processor and a memory, a serial operation is replaced with a direct register access operation, wherein the serial operation is configured to perform bit shifting operation using a register in a simulation of the IC. The serial operation is blocked from manipulating the register in the simulation of the IC. Using the register in the simulation of the IC, the direct register access operation is performed in place of the serial operation.
Functional integration of digital radiologic equipment
International Nuclear Information System (INIS)
Agnifili, A.; DiStefano, G.; Salcito, G.; Passariello, R.
1989-01-01
This paper reports on a pilot project for the functional integration of digital radiologic equipment. Four different systems (a digital subtraction angiography unit, a DF unit, a computer radiography prototype, and a film digitizer) were connected with a link in an Ethernet LAN.ACR-NEMA standards were used to process the images of the different units in the same way. The central computer manages the long-term optical archive and the film laser printer. Some graphic workstations are connected to the picture archiving and communications system, which allows fast retrieval and processing of the images. Patients; data are acquired through the RIS and stored together with the images
Functional integral for non-Lagrangian systems
Kochan, Denis
2010-01-01
A novel functional integral formulation of quantum mechanics for non-Lagrangian systems is presented. The new approach, which we call "stringy quantization," is based solely on classical equations of motion and is free of any ambiguity arising from Lagrangian and/or Hamiltonian formulation of the theory. The functionality of the proposed method is demonstrated on several examples. Special attention is paid to the stringy quantization of systems with a general A-power friction force $-\\kappa[\\dot{q}]^A$. Results for $A = 1$ are compared with those obtained in the approaches by Caldirola-Kanai, Bateman and Kostin. Relations to the Caldeira-Leggett model and to the Feynman-Vernon approach are discussed as well.
Submit A Report View Reports List [+] View Reports Map [+] CDM Alert System Sign Up For Alerts User Login Annual Epidemic Histories Annual Season Summaries Contact Us ipmPIPE User Login Web Administrator Login
Wols, B.A.; Van Daal, K.; Van Thienen, P.
2014-01-01
Climate change may result in lowering of ground water levels and consolidation of the soil. The resulting (differential) settlements, associated with soil property transitions, may damage underground pipe infrastructure, such as drinking water distribution sys- tems. The work presented here offers
Energy Technology Data Exchange (ETDEWEB)
Sharafutdinov, I.G.; Mubashirov, S.G.; Prokopov, O.I.
1981-05-15
A pipe grabber is suggested which contains a housing, clamping elements and centering mechanism with drive installed on the lower end of the housing. In order to improve the reliable operation of the pipe grabber, the centering mechanism is made in the form of a reinforced ringed flexible shaft, while the drive is made in the form of elastic rotating discs. In this case the direction of rotation of the discs and the flexible shaft is the opposite.
International Nuclear Information System (INIS)
Haile, T.; Nakhla, G.; Allouche, E.; Vaidya, S.
2010-01-01
The bactericidal characteristics of nano-copper oxide or functionalized zeolite coated concrete pipes against Acidithiobacillus thiooxidans were studied by measuring the temporal variation of bacterial dry cell weight measurement, cellular Adenosine Triphosphate production, as well as oxygen uptake rate of the aforementioned bacterium. Uncorroded (UC), severely corroded (SC), and moderately corroded (MC) concrete pipes were electrochemically coated with a nano-copper oxide, while another uncorroded concrete pipe was used to apply functionalized zeolite coating (Z2). Specimens were characterized by field emission-scanning electron microscopy, and optical microscopy. Oxygen uptake rate of the bacterium was the highest in UC followed by the MC. Oxygen uptake rate and cellular Adenosine Triphosphate decreased progressively in Z2 and SC throughout the duration of the experiment due to decline in live bacterial cell. The maximum bacterial specific growth rate was 1.1 x 10 -2 day -1 for both UC and MC, with a decay rates varying from 1.4 x 10 -2 to 2.6 x 10 -2 day -1 . The minimum concentration limits for the inhibition of the bacterium in the nano-copper oxide coated concrete pipes ranged from 2.3 mg to 2.6 mg Cu per mg dry cell weight.
Evaluation of integrals with hypergeometric and logarithmic functions
Directory of Open Access Journals (Sweden)
Sofo Anthony
2018-02-01
Full Text Available We provide an explicit analytical representation for a number of logarithmic integrals in terms of the Lerch transcendent function and other special functions. The integrals in question will be associated with both alternating harmonic numbers and harmonic numbers with positive terms. A few examples of integrals will be given an identity in terms of some special functions including the Riemann zeta function. In general none of these integrals can be solved by any currently available mathematical package.
DEFF Research Database (Denmark)
Vezzaro, Luca; Sharma, Anitha Kumari; Ledin, Anna
2015-01-01
(copper, zinc) and organic compounds (fluoranthene). MP fluxes were estimated by using an integrated dynamic model, in combination with stormwater quality measurements. MP sources were identified by using GIS land usage data, runoff quality was simulated by using a conceptual accumulation/washoff model......The estimation of micropollutant (MP) fluxes in stormwater systems is a fundamental prerequisite when preparing strategies to reduce stormwater MP discharges to natural waters. Dynamic integrated models can be important tools in this step, as they can be used to integrate the limited data provided...... by monitoring campaigns and to evaluate the performance of different strategies based on model simulation results. This study presents an example where six different control strategies, including both source-control and end-of-pipe treatment, were compared. The comparison focused on fluxes of heavy metals...
Default Mode Dynamics for Global Functional Integration.
Vatansever, Deniz; Menon, David K; Manktelow, Anne E; Sahakian, Barbara J; Stamatakis, Emmanuel A
2015-11-18
The default mode network (DMN) has been traditionally assumed to hinder behavioral performance in externally focused, goal-directed paradigms and to provide no active contribution to human cognition. However, recent evidence suggests greater DMN activity in an array of tasks, especially those that involve self-referential and memory-based processing. Although data that robustly demonstrate a comprehensive functional role for DMN remains relatively scarce, the global workspace framework, which implicates the DMN in global information integration for conscious processing, can potentially provide an explanation for the broad range of higher-order paradigms that report DMN involvement. We used graph theoretical measures to assess the contribution of the DMN to global functional connectivity dynamics in 22 healthy volunteers during an fMRI-based n-back working-memory paradigm with parametric increases in difficulty. Our predominant finding is that brain modularity decreases with greater task demands, thus adapting a more global workspace configuration, in direct relation to increases in reaction times to correct responses. Flexible default mode regions dynamically switch community memberships and display significant changes in their nodal participation coefficient and strength, which may reflect the observed whole-brain changes in functional connectivity architecture. These findings have important implications for our understanding of healthy brain function, as they suggest a central role for the DMN in higher cognitive processing. The default mode network (DMN) has been shown to increase its activity during the absence of external stimulation, and hence was historically assumed to disengage during goal-directed tasks. Recent evidence, however, implicates the DMN in self-referential and memory-based processing. We provide robust evidence for this network's active contribution to working memory by revealing dynamic reconfiguration in its interactions with other networks
International Nuclear Information System (INIS)
Kaufman, A.M.
1978-01-01
A rapid method is presented for calculating transport in a network of one-dimensional flow paths or ''pipes''. The method defines a Green's function for each flow path and prescribes a method of combining these Green's functions to produce an overall Green's function for the flow path network. A unique feature of the method is the use of the Laplace transform of these Green's functions to carry out most of the calculations
Energy Technology Data Exchange (ETDEWEB)
Kačegavičius, Tomas, E-mail: Tomas.Kacegavicius@lei.lt; Povilaitis, Mantas, E-mail: Mantas.Povilaitis@lei.lt
2015-12-15
Highlights: • The analysis of loss-of-coolant accident (LOCA) in W7-X facility. • Burst disc is sufficient to prevent pressure inside the plasma vessel exceeding 110 kPa. • Developed model of the cooling system adequately represents the expected phenomena. - Abstract: Fusion is the energy production technology, which could potentially solve problems with growing energy demand of population in the future. Wendelstein 7-X (W7-X) is an experimental facility of stellarator type, which is currently being built at the Max-Planck-Institute for Plasmaphysics located in Greifswald, Germany. W7-X shall demonstrate that in future the energy could be produced in such type of fusion reactors. The safety analysis is required before the operation of the facility could be started. A rupture of 40 mm diameter pipe, which is connected to the divertor unit (module for plasma cooling) to ensure heat removal from the vacuum vessel in case of no-plasma operation mode “baking” is one of the design basis accidents to be investigated. During “baking” mode the vacuum vessel structures and working fluid – water are heated to the temperature 160 °C. This accident was selected for the detailed analysis using integral code ASTEC, which is developed by IRSN (France) and GRS mbH (Germany). This paper presents the integral analysis of W7-X response to a selected accident scenario. The model of the main cooling circuit and “baking” circuit was developed for ASTEC code. There were analysed two cases: (1) rupture of a pipe connected to the upper divertor unit and (2) rupture of a pipe connected to the lower divertor unit. The results of analysis showed that in both cases the water is almost completely released from the units into the plasma vessel. In both cases the pressure in the plasma vessel rapidly increases and in 28 s the set point for burst disc opening is reached preventing further pressurisation.
1990-01-01
Bobs Candies, Inc. produces some 24 million pounds of candy a year, much of it 'Christmas candy.' To meet Christmas demand, it must produce year-round. Thousands of cases of candy must be stored a good part of the year in two huge warehouses. The candy is very sensitive to temperature. The warehouses must be maintained at temperatures of 78-80 degrees Fahrenheit with relative humidities of 38- 42 percent. Such precise climate control of enormous buildings can be very expensive. In 1985, energy costs for the single warehouse ran to more than 57,000 for the year. NASA and the Florida Solar Energy Center (FSEC) were adapting heat pipe technology to control humidity in building environments. The heat pipes handle the jobs of precooling and reheating without using energy. The company contacted a FSEC systems engineer and from that contact eventually emerged a cooperative test project to install a heat pipe system at Bobs' warehouses, operate it for a period of time to determine accurately the cost benefits, and gather data applicable to development of future heat pipe systems. Installation was completed in mid-1987 and data collection is still in progress. In 1989, total energy cost for two warehouses, with the heat pipes complementing the air conditioning system was 28,706, and that figures out to a cost reduction.
Development of pipe wall thinning prediction software 'FALSET'
International Nuclear Information System (INIS)
Yoneda, Kimitoshi; Morita, Ryo; Inada, Fumio; Fujiwara, Kazutoshi
2012-01-01
Pipe wall thinning in power plants has been managed for maintaining plant integrity and safety with great importance. The target thinning phenomena are Flow Accelerated Corrosion (FAC) and Liquid Droplet Impingement Erosion (LDI). At present, the management is based on thinning rate and residual lifetime evaluation using pipe wall thickness measurement results. For the future, more safety and improvement in the management is required, and in this sense, prediction method of wall thinning is willing to be introduced. Therefore, prediction model of FAC and LDI have been constructed in CRIEPI, and to utilize these models to actual plant piping management easily, prediction software 'FALSET' is developed. FALSET has equipped with essential function for pipe wall thinning management in power plants, as follows; (1) Information and condition input of plant piping system and its component, (2) Wall thinning rate evaluation with CRIEPI's FAC/LDI prediction model, (3) Loading of wall thickness measurement data files and graphics of data trend, (4) Residual lifetime evaluation considering both measured and predicted thinning rate, (5) Statistical process and graphics of thinning rate and residual lifetime for multi-piping systems. With further verification and improvement of each function, there will be a perspective for this FALSET to be utilized as a management tool in power plants. (author)
Research program plan: piping. Volume 3
International Nuclear Information System (INIS)
Vagins, M.; Strosnider, J.
1985-07-01
Regulatory issues related to piping can be divided into the three areas of pipe cracking, postulated design basis pipe breaks, and design of piping for seismic and other dynamic loads. The first two of these issues are in the domain of the Materials Engineering Branch (MEBR), while the last of the three issues is the responsibility of the Mechanical/Structural Engineering Branch. This volume of the MEBR Research Plan defines the critical aspects of the pipe cracking and postulated design basis pipe break issues and identifies those research efforts and results necessary for their resolution. In general, the objectives of the MERB Piping Research Program are to provide experimentally validated analytic techniques and appropriate material properties characterization methods and data to support regulatory activities related to evaluating and ensuring piping integrity
Directory of Open Access Journals (Sweden)
Junesang Choi
2014-01-01
Full Text Available A remarkably large number of integral transforms and fractional integral formulas involving various special functions have been investigated by many authors. Very recently, Agarwal gave some integral transforms and fractional integral formulas involving the Fp(α,β(·. In this sequel, using the same technique, we establish certain integral transforms and fractional integral formulas for the generalized Gauss hypergeometric functions Fp(α,β,m(·. Some interesting special cases of our main results are also considered.
New application of functional integrals to classical mechanics
International Nuclear Information System (INIS)
Zherebtsov, Anton; Ilinski, Kirill
2005-01-01
In this Letter a new functional integral representation for classical dynamics is introduced. It is achieved by rewriting the Liouville picture in terms of bosonic creation-annihilation operators and utilizing the standard derivation of functional integrals for dynamical quantities in the coherent states representation. This results in a new class of functional integrals which are exactly solvable and can be found explicitly when the underlying classical systems are integrable
Smoking water pipe is injurious to lungs
DEFF Research Database (Denmark)
Sivapalan, Pradeesh; Ringbæk, Thomas; Lange, Peter
2014-01-01
This review describes the pulmonary consequences of water pipe smoking. Smoking water pipe affects the lung function negatively, is significantly associated with chronic obstructive pulmonary disease and increases the risk of lung infections. Case reports suggest that regular smokers of water pipe...
Osama Ali Diab; Elzahraa Mohamed Abdelrahim; Mohamed Esmail
2015-01-01
Background: Cigarette smoking is a well known risk factor for cardiovascular disease, however, little is known regarding water pipe (WP) smoking. High sensitivity C-reactive protein (hs-CRP) and flow mediated dilatation (FMD) are well recognized methods to assess cardiovascular risks. Objectives: To study the effect of WP smoking on hs-CRP level and endothelial function compared to cigarette smoking. Methods: The study included 77 male subjects (30 WP smokers, 30 cigarette smokers, and ...
Integrated Locomotor Function Tests for Countermeasure Evaluation
Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Landsness, E. C.; Black, F. O.
2005-01-01
adaptive remodeling of the full-body gaze control systems following exposure to visual-vestibular conflict. Subjects walked on a treadmill before and after a 30- minute exposure to 0.5X minifying during which self-generated sinusoidal vertical head rotations were performed while seated. Following exposure to visual-vestibular conflict subjects showed a restriction in compensatory head movements, increased knee and ankle flexion after heel-strike and a decrease in the rate of body loading during the rapid weight transfer phase after the heel strike event. Taken together, results from both studies provide evidence that the full body contributes to gaze stabilization during locomotion, and that different functional elements are responsive to changes in visual task constraints and are subject to adaptive alterations following exposure to visual-vestibular conflict. This information provides the basis for the design of a new generation of integrative tests that incorporate the evaluation of multiple neural control systems relevant to astronaut operational performance.
Analytical evaluation of integrals over Coulomb wave functions
International Nuclear Information System (INIS)
Nesbet, R.K.
1988-01-01
Indefinite integrals of products of Coulomb wave functions over the interval (r, ∞) can be evaluated by conversion to continued fractions. Examples are given of normalization and dipole transition integrals required in photoionization calculations. (orig.)
Integration of the supersonic kernel function
CSIR Research Space (South Africa)
Van Zyl, LH
1994-11-01
Full Text Available The article discusses ways in which the integrals resulting from a zero-order discontinuous pressure distribution can be arranged in such a way that they can be solved by either normal quadrature or curve fitting followed by analytical integration...
Development of LBB Piping Evaluation Diagram for APR 1000 Main Steam Line Piping
International Nuclear Information System (INIS)
Yang, J. S.; Jeong, I. L.; Park, C. Y.; Bai, S. Y.
2010-01-01
This paper presents the piping evaluation diagram (PED) to assess the applicability of Leak-Before- Break(LBB) for APR 1000 main steam line piping. LBB-PED of APR 1000 main steam line piping is independent of its piping geometry and has a function of the loads applied in piping system. Also, in order to evaluate LBB applicability during construction process with only the comparative evaluation of material properties between actually used and expected, the expected changes of material properties are considered in the LBB-PED. The LBB-PED, therefore, can be used for quick LBB evaluation of APR 1000 main steam line piping of both design and construction
International Nuclear Information System (INIS)
McKay, M.K.; Skinner, N.L.; Wood, S.T.
1994-07-01
The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) refers to a set of several microcomputer programs that were developed to create and analyze probabilistic risk assessments (PRAs), primarily for nuclear power plants. The Fault Tree, Event Tree, and Piping and Instrumentation Diagram (FEP) editors allow the user to graphically build and edit fault trees, and event trees, and piping and instrumentation diagrams (P and IDs). The software is designed to enable the independent use of the graphical-based editors found in the Integrated Reliability and Risk Assessment System (IRRAS). FEP is comprised of three separate editors (Fault Tree, Event Tree, and Piping and Instrumentation Diagram) and a utility module. This reference manual provides a screen-by-screen guide of the entire FEP System
Rainwater drained through fully filled pipes
Energy Technology Data Exchange (ETDEWEB)
Kuhn, B; Koestel, P
1989-02-01
The conventional rainwater drainage system according to DIN 1986 always seems to be a point of problemacy in the building services as far as the occupancy of installation shafts and ducts is at stake. The excavation work and the necessary gravity lines are considered to be expensive. The consideration of the necessary slope complicates the installation additionally. Basing on those considerations, the raindraining system with fully filled pipes has been developed. DIN 1986, edition June 1988, part 1, point 6.1.1 allows to install rainwater pipes operated as planned, fully filled without slope. An enterprise specialised in building services investigated all system laws because only by a hydraulically exact balance, the function of the rainwater drainage system operated by negative and positive pressure can be insured. The results of those investigations are integrated in a computer program developed for this purpose.
International Nuclear Information System (INIS)
Dedhia, D.D.; Harris, D.O.
1982-06-01
A user-oriented computer program for the evaluation of stress intensity factors for cracks in pipes is presented. Stress intensity factors for semi-elliptical, complete circumferential and long longitudinal cracks can be obtained using this computer program. The code is based on the method of influence functions which makes it possible to treat arbitrary stresses on the plane of the crack. The stresses on the crack plane can be entered as a mathematical or tabulated function. A user's manual is included in this report. Background information is also included
International Nuclear Information System (INIS)
Brumovsky, M.
2012-01-01
VERLIFE - 'Unified Procedure for Lifetime Assessment of Components and Piping in WWER NPPs during Operation' was developed within the 5th Framework Programme of the European Union in 2003 and later upgraded within the 6th Framework Programme 'COVERS - Safety of WWER NPPs' of the European Union in 2008. This Procedure had to fill the gap in original Soviet/Russian Codes and Rules for WWER type NPPs, as these codes were developed only for design and manufacture and were not changed since their second edition in 1989. VERLIFE Procedure is based on these Russian codes but incorporates also new developments in research, mainly in fracture mechanics, and also some principal approaches used in PWR codes. To assure that VERLIFE Procedure will remain a living document, new 3-years IAEA project (in close cooperation with another project of the 6th Framework Programme of the European Union 'NULIFE - Plant Life Management of NPPs') has started in 2009. Final document, was approved by expert groups of the IAEA and NULIFE in June 28-30, 2011, and will be issued as 'IAEA/NULIFE Guidelines for Integrity and Lifetime Assessment of Components and Piping in WWER NPPs during Operation'. This document represents a necessary part for any integrity and lifetime assessment during operation that is a bases for further decision about safe and potential long term operation. To prepare documents like TLAA, it is necessary to have a tool that is able to evaluate lifetime of the main NPP components taking into account existing past operation as well as proposal for the future. (author)
Modelling of multidimensional quantum systems by the numerical functional integration
International Nuclear Information System (INIS)
Lobanov, Yu.Yu.; Zhidkov, E.P.
1990-01-01
The employment of the numerical functional integration for the description of multidimensional systems in quantum and statistical physics is considered. For the multiple functional integrals with respect to Gaussian measures in the full separable metric spaces the new approximation formulas exact on a class of polynomial functionals of a given summary degree are constructed. The use of the formulas is demonstrated on example of computation of the Green function and the ground state energy in multidimensional Calogero model. 15 refs.; 2 tabs
Visual-motor integration functioning in a South African middle ...
African Journals Online (AJOL)
Visual-motor integration functioning has been identified as playing an integral role in different aspects of a child's development. Sensory-motor development is not only foundational to the physical maturation process, but is also imperative for progress with formal learning activities. Deficits in visual-motor integration have ...
Ambiguities of functional integrals for fermionic systems
International Nuclear Information System (INIS)
Cordero, P.
1981-01-01
We study the path integral quantization of a purely fermionic system in the semiclassical approximation. It is crucial that the analogue of the usual method of stationary phase works for integrals over Grassmann variables. Our analysis is based on a quite trivial example (the exact solution is known), and therefore we can check when the results make sense. It is shown that just as in the boson case the path integral method depends on the discretization (we use the Faddeev discretization) and some attempts to do the same derivations directly in the continuous time limit are shown to yield either ill-defined objects or simply wrong results. It seems correct to conclude that the key point is the discretization
A Generalized Analytic Operator-Valued Function Space Integral and a Related Integral Equation
International Nuclear Information System (INIS)
Chang, K.S.; Kim, B.S.; Park, C.H.; Ryu, K.S.
2003-01-01
We introduce a generalized Wiener measure associated with a Gaussian Markov process and define a generalized analytic operator-valued function space integral as a bounded linear operator from L p into L p-ci r cumflexprime (1< p ≤ 2) by the analytic continuation of the generalized Wiener integral. We prove the existence of the integral for certain functionals which involve some Borel measures. Also we show that the generalized analytic operator-valued function space integral satisfies an integral equation related to the generalized Schroedinger equation. The resulting theorems extend the theory of operator-valued function space integrals substantially and previous theorems about these integrals are generalized by our results
International Nuclear Information System (INIS)
Terao, D.
1995-01-01
In the foregoing sections, the author has discussed the NRC staff's perspective on the evolving seismic design criteria for piping systems. He also addressed the need for developing seismic loading stress criteria and provided several recommendations and considerations for ensuring piping functional capability, pressure integrity, and structural integrity. Overall, the general consensus in the NRC staff is that in the past several years, many initiatives have been developed and implemented by the industry and the NRC staff to reduce the excessive conservatisms that might have existed in nuclear piping system design criteria. The regulations, regulatory guides, and Standard Review Plan have been (or are currently in the process of being) revised to reflect these initiatives in an effort to produce requirements and guidelines that will continue to result in a safe and practical design of piping systems. However, further proposals to reduce margins are continually being submitted to the ASME Boiler and Pressure Vessel Code and the NRC for review and approval. Improvements to the piping seismic design criteria are always encouraged, but there is a point at which the benefits might be outweighed by drawbacks. Because of this rapidly evolving situation the need exists for the industry and the NRC staff to develop a course of action to ensure that piping seismic design criteria for future ALWR plants will result in piping system designs that provide adequate safety margins and practical designs at a reasonable cost
Dunn, Peter D
1982-01-01
A comprehensive, up-to-date coverage of the theory, design and manufacture of heat pipes and their applications. This latest edition has been thoroughly revised, up-dated and expanded to give an in-depth coverage of the new developments in the field. Significant new material has been added to all the chapters and the applications section has been totally rewritten to ensure that topical and important applications are appropriately emphasised. The bibliography has been considerably enlarged to incorporate much valuable new information. Thus readers of the previous edition, which has established
Integrals of Lagrange functions and sum rules
Energy Technology Data Exchange (ETDEWEB)
Baye, Daniel, E-mail: dbaye@ulb.ac.be [Physique Quantique, CP 165/82, Universite Libre de Bruxelles, B 1050 Bruxelles (Belgium); Physique Nucleaire Theorique et Physique Mathematique, CP 229, Universite Libre de Bruxelles, B 1050 Bruxelles (Belgium)
2011-09-30
Exact values are derived for some matrix elements of Lagrange functions, i.e. orthonormal cardinal functions, constructed from orthogonal polynomials. They are obtained with exact Gauss quadratures supplemented by corrections. In the particular case of Lagrange-Laguerre and shifted Lagrange-Jacobi functions, sum rules provide exact values for matrix elements of 1/x and 1/x{sup 2} as well as for the kinetic energy. From these expressions, new sum rules involving Laguerre and shifted Jacobi zeros and weights are derived. (paper)
International Nuclear Information System (INIS)
Cho, Doo Ho; Woo, Seung Wan; Choi, Jae Boong; Kim, Young Jin; Chang, Yoon Suk; Jhung, Myung Jo; Choi, Young Hwan
2010-01-01
This paper is to report enhancement of engineering J estimation for semi-elliptical surface cracks under tensile load. Firstly, limitation of the sole solution suggested by Zahoor is shown for reliable structural integrity assessment of thin-walled nuclear pipes. An improved solution is then developed based on extensive 3D FE analyses employing deformation plasticity theory for typical nuclear piping materials. It takes over the structure of the existing solution but provides new tabulated plastic influence functions to cover a wide range of pipe geometry and crack shape. Furthermore, to facilitate easy prediction of the plastic influence function, an alternative simple equation is also developed by using a statistical response surface method. The proposed H 1 values can be used for elastic-plastic fracture analyses of thin-walled pipes with a circumferential surface crack subjected to tensile loading
Energy Technology Data Exchange (ETDEWEB)
Cho, Doo Ho; Woo, Seung Wan; Choi, Jae Boong; Kim, Young Jin [Sungkyunkwan University, Suwon (Korea, Republic of); Chang, Yoon Suk [Kyung Hee University, Yongin (Korea, Republic of); Jhung, Myung Jo; Choi, Young Hwan [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2010-03-15
This paper is to report enhancement of engineering J estimation for semi-elliptical surface cracks under tensile load. Firstly, limitation of the sole solution suggested by Zahoor is shown for reliable structural integrity assessment of thin-walled nuclear pipes. An improved solution is then developed based on extensive 3D FE analyses employing deformation plasticity theory for typical nuclear piping materials. It takes over the structure of the existing solution but provides new tabulated plastic influence functions to cover a wide range of pipe geometry and crack shape. Furthermore, to facilitate easy prediction of the plastic influence function, an alternative simple equation is also developed by using a statistical response surface method. The proposed H{sub 1} values can be used for elastic-plastic fracture analyses of thin-walled pipes with a circumferential surface crack subjected to tensile loading
A multi-step approach for evaluation of pipe impact effects
International Nuclear Information System (INIS)
Vazquez Sierra, J.M.; Marti, J.
1987-01-01
The licensing of new and requalification of existing plant requires the consideration of effects arising from postulated breaks in high-energy lines. If the resulting jets or whipping pipes affect equipment or components (with safety-related functions in relation with the postulated break), their structural integrity and functionality has to be guaranteed. This can be achieved either by demonstrating sufficient ruggedness, or by obviating the problem with hardware (restraints, screens, deflectors, etc.). The present paper is orientated towards the first solution. A methodology has been developed and applied to the requalification of high-energy piping at the Santa Maria de Garona NPP in Spain. It provides techniques for evaluation of pipe-whip and jet effects on various structures inside the containment: containment liner, pedestal, shield wall, pipes and penetrations. Items of little structural strength (such as cables, conduits, etc.) were excluded from this approach for obvious reasons. (orig./GL)
Integral transform technique for meson wave functions
International Nuclear Information System (INIS)
Bakulev, A.P.; Mikhajlov, S.V.
1996-01-01
In a recent paper [1] we proposed a new approach for extracting the wave function of the π-meson φ π (x) and the masses and wave functions of its first resonances from the new QCD sum rules for nondiagonal correlators obtained in [2]. Here, we test our approach using an exactly solvable toy model as an illustrating example. We demonstrate the validity of the method and suggest a pure algebraic procedure for extracting the masses and wave functions relating to the case under investigation. We also explore the stability of the procedure under perturbations of the theoretical part of the sum rule. In application to the pion case, this results not only in the mass and wave function of the first resonance (π'), but also in the estimation of π''-mass. 17 refs., 11 figs
Valentijn, Pim P; Schepman, Sanneke M; Opheij, Wilfrid; Bruijnzeels, Marc A
2013-01-01
Primary care has a central role in integrating care within a health system. However, conceptual ambiguity regarding integrated care hampers a systematic understanding. This paper proposes a conceptual framework that combines the concepts of primary care and integrated care, in order to understand the complexity of integrated care. The search method involved a combination of electronic database searches, hand searches of reference lists (snowball method) and contacting researchers in the field. The process of synthesizing the literature was iterative, to relate the concepts of primary care and integrated care. First, we identified the general principles of primary care and integrated care. Second, we connected the dimensions of integrated care and the principles of primary care. Finally, to improve content validity we held several meetings with researchers in the field to develop and refine our conceptual framework. The conceptual framework combines the functions of primary care with the dimensions of integrated care. Person-focused and population-based care serve as guiding principles for achieving integration across the care continuum. Integration plays complementary roles on the micro (clinical integration), meso (professional and organisational integration) and macro (system integration) level. Functional and normative integration ensure connectivity between the levels. The presented conceptual framework is a first step to achieve a better understanding of the inter-relationships among the dimensions of integrated care from a primary care perspective.
Generalized fractional integration of the \\overline{H}-function
Directory of Open Access Journals (Sweden)
Praveen Agarwal
2012-11-01
Full Text Available A significantly large number of earlier works on the subject of fractional calculus give interesting account of the theory and applications of fractional calculus operators in many different areas of mathematical analysis (such as ordinary and partial differential equations, integral equations, special functions, summation of series, et cetera. In the present paper, we study and develop the generalized fractional integral operators given by Saigo. First, we establish two Theorems that give the images of the product of H-function and a general class of polynomials inSaigo operators. On account of the general nature of the Saigo operators, H-function and a general class of polynomials a large number of new and known Images involving Riemann-Liouville and Erdélyi-Kober fractional integral operators and several special functions notably generalized Wright hypergeometric function, generalized Wright-Bessel function, the polylogarithm and Mittag-Leffler functions follow as special cases of our main findings.
Self-adaptive numerical integrator for analytic functions
International Nuclear Information System (INIS)
Garribba, S.; Quartapelle, L.; Reina, G.
1978-01-01
A new adaptive algorithm for the integration of analytical functions is presented. The algorithm processes the integration interval by generating local subintervals whose length is controlled through a feedback loop. The control is obtained by means of a relation derived on an analytical basis and valid for an arbitrary integration rule: two different estimates of an integral are used to compute the interval length necessary to obtain an integral estimate with accuracy within the assigned error bounds. The implied method for local generation of subintervals and an effective assumption of error partition among subintervals give rise to an adaptive algorithm provided with a highly accurate and very efficient integration procedure. The particular algorithm obtained by choosing the 6-point Gauss-Legendre integration rule is considered and extensive comparisons are made with other outstanding integration algorithms
Integrals of operator-valued functions
Directory of Open Access Journals (Sweden)
Raimond A. Struble
1988-01-01
Full Text Available Mikusinski-type expansions of operator-valued functions are discussed in some detail. As a natural part of the development, a kernel concept for operators is proposed and an elaborate system of convolution quotients in one and two variables is obtained.
International Nuclear Information System (INIS)
Theuer, E.; Heller, M.
1979-01-01
Integrity of guard pipes is an important parameter in the design of nuclear steam supply systems. A guard pipe shall withstand all kinds of postulated inner pipe breaks without failure. Sudden opening of a crack in the inner pipe and crash of crack borders to the guard pipe wall represent a shock problem where complex phenomena of dynamic plastification as well as dynamic behavior of the entire system have to be taken in consideration. The problem was analyzed by means of Finite Element computation using the general purpose program MARC. Equation of motion was resolved by direct integration using the Newmark β-operator. Analysis shows that after 1,2 m sec crack borders touch the guard pipe wall for the first time. At this moment a considerable amount of local plastification appears in the inner pipe wall, while the guard pipe is nearly unstressed. After initial touching, the crack borders begin to slip along the guard pipe wall. Subsequently, a short withdrawal of the crack borders and a new crash occur, while the inner pipe rolls along the guard pipe wall. The analysis procedure described is suitable for designing numerous guard pipe geometries as well as U-Bolt restraint systems which have to withstand high-energy pipe rupture impact. (orig.)
Piping vibrations measured during FFTF startup
International Nuclear Information System (INIS)
Anderson, M.J.
1981-03-01
An extensive vibration survey was conducted on the Fast Flux Test Facility piping during the plant acceptance test program. The purpose was to verify that both mechanical and flow induced vibration amplitudes were of sufficiently low level so that pipe and pipe support integrity would not be compromised over the plant design lifetime. Excitation sources included main heat transport sodium pumps, reciprocating auxiliary system pumps, EM pumps, and flow oscillations. Pipe sizes varied from one-inch to twenty-eight-inches in diameter. This paper describes the test plan; the instrumentation and procedures utilized; and the test results
Edwards, James P.; Gerber, Urs; Schubert, Christian; Trejo, Maria Anabel; Weber, Axel
2018-04-01
We introduce two integral transforms of the quantum mechanical transition kernel that represent physical information about the path integral. These transforms can be interpreted as probability distributions on particle trajectories measuring respectively the relative contribution to the path integral from paths crossing a given spatial point (the hit function) and the likelihood of values of the line integral of the potential along a path in the ensemble (the path-averaged potential).
Long-Range Piping Inspection by Ultrasonic Guided Waves
International Nuclear Information System (INIS)
Joo, Young Sang; Lim, Sa Hoe; Eom, Heung Seop; Kim, Jae Hee
2005-01-01
The ultrasonic guided waves are very promising for the long-range inspection of large structures because they can propagate a long distance along the structures such as plates, shells and pipes. The guided wave inspection could be utilized for an on-line monitoring technique when the transmitting and receiving transducers are positioned at a remote point on the structure. The received signal has the information about the integrity of the monitoring area between the transmitting and receiving transducers. On-line monitoring of a pipe line using an ultrasonic guided wave can detect flaws such as corrosion, erosion and fatigue cracking at an early stage and collect useful information on the flaws. However the guided wave inspection is complicated by the dispersive characteristics for guided waves. The phase and group velocities are a function of the frequency-thickness product. Therefore, the different frequency components of the guided waves will travel at different speeds and the shape of the received signal will changed as it propagates along the pipe. In this study, we analyze the propagation characteristics of guided wave modes in a small diameter pipe of nuclear power plant and select the suitable mode for a long-range inspection. And experiments will be carried out for the practical application of a long-range inspection in a 26m long pipe by using a high-power ultrasonic inspection system
Construction of functional linkage gene networks by data integration.
Linghu, Bolan; Franzosa, Eric A; Xia, Yu
2013-01-01
Networks of functional associations between genes have recently been successfully used for gene function and disease-related research. A typical approach for constructing such functional linkage gene networks (FLNs) is based on the integration of diverse high-throughput functional genomics datasets. Data integration is a nontrivial task due to the heterogeneous nature of the different data sources and their variable accuracy and completeness. The presence of correlations between data sources also adds another layer of complexity to the integration process. In this chapter we discuss an approach for constructing a human FLN from data integration and a subsequent application of the FLN to novel disease gene discovery. Similar approaches can be applied to nonhuman species and other discovery tasks.
Design, Fabrication, Characterization and Modeling of Integrated Functional Materials
2015-12-01
activities is expected to lead to new devices/ systems /composite materials useful for the USAMRMC. 15. SUBJECT TERMS Functional materials, integrated...fabrication, nanobiotechnology, multifunctional, dimensional integration, nanocomposites, sensor technology, thermoelectrics, solar cells, photovoltaics ...loop measured in the presence of an AC field, and can be increased by tuning several parameters, such as the nanoparticles’ size , saturation
Integrating knowledge based functionality in commercial hospital information systems.
Müller, M L; Ganslandt, T; Eich, H P; Lang, K; Ohmann, C; Prokosch, H U
2000-01-01
Successful integration of knowledge-based functions in the electronic patient record depends on direct and context-sensitive accessibility and availability to clinicians and must suit their workflow. In this paper we describe an exemplary integration of an existing standalone scoring system for acute abdominal pain into two different commercial hospital information systems using Java/Corba technolgy.
Modularization, inter-functional integration and operational performance
DEFF Research Database (Denmark)
Boer, Henrike Engele Elisabeth; Boer, Harry
2014-01-01
for firms to indeed use product modularity beneficially, in particular inter-functional integration between manufacturing and purchasing, design and sales, respectively. The purpose of the paper is to investigate the direct performance effects of modularization, as well as the mediating effects of the three...... forms of integration in the modularization-performance relationship....
Audiovisual Integration in High Functioning Adults with Autism
Keane, Brian P.; Rosenthal, Orna; Chun, Nicole H.; Shams, Ladan
2010-01-01
Autism involves various perceptual benefits and deficits, but it is unclear if the disorder also involves anomalous audiovisual integration. To address this issue, we compared the performance of high-functioning adults with autism and matched controls on experiments investigating the audiovisual integration of speech, spatiotemporal relations, and…
Some classes of analytic functions involving Noor integral operator
Patel, J.; Cho, N. E.
2005-12-01
The object of the present paper is to investigate some inclusion properties of certain subclasses of analytic functions defined by using the Noor integral operator. The integral preserving properties in connection with the operator are also considered. Relevant connections of the results presented here with those obtained in earlier works are pointed out.
Restoring a smooth function from its noisy integrals
Goulko, Olga; Prokof'ev, Nikolay; Svistunov, Boris
2018-05-01
Numerical (and experimental) data analysis often requires the restoration of a smooth function from a set of sampled integrals over finite bins. We present the bin hierarchy method that efficiently computes the maximally smooth function from the sampled integrals using essentially all the information contained in the data. We perform extensive tests with different classes of functions and levels of data quality, including Monte Carlo data suffering from a severe sign problem and physical data for the Green's function of the Fröhlich polaron.
Zeroes of functions of Fresnel complementary integral type
Directory of Open Access Journals (Sweden)
Mario Alberto Villalobos Arias
2017-02-01
Full Text Available Theoretical upper and lower bounds are established for zeroes of a parametric family of functions which are defined by integrals of the same type as the Fresnel complementary integral. Asymptotic properties for these bounds are obtained as well as monotony properties of the localization intervals. Given the value of the parameter an analytical-numerical procedure is deduced to enclose all zeros of a given function with an a priori error.
Methods for integrating a functional component into a microfluidic device
Simmons, Blake; Domeier, Linda; Woo, Noble; Shepodd, Timothy; Renzi, Ronald F.
2014-08-19
Injection molding is used to form microfluidic devices with integrated functional components. One or more functional components are placed in a mold cavity, which is then closed. Molten thermoplastic resin is injected into the mold and then cooled, thereby forming a solid substrate including the functional component(s). The solid substrate including the functional component(s) is then bonded to a second substrate, which may include microchannels or other features.
Fukushima, Makoto; Betzel, Richard F; He, Ye; van den Heuvel, Martijn P; Zuo, Xi-Nian; Sporns, Olaf
2018-04-01
Structural white matter connections are thought to facilitate integration of neural information across functionally segregated systems. Recent studies have demonstrated that changes in the balance between segregation and integration in brain networks can be tracked by time-resolved functional connectivity derived from resting-state functional magnetic resonance imaging (rs-fMRI) data and that fluctuations between segregated and integrated network states are related to human behavior. However, how these network states relate to structural connectivity is largely unknown. To obtain a better understanding of structural substrates for these network states, we investigated how the relationship between structural connectivity, derived from diffusion tractography, and functional connectivity, as measured by rs-fMRI, changes with fluctuations between segregated and integrated states in the human brain. We found that the similarity of edge weights between structural and functional connectivity was greater in the integrated state, especially at edges connecting the default mode and the dorsal attention networks. We also demonstrated that the similarity of network partitions, evaluated between structural and functional connectivity, increased and the density of direct structural connections within modules in functional networks was elevated during the integrated state. These results suggest that, when functional connectivity exhibited an integrated network topology, structural connectivity and functional connectivity were more closely linked to each other and direct structural connections mediated a larger proportion of neural communication within functional modules. Our findings point out the possibility of significant contributions of structural connections to integrative neural processes underlying human behavior.
Internal testing of pipe systems with IRIS inspection system
International Nuclear Information System (INIS)
1986-01-01
The internal piping inspection system IRIS allows inside testing of pipes with an internal diameter of NW 70 as a minimum, and of any horizontal or vertical layout of the piping system. Visual testing is done by means of an integrated CCD video system with high resolution power. Technical data are given and examples of applications, in the German and English language. (DG) [de
International Nuclear Information System (INIS)
Altac, Zekeriya
2007-01-01
Generalized exponential integral functions (GEIF) are encountered in multi-dimensional thermal radiative transfer problems in the integral equation kernels. Several series expansions for the first-order generalized exponential integral function, along with a series expansion for the general nth order GEIF, are derived. The convergence issues of these series expansions are investigated numerically as well as theoretically, and a recurrence relation which does not require derivatives of the GEIF is developed. The exact series expansions of the two dimensional cylindrical and/or two-dimensional planar integral kernels as well as their spatial moments have been explicitly derived and compared with numerical values
Finding new relationships between hypergeometric functions by evaluating Feynman integrals
Energy Technology Data Exchange (ETDEWEB)
Kniehl, Bernd A. [Santa Barbara Univ., CA (United States). Kavli Inst. for Theoretical Physics; Tarasov, Oleg V. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2011-08-15
Several new relationships between hypergeometric functions are found by comparing results for Feynman integrals calculated using different methods. A new expression for the one-loop propagator-type integral with arbitrary masses and arbitrary powers of propagators is derived in terms of only one Appell hypergeometric function F{sub 1}. From the comparison of this expression with a previously known one, a new relation between the Appell functions F{sub 1} and F{sub 4} is found. By comparing this new expression for the case of equal masses with another known result, a new formula for reducing the F{sub 1} function with particular arguments to the hypergeometric function {sub 3}F{sub 2} is derived. By comparing results for a particular one-loop vertex integral obtained using different methods, a new relationship between F{sub 1} functions corresponding to a quadratic transformation of the arguments is established. Another reduction formula for the F{sub 1} function is found by analysing the imaginary part of the two-loop self-energy integral on the cut. An explicit formula relating the F{sub 1} function and the Gaussian hypergeometric function {sub 2}F{sub 1} whose argument is the ratio of polynomials of degree six is presented. (orig.)
Smith, Peter
2013-01-01
Written for the piping engineer and designer in the field, this two-part series helps to fill a void in piping literature,since the Rip Weaver books of the '90s were taken out of print at the advent of the Computer Aid Design(CAD) era. Technology may have changed, however the fundamentals of piping rules still apply in the digitalrepresentation of process piping systems. The Fundamentals of Piping Design is an introduction to the designof piping systems, various processes and the layout of pipe work connecting the major items of equipment forthe new hire, the engineering student and the vetera
Energy Technology Data Exchange (ETDEWEB)
Boo, Myung-Hwan [Korea Hydro and Nuclear Power Company, Daejeon (Korea, Republic of); Oh, Chang-Kyun; Kim, Hyun-Su [KEPCO Engineering and Construction Company, Gimcheon (Korea, Republic of); Choi, Choeng-Ryul [ELSOLTEC, Inc., Yongin (Korea, Republic of)
2017-05-15
Owing to the fact that thermal fatigue is a well-known damage mechanism in nuclear power plants, accurate stress and fatigue evaluation are highly important. Operating experience shows that the design condition is conservative compared to the actual one. Therefore, various fatigue monitoring methods have been extensively utilized to consider the actual operating data. However, defining the local temperature in the piping is difficult because temperature-measuring instruments are limited. The purpose of this paper is to define accurate local temperature in the piping and evaluate thermal stress using Green’s function (GF) by performing a series of computational fluid dynamics analyses considering the complex fluid conditions. Also, the thermal stress is determined by adopting GF and comparing it with that of the design condition. The fluid dynamics analysis result indicates that the fluid temperature slowly varies compared to the designed one even when the flow rate changes abruptly. In addition, the resulting thermal stress can significantly decrease when reflecting the actual temperature.
International Nuclear Information System (INIS)
Anderson, M.J.; Hyde, L.L.; Wagner, S.E.; Severud, L.K.
1980-01-01
Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. 5 refs
On integral representation, relaxation and homogenization for unbounded functionals
International Nuclear Information System (INIS)
Carbone, L.; De Arcangelis, R.
1997-01-01
A theory of integral representation, relaxation and homogenization for some types of variational functionals taking extended real values and possibly being not finite also on large classes of regular functions is presented. Some applications to gradient constrained relaxation and homogenization problems are given
On calculation of zeta function of integral matrix
Czech Academy of Sciences Publication Activity Database
Janáček, Jiří
2009-01-01
Roč. 134, č. 1 (2009), s. 49-58 ISSN 0862-7959 R&D Projects: GA AV ČR(CZ) IAA100110502 Institutional research plan: CEZ:AV0Z50110509 Keywords : Epstein zeta function * integral lattice * Riemann theta function Subject RIV: BA - General Mathematics
Energy expressions in density-functional theory using line integrals.
van Leeuwen, R.; Baerends, E.J.
1995-01-01
In this paper we will address the question of how to obtain energies from functionals when only the functional derivative is given. It is shown that one can obtain explicit expressions for the exchange-correlation energy from approximate exchange-correlation potentials using line integrals along
INTEGRATING THE LOGISTIC FUNCTION WITHIN ENTERPRISE’S FUNCTIONS
Directory of Open Access Journals (Sweden)
Cosmina Remeş
2013-12-01
Full Text Available Amplification and diversification of conditions in which an enterprise activates, is reflected in all the activities carried out within such. Coordination of the complex activities taking place within an enterprise requires a good management of information flows, as well as of physical flows. This situation calls for a better organization of activities within the enterprise. Taking into account that a flow implies movement of items in time and space, an issue of the utmost importance is to follow-up their trajectory within the enterprise. By grouping logistic activities within the same function, optimal management of the relationships within the enterprise, as well as interactions between such, is facilitated. Within current competitive context, characterized by a variety of customized offers, reduction of products life span, increasing requirements of the consumers who become ever more demanding, logistics occupies a key position within the continuous quest for the highest quality.
Heat transfer capability analysis of heat pipe for space reactor
International Nuclear Information System (INIS)
Li Huaqi; Jiang Xinbiao; Chen Lixin; Yang Ning; Hu Pan; Ma Tengyue; Zhang Liang
2015-01-01
To insure the safety of space reactor power system with no single point failures, the reactor heat pipes must work below its heat transfer limits, thus when some pipes fail, the reactor could still be adequately cooled by neighbor heat pipes. Methods to analyze the reactor heat pipe's heat transfer limits were presented, and that for the prevailing capillary limit analysis was improved. The calculation was made on the lithium heat pipe in core of heat pipes segmented thermoelectric module converter (HP-STMC) space reactor power system (SRPS), potassium heat pipe as radiator of HP-STMC SRPS, and sodium heat pipe in core of scalable AMTEC integrated reactor space power system (SAIRS). It is shown that the prevailing capillary limits of the reactor lithium heat pipe and sodium heat pipe is 25.21 kW and 14.69 kW, providing a design margin >19.4% and >23.6%, respectively. The sonic limit of the reactor radiator potassium heat pipe is 7.88 kW, providing a design margin >43.2%. As the result of calculation, it is concluded that the main heat transfer limit of HP-STMC SRPS lithium heat pipe and SARIS sodium heat pipe is prevailing capillary limit, but the sonic limit for HP-STMC SRPS radiator potassium heat pipe. (authors)
The IPIRG-1 pipe system fracture tests: Experimental results
International Nuclear Information System (INIS)
Scott, P.; Olson, R.J.; Wilkowski, G.M.
1994-01-01
As part of the First International Piping Integrity Research Group (IPIRG-1) program, six dynamic pipe system experiments were conducted. The objective of these experiments was to generate experimental data to assess analysis methodologies for characterizing the fracture behavior of circumferentially cracked pipe in a representative piping system subjected to combined inertial and displacement-controlled stresses. A unique experimental facility was designed and constructed. The pipe system evaluated was an expansion loop with over 30 m (100 feet) of 16-inch nominal diameter Schedule 100 pipe. The experimental facility was equipped with special hardware to ensure that system boundary conditions could be appropriately modeled. The test matrix involved one uncracked and five cracked dynamic pipe system experiments. The uncracked-pipe experiment was conducted to evaluate the piping system damping and natural frequency characteristics. The cracked-pipe experiments were conducted to evaluate the fracture behavior, piping system response, and fracture stability characteristics of five different materials. All cracked-pipe experiments were conducted at PWR conditions. Material characterization efforts provided the tensile and fracture toughness properties of the different pipe materials at various strain rates and temperatures. Key results from the six pipe system experiments and material characterization efforts are presented. Detailed analyses will be published in a companion paper
Gas lensing in a heated spinning pipe
CSIR Research Space (South Africa)
Mafusire, C
2006-07-01
Full Text Available ; and (II) the aberrations introduced to the laser are a function of the distance from the edge of the pipe, as well as the speed of the pipe spin- ning. This is because of the turbulence near the pipe wall. The speed of the pipe will be used...- merically. This work forms the basis for an extended study of the dynamics of beam propa- gation through turbulent systems, and in particular, the following aspects will be explored in future work: (I) Using the recent advances in lasers beam propagation...
Cooling Acoustic Transcucer with Heat Pipes
2009-07-19
circuits to a heat sink. [0009] In Kan et al (United States Patent No. 6,528,909), a spindle motor assembly is disclosed which has a shaft with an...integral heat pipe. The shaft with the integral heat pipe improves the thermal conductively of the shaft and the spindle motor assembly. The shaft ...2) Description of the Prior Art [0004] It is known in the art that transducers, designed to project acoustic power, are often limited by the
Cooling Acoustic Transducer with Heat Pipes
2009-07-29
a heat sink. [0009] In Kan et al (United States Patent No. 6,528,909), a spindle motor assembly is disclosed which has a shaft with an integral...heat pipe. The shaft with the integral heat pipe improves the thermal conductively of the shaft and the spindle motor assembly. The shaft includes...Description of the Prior Art [0004] It is known in the art that transducers, designed to project acoustic power, are often limited by the build
International Nuclear Information System (INIS)
Anderson, M.J.; Hyde, L.L.; Wagner, S.E.; Severud, L.K.
1980-01-01
Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. The design considerations and methods along with the development tests are presented. Special considerations to guard against adverse cracking of the insulation material, to maintain the clamp-pipe stiffness desired during a seismic event, to minimize clamp restraint on the pipe during normal pipe heatup, and to resist clamp rotation or spinning on the pipe are emphasized
Liu, G.; Bakker, G. L.; Li, S.; Vreeburg, J. H G; Verberk, J. Q J C; Medema, G. J.; Liu, W. T.; Van Dijk, J. C.
2014-01-01
The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected
Microcomputer generated pipe support calculations
International Nuclear Information System (INIS)
Hankinson, R.F.; Czarnowski, P.; Roemer, R.E.
1991-01-01
The cost and complexity of pipe support design has been a continuing challenge to the construction and modification of commercial nuclear facilities. Typically, pipe support design or qualification projects have required large numbers of engineers centrally located with access to mainframe computer facilities. Much engineering time has been spent repetitively performing a sequence of tasks to address complex design criteria and consolidating the results of calculations into documentation packages in accordance with strict quality requirements. The continuing challenges of cost and quality, the need for support engineering services at operating plant sites, and the substantial recent advances in microcomputer systems suggested that a stand-alone microcomputer pipe support calculation generator was feasible and had become a necessity for providing cost-effective and high quality pipe support engineering services to the industry. This paper outlines the preparation for, and the development of, an integrated pipe support design/evaluation software system which maintains all computer programs in the same environment, minimizes manual performance of standard or repetitive tasks, and generates a high quality calculation which is consistent and easily followed
Principles and core functions of integrated child health information systems.
Hinman, Alan R; Atkinson, Delton; Diehn, Tonya Norvell; Eichwald, John; Heberer, Jennifer; Hoyle, Therese; King, Pam; Kossack, Robert E; Williams, Donna C; Zimmerman, Amy
2004-11-01
Infants undergo a series of preventive and therapeutic health interventions and activities. Typically, each activity includes collection and submission of data to a dedicated information system. Subsequently, health care providers, families, and health programs must query each information system to determine the child's status in a given area. Efforts are underway to integrate information in these separate information systems. This requires specifying the core functions that integrated information systems must perform.
Mosco convergence of integral functionals and its applications
International Nuclear Information System (INIS)
Tolstonogov, Aleksandr A
2009-01-01
Questions relating to the Mosco convergence of integral functionals defined on the space of square integrable functions taking values in a Hilbert space are investigated. The integrands of these functionals are time-dependent proper, convex, lower semicontinuous functions on the Hilbert space. The results obtained are applied to the analysis of the dependence on the parameter of solutions of evolution equations involving time-dependent subdifferential operators. For example a parabolic inclusion is considered, where the right-hand side contains a sum of the p-Laplacian and the subdifferential of the indicator function of a time-dependent closed convex set. The convergence as p→+∞ of solutions of this inclusion is investigated. Bibliography: 20 titles.
Towards the Proper Integration of Extra-Functional Requirements
Directory of Open Access Journals (Sweden)
Elke Hochmuller
1999-05-01
Full Text Available In spite of the many achievements in software engineering, proper treatment of extra-functional requirements (also known as non-functional requirements within the software development process is still a challenge to our discipline. The application of functionality-biased software development methodologies can lead to major contradictions in the joint modelling of functional and extra-functional requirements. Based on a thorough discussion on the nature of extra-functional requirements as well as on open issues in coping with them, this paper emphasizes the role of extra-functional requirements in the software development process. Particularly, a framework supporting the explicit integration of extra functional requirements into a conventional phase-driven process model is proposed and outlined.
A Visual Interface Diagram For Mapping Functions In Integrated Products
DEFF Research Database (Denmark)
Ingerslev, Mattias; Oliver Jespersen, Mikkel; Göhler, Simon Moritz
2015-01-01
In product development there is a recognized tendency towards increased functionality for each new product generation. This leads to more integrated and complex products, with the risk of development delays and quality issues as a consequence of lacking overview and transparency. The work described...... of visualizing relations between parts and functions in highly integrated mechanical products. The result is an interface diagram that supports design teams in communication, decision making and design management. The diagram gives the designer an overview of the couplings and dependencies within a product...... in this article has been conducted in collaboration with Novo Nordisk on the insulin injection device FlexTouch® as case product. The FlexTouch® reflects the characteristics of an integrated product with several functions shared between a relatively low number of parts. In this article we present a novel way...
SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS
Energy Technology Data Exchange (ETDEWEB)
Kiran M. Kothari, Gerard T. Pittard
2004-01-01
optimize the design of the robot elements and surface control electronics and software. Task 6 (Design & Build Surface Control and Monitoring System) has been completed with the control and computer display functions being operated through LabView. Task 7 (Design & Fabricate Large Diameter Live Access System) progressed to the design, fabrication and testing of a entry fitting in a 4-inch prototype and is now being used to complete drawings for use in 12-inch diameter pipe. Task 8--System Integration and Laboratory Validation continued developing the robot module inter-connects and development of a master LabView-based system display and control software.
SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS
Energy Technology Data Exchange (ETDEWEB)
Kiran M Kothari; Gerard T. Pittard
2004-07-01
) continued with additional in-pipe testing required to optimize the design of the robot elements and surface control electronics and software. Task 6 (Design & Build Surface Control and Monitoring System) has been completed with the control and computer display functions being operated through LabView. Task 7 (Design & Fabricate Large Diameter Live Access System) progressed to completing the detailed design of the entry fitting for 12-inch diameter cast iron pipe. The fitting is now being manufactured. The 12-inch ball valve for allowing no-blow access was also procured. Task 8 (System Integration and Laboratory Validation) continued with the development of the robot module inter-connects and of a master LabView-based system display and control software.
SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS
Energy Technology Data Exchange (ETDEWEB)
Kiran M. Kothari; Gerard T. Pittard
2004-04-01
optimize the design of the robot elements and surface control electronics and software. Task 6 (Design & Build Surface Control and Monitoring System) has been completed with the control and computer display functions being operated through LabView. Task 7 (Design & Fabricate Large Diameter Live Access System) progressed to completing the detailed design of the entry fitting for 12-inch diameter cast iron pipe. The fitting is now being placed into manufacture. Task 8--System Integration and Laboratory Validation continued developing the robot module inter-connects and development of a master LabView-based system display and control software.
DEFF Research Database (Denmark)
Stang, Henrik; Pedersen, Carsten
1996-01-01
The present paper gives an overview of the research onHigh Performance Fiber Reinforced Cementitious Composite -- HPFRCC --pipes recently carried out at Department of Structural Engineering, Technical University of Denmark. The project combines material development, processing technique development......-w$ relationship is presented. Structural development involved definition of a new type of semi-flexiblecement based pipe, i.e. a cement based pipe characterized by the fact that the soil-pipe interaction related to pipe deformation is an importantcontribution to the in-situ load carrying capacity of the pipe...
Parisher, Roy A; Parisher
2000-01-01
Pipe designers and drafters provide thousands of piping drawings used in the layout of industrial and other facilities. The layouts must comply with safety codes, government standards, client specifications, budget, and start-up date. Pipe Drafting and Design, Second Edition provides step-by-step instructions to walk pipe designers and drafters and students in Engineering Design Graphics and Engineering Technology through the creation of piping arrangement and isometric drawings using symbols for fittings, flanges, valves, and mechanical equipment. The book is appropriate primarily for pipe
Abelian Chern endash Simons theory. II. A functional integral approach
International Nuclear Information System (INIS)
Manoliu, M.
1998-01-01
Following Witten, [Commun. Math. Phys. 21, 351 endash 399 (1989)] we approach the Abelian quantum Chern endash Simons (CS) gauge theory from a Feynman functional integral point of view. We show that for 3-manifolds with and without a boundary the formal functional integral definitions lead to mathematically proper expressions that agree with the results from the rigorous construction [J. Math. Phys. 39, 170 endash 206 (1998)] of the Abelian CS topological quantum field theory via geometric quantization. copyright 1998 American Institute of Physics
Dhage Iteration Method for Generalized Quadratic Functional Integral Equations
Directory of Open Access Journals (Sweden)
Bapurao C. Dhage
2015-01-01
Full Text Available In this paper we prove the existence as well as approximations of the solutions for a certain nonlinear generalized quadratic functional integral equation. An algorithm for the solutions is developed and it is shown that the sequence of successive approximations starting at a lower or upper solution converges monotonically to the solutions of related quadratic functional integral equation under some suitable mixed hybrid conditions. We rely our main result on Dhage iteration method embodied in a recent hybrid fixed point theorem of Dhage (2014 in partially ordered normed linear spaces. An example is also provided to illustrate the abstract theory developed in the paper.
Total Correlation Function Integrals and Isothermal Compressibilities from Molecular Simulations
DEFF Research Database (Denmark)
Wedberg, Rasmus; Peters, Günther H.j.; Abildskov, Jens
2008-01-01
Generation of thermodynamic data, here compressed liquid density and isothermal compressibility data, using molecular dynamics simulations is investigated. Five normal alkane systems are simulated at three different state points. We compare two main approaches to isothermal compressibilities: (1...... in approximately the same amount of time. This suggests that computation of total correlation function integrals is a route to isothermal compressibility, as accurate and fast as well-established benchmark techniques. A crucial step is the integration of the radial distribution function. To obtain sensible results...
State-related functional integration and functional segregation brain networks in schizophrenia.
Yu, Qingbao; Sui, Jing; Kiehl, Kent A; Pearlson, Godfrey; Calhoun, Vince D
2013-11-01
Altered topological properties of brain connectivity networks have emerged as important features of schizophrenia. The aim of this study was to investigate how the state-related modulations to graph measures of functional integration and functional segregation brain networks are disrupted in schizophrenia. Firstly, resting state and auditory oddball discrimination (AOD) fMRI data of healthy controls (HCs) and schizophrenia patients (SZs) were decomposed into spatially independent components (ICs) by group independent component analysis (ICA). Then, weighted positive and negative functional integration (inter-component networks) and functional segregation (intra-component networks) brain networks were built in each subject. Subsequently, connectivity strength, clustering coefficient, and global efficiency of all brain networks were statistically compared between groups (HCs and SZs) in each state and between states (rest and AOD) within group. We found that graph measures of negative functional integration brain network and several positive functional segregation brain networks were altered in schizophrenia during AOD task. The metrics of positive functional integration brain network and one positive functional segregation brain network were higher during the resting state than during the AOD task only in HCs. These findings imply that state-related characteristics of both functional integration and functional segregation brain networks are impaired in schizophrenia which provides new insight into the altered brain performance in this brain disorder. © 2013.
Inspection technology for high pressure pipes
Energy Technology Data Exchange (ETDEWEB)
Kim, Jae H.; Lee, Jae C.; Eum, Heung S.; Choi, Yu R.; Moon, Soon S.; Jang, Jong H
2000-02-01
Various kinds of defects are likely to be occurred in the welds of high pressure pipes in nuclear power plants. Considering the recent accident of Zuruga nuclear power plant in Japan, reasonable policy is strongly requested for the high pressure pipe integrity. In this study, we developed the technologies to inspect pipe welds automatically. After development of scanning robot prototype in the first research year, we developed and implemented the algorithm of automatic tracking of the scanning robot along the weld line of the pipes. We use laser slit beam on weld area and capture the image using digital camera. Through processing of the captures image, we finally determine the weld line automatically. In addition, we investigated a new technology on micro systems for developing micro scanning robotic inspection of the pipe welds. The technology developed in this study is being transferred to the industry. (author)
IPIRG programs - advances in pipe fracture technology
International Nuclear Information System (INIS)
Wilkowski, G.; Olson, R.; Scott, P.
1997-01-01
This paper presents an overview of the advances made in fracture control technology as a result of the research performed in the International Piping Integrity Research Group (IPIRG) program. The findings from numerous experiments and supporting analyses conducted to investigate the behavior of circumferentially flawed piping and pipe systems subjected to high-rate loading typical of seismic events are summarized. Topics to be discussed include; (1) Seismic loading effects on material properties, (2) Piping system behavior under seismic loads, (3) Advances in elbow fracture evaluations, and (4) open-quotes Realclose quotes piping system response. The presentation for each topic will be illustrated with data and analytical results. In each case, the state-of-the-art in fracture mechanics prior to the first IPIRG program will be contrasted with the state-of-the-art at the completion of the IPIRG-2 program
IPIRG programs - advances in pipe fracture technology
Energy Technology Data Exchange (ETDEWEB)
Wilkowski, G.; Olson, R.; Scott, P. [Batelle, Columbus, OH (United States)
1997-04-01
This paper presents an overview of the advances made in fracture control technology as a result of the research performed in the International Piping Integrity Research Group (IPIRG) program. The findings from numerous experiments and supporting analyses conducted to investigate the behavior of circumferentially flawed piping and pipe systems subjected to high-rate loading typical of seismic events are summarized. Topics to be discussed include; (1) Seismic loading effects on material properties, (2) Piping system behavior under seismic loads, (3) Advances in elbow fracture evaluations, and (4) {open_quotes}Real{close_quotes} piping system response. The presentation for each topic will be illustrated with data and analytical results. In each case, the state-of-the-art in fracture mechanics prior to the first IPIRG program will be contrasted with the state-of-the-art at the completion of the IPIRG-2 program.
On Parameter Differentiation for Integral Representations of Associated Legendre Functions
Directory of Open Access Journals (Sweden)
Howard S. Cohl
2011-05-01
Full Text Available For integral representations of associated Legendre functions in terms of modified Bessel functions, we establish justification for differentiation under the integral sign with respect to parameters. With this justification, derivatives for associated Legendre functions of the first and second kind with respect to the degree are evaluated at odd-half-integer degrees, for general complex-orders, and derivatives with respect to the order are evaluated at integer-orders, for general complex-degrees. We also discuss the properties of the complex function f: C{−1,1}→C given by f(z=z/((z+1^{1/2}(z−1^{1/2}.
Comparison of piping models for digital power plant simulators
International Nuclear Information System (INIS)
Sowers, G.W.
1979-08-01
Two piping models intended for use in a digital power plant simulator are compared. One is a finite difference approximation to the partial differential equation called PIPE, and the other is a function subroutine that acts as a delay operator called PDELAY. The two models are compared with respect to accuracy and execution time. In addition, the stability of the PIPE model is determined. The PDELAY model is found to execute faster than the PIPE model with comparable accuracy
Design of Smart Multi-Functional Integrated Aviation Photoelectric Payload
Zhang, X.
2018-04-01
To coordinate with the small UAV at reconnaissance mission, we've developed a smart multi-functional integrated aviation photoelectric payload. The payload weighs only 1kg, and has a two-axis stabilized platform with visible task payload, infrared task payload, laser pointers and video tracker. The photoelectric payload could complete the reconnaissance tasks above the target area (including visible and infrared). Because of its light weight, small size, full-featured, high integrated, the constraints of the UAV platform carrying the payload will be reduced a lot, which helps the payload suit for more extensive using occasions. So all users of this type of smart multi-functional integrated aviation photoelectric payload will do better works on completion of the ground to better pinpoint targets, artillery calibration, assessment of observe strike damage, customs officials and other tasks.
Perturbation theory and importance functions in integral transport formulations
International Nuclear Information System (INIS)
Greenspan, E.
1976-01-01
Perturbation theory expressions for the static reactivity derived from the flux, collision density, birth-rate density, and fission-neutron density formulations of integral transport theory, and from the integro-differential formulation, are intercompared. The physical meaning and relation of the adjoint functions corresponding to each of the five formulations are established. It is found that the first-order approximation of the perturbation expressions depends on the transport theory formulation and on the adjoint function used. The approximations of the integro-differential formulation corresponding to different first-order approximations of the integral transport theory formulations are identified. It is found that the accuracy of all first-order approximations of the integral transport formulations examined is superior to the accuracy of first-order integro-differential perturbation theory
Seismic design of piping systems
International Nuclear Information System (INIS)
Anglaret, G.; Beguin, J.L.
1986-01-01
This paper deals with the method used in France for the PWR nuclear plants to derive locations and types of supports of auxiliary and secondary piping systems taking earthquake in account. The successive steps of design are described, then the seismic computation method and its particular conditions of applications for piping are presented. The different types of support (and especially seismic ones) are described and also their conditions of installation. The method used to compare functional tests results and computation results in order to control models is mentioned. Some experiments realised on site or in laboratory, in order to validate models and methods, are presented [fr
Functional integral and the Feynman-Kac formula in superspace
International Nuclear Information System (INIS)
Ktitarev, D.V.
1989-01-01
We consider the Cauchy problem for linear pseudodifferential equations in superspace. The solution is constructed in the form of series. It may be regarded as a definition of a chronological exponent of a pseudodifferential operator symbol and interpreted as a functional integral in superspace. (orig.)
Higher Integrability for Minimizers of the Mumford-Shah Functional
De Philippis, Guido; Figalli, Alessio
2014-08-01
We prove higher integrability for the gradient of local minimizers of the Mumford-Shah energy functional, providing a positive answer to a conjecture of De Giorgi (Free discontinuity problems in calculus of variations. Frontiers in pure and applied mathematics, North-Holland, Amsterdam, pp 55-62, 1991).
Integrals involving functions of the type (WS)sup(q)
International Nuclear Information System (INIS)
Srivastava, D.K.
1981-10-01
Analytical expressions for integrals involving functions of the Woods-Saxon type raised to the power of q are given. These are expected to be of immediate application in optical model studies and for obtaining various moments of the potential having such shapes. (author)
The integration of quality management functions within a university ...
African Journals Online (AJOL)
According to a recent study, institutions of higher learning in South Africa fail to a great extent to integrate the key management functions that are fundamental to effective quality management. This article argues that the effective promotion of quality of a university's core business depends to a large extent on the ability of an ...
International Nuclear Information System (INIS)
Alzheimer, J.M.; Bampton, M.C.C.; Friley, J.R.; Simonen, F.A.
1984-06-01
This report documents the tests and analyses performed as part of the Pipe-to-Pipe Impact (PTPI) Program at the Pacific Northwest Laboratory. This work was performed to assist the NRC in making licensing decisions regarding pipe-to-pipe impact events following postulated breaks in high energy fluid system piping. The report scope encompasses work conducted from the program's start through the completion of the initial hot oil tests. The test equipment, procedures, and results are described, as are analytic studies of failure potential and data correlation. Because the PTPI Program is only partially completed, the total significance of the current test results cannot yet be accurately assessed. Therefore, although trends in the data are discussed, final conclusions and recommendations will be possible only after the completion of the program, which is scheduled to end in FY 1984
In Search of an Integrative Measure of Functioning
Directory of Open Access Journals (Sweden)
Rosamond H. Madden
2015-05-01
Full Text Available International trends towards people-centred, integrative care and support require any measurement of functioning and disability to meet multiple aims. The information requirements of two major Australian programs for disability and rehabilitation are outlined, and the findings of two searches for suitable measures of functioning and disability are analysed. Over 30 current measures of functioning were evaluated in each search. Neither search found a generic measure of functioning suitable for these multibillion dollar programs, relevant to a wide range of people with a variety of health conditions and functioning experiences, and capable of indicating support needs, associated costs, progress and outcomes. This unsuccessful outcome has implications internationally for policy-relevant information for disability, rehabilitation and related programs. The paper outlines the features of an Integrative Measure of Functioning (IMF based on the concepts of functioning and environmental factors in the International Classification of Functioning, Disability and Health (ICF. An IMF would be applicable across a variety of health conditions, settings and purposes, ranging from individual assessment to public health. An IMF could deliver person-centred, policy-relevant information for a range of programs, promoting harmonised language and measurement and supporting international trends in human services and public health.
In search of an integrative measure of functioning.
Madden, Rosamond H; Glozier, Nick; Fortune, Nicola; Dyson, Maree; Gilroy, John; Bundy, Anita; Llewellyn, Gwynnyth; Salvador-Carulla, Luis; Lukersmith, Sue; Mpofu, Elias; Madden, Richard
2015-05-26
International trends towards people-centred, integrative care and support require any measurement of functioning and disability to meet multiple aims. The information requirements of two major Australian programs for disability and rehabilitation are outlined, and the findings of two searches for suitable measures of functioning and disability are analysed. Over 30 current measures of functioning were evaluated in each search. Neither search found a generic measure of functioning suitable for these multibillion dollar programs, relevant to a wide range of people with a variety of health conditions and functioning experiences, and capable of indicating support needs, associated costs, progress and outcomes. This unsuccessful outcome has implications internationally for policy-relevant information for disability, rehabilitation and related programs. The paper outlines the features of an Integrative Measure of Functioning (IMF) based on the concepts of functioning and environmental factors in the International Classification of Functioning, Disability and Health (ICF). An IMF would be applicable across a variety of health conditions, settings and purposes, ranging from individual assessment to public health. An IMF could deliver person-centred, policy-relevant information for a range of programs, promoting harmonised language and measurement and supporting international trends in human services and public health.
A DSM-based framework for integrated function modelling
DEFF Research Database (Denmark)
Eisenbart, Boris; Gericke, Kilian; Blessing, Lucienne T. M.
2017-01-01
an integrated function modelling framework, which specifically aims at relating between the different function modelling perspectives prominently addressed in different disciplines. It uses interlinked matrices based on the concept of DSM and MDM in order to facilitate cross-disciplinary modelling and analysis...... of the functionality of a system. The article further presents the application of the framework based on a product example. Finally, an empirical study in industry is presented. Therein, feedback on the potential of the proposed framework to support interdisciplinary design practice as well as on areas of further...
Predicting Protein Function via Semantic Integration of Multiple Networks.
Yu, Guoxian; Fu, Guangyuan; Wang, Jun; Zhu, Hailong
2016-01-01
Determining the biological functions of proteins is one of the key challenges in the post-genomic era. The rapidly accumulated large volumes of proteomic and genomic data drives to develop computational models for automatically predicting protein function in large scale. Recent approaches focus on integrating multiple heterogeneous data sources and they often get better results than methods that use single data source alone. In this paper, we investigate how to integrate multiple biological data sources with the biological knowledge, i.e., Gene Ontology (GO), for protein function prediction. We propose a method, called SimNet, to Semantically integrate multiple functional association Networks derived from heterogenous data sources. SimNet firstly utilizes GO annotations of proteins to capture the semantic similarity between proteins and introduces a semantic kernel based on the similarity. Next, SimNet constructs a composite network, obtained as a weighted summation of individual networks, and aligns the network with the kernel to get the weights assigned to individual networks. Then, it applies a network-based classifier on the composite network to predict protein function. Experiment results on heterogenous proteomic data sources of Yeast, Human, Mouse, and Fly show that, SimNet not only achieves better (or comparable) results than other related competitive approaches, but also takes much less time. The Matlab codes of SimNet are available at https://sites.google.com/site/guoxian85/simnet.
Gene2Function: An Integrated Online Resource for Gene Function Discovery
Directory of Open Access Journals (Sweden)
Yanhui Hu
2017-08-01
Full Text Available One of the most powerful ways to develop hypotheses regarding the biological functions of conserved genes in a given species, such as humans, is to first look at what is known about their function in another species. Model organism databases and other resources are rich with functional information but difficult to mine. Gene2Function addresses a broad need by integrating information about conserved genes in a single online resource.
Approximation of the exponential integral (well function) using sampling methods
Baalousha, Husam Musa
2015-04-01
Exponential integral (also known as well function) is often used in hydrogeology to solve Theis and Hantush equations. Many methods have been developed to approximate the exponential integral. Most of these methods are based on numerical approximations and are valid for a certain range of the argument value. This paper presents a new approach to approximate the exponential integral. The new approach is based on sampling methods. Three different sampling methods; Latin Hypercube Sampling (LHS), Orthogonal Array (OA), and Orthogonal Array-based Latin Hypercube (OA-LH) have been used to approximate the function. Different argument values, covering a wide range, have been used. The results of sampling methods were compared with results obtained by Mathematica software, which was used as a benchmark. All three sampling methods converge to the result obtained by Mathematica, at different rates. It was found that the orthogonal array (OA) method has the fastest convergence rate compared with LHS and OA-LH. The root mean square error RMSE of OA was in the order of 1E-08. This method can be used with any argument value, and can be used to solve other integrals in hydrogeology such as the leaky aquifer integral.
A novel integral representation for the Adler function
International Nuclear Information System (INIS)
Nesterenko, A V; Papavassiliou, J
2006-01-01
New integral representations for the Adler D-function and the R-ratio of the electron-positron annihilation into hadrons are derived in the general framework of the analytic approach to QCD. These representations capture the nonperturbative information encoded in the dispersion relation for the D-function, the effects due to the interrelation between spacelike and timelike domains, and the effects due to the nonvanishing pion mass. The latter plays a crucial role in this analysis, forcing the Adler function to vanish in the infrared limit. Within the developed approach the D-function is calculated by employing its perturbative approximation as the only additional input. The obtained result is found to be in reasonable agreement with the experimental prediction for the Adler function in the entire range of momenta 0 ≤ Q 2 < ∞
Functional approach without path integrals to finite temperature free fermions
International Nuclear Information System (INIS)
Souza, S.M. de; Santos, O. Rojas; Thomaz, M.T.
1999-01-01
Charret et al applied the properties of Grassmann generators to develop a new method to calculate the coefficients of the high temperature expansion of the grand canonical partition function of self-interacting fermionic models on d-dimensions (d ≥1). The methodology explores the anti-commuting nature of fermionic fields and avoids the calculation of the fermionic path integral. we apply this new method to the relativistic free Dirac fermions and recover the known results in the literature without the β-independent and μindependent infinities that plague the continuum path integral formulation. (author)
The integrity of persons elected, appointed or exercising public functions
Directory of Open Access Journals (Sweden)
Agathi Nano
2017-07-01
On 17 December 2015, Members of the Albanian Parliament adopt by consensus the constitutional amendments and legislative framework which are necessary to introduce in our country a clear mechanism for the exclusion of criminal offenders from public offices. In this paper we examine regulatory issues relating to the legal framework necessary to guarantee the integrity of public officials, the verification and ascertainment of the prohibition of exercising public functions and the implementation of the prohibitive measures provided for by law no. 138/2015 “On guaranteeing the integrity of the persons elected and/or appointed to, or exercising public functions”, the so called “decriminalisation” law.
Yang-Mills correlation functions from integrable spin chains
International Nuclear Information System (INIS)
Roiban, Radu; Volovich, Anastasia
2004-01-01
The relation between the dilatation operator of N = 4 Yang-Mills theory and integrable spin chains makes it possible to compute the one-loop anomalous dimensions of all operators in the theory. In this paper we show how to apply the technology of integrable spin chains to the calculation of Yang-Mills correlation functions by expressing them in terms of matrix elements of spin operators on the corresponding spin chain. We illustrate this method with several examples in the SU(2) sector described by the XXX 1/2 chain. (author)
Lectures on functional analysis and the Lebesgue integral
Komornik, Vilmos
2016-01-01
This textbook, based on three series of lectures held by the author at the University of Strasbourg, presents functional analysis in a non-traditional way by generalizing elementary theorems of plane geometry to spaces of arbitrary dimension. This approach leads naturally to the basic notions and theorems. Most results are illustrated by the small ℓp spaces. The Lebesgue integral, meanwhile, is treated via the direct approach of Frigyes Riesz, whose constructive definition of measurable functions leads to optimal, clear-cut versions of the classical theorems of Fubini-Tonelli and Radon-Nikodým. Lectures on Functional Analysis and the Lebesgue Integral presents the most important topics for students, with short, elegant proofs. The exposition style follows the Hungarian mathematical tradition of Paul Erdős and others. The order of the first two parts, functional analysis and the Lebesgue integral, may be reversed. In the third and final part they are combined to study various spaces of continuous and integ...
Increasing competitiveness with intercompany integration of logistics and marketing functions
Directory of Open Access Journals (Sweden)
Darja Topolšek
2016-03-01
Full Text Available Researchers of different scientific disciplines, such as management strategies, organizational theories and marketing, have in the past explored relations of mutual influences and the importance of cooperation between different functions in a company. The increased focus on the logistics function has potential to increase competitiveness. This is especially true for globally aimed production companies. In any company, logistics functions cooperate with various related functions such as production, marketing, procurement, engineering or developing new products as well as with financial functions. Each of the aforementioned connections or cooperation among logistics and its complementary functions can have a decisive effect on the company's competitiveness. Using a survey, we determined which activities in the surveyed companies are performed by the logistical function together with the marketing function and which activities they suggest should be performed together but are currently not, meaning they are co-dependent. Since interfunctional integration between logistics and marketing increases the success of a company, we also examined the connection between the current joint performance of activities and the suggested joint performance of activities among the before mentioned sectors, connected to the effectiveness of the company. To examine the mentioned connections among the logistical and marketing functions, Explanatory Factor Analysis (EFA, Confirmatory Factor Analysis (CFA and Structural Equation Modelling (SEM were performed.
Ghasemi, Nahid; Aghayari, Reza; Maddah, Heydar
2018-06-01
The present study aims at predicting and optimizing exergetic efficiency of TiO2-Al2O3/water nanofluid at different Reynolds numbers, volume fractions and twisted ratios using Artificial Neural Networks (ANN) and experimental data. Central Composite Design (CCD) and cascade Radial Basis Function (RBF) were used to display the significant levels of the analyzed factors on the exergetic efficiency. The size of TiO2-Al2O3/water nanocomposite was 20-70 nm. The parameters of ANN model were adapted by a training algorithm of radial basis function (RBF) with a wide range of experimental data set. Total mean square error and correlation coefficient were used to evaluate the results which the best result was obtained from double layer perceptron neural network with 30 neurons in which total Mean Square Error(MSE) and correlation coefficient (R2) were equal to 0.002 and 0.999, respectively. This indicated successful prediction of the network. Moreover, the proposed equation for predicting exergetic efficiency was extremely successful. According to the optimal curves, the optimum designing parameters of double pipe heat exchanger with inner twisted tape and nanofluid under the constrains of exergetic efficiency 0.937 are found to be Reynolds number 2500, twisted ratio 2.5 and volume fraction( v/v%) 0.05.
Chemical laser exhaust pipe design research
Sun, Yunqiang; Huang, Zhilong; Chen, Zhiqiang; Ren, Zebin; Guo, Longde
2016-10-01
In order to weaken the chemical laser exhaust gas influence of the optical transmission, a vent pipe is advised to emissions gas to the outside of the optical transmission area. Based on a variety of exhaust pipe design, a flow field characteristic of the pipe is carried out by numerical simulation and analysis in detail. The research results show that for uniform deflating exhaust pipe, although the pipeline structure is cyclical and convenient for engineering implementation, but there is a phenomenon of air reflows at the pipeline entrance slit which can be deduced from the numerical simulation results. So, this type of pipeline structure does not guarantee seal. For the design scheme of putting the pipeline contract part at the end of the exhaust pipe, or using the method of local area or tail contraction, numerical simulation results show that backflow phenomenon still exists at the pipeline entrance slit. Preliminary analysis indicates that the contraction of pipe would result in higher static pressure near the wall for the low speed flow field, so as to produce counter pressure gradient at the entrance slit. In order to eliminate backflow phenomenon at the pipe entrance slit, concerned with the pipeline type of radial size increase gradually along the flow, flow field property in the pipe is analyzed in detail by numerical simulation methods. Numerical simulation results indicate that there is not reflow phenomenon at entrance slit of the dilated duct. However the cold air inhaled in the slit which makes the temperature of the channel wall is lower than the center temperature. Therefore, this kind of pipeline structure can not only prevent the leak of the gas, but also reduce the wall temperature. In addition, compared with the straight pipe connection way, dilated pipe structure also has periodic structure, which can facilitate system integration installation.
Temporal integration of loudness as a function of level
DEFF Research Database (Denmark)
Florentine, Mary; Buus, Søren; Poulsen, Torben
1996-01-01
Absolute thresholds were measured for 5-, 30-, and 200-ms stimuli using an adaptive, forced choice procedure. Temporal integration of loudness for these durations was also measured for a 1-kHz tone and for broadband noises over a range of 5-80 dB SL (noise) and 5-90 dB SL (tones). Results show...... that temporal integration (defined as the level difference between equally loud 5- and 200-ms stimuli) varies non-monotonically with level. The temporal integration is about 10-12 dB near threshold, increases to 18-19 dB when the 5-ms signal is about 56 dB SPL (tone) and 76 dB SPL (noise), decreases again...... that the growth of loudness may, at least in part, be consistent with the nonlinear input/output function of the basilar membrane....
Mossel, David A A; Struijk, Corry B
2004-05-01
The second half of the 20th century witnessed substantial progress in the assurance and verification of microbiological integrity, i.e., safety and sensory quality, of drinking water. Enteropathogenic agents, such as particular viruses and protozoa, not previously identified as transmitted by industrially provided water supplies, were demonstrated to cause disease outbreaks, when ingested with piped water. The potential harm posed by carry-over of orally toxic metabolites of organisms, producing 'algal' (cyanophytic) blooms, was considered. In addition, earlier observations on the colonization of attenuated drinking water bodies by a variety of oligotrophic Gram-negative bacteria were confirmed and extended. This new evidence called for updating both water purification technologies and analytical methodology, serving to verify that goals had been attained. For the former purpose, the hazard analysis empowering control of critical practices (HACCP) strategy, introduced about 1960 in industrial food processing, was successfully adopted. Elimination, devitalization or barrier technologies for the more recently identified water-borne pathogens were elaborated, taking account of the hazard of production of chlorinated compounds with alleged adverse health effects. Biofilm formation throughout water distribution networks was brought under control by strict limitation of concentrations of compounds, assimilable by oligotrophic bacteria. Upon acknowledging that direct detection tests for pathogens were futile, because of their most sporadic and erratic distribution, Schardinger's marker organism concept was anew embraced, rigorously revised and substantially enlarged. Misleading designations, like searches for 'faecal coliforms' were replaced by boundary testing for Escherichia coli and appropriate Enterococcus spp. In addition, though still to be perfected, detection protocols for relevant bacteriophages or index viruses and, to a certain extent, also for spores of
Functional integrity in children with anoxic brain injury from drowning.
Ishaque, Mariam; Manning, Janessa H; Woolsey, Mary D; Franklin, Crystal G; Tullis, Elizabeth W; Beckmann, Christian F; Fox, Peter T
2017-10-01
Drowning is a leading cause of accidental injury and death in young children. Anoxic brain injury (ABI) is a common consequence of drowning and can cause severe neurological morbidity in survivors. Assessment of functional status and prognostication in drowning victims can be extremely challenging, both acutely and chronically. Structural neuroimaging modalities (CT and MRI) have been of limited clinical value. Here, we tested the utility of resting-state functional MRI (rs-fMRI) for assessing brain functional integrity in this population. Eleven children with chronic, spastic quadriplegia due to drowning-induced ABI were investigated. All were comatose immediately after the injury and gradually regained consciousness, but with varying ability to communicate their cognitive state. Eleven neurotypical children matched for age and gender formed the control group. Resting-state fMRI and co-registered T1-weighted anatomical MRI were acquired at night during drug-aided sleep. Network integrity was quantified by independent components analysis (ICA), at both group- and per-subject levels. Functional-status assessments based on in-home observations were provided by families and caregivers. Motor ICNs were grossly compromised in ABI patients both group-wise and individually, concordant with their prominent motor deficits. Striking preservations of perceptual and cognitive ICNs were observed, and the degree of network preservation correlated (ρ = 0.74) with the per-subject functional status assessments. Collectively, our findings indicate that rs-fMRI has promise for assessing brain functional integrity in ABI and, potentially, in other disorders. Furthermore, our observations suggest that the severe motor deficits observed in this population can mask relatively intact perceptual and cognitive capabilities. Hum Brain Mapp 38:4813-4831, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Cartesian integration of Grassmann variables over invariant functions
Energy Technology Data Exchange (ETDEWEB)
Kieburg, Mario; Kohler, Heiner; Guhr, Thomas [Universitaet Duisburg-Essen, Duisburg (Germany)
2009-07-01
Supersymmetry plays an important role in field theory as well as in random matrix theory and mesoscopic physics. Anticommuting variables are the fundamental objects of supersymmetry. The integration over these variables is equivalent to the derivative. Recently[arxiv:0809.2674v1[math-ph] (2008)], we constructed a differential operator which only acts on the ordinary part of the superspace consisting of ordinary and anticommuting variables. This operator is equivalent to the integration over all anticommuting variables of an invariant function. We present this operator and its applications for functions which are rotation invariant under the supergroups U(k{sub 1}/k{sub 2}) and UOSp(k{sub 1}/k{sub 2}).
Integration of functional complex oxide nanomaterials on silicon
Directory of Open Access Journals (Sweden)
Jose Manuel eVila-Fungueiriño
2015-06-01
Full Text Available The combination of standard wafer-scale semiconductor processing with the properties of functional oxides opens up to innovative and more efficient devices with high value applications that can be produced at large scale. This review uncovers the main strategies that are successfully used to monolithically integrate functional complex oxide thin films and nanostructures on silicon: the chemical solution deposition approach (CSD and the advanced physical vapor deposition techniques such as oxide molecular beam epitaxy (MBE. Special emphasis will be placed on complex oxide nanostructures epitaxially grown on silicon using the combination of CSD and MBE. Several examples will be exposed, with a particular stress on the control of interfaces and crystallization mechanisms on epitaxial perovskite oxide thin films, nanostructured quartz thin films, and octahedral molecular sieve nanowires. This review enlightens on the potential of complex oxide nanostructures and the combination of both chemical and physical elaboration techniques for novel oxide-based integrated devices.
International Nuclear Information System (INIS)
Bari, R.A.; Buslik, A.J.; Papazoglou, I.A.
1976-04-01
A critique is presented of the strength-stress overlap method for the reliability of the CRBR primary heat transport system piping. The report addresses, in particular, the reliability assessment of WARD-D-0127 (Piping Integrity Status Report), which is part of the CRBR PSAR docket. It was found that the reliability assessment is extremely sensitive to the assumed shape for the probability density function for the strength (regarded as a random variable) of the cold-leg inlet downcomer section of the primary piping. Based on the rigorous Chebyschev inequality, it is shown that the piping failure probability is less than 10 -2 . On the other hand, it is shown that the failure probability can be much larger than approximately 10 -13 , the typical value put forth in WARD-D-0127
Application of LBB to a nozzle-pipe interface
Energy Technology Data Exchange (ETDEWEB)
Yu, Y.J.; Sohn, G.H.; Kim, Y.J. [and others
1997-04-01
Typical LBB (Leak-Before-Break) analysis is performed for the highest stress location for each different type of material in the high energy pipe line. In most cases, the highest stress occurs at the nozzle and pipe interface location at the terminal end. The standard finite element analysis approach to calculate J-Integral values at the crack tip utilizes symmetry conditions when modeling near the nozzle as well as away from the nozzle region to minimize the model size and simplify the calculation of J-integral values at the crack tip. A factor of two is typically applied to the J-integral value to account for symmetric conditions. This simplified analysis can lead to conservative results especially for small diameter pipes where the asymmetry of the nozzle-pipe interface is ignored. The stiffness of the residual piping system and non-symmetries of geometry along with different material for the nozzle, safe end and pipe are usually omitted in current LBB methodology. In this paper, the effects of non-symmetries due to geometry and material at the pipe-nozzle interface are presented. Various LBB analyses are performed for a small diameter piping system to evaluate the effect a nozzle has on the J-integral calculation, crack opening area and crack stability. In addition, material differences between the nozzle and pipe are evaluated. Comparison is made between a pipe model and a nozzle-pipe interface model, and a LBB PED (Piping Evaluation Diagram) curve is developed to summarize the results for use by piping designers.
Stochastic integration by parts and functional Itô calculus
Vives, Josep
2016-01-01
This volume contains lecture notes from the courses given by Vlad Bally and Rama Cont at the Barcelona Summer School on Stochastic Analysis (July 2012). The notes of the course by Vlad Bally, co-authored with Lucia Caramellino, develop integration by parts formulas in an abstract setting, extending Malliavin's work on abstract Wiener spaces. The results are applied to prove absolute continuity and regularity results of the density for a broad class of random processes. Rama Cont's notes provide an introduction to the Functional Itô Calculus, a non-anticipative functional calculus that extends the classical Itô calculus to path-dependent functionals of stochastic processes. This calculus leads to a new class of path-dependent partial differential equations, termed Functional Kolmogorov Equations, which arise in the study of martingales and forward-backward stochastic differential equations. This book will appeal to both young and senior researchers in probability and stochastic processes, as well as to pract...
Towards Integration of Biological and Physiological Functions at Multiple Levels
Directory of Open Access Journals (Sweden)
Taishin eNomura
2010-12-01
Full Text Available An aim of systems physiology today can be stated as to establish logical and quantitative bridges between phenomenological attributes of physiological entities such as cells and organs and physical attributes of biological entities, i.e., biological molecules, allowing us to describe and better understand physiological functions in terms of underlying biological functions. This article illustrates possible schema that can be used for promoting systems physiology by integrating quantitative knowledge of biological and physiological functions at multiple levels of time and space with the use of information technology infrastructure. Emphasis will be made for systematic, modular, hierarchical, and standardized descriptions of mathematical models of the functions and advantages for the use of them.
Simultaneous confidence bands for the integrated hazard function
Dudek, Anna; Gocwin, Maciej; Leskow, Jacek
2006-01-01
The construction of the simultaneous confidence bands for the integrated hazard function is considered. The Nelson--Aalen estimator is used. The simultaneous confidence bands based on bootstrap methods are presented. Two methods of construction of such confidence bands are proposed. The weird bootstrap method is used for resampling. Simulations are made to compare the actual coverage probability of the bootstrap and the asymptotic simultaneous confidence bands. It is shown that the equal--tai...
Vaninsky, Alexander
2015-04-01
Defining the logarithmic function as a definite integral with a variable upper limit, an approach used by some popular calculus textbooks, is problematic. We discuss the disadvantages of such a definition and provide a way to fix the problem. We also consider a definition-based, rigorous derivation of the derivative of the exponential function that is easier, more intuitive, and complies with the standard definitions of the number e, the logarithmic, and the exponential functions.
ERF/ERFC, Calculation of Error Function, Complementary Error Function, Probability Integrals
International Nuclear Information System (INIS)
Vogel, J.E.
1983-01-01
1 - Description of problem or function: ERF and ERFC are used to compute values of the error function and complementary error function for any real number. They may be used to compute other related functions such as the normal probability integrals. 4. Method of solution: The error function and complementary error function are approximated by rational functions. Three such rational approximations are used depending on whether - x .GE.4.0. In the first region the error function is computed directly and the complementary error function is computed via the identity erfc(x)=1.0-erf(x). In the other two regions the complementary error function is computed directly and the error function is computed from the identity erf(x)=1.0-erfc(x). The error function and complementary error function are real-valued functions of any real argument. The range of the error function is (-1,1). The range of the complementary error function is (0,2). 5. Restrictions on the complexity of the problem: The user is cautioned against using ERF to compute the complementary error function by using the identity erfc(x)=1.0-erf(x). This subtraction may cause partial or total loss of significance for certain values of x
Adenosine Receptor Heteromers and their Integrative Role in Striatal Function
Directory of Open Access Journals (Sweden)
Sergi Ferré
2007-01-01
Full Text Available By analyzing the functional role of adenosine receptor heteromers, we review a series of new concepts that should modify our classical views of neurotransmission in the central nervous system (CNS. Neurotransmitter receptors cannot be considered as single functional units anymore. Heteromerization of neurotransmitter receptors confers functional entities that possess different biochemical characteristics with respect to the individual components of the heteromer. Some of these characteristics can be used as a “biochemical fingerprint” to identify neurotransmitter receptor heteromers in the CNS. This is exemplified by changes in binding characteristics that are dependent on coactivation of the receptor units of different adenosine receptor heteromers. Neurotransmitter receptor heteromers can act as “processors” of computations that modulate cell signaling, sometimes critically involved in the control of pre- and postsynaptic neurotransmission. For instance, the adenosine A1-A2A receptor heteromer acts as a concentration-dependent switch that controls striatal glutamatergic neurotransmission. Neurotransmitter receptor heteromers play a particularly important integrative role in the “local module” (the minimal portion of one or more neurons and/or one or more glial cells that operates as an independent integrative unit, where they act as processors mediating computations that convey information from diverse volume-transmitted signals. For instance, the adenosine A2A-dopamine D2 receptor heteromers work as integrators of two different neurotransmitters in the striatal spine module.
International Nuclear Information System (INIS)
Winslow, D.W.; Brisco, D.P.
1991-01-01
This patent describes a method of stopping flow of fluid up through a pipe bore of a pipe string in a well. It comprises: lowering a bridge plug apparatus on a work string into the pipe string to a position where the pipe bore is to be closed; communicating the pipe bore below a packer of the bridge plug apparatus through the bridge plug apparatus with a low pressure zone above the packer to permit the fluid to flow up through the bridge plug apparatus; engaging the bridge plug apparatus with an internal upset of the pipe string; while the fluid is flowing up through the bridge plug apparatus, pulling upward on the work string and the bridge plug apparatus and thereby sealing the packer against the pipe bore; isolating the pipe bore below the packer from the low pressure zone above the packer and thereby stopping flow of the fluid up through the pipe bore; disconnecting the work string from the bridge plug apparatus; and maintaining the bridge plug apparatus in engagement with the internal upset and sealed against the pipe bore due to an upward pressure differential applied to the bridge plug apparatus by the fluid contained therebelow
Functional brain networks underlying detection and integration of disconfirmatory evidence.
Lavigne, Katie M; Metzak, Paul D; Woodward, Todd S
2015-05-15
Processing evidence that disconfirms a prior interpretation is a fundamental aspect of belief revision, and has clear social and clinical relevance. This complex cognitive process requires (at minimum) an alerting stage and an integration stage, and in the current functional magnetic resonance imaging (fMRI) study, we used multivariate analysis methodology on two datasets in an attempt to separate these sequentially-activated cognitive stages and link them to distinct functional brain networks. Thirty-nine healthy participants completed one of two versions of an evidence integration experiment involving rating two consecutive animal images, both of which consisted of two intact images of animal faces morphed together at different ratios (e.g., 70/30 bird/dolphin followed by 10/90 bird/dolphin). The two versions of the experiment differed primarily in terms of stimulus presentation and timing, which facilitated functional interpretation of brain networks based on differences in the hemodynamic response shapes between versions. The data were analyzed using constrained principal component analysis for fMRI (fMRI-CPCA), which allows distinct, simultaneously active task-based networks to be separated, and these were interpreted using both temporal (task-based hemodynamic response shapes) and spatial (dominant brain regions) information. Three networks showed increased activity during integration of disconfirmatory relative to confirmatory evidence: (1) a network involved in alerting to the requirement to revise an interpretation, identified as the salience network (dorsal anterior cingulate cortex and bilateral insula); (2) a sensorimotor response-related network (pre- and post-central gyri, supplementary motor area, and thalamus); and (3) an integration network involving rostral prefrontal, orbitofrontal and posterior parietal cortex. These three networks were staggered in their peak activity (alerting, responding, then integrating), but at certain time points (e
Best practices for quality management of stormwater pipe construction : [summary].
2014-02-01
Although largely unseen, stormwater pipe : systems are integral and important features : of the transportation network. Stormwater : systems support the safety and integrity of : roadways by directing stormwater away from : roadway structures to disc...
Numerical evaluation of integrals containing a spherical Bessel function by product integration
International Nuclear Information System (INIS)
Lehman, D.R.; Parke, W.C.; Maximon, L.C.
1981-01-01
A method is developed for numerical evaluation of integrals with k-integration range from 0 to infinity that contain a spherical Bessel function j/sub l/(kr) explicitly. The required quadrature weights are easily calculated and the rate of convergence is rapid: only a relatively small number of quadrature points is needed: for an accurate evaluation even when r is large. The quadrature rule is obtained by the method of product integration. With the abscissas chosen to be those of Clenshaw--Curtis and the Chebyshev polynomials as the interpolating polynomials, quadrature weights are obtained that depend on the spherical Bessel function. An inhomogenous recurrence relation is derived from which the weights can be calculated without accumulation of roundoff error. The procedure is summarized as an easily implementable algorithm. Questions of convergence are discussed and the rate of convergence demonstrated for several test integrals. Alternative procedures are given for generating the integration weights and an error analysis of the method is presented
Secondary pipe rupture at Mihama unit 3
International Nuclear Information System (INIS)
Hajime Ito; Takehiko Sera
2005-01-01
The secondary system pipe rupture occurred on August 9, 2004, while Mihama unit 3 was operating at the rated thermal power. The rupture took place on the condensate line-A piping between the No.4 LP heater and the deaerator, downstream of an orifice used for measuring the condensate flux. The pipe is made of carbon steel, and normally has 558.8 mm diameter and 10 mm thickness. The pipe wall had thinned to 0.4 mm at the point of minimum thickness. It is estimated that the disturbed flow of water downstream of the orifice caused erosion/corrosion and developed wall thinning, leading to a rupture at the thinnest section under internal pressure, about 1MPa. Observation of the pipe internal surface revealed a scale-like pattern typical in this kind of phenomenon. Eleven workers who were preparing for an annual outage that was to start from August 14 suffered burn injuries, of who five died. Since around 1975, we, Kansai Electric, have been checking pipe wall thickness while focusing on the thinning of carbon steel piping in the secondary system. Summarizing the results from such investigation and reviewing the latest technical knowledge including operating experience from overseas utilities, we compiled the pipe thickness management guideline for PWR secondary pipes, 1990. The pipe section that ruptured at the Mihama unit 3 should have been included within the inspection scopes according to the guideline but was not registered on the inspection list. It had not been corrected for almost thirty years. As the result, this pipe section had not been inspected even once since the beginning of the plant operation, 1976. It seems that the quality assurance and maintenance management had not functioned well regarding the secondary system piping management, although we were responsible for the safety of nuclear power plants as licensee. We will review the secondary system inspection procedure and also improve the pipe thickness management guideline. And also, we would replace
Waste pipe calculus extensions
International Nuclear Information System (INIS)
O'Connell, W.J.
1979-01-01
The waste pipe calculus provides a rapid method, using Laplace transforms, to calculate the transport of a pollutant such as nuclear waste, by a network of one-dimensional flow paths. The present note extends previous work as follows: (1) It provides an alternate approximation to the time-domain function (inverse Laplace transform) for the resulting transport. This algebraic approximation may be viewed as a simpler and more approximate model of the transport process. (2) It identifies two scalar quantities which may be used as summary consequence measures of the waste transport (or inversely, waste retention) system, and provides algebraic expressions for them. (3) It includes the effects of radioactive decay on the scalar quantity results, and further provides simplifying approximations for the cases of medium and long half-lives. This algebraic method can be used for quick approximate analyses of expected results, uncertainty and sensitivity, in evaluating selection and design choices for nuclear waste disposal systems
The development of functional requirement for integrated test facility
International Nuclear Information System (INIS)
Sim, B.S.; Oh, I.S.; Cha, K.H.; Lee, H.C.
1994-01-01
An Integrated Test Facility (ITF) is a human factors experimental environment comprised of a nuclear power plant function simulator, man-machine interfaces (MMI), human performance recording systems, and signal control and data analysis systems. In this study, we are going to describe how the functional requirements are developed by identification of both the characteristics of generic advanced control rooms and the research topics of world-wide research interest in human factors community. The functional requirements of user interface developed in this paper together with those of the other elements will be used for the design and implementation of the ITF which will serve as the basis for experimental research on a line of human factors topics. (author). 15 refs, 1 fig
Energy Technology Data Exchange (ETDEWEB)
Baroncini, C.; Boccia, O.; Chella, F.; Zazzini, P. [D.S.S.A.R.R. Faculty of Architecture, University ' ' G. D' Annunzio' ' Viale Pindaro 42, 65127 Pescara (Italy)
2010-02-15
In this paper the authors present the double light pipe, an innovative technological device, designed as an evolution of a traditional light pipe, which distributes daylight to underground areas of a building, illuminating, at the same time, the passage areas thanks to a larger collector and a second transparent pipe attached to the first one. Unlike the traditional light pipe, thanks to this double illuminating function it can be located in the middle of a room, despite its encumbrance. In this paper the technological design of the double light pipe is presented and the results of an experimental analysis on a reduced scale (1:2) model are shown. Internal illuminance data over horizontal and vertical work-planes were measured in various sky conditions with or without direct solar radiation. Being this innovative device obtained by a light pipe integrated with a second pipe, it performs like a traditional light pipe for the final room and, at the same time, illuminates the intermediate room giving it uniform and high quality light, particularly indicated for wide plant areas, such as show-rooms or museums. (author)
1997-01-01
Small Business Innovation Research contracts from Goddard Space Flight Center to Thermacore Inc. have fostered the company work on devices tagged "heat pipes" for space application. To control the extreme temperature ranges in space, heat pipes are important to spacecraft. The problem was to maintain an 8-watt central processing unit (CPU) at less than 90 C in a notebook computer using no power, with very little space available and without using forced convection. Thermacore's answer was in the design of a powder metal wick that transfers CPU heat from a tightly confined spot to an area near available air flow. The heat pipe technology permits a notebook computer to be operated in any position without loss of performance. Miniature heat pipe technology has successfully been applied, such as in Pentium Processor notebook computers. The company expects its heat pipes to accommodate desktop computers as well. Cellular phones, camcorders, and other hand-held electronics are forsible applications for heat pipes.
Dynamic behavior and functional integrity tests on RC shear walls
International Nuclear Information System (INIS)
Akino, Kinji; Nasuda, Toshiaki; Shibata, Akenori.
1991-01-01
A project consisting of seven subprojects has been conducted to study the dynamic behavior and functional integrity of reinforced concrete (RC) shear walls in reactor buildings. The objective of this project is to obtain the data to improve and prepare the seismic analysis code regarding the nonlinear structural behavior and integrity of reactor buildings during and after earthquakes. The project started in April, 1986, and will end in March, 1994. Seven subprojects are strain rate test, damping characteristic test, ultimate state response test and the verification test for the test of restoring force characteristics regarding dynamic restoring force characteristics and damping performance; the restoring force characteristic test on the shear walls with openings; and pull-out strength test and the test on air leakage through concrete cracks regarding the functional integrity. The objectives of respective subprojects, the test models and the interim results are reported. Three subprojects have been completed by March, 1990. The results of these projects will be used for the overall evaluation. The strain rate test showed that the ultimate strength of shear walls increased with strain rate. A formula for estimating air flow through the cracks in walls was given by the leakage test. (K.I.)
Integrated biocircuits: engineering functional multicellular circuits and devices
Prox, Jordan; Smith, Tory; Holl, Chad; Chehade, Nick; Guo, Liang
2018-04-01
Objective. Implantable neurotechnologies have revolutionized neuromodulatory medicine for treating the dysfunction of diseased neural circuitry. However, challenges with biocompatibility and lack of full control over neural network communication and function limits the potential to create more stable and robust neuromodulation devices. Thus, we propose a platform technology of implantable and programmable cellular systems, namely Integrated Biocircuits, which use only cells as the functional components of the device. Approach. We envision the foundational principles for this concept begins with novel in vitro platforms used for the study and reconstruction of cellular circuitry. Additionally, recent advancements in organoid and 3D culture systems account for microenvironment factors of cytoarchitecture to construct multicellular circuits as they are normally formed in the brain. We explore the current state of the art of these platforms to provide knowledge of their advancements in circuit fabrication and identify the current biological principles that could be applied in designing integrated biocircuit devices. Main results. We have highlighted the exemplary methodologies and techniques of in vitro circuit fabrication and propose the integration of selected controllable parameters, which would be required in creating suitable biodevices. Significance. We provide our perspective and propose new insights into the future of neuromodulaion devices within the scope of living cellular systems that can be applied in designing more reliable and biocompatible stimulation-based neuroprosthetics.
Multiloop Integral System Test (MIST): MIST Facility Functional Specification
International Nuclear Information System (INIS)
Habib, T.F.; Koksal, C.G.; Moskal, T.E.; Rush, G.C.; Gloudemans, J.R.
1991-04-01
The Multiloop Integral System Test (MIST) is part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock and Wilcox designed plants. MIST is sponsored by the US Nuclear Regulatory Commission, the Babcock ampersand Wilcox Owners Group, the Electric Power Research Institute, and Babcock and Wilcox. The unique features of the Babcock and Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral facilities to address the thermal-hydraulic SBLOCA questions. MIST was specifically designed and constructed for this program, and an existing facility -- the Once Through Integral System (OTIS) -- was also used. Data from MIST and OTIS are used to benchmark the adequacy of system codes, such as RELAP5 and TRAC, for predicting abnormal plant transients. The MIST Functional Specification documents as-built design features, dimensions, instrumentation, and test approach. It also presents the scaling basis for the facility and serves to define the scope of work for the facility design and construction. 13 refs., 112 figs., 38 tabs
Automatic welding machine for piping
International Nuclear Information System (INIS)
Yoshida, Kazuhiro; Koyama, Takaichi; Iizuka, Tomio; Ito, Yoshitoshi; Takami, Katsumi.
1978-01-01
A remotely controlled automatic special welding machine for piping was developed. This machine is utilized for long distance pipe lines, chemical plants, thermal power generating plants and nuclear power plants effectively from the viewpoint of good quality control, reduction of labor and good controllability. The function of this welding machine is to inspect the shape and dimensions of edge preparation before welding work by the sense of touch, to detect the temperature of melt pool, inspect the bead form by the sense of touch, and check the welding state by ITV during welding work, and to grind the bead surface and inspect the weld metal by ultrasonic test automatically after welding work. The construction of this welding system, the main specification of the apparatus, the welding procedure in detail, the electrical source of this welding machine, the cooling system, the structure and handling of guide ring, the central control system and the operating characteristics are explained. The working procedure and the effect by using this welding machine, and the application to nuclear power plants and the other industrial field are outlined. The HIDIC 08 is used as the controlling computer. This welding machine is useful for welding SUS piping as well as carbon steel piping. (Nakai, Y.)
Development of support system for nuclear power plant piping
International Nuclear Information System (INIS)
Horino, Satoshi
1987-01-01
Ishikawajima-Harima Heavy Industries Co., Ltd. has advanced the development of Integrated Nuclear Plant Piping System (INUPPS) for nuclear power plants since 1980, and continued its improvement up to now. This time as its component, a piping support system (PISUP) has been developed. The piping support system deals with the structures such as piping supports and the stands for maintenance and inspection, and as for standard supporting structures, it builds up automatically the structures including the selection of optimum members by utilizing the standard patterns in cooperation with the piping design system including piping stress analysis. As for the supporting structures deviating from the standard, by amending a part of the standard patterns in dialogue from, structures can be built up. By using the data produced in this way, this system draws up consistently a design book, production management data and so on. From the viewpoint of safety, particular consideration is given to the aseismatic capability of nuclear power plants, and piping is fundamentally designed regidly to avoid resonance. It is necessary to make piping supports so as to have sufficient strength and rigidity. The features of the design of piping supports for nuclear power plant, the basic concept of piping support system, the constitution of the software and hardware, the standard patterns and the structural patterns of piping support system and so on are described. (Kako, I.)
Rotating optical geometry sensor for inner pipe-surface reconstruction
Ritter, Moritz; Frey, Christan W.
2010-01-01
The inspection of sewer or fresh water pipes is usually carried out by a remotely controlled inspection vehicle equipped with a high resolution camera and a lightning system. This operator-oriented approach based on offline analysis of the recorded images is highly subjective and prone to errors. Beside the subjective classification of pipe defects through the operator standard closed circuit television (CCTV) technology is not suitable for detecting geometrical deformations resulting from e.g. structural mechanical weakness of the pipe, corrosion of e.g. cast-iron material or sedimentations. At Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB) in Karlsruhe, Germany, a new Rotating Optical Geometry Sensor (ROGS) for pipe inspection has been developed which is capable of measuring the inner pipe geometry very precisely over the whole pipe length. This paper describes the developed ROGS system and the online adaption strategy for choosing the optimal system parameters. These parameters are the rotation and traveling speed dependent from the pipe diameter. Furthermore, a practicable calibration methodology is presented which guarantees an identification of the several internal sensor parameters. ROGS has been integrated in two different systems: A rod based system for small fresh water pipes and a standard inspection vehicle based system for large sewer Pipes. These systems have been successfully applied to different pipe systems. With this measurement method the geometric information can be used efficiently for an objective repeatable quality evaluation. Results and experiences in the area of fresh water pipe inspection will be presented.
Computer simulation of LMFBR piping systems
International Nuclear Information System (INIS)
A-Moneim, M.T.; Chang, Y.W.; Fistedis, S.H.
1977-01-01
Integrity of piping systems is one of the main concerns of the safety issues of Liquid Metal Fast Breeder Reactors (LMFBR). Hypothetical core disruptive accidents (HCDA) and water-sodium interaction are two examples of sources of high pressure pulses that endanger the integrity of the heat transport piping systems of LMFBRs. Although plastic wall deformation attenuates pressure peaks so that only pressures slightly higher than the pipe yield pressure propagate along the system, the interaction of these pulses with the different components of the system, such as elbows, valves, heat exchangers, etc.; and with one another produce a complex system of pressure pulses that cause more plastic deformation and perhaps damage to components. A generalized piping component and a tee branching model are described. An optional tube bundle and interior rigid wall simulation model makes such a generalized component model suited for modelling of valves, reducers, expansions, and heat exchangers. The generalized component and the tee branching junction models are combined with the pipe-elbow loop model so that a more general piping system can be analyzed both hydrodynamically and structurally under the effect of simultaneous pressure pulses
International Nuclear Information System (INIS)
Burr, T.K.; Hawkes, G.L.; Morton, D.K.; Pace, N.E.
1990-01-01
Among the issues associated with older non-commercial reactors and irradiation facilities are (a) whether plant system designs are adequate relative to current industry standards and (b) whether degradation due to system aging adversely challenges the required margins of safety. These issues are being addressed at the Advanced Test Reactor (ATR) as part of a continuous effort to assure that ATR plant systems and safety analyses are consistent with state-of-the-art technology, evolving industry standards, and lessons learned from industry experience (e.g., Three Mile Island and Chernobyl). This paper presents a methodology for reevaluating loop experiment facility piping systems relative to concepts contained in the current ASME Boiler and Pressure Vessel Code, Section 3 and Section 11. Insights gained on the challenges associated with reevaluating older piping systems for structural adequacy and life extension considerations are discussed. 14 refs., 3 figs
Degradation mechanisms of small scale piping systems
International Nuclear Information System (INIS)
Bartonicek, J.; Koenig, G.; Blind, D.
1996-01-01
Operational experience shows that many degradation mechanisms can have an effect on small-scale piping systems. We can see from the analyses carried out that the degradation which has occurred is primarily linked with the fact that these piping systems were classified as being of low safety relevance. This is mainly due to such components being classified into low safety relevance category at the design stage, as well as to the low level of operational monitoring. Since in spite of the variety of designs and operational modes the degradation mechanisms detected may be attributed to the piping systems, we can make decisive statements on how to avoid such degradation mechanisms. Even small-scale piping systems may achieve guaranteed integrity in such cases by taking the appropriate action. (orig.) [de
Ku, Jentung
2015-01-01
This is the presentation file for the short course Introduction to Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. NCTS 21070-15. Course Description: This course will present operating principles of the heat pipe with emphases on the underlying physical processes and requirements of pressure and energy balance. Performance characterizations and design considerations of the heat pipe will be highlighted. Guidelines for thermal engineers in the selection of heat pipes as part of the spacecraft thermal control system, testing methodology, and analytical modeling will also be discussed.
Energy Technology Data Exchange (ETDEWEB)
Bennett, W.; Jimenez, A.F.
1987-09-08
This patent describes a method for storing and retrieving a riser pipe, comprising the steps of: providing an upright annular magazine comprised of an inside annular wall and an outside annular wall, the magazine having an open top; storing the riser pipe in a substantially vertically oriented position within the annular magazine; and moving the riser pipe upwardly through the open top of the annular magazine at an angle to the vertical along at least a portion of the length of the riser pipe.
Piping engineering and operation
International Nuclear Information System (INIS)
1993-01-01
The conference 'Piping Engineering and Operation' was organized by the Institution of Mechanical Engineers in November/December 1993 to follow on from similar successful events of 1985 and 1989, which were attended by representatives from all sectors of the piping industry. Development of engineering and operation of piping systems in all aspects, including non-metallic materials, are highlighted. The range of issues covered represents a balance between current practices and implementation of future international standards. Twenty papers are printed. Two, which are concerned with pressurized pipes or steam lines in the nuclear industry, are indexed separately. (Author)
Piping equipment; Materiel petrole
Energy Technology Data Exchange (ETDEWEB)
NONE
2001-07-01
This 'blue bible' of the perfect piping-man appeals to end-users of industrial facilities of the petroleum and chemical industries (purchase services, standardization, new works, maintenance) but also to pipe-makers and hollow-ware makers. It describes the characteristics of materials (carbon steels, stainless steels, alloyed steels, special alloys) and the dimensions of pipe elements: pipes, welding fittings, flanges, sealing products, forged steel fittings, forged steel valves, cast steel valves, ASTM standards, industrial valves. (J.S.)
Functional integrals for nuclear many-particle systems
International Nuclear Information System (INIS)
Lobanov, Yu.Yu.
1996-04-01
The new method for computation of the physical characteristics of quantum systems with many degrees of freedom is described. This method is based on the representation of the matrix element of the evolution operator in Euclidean metrics in a form of the functional integral with a certain measure in the corresponding space and on the use of approximation formulas which we constructed for this kind of integrals. The method does not require preliminary discretization of space and time and allows to use the deterministic algorithms. This approach proved to have important advantages over the other known methods, including the higher efficiency of computations. Examples of application of the method to the numerical study of some potential nuclear models as well as comparison of results with the experimental data and with the values obtained by the other authors are presented. (author). 25 refs, 1 fig., 2 tabs
Pipe rupture and steam/water hammer design loads for dynamic analysis of piping systems
International Nuclear Information System (INIS)
Strong, B.R. Jr.; Baschiere, R.J.
1978-01-01
The design of restraints and protection devices for nuclear Class I and Class II piping systems must consider severe pipe rupture and steam/water hammer loadings. Limited stress margins require that an accurate prediction of these loads be obtained with a minimum of conservatism in the loads. Methods are available currently for such fluid transient load development, but each method is severely restricted as to the complexity and/or the range of fluid state excursions which can be simulated. This paper presents a general technique for generation of pipe rupture and steam/water hammer design loads for dynamic analysis of nuclear piping systems which does not have the limitations of existing methods. Blowdown thrust loadings and unbalanced piping acceleration loads for restraint design of all nuclear piping systems may be found using this method. The technique allows the effects of two-phase distributed friction, liquid flashing and condensation, and the surrounding thermal and mechanical equipment to be modeled. A new form of the fluid momentum equation is presented which incorporates computer generated fluid acceleration histories by inclusion of a geometry integral termed the 'force equivalent area' (FEA). The FEA values permit the coupling of versatile thermal-hydraulic programs to piping dynamics programs. Typical applications of the method to pipe rupture problems are presented and the resultant load histories compared with existing techniques. (Auth.)
Response of buried pipes to missile impact
International Nuclear Information System (INIS)
Vardanega, C.; Cremonini, M.G.; Mirone, M.; Luciani, A.
1989-01-01
This paper presents the methodology and results of the analyses carried out to determine an effective layout and the dynamic response of safety related cooling water pipes, buried in backfill, for the Alto Lazio Nuclear Power Plant in Italy, subjected to missile impact loading at the backfill surface. The pipes are composed of a steel plate encased in two layers of high-quality reinforced concrete. The methodology comprises three steps. The first step is the definition of the 'free-field' dynamic response of the backfill soil, not considering the presence of the pipes, through a dynamic finite element direct integration analysis utilizing an axisymmetric model. The second step is the pipe-soil interaction analysis, which is conducted by utilizing the soil displacement and stress time-histories obtained in the previous steps. Soil stress time-histories, combined with the geostatic and other operational stresses (such as those due to temperature and pressure), are used to obtain the actions in the pipe walls due to ring type deformation. For the third step, the analysis of the beam type response, a lumped parameter model is developed which accounts for the soil stiffness, the pipe characteristics and the position of the pipe with respect to the impact area. In addition, the effect of the presence of large concrete structures, such as tunnels, between the ground surface and the pipe is evaluated. The results of the structural analyses lead to defining the required steel thickness and also allow the choice of appropriate embedment depth and layout of redundant lines. The final results of the analysis is not only the strength verification of the pipe section, but also the definition of an effective layout of the lines in terms of position, depth, steel thickness and joint design. (orig.)
A symmetric integral identity for Bessel functions with applications to integral geometry
Salman, Yehonatan
2017-12-01
In the article of Kunyansky (Inverse Probl 23(1):373-383, 2007) a symmetric integral identity for Bessel functions of the first and second kind was proved in order to obtain an explicit inversion formula for the spherical mean transform where our data is given on the unit sphere in Rn . The aim of this paper is to prove an analogous symmetric integral identity in case where our data for the spherical mean transform is given on an ellipse E in R2 . For this, we will use the recent results obtained by Cohl and Volkmer (J Phys A Math Theor 45:355204, 2012) for the expansions into eigenfunctions of Bessel functions of the first and second kind in elliptical coordinates.
Classical representation of wave functions for integrable systems
International Nuclear Information System (INIS)
Kay, Kenneth G.
2004-01-01
Classical exact (CE) wave functions are certain integral representations of energy eigenfunctions that are parameterized in terms of the motion of the corresponding classical system in a semiclassically relevant way. When applied to systems for which they are not exact, such expressions serve as semiclassical approximations. Previous work identified CE wave functions for a number of specific systems and established their semiclassical usefulness. This paper explores the degree to which such representations can be found for more general systems. It is shown that CE wave functions exist, in principle, for bound states of an arbitrary integrable system that are confined to a single classically allowed region. Evidence is presented that CE representations also exist for more general states of such a system that are unbound, or that extend over more than one allowed region. The CE expressions are not unique: an innumerable variety exists for each such system. The existence proof provides a formal method for constructing CE expressions by Fourier transforming certain superpositions of energy eigenstates. The parameterization in terms of the classical motion is achieved by identifying certain quantities in these superpositions as classical action and angle variables. The semiclassical relevance of this identification is ensured by imposing some mild conditions on the coefficients in the superposition. This procedure for parameterizing exact wave functions in terms of classical variables indicates a basic relationship between the quantum and classical descriptions of states. The method of constructing CE wave functions introduced in the proof is shown to be consistent with a number of previously obtained CE formulas and is used to derive two new, closed-form, CE expressions. A simple numerical example is presented to illustrate the semiclassical application of one of these expressions and to further verify the physical significance of the classical parameterization
Accelerometer method and apparatus for integral display and control functions
Bozeman, Richard J., Jr.
1992-06-01
Vibration analysis has been used for years to provide a determination of the proper functioning of different types of machinery, including rotating machinery and rocket engines. A determination of a malfunction, if detected at a relatively early stage in its development, will allow changes in operating mode or a sequenced shutdown of the machinery prior to a total failure. Such preventative measures result in less extensive and/or less expensive repairs, and can also prevent a sometimes catastrophic failure of equipment. Standard vibration analyzers are generally rather complex, expensive, and of limited portability. They also usually result in displays and controls being located remotely from the machinery being monitored. Consequently, a need exists for improvements in accelerometer electronic display and control functions which are more suitable for operation directly on machines and which are not so expensive and complex. The invention includes methods and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. The apparatus includes an accelerometer package having integral display and control functions. The accelerometer package is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine condition over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase over the selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated. The benefits of a vibration recording and monitoring system with controls and displays readily
Use of the modal superposition technique for piping system blowdown analyses
International Nuclear Information System (INIS)
Ware, A.G.; Macek, R.W.
1983-01-01
A standard method of solving for the seismic response of piping systems is the modal superposition technique. Only a limited number of structural modes are considered (typically those up to 33 Hz in the U.S.), since the effect on the calculated response due to higher modes is generally small, and the method can result in considerable computer cost savings over the direct integration method. The modal superposition technique has also been applied to piping response problems in which the forcing functions are due to fluid excitation. Application of the technique to this case is somewhat more difficult, because a well defined cutoff frequency for determining structural modes to be included has not been established. This paper outlines a method for higher mode corrections, and suggests methods to determine suitable cutoff frequencies for piping system blowdown analyses. A numerical example illustrates how uncorrected modal superposition results can produce erroneous stress results
Disrupted Olfactory Integration in Schizophrenia: Functional Connectivity Study.
Kiparizoska, Sara; Ikuta, Toshikazu
2017-09-01
Evidence for olfactory dysfunction in schizophrenia has been firmly established. However, in the typical understanding of schizophrenia, olfaction is not recognized to contribute to or interact with the illness. Despite the solid presence of olfactory dysfunction in schizophrenia, its relation to the rest of the illness remains largely unclear. Here, we aimed to examine functional connectivity of the olfactory bulb, olfactory tract, and piriform cortices and isolate the network that would account for the altered olfaction in schizophrenia. We examined the functional connectivity of these specific olfactory regions in order to isolate other brain regions associated with olfactory processing in schizophrenia. Using the resting state functional MRI data from the Center for Biomedical Research Excellence in Brain Function and Mental Illness, we compared 84 patients of schizophrenia and 90 individuals without schizophrenia. The schizophrenia group showed disconnectivity between the anterior piriform cortex and the nucleus accumbens, between the posterior piriform cortex and the middle frontal gyrus, and between the olfactory tract and the visual cortices. The current results suggest functional disconnectivity of olfactory regions in schizophrenia, which may account for olfactory dysfunction and disrupted integration with other sensory modalities in schizophrenia. © The Author 2017. Published by Oxford University Press on behalf of CINP.
Objective Integrated Assessment of Functional Outcomes in Reduction Mammaplasty
Passaro, Ilaria; Malovini, Alberto; Faga, Angela; Toffola, Elena Dalla
2013-01-01
Background: The aim of our study was an objective integrated assessment of the functional outcomes of reduction mammaplasty. Methods: The study involved 17 women undergoing reduction mammaplasty from March 2009 to June 2011. Each patient was assessed before surgery and 2 months postoperatively with the original association of 4 subjective and objective assessment methods: a physiatric clinical examination, the Roland Morris Disability Questionnaire, the Berg Balance Scale, and a static force platform analysis. Results: All of the tests proved multiple statistically significant associated outcomes demonstrating a significant improvement in the functional status following reduction mammaplasty. Surgical correction of breast hypertrophy could achieve both spinal pain relief and recovery of performance status in everyday life tasks, owing to a muscular postural functional rearrangement with a consistent antigravity muscle activity sparing. Pain reduction in turn could reduce the antalgic stiffness and improved the spinal range of motion. In our sample, the improvement of the spinal range of motion in flexion matched a similar improvement in extension. Recovery of a more favorable postural pattern with reduction of the anterior imbalance was demonstrated by the static force stabilometry. Therefore, postoperatively, all of our patients narrowed the gap between the actual body barycenter and the ideal one. The static force platform assessment also consistently confirmed the effectiveness of an accurate clinical examination of functional impairment from breast hypertrophy. Conclusions: The static force platform assessment might help the clinician to support the diagnosis of functional impairment from a breast hypertrophy with objectively based data. PMID:25289256
Directory of Open Access Journals (Sweden)
Sung-Hwan Jo
2018-05-01
Full Text Available Engineering, Procurement, and Construction (EPC of oil and gas megaprojects often experience cost overruns due to substantial schedule delays. One of the greatest causes of these overruns is the mismanagement of the project schedule, with the piping works (prefabrication and installation occupying a majority of that schedule. As such, an effective methodology for scheduling, planning, and controlling of piping activities is essential for project success. To meet this need, this study used the Critical Chain Project Management (CCPM to develop a piping construction delay prevention methodology, incorporating material procurement processes for EPC megaprojects. Recent studies indicate that the traditional scheduling method used on oil and gas mega projects has critical limitations regarding resource scarcity, calculation of activity duration, and dealing with uncertainties. To overcome these limitations, the Theory of Constraints-based CCPM was proposed and implemented to provide schedule buffers management. Nonexistent in literature, and of critical importance, is this paper’s focus on the resource buffer, representing material uncertainty and management. Furthermore, this paper presents a step-by-step process and flow chart for project, construction, and material managers to effectively manage a resource buffer through the CCPM process. This study extends the knowledge of traditional resource buffers in CCPM to improve material and procurement management, thus avoiding the shortage of piping materials and minimizing delays. The resultant process was validated by both deterministic and probabilistic schedule analysis through two case studies of a crude pump unit and propylene compressor installation at a Middle Eastern Refinery Plant Installation. The results show that the CCPM method effectively handles uncertainty, reducing the duration of piping works construction by about a 35% when compared to the traditional method. Furthermore, the
Inspection of secondary cooling system piping of JMTR
International Nuclear Information System (INIS)
Hanawa, Yoshio; Izumo, Hironobu; Fukasaku, Akitomi; Nagao, Yoshiharu; Kawamura, Hiroshi
2008-06-01
Piping condition was inspected form the view point of long term utilization before the renewal work of the secondary cooling system in the JMTR on FY 2008. As the result, it was confirmed that cracks, swellings and exfoliations in inner lining of the piping could be observed, and corrosion, which was reached by piping ingot, or decrease of piping thickness could hardly be observed. It was therefore confirmed that the strength or the functionality of the piping had been maintained by usual operation and maintenance. Repair of inner lining of the piping during the refurbishment of the JMTR is necessary to long term utilization of the secondary cooling system after restart of the JMTR from the view point of preventive maintenance. In addition, a periodic inspection of inner lining condition is necessary after repair of the piping. (author)
Manufacture of mold of polymeric composite water pipe reinforced charcoal
Zulfikar; Misdawati; Idris, M.; Nasution, F. K.; Harahap, U. N.; Simanjuntak, R. K.; Jufrizal; Pranoto, S.
2018-03-01
In general, household wastewater pipelines currently use thermoplastic pipes of Polyvinyl Chloride (PVC). This material is known to be not high heat resistant, contains hazardous chemicals (toxins), relatively inhospitable, and relatively more expensive. Therefore, researchers make innovations utilizing natural materials in the form of wood charcoal as the basic material of making the water pipe. Making this pipe requires a simple mold design that can be worked in the scale of household and intermediate industries. This research aims to produce water pipe mold with simple design, easy to do, and making time relatively short. Some considerations for molding materials are weight of mold, ease of raw material, strong, sturdy, and able to cast. Pipe molds are grouped into 4 (four) main parts, including: outer diameter pipe molding, pipe inside diameter, pipe holder, and pipe alignment control. Some materials have been tested as raw materials for outer diameter of pipes, such as wood, iron / steel, cement, and thermoset. The best results are obtained on thermoset material, where the process of disassembling is easier and the resulting mold weight is relatively lighter. For the inside diameter of the pipe is used stainless steel, because in addition to be resistant to chemical processes that occur, in this part of the mold must hold the press load due to shrinkage of raw materials of the pipe during the process of hardening (polymerization). Therefore, it needs high pressure resistant material and does not blend with the raw material of the pipe. The base of the mold is made of stainless steel material because it must be resistant to corrosion due to chemical processes. As for the adjustment of the pipe is made of ST 37 carbon steel, because its function is only as a regulator of the alignment of the pipe structure.
Fast computation of complete elliptic integrals and Jacobian elliptic functions
Fukushima, Toshio
2009-12-01
As a preparation step to compute Jacobian elliptic functions efficiently, we created a fast method to calculate the complete elliptic integral of the first and second kinds, K( m) and E( m), for the standard domain of the elliptic parameter, 0 procedure to compute simultaneously three Jacobian elliptic functions, sn( u| m), cn( u| m), and dn( u| m), by repeated usage of the double argument formulae starting from the Maclaurin series expansions with respect to the elliptic argument, u, after its domain is reduced to the standard range, 0 ≤ u procedure is 25-70% faster than the methods based on the Gauss transformation such as Bulirsch’s algorithm, sncndn, quoted in the Numerical Recipes even if the acceleration of computation of K( m) is not taken into account.
Integrative structure and functional anatomy of a nuclear pore complex
Kim, Seung Joong; Fernandez-Martinez, Javier; Nudelman, Ilona; Shi, Yi; Zhang, Wenzhu; Raveh, Barak; Herricks, Thurston; Slaughter, Brian D.; Hogan, Joanna A.; Upla, Paula; Chemmama, Ilan E.; Pellarin, Riccardo; Echeverria, Ignacia; Shivaraju, Manjunatha; Chaudhury, Azraa S.; Wang, Junjie; Williams, Rosemary; Unruh, Jay R.; Greenberg, Charles H.; Jacobs, Erica Y.; Yu, Zhiheng; de La Cruz, M. Jason; Mironska, Roxana; Stokes, David L.; Aitchison, John D.; Jarrold, Martin F.; Gerton, Jennifer L.; Ludtke, Steven J.; Akey, Christopher W.; Chait, Brian T.; Sali, Andrej; Rout, Michael P.
2018-03-01
Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.
Integral approximants for functions of higher monodromic dimension
Energy Technology Data Exchange (ETDEWEB)
Baker, G.A. Jr.
1987-01-01
In addition to the description of multiform, locally analytic functions as covering a many sheeted version of the complex plane, Riemann also introduced the notion of considering them as describing a space whose ''monodromic'' dimension is the number of linearly independent coverings by the monogenic analytic function at each point of the complex plane. I suggest that this latter concept is natural for integral approximants (sub-class of Hermite-Pade approximants) and discuss results for both ''horizontal'' and ''diagonal'' sequences of approximants. Some theorems are now available in both cases and make clear the natural domain of convergence of the horizontal sequences is a disk centered on the origin and that of the diagonal sequences is a suitably cut complex-plane together with its identically cut pendant Riemann sheets. Some numerical examples have also been computed.
Integrative structure and functional anatomy of a nuclear pore complex.
Kim, Seung Joong; Fernandez-Martinez, Javier; Nudelman, Ilona; Shi, Yi; Zhang, Wenzhu; Raveh, Barak; Herricks, Thurston; Slaughter, Brian D; Hogan, Joanna A; Upla, Paula; Chemmama, Ilan E; Pellarin, Riccardo; Echeverria, Ignacia; Shivaraju, Manjunatha; Chaudhury, Azraa S; Wang, Junjie; Williams, Rosemary; Unruh, Jay R; Greenberg, Charles H; Jacobs, Erica Y; Yu, Zhiheng; de la Cruz, M Jason; Mironska, Roxana; Stokes, David L; Aitchison, John D; Jarrold, Martin F; Gerton, Jennifer L; Ludtke, Steven J; Akey, Christopher W; Chait, Brian T; Sali, Andrej; Rout, Michael P
2018-03-22
Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.
AVID: An integrative framework for discovering functional relationships among proteins
Directory of Open Access Journals (Sweden)
Keating Amy E
2005-06-01
Full Text Available Abstract Background Determining the functions of uncharacterized proteins is one of the most pressing problems in the post-genomic era. Large scale protein-protein interaction assays, global mRNA expression analyses and systematic protein localization studies provide experimental information that can be used for this purpose. The data from such experiments contain many false positives and false negatives, but can be processed using computational methods to provide reliable information about protein-protein relationships and protein function. An outstanding and important goal is to predict detailed functional annotation for all uncharacterized proteins that is reliable enough to effectively guide experiments. Results We present AVID, a computational method that uses a multi-stage learning framework to integrate experimental results with sequence information, generating networks reflecting functional similarities among proteins. We illustrate use of the networks by making predictions of detailed Gene Ontology (GO annotations in three categories: molecular function, biological process, and cellular component. Applied to the yeast Saccharomyces cerevisiae, AVID provides 37,451 pair-wise functional linkages between 4,191 proteins. These relationships are ~65–78% accurate, as assessed by cross-validation testing. Assignments of highly detailed functional descriptors to proteins, based on the networks, are estimated to be ~67% accurate for GO categories describing molecular function and cellular component and ~52% accurate for terms describing biological process. The predictions cover 1,490 proteins with no previous annotation in GO and also assign more detailed functions to many proteins annotated only with less descriptive terms. Predictions made by AVID are largely distinct from those made by other methods. Out of 37,451 predicted pair-wise relationships, the greatest number shared in common with another method is 3,413. Conclusion AVID provides
Polymer density functional approach to efficient evaluation of path integrals
DEFF Research Database (Denmark)
Brukhno, Andrey; Vorontsov-Velyaminov, Pavel N.; Bohr, Henrik
2005-01-01
A polymer density functional theory (P-DFT) has been extended to the case of quantum statistics within the framework of Feynman path integrals. We start with the exact P-DFT formalism for an ideal open chain and adapt its efficient numerical solution to the case of a ring. We show that, similarly......, the path integral problem can, in principle, be solved exactly by making use of the two-particle pair correlation function (2p-PCF) for the ends of an open polymer, half of the original. This way the exact data for one-dimensional quantum harmonic oscillator are reproduced in a wide range of temperatures....... The exact solution is not, though, reachable in three dimensions (3D) because of a vast amount of storage required for 2p-PCF. In order to treat closed paths in 3D, we introduce a so-called "open ring" approximation which proves to be rather accurate in the limit of long chains. We also employ a simple self...
International Nuclear Information System (INIS)
Marchesin, D.; Paes-Leme, P.J.S.; Sampaio, R.
1981-01-01
The motion of a fluid in a pipe is commonly modeled utilizing the one space dimension conservation laws of mass and momentum. The development of shocks and spikes utilizing the uniform sampling method is studied. The effects of temperature variations and friction are compared for gas pipes. (Author) [pt
Skophammer, Karen
2010-01-01
The author is blessed with having the water pipes for the school system in her office. In this article, the author describes how the breaking of the pipes had led to a very worthwhile art experience for her students. They practiced contour and shaded drawing techniques, reviewed patterns and color theory, and used their reasoning skills--all while…
Ma, Hongbin
2015-01-01
This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation, theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary factors affecting oscillating motions and heat transfer, neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes. The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...
On a new class of integrals involving Bessel functions of the first kind
Directory of Open Access Journals (Sweden)
P. Agarwal
2014-06-01
Full Text Available In recent years, several integral formulas involving a variety of special functions have been developed by many authors. Also many integral formulas containing the Bessel function $J_\
On solvability of some quadratic functional-integral equation in Banach algebra
International Nuclear Information System (INIS)
Darwish, M.A.
2007-08-01
Using the technique of a suitable measure of non-compactness in Banach algebra, we prove an existence theorem for some functional-integral equations which contain, as particular cases, a lot of integral and functional-integral equations that arise in many branches of nonlinear analysis and its applications. Also, the famous Chandrasekhar's integral equation is considered as a special case. (author)
Pipe support for use in a nuclear system
International Nuclear Information System (INIS)
Pollono, L.P.; Mello, R.M.
1976-01-01
Description is given of a vertical pipe support system. It comprises a tubular pipe support structure having the same inside diameter and the same wall thickness as the pipe, the pipe support structure having a generally triangularly shaped extension formed integral with and extending circumferentially around its outward side, the bottom side of this extension generally forming a ledge; an annular load-bearing insulation formed adjacent to the extension; means for clamping the load-bearing insulation to extension; and means for providing constant vertical support to means for clamping [fr
International Nuclear Information System (INIS)
Sanzi, H.; Asta, E.
2009-01-01
In the present work, we are presenting the most important results of the local stresses occurred in the cracked pipes with a axial through-wall, under Failure Concept 0.1A, using Finite Element Method and Fracture Mechanics. As requested, the component has been verified based 3D FE plastic analysis, under the postulated failure loading, assuring with this method a high degree of accuracy in the results. Codes used by Design and Service, as ASME Section III Div. 1 and API 579, have been used in the analysis. (author)
Hot Leg Piping Materials Issues
International Nuclear Information System (INIS)
V. Munne
2006-01-01
With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the space nuclear power plant (SNPP) for Project Prometheus (References a and b) the reactor outlet piping was recognized to require a design that utilizes internal insulation (Reference c). The initial pipe design suggested ceramic fiber blanket as the insulation material based on requirements associated with service temperature capability within the expected range, very low thermal conductivity, and low density. Nevertheless, it was not considered to be well suited for internal insulation use because its very high surface area and proclivity for holding adsorbed gases, especially water, would make outgassing a source of contaminant gases in the He-Xe working fluid. Additionally, ceramic fiber blanket insulating materials become very friable after relatively short service periods at working temperatures and small pieces of fiber could be dislodged and contaminate the system. Consequently, alternative insulation materials were sought that would have comparable thermal properties and density but superior structural integrity and greatly reduced outgassing. This letter provides technical information regarding insulation and materials issues for the Hot Leg Piping preconceptual design developed for the Project Prometheus space nuclear power plant (SNPP)
Pipe and hose decontamination apparatus
International Nuclear Information System (INIS)
Fowler, D.E.
1985-01-01
A pipe and hose decontamination apparatus is disclosed using freshly filtered high pressure Freon solvent in an integrated closed loop to remove radioactive particles or other contaminants from items having a long cylindrical geometry such as hoses, pipes, cables and the like. The pipe and hose decontamination apparatus comprises a chamber capable of accomodating a long cylindrical work piece to be decontaminated. The chamber has a downward sloped bottom draining to a solvent holding tank. An entrance zone, a cleaning zone and an exit drying zone are defined within the chamber by removable partitions having slotted rubber gaskets in their centers. The entrance and exit drying zones contain a horizontally mounted cylindrical housing which supports in combination a plurality of slotted rubber gaskets and circular brushes to initiate mechanical decontamination. Solvent is delivered at high pressure to a spray ring located in the cleaning zone having a plurality of nozzles surrounding the work piece. The solvent drains into a solvent holding tank located below the nozzles and means are provided for circulating the solvent to and from a solvent cleaning, distilling and filter unit
On the shakedown analysis of welded pipes
International Nuclear Information System (INIS)
Li Tianbai; Chen Haofeng; Chen Weihang; Ure, James
2011-01-01
This paper presents the shakedown analysis of welded pipes subjected to a constant internal pressure and a varying thermal load. The Linear Matching Method (LMM) is applied to investigate the upper and lower bound shakedown limits of the pipes. Individual effects of i) geometry of weld metal, ii) ratio of inner radius to wall thickness and iii) all material properties of Weld Metal (WM), Heat Affected Zone (HAZ) and Parent Material (PM) on shakedown limits are investigated. The ranges of these variables are chosen to cover the majority of common pipe configurations. Corresponding individual influence functions on the shakedown limits are generated. These are then combined to allow the creation of a safety shakedown envelope, which can be used for the design of any welded pipes within the specified ranges. The effect of temperature-dependent yield stress (in PM, HAZ and WM) on these shakedown limits is also investigated.
Alpha detection in pipes using an inverting membrane scintillator
International Nuclear Information System (INIS)
Kendrick, D.T.; Cremer, C.D.; Lowry, W.; Cramer, E.
1995-01-01
Characterization of surface alpha emitting contamination inside enclosed spaces such as piping systems presents an interesting radiological measurement challenge. Detection of these alpha particles from the exterior of the pipe is impossible since the alpha particles are completely absorbed by the pipe wall. Traditional survey techniques, using hand-held instruments, simply can not be used effectively inside pipes. Science and Engineering Associates, Inc. is currently developing an enhancement to its Pipe Explorer trademark system that will address this challenge. The Pipe Explorer trademark uses a unique sensor deployment method where an inverted tubular membrane is propagated through complex pipe runs via air pressure. The inversion process causes the membrane to fold out against the pipe wall, such that no part of the membrane drags along the pipe wall. This deployment methodology has been successfully demonstrated at several DOE sites to transport specially designed beta and gamma scintillation detectors into pipes ranging in length up to 250 ft. The measurement methodology under development overcomes the limitations associated with conventional hand-held survey instruments by remotely emplacing an alpha scintillator in direct contact with the interior pipe surface over the entire length to be characterized. This is accomplished by incorporating a suitable scintillator into the otherwise clear membrane material. Alpha particles emitted from the interior pipe surface will intersect the membrane, resulting in the emission of light pulses from the scintillator. A photodetector, towed by the inverting membrane, is used to count these light pulses as a function of distance into the pipe, thereby producing a log of the surface alpha contamination levels. It is anticipated that the resulting system will be able to perform measurements in pipes as small as two inches in diameter, and several hundred feet in length
Seismic evaluation of piping systems using screening criteria
International Nuclear Information System (INIS)
Campbell, R.D.; Landers, D.F.; Minichiello, J.C.; Slagis, G.C.; Antaki, G.A.
1994-01-01
This document may be used by a qualified review team to identify potential sources of seismically induced failure in a piping system. Failure refers to the inability of a piping system to perform its expected function following an earthquake, as defined in Table 1. The screens may be used alone or with the Seismic Qualification Utility Group -- Generic Implementation Procedure (SQUG-GIP), depending on the piping system's required function, listed in Table 1. Features of a piping system which do not the screening criteria are called outliers. Outliers must either be resolved through further evaluations, or be considered a potential source of seismically induced failure. Outlier evaluations, which do not necessarily require the qualification of a complete piping system by stress analysis, may be based on one or more of the following: simple calculations of pipe spans, search of the test or experience data, vendor data, industry practice, etc
Experiments in turbulent pipe flow
Energy Technology Data Exchange (ETDEWEB)
Torbergsen, Lars Even
1998-12-31
This thesis reports experimental results for the mean velocity and turbulence statistics in two straight pipe sections for bulk Reynolds numbers in the range 22000 to 75000. The flow was found consistent with a fully developed state. Detailed turbulence spectra were obtained for low and moderate turbulent Reynolds number. For the pipe centre line location at R{sub {lambda}} = 112, a narrow range in the streamwise power spectrum applied to the -5/3 inertial subrange. However this range was influenced both by turbulence production and viscous dissipation, and therefore did not reflect a true inertial range. The result indicates how the intermediate range between the production and dissipative scales can be misinterpreted as an inertial range for low and moderate R{sub {lambda}}. To examine the universal behaviour of the inertial range, the inertial scaling of the streamwise power spectrum is compared to the inertial scaling of the second order longitudinal velocity structure function, which relate directly by a Fourier transform. Increasing agreement between the Kolmogorov constant C{sub K} and the second order structure function scaling constant C{sub 2} was observed with increasing R{sub {lambda}}. The result indicates that a true inertial range requires several decades of separation between the energy containing and dissipative scales. A method for examining spectral anisotropy is reported and applied to turbulence spectra in fully developed pipe flow. It is found that the spectral redistribution from the streamwise to the two lateral spectra goes primarily to the circumferential component. Experimental results are reported for an axisymmetric contraction of a fully developed pipe flow. 67 refs., 75 figs., 9 tabs.
Asymptotic series and functional integrals in quantum field theory
International Nuclear Information System (INIS)
Shirkov, D.V.
1979-01-01
Investigations of the methods for analyzing ultra-violet and infrared asymptotics in the quantum field theory (QFT) have been reviewed. A powerful method of the QFT analysis connected with the group property of renormalized transformations has been created at the first stage. The result of the studies of the second period is the constructive solution of the problem of outgoing the framework of weak coupling. At the third stage of studies essential are the asymptotic series and functional integrals in the QFT, which are used for obtaining the asymptotic type of the power expansion coefficients in the coupling constant at high values of the exponents for a number of simple models. Further advance to higher values of the coupling constant requires surmounting the difficulties resulting from the asymptotic character of expansions and a constructive application in the region of strong coupling (g >> 1)
CLARM: An integrative approach for functional modules discovery
Salem, Saeed M.; Alroobi, Rami; Banitaan, Shadi; Seridi, Loqmane; Brewer, James E.; Aljarah, Ibrahim
2011-01-01
Functional module discovery aims to find well-connected subnetworks which can serve as candidate protein complexes. Advances in High-throughput proteomic technologies have enabled the collection of large amount of interaction data as well as gene expression data. We propose, CLARM, a clustering algorithm that integrates gene expression profiles and protein protein interaction network for biological modules discovery. The main premise is that by enriching the interaction network by adding interactions between genes which are highly co-expressed over a wide range of biological and environmental conditions, we can improve the quality of the discovered modules. Protein protein interactions, known protein complexes, and gene expression profiles for diverse environmental conditions from the yeast Saccharomyces cerevisiae were used for evaluate the biological significance of the reported modules. Our experiments show that the CLARM approach is competitive to wellestablished module discovery methods. Copyright © 2011 ACM.
Parisher, Roy A
2011-01-01
Pipe Drafting and Design, Third Edition provides step-by-step instructions to walk pipe designers, drafters, and students through the creation of piping arrangement and isometric drawings. It includes instructions for the proper drawing of symbols for fittings, flanges, valves, and mechanical equipment. More than 350 illustrations and photographs provide examples and visual instructions. A unique feature is the systematic arrangement of drawings that begins with the layout of the structural foundations of a facility and continues through to the development of a 3-D model. Advanced chapters
Characterization of radioactive contamination inside pipes with the Pipe Explorer trademark system
International Nuclear Information System (INIS)
Kendrick, D.T.; Cremer, C.D.; Lowry, W.; Cramer, E.
1995-01-01
The U.S. Department of Energy's nuclear facility decommissioning program needs to characterize radiological contamination inside piping systems before the pipe can be recycled, remediated, or disposed. Science and Engineering associates, Inc. under contract with the DOE Morgantown Energy Technology Center has developed and demonstrated the Pipe Explorer trademark system, which uses an inverting membrane to transport various characterization sensors into pipes. The basic process involves inverting (turning inside out) a tubular impermeable membrane under air pressure. A characterization sensor is towed down the interior of the pipe by the membrane. Advantages of this approach include the capability of deploying through constrictions in the pipe, around 90 degrees bends, vertically up and down, and in slippery conditions. Because the detector is transported inside the membrane (which is inexpensive and disposable), it is protected from contamination, which eliminates cross-contamination. Characterization sensors that have been demonstrated with the system thus far include: gamma detectors, beta detectors, video cameras, and pipe locators. Alpha measurement capability is currently under development. A remotely operable Pipe Explorer trademark system has been developed and demonstrated for use in DOE facilities in the decommissioning stage. The system is capable of deployment in pipes as small as 2-inch-diameter and up to 250 feet long. This paper describes the technology and presents measurement results of a field demonstration conducted with the Pipe Explorer trademark system at a DOE site. These measurements identify surface activity levels of U-238 contamination as a function of location in drain lines. Cost savings to the DOE of approximately $1.5 million dollars were realized from this one demonstration
Integrating Flow, Form, and Function for Improved Environmental Water Management
Albin Lane, Belize Arela
Rivers are complex, dynamic natural systems. The performance of river ecosystem functions, such as habitat availability and sediment transport, depends on the interplay of hydrologic dynamics (flow) and geomorphic settings (form). However, most river restoration studies evaluate the role of either flow or form without regard for their dynamic interactions. Despite substantial recent interest in quantifying environmental water requirements to support integrated water management efforts, the absence of quantitative, transferable relationships between river flow, form, and ecosystem functions remains a major limitation. This research proposes a novel, process-driven methodology for evaluating river flow-form-function linkages in support of basin-scale environmental water management. This methodology utilizes publically available geospatial and time-series data and targeted field data collection to improve basic understanding of river systems with limited data and resource requirements. First, a hydrologic classification system is developed to characterize natural hydrologic variability across a highly altered, physio-climatically diverse landscape. Next, a statistical analysis is used to characterize reach-scale geomorphic variability and to investigate the utility of topographic variability attributes (TVAs, subreach-scale undulations in channel width and depth), alongside traditional reach-averaged attributes, for distinguishing dominant geomorphic forms and processes across a hydroscape. Finally, the interacting roles of flow (hydrologic regime, water year type, and hydrologic impairment) and form (channel morphology) are quantitatively evaluated with respect to ecosystem functions related to hydrogeomorphic processes, aquatic habitat, and riparian habitat. Synthetic river corridor generation is used to evaluate and isolate the role of distinct geomorphic attributes without the need for intensive topographic surveying. This three-part methodology was successfully
A functional integrated data evaluation system for safeguards
International Nuclear Information System (INIS)
Argentesi, F.; Benoit, R.; Cuypers, M.; Guardini, S.; De Grandi, G.F.; Franklin, M.; Muller, K.; Rota, A.
1983-01-01
The quantitative assurance provided by the safeguards of nuclear material is based on the analysis of a very large amount of data of different origins and quality. They are generated by operators on a regular basis, or provided during discussions of facility attachments or declaration of production schedules. They are also generated by inspectors during their verification activities which are related to accountancy data, auditing, independent measurements, sealing, surveillance, etc. The Joint Research Centre and Safeguards Directorate of the Commission of the European Communities are studying a Functional Integrated Data Evaluation System (FIDES) for safeguards. A preliminary outline of such a system was presented at the 3rd ESARDA symposium at Karlsruhe. This paper first emphasises the decisional thread which underlies the ESARDA activities and, second, gives a progress report on JRC work which is designed to give effect to these ideas. This progess, reported below, covers two activities. The first is the automatic co-ordination of the operator's measurement system information with the operator's accounting declaration. The second element is the development of a functional structure for NDA data generation evaluation and transmission. (author)
Summing over Feynman histories by functional contour integration
International Nuclear Information System (INIS)
Garrison, J.C.; Wright, E.M.
1986-01-01
The authors show how complex paths can be consistently introduced into sums for Feynman histories by using the notion of functional contour integration. For a kappa-dimensional system specified by a potential with suitable analyticity properties, each coordinate axis is replaced by a copy of the complex plane, and at each instant of time a contour is chosen in each plane. This map from the time axis into the set of complex contours defines a functional contour. The family of contours labelled by time generates a (kappa+1)-dimensional submanifold of the (2kappa+1)-dimensional space defined by the cartesian product of the time axis and the coordinate planes. The complex Feynman paths lie on this submanifold. An application of this idea to systems described by absorptive potentials yields a simple derivation of the correct WKB result in terms of a complex path that extremalises the action. The method can also be applied to spherically symmetric potentials by using a partial wave expansion and restricting the contours appropriately. (author)
Quantification and localization of internal pipe damage
Vogelaar, B.B.S.A.; Golombok, M.
2016-01-01
Internal pipeline defects are detectable and locatable from guided acoustic wave reflections using sensors mounted on the outer wall of a pipe. We demonstrate pipeline integrity monitoring with only two single acoustic sensors. Multi-mode dispersion imaging of shear displacement shows that the pure
Dynamic response of piping system subject to flow acoustic excitation
International Nuclear Information System (INIS)
Wang, T.; Sun, Y.S.
1988-01-01
Through the use of a theoretically derived and test data-calibrated forcing function, the dynamic response of a piping system subject to flow-acoustic induced vibration is analyzed. It is shown that the piping behavior can be predicted when consideration is given to both the wall flexural vibration and the piping system vibration. Piping responded as a system to the transversal excitation due to the swirling motion of the fluid flow, as well as flexurally to the high-frequency acoustic excitations. The transverse piping system response was calculated using a lumped mass piping model. The piping model has more stringent requirements than its counterpart for waterhammer and seismic modeling due to the shorter spiral wavelength and higher frequency of the forcing function. Proper modeling ensured that both the moment stress caused by system excitation and the local stress induced by the support reaction load were properly accounted for. Flexural vibration not only poses a threat to nipples and branch connections, but also contributes substantially to the resultant total stress experienced by the pipe. The forcing function approach has the advantage that the critical locations on the piping system can be identified by means of analysis, facilitating surveillance and inspection, as well as fatigue evaluation
Energy Technology Data Exchange (ETDEWEB)
Nyman, R; Erixon, S; Tomic, B; Lydell, B
1995-12-01
SKI has undertaken a multi-year research project to establish a comprehensive passive component failure database, validate failure rate parameter estimates and establish a model framework for integrating passive component failures in existing PSAs. Phase 1 of the project produced a relational database on worldwide piping system failure events in the nuclear and chemical industries. This phase 2 report gives a graphical presentation of piping system operating experience, and compares key failure mechanisms in commercial nuclear power plants and chemical process industry. Inadequacies of traditional PSA methodology are addressed, with directions for PSA methodology enhancements. A data-driven-and-systems-oriented analysis approach is proposed to enable assignment of unique identities to risk-significant piping system component failures. Sufficient operating experience does exist to generate quality data on piping failures. Passive component failures should be addressed by today`s PSAs to allow for aging analysis and effective, on-line risk management. 111 refs, 36 figs, 20 tabs.
International Nuclear Information System (INIS)
Nyman, R.; Erixon, S.; Tomic, B.; Lydell, B.
1995-12-01
SKI has undertaken a multi-year research project to establish a comprehensive passive component failure database, validate failure rate parameter estimates and establish a model framework for integrating passive component failures in existing PSAs. Phase 1 of the project produced a relational database on worldwide piping system failure events in the nuclear and chemical industries. This phase 2 report gives a graphical presentation of piping system operating experience, and compares key failure mechanisms in commercial nuclear power plants and chemical process industry. Inadequacies of traditional PSA methodology are addressed, with directions for PSA methodology enhancements. A data-driven-and-systems-oriented analysis approach is proposed to enable assignment of unique identities to risk-significant piping system component failures. Sufficient operating experience does exist to generate quality data on piping failures. Passive component failures should be addressed by today's PSAs to allow for aging analysis and effective, on-line risk management. 111 refs, 36 figs, 20 tabs
Bienart, W. B.
1973-01-01
The objective of this program was to investigate analytically and experimentally the performance of heat pipes with composite wicks--specifically, those having pedestal arteries and screwthread circumferential grooves. An analytical model was developed to describe the effects of screwthreads and screen secondary wicks on the transport capability of the artery. The model describes the hydrodynamics of the circumferential flow in triangular grooves with azimuthally varying capillary menisci and liquid cross-sections. Normalized results were obtained which give the influence of evaporator heat flux on the axial heat transport capability of the arterial wick. In order to evaluate the priming behavior of composite wicks under actual load conditions, an 'inverted' glass heat pipe was designed and constructed. The results obtained from the analysis and from the tests with the glass heat pipe were applied to the OAO-C Level 5 heat pipe, and an improved correlation between predicted and measured evaporator and transport performance were obtained.
International Nuclear Information System (INIS)
Sorensen, H.; Nordskov, A.; Sass, B.; Visler, T.
1987-01-01
A simplified version of a deuterium pellet gun based on the pipe gun principle is described. The pipe gun is made from a continuous tube of stainless steel and gas is fed in from the muzzle end only. It is indicated that the pellet length is determined by the temperature gradient along the barrel right outside the freezing cell. Velocities of around 1000 m/s with a scatter of +- 2% are obtained with a propellant gas pressure of 40 bar
Alzahrani, Majed
2016-03-10
Disclosed are various embodiments for a prediction application to predict a stuck pipe. A linear regression model is generated from hook load readings at corresponding bit depths. A current hook load reading at a current bit depth is compared with a normal hook load reading from the linear regression model. A current hook load greater than a normal hook load for a given bit depth indicates the likelihood of a stuck pipe.
Alzahrani, Majed; Alsolami, Fawaz; Chikalov, Igor; Algharbi, Salem; Aboudi, Faisal; Khudiri, Musab
2016-01-01
Disclosed are various embodiments for a prediction application to predict a stuck pipe. A linear regression model is generated from hook load readings at corresponding bit depths. A current hook load reading at a current bit depth is compared with a normal hook load reading from the linear regression model. A current hook load greater than a normal hook load for a given bit depth indicates the likelihood of a stuck pipe.
Functional Module Analysis for Gene Coexpression Networks with Network Integration.
Zhang, Shuqin; Zhao, Hongyu; Ng, Michael K
2015-01-01
Network has been a general tool for studying the complex interactions between different genes, proteins, and other small molecules. Module as a fundamental property of many biological networks has been widely studied and many computational methods have been proposed to identify the modules in an individual network. However, in many cases, a single network is insufficient for module analysis due to the noise in the data or the tuning of parameters when building the biological network. The availability of a large amount of biological networks makes network integration study possible. By integrating such networks, more informative modules for some specific disease can be derived from the networks constructed from different tissues, and consistent factors for different diseases can be inferred. In this paper, we have developed an effective method for module identification from multiple networks under different conditions. The problem is formulated as an optimization model, which combines the module identification in each individual network and alignment of the modules from different networks together. An approximation algorithm based on eigenvector computation is proposed. Our method outperforms the existing methods, especially when the underlying modules in multiple networks are different in simulation studies. We also applied our method to two groups of gene coexpression networks for humans, which include one for three different cancers, and one for three tissues from the morbidly obese patients. We identified 13 modules with three complete subgraphs, and 11 modules with two complete subgraphs, respectively. The modules were validated through Gene Ontology enrichment and KEGG pathway enrichment analysis. We also showed that the main functions of most modules for the corresponding disease have been addressed by other researchers, which may provide the theoretical basis for further studying the modules experimentally.
Issacci, F.; Roche, G. L.; Klein, D. B.; Catton, I.
1988-01-01
The vapor flow in a heat pipe was mathematically modeled and the equations governing the transient behavior of the core were solved numerically. The modeled vapor flow is transient, axisymmetric (or two-dimensional) compressible viscous flow in a closed chamber. The two methods of solution are described. The more promising method failed (a mixed Galerkin finite difference method) whereas a more common finite difference method was successful. Preliminary results are presented showing that multi-dimensional flows need to be treated. A model of the liquid phase of a high temperature heat pipe was developed. The model is intended to be coupled to a vapor phase model for the complete solution of the heat pipe problem. The mathematical equations are formulated consistent with physical processes while allowing a computationally efficient solution. The model simulates time dependent characteristics of concern to the liquid phase including input phase change, output heat fluxes, liquid temperatures, container temperatures, liquid velocities, and liquid pressure. Preliminary results were obtained for two heat pipe startup cases. The heat pipe studied used lithium as the working fluid and an annular wick configuration. Recommendations for implementation based on the results obtained are presented. Experimental studies were initiated using a rectangular heat pipe. Both twin beam laser holography and laser Doppler anemometry were investigated. Preliminary experiments were completed and results are reported.
Replaceable liquid nitrogen piping
International Nuclear Information System (INIS)
Yasujima, Yasuo; Sato, Kiyoshi; Sato, Masataka; Hongo, Toshio
1982-01-01
This liquid nitrogen piping with total length of about 50 m was made and installed to supply the liquid nitrogen for heat insulating shield to three superconducting magnets for deflection and large super-conducting magnet for detection in the π-meson beam line used for high energy physics experiment in the National Laboratory for High Energy Physics. The points considered in the design and manufacture stages are reported. In order to minimize the consumption of liquid nitrogen during transport, vacuum heat insulation method was adopted. The construction period and cost were reduced by the standardization of the components, the improvement of welding works and the elimination of ineffective works. For simplifying the maintenance, spare parts are always prepared. The construction and the procedure of assembling of the liquid nitrogen piping are described. The piping is of double-walled construction, and its low temperature part was made of SUS 316L. The super-insulation by aluminum vacuum evaporation and active carbon were attached on the external surface of the internal pipe. The final leak test and the heating degassing were performed. The tests on evacuation, transport capacity and heat entry are reported. By making the internal pipe into smaller size, the piping may be more efficient. (Kako, I.)
limit loads for wall-thinning feeder pipes under combined bending and internal pressure
International Nuclear Information System (INIS)
Je, Jin Ho; Lee, Kuk Hee; Chung, Ha Joo; Kim, Ju Hee; Han, Jae Jun; Kim, Yun Jae
2009-01-01
Flow Accelerated Corrosion (FAC) during inservice conditions produces local wall-thinning in the feeder pipes of CANDU. The Wall-thinning in the feeder pipes is main degradation mechanisms affecting the integrity of piping systems. This paper discusses the integrity assessment of wall-thinned feeder pipes using limit load analysis. Based on finite element limit analyses, this paper compare limit loads for wall-thinning feeder pipes under combined bending and internal pressure with proposed limit loads. The limit loads are determined from limit analyses based on rectangular wall-thinning and elastic-perfectly-plastic materials using the large geometry change.
Parametric calculations of fatigue-crack growth in piping
International Nuclear Information System (INIS)
Simonen, F.A.; Goodrich, C.W.
1983-06-01
This study presents calculations of the growth of piping flaws produced by fatigue. Flaw growth was predicted as a function of the initial flaw size, the level and number of stress cycles, the piping material, and environmental factors. The results indicate that the present flaw acceptance standards of ASME Section XI provide a relatively consistent set of allowable flaw sizes because the predicted life of flawed piping is relatively insensitive to pipe wall thickness, flaw aspect ratio, and piping material (ferritic versus austenitic). On the other hand, the results show that flaws that are acceptable under ASME Section XI can grow at unacceptable rates if the cyclic stresses are at the maximum level permitted by the design rules of ASME Section III. However, a review of the conservatisms inherent to the ASME code rules is presented to explain the low occurrence of piping fatigue failures in service. It is concluded that decreases in the allowable flaw sizes are not justified
A thermal study of pipes with outer transverse fins
Directory of Open Access Journals (Sweden)
S. Gil
2016-10-01
Full Text Available This paper provides results of thermal investigations on pipes with outer transverse fins produced by placing a strip, being a form of helical spring which functions as a radiator, on the basis pipe. The investigations were carried out at the facility that enables measurements with respect to both natural and forced convection. Performance of the investigated pipes was assessed in relation to a non-finned pipe and a pipe welded with the use of Metal Active Gas (MAG technology. The experiments have shown that the finned pipe welding technology does not markedly affect their thermal efficiency, which has been confirmed by performed model calculations, while the welding technology has a crucial impact on their operating performance.
Costs reduced by innovative plastic distribution pipe use
International Nuclear Information System (INIS)
Maxwell, F.W.
1995-01-01
As part of a strategic corporate cost-reduction initiative, Pacific Gas and Electric Company's Gas Distribution Group has achieved some quick but significant cash savings. System design, construction, and the purchasing function were areas that produced some fast paybacks while maintaining reliability and safety. The primary savings were made by optimizing pipe specifications to match system operating parameters. This allowed the use of smaller diameter pipes and/or thinner wall pipes which conserved the materials cost of the pipeline. Other realized savings in the form of coiled pipe, purchasing changes, and backfilling specifications are also described
Seismic analysis of liquid metal reactor piping systems
International Nuclear Information System (INIS)
Wang, C.Y.
1987-01-01
To safely assess the adequacy of the LMR piping, a three-dimensional piping code, SHAPS, has been developed at Argonne National Laboratory. This code was initially intended for calculating hydrodynamic-wave propagation in a complex piping network. It has salient features for treating fluid transients of fluid-structure interactions for piping with in-line components. The code also provides excellent structural capabilities of computing stresses arising from internal pressurization and 3-D flexural motion of the piping system. As part of the development effort, the SHAPS code has been further augmented recently by introducing the capabilities of calculating piping response subjected to seismic excitations. This paper describes the finite-element numerical algorithm and its applications to LMR piping under seismic excitations. A time-history analysis technique using the implicit temporal integration scheme is addressed. A 3-D pipe element is formulated which has eight degrees of freedom per node (three displacements, three rotations, one membrane displacement, and one bending rotation) to account for the hoop, flexural, rotational, and torsional modes of the piping system. Both geometric and material nonlinearities are considered. This algorithm is unconditionally stable and is particularly suited for the seismic analysis
A Riesz Representation Theorem for the Space of Henstock Integrable Vector-Valued Functions
Directory of Open Access Journals (Sweden)
Tomás Pérez Becerra
2018-01-01
Full Text Available Using a bounded bilinear operator, we define the Henstock-Stieltjes integral for vector-valued functions; we prove some integration by parts theorems for Henstock integral and a Riesz-type theorem which provides an alternative proof of the representation theorem for real functions proved by Alexiewicz.
Functional network integrity presages cognitive decline in preclinical Alzheimer disease.
Buckley, Rachel F; Schultz, Aaron P; Hedden, Trey; Papp, Kathryn V; Hanseeuw, Bernard J; Marshall, Gad; Sepulcre, Jorge; Smith, Emily E; Rentz, Dorene M; Johnson, Keith A; Sperling, Reisa A; Chhatwal, Jasmeer P
2017-07-04
To examine the utility of resting-state functional connectivity MRI (rs-fcMRI) measurements of network integrity as a predictor of future cognitive decline in preclinical Alzheimer disease (AD). A total of 237 clinically normal older adults (aged 63-90 years, Clinical Dementia Rating 0) underwent baseline β-amyloid (Aβ) imaging with Pittsburgh compound B PET and structural and rs-fcMRI. We identified 7 networks for analysis, including 4 cognitive networks (default, salience, dorsal attention, and frontoparietal control) and 3 noncognitive networks (primary visual, extrastriate visual, motor). Using linear and curvilinear mixed models, we used baseline connectivity in these networks to predict longitudinal changes in preclinical Alzheimer cognitive composite (PACC) performance, both alone and interacting with Aβ burden. Median neuropsychological follow-up was 3 years. Baseline connectivity in the default, salience, and control networks predicted longitudinal PACC decline, unlike connectivity in the dorsal attention and all noncognitive networks. Default, salience, and control network connectivity was also synergistic with Aβ burden in predicting decline, with combined higher Aβ and lower connectivity predicting the steepest curvilinear decline in PACC performance. In clinically normal older adults, lower functional connectivity predicted more rapid decline in PACC scores over time, particularly when coupled with increased Aβ burden. Among examined networks, default, salience, and control networks were the strongest predictors of rate of change in PACC scores, with the inflection point of greatest decline beyond the fourth year of follow-up. These results suggest that rs-fcMRI may be a useful predictor of early, AD-related cognitive decline in clinical research settings. © 2017 American Academy of Neurology.
Functional integral representation of the nuclear many-body grand partition function
International Nuclear Information System (INIS)
Kerman, A.K.; Troudet, T.
1984-01-01
A local functional integral formulation of the nuclear many-body problem is proposed which is a generalization of the method previously developed. Its most interesting feature is that it allows an expansion of the many-body evolution operator around any arbitrary mean-field which takes into account the pairing correlations between the nucleons. This is explicitly illustrated for the nuclear many-body grand partition function for which special attention is paid to the static temperature-dependent Hartree-Fock-Bogolyubov (H.F.B.) approximation. Indeed, the temperature-dependent H.F.B. configuration appears to be the optimal choice from a variational point of view among all the possible independent quasi-particle motion approximations. An analytic approximation of the energy level density rho (E,A) is given using explicitly the arbitrariness in the choice of the mean-field and a possible numerical application is proposed. Finally, a new compact formulation of our functional integral that might be useful for future Monte Carlo calculations is proposed
Development of nonlinear dynamic analysis program for nuclear piping systems
International Nuclear Information System (INIS)
Kamichika, Ryoichi; Izawa, Masahiro; Yamadera, Masao
1980-01-01
In the design for nuclear power piping, pipe-whip protection shall be considered in order to keep the function of safety related system even when postulated piping rupture occurs. This guideline was shown in U.S. Regulatory Guide 1.46 for the first time and has been applied in Japanese nuclear power plants. In order to analyze the dynamic behavior followed by pipe rupture, nonlinear analysis is required for the piping system including restraints which play the role of an energy absorber. REAPPS (Rupture Effective Analysis of Piping Systems) has been developed for this purpose. This program can be applied to general piping systems having branches etc. Pre- and post- processors are prepared in this program in order to easily input the data for the piping engineer and show the results optically by use of a graphic display respectively. The piping designer can easily solve many problems in his daily work by use of this program. This paper describes about the theoretical background and functions of this program and shows some examples. (author)
Integrable dissipative exclusion process: Correlation functions and physical properties
Crampe, N.; Ragoucy, E.; Rittenberg, V.; Vanicat, M.
2016-09-01
We study a one-parameter generalization of the symmetric simple exclusion process on a one-dimensional lattice. In addition to the usual dynamics (where particles can hop with equal rates to the left or to the right with an exclusion constraint), annihilation and creation of pairs can occur. The system is driven out of equilibrium by two reservoirs at the boundaries. In this setting the model is still integrable: it is related to the open XXZ spin chain through a gauge transformation. This allows us to compute the full spectrum of the Markov matrix using Bethe equations. We also show that the stationary state can be expressed in a matrix product form permitting to compute the multipoints correlation functions as well as the mean value of the lattice and the creation-annihilation currents. Finally, the variance of the lattice current is computed for a finite-size system. In the thermodynamic limit, it matches the value obtained from the associated macroscopic fluctuation theory.
SIFTS: Structure Integration with Function, Taxonomy and Sequences resource
Velankar, Sameer; Dana, José M.; Jacobsen, Julius; van Ginkel, Glen; Gane, Paul J.; Luo, Jie; Oldfield, Thomas J.; O’Donovan, Claire; Martin, Maria-Jesus; Kleywegt, Gerard J.
2013-01-01
The Structure Integration with Function, Taxonomy and Sequences resource (SIFTS; http://pdbe.org/sifts) is a close collaboration between the Protein Data Bank in Europe (PDBe) and UniProt. The two teams have developed a semi-automated process for maintaining up-to-date cross-reference information to UniProt entries, for all protein chains in the PDB entries present in the UniProt database. This process is carried out for every weekly PDB release and the information is stored in the SIFTS database. The SIFTS process includes cross-references to other biological resources such as Pfam, SCOP, CATH, GO, InterPro and the NCBI taxonomy database. The information is exported in XML format, one file for each PDB entry, and is made available by FTP. Many bioinformatics resources use SIFTS data to obtain cross-references between the PDB and other biological databases so as to provide their users with up-to-date information. PMID:23203869
Functional analysis in the study of differential and integral equations
International Nuclear Information System (INIS)
Sell, G.R.
1976-01-01
This paper illustrates the use of functional analysis in the study of differential equations. Our particular starting point, the theory of flows or dynamical systems, originated with the work of H. Poincare, who is the founder of the qualitative theory of ordinary differential equations. In the qualitative theory one tries to describe the behaviour of a solution, or a collection of solutions, without ''solving'' the differential equation. As a starting point one assumes the existence, and sometimes the uniqueness, of solutions and then one tries to describe the asymptotic behaviour, as time t→+infinity, of these solutions. We compare the notion of a flow with that of a C 0 -group of bounded linear operators on a Banach space. We shall show how the concept C 0 -group, or more generally a C 0 -semigroup, can be used to study the behaviour of solutions of certain differential and integral equations. Our main objective is to show how the concept of a C 0 -group and especially the notion of weak-compactness can be used to prove the existence of an invariant measure for a flow on a compact Hausdorff space. Applications to the theory of ordinary differential equations are included. (author)
Clinical functional evaluation of female's pelvic floor: integrative review
Directory of Open Access Journals (Sweden)
Ana Carolina Nociti Lopes Fernandes
2018-06-01
Full Text Available Abstract Introduction: The effectiveness of pelvic floor muscle training (PFMT depends on the correct prescription of intensity, repetition and endurance of muscle contractions, which are provided by an adequate assessment of pelvic floor muscle. Objective: Verify the techniques, resources and strategies used for clinical functional evaluation of female pelvic floor (PF described in literature. Methods: It’s an integrative review of published studies and books from 2010 until December 2015. Relevant articles with complete description of PF evaluation were found through the use of Scielo, LILACS, PubMed and Medline databases. Results: 34 articles that fulfilled all the criteria were selected. Conclusion: The most used techniques, resources and strategies were: anamnesis, physical examination, measurement of pelvic floor muscle activity using Modified Oxford Scale or perineometry, and use of questionnaires to analyze patient's perspective of their own symptoms. Thus, we could use the parameters obtained in the evaluation to plan an ideal PFMT for each patient, so the physiotherapist would have a good database to analyze the evolution and define the end of therapy.
Energy Technology Data Exchange (ETDEWEB)
Kim, Seungho; Kim, Changhoi; Seo, Yongchil; Lee, Sunguk; Jung, Seungho; Jung, Seyoung
2011-11-15
The Pipelines of power plants may have tiny crack by corrosion. Pipe safety inspection should be performed periodically and non-periodically to ensure their safety and integrity. It is difficult to inspection pipes inside defect since pipes of power plant is covered thermal insulation material. Normally pipes inspection was performed part of pipes on outside. A mobile robot was developed for the inspection of pipe of 100 mm inside diameter. The robot is adopted screw type drive mechanism in order to move vertical, horizontal pipes inside. The multi-laser and camera module, which is mounted in front of the robot, captures a sequence of 360 degree shapes of the inner surface of a pipe. The 3D inner shape of pipe is reconstructed from a multi laser triangulation techniques for the inspection of pipes.
Thinned pipe management program of Korean NPPs
International Nuclear Information System (INIS)
Lee, S.H.; Kim, T.R.; Jeon, S.C.; Hwang, K.M.
2003-01-01
Wall thinning of carbon steel pipe components due to Flow-Accelerated Corrosion (FAC) is one of the most serious threats to the integrity of steam cycle systems in Nuclear Power Plants (NPP). If the thickness of a pipe component is reduced below the critical level, it cannot sustain stress and consequently results in leakage or rupture. In order to minimize the possibility of excessive wall thinning, Thinned Pipe Management Program (TPMP) has been set up and being implemented to all Korean NPPs. Important elements of the TPMP include the prediction of the FAC rate for each component based on model analysis, prioritization of pipe components for inspection, thickness measurement, calculation of wear and wear rate for each component. Additionally, decision making associated with replacement or continuous service for thinned pipe components and establishment of long-term strategic management plan based on diagnosis of plant condition regarding overall wall thinning also are essential part of the TPMP. From pre-service inspection data, it has been found that initial thickness is varies, which influences wear and wear rate calculations. (author)
Nonlinear dynamic analysis of piping systems using the pseudo force method
International Nuclear Information System (INIS)
Prachuktam, S.; Bezler, P.; Hartzman, M.
1979-01-01
Simple piping systems are composed of linear elastic elements and can be analyzed using conventional linear methods. The introduction of constraint springs separated from the pipe with clearance gaps to such systems to cope with the pipe whip or other extreme excitation conditions introduces nonlinearities to the system, the nonlinearities being associated with the gaps. Since these spring-damper constraints are usually limited in number, descretely located, and produce only weak nonlinearities, the analysis of linear systems including these nonlinearities can be carried out by using modified linear methods. In particular, the application of pseudo force methods wherein the nonlinearities are treated as displacement dependent forcing functions acting on the linear system were investigated. The nonlinearities induced by the constraints are taken into account as generalized pseudo forces on the right-hand side of the governing dynamic equilibrium equations. Then an existing linear elastic finite element piping code, EPIPE, was modified to permit application of the procedure. This option was inserted such that the analyses could be performed using either the direct integration method or via a modal superposition method, the Newmark-Beta integration procedure being employed in both methods. The modified code was proof tested against several problems taken from the literature or developed with the nonlinear dynamics code OSCIL. The problems included a simple pipe loop, cantilever beam, and lumped mass system subjected to pulsed and periodic forcing functions. The problems were selected to gage the overall accuracy of the method and to insure that it properly predicted the jump phenomena associated with nonlinear systems. (orig.)
Chie, C. M.
1984-01-01
The functional requirements for the performance, design, and testing for the prototype Automated Integrated Receive System (AIRS) to be demonstrated for the TDRSS S-Band Single Access Return Link are presented.
Bisetti, Fabrizio
2012-01-01
with the computational cost associated with the time integration of stiff, large chemical systems, a novel approach is proposed. The approach combines an exponential integrator and Krylov subspace approximations to the exponential function of the Jacobian matrix
FUNPACK-2, Subroutine Library, Bessel Function, Elliptical Integrals, Min-max Approximation
International Nuclear Information System (INIS)
Cody, W.J.; Garbow, Burton S.
1975-01-01
1 - Description of problem or function: FUNPACK is a collection of FORTRAN subroutines to evaluate certain special functions. The individual subroutines are (Identification/Description): NATSI0 F2I0 Bessel function I 0 ; NATSI1 F2I1 Bessel function I 1 ; NATSJ0 F2J0 Bessel function J 0 ; NATSJ1 F2J1 Bessel function J 1 ; NATSK0 F2K0 Bessel function K 0 ; NATSK1 F2K1 Bessel function K 1 ; NATSBESY F2BY Bessel function Y ν ; DAW F1DW Dawson's integral; DELIPK F1EK Complete elliptic integral of the first kind; DELIPE F1EE Complete elliptic integral of the second kind; DEI F1EI Exponential integrals; NATSPSI F2PS Psi (logarithmic derivative of gamma function); MONERR F1MO Error monitoring package . 2 - Method of solution: FUNPACK uses evaluation of min-max approximations
Survey on application of probabilistic fracture mechanics approach to nuclear piping
International Nuclear Information System (INIS)
Kashima, Koichi
1987-01-01
Probabilistic fracture mechanics (PFM) approach is newly developed as one of the tools to evaluate the structural integrity of nuclear components. This report describes the current status of PFM studies for pressure vessel and piping system in light water reactors and focuses on the investigations of the piping failure probability which have been undertaken by USNRC. USNRC reevaluates the double-ended guillotine break (DEGB) of rector coolant piping as a design basis event for nuclear power plant by using the PFM approach. For PWR piping systems designed by Westinghouse, two causes of pipe break are considered: pipe failure due to the crack growth and pipe failure indirectly caused by failure of component supports due to an earthquake. PFM approach shows that the probability of DEGB from either cause is very low and that the effect of earthquake on pipe failure can be neglected. (author)
Fracture mechanics evaluation for at typical PWR primary coolant pipe
International Nuclear Information System (INIS)
Tanaka, T.; Shimizu, S.; Ogata, Y.
1997-01-01
For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years
Fracture mechanics evaluation for at typical PWR primary coolant pipe
Energy Technology Data Exchange (ETDEWEB)
Tanaka, T. [Kansai Electric Power Company, Osaka (Japan); Shimizu, S.; Ogata, Y. [Mitsubishi Heavy Industries, Ltd., Kobe (Japan)
1997-04-01
For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.
K{sub I}-T estimation for embedded flaws in pipes - Part II: Circumferentially oriented cracks
Energy Technology Data Exchange (ETDEWEB)
Qian Xudong, E-mail: cveqx@nus.edu.s [Department of Civil Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576 (Singapore)
2010-04-15
This paper, in parallel to the investigation on axially embedded cracks reported in the companion paper, presents a numerical study on the linear-elastic K{sub I} and T-stress values over the front of elliptical cracks circumferentially embedded in the wall of a pipe/cylindrical structure, under a uniform pressure applied on the inner surface of the pipe. The numerical procedure employs the interaction-integral approach to compute the linear-elastic stress-intensity factor (SIF) K{sub I} and T-stress values for embedded cracks with practical sizes at different locations in the wall of the pipe. The parametric study covers a wide range of geometric parameters for embedded cracks in the pipe, including: the wall thickness to the inner radius ratio (t/R{sub i}), the crack depth over the wall thickness ratio (a/t), the crack aspect ratio (a/c) and the ratio of the distance from the centerline of the crack to the outer surface of the pipe over the pipe wall thickness (e{sub M}/t). The parametric investigation identifies a significant effect of the remaining ligament length on both the T-stress and K{sub I} values at the crack-front location (denoted by point O) nearest to the outer surface of the pipe and at the crack-front location (denoted by point I) nearest to the inner surface of the pipe. The numerical investigation establishes the database to derive approximate functions from a nonlinear curve-fitting procedure to predict the T-stress and K{sub I} values at three critical front locations of the circumferentially embedded crack in a pipe: points O, I and M. The proposed T-stress and K{sub I} functions utilize a combined second-order polynomial and a power-law expression, which presents a close agreement with the T-stress and K{sub I} values computed from the very detailed finite element models. The comparison between the circumferentially embedded crack and the axially embedded crack indicates that both the T-stress and K{sub I} values at crack-front points O and
Towards the Proper Integration of Extra-Functional Requirements
Elke Hochmuller
1999-01-01
In spite of the many achievements in software engineering, proper treatment of extra-functional requirements (also known as non-functional requirements) within the software development process is still a challenge to our discipline. The application of functionality-biased software development methodologies can lead to major contradictions in the joint modelling of functional and extra-functional requirements. Based on a thorough discussion on the nature of extra-functional requirements as wel...
Certain new unified integrals associated with the product of generalized Bessel functions
Directory of Open Access Journals (Sweden)
Praveen Agarwal
2016-02-01
Full Text Available Our focus to presenting two very general integral formulas whose integrands are the integrand given in the Oberhettinger's integral formula and a finite product of the generalized Bessel function of the first kind, which are expressed in terms of the generalized Lauricella functions. Among a large number of interesting and potentially useful special cases of our main results, some integral formulas involving such elementary functions are also considered.
δ'-function perturbations and Neumann boundary-conditions by path integration
International Nuclear Information System (INIS)
Grosche, C.
1994-02-01
δ'-function perturbations and Neumann boundary conditions are incorporated into the path integral formalism. The starting point is the consideration of the path integral representation for the one dimensional Dirac particle together with a relativistic point interaction. The non-relativistic limit yields either a usual δ-function or a δ'-function perturbation; making their strengths infinitely repulsive one obtains Dirichlet, respectively Neumann boundary conditions in the path integral. (orig.)
Hydrogen isotope effect through Pd in hydrogen transport pipe
International Nuclear Information System (INIS)
Tamaki, Masayoshi
1992-01-01
This investigation concerns hydrogen system with hydrogen transport pipes for transportation, purification, isotope separation and storage of hydrogen and its isotopes. A principle of the hydrogen transport pipe (heat pipe having hydrogen transport function) was proposed. It is comprised of the heat pipe and palladium alloy tubes as inlet, outlet, and the separation membrane of hydrogen. The operation was as follows: (1) gas was introduced into the heat pipe through the membrane in the evaporator; (2) the introduced gas was transported toward the condenser by the vapor flow; (3) the transported gas was swept and compressed to the end of the condenser by the vapor pressure; and (4) the compressed gas was exhausted from the heat pipe through the membrane in the condenser. The characteristics of the hydrogen transport pipe were examined for various working conditions. Basic performance concerning transportation, evacuation and compression was experimentally verified. Isotopic dihydrogen gases (H 2 and D 2 ) were used as feed gas for examining the intrinsic performance of the isotope separation by the hydrogen transport pipe. A simulated experiment for hydrogen isotope separation was carried out using a hydrogen-helium gas mixture. The hydrogen transport pipe has a potential for isotope separation and purification of hydrogen, deuterium and tritium in fusion reactor technology. (author)
Refined pipe theory for mechanistic modeling of wood development.
Deckmyn, Gaby; Evans, Sam P; Randle, Tim J
2006-06-01
We present a mechanistic model of wood tissue development in response to changes in competition, management and climate. The model is based on a refinement of the pipe theory, where the constant ratio between sapwood and leaf area (pipe theory) is replaced by a ratio between pipe conductivity and leaf area. Simulated pipe conductivity changes with age, stand density and climate in response to changes in allocation or pipe radius, or both. The central equation of the model, which calculates the ratio of carbon (C) allocated to leaves and pipes, can be parameterized to describe the contrasting stem conductivity behavior of different tree species: from constant stem conductivity (functional homeostasis hypothesis) to height-related reduction in stem conductivity with age (hydraulic limitation hypothesis). The model simulates the daily growth of pipes (vessels or tracheids), fibers and parenchyma as well as vessel size and simulates the wood density profile and the earlywood to latewood ratio from these data. Initial runs indicate the model yields realistic seasonal changes in pipe radius (decreasing pipe radius from spring to autumn) and wood density, as well as realistic differences associated with the competitive status of trees (denser wood in suppressed trees).
Residual stress measurement in 304 stainless steel weld overlay pipes
International Nuclear Information System (INIS)
Yen, H.J.; Lin, M.C.C.; Chen, L.J.
1996-01-01
Welding overlay repair (WOR) is commonly employed to rebuild piping systems suffering from intergranular stress corrosion cracking (IGSCC). To understand the effects of this repair, it is necessary to investigate the distribution of residual stresses in the welding pipe. The overlay welding technique must induce compressive residual stress at the inner surface of the welded pipe to prevent IGSCC. To understand the bulk residual stress distribution, the stress profile as a function of location within wall is examined. In this study the full destructive residual stress measurement technique -- a cutting and sectioning method -- is used to determine the residual stress distribution. The sample is type 304 stainless steel weld overlay pipe with an outside diameter of 267 mm. A pipe segment is cut from the circular pipe; then a thin layer is removed axially from the inner to the outer surfaces until further sectioning is impractical. The total residual stress is calculated by adding the stress relieved by cutting the section away to the stress relieved by axially sectioning. The axial and hoop residual stresses are compressive at the inner surface of the weld overlay pipe. Compressive stress exists not only at the surface but is also distributed over most of the pipe's cross section. On the one hand, the maximum compressive hoop residual stress appears at the pipe's inner surface. The thermal-mechanical induced crack closure from significant compressive residual stress is discussed. This crack closure can thus prevent IGSCC very effectively
An exploration of the integrative function of dialogue in manufacturing
Eijnatten, van F.M.; Putnik, G.D.
2010-01-01
This paper is about the roles of dialogue as a generative mechanism in manufacturing system integration. It advocates the integrative power of dialogue in the design and operation of manufacturing systems. Dialogical conversation is a powerful tool to create a learning organisation: it might be a
Moore, William B; Webb, A Alexander G
2013-09-26
The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.
Finite-element analysis of flawed and unflawed pipe tests
International Nuclear Information System (INIS)
James, R.J.; Nickell, R.E.; Sullaway, M.F.
1989-12-01
Contemporary versions of the general purpose, nonlinear finite element program ABAQUS have been used in structural response verification exercises on flawed and unflawed austenitic stainless steel and ferritic steel piping. Among the topics examined, through comparison between ABAQUS calculations and test results, were: (1) the effect of using variations in the stress-strain relationship from the test article material on the calculated response; (2) the convergence properties of various finite element representations of the pipe geometry, using shell, beam and continuum models; (3) the effect of test system compliance; and (4) the validity of ABAQUS J-integral routines for flawed pipe evaluations. The study was culminated by the development and demonstration of a ''macroelement'' representation for the flawed pipe section. The macroelement can be inserted into an existing piping system model, in order to accurately treat the crack-opening and crack-closing static and dynamic response. 11 refs., 20 figs., 1 tab
Leak test of the pipe line for radioactive liquid waste
International Nuclear Information System (INIS)
Machida, Chuji; Mori, Shoji.
1976-01-01
In the Tokai Research Establishment, most of the radioactive liquid waste is transferred to a wastes treatment facility through pipe lines. As part of the pipe lines a cast iron pipe for town gas is used. Leak test has been performed on all joints of the lines. For the joints buried underground, the test was made by radioactivity measurement of the soil; and for the joints in drainage ditch by the pressure and bubble methods. There were no leakage at all, indicating integrity of all the joints. On the other hand, it is also known by the other test that the corrosion of inner surface of the piping due to liquid waste is only slight. The pipe lines for transferring radioactive liquid waste are thus still usable. (auth.)
Pipe whip: a summary of the damage observed in BNL pipe-on-pipe impact tests
International Nuclear Information System (INIS)
Baum, M.R.
1987-01-01
This paper describes examples of the damage resulting from the impact of a whipping pipe on a nearby pressurised pipe. The work is a by-product of a study of the motion of a whipping pipe. The tests were conducted with small-diameter pipes mounted in rigid supports and hence the results are not directly applicable to large-scale plant applications where flexible support mountings are employed. The results illustrate the influence of whipping pipe energy, impact position and support type on the damage sustained by the target pipe. (author)
National Research Council Canada - National Science Library
Yu, Chenggang; Zavaljevski, Nela; Desai, Valmik; Johnson, Seth; Stevens, Fred J; Reifman, Jaques
2008-01-01
.... With the existence of many programs and databases for inferring different protein functions, a pipeline that properly integrates these resources will benefit from the advantages of each method...
Heat pipes and use of heat pipes in furnace exhaust
Polcyn, Adam D.
2010-12-28
An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.
Two-Pipe Chilled Beam System for Both Cooling and Heating of Office Buildings
DEFF Research Database (Denmark)
Afshari, Alireza; Gordnorouzi, Rouzbeh; Hultmark, Göran
2013-01-01
Simulations were performed to compare a conventional 4-pipe chilled beam system and a 2-pipe chilled beam system. The objective was to establish requirements, possibilities and limitations for a well-functioning 2-pipe chilled beam system for both cooling and heating of office buildings. The buil...
Valentijn, P.P.; Schepman, S.M.; Opheij, W.; Bruijnzeels, M.A.
2013-01-01
Introduction: Primary care has a central role in integrating care within a health system. However, conceptual ambiguity regarding integrated care hampers a systematic understanding. This paper proposes a conceptual framework that combines the concepts of primary care and integrated care, in order to
Brömstrup, Heiner
2012-01-01
English translation of the 3rd edition ""Rohrsysteme aus PE 100"". Because of the considerably increased performance, pipe and pipe systems made from 100 enlarge the range of applications in the sectors of gas and water supply, sewage disposal, industrial pipeline construction and in the reconstruction and redevelopment of defective pipelines (relining). This book applies in particular to engineers, technicians and foremen working in the fields of supply, disposal and industry. Subject matters of the book are all practice-relevant questions regarding the construction, operation and maintenance
Energy Technology Data Exchange (ETDEWEB)
Bampton, M C.C.; Alzheimer, J M; Friley, J R; Simonen, F A
1985-11-01
Existing licensing criteria express what damage shall be assumed for various pipe sizes as a consequence of a postulated break in a high energy system. The criteria are contained in Section 3.6.2 of the Standard Review Plan, and the purpose of the program described with this paper is to evaluate the impact criteria by means of a combined experimental and analytical approach. A series of tests has been completed. Evaluation of the test showed a deficiency in the range of test parameters. These deficiencies are being remedied by a second series of tests and a more powerful impact machine. A parallel analysis capability has been developed. This capability has been used to predict the damage for the first test series. The quality of predictions has been improved by tests that establish post-crush and bending relationships. Two outputs are expected from this project: data that may, or may not, necessitate changes to the criteria after appropriate value impact evaluations and an analytic capability for rapidly evaluating the potential for pipe whip damage after a postulated break. These outputs are to be contained in a value-impact document and a program final report. (orig.).
International Nuclear Information System (INIS)
Kim, Taesoon; Lee, Dohwan
2016-01-01
As the environmentally assisted fatigue (EAF) due to the primary water conditions is to be a critical issue, the fatigue evaluation for the components and pipes exposed to light water reactor coolant conditions has become increasingly important. Therefore, many studies to evaluate the fatigue life of the components and pipes in LWR coolant environments on fatigue life of materials have been conducted. Among many components and pipes of nuclear power plants, the direct vessel injection piping is known to one of the most vulnerable pipe systems because of thermal stratification occurred in that systems. Thermal stratification occurs because the density of water changes significantly with temperature. In this study, fatigue analysis for DVI piping using finite element analysis has been conducted and those results showed that the results met design conditions related with the environmental fatigue evaluation of safety class 1 pipes in nuclear power plants. Structural and fatigue integrity for the DVI piping system that thermal stratification occurred during the plant operation has conducted. First of all, thermal distribution of the piping system is calculated by computational fluid dynamic analysis to analyze the structural integrity of that piping system. And the fatigue life evaluation considering environmental effects was carried out. Our results showed that the DVI piping system had enough structural integrity and fatigue life during the design lifetime of 60 years
Performance of buried pipe installation.
2010-05-01
The purpose of this study is to determine the effects of geometric and mechanical parameters : characterizing the soil structure interaction developed in a buried pipe installation located under : roads/highways. The drainage pipes or culverts instal...
Support functions and the integration of set-valued mappings
International Nuclear Information System (INIS)
Goodman, G.S.
1976-01-01
l. Definition of support functions; 2. Characteristic properties of support functions; 3. Examples of support functions; 4. Directional derivatives of support functions; 5. Further properties of h(y*; x*); 6. Extremal faces and their support functions; 7. The fundamental equations in Rsup(n); 8. Consequences of the fundamental equations in Rsup(n); 9. Extreme points; 10. Theorem of Kudo; 11. Comments on Kudo's theorem. (author)
Exponential integrators in time-dependent density-functional calculations
Kidd, Daniel; Covington, Cody; Varga, Kálmán
2017-12-01
The integrating factor and exponential time differencing methods are implemented and tested for solving the time-dependent Kohn-Sham equations. Popular time propagation methods used in physics, as well as other robust numerical approaches, are compared to these exponential integrator methods in order to judge the relative merit of the computational schemes. We determine an improvement in accuracy of multiple orders of magnitude when describing dynamics driven primarily by a nonlinear potential. For cases of dynamics driven by a time-dependent external potential, the accuracy of the exponential integrator methods are less enhanced but still match or outperform the best of the conventional methods tested.
LABORATORY EVALUATION ON PERFORMANCE OF GLASS FIBER REINFORCED PLASTIC MORTAR PIPE CULVERTS
Huawang Shi; Lianyu Wei
2018-01-01
This paper investigated the performance and behaviour of glass fiber reinforced plastic mortar (FRPM) pipes under different loading conditions. FRPM pipes with inner diameter of 1500 mm were prefabricated in factory. Mechanics performance testing (ring and axial compressive strength and elastic modulus), stiffness and fatigue test were carried out in laboratory. Ring stiffness test provided pipe stiffness (PS) which is a function of geometry and material type of pipe through parallel plate lo...
Introduction to functional and path integral methods in quantum field theory
International Nuclear Information System (INIS)
Strathdee, J.
1991-11-01
The following aspects concerning the use of functional and path integral methods in quantum field theory are discussed: generating functionals and the effective action, perturbation series, Yang-Mills theory and BRST symmetry. 10 refs, 3 figs
Heats pipes for temperature homogenization: A literature review
International Nuclear Information System (INIS)
Blet, Nicolas; Lips, Stéphane; Sartre, Valérie
2017-01-01
Highlights: • This paper is a review based on more than sixty references. • The review is sorted into various application fields. • Quantitative values of thermal gradients are compared with and without heat pipes. • Specificities of mentioned heat pipes are compared to other functions of heat pipes. - Abstract: Heat pipes offer high effective heat transfer in a purely passive way. Other specific properties of heat pipes, like temperature homogenization, can be also reached. In this paper, a literature review is carried out in order to investigate the existing heat pipe systems mainly aiming the reduction of temperature gradients. The review gathering more than sixty references is sorted into various application fields, like thermal management of electronics, of storage vessels or of satellites, for which the management of the temperature uniformity differs by the isothermal surface area, temperature ranges or the targeted precision of the temperature flattening. A summary of heat pipe characteristics for this function of temperature homogenization is then performed to identify their specificities, compared to other applications of heat pipes.
DEFF Research Database (Denmark)
Hansen, C. T.; Madsen, Kaj; Nielsen, Hans Bruun
1991-01-01
algorithm using successive linear programming is presented. The performance of the algorithm is illustrated by optimizing a network with 201 pipes and 172 nodes. It is concluded that the new algorithm seems to be very efficient and stable, and that it always finds a solution with a cost near the best...
Traits Without Borders:Integrating Functional Diversity Across Scales
Czech Academy of Sciences Publication Activity Database
Carmona, C. P.; de Bello, Francesco; Mason, N. W. H.; Lepš, Jan
2016-01-01
Roč. 31, č. 5 (2016), s. 382-394 ISSN 0169-5347 R&D Projects: GA ČR GAP505/12/1296; GA ČR GB14-36079G Institutional support: RVO:67985939 ; RVO:60077344 Keywords : functional trait * functional diversity * functional niche Subject RIV: EH - Ecology, Behaviour Impact factor: 15.268, year: 2016
International Nuclear Information System (INIS)
Zaytsev, S A
2010-01-01
The possibility of using straight-line paths of integration in computing the integral representation of the three-body Coulomb Green's function is discussed. In our numerical examples two different kinds of integration contours in the complex energy planes are considered. It is demonstrated that straight-line paths, which cross the positive real axis, are suitable for numerical computation.
Energy Technology Data Exchange (ETDEWEB)
Etim, E; Basili, C [Rome Univ. (Italy). Ist. di Matematica
1978-08-21
The lagrangian in the path integral solution of the master equation of a stationary Markov process is derived by application of the Ehrenfest-type theorem of quantum mechanics and the Cauchy method of finding inverse functions. Applied to the non-linear Fokker-Planck equation the authors reproduce the result obtained by integrating over Fourier series coefficients and by other methods.
International Nuclear Information System (INIS)
Lobanov, Yu.Yu.; Shahbagian, R.R.; Zhidkov, E.P.
1991-01-01
A new method for numerical solution of the boundary problem for Schroedinger-like partial differential equations in R n is elaborated. The method is based on representation of multidimensional Green function in the form of multiple functional integral and on the use of approximation formulas which are constructed for such integrals. The convergence of approximations to the exact value is proved, the remainder of the formulas is estimated. Method reduces the initial differential problem to quadratures. 16 refs.; 7 tabs
Seismic analysis of liquid metal reactor piping systems
International Nuclear Information System (INIS)
Wang, C.Y.
1987-01-01
This paper describes the finite-element numerical algorithm and its applications to LMR piping under seismic excitations. A time-history analysis technique using the implicit temporal integration scheme is addressed. A 3-D pipe element is formulated which has eight degrees of freedom per node (three displacements, three rotations, one membrane displacement, and one bending rotation) to account for the hoop, flexural, rotational, and torsional modes of the piping system. Both geometric and material nonlinearities are considered. This algorithm is unconditionally stable and is particularly suited for the seismic analysis. (orig./GL)
Harris, Susan C.
1985-01-01
Discusses the theoretical basis for integration of information functions and communication functions, the relevance of this integration in the scientific information cycle, and its positive effect on commodity research networks. The application of this theory is described using three commodity programs of the Centro Internacional de Agricultura…
On- and off-shell Jost functions and their integral representations
Indian Academy of Sciences (India)
interaction. The above equation involves certain tedious indefinite integrals. To circumvent these difficulties in analytical calculations, the irregular Green's function for Coulomb–. Yamaguchi potential is expressed in terms of pure Coulomb irregular Green's function and their integral transforms as. G(I )(r, r ) = GC(I)(r, r ) +.
A coupled approach for the three-dimensional simulation of pipe leakage in variably saturated soil
Peche, Aaron; Graf, Thomas; Fuchs, Lothar; Neuweiler, Insa
2017-12-01
In urban water pipe networks, pipe leakage may lead to subsurface contamination or to reduced waste water treatment efficiency. The quantification of pipe leakage is challenging due to inaccessibility and unknown hydraulic properties of the soil. A novel physically-based model for three-dimensional numerical simulation of pipe leakage in variably saturated soil is presented. We describe the newly implemented coupling between the pipe flow simulator HYSTEM-EXTRAN and the groundwater flow simulator OpenGeoSys and its validation. We further describe a novel upscaling of leakage using transfer functions derived from numerical simulations. This upscaling enables the simulation of numerous pipe defects with the benefit of reduced computation times. Finally, we investigate the response of leakage to different time-dependent pipe flow events and conclude that larger pipe flow volume and duration lead to larger leakage while the peak position in time has a small effect on leakage.
Weighted Anisotropic Integral Representations of Holomorphic Functions in the Unit Ball of
Directory of Open Access Journals (Sweden)
Arman Karapetyan
2010-01-01
Full Text Available We obtain weighted integral representations for spaces of functions holomorphic in the unit ball and belonging to area-integrable weighted -classes with “anisotropic” weight function of the type ∏=1(1−|1|2−|2|2−⋯−||2, =(1,2,…,∈. The corresponding kernels of these representations are estimated, written in an integral form, and even written out in an explicit form (for =2.
Overlap integrals of model wave functions of 4He and 3He,3H nuclei
International Nuclear Information System (INIS)
Voloshin, N.I.; Levshin, E.B.; Fursa, A.D.
1990-01-01
Overlap integrals of wave functions 4 He nucleus and 3 He and 3 H nuclei are calculated. Two types of model wave functions are used to describe the structure of nuclei. The wace function is taken as a product of the one-particle Gaussian functions of the Gaussian type in the second case
Recent evaluations of crack-opening-area in circumferentially cracked pipes
Energy Technology Data Exchange (ETDEWEB)
Rahman, S.; Brust, F.; Ghadiali, N.; Wilkowski, G.; Miura, N.
1997-04-01
Leak-before-break (LBB) analyses for circumferentially cracked pipes are currently being conducted in the nuclear industry to justify elimination of pipe whip restraints and jet shields which are present because of the expected dynamic effects from pipe rupture. The application of the LBB methodology frequently requires calculation of leak rates. The leak rates depend on the crack-opening area of the through-wall crack in the pipe. In addition to LBB analyses which assume a hypothetical flaw size, there is also interest in the integrity of actual leaking cracks corresponding to current leakage detection requirements in NRC Regulatory Guide 1.45, or for assessing temporary repair of Class 2 and 3 pipes that have leaks as are being evaluated in ASME Section XI. The objectives of this study were to review, evaluate, and refine current predictive models for performing crack-opening-area analyses of circumferentially cracked pipes. The results from twenty-five full-scale pipe fracture experiments, conducted in the Degraded Piping Program, the International Piping Integrity Research Group Program, and the Short Cracks in Piping and Piping Welds Program, were used to verify the analytical models. Standard statistical analyses were performed to assess used to verify the analytical models. Standard statistical analyses were performed to assess quantitatively the accuracy of the predictive models. The evaluation also involved finite element analyses for determining the crack-opening profile often needed to perform leak-rate calculations.
The Generic Integrity of Newspaper Editorials: A Systemic Functional Perspective
Ansary, Hasan; Babaii, Esmat
2005-01-01
One fruitful line of research has been to explore the local linguistic as well as global rhetorical patterns of particular genres in order to identify their recognizable structural identity, or what Bhatia (1999: 22) calls "generic integrity". In terms of methodology, to date most genre-based studies have employed one or the other of Swales'…
Experimental studies of PWR primary piping under loca
International Nuclear Information System (INIS)
Caumette, Pierre; Garcia, J.L.
1980-07-01
The experimental program performed on AQUITAINE II facility is directed to study the mechanical behavior of primary PWR pipes and the forces exerted on the neighbouring structures as a consequence of a breach opening. It has been developed in the form of a quadripartite agreement between the Commissariat a l'Energie Atomique, Framatome, Electricite de France and Westinghouse. Some forty tests have been carried out with different pipe configurations (straight tube, elbow, S- or U-shaped tube) and different break types (single or double guillotine). The following aspects are investigated: - the dynamic behavior of the pipe and in particular the formation of a plastic hinge at the restraint; - the impact function of a pipe or an energy-absorbing bumper; - the lateral stability of both ends of a pipe, after a double-guillotine break [fr
Heat pipe applications workshop report
International Nuclear Information System (INIS)
Ranken, W.A.
1978-04-01
The proceedings of the Heat Pipe Applications Workshop, held at the Los Alamos Scientific Laboratory October 20-21, 1977, are reported. This workshop, which brought together representatives of the Department of Energy and of a dozen industrial organizations actively engaged in the development and marketing of heat pipe equipment, was convened for the purpose of defining ways of accelerating the development and application of heat pipe technology. Recommendations from the three study groups formed by the participants are presented. These deal with such subjects as: (1) the problem encountered in obtaining support for the development of broadly applicable technologies, (2) the need for applications studies, (3) the establishment of a heat pipe technology center of excellence, (4) the role the Department of Energy might take with regard to heat pipe development and application, and (5) coordination of heat pipe industry efforts to raise the general level of understanding and acceptance of heat pipe solutions to heat control and transfer problems
Certain fractional integral formulas involving the product of generalized Bessel functions.
Baleanu, D; Agarwal, P; Purohit, S D
2013-01-01
We apply generalized operators of fractional integration involving Appell's function F 3(·) due to Marichev-Saigo-Maeda, to the product of the generalized Bessel function of the first kind due to Baricz. The results are expressed in terms of the multivariable generalized Lauricella functions. Corresponding assertions in terms of Saigo, Erdélyi-Kober, Riemann-Liouville, and Weyl type of fractional integrals are also presented. Some interesting special cases of our two main results are presented. We also point out that the results presented here, being of general character, are easily reducible to yield many diverse new and known integral formulas involving simpler functions.
Certain Fractional Integral Formulas Involving the Product of Generalized Bessel Functions
Baleanu, D.; Agarwal, P.; Purohit, S. D.
2013-01-01
We apply generalized operators of fractional integration involving Appell's function F 3(·) due to Marichev-Saigo-Maeda, to the product of the generalized Bessel function of the first kind due to Baricz. The results are expressed in terms of the multivariable generalized Lauricella functions. Corresponding assertions in terms of Saigo, Erdélyi-Kober, Riemann-Liouville, and Weyl type of fractional integrals are also presented. Some interesting special cases of our two main results are presented. We also point out that the results presented here, being of general character, are easily reducible to yield many diverse new and known integral formulas involving simpler functions. PMID:24379745
On the functional integral approach in quantum statistics. 1. Some approximations
International Nuclear Information System (INIS)
Dai Xianxi.
1990-08-01
In this paper the susceptibility of a Kondo system in a fairly wide temperature region is calculated in the first harmonic approximation in a functional integral approach. The comparison with that of the renormalization group theory shows that in this region the two results agree quite well. The expansion of the partition function with infinite independent harmonics for the Anderson model is studied. Some symmetry relations are generalized. It is a challenging problem to develop a functional integral approach including diagram analysis, mixed mode effects and some exact relations in the Anderson system proved in the functional integral approach. These topics will be discussed in the next paper. (author). 22 refs, 1 fig
Effects of sleep deprivation on neural functioning: an integrative review
Boonstra, T.W.; Stins, J.F.; Daffertshofer, A.; Beek, P.J.
2007-01-01
Sleep deprivation has a broad variety of effects on human performance and neural functioning that manifest themselves at different levels of description. On a macroscopic level, sleep deprivation mainly affects executive functions, especially in novel tasks. Macroscopic and mesoscopic effects of
Energy Technology Data Exchange (ETDEWEB)
Machowski, C. [Babcock & Wilcox Canada Ltd., Cambridge, Ontario (Canada)
2012-07-01
CANDU® PHT Feeder Piping is generally constructed from SA106 Grade B carbon steel, which is known to be susceptible to flow accelerated corrosion when exposed to certain environmental conditions. The configuration of the CANDU reactor promotes thinning of the inside surface of the pipe walls, predominantly at the outlet feeders. Inspection of this piping is currently conducted using ultrasonic techniques and is governed by the requirements established by the CANDU Owners Group (COG). There are many challenges associated with these inspections as a result of the complexity of the reactor piping configuration. Geometrical anomalies on the surface of the pipe and non-circular geometries at the tight radius bends hinder the performance of conventional ultrasonic techniques. This can cause lost signals in areas of interest, which in turn often results in rework in order to satisfy the inspection requirements and justify fitness for service of these components. There are also many inspection sites which have limited access due to physical restrictions on the reactor face; therefore in order to maximize the performance of an inspection campaign, it is paramount that the inspection personnel and the inspection technology be well integrated through training simulations prior to execution. These inspection challenges increase the complexity of the analysis process as ultrasonic signals get distorted and lost as a result of non-circular pipe geometries. In order to ensure a high level of integrity in the analysis results, a conservative process is utilized in which two analysts independently examine the data, and a third analyst reviews their results and submits the final call. A Data Management Software application (DMS) is used to input and store the three analysis results. Another important function of the DMS is to provide a communication link between the different work-groups associated with the inspection activities. The focus of this presentation discusses:
Rectangular-section mirror light pipes
Energy Technology Data Exchange (ETDEWEB)
Swift, P.D.; Lawlor, R. [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); Smith, G.B.; Gentle, A. [Department of Applied Physics, University of Technology, Sydney, Broadway, NSW 2007 (Australia)
2008-08-15
Using an integrated-ray approach an expression for the transmission of rectangular section mirror light pipe (MLP) has been derived for the case of collimated light input. The transmittance and the irradiance distribution at the exit aperture of rectangular-section MLPs have been measured experimentally and calculated theoretically for the case of collimated light input. The results presented extend the description of MLPs from the cylindrical case. Measured and calculated transmittances and irradiance distributions are in good agreement. (author)
Assessment of water pipes durability under pressure surge
Pham Ha, Hai; Minh, Lanh Pham Thi; Tang Van, Lam; Bulgakov, Boris; Bazhenova, Soafia
2017-10-01
Surge phenomenon occurs on the pipeline by the closing valve or pump suddenly lost power. Due to the complexity of the water hammer simulation, previous researches have only considered water hammer on the single pipe or calculation of some positions on water pipe network, it have not been analysis for all of pipe on the water distribution systems. Simulation of water hammer due to closing valve on water distribution system and the influence level of pressure surge is evaluated at the defects on pipe. Water hammer on water supply pipe network are simulated by Water HAMMER software academic version and the capacity of defects are calculated by SINTAP. SINTAP developed from Brite-Euram projects in Brussels-Belgium with the aim to develop a process for assessing the integrity of the structure for the European industry. Based on the principle of mechanical fault, indicating the size of defects in materials affect the load capacity of the product in the course of work, the process has proposed setting up the diagram to fatigue assessment defect (FAD). The methods are applied for water pipe networks of Lien Chieu district, Da Nang city, Viet Nam, the results show the affected area of wave pressure by closing the valve and thereby assess the greatest pressure surge effect to corroded pipe. The SINTAP standard and finite element mesh analysis at the defect during the occurrence of pressure surge which will accurately assess the bearing capacity of the old pipes. This is one of the bases to predict the leakage locations on the water distribution systems. Amount of water hammer when identified on the water supply networks are decreasing due to local losses at the nodes as well as the friction with pipe wall, so this paper adequately simulate water hammer phenomena applying for actual water distribution systems. The research verified that pipe wall with defect is damaged under the pressure surge value.
Shock resistance of composite material pipes
International Nuclear Information System (INIS)
Pays, M.F.
1995-01-01
Composite materials have found a wide range of applications for EDF nuclear plants. Applications include fire pipework, demineralized water, service water, and emergency-supplied service water piping. Some of those pipework is classified nuclear safety, their integrity (resistance to water aging and earthquakes or accidental excess pressure (water hammer)) must be safeguarded. As composite materials generally suffer damage for low energy impacts (under 10 J), the pipes planned for the Civaux power plant have been studied for their resistance to a low speed shock (0 to 50 m/s) and of a 0 to 110 J energy level. For three representative diameters (20, 150, 600 mm), the minimum impact energy that leads to a leak has been determined to be respectively 18, 20 and 48 J. Then the leak rate versus impact energy was plotted; until roughly 90 J, the leak rate remains stable at less than 25 cm 3 /h and raises to higher values (300 cm 3 /h) afterwards. The level of leakage in the range of impact energy tested always stays within the limits set by the Safety Authorities for metallic pipes. These results have been linked to destructive examinations, to clarify the damage mechanisms. Other tests are still ongoing to follow the evolution of the damage and of the leak rate while the pipe is maintained under service pressure during one year
Pipe fracture evaluations for leak-rate detection: Probabilistic models
International Nuclear Information System (INIS)
Rahman, S.; Wilkowski, G.; Ghadiali, N.
1993-01-01
This is the second in series of three papers generated from studies on nuclear pipe fracture evaluations for leak-rate detection. This paper focuses on the development of novel probabilistic models for stochastic performance evaluation of degraded nuclear piping systems. It was accomplished here in three distinct stages. First, a statistical analysis was conducted to characterize various input variables for thermo-hydraulic analysis and elastic-plastic fracture mechanics, such as material properties of pipe, crack morphology variables, and location of cracks found in nuclear piping. Second, a new stochastic model was developed to evaluate performance of degraded piping systems. It is based on accurate deterministic models for thermo-hydraulic and fracture mechanics analyses described in the first paper, statistical characterization of various input variables, and state-of-the-art methods of modem structural reliability theory. From this model. the conditional probability of failure as a function of leak-rate detection capability of the piping systems can be predicted. Third, a numerical example was presented to illustrate the proposed model for piping reliability analyses. Results clearly showed that the model provides satisfactory estimates of conditional failure probability with much less computational effort when compared with those obtained from Monte Carlo simulation. The probabilistic model developed in this paper will be applied to various piping in boiling water reactor and pressurized water reactor plants for leak-rate detection applications
Nuclear piping and pipe support design and operability relating to loadings and small bore piping
International Nuclear Information System (INIS)
Stout, D.H.; Tubbs, J.M.; Callaway, W.O.; Tang, H.T.; Van Duyne, D.A.
1994-01-01
The present nuclear piping system design practices for loadings, multiple support design and small bore piping evaluation are overly conservative. The paper discusses the results developed for realistic definitions of loadings and loading combinations with methodology for combining loads under various conditions for supports and multiple support design. The paper also discusses a simplified method developed for performing deadweight and thermal evaluations of small bore piping systems. Although the simplified method is oriented towards the qualification of piping in older plants, this approach is applicable to plants designed to any edition of the ASME Section III or B31.1 piping codes
International Nuclear Information System (INIS)
Stevenson, J.D.
1995-02-01
This report extends the potential application of Bounding Spectra evaluation procedures, developed as part of the A-46 Unresolved Safety Issue applicable to seismic verification of in-situ electrical and mechanical equipment, to in-situ safety related piping in nuclear power plants. The report presents a summary of earthquake experience data which define the behavior of typical U.S. power plant piping subject to strong motion earthquakes. The report defines those piping system caveats which would assure the seismic adequacy of the piping systems which meet those caveats and whose seismic demand are within the bounding spectra input. Based on the observed behavior of piping in strong motion earthquakes, the report describes the capabilities of the piping system to carry seismic loads as a function of the type of connection (i.e. threaded versus welded). This report also discusses in some detail the basic causes and mechanisms for earthquake damages and failures to power plant piping systems
Functional segregation and integration within fronto-parietal networks.
Parlatini, Valeria; Radua, Joaquim; Dell'Acqua, Flavio; Leslie, Anoushka; Simmons, Andy; Murphy, Declan G; Catani, Marco; Thiebaut de Schotten, Michel
2017-02-01
Experimental data on monkeys and functional studies in humans support the existence of a complex fronto-parietal system activating for cognitive and motor tasks, which may be anatomically supported by the superior longitudinal fasciculus (SLF). Advanced tractography methods have recently allowed the separation of the three branches of the SLF but are not suitable for their functional investigation. In order to gather comprehensive information about the functional organisation of these fronto-parietal connections, we used an innovative method, which combined tractography of the SLF in the largest dataset so far (129 participants) with 14 meta-analyses of functional magnetic resonance imaging (fMRI) studies. We found that frontal and parietal functions can be clustered into a dorsal spatial/motor network associated with the SLF I, and a ventral non-spatial/motor network associated with the SLF III. Further, all the investigated functions activated a middle network mostly associated with the SLF II. Our findings suggest that dorsal and ventral fronto-parietal networks are segregated but also share regions of activation, which may support flexible response properties or conscious processing. In sum, our novel combined approach provided novel findings on the functional organisation of fronto-parietal networks, and may be successfully applied to other brain connections. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Mechatronics engineering : New requirements on cross-functional integration
Adamsson, Niklas
2005-01-01
Several industrial sectors experience an increased reliance on mechatronic systems as electronics and software are being embedded into the traditional mechanical systems of these industries. Important challenges within mechatronics engineering comes from management of multi-disciplinary development project teams and the highly complex scope of problems, which in turn require extensive coordination and integration, both in terms of technical and organisational matters. The concept of cross-fun...
2012-06-01
... pipe, oil country tubular goods, boiler tubing, cold- drawn or cold-rolled mechanical tubing, pipe and... in the marketing process and selling functions along the chain of distribution between the producer...
Integrated Electrochemical Analysis System with Microfluidic and Sensing Functions
Directory of Open Access Journals (Sweden)
Hiroaki Suzuki
2008-02-01
Full Text Available An integrated device that carries out the timely transport of solutions andconducts electroanalysis was constructed. The transport of solutions was based oncapillary action in overall hydrophilic flow channels and control by valves that operateon the basis of electrowetting. Electrochemical sensors including glucose, lactate,glutamic oxaloacetic transaminase (GOT, glutamic pyruvic transaminase (GPT, pH,ammonia, urea, and creatinine were integrated. An air gap structure was used for theammonia, urea, and creatinine sensors to realize a rapid response. To enhance thetransport of ammonia that existed or was produced by the enzymatic reactions, the pHof the solution was elevated by mixing it with a NaOH solution using a valve based onelectrowetting. The sensors for GOT and GPT used a freeze-dried substrate matrix torealize rapid mixing. The sample solution was transported to required sensing sites atdesired times. The integrated sensors showed distinct responses when a sample solutionreached the respective sensing sites. Linear relationships were observed between theoutput signals and the concentration or the logarithm of the concentration of theanalytes. An interferent, L-ascorbic acid, could be eliminated electrochemically in thesample injection port.
International Nuclear Information System (INIS)
Arnold, R.C.
1977-06-01
The formalism of Martin, Siggia and Rose is utilized to write a functional-integral representation for generating functionals in plasma transport theory, following Nakayama and Dawson. Parallel treatments of Navier-Stokes turbulence (attempted by Rosen) and of critical dynamics, by Kawasaki, are compared to illustrate the application of common field-theory techniques, such as the effective action. Quasi-classical methods for functional integrals are discussed
Investigation of integrated quality index of desserts and functional beverages
Свідло, Карина Володимирівна; Жулінська, Оксана Володимирівна
2015-01-01
Implementation of the strategic directions of the development of food functional production in Ukraine is aimed at growth in production of healthy food. Among dietary factors relevant to maintaining health, working capacity and active longevity a decisive role belongs to the regular supply of the body's functional complex of macro- and micronutrients contained in dietary supplements and physiologically active materials. Permanent deficit of such nutrients leads to the fact that the physical c...
Energy Technology Data Exchange (ETDEWEB)
Brogaard Kristensen, S.
2000-06-01
This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)
Energy Technology Data Exchange (ETDEWEB)
Brogaard Kristensen, S
2000-06-01
This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)
Memisevic, Haris; Sinanovic, Osman
2013-12-01
The goal of this study was to assess the relationship between visual-motor integration and executive functions, and in particular, the extent to which executive functions can predict visual-motor integration skills in children with intellectual disability. The sample consisted of 90 children (54 boys, 36 girls; M age = 11.3 yr., SD = 2.7, range 7-15) with intellectual disabilities of various etiologies. The measure of executive functions were 8 subscales of the Behavioral Rating Inventory of Executive Function (BRIEF) consisting of Inhibition, Shifting, Emotional Control, Initiating, Working memory, Planning, Organization of material, and Monitoring. Visual-motor integration was measured with the Acadia test of visual-motor integration (VMI). Regression analysis revealed that BRIEF subscales explained 38% of the variance in VMI scores. Of all the BRIEF subscales, only two were statistically significant predictors of visual-motor integration: Working memory and Monitoring. Possible implications of this finding are further elaborated.
International Nuclear Information System (INIS)
Arai, Masanobu; Kunogi, Kosuke; Aizawa, Kosuke; Chikazawa, Yoshitaka; Takaya, Shigeru; Kubo, Shigenobu; Kotake, Shoji; Ito, Takaya; Yamaguchi, Akira
2017-01-01
A maintenance program on piping support of prototype fast breeder reactor Monju are studied. Based on degradation mechanism, snubbers in Monju primary cooling system showed lifetime more than the plant lifetime of 30 years by experiments conservatively. For the first step during construction, visual inspection on accessible all supports could be available. In that visual inspection, mounting conditions and damages of all accessible supports could be monitored. One of major features of the Monju primary piping system is large thermal expansion due to large temperature difference between maintenance and operation conditions. Thanks to that large thermal expansion, integrity of piping supports could be monitored by measuring piping displacement. When technologies of piping displacement monitoring are matured in Monju, visual inspection on piping support could be shifted to piping displacement monitoring. At that stage, the visual inspection could be limited only on representative supports. (author)
International Nuclear Information System (INIS)
Olson, R.; Scott, P.; Wilkowski, G.M.
1992-01-01
As part of the US NRC's Degraded Piping Program, the concept of using a nonlinear spring element to simulate the response of cracked pipe in dynamic finite element pipe evaluations was initially proposed. The nonlinear spring element is used to represent the moment versus rotation response of the cracked pipe section. The moment-rotation relationship for the crack size and material of interest is determined from either J-estimation scheme analyses or experimental data. In this paper, a number of possible approaches for modeling the nonlinear stiffness of the cracked pipe section are introduced. One approach, modeling the cracked section moment rotation response with a series of spring-slider elements, is discussed in detail. As part of this discussion, results from a series of finite element predictions using the spring-slider nonlinear spring element are compared with the results from a series of dynamic cracked pipe system experiments from the International Piping Integrity Research Group (IPIRG) program
International Nuclear Information System (INIS)
Ahn, Seok Hwan; Nam, Ki Woo; Kim, Seon Jin; Kim, Jin Hwan; Kim, Hyun Soo; Do, Jae Yoon
2003-01-01
Fracture behaviors of pipes with local wall thinning are very important for the integrity of nuclear power plant. In pipes of energy plants, sometimes, the local wall thinning may result from severe Erosion-Corrosion (E/C) damage. However, the effects of local wall thinning on strength and fracture behaviors of piping system were not well studied. In this paper, the monotonic bending tests were performed of full-scale carbon steel pipes with local wall thinning. A monotonic bending load was applied to straight pipe specimens by four-point loading at ambient temperature without internal pressure. From the tests, fracture behaviors and fracture strength of locally thinned pipe were manifested systematically. The observed failure modes were divided into four types; ovalization, crack initiation/growth after ovalization, local buckling and crack initiating/growth after local buckling. Also, the strength and the allowable limit of piping system with local wall thinning were evaluated
International Nuclear Information System (INIS)
Ware, A.G.
1986-01-01
The Idaho National Engineering Laboratory (INEL) is conducting a research program to assist the United States Nuclear Regulatory Commission (USNRC) in determining best-estimate damping values for use in the dynamic analysis of nuclear power plant piping systems. This paper describes four tasks in the program that were undertaken in FY-86. In the first task, tests were conducted on a 5-in. INEL laboratory piping system and data were analyzed from a 6-in. laboratory system at the ANCO Engineers facility to investigate the parameters influencing damping in the seismic frequency range. Further tests were conducted on 3- and 5-in. INEL laboratory piping systems as the second task to determine damping values representative of vibrations in the 33 to 100 Hz range, typical of hydrodynamic transients. In the third task a statistical evaluation of the available damping data was conduted to determine probability distributions suitable for use in probabilistic risk assessments (PRAs), and the final task evaluated damping data at high strain levels
Pipe clamp effects on thin-walled pipe design
International Nuclear Information System (INIS)
Lindquist, M.R.
1980-01-01
Clamp induced stresses in FFTF piping are sufficiently large to require structural assessment. The basic principles and procedures used in analyzing FFTF piping at clamp support locations for compliance with ASME Code rules are given. Typical results from a three-dimensional shell finite element pipe model with clamp loads applied over the clamp/pipe contact area are shown. Analyses performed to categorize clamp induced piping loads as primary or secondary in nature are described. The ELCLAMP Computer Code, which performs analyses at clamp locations combining clamp induced stresses with stresses from overall piping system loads, is discussed. Grouping and enveloping methods to reduce the number of individual clamp locations requiring analysis are described
On Generalized Fractional Integral Operators and the Generalized Gauss Hypergeometric Functions
Directory of Open Access Journals (Sweden)
Dumitru Baleanu
2014-01-01
Full Text Available A remarkably large number of fractional integral formulas involving the number of special functions, have been investigated by many authors. Very recently, Agarwal (National Academy Science Letters gave some integral transform and fractional integral formulas involving the Fpα,β·. In this sequel, here, we aim to establish some image formulas by applying generalized operators of the fractional integration involving Appell’s function F3(· due to Marichev-Saigo-Maeda. Some interesting special cases of our main results are also considered.
Improving protein function prediction methods with integrated literature data
Directory of Open Access Journals (Sweden)
Gabow Aaron P
2008-04-01
Full Text Available Abstract Background Determining the function of uncharacterized proteins is a major challenge in the post-genomic era due to the problem's complexity and scale. Identifying a protein's function contributes to an understanding of its role in the involved pathways, its suitability as a drug target, and its potential for protein modifications. Several graph-theoretic approaches predict unidentified functions of proteins by using the functional annotations of better-characterized proteins in protein-protein interaction networks. We systematically consider the use of literature co-occurrence data, introduce a new method for quantifying the reliability of co-occurrence and test how performance differs across species. We also quantify changes in performance as the prediction algorithms annotate with increased specificity. Results We find that including information on the co-occurrence of proteins within an abstract greatly boosts performance in the Functional Flow graph-theoretic function prediction algorithm in yeast, fly and worm. This increase in performance is not simply due to the presence of additional edges since supplementing protein-protein interactions with co-occurrence data outperforms supplementing with a comparably-sized genetic interaction dataset. Through the combination of protein-protein interactions and co-occurrence data, the neighborhood around unknown proteins is quickly connected to well-characterized nodes which global prediction algorithms can exploit. Our method for quantifying co-occurrence reliability shows superior performance to the other methods, particularly at threshold values around 10% which yield the best trade off between coverage and accuracy. In contrast, the traditional way of asserting co-occurrence when at least one abstract mentions both proteins proves to be the worst method for generating co-occurrence data, introducing too many false positives. Annotating the functions with greater specificity is harder
STRAIN CONCENTRATION IN APICES OF RADIAL CRACKS IN A THIN COATED PIPE WALL
Directory of Open Access Journals (Sweden)
M. M. Payzulaev
2017-01-01
Full Text Available Objectives. The well-known discontinuous solution method, used in the study of infinite and semi-infinite domains, is generalised during the construction of solutions in Fourier series. This makes it possible to reduce the problem of the mechanics of a deformable solid for a limited region containing cuts or inclusions to the solution of an integral equation (or system with respect to discontinuities of the functions being defined.Methods. The method was implemented through the application to the solution of the theoretical elasticity problem for a pipe section (plane deformation weakened by an internal radial crack. The pipe was loaded with hydrostatic pressure and a thin coating is applied on its inner surface, improving its physical and mechanical properties. The applied method, combined with the conventional integral transformation, can be effectively used in the construction of discontinuous solutions of three-dimensional problems of the theory of elasticity.Results. Specially formulated boundary conditions were used as a coating model. In order to verify the adequacy of the adopted model, a series of numerical experiments was carried out. In some cases, calculations were carried out for the cross-section of a coated pipe in finite-element ANSYS and COMSOL software packages. In others, benefiting from the extensive capabilities of the FlexPDE software package, an uncoated pipe model was constructed, although using special boundary conditions. Comparison of the results obtained made it possible to ascertain the adequacy of the models constructed across a certain range of geometric and physical parameters.Conclusion. The problem is reduced to the solution of a singular integral equation with a Cauchy kernel with respect to the derivative of the jump in the tangential component of the displacement vector on the crack edges. Its solution is determined by the collocation method with a pre-selected feature. The ultimate goal of the study is to
Pipe inspection using the pipe crawler. Innovative technology summary report
International Nuclear Information System (INIS)
1999-05-01
The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. In several of the buildings at the Fernald Site, there is piping that was used to transport process materials. As the demolition of these buildings occur, disposal of this piping has become a costly issue. Currently, all process piping is cut into ten-foot or less sections, the ends of the piping are wrapped and taped to prevent the release of any potential contaminants into the air, and the piping is placed in roll off boxes for eventual repackaging and shipment to the Nevada Test Site (NTS) for disposal. Alternatives that allow for the onsite disposal of process piping are greatly desired due to the potential for dramatic savings in current offsite disposal costs. No means is currently employed to allow for the adequate inspection of the interior of piping, and consequently, process piping has been assumed to be internally contaminated and thus routinely disposed of at NTS. The BTX-II system incorporates a high-resolution micro color camera with lightheads, cabling, a monitor, and a video recorder. The complete probe is capable of inspecting pipes with an internal diameter (ID) as small as 1.4 inches. By using readily interchangeable lightheads, the same system is capable of inspecting piping up to 24 inches in ID. The original development of the BTX system was for inspection of boiler tubes and small diameter pipes for build-up, pitting, and corrosion. However, the system is well suited for inspecting the interior of most types of piping and other small, confined areas. The report describes the technology, its performance, uses, cost, regulatory and policy issues, and lessons learned
Heat pipes and heat pipe exchangers for heat recovery systems
Energy Technology Data Exchange (ETDEWEB)
Vasiliev, L L; Grakovich, L P; Kiselev, V G; Kurustalev, D K; Matveev, Yu
1984-01-01
Heat pipes and heat pipe exchangers are of great importance in power engineering as a means of recovering waste heat of industrial enterprises, solar energy, geothermal waters and deep soil. Heat pipes are highly effective heat transfer units for transferring thermal energy over large distance (tens of meters) with low temperature drops. Their heat transfer characteristics and reliable working for more than 10-15 yr permit the design of new systems with higher heat engineering parameters.
Pipe inspection using the pipe crawler. Innovative technology summary report
Energy Technology Data Exchange (ETDEWEB)
NONE
1999-05-01
The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. In several of the buildings at the Fernald Site, there is piping that was used to transport process materials. As the demolition of these buildings occur, disposal of this piping has become a costly issue. Currently, all process piping is cut into ten-foot or less sections, the ends of the piping are wrapped and taped to prevent the release of any potential contaminants into the air, and the piping is placed in roll off boxes for eventual repackaging and shipment to the Nevada Test Site (NTS) for disposal. Alternatives that allow for the onsite disposal of process piping are greatly desired due to the potential for dramatic savings in current offsite disposal costs. No means is currently employed to allow for the adequate inspection of the interior of piping, and consequently, process piping has been assumed to be internally contaminated and thus routinely disposed of at NTS. The BTX-II system incorporates a high-resolution micro color camera with lightheads, cabling, a monitor, and a video recorder. The complete probe is capable of inspecting pipes with an internal diameter (ID) as small as 1.4 inches. By using readily interchangeable lightheads, the same system is capable of inspecting piping up to 24 inches in ID. The original development of the BTX system was for inspection of boiler tubes and small diameter pipes for build-up, pitting, and corrosion. However, the system is well suited for inspecting the interior of most types of piping and other small, confined areas. The report describes the technology, its performance, uses, cost, regulatory and policy issues, and lessons learned.
Marichev-Saigo-Maeda fractional integration operators of the Bassel functions
Directory of Open Access Journals (Sweden)
Sunil D. Purohit
2012-05-01
Full Text Available In this paper, we apply generalized operators of fractional integration involving Appell’s function F_3 (. due to Marichev-Saigo-Maeda, to the Bessel function of first kind. The results are expressed in terms of generalized Wright function and hypergeometric functions _pF_q . Special cases involving this function are mentioned. Results given recently by Kilbas and Sebastian follow as special cases of the theorems establish here.
The hypocretins/orexins: integrators of multiple physiological functions
Li, Jingcheng; Hu, Zhian; Lecea, Luis
2014-01-01
The hypocretins (Hcrts), also known as orexins, are two peptides derived from a single precursor produced in the posterior lateral hypothalamus. Over the past decade, the orexin system has been associated with numerous physiological functions, including sleep/arousal, energy homeostasis, endocrine, visceral functions and pathological states, such as narcolepsy and drug abuse. Here, we review the discovery of Hcrt/orexins and their receptors and propose a hypothesis as to how the orexin system orchestrates these multifaceted physiological functions. Linked ArticlesThis article is part of a themed section on Orexin Receptors. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-2 PMID:24102345
Fatigue analysis of HANARO primary cooling system piping
International Nuclear Information System (INIS)
Ryu, Jeong Soo
1998-05-01
A main form of piping failure which occurring leak before break (LBB) is fatigue failure. The fatigue analysis of HANARO primary cooling system (PCS) piping was performed. The PCS piping had been designed in accordance with ASME Class 3 for service conditions. However fatigue analysis is not required in Class 3. In this study the quantitative fatigue analysis was carried out according to ASME Class 1. The highest stress points which have the largest possibility of ASME class 1. The highest stress points which have the largest possibility of the fatigue were determined from the piping stress analysis for each subsection piping. The fatigue analysis was performed for 3 highest stress points, i.e., branch connection, anchor point and butt welding joint. After calculating the peak stress intensity range the fatigue usage factors were evaluated considering operating cycles and S-N curve. The cumulative usage factors for 3 highest stress points were much less than 1. The results show that the possibility of fatigue failure for PCS piping subjected to thermal expansion and seismic loads is very small. The structural integrity of the HANARO PCS piping for fatigue failure was proved to apply the LBB. (author). 11 tabs., 6 figs
Non-metallic structural wrap systems for pipe
International Nuclear Information System (INIS)
Walker, R.H.; Wesley Rowley, C.
2001-01-01
The use of thermoplastics and reinforcing fiber has been a long-term application of non-metallic material for structural applications. With the advent of specialized epoxies and carbon reinforcing fiber, structural strength approaching and surpassing steel has been used in a wide variety of applications, including nuclear power plants. One of those applications is a NSWS for pipe and other structural members. The NSWS is system of integrating epoxies with reinforcing fiber in a wrapped geometrical configuration. This paper specifically addresses the repair of degraded pipe in heat removal systems used in nuclear power plants, which is typically caused by corrosion, erosion, or abrasion. Loss of structural material leads to leaks, which can be arrested by a NSWS for the pipe. The technical aspects of using thermoplastics to structurally improve degraded pipe in nuclear power plants has been addressed in the ASME B and PV Code Case N-589. Using the fundamentals described in that Code Case, this paper shows how this technology can be extended to pipe repair from the outside. This NSWS has already been used extensively in non-nuclear applications and in one nuclear application. The cost to apply this NSWS is typically substantially less than replacing the pipe and may be technically superior to replacing the pipe. (author)
Evaluation of flawed-pipe experiments: Final report
Energy Technology Data Exchange (ETDEWEB)
Zahoor, A.; Gamble, R.M.
1986-11-01
The purpose of this work was to perform elastic plastic fracture mechanics evaluations of experimental data that have become available from the NRC Degraded Pipe Program, Phase II (DPII) and other NRC and EPRI sponsored programs. These evaluations were used to assess flaw evaluation procedures for austenitic and ferritic steel piping. The results also have application to leak before break fracture mechanics analysis. An improved relationship was developed for computing the J-Integral for pipes containing throughwall flaws and loaded in pure bending. The results from several DPII experiments were compared to predictions based on new J estimation scheme solutions for circumferential, finite length part-throughwall flaws in pipes with bending loading. Comparisons of experimental maximum loads with those predicted using procedures in Paragraph IWB-3640, Section XI of the ASME Code indicate that the Code flaw evaluation procedures and allowables for austenitic steel pipe are appropriate and conservative. However, the comparisons also indicate that the base metal Code allowable loads may be about 15 to 20% high for small diameter piping (less than 8-inch diameter) at allowable a/t larger than about 0.5. The work further indicates that there is justification for reducing the conservatism in IWB-3640 allowable flaw sizes and loads for austenitic steel pipe with submerged or shielded metal arc welds.
Intelligent switches of integrated lightwave circuits with core telecommunication functions
Izhaky, Nahum; Duer, Reuven; Berns, Neil; Tal, Eran; Vinikman, Shirly; Schoenwald, Jeffrey S.; Shani, Yosi
2001-05-01
We present a brief overview of a promising switching technology based on Silica on Silicon thermo-optic integrated circuits. This is basically a 2D solid-state optical device capable of non-blocking switching operation. Except of its excellent performance (insertion lossvariable output power control (attenuation), for instance, to equalize signal levels and compensate for unbalanced different optical input powers, or to equalize unbalanced EDFA gain curve. We examine the market segments appropriate for the switch size and technology, followed by a discussion of the basic features of the technology. The discussion is focused on important requirements from the switch and the technology (e.g., insertion loss, power consumption, channel isolation, extinction ratio, switching time, and heat dissipation). The mechanical design is also considered. It must take into account integration of optical fiber, optical planar wafer, analog electronics and digital microprocessor controls, embedded software, and heating power dissipation. The Lynx Photon.8x8 switch is compared to competing technologies, in terms of typical market performance requirements.
Functional design for the integration of BMNI/LMR
International Nuclear Information System (INIS)
Van Westerlaak, P.J.M.; Oldenburger, A.A.
1995-04-01
The aim of the Project Integration of Monitoring networks (PIM) is to realize one modular monitoring network configuration which can supply sufficient radiological data to both the National Institute of Public Health and Environment (RIVM) and the contingency organization of the Dutch Ministry of Internal Affairs. This monitoring network configuration is called the National Monitoring network Radioactivity (NMR) and is a combination of the BMNI (Internal Affairs Monitoring network Nuclear Accidents) and LMR (also translated as National Monitoring network Radioactivity). In this report only attention is paid to the coupling of the BMNI and LMR on the level of data as part of the realization of the NMR. After an overview of the existing situation the requirements for an integrated monitoring network system are outlined. Differences between NMR and BMNI and possible solutions to overcome those differences are discussed next. Subsequently the modular NMR system is described, along with a brief overview of interfaces with other information systems. Finally, attention is paid to the data structure, necessary equipment and computer programs, quality control, and the planning of the development and implementation of the monitoring system. 12 figs., 3 tabs., 19 refs
The stress analysis evaluation and pipe support layout for pressurizer discharge system
International Nuclear Information System (INIS)
Mao Qing; Wang Wei; Zhang Yixiong
2000-01-01
The author presents the stress analysis and evaluation of pipe layout and support adjustment process for Qinshan phase II pressurizer discharge system. Using PDL-SYSPIPE INTERFACE software, the characteristic parameters of the system are gained from 3-D CAD engineering design software PDL and outputted as the input date file format of special pipe stress analysis program SYSPIPE. Based on that, SYSPIPE program fast stress analysis function is applied in adjusting pipe layout , support layout and support types. According to RCC-M standard, the pipe stress analysis and evaluation under deadweight, internal pressure, thermal expansion, seismic, pipe rupture and discharge loads are fulfilled
Computing the effect of plastic deformation of piping on pressure transient propagation
International Nuclear Information System (INIS)
Youngdahl, C.K.; Kot, C.A.
1977-01-01
The computer program PTA-1 performs pressure-transient analysis of large piping networks using the one-dimensional method of characteristics applied to a fluid-hammer formulation. The effect of elastic-plastic deformation of piping on pulse propagation is included in the computation. Each pipe is modeled as a series of rings, neglecting axial effects, bending moments, and inertia. The fluid wave speed is a function of pipe deformation and, consequently, of position and time. Comparison with existing experimental data indicate that this simple fluid-structure interaction model gives suprisingly accurate results for both pressure histories in the fluid and strain histories in the piping
Directory of Open Access Journals (Sweden)
Lakshmi Narayan Mishra
2016-04-01
Full Text Available In the present manuscript, we prove some results concerning the existence of solutions for some nonlinear functional-integral equations which contains various integral and functional equations that considered in nonlinear analysis and its applications. By utilizing the techniques of noncompactness measures, we operate the fixed point theorems such as Darbo's theorem in Banach algebra concerning the estimate on the solutions. The results obtained in this paper extend and improve essentially some known results in the recent literature. We also provide an example of nonlinear functional-integral equation to show the ability of our main result.
Energy Technology Data Exchange (ETDEWEB)
Lukkassen, D.
1996-12-31
When partial differential equations are set up to model physical processes in strongly heterogeneous materials, effective parameters for heat transfer, electric conductivity etc. are usually required. Averaging methods often lead to convergence problems and in homogenization theory one is therefore led to study how certain integral functionals behave asymptotically. This mathematical doctoral thesis discusses (1) means and bounds connected to homogenization of integral functionals, (2) reiterated homogenization of integral functionals, (3) bounds and homogenization of some particular partial differential operators, (4) applications and further results. 154 refs., 11 figs., 8 tabs.
Functional integration of automated system databases by means of artificial intelligence
Dubovoi, Volodymyr M.; Nikitenko, Olena D.; Kalimoldayev, Maksat; Kotyra, Andrzej; Gromaszek, Konrad; Iskakova, Aigul
2017-08-01
The paper presents approaches for functional integration of automated system databases by means of artificial intelligence. The peculiarities of turning to account the database in the systems with the usage of a fuzzy implementation of functions were analyzed. Requirements for the normalization of such databases were defined. The question of data equivalence in conditions of uncertainty and collisions in the presence of the databases functional integration is considered and the model to reveal their possible occurrence is devised. The paper also presents evaluation method of standardization of integrated database normalization.
Inelastic analysis of piping systems. A beam-type method for creep and plasticity
International Nuclear Information System (INIS)
Roche, R.L.; Hoffmann, A.; Millard, A.
1979-01-01
Since many years, piping systems are designed and calculated under elasticity assumptions, using a beam-type method. Thus, the analysis of large systems may be performed at a relatively low cost, using a finite element program. However such a method can not account for inelastic phenomena like plastic deformations or creep. The application of refined three-dimensional shell type method is possible for local components such as curved sections but leads to prohibitive costs for complete piping systems. Therefore simplified methods have been developed, based on a 'global plasticity or creep model'. Following the conventional elastic approach, the pipe element is characterized by variables associated with the center line in the following way: generalized stresses are obtained by integration of local stresses giving way to hoop and tension stresses and to bending and torsional moments; the conjugated strains are identified with uniform hoop and longitudinal strains and variations in neutral axis curvatuves. For plasticity problems, the yield surface is defined by a diagonal quadratic function in terms of the generalized stresses and work hardening parameters. By addition of the Hill's principle and a hardening rule, the formulation is similar to the one commonly used in finite element method. Geometric non linearity due to important deformations of the cross section (often termed 'ovalization') may be treated simultaneously with material non linearity. For this purpose the displacement normal to the pipe surface is represented by trigonometric series expansion, the coefficients of which are determined by minimizing the strain energy over the cross section. The method presented is believed to be a simple economical and accurate tool, for dimensioning computations of large piping systems
On New p-Valent Meromorphic Function Involving Certain Differential and Integral Operators
Directory of Open Access Journals (Sweden)
Aabed Mohammed
2014-01-01
Full Text Available We define new subclasses of meromorphic p-valent functions by using certain differential operator. Combining the differential operator and certain integral operator, we introduce a general p-valent meromorphic function. Then we prove the sufficient conditions for the function in order to be in the new subclasses.
Plant functional connectivity – integrating landscape structure and effective dispersal
Auffret, Alistair G.; Rico, Yessica; Bullock, James M.; Hooftman, Danny A.P.; Pakeman, Robin J.; Soons, Merel B.; Suárez-Esteban, Alberto; Traveset, Anna; Wagner, Helene H.; Cousins, Sara A.O.
2017-01-01
Dispersal is essential for species to survive the threats of habitat destruction and climate change. Combining descriptions of dispersal ability with those of landscape structure, the concept of functional connectivity has been popular for understanding and predicting species’ spatial responses to
Limitations and Functions: Four Examples of Integrating Thermodynamics
Chang, Wheijen
2011-01-01
Physics students are usually unaware of the limitations and functions of related principles, and they tend to adopt "hot formulas" inappropriately. This paper introduces four real-life examples for bridging five principles, from fluids to thermodynamics, including (1) buoyant force, (2) thermal expansion, (3) the ideal-gas law, (4) the 1st law,…
SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS
Energy Technology Data Exchange (ETDEWEB)
Kiran M. Kothari; Gerard T. Pittard
2005-01-01
-diameter repair robots for cast-iron pipe to assure their commercial success. For Task 4 (Design, Fabricate and Test Patch Setting Robotic Train), work has been directed on increasing the nitrogen bladder reservoir volume to allow at least two complete patch inflation/patch setting cycles in the event the sleeve does not set all ratchets in the same row on the first attempt. This problem was observed on a few of the repair sleeves that were recently installed during field tests with the small-diameter robotic system. For Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera), the recent field tests showed clearly that, in mains with low gas velocities, it will be necessary to improve the system's capacity to remove debris from the immediate vicinity of the bell and spigot joints. Otherwise, material removed by the cleaning flails (the flails were found to be very effective in cleaning bell and spigot joints) falls directly to the low side of the pipe and accumulates in a pile. This accumulation can prevent the sleeve from achieving a leak-free repair. Similarly, it is also deemed necessary to design an assembly to capture existing service-tap coupons and allow their removal from the inside of the pipe. These coupons were found to cause difficulty in launching and retrieving the small pipe repair robot; for example, one coupon lodged beneath the end of the guide shoe. Designs for new features to accomplish these goals for the large robotic system were pursued and are presented in this report. Task 6 (Design & Build Surface Control and Monitoring System) was previously completed with the control and computer display functions being operated through LabVIEW. However, this must now be revisited to add control routines for the coupon catcher to be added. This will most likely include a lift-off/place-on magnet translation function. Task 7 (Design & Fabricate Large Diameter Live Access System) progressed to completing the detailed design of the entry
SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS
Energy Technology Data Exchange (ETDEWEB)
Kiran M. Kothari; Gerard T. Pittard
2004-11-01
- and large-diameter cast iron repair robots to assure their commercial success. Task 4 (Design, Fabricate and Test Patch Setting Robotic Train) progressed to the design of the control electronics and pneumatic system to inflate the bladder robotic patch setting module in the last quarter 5. In this quarter, work has been concentrated on increasing the nitrogen bladder reservoir volume to allow at least two complete patch inflation/patch setting cycles in the event the sleeve does not set all ratchets in the same row on the first attempt. This problem was observed on a few of the repair sleeves that were recently installed during field tests with the small-diameter robotic system. For Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera) it was observed that it will be necessary to add a stiff brush to push debris away from the immediate vicinity of the bell and spigot joints in mains having low gas velocities. Otherwise, material removed by the cleaning flails (which were found to be very effective in cleaning bell and spigot joints) simply falls to the low side of the pipe and accumulates in a pile. This accumulation can prevent the sleeve from achieving a leak free repair. Similarly, it is also necessary to design a small magnet to capture existing service tap coupons and allow their removal from the inside of the pipe. These coupons were found to cause difficulty in launching and retrieving the small pipe repair robot; one coupon lodged beneath the end of the guide shoe. These new features require redesign of the pipe wall cleaning train and modification to the patch setting train. Task 6 (Design & Build Surface Control and Monitoring System) was previously completed with the control and computer display functions being operated through LabView. However, this must now be re-visited to add control routines for the coupon catcher to be added. This will most likely include a lift-off/place-on magnet translation function. Task 7 (Design
Corrosion and deposit evaluation in large diameter pipes using radiography
International Nuclear Information System (INIS)
Boateng, A.
2012-01-01
The reliability and safety of industrial equipment in the factories and processing industries are substantially influenced by degradation processes such as corrosion, erosion, deposits and blocking of pipes. These might lead to low production, unpredictable and costly shutdowns due to repair and replacement and sometimes combined environmental pollution and risk of personnel injuries. Only periodic inspection for the integrity of pipes and equipment can reduce the risk in connection with other maintenance activities. The research explored two methods of radiographic inspection techniques, the double wall technique and the tangential radiographic technique using Ir-192 for evaluating deposits and corrosion attacks across the inner and outer walls of steel pipes with diameter greater than 150 mm with or without insulation. The application of both techniques was conducted depending on pipe diameter, wall thickness, radiation source (Ir-92) and film combination. The iridium source was positioned perpendicular with respect to the pipe axis projecting the double wall of the pipe on the plated radiographic film. With the tangential radiographic technique, the source was placed tangential to the pipe wall and because of its large diameter, the source was collimated to prevent backscatter and also to focus the beam at the target area of interest. All measurements were performed on special designed test pieces to simulate corrosion attack and deposits on industrial pipes. Pitting corrosion measurements based on Tangential Radiographic Technique were more sophisticated, and therefore magnification factor and correction were used to establish the estimated pit depth on the film. The insulating material used to conserve the thermodynamic properties of the transported media had relatively negligible attenuation coefficient compared to the concrete deposit. The two explored techniques were successful in evaluating corrosion attack and deposit on the walls of the pipe and the risk
Integrated function nonimaging concentrating collector tubes for solar thermal energy
Winston, R.; Ogallagher, J. J.
1982-09-01
A substantial improvement in optical efficiency over contemporary external reflector evacuated tube collectors has been achieved by integrating the reflector surface into the outer glass envelope. Described are the design fabrication and test results for a prototype collector based on this concept. A comprehensive test program to measure performance and operational characteristics of a 2 sq m panel (45 tubes) has been completed. Efficiencies above 50% relative to beam at 200 C have been repeatedly demonstrated. Both the instantaneous and long term average performance of this totally stationary solar collector are comparable to those for tracking line focus parabolic troughs. The yield, reliability and stability of performance achieved have been excellent. Subcomponent assemblies and fabrication procedures have been used which are expected to be compatible with high volume production. The collector has a wide variety of applications in the 100 to 300 C range including industrial progress heat, air conditioning and Rankine engine operation.
Highly functional tunnelling devices integrated in 3D
DEFF Research Database (Denmark)
Wernersson, Lars-Erik; Lind, Erik; Lindström, Peter
2003-01-01
a new type of tunnelling transistor, namely a resonant-tunnelling permeable base transistor. A simple model based on a piece-wise linear approximation is used in Cadence to describe the current-voltage characteristics of the transistor. This model is further introduced into a small signal equivalent...... simultaneously on both tunnelling structures and the obtained characteristics are the result of the interplay between the two tunnelling structures and the gate. An equivalent circuit model is developed and we show how this interaction influences the current-voltage characteristics. The gate may be used......We present a new technology for integrating tunnelling devices in three dimensions. These devices are fabricated by the combination of the growth of semiconductor heterostructures with the controlled introduction of metallic elements into an epitaxial layer by an overgrowth technique. First, we use...
Multi-function microfluidic platform for sensor integration
DEFF Research Database (Denmark)
Fernandes, Ana C.; Semenova, Daria; Panjan, Peter
2018-01-01
The limited availability of metabolite-specific sensors for continuous sampling and monitoring is one of the main bottlenecks contributing to failures in bioprocess development. Furthermore, only a limited number of approaches exist to connect currently available measurement systems with high...... throughput reactor units. This is especially relevant in the biocatalyst screening and characterization stage of process development. In this work, a strategy for sensor integration in microfluidic platforms is demonstrated, to address the need for rapid, cost-effective and high-throughput screening...... of the sample solution up to 10 times. In order to highlight the features of the proposed platform, inline monitoring of glucose levels is presented and discussed. Glucose was chosen due to its importance in biotechnology as a relevant substrate. The platform demonstrated continuous measurement of substrate...
On linearity of pan-integral and pan-integrable functions space
Czech Academy of Sciences Publication Activity Database
Ouyang, Y.; Li, J.; Mesiar, Radko
2017-01-01
Roč. 90, č. 1 (2017), s. 307-318 ISSN 0888-613X Institutional support: RVO:67985556 Keywords : linearity * monotone measure * Pan-integrable space Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 2.845, year: 2016 http://library.utia.cas.cz/separaty/2017/E/mesiar-0477549.pdf
Energy Technology Data Exchange (ETDEWEB)
Zinki, Heimo [ZW Energiteknik, Nykoeping (Sweden)
1996-11-01
The aim of this study was to investigate the possibility of analysing the temperature profile at the ground surface above buried district heating pipes in such a way that would enable the quantitative determination of heat loss from the pair of pipes. In practical applications, it is supposed that this temperature profile is generated by means of advanced IR-thermography. For this purpose, the principle of the TX - model has been developed, based on the fact that the heat losses from pipes buried in the ground have a temperature signature on the ground surface. Qualitative analysis of this temperature signature is very well known and in practical use for detecting leaks from pipes. These techniques primarily make use of relative changes of the temperature pattern along the pipe. In the quantitative heat loss analysis, however, it is presumed that the temperature profile across the pipes is related to the pipe heat loss per unit length. The basic idea is that the integral of the temperature profile perpendicular to the pipe, called TX, is a function of the heat loss, but is also affected by other parameters such as burial depth, heat diffusivity, wind, precipitation and so on. In order to analyse the parameters influencing the TX- factor, a simulation model for the energy balance at the ground surface has been developed. This model includes the heat flow from the pipe to the surface and the heat exchange at the surface with the environment due to convection, latent heat change, solar and long wave radiation. The simulation gives the surprising result that the TX factor is by and large unaffected during the course of a day even when the sun is shining, as long as other climate conditions are relatively stable (low wind, no rain, no shadows). The results from the simulations were verified at different sites in Denmark, Finland, Sweden and USA through a co-operative research program organised and partially financed by the IEA District Heating Programme, Task III, and
On the integration of products of Whittaker functions with respect to the second index
International Nuclear Information System (INIS)
Becker, Peter A.
2004-01-01
Several new formulas are developed that enable the evaluation of a family of definite integrals containing the product of two Whittaker W κ,μ (x)-functions. The integration is performed with respect to the second index μ, and the first index κ is permitted to have any complex value, within certain restrictions required for convergence. The method utilizes complex contour integration along with various symmetry relations satisfied by the Whittaker functions. The new results derived in this article are complementary to the previously known integrals of products of Whittaker functions, which generally treat integration with respect to either the first index κ or the primary argument x. A physical application involving radiative transport is discussed
One-point functions in defect CFT and integrability
Energy Technology Data Exchange (ETDEWEB)
Leeuw, Marius de; Kristjansen, Charlotte [The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen Ø, DK-2100 (Denmark); Zarembo, Konstantin [NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, Stockholm, SE-106 91 (Sweden); Department of Physics and Astronomy, Uppsala University, Uppsala, SE-751 08 (Sweden)
2015-08-19
We calculate planar tree level one-point functions of non-protected operators in the defect conformal field theory dual to the D3-D5 brane system with k units of the world volume flux. Working in the operator basis of Bethe eigenstates of the Heisenberg XXX{sub 1/2} spin chain we express the one-point functions as overlaps of these eigenstates with a matrix product state. For k=2 we obtain a closed expression of determinant form for any number of excitations, and in the case of half-filling we find a relation with the Néel state. In addition, we present a number of results for the limiting case k→∞.
Functional, Structural, and Neurotoxicity Biomarkers in Integrative Assessment of Concussions
Directory of Open Access Journals (Sweden)
Svetlana A Dambinova
2016-10-01
Full Text Available Concussion is a complex, heterogenous process affecting the brain. Accurate assessment and diagnosis and appropriate management of concussion are essential to ensure athletes do not prematurely return to play or others to work or active military duty, risking re-injury. To date, clinical diagnosis relies primarily on evaluating subjects for functional impairment using instruments that include neurocognitive testing, subjective symptom report, and neurobehavioral assessments, such as balance and vestibular-ocular reflex testing. Structural biomarkers, defined as advanced neuroimaging techniques and biomarkers assessing neurotoxicity and immunoexcitotoxicity may complement the use of functional biomarkers. We hypothesize that neurotoxicity AMPA, NMDA, and kainite receptor biomarkers might be utilized as a part of comprehensive approach to concussion evaluations, with the goal of increasing diagnostic accuracy and facilitating treatment planning and prognostic assessment.
Integration Processes of Delay Differential Equation Based on Modified Laguerre Functions
Directory of Open Access Journals (Sweden)
Yeguo Sun
2012-01-01
Full Text Available We propose long-time convergent numerical integration processes for delay differential equations. We first construct an integration process based on modified Laguerre functions. Then we establish its global convergence in certain weighted Sobolev space. The proposed numerical integration processes can also be used for systems of delay differential equations. We also developed a technique for refinement of modified Laguerre-Radau interpolations. Lastly, numerical results demonstrate the spectral accuracy of the proposed method and coincide well with analysis.
International Nuclear Information System (INIS)
Anderson, M.J.; Barta, D.A.; Lindquist, M.R.; Renkey, E.J.; Ryan, J.A.
1983-06-01
LMFBR pipe systems typically utilize a thicker insulation package than that used on water plant pipe systems. They are supported with special insulated pipe clamps. Mechanical snubbers are employed to resist seismic loads. Recent laboratory testing has indicated that these features provide significantly more damping than presently allowed by Regulatory Guide 1.61 for water plant pipe systems. This paper presents results of additional in-situ vibration tests conducted on FFTF pipe systems. Pipe damping values obtained at various excitation levels are presented. Effects of filtering data to provide damping values at discrete frequencies and the alternate use of a single equivalent modal damping value are discussed. These tests further confirm that damping in typical LMFBR pipe systems is larger than presently used in pipe design. Although some increase in damping occurred with increased excitation amplitude, the effect was not significant. Recommendations are made to use an increased damping value for both the OBE and DBE seismic events in design of LMFBR pipe systems
Dynamic experiments on cracked pipes
International Nuclear Information System (INIS)
Petit, M.; Brunet, G.; Buland, P.
1991-01-01
In order to apply the leak before break concept to piping systems, the behavior of cracked pipes under dynamic, and especially seismic loading must be studied. In a first phase, an experimental program on cracked stainless steel pipes under quasi-static monotonic loading has been conducted. In this paper, the dynamic tests on the same pipe geometry are described. These tests have been performed on a shaking table with a mono frequency input signal. The main parameter of the tests is the frequency of excitation versus the frequency of the system
International Nuclear Information System (INIS)
Gale, J.; Tiselj, I.
2002-01-01
One dimensional two-fluid six-equation model of two-phase flow, that can be found in computer codes like RELAP5, TRAC, and CATHARE, was upgraded with additional terms, which enable modelling of the pressure waves in elastic pipes. It is known that pipe elasticity reduces the propagation velocity of the shock and other pressure waves in the piping systems. Equations that include the pipe elasticty terms are used in WAHA code, which is being developed within the WAHALoads project of 5't'h EU research program.(author)
Numerical calculation of a class of highly oscillatory integrals with the Mathieu function
International Nuclear Information System (INIS)
Long Yongxing
1992-01-01
The author describes a method for computing highly oscillatory integrals with the Mathieu function. The practice proves that not only the results are highly satisfactory, but also the method is time-saving
Esophageal acid sensitivity and mucosal integrity in patients with functional heartburn
Weijenborg, P. W.; Smout, A. J. P. M.; Bredenoord, A. J.
2016-01-01
Patients with functional heartburn (FH) experience troublesome heartburn that is not related to gastroesophageal reflux. The etiology of the heartburn sensation in FH patients is unknown. In patients with reflux disease, esophageal hypersensitivity seems associated with impaired mucosal integrity.
International Nuclear Information System (INIS)
Brinkmann, G.
1979-01-01
In the framework of a systematic study which is also important for certain cosmological questions a series of integral excitation functions of p- and α-induced nuclear reactions on target elements 22 [de
Numerical solution of the potential problem by integral equations without Green's functions
International Nuclear Information System (INIS)
De Mey, G.
1977-01-01
An integral equation technique will be presented to solve Laplace's equation in a two-dimensional area S. The Green's function has been replaced by a particular solution of Laplace equation in order to establish the integral equation. It is shown that accurate results can be obtained provided the pivotal elimination method is used to solve the linear algebraic set
42 CFR 455.232 - Medicaid integrity audit program contractor functions.
2010-10-01
... 42 Public Health 4 2010-10-01 2010-10-01 false Medicaid integrity audit program contractor functions. 455.232 Section 455.232 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS PROGRAM INTEGRITY: MEDICAID Medicaid...
Yee, Ng Kin; Lam, Toh Tin
2008-01-01
This paper reports on students' errors in performing integration of rational functions, a topic of calculus in the pre-university mathematics classrooms. Generally the errors could be classified as those due to the students' weak algebraic concepts and their lack of understanding of the concept of integration. With the students' inability to link…
Koornwinder, T.H.
2015-01-01
For each of the eight n-th derivative parameter changing formulas for Gauss hypergeometric functions a corresponding fractional integration formula is given. For both types of formulas the differential or integral operator is intertwining between two actions of the hypergeometric differential
International Nuclear Information System (INIS)
Shabaev, V.M.
1984-01-01
Some exact relations are derived for radial integrals with Dirac wave functions. These relations are used for calculating radial integrals in the case of the Coulomb field. The threedimensional harmonic oscillator is also considered and exact formulae for the dipole transition probabilities are obtained using general relations between matrix elements
M.C. Zaghdoudi; S. Maalej; J. Mansouri; M.B.H. Sassi
2011-01-01
An experimental study is realized in order to verify the Mini Heat Pipe (MHP) concept for cooling high power dissipation electronic components and determines the potential advantages of constructing mini channels as an integrated part of a flat heat pipe. A Flat Mini Heat Pipe (FMHP) prototype including a capillary structure composed of parallel rectangular microchannels is manufactured and a filling apparatus is developed in order to charge the FMHP. The heat transfer im...
[Structure and functional organization of integrated cardiac intensive care].
Scherillo, Marino; Miceli, Domenico; Tubaro, Marco; Guiducci, Umberto
2007-05-01
The early invasive strategy for the treatment of acute coronary syndromes and the increasing number of older and sicker patients requiring prolonged and more complex intensive care have induced many changes in the function of the intensive care units. These changes include the statement that specially trained cardiologists and cardiac nurses who can manage patients with acute cardiac conditions should staff the intensive care units. This document indicates the structure of the units and specific recommendations for the number of beds, monitoring system, respirators, pacemaker/defibrillators and additional equipment.
Features of Functioning the Integrated Building Thermal Model
Directory of Open Access Journals (Sweden)
Morozov Maxim N.
2017-01-01
Full Text Available A model of the building heating system, consisting of energy source, a distributed automatic control system, elements of individual heating unit and heating system is designed. Application Simulink of mathematical package Matlab is selected as a platform for the model. There are the specialized application Simscape libraries in aggregate with a wide range of Matlab mathematical tools allow to apply the “acausal” modeling concept. Implementation the “physical” representation of the object model gave improving the accuracy of the models. Principle of operation and features of the functioning of the thermal model is described. The investigations of building cooling dynamics were carried out.
Mechanical assessment of local thinned pipings
International Nuclear Information System (INIS)
Meister, E.
2007-01-01
Local wall thinning is likely to be found in some piping systems of nuclear power plant under, for example, Flow Accelerated Corrosion in raw water systems or by loss of metal during the grinding of the weld seam. To assess the mechanical integrity in such situations, EDF/SEPTEN has developed calculation methods for the RSE-M (In Service Inspection Rules for the Mechanical components of PWR nuclear power islands) code. This paper focuses on the methodology used for internal pressure resistance evaluation based on limit load calculations. Beyond the Nuclear Safety classification and requirements given by the RSE-M code, this problem is general for Power Piping and the associated in service rules. (author) [fr
Orbital friction stir welding of aluminium pipes
International Nuclear Information System (INIS)
Engelhard, G.; Hillers, T.
2002-01-01
Friction stir welding (FSW) was originally developed for flat plates. This contribution shows how it can be applied to the welding of aluminium pipes. Pipes made of AlMG 3 (EN5754), AlMg 4.5Mn (EN5083) and AlMgSi 0.5 (EN6106) with dimensions of Da 600 and 520 x 10-8 mm were welded. The FSW orbital system comprises an annular cage with integrated FSW head, a hydraulic system, and a control unit. The welds were tested successfully according to EN 288. The mechanical and technical properties of the welds were somewhat better than with the TIG orbital process, and welding times were about 40 percent shorter [de
Directory of Open Access Journals (Sweden)
Hossein Moradi
2010-10-01
Full Text Available Enterprise Application Integration (EAI technologies facilitate the sharing of information and business processes of interrelated information systems in order to achieve the target integrated systems. Different EAI solutions and technologies provide various capabilities which lead to the complexity of their evaluation process. To reduce this complexity, appropriate tools for evaluating the functional capabilities of EAI technologies are required. This paper proposes a new framework for evaluating the functional capabilities of EAI technologies, which simplify the process of evaluating the functional capabilities of intra-enterprise integration technologies and solutions.The proposed framework for evaluating the EAI technologies was enhanced using the structural and conceptual aspects of previous frameworks. It offers a new schema for which various EAI technologies are categorized in different classes and are evaluated based on their supporting level for functional integration capabilities’ criteria.The new framework offers two lists containing integration technologies and their associated classifications, and functional capabilities of integration technologies. The proposed framework is a novel one which can be used by information system experts for evaluation and comparison purposes of various integration technologies.
Frequency domain analysis of piping systems under short duration loading
International Nuclear Information System (INIS)
Sachs, K.; Sand, H.; Lockau, J.
1981-01-01
In piping analysis two procedures are used almost exclusively: the modal superposition method for relatively long input time histories (e.g., earthquake) and direct integration of the equations of motion for short input time histories. A third possibility, frequency domain analysis, has only rarely been applied to piping systems to date. This paper suggests the use of frequency domain analysis for specific piping problems for which only direct integration could be used in the past. Direct integration and frequency domain analysis are compared, and it is shown that the frequency domain method is less costly if more than four or five load cases are considered. In addition, this method offers technical advantages, such as more accurate representation of modal damping and greater insight into the structural behavior of the system. (orig.)
Impact of inservice inspection on the reliability of nuclear piping
International Nuclear Information System (INIS)
Woo, H.H.
1983-12-01
The reliability of nuclear piping is a function of piping quality as fabricated, service loadings and environments, plus programs of continuing inspection during operation. This report presents the results of a study of the impact of inservice inspection (ISI) programs on the reliability of specific nuclear piping systems that have actually failed in service. Two major factors are considered in the ISI programs: one is the capability of detecting flaws; the other is the frequency of performing ISI. A probabilistic fracture mechanics model issued to estimate the reliability of two nuclear piping lines over the plant life as functions of the ISI programs. Examples chosen for the study are the PWR feedwater steam generator nozzle cracking incident and the BWR recirculation reactor vessel nozzle safe-end cracking incident
Employee subjective well-being and physiological functioning: An integrative model.
Kuykendall, Lauren; Tay, Louis
2015-01-01
Research shows that worker subjective well-being influences physiological functioning-an early signal of poor health outcomes. While several theoretical perspectives provide insights on this relationship, the literature lacks an integrative framework explaining the relationship. We develop a conceptual model explaining the link between subjective well-being and physiological functioning in the context of work. Integrating positive psychology and occupational stress perspectives, our model explains the relationship between subjective well-being and physiological functioning as a result of the direct influence of subjective well-being on physiological functioning and of their common relationships with work stress and personal resources, both of which are influenced by job conditions.
International Nuclear Information System (INIS)
Evers, H.; Meinzer, H.P.; Hawighorst, H.; Kaick, G. van; Knapstein, P.G.
1998-01-01
Purpose: The goal of this exemplary study was to integrate morphological and functional MRI to establish computer-based, preoperative therapy planning for tumors, instancing cervical carcinoma. Results: Segmentation of organs and vessels as well as tissue differentiation yielded a morphological visualisation of anatomical structures that were overlaid with pharmacokinetic parameters derived from dynamic MRI, subsequently. Thereby, three-dimensional, arbitrary views on the functional data were displayed. Conclusions: Image analysis and visualisation of the acquired MR data establishes both a morphologic and functional evaluation of suspect lesions and adjacent organs. By integrating morphologic and functional MRI additional information can be gathered that possibly impinge on preoperative planning. (orig./AJ) [de
Integrals of the motion, Green functions, and coherent states of dynamical systems
International Nuclear Information System (INIS)
Dodonov, V.V.; Malkin, I.A.; Man'ko, V.I.
1975-01-01
The connection between the integrals of the motion of a quantum system and its Green function is established. The Green function is shown to be the eigenfunction of the integrals of the motion which describe initial points of the system trajectory in the phase space of average coordinates and moments. The explicit expressions for the Green functions of the N-dimensional system with the Hamiltonians which is the most general quadratic form of coordinates and momenta with time-dependent coefficients is obtained in coordinate, momentum, and coherent states representations. The Green functions of the nonstationary singular oscillator and of the stationary Schroedinger equation are also obtained. (author)
Reduction theorems for weighted integral inequalities on the cone of monotone functions
International Nuclear Information System (INIS)
Gogatishvili, A; Stepanov, V D
2013-01-01
This paper surveys results related to the reduction of integral inequalities involving positive operators in weighted Lebesgue spaces on the real semi-axis and valid on the cone of monotone functions, to certain more easily manageable inequalities valid on the cone of non-negative functions. The case of monotone operators is new. As an application, a complete characterization for all possible integrability parameters is obtained for a number of Volterra operators. Bibliography: 118 titles
Functionalized Nanocellulose-Integrated Heterolayered Nanomats toward Smart Battery Separators.
Kim, Jung-Hwan; Gu, Minsu; Lee, Do Hyun; Kim, Jeong-Hoon; Oh, Yeon-Su; Min, Sa Hoon; Kim, Byeong-Su; Lee, Sang-Young
2016-09-14
Alternative materials obtained from natural resources have recently garnered considerable attention as an innovative solution to bring unprecedented advances in various energy storage systems. Here, we present a new class of heterolayered nanomat-based hierarchical/asymmetric porous membrane with synergistically coupled chemical activity as a nanocellulose-mediated green material strategy to develop smart battery separator membranes far beyond their current state-of-the-art counterparts. This membrane consists of a terpyridine (TPY)-functionalized cellulose nanofibril (CNF) nanoporous thin mat as the top layer and an electrospun polyvinylpyrrolidone (PVP)/polyacrylonitrile (PAN) macroporous thick mat as the support layer. The hierarchical/asymmetric porous structure of the heterolayered nanomat is rationally designed with consideration of the trade-off between leakage current and ion transport rate. The TPY (to chelate Mn(2+) ions) and PVP (to capture hydrofluoric acid)-mediated chemical functionalities bring a synergistic coupling in suppressing Mn(2+)-induced adverse effects, eventually enabling a substantial improvement in the high-temperature cycling performance of cells.
Finned Carbon-Carbon Heat Pipe with Potassium Working Fluid
Juhasz, Albert J.
2010-01-01
This elemental space radiator heat pipe is designed to operate in the 700 to 875 K temperature range. It consists of a C-C (carbon-carbon) shell made from poly-acrylonitride fibers that are woven in an angle interlock pattern and densified with pitch at high process temperature with integrally woven fins. The fins are 2.5 cm long and 1 mm thick, and provide an extended radiating surface at the colder condenser section of the heat pipe. The weave pattern features a continuous fiber bath from the inner tube surface to the outside edges of the fins to maximize the thermal conductance, and to thus minimize the temperature drop at the condenser end. The heat pipe and radiator element together are less than one-third the mass of conventional heat pipes of the same heat rejection surface area. To prevent the molten potassium working fluid from eroding the C C heat pipe wall, the shell is lined with a thin-walled, metallic tube liner (Nb-1 wt.% Zr), which is an integral part of a hermetic metal subassembly which is furnace-brazed to the inner surface of the C-C tube. The hermetic metal liner subassembly includes end caps and fill tubes fabricated from the same Nb-1Zr alloy. A combination of laser and electron beam methods is used to weld the end caps and fill tubes. A tungsten/inert gas weld seals the fill tubes after cleaning and charging the heat pipes with potassium. The external section of this liner, which was formed by a "Uniscan" rolling process, transitions to a larger wall thickness. This section, which protrudes beyond the C-C shell, constitutes the "evaporator" part of the heat pipe, while the section inside the shell constitutes the condenser of the heat pipe (see figure).
International Nuclear Information System (INIS)
Glover, J.B.
1980-07-01
A method is described of making a pipe coupling of the type comprising a plastics socket and a resilient annular sealing member secured in the mouth thereof, in which the material of at least one component of the coupling is subjected to irradiation with high energy radiation whereby the material is caused to undergo cross-linking. As examples, the coupling may comprise a polyethylene or plasticised PVC socket the material of which is subjected to irradiation, and the sealing member may be moulded from a thermoplastic elastomer which is subjected to irradiation. (U.K.)
Directory of Open Access Journals (Sweden)
Olek Małgorzata
2016-01-01
Full Text Available The popularity of solar collectors in Poland is still increasing. The correct location of the collectors and a relatively high density of solar radiation allow delivering heat even in spite of relatively low ambient temperature. Moreover, solar systems used for heating domestic heat water (DHW in summer allow nearly complete elimination of conventional energy sources (e.g. gas, coal. That is why more and more house owners in Poland decide to install solar system installations. In Poland the most common types of solar collectors are flat plate collectors (FPC and evacuated tube collectors with heat pipe (ETCHP; both were selected for the analysis. The heat demand related to the preparation of hot water, connected with the size of solar collectors’ area, has been determined. The analysis includes FPC and ETCHP and heat demand of less than 10 000 kWh/year. Simulations were performed with the Matlab software and using data from a typical meteorological year (TMY. In addition, a 126–year period of measurements of insolation for Krakow has been taken into account. The HDKR model (Hay, Davis, Klucher, Reindl was used for the calculation of solar radiation on the absorber surface. The monthly medium temperature of the absorber depends on the amount of solar system heat and on the heat demand. All the previously mentioned data were used to determine solar efficiency. Due to the fact that solar efficiency and solar system heat are connected, the calculations were made with the use of an iterative method. Additionally, the upper limit for monthly useful solar system heat is resulted from the heat demand and thus the authors prepared a model of statistical solar system heat deviations based on the Monte Carlo method. It has been found that an increase in the useful solar system heat in reference to the heat demand is associated with more than proportional increase in the sizes of the analyzed surfaces of solar collector types.
Multi-function microfluidic platform for sensor integration.
Fernandes, Ana C; Semenova, Daria; Panjan, Peter; Sesay, Adama M; Gernaey, Krist V; Krühne, Ulrich
2018-03-06
The limited availability of metabolite-specific sensors for continuous sampling and monitoring is one of the main bottlenecks contributing to failures in bioprocess development. Furthermore, only a limited number of approaches exist to connect currently available measurement systems with high throughput reactor units. This is especially relevant in the biocatalyst screening and characterization stage of process development. In this work, a strategy for sensor integration in microfluidic platforms is demonstrated, to address the need for rapid, cost-effective and high-throughput screening in bioprocesses. This platform is compatible with different sensor formats by enabling their replacement and was built in order to be highly flexible and thus suitable for a wide range of applications. Moreover, this re-usable platform can easily be connected to analytical equipment, such as HPLC, laboratory scale reactors or other microfluidic chips through the use of standardized fittings. In addition, the developed platform includes a two-sensor system interspersed with a mixing channel, which allows the detection of samples that might be outside the first sensor's range of detection, through dilution of the sample solution up to 10 times. In order to highlight the features of the proposed platform, inline monitoring of glucose levels is presented and discussed. Glucose was chosen due to its importance in biotechnology as a relevant substrate. The platform demonstrated continuous measurement of substrate solutions for up to 12 h. Furthermore, the influence of the fluid velocity on substrate diffusion was observed, indicating the need for in-flow calibration to achieve a good quantitative output. Copyright © 2018 Elsevier B.V. All rights reserved.
Sensorimotor integration for functional recovery and the Bobath approach.
Levin, Mindy F; Panturin, Elia
2011-04-01
Bobath therapy is used to treat patients with neurological disorders. Bobath practitioners use hands-on approaches to elicit and reestablish typical movement patterns through therapist-controlled sensorimotor experiences within the context of task accomplishment. One aspect of Bobath practice, the recovery of sensorimotor function, is reviewed within the framework of current motor control theories. We focus on the role of sensory information in movement production, the relationship between posture and movement and concepts related to motor recovery and compensation with respect to this therapeutic approach. We suggest that a major barrier to the evaluation of the therapeutic effectiveness of the Bobath concept is the lack of a unified framework for both experimental identification and treatment of neurological motor deficits. More conclusive analysis of therapeutic effectiveness requires the development of specific outcomes that measure movement quality.
Integrated Control Strategies Supporting Autonomous Functionalities in Mobile Robots
Directory of Open Access Journals (Sweden)
Brandon Sights
2006-10-01
Full Text Available High-level intelligence allows a mobile robot to create and interpret complex world models, but without a precise control system, the accuracy of the world model and the robot's ability to interact with its surroundings are greatly diminished. This problem is amplified when the environment is hostile, such as in a battlefield situation where an error in movement or a slow response may lead to destruction of the robot. As the presence of robots on the battlefield continues to escalate and the trend toward relieving the human of the low-level control burden advances, the ability to combine the functionalities of several critical control systems on a single platform becomes imperative.
Large-bore pipe decontamination
International Nuclear Information System (INIS)
Ebadian, M.A.
1998-01-01
The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system
SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS
Energy Technology Data Exchange (ETDEWEB)
Kiran M. Kothari; Gerard T. Pittard
2005-04-01
robots for cast-iron pipe to assure their commercial success. For Task 4 (Design, Fabricate and Test Patch Setting Robotic Train), previous problems with bladder design and elastomeric material expansion in the large mains were addressed. A new bladder based on a commercially available design was obtained and tested with success. Minor improvements were highlighted during patch-setting tests and are now being pursued. For Task 5 (Design and Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera), the previous field tests showed clearly that, in mains with low gas velocities, it will be necessary to improve the system's capacity to remove debris from the immediate vicinity of the bell and spigot joints. Otherwise, material removed by the cleaning flails (the flails were found to be very effective in cleaning bell and spigot joints) falls directly to the low side of the pipe and accumulates in a pile. This accumulation can prevent the sleeve from achieving a leak-free repair. Similarly, it is also deemed necessary to design an assembly to capture existing servicetap coupons and allow their removal from the inside of the pipe. Task 6 (Design and Build Surface Control and Monitoring System) was previously completed with the control and computer display functions being operated through LabVIEW. However, this must now be revisited to add control routines for the coupon catcher that will be added. This will most likely include a lift-off/place-on magnet translation function. Task 7 (Design and Fabricate Large Diameter Live Access System) progressed to completing the detailed design for a bolt-on entry fitting for 12-inch diameter cast-iron pipe in the current quarter. The drilling assembly for cutting an access hole through the wall of the gas main was also designed, along with a plug assembly to allow removing all tools from the live main and setting a blind flange on the entry fitting prior to burial. These designs are described in detail in the report. Task
Batra, Prag; Bandt, S. Kathleen; Leuthardt, Eric C.
2016-01-01
Background: Awake craniotomy is currently the gold standard for aggressive tumor resections in eloquent cortex. However, a significant subset of patients is unable to tolerate this procedure, particularly the very young or old or those with psychiatric comorbidities, cardiopulmonary comorbidities, or obesity, among other conditions. In these cases, typical alternative procedures include biopsy alone or subtotal resection, both of which are associated with diminished surgical outcomes. Case Description: Here, we report the successful use of a preoperatively obtained resting state functional connectivity magnetic resonance imaging (MRI) integrated with intraoperative neuronavigation software in order to perform functional cortical mapping in the setting of an aborted awake craniotomy due to loss of airway. Conclusion: Resting state functional connectivity MRI integrated with intraoperative neuronavigation software can provide an alternative option for functional cortical mapping in the setting of an aborted awake craniotomy. PMID:26958419
Heat pipe and method of production of a heat pipe
International Nuclear Information System (INIS)
Kemp, R.S.
1975-01-01
The heat pipe consists of a copper pipe in which a capillary network or wick of heat-conducting material is arranged in direct contact with the pipe along its whole length. Furthermore, the interior space of the tube contains an evaporable liquid for pipe transfer. If water is used, the capillary network consists of, e.g., a phosphorus band network. To avoid contamination of the interior of the heat pipe during sealing, its ends are closed by mechanical deformation so that an arched or plane surface is obtained which is in direct contact with the network. After evacuation of the interior space, the remaining opening is closed with a tapered pin. The ratio wall thickness/tube diameter is between 0.01 and 0.6. (TK/AK) [de
Study on Monitoring Rock Burst through Drill Pipe Torque
Directory of Open Access Journals (Sweden)
Zhonghua Li
2015-01-01
Full Text Available This paper presents a new method to identify the danger of rock burst from the response of drill pipe torque during drilling process to overcome many defects of the conventional volume of drilled coal rubble method. It is based on the relationship of rock burst with coal stress and coal strength. Through theoretic analysis, the change mechanism of drill pipe torque and the relationship of drill pipe torque with coal stress, coal strength, and drilling speed are investigated. In light of the analysis, a new device for testing drill pipe torque is developed and a series of experiments is performed under different conditions; the results show that drill pipe torque linearly increases with the increase of coal stress and coal strength; the faster the drilling speed, the larger the drill pipe torque, and vice versa. When monitoring rock burst by drill pipe torque method, the index of rock burst is regarded as a function in which coal stress index and coal strength index are principal variables. The results are important for the forecast of rock burst in coal mine.
Heat pipe thermodynamic cycle and its applications
International Nuclear Information System (INIS)
Kobayashi, Y.
1985-01-01
A new type of thermodynamic cycle originating from extended application of the heat pipe principle is proposed and its thermal cycle is discussed from the viewpoint of theoretical thermal efficiency and Coefficient of Performance. An idealized structure that will meet the basic function for thermal systems is also suggested. A significant advantage of these systems is their use with lowtemperature energy sources found in nature or heat rejected from industrial sites
On the elastostatic significance of four boundary integrals involving biharmonic functions
DEFF Research Database (Denmark)
Christiansen, Søren
1998-01-01
For a biharmonic function U, depending upon two space variables, it is known that four curve integrals, which involve U and some derivatives of U evaluated at a closed boundary, must be equal to zero. When U plays the role of an Airy stress function, we investigate the elastostatic significance o...... with the values of the four integrals. The computer algebra system Maple V has been an invaluable tool. By suitable comparisons among the various results obtained we are led to the conclusions about the elastostatic significance of the integrals....