WorldWideScience

Sample records for integrative plant biology

  1. Integrated Network Analysis and Effective Tools in Plant Systems Biology

    Directory of Open Access Journals (Sweden)

    Atsushi eFukushima

    2014-11-01

    Full Text Available One of the ultimate goals in plant systems biology is to elucidate the genotype-phenotype relationship in plant cellular systems. Integrated network analysis that combines omics data with mathematical models has received particular attention. Here we focus on the latest cutting-edge computational advances that facilitate their combination. We highlight (1 network visualization tools, (2 pathway analyses, (3 genome-scale metabolic reconstruction, and (4 the integration of high-throughput experimental data and mathematical models. Multi-omics data that contain the genome, transcriptome, proteome, and metabolome and mathematical models are expected to integrate and expand our knowledge of complex plant metabolisms.

  2. Integrating cell biology and proteomic approaches in plants.

    Science.gov (United States)

    Takáč, Tomáš; Šamajová, Olga; Šamaj, Jozef

    2017-10-03

    Significant improvements of protein extraction, separation, mass spectrometry and bioinformatics nurtured advancements of proteomics during the past years. The usefulness of proteomics in the investigation of biological problems can be enhanced by integration with other experimental methods from cell biology, genetics, biochemistry, pharmacology, molecular biology and other omics approaches including transcriptomics and metabolomics. This review aims to summarize current trends integrating cell biology and proteomics in plant science. Cell biology approaches are most frequently used in proteomic studies investigating subcellular and developmental proteomes, however, they were also employed in proteomic studies exploring abiotic and biotic stress responses, vesicular transport, cytoskeleton and protein posttranslational modifications. They are used either for detailed cellular or ultrastructural characterization of the object subjected to proteomic study, validation of proteomic results or to expand proteomic data. In this respect, a broad spectrum of methods is employed to support proteomic studies including ultrastructural electron microscopy studies, histochemical staining, immunochemical localization, in vivo imaging of fluorescently tagged proteins and visualization of protein-protein interactions. Thus, cell biological observations on fixed or living cell compartments, cells, tissues and organs are feasible, and in some cases fundamental for the validation and complementation of proteomic data. Validation of proteomic data by independent experimental methods requires development of new complementary approaches. Benefits of cell biology methods and techniques are not sufficiently highlighted in current proteomic studies. This encouraged us to review most popular cell biology methods used in proteomic studies and to evaluate their relevance and potential for proteomic data validation and enrichment of purely proteomic analyses. We also provide examples of

  3. Integration of Plant Defense Traits with Biological Control of Arthropod Pests: Challenges and Opportunities.

    Science.gov (United States)

    Peterson, Julie A; Ode, Paul J; Oliveira-Hofman, Camila; Harwood, James D

    2016-01-01

    Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically, plant toxin-, plant nutrient-, and/or physically mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP) traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management.

  4. Integration of plant defense traits with biological control of arthropod pests: challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Julie A Peterson

    2016-11-01

    Full Text Available Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically-, plant toxin-, plant nutrient-, and/or physically-mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management.

  5. MIPS Arabidopsis thaliana Database (MAtDB): an integrated biological knowledge resource for plant genomics

    Science.gov (United States)

    Schoof, Heiko; Ernst, Rebecca; Nazarov, Vladimir; Pfeifer, Lukas; Mewes, Hans-Werner; Mayer, Klaus F. X.

    2004-01-01

    Arabidopsis thaliana is the most widely studied model plant. Functional genomics is intensively underway in many laboratories worldwide. Beyond the basic annotation of the primary sequence data, the annotated genetic elements of Arabidopsis must be linked to diverse biological data and higher order information such as metabolic or regulatory pathways. The MIPS Arabidopsis thaliana database MAtDB aims to provide a comprehensive resource for Arabidopsis as a genome model that serves as a primary reference for research in plants and is suitable for transfer of knowledge to other plants, especially crops. The genome sequence as a common backbone serves as a scaffold for the integration of data, while, in a complementary effort, these data are enhanced through the application of state-of-the-art bioinformatics tools. This information is visualized on a genome-wide and a gene-by-gene basis with access both for web users and applications. This report updates the information given in a previous report and provides an outlook on further developments. The MAtDB web interface can be accessed at http://mips.gsf.de/proj/thal/db. PMID:14681437

  6. Economic value of biological control in integrated pest management of managed plant systems.

    Science.gov (United States)

    Naranjo, Steven E; Ellsworth, Peter C; Frisvold, George B

    2015-01-07

    Biological control is an underlying pillar of integrated pest management, yet little focus has been placed on assigning economic value to this key ecosystem service. Setting biological control on a firm economic foundation would help to broaden its utility and adoption for sustainable crop protection. Here we discuss approaches and methods available for valuation of biological control of arthropod pests by arthropod natural enemies and summarize economic evaluations in classical, augmentative, and conservation biological control. Emphasis is placed on valuation of conservation biological control, which has received little attention. We identify some of the challenges of and opportunities for applying economics to biological control to advance integrated pest management. Interaction among diverse scientists and stakeholders will be required to measure the direct and indirect costs and benefits of biological control that will allow farmers and others to internalize the benefits that incentivize and accelerate adoption for private and public good.

  7. Plant Vascular Biology 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Biao

    2014-11-17

    This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes. The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.

  8. The biology of plant metabolomics

    NARCIS (Netherlands)

    Hall, R.D.

    2011-01-01

    Following a general introduction, this book includes details of metabolomics of model species including Arabidopsis and tomato. Further chapters provide in-depth coverage of abiotic stress, data integration, systems biology, genetics, genomics, chemometrics and biostatisitcs. Applications of plant

  9. Introduction to the Special Issue: Beyond traits: integrating behaviour into plant ecology and biology.

    Science.gov (United States)

    Cahill, James F

    2015-10-26

    The way that plants are conceptualized in the context of ecological understanding is changing. In one direction, a reductionist school is pulling plants apart into a list of measured 'traits', from which ecological function and outcomes of species interactions may be inferred. This special issue offers an alternative, and more holistic, view: that the ecological functions performed by a plant will be a consequence not only of their complement of traits but also of the ways in which their component parts are used in response to environmental and social conditions. This is the realm of behavioural ecology, a field that has greatly advanced our understanding of animal biology, ecology and evolution. Included in this special issue are 10 articles focussing not on the tried and true metaphor that plant growth is similar to animal movement, but instead on how application of principles from animal behaviour can improve our ability to understand plant biology and ecology. The goals are not to draw false parallels, nor to anthropomorphize plant biology, but instead to demonstrate how existing and robust theory based on fundamental principles can provide novel understanding for plants. Key to this approach is the recognition that behaviour and intelligence are not the same. Many organisms display complex behaviours despite a lack of cognition (as it is traditionally understood) or any hint of a nervous system. The applicability of behavioural concepts to plants is further enhanced with the realization that all organisms face the same harsh forces of natural selection in the context of finding resources, mates and coping with neighbours. As these ecological realities are often highly variable in space and time, it is not surprising that all organisms-even plants-exhibit complex behaviours to handle this variability. The articles included here address diverse topics in behavioural ecology, as applied to plants: general conceptual understanding, plant nutrient foraging, root

  10. The role of bacillus-based biological control agents in integrated pest management systems: plant diseases.

    Science.gov (United States)

    Jacobsen, B J; Zidack, N K; Larson, B J

    2004-11-01

    ABSTRACT Bacillus-based biological control agents (BCAs) have great potential in integrated pest management (IPM) systems; however, relatively little work has been published on integration with other IPM management tools. Unfortunately, most research has focused on BCAs as alternatives to synthetic chemical fungicides or bactericides and not as part of an integrated management system. IPM has had many definitions and this review will use the national coalition for IPM definition: "A sustainable approach to managing pests by combining biological, cultural, physical and chemical tools in a way that minimizes economic, health and environmental risks." This review will examine the integrated use of Bacillus-based BCAs with disease management tools, including resistant cultivars, fungicides or bactericides, or other BCAs. This integration is important because the consistency and degree of disease control by Bacillus-based BCAs is rarely equal to the control afforded by the best fungicides or bactericides. In theory, integration of several tools brings stability to disease management programs. Integration of BCAs with other disease management tools often provides broader crop adaptation and both more efficacious and consistent levels of disease control. This review will also discuss the use of Bacillus-based BCAs in fungicide resistance management. Work with Bacillus thuringiensis and insect pest management is the exception to the relative paucity of reports but will not be the focus of this review.

  11. Plant synthetic biology.

    Science.gov (United States)

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. MIPS Arabidopsis thaliana Database (MAtDB): an integrated biological knowledge resource based on the first complete plant genome

    Science.gov (United States)

    Schoof, Heiko; Zaccaria, Paolo; Gundlach, Heidrun; Lemcke, Kai; Rudd, Stephen; Kolesov, Grigory; Arnold, Roland; Mewes, H. W.; Mayer, Klaus F. X.

    2002-01-01

    Arabidopsis thaliana is the first plant for which the complete genome has been sequenced and published. Annotation of complex eukaryotic genomes requires more than the assignment of genetic elements to the sequence. Besides completing the list of genes, we need to discover their cellular roles, their regulation and their interactions in order to understand the workings of the whole plant. The MIPS Arabidopsis thaliana Database (MAtDB; http://mips.gsf.de/proj/thal/db) started out as a repository for genome sequence data in the European Scientists Sequencing Arabidopsis (ESSA) project and the Arabidopsis Genome Initiative. Our aim is to transform MAtDB into an integrated biological knowledge resource by integrating diverse data, tools, query and visualization capabilities and by creating a comprehensive resource for Arabidopsis as a reference model for other species, including crop plants. PMID:11752263

  13. Plant Systems Biology (editorial)

    Science.gov (United States)

    In June 2003, Plant Physiology published an Arabidopsis special issue devoted to plant systems biology. The intention of Natasha Raikhel and Gloria Coruzzi, the two editors of this first-of-its-kind issue, was ‘‘to help nucleate this new effort within the plant community’’ as they considered that ‘‘...

  14. The potential of text mining in data integration and network biology for plant research: a case study on Arabidopsis.

    Science.gov (United States)

    Van Landeghem, Sofie; De Bodt, Stefanie; Drebert, Zuzanna J; Inzé, Dirk; Van de Peer, Yves

    2013-03-01

    Despite the availability of various data repositories for plant research, a wealth of information currently remains hidden within the biomolecular literature. Text mining provides the necessary means to retrieve these data through automated processing of texts. However, only recently has advanced text mining methodology been implemented with sufficient computational power to process texts at a large scale. In this study, we assess the potential of large-scale text mining for plant biology research in general and for network biology in particular using a state-of-the-art text mining system applied to all PubMed abstracts and PubMed Central full texts. We present extensive evaluation of the textual data for Arabidopsis thaliana, assessing the overall accuracy of this new resource for usage in plant network analyses. Furthermore, we combine text mining information with both protein-protein and regulatory interactions from experimental databases. Clusters of tightly connected genes are delineated from the resulting network, illustrating how such an integrative approach is essential to grasp the current knowledge available for Arabidopsis and to uncover gene information through guilt by association. All large-scale data sets, as well as the manually curated textual data, are made publicly available, hereby stimulating the application of text mining data in future plant biology studies.

  15. ePlant and the 3D data display initiative: integrative systems biology on the world wide web.

    Science.gov (United States)

    Fucile, Geoffrey; Di Biase, David; Nahal, Hardeep; La, Garon; Khodabandeh, Shokoufeh; Chen, Yani; Easley, Kante; Christendat, Dinesh; Kelley, Lawrence; Provart, Nicholas J

    2011-01-10

    Visualization tools for biological data are often limited in their ability to interactively integrate data at multiple scales. These computational tools are also typically limited by two-dimensional displays and programmatic implementations that require separate configurations for each of the user's computing devices and recompilation for functional expansion. Towards overcoming these limitations we have developed "ePlant" (http://bar.utoronto.ca/eplant) - a suite of open-source world wide web-based tools for the visualization of large-scale data sets from the model organism Arabidopsis thaliana. These tools display data spanning multiple biological scales on interactive three-dimensional models. Currently, ePlant consists of the following modules: a sequence conservation explorer that includes homology relationships and single nucleotide polymorphism data, a protein structure model explorer, a molecular interaction network explorer, a gene product subcellular localization explorer, and a gene expression pattern explorer. The ePlant's protein structure explorer module represents experimentally determined and theoretical structures covering >70% of the Arabidopsis proteome. The ePlant framework is accessed entirely through a web browser, and is therefore platform-independent. It can be applied to any model organism. To facilitate the development of three-dimensional displays of biological data on the world wide web we have established the "3D Data Display Initiative" (http://3ddi.org).

  16. Integration into plant biology and soil science has provided insights into the total environment.

    Science.gov (United States)

    Shao, Hongbo; Lu, Haiying; Xu, Gang; Marian, Brestic

    2017-02-01

    The total environment includes 5 closely-linking circles, in which biosphere and lithosphere are the active core. As global population increases and urbanization process accelerates, arable land is gradually decreasing under global climate change and the pressure of various types of environmental pollution. This case is especially for China. Land is the most important resources for human beings' survival. How to increase and manage arable land is the key for sustainable agriculture development. China has extensive marshy land that can be reclamated for the better potential land resources under the pre- condition of protecting the environment, which will be a good way for enlarging globally and managing arable land. Related studies have been conducted in China for the past 30years and now many results with obvious practical efficiency have been obtained. For summarizing these results, salt-soil will be the main target and related contents such as nutrient transport, use types, biodiversity and interactions with plants from molecular biology to ecology will be covered, in which the interactions among biosphere, lithosphere, atmosphere and anthroposphere will be focused on. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Integrated Biological Control

    International Nuclear Information System (INIS)

    JOHNSON, A.R.

    2002-01-01

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects; and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (apriori) or in response to existing contamination spread (aposteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and apriori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, aposteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response

  18. Integrating plant and animal biology for the search of novel DNA damage biomarkers

    Czech Academy of Sciences Publication Activity Database

    Nikitaki, Z.; Holá, Marcela; Donà, M.; Pavlopoulou, A.; Michalopoulos, I.; Angelis, Karel; Georgakilas, A. G.; Macovei, I.; Balestrazzi, A.

    2018-01-01

    Roč. 775, JAN-MAR (2018), s. 21-38 ISSN 1383-5742 R&D Projects: GA ČR GA16-01137S Institutional support: RVO:61389030 Keywords : DNA damage response * Ionizing radiation * Radiation exposure monitoring * Radiotolerance * Ultraviolet radiation Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 5.500, year: 2016

  19. From systems biology to photosynthesis and whole-plant physiology: a conceptual model for integrating multi-scale networks.

    Science.gov (United States)

    Weston, David J; Hanson, Paul J; Norby, Richard J; Tuskan, Gerald A; Wullschleger, Stan D

    2012-02-01

    Network analysis is now a common statistical tool for molecular biologists. Network algorithms are readily used to model gene, protein and metabolic correlations providing insight into pathways driving biological phenomenon. One output from such an analysis is a candidate gene list that can be responsible, in part, for the biological process of interest. The question remains, however, as to whether molecular network analysis can be used to inform process models at higher levels of biological organization. In our previous work, transcriptional networks derived from three plant species were constructed, interrogated for orthology and then correlated with photosynthetic inhibition at elevated temperature. One unique aspect of that study was the link from co-expression networks to net photosynthesis. In this addendum, we propose a conceptual model where traditional network analysis can be linked to whole-plant models thereby informing predictions on key processes such as photosynthesis, nutrient uptake and assimilation, and C partitioning.

  20. Integrative radiation systems biology

    International Nuclear Information System (INIS)

    Unger, Kristian

    2014-01-01

    Maximisation of the ratio of normal tissue preservation and tumour cell reduction is the main concept of radiotherapy alone or combined with chemo-, immuno- or biologically targeted therapy. The foremost parameter influencing this ratio is radiation sensitivity and its modulation towards a more efficient killing of tumour cells and a better preservation of normal tissue at the same time is the overall aim of modern therapy schemas. Nevertheless, this requires a deep understanding of the molecular mechanisms of radiation sensitivity in order to identify its key players as potential therapeutic targets. Moreover, the success of conventional approaches that tried to statistically associate altered radiation sensitivity with any molecular phenotype such as gene expression proofed to be somewhat limited since the number of clinically used targets is rather sparse. However, currently a paradigm shift is taking place from pure frequentistic association analysis to the rather holistic systems biology approach that seeks to mathematically model the system to be investigated and to allow the prediction of an altered phenotype as the function of one single or a signature of biomarkers. Integrative systems biology also considers the data from different molecular levels such as the genome, transcriptome or proteome in order to partially or fully comprehend the causal chain of molecular mechanisms. An example for the application of this concept currently carried out at the Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer” of the Helmholtz-Zentrum München and the LMU Munich is described. This review article strives for providing a compact overview on the state of the art of systems biology, its actual challenges, potential applications, chances and limitations in radiation oncology research working towards improved personalised therapy concepts using this relatively new methodology

  1. Opportunities in plant synthetic biology.

    Science.gov (United States)

    Cook, Charis; Martin, Lisa; Bastow, Ruth

    2014-05-01

    Synthetic biology is an emerging field uniting scientists from all disciplines with the aim of designing or re-designing biological processes. Initially, synthetic biology breakthroughs came from microbiology, chemistry, physics, computer science, materials science, mathematics, and engineering disciplines. A transition to multicellular systems is the next logical step for synthetic biologists and plants will provide an ideal platform for this new phase of research. This meeting report highlights some of the exciting plant synthetic biology projects, and tools and resources, presented and discussed at the 2013 GARNet workshop on plant synthetic biology.

  2. Integrative Radiation Biology

    Energy Technology Data Exchange (ETDEWEB)

    Barcellos-Hoff, Mary Helen [New York University School of Medicine, NY (United States)

    2015-02-27

    We plan to study tissue-level mechanisms important to human breast radiation carcinogenesis. We propose that the cell biology of irradiated tissues reveals a coordinated multicellular damage response program in which individual cell contributions are primarily directed towards suppression of carcinogenesis and reestablishment of homeostasis. We identified transforming growth factor β1 (TGFβ) as a pivotal signal. Notably, we have discovered that TGFβ suppresses genomic instability by controlling the intrinsic DNA damage response and centrosome integrity. However, TGFβ also mediates disruption of microenvironment interactions, which drive epithelial to mesenchymal transition in irradiated human mammary epithelial cells. This apparent paradox of positive and negative controls by TGFβ is the topic of the present proposal. First, we postulate that these phenotypes manifest differentially following fractionated or chronic exposures; second, that the interactions of multiple cell types in tissues modify the responses evident in this single cell type culture models. The goals are to: 1) study the effect of low dose rate and fractionated radiation exposure in combination with TGFβ on the irradiated phenotype and genomic instability of non-malignant human epithelial cells; and 2) determine whether stromal-epithelial interactions suppress the irradiated phenotype in cell culture and the humanized mammary mouse model. These data will be used to 3) develop a systems biology model that integrates radiation effects across multiple levels of tissue organization and time. Modeling multicellular radiation responses coordinated via extracellular signaling could have a significant impact on the extrapolation of human health risks from high dose to low dose/rate radiation exposure.

  3. Plant Biology Science Projects.

    Science.gov (United States)

    Hershey, David R.

    This book contains science projects about seed plants that deal with plant physiology, plant ecology, and plant agriculture. Each of the projects includes a step-by-step experiment followed by suggestions for further investigations. Chapters include: (1) "Bean Seed Imbibition"; (2) "Germination Percentages of Different Types of Seeds"; (3)…

  4. Learning Biology with Plant Pathology.

    Science.gov (United States)

    Carroll, Juliet E.

    This monograph contains 10 plant pathology experiments that were written to correspond to portions of a biology curriculum. Each experiment is suitable to a biology topic and designed to encourage exploration of those biological concepts being taught. Experiments include: (1) The Symptoms and Signs of Disease; (2) Koch's Postulates; (3)…

  5. Integrated Nuclear Recycle Plant

    International Nuclear Information System (INIS)

    Patodi, Anuj; Parashar, Abhishek; Samadhiya, Akshay K.; Ray, Saheli; Dey, Mitun; Singh, K.K.

    2017-01-01

    Nuclear Recycle Board (NRB), Tarapur proposes to set up an 'Integrated Nuclear Recycle Plant' at Tarapur. This will be located in the premises of BARC facilities. The project location is at coastal town of Tarapur, 130 Km north of Mumbai. Project area cover of INRP is around 80 hectares. The plant will be designed to process spent fuel received from Pressurized Heavy Water Reactors (PHWRs). This is the first large scale integrated plant of the country. INRP will process spent fuel obtained from indigenous nuclear power plants and perform left over nuclear waste disposal

  6. The Potential of Text Mining in Data Integration and Network Biology for Plant Research: A Case Study on Arabidopsis[C][W

    Science.gov (United States)

    Van Landeghem, Sofie; De Bodt, Stefanie; Drebert, Zuzanna J.; Inzé, Dirk; Van de Peer, Yves

    2013-01-01

    Despite the availability of various data repositories for plant research, a wealth of information currently remains hidden within the biomolecular literature. Text mining provides the necessary means to retrieve these data through automated processing of texts. However, only recently has advanced text mining methodology been implemented with sufficient computational power to process texts at a large scale. In this study, we assess the potential of large-scale text mining for plant biology research in general and for network biology in particular using a state-of-the-art text mining system applied to all PubMed abstracts and PubMed Central full texts. We present extensive evaluation of the textual data for Arabidopsis thaliana, assessing the overall accuracy of this new resource for usage in plant network analyses. Furthermore, we combine text mining information with both protein–protein and regulatory interactions from experimental databases. Clusters of tightly connected genes are delineated from the resulting network, illustrating how such an integrative approach is essential to grasp the current knowledge available for Arabidopsis and to uncover gene information through guilt by association. All large-scale data sets, as well as the manually curated textual data, are made publicly available, hereby stimulating the application of text mining data in future plant biology studies. PMID:23532071

  7. Plant biology in the future.

    Science.gov (United States)

    Bazzaz, F A

    2001-05-08

    In the beginning of modern plant biology, plant biologists followed a simple model for their science. This model included important branches of plant biology known then. Of course, plants had to be identified and classified first. Thus, there was much work on taxonomy, genetics, and physiology. Ecology and evolution were approached implicitly, rather than explicitly, through paleobotany, taxonomy, morphology, and historical geography. However, the burgeoning explosion of knowledge and great advances in molecular biology, e.g., to the extent that genes for specific traits can be added (or deleted) at will, have created a revolution in the study of plants. Genomics in agriculture has made it possible to address many important issues in crop production by the identification and manipulation of genes in crop plants. The current model of plant study differs from the previous one in that it places greater emphasis on developmental controls and on evolution by differential fitness. In a rapidly changing environment, the current model also explicitly considers the phenotypic variation among individuals on which selection operates. These are calls for the unity of science. In fact, the proponents of "Complexity Theory" think there are common algorithms describing all levels of organization, from atoms all the way to the structure of the universe, and that when these are discovered, the issue of scaling will be greatly simplified! Plant biology must seriously contribute to, among other things, meeting the nutritional needs of the human population. This challenge constitutes a key part of the backdrop against which future evolution will occur. Genetic engineering technologies are and will continue to be an important component of agriculture; however, we must consider the evolutionary implications of these new technologies. Meeting these demands requires drastic changes in the undergraduate curriculum. Students of biology should be trained in molecular, cellular, organismal

  8. The iPlant Collaborative: Cyberinfrastructure for Plant Biology.

    Science.gov (United States)

    Goff, Stephen A; Vaughn, Matthew; McKay, Sheldon; Lyons, Eric; Stapleton, Ann E; Gessler, Damian; Matasci, Naim; Wang, Liya; Hanlon, Matthew; Lenards, Andrew; Muir, Andy; Merchant, Nirav; Lowry, Sonya; Mock, Stephen; Helmke, Matthew; Kubach, Adam; Narro, Martha; Hopkins, Nicole; Micklos, David; Hilgert, Uwe; Gonzales, Michael; Jordan, Chris; Skidmore, Edwin; Dooley, Rion; Cazes, John; McLay, Robert; Lu, Zhenyuan; Pasternak, Shiran; Koesterke, Lars; Piel, William H; Grene, Ruth; Noutsos, Christos; Gendler, Karla; Feng, Xin; Tang, Chunlao; Lent, Monica; Kim, Seung-Jin; Kvilekval, Kristian; Manjunath, B S; Tannen, Val; Stamatakis, Alexandros; Sanderson, Michael; Welch, Stephen M; Cranston, Karen A; Soltis, Pamela; Soltis, Doug; O'Meara, Brian; Ane, Cecile; Brutnell, Tom; Kleibenstein, Daniel J; White, Jeffery W; Leebens-Mack, James; Donoghue, Michael J; Spalding, Edgar P; Vision, Todd J; Myers, Christopher R; Lowenthal, David; Enquist, Brian J; Boyle, Brad; Akoglu, Ali; Andrews, Greg; Ram, Sudha; Ware, Doreen; Stein, Lincoln; Stanzione, Dan

    2011-01-01

    The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services.

  9. The iPlant Collaborative: Cyberinfrastructure for Plant Biology

    Directory of Open Access Journals (Sweden)

    Stephen A Goff

    2011-07-01

    Full Text Available The iPlant Collaborative (iPlant is a United States National Science Foundation (NSF funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006. iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services.

  10. The iPlant Collaborative: Cyberinfrastructure for Plant Biology

    Science.gov (United States)

    Goff, Stephen A.; Vaughn, Matthew; McKay, Sheldon; Lyons, Eric; Stapleton, Ann E.; Gessler, Damian; Matasci, Naim; Wang, Liya; Hanlon, Matthew; Lenards, Andrew; Muir, Andy; Merchant, Nirav; Lowry, Sonya; Mock, Stephen; Helmke, Matthew; Kubach, Adam; Narro, Martha; Hopkins, Nicole; Micklos, David; Hilgert, Uwe; Gonzales, Michael; Jordan, Chris; Skidmore, Edwin; Dooley, Rion; Cazes, John; McLay, Robert; Lu, Zhenyuan; Pasternak, Shiran; Koesterke, Lars; Piel, William H.; Grene, Ruth; Noutsos, Christos; Gendler, Karla; Feng, Xin; Tang, Chunlao; Lent, Monica; Kim, Seung-Jin; Kvilekval, Kristian; Manjunath, B. S.; Tannen, Val; Stamatakis, Alexandros; Sanderson, Michael; Welch, Stephen M.; Cranston, Karen A.; Soltis, Pamela; Soltis, Doug; O'Meara, Brian; Ane, Cecile; Brutnell, Tom; Kleibenstein, Daniel J.; White, Jeffery W.; Leebens-Mack, James; Donoghue, Michael J.; Spalding, Edgar P.; Vision, Todd J.; Myers, Christopher R.; Lowenthal, David; Enquist, Brian J.; Boyle, Brad; Akoglu, Ali; Andrews, Greg; Ram, Sudha; Ware, Doreen; Stein, Lincoln; Stanzione, Dan

    2011-01-01

    The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services. PMID:22645531

  11. Integrated turbomachine oxygen plant

    Science.gov (United States)

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

    2014-06-17

    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  12. An Integrated Approach to Biology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 8. An Integrated Approach to Biology. Aniket Bhattacharya. General Article Volume 16 Issue 8 August 2011 pp 742-753. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/016/08/0742-0753 ...

  13. Mitochondrial redox biology and homeostasis in plants.

    Science.gov (United States)

    Noctor, Graham; De Paepe, Rosine; Foyer, Christine H

    2007-03-01

    Mitochondria are key players in plant cell redox homeostasis and signalling. Earlier concepts that regarded mitochondria as secondary to chloroplasts as the powerhouses of photosynthetic cells, with roles in cell proliferation, death and ageing described largely by analogy to animal paradigms, have been replaced by the new philosophy of integrated cellular energy and redox metabolism involving mitochondria and chloroplasts. Thanks to oxygenic photosynthesis, plant mitochondria often operate in an oxygen- and carbohydrate-rich environment. This rather unique environment necessitates extensive flexibility in electron transport pathways and associated NAD(P)-linked enzymes. In this review, mitochondrial redox metabolism is discussed in relation to the integrated cellular energy and redox function that controls plant cell biology and fate.

  14. Integrative biological analysis for neuropsychopharmacology.

    Science.gov (United States)

    Emmett, Mark R; Kroes, Roger A; Moskal, Joseph R; Conrad, Charles A; Priebe, Waldemar; Laezza, Fernanda; Meyer-Baese, Anke; Nilsson, Carol L

    2014-01-01

    Although advances in psychotherapy have been made in recent years, drug discovery for brain diseases such as schizophrenia and mood disorders has stagnated. The need for new biomarkers and validated therapeutic targets in the field of neuropsychopharmacology is widely unmet. The brain is the most complex part of human anatomy from the standpoint of number and types of cells, their interconnections, and circuitry. To better meet patient needs, improved methods to approach brain studies by understanding functional networks that interact with the genome are being developed. The integrated biological approaches--proteomics, transcriptomics, metabolomics, and glycomics--have a strong record in several areas of biomedicine, including neurochemistry and neuro-oncology. Published applications of an integrated approach to projects of neurological, psychiatric, and pharmacological natures are still few but show promise to provide deep biological knowledge derived from cells, animal models, and clinical materials. Future studies that yield insights based on integrated analyses promise to deliver new therapeutic targets and biomarkers for personalized medicine.

  15. WISB: Warwick Integrative Synthetic Biology Centre.

    Science.gov (United States)

    McCarthy, John

    2016-06-15

    Synthetic biology promises to create high-impact solutions to challenges in the areas of biotechnology, human/animal health, the environment, energy, materials and food security. Equally, synthetic biologists create tools and strategies that have the potential to help us answer important fundamental questions in biology. Warwick Integrative Synthetic Biology (WISB) pursues both of these mutually complementary 'build to apply' and 'build to understand' approaches. This is reflected in our research structure, in which a core theme on predictive biosystems engineering develops underpinning understanding as well as next-generation experimental/theoretical tools, and these are then incorporated into three applied themes in which we engineer biosynthetic pathways, microbial communities and microbial effector systems in plants. WISB takes a comprehensive approach to training, education and outreach. For example, WISB is a partner in the EPSRC/BBSRC-funded U.K. Doctoral Training Centre in synthetic biology, we have developed a new undergraduate module in the subject, and we have established five WISB Research Career Development Fellowships to support young group leaders. Research in Ethical, Legal and Societal Aspects (ELSA) of synthetic biology is embedded in our centre activities. WISB has been highly proactive in building an international research and training network that includes partners in Barcelona, Boston, Copenhagen, Madrid, Marburg, São Paulo, Tartu and Valencia. © 2016 The Author(s).

  16. Integrating phosphoproteomics in systems biology

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2014-07-01

    Full Text Available Phosphorylation of serine, threonine and tyrosine plays significant roles in cellular signal transduction and in modifying multiple protein functions. Phosphoproteins are coordinated and regulated by a network of kinases, phosphatases and phospho-binding proteins, which modify the phosphorylation states, recognize unique phosphopeptides, or target proteins for degradation. Detailed and complete information on the structure and dynamics of these networks is required to better understand fundamental mechanisms of cellular processes and diseases. High-throughput technologies have been developed to investigate phosphoproteomes in model organisms and human diseases. Among them, mass spectrometry (MS-based technologies are the major platforms and have been widely applied, which has led to explosive growth of phosphoproteomic data in recent years. New bioinformatics tools are needed to analyze and make sense of these data. Moreover, most research has focused on individual phosphoproteins and kinases. To gain a more complete knowledge of cellular processes, systems biology approaches, including pathways and networks modeling, have to be applied to integrate all components of the phosphorylation machinery, including kinases, phosphatases, their substrates, and phospho-binding proteins. This review presents the latest developments of bioinformatics methods and attempts to apply systems biology to analyze phosphoproteomics data generated by MS-based technologies. Challenges and future directions in this field will be also discussed.

  17. Ninth International Workshop on Plant Membrane Biology

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This report is a compilation of abstracts from papers which were discussed at a workshop on plant membrane biology. Topics include: plasma membrane ATP-ases; plant-environment interactions, membrane receptors; signal transduction; ion channel physiology; biophysics and molecular biology; vaculor H+ pumps; sugar carriers; membrane transport; and cellular structure and function.

  18. Biological Control of Plant Disease Caused by Bacteria

    Directory of Open Access Journals (Sweden)

    Triwidodo Arwiyanto

    2014-07-01

    Full Text Available Bacterial diseases in plants are difficult to control. The emphasis is on preventing the spread of the bacteria rather than curing the diseased plant. Integrated management measures for bacterial plant pathogens should be applied for successfull control. Biological control is one of the control measures viz. through the use of microorganisms to suppress the growth and development of bacterial plant pathogen and ultimately reduce the possibility of disease onset. The study of biological control of bacterial plant pathogen was just began compared with of fungal plant pathogen. The ecological nature of diverse bacterial plant pathogens has led scientists to apply different approach in the investigation of its biological control. The complex process of entrance to its host plant for certain soil-borne bacterial plant pathogens need special techniques and combination of more than one biological control agent. Problem and progress in controlling bacterial plant pathogens biologically will be discussed in more detail in the paper and some commercial products of biological control agents (biopesticides will be introduced.     Penyakit tumbuhan karena bakteri sulit dikendalikan. Penekanan pengendalian adalah pada pencegahan penyebaran bakteri patogen dan bukan pada penyembuhan tanaman yang sudah sakit. Untuk suksesnya pengendalian bakteri patogen tumbuhan diperlukan cara pengelolaan yang terpadu. Pengendalian secara biologi merupakan salah satu cara pengendalian dengan menggunakan mikroorganisme untuk menekan pertumbuhan dan perkembangan bakteri patogen tumbuhan dengan tujuan akhir menurunkan kemungkinan timbulnya penyakit. Sifat ekologi bakteri patogen tumbuhan yang berbeda-beda mengharuskan pendekatan yang berbeda pula dalam pengendaliannya secara biologi. Masalah dan perkembangan dalam pengendalian bakteri patogen tumbuhan secara biologi didiskusikan secara detail dalam makalah ini.

  19. Biology as an Integrating Natural Science Domain

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 3. Biology as an Integrating Natural Science Domain: A Proposal for BSc (Hons) in Integrated Biology. Kambadur Muralidhar. Classroom Volume 13 Issue 3 March 2008 pp 272-276 ...

  20. Integrating systems biology models and biomedical ontologies.

    Science.gov (United States)

    Hoehndorf, Robert; Dumontier, Michel; Gennari, John H; Wimalaratne, Sarala; de Bono, Bernard; Cook, Daniel L; Gkoutos, Georgios V

    2011-08-11

    Systems biology is an approach to biology that emphasizes the structure and dynamic behavior of biological systems and the interactions that occur within them. To succeed, systems biology crucially depends on the accessibility and integration of data across domains and levels of granularity. Biomedical ontologies were developed to facilitate such an integration of data and are often used to annotate biosimulation models in systems biology. We provide a framework to integrate representations of in silico systems biology with those of in vivo biology as described by biomedical ontologies and demonstrate this framework using the Systems Biology Markup Language. We developed the SBML Harvester software that automatically converts annotated SBML models into OWL and we apply our software to those biosimulation models that are contained in the BioModels Database. We utilize the resulting knowledge base for complex biological queries that can bridge levels of granularity, verify models based on the biological phenomenon they represent and provide a means to establish a basic qualitative layer on which to express the semantics of biosimulation models. We establish an information flow between biomedical ontologies and biosimulation models and we demonstrate that the integration of annotated biosimulation models and biomedical ontologies enables the verification of models as well as expressive queries. Establishing a bi-directional information flow between systems biology and biomedical ontologies has the potential to enable large-scale analyses of biological systems that span levels of granularity from molecules to organisms.

  1. BIOLOGICAL CONTROL OF WEEDS BY MEANS OF PLANT PATHOGENS

    Directory of Open Access Journals (Sweden)

    Marija Ravlić

    2014-06-01

    Full Text Available Biological control is the use of live beneficial organisms and products of their metabolism in the pests control. Plant pathogens can be used for weed control in three different ways: as classical, conservation and augmentative (inoculative and inundated biological control. Inundated biological control involves the use of bioherbicides (mycoherbicides or artificial breeding of pathogens and application in specific stages of crops and weeds. Biological control of weeds can be used where chemical herbicides are not allowed, if resistant weed species are present or in the integrated pest management against weeds with reduced herbicides doses and other non-chemical measures, but it has certain limitations and disadvantages.

  2. The biology of marine plants

    National Research Council Canada - National Science Library

    Dring, M.J

    1982-01-01

    Since over 90% of the species of marine plants are algae, most of the book is devoted to the marine representatives of this group, with examples from all oceans and coasts of the world where detailed work has been done...

  3. Data integration in biological research: an overview.

    Science.gov (United States)

    Lapatas, Vasileios; Stefanidakis, Michalis; Jimenez, Rafael C; Via, Allegra; Schneider, Maria Victoria

    2015-12-01

    Data sharing, integration and annotation are essential to ensure the reproducibility of the analysis and interpretation of the experimental findings. Often these activities are perceived as a role that bioinformaticians and computer scientists have to take with no or little input from the experimental biologist. On the contrary, biological researchers, being the producers and often the end users of such data, have a big role in enabling biological data integration. The quality and usefulness of data integration depend on the existence and adoption of standards, shared formats, and mechanisms that are suitable for biological researchers to submit and annotate the data, so it can be easily searchable, conveniently linked and consequently used for further biological analysis and discovery. Here, we provide background on what is data integration from a computational science point of view, how it has been applied to biological research, which key aspects contributed to its success and future directions.

  4. Methods for plant molecular biology

    National Research Council Canada - National Science Library

    Weissbach, Arthur; Weissbach, Herbert

    1988-01-01

    .... Current techniques to carry out plant cell culture and protoplast formation are described as are methods for gene and organelle transfer. The detection of DNA and RNA viruses by molecular probes or ELISA assays and the cloning and transcription of viral RNA complete the volume.

  5. Biological effect of radionuclides on plants

    International Nuclear Information System (INIS)

    Prister, B.S.; Khal'chenko, V.A.; Polyakova, V.Y.; Shevchenko, V.A.; Shejn, G.P.; Aleksakhin, R.M.

    1979-01-01

    Stated are dosimetry principles and given is an analysis of biological radionuclide effect on plants in aerial and root intakes. A comparative barley radiosensitivity characteristic depending on plant development phases during irradiation is given using LD 50 criteria. Considered is a possibility for using generalized bioinformation parameters as sensitive indications for estimating biological effects due to the influence of low radiation doses. On the grounds of data obtained generalization are forecasted probable losses of crops when getting radionuclides into plants during various vegetation periods

  6. Integrating rehabilitation engineering technology with biologics.

    Science.gov (United States)

    Collinger, Jennifer L; Dicianno, Brad E; Weber, Douglas J; Cui, Xinyan Tracy; Wang, Wei; Brienza, David M; Boninger, Michael L

    2011-06-01

    Rehabilitation engineers apply engineering principles to improve function or to solve challenges faced by persons with disabilities. It is critical to integrate the knowledge of biologics into the process of rehabilitation engineering to advance the field and maximize potential benefits to patients. Some applications in particular demonstrate the value of a symbiotic relationship between biologics and rehabilitation engineering. In this review we illustrate how researchers working with neural interfaces and integrated prosthetics, assistive technology, and biologics data collection are currently integrating these 2 fields. We also discuss the potential for further integration of biologics and rehabilitation engineering to deliver the best technologies and treatments to patients. Engineers and clinicians must work together to develop technologies that meet clinical needs and are accessible to the intended patient population. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  7. Plant pathology: a story about biology.

    Science.gov (United States)

    Gordon, Thomas R; Leveau, Johan H J

    2010-01-01

    Disease is a universal feature of life for multicellular organisms, and the study of disease has contributed to the establishment of key concepts in the biological sciences. This implies strong connections between plant pathology and basic biology, something that could perhaps be made more apparent to undergraduate students interested in the life sciences. To that end, we present an instructional narrative that begins with a simple question: Why are there diseases? Responses and follow-up questions can facilitate exploration of such topics as the evolution of parasitism, plant adaptations to parasitism, impacts of parasites on native plant communities, and ways in which human intervention can foster the emergence of aggressive plant pathogens. This approach may help to attract students who would not have found their way to plant pathology through traditional pathways. Packaging the narrative as a game may render it more interesting and accessible, particularly to a younger audience.

  8. Monitoring Biological Activity at Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  9. Semantic Web meets Integrative Biology: a survey.

    Science.gov (United States)

    Chen, Huajun; Yu, Tong; Chen, Jake Y

    2013-01-01

    Integrative Biology (IB) uses experimental or computational quantitative technologies to characterize biological systems at the molecular, cellular, tissue and population levels. IB typically involves the integration of the data, knowledge and capabilities across disciplinary boundaries in order to solve complex problems. We identify a series of bioinformatics problems posed by interdisciplinary integration: (i) data integration that interconnects structured data across related biomedical domains; (ii) ontology integration that brings jargons, terminologies and taxonomies from various disciplines into a unified network of ontologies; (iii) knowledge integration that integrates disparate knowledge elements from multiple sources; (iv) service integration that build applications out of services provided by different vendors. We argue that IB can benefit significantly from the integration solutions enabled by Semantic Web (SW) technologies. The SW enables scientists to share content beyond the boundaries of applications and websites, resulting into a web of data that is meaningful and understandable to any computers. In this review, we provide insight into how SW technologies can be used to build open, standardized and interoperable solutions for interdisciplinary integration on a global basis. We present a rich set of case studies in system biology, integrative neuroscience, bio-pharmaceutics and translational medicine, to highlight the technical features and benefits of SW applications in IB.

  10. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science

    Science.gov (United States)

    Hong, Jun; Yang, Litao; Zhang, Dabing; Shi, Jianxin

    2016-01-01

    As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality. PMID:27258266

  11. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science

    Directory of Open Access Journals (Sweden)

    Jun Hong

    2016-06-01

    Full Text Available As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality.

  12. Lunar plant biology--a review of the Apollo era.

    Science.gov (United States)

    Ferl, Robert J; Paul, Anna-Lisa

    2010-04-01

    Recent plans for human return to the Moon have significantly elevated scientific interest in the lunar environment with emphasis on the science to be done in preparation for the return and while on the lunar surface. Since the return to the Moon is envisioned as a dedicated and potentially longer-term commitment to lunar exploration, questions of the lunar environment and particularly its impact on biology and biological systems have become a significant part of the lunar science discussion. Plants are integral to the discussion of biology on the Moon. Plants are envisioned as important components of advanced habitats and fundamental components of advanced life-support systems. Moreover, plants are sophisticated multicellular eukaryotic life-forms with highly orchestrated developmental processes, well-characterized signal transduction pathways, and exceedingly fine-tuned responses to their environments. Therefore, plants represent key test organisms for understanding the biological impact of the lunar environment on terrestrial life-forms. Indeed, plants were among the initial and primary organisms that were exposed to returned lunar regolith from the Apollo lunar missions. This review discusses the original experiments involving plants in association with the Apollo samples, with the intent of understanding those studies within the context of the first lunar exploration program and drawing from those experiments the data to inform the studies critical within the next lunar exploration science agenda.

  13. Nuclear Plant Integrated Outage Management

    International Nuclear Information System (INIS)

    Gerstberger, C. R.; Coulehan, R. J.; Tench, W. A.

    1992-01-01

    This paper is a discussion of an emerging concept for improving nuclear plant outage performance - integrated outage management. The paper begins with an explanation of what the concept encompasses, including a scope definition of the service and descriptions of the organization structure, various team functions, and vendor/customer relationships. The evolvement of traditional base scope services to the integrated outage concept is addressed and includes discussions on changing customer needs, shared risks, and a partnership approach to outages. Experiences with concept implementation from a single service in 1984 to the current volume of integrated outage management presented in this paper. We at Westinghouse believe that the operators of nuclear power plants will continue to be aggressively challenged in the next decade to improve the operating and financial performance of their units. More and more customers in the U. S. are looking towards integrated outage as the way to meet these challenges of the 1990s, an arrangement that is best implemented through a long-term partnering with a single-source supplier of high quality nuclear and turbine generator outage services. This availability, and other important parameters

  14. Plants - biological indicators. Pflanzen - Gradmesser der Umwelt

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The booklet informs briefly and in general on the kinds of damage plants sustain from environmental influences. Subsequently the most important toxic agents in the air (sulfur dioxide, hydrogen fluoride, nitrous gases, photosmog, hydrochloric acid), in the soil (de-icing salt, heavy metals) and in water are dealt with in detail, the sources of pollution named and plants presented that may act as biological indicators for the individual pollutants. Hazards from agriculture (over-fertilization, burning of straw) and from tourism are briefly discussed and some hints given as to how the threats to the plant kingdom could be effectively countered.

  15. Modification-specific proteomics in plant biology

    DEFF Research Database (Denmark)

    Ytterberg, A Jimmy; Jensen, Ole N

    2010-01-01

    and proteomics. In general, methods for PTM characterization are developed to study yeast and mammalian biology and later adopted to investigate plants. Our point of view is that it is advantageous to enrich for PTMs on the peptide level as part of a quantitative proteomics strategy to not only identify the PTM...

  16. Third international congress of plant molecular biology: Molecular biology of plant growth and development

    Energy Technology Data Exchange (ETDEWEB)

    Hallick, R.B. [ed.

    1995-02-01

    The Congress was held October 6-11, 1991 in Tucson with approximately 3000 scientists attending and over 300 oral presentations and 1800 posters. Plant molecular biology is one of the most rapidly developing areas of the biological sciences. Recent advances in the ability to isolate genes, to study their expression, and to create transgenic plants have had a major impact on our understanding of the many fundamental plant processes. In addition, new approaches have been created to improve plants for agricultural purposes. This is a book of presentation and posters from the conference.

  17. Biologically Active and Antimicrobial Peptides from Plants

    Science.gov (United States)

    Salas, Carlos E.; Badillo-Corona, Jesus A.; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application. PMID:25815307

  18. Biologically Active and Antimicrobial Peptides from Plants

    Directory of Open Access Journals (Sweden)

    Carlos E. Salas

    2015-01-01

    Full Text Available Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application.

  19. PLANT ISOFLAVONES: BIOSYNHTESIS, DETECTION AND BIOLOGICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    V. D. Naumenko

    2013-10-01

    Full Text Available Biological properties, chemical structures and biosynthesis pathways of plant isoflavones, especially soybean isoflavones (daidzein, genistein and glycitein are reviewed. The structures of isoflavones, and their aglicone and glucosides (glycosides forms as well as isoflavone biosynthesis pathways are described. General information about the advanced methods for the detection of isoflavones and their conjugates are considered. The importance of the profiling of isoflavones, flavonoids and their conjugates by means of analytical tools and methods to dissolve some questions in biology and medicine is discussed. The review provides data on the major isoflavone content in some vegetable crops and in the tissues of different soybean varieties. Health benefits and treatment or preventive properties of isoflavones for cancer, cardiovascular, endocrine diseases and metabolic disorders are highlighted. The mechanisms that may explain their positive biological effects are considered. The information on the application of advanced technologies to create new plant forms producing isoflavonoids with a predicted level of isoflavones, which is the most favorable for the treatment is given. The possibilities to use the metabolic engineering for the increasing of accumulation and synthesis of isoflavones at the non-legume crops such as tobacco, Arabidopsis and maize are considered. The examples how the plant tissues, which are not naturally produced of the isoflavones, can obtain potential for the synthesis of biologically active compounds via inducing of the activity of the introduced enzyme isoflavon synthase, are given. Specific biochemical pathways for increasing the synthesis of isoflavone genistein in Arabidopsis thaliana tissues are discussed. It is concluded that plant genetic engineering which is focused on modification of the secondary metabolites contain in plant tissues, enables to create the new crop varieties with improved agronomic properties and

  20. Calculation of integrated biological response in brachytherapy

    International Nuclear Information System (INIS)

    Dale, Roger G.; Coles, Ian P.; Deehan, Charles; O'Donoghue, Joseph A.

    1997-01-01

    Purpose: To present analytical methods for calculating or estimating the integrated biological response in brachytherapy applications, and which allow for the presence of dose gradients. Methods and Materials: The approach uses linear-quadratic (LQ) formulations to identify an equivalent biologically effective dose (BED eq ) which, if applied to a specified tissue volume, would produce the same biological effect as that achieved by a given brachytherapy application. For simple geometrical cases, BED multiplying factors have been derived which allow the equivalent BED for tumors to be estimated from a single BED value calculated at a dose reference point. For more complex brachytherapy applications a voxel-by-voxel determination of the equivalent BED will be more accurate. Equations are derived which when incorporated into brachytherapy software would facilitate such a process. Results: At both high and low dose rates, the BEDs calculated at the dose reference point are shown to be lower than the true values by an amount which depends primarily on the magnitude of the prescribed dose; the BED multiplying factors are higher for smaller prescribed doses. The multiplying factors are less dependent on the assumed radiobiological parameters. In most clinical applications involving multiple sources, particularly those in multiplanar arrays, the multiplying factors are likely to be smaller than those derived here for single sources. The overall suggestion is that the radiobiological consequences of dose gradients in well-designed brachytherapy treatments, although important, may be less significant than is sometimes supposed. The modeling exercise also demonstrates that the integrated biological effect associated with fractionated high-dose-rate (FHDR) brachytherapy will usually be different from that for an 'equivalent' continuous low-dose-rate (CLDR) regime. For practical FHDR regimes involving relatively small numbers of fractions, the integrated biological effect to

  1. 2010 Plant Molecular Biology Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Michael Sussman

    2010-07-23

    The Plant Molecular Biology Conference has traditionally covered a breadth of exciting topics and the 2010 conference will continue in that tradition. Emerging concerns about food security have inspired a program with three main themes: (1) genomics, natural variation and breeding to understand adaptation and crop improvement, (2) hormonal cross talk, and (3) plant/microbe interactions. There are also sessions on epigenetics and proteomics/metabolomics. Thus this conference will bring together a range of disciplines, will foster the exchange of ideas and enable participants to learn of the latest developments and ideas in diverse areas of plant biology. The conference provides an excellent opportunity for individuals to discuss their research because additional speakers in each session will be selected from submitted abstracts. There will also be a poster session each day for a two-hour period prior to dinner. In particular, this conference plays a key role in enabling students and postdocs (the next generation of research leaders) to mingle with pioneers in multiple areas of plant science.

  2. Medicinal plants from Mali: Chemistry and biology.

    Science.gov (United States)

    Wangensteen, Helle; Diallo, Drissa; Paulsen, Berit Smestad

    2015-12-24

    Mali is one of the countries in West Africa where the health system rely the most on traditional medicine. The healers are mainly using medicinal plants for their treatments. The studies performed being the basis for this review is of importance as they will contribute to sustaining the traditional knowledge. They contribute to evaluate and improve locally produced herbal remedies, and the review gives also an overview of the plant preparations that will have the most potential to be evaluated for new Improved Traditional Medicines. The aim of this review is to give an overview of the studies performed related to medicinal plants from Mali in the period 1995-2015. These studies include ethnopharmacology, chemistry and biological studies of the plants that were chosen based on our interviews with the healers in different regions of Mali, and contribute to sustainable knowledge on the medicinal plants. The Department of Traditional Medicine, Bamako, Mali, is responsible for registering the knowledge of the traditional healers on their use of medicinal plants and also identifying compounds in the plants responsible for the bioactivities claimed. The studies reported aimed at getting information from the healers on the use of medicinal plants, and study the biology and chemistry of selected plants for the purpose of verifying the traditional use of the plants. These studies should form the basis for necessary knowledge for the development of registered Improved Traditional Medicines in Mali. The healers were the ethnopharmacological informants. Questions asked initially were related to wound healing. This was because the immune system is involved when wounds are healed, and additionally the immune system is involved in the majority of the illnesses common in Mali. Based on the results of the interviews the plant material for studies was selected. Studies were performed on the plant parts the healers were using when treating their patients. Conventional chromatographic

  3. Integrated Gasification SOFC Plant with a Steam Plant

    DEFF Research Database (Denmark)

    Rokni, Masoud; Pierobon, Leonardo

    2011-01-01

    A hybrid Solid Oxide Fuel Cell (SOFC) and Steam Turbine (ST) plant is integrated with a gasification plant. Wood chips are fed to the gasification plant to produce biogas and then this gas is fed into the anode side of a SOFC cycle to produce electricity and heat. The gases from the SOFC stacks...... enter into a burner to burn the rest of the fuel. The offgases after the burner are now used to generate steam in a Heat Recovery Steam Generator (HRSG). The generated steam is expanded in a ST to produce additional power. Thus a triple hybrid plant based on a gasification plant, a SOFC plant...... and a steam plant is presented and studied. The plant is called as IGSS (Integrated Gasification SOFC Steam plant). Different systems layouts are presented and investigated. Electrical efficiencies up to 56% are achieved which is considerably higher than the conventional integrated gasification combined...

  4. Augmenting Plant Immune Responses and Biological Control by Microbial Determinants

    Directory of Open Access Journals (Sweden)

    Sang Moo Lee

    2015-09-01

    Full Text Available Plant have developed sophisticated defence mechanisms against microbial pathogens. The recent accumulated information allow us to understand the nature of plant immune responses followed by recognition of microbial factors/determinants through cutting-edge genomics and multi-omics techniques. However, the practical approaches to sustain plant health using enhancement of plant immunity is yet to be fully appreciated. Here, we overviewed the general concept and representative examples on the plant immunity. The fungal, bacterial, and viral determinants that was previously reported as the triggers of plant immune responses are introduced and described as the potential protocol of biological control. Specifically, the role of chitin, glucan, lipopolysaccharides/extracellular polysaccharides, microbe/pathogen-associated molecular pattern, antibiotics, mimic-phytohormones, N-acyl homoserine lactone, harpin, vitamins, and volatile organic compounds are considered. We hope that this review stimulates scientific community and farmers to broaden their knowledge on the microbial determinant-based biological control and to apply the technology on the integrated pest management program.

  5. My journey from horticulture to plant biology.

    Science.gov (United States)

    Zeevaart, Jan A D

    2009-01-01

    The author describes the circumstances and opportunities that led him to higher education and to pursue a research career in plant biology. He acknowledges the important roles a few individuals played in guiding him in his career. His early work on flowering was followed by studies on the physiological roles and the metabolism of gibberellins and abscisic acid. He describes how collaborations and technical developments advanced his research from measuring hormones by bioassay to their identification and quantification by mass spectrometry and cloning of hormone biosynthetic genes.

  6. Plant and Animal Gravitational Biology. Part 1

    Science.gov (United States)

    1997-01-01

    Session TA2 includes short reports covering: (1) The Interaction of Microgravity and Ethylene on Soybean Growth and Metabolism; (2) Structure and G-Sensitivity of Root Statocytes under Different Mass Acceleration; (3) Extracellular Production of Taxanes on Cell Surfaces in Simulated Microgravity and Hypergravity; (4) Current Problems of Space Cell Phytobiology; (5) Biological Consequences of Microgravity-Induced Alterations in Water Metabolism of Plant Cells; (6) Localization of Calcium Ions in Chlorella Cells Under Clinorotation; (7) Changes of Fatty Acids Content of Plant Cell Plasma Membranes under Altered Gravity; (8) Simulation of Gravity by Non-Symmetrical Vibrations and Ultrasound; and (9) Response to Simulated weightlessness of In Vitro Cultures of Differentiated Epithelial Follicular Cells from Thyroid.

  7. Integrated omics analysis of specialized metabolism in medicinal plants.

    Science.gov (United States)

    Rai, Amit; Saito, Kazuki; Yamazaki, Mami

    2017-05-01

    Medicinal plants are a rich source of highly diverse specialized metabolites with important pharmacological properties. Until recently, plant biologists were limited in their ability to explore the biosynthetic pathways of these metabolites, mainly due to the scarcity of plant genomics resources. However, recent advances in high-throughput large-scale analytical methods have enabled plant biologists to discover biosynthetic pathways for important plant-based medicinal metabolites. The reduced cost of generating omics datasets and the development of computational tools for their analysis and integration have led to the elucidation of biosynthetic pathways of several bioactive metabolites of plant origin. These discoveries have inspired synthetic biology approaches to develop microbial systems to produce bioactive metabolites originating from plants, an alternative sustainable source of medicinally important chemicals. Since the demand for medicinal compounds are increasing with the world's population, understanding the complete biosynthesis of specialized metabolites becomes important to identify or develop reliable sources in the future. Here, we review the contributions of major omics approaches and their integration to our understanding of the biosynthetic pathways of bioactive metabolites. We briefly discuss different approaches for integrating omics datasets to extract biologically relevant knowledge and the application of omics datasets in the construction and reconstruction of metabolic models. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  8. Fundamental plant biology enabled by the space shuttle.

    Science.gov (United States)

    Paul, Anna-Lisa; Wheeler, Ray M; Levine, Howard G; Ferl, Robert J

    2013-01-01

    The relationship between fundamental plant biology and space biology was especially synergistic in the era of the Space Shuttle. While all terrestrial organisms are influenced by gravity, the impact of gravity as a tropic stimulus in plants has been a topic of formal study for more than a century. And while plants were parts of early space biology payloads, it was not until the advent of the Space Shuttle that the science of plant space biology enjoyed expansion that truly enabled controlled, fundamental experiments that removed gravity from the equation. The Space Shuttle presented a science platform that provided regular science flights with dedicated plant growth hardware and crew trained in inflight plant manipulations. Part of the impetus for plant biology experiments in space was the realization that plants could be important parts of bioregenerative life support on long missions, recycling water, air, and nutrients for the human crew. However, a large part of the impetus was that the Space Shuttle enabled fundamental plant science essentially in a microgravity environment. Experiments during the Space Shuttle era produced key science insights on biological adaptation to spaceflight and especially plant growth and tropisms. In this review, we present an overview of plant science in the Space Shuttle era with an emphasis on experiments dealing with fundamental plant growth in microgravity. This review discusses general conclusions from the study of plant spaceflight biology enabled by the Space Shuttle by providing historical context and reviews of select experiments that exemplify plant space biology science.

  9. Cyber integrated MEMS microhand for biological applications

    Science.gov (United States)

    Weissman, Adam; Frazier, Athena; Pepen, Michael; Lu, Yen-Wen; Yang, Shanchieh Jay

    2009-05-01

    Anthropomorphous robotic hands at microscales have been developed to receive information and perform tasks for biological applications. To emulate a human hand's dexterity, the microhand requires a master-slave interface with a wearable controller, force sensors, and perception displays for tele-manipulation. Recognizing the constraints and complexity imposed in developing feedback interface during miniaturization, this project address the need by creating an integrated cyber environment incorporating sensors with a microhand, haptic/visual display, and object model, to emulates human hands' psychophysical perception at microscale.

  10. Applications of optical manipulation in plant biology

    Science.gov (United States)

    Buer, Charles S.

    Measuring small forces in biology is important for determining basic physiological parameters of a cell. The plant cell wall provides a primary defense and presents a barrier to research. Magnitudes of small forces are impossible to measure with mechanical transducers, glass needles, atomic force microscopy, or micropipet-based force transduction due to the cell wall. Therefore, a noninvasive method of breaching the plant cell wall to access the symplastic region of the cell is required. Laser light provides sub-micrometer positioning, particle manipulation without mechanical contact, and piconewton force determination. Consequently, the extension of laser microsurgery to expand an experimental tool for plant biology encompassed the overall objective. A protocol was developed for precisely inserting microscopic objects into the periplasmic region of plant callus cells using laser microsurgery. Ginkgo biloba and Agrobacterium rhizogenes were used as the model system for developing the optical tweezers and scalpel techniques. Better than 95% survival was achieved after plasmolyzing G. biloba cells, ablating a 2-4 μm hole through the cell wall using a pulsed UV laser beam, trapping and manipulating bacteria into the periplasmic region, and deplasmolyzing the cells. Optical trapping experiments implied a difference existed between the bacteria models. Determining the optical trapping efficiency of Agrobacterium rhizogenes and A. tumefaciens strains indicated the A. rhizogenes strain, ATCC 11325, was significantly less efficiently trapped than strains A4 and ATCC 15834 and the A. tumefaciens strain LBA4404. Differences were also found in capsule generation, growth media viscosity, and transmission electron microscopy negative staining implying that a difference in surface structure exists. Calcofluor fluorescence suggests the difference involves an exopolysaccharide. Callus cell plasmolysis revealed Hechtian strands interconnecting the plasma membrane and the cell wall

  11. Plant ecdysteroids: plant sterols with intriguing distributions, biological effects and relations to plant hormones.

    Science.gov (United States)

    Tarkowská, Danuše; Strnad, Miroslav

    2016-09-01

    The present review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones. Plant ecdysteroids (phytoecdysteroids) are natural polyhydroxylated compounds that have a four-ringed skeleton, usually composed of either 27 carbon atoms or 28-29 carbon atoms (biosynthetically derived from cholesterol or other plant sterols, respectively). Their physiological roles in plants have not yet been confirmed and their occurrence is not universal. Nevertheless, they are present at high concentrations in various plant species, including commonly consumed vegetables, and have a broad spectrum of pharmacological and medicinal properties in mammals, including hepatoprotective and hypoglycaemic effects, and anabolic effects on skeletal muscle, without androgenic side-effects. Furthermore, phytoecdysteroids can enhance stress resistance by promoting vitality and enhancing physical performance; thus, they are considered adaptogens. This review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones.

  12. Data mining and data integration in biology

    DEFF Research Database (Denmark)

    Ólason, Páll Ísólfur

    2008-01-01

    . They also necessitate new ways of data preparation as established methods for sequence sets are often useless when dealing with sets of sequence pairs. Therefore careful analysis on the sequence level as well as the integrated network level is needed to benchmark these data prior to use. The networks, which...... between molecules, the essence of systems biology. Internet technologies are very important in this respect as bioinformatics labs around the world generate staggering amounts of novel annotations, increasing the importance of on-line processing and distributed systems. One of the most important new data...... types in proteomics is protein-protein interactions. Interactions between the functional elements in the cell are a natural place to start when integrating protein annotations with the aim of gaining a systems view of the cell. Interaction data, however, are notoriously biased, erroneous and incomplete...

  13. Plant biology research and training for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, K. [ed.

    1992-12-31

    The committee was assembled in response to a request from the National Science Foundation (NSF), the US Department of Agriculture (USDA), and the US Department of Energy (DoE). The leadership of these agencies asked the National Academy of Sciences through the National Research Council (NRC) to assess the status of plant-science research in the United States in light of the opportunities arising from advances inother areas of biology. NRC was asked to suggest ways of accelerating the application of these new biologic concepts and tools to research in plant science with the aim of enhancing the acquisition of new knowledge about plants. The charge to the committee was to examine the following: Organizations, departments, and institutions conducting plant biology research; human resources involved in plant biology research; graduate training programs in plant biology; federal, state, and private sources of support for plant-biology research; the role of industry in conducting and supporting plant-biology research; the international status of US plant-biology research; and the relationship of plant biology to leading-edge research in biology.

  14. Plant biology research and training for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, K. (ed.)

    1992-01-01

    The committee was assembled in response to a request from the National Science Foundation (NSF), the US Department of Agriculture (USDA), and the US Department of Energy (DoE). The leadership of these agencies asked the National Academy of Sciences through the National Research Council (NRC) to assess the status of plant-science research in the United States in light of the opportunities arising from advances inother areas of biology. NRC was asked to suggest ways of accelerating the application of these new biologic concepts and tools to research in plant science with the aim of enhancing the acquisition of new knowledge about plants. The charge to the committee was to examine the following: Organizations, departments, and institutions conducting plant biology research; human resources involved in plant biology research; graduate training programs in plant biology; federal, state, and private sources of support for plant-biology research; the role of industry in conducting and supporting plant-biology research; the international status of US plant-biology research; and the relationship of plant biology to leading-edge research in biology.

  15. The Virtual Institute for Integrative Biology (VIIB)

    International Nuclear Information System (INIS)

    Rivera, G.; Gonzalez-Nieto, F.; Perez-Acle, T.; Isea, R.; Holmes, D. S.

    2007-01-01

    The Virtual Institute for Integrative Biology (VII B) is a Latin American initiative for achieving global collaborative e-Science in the areas of bioinformatics, genome biology, systems biology, Metagenomic, medical applications and nanobiotechnolgy. The scientific agenda of VIIB includes: construction of databases for comparative genomic, the AlterORF database for alternate open reading frames discovery in genomes, bioinformatics services and protein simulations for biotechnological and medical applications. Human resource development has been promoted through co-sponsored students and shared teaching and seminars via video conferencing. E-Science challenges include: inter operability and connectivity concerns, high performance computing limitations, and the development of customized computational frameworks and flexible work flows to efficiently exploit shared resources without causing impediments to the user. Outreach programs include training workshops and classes for high school teachers and students and the new Adopt-a-Gene initiative. The VIIB has proved an effective way for small teams to transcend the critical mass problem, to overcome geographic limitations, to harness the power of large scale, collaborative science and improve the visibility of Latin American science It may provide a useful paradigm for developing further e-Science initiatives in Latin America and other emerging regions. (Author)

  16. An Integrated Biological Control System At Hanford

    International Nuclear Information System (INIS)

    Johnson, A.R.; Caudill, J.G.; Giddings, R.F.; Rodriguez, J.M.; Roos, R.C.; Wilde, J.W.

    2010-01-01

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimate spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  17. AN INTEGRATED BIOLOGICAL CONTROL SYSTEM AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON AR; CAUDILL JG; GIDDINGS RF; RODRIGUEZ JM; ROOS RC; WILDE JW

    2010-02-11

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimated spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  18. Integration of torrefaction with steam power plant

    Energy Technology Data Exchange (ETDEWEB)

    Zakri, B.; Saari, J.; Sermyagina, E.; Vakkilainen, E.

    2013-09-01

    Torrefaction is one of the pretreatment technologies to enhance the fuel characteristics of biomass. The efficient and continuous operation of a torrefaction reactor, in the commercial scale, demands a secure biomass supply, in addition to adequate source of heat. Biorefinery plants or biomass-fuelled steam power plants have the potential to integrate with the torrefaction reactor to exchange heat and mass, using available infrastructure and energy sources. The technical feasibility of this integration is examined in this study. A new model for the torrefaction process is introduced and verified by the available experimental data. The torrefaction model is then integrated in different steam power plants to simulate possible mass and energy exchange between the reactor and the plants. The performance of the integrated plant is investigated for different configurations and the results are compared. (orig.)

  19. Informing biological design by integration of systems and synthetic biology.

    Science.gov (United States)

    Smolke, Christina D; Silver, Pamela A

    2011-03-18

    Synthetic biology aims to make the engineering of biology faster and more predictable. In contrast, systems biology focuses on the interaction of myriad components and how these give rise to the dynamic and complex behavior of biological systems. Here, we examine the synergies between these two fields. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Recent advances in plant centromere biology.

    Science.gov (United States)

    Feng, Chao; Liu, YaLin; Su, HanDong; Wang, HeFei; Birchler, James; Han, FangPu

    2015-03-01

    The centromere, which is one of the essential parts of a chromosome, controls kinetochore formation and chromosome segregation during mitosis and meiosis. While centromere function is conserved in eukaryotes, the centromeric DNA sequences evolve rapidly and have few similarities among species. The histone H3 variant CENH3 (CENP-A in human), which mostly exists in centromeric nucleosomes, is a universal active centromere mark in eukaryotes and plays an essential role in centromere identity determination. The relationship between centromeric DNA sequences and centromere identity determination is one of the intriguing questions in studying centromere formation. Due to the discoveries in the past decades, including "neocentromeres" and "centromere inactivation", it is now believed that the centromere identity is determined by epigenetic mechanisms. This review will present recent progress in plant centromere biology.

  1. Plant Systems Biology at the Single-Cell Level.

    Science.gov (United States)

    Libault, Marc; Pingault, Lise; Zogli, Prince; Schiefelbein, John

    2017-11-01

    Our understanding of plant biology is increasingly being built upon studies using 'omics and system biology approaches performed at the level of the entire plant, organ, or tissue. Although these approaches open new avenues to better understand plant biology, they suffer from the cellular complexity of the analyzed sample. Recent methodological advances now allow plant scientists to overcome this limitation and enable biological analyses of single-cells or single-cell-types. Coupled with the development of bioinformatics and functional genomics resources, these studies provide opportunities for high-resolution systems analyses of plant phenomena. In this review, we describe the recent advances, current challenges, and future directions in exploring the biology of single-cells and single-cell-types to enhance our understanding of plant biology as a system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. PV integration into a CSP plant

    Science.gov (United States)

    Carvajal, Javier López; Barea, Jose M.; Barragan, Jose; Ortega, Carlos

    2017-06-01

    This paper describes a preliminary techno-economic analysis of the integration of a PV plant into an optimized Parabolic Trough Plant in order to reduce the online consumptions and thus, increase the net electricity injected into the grid. The idea is to assess the feasibility of such project and see what configuration would be the optimal. An extra effort has been made in terms of modelling as the analysis has to be done to the integrated CSP + PV plant instead of analyzing them independently. Two different technologies have been considered for the PV plant, fix and one-axis tracking. Additionally three different scenarios have been considered for the CSP plant auxiliary consumptions as they are essential for determining the optimal PV plant (the higher the auxiliary consumption the higher the optimal PV plant). As could be expected, the results for all cases with PV show an improvement in terms of electricity generation and also in terms of LCOE with respect to the CSP plant. Such improvement is slightly higher with tracking technology for this specific study. Although this exercise has been done to an already designed CSP plant (so only the PV plant had to be optimized), the methodology could be applied for the optimization of an integrated CSP + PV plant during the design phase.

  3. Divergent biology of facultative heavy metal plants.

    Science.gov (United States)

    Bothe, Hermann; Słomka, Aneta

    2017-12-01

    Among heavy metal plants (the metallophytes), facultative species can live both in soils contaminated by an excess of heavy metals and in non-affected sites. In contrast, obligate metallophytes are restricted to polluted areas. Metallophytes offer a fascinating biology, due to the fact that species have developed different strategies to cope with the adverse conditions of heavy metal soils. The literature distinguishes between hyperaccumulating, accumulating, tolerant and excluding metallophytes, but the borderline between these categories is blurred. Due to the fact that heavy metal soils are dry, nutrient limited and are not uniform but have a patchy distribution in many instances, drought-tolerant or low nutrient demanding species are often regarded as metallophytes in the literature. In only a few cases, the concentrations of heavy metals in soils are so toxic that only a few specifically adapted plants, the genuine metallophytes, can cope with these adverse soil conditions. Current molecular biological studies focus on the genetically amenable and hyperaccumulating Arabidopsis halleri and Noccaea (Thlaspi) caerulescens of the Brassicaceae. Armeria maritima ssp. halleri utilizes glands for the excretion of heavy metals and is, therefore, a heavy metal excluder. The two endemic zinc violets of Western Europe, Viola lutea ssp. calaminaria of the Aachen-Liège area and Viola lutea ssp. westfalica of the Pb-Cu-ditch of Blankenrode, Eastern Westphalia, as well as Viola tricolor ecotypes of Eastern Europe, keep their cells free of excess heavy metals by arbuscular mycorrhizal fungi which bind heavy metals. The Caryophyllaceae, Silene vulgaris f. humilis and Minuartia verna, apparently discard leaves when overloaded with heavy metals. All Central European metallophytes have close relatives that grow in areas outside of heavy metal soils, mainly in the Alps, and have, therefore, been considered as relicts of the glacial epoch in the past. However, the current

  4. Redefining plant systems biology: from cell to ecosystem

    NARCIS (Netherlands)

    Keurentjes, J.J.B.; Angenent, G.C.; Dicke, M.; Martins Dos Santos, V.A.P.; Molenaar, J.; Van der Putten, W.H.; de Ruiter, P.C.; Struik, P.C.; Thomma, B.P.H.J.

    2011-01-01

    Molecular biologists typically restrict systems biology to cellular levels. By contrast, ecologists define biological systems as communities of interacting individuals at different trophic levels that process energy, nutrient and information flows. Modern plant breeding needs to increase

  5. Integrating environmental control for coal plant efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, M

    1986-01-01

    As emission control requirements for power plants have grown more stringent, utilities have added new environmental protection technology. As environmental controls have been added one after another, plant designers have rarely had the opportunity to integrate these components with each other and the balance of the plant. Consequently they often cost more to build and operate and can reduce power plant efficiency and availability. With the aim of lowering the cost of environmental systems, a design approach known as integrated environmental control (IEC) has emerged. This is based on the premise that environmental controls can function most economically if they are designed integrally with other power generation equipment. EPRI has established an IEC progam to develop integrated design strategies and evaluate their net worth to utilities. Various aspects of this program are described. (3 refs.)

  6. Relay Feedback Analysis for Double Integral Plants

    Directory of Open Access Journals (Sweden)

    Zhen Ye

    2011-01-01

    Full Text Available Double integral plants under relay feedback are studied. Complete results on the uniqueness of solutions, existence, and stability of the limit cycles are established using the point transformation method. Analytical expressions are also given for determining the amplitude and period of a limit cycle from the plant parameters.

  7. Biological condition gradient: Applying a framework for determining the biological integrity of coral reefs

    Science.gov (United States)

    The goals of the U.S. Clean Water Act (CWA) are to restore and maintain the chemical, physical and biological integrity of water resources. Although clean water is a goal, another is to safeguard biological communities by defining levels of biological integrity to protect aquatic...

  8. The extracellular matrix of plants: Molecular, cellular and developmental biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    A symposium entitled ``The Extracellular Matrix of Plants: Molecular, Cellular and Developmental Biology was held in Tamarron, Colorado, March 15--21, 1996. The following topics were explored in addresses by 43 speakers: structure and biochemistry of cell walls; biochemistry, molecular biology and biosynthesis of lignin; secretory pathway and synthesis of glycoproteins; biosynthesis of matrix polysaccharides, callose and cellulose; role of the extracellular matrix in plant growth and development; plant cell walls in symbiosis and pathogenesis.

  9. Stem cells: a plant biology perspective

    NARCIS (Netherlands)

    Scheres, B.J.G.

    2005-01-01

    A recent meeting at the Juan March Foundation in Madrid, Spain brought together plant biologists to discuss the characteristics of plant stem cells that are unique and those that are shared by stem cells from the animal kingdom

  10. Distribution Integrity Management Plant (DIMP)

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, Jerome F. [Los Alamos National Laboratory

    2012-05-07

    This document is the distribution integrity management plan (Plan) for the Los Alamos National Laboratory (LANL) Natural Gas Distribution System. This Plan meets the requirements of 49 CFR Part 192, Subpart P Distribution Integrity Management Programs (DIMP) for the LANL Natural Gas Distribution System. This Plan was developed by reviewing records and interviewing LANL personnel. The records consist of the design, construction, operation and maintenance for the LANL Natural Gas Distribution System. The records system for the LANL Natural Gas Distribution System is limited, so the majority of information is based on the judgment of LANL employees; the maintenance crew, the Corrosion Specialist and the Utilities and Infrastructure (UI) Civil Team Leader. The records used in this report are: Pipeline and Hazardous Materials Safety Administration (PHMSA) 7100.1-1, Report of Main and Service Line Inspection, Natural Gas Leak Survey, Gas Leak Response Report, Gas Leak and Repair Report, and Pipe-to-Soil Recordings. The specific elements of knowledge of the infrastructure used to evaluate each threat and prioritize risks are listed in Sections 6 and 7, Threat Evaluation and Risk Prioritization respectively. This Plan addresses additional information needed and a method for gaining that data over time through normal activities. The processes used for the initial assessment of Threat Evaluation and Risk Prioritization are the methods found in the Simple, Handy Risk-based Integrity Management Plan (SHRIMP{trademark}) software package developed by the American Pipeline and Gas Agency (APGA) Security and Integrity Foundation (SIF). SHRIMP{trademark} uses an index model developed by the consultants and advisors of the SIF. Threat assessment is performed using questions developed by the Gas Piping Technology Company (GPTC) as modified and added to by the SHRIMP{trademark} advisors. This Plan is required to be reviewed every 5 years to be continually refined and improved. Records

  11. Integrated Ecological River Health Assessments, Based on Water Chemistry, Physical Habitat Quality and Biological Integrity

    Directory of Open Access Journals (Sweden)

    Ji Yoon Kim

    2015-11-01

    Full Text Available This study evaluated integrative river ecosystem health using stressor-based models of physical habitat health, chemical water health, and biological health of fish and identified multiple-stressor indicators influencing the ecosystem health. Integrated health responses (IHRs, based on star-plot approach, were calculated from qualitative habitat evaluation index (QHEI, nutrient pollution index (NPI, and index of biological integrity (IBI in four different longitudinal regions (Groups I–IV. For the calculations of IHRs values, multi-metric QHEI, NPI, and IBI models were developed and their criteria for the diagnosis of the health were determined. The longitudinal patterns of the river were analyzed by a self-organizing map (SOM model and the key major stressors in the river were identified by principal component analysis (PCA. Our model scores of integrated health responses (IHRs suggested that mid-stream and downstream regions were impaired, and the key stressors were closely associated with nutrient enrichment (N and P and organic matter pollutions from domestic wastewater disposal plants and urban sewage. This modeling approach of IHRs may be used as an effective tool for evaluations of integrative ecological river health..

  12. Federico Delpino and the foundation of plant biology.

    Science.gov (United States)

    Mancuso, Stefano

    2010-09-01

    In 1867, Federico Delpino, with his seminal work "Pensieri sulla biologia vegetale" (Thoughts on plant biology) established plant biology by defining it not in the broad general sense, namely as the science of living beings, but as a branch of natural science dedicated to the study of plant life in relation to the environment. Today, the figure and achievements of this outstanding plant scientist it is almost unknown. In the following pages, I will concisely describe the main realizations of Federico Delpino and outline the significance of his work for modern plant science.

  13. Invasive plants affect prairie soil biology

    Science.gov (United States)

    Non-native or exotic plants often cause ecological and environmental damage in ecosystems where they invade and become established. These invasive plants may be the most serious threat to plant diversity in prairies, especially those in scattered remnants, which may be particularly vulnerable to rap...

  14. BIOLOGICAL CONTROL OF WEEDS BY MEANS OF PLANT PATHOGENS

    OpenAIRE

    Marija Ravlić; Renata Baličević

    2014-01-01

    Biological control is the use of live beneficial organisms and products of their metabolism in the pests control. Plant pathogens can be used for weed control in three different ways: as classical, conservation and augmentative (inoculative and inundated) biological control. Inundated biological control involves the use of bioherbicides (mycoherbicides) or artificial breeding of pathogens and application in specific stages of crops and weeds. Biological control of weeds can be used where chem...

  15. Nuclear plants gain integrated information systems

    International Nuclear Information System (INIS)

    Villavicencio-Ramirez, A.; Rodriquez-Alvarez, J.M.

    1994-01-01

    With the objective of simplifying the complex mesh of computing devices employed within nuclear power plants, modern technology and integration techniques are being used to form centralized (but backed up) databases and distributed processing and display networks. Benefits are immediate as a result of the integration and the use of standards. The use of a unique data acquisition and database subsystem optimizes the high costs of engineering, as this task is done only once for the life span of the system. This also contributes towards a uniform user interface and allows for graceful expansion and maintenance. This article features an integrated information system, Sistema Integral de Informacion de Proceso (SIIP). The development of this system enabled the Laguna Verde Nuclear Power plant to fully use the already existing universe of signals and its related engineering during all plant conditions, namely, start up, normal operation, transient analysis, and emergency operation. Integrated systems offer many advantages over segregated systems, and this experience should benefit similar development efforts in other electric power utilities, not only for nuclear but also for other types of generating plants

  16. CANDU plant life management - An integrated approach

    International Nuclear Information System (INIS)

    Hopkins, J.R.

    1998-01-01

    An integrated approach to plant life management has been developed for CANDU reactors. Strategies, methods, and procedures have been developed for assessment of critical systems structures and components and for implementing a reliability centred maintenance program. A Technology Watch program is being implemented to eliminate 'surprises'. Specific work has been identified for 1998. AECL is working on the integrated program with CANDU owners and seeks participation from other CANDU owners

  17. Integrating a SOFC Plant with a Steam Turbine Plant

    DEFF Research Database (Denmark)

    Rokni, Masoud; Scappin, Fabio

    2009-01-01

    A Solid Oxide Fuel Cell (SOFC) is integrated with a Steam Turbine (ST) cycle. Different hybrid configurations are studied. The fuel for the plants is assumed to be natural gas (NG). Since the NG cannot be sent to the anode side of the SOFC directly, a desulfurization reactor is used to remove...

  18. Plant synthetic biology for molecular engineering of signalling and development.

    Science.gov (United States)

    Nemhauser, Jennifer L; Torii, Keiko U

    2016-03-02

    Molecular genetic studies of model plants in the past few decades have identified many key genes and pathways controlling development, metabolism and environmental responses. Recent technological and informatics advances have led to unprecedented volumes of data that may uncover underlying principles of plants as biological systems. The newly emerged discipline of synthetic biology and related molecular engineering approaches is built on this strong foundation. Today, plant regulatory pathways can be reconstituted in heterologous organisms to identify and manipulate parameters influencing signalling outputs. Moreover, regulatory circuits that include receptors, ligands, signal transduction components, epigenetic machinery and molecular motors can be engineered and introduced into plants to create novel traits in a predictive manner. Here, we provide a brief history of plant synthetic biology and significant recent examples of this approach, focusing on how knowledge generated by the reference plant Arabidopsis thaliana has contributed to the rapid rise of this new discipline, and discuss potential future directions.

  19. Establishment of the Integrated Plant Data Warehouse

    International Nuclear Information System (INIS)

    Oota, Yoshimi; Yoshinaga, Toshiaki

    1999-01-01

    This paper presents 'The Establishment of the Integrated Plant Data Warehouse and Verification Tests on Inter-corporate Electronic Commerce based on the Data Warehouse (PDWH)', one of the 'Shared Infrastructure for the Electronic Commerce Consolidation Project', promoted by the Ministry of International Trade and Industry (MITI) through the Information-Technology Promotion Agency (IPA), Japan. A study group called Japan Plant EC (PlantEC) was organized to perform relevant activities. One of the main activities of plantEC involves the construction of the Integrated (including manufacturers, engineering companies, plant construction companies, and machinery and parts manufacturers, etc.) Data Warehouse which is an essential part of the infrastructure necessary for a system to share information on industrial life cycle ranging from planning/designing to operation/maintenance. Another activity is the utilization of this warehouse for the purpose of conducting verification tests to prove its usefulness. Through these verification tests, PlantEC will endeavor to establish a warehouse with standardized data which can be used for the infrastructure of EC in the process plant industry. (author)

  20. Establishment of the Integrated Plant Data Warehouse

    Energy Technology Data Exchange (ETDEWEB)

    Oota, Yoshimi; Yoshinaga, Toshiaki [Hitachi Works, Hitachi Ltd., hitachi, Ibaraki (Japan)

    1999-07-01

    This paper presents 'The Establishment of the Integrated Plant Data Warehouse and Verification Tests on Inter-corporate Electronic Commerce based on the Data Warehouse (PDWH)', one of the 'Shared Infrastructure for the Electronic Commerce Consolidation Project', promoted by the Ministry of International Trade and Industry (MITI) through the Information-Technology Promotion Agency (IPA), Japan. A study group called Japan Plant EC (PlantEC) was organized to perform relevant activities. One of the main activities of plantEC involves the construction of the Integrated (including manufacturers, engineering companies, plant construction companies, and machinery and parts manufacturers, etc.) Data Warehouse which is an essential part of the infrastructure necessary for a system to share information on industrial life cycle ranging from planning/designing to operation/maintenance. Another activity is the utilization of this warehouse for the purpose of conducting verification tests to prove its usefulness. Through these verification tests, PlantEC will endeavor to establish a warehouse with standardized data which can be used for the infrastructure of EC in the process plant industry. (author)

  1. Reconstruction of biological networks based on life science data integration

    Directory of Open Access Journals (Sweden)

    Kormeier Benjamin

    2010-06-01

    Full Text Available For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. Therefore, based on relevant molecular database and information systems, biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the applications BioDWH - an integration toolkit for building life science data warehouses, CardioVINEdb - a information system for biological data in cardiovascular-disease and VANESA- a network editor for modeling and simulation of biological networks. Based on this integration process, the system supports the generation of biological network models. A case study of a cardiovascular-disease related gene-regulated biological network is also presented.

  2. Reconstruction of biological networks based on life science data integration.

    Science.gov (United States)

    Kormeier, Benjamin; Hippe, Klaus; Arrigo, Patrizio; Töpel, Thoralf; Janowski, Sebastian; Hofestädt, Ralf

    2010-10-27

    For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. Therefore, based on relevant molecular database and information systems, biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the applications BioDWH--an integration toolkit for building life science data warehouses, CardioVINEdb--a information system for biological data in cardiovascular-disease and VANESA--a network editor for modeling and simulation of biological networks. Based on this integration process, the system supports the generation of biological network models. A case study of a cardiovascular-disease related gene-regulated biological network is also presented.

  3. Integration and macroevolutionary patterns in the pollination biology of conifers.

    Science.gov (United States)

    Leslie, Andrew B; Beaulieu, Jeremy M; Crane, Peter R; Knopf, Patrick; Donoghue, Michael J

    2015-06-01

    Integration influences patterns of trait evolution, but the relationship between these patterns and the degree of trait integration is not well understood. To explore this further, we study a specialized pollination mechanism in conifers whose traits are linked through function but not development. This mechanism depends on interactions among three characters: pollen that is buoyant, ovules that face downward at pollination, and the production of a liquid droplet that buoyant grains float through to enter the ovule. We use a well-sampled phylogeny of conifers to test correlated evolution among these characters and specific sequences of character change. Using likelihood models of character evolution, we find that pollen morphology and ovule characters evolve in a concerted manner, where the flotation mechanism breaks down irreversibly following changes in orientation or drop production. The breakdown of this functional constraint, which may be facilitated by the lack of developmental integration among the constituent traits, is associated with increased trait variation and more diverse pollination strategies. Although this functional "release" increases diversity in some ways, the irreversible way in which the flotation mechanism is lost may eventually result in its complete disappearance from seed plant reproductive biology. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  4. Integrating quantitative thinking into an introductory biology course improves students' mathematical reasoning in biological contexts.

    Science.gov (United States)

    Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa

    2014-01-01

    Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students' apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course in which we integrated application of prerequisite mathematical skills with biology content and reasoning throughout all aspects of the course. In this paper, we describe the principles of our course design and present illustrative examples of course materials integrating mathematics and biology. We also designed an outcome assessment made up of items testing students' understanding of biology concepts and their ability to apply mathematical skills in biological contexts and administered it as a pre/postcourse test to students in the experimental section and other sections of the same course. Precourse results confirmed students' inability to spontaneously transfer their prerequisite mathematics skills to biological problems. Pre/postcourse outcome assessment comparisons showed that, compared with students in other sections, students in the experimental section made greater gains on integrated math/biology items. They also made comparable gains on biology items, indicating that integrating quantitative skills into an introductory biology course does not have a deleterious effect on students' biology learning.

  5. Integrating Quantitative Thinking into an Introductory Biology Course Improves Students’ Mathematical Reasoning in Biological Contexts

    Science.gov (United States)

    Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa

    2014-01-01

    Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students’ apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course in which we integrated application of prerequisite mathematical skills with biology content and reasoning throughout all aspects of the course. In this paper, we describe the principles of our course design and present illustrative examples of course materials integrating mathematics and biology. We also designed an outcome assessment made up of items testing students’ understanding of biology concepts and their ability to apply mathematical skills in biological contexts and administered it as a pre/postcourse test to students in the experimental section and other sections of the same course. Precourse results confirmed students’ inability to spontaneously transfer their prerequisite mathematics skills to biological problems. Pre/postcourse outcome assessment comparisons showed that, compared with students in other sections, students in the experimental section made greater gains on integrated math/biology items. They also made comparable gains on biology items, indicating that integrating quantitative skills into an introductory biology course does not have a deleterious effect on students’ biology learning. PMID:24591504

  6. Integrating interactive computational modeling in biology curricula.

    Directory of Open Access Journals (Sweden)

    Tomáš Helikar

    2015-03-01

    Full Text Available While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.

  7. Integrating interactive computational modeling in biology curricula.

    Science.gov (United States)

    Helikar, Tomáš; Cutucache, Christine E; Dahlquist, Lauren M; Herek, Tyler A; Larson, Joshua J; Rogers, Jim A

    2015-03-01

    While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology) class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.

  8. Biological screening of Brazilian medicinal plants

    Directory of Open Access Journals (Sweden)

    Tânia Maria de Almeida Alves

    2000-06-01

    Full Text Available In this study, we screened sixty medicinal plant species from the Brazilian savanna ("cerrado" that could contain useful compounds for the control of tropical diseases. The plant selection was based on existing ethnobotanic information and interviews with local healers. Plant extracts were screened for: (a molluscicidal activity against Biomphalaria glabrata, (b toxicity to brine shrimp (Artemia salina L., (c antifungal activity in the bioautographic assay with Cladosporium sphaerospermum and (d antibacterial activity in the agar diffusion assay against Staphylococcus aureus, Escherichia coli, Bacillus cereus and Pseudomonas aeruginosa. Forty-two species afforded extracts that showed some degree of activity in one or more of these bioassays.

  9. Biological activity of some Patagonian plants.

    Science.gov (United States)

    Cuadra, Pedro; Furrianca, María; Oyarzún, Alejandra; Yáñez, Erwin; Gallardo, Amalia; Fajardo, Víctor

    2005-12-01

    Citotoxicity (inhibition of cell division in fertilized eggs of Loxechinus albus) and general toxicity (using embryos of Artemia salina) of plants belonging to the genera Senecio, Deschampsia, Alstroemeria, Anarthrophyllum, Chloraea and Geranium were investigated.

  10. Integrating data to acquire new knowledge: Three modes of integration in plant science.

    Science.gov (United States)

    Leonelli, Sabina

    2013-12-01

    This paper discusses what it means and what it takes to integrate data in order to acquire new knowledge about biological entities and processes. Maureen O'Malley and Orkun Soyer have pointed to the scientific work involved in data integration as important and distinct from the work required by other forms of integration, such as methodological and explanatory integration, which have been more successful in captivating the attention of philosophers of science. Here I explore what data integration involves in more detail and with a focus on the role of data-sharing tools, like online databases, in facilitating this process; and I point to the philosophical implications of focusing on data as a unit of analysis. I then analyse three cases of data integration in the field of plant science, each of which highlights a different mode of integration: (1) inter-level integration, which involves data documenting different features of the same species, aims to acquire an interdisciplinary understanding of organisms as complex wholes and is exemplified by research on Arabidopsis thaliana; (2) cross-species integration, which involves data acquired on different species, aims to understand plant biology in all its different manifestations and is exemplified by research on Miscanthus giganteus; and (3) translational integration, which involves data acquired from sources within as well as outside academia, aims at the provision of interventions to improve human health (e.g. by sustaining the environment in which humans thrive) and is exemplified by research on Phytophtora ramorum. Recognising the differences between these efforts sheds light on the dynamics and diverse outcomes of data dissemination and integrative research; and the relations between the social and institutional roles of science, the development of data-sharing infrastructures and the production of scientific knowledge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Microbiome studies in the biological control of plant pathogens

    Science.gov (United States)

    Biological control of plant pathogens, although it has been a successful alternative that has allowed to select microorganisms for the generation of bioproducts and to understand multiple biological mechanisms, cannot be considered as a strategy defined only from the selection of a range of cultiva...

  12. Integrating Biological Perspectives:. a Quantum Leap for Microarray Expression Analysis

    Science.gov (United States)

    Wanke, Dierk; Kilian, Joachim; Bloss, Ulrich; Mangelsen, Elke; Supper, Jochen; Harter, Klaus; Berendzen, Kenneth W.

    2009-02-01

    Biologists and bioinformatic scientists cope with the analysis of transcript abundance and the extraction of meaningful information from microarray expression data. By exploiting biological information accessible in public databases, we try to extend our current knowledge over the plant model organism Arabidopsis thaliana. Here, we give two examples of increasing the quality of information gained from large scale expression experiments by the integration of microarray-unrelated biological information: First, we utilize Arabidopsis microarray data to demonstrate that expression profiles are usually conserved between orthologous genes of different organisms. In an initial step of the analysis, orthology has to be inferred unambiguously, which then allows comparison of expression profiles between orthologs. We make use of the publicly available microarray expression data of Arabidopsis and barley, Hordeum vulgare. We found a generally positive correlation in expression trajectories between true orthologs although both organisms are only distantly related in evolutionary time scale. Second, extracting clusters of co-regulated genes implies similarities in transcriptional regulation via similar cis-regulatory elements (CREs). Vice versa approaches, where co-regulated gene clusters are found by investigating on CREs were not successful in general. Nonetheless, in some cases the presence of CREs in a defined position, orientation or CRE-combinations is positively correlated with co-regulated gene clusters. Here, we make use of genes involved in the phenylpropanoid biosynthetic pathway, to give one positive example for this approach.

  13. Targeted enrichment strategies for next-generation plant biology

    Science.gov (United States)

    Richard Cronn; Brian J. Knaus; Aaron Liston; Peter J. Maughan; Matthew Parks; John V. Syring; Joshua. Udall

    2012-01-01

    The dramatic advances offered by modem DNA sequencers continue to redefine the limits of what can be accomplished in comparative plant biology. Even with recent achievements, however, plant genomes present obstacles that can make it difficult to execute large-scale population and phylogenetic studies on next-generation sequencing platforms. Factors like large genome...

  14. Plant Biology and Biogeochemistry Department annual project report 1999

    DEFF Research Database (Denmark)

    Jensen, A.; Gissel Nielsen, G.; Giese, H.

    2000-01-01

    The Department of Plant Biology and Biogeochemistry is engaged in basic and applied research to improve the scientific knowledge of developing new methods and technology for the future, environmentally benign industrial and agricultural production, thusexerting less stress and strain...... of Biomass, 3. DLF-Risø Biotechnology, 4. Plant Genetics and Epidemiology, 5. Biogeochemistry and 6. Plant Ecosystems and Nutrient Cycling. This electronicversion of the annual report from the Plant Biology and Biogeochemistry Department aims to provide information about the progress in our research. Each...... on the environment. This knowledge will lead to a greater prosperity and welfare for agriculture, industry and consumers in Denmark. The research approach in the Department is mainly experimental and the projects areorganized in six research programmes: 1. Plant-Microbe Symbioses, 2. Plant Products and Recycling...

  15. Plant Biology and Biogeochemistry Department annual report 1999

    DEFF Research Database (Denmark)

    Jensen, A.; Gissel Nielsen, G.; Giese, H.

    2000-01-01

    The Department of Plant Biology and Biogeochemistry is engaged in basic and applied research to improve the scientific knowledge of developing new methods and technology for the future environmentally benign industrial and agricultural production, thusexerting less stress and strain...... of Biomass, 3. DLF-Risø Biotechnology, 4. Plant Genetics and Epidemiology, 5. Biogeochemistry and 6. Plant Ecosystems and Nutrient Cycling. This version ofthe annual report from the Plant Biology and Biogeochemistry Department aims to provide information about the progress in our research. Each programme...... on the environment. This knowledge will lead to a greater prosperity and welfare for agriculture, industry and consumers in Denmark. The research approach in the Department is mainly experimental and the projects areorganized in six research programmes: 1. Plant-Microbe Symbioses, 2. Plant Products and Recycling...

  16. Introduction to nuclear techniques in agronomy and plant biology

    International Nuclear Information System (INIS)

    Vose, P.B.

    1980-01-01

    The subject is covered in chapters, entitled: nature of isotopes and radiation; nuclear reactions; working with radioisotopes; detection systems and instrumentation; radioassay; radioisotopes and tracer principles; stable isotopes as tracers - mainly the use of 15 N; activation analysis for biological samples; x-ray fluorescence spectrography for plants and soils; autoradiography; isotopes in soils studies; isotopic tracers in field experimentation; nuclear techniques in plant science; nuclear techniques for soil water; radiation and other induced mutation in plant breeding. (author)

  17. Biological advances in Bergenia genus plant

    African Journals Online (AJOL)

    Jane

    2011-08-08

    Aug 8, 2011 ... Bergenia, a genus belonging to Saxifragaceae family, is one of the most important medicinal plants, has high application values for human. Currently, wild Bergenia is becoming lacking, due to destruction of ecological environment and excessive excavation; furthermore, the study on it is not deep enough,.

  18. Integrated chemical plants at the pulp mill

    Energy Technology Data Exchange (ETDEWEB)

    Ehtonen, P.; Hurme, M.; Jaervelaeinen, M.

    1995-12-31

    The goal of this paper is to present how the chemical plants can be integrated to the pulp mill. The integration renders possible to balance the chemical consumptions. The total mass balance of a pulp mill with the incoming fuel material and the outgoing waste and flue gases are discussed. The balance figures are presented for the chemicals of the modern fibre line, which will produce fully bleached softwood pulp with an improved effluent quality. The main benefits are lower chemical and transportation costs. The principal over-all plant process block diagrams and process descriptions are presented. The presented info system provides real time information on process and production status at overall mill and department levels. (author)

  19. The future of integrated coal gasification combined cycle power plants

    International Nuclear Information System (INIS)

    Mueller, R.; Termuehlen, H.

    1991-01-01

    This paper examines the future of integrated coal gasification combined cycle (IGCC) power plants as affected by various technical, economical and environmental trends in power generation. The topics of the paper include a description of natural gas-fired combined cycle power plants, IGCC plants, coal gasifier concepts, integration of gasifiers into combined cycle power plants, efficiency, environmental impacts, co-products of IGCC power plants, economics of IGCC power plants, and a review of IGCC power plant projects

  20. PGSB/MIPS PlantsDB Database Framework for the Integration and Analysis of Plant Genome Data.

    Science.gov (United States)

    Spannagl, Manuel; Nussbaumer, Thomas; Bader, Kai; Gundlach, Heidrun; Mayer, Klaus F X

    2017-01-01

    Plant Genome and Systems Biology (PGSB), formerly Munich Institute for Protein Sequences (MIPS) PlantsDB, is a database framework for the integration and analysis of plant genome data, developed and maintained for more than a decade now. Major components of that framework are genome databases and analysis resources focusing on individual (reference) genomes providing flexible and intuitive access to data. Another main focus is the integration of genomes from both model and crop plants to form a scaffold for comparative genomics, assisted by specialized tools such as the CrowsNest viewer to explore conserved gene order (synteny). Data exchange and integrated search functionality with/over many plant genome databases is provided within the transPLANT project.

  1. Water system integration of a chemical plant

    International Nuclear Information System (INIS)

    Zheng Pingyou; Feng Xiao; Qian Feng; Cao Dianliang

    2006-01-01

    Water system integration can minimize both the freshwater consumption and the wastewater discharge of a plant. In industrial applications, it is the key to determine reasonably the contaminants and the limiting concentrations, which will decide the freshwater consumption and wastewater discharge of the system. In this paper, some rules to determine the contaminants and the limiting concentrations are proposed. As a case study, the water system in a chemical plant that produces sodium hydroxide and PVC (polyvinyl chloride) is integrated. The plant consumes a large amount of freshwater and discharges a large amount of wastewater, so minimization of both the freshwater consumption and the wastewater discharge is very important to it. According to the requirements of each water using process on the water used in it, the contaminants and the limiting concentrations are determined. Then, the optimal water reuse scheme is firstly studied based on the water network with internal water mains. To reduce the freshwater consumption and the wastewater discharge further, decentralized regeneration recycling is considered. The water using network is simplified by mixing some of the used water. After the water system integration, the freshwater consumption is reduced 25.5%, and the wastewater discharge is reduced 48%

  2. Assessing the status of biological control as a management tool for suppression of invasive alien plants in South Africa

    OpenAIRE

    Zachariades, Costas; Paterson, Iain D.; Strathie, Lorraine W.; Hill, Martin P.; van Wilgen, Brian W.

    2017-01-01

    Background: Biological control of invasive alien plants (IAPs) using introduced natural enemies contributes significantly to sustained, cost-effective management of natural resources in South Africa. The status of, and prospects for, biological control is therefore integral to National Status Reports (NSRs) on Biological Invasions, the first of which is due in 2017. Objectives: Our aim was to evaluate the status of, and prospects for, biological control of IAPs in South Africa. We discuss...

  3. PathSys: integrating molecular interaction graphs for systems biology

    Directory of Open Access Journals (Sweden)

    Raval Alpan

    2006-02-01

    Full Text Available Abstract Background The goal of information integration in systems biology is to combine information from a number of databases and data sets, which are obtained from both high and low throughput experiments, under one data management scheme such that the cumulative information provides greater biological insight than is possible with individual information sources considered separately. Results Here we present PathSys, a graph-based system for creating a combined database of networks of interaction for generating integrated view of biological mechanisms. We used PathSys to integrate over 14 curated and publicly contributed data sources for the budding yeast (S. cerevisiae and Gene Ontology. A number of exploratory questions were formulated as a combination of relational and graph-based queries to the integrated database. Thus, PathSys is a general-purpose, scalable, graph-data warehouse of biological information, complete with a graph manipulation and a query language, a storage mechanism and a generic data-importing mechanism through schema-mapping. Conclusion Results from several test studies demonstrate the effectiveness of the approach in retrieving biologically interesting relations between genes and proteins, the networks connecting them, and of the utility of PathSys as a scalable graph-based warehouse for interaction-network integration and a hypothesis generator system. The PathSys's client software, named BiologicalNetworks, developed for navigation and analyses of molecular networks, is available as a Java Web Start application at http://brak.sdsc.edu/pub/BiologicalNetworks.

  4. Physics and the molecular revolution in plant biology: union needed for managing the future

    Directory of Open Access Journals (Sweden)

    Ulrich Lüttge

    2016-10-01

    Full Text Available The question was asked if there is still a prominent role of biophysics in plant biology in an age when molecular biology appears to be dominating. Mathematical formation of theory is essential in systems biology, and mathematics is more inherent in biophysics than in molecular biology. A survey is made identifying and briefly characterizing fields of plant biology where approaches of biophysics remain essential. In transport at membranes electrophysiology and thermodynamics are biophysical topics. Water is a special molecule. Its transport follows the physical laws of osmosis and gradients of water potential on the background of physics of hydraulic architecture. Photobiology needs understanding of the physics of electro-magnetic radiation of quantitative nature in photosynthesis and of qualitative nature in perception by the photo-sensors cryptochromes, phototropins and phytochrome in environmental responses and development. Biophysical oscillators can play a role in biological timing by the circadian clock. Integration in the self-organization of modules, such as roots, stems and leaves, for the emergence of whole plants as unitary organisms needs storage and transport of information where physical modes of signaling are essential with cross talks between electrical and hydraulic signals and with chemical signals. Examples are gravitropism and root-shoot interactions in water relations. All of these facets of plant biophysics overlie plant molecular biology and exchange with it. It is advocated that a union of approaches of plant molecular biology and biophysics needs to be cultivated. In many cases it is already operative. In bionics biophysics is producing output for practical applications linking biology with technology. Biomimetic engineering intrinsically uses physical approaches. An extreme biophysical perspective is looking out for life in space. Sustained and increased practice of biophysics with teaching and research deserves strong

  5. Integrative Systems Biology Applied to Toxicology

    DEFF Research Database (Denmark)

    Kongsbak, Kristine Grønning

    associated with combined exposure to multiple chemicals. Testing all possible combinations of the tens of thousands environmental chemicals is impractical. This PhD project was launched to apply existing computational systems biology methods to toxicological research. In this thesis, I present in three...... of a system thereby suggesting new ways of thinking specific toxicological endpoints. Furthermore, computational methods can serve as valuable input for the hypothesis generating phase of the preparations of a research project....

  6. Annual report. (Air quality criteria and plants as biological indicators)

    Energy Technology Data Exchange (ETDEWEB)

    1969-01-01

    Studies have been carried out to derive air quality criteria as the basis for establishing emission limits. Experiments have also been carried out on the resistance of plant species which are important to the economy and public health. Among the specific avenues of investigation have been: the determination of phytotoxic hydrogen fluoride concentrations; studies on the resistance behavior of cultivated plants; fluorine enrichment in plant organs as a function of exposure height and wind speed; development and use of biological methods for detecting atmospheric impurities; detection of sulfur dioxide effects on plants; the use of transplanted lichens as air pollution indicators; grass cultures as indicators of fluorine pollution; biological accumulation of fluorine as a function of HF concentration in air; and the determination of lead and zinc levels in plants. 5 figures, 4 tables.

  7. Technical Integration of SMART Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. H.; Park, P. H.; Noh, P. C. (and others)

    2006-12-15

    Preliminary experimental tests were carried out using the thermal-hydraulic integral test facility, VISTA (Experimental Verification by Integral Simulation of Transients and Accidents), which has been constructed to simulate the SMART-P. The VISTA facility is an integral test facility including the primary and secondary systems as well as safety-related Passive Residual heat removal (PRHR) systems. The integrated SMART desalination plant consists of Multi Effect Distillation Process combined with Thermal-Vapor Compressor(MED-TVC) and coupled with the extracted steam from turbine through the steam transformer. Steam transformer produces the main pressure steam and supplies to the MED-TVC unit. MED-TVC was selected as a desalination process coupled with SMART, since the thermal vapor compression is very effective where the steam is available at high temperature and pressure conditions than required in the evaporator. The standard design of the SMART desalination plant is under development as a part of the SMART project. This report describes design concept of these systems and their requirements.

  8. Phytochrome from Green Plants: Properties and biological Function

    Energy Technology Data Exchange (ETDEWEB)

    Quail, Peter H.

    2014-07-25

    Pfr conformer reverses this activity upon initial light exposure, inducing the switch to photomorphogenic development. This reversal involves light-triggered translocation of the photoactivated phy molecule into the nucleus where it interacts with PIF-family members, inducing rapid phosphorylation and degradation of the PIFs via the ubiquitin-proteasome system. This degradation in turn elicits rapid alterations in gene expression that drive the deetiolation transition. This project has made considerable progress in defining phy-PIF signaling activity in controlling the SAR. The biological functions of the multiple PIF-family members in controlling the SAR, including dissection of the relative contributions of the individual PIFs to this process, as well as to diurnal growth-control oscillations, have been investigated using higher-order pif-mutant combinations. Using microarray analysis of a quadruple pif mutant we have defined the shade-induced, PIF-regulated transcriptional network genome-wide. This has revealed that a dynamic antagonism between the phys and PIFs generates selective reciprocal responses during deetiolation and the SAR in a rapidly light-responsive transcriptional network. Using integrated RNA-seq and ChIP-seq analysis of higher order pif-mutant combinations, we have defined the direct gene-targets of PIF transcriptional regulation, and have obtained evidence that this regulation involves differential direct targeting of rapidly light-responsive genes by the individual PIF-family members. This project has provided significant advances in our understanding of the molecular mechanisms by which the phy-PIF photosensory signaling pathway regulates an important bioenergy-related plant response to the light environment. The identification of molecular targets in the primary transcriptional-regulatory circuitry of this pathway has the potential to enable genetic or reverse-genetic manipulation of the partitioning of carbon between reproductive and

  9. Integrated biological, chemical and physical processes kinetic ...

    African Journals Online (AJOL)

    ... for C and N removal, only gas and liquid phase processes were considered for this integrated model. ... kLA value for the aeration system, which affects the pH in the anoxic and aerobic reactors through CO2 gas exchange. ... Water SA Vol.

  10. Integrated plant information technology design support functionality

    International Nuclear Information System (INIS)

    Kim, Yeon Seung; Kim, Dae Jin; Barber, P. W.; Goland, D.

    1996-06-01

    This technical report was written as a result of Integrated Plant Information System (IPIS) feasibility study on CANDU 9 project which had been carried out from January, 1994 to March, 1994 at AECL (Atomic Energy Canada Limited) in Canada. From 1987, AECL had done endeavour to change engineering work process from paper based work process to computer based work process through CANDU 3 project. Even though AECL had a lot of good results form computerizing the Process Engineering, Instrumentation Control and Electrical Engineering, Mechanical Engineering, Computer Aided Design and Drafting, and Document Management System, but there remains the problem of information isolation and integration. On this feasibility study, IPIS design support functionality guideline was suggested by evaluating current AECL CAE tools, analyzing computer aided engineering task and work flow, investigating request for implementing integrated computer aided engineering and describing Korean request for future CANDU design including CANDU 9. 6 figs. (Author)

  11. Integrated plant information technology design support functionality

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Seung; Kim, Dae Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Barber, P W; Goland, D [Atomic Energy Canada Ltd., (Canada)

    1996-06-01

    This technical report was written as a result of Integrated Plant Information System (IPIS) feasibility study on CANDU 9 project which had been carried out from January, 1994 to March, 1994 at AECL (Atomic Energy Canada Limited) in Canada. From 1987, AECL had done endeavour to change engineering work process from paper based work process to computer based work process through CANDU 3 project. Even though AECL had a lot of good results form computerizing the Process Engineering, Instrumentation Control and Electrical Engineering, Mechanical Engineering, Computer Aided Design and Drafting, and Document Management System, but there remains the problem of information isolation and integration. On this feasibility study, IPIS design support functionality guideline was suggested by evaluating current AECL CAE tools, analyzing computer aided engineering task and work flow, investigating request for implementing integrated computer aided engineering and describing Korean request for future CANDU design including CANDU 9. 6 figs. (Author).

  12. Biological monitoring of radiation using indicator plants

    International Nuclear Information System (INIS)

    Kim, Jin Kyoo; Chun, Ki Jung; Kim, Kook Chan; Kim, In Kyoo; Song, Heui Sub

    1994-12-01

    Some clones of Tradescantia had dose response relationship involving somatic mutations such as appearance of pink, colorless or giant cell, and/or loss of reproductive integrity of stamen hair cells when exposed to radiation. Since Tradescantia could respond to radiation level as low as human being could be exposed to, it could play an important role as scientific tool of botanical tester for radiation. Especially TSH system can be easily applied to in situ monitoring of radiation by virtue of its excellent radiation indicator ship and simpleness in detection of mutations by radiation. 10 figs, 6 tabs, 19 refs. (Author)

  13. Biological monitoring of radiation using indicator plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyoo; Chun, Ki Jung; Kim, Kook Chan; Kim, In Kyoo; Song, Heui Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    Some clones of Tradescantia had dose response relationship involving somatic mutations such as appearance of pink, colorless or giant cell, and/or loss of reproductive integrity of stamen hair cells when exposed to radiation. Since Tradescantia could respond to radiation level as low as human being could be exposed to, it could play an important role as scientific tool of botanical tester for radiation. Especially TSH system can be easily applied to in situ monitoring of radiation by virtue of its excellent radiation indicator ship and simpleness in detection of mutations by radiation. 10 figs, 6 tabs, 19 refs. (Author).

  14. Biologics in dermatology: An integrated review

    Directory of Open Access Journals (Sweden)

    Virendra N Sehgal

    2014-01-01

    Full Text Available The advent of biologics in dermatologic treatment armentarium has added refreshing dimensions, for it is a major breakthrough. Several agents are now available for use. It is therefore imperative to succinctly comprehend their pharmacokinetics for their apt use. A concerted endeavor has been made to delve on this subject. The major groups of biologics have been covered and include: Drugs acting against TNF-α, Alefacept, Ustekinumab, Rituximab, IVIG and Omalizumab. The relevant pharmacokinetic characteristics have been detailed. Their respective label (approved and off-label (unapproved indications have been defined, highlighting their dosage protocol, availability and mode of administration. The evidence level of each indication has also been discussed to apprise the clinician of their current and prospective uses. Individual anti-TNF drugs are not identical in their actions and often one is superior to the other in a particular disease. Hence, the section on anti-TNF agents mentions the literature on each drug separately, and not as a group. The limitations for their use have also been clearly brought out.

  15. Introduction to nuclear techniques in agronomy and plant biology

    International Nuclear Information System (INIS)

    Vose, P.B.

    1980-01-01

    A scientific textbook concerning the use of nuclear techniques in agricultural and biological studies has been written. In the early chapters, basic radiation physics principles are described including the nature of isotopes and radiation, nuclear reactions, working with radioisotopes, detection systems and instrumentation, radioassay and tracer techniques. The remaining chapters describe the applications of various nuclear techniques including activation analysis for biological samples, X-ray fluorescence spectrography for plants and soils, autoradiography, isotopes in soils studies, isotopic tracers in field experimentation, nuclear techniques in plant function and soil water studies and radiation-induced mutations in plant breeding. The principles and methods of these nuclear techniques are described in a straightforward manner together with details of many possible agricultural and biological studies which students could perform. (U.K.)

  16. Integration of genomic information with biological networks using Cytoscape.

    Science.gov (United States)

    Bauer-Mehren, Anna

    2013-01-01

    Cytoscape is an open-source software for visualizing, analyzing, and modeling biological networks. This chapter explains how to use Cytoscape to analyze the functional effect of sequence variations in the context of biological networks such as protein-protein interaction networks and signaling pathways. The chapter is divided into five parts: (1) obtaining information about the functional effect of sequence variation in a Cytoscape readable format, (2) loading and displaying different types of biological networks in Cytoscape, (3) integrating the genomic information (SNPs and mutations) with the biological networks, and (4) analyzing the effect of the genomic perturbation onto the network structure using Cytoscape built-in functions. Finally, we briefly outline how the integrated data can help in building mathematical network models for analyzing the effect of the sequence variation onto the dynamics of the biological system. Each part is illustrated by step-by-step instructions on an example use case and visualized by many screenshots and figures.

  17. Integrated design of SIGMA uranium enrichment plants

    International Nuclear Information System (INIS)

    Rivarola, Martin E.; Brasnarof, Daniel O.

    1999-01-01

    In the present work, we describe a preliminary analysis of the design feedbacks in a Uranium Enrichment Plant, using the SIGMA concept. Starting from the result of this analysis, a computer code has been generated, which allows finding the optimal configurations of plants, for a fixed production rate. The computer code developed includes the model of the Thermohydraulic loop of a SIGMA module. The model contains numerical calculations of the main components of the circuit. During the calculations, the main components are dimensioned, for a posterior cost compute. The program also makes an estimation of the enrichment gain of the porous membrane, for each separation stage. Once the dimensions of the main components are known, using the enrichment cascade calculation, the capital and operation costs of the plant could be determined. At this point it is simple to calculate a leveled cost of the Separative Work Unit (SWU). A numerical optimizer is also included in the program. This optimizer finds the optimal cascade configuration, for a given set of design parameters. The whole-integrated program permits to investigate in detail the feedback in the component design. Therefore, the sensibility of the more relevant parameters can be computed, with respect of the economical variables of the plant. (author)

  18. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2013-10-01

    Full Text Available Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

  19. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Science.gov (United States)

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-01-01

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. PMID:24709875

  20. The Plant Genome Integrative Explorer Resource: PlantGenIE.org.

    Science.gov (United States)

    Sundell, David; Mannapperuma, Chanaka; Netotea, Sergiu; Delhomme, Nicolas; Lin, Yao-Cheng; Sjödin, Andreas; Van de Peer, Yves; Jansson, Stefan; Hvidsten, Torgeir R; Street, Nathaniel R

    2015-12-01

    Accessing and exploring large-scale genomics data sets remains a significant challenge to researchers without specialist bioinformatics training. We present the integrated PlantGenIE.org platform for exploration of Populus, conifer and Arabidopsis genomics data, which includes expression networks and associated visualization tools. Standard features of a model organism database are provided, including genome browsers, gene list annotation, Blast homology searches and gene information pages. Community annotation updating is supported via integration of WebApollo. We have produced an RNA-sequencing (RNA-Seq) expression atlas for Populus tremula and have integrated these data within the expression tools. An updated version of the ComPlEx resource for performing comparative plant expression analyses of gene coexpression network conservation between species has also been integrated. The PlantGenIE.org platform provides intuitive access to large-scale and genome-wide genomics data from model forest tree species, facilitating both community contributions to annotation improvement and tools supporting use of the included data resources to inform biological insight. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  1. Biological data integration: wrapping data and tools.

    Science.gov (United States)

    Lacroix, Zoé

    2002-06-01

    Nowadays scientific data is inevitably digital and stored in a wide variety of formats in heterogeneous systems. Scientists need to access an integrated view of remote or local heterogeneous data sources with advanced data accessing, analyzing, and visualization tools. Building a digital library for scientific data requires accessing and manipulating data extracted from flat files or databases, documents retrieved from the Web as well as data generated by software. We present an approach to wrapping web data sources, databases, flat files, or data generated by tools through a database view mechanism. Generally, a wrapper has two tasks: it first sends a query to the source to retrieve data and, second builds the expected output with respect to the virtual structure. Our wrappers are composed of a retrieval component based on an intermediate object view mechanism called search views mapping the source capabilities to attributes, and an eXtensible Markup Language (XML) engine, respectively, to perform these two tasks. The originality of the approach consists of: 1) a generic view mechanism to access seamlessly data sources with limited capabilities and 2) the ability to wrap data sources as well as the useful specific tools they may provide. Our approach has been developed and demonstrated as part of the multidatabase system supporting queries via uniform object protocol model (OPM) interfaces.

  2. Method and apparatus to image biological interactions in plants

    Science.gov (United States)

    Weisenberger, Andrew; Bonito, Gregory M.; Reid, Chantal D.; Smith, Mark Frederick

    2015-12-22

    A method to dynamically image the actual translocation of molecular compounds of interest in a plant root, root system, and rhizosphere without disturbing the root or the soil. The technique makes use of radioactive isotopes as tracers to label molecules of interest and to image their distribution in the plant and/or soil. The method allows for the study and imaging of various biological and biochemical interactions in the rhizosphere of a plant, including, but not limited to, mycorrhizal associations in such regions.

  3. Plant Biology and Biogeochemistry Department annual report 2000

    DEFF Research Database (Denmark)

    Kossmann, J.; Gissel Nielsen, G.; Nielsen, K.K.

    2001-01-01

    The Department of Plant Biology and Biogeochemistry is engaged in basic and applied research to improve the scientific basis for developing new methods and technology for an environmentally benign industrial and agricultural production in the future. TheDepartment's expertise covers a wide range...... of areas needed to develop crops that meet the demands to increase agricultural production for a growing population, to produce plants with improved nutritional value, to develop crops that deliver renewableresources to the industry, and to generate plants that are adapted to the future climate...

  4. Biological consilience of hydrogen sulfide and nitric oxide in plants: Gases of primordial earth linking plant, microbial and animal physiologies.

    Science.gov (United States)

    Yamasaki, Hideo; Cohen, Michael F

    2016-05-01

    Hydrogen sulfide (H2S) is produced in the mammalian body through the enzymatic activities of cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3MST). A growing number of studies have revealed that biogenic H2S produced in tissues is involved in a variety of physiological responses in mammals including vasorelaxation and neurotransmission. It is now evident that mammals utilize H2S to regulate multiple signaling systems, echoing the research history of the gaseous signaling molecules nitric oxide (NO) and carbon monoxide (CO) that had previously only been recognized for their cytotoxicity. In the human diet, meats (mammals, birds and fishes) and vegetables (plants) containing cysteine and other sulfur compounds are the major dietary sources for endogenous production of H2S. Plants are primary producers in ecosystems on the earth and they synthesize organic sulfur compounds through the activity of sulfur assimilation. Although plant H2S-producing activities have been known for a long time, our knowledge of H2S biology in plant systems has not been updated to the extent of mammalian studies. Here we review recent progress on H2S studies, highlighting plants and bacteria. Scoping the future integration of H2S, NO and O2 biology, we discuss a possible linkage between physiology, ecology and evolutional biology of gas metabolisms that may reflect the historical changes of the Earth's atmospheric composition. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. What history tells us XXIX. Transfers from plant biology

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 37; Issue 6. What history tells us XXIX. Transfers from plant biology: From cross protection to RNA interference and DNA vaccination. Michel Morange. Series Volume 37 Issue 6 December 2012 pp 949-952 ...

  6. Benchmarking Biological Nutrient Removal in Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Gernaey, Krist; Jeppsson, Ulf

    2011-01-01

    This paper examines the effect of different model assumptions when describing biological nutrient removal (BNR) by the activated sludge models (ASM) 1, 2d & 3. The performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) benchmark wastewater treatment plant...

  7. Isoprenoid-derived plant signaling molecules: biosynthesis and biological importance

    Czech Academy of Sciences Publication Activity Database

    Tarkowská, Danuše; Strnad, Miroslav

    2018-01-01

    Roč. 247, č. 5 (2018), s. 1051-1066 ISSN 0032-0935 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Dimethylallyl diphosphate * Isopentenyl diphosphate * Isoprenoids * Phytoecdysteroids * Plant hormones * Terpenoids Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemical research methods Impact factor: 3.361, year: 2016

  8. CANDU plant life management - An integrated approach

    International Nuclear Information System (INIS)

    Charlebois, P.; Hart, R.S.; Hopkins, J.R.

    1998-01-01

    Commercial versions of CANDU reactors were put into service starting more than 25 years ago. The first unit of Ontario Hydro's Pickering A station was put into service in 1971, and Bruce A in 1977. Most CANDU reactors, however, are only now approaching their mid-life of 15 to 20 years of operation. In particular, the first series of CANDU 6 plants which entered service in the early 1980's were designed for a 30 year life and are now approaching mid life. The current CANDU 6 design is based on a 40 year life as a result of advancement in design and materials through research and development. In order to assure safe and economic operation of these reactors, a comprehensive CANDU Plant Life Management (PLIM) program is being developed from the knowledge gained during the operation of Ontario Hydro's Pickering, Bruce, and Darlington stations, worldwide information from CANDU 6 stations, CANDU research and development programs, and other national and international sources. This integration began its first phase in 1994, with the identification of most of the critical systems structures and components in these stations, and a preliminary assessment of degradation and mechanisms that could affect their fitness for service for their planned life. Most of these preliminary assessments are now complete, together with the production of the first iteration of Life Management Plans for several of the systems and components. The Generic CANDU 6 PLIM program is now reaching its maturity, with formal processes to systematically identify and evaluate the major CSSCs in the station, and a plan to ensure that the plant surveillance, operation, and maintenance programs monitor and control component degradation well within the original design specifications essential for the plant life attainment. A Technology Watch program is being established to ensure that degradation mechanisms which could impact on plant life are promptly investigated and mitigating programs established. The

  9. Plant glyco-biotechnology on the way to synthetic biology

    Directory of Open Access Journals (Sweden)

    Andreas eLoos

    2014-10-01

    Full Text Available Plants are increasingly being used for the production of recombinant proteins. One reason is that plants are highly amenable for glycan engineering processes and allow the production of therapeutic proteins with increased efficacies due to optimized glycosylation profiles. Removal and insertion of glycosylation reactions by knock-out/knock-down approaches and introduction of glycosylation enzymes have paved the way for the humanization of the plant glycosylation pathway. The insertion of heterologous enzymes at exactly the right stage of the existing glycosylation pathway has turned out to be of utmost importance for optimal results. To enable such precise targeting chimeric enzymes have been constructed. In this short review we will exemplify the importance of correct targeting of glycosyltransferases, we will give an overview of the targeting mechanism of glycosyltransferases, describe chimeric enzymes used in plant N-glycosylation engineering and illustrate how plant glycoengineering builds on the tools offered by synthetic biology to construct such chimeric enzymes.

  10. BiologicalNetworks 2.0 - an integrative view of genome biology data

    Directory of Open Access Journals (Sweden)

    Ponomarenko Julia

    2010-12-01

    Full Text Available Abstract Background A significant problem in the study of mechanisms of an organism's development is the elucidation of interrelated factors which are making an impact on the different levels of the organism, such as genes, biological molecules, cells, and cell systems. Numerous sources of heterogeneous data which exist for these subsystems are still not integrated sufficiently enough to give researchers a straightforward opportunity to analyze them together in the same frame of study. Systematic application of data integration methods is also hampered by a multitude of such factors as the orthogonal nature of the integrated data and naming problems. Results Here we report on a new version of BiologicalNetworks, a research environment for the integral visualization and analysis of heterogeneous biological data. BiologicalNetworks can be queried for properties of thousands of different types of biological entities (genes/proteins, promoters, COGs, pathways, binding sites, and other and their relations (interactions, co-expression, co-citations, and other. The system includes the build-pathways infrastructure for molecular interactions/relations and module discovery in high-throughput experiments. Also implemented in BiologicalNetworks are the Integrated Genome Viewer and Comparative Genomics Browser applications, which allow for the search and analysis of gene regulatory regions and their conservation in multiple species in conjunction with molecular pathways/networks, experimental data and functional annotations. Conclusions The new release of BiologicalNetworks together with its back-end database introduces extensive functionality for a more efficient integrated multi-level analysis of microarray, sequence, regulatory, and other data. BiologicalNetworks is freely available at http://www.biologicalnetworks.org.

  11. NASA Space Biology Plant Research for 2010-2020

    Science.gov (United States)

    Levine, H. G.; Tomko, D. L.; Porterfield, D. M.

    2012-01-01

    The U.S. National Research Council (NRC) recently published "Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era" (http://www.nap.edu/catalog.php?record id=13048), and NASA completed a Space Biology Science Plan to develop a strategy for implementing its recommendations ( http://www.nasa.gov/exploration/library/esmd documents.html). The most important recommendations of the NRC report on plant biology in space were that NASA should: (1) investigate the roles of microbial-plant systems in long-term bioregenerative life support systems, and (2) establish a robust spaceflight program of research analyzing plant growth and physiological responses to the multiple stimuli encountered in spaceflight environments. These efforts should take advantage of recently emerged analytical technologies (genomics, transcriptomics, proteomics, metabolomics) and apply modern cellular and molecular approaches in the development of a vigorous flight-based and ground-based research program. This talk will describe NASA's strategy and plans for implementing these NRC Plant Space Biology recommendations. New research capabilities for Plant Biology, optimized by providing state-of-the-art automated technology and analytical techniques to maximize scientific return, will be described. Flight experiments will use the most appropriate platform to achieve science results (e.g., ISS, free flyers, sub-orbital flights) and NASA will work closely with its international partners and other U.S. agencies to achieve its objectives. One of NASA's highest priorities in Space Biology is the development research capabilities for use on the International Space Station and other flight platforms for studying multiple generations of large plants. NASA will issue recurring NASA Research Announcements (NRAs) that include a rapid turn-around model to more fully engage the biology community in designing experiments to respond to the NRC recommendations. In doing so, NASA

  12. Integrated monitoring of wind plant systems

    Science.gov (United States)

    Whelan, Matthew J.; Janoyan, Kerop D.; Qiu, Tong

    2008-03-01

    Wind power is a renewable source of energy that is quickly gaining acceptance by many. Advanced sensor technologies have currently focused solely on improving wind turbine rotor aerodynamics and increasing of the efficiency of the blade design and concentration. Alternatively, potential improvements in wind plant efficiency may be realized through reduction of reactionary losses of kinetic energy to the structural and substructural systems supporting the turbine mechanics. Investigation of the complete dynamic structural response of the wind plant is proposed using a large-scale, high-rate wireless sensor network. The wireless network enables sensors to be placed across the sizable structure, including the rotating blades, without consideration of cabling issues and the economic burden associated with large spools of measurement cables. A large array of multi-axis accelerometers is utilized to evaluate the modal properties of the system as well as individual members and would enable long-term structural condition monitoring of the wind turbine as well. Additionally, environmental parameters, including wind speed, temperature, and humidity, are wirelessly collected for correlation. Such a wireless system could be integrated with electrical monitoring sensors and actuators and incorporated into a remote multi-turbine centralized plant monitoring and control system.

  13. An integrative approach to inferring biologically meaningful gene modules

    Directory of Open Access Journals (Sweden)

    Wang Kai

    2011-07-01

    Full Text Available Abstract Background The ability to construct biologically meaningful gene networks and modules is critical for contemporary systems biology. Though recent studies have demonstrated the power of using gene modules to shed light on the functioning of complex biological systems, most modules in these networks have shown little association with meaningful biological function. We have devised a method which directly incorporates gene ontology (GO annotation in construction of gene modules in order to gain better functional association. Results We have devised a method, Semantic Similarity-Integrated approach for Modularization (SSIM that integrates various gene-gene pairwise similarity values, including information obtained from gene expression, protein-protein interactions and GO annotations, in the construction of modules using affinity propagation clustering. We demonstrated the performance of the proposed method using data from two complex biological responses: 1. the osmotic shock response in Saccharomyces cerevisiae, and 2. the prion-induced pathogenic mouse model. In comparison with two previously reported algorithms, modules identified by SSIM showed significantly stronger association with biological functions. Conclusions The incorporation of semantic similarity based on GO annotation with gene expression and protein-protein interaction data can greatly enhance the functional relevance of inferred gene modules. In addition, the SSIM approach can also reveal the hierarchical structure of gene modules to gain a broader functional view of the biological system. Hence, the proposed method can facilitate comprehensive and in-depth analysis of high throughput experimental data at the gene network level.

  14. Plant biology in reduced gravity on the Moon and Mars.

    Science.gov (United States)

    Kiss, J Z

    2014-01-01

    While there have been numerous studies on the effects of microgravity on plant biology since the beginning of the Space Age, our knowledge of the effects of reduced gravity (less than the Earth nominal 1 g) on plant physiology and development is very limited. Since international space agencies have cited manned exploration of Moon/Mars as long-term goals, it is important to understand plant biology at the lunar (0.17 g) and Martian levels of gravity (0.38 g), as plants are likely to be part of bioregenerative life-support systems on these missions. First, the methods to obtain microgravity and reduced gravity such as drop towers, parabolic flights, sounding rockets and orbiting spacecraft are reviewed. Studies on gravitaxis and gravitropism in algae have suggested that the threshold level of gravity sensing is around 0.3 g or less. Recent experiments on the International Space Station (ISS) showed attenuation of phototropism in higher plants occurs at levels ranging from 0.l g to 0.3 g. Taken together, these studies suggest that the reduced gravity level on Mars of 0.38 g may be enough so that the gravity level per se would not be a major problem for plant development. Studies that have directly considered the impact of reduced gravity and microgravity on bioregenerative life-support systems have identified important biophysical changes in the reduced gravity environments that impact the design of these systems. The author suggests that the current ISS laboratory facilities with on-board centrifuges should be used as a test bed in which to explore the effects of reduced gravity on plant biology, including those factors that are directly related to developing life-support systems necessary for Moon and Mars exploration. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Physical integrity: the missing link in biological monitoring and TMDLs.

    Science.gov (United States)

    Asmus, Brenda; Magner, Joseph A; Vondracek, Bruce; Perry, Jim

    2009-12-01

    The Clean Water Act mandates that the chemical, physical, and biological integrity of our nation's waters be maintained and restored. Physical integrity has often been defined as physical habitat integrity, and as such, data collected during biological monitoring programs focus primarily on habitat quality. However, we argue that channel stability is a more appropriate measure of physical integrity and that channel stability is a foundational element of physical habitat integrity in low-gradient alluvial streams. We highlight assessment tools that could supplement stream assessments and the Total Maximum Daily Load stressor identification process: field surveys of bankfull cross-sections; longitudinal thalweg profiles; particle size distribution; and regionally calibrated, visual, stream stability assessments. Benefits of measuring channel stability include a more informed selection of reference or best attainable stream condition for an Index of Biotic Integrity, establishment of a baseline for monitoring changes in present and future condition, and indication of channel stability for investigations of chemical and biological impairments associated with sediment discontinuity and loss of habitat quality.

  16. Plant synthetic biology: a new platform for industrial biotechnology.

    Science.gov (United States)

    Fesenko, Elena; Edwards, Robert

    2014-05-01

    Thirty years after the production of the first generation of genetically modified plants we are now set to move into a new era of recombinant crop technology through the application of synthetic biology to engineer new and complex input and output traits. The use of synthetic biology technologies will represent more than incremental additions of transgenes, but rather the directed design of completely new metabolic pathways, physiological traits, and developmental control strategies. The need to enhance our ability to improve crops through new engineering capability is now increasingly pressing as we turn to plants not just for food, but as a source of renewable feedstocks for industry. These accelerating and diversifying demands for new output traits coincide with a need to reduce inputs and improve agricultural sustainability. Faced with such challenges, existing technologies will need to be supplemented with new and far-more-directed approaches to turn valuable resources more efficiently into usable agricultural products. While these objectives are challenging enough, the use of synthetic biology in crop improvement will face public acceptance issues as a legacy of genetically modified technologies in many countries. Here we review some of the potential benefits of adopting synthetic biology approaches in improving plant input and output traits for their use as industrial chemical feedstocks, as linked to the rapidly developing biorefining industry. Several promising technologies and biotechnological targets are identified along with some of the key regulatory and societal challenges in the safe and acceptable introduction of such technology.

  17. Outside-in control -Does plant cell wall integrity regulate cell cycle progression?

    Science.gov (United States)

    Gigli-Bisceglia, Nora; Hamann, Thorsten

    2018-04-13

    During recent years it has become accepted that plant cell walls are not inert objects surrounding all plant cells but are instead highly dynamic, plastic structures. They are involved in a large number of cell biological processes and contribute actively to plant growth, development and interaction with environment. Therefore, it is not surprising that cellular processes can control plant cell wall integrity while, simultaneously, cell wall integrity can influence cellular processes. In yeast and animal cells such a bi-directional relationship also exists between the yeast/animal extra-cellular matrices and the cell cycle. In yeast, the cell wall integrity maintenance mechanism and a dedicated plasmamembrane integrity checkpoint are mediating this relationship. Recent research has yielded insights into the mechanism controlling plant cell wall metabolism during cytokinesis. However, knowledge regarding putative regulatory pathways controlling adaptive modifications in plant cell cycle activity in response to changes in the state of the plant cell wall are not yet identified. In this review, we summarize similarities and differences in regulatory mechanisms coordinating extra cellular matrices and cell cycle activity in animal and yeast cells, discuss the available evidence supporting the existence of such a mechanism in plants and suggest that the plant cell wall integrity maintenance mechanism might also control cell cycle activity in plant cells. This article is protected by copyright. All rights reserved.

  18. Milkweed Seed Dispersal: A Means for Integrating Biology and Physics.

    Science.gov (United States)

    Bisbee, Gregory D.; Kaiser, Cheryl A.

    1997-01-01

    Describes an activity that integrates biology and physics concepts by experimenting with the seed dispersal of common milkweed or similar wind-dispersed seeds. Student teams collect seeds and measure several parameters, review principles of trajectory motion, perform experiments, and graph data. Students examine the ideas of…

  19. Glutathione in plants: an integrated overview.

    Science.gov (United States)

    Noctor, Graham; Mhamdi, Amna; Chaouch, Sejir; Han, Yi; Neukermans, Jenny; Marquez-Garcia, Belen; Queval, Guillaume; Foyer, Christine H

    2012-02-01

    Plants cannot survive without glutathione (γ-glutamylcysteinylglycine) or γ-glutamylcysteine-containing homologues. The reasons why this small molecule is indispensable are not fully understood, but it can be inferred that glutathione has functions in plant development that cannot be performed by other thiols or antioxidants. The known functions of glutathione include roles in biosynthetic pathways, detoxification, antioxidant biochemistry and redox homeostasis. Glutathione can interact in multiple ways with proteins through thiol-disulphide exchange and related processes. Its strategic position between oxidants such as reactive oxygen species and cellular reductants makes the glutathione system perfectly configured for signalling functions. Recent years have witnessed considerable progress in understanding glutathione synthesis, degradation and transport, particularly in relation to cellular redox homeostasis and related signalling under optimal and stress conditions. Here we outline the key recent advances and discuss how alterations in glutathione status, such as those observed during stress, may participate in signal transduction cascades. The discussion highlights some of the issues surrounding the regulation of glutathione contents, the control of glutathione redox potential, and how the functions of glutathione and other thiols are integrated to fine-tune photorespiratory and respiratory metabolism and to modulate phytohormone signalling pathways through appropriate modification of sensitive protein cysteine residues. © 2011 Blackwell Publishing Ltd.

  20. Recombinant biologic products versus nutraceuticals from plants - a regulatory choice?

    Science.gov (United States)

    Drake, Pascal M W; Szeto, Tim H; Paul, Mathew J; Teh, Audrey Y-H; Ma, Julian K-C

    2017-01-01

    Biotechnology has transformed the potential for plants to be a manufacturing source of pharmaceutical compounds. Now, with transgenic and transient expression techniques, virtually any biologic, including vaccines and therapeutics, could be manufactured in plants. However, uncertainty over the regulatory path for such new pharmaceuticals has been a deterrent. Consideration has been given to using alternative regulatory paths, including those for nutraceuticals or cosmetic agents. This review will consider these possibilities, and discuss the difficulties in establishing regulatory guidelines for new pharmaceutical manufacturing technologies. © 2016 The British Pharmacological Society.

  1. Towards Integration of Biological and Physiological Functions at Multiple Levels

    Directory of Open Access Journals (Sweden)

    Taishin eNomura

    2010-12-01

    Full Text Available An aim of systems physiology today can be stated as to establish logical and quantitative bridges between phenomenological attributes of physiological entities such as cells and organs and physical attributes of biological entities, i.e., biological molecules, allowing us to describe and better understand physiological functions in terms of underlying biological functions. This article illustrates possible schema that can be used for promoting systems physiology by integrating quantitative knowledge of biological and physiological functions at multiple levels of time and space with the use of information technology infrastructure. Emphasis will be made for systematic, modular, hierarchical, and standardized descriptions of mathematical models of the functions and advantages for the use of them.

  2. Large Scale Proteomic Data and Network-Based Systems Biology Approaches to Explore the Plant World.

    Science.gov (United States)

    Di Silvestre, Dario; Bergamaschi, Andrea; Bellini, Edoardo; Mauri, PierLuigi

    2018-06-03

    The investigation of plant organisms by means of data-derived systems biology approaches based on network modeling is mainly characterized by genomic data, while the potential of proteomics is largely unexplored. This delay is mainly caused by the paucity of plant genomic/proteomic sequences and annotations which are fundamental to perform mass-spectrometry (MS) data interpretation. However, Next Generation Sequencing (NGS) techniques are contributing to filling this gap and an increasing number of studies are focusing on plant proteome profiling and protein-protein interactions (PPIs) identification. Interesting results were obtained by evaluating the topology of PPI networks in the context of organ-associated biological processes as well as plant-pathogen relationships. These examples foreshadow well the benefits that these approaches may provide to plant research. Thus, in addition to providing an overview of the main-omic technologies recently used on plant organisms, we will focus on studies that rely on concepts of module, hub and shortest path, and how they can contribute to the plant discovery processes. In this scenario, we will also consider gene co-expression networks, and some examples of integration with metabolomic data and genome-wide association studies (GWAS) to select candidate genes will be mentioned.

  3. Data Integration and Mining for Synthetic Biology Design.

    Science.gov (United States)

    Mısırlı, Göksel; Hallinan, Jennifer; Pocock, Matthew; Lord, Phillip; McLaughlin, James Alastair; Sauro, Herbert; Wipat, Anil

    2016-10-21

    One aim of synthetic biologists is to create novel and predictable biological systems from simpler modular parts. This approach is currently hampered by a lack of well-defined and characterized parts and devices. However, there is a wealth of existing biological information, which can be used to identify and characterize biological parts, and their design constraints in the literature and numerous biological databases. However, this information is spread among these databases in many different formats. New computational approaches are required to make this information available in an integrated format that is more amenable to data mining. A tried and tested approach to this problem is to map disparate data sources into a single data set, with common syntax and semantics, to produce a data warehouse or knowledge base. Ontologies have been used extensively in the life sciences, providing this common syntax and semantics as a model for a given biological domain, in a fashion that is amenable to computational analysis and reasoning. Here, we present an ontology for applications in synthetic biology design, SyBiOnt, which facilitates the modeling of information about biological parts and their relationships. SyBiOnt was used to create the SyBiOntKB knowledge base, incorporating and building upon existing life sciences ontologies and standards. The reasoning capabilities of ontologies were then applied to automate the mining of biological parts from this knowledge base. We propose that this approach will be useful to speed up synthetic biology design and ultimately help facilitate the automation of the biological engineering life cycle.

  4. Biological effects due to weak magnetic fields on plants

    Science.gov (United States)

    Belyavskaya, N.

    In the evolution process, living organisms have experienced the action of the Earth's magnetic field (MF) that is a natural component of our environment. It is known that a galactic MF induction does not exceed 0.1 nT, since investigations of weak magnetic field (WMF) effects on biological systems have attracted attention of biologists due to planning long-term space flights to other planets where the magnetizing force is near 10-5 Oe. However, the role of WMF and its influence on organisms' functioning are still insufficiently investigated. A large number of experiments with seedlings of different plant species placed in WMF has found that the growth of their primary roots is inhibited during the early terms of germination in comparison with control. The proliferation activity and cell reproduction are reduced in meristem of plant roots under WMF application. The prolongation of total cell reproductive cycle is registered due to the expansion of G phase in1 different plant species as well as of G phase in flax and lentil roots along with2 relative stability of time parameters of other phases of cell cycle. In plant cells exposed to WMF, the decrease in functional activity of genome at early prereplicate period is shown. WMF causes the intensification in the processes of proteins' synthesis and break-up in plant roots. Qualitative and quantitative changes in protein spectrum in growing and differentiated cells of plant roots exposed to WMF are revealed. At ultrastructural level, there are observed such ultrastructural peculiarities as changes in distribution of condensed chromatin and nucleolus compactization in nuclei, noticeable accumulation of lipid bodies, development of a lytic compartment (vacuoles, cytosegresomes and paramural bodies), and reduction of phytoferritin in plastids in meristem cells of pea roots exposed to WMF. Mitochondria are the most sensitive organelle to WMF application: their size and relative volume in cells increase, matrix is electron

  5. Integrated pathway clusters with coherent biological themes for target prioritisation.

    Directory of Open Access Journals (Sweden)

    Yi-An Chen

    Full Text Available Prioritising candidate genes for further experimental characterisation is an essential, yet challenging task in biomedical research. One way of achieving this goal is to identify specific biological themes that are enriched within the gene set of interest to obtain insights into the biological phenomena under study. Biological pathway data have been particularly useful in identifying functional associations of genes and/or gene sets. However, biological pathway information as compiled in varied repositories often differs in scope and content, preventing a more effective and comprehensive characterisation of gene sets. Here we describe a new approach to constructing biologically coherent gene sets from pathway data in major public repositories and employing them for functional analysis of large gene sets. We first revealed significant overlaps in gene content between different pathways and then defined a clustering method based on the shared gene content and the similarity of gene overlap patterns. We established the biological relevance of the constructed pathway clusters using independent quantitative measures and we finally demonstrated the effectiveness of the constructed pathway clusters in comparative functional enrichment analysis of gene sets associated with diverse human diseases gathered from the literature. The pathway clusters and gene mappings have been integrated into the TargetMine data warehouse and are likely to provide a concise, manageable and biologically relevant means of functional analysis of gene sets and to facilitate candidate gene prioritisation.

  6. Biological activity of selected plants with adaptogenic effect

    OpenAIRE

    Eva Ivanišová; Miroslava Kačániová; Jana Petrová; Radka Staňková; Lucia Godočíková; Tomáš Krajčovič; Štefan Dráb

    2016-01-01

    The aim of this study was to determine biological activity of plants with adaptogenic effect: Panax ginseng Mayer., Withania somnifera L., Eleuterococcus senticosus Rupr. et Maxim., Astragallus membranaceus Fisch. and Codonopsis pilosulae Franch. The antioxidant activity was detected by DPPH and phosphomolybdenum method, total polyphenol content with Folin – Ciocalteu reagent, flavonoids content by aluminium chloride method. The detection of antimicrobial activity was carried out by disc diff...

  7. The use of aquatic macrophytes in monitoring and in assessment of biological integrity

    Science.gov (United States)

    Stewart, P.M.; Scribailo, R.W.; Simon, T.P.; Gerhardt, A.

    1999-01-01

    Aquatic plant species, populations, and communities should be used as indicators of the aquatic environment, allowing detection of ecosystem response to different stressors. Plant tissues bioaccumulate and concentrate toxin levels higher than what is present in the sediments; and this appears to be related to organic matter content, acidification, and buffering capacity. The majority of toxicity studies, most of these with heavy metals, have been done with several Lemna species and Vallisneria americana. Organic chemicals reviewed include pesticides and herbicides, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and other industrial contaminants. The use of aquatic plant communities as bioindicators of environmental quality was evaluated for specific characteristics and indices that may assess biological integrity. Indices such as the floristic quality index (FQI) and coefficient of conservatism (C) are pioneering efforts to describe the quality of natural areas and protect native biodiversity. Our case study in the Grand Calumet Lagoons found that 'least-impacted' sites had the greatest aquatic plant species richness, highest FQI and C values, and highest relative abundance. Lastly, we introduce the concepts necessary for the development of a plant index of biotic integrity. Development of reference conditions is essential to understanding aquatic plant community structure, function, individual health, condition, and abundance. Information on guild development and tolerance definition are also integral to the development of a multi-metric index.

  8. Systematic integration of experimental data and models in systems biology.

    Science.gov (United States)

    Li, Peter; Dada, Joseph O; Jameson, Daniel; Spasic, Irena; Swainston, Neil; Carroll, Kathleen; Dunn, Warwick; Khan, Farid; Malys, Naglis; Messiha, Hanan L; Simeonidis, Evangelos; Weichart, Dieter; Winder, Catherine; Wishart, Jill; Broomhead, David S; Goble, Carole A; Gaskell, Simon J; Kell, Douglas B; Westerhoff, Hans V; Mendes, Pedro; Paton, Norman W

    2010-11-29

    The behaviour of biological systems can be deduced from their mathematical models. However, multiple sources of data in diverse forms are required in the construction of a model in order to define its components and their biochemical reactions, and corresponding parameters. Automating the assembly and use of systems biology models is dependent upon data integration processes involving the interoperation of data and analytical resources. Taverna workflows have been developed for the automated assembly of quantitative parameterised metabolic networks in the Systems Biology Markup Language (SBML). A SBML model is built in a systematic fashion by the workflows which starts with the construction of a qualitative network using data from a MIRIAM-compliant genome-scale model of yeast metabolism. This is followed by parameterisation of the SBML model with experimental data from two repositories, the SABIO-RK enzyme kinetics database and a database of quantitative experimental results. The models are then calibrated and simulated in workflows that call out to COPASIWS, the web service interface to the COPASI software application for analysing biochemical networks. These systems biology workflows were evaluated for their ability to construct a parameterised model of yeast glycolysis. Distributed information about metabolic reactions that have been described to MIRIAM standards enables the automated assembly of quantitative systems biology models of metabolic networks based on user-defined criteria. Such data integration processes can be implemented as Taverna workflows to provide a rapid overview of the components and their relationships within a biochemical system.

  9. An integrated reliability management system for nuclear power plants

    International Nuclear Information System (INIS)

    Kimura, T.; Shimokawa, H.; Matsushima, H.

    1998-01-01

    The responsibility in the nuclear field of the Government, utilities and manufactures has increased in the past years due to the need of stable operation and great reliability of nuclear power plants. The need to improve the reliability is not only for the new plants but also for those now running. So, several measures have been taken to improve reliability. In particular, the plant manufactures have developed a reliability management system for each phase (planning, construction, maintenance and operation) and these have been integrated as a unified system. This integrated reliability management system for nuclear power plants contains information about plant performance, failures and incidents which have occurred in the plants. (author)

  10. Phytochemicals and biological studies of plants from the genus Balanophora

    Directory of Open Access Journals (Sweden)

    Wang Xiaohong

    2012-08-01

    Full Text Available Abstract This review focus on the phytochemical progress and biological studies of plants from the genus Balanophora (Balanophoraceae over the past few decades, in which most plants growth in tropical and subtropical regions of Asia and Oceania, and nearly 20 species ranged in southwest China. These dioeciously parasitic plants are normally growing on the roots of the evergreen broadleaf trees, especially in the family of Leguminosae, Ericaceae, Urticaceae, and Fagaceae. The plants are mainly used for clearing away heat and toxic, neutralizing the effect of alcoholic drinks, and as a tonic for the treatment of hemorrhoids, stomachache and hemoptysis. And it has been used widely throughtout local area by Chinese people. Cinnamic acid derivative tannins, possessing a phenylacrylic acid derivative (e. g. caffeoyl, coumaroyl, feruloyl or cinnamoyl, which connected to the C(1 position of a glucosyl unit by O-glycosidic bond, are the characteristic components in genus Balanophora. In addition, several galloyl, caffeoyl and hexahydroxydiphenoyl esters of dihydrochalcone glucosides are found in B. tobiracola, B. harlandii, and B. papuana. Other compounds like phenylpropanoids, flavonoids, terpenoids and sterols are also existed. And their biological activities, such as radical scavenging activities, HIV inhibiting effects, and hypoglycemic effects are highlighted in the review.

  11. Profile of biology prospective teachers’ representation on plant anatomy learning

    Science.gov (United States)

    Ermayanti; Susanti, R.; Anwar, Y.

    2018-04-01

    This study aims to obtaining students’ representation ability in understanding the structure and function of plant tissues in plant anatomy course. Thirty students of The Biology Education Department of Sriwijaya University were involved in this study. Data on representation ability were collected using test and observation. The instruments had been validated by expert judgment. Test scores were used to represent students’ ability in 4 categories: 2D-image, 3D-image, spatial, and verbal representations. The results show that students’ representation ability is still low: 2D-image (40.0), 3D-image (25.0), spatial (20.0), and verbal representation (45.0). Based on the results of this study, it is suggested that instructional strategies be developed for plant anatomy course.

  12. Integrated construction management technology for power plants

    International Nuclear Information System (INIS)

    Okada, Hisako; Miura, Jun; Nishitani, Yasuhiko

    2003-01-01

    The improvement and rationalization of the plant construction technology has been promoted in order to shorten the construction period, to improve the quality and reliability, and especially to reduce construction costs. With the recent remarkable advances of computer technology, it is necessary to introduce an electronic information technology (IT) into the construction field, and to develop a business process. In such a situation, Hitachi has developed and applied integrated construction support system, which is consistent among design, production and construction. This system has design information and schedule information made electronically as a basic database, and characterizes with project management function based on that information. By introduction of this system, electronic processing of information and reduction of paperwork has enabled high efficiency and standardization of on-site indirect work. Furthermore, by collaboration with the civil company, electrical data exchange has been carried out and developed techniques to improve the interface between mechanical and civil work. High accuracy of construction planning and unification of schedule data have been achieved, and consequently, rework and adjustment at the job site have been greatly reduced. (author)

  13. Energy optimization of integrated process plants

    Energy Technology Data Exchange (ETDEWEB)

    Sandvig Nielsen, J

    1996-10-01

    A general approach for viewing the process synthesis as an evolutionary process is proposed. Each step is taken according to the present level of information and knowledge. This is formulated in a Process Synthesis Cycle. Initially the synthesis is conducted at a high abstraction level maximizing use of heuristics (prior experience, rules of thumbs etc). When further knowledge and information are available, heuristics will gradually be replaced by exact problem formulations. The principles in the Process Synthesis Cycle, is used to develop a general procedure for energy synthesis, based on available tools. The procedure is based on efficient use of process simulators with integrated Pinch capabilities (energy targeting). The proposed general procedure is tailored to three specific problems (Humid Air Turbine power plant synthesis, Nitric Acid process synthesis and Sulphuric Acid synthesis). Using the procedure reduces the problem dimension considerable and thus allows for faster evaluation of more alternatives. At more detailed level a new framework for the Heat Exchanger Network synthesis problem is proposed. The new framework is object oriented based on a general functional description of all elements potentially present in the heat exchanger network (streams, exchangers, pumps, furnaces etc.). (LN) 116 refs.

  14. West-Life, Tools for Integrative Structural Biology

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Structural biology is part of molecular biology focusing on determining structure of macromolecules inside living cells and cell membranes. As macromolecules determines most of the functions of cells the structural knowledge is very useful for further research in metabolism, physiology to application in pharmacology etc. As macromolecules are too small to be observed directly by light microscope, there are other methods used to determine the structure including nuclear magnetic resonance (NMR), X-Ray crystalography, cryo electron microscopy and others. Each method has it's advantages and disadvantages in the terms of availability, sample preparation, resolution. West-Life project has ambition to facilitate integrative approach using multiple techniques mentioned above. As there are already lot of software tools to process data produced by the techniques above, the challenge is to integrate them together in a way they can be used by experts in one technique but not experts in other techniques. One product ...

  15. Semiconductor Devices Inspired By and Integrated With Biology

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, John [University of Illinois

    2012-04-25

    Biology is curved, soft and elastic; silicon wafers are not. Semiconductor technologies that can bridge this gap in form and mechanics will create new opportunities in devices that adopt biologically inspired designs or require intimate integration with the human body. This talk describes the development of ideas for electronics that offer the performance of state-of-the-art, wafer- based systems but with the mechanical properties of a rubber band. We explain the underlying materials science and mechanics of these approaches, and illustrate their use in (1) bio- integrated, ‘tissue-like’ electronics with unique capabilities for mapping cardiac and neural electrophysiology, and (2) bio-inspired, ‘eyeball’ cameras with exceptional imaging properties enabled by curvilinear, Petzval designs.

  16. Biological nitrogen fixation in non-legume plants.

    Science.gov (United States)

    Santi, Carole; Bogusz, Didier; Franche, Claudine

    2013-05-01

    Nitrogen is an essential nutrient in plant growth. The ability of a plant to supply all or part of its requirements from biological nitrogen fixation (BNF) thanks to interactions with endosymbiotic, associative and endophytic symbionts, confers a great competitive advantage over non-nitrogen-fixing plants. Because BNF in legumes is well documented, this review focuses on BNF in non-legume plants. Despite the phylogenic and ecological diversity among diazotrophic bacteria and their hosts, tightly regulated communication is always necessary between the microorganisms and the host plant to achieve a successful interaction. Ongoing research efforts to improve knowledge of the molecular mechanisms underlying these original relationships and some common strategies leading to a successful relationship between the nitrogen-fixing microorganisms and their hosts are presented. Understanding the molecular mechanism of BNF outside the legume-rhizobium symbiosis could have important agronomic implications and enable the use of N-fertilizers to be reduced or even avoided. Indeed, in the short term, improved understanding could lead to more sustainable exploitation of the biodiversity of nitrogen-fixing organisms and, in the longer term, to the transfer of endosymbiotic nitrogen-fixation capacities to major non-legume crops.

  17. Integral Indicator of Ecological Footprint for Croatian Power Plants

    International Nuclear Information System (INIS)

    Strijov, V.; Granic, G.; Juric, Z.; Jelavic, B.; Antesevic Maricic, S.

    2009-01-01

    The main goal of this paper is to present the methodology of construction of the Integral Indicator for Croatian Thermal Power Plants and Combined Heat and Power Plants. The Integral Indicator is necessary to compare Power Plants selected according to a certain criterion. The criterion of the Ecological Footprint is chosen. The following features of the Power Plants are used: generated electricity and heat; consumed coal and liquid fuel; sulphur content in fuel; emitted CO 2 , SO 2 , NO x and particles. To construct the Integral Indicator the linear model is used. The model parameters are tuned by the Principal Component Analysis algorithm. The constructed Integral Indicator is compared with several others, such as Pareto-Optimal Slicing Indicator and Metric Indicator. The Integral Indicator keeps as much information about features of the Power Plants as possible; it is simple and robust.(author).

  18. Bacterial microcompartments as metabolic modules for plant synthetic biology.

    Science.gov (United States)

    Gonzalez-Esquer, C Raul; Newnham, Sarah E; Kerfeld, Cheryl A

    2016-07-01

    Bacterial microcompartments (BMCs) are megadalton-sized protein assemblies that enclose segments of metabolic pathways within cells. They increase the catalytic efficiency of the encapsulated enzymes while sequestering volatile or toxic intermediates from the bulk cytosol. The first BMCs discovered were the carboxysomes of cyanobacteria. Carboxysomes compartmentalize the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) with carbonic anhydrase. They enhance the carboxylase activity of RuBisCO by increasing the local concentration of CO2 in the vicinity of the enzyme's active site. As a metabolic module for carbon fixation, carboxysomes could be transferred to eukaryotic organisms (e.g. plants) to increase photosynthetic efficiency. Within the scope of synthetic biology, carboxysomes and other BMCs hold even greater potential when considered a source of building blocks for the development of nanoreactors or three-dimensional scaffolds to increase the efficiency of either native or heterologously expressed enzymes. The carboxysome serves as an ideal model system for testing approaches to engineering BMCs because their expression in cyanobacteria provides a sensitive screen for form (appearance of polyhedral bodies) and function (ability to grow on air). We recount recent progress in the re-engineering of the carboxysome shell and core to offer a conceptual framework for the development of BMC-based architectures for applications in plant synthetic biology. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  19. Radiation degradation of carbohydrates and their biological activities for plants

    International Nuclear Information System (INIS)

    Kume, T.; Nagasawa, N.; Matsuhashi, S.

    2000-01-01

    Radiation effects on carbohydrates such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated to improve the biological activities. These carbohydrates were easily degraded by irradiation and induced various kinds of biological activities such as anti-bacterial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction. Pectic fragments obtained from degraded pectin induced the phytoalexins such as glyceollins in soybean and pisatin in pea. The irradiated chitosan shows the higher elicitor activity for pisatin than that of pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. Kappa and iota carrageenan derived from red marine algae can promote growth of rice and the highest effect was obtained with kappa irradiated at 100 kGy. Some radiation degraded carbohydrates suppressed the damage of heavy metals on plants. The effects of irradiated carbohydrates on transportation of heavy metals have been investigated by PETIS (Positron Emitting Tracer Imaging System) and autoradiography using 48 V and 62 Zn. (author)

  20. Micrasterias as a model system in plant cell biology

    Directory of Open Access Journals (Sweden)

    Ursula Luetz-Meindl

    2016-07-01

    Full Text Available The unicellular freshwater alga Micrasterias denticulata is an exceptional organism due to its extraordinary star-shaped, highly symmetric morphology and has thus attracted the interest of researchers for many decades. As a member of the Streptophyta, Micrasterias is not only genetically closely related to higher land plants but shares common features with them in many physiological and cell biological aspects. These facts, together with its considerable cell size of about 200 µm, its modest cultivation conditions and the uncomplicated accessibility particularly to any microscopic techniques, make Micrasterias a very well suited cell biological plant model system. The review focuses particularly on cell wall formation and composition, dictyosomal structure and function, cytoskeleton control of growth and morphogenesis as well as on ionic regulation and signal transduction. It has been also shown in the recent years that Micrasterias is a highly sensitive indicator for environmental stress impact such as heavy metals, high salinity, oxidative stress or starvation. Stress induced organelle degradation, autophagy, adaption and detoxification mechanisms have moved in the center of interest and have been investigated with modern microscopic techniques such as 3-D- and analytical electron microscopy as well as with biochemical, physiological and molecular approaches. This review is intended to summarize and discuss the most important results obtained in Micrasterias in the last 20 years and to compare the results to similar processes in higher plant cells.

  1. An integrated approach to plant life management

    International Nuclear Information System (INIS)

    Fredlund, L.

    1998-01-01

    Plant life is no longer determined by components, almost everything can be replaced. A plant life management program should aim at actions and replacements being performed at the right time. In order to manage this there is need for experience feedback systems, a plant specific risk study and safety upgrades. (author)

  2. Oak Ridge Y-12 Plant biological monitoring and abatement program (BMAP) plan

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.; Brandt, C.C.; Cicerone, D.S. [and others

    1998-02-01

    The proposed Biological Monitoring and Abatement Program (BMAP) for East Fork Poplar Creek (EFPC) at the Oak Ridge Y-12 Plant, as described, will be conducted for the duration of the National Pollutant Discharge Elimination System permit issued for the Y-12 Plant on April 28, 1995, and which became effective July 1, 1995. The basic approach to biological monitoring used in this program was developed by the staff in the Environmental Sciences Division at the Oak Ridge National Laboratory at the request of Y-12 Plant personnel. The proposed BMAP plan is based on results of biological monitoring conducted since 1985. Details of the specific procedures used in the current routine monitoring program are provided, but experimental designs for future studies are described in less detail. The overall strategy used in developing this plan was, and continues to be, to use the results obtained from each task to define the scope of future monitoring efforts. Such efforts may require more intensive sampling than initially proposed in some areas or a reduction in sampling intensity in others. By using the results of previous monitoring efforts to define the current program and to guide them in the development of future studies, an effective integrated monitoring program has been developed to assess the impacts of the Y-12 Plant operation on the biota of EFPC and to document the ecological effects of remedial actions.

  3. Oak Ridge Y-12 Plant biological monitoring and abatement program (BMAP) plan

    International Nuclear Information System (INIS)

    Adams, S.M.; Brandt, C.C.; Cicerone, D.S.

    1998-02-01

    The proposed Biological Monitoring and Abatement Program (BMAP) for East Fork Poplar Creek (EFPC) at the Oak Ridge Y-12 Plant, as described, will be conducted for the duration of the National Pollutant Discharge Elimination System permit issued for the Y-12 Plant on April 28, 1995, and which became effective July 1, 1995. The basic approach to biological monitoring used in this program was developed by the staff in the Environmental Sciences Division at the Oak Ridge National Laboratory at the request of Y-12 Plant personnel. The proposed BMAP plan is based on results of biological monitoring conducted since 1985. Details of the specific procedures used in the current routine monitoring program are provided, but experimental designs for future studies are described in less detail. The overall strategy used in developing this plan was, and continues to be, to use the results obtained from each task to define the scope of future monitoring efforts. Such efforts may require more intensive sampling than initially proposed in some areas or a reduction in sampling intensity in others. By using the results of previous monitoring efforts to define the current program and to guide them in the development of future studies, an effective integrated monitoring program has been developed to assess the impacts of the Y-12 Plant operation on the biota of EFPC and to document the ecological effects of remedial actions

  4. Biological activity of selected plants with adaptogenic effect

    Directory of Open Access Journals (Sweden)

    Eva Ivanišová

    2016-05-01

    Full Text Available The aim of this study was to determine biological activity of plants with adaptogenic effect: Panax ginseng Mayer., Withania somnifera L., Eleuterococcus senticosus Rupr. et Maxim., Astragallus membranaceus Fisch. and Codonopsis pilosulae Franch. The antioxidant activity was detected by DPPH and phosphomolybdenum method, total polyphenol content with Folin – Ciocalteu reagent, flavonoids content by aluminium chloride method. The detection of antimicrobial activity was carried out by disc diffusion method against three species of Gram-negative bacteria: Escherichia coli CCM 3988, Salmonella enterica subsp. enterica CCM 3807, Yersinia enterocolitica CCM 5671 and two Gram-positive bacteria: Bacillus thuringiensis CCM 19, Stapylococcus aureus subsp. aureus CCM 2461. Results showed that plants with adaptogenic effect are rich for biologically active substances. The highest antioxidant activity by DPPH method was determined in the sample of Eleuterococcus senticosus (3.15 mg TEAC – Trolox equivalent antioxidant capacity per g of sample and by phosphomolybdenum method in the sample of Codonopsis pilosulae (188.79 mg TEAC per g of sample. In the sample of Panax ginseng was measured the highest content of total polyphenols (8.10 mg GAE – galic acid equivalent per g of sample and flavonoids (3.41 μg QE – quercetin equivalent per g of sample. All samples also showed strong antimicrobial activity with the best results in Panax ginseng and Withania somnifera in particular for species Yersinia enterocolitica CCM 5671 and Salmonella enterica subsp. enterica CCM 3807. The analyzed species of plant with high value of biological activity can be used more in the future, not only in food, but also in cosmetics and pharmaceutical industries.

  5. Teaching the fundamentals of biological data integration using classroom games.

    Directory of Open Access Journals (Sweden)

    Maria Victoria Schneider

    Full Text Available This article aims to introduce the nature of data integration to life scientists. Generally, the subject of data integration is not discussed outside the field of computational science and is not covered in any detail, or even neglected, when teaching/training trainees. End users (hereby defined as wet-lab trainees, clinicians, lab researchers will mostly interact with bioinformatics resources and tools through web interfaces that mask the user from the data integration processes. However, the lack of formal training or acquaintance with even simple database concepts and terminology often results in a real obstacle to the full comprehension of the resources and tools the end users wish to access. Understanding how data integration works is fundamental to empowering trainees to see the limitations as well as the possibilities when exploring, retrieving, and analysing biological data from databases. Here we introduce a game-based learning activity for training/teaching the topic of data integration that trainers/educators can adopt and adapt for their classroom. In particular we provide an example using DAS (Distributed Annotation Systems as a method for data integration.

  6. Biological properties of nitro-fatty acids in plants.

    Science.gov (United States)

    Mata-Pérez, Capilla; Padilla, María N; Sánchez-Calvo, Beatriz; Begara-Morales, Juan C; Valderrama, Raquel; Chaki, Mounira; Barroso, Juan B

    2018-03-27

    Nitro-fatty acids (NO 2 -FAs) are formed from the reaction between nitrogen dioxide (NO 2 ) and mono and polyunsaturated fatty acids. Knowledge concerning NO 2 -FAs has significantly increased within a few years ago and the beneficial actions of these species uncovered in animal systems have led to consider them as molecules with therapeutic potential. Based on their nature and structure, NO 2 -FAs have the ability to release nitric oxide (NO) in aqueous environments and the capacity to mediate post-translational modifications (PTM) by nitroalkylation. Recently, based on the potential of these NO-derived molecules in the animal field, the endogenous occurrence of nitrated-derivatives of linolenic acid (NO 2 -Ln) was assessed in plant species. Moreover and through RNA-seq technology, it was shown that NO 2 -Ln can induce a large set of heat-shock proteins (HSPs) and different antioxidant systems suggesting this molecule may launch antioxidant and defence responses in plants. Furthermore, the capacity of this nitro-fatty acid to release NO has also been demonstrated. In view of this background, here we offer an overview on the biological properties described for NO 2 -FAs in plants and the potential of these molecules to be considered new key intermediaries of NO metabolism in the plant field. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Root Systems Biology: Integrative Modeling across Scales, from Gene Regulatory Networks to the Rhizosphere1

    Science.gov (United States)

    Hill, Kristine; Porco, Silvana; Lobet, Guillaume; Zappala, Susan; Mooney, Sacha; Draye, Xavier; Bennett, Malcolm J.

    2013-01-01

    Genetic and genomic approaches in model organisms have advanced our understanding of root biology over the last decade. Recently, however, systems biology and modeling have emerged as important approaches, as our understanding of root regulatory pathways has become more complex and interpreting pathway outputs has become less intuitive. To relate root genotype to phenotype, we must move beyond the examination of interactions at the genetic network scale and employ multiscale modeling approaches to predict emergent properties at the tissue, organ, organism, and rhizosphere scales. Understanding the underlying biological mechanisms and the complex interplay between systems at these different scales requires an integrative approach. Here, we describe examples of such approaches and discuss the merits of developing models to span multiple scales, from network to population levels, and to address dynamic interactions between plants and their environment. PMID:24143806

  8. Graduate Curriculum for Biological Information Specialists: A Key to Integration of Scale in Biology

    Directory of Open Access Journals (Sweden)

    Carole L. Palmer

    2007-12-01

    Full Text Available Scientific data problems do not stand in isolation. They are part of a larger set of challenges associated with the escalation of scientific information and changes in scholarly communication in the digital environment. Biologists in particular are generating enormous sets of data at a high rate, and new discoveries in the biological sciences will increasingly depend on the integration of data across multiple scales. This work will require new kinds of information expertise in key areas. To build this professional capacity we have developed two complementary educational programs: a Biological Information Specialist (BIS masters degree and a concentration in Data Curation (DC. We believe that BISs will be central in the development of cyberinfrastructure and information services needed to facilitate interdisciplinary and multi-scale science. Here we present three sample cases from our current research projects to illustrate areas in which we expect information specialists to make important contributions to biological research practice.

  9. Sophistication and integration of plant engineering CAD-CAE systems

    International Nuclear Information System (INIS)

    Yoshinaga, Toshiaki; Hanyu, Masaharu; Ota, Yoshimi; Kobayashi, Yasuhiro.

    1995-01-01

    In respective departments in charge of basic planning, design, manufacture, inspection and construction of nuclear power plants, by the positive utilization of CAD/CAE system, efficient workings have been advanced. This time, the plant integrated CAE system wich heightens the function of these individual systems, and can make workings efficient and advanced by unifying and integrating them was developed. This system is composed of the newly developed application system and the data base system which enables the unified management of engineering data and high speed data conversion in addition to the CAD system for three-dimensional plant layout planning. On the basis of the rich experience and the proposal of improvement of designers by the application of the CAD system for three-dimensional plant layout planning to actual machines, the automation, speed increase and the visualization of input and output by graphical user interface (GUI) in the processing of respective applications were made feasible. As the advancement of plant CAE system, scenic engineering system, integrated layout CAE system, electric instrumentation design CAE system and construction planning CAE system are described. As for the integration of plant CAE systems, the integrated engineering data base, the combination of plant CAE systems, and the operation management in the dispersed environment of networks are reported. At present, Hitachi Ltd. exerts efforts for the construction of atomic energy product in formation integrated management system as the second stage of integration. (K.I.)

  10. Integrative biology approach identifies cytokine targeting strategies for psoriasis.

    Science.gov (United States)

    Perera, Gayathri K; Ainali, Chrysanthi; Semenova, Ekaterina; Hundhausen, Christian; Barinaga, Guillermo; Kassen, Deepika; Williams, Andrew E; Mirza, Muddassar M; Balazs, Mercedesz; Wang, Xiaoting; Rodriguez, Robert Sanchez; Alendar, Andrej; Barker, Jonathan; Tsoka, Sophia; Ouyang, Wenjun; Nestle, Frank O

    2014-02-12

    Cytokines are critical checkpoints of inflammation. The treatment of human autoimmune disease has been revolutionized by targeting inflammatory cytokines as key drivers of disease pathogenesis. Despite this, there exist numerous pitfalls when translating preclinical data into the clinic. We developed an integrative biology approach combining human disease transcriptome data sets with clinically relevant in vivo models in an attempt to bridge this translational gap. We chose interleukin-22 (IL-22) as a model cytokine because of its potentially important proinflammatory role in epithelial tissues. Injection of IL-22 into normal human skin grafts produced marked inflammatory skin changes resembling human psoriasis. Injection of anti-IL-22 monoclonal antibody in a human xenotransplant model of psoriasis, developed specifically to test potential therapeutic candidates, efficiently blocked skin inflammation. Bioinformatic analysis integrating both the IL-22 and anti-IL-22 cytokine transcriptomes and mapping them onto a psoriasis disease gene coexpression network identified key cytokine-dependent hub genes. Using knockout mice and small-molecule blockade, we show that one of these hub genes, the so far unexplored serine/threonine kinase PIM1, is a critical checkpoint for human skin inflammation and potential future therapeutic target in psoriasis. Using in silico integration of human data sets and biological models, we were able to identify a new target in the treatment of psoriasis.

  11. Working toward integrated models of alpine plant distribution.

    Science.gov (United States)

    Carlson, Bradley Z; Randin, Christophe F; Boulangeat, Isabelle; Lavergne, Sébastien; Thuiller, Wilfried; Choler, Philippe

    2013-10-01

    Species distribution models (SDMs) have been frequently employed to forecast the response of alpine plants to global changes. Efforts to model alpine plant distribution have thus far been primarily based on a correlative approach, in which ecological processes are implicitly addressed through a statistical relationship between observed species occurrences and environmental predictors. Recent evidence, however, highlights the shortcomings of correlative SDMs, especially in alpine landscapes where plant species tend to be decoupled from atmospheric conditions in micro-topographic habitats and are particularly exposed to geomorphic disturbances. While alpine plants respond to the same limiting factors as plants found at lower elevations, alpine environments impose a particular set of scale-dependent and hierarchical drivers that shape the realized niche of species and that require explicit consideration in a modelling context. Several recent studies in the European Alps have successfully integrated both correlative and process-based elements into distribution models of alpine plants, but for the time being a single integrative modelling framework that includes all key drivers remains elusive. As a first step in working toward a comprehensive integrated model applicable to alpine plant communities, we propose a conceptual framework that structures the primary mechanisms affecting alpine plant distributions. We group processes into four categories, including multi-scalar abiotic drivers, gradient dependent species interactions, dispersal and spatial-temporal plant responses to disturbance. Finally, we propose a methodological framework aimed at developing an integrated model to better predict alpine plant distribution.

  12. Modeling Cancer Metastasis using Global, Quantitative and Integrative Network Biology

    DEFF Research Database (Denmark)

    Schoof, Erwin; Erler, Janine

    understanding of molecular processes which are fundamental to tumorigenesis. In Article 1, we propose a novel framework for how cancer mutations can be studied by taking into account their effect at the protein network level. In Article 2, we demonstrate how global, quantitative data on phosphorylation dynamics...... can be generated using MS, and how this can be modeled using a computational framework for deciphering kinase-substrate dynamics. This framework is described in depth in Article 3, and covers the design of KinomeXplorer, which allows the prediction of kinases responsible for modulating observed...... phosphorylation dynamics in a given biological sample. In Chapter III, we move into Integrative Network Biology, where, by combining two fundamental technologies (MS & NGS), we can obtain more in-depth insights into the links between cellular phenotype and genotype. Article 4 describes the proof...

  13. Biological soil crusts as an integral component of desert environments

    Science.gov (United States)

    Belnap, Jayne; Weber, Bettina

    2013-01-01

    The biology and ecology of biological soil crusts, a soil surface community of mosses, lichens, cyanobacteria, green algae, fungi, and bacteria, have only recently been a topic of research. Most efforts began in the western U.S. (Cameron, Harper, Rushforth, and St. Clair), Australia (Rogers), and Israel (Friedmann, Evenari, and Lange) in the late 1960s and 1970s (e.g., Friedmann et al. 1967; Evenari 1985reviewed in Harper and Marble 1988). However, these groups worked independently of each other and, in fact, were often not aware of each other’s work. In addition, biological soil crust communities were seen as more a novelty than a critical component of dryland ecosystems. Since then, researchers have investigated many different aspects of these communities and have shown that although small to microscopic, biological soil crusts are critical in many ecological processes of deserts. They often cover most of desert soil surfaces and substantially mediate inputs and outputs from desert soils (Belnap et al. 2003). They can be a large source of biodiversity for deserts, as they can contain more species than the surrounding vascular plant community (Rosentreter 1986). These communities are important in reducing soil erosion and increasing soil fertility through the capture of dust and the fixation of atmospheric nitrogen and carbon into forms available to other life forms (Elbert et al. 2012). Because of their many effects on soil characteristics, such as external and internal morphological characteristics, aggregate stability, soil moisture, and permeability, they also affect seed germination and establishment and local hydrological cycles. Covering up to 70% of the surface area in many arid and semi-arid regions around the world (Belnap and Lange 2003), biological soil crusts are a key component within desert environments.

  14. Api Energia IGCC plant is fully integrated with refinery

    Energy Technology Data Exchange (ETDEWEB)

    Del Bravo, R. [api Energia, Rome (Italy); Trifilo, R. [ABB Sadelmi, Milan (Italy); Chiantore, P.V. [api anonima petroli Italiania Spa, Rome (Italy); Starace, F. [ABB Power Generation, Baden (Switzerland); O`Keefe, L.F. [Texico, White Plains (United States)

    1998-06-01

    The api Energia integrated gasification combined cycle (IGCC) plant being built at Falconara Marittima, on Italy`s Adriatic coast, is one of the three IGCC plants under construction in Italy following the liberalization of the electricity production sector. The plant will take 59.2 t/h of high sulphur heavy oil produced by the Falconara refinery, convert it to syngas and use the gas to generate 280 MW of electricity, plus steam and other gases for use in the refinery. The IGCC plant will be highly integrated into the refining process, with a large number of interchanges between the IGCC unit and the rest of the refinery. (author)

  15. 2012 Gordon Research Conference, Plant molecular biology, July 15-20 2012

    Energy Technology Data Exchange (ETDEWEB)

    Sussman, Michael R. [Univ. of Wisconsin, Madison, WI (United States)

    2013-07-20

    The 2012 Gordon Conference on Plant Molecular Biology will present cutting-edge research on molecular aspects of plant growth and development, with particular emphasis on recent discoveries in molecular mechanisms involved with plant signaling systems. The Conference will feature a wide range of topics in plant molecular biology including hormone receptors and early events in hormone signaling, plant perception of and response to plant pathogen and symbionts, as well as technological and biological aspects of epigenomics particularly as it relates to signaling systems that regulate plant growth and development. Genomic approaches to plant signaling will be emphasized, including genomic profiling technologies for quantifying various biological subsystems, such as the epigenome, transcriptome, phosphorylome, and metabolome. The meeting will include an important session devoted to answering the question, "What are the biological and technological limits of plant breeding/genetics, and how can they be solved"?

  16. Broadening Participation in the Society for Integrative and Comparative Biology.

    Science.gov (United States)

    Wilga, Cheryl A D; Nishiguchi, Michele; Tsukimura, Brian

    2017-07-01

    The goal of the Society for Integrative and Comparative Biology's Broadening Participation Committee (SICB BPC) is to increase the number of underrepresented group (URG) members within the society and to expand their capabilities as future researchers and leaders within SICB. Our short-term 10-year goal was to increase the recruitment and retention of URG members in the society by 10%. Our long-term 25-year goal is to increase the membership of URG in the society through recruitment and retention until the membership demographic mirrors that of the US Census. Our plans to accomplish this included establishment of a formal standing committee, establishment of a moderate budget to support BPC activities, hosting professional development workshops, hosting diversity and mentor socials, and obtaining grant funds to supplement our budget. This paper documents broadening participation activities in the society, discusses the effectiveness of these activities, and evaluates BPC goals after 5 years of targeted funded activities. Over the past 5 years, the number of URG members rose by 5.2% to a total of 16.2%, members who report ethnicity and gender increased by 25.2% and 18%, respectively, and the number of members attending BPC activities has increased to 33% by 2016. SICB has made significant advances in broadening participation, not only through increased expenditures, but also with a commitment by its members and leadership to increase diversity. Most members realize that increasing diversity will both improve the Society's ability to develop different approaches to tackling problems within integrative biology, and help solve larger global issues that are evident throughout science and technology fields. In addition, having URG members as part of the executive committee would provide other URG members role models within the society, as well as have a voice in the leadership that represents diversity and inclusion for all scientists. © The Author 2017. Published by

  17. Integrated MEMS/NEMS Resonant Cantilevers for Ultrasensitive Biological Detection

    Directory of Open Access Journals (Sweden)

    Xinxin Li

    2009-01-01

    Full Text Available The paper reviews the recent researches implemented in Chinese Academy of Sciences, with achievements on integrated resonant microcantilever sensors. In the resonant cantilevers, the self-sensing elements and resonance exciting elements are both top-down integrated with silicon micromachining techniques. Quite a lot of effort is focused on optimization of the resonance mode and sensing structure for improvement of sensitivity. On the other hand, to enable the micro-cantilevers specifically sensitive to bio/chemical molecules, sensing materials are developed and modified on the cantilever surface with a self-assembled monolayer (SAM based bottom-up construction and surface functionalization. To improve the selectivity of the sensors and depress environmental noise, multiple and localized surface modifications are developed. The achieved volume production capability and satisfactory detecting resolution to trace-level biological antigen of alpha-fetoprotein (AFP give the micro-cantilever sensors a great promise for rapid and high-resoluble detection.

  18. Phytochemical and biological assessment of medicinally important plant ochradenus arabicus

    International Nuclear Information System (INIS)

    Hussain, J.

    2014-01-01

    Jabal Al-Akhdar (Oman) is one of diverse floral region of Arabian Peninsula. Ochradenus arabicus, is an important medicinal plant to local people of the area. However, little is known about its potential role in biological activities against various emerging ailments. The collected plant samples were extracted with methanol and fractionated into n-hexane (JOAH), ethyl acetate (JOAE), chloroform (JOAC), n-butanol (JOAB) and water (JOAAQ). Various concentrations of these fractions were tested for their antimicrobial, anticancer, antioxidant, antidiabetic, phenolics, flavonoids, allopathic and nutrition quality properties. The results showed that fruits and leaves of O. arabicus have higher levels of carbohydrate, crude fats, fibres, proteins, moisture, ash and energy values. In phytotoxic activities, JOAAQ inhibited the lettuce seed germination and growth. The anticancer activities of fractions showed that JOAE, JOAB and JOAAQ are potent to reduce the cancer cell viability of HT29, HCT116, HepG2 and MCF-7 lines with a concentration of 1000 micro g/ml. JOAB showed a meagre activity of 12% in Glucosidase inhibition assay. The total phenolic and flavonoid contents were significantly higher in JOAE, which also resulted in higher DPPH radical scavenging activity as compared to other fractions and control. JOAE also exhibited higher antibacterial and antifungal activities. The results of current findings suggest that O. arabicus is a potential medicinal plants, which could be subjected to advance column chromatography for lead compounds using a bioassay guided approach. (author)

  19. Fraxinus: A Plant with Versatile Pharmacological and Biological Activities.

    Science.gov (United States)

    Sarfraz, Iqra; Rasul, Azhar; Jabeen, Farhat; Younis, Tahira; Zahoor, Muhammad Kashif; Arshad, Muhammad; Ali, Muhammad

    2017-01-01

    Fraxinus , a member of the Oleaceae family, commonly known as ash tree is found in northeast Asia, north America, east and western France, China, northern areas of Pakistan, India, and Afghanistan. Chemical constituents of Fraxinus plant include various secoiridoids, phenylethanoids, flavonoids, coumarins, and lignans; therefore, it is considered as a plant with versatile biological and pharmacological activities. Its tremendous range of pharmacotherapeutic properties has been well documented including anticancer, anti-inflammatory, antioxidant, antimicrobial, and neuroprotective. In addition, its bioactive phytochemicals and secondary metabolites can be effectively used in cosmetic industry and as a competent antiaging agent. Fraxinus presents pharmacological effectiveness by targeting the novel targets in several pathological conditions, which provide a spacious therapeutic time window. Our aim is to update the scientific research community with recent endeavors with specifically highlighting the mechanism of action in different diseases. This potentially efficacious pharmacological drug candidate should be used for new drug discovery in future. This review suggests that this plant has extremely important medicinal utilization but further supporting studies and scientific experimentations are mandatory to determine its specific intracellular targets and site of action to completely figure out its pharmacological applications.

  20. Biological significance of complex N-glycans in plants and their impact on plant physiology.

    Science.gov (United States)

    Strasser, Richard

    2014-01-01

    Asparagine (N)-linked protein glycosylation is a ubiquitous co- and post-translational modification which can alter the biological function of proteins and consequently affects the development, growth, and physiology of organisms. Despite an increasing knowledge of N-glycan biosynthesis and processing, we still understand very little about the biological function of individual N-glycan structures in plants. In particular, the N-glycan-processing steps mediated by Golgi-resident enzymes create a structurally diverse set of protein-linked carbohydrate structures. Some of these complex N-glycan modifications like the presence of β1,2-xylose, core α1,3-fucose or the Lewis a-epitope are characteristic for plants and are evolutionary highly conserved. In mammals, complex N-glycans are involved in different cellular processes including molecular recognition and signaling events. In contrast, the complex N-glycan function is still largely unknown in plants. Here, in this short review, I focus on important recent developments and discuss their implications for future research in plant glycobiology and plant biotechnology.

  1. Plant responses to precipitation in desert ecosystems: integrating functional types, pulses, thresholds, and delays.

    Science.gov (United States)

    Ogle, Kiona; Reynolds, James F

    2004-10-01

    The 'two-layer' and 'pulse-reserve' hypotheses were developed 30 years ago and continue to serve as the standard for many experiments and modeling studies that examine relationships between primary productivity and rainfall variability in aridlands. The two-layer hypothesis considers two important plant functional types (FTs) and predicts that woody and herbaceous plants are able to co-exist in savannas because they utilize water from different soil layers (or depths). The pulse-reserve model addresses the response of individual plants to precipitation and predicts that there are 'biologically important' rain events that stimulate plant growth and reproduction. These pulses of precipitation may play a key role in long-term plant function and survival (as compared to seasonal or annual rainfall totals as per the two-layer model). In this paper, we re-evaluate these paradigms in terms of their generality, strengths, and limitations. We suggest that while seasonality and resource partitioning (key to the two-layer model) and biologically important precipitation events (key to the pulse-reserve model) are critical to understanding plant responses to precipitation in aridlands, both paradigms have significant limitations. Neither account for plasticity in rooting habits of woody plants, potential delayed responses of plants to rainfall, explicit precipitation thresholds, or vagaries in plant phenology. To address these limitations, we integrate the ideas of precipitation thresholds and plant delays, resource partitioning, and plant FT strategies into a simple 'threshold-delay' model. The model contains six basic parameters that capture the nonlinear nature of plant responses to pulse precipitation. We review the literature within the context of our threshold-delay model to: (i) develop testable hypotheses about how different plant FTs respond to pulses; (ii) identify weaknesses in the current state-of-knowledge; and (iii) suggest future research directions that will

  2. Plant-wide integrated equipment monitoring and analysis system

    International Nuclear Information System (INIS)

    Morimoto, C.N.; Hunter, T.A.; Chiang, S.C.

    2004-01-01

    A nuclear power plant equipment monitoring system monitors plant equipment and reports deteriorating equipment conditions. The more advanced equipment monitoring systems can also provide information for understanding the symptoms and diagnosing the root cause of a problem. Maximizing the equipment availability and minimizing or eliminating consequential damages are the ultimate goals of equipment monitoring systems. GE Integrated Equipment Monitoring System (GEIEMS) is designed as an integrated intelligent monitoring and analysis system for plant-wide application for BWR plants. This approach reduces system maintenance efforts and equipment monitoring costs and provides information for integrated planning. This paper describes GEIEMS and how the current system is being upgraded to meet General Electric's vision for plant-wide decision support. (author)

  3. Integration of ecological-biological thresholds in conservation decision making.

    Science.gov (United States)

    Mavrommati, Georgia; Bithas, Kostas; Borsuk, Mark E; Howarth, Richard B

    2016-12-01

    In the Anthropocene, coupled human and natural systems dominate and only a few natural systems remain relatively unaffected by human influence. On the one hand, conservation criteria based on areas of minimal human impact are not relevant to much of the biosphere. On the other hand, conservation criteria based on economic factors are problematic with respect to their ability to arrive at operational indicators of well-being that can be applied in practice over multiple generations. Coupled human and natural systems are subject to economic development which, under current management structures, tends to affect natural systems and cross planetary boundaries. Hence, designing and applying conservation criteria applicable in real-world systems where human and natural systems need to interact and sustainably coexist is essential. By recognizing the criticality of satisfying basic needs as well as the great uncertainty over the needs and preferences of future generations, we sought to incorporate conservation criteria based on minimal human impact into economic evaluation. These criteria require the conservation of environmental conditions such that the opportunity for intergenerational welfare optimization is maintained. Toward this end, we propose the integration of ecological-biological thresholds into decision making and use as an example the planetary-boundaries approach. Both conservation scientists and economists must be involved in defining operational ecological-biological thresholds that can be incorporated into economic thinking and reflect the objectives of conservation, sustainability, and intergenerational welfare optimization. © 2016 Society for Conservation Biology.

  4. Knowledge representation for integrated plant operation and maintenance

    DEFF Research Database (Denmark)

    Lind, Morten

    2010-01-01

    Integrated operation and maintenance of process plants has many advantages. One advantage is the improved economy obtained by reducing the number of plant shutdowns. Another is to increase reliability of operation by monitoring of risk levels during on-line maintenance. Integrated plant operation...... and maintenance require knowledge bases which can capture the interactions between the two plant activities. As an example, taking out a component or a subsystem for maintenance during operation will require a knowledge base representing the interactions between plant structure, functions, operating states...... and goals and incorporate knowledge about redundancy and reliability data. Multilevel Flow Modeling can be used build knowledge bases representing plant goals and functions and has been applied for fault diagnosis and supervisory control but currently it does not take into account structural information...

  5. Floral biology and the effects of plant-pollinator interaction on ...

    African Journals Online (AJOL)

    Reproductive biology and patterns of plant-pollinator interaction are fundamental to gene flow, diversity and evolutionary success of plants. Consequently, we examined the magnitude of insect-plant interaction based on the dynamics of breeding systems and floral biology and their effects on pollination intensity, fruit and ...

  6. Biological activity of common mullein, a medicinal plant.

    Science.gov (United States)

    Turker, Arzu Ucar; Camper, N D

    2002-10-01

    Common Mullein (Verbascum thapsus L., Scrophulariaceae) is a medicinal plant that has been used for the treatment of inflammatory diseases, asthma, spasmodic coughs, diarrhea and other pulmonary problems. The objective of this study was to assess the biological activity of Common Mullein extracts and commercial Mullein products using selected bench top bioassays, including antibacterial, antitumor, and two toxicity assays--brine shrimp and radish seed. Extracts were prepared in water, ethanol and methanol. Antibacterial activity (especially the water extract) was observed with Klebsiella pneumonia, Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli. Agrobacterium tumefaciens-induced tumors in potato disc tissue were inhibited by all extracts. Toxicity to Brine Shrimp and to radish seed germination and growth was observed at higher concentrations of the extracts.

  7. Demonstration of IGCC features - plant integration and syngas combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, F.; Huth, M.; Karg, J.; Schiffers, U. [Siemens AG Power Generation (KWU), Erlanger/Muelheim (Germany)

    2000-07-01

    Siemens is involved in three IGCC plants in Europe that are currently in operation. Against the background of the Puertollano and Buggenum plants, some of the specific new features of fully integrated IGCC power plants are discussed, including: requirements and design features of the gas turbine syngas supply system; gas turbine operating experience with air extraction for the air separation unit from the gas turbine air compressor; and design requirements and operational features of the combustion system. 7 refs., 17 figs., 1 tab.

  8. Data integration aids understanding of butterfly-host plant networks.

    Science.gov (United States)

    Muto-Fujita, Ai; Takemoto, Kazuhiro; Kanaya, Shigehiko; Nakazato, Takeru; Tokimatsu, Toshiaki; Matsumoto, Natsushi; Kono, Mayo; Chubachi, Yuko; Ozaki, Katsuhisa; Kotera, Masaaki

    2017-03-06

    Although host-plant selection is a central topic in ecology, its general underpinnings are poorly understood. Here, we performed a case study focusing on the publicly available data on Japanese butterflies. A combined statistical analysis of plant-herbivore relationships and taxonomy revealed that some butterfly subfamilies in different families feed on the same plant families, and the occurrence of this phenomenon more than just by chance, thus indicating the independent acquisition of adaptive phenotypes to the same hosts. We consequently integrated plant-herbivore and plant-compound relationship data and conducted a statistical analysis to identify compounds unique to host plants of specific butterfly families. Some of the identified plant compounds are known to attract certain butterfly groups while repelling others. The additional incorporation of insect-compound relationship data revealed potential metabolic processes that are related to host plant selection. Our results demonstrate that data integration enables the computational detection of compounds putatively involved in particular interspecies interactions and that further data enrichment and integration of genomic and transcriptomic data facilitates the unveiling of the molecular mechanisms involved in host plant selection.

  9. The Planteome database: an integrated resource for reference ontologies, plant genomics and phenomics

    Science.gov (United States)

    Cooper, Laurel; Meier, Austin; Laporte, Marie-Angélique; Elser, Justin L; Mungall, Chris; Sinn, Brandon T; Cavaliere, Dario; Carbon, Seth; Dunn, Nathan A; Smith, Barry; Qu, Botong; Preece, Justin; Zhang, Eugene; Todorovic, Sinisa; Gkoutos, Georgios; Doonan, John H; Stevenson, Dennis W; Arnaud, Elizabeth

    2018-01-01

    Abstract The Planteome project (http://www.planteome.org) provides a suite of reference and species-specific ontologies for plants and annotations to genes and phenotypes. Ontologies serve as common standards for semantic integration of a large and growing corpus of plant genomics, phenomics and genetics data. The reference ontologies include the Plant Ontology, Plant Trait Ontology and the Plant Experimental Conditions Ontology developed by the Planteome project, along with the Gene Ontology, Chemical Entities of Biological Interest, Phenotype and Attribute Ontology, and others. The project also provides access to species-specific Crop Ontologies developed by various plant breeding and research communities from around the world. We provide integrated data on plant traits, phenotypes, and gene function and expression from 95 plant taxa, annotated with reference ontology terms. The Planteome project is developing a plant gene annotation platform; Planteome Noctua, to facilitate community engagement. All the Planteome ontologies are publicly available and are maintained at the Planteome GitHub site (https://github.com/Planteome) for sharing, tracking revisions and new requests. The annotated data are freely accessible from the ontology browser (http://browser.planteome.org/amigo) and our data repository. PMID:29186578

  10. Exotic plant species receive adequate pollinator service despite variable integration into plant-pollinator networks.

    Science.gov (United States)

    Thompson, Amibeth H; Knight, Tiffany M

    2018-05-01

    Both exotic and native plant species rely on insect pollinators for reproductive success, and yet few studies have evaluated whether and how exotic plant species receive services from native pollinators for successful reproduction in their introduced range. Plant species are expected to successfully reproduce in their exotic range if they have low reliance on animal pollinators or if they successfully integrate themselves into resident plant-pollinator networks. Here, we quantify the breeding system, network integration, and pollen limitation for ten focal exotic plant species in North America. Most exotic plant species relied on animal pollinators for reproduction, and these species varied in their network integration. However, plant reproduction was limited by pollen receipt for only one plant species. Our results demonstrate that even poorly integrated exotic plant species can still have high pollination service and high reproductive success. The comprehensive framework considered here provides a method to consider the contribution of plant breeding systems and the pollinator community to pollen limitation, and can be applied to future studies to provide a more synthetic understanding of the factors that determine reproductive success of exotic plant species.

  11. Market integration of Virtual Power Plants

    DEFF Research Database (Denmark)

    Petersen, Mette Kirschmeyer; Hansen, Lars Henrik; Bendtsen, Jan Dimon

    2013-01-01

    develop a three stage market model, which includes Day-Ahead (Spot), Intra-Day and Regulating Power Markets. This allows us to test the hypothesis that the Virtual Power Plant can generate additional profit by trading across several markets. We find that even though profits do increase as more markets...

  12. Biological studies on Brazilian plants used in wound healing.

    Science.gov (United States)

    Schmidt, C; Fronza, M; Goettert, M; Geller, F; Luik, S; Flores, E M M; Bittencourt, C F; Zanetti, G D; Heinzmann, B M; Laufer, S; Merfort, I

    2009-04-21

    n-Hexanic and ethanolic extracts from twelve plants (Brugmansia suaveolens Brecht. et Presl., Eupatorium laevigatum Lam., Galinsoga parviflora Cav., Iresine herbstii Hook., Kalanchöe tubiflora Hamet-Ahti, Petiveria alliacea L., Pluchea sagittalis (Lam.) Cabrera, Piper regnellii DC., Schinus molle L., Sedum dendroideum Moç et Sessé ex DC., Waltheria douradinha St. Hill., Xanthium cavanillesii Schouw.) used in traditional South Brazilian medicine as wound healing agents were investigated in various biological assays, targeting different aspects in this complex process. The extracts were investigated on NF-kappaB DNA binding, p38alpha MAPK, TNF-alpha release, direct elastase inhibition and its release as well as on caspase-3. Fibroblasts migration to and proliferation into the wounded monolayers were evaluated in the scratch assay, the agar diffusion test for antibacterial and the MTT assay for cytotoxic effects. The hydrophilic extracts from Galinsoga parviflora, Petiveria alliacea, Schinus molle, Waltheria douradinha and Xanthium cavanillesii as well as the lipophilic extract of Waltheria douradinha turned out to be the most active ones. These results increase our knowledge on the wound healing effects of the investigated medicinal plants. Further studies are necessary to find out the effective secondary metabolites responsible for the observed effects.

  13. DATA MINING METHODS FOR OMICS AND KNOWLEDGE OF CRUDE MEDICINAL PLANTS TOWARD BIG DATA BIOLOGY

    Directory of Open Access Journals (Sweden)

    Farit M. Afendi

    2013-01-01

    Full Text Available Molecular biological data has rapidly increased with the recent progress of the Omics fields, e.g., genomics, transcriptomics, proteomics and metabolomics that necessitates the development of databases and methods for efficient storage, retrieval, integration and analysis of massive data. The present study reviews the usage of KNApSAcK Family DB in metabolomics and related area, discusses several statistical methods for handling multivariate data and shows their application on Indonesian blended herbal medicines (Jamu as a case study. Exploration using Biplot reveals many plants are rarely utilized while some plants are highly utilized toward specific efficacy. Furthermore, the ingredients of Jamu formulas are modeled using Partial Least Squares Discriminant Analysis (PLS-DA in order to predict their efficacy. The plants used in each Jamu medicine served as the predictors, whereas the efficacy of each Jamu provided the responses. This model produces 71.6% correct classification in predicting efficacy. Permutation test then is used to determine plants that serve as main ingredients in Jamu formula by evaluating the significance of the PLS-DA coefficients. Next, in order to explain the role of plants that serve as main ingredients in Jamu medicines, information of pharmacological activity of the plants is added to the predictor block. Then N-PLS-DA model, multiway version of PLS-DA, is utilized to handle the three-dimensional array of the predictor block. The resulting N-PLS-DA model reveals that the effects of some pharmacological activities are specific for certain efficacy and the other activities are diverse toward many efficacies. Mathematical modeling introduced in the present study can be utilized in global analysis of big data targeting to reveal the underlying biology.

  14. ChlamyCyc: an integrative systems biology database and web-portal for Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Kempa Stefan

    2009-05-01

    Full Text Available Abstract Background The unicellular green alga Chlamydomonas reinhardtii is an important eukaryotic model organism for the study of photosynthesis and plant growth. In the era of modern high-throughput technologies there is an imperative need to integrate large-scale data sets from high-throughput experimental techniques using computational methods and database resources to provide comprehensive information about the molecular and cellular organization of a single organism. Results In the framework of the German Systems Biology initiative GoFORSYS, a pathway database and web-portal for Chlamydomonas (ChlamyCyc was established, which currently features about 250 metabolic pathways with associated genes, enzymes, and compound information. ChlamyCyc was assembled using an integrative approach combining the recently published genome sequence, bioinformatics methods, and experimental data from metabolomics and proteomics experiments. We analyzed and integrated a combination of primary and secondary database resources, such as existing genome annotations from JGI, EST collections, orthology information, and MapMan classification. Conclusion ChlamyCyc provides a curated and integrated systems biology repository that will enable and assist in systematic studies of fundamental cellular processes in Chlamydomonas. The ChlamyCyc database and web-portal is freely available under http://chlamycyc.mpimp-golm.mpg.de.

  15. ChlamyCyc: an integrative systems biology database and web-portal for Chlamydomonas reinhardtii.

    Science.gov (United States)

    May, Patrick; Christian, Jan-Ole; Kempa, Stefan; Walther, Dirk

    2009-05-04

    The unicellular green alga Chlamydomonas reinhardtii is an important eukaryotic model organism for the study of photosynthesis and plant growth. In the era of modern high-throughput technologies there is an imperative need to integrate large-scale data sets from high-throughput experimental techniques using computational methods and database resources to provide comprehensive information about the molecular and cellular organization of a single organism. In the framework of the German Systems Biology initiative GoFORSYS, a pathway database and web-portal for Chlamydomonas (ChlamyCyc) was established, which currently features about 250 metabolic pathways with associated genes, enzymes, and compound information. ChlamyCyc was assembled using an integrative approach combining the recently published genome sequence, bioinformatics methods, and experimental data from metabolomics and proteomics experiments. We analyzed and integrated a combination of primary and secondary database resources, such as existing genome annotations from JGI, EST collections, orthology information, and MapMan classification. ChlamyCyc provides a curated and integrated systems biology repository that will enable and assist in systematic studies of fundamental cellular processes in Chlamydomonas. The ChlamyCyc database and web-portal is freely available under http://chlamycyc.mpimp-golm.mpg.de.

  16. PEA: an integrated R toolkit for plant epitranscriptome analysis.

    Science.gov (United States)

    Zhai, Jingjing; Song, Jie; Cheng, Qian; Tang, Yunjia; Ma, Chuang

    2018-05-29

    The epitranscriptome, also known as chemical modifications of RNA (CMRs), is a newly discovered layer of gene regulation, the biological importance of which emerged through analysis of only a small fraction of CMRs detected by high-throughput sequencing technologies. Understanding of the epitranscriptome is hampered by the absence of computational tools for the systematic analysis of epitranscriptome sequencing data. In addition, no tools have yet been designed for accurate prediction of CMRs in plants, or to extend epitranscriptome analysis from a fraction of the transcriptome to its entirety. Here, we introduce PEA, an integrated R toolkit to facilitate the analysis of plant epitranscriptome data. The PEA toolkit contains a comprehensive collection of functions required for read mapping, CMR calling, motif scanning and discovery, and gene functional enrichment analysis. PEA also takes advantage of machine learning technologies for transcriptome-scale CMR prediction, with high prediction accuracy, using the Positive Samples Only Learning algorithm, which addresses the two-class classification problem by using only positive samples (CMRs), in the absence of negative samples (non-CMRs). Hence PEA is a versatile epitranscriptome analysis pipeline covering CMR calling, prediction, and annotation, and we describe its application to predict N6-methyladenosine (m6A) modifications in Arabidopsis thaliana. Experimental results demonstrate that the toolkit achieved 71.6% sensitivity and 73.7% specificity, which is superior to existing m6A predictors. PEA is potentially broadly applicable to the in-depth study of epitranscriptomics. PEA Docker image is available at https://hub.docker.com/r/malab/pea, source codes and user manual are available at https://github.com/cma2015/PEA. chuangma2006@gmail.com. Supplementary data are available at Bioinformatics online.

  17. The Tobacco mosaic virus Movement Protein Associates with but Does Not Integrate into Biological Membranes

    Science.gov (United States)

    Peiró, Ana; Martínez-Gil, Luis; Tamborero, Silvia; Pallás, Vicente

    2014-01-01

    ABSTRACT Plant positive-strand RNA viruses require association with plant cell endomembranes for viral translation and replication, as well as for intra- and intercellular movement of the viral progeny. The membrane association and RNA binding of the Tobacco mosaic virus (TMV) movement protein (MP) are vital for orchestrating the macromolecular network required for virus movement. A previously proposed topological model suggests that TMV MP is an integral membrane protein with two putative α-helical transmembrane (TM) segments. Here we tested this model using an experimental system that measured the efficiency with which natural polypeptide segments were inserted into the ER membrane under conditions approximating the in vivo situation, as well as in planta. Our results demonstrated that the two hydrophobic regions (HRs) of TMV MP do not span biological membranes. We further found that mutations to alter the hydrophobicity of the first HR modified membrane association and precluded virus movement. We propose a topological model in which the TMV MP HRs intimately associate with the cellular membranes, allowing maximum exposure of the hydrophilic domains of the MP to the cytoplasmic cellular components. IMPORTANCE To facilitate plant viral infection and spread, viruses encode one or more movement proteins (MPs) that interact with ER membranes. The present work investigated the membrane association of the 30K MP of Tobacco mosaic virus (TMV), and the results challenge the previous topological model, which predicted that the TMV MP behaves as an integral membrane protein. The current data provide greatly needed clarification of the topological model and provide substantial evidence that TMV MP is membrane associated only at the cytoplasmic face of the membrane and that neither of its domains is integrated into the membrane or translocated into the lumen. Understanding the topology of MPs in the ER is vital for understanding the role of the ER in plant virus transport

  18. Oak Ridge Y-12 Plant Biological Monitoring and Abatement Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.; Brandt, C.C.; Christensen, S.W.; Greeley, M.S.JR.; Hill, W.R.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.

    2000-09-01

    The revised Biological Monitoring and Abatement Program (BMAP) for East Fork Poplar Creek (EFPC) at the Oak Ridge Y-12 Plant, as described, will be conducted as required by the National Pollutant Discharge Elimination System permit issued for the Y-12 Plant on April 28, 1995 and became effective July 1, 1995. The basic approach to biological monitoring used in this program was developed by the staff in the Environmental Science Division (ESD) at the Oak Ridge National Laboratory (ORNL) at the request of the Y-12 Plant. The revision to the BMAP plan is based on results of biological monitoring conducted during the period of 1985 to present. Details of the specific procedures used in the current routine monitoring program are provided; experimental designs for future studies are described in less detail. The overall strategy used in developing this plan was, and continues to be, to use the results obtained from each task to define the scope of future monitoring efforts. Such efforts may require more intensive sampling than initially proposed in some areas (e.g., additional bioaccumulation monitoring if results indicate unexpectedly high PCBs or Hg) or a reduction in sampling intensity in others (e.g., reduction in the number of sampling sites when no impact is still observed). The program scope will be re-evaluated annually. By using the results of previous monitoring efforts to define the current program and to guide us in the development of future studies, an effective integrated monitoring program has been developed to assess the impacts of Y-12 Plant operations (past and present) on the biota of EFPC and to document the ecological effects of remedial actions.

  19. OAK RIDGE Y-12 PLANT BIOLOGICAL MONITORING AND ABATEMENT PROGRAM (BMAP) PLAN

    Energy Technology Data Exchange (ETDEWEB)

    ADAMS, S.M.; BRANDT, C.C.; CHRISTENSEN, S.W.; CICERONE, D.S.; GREELEY, M.S.JR; HILL, W.R.; HUSTON, M.S.; KSZOS, L.A.; MCCARTHY, J.F.; PETERSON, M.J.; RYON, M.G.; SMITH, J.G.; SOUTHWORTH, G.R.; STEWART, A.J.

    1998-10-01

    The proposed Biological Monitoring and Abatement Program (BMAP) for East Fork Poplar Creek (EFPC) at the Oak Ridge Y-12 Plant, as described, will be conducted for the duration of the National Pollutant Discharge Elimination System permit issued for the Y-12 Plant on April 28, 1995, and which became effective July 1, 1995. The basic approach to biological monitoring used in this program was developed by the staff in the Environmental Sciences Division at the Oak Ridge National Laboratory at the request of Y- 12 Plant personnel. The proposed BMAP plan is based on results of biological monitoring conducted since 1985. Details of the specific procedures used in the current routine monitoring program are provided but experimental designs for future studies are described in less detail. The overall strategy used in developing this plan was, and continues to be, to use the results obtained from each task to define the scope of future monitoring efforts. Such efforts may require more intensive sampling than initially proposed in some areas (e.g., additional toxicity testing if initial results indicate low survival or reproduction) or a reduction in sampling intensity in others (e.g., reduction in the number of sampling sites when no impact is observed). By using the results of previous monitoring efforts to define the current program and to guide us in the development of future studies, an effective integrated monitoring program has been developed to assess the impacts of the Y-12 Plant operation on the biota of EFPC and to document the ecological effects of remedial actions.

  20. Plant ecdysteroids: plant sterols with intriguing distributions, biological effects and relations to plant hormones

    Czech Academy of Sciences Publication Activity Database

    Tarkowská, Danuše; Strnad, Miroslav

    2016-01-01

    Roč. 244, č. 3 (2016), s. 545-555 ISSN 0032-0935 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Phytoecdysteroids * Ecdysteroids * 20-Hydroxyecdysone Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.361, year: 2016

  1. ITER Construction--Plant System Integration

    International Nuclear Information System (INIS)

    Tada, E.; Matsuda, S.

    2009-01-01

    This brief paper introduces how the ITER will be built in the international collaboration. The ITER Organization plays a central role in constructing ITER and leading it into operation. Since most of the ITER components are to be provided in-kind from the member countries, integral project management should be scoped in advance of real work. Those include design, procurement, system assembly, testing, licensing and commissioning of ITER.

  2. Important biological factors for utilizing native plant species

    Science.gov (United States)

    Loren E. Wiesner

    1999-01-01

    Native plant species are valuable resources for revegetation of disturbed ecosystems. The success of these plantings is dependent on the native species selected, quality of seed used, condition of the soil, environmental conditions before and after planting, planting equipment used, time of planting, and other factors. Most native species contain dormant seed. Dormancy...

  3. Integrated anaerobic/aerobic biological treatment for intensive swine production.

    Science.gov (United States)

    Bortone, Giuseppe

    2009-11-01

    Manure processing could help farmers to effectively manage nitrogen (N) surplus load. Many pig farms have to treat wastewater. Piggery wastewater treatment is a complex challenge, due to the high COD and N concentrations and low C/N ratio. Anaerobic digestion (AD) could be a convenient pre-treatment, particularly from the energetic view point and farm income, but this causes further reduction of C/N ratio and makes denitrification difficult. N removal can only be obtained integrating anaerobic/aerobic treatment by taking into account the best use of electron donors. Experiences gained in Italy during development of integrated biological treatment approaches for swine manure, from bench to full scale, are reported in this paper. Solid/liquid separation as pre-treatment of raw manure is an efficient strategy to facilitate liquid fraction treatment without significantly lowering C/N ratio. In Italy, two full scale SBRs showed excellent efficiency and reliability. Current renewable energy policy and incentives makes economically attractive the application of AD to the separated solid fraction using high solid anaerobic digester (HSAD) technology. Economic evaluation showed that energy production can reduce costs up to 60%, making sustainable the overall treatment.

  4. Integral design small nuclear power plant UNITHERM

    International Nuclear Information System (INIS)

    Adamovich, L. A.; Grechko, G. I.; Ulasevich, V. K.; Shishkin, V. A.

    1995-01-01

    The need to erect expensive energy transmission lines to these places demands to use independent local energy sources. Therefore, a reasonable alternative to the plants fired fossil fuel, mostly hydrocarbon fuel, may come from the nuclear power plants (NPP) of relatively small capacity which are nonattended, shipped to the site by large-assembled modules and completely withdrawable from the site during decommissioning. Application of NPPs for power and heat supply may prove to be cost-efficient and rather positive from social and ecological point of view. UNITHERM NPP belongs to such energy sources and may be used for heat and power supply. Heat can be provided both as hot water and superheated steam. The consumers are able to specify heat/energy supply ratio. NPP design provides for independent energy supply to the consumers and the possibility to disconnect each of them without disruption of operation of the others. Thermal hydraulic diagram of UNITHERM NPP provides for the use of three interconnected, process circuits. The consumers of thermal energy (turbogenerator unit and boilers of the central heating unit) are arranged in the last circuit

  5. The phytotronist and the phenotype: plant physiology, Big Science, and a Cold War biology of the whole plant.

    Science.gov (United States)

    Munns, David P D

    2015-04-01

    This paper describes how, from the early twentieth century, and especially in the early Cold War era, the plant physiologists considered their discipline ideally suited among all the plant sciences to study and explain biological functions and processes, and ranked their discipline among the dominant forms of the biological sciences. At their apex in the late-1960s, the plant physiologists laid claim to having discovered nothing less than the "basic laws of physiology." This paper unwraps that claim, showing that it emerged from the construction of monumental big science laboratories known as phytotrons that gave control over the growing environment. Control meant that plant physiologists claimed to be able to produce a standard phenotype valid for experimental biology. Invoking the standards of the physical sciences, the plant physiologists heralded basic biological science from the phytotronic produced phenotype. In the context of the Cold War era, the ability to pursue basic science represented the highest pinnacle of standing within the scientific community. More broadly, I suggest that by recovering the history of an underappreciated discipline, plant physiology, and by establishing the centrality of the story of the plant sciences in the history of biology can historians understand the massive changes wrought to biology by the conceptual emergence of the molecular understanding of life, the dominance of the discipline of molecular biology, and the rise of biotechnology in the 1980s. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Economic evaluation of the integrated SMART desalination plant

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Young Dong; Lee, Man Kye; Yeo, Ji Won; Kim, Hee Chul; Chang, Moon Hee

    2001-04-01

    In this study, an economic evaluation methodology of the integrated SMART desalination plant was established and the economic evaluation of SMART was performed. The plant economics was evaluated with electricity generation costs calculated using approximate estimates of SMART cost data and the result was compared with the result calculated using the SMART design data and estimated bulk materials. In addition, a series of sensitivity studies on the power generation cost was performed for the main economic parameters of SMART Power credit method was used for the economic analysis of the integrated SMART desalination plant. Power credit method is a widely used economic analysis method for the cogeneration plant when the major portion of the energy is used for the electricity generation. In the case of using SMART fot power generation only, the result shows that the electricity generation cost of SMART is higher than that of the alternative power options. However, it can be competitive with the other power options in the limited cases, especially with the gas fired combined plant. In addition, an economic analysis of the integrated SMART desalination plant coupled with MED was performed. The calculated water production cost is in the range of 0.56 approx. 0.88($/m{sup 3}) for the plant availability of 80% or higher, which is close to the study results presented by the various other countries. This indicates that SMART can be considered as a competitive choice for desalination among various alternative energy sources.

  7. Economic evaluation of the integrated SMART desalination plant

    International Nuclear Information System (INIS)

    Hwang, Young Dong; Lee, Man Kye; Yeo, Ji Won; Kim, Hee Chul; Chang, Moon Hee

    2001-04-01

    In this study, an economic evaluation methodology of the integrated SMART desalination plant was established and the economic evaluation of SMART was performed. The plant economics was evaluated with electricity generation costs calculated using approximate estimates of SMART cost data and the result was compared with the result calculated using the SMART design data and estimated bulk materials. In addition, a series of sensitivity studies on the power generation cost was performed for the main economic parameters of SMART Power credit method was used for the economic analysis of the integrated SMART desalination plant. Power credit method is a widely used economic analysis method for the cogeneration plant when the major portion of the energy is used for the electricity generation. In the case of using SMART fot power generation only, the result shows that the electricity generation cost of SMART is higher than that of the alternative power options. However, it can be competitive with the other power options in the limited cases, especially with the gas fired combined plant. In addition, an economic analysis of the integrated SMART desalination plant coupled with MED was performed. The calculated water production cost is in the range of 0.56 approx. 0.88($/m 3 ) for the plant availability of 80% or higher, which is close to the study results presented by the various other countries. This indicates that SMART can be considered as a competitive choice for desalination among various alternative energy sources

  8. Biology and biotechnological advances in Jatropha curcas - A biodiesel plant

    KAUST Repository

    Reddy, Muppala P.

    2009-10-31

    Increasing global demand for energy, the impending depletion of fossil fuels, and concern over global climate change have lead to a resurgence in the development of alternative energy sources. Bio-fuels and bio-energy encompass a wide range of alternative sources of energy of biological origin, and offer excellent, environmentally friendly opportunities to address these issues. The recognition that Jatropha oil can yield high quality biodiesel has led to a surge of interest in Jatropha across the globe, more so in view of the potential for avoiding the dilemma of food vs fuel. Hardiness, rapid growth, easy propagation, short gestation period, wide adaptation, and optimum plant size combine to make this species suitable for sustainable cultivation on wastelands. Besides biodiesel from the seed, the plant produces several useful products that also have commercial value. Large scale cultivation remains the single most important factor that will ultimately determine the success of Jatropha as a source of bio-fuel. The limited knowledge of the genetics of this species, low and inconsistent yields, the narrow genetic variability, and vulnerability to insects and diseases are major constraints in successful cultivation of Jatropha as a bio-fuel crop. Despite the optimal protein content and composition of the pressed cake, the presence of phorbol esters makes it unsuitable for consumption by livestock. A non-toxic variety with low or no phorbol ester content has been identified from Mexico, and the utility of pressed cake from this variety as livestock feed has been demonstrated successfully. In the absence of any morphological differences, identification of linked markers for toxic/non-toxic varieties will add value to the crop and facilitate further improvement. This chapter discusses current efforts towards assessing the diversity and phylogeny of Jatropha, identification of specific markers for toxic and non-toxic varieties, and aspects of micropropagation and genetic

  9. Plant life management. Progress for structural integrity

    International Nuclear Information System (INIS)

    Solin, J.

    2003-03-01

    A joint project cluster of industry, VTT and other R and D suppliers is dealing with managing of lifetime of critical structures and components in energy and process industry. The research topics include systematic component lifetime management, data management, integrity and lifetime of pressure bearing components, non-destructive inspection, interactions of coolant and materials, environmentally assisted cracking and ageing of reactor internals. This Symposium is a compilation of selected papers describing an intermediate status of the projects after three years of research and development. (orig.)

  10. Seeds integrate biological information about conspecific and allospecific neighbours.

    Science.gov (United States)

    Yamawo, Akira; Mukai, Hiromi

    2017-06-28

    Numerous organisms integrate information from multiple sources and express adaptive behaviours, but how they do so at different developmental stages remains to be identified. Seeds, which are the embryonic stage of plants, need to make decisions about the timing of emergence in response to environmental cues related to survival. We investigated the timing of emergence of Plantago asiatica (Plantaginaceae) seed while manipulating the presence of Trifolium repens seed and the relatedness of neighbouring P. asiatica seed. The relatedness of neighbouring P. asiatica seed and the presence of seeds of T. repens did not on their own influence the timing of P. asiatica emergence. However, when encountering a T. repens seed, a P. asiatica seed emerged faster in the presence of a sibling seed than in the presence of a non-sibling seed. Water extracts of seeds gave the same result. We show that P. asiatica seeds integrate information about the relatedness of neighbouring P. asiatica seeds and the presence of seeds of a different species via water-soluble chemicals and adjust their emergence behaviour in response. These findings suggest the presence of kin-dependent interspecific interactions. © 2017 The Author(s).

  11. Market Integration of Virtual Power Plants

    DEFF Research Database (Denmark)

    Petersen, Mette Kirschmeyer

    increasingly challenging due to the intrinsic variability of production technologies such as photovoltaics and wind turbines. In a Smart Grid system the balancing task will therefore be handled by mobilizing flexibility on the consumption side. This Thesis assumes that the Smart Grid should be commercially......Global efforts to reduce emissions of carbon dioxide drives the introduction of renewable power production technologies into the existing power system. The real-time balance between production and consumption must, however, still be maintained at all times. Unfortunately, this is becoming....... It does however significantly sharpen the discussion of the flexibility concept and provides a categorization of flexible systems. This Thesis also investigates what value can be created from the different types of flexibility by assuming that the Virtual Power Plant will generate profit by trading...

  12. The flora phenotype ontology (FLOPO): tool for integrating morphological traits and phenotypes of vascular plants

    KAUST Repository

    Hoehndorf, Robert

    2016-11-14

    Background The systematic analysis of a large number of comparable plant trait data can support investigations into phylogenetics and ecological adaptation, with broad applications in evolutionary biology, agriculture, conservation, and the functioning of ecosystems. Floras, i.e., books collecting the information on all known plant species found within a region, are a potentially rich source of such plant trait data. Floras describe plant traits with a focus on morphology and other traits relevant for species identification in addition to other characteristics of plant species, such as ecological affinities, distribution, economic value, health applications, traditional uses, and so on. However, a key limitation in systematically analyzing information in Floras is the lack of a standardized vocabulary for the described traits as well as the difficulties in extracting structured information from free text. Results We have developed the Flora Phenotype Ontology (FLOPO), an ontology for describing traits of plant species found in Floras. We used the Plant Ontology (PO) and the Phenotype And Trait Ontology (PATO) to extract entity-quality relationships from digitized taxon descriptions in Floras, and used a formal ontological approach based on phenotype description patterns and automated reasoning to generate the FLOPO. The resulting ontology consists of 25,407 classes and is based on the PO and PATO. The classified ontology closely follows the structure of Plant Ontology in that the primary axis of classification is the observed plant anatomical structure, and more specific traits are then classified based on parthood and subclass relations between anatomical structures as well as subclass relations between phenotypic qualities. Conclusions The FLOPO is primarily intended as a framework based on which plant traits can be integrated computationally across all species and higher taxa of flowering plants. Importantly, it is not intended to replace established

  13. The flora phenotype ontology (FLOPO): tool for integrating morphological traits and phenotypes of vascular plants.

    Science.gov (United States)

    Hoehndorf, Robert; Alshahrani, Mona; Gkoutos, Georgios V; Gosline, George; Groom, Quentin; Hamann, Thomas; Kattge, Jens; de Oliveira, Sylvia Mota; Schmidt, Marco; Sierra, Soraya; Smets, Erik; Vos, Rutger A; Weiland, Claus

    2016-11-14

    The systematic analysis of a large number of comparable plant trait data can support investigations into phylogenetics and ecological adaptation, with broad applications in evolutionary biology, agriculture, conservation, and the functioning of ecosystems. Floras, i.e., books collecting the information on all known plant species found within a region, are a potentially rich source of such plant trait data. Floras describe plant traits with a focus on morphology and other traits relevant for species identification in addition to other characteristics of plant species, such as ecological affinities, distribution, economic value, health applications, traditional uses, and so on. However, a key limitation in systematically analyzing information in Floras is the lack of a standardized vocabulary for the described traits as well as the difficulties in extracting structured information from free text. We have developed the Flora Phenotype Ontology (FLOPO), an ontology for describing traits of plant species found in Floras. We used the Plant Ontology (PO) and the Phenotype And Trait Ontology (PATO) to extract entity-quality relationships from digitized taxon descriptions in Floras, and used a formal ontological approach based on phenotype description patterns and automated reasoning to generate the FLOPO. The resulting ontology consists of 25,407 classes and is based on the PO and PATO. The classified ontology closely follows the structure of Plant Ontology in that the primary axis of classification is the observed plant anatomical structure, and more specific traits are then classified based on parthood and subclass relations between anatomical structures as well as subclass relations between phenotypic qualities. The FLOPO is primarily intended as a framework based on which plant traits can be integrated computationally across all species and higher taxa of flowering plants. Importantly, it is not intended to replace established vocabularies or ontologies, but rather

  14. System 80+ integrated design of a complete plant

    International Nuclear Information System (INIS)

    Turk, R.S.; Stamm, S.L.; Fox, W.A.

    1992-01-01

    In 1985, ABB-Combustion Engineering Nuclear Power (ABB-CENP) and elements of Duke Power Company [now Duke Engineering ampersand Services (DE ampersand S)] joined forces under the aegis of the Electric Power Research Institute (EPRI) Advanced Light Water Reactor (ALWR) Program to develop, with the sponsoring utilities, the design requirements for the next generation of nuclear power plants. With support from the US Department of Energy, ABB-CENP and DE ampersand S again teamed up the following year to initiate a project to design and license the System 80+ standard plant design, an advanced pressurized water reactor that meets these utility requirements. A distinguishing feature of the System 80+ standard design is that it is an essentially complete plant, predesigned and prelicensed to ensure rapid and economical construction. This is in stark contrast to typical prior conduct, where the reactor vendor offered only the nuclear steam supply system and the plant was built on a design-as-you-go basis with constant pressure to release individual elements of the plant design for construction or procurement as soon as possible. Now, however, the design process can be integrated over the total plant, ensuring that the goals set for ALWRs can be met. This integrated design process is manifested in several ways: (1) broad-based participation during the design process by involving designers, analysts, suppliers, constructors, and operators; (2) use of probabilistic risk assessment (PRA) as a design tool to aid in evaluating design features on a total-plant basis; (3) application of human factors engineering methods to a total plant distributed control system to improve the human-machine interface in the design; and (4) use of computer-aided design to enhance assessment of interactions and impacts of all aspects of the total plant. Each of these aspects of integrated plant design is discussed in this paper

  15. Imaging corn plants with PhytoPET, a modular PET system for plant biology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.; Kross, B.; McKisson, J.; McKisson, J. E.; Weisenberger, A. G.; Xi, W.; Zorn, C.; Bonito, G.; Howell, C. R.; Reid, C. D.; Crowell, A.; Cumberbatch, L. C.; Topp, C.; Smith, M. F.

    2013-11-01

    PhytoPET is a modular positron emission tomography (PET) system designed specifically for plant imaging. The PhytoPET design allows flexible arrangements of PET detectors based on individual standalone detector modules built from single Hamamatsu H8500 position sensitive photomultiplier tubes and pixelated LYSO arrays. We have used the PhytoPET system to perform preliminary corn plant imaging studies at the Duke University Biology Department Phytotron. Initial evaluation of the PhytoPET system to image the biodistribution of the positron emitting tracer {sup 11}C in corn plants is presented. {sup 11}CO{sub 2} is loaded into corn seedlings by a leaf-labeling cuvette and translocation of {sup 11}C-sugars is imaged by a flexible arrangement of PhytoPET modules on each side. The PhytoPET system successfully images {sup 11}C within corn plants and allows for the dynamic measurement of {sup 11}C-sugar translocation from the leaf to the roots.

  16. Integrated color face graphs for plant accident display

    International Nuclear Information System (INIS)

    Hara, Fumio

    1987-01-01

    This paper presents an integrated man-machine interface that uses cartoon-like colored graphs in the form of faces, that, through different facial expressions, display a plant condition. This is done by drawing the face on a CRT by nonlinearly transforming 31 variables and coloring the face. This integrated color graphics technique is applied to display the progess of events in the Three Mile Island nuclear power plant accident. Human visual perceptive characteristics are investigated in relation to the perception of the plant accident process, the naturality in face color change, and the consistency between facial expressions and colors. This paper concludes that colors used in an integrated color face graphs must be completely consistent with emotional feelings perceived from the colors. (author)

  17. Plant polyphenols: chemical properties, biological activities, and synthesis.

    Science.gov (United States)

    Quideau, Stéphane; Deffieux, Denis; Douat-Casassus, Céline; Pouységu, Laurent

    2011-01-17

    Eating five servings of fruits and vegetables per day! This is what is highly recommended and heavily advertised nowadays to the general public to stay fit and healthy! Drinking green tea on a regular basis, eating chocolate from time to time, as well as savoring a couple of glasses of red wine per day have been claimed to increase life expectancy even further! Why? The answer is in fact still under scientific scrutiny, but a particular class of compounds naturally occurring in fruits and vegetables is considered to be crucial for the expression of such human health benefits: the polyphenols! What are these plant products really? What are their physicochemical properties? How do they express their biological activity? Are they really valuable for disease prevention? Can they be used to develop new pharmaceutical drugs? What recent progress has been made toward their preparation by organic synthesis? This Review gives answers from a chemical perspective, summarizes the state of the art, and highlights the most significant advances in the field of polyphenol research. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Integrated control centre concepts for CANDU power plants

    International Nuclear Information System (INIS)

    Lupton, L.R.; Davey, E.C.; Lapointe, P.A.; Shah, R.R.

    1990-01-01

    The size and complexity of nuclear power plants has increased significantly in the last 20 years. There is general agreement that plant safety and power production can be enhanced if more operational support systems that are significantly different from the ones based on the more conventional technologies used in plant control rooms. In particular, artificial intelligence and related technologies will play a major role in the development of innovative methods for information processing and presentation. These technologies must be integrated into the overall management and control philosophy of the plant and not be treated as vehicles to implement point solutions. The underlying philosophy behind our approach is discussed in this paper. Operator support systems will integrate into the overall control philosophy by complementing the operator. Four support systems are described; each is a prototype of a system being considered for the CANDU 3 control centre

  19. Nuclear plant engineering work and integrated management system

    International Nuclear Information System (INIS)

    Ohkubo, Y.; Obata, T.; Tanaka, K.

    1992-01-01

    The Application of computers to the design, engineering, manufacturing and construction works of nuclear power plants has greatly contributed to improvement of productivity and reliability in the nuclear power plants constructed by Mitsubishi Nuclear Group for more than ten years. However, in most cases, those systems have been developed separately and utilized independently in different computer software and hardware environments and have not been fully utilized to achieve high efficiency and reliability. In order to drastically increase the productivity and efficiency, development of NUclear power plant engineering Work and INtegrated manaGement System (NUWINGS) started in 1987 to unify and integrate various conventional and developing systems using the state-of-the-art computer technology. The NUWINGS is almost completed and is now applied to actual plant construction. (author)

  20. Integrated control centre concepts for CANDU power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lupton, L. R.; Davey, E. C.; Lapointe, P. A.; Shah, R. R.

    1990-01-15

    The size and complexity of nuclear power plants has increased significantly in the last 20 years. There is general agreement that plant safety and power production can be enhanced if more operational support systems that are significantly different from the ones based on the more conventional technologies used in plant control rooms. In particular, artificial intelligence and related technologies will play a major role in the development of innovative methods for information processing and presentation. These technologies must be integrated into the overall management and control philosophy of the plant and not be treated as vehicles to implement point solutions. The underlying philosophy behind our approach is discussed in this paper. Operator support systems will integrate into the overall control philosophy by complementing the operator. Four support systems are described; each is a prototype of a system being considered for the CANDU 3 control centre.

  1. Integrated living schedule for nuclear plants

    International Nuclear Information System (INIS)

    Milhiser, R.J.

    1985-01-01

    This paper addresses the change process, including decision making and a credible prioritization methodology. It is intended to result in an integrated plan being jointly accepted and defensible by the utility and the Nuclear Regulatory Commission (NRC). The program described has several advantages: the methodology is consistent with and defensible to NRC criteria; safety and economic factors are placed on a common basis for balancing; the use of valuation factors permits the utility to introduce judgements concerning the importance of any particular benefit; alternative value judgments can easily be examined; explicit indications of the level of confidence in investment outcome is provided; and a definitive framework for establishing and reviewing decision criteria and application is provided

  2. Nuclear thermionic power plant integration problems

    International Nuclear Information System (INIS)

    Fraas, A.P.

    1967-02-01

    The numerous boundary conditions to be met in preparing a well proportioned, properly integrated design for a thermionic cell reactor are discussed with the emphasis on materials and fabrication problems. Pertinent experience with fuel elements, tube header sheets, electric heaters, and pressure vessels is cited to highlight key limitations that have been encountered in structurally similar equipment. A reference design is presented to indicate how one might attempt to satisfy all of the many boundary conditions. The study indicates that it will be difficult to get a reactor core power density greater than about 35 w/cm 3 and that, while it is possible to minimize the ill effects of failures within individual cells by employing series-parallel connections, the study further indicates that there is inherently a high probability of leaks and electrical shorts and arcs within the reactor so that it is doubtful that good reliability can be obtained

  3. Diablo Canyon plant information management system and integrated communication system

    International Nuclear Information System (INIS)

    Stanley, J.W.; Groff, C.

    1990-01-01

    The implementation of a comprehensive maintenance system called the plant information management system (PIMS) at the Diablo Canyon plant, together with its associated integrated communication system (ICS), is widely regarded as the most comprehensive undertaking of its kind in the nuclear industry. This paper provides an overview of the program at Diablo Canyon, an evaluation of system benefits, and highlights the future course of PIMS

  4. Diablo Canyon plant information management system and integrated communication system

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, J.W.; Groff, C.

    1990-06-01

    The implementation of a comprehensive maintenance system called the plant information management system (PIMS) at the Diablo Canyon plant, together with its associated integrated communication system (ICS), is widely regarded as the most comprehensive undertaking of its kind in the nuclear industry. This paper provides an overview of the program at Diablo Canyon, an evaluation of system benefits, and highlights the future course of PIMS.

  5. Information Integration and Communication in Plant Growth Regulation.

    Science.gov (United States)

    Chaiwanon, Juthamas; Wang, Wenfei; Zhu, Jia-Ying; Oh, Eunkyoo; Wang, Zhi-Yong

    2016-03-10

    Plants are equipped with the capacity to respond to a large number of diverse signals, both internal ones and those emanating from the environment, that are critical to their survival and adaption as sessile organisms. These signals need to be integrated through highly structured intracellular networks to ensure coherent cellular responses, and in addition, spatiotemporal actions of hormones and peptides both orchestrate local cell differentiation and coordinate growth and physiology over long distances. Further, signal interactions and signaling outputs vary significantly with developmental context. This review discusses our current understanding of the integrated intracellular and intercellular signaling networks that control plant growth. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Diversity and Biological Activities of Endophytic Fungi Associated with Micropropagated Medicinal Plant Echinacea purpurea (L.) Moench

    Science.gov (United States)

    2012-08-01

    1105 Diversity and Biological Activities of Endophytic Fungi Associated with Micropropagated Medicinal Plant Echinacea purpurea (L.) Moench Luiz H...fungal community and micropropagated clones of E. purpurea was re-established after acclimatization to soil and the endophytic fungi produced compounds...Diversity and Biological Activities of Endophytic Fungi Associated with Micropropagated Medicinal Plant Echinacea purpurea (L.) Moench 5a. CONTRACT

  7. Data integration aids understanding of butterfly–host plant networks

    Science.gov (United States)

    Muto-Fujita, Ai; Takemoto, Kazuhiro; Kanaya, Shigehiko; Nakazato, Takeru; Tokimatsu, Toshiaki; Matsumoto, Natsushi; Kono, Mayo; Chubachi, Yuko; Ozaki, Katsuhisa; Kotera, Masaaki

    2017-01-01

    Although host-plant selection is a central topic in ecology, its general underpinnings are poorly understood. Here, we performed a case study focusing on the publicly available data on Japanese butterflies. A combined statistical analysis of plant–herbivore relationships and taxonomy revealed that some butterfly subfamilies in different families feed on the same plant families, and the occurrence of this phenomenon more than just by chance, thus indicating the independent acquisition of adaptive phenotypes to the same hosts. We consequently integrated plant–herbivore and plant–compound relationship data and conducted a statistical analysis to identify compounds unique to host plants of specific butterfly families. Some of the identified plant compounds are known to attract certain butterfly groups while repelling others. The additional incorporation of insect–compound relationship data revealed potential metabolic processes that are related to host plant selection. Our results demonstrate that data integration enables the computational detection of compounds putatively involved in particular interspecies interactions and that further data enrichment and integration of genomic and transcriptomic data facilitates the unveiling of the molecular mechanisms involved in host plant selection. PMID:28262809

  8. B Plant low level waste system integrity assessment report

    International Nuclear Information System (INIS)

    Walter, E.J.

    1995-09-01

    This document provides the report of the integrity assessment activities for the B Plant low level waste system. The assessment activities were in response to requirements of the Washington State Dangerous Waste Regulations, Washington Administrative Code (WAC), 173-303-640. This integrity assessment report supports compliance with Hanford Federal Facility Agreement and Consent Order interim milestone target action M-32-07-T03

  9. Pegasys: software for executing and integrating analyses of biological sequences

    Directory of Open Access Journals (Sweden)

    Lett Drew

    2004-04-01

    Full Text Available Abstract Background We present Pegasys – a flexible, modular and customizable software system that facilitates the execution and data integration from heterogeneous biological sequence analysis tools. Results The Pegasys system includes numerous tools for pair-wise and multiple sequence alignment, ab initio gene prediction, RNA gene detection, masking repetitive sequences in genomic DNA as well as filters for database formatting and processing raw output from various analysis tools. We introduce a novel data structure for creating workflows of sequence analyses and a unified data model to store its results. The software allows users to dynamically create analysis workflows at run-time by manipulating a graphical user interface. All non-serial dependent analyses are executed in parallel on a compute cluster for efficiency of data generation. The uniform data model and backend relational database management system of Pegasys allow for results of heterogeneous programs included in the workflow to be integrated and exported into General Feature Format for further analyses in GFF-dependent tools, or GAME XML for import into the Apollo genome editor. The modularity of the design allows for new tools to be added to the system with little programmer overhead. The database application programming interface allows programmatic access to the data stored in the backend through SQL queries. Conclusions The Pegasys system enables biologists and bioinformaticians to create and manage sequence analysis workflows. The software is released under the Open Source GNU General Public License. All source code and documentation is available for download at http://bioinformatics.ubc.ca/pegasys/.

  10. [New materia medica project: synthetic biology based bioactive metabolites research in medicinal plant].

    Science.gov (United States)

    Wang, Yong

    2017-03-25

    In the last decade, synthetic biology research has been gradually transited from monocellular parts or devices toward more complex multicellular systems. The emerging plant synthetic biology is regarded as the "next chapter" of synthetic biology. The complex and diverse plant metabolism as the entry point, plant synthetic biology research not only helps us understand how real life is working, but also facilitates us to learn how to design and construct more complex artificial life. Bioactive compounds innovation and large-scale production are expected to be breakthrough with the redesigned plant metabolism as well. In this review, we discuss the research progress in plant synthetic biology and propose the new materia medica project to lift the level of traditional Chinese herbal medicine research.

  11. Integration of torrefaction in CHP plants – A case study

    International Nuclear Information System (INIS)

    Starfelt, Fredrik; Tomas Aparicio, Elena; Li, Hailong; Dotzauer, Erik

    2015-01-01

    Highlights: • We model the integration of a torrefaction reactor in a CHP plant. • Techno-economic analysis for the system is performed. • Flue gas integration of torrefaction show better performance. • Heat or electricity production is not compromised in the proposed system. - Abstract: Torrefied biomass shows characteristics that resemble those of coal. Therefore, torrefied biomass can be co-combusted with coal in existing coal mills and burners. This paper presents simulation results of a case study where a torrefaction reactor was integrated in an existing combined heat and power plant and sized to replace 25%, 50%, 75% or 100% of the fossil coal in one of the boilers. The simulations show that a torrefaction reactor can be integrated with existing plants without compromising heat or electricity production. Economic and sensitivity analysis show that the additional cost for integrating a torrefaction reactor is low which means that with an emission allowance cost of 37 €/ton CO 2 , the proposed integrated system can be profitable and use 100% renewable fuels. The development of subsidies will affect the process economy. The determinant parameters are electricity and fuel prices

  12. EVALUATING THE ECOLOGICAL RESILIENT DRIVEN PERFORMANCE OF A TROPICAL WASTE STABILIZATION POND SYSTEM USING ECOLOGICAL SIGNATURE OF BIOLOGICAL INTEGRITY

    OpenAIRE

    Susmita Lahiri Ganguly; Dipanwita Sarkar Paria; B. B. Jana

    2015-01-01

    Using ecological signature of biological integrity as a measure of performance, the reclamation efficiency of waste stabilization ponds was evaluated over a period of four years in a tropical sewage treatment plant – cum fish culture consisting of two anaerobic, two facultative and four maturation ponds located serially across the sewage effluent gradient. The four maturation ponds were used for batch culture of fish. Samples of surface and bottom water as well as surface sediment were collec...

  13. Models for integrated pest control and their biological implications.

    Science.gov (United States)

    Tang, Sanyi; Cheke, Robert A

    2008-09-01

    Successful integrated pest management (IPM) control programmes depend on many factors which include host-parasitoid ratios, starting densities, timings of parasitoid releases, dosages and timings of insecticide applications and levels of host-feeding and parasitism. Mathematical models can help us to clarify and predict the effects of such factors on the stability of host-parasitoid systems, which we illustrate here by extending the classical continuous and discrete host-parasitoid models to include an IPM control programme. The results indicate that one of three control methods can maintain the host level below the economic threshold (ET) in relation to different ET levels, initial densities of host and parasitoid populations and host-parasitoid ratios. The effects of host intrinsic growth rate and parasitoid searching efficiency on host mean outbreak period can be calculated numerically from the models presented. The instantaneous pest killing rate of an insecticide application is also estimated from the models. The results imply that the modelling methods described can help in the design of appropriate control strategies and assist management decision-making. The results also indicate that a high initial density of parasitoids (such as in inundative releases) and high parasitoid inter-generational survival rates will lead to more frequent host outbreaks and, therefore, greater economic damage. The biological implications of this counter intuitive result are discussed.

  14. Integrated self-powered microchip biosensor for endogenous biological cyanide.

    Science.gov (United States)

    Deng, Liu; Chen, Chaogui; Zhou, Ming; Guo, Shaojun; Wang, Erkang; Dong, Shaojun

    2010-05-15

    In this work we developed a fully integrated biofuel cell on a microchip, which consisted of glucose dehydrogenase supported (carbon nanotubes/thionine/gold nanoparticles)(8) multilayer as the anode, and the (carbon nanotubes/polylysine/laccase)(15) multilayer as the cathode. The as-obtained biofuel cell produced open circuit potential 620 mV and power density 302 microW cm(-2), showing great potential as a small power resource of portable electronics. Most importantly, for the first time we demonstrated the feasibility of developing a self-powered biosensor based on the inhibitive effect on microchip enzyme biofuel cell. With cyanide employed as the model analyte, this method showed a linear range of 3.0 x 10(-7) to 5.0 x 10(-4) M and a detection limit with 1.0 x 10(-7) M under the optimal conditions. The detection limit was lower than the acceptable cyanide concentration in drinking water (1.9 x 10(-6) M) according to the World Health Organization (WHO). This self-powered sensor was successfully used to detect the cyanide concentration in a real sample, cassava, which is the main carbohydrate resource in South America and Africa. This presented biosensor combined with a resistor and a multimeter demonstrated the general applicability as a fast and simple detection method in the determination of endogenous biological cyanide.

  15. Plant-integrated measurement of greenhouse gas emissions from a municipal wastewater treatment plant

    DEFF Research Database (Denmark)

    Yoshida, Hiroko; Mønster, Jacob; Scheutz, Charlotte

    2014-01-01

    experiencing operational problems, such as during foaming events in anaerobic digesters and during sub-optimal operation of biological nitrogen removal in the secondary treatment of wastewater. Methane emissions detected during measurement campaigns corresponded to 2.07-32.7% of the methane generated......Wastewater treatment plants (WWTPs) contribute to anthropogenic greenhouse gas (GHG) emissions. Due to its spatial and temporal variation in emissions, whole plant characterization of GHG emissions from WWTPs face a number of obstacles. In this study, a tracer dispersion method was applied...... in the plant. As high as 4.27% of nitrogen entering the WWTP was emitted as nitrous oxide under the sub-optimal operation of biological treatment processes. The study shows that the unit process configuration, as well as the operation of the WWTP, determines the rate of GHG emission. The applied plant...

  16. Hybrid integrated biological-solid-state system powered with adenosine triphosphate.

    Science.gov (United States)

    Roseman, Jared M; Lin, Jianxun; Ramakrishnan, Siddharth; Rosenstein, Jacob K; Shepard, Kenneth L

    2015-12-07

    There is enormous potential in combining the capabilities of the biological and the solid state to create hybrid engineered systems. While there have been recent efforts to harness power from naturally occurring potentials in living systems in plants and animals to power complementary metal-oxide-semiconductor integrated circuits, here we report the first successful effort to isolate the energetics of an electrogenic ion pump in an engineered in vitro environment to power such an artificial system. An integrated circuit is powered by adenosine triphosphate through the action of Na(+)/K(+) adenosine triphosphatases in an integrated in vitro lipid bilayer membrane. The ion pumps (active in the membrane at numbers exceeding 2 × 10(6) mm(-2)) are able to sustain a short-circuit current of 32.6 pA mm(-2) and an open-circuit voltage of 78 mV, providing for a maximum power transfer of 1.27 pW mm(-2) from a single bilayer. Two series-stacked bilayers provide a voltage sufficient to operate an integrated circuit with a conversion efficiency of chemical to electrical energy of 14.9%.

  17. Hybrid integrated biological-solid-state system powered with adenosine triphosphate

    Science.gov (United States)

    Roseman, Jared M.; Lin, Jianxun; Ramakrishnan, Siddharth; Rosenstein, Jacob K.; Shepard, Kenneth L.

    2015-12-01

    There is enormous potential in combining the capabilities of the biological and the solid state to create hybrid engineered systems. While there have been recent efforts to harness power from naturally occurring potentials in living systems in plants and animals to power complementary metal-oxide-semiconductor integrated circuits, here we report the first successful effort to isolate the energetics of an electrogenic ion pump in an engineered in vitro environment to power such an artificial system. An integrated circuit is powered by adenosine triphosphate through the action of Na+/K+ adenosine triphosphatases in an integrated in vitro lipid bilayer membrane. The ion pumps (active in the membrane at numbers exceeding 2 × 106 mm-2) are able to sustain a short-circuit current of 32.6 pA mm-2 and an open-circuit voltage of 78 mV, providing for a maximum power transfer of 1.27 pW mm-2 from a single bilayer. Two series-stacked bilayers provide a voltage sufficient to operate an integrated circuit with a conversion efficiency of chemical to electrical energy of 14.9%.

  18. Integrated systems for power plant cooling and wastewater management

    International Nuclear Information System (INIS)

    Haith, D.A.

    1975-01-01

    The concept of integrated management of energy and water resources, demonstrated in hydropower development, may be applicable to steam-generated power, also. For steam plants water is a means of disposing of a waste product, which is unutilized energy in the form of heat. One framework for the evolution of integrated systems is the consideration of possible technical linkages between power plant cooling and municipal wastewater management. Such linkages include the use of waste heat as a mechanism for enhancing wastewater treatment, the use of treated wastewater as make-up for evaporative cooling structures, and the use of a pond or reservoir for both cooling and waste stabilization. This chapter reports the results of a systematic evaluation of possible integrated systems for power plant cooling and waste water management. Alternatives were analyzed for each of three components of the system--power plant cooling (condenser heat rejection), thermally enhanced waste water treatment, and waste water disposal. Four cooling options considered were evaporative tower, open cycle, spray pond, and cooling pond. Three treatment alternatives considered were barometric condenser-activated sludge, sectionalized condenser-activated sludge, and cooling/stabilization pond. Three disposal alternatives considered were ocean discharge, land application (spray irrigation), and make-up (for evaporative cooling). To facilitate system comparisons, an 1100-MW nuclear power plant was selected. 31 references

  19. Transgenic plants as vital components of integrated pest management

    NARCIS (Netherlands)

    Kos, Martine; van Loon, J.J.A.; Dicke, M.; Vet, L.E.M.

    2009-01-01

    Although integrated pest management (IPM) strategies have been developed worldwide, further improvement of IPM effectiveness is required. The use of transgenic technology to create insect-resistant plants can offer a solution to the limited availability of highly insect-resistant cultivars.

  20. Design and control of integrated styrene aniline production plant

    NARCIS (Netherlands)

    Partenie, O.; Van der Last, V.; Sorin Bildea, C.; Altimari, P.

    2009-01-01

    This paper illustrates the operational difficulties arising from simultaneously performing exothermic and endothermic reactions, and demonstrates that a plant can be built and safely operated by integrating the design and plantwide control issues. The behaviour of reactor – separation – recycle

  1. Localizing genes using linkage disequilibrium in plants: integrating ...

    African Journals Online (AJOL)

    GREGO

    2007-03-19

    Mar 19, 2007 ... Localizing genes using linkage disequilibrium in plants: integrating lessons ... reduce that association as a function of the marker distance from the QTL. ..... the gene locus enhanced the resolution power of asso- ciation tests .... agents, such as insects, birds, water and wind, so mating is determined by a ...

  2. Integration of oxygen membranes for oxygen production in cement plants

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Søgaard, Martin; Hjuler, Klaus

    2015-01-01

    The present paper describes the integration of oxygen membranes in cement plants both from an energy, exergy and economic point of view. Different configurations for oxygen enrichment of the tertiary air for combustion in the pre-calciner and full oxy-fuel combustion in both pre-calciner and kiln...

  3. Operational experience with the Sizewell B integrated plant computer system

    International Nuclear Information System (INIS)

    Ladner, J.E.J.; Alexander, N.C.; Fitzpatrick, J.A.

    1997-01-01

    The Westinghouse Integrated System for Centralised Operation (WISCO) is the primary plant control system at the Sizewell B Power Station. It comprises three subsystems; the High Integrity Control System (HICS), the Process Control System (PCS) and the Distributed Computer system (DCS). The HICS performs the control and data acquisition of nuclear safety significant plant systems. The PCS uses redundant data processing unit pairs. The workstations and servers of the DCS communicate with each other over a standard ethernet. The maintenance requirements for every plant system are covered by a Maintenance Strategy Report. The breakdown of these reports is listed. The WISCO system has performed exceptionally well. Due to the diagnostic information presented by the HICS, problems could normally be resolved within 24 hours. There have been some 200 outstanding modifications to the system. The procedure of modification is briefly described. (A.K.)

  4. Analysis of integrated plant upgrading/life extension programs

    International Nuclear Information System (INIS)

    McCutchan, D.A.; Massie, H.W. Jr.; McFetridge, R.H.

    1988-01-01

    A present-worth generating cost model has been developed and used to evaluate the economic value of integrated plant upgrading life extension project in nuclear power plants. This paper shows that integrated plant upgrading programs can be developed in which a mix of near-term availability, power rating, and heat rate improvements can be obtained in combination with life extension. All significant benefits and costs are evaluated from the viewpoint of the utility, as measured in discounted revenue requirement differentials between alternative plans which are equivalent in system generating capacity. The near-term upgrading benefits are shown to enhance the benefit picture substantially. In some cases the net benefit is positive, even if the actual life extension proves to be less than expected

  5. Lignin valorization through integrated biological funneling and chemical catalysis

    Science.gov (United States)

    Linger, Jeffrey G.; Vardon, Derek R.; Guarnieri, Michael T.; Karp, Eric M.; Hunsinger, Glendon B.; Franden, Mary Ann; Johnson, Christopher W.; Chupka, Gina; Strathmann, Timothy J.; Pienkos, Philip T.; Beckham, Gregg T.

    2014-01-01

    Lignin is an energy-dense, heterogeneous polymer comprised of phenylpropanoid monomers used by plants for structure, water transport, and defense, and it is the second most abundant biopolymer on Earth after cellulose. In production of fuels and chemicals from biomass, lignin is typically underused as a feedstock and burned for process heat because its inherent heterogeneity and recalcitrance make it difficult to selectively valorize. In nature, however, some organisms have evolved metabolic pathways that enable the utilization of lignin-derived aromatic molecules as carbon sources. Aromatic catabolism typically occurs via upper pathways that act as a “biological funnel” to convert heterogeneous substrates to central intermediates, such as protocatechuate or catechol. These intermediates undergo ring cleavage and are further converted via the β-ketoadipate pathway to central carbon metabolism. Here, we use a natural aromatic-catabolizing organism, Pseudomonas putida KT2440, to demonstrate that these aromatic metabolic pathways can be used to convert both aromatic model compounds and heterogeneous, lignin-enriched streams derived from pilot-scale biomass pretreatment into medium chain-length polyhydroxyalkanoates (mcl-PHAs). mcl-PHAs were then isolated from the cells and demonstrated to be similar in physicochemical properties to conventional carbohydrate-derived mcl-PHAs, which have applications as bioplastics. In a further demonstration of their utility, mcl-PHAs were catalytically converted to both chemical precursors and fuel-range hydrocarbons. Overall, this work demonstrates that the use of aromatic catabolic pathways enables an approach to valorize lignin by overcoming its inherent heterogeneity to produce fuels, chemicals, and materials. PMID:25092344

  6. Redefining Perineural Invasion: Integration of Biology With Clinical Outcome.

    Science.gov (United States)

    Schmitd, Ligia B; Beesley, Lauren J; Russo, Nickole; Bellile, Emily L; Inglehart, Ronald C; Liu, Min; Romanowicz, Genevieve; Wolf, Gregory T; Taylor, Jeremy M G; D'Silva, Nisha J

    2018-05-22

    A diagnosis of perineural invasion (PNI), defined as cancer within or surrounding at least 33% of the nerve, leads to selection of aggressive treatment in squamous cell carcinoma (SCC). Recent mechanistic studies show that cancer and nerves interact prior to physical contact. The purpose of this study was to explore cancer-nerve interactions relative to clinical outcome. Biopsy specimens from 71 patients with oral cavity SCC were stained with hematoxylin and eosin and immunohistochemical (IHC; cytokeratin, S100, GAP43, Tuj1) stains. Using current criteria, PNI detection was increased with IHC. Overall survival (OS) tended to be poor for patients with PNI (P = .098). OS was significantly lower for patients with minimum tumor-nerve distance smaller than 5 μm (P = .011). The estimated relative death rate decreased as the nerve-tumor distance increased; there was a gradual drop off in death rate from distance equal to zero that stabilized around 500 μm. In PNI-negative patients, nerve diameter was significantly related to OS (HR 2.88, 95%CI[1.11,7.49]). Among PNI-negative nerves, larger nerve-tumor distance and smaller nerve diameter were significantly related to better OS, even when adjusting for T-stage and age (HR 0.82, 95% CI[0.72,0.92]; HR 1.27, 95% CI[1.00,1.62], respectively). GAP43, a marker for neuronal outgrowth, stained less than Tuj1 in nerves at greater distances from tumor (OR 0.76, 95% CI[0.73,0.79]); more GAP43 staining was associated with PNI. Findings from a small group of patients suggest that nerve parameters other than presence of PNI can influence outcome and that current criteria of PNI need to be re-evaluated to integrate recent biological discoveries. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Eduard Strasburger (1844-1912): founder of modern plant cell biology.

    Science.gov (United States)

    Volkmann, Dieter; Baluška, František; Menzel, Diedrik

    2012-10-01

    Eduard Strasburger, director of the Botany Institute and the Botanical Garden at the University of Bonn from 1881 to 1912, was one of the most admirable scientists in the field of plant biology, not just as the founder of modern plant cell biology but in addition as an excellent teacher who strongly believed in "education through science." He contributed to plant cell biology by discovering the discrete stages of karyokinesis and cytokinesis in algae and higher plants, describing cytoplasmic streaming in different systems, and reporting on the growth of the pollen tube into the embryo sac and guidance of the tube by synergides. Strasburger raised many problems which are hot spots in recent plant cell biology, e.g., structure and function of the plasmodesmata in relation to phloem loading (Strasburger cells) and signaling, mechanisms of cell plate formation, vesicle trafficking as a basis for most important developmental processes, and signaling related to fertilization.

  8. Future of Chemical Engineering: Integrating Biology into the Undergraduate ChE Curriculum

    Science.gov (United States)

    Mosto, Patricia; Savelski, Mariano; Farrell, Stephanie H.; Hecht, Gregory B.

    2007-01-01

    Integrating biology in the chemical engineering curriculum seems to be the future for chemical engineering programs nation and worldwide. Rowan University's efforts to address this need include a unique chemical engineering curriculum with an intensive biology component integrated throughout from freshman to senior years. Freshman and Sophomore…

  9. DPTEdb, an integrative database of transposable elements in dioecious plants.

    Science.gov (United States)

    Li, Shu-Fen; Zhang, Guo-Jun; Zhang, Xue-Jin; Yuan, Jin-Hong; Deng, Chuan-Liang; Gu, Lian-Feng; Gao, Wu-Jun

    2016-01-01

    Dioecious plants usually harbor 'young' sex chromosomes, providing an opportunity to study the early stages of sex chromosome evolution. Transposable elements (TEs) are mobile DNA elements frequently found in plants and are suggested to play important roles in plant sex chromosome evolution. The genomes of several dioecious plants have been sequenced, offering an opportunity to annotate and mine the TE data. However, comprehensive and unified annotation of TEs in these dioecious plants is still lacking. In this study, we constructed a dioecious plant transposable element database (DPTEdb). DPTEdb is a specific, comprehensive and unified relational database and web interface. We used a combination of de novo, structure-based and homology-based approaches to identify TEs from the genome assemblies of previously published data, as well as our own. The database currently integrates eight dioecious plant species and a total of 31 340 TEs along with classification information. DPTEdb provides user-friendly web interfaces to browse, search and download the TE sequences in the database. Users can also use tools, including BLAST, GetORF, HMMER, Cut sequence and JBrowse, to analyze TE data. Given the role of TEs in plant sex chromosome evolution, the database will contribute to the investigation of TEs in structural, functional and evolutionary dynamics of the genome of dioecious plants. In addition, the database will supplement the research of sex diversification and sex chromosome evolution of dioecious plants.Database URL: http://genedenovoweb.ticp.net:81/DPTEdb/index.php. © The Author(s) 2016. Published by Oxford University Press.

  10. Integrated coastal monitoring of a gas processing plant using native and caged mussels

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Steven, E-mail: sbr@niva.no [Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, NO-0349 Oslo (Norway); Harman, Christopher [Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, NO-0349 Oslo (Norway); Soto, Manu; Cancio, Ibon [CBET Res Grp, R and D Centre for Experimental Marine Biology and Biotechnology (PIE), Univ Basque Country, Areatza Z/G, Plentzia-Bizkaia, E-48620 Basque Country (Spain); Glette, Tormod [Det Norske Veritas (DNV), Veritasveien 1, 1363 Hovik (Norway); Marigomez, Ionan [CBET Res Grp, R and D Centre for Experimental Marine Biology and Biotechnology (PIE), Univ Basque Country, Areatza Z/G, Plentzia-Bizkaia, E-48620 Basque Country (Spain)

    2012-06-01

    The biological effects of a coastal process water (PW) discharge on native and caged mussels (Mytilus edulis) were assessed. Chemical analyses of mussel tissues and semi permeable membrane devices, along with a suite of biomarkers of different levels of biological complexity were measured. These were lysosomal membrane stability in haemocytes and digestive cells; micronuclei formation in haemocytes; changes in cell-type composition in the digestive gland epithelium; integrity of digestive gland tissue; peroxisome proliferation; and oxidative stress. Additionally the Integrative Biological Response (IBR/n) index was calculated. This integrative biomarker approach distinguished mussels, both native and caged, exhibiting different stress conditions not identified from the contaminant exposure. Mussels exhibiting higher stress responses were found with increased proximity to the PW discharge outlet. However, the biological effects reported could not be entirely attributed to the PW discharge based on the chemicals measured, but were likely due to either other chemicals in the discharge that were not measured, the general impact of the processing plant and or other activities in the local vicinity. - Highlights: Black-Right-Pointing-Pointer Good agreement between biomarkers for the different mussel groups. Black-Right-Pointing-Pointer IBR/n was able to differentiate between exposed and reference mussels. Black-Right-Pointing-Pointer Mussels closest to the PW outlet were in poorest health. Black-Right-Pointing-Pointer Chemical concentrations were low or undetected in all SPMD and mussel samples. Black-Right-Pointing-Pointer Biomarker responses could not be entirely attributed to the PW discharge.

  11. Fully integrated safeguards and security for reprocessing plant monitoring

    International Nuclear Information System (INIS)

    Duran, Felicia Angelica; Ward, Rebecca; Cipiti, Benjamin B.; Middleton, Bobby D.

    2011-01-01

    Nuclear fuel reprocessing plants contain a wealth of plant monitoring data including material measurements, process monitoring, administrative procedures, and physical protection elements. Future facilities are moving in the direction of highly-integrated plant monitoring systems that make efficient use of the plant data to improve monitoring and reduce costs. The Separations and Safeguards Performance Model (SSPM) is an analysis tool that is used for modeling advanced monitoring systems and to determine system response under diversion scenarios. This report both describes the architecture for such a future monitoring system and present results under various diversion scenarios. Improvements made in the past year include the development of statistical tests for detecting material loss, the integration of material balance alarms to improve physical protection, and the integration of administrative procedures. The SSPM has been used to demonstrate how advanced instrumentation (as developed in the Material Protection, Accounting, and Control Technologies campaign) can benefit the overall safeguards system as well as how all instrumentation is tied into the physical protection system. This concept has the potential to greatly improve the probability of detection for both abrupt and protracted diversion of nuclear material.

  12. Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Britt, Phillip F [ORNL

    2015-03-01

    Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report. Summaries of conclusions, analytical processes, and analytical results. Analysis of samples taken from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in support of the WIPP Technical Assessment Team (TAT) activities to determine to the extent feasible the mechanisms and chemical reactions that may have resulted in the breach of at least one waste drum and release of waste material in WIPP Panel 7 Room 7 on February 14, 2014. This report integrates and summarizes the results contained in three separate reports, described below, and draws conclusions based on those results. Chemical and Radiochemical Analyses of WIPP Samples R-15 C5 SWB and R16 C-4 Lip; PNNL-24003, Pacific Northwest National Laboratory, December 2014 Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples by the Savannah River National Laboratory (SRNL); SRNL-STI-2014-00617; Savannah River National Laboratory, December 2014 Report for WIPP UG Sample #3, R15C5 (9/3/14); LLNL-TR-667015; Lawrence Livermore National Laboratory, January 2015 This report is also contained in the Waste Isolation Pilot Plant Technical Assessment Team Report; SRNL-RP-2015-01198; Savannah River National Laboratory, March 17, 2015, as Appendix C: Analysis Integrated Summary Report.

  13. Promoter-Based Integration in Plant Defense Regulation

    DEFF Research Database (Denmark)

    Li, Baohua; Gaudinier, Allison; Tang, Michelle

    2014-01-01

    A key unanswered question in plant biology is how a plant regulates metabolism to maximize performance across an array of biotic and abiotic environmental stresses. In this study, we addressed the potential breadth of transcriptional regulation that can alter accumulation of the defensive...... glucosinolate metabolites in Arabidopsis (Arabidopsis thaliana). A systematic yeast one-hybrid study was used to identify hundreds of unique potential regulatory interactions with a nearly complete complement of 21 promoters for the aliphatic glucosinolate pathway. Conducting high-throughput phenotypic...... validation, we showed that >75% of tested transcription factor (TF) mutants significantly altered the accumulation of the defensive glucosinolates. These glucosinolate phenotypes were conditional upon the environment and tissue type, suggesting that these TFs may allow the plant to tune its defenses...

  14. Technology success: Integration of power plant reliability and effective maintenance

    International Nuclear Information System (INIS)

    Ferguson, K.

    2008-01-01

    The nuclear power generation sector has a tradition of utilizing technology as a key attribute for advancement. Companies that own, manage, and operate nuclear power plants can be expected to continue to rely on technology as a vital element of success. Inherent with the operations of the nuclear power industry in many parts of the world is the close connection between efficiency of power plant operations and successful business survival. The relationship among power plant availability, reliability of systems and components, and viability of the enterprise is more evident than ever. Technology decisions need to be accomplished that reflect business strategies, work processes, as well as needs of stakeholders and authorities. Such rigor is needed to address overarching concerns such as power plant life extension and license renewal, new plant orders, outage management, plant safety, inventory management etc. Particular to power plant reliability, the prudent leveraging of technology as a key to future success is vital. A dominant concern is effective asset management as physical plant assets age. Many plants are in, or are entering in, a situation in which systems and component design life and margins are converging such that failure threats can come into play with increasing frequency. Wisely selected technologies can be vital to the identification of emerging threats to reliable performance of key plant features and initiating effective maintenance actions and investments that can sustain or enhance current reliability in a cost effective manner. This attention to detail is vital to investment in new plants as well This paper and presentation will address (1) specific technology success in place at power plants, including nuclear, that integrates attention to attaining high plant reliability and effective maintenance actions as well as (2) complimentary actions that maximize technology success. In addition, the range of benefits that accrue as a result of

  15. Toshiba integrated information system for design of nuclear power plants

    International Nuclear Information System (INIS)

    Abe, Yoko; Kawamura, Hirobumi; Sasaki, Norio; Takasaka, Kiyoshi

    1993-01-01

    TOSHIBA aims to secure safety, increase reliability and improve efficiency through the engineering for nuclear power plants and has been introducing Computer Aided Engineering (CAE). Up to the present, TOSHIBA has been developing computer systems which support each field of design and applying them to the design of nuclear power plants. The new design support system has been developed to integrate each of those systems in order to realize much greater improvement in accuracy and increase of reliability in design using state-of-the-art computer technology

  16. On the Edge of Mathematics and Biology Integration: Improving Quantitative Skills in Undergraduate Biology Education

    Science.gov (United States)

    Feser, Jason; Vasaly, Helen; Herrera, Jose

    2013-01-01

    In this paper, the authors describe how two institutions are helping their undergraduate biology students build quantitative competencies. Incorporation of quantitative skills and reasoning in biology are framed through a discussion of two cases that both concern introductory biology courses, but differ in the complexity of the mathematics and the…

  17. Integration of multi-omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants

    Czech Academy of Sciences Publication Activity Database

    Großkinsky, D.K.; Syaifullah, S. J.; Roitsch, Thomas

    2017-01-01

    Roč. 99, č. 99 (2017), s. 1-20 ISSN 0022-0957 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : integrated approaches * multi-omics * phenomics * plant development * plant–environment interactions * plant phenotyping * plant physiology * plant senescence * senescence programme * systems biology Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 5.830, year: 2016

  18. Understanding the Biological Roles of Pectins in Plants through Physiological and Functional Characterizations of Plant and Fungal Mutants

    DEFF Research Database (Denmark)

    Stranne, Maria

    The plant cell wall is a dynamic structure and it is involved in regulating a number of physiological features of plants such as physical strength, growth, cell differentiation, intercellular communication, water movement and defense responses. Pectins constitute a major class of plant cell wall...... polysaccharides and consist of backbones rich in galacturonic acids, which are decorated with a range of functional groups including acetyl esters and arabinan sidechains. Although much effort has been made to uncover biological functions of pectins in plants and remarkable progresses have taken place, many...... aspects remain elusive. Studies described in this thesis aimed at gaining new insights into the biological roles of pectin acetylation and arabinosylation in the model plant Arabidopsis thaliana. The thesis consists of four chapters: physiological characterization of cell wall mutants affected in cell...

  19. Plant gum exudates (Karau) and mucilages, their biological sources ...

    African Journals Online (AJOL)

    In recent years those polymers derived from plants have evoke tremendous interest because of their industrial applications as diluent binders, thickening agents, smoothening, emulsifiers, gelling agents and stabilizers. This increasing research in this group of these plant materials are clear indications of their increasing ...

  20. Plant Clonal Integration Mediates the Horizontal Redistribution of Soil Resources, Benefiting Neighboring Plants.

    Science.gov (United States)

    Ye, Xue-Hua; Zhang, Ya-Lin; Liu, Zhi-Lan; Gao, Shu-Qin; Song, Yao-Bin; Liu, Feng-Hong; Dong, Ming

    2016-01-01

    Resources such as water taken up by plants can be released into soils through hydraulic redistribution and can also be translocated by clonal integration within a plant clonal network. We hypothesized that the resources from one (donor) microsite could be translocated within a clonal network, released into different (recipient) microsites and subsequently used by neighbor plants in the recipient microsite. To test these hypotheses, we conducted two experiments in which connected and disconnected ramet pairs of Potentilla anserina were grown under both homogeneous and heterogeneous water regimes, with seedlings of Artemisia ordosica as neighbors. The isotopes [(15)N] and deuterium were used to trace the translocation of nitrogen and water, respectively, within the clonal network. The water and nitrogen taken up by P. anserina ramets in the donor microsite were translocated into the connected ramets in the recipient microsites. Most notably, portions of the translocated water and nitrogen were released into the recipient microsite and were used by the neighboring A. ordosica, which increased growth of the neighboring A. ordosica significantly. Therefore, our hypotheses were supported, and plant clonal integration mediated the horizontal hydraulic redistribution of resources, thus benefiting neighboring plants. Such a plant clonal integration-mediated resource redistribution in horizontal space may have substantial effects on the interspecific relations and composition of the community and consequently on ecosystem processes.

  1. Plant clonal integration mediates the horizontal redistribution of soil resources, benefiting neighbouring plants

    Directory of Open Access Journals (Sweden)

    Xuehua eYe

    2016-02-01

    Full Text Available Resources such as water taken up by plants can be released into soils through hydraulic redistribution and can also be translocated by clonal integration within a plant clonal network. We hypothesized that the resources from one (donor microsite could be translocated within a clonal network, released into different (recipient microsites and subsequently used by neighbour plants in the recipient microsite. To test these hypotheses, we conducted two experiments in which connected and disconnected ramet pairs of Potentilla anserina were grown under both homogeneous and heterogeneous water regimes, with seedlings of Artemisia ordosica as neighbours. The isotopes [15N] and deuterium were used to trace the translocation of nitrogen and water, respectively, within the clonal network. The water and nitrogen taken up by P. anserina ramets in the donor microsite were translocated into the connected ramets in the recipient microsites. Most notably, portions of the translocated water and nitrogen were released into the recipient microsite and were used by the neighbouring A. ordosica, which increased growth of the neighbouring A. ordosica significantly. Therefore, our hypotheses were supported, and plant clonal integration mediated the horizontal hydraulic redistribution of resources, thus benefiting neighbouring plants. Such a plant clonal integration-mediated resource redistribution in horizontal space may have substantial effects on the interspecific relations and composition of the community and consequently on ecosystem processes.

  2. Nanobiotechnology meets plant cell biology: Carbon nanotubes as organelle targeting nanocarriers

    KAUST Repository

    Serag, Maged F.; Kaji, Noritada; Habuchi, Satoshi; Bianco, Alberto; Baba, Yoshinobu

    2013-01-01

    For years, nanotechnology has shown great promise in the fields of biomedical and biotechnological sciences and medical research. In this review, we demonstrate its versatility and applicability in plant cell biology studies. Specifically, we discuss the ability of functionalized carbon nanotubes to penetrate the plant cell wall, target specific organelles, probe protein-carrier activity and induce organelle recycling in plant cells. We also, shed light on prospective applications of carbon nanomaterials in cell biology and plant cell transformation. © 2013 The Royal Society of Chemistry.

  3. Role of plant pathology in integrated pest management.

    Science.gov (United States)

    Jacobsen, B J

    1997-01-01

    Integrated Pest Management (IPM) is a paradigm that is widely adopted by all pest control disciplines but whose early definitions and philosophical basis belong to entomologists. Plant pathology research and extension work has historically emphasized integration of several control strategies and fits both historical and modern definitions of IPM. While the term IPM has been used only sparingly in the phytopathology literature, the integrated disease management strategies emphasized are now considered to be at the forefront of ecologically based or biointensive pest management. While IPM is broadly endorsed by crop protection disciplines, farmers, other agriculturalists, and consumers, the potential for Integrated Pest Management has not been fully realized. Most IPM programs reflect a package of tools and decision aids for individual crop insect, weed, nematode, and plant disease management. IPM programs that integrate all types of pests with the agroecosystem, crop growth and loss models still await the formation of interdisciplinary teams focusing on growers needs. Lack of funding for both discipline and interdisciplinary developmental research and implementation is responsible for the paucity of comprehensive IPM programs for the majority of the U.S. crop acreage. This review explores the origins and evolution of the IPM paradigm and reviews efforts to achieve the body of knowledge and implementation structure to achieve IPM's full potential.

  4. An integrated approach to site selection for nuclear power plants

    International Nuclear Information System (INIS)

    Hassan, E.M.A.

    1975-01-01

    A method of analysing and evaluating the large number of factors influencing site selection is proposed, which can interrelate these factors and associated problems in an integrated way and at the same time establish a technique for site evaluation. The objective is to develop an integrated programme that illustrates the complexity and dynamic interrelationships of the various factors to develop an improved understanding of the functions and objectives of siting nuclear power plants and would aim finally at the development of an effective procedure and technique for site evaluation and/or comparative evaluation for making rational site-selection decisions. (author)

  5. Toward an interactive article: integrating journals and biological databases

    Directory of Open Access Journals (Sweden)

    Marygold Steven J

    2011-05-01

    Full Text Available Abstract Background Journal articles and databases are two major modes of communication in the biological sciences, and thus integrating these critical resources is of urgent importance to increase the pace of discovery. Projects focused on bridging the gap between journals and databases have been on the rise over the last five years and have resulted in the development of automated tools that can recognize entities within a document and link those entities to a relevant database. Unfortunately, automated tools cannot resolve ambiguities that arise from one term being used to signify entities that are quite distinct from one another. Instead, resolving these ambiguities requires some manual oversight. Finding the right balance between the speed and portability of automation and the accuracy and flexibility of manual effort is a crucial goal to making text markup a successful venture. Results We have established a journal article mark-up pipeline that links GENETICS journal articles and the model organism database (MOD WormBase. This pipeline uses a lexicon built with entities from the database as a first step. The entity markup pipeline results in links from over nine classes of objects including genes, proteins, alleles, phenotypes and anatomical terms. New entities and ambiguities are discovered and resolved by a database curator through a manual quality control (QC step, along with help from authors via a web form that is provided to them by the journal. New entities discovered through this pipeline are immediately sent to an appropriate curator at the database. Ambiguous entities that do not automatically resolve to one link are resolved by hand ensuring an accurate link. This pipeline has been extended to other databases, namely Saccharomyces Genome Database (SGD and FlyBase, and has been implemented in marking up a paper with links to multiple databases. Conclusions Our semi-automated pipeline hyperlinks articles published in GENETICS to

  6. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  7. Introducing the term 'Biocontrol Plants' for integrated pest management

    Directory of Open Access Journals (Sweden)

    Pia Parolin

    2014-02-01

    Full Text Available Studies of interactions between crops, additional plants, pests and beneficial organisms already exist as well as studies of natural enemy preference, dispersal, and abundance. However, these studies focus on tri-trophic interactions from an "arthropod" point of view. We think that in order to optimize crop protection methods we need to understand the effects that plant structures have on the various arthropods and on subsequent tri-trophic interactions. Although studies and reviews describing the role of secondary plants in Integrated Pest Management (IPM exist, to date a general term which encompasses all plants added to a cropping system with the aim of enhancing IPM strategies has yet to be formulated. Therefore, we suggest a new term, "biocontrol plants", which we define as plants that are intentionally added to a crop system with the aim of enhancing crop productivity through pest attraction and/or pest regulation; a term that will promote the use of biocontrol services, and can ultimately lead to an increase in the sustainability of cropping systems.

  8. Biologically Active Compounds of Plant Foods: Prospective Impact ...

    African Journals Online (AJOL)

    On the other hand, other biologically active compounds impair health by ... of essential elements through different mechanisms and giving astringent taste, odor, ... The health benefits of selected substances from Ethiopian food crops need to ...

  9. The chemical structures, plant origins, ethnobotany and biological activities of homoisoflavanones.

    Science.gov (United States)

    du Toit, Karen; Drewes, Siegfried E; Bodenstein, Johannes

    2010-03-01

    This work reviews the four basic structural types of homoisoflavanones. The relationships between the various structures of homoisoflavanones and their plant origins, ethnobotany and biological activities are put into perspective.

  10. Integrated online condition monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Hashemian, Hashem M.

    2010-01-01

    Online condition monitoring or online monitoring (OLM) uses data acquired while a nuclear power is operating to continuously assess the health of the plant's sensors, processes, and equipment; to measure the dynamic performance of the plant's process instrumentation; to verify in-situ the calibration of the process instrumentation; to detect blockages, voids, and leaks in the pressure sensing lines; to identify core flow anomalies; to extend the life of neutron detectors and other sensors; and to measure the vibration of reactor internals. Both the steady-state or DC output of plant sensors and their AC signal or noise output can be used to assess sensor health, depending on whether the application is monitoring a rapidly changing (e.g., core barrel motion) or a slowly changing (e.g., sensor calibration) process. The author has designed, developed, installed, and tested OLM systems (comprised of software/hardware-based data acquisition and data processing modules) that integrate low-frequency (1 mHz to 1 Hz) techniques such as RTD cross-calibration, pressure transmitter calibration monitoring, and equipment condition monitoring and high-frequency (1 Hz to 1 kHz) techniques such as the noise analysis technique. The author has demonstrated the noise analysis technique's effectiveness for measuring the dynamic response-time of pressure transmitters and their sensing lines; for performing predictive maintenance on reactor internals; for detecting core flow anomalies; and for extending neutron detector life. Integrated online condition monitoring systems can combine AC and DC data acquisition and signal processing techniques, can use data from existing process sensors during all modes of plant operation, including startup, normal operation, and shutdown; can be retrofitted into existing PWRs, BWRs, and other reactor types and will be integrated into next-generation plants. (orig.)

  11. Integrated online condition monitoring system for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, Hashem M. [Analysis and Measurement Services Corporation, Knoxville, TN (United States). AMS Technology Center

    2010-09-15

    Online condition monitoring or online monitoring (OLM) uses data acquired while a nuclear power is operating to continuously assess the health of the plant's sensors, processes, and equipment; to measure the dynamic performance of the plant's process instrumentation; to verify in-situ the calibration of the process instrumentation; to detect blockages, voids, and leaks in the pressure sensing lines; to identify core flow anomalies; to extend the life of neutron detectors and other sensors; and to measure the vibration of reactor internals. Both the steady-state or DC output of plant sensors and their AC signal or noise output can be used to assess sensor health, depending on whether the application is monitoring a rapidly changing (e.g., core barrel motion) or a slowly changing (e.g., sensor calibration) process. The author has designed, developed, installed, and tested OLM systems (comprised of software/hardware-based data acquisition and data processing modules) that integrate low-frequency (1 mHz to 1 Hz) techniques such as RTD cross-calibration, pressure transmitter calibration monitoring, and equipment condition monitoring and high-frequency (1 Hz to 1 kHz) techniques such as the noise analysis technique. The author has demonstrated the noise analysis technique's effectiveness for measuring the dynamic response-time of pressure transmitters and their sensing lines; for performing predictive maintenance on reactor internals; for detecting core flow anomalies; and for extending neutron detector life. Integrated online condition monitoring systems can combine AC and DC data acquisition and signal processing techniques, can use data from existing process sensors during all modes of plant operation, including startup, normal operation, and shutdown; can be retrofitted into existing PWRs, BWRs, and other reactor types and will be integrated into next-generation plants. (orig.)

  12. Integrated inspection programs at Bruce Heavy Water Plant

    International Nuclear Information System (INIS)

    Brown, K.C.

    1992-01-01

    Quality pressure boundary maintenance and an excellent loss prevention record at Bruce Heavy Water Plant are the results of the Material and Inspection Unit's five inspection programs. Experienced inspectors are responsible for the integrity of the pressure boundary in their own operating area. Inspectors are part of the Technical Section, and along with unit engineering staff, they provide technical input before, during, and after the job. How these programs are completed, and the results achieved, are discussed. 5 figs., 1 appendix

  13. Integrated inspection programs at Bruce Heavy Water Plant

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K C [Ontario Hydro, Tiverton, ON (Canada)

    1993-12-31

    Quality pressure boundary maintenance and an excellent loss prevention record at Bruce Heavy Water Plant are the results of the Material and Inspection Unit`s five inspection programs. Experienced inspectors are responsible for the integrity of the pressure boundary in their own operating area. Inspectors are part of the Technical Section, and along with unit engineering staff, they provide technical input before, during, and after the job. How these programs are completed, and the results achieved, are discussed. 5 figs., 1 appendix.

  14. Energy management system for an integrated steel plant

    Energy Technology Data Exchange (ETDEWEB)

    Perti, A.K.; Sankarasubramian, K.; Shivramakrishnan, J. (Bhilai Steel Plant, Bhilai (India))

    1992-09-01

    The cost of energy contributes 35 to 40% to the cost of steel production. Thus a lot of importance is being given to energy conservation in steel production. The paper outlines energy conservation measures at the Bhilai Steel Plant, India. Measures include: modifications to furnaces; partial briquetting of coal charge; and setting up an energy centre to integrate measurement and computer systems with despatches, engineers and managers of energy. 4 refs., 4 figs., 3 tabs.

  15. Flexible operation of thermal plants with integrated energy storage technologies

    Science.gov (United States)

    Koytsoumpa, Efthymia Ioanna; Bergins, Christian; Kakaras, Emmanouil

    2017-08-01

    The energy system in the EU requires today as well as towards 2030 to 2050 significant amounts of thermal power plants in combination with the continuously increasing share of Renewables Energy Sources (RES) to assure the grid stability and to secure electricity supply as well as to provide heat. The operation of the conventional fleet should be harmonised with the fluctuating renewable energy sources and their intermittent electricity production. Flexible thermal plants should be able to reach their lowest minimum load capabilities while keeping the efficiency drop moderate as well as to increase their ramp up and down rates. A novel approach for integrating energy storage as an evolutionary measure to overcome many of the challenges, which arise from increasing RES and balancing with thermal power is presented. Energy storage technologies such as Power to Fuel, Liquid Air Energy Storage and Batteries are investigated in conjunction with flexible power plants.

  16. Architecturally integrated PV system at the Ford Bridgend Engine Plant

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, K.; Phillips, R.

    2001-07-01

    The aim of the project was to design and install a solar photovoltaic (PV) plant that could be retrofitted into an existing factory and to evaluate the cost and advantages of using the most recent advances in photovoltaic technology as follows: to demonstrate the use of the latest mono crystalline silicon technology within a large scale manufacturing environment, with the long term view of designing a state of the art installation for use in an environmentally sensitive {sup F}actory of the Future{sup .} To determine the performance and operating costs of a photovoltaic plant in northern latitudes thus providing data for the potential use of similar integrated systems elsewhere in the UK and Northern Europe. To evaluate the long term behaviour of an integrated system and its component parts. To demonstrate the feasibility of retrofitting PV roof lights into a fully operational manufacturing plant. To provide natural daylight into the manufacturing facility thereby improving the working environment, enhancing productivity and reducing the electrical lighting load within the plant during daylight hours. (author)

  17. IntegromeDB: an integrated system and biological search engine.

    Science.gov (United States)

    Baitaluk, Michael; Kozhenkov, Sergey; Dubinina, Yulia; Ponomarenko, Julia

    2012-01-19

    With the growth of biological data in volume and heterogeneity, web search engines become key tools for researchers. However, general-purpose search engines are not specialized for the search of biological data. Here, we present an approach at developing a biological web search engine based on the Semantic Web technologies and demonstrate its implementation for retrieving gene- and protein-centered knowledge. The engine is available at http://www.integromedb.org. The IntegromeDB search engine allows scanning data on gene regulation, gene expression, protein-protein interactions, pathways, metagenomics, mutations, diseases, and other gene- and protein-related data that are automatically retrieved from publicly available databases and web pages using biological ontologies. To perfect the resource design and usability, we welcome and encourage community feedback.

  18. Atomic force microscope with integrated optical microscope for biological applications

    OpenAIRE

    Putman, Constant A.J.; Putman, C.A.J.; van der Werf, Kees; de Grooth, B.G.; van Hulst, N.F.; Segerink, Franciscus B.; Greve, Jan

    1992-01-01

    Since atomic force microscopy (AFM) is capable of imaging nonconducting surfaces, the technique holds great promises for high‐resolution imaging of biological specimens. A disadvantage of most AFMs is the fact that the relatively large sample surface has to be scanned multiple times to pinpoint a specific biological object of interest. Here an AFM is presented which has an incorporated inverted optical microscope. The optical image from the optical microscope is not obscured by the cantilever...

  19. Plant oligoadenylates: enzymatic synthesis, isolation, and biological activities

    International Nuclear Information System (INIS)

    Devash, Y.; Reichman, M.; Sela, I.; Reichenbach, N.L.; Suhadolnik, R.J.

    1985-01-01

    An enzyme that converts [ 3 H, 32 P]ATP, with a 3 H: 32 P ratio of 1:1, to oligoadenylates with the same 3 H: 32 P ratio was increased in plants following treatment with human leukocyte interferon or plant antiviral factor or inoculation with tobacco mosaic virus. The enzyme was extracted from tobacco leaves, callus tissue cultures, or cell suspension cultures. The enzyme, a putative plant oligoadenylate synthetase, was immobilized on poly(rI) . poly(rC)-agarose columns and converted ATP into plant oligoadenylates. These oligoadenylates were displaced from DEAE-cellulose columns with 350 mM KCl buffer, dialyzed, and further purified by high-performance liquid chromatography (HPLC) and DEAE-cellulose gradient chromatography. In all steps of purification, the ratio of 3 H: 32 P in the oligoadenylates remained 1:1. The plant oligoadenylates isolated by displacement with 350 mM KCl had a molecular weight greater than 1000. The plant oligoadenylates had charges of 5- and 6-. HPLC resolved five peaks, three of which inhibited protein synthesis in reticulocyte and wheat germ systems. Partial structural elucidation of the plant oligoadenylates has been determined by enzymatic and chemical treatments. An adenylate with a 3',5'-phosphodiester and/or a pyrophosphoryl linkage with either 3'- or 5'-terminal phosphates is postulated on the basis of treatment of the oligoadenylates with T2 RNase, snake venom phosphodiesterase, and bacterial alkaline phosphatase and acid and alkaline hydrolyses. The plant oligoadenylates at 8 X 10(-7) M inhibit protein synthesis by 75% in lysates from rabbit reticulocytes and 45% in wheat germ cell-free systems

  20. Charles Darwin and the origins of plant evolutionary developmental biology.

    Science.gov (United States)

    Friedman, William E; Diggle, Pamela K

    2011-04-01

    Much has been written of the early history of comparative embryology and its influence on the emergence of an evolutionary developmental perspective. However, this literature, which dates back nearly a century, has been focused on metazoans, without acknowledgment of the contributions of comparative plant morphologists to the creation of a developmental view of biodiversity. We trace the origin of comparative plant developmental morphology from its inception in the eighteenth century works of Wolff and Goethe, through the mid nineteenth century discoveries of the general principles of leaf and floral organ morphogenesis. Much like the stimulus that von Baer provided as a nonevolutionary comparative embryologist to the creation of an evolutionary developmental view of animals, the comparative developmental studies of plant morphologists were the basis for the first articulation of the concept that plant (namely floral) evolution results from successive modifications of ontogeny. Perhaps most surprisingly, we show that the first person to carefully read and internalize the remarkable advances in the understanding of plant morphogenesis in the 1840s and 1850s is none other than Charles Darwin, whose notebooks, correspondence, and (then) unpublished manuscripts clearly demonstrate that he had discovered the developmental basis for the evolutionary transformation of plant form.

  1. Integrating biological redesign: where synthetic biology came from and where it needs to go.

    Science.gov (United States)

    Way, Jeffrey C; Collins, James J; Keasling, Jay D; Silver, Pamela A

    2014-03-27

    Synthetic biology seeks to extend approaches from engineering and computation to redesign of biology, with goals such as generating new chemicals, improving human health, and addressing environmental issues. Early on, several guiding principles of synthetic biology were articulated, including design according to specification, separation of design from fabrication, use of standardized biological parts and organisms, and abstraction. We review the utility of these principles over the past decade in light of the field's accomplishments in building complex systems based on microbial transcription and metabolism and describe the progress in mammalian cell engineering. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Integration of Photovoltaic Plants and Supercapacitors in Tramway Power Systems

    Directory of Open Access Journals (Sweden)

    Flavio Ciccarelli

    2018-02-01

    Full Text Available The growing interest in the use of energy storage systems to improve the performance of tramways has prompted the development of control techniques and optimal storage devices, displacement, and sizing to obtain the maximum profit and reduce the total installation cost. Recently, the rapid diffusion of renewable energy generation from photovoltaic panels has also created a large interest in coupling renewable energy and storage units. This study analyzed the integration of a photovoltaic power plant, supercapacitor energy storage system, and railway power system. Random optimization was used to verify the feasibility of this integration in a real tramway electric system operating in the city of Naples, and the benefits and total cost of this integration were evaluated.

  3. Cost benefit analysis of power plant database integration

    International Nuclear Information System (INIS)

    Wilber, B.E.; Cimento, A.; Stuart, R.

    1988-01-01

    A cost benefit analysis of plant wide data integration allows utility management to evaluate integration and automation benefits from an economic perspective. With this evaluation, the utility can determine both the quantitative and qualitative savings that can be expected from data integration. The cost benefit analysis is then a planning tool which helps the utility to develop a focused long term implementation strategy that will yield significant near term benefits. This paper presents a flexible cost benefit analysis methodology which is both simple to use and yields accurate, verifiable results. Included in this paper is a list of parameters to consider, a procedure for performing the cost savings analysis, and samples of this procedure when applied to a utility. A case study is presented involving a specific utility where this procedure was applied. Their uses of the cost-benefit analysis are also described

  4. Level of Awareness of Biology and Geography Students Related to Recognizing Some Plants

    Science.gov (United States)

    Aladag, Caner; Kaya, Bastürk; Dinç, Muhittin

    2017-01-01

    The aim of this study is to investigate the awareness of the geography and biology students about recognizing some plants which they see frequently around them in accordance with the information they gained during their education process. The sample of the study consists of 37 biology and 40 geography students studying at the Ahmet Kelesoglu…

  5. Biological effects from discharge of cooling water from thermal power plants

    International Nuclear Information System (INIS)

    1976-12-01

    Results are reported for a Danish project on biological effects from discharge of cooling water from thermal power plants. The purpose of the project was to provide an up-to-date knowledge of biological effects of cooling water discharge and of organization and evaluation of recipient investigations in planned and established areas. (BP)

  6. Thermodynamic and economic analysis on geothermal integrated combined-cycle power plants

    International Nuclear Information System (INIS)

    Bettocchi, R.; Cantore, G.; Negri di Montenegro, G.; Gadda, E.

    1992-01-01

    This paper considers geothermal integrated power plants obtained matching a geothermal plant with, a two pressure level combined plant. The purpose of the paper is the evaluation of thermodynamic and economic aspects on geothermal integrated combined-cycle power plant and a comparison with conventional solutions. The results show that the integrated combined plant power is greater than the sum of combined cycle and geothermal plant powers considered separately and that the integrated plant can offer economic benefits reaching the 16% of the total capital required

  7. Remediation of toxic ad hazardous wastes: plants as biological agents to mitigate heavy metal pollution

    International Nuclear Information System (INIS)

    Cadiz, Nina M.; Principe, Eduardo B.

    2005-01-01

    This papers introduced the plants as biological agents to control heavy metal pollution and the process used the green plants to clean contaminated soils or to render the toxic ions harmless is a new technology called phytoremediation with two levels, the phytostabilization and phytoextraction

  8. Isotopic techniques for measuring the biological activity in plant rhizosphere

    International Nuclear Information System (INIS)

    Warembourg, F.R.

    1975-01-01

    The use of 14 C made it possible to separate root respired CO 2 and microbial CO 2 resulting from exudates utilisation by the rhizosphere microflora. Measurements were done after wheat plants grown under axenic and non axenic conditions were placed during short period of time in an atmosphere contaning 14 CO 2 . Under axenic conditions evolution of 14 CO 2 follows a bell shaped curve due to the brief appearance of labelled compounds translocated from the aerial part of the plants to the roots. In the presence of microorganisms, the maximum of activity due to root respiration is identical but immediately followed by a second peak of 14 CO 2 evolution that was attributed to the decomposition of labelled exudates by the microflora. The same observations resulted from the labelling of a grassland vegetation sampled with its soil and placed in the laboratory. Preliminary results obtained using this method of short term labelling of plants are presented here [fr

  9. Biological activity of phenolic compounds present in buckwheat plants

    Czech Academy of Sciences Publication Activity Database

    Kalinová, J.; Tříska, Jan; Vrchotová, Naděžda

    2005-01-01

    Roč. 16, č. 1 (2005), s. 123-129 ISSN 0971-4693 Institutional research plan: CEZ:AV0Z60870520 Keywords : biological activity, extract, Fagopyrum esculenthum Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.686, year: 2005

  10. Biological, ecological and agronomic significance of plant phenolic ...

    African Journals Online (AJOL)

    Our understanding of some phenolic compounds in the last few decades has greatly improved. However, their biological, ecological and agronomical significance in the rhizosphere of most symbiotic legumes is much less clear. Further understanding of these biomolecules will increase our knowledge of their contribution in ...

  11. Trichoderma-plant-pathogen interactions: advances in genetics of biological control.

    Science.gov (United States)

    Mukherjee, Mala; Mukherjee, Prasun K; Horwitz, Benjamin A; Zachow, Christin; Berg, Gabriele; Zeilinger, Susanne

    2012-12-01

    Trichoderma spp. are widely used in agriculture as biofungicides. Induction of plant defense and mycoparasitism (killing of one fungus by another) are considered to be the most important mechanisms of Trichoderma-mediated biological control. Understanding these mechanisms at the molecular level would help in developing strains with superior biocontrol properties. In this article, we review our current understanding of the genetics of interactions of Trichoderma with plants and plant pathogens.

  12. Integrated Plant Safety Assessment, Systematic Evaluation Program, Palisades Plant (Docket No. 50-255)

    International Nuclear Information System (INIS)

    1983-11-01

    This report documents the review completed under the SEP for those issues that required refined engineering evaluations or the continuation of ongoing evaluations after the Final IPSAR for the Palisades Plant was issued. The review has provided for (1) an assessment of the significance of differences between current technical positions on selected safety issues and those that existed when the Palisades Plant was licensed, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety when the supplement to the Final IPSAR and the Safety Evaluation Report for converting the license from a provisional to a full-term license have been issued. The Final IPSAR and its supplement will form part of the bases for considering the conversion of the provisional operating license to a full-term operating license

  13. A Candidate Vegetation Index of Biological Integrity Based on Species Dominance and Habitat Fidelity

    Science.gov (United States)

    Gara, Brian D; Stapanian, Martin A.

    2015-01-01

    Indices of biological integrity of wetlands based on vascular plants (VIBIs) have been developed in many areas of the USA and are used in some states to make critical management decisions. An underlying concept of all VIBIs is that they respond negatively to disturbance. The Ohio VIBI (OVIBI) is calculated from 10 metrics, which are different for each wetland vegetation class. We present a candidate vegetation index of biotic integrity based on floristic quality (VIBI-FQ) that requires only two metrics to calculate an overall score regardless of vegetation class. These metrics focus equally on the critical ecosystem elements of diversity and dominance as related to a species’ degree of fidelity to habitat requirements. The indices were highly correlated but varied among vegetation classes. Both indices responded negatively with a published index of wetland disturbance in 261 Ohio wetlands. Unlike VIBI-FQ, however, errors in classifying wetland vegetation may lead to errors in calculating OVIBI scores. This is especially critical when assessing the ecological condition of rapidly developing ecosystems typically associated with wetland restoration and creation projects. Compared to OVIBI, the VIBI-FQ requires less field work, is much simpler to calculate and interpret, and can potentially be applied to all habitat types. This candidate index, which has been “standardized” across habitats, would make it easier to prioritize funding because it would score the “best” and “worst” of all habitats appropriately and allow for objective comparison across different vegetation classes.

  14. KinomeXplorer: an integrated platform for kinome biology studies

    DEFF Research Database (Denmark)

    Horn, Heiko; Schoof, Erwin; Kim, Jinho

    2014-01-01

    A letter to the editor is presented related to the KinomeXplorer, an integrated platform providing workflows to efficiently analyze phosphorylation dependent interaction networks or kinase signaling networks....

  15. BIOLOGICAL VALUE OF PLANT PROTEIN AND VITAMIN SUPPLEMENTS

    OpenAIRE

    Fisenko G. V.; Koshchaeva O. V.; Luneva A. V.; Petenko I. A.

    2014-01-01

    Results of the use of plant protein feed additives containing pumpkin paste and soybean seeds of different varieties for quail are presented in the article. It was established that the use of such additives on the basis of Valens soybean allowed to receive higher growth parameters than groups treated with Vilan soybean additive

  16. Plant Collections Online: Using Digital Herbaria in Biology Teaching

    Science.gov (United States)

    Flannery, Maura C.

    2013-01-01

    Herbaria are collections of preserved plants specimens, some of which date back to the 16th century. They are essential to botanical research, especially in systematics. They can also be important historical documents. The collections of Lewis and Clark, Carolus Linnaeus, and Charles Darwin, to name a few, are primary sources for the study of…

  17. Biological advances in Bergenia genus plant | Zhang | African ...

    African Journals Online (AJOL)

    Bergenia, a genus belonging to Saxifragaceae family, is one of the most important medicinal plants, has high application values for human. Currently, wild Bergenia is becoming lacking, due to destruction of ecological environment and excessive excavation; furthermore, the study on it is not deep enough, many related ...

  18. Reproductive biology in the medicinal plant, Plumbago zeylanica L ...

    African Journals Online (AJOL)

    Plumbago zeylanica L. is an important medicinal plant traditionally used for the treatment of various diseases. Phenology from seed germination via vegetative growth to reproductive development was studied under glasshouse and nursery conditions. Seeds rapidly germinated on a mixture of nursery soil and cattle dung in ...

  19. Biological monitoring of environmental contaminants (plants). Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Burton, M.A.S.

    1986-01-01

    Knowledge of contaminant concentrations does not necessarily indicate their significance to plant populations and communities within ecosystems. Accumulation within plants facilitates analysis of contaminants which may be present at very low levels in the environment and may show the spatial distribution and changes in the level of contamination with time. Effects on species distribution within plant communities and visible injury to foliage may also be related to contamination. Species can be selected appropriate to the area and the contaminant to be monitored. Species used to investigate the input of contaminants from atmospheric deposition, for example, may differ from those used to assess transfer through food webs. Mosses and lichens have been particularly widely used in many countries to show distribution of metals and radionuclides on local and regional scales and of pesticide contamination. Visible injury to foliage of higher plant species may reflect atmospheric concentrations of gaseous pollutants and monitoring networks of transplanted sensitive species can provide information on contaminant levels on a regional scale. Changes in species composition, especially of lichens, have also been related to the degree of contamination.

  20. Integrated information system for analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Galperin, A.

    1994-01-01

    Performing complicated engineering analyses of a nuclear power plant requires storage and manipulation of a large amount of information, both data and knowledge. This information is characterized by its multidisciplinary nature, complexity, and diversity. The problems caused by inefficient and lengthy manual operations involving the data flow management within the frame-work of the safety-related analysis of a power plant can be solved by applying the computer aided engineering principles. These principles are the basis of the design of an integrated information storage system (IRIS). The basic idea is to create a computerized environment, which includes both database and functional capabilities. Consideration and analysis of the data types and required data manipulation capabilities as well as operational requirements, resulted in the choice of an object-oriented data-base management system (OODBMS) as a development platform for solving the software engineering problems. Several advantages of OODBMSs over conventional relations database systems were found of crucial importance, especially providing the necessary flexibility for different data types and extensibility potential. A detailed design of a data model is produced for the plant technical data and for the storage of analysis results. The overall system architecture was designed to assure the feasibility of integrating database capabilities with procedures and functions written in conventional algorithmic programming languages

  1. Biological removal of algae in an integrated pond system

    CSIR Research Space (South Africa)

    Meiring, PGJ

    1995-01-01

    Full Text Available A system of oxidation ponds in series with a biological trickling filter is described. It was known that this arrangement was incapable of reducing effectively the levels of algae present in the pond liquid even though nitrification was effected...

  2. Atomic force microscope with integrated optical microscope for biological applications

    NARCIS (Netherlands)

    Putman, Constant A.J.; Putman, C.A.J.; van der Werf, Kees; de Grooth, B.G.; van Hulst, N.F.; Segerink, Franciscus B.; Greve, Jan

    1992-01-01

    Since atomic force microscopy (AFM) is capable of imaging nonconducting surfaces, the technique holds great promises for high‐resolution imaging of biological specimens. A disadvantage of most AFMs is the fact that the relatively large sample surface has to be scanned multiple times to pinpoint a

  3. An Integrative Systems Biology Approach to Understanding Pulmonary Diseases

    NARCIS (Netherlands)

    Auffray, Charles; Adcock, Ian M.; Chung, Kian Fan; Djukanovic, Ratko; Pison, Christophe; Sterk, Peter J.

    2010-01-01

    Chronic inflammatory pulmonary diseases such as COPD and asthma are highly prevalent and associated with a major health burden worldwide. Despite a wealth of biologic and clinical information on normal and pathologic airway structure and function, the primary causes and mechanisms of disease remain

  4. DEMONSTRATION OF AN INTEGRATED, PASSIVE BIOLOGICAL TREATMENT PROCESS FOR AMD

    Science.gov (United States)

    An innovative, cost-effective, biological treatment process has been designed by MSE Technology Applications, Inc. to treat acid mine drainage (AMD). A pilot-scale demonstration is being conducted under the Mine Waste Technology Program using water flowing from an abandoned mine ...

  5. Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance.

    Science.gov (United States)

    Kalluri, Udaya C; Yin, Hengfu; Yang, Xiaohan; Davison, Brian H

    2014-12-01

    Fine-tuning plant cell wall properties to render plant biomass more amenable to biofuel conversion is a colossal challenge. A deep knowledge of the biosynthesis and regulation of plant cell wall and a high-precision genome engineering toolset are the two essential pillars of efforts to alter plant cell walls and reduce biomass recalcitrance. The past decade has seen a meteoric rise in use of transcriptomics and high-resolution imaging methods resulting in fresh insights into composition, structure, formation and deconstruction of plant cell walls. Subsequent gene manipulation approaches, however, commonly include ubiquitous mis-expression of a single candidate gene in a host that carries an intact copy of the native gene. The challenges posed by pleiotropic and unintended changes resulting from such an approach are moving the field towards synthetic biology approaches. Synthetic biology builds on a systems biology knowledge base and leverages high-precision tools for high-throughput assembly of multigene constructs and pathways, precision genome editing and site-specific gene stacking, silencing and/or removal. Here, we summarize the recent breakthroughs in biosynthesis and remodelling of major secondary cell wall components, assess the impediments in obtaining a systems-level understanding and explore the potential opportunities in leveraging synthetic biology approaches to reduce biomass recalcitrance. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  6. An overview of plant volatile metabolomics, sample treatment and reporting considerations with emphasis on mechanical damage and biological control of weeds.

    Science.gov (United States)

    Beck, John J; Smith, Lincoln; Baig, Nausheena

    2014-01-01

    The technology for the collection and analysis of plant-emitted volatiles for understanding chemical cues of plant-plant, plant-insect or plant-microbe interactions has increased over the years. Consequently, the in situ collection, analysis and identification of volatiles are considered integral to elucidation of complex plant communications. Due to the complexity and range of emissions the conditions for consistent emission of volatiles are difficult to standardise. To discuss: evaluation of emitted volatile metabolites as a means of screening potential target- and non-target weeds/plants for insect biological control agents; plant volatile metabolomics to analyse resultant data; importance of considering volatiles from damaged plants; and use of a database for reporting experimental conditions and results. Recent literature relating to plant volatiles and plant volatile metabolomics are summarised to provide a basic understanding of how metabolomics can be applied to the study of plant volatiles. An overview of plant secondary metabolites, plant volatile metabolomics, analysis of plant volatile metabolomics data and the subsequent input into a database, the roles of plant volatiles, volatile emission as a function of treatment, and the application of plant volatile metabolomics to biological control of invasive weeds. It is recommended that in addition to a non-damaged treatment, plants be damaged prior to collecting volatiles to provide the greatest diversity of odours. For the model system provided, optimal volatile emission occurred when the leaf was punctured with a needle. Results stored in a database should include basic environmental conditions or treatments. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Plant Reliability - an Integrated System for Management (PR-ISM)

    International Nuclear Information System (INIS)

    Aukeman, M.C.; Leininger, E.G.; Carr, P.

    1984-01-01

    The Toledo Edison Company, located in Toledo, Ohio, United States of America, recently implemented a comprehensive maintenance management information system for the Davis-Besse Nuclear Power Station. The system is called PR-ISM, meaning Plant Reliability - An Integrated System for Management. PR-ISM provides the tools needed by station management to effectively plan and control maintenance and other plant activities. The PR-ISM system as it exists today consists of four integrated computer applications: equipment data base maintenance, maintenance work order control, administrative activity tracking, and technical specification compliance. PR-ISM is designed as an integrated on-line system and incorporates strong human factors features. PR-ISM provides each responsible person information to do his job on a daily basis and to look ahead towards future events. It goes beyond 'after the fact' reporting. In this respect, PR-ISM is an 'interactive' control system which: captures work requirements and commitments as they are identified, provides accurate and up-to-date status immediately to those who need it, simplifies paperwork and reduces the associated time delays, provides the information base for work management and reliability analysis, and improves productivity by replacing clerical tasks and consolidating maintenance activities. The functional and technical features of PR-ISM, the experience of Toledo Edison during the first year of operation, and the factors which led to the success of the development project are highlighted. (author)

  8. DNA barcodes for assessment of the biological integrity of aquatic ecosystems

    Science.gov (United States)

    Water quality regulations and aquatic ecosystem monitoring increasingly rely on direct assessments of biological integrity. Because these aquatic “bioassessments” evaluate the incidence and abundance of sensitive aquatic species, they are able to measure cumulative ecosystem eff...

  9. Biological data - Integrated acoustic and trawl survey of Pacific hake off the Pacific Coast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Integrated acoustic and trawl surveys are used to assess the distribution, biomass, and biology of Pacific hake along the Pacific coasts of the United States and...

  10. Maintenance management for nuclear power plant 'Integrated valve maintenance'

    International Nuclear Information System (INIS)

    Gerner, P.; Zanner, G.

    2001-01-01

    The deregulation of Europe's power market does force many utilities, and especially nuclear power plant operators, to introduce extensive cost-cutting measures in order to be able to compete within this new environment. The optimization of plant outages provides considerable potential for raising plant availability but can also lower operating costs by reducing e.g. expenditure on maintenance. Siemens Nuclear Power GmbH, in cooperation with plant operators, is currently implementing new and improved service concepts which can have a major effect on the way in which maintenance will be performed in the future. Innovative service packages for maintenance in nuclear power plants are available which can be used to perform a time- and cost-effective maintenance. The concepts encompass optimization of the overall sequence from planning in advance to the individual measures including reduction of the scope of maintenance activities, identification of cost cutting potential and bundling of maintenance activities. The main features of these maintenance activities are illustrated here using the examples of outage planning and integrated valve maintenance. In nuclear power plants approx. 5000 valves are periodically preventively, condition-based or breakdown-based maintained. Because of this large number of valves to be maintained a high potential of improvements and cost reductions can be achieved by performing an optimized, cost-effective maintenance based on innovative methods and tools. Siemens Nuclear Power GmbH has developed and qualified such tools which allow to reduce service costs while maintaining high standards of safety and availability. By changing from preventive to predictive (condition-based) maintenance - the number of valves to be maintained may be reduced considerably. The predictive maintenance is based on the Siemens Nuclear Power GmbH diagnostic and evaluation method (ADAM). ADAM is used to monitor the operability of valves by analytical verification of

  11. Phototropic solar tracking in sunflower plants: an integrative perspective

    Science.gov (United States)

    Kutschera, Ulrich; Briggs, Winslow R.

    2016-01-01

    Background One of the best-known plant movements, phototropic solar tracking in sunflower (Helianthus annuus), has not yet been fully characterized. Two questions are still a matter of debate. (1) Is the adaptive significance solely an optimization of photosynthesis via the exposure of the leaves to the sun? (2) Is shade avoidance involved in this process? In this study, these concepts are discussed from a historical perspective and novel insights are provided. Scope and Methods Results from the primary literature on heliotropic growth movements led to the conclusion that these responses cease before anthesis, so that the flowering heads point to the East. Based on observations on 10-week-old plants, the diurnal East–West oscillations of the upper fifth of the growing stem and leaves in relation to the position of the sun (inclusive of nocturnal re-orientation) were documented, and photon fluence rates on the leaf surfaces on clear, cloudy and rainy days were determined. In addition, the light–response curve of net CO2 assimilation was determined on the upper leaves of the same batch of plants, and evidence for the occurrence of shade-avoidance responses in growing sunflower plants is summarized. Conclusions. Only elongating, vegetative sunflower shoots and the upper leaves perform phototropic solar tracking. Photon fluence response and CO2 assimilation measurements cast doubt on the ‘photosynthesis-optimization hypothesis’ as the sole explanation for the evolution of these plant movements. We suggest that the shade-avoidance response, which maximizes light-driven CO2 assimilation, plays a major role in solar tracking populations of competing sunflower plants, and an integrative scheme of these growth movements is provided. PMID:26420201

  12. Plant integration of MITICA and SPIDER experiments with auxiliary plants and buildings on PRIMA site

    Energy Technology Data Exchange (ETDEWEB)

    Fellin, Francesco, E-mail: francesco.fellin@igi.cnr.it; Boldrin, Marco; Zaccaria, Pierluigi; Agostinetti, Piero; Battistella, Manuela; Bigi, Marco; Palma, Samuele Dal Bello Mauro Dalla; Fiorentin, Aldo; Luchetta, Adriano; Maistrello, Alberto; Marcuzzi, Diego; Ocello, Edoardo; Pasqualotto, Roberto; Pavei, Mauro; Pomaro, Nicola; Rizzolo, Andrea; Toigo, Vanni; Valente, Matteo; Zanotto, Loris; Calore, Luca; and others

    2015-10-15

    Highlights: • Focus on plant integration work supporting the realization of SPIDER and MITICA fusion experiments hosted in PRIMA buildings complex in Padova, Italy. • Huge effort of coordination and integration among many stakeholders, taking into account several constrains coming from experiments requirements (on-going) and precise time schedule and budget on buildings construction. • The paper also deals of interfaces management, coordination and integration of many competences, problems solving to find best solution also considering other aspects like safety and maintenance. - Abstract: This paper presents a description of the PRIMA (Padova Research on ITER Megavolt Accelerator) Plant Integration work, aimed at the construction of PRIMA Buildings, which will host two nuclear fusion test facilities named SPIDER and MITICA, finalized to test and optimize the neutral beam injectors for ITER experiment. These activities are very complex: inputs coming from the experiments design are changing time to time, while the buildings construction shall fulfill precise time schedule and budget. Moreover the decision process is often very long due to the high number of stakeholders (RFX, IO, third parties, suppliers, domestic agencies from different countries). The huge effort includes: forecasting what will be necessary for the integration of many experimental plants; collecting requirements and translating into inputs; interfaces management; coordination meetings with hundreds of people with various and different competences in construction and operation of fusion facilities, thermomechanics, electrical and control, buildings design and construction (civil plants plus architectural and structural aspects), safety, maintenance and management. The paper describes these activities and also the tools created to check and to validate the building design, to manage the interfaces and the organization put in place to achieve the required targets.

  13. Plant integration of MITICA and SPIDER experiments with auxiliary plants and buildings on PRIMA site

    International Nuclear Information System (INIS)

    Fellin, Francesco; Boldrin, Marco; Zaccaria, Pierluigi; Agostinetti, Piero; Battistella, Manuela; Bigi, Marco; Palma, Samuele Dal Bello Mauro Dalla; Fiorentin, Aldo; Luchetta, Adriano; Maistrello, Alberto; Marcuzzi, Diego; Ocello, Edoardo; Pasqualotto, Roberto; Pavei, Mauro; Pomaro, Nicola; Rizzolo, Andrea; Toigo, Vanni; Valente, Matteo; Zanotto, Loris; Calore, Luca

    2015-01-01

    Highlights: • Focus on plant integration work supporting the realization of SPIDER and MITICA fusion experiments hosted in PRIMA buildings complex in Padova, Italy. • Huge effort of coordination and integration among many stakeholders, taking into account several constrains coming from experiments requirements (on-going) and precise time schedule and budget on buildings construction. • The paper also deals of interfaces management, coordination and integration of many competences, problems solving to find best solution also considering other aspects like safety and maintenance. - Abstract: This paper presents a description of the PRIMA (Padova Research on ITER Megavolt Accelerator) Plant Integration work, aimed at the construction of PRIMA Buildings, which will host two nuclear fusion test facilities named SPIDER and MITICA, finalized to test and optimize the neutral beam injectors for ITER experiment. These activities are very complex: inputs coming from the experiments design are changing time to time, while the buildings construction shall fulfill precise time schedule and budget. Moreover the decision process is often very long due to the high number of stakeholders (RFX, IO, third parties, suppliers, domestic agencies from different countries). The huge effort includes: forecasting what will be necessary for the integration of many experimental plants; collecting requirements and translating into inputs; interfaces management; coordination meetings with hundreds of people with various and different competences in construction and operation of fusion facilities, thermomechanics, electrical and control, buildings design and construction (civil plants plus architectural and structural aspects), safety, maintenance and management. The paper describes these activities and also the tools created to check and to validate the building design, to manage the interfaces and the organization put in place to achieve the required targets.

  14. Assessing Cross-disciplinary Efficiency of Soil Amendments for Agro-biologically, Economically, and Ecologically Integrated Soil Health Management

    Science.gov (United States)

    2010-01-01

    Preventive and/or manipulative practices will be needed to maintain soil's biological, physiochemical, nutritional, and structural health in natural, managed, and disturbed ecosystems as a foundation for food security and global ecosystem sustainability. While there is a substantial body of interdisciplinary science on understanding function and structure of soil ecosystems, key gaps must be bridged in assessing integrated agro-biological, ecological, economical, and environmental efficiency of soil manipulation practices in time and space across ecosystems. This presentation discusses the application of a fertilizer use efficiency (FUE) model for assessing agronomic, economic, ecological, environmental, and nematode (pest) management efficiency of soil amendments. FUE is defined as increase in host productivity and/or decrease in plant-parasitic nematode population density in response to a given fertilizer treatment. Using the effects of nutrient amendment on Heterodera glycines population density and normalized difference vegetative index (indicator of physiological activities) of a soybean cultivar ‘CX 252’, how the FUE model recognizes variable responses and separates nutrient deficiency and toxicity from nematode parasitism as well as suitability of treatments designed to achieve desired biological and physiochemical soil health conditions is demonstrated. As part of bridging gaps between agricultural and ecological approaches to integrated understanding and management of soil health, modifications of the FUE model for analyzing the relationships amongst nematode community structure, soil parameters (eg. pH, nutrients, %OM), and plant response to soil amendment is discussed. PMID:22736840

  15. Data integration for plant genomics--exemplars from the integration of Arabidopsis thaliana databases.

    Science.gov (United States)

    Lysenko, Artem; Lysenko, Atem; Hindle, Matthew Morritt; Taubert, Jan; Saqi, Mansoor; Rawlings, Christopher John

    2009-11-01

    The development of a systems based approach to problems in plant sciences requires integration of existing information resources. However, the available information is currently often incomplete and dispersed across many sources and the syntactic and semantic heterogeneity of the data is a challenge for integration. In this article, we discuss strategies for data integration and we use a graph based integration method (Ondex) to illustrate some of these challenges with reference to two example problems concerning integration of (i) metabolic pathway and (ii) protein interaction data for Arabidopsis thaliana. We quantify the degree of overlap for three commonly used pathway and protein interaction information sources. For pathways, we find that the AraCyc database contains the widest coverage of enzyme reactions and for protein interactions we find that the IntAct database provides the largest unique contribution to the integrated dataset. For both examples, however, we observe a relatively small amount of data common to all three sources. Analysis and visual exploration of the integrated networks was used to identify a number of practical issues relating to the interpretation of these datasets. We demonstrate the utility of these approaches to the analysis of groups of coexpressed genes from an individual microarray experiment, in the context of pathway information and for the combination of coexpression data with an integrated protein interaction network.

  16. Integration of energy and environmental systems in wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Long, Suzanna [Department of Engineering Management and Systems Engineering, 600 W, 14th Street, 215 EMGT Building, Rolla, MO-65401, 573-341-7621 (United States); Cudney, Elizabeth [Department of Engineering Management and Systems Engineering, 600 W, 14th Street, 217 EMGT Building, Rolla, MO-65401, 573-341-7931 (United States)

    2012-07-01

    Most wastewater treatment facilities were built when energy costs were not a concern; however, increasing energy demand, changing climatic conditions, and constrained energy supplies have resulted in the need to apply more energy-conscious choices in the maintenance or upgrade of existing wastewater treatment facilities. This research develops an integrated energy and environmental management systems model that creates a holistic view of both approaches and maps linkages capable of meeting high-performing energy management while meeting environmental standards. The model has been validated through a case study on the Rolla, Missouri Southeast Wastewater Treatment Plant. Results from plant performance data provide guidance to improve operational techniques. The significant factors contributing to both energy and environmental systems are identified and balanced against considerations of cost.

  17. Integrity assessment of stationary blade ring for nuclear power plant

    International Nuclear Information System (INIS)

    Park, Jung Yong; Chung, Yong Keun; Park, Jong Jin; Kang, Yong Ho

    2004-01-01

    The inner side between HP stationary blades in no.1 turbine of nuclear power plant A is damaged by the FAC(Flow Assisted Corrosion) which is exposed to moisture. For many years the inner side is repaired by welding the damaged part, however, the FAC continues to deteriorate the original material of the welded blade ring. In this study, we have two stages to verify the integrity of stationary blade ring in nuclear power plant A. In the stage I, replication of blade ring is performed to survey the microstructure of blade ring. In the stage II, the stress analysis of blade ring is performed to verify the structural safety of blade ring. Throughout the two stages analysis of blade ring, the stationary blade ring had remained undamaged

  18. Buried piping integrity management at fossil power plants

    Energy Technology Data Exchange (ETDEWEB)

    Shulder, Stephen J. [Structural Integrity Associates, Annapolis, MD (United States); Biagiotti, Steve [Structural Integrity Associates, Inc., Centennial, CO (United States)

    2011-07-15

    In the last decade several industries (oil and gas pipelines, nuclear power, and municipal water) have experienced an increase in the frequency and public scrutiny of leaks and failures associated with buried piping and tank assets. In several industries, regulatory pressure has resulted in the mandated need for databases and inspection programs to document and ensure the continued integrity of these assets. Power plants are being extended beyond their design life and the condition of below grade assets is essential toward continued operation. This article shares the latest advances in managing design, operation, process, inspection, and historical data for power plant piping. Applications have also been developed to help with risk prioritization, inspection method selection, managing cathodic protection data for external corrosion control, and a wide variety of other information. This data can be managed in a GIS environment allowing two and three dimensional (2D and 3D) access to the database information. (orig.)

  19. Lean Big Data integration in systems biology and systems pharmacology.

    Science.gov (United States)

    Ma'ayan, Avi; Rouillard, Andrew D; Clark, Neil R; Wang, Zichen; Duan, Qiaonan; Kou, Yan

    2014-09-01

    Data sets from recent large-scale projects can be integrated into one unified puzzle that can provide new insights into how drugs and genetic perturbations applied to human cells are linked to whole-organism phenotypes. Data that report how drugs affect the phenotype of human cell lines and how drugs induce changes in gene and protein expression in human cell lines can be combined with knowledge about human disease, side effects induced by drugs, and mouse phenotypes. Such data integration efforts can be achieved through the conversion of data from the various resources into single-node-type networks, gene-set libraries, or multipartite graphs. This approach can lead us to the identification of more relationships between genes, drugs, and phenotypes as well as benchmark computational and experimental methods. Overall, this lean 'Big Data' integration strategy will bring us closer toward the goal of realizing personalized medicine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Application of integrative genomics and systems biology to conventional and in vitro reproductive traits in cattle

    DEFF Research Database (Denmark)

    Mazzoni, Gianluca; Pedersen, Hanne S.; de Oliveira Junior, Gerson A.

    2017-01-01

    by both conventional and ARTs such as OPU-IVP. The integration of systems biology information across different biological layers generates a complete view of the different molecular networks that control complex traits and can provide a strong contribution to the understanding of traits related to ARTs....

  1. Campus Eco Tours: An Integrative & Interactive Field Project for Undergraduate Biology Students

    Science.gov (United States)

    Boes, Katie E.

    2013-01-01

    Outdoor areas within or near college campuses offer an opportunity for biology students to observe the natural world and apply concepts from class. Here, I describe an engaging and integrative project where undergraduate non-major biology students work in teams to develop and present professional "eco tours." This project takes place over multiple…

  2. Computer integrated construction at AB building in reprocessing plant

    International Nuclear Information System (INIS)

    Takami, Masahiro; Azuchi, Takehiro; Sekiguchi, Kenji

    1999-01-01

    JNFL (Japan Nuclear Fuel Limited) is now processing with construction of the spent nuclear fuel reprocessing plant at Rokkasho Village in Aomori Prefecture, which is coming near to the busiest period of construction. Now we are trying to complete the civil work of AB Building and KA Building in a very short construction term by applying CIC (Computer Integrated Construction) concept, in spite of its hard construction conditions, such as the massive and complicated building structure, interferences with M and E (Mechanical and Electrical) work, severe winter weather, remote site location, etc. The key technologies of CIC are three-dimensional CAD, information network, and prefabrication and mechanization of site work. (author)

  3. Hypertext-based integration for nuclear plant maintenance and operations

    International Nuclear Information System (INIS)

    Tsoukalas, L.H.; Upadhyaya, B.R.

    1991-01-01

    A methodology is presented that uses fuzzy graphs in the emerging paradigm of hypertext for the purpose of integrating data, information and multifaceted knowledge resources abounding in power plant operations and maintenance. A hypertext system is viewed as a set of nodes and links where with each link we associate membership functions embodying context-dependent criteria for navigating large information spaces. A general framework for navigation is outlined and graph-theory navigational tools are developed. A numerical example and a HyperCard-based prototype for monitoring special material in the MHTGR-NPR are included. 10 refs., 12 figs

  4. Integr8: enhanced inter-operability of European molecular biology databases.

    Science.gov (United States)

    Kersey, P J; Morris, L; Hermjakob, H; Apweiler, R

    2003-01-01

    The increasing production of molecular biology data in the post-genomic era, and the proliferation of databases that store it, require the development of an integrative layer in database services to facilitate the synthesis of related information. The solution of this problem is made more difficult by the absence of universal identifiers for biological entities, and the breadth and variety of available data. Integr8 was modelled using UML (Universal Modelling Language). Integr8 is being implemented as an n-tier system using a modern object-oriented programming language (Java). An object-relational mapping tool, OJB, is being used to specify the interface between the upper layers and an underlying relational database. The European Bioinformatics Institute is launching the Integr8 project. Integr8 will be an automatically populated database in which we will maintain stable identifiers for biological entities, describe their relationships with each other (in accordance with the central dogma of biology), and store equivalences between identified entities in the source databases. Only core data will be stored in Integr8, with web links to the source databases providing further information. Integr8 will provide the integrative layer of the next generation of bioinformatics services from the EBI. Web-based interfaces will be developed to offer gene-centric views of the integrated data, presenting (where known) the links between genome, proteome and phenotype.

  5. Integrative Physiology 2.0’: integration of systems biology into physiology and its application to cardiovascular homeostasis

    Science.gov (United States)

    Kuster, Diederik W D; Merkus, Daphne; van der Velden, Jolanda; Verhoeven, Adrie J M; Duncker, Dirk J

    2011-01-01

    Since the completion of the Human Genome Project and the advent of the large scaled unbiased ‘-omics’ techniques, the field of systems biology has emerged. Systems biology aims to move away from the traditional reductionist molecular approach, which focused on understanding the role of single genes or proteins, towards a more holistic approach by studying networks and interactions between individual components of networks. From a conceptual standpoint, systems biology elicits a ‘back to the future’ experience for any integrative physiologist. However, many of the new techniques and modalities employed by systems biologists yield tremendous potential for integrative physiologists to expand their tool arsenal to (quantitatively) study complex biological processes, such as cardiac remodelling and heart failure, in a truly holistic fashion. We therefore advocate that systems biology should not become/stay a separate discipline with ‘-omics’ as its playing field, but should be integrated into physiology to create ‘Integrative Physiology 2.0’. PMID:21224228

  6. The flora phenotype ontology (FLOPO): tool for integrating morphological traits and phenotypes of vascular plants

    KAUST Repository

    Hoehndorf, Robert; AlShahrani, Mona; Gkoutos, Georgios V.; Gosline, George; Groom, Quentin; Hamann, Thomas; Kattge, Jens; de Oliveira, Sylvia Mota; Schmidt, Marco; Sierra, Soraya; Smets, Erik; Vos, Rutger A.; Weiland, Claus

    2016-01-01

    The systematic analysis of a large number of comparable plant trait data can support investigations into phylogenetics and ecological adaptation, with broad applications in evolutionary biology, agriculture, conservation

  7. Retrograde Signals: Integrators of Interorganellar Communication and Orchestrators of Plant Development.

    Science.gov (United States)

    de Souza, Amancio; Wang, Jin-Zheng; Dehesh, Katayoon

    2017-04-28

    Interorganellar cooperation maintained via exquisitely controlled retrograde-signaling pathways is an evolutionary necessity for maintenance of cellular homeostasis. This signaling feature has therefore attracted much research attention aimed at improving understanding of the nature of these communication signals, how the signals are sensed, and ultimately the mechanism by which they integrate targeted processes that collectively culminate in organellar cooperativity. The answers to these questions will provide insight into how retrograde-signal-mediated regulatory mechanisms are recruited and which biological processes are targeted, and will advance our understanding of how organisms balance metabolic investments in growth against adaptation to environmental stress. This review summarizes the present understanding of the nature and the functional complexity of retrograde signals as integrators of interorganellar communication and orchestrators of plant development, and offers a perspective on the future of this critical and dynamic area of research.

  8. Rooting depths of plants relative to biological and environmental factors

    International Nuclear Information System (INIS)

    Foxx, T.S.; Tierney, G.D.; Williams, J.M.

    1984-11-01

    In 1981 to 1982 an extensive bibliographic study was completed to document rooting depths of native plants in the United States. The data base presently contains 1034 citations with approximately 12,000 data elements. In this paper the data were analyzed for rooting depths as related to life form, soil type, geographical region, root type, family, root depth to shoot height ratios, and root depth to root lateral ratios. Average rooting depth and rooting frequencies were determined and related to present low-level waste site maintenance

  9. Collective biology of neoplastic disease in dicotyledonous plants

    International Nuclear Information System (INIS)

    Chela-Flores, J.

    1987-07-01

    We discuss the two different responses from the angiosperms to the specific molecular mechanisms of the tumor-inducing agent contained in the bacterium Agrobacterium tumefaciens. This is done in terms of the collective variables for expressing genetic response to a continuously varying supply of energy from metabolic pathways. We are led to the conjecture that the expression of the recessive oncogenes may not be restricted to humans (retinoblastoma and osteosarcoma), but may also occur in plants (crown gall), and be expressed through a heat-shock. (author). 11 refs

  10. Integration of an innovative biological treatment with physical or chemical disinfection for wastewater reuse

    International Nuclear Information System (INIS)

    De Sanctis, Marco; Del Moro, Guido; Levantesi, Caterina; Luprano, Maria Laura; Di Iaconi, Claudio

    2016-01-01

    In the present paper, the effectiveness of a Sequencing Batch Biofilter Granular Reactor (SBBGR) and its integration with different disinfection strategies (UV irradiation, peracetic acid) for producing an effluent suitable for agricultural use was evaluated. The plant treated raw domestic sewage, and its performances were evaluated in terms of the removal efficiency of a wide group of physical, chemical and microbiological parameters. The SBBGR resulted really efficient in removing suspended solids, COD and nitrogen with an average effluent concentration of 5, 32 and 10 mg/L, respectively. Lower removal efficiency was observed for phosphorus with an average concentration in the effluent of 3 mg/L. Plant effluent was also characterized by an average electrical conductivity and sodium adsorption ratio of 680 μS/cm and 2.9, respectively. Therefore, according to these gross parameters, the SBBGR effluent was conformed to the national standards required in Italy for agricultural reuse. Moreover, disinfection performances of the SBBGR was higher than that of conventional municipal wastewater treatment plants and met the quality criteria suggested by WHO (Escherichia coli < 1000 CFU/100 mL) for agricultural reuse. In particular, the biological treatment by SBBGR removed 3.8 ± 0.4 log units of Giardia lamblia, 2.8 ± 0.8 log units of E. coli, 2.5 ± 0.7 log units of total coliforms, 2.0 ± 0.3 log units of Clostridium perfringens, 2.0 ± 0.4 log units of Cryptosporidium parvum and 1.7 ± 0.7 log units of Somatic coliphages. The investigated disinfection processes (UV and peracetic acid) resulted very effective for total coliforms, E. coli and somatic coliphages. In particular, a UV radiation and peracetic acid doses of 40 mJ/cm"2 and 1 mg/L respectively reduced E. coli content in the effluent below the limit for agricultural reuse in Italy (10 CFU/100 mL). Conversely, they were both ineffective on C.perfringens spores. - Highlights: • SBBGR system showed high

  11. Integration of an innovative biological treatment with physical or chemical disinfection for wastewater reuse

    Energy Technology Data Exchange (ETDEWEB)

    De Sanctis, Marco, E-mail: marco.desanctis@ba.irsa.cnr.it [Water Research Institute, CNR, Via F. De Blasio 5, 70123 Bari (Italy); Del Moro, Guido [Water Research Institute, CNR, Via F. De Blasio 5, 70123 Bari (Italy); Levantesi, Caterina; Luprano, Maria Laura [Water Research Institute, CNR, Via Salaria Km 29.600, 00015 Monterotondo, RM (Italy); Di Iaconi, Claudio [Water Research Institute, CNR, Via F. De Blasio 5, 70123 Bari (Italy)

    2016-02-01

    In the present paper, the effectiveness of a Sequencing Batch Biofilter Granular Reactor (SBBGR) and its integration with different disinfection strategies (UV irradiation, peracetic acid) for producing an effluent suitable for agricultural use was evaluated. The plant treated raw domestic sewage, and its performances were evaluated in terms of the removal efficiency of a wide group of physical, chemical and microbiological parameters. The SBBGR resulted really efficient in removing suspended solids, COD and nitrogen with an average effluent concentration of 5, 32 and 10 mg/L, respectively. Lower removal efficiency was observed for phosphorus with an average concentration in the effluent of 3 mg/L. Plant effluent was also characterized by an average electrical conductivity and sodium adsorption ratio of 680 μS/cm and 2.9, respectively. Therefore, according to these gross parameters, the SBBGR effluent was conformed to the national standards required in Italy for agricultural reuse. Moreover, disinfection performances of the SBBGR was higher than that of conventional municipal wastewater treatment plants and met the quality criteria suggested by WHO (Escherichia coli < 1000 CFU/100 mL) for agricultural reuse. In particular, the biological treatment by SBBGR removed 3.8 ± 0.4 log units of Giardia lamblia, 2.8 ± 0.8 log units of E. coli, 2.5 ± 0.7 log units of total coliforms, 2.0 ± 0.3 log units of Clostridium perfringens, 2.0 ± 0.4 log units of Cryptosporidium parvum and 1.7 ± 0.7 log units of Somatic coliphages. The investigated disinfection processes (UV and peracetic acid) resulted very effective for total coliforms, E. coli and somatic coliphages. In particular, a UV radiation and peracetic acid doses of 40 mJ/cm{sup 2} and 1 mg/L respectively reduced E. coli content in the effluent below the limit for agricultural reuse in Italy (10 CFU/100 mL). Conversely, they were both ineffective on C.perfringens spores. - Highlights: • SBBGR system showed high

  12. Functionalization and microfluidic integration of silicon nanowire biologically gated field effect transistors

    DEFF Research Database (Denmark)

    Pfreundt, Andrea

    This thesis deals with the development of a novel biosensor for the detection of biomolecules based on a silicon nanowire biologically gated field-effect transistor and its integration into a point-of-care device. The sensor and electrical on-chip integration was developed in a different project...

  13. Functionalization and microfluidic integration of silicon nanowire biologically gated field effect transistors

    DEFF Research Database (Denmark)

    Pfreundt, Andrea; Svendsen, Winnie Edith; Dimaki, Maria

    2016-01-01

    This thesis deals with the development of a novel biosensor for the detection of biomolecules based on a silicon nanowire biologically gated field-effect transistor and its integration into a point-of-care device. The sensor and electrical on-chip integration was developed in a different project...

  14. INTEGRATED MANAGEMENT OF CHROMOLAENA ODORATA EMPHASIZING THE CLASSICAL BIOLOGICAL CONTROL

    Directory of Open Access Journals (Sweden)

    SOEKISMAN TJITROSEMITO

    1998-01-01

    Full Text Available Chromolaena odorata, Siam weed, a very important weed of Java Island (Indonesia is native to Central and South America. In the laboratory it showed rapid growth (1.15 g/g/week in the first 8 weeks of its growth. The biomass was mainly as leaves (LAR : 317.50 cm'/g total weight. It slowed down in the following month as the biomass was utilized for stem and branch formation. This behavior supported the growth of C. odorata into a very dense stand. It flowered, fruited during the dry season, and senesced following maturation of seeds from inflorescence branches. These branches dried out, but soon the stem resumed aggressive growth following the wet season. Leaf biomass was affected by the size of the stem in its early phase of regrowth, but later on it was more affected by the number of branches. The introduction of Pareuchaetes pseudoinsulata to Indonesia, was successful only in North Sumatera. In Java it has not been reported to establish succesfully. The introduction of another biological control agent, Procecidochares conneca to Indonesia was shown to be sp ecific and upon release in West Java it established immediately. It spread exponentia lly in the first 6 months of its release. Field monitoring continues to eval uate the impact of the agents. Other biocontrol agents (Actmole anteas and Conotrachelus wilt be introduced to Indonesia in 1997 through ACIAR Project on the Biological Control of Chromolaena odorata in Indonesia and Papua New Guinea.

  15. Ion transport through biological membranes an integrated theoretical approach

    CERN Document Server

    Mackey, Michael C

    1975-01-01

    This book illustrates some of the ways physics and mathematics have been, and are being, used to elucidate the underlying mechan­ isms of passive ion movement through biological membranes in general, and the membranes of excltable cells in particular. I have made no effort to be comprehensive in my introduction of biological material and the reader interested in a brief account of single cell electro­ physlology from a physically-oriented biologists viewpoint will find the chapters by Woodbury (1965) an excellent introduction. Part I is introductory in nature, exploring the basic electrical properties of inexcitable and excitable cell plasma membranes. Cable theory is utilized to illustrate the function of the non-decrementing action potential as a signaling mechanism for the long range trans­ mission of information in the nervous system, and to gain some in­ sight into the gross behaviour of neurons. The detailed analysis of Hodgkin and Huxley on the squid giant axon membrane ionic conductance properties...

  16. Integrating availability and maintenance objectives in plant design. EDF approach

    International Nuclear Information System (INIS)

    Degrave, Claude; Martin-Onraet, Michel

    1995-01-01

    Energy self sufficiency is a major strategic necessity for France. Regarding the fossil fuels power, competitiveness of nuclear energy is a key goal for Electricite de France. Accordingly, for future nuclear power plants to remain competitive, it is necessary to maintain the kWh production costs of the future units at a level close to those of the latest units under construction (N4 series), while raising the safety level. EDF therefore decided to implement an analytical and systematic process for study of the new projects to optimize the design by integration of the maintenance (durations, costs), availability and radiation exposure goals from the related operating experience. This approach, CIDEM (French acronym for Design Integrating Availability, operating Experience and Maintenance) aims at a single goal: to minimize the kWh production cost incorporating investment, operation and fuel costs, allowing for the operating experience from French and foreign units. The implementation of the CIDEM process constitutes for EDF a new approach to the study of the new Nuclear Power Plant projects. The competitivity of nuclear energy greatly depends on the success of such an approach. The studies conducted in the availability field have already highlighted a number of critical points and have made it possible to define the corresponding goal allocations and to establish a first series of structuring specifications for the project. (J.P.N.)

  17. Integrated management for aging of Atucha Nuclear Power Plant

    International Nuclear Information System (INIS)

    Ranalli, J.M.; Marchena, M.H.; Sabransky, M.; Fonseca, M.; Santich, J.; Pedernera, P.

    2012-01-01

    Atucha NPP is a two PHWR unit site located in Lima, Province of Buenos Aires, 120 km north of Buenos Aires, Argentina.. With the start-up of Atucha II and aiming to integrate the Ageing Management of the plants, the Utility (Nucleolectrica Argentina Sociedad Anonima - NASA) created an Ageing Management Department to cope with all ageing issues of both Atucha I and II. In this project both organization has formed a joint working group. The role of CNEA is providing technical support to the plant in the development of procedures a methodological framework for the Ageing Management Program of Atucha NPP. The main documents that have being issued so far are: . An Ageing Management Manual, including standard definition of Materials, Ageing Related Degradation Mechanisms, Operation Environments customized for Atucha NPP. . Walk down procedures and checklists aimed to systematize data collection during outages. . Procedures for performing Ageing Management Reviews and Maintenance Reviews for passive and active components. . Condition Assessments of several safety related systems. . Condition assessment of electrical components. In the present work a summary of the activities, documental structure and first outputs of the Integrated Ageing Management Program of Atucha NPP is presented (author)

  18. Integrated plant life management (PLiM)-the IAEA contribution

    International Nuclear Information System (INIS)

    Kang, K.-S.; Clark, C.R.; Omoto, A.; )

    2005-01-01

    For the past couple of decades there has been a change of emphasis in the world nuclear power from that of building new Nuclear Power Plants (NPP) to that of taking measures to optimize the life cycle of operational plants. National approaches in many countries showed an increase of interest in Plant Life Management (PLiM), both in terms of plant service life assurance and in optimizing the service or operational life of NPP. A strong convergence of views is emerging from different National approaches, particularly in the area of the economic aspects of NPP operation and in the evolution in the scope of NPP PLIM. The latter can directly affect the cost of electricity from NPP in an increasingly competitive environment. The safety considerations of a NPP are paramount and those requirements have to be met to obtain and to extend/renew the operating license. To achieve the goal of the long term safe, economic and reliable operation of the plant an integrated Plant Life Management Programme (PLiM) is necessary. Some countries already have advanced PLiM Programmes while others still have none. The PLiM objective is to identify all that factors and requirements for the overall plant life cycle. The optimization of these requirements would allow for the minimum period of the investment return and maximum of the revenue from the sell of the produced electricity. Recognizing the importance of this issue and in response to the requests of the Member States the IAEA Division of Nuclear Power implements the Sub-programme on 'Engineering and Management Support for Competitive Nuclear Power'. Four projects within this sub-programme deal with different aspects of the NPP life cycle management with the aim to increase the capabilities of interested Member States in implementing and maintenance of the competitive and sustainable nuclear power. Although all four projects contain certain issues of PLiM there is one specific project on guidance on engineering and management practices

  19. Integrated control algorithms for plant environment in greenhouse

    Science.gov (United States)

    Zhang, Kanyu; Deng, Lujuan; Gong, Youmin; Wang, Shengxue

    2003-09-01

    In this paper a survey of plant environment control in artificial greenhouse was put forward for discussing the future development. Firstly, plant environment control started with the closed loop control of air temperature in greenhouse. With the emergence of higher property computer, the adaptive control algorithm and system identification were integrated into the control system. As adaptation control is more depending on observation of variables by sensors and yet many variables are unobservable or difficult to observe, especially for observation of crop growth status, so model-based control algorithm were developed. In order to evade modeling difficulty, one method is predigesting the models and the other method is utilizing fuzzy logic and neural network technology that realize the models by the black box and gray box theory. Studies on control method of plant environment in greenhouse by means of expert system (ES) and artificial intelligence (AI) have been initiated and developed. Nowadays, the research of greenhouse environment control focus on energy saving, optimal economic profit, enviornment protection and continualy develop.

  20. Bayesian integration of position and orientation cues in perception of biological and non-biological dynamic forms

    Directory of Open Access Journals (Sweden)

    Steven Matthew Thurman

    2014-02-01

    Full Text Available Visual form analysis is fundamental to shape perception and likely plays a central role in perception of more complex dynamic shapes, such as moving objects or biological motion. Two primary form-based cues serve to represent the overall shape of an object: the spatial position and the orientation of locations along the boundary of the object. However, it is unclear how the visual system integrates these two sources of information in dynamic form analysis, and in particular how the brain resolves ambiguities due to sensory uncertainty and/or cue conflict. In the current study, we created animations of sparsely-sampled dynamic objects (human walkers or rotating squares comprised of oriented Gabor patches in which orientation could either coincide or conflict with information provided by position cues. When the cues were incongruent, we found a characteristic trade-off between position and orientation information whereby position cues increasingly dominated perception as the relative uncertainty of orientation increased and vice versa. Furthermore, we found no evidence for differences in the visual processing of biological and non-biological objects, casting doubt on the claim that biological motion may be specialized in the human brain, at least in specific terms of form analysis. To explain these behavioral results quantitatively, we adopt a probabilistic template-matching model that uses Bayesian inference within local modules to estimate object shape separately from either spatial position or orientation signals. The outputs of the two modules are integrated with weights that reflect individual estimates of subjective cue reliability, and integrated over time to produce a decision about the perceived dynamics of the input data. Results of this model provided a close fit to the behavioral data, suggesting a mechanism in the human visual system that approximates rational Bayesian inference to integrate position and orientation signals in dynamic

  1. BioInt: an integrative biological object-oriented application framework and interpreter.

    Science.gov (United States)

    Desai, Sanket; Burra, Prasad

    2015-01-01

    BioInt, a biological programming application framework and interpreter, is an attempt to equip the researchers with seamless integration, efficient extraction and effortless analysis of the data from various biological databases and algorithms. Based on the type of biological data, algorithms and related functionalities, a biology-specific framework was developed which has nine modules. The modules are a compilation of numerous reusable BioADTs. This software ecosystem containing more than 450 biological objects underneath the interpreter makes it flexible, integrative and comprehensive. Similar to Python, BioInt eliminates the compilation and linking steps cutting the time significantly. The researcher can write the scripts using available BioADTs (following C++ syntax) and execute them interactively or use as a command line application. It has features that enable automation, extension of the framework with new/external BioADTs/libraries and deployment of complex work flows.

  2. French nuclear plants PWR vessel integrity assessment and life management

    Energy Technology Data Exchange (ETDEWEB)

    Bezdikian, G. [Electricite de France (EDF), Div. Production Nucleaire, 93 - Saint-Denis (France); Quinot, P. [FRAMATOME, Dept. Bloc Reacteur et Boucles Primaires, 92 - Paris-La-Defence (France); Faidy, C.; Churier-Bossennec, H. [Electricite de France (EDF), Div. Ingenierie et Service, 69 - Villeurbanne (France)

    2001-07-01

    The Reactor Pressure Vessel life management of 56 PWR 3 loop and 4 loop reactors units was engaged by the French Utility EDF (Electricite de France) a few years ago and is yet on going on. This paper will present the work carried out within the framework of justifying why the 34 three loop reactor vessels will remain acceptable for operation for a lifetime of at least 40-years. A summary of the measures will be given. An overall review of actions will be presented describing the French approach, using important existing databases, including studies related to irradiation surveillance monitoring program and end of life fluence assessment. The last results obtained are based on generic integrity analyses for all categories of situations (normal upset emergency and faulted conditions) until the end of lifetime, postulating circumferential an radial kinds of flaw located in the stainless steel cladding or shallow sub-cladding area. The results of structural integrity analyses beginning with elastic computations and completed with three-dimensional finite element elastic plastic computations for envelope cases, are compared with code criteria for operating plants. The objective is to evaluate the margins on different parameters as RTNDT (Reference Nil Ductility Transition Temperature), toughness or crack size, to justify the global fitness for service of all these Reactor Pressure Vessels. The paper introduces EDF's maintenance strategy, related to integrity assessment, for those nuclear power plants under operation, based on NDE in-service inspection of the first thirty millimeters in the thickness of the wall and major surveillance programs of the vessels. (author)

  3. French nuclear plants PWR vessel integrity assessment and life management

    International Nuclear Information System (INIS)

    Bezdikian, G.; Quinot, P.; Faidy, C.; Churier-Bossennec, H.

    2001-01-01

    The Reactor Pressure Vessel life management of 56 PWR 3 loop and 4 loop reactors units was engaged by the French Utility EDF (Electricite de France) a few years ago and is yet on going on. This paper will present the work carried out within the framework of justifying why the 34 three loop reactor vessels will remain acceptable for operation for a lifetime of at least 40-years. A summary of the measures will be given. An overall review of actions will be presented describing the French approach, using important existing databases, including studies related to irradiation surveillance monitoring program and end of life fluence assessment. The last results obtained are based on generic integrity analyses for all categories of situations (normal upset emergency and faulted conditions) until the end of lifetime, postulating circumferential an radial kinds of flaw located in the stainless steel cladding or shallow sub-cladding area. The results of structural integrity analyses beginning with elastic computations and completed with three-dimensional finite element elastic plastic computations for envelope cases, are compared with code criteria for operating plants. The objective is to evaluate the margins on different parameters as RTNDT (Reference Nil Ductility Transition Temperature), toughness or crack size, to justify the global fitness for service of all these Reactor Pressure Vessels. The paper introduces EDF's maintenance strategy, related to integrity assessment, for those nuclear power plants under operation, based on NDE in-service inspection of the first thirty millimeters in the thickness of the wall and major surveillance programs of the vessels. (author)

  4. Integrated modelling of physical, chemical and biological weather

    DEFF Research Database (Denmark)

    Kurganskiy, Alexander

    . This is an online-coupled meteorology-chemistry model where chemical constituents and different types of aerosols are an integrated part of the dynamical model, i.e., these constituents are transported in the same way as, e.g., water vapor and cloud water, and, at the same time, the aerosols can interactively...... impact radiation and cloud micro-physics. The birch pollen modelling study has been performed for domains covering Europe and western Russia. Verification of the simulated birch pollen concentrations against in-situ observations showed good agreement obtaining the best score for two Danish sites...

  5. Integration of biological networks and gene expression data using Cytoscape

    DEFF Research Database (Denmark)

    Cline, M.S.; Smoot, M.; Cerami, E.

    2007-01-01

    of an interaction network obtained for genes of interest. Five major steps are described: (i) obtaining a gene or protein network, (ii) displaying the network using layout algorithms, (iii) integrating with gene expression and other functional attributes, (iv) identifying putative complexes and functional modules......Cytoscape is a free software package for visualizing, modeling and analyzing molecular and genetic interaction networks. This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context...... and (v) identifying enriched Gene Ontology annotations in the network. These steps provide a broad sample of the types of analyses performed by Cytoscape....

  6. Nuclear power plant Angra integrated enterprise management system

    International Nuclear Information System (INIS)

    Andrade, Ronaldo Barata de

    2009-01-01

    The characteristics and peculiarities of the Nuclear Power Plant ANGRA 3 enterprise, amongst which its technical complexity, the size of the project and of the supplies of goods and services contracted for for the Brazilian and foreign scopes, the variety of contractors and participants involved in the implementation, associated with the need of integrated management of all the activities of the enterprise, requires the setting of standardized criteria and procedures to be adopted by the enterprise Project Management Team and by all involved ELETRONUCLEAR (ETN) Units, Suppliers and Contractors for Brazilian and foreign goods and services for the execution of the activities related to overall enterprise planning. These criteria and procedures aim at covering the five Project Management Process Groups: Initiating Process Group, Planning Process Group, Execution Process Group, Monitoring and Controlling Process Group and Closing Process Group. For the ANGRA 3 enterprise, ETN developed the Integrated Enterprise Management System - INTEGRA, being the software 'Primavera Enterprise Project Management' a fundamental part of this system. The aim of this paper is to describe the main concepts involving the ANGRA 3 enterprise management, and the integration between the processes, including all disciplines in all phases of the enterprise life cycle, such as: Nuclear and Environmental Licensing, Infrastructure, National and Foreign Engineering, National and Import Supplies, Civil Works, Electromechanical Erection, Commissioning. (author)

  7. Probabilistic Inference of Biological Networks via Data Integration

    Directory of Open Access Journals (Sweden)

    Mark F. Rogers

    2015-01-01

    Full Text Available There is significant interest in inferring the structure of subcellular networks of interaction. Here we consider supervised interactive network inference in which a reference set of known network links and nonlinks is used to train a classifier for predicting new links. Many types of data are relevant to inferring functional links between genes, motivating the use of data integration. We use pairwise kernels to predict novel links, along with multiple kernel learning to integrate distinct sources of data into a decision function. We evaluate various pairwise kernels to establish which are most informative and compare individual kernel accuracies with accuracies for weighted combinations. By associating a probability measure with classifier predictions, we enable cautious classification, which can increase accuracy by restricting predictions to high-confidence instances, and data cleaning that can mitigate the influence of mislabeled training instances. Although one pairwise kernel (the tensor product pairwise kernel appears to work best, different kernels may contribute complimentary information about interactions: experiments in S. cerevisiae (yeast reveal that a weighted combination of pairwise kernels applied to different types of data yields the highest predictive accuracy. Combined with cautious classification and data cleaning, we can achieve predictive accuracies of up to 99.6%.

  8. Plant Molecular Biology 2008 Gordon Research Conference - July 13-18, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Richard M. Amasino

    2009-08-28

    The Plant Molecular Biology Conference has traditionally covered a breadth of exciting topics and the 2008 conference will continue in that tradition. There will be sessions on metabolism; new methods to study genomes, proteomes and metabolomes; plant-microbe interactions; plant hormones; epigenetics. A new topic for the conference this year will be bioenergy. Thus this conference will bring together a range of disciplines to foster the exchange ideas and to permit the participants to learn of the latest developments and ideas in diverse areas of plant biology. The conference provides an excellent opportunity for individuals to discuss their research because additional speakers in each session will be selected from submitted abstracts. There will also be a poster session each day for a two-hour period prior to dinner.

  9. Review-An overview of Pistacia integerrima a medicinal plant species: Ethnobotany, biological activities and phytochemistry.

    Science.gov (United States)

    Bibi, Yamin; Zia, Muhammad; Qayyum, Abdul

    2015-05-01

    Pistacia integerrima with a common name crab's claw is an ethnobotanically important tree native to Asia. Traditionally plant parts particularly its galls have been utilized for treatment of cough, asthma, dysentery, liver disorders and for snake bite. Plant mainly contains alkaloids, flavonoids, tannins, saponins and sterols in different parts including leaf, stem, bark, galls and fruit. A number of terpenoids, sterols and phenolic compounds have been isolated from Pistacia integerrima extracts. Plant has many biological activities including anti-microbial, antioxidant, analgesic, cytotoxicity and phytotoxicity due to its chemical constituents. This review covers its traditional ethnomedicinal uses along with progresses in biological and phytochemical evaluation of this medicinally important plant species and aims to serve as foundation for further exploration and utilization.

  10. Integration of plant life management in operation and maintenance

    International Nuclear Information System (INIS)

    Hutin, Jean-Pierre

    2002-01-01

    Full text: 1 - INTRODUCTION. Electricite de France is now operating 58 PWR nuclear power plants which produce 75% of french electricity. Besides maintaining safety and availability on a routine basis, it is outmost important to protect the investment. Indeed, such an asset is a tremendous advantage just as the company is going to face the new european electricity market. That is the reason why EDF is devoting important effort to implement ageing management as an integral part of operation and maintenance programs. But it must be recognized that NPP lifetime is not threatened only by component-related problems: other less technical issues must be seriously considered like industrial support, information system, skilled people, public acceptance, etc. 2 - LIFE MANAGEMENT POLICY. In France, there is no limited licensing period for NPPs. The life management policy of nuclear power plants is based on three principles: - safe and cost-effective operation, looking for excellence in daily activities, with an effective experience feedback organisation taking advantage of the high level of standardization of the units, - every ten years, a new set of safety standards, a complete review of each facility and an upgrading of its safety level through appropriate modifications while maintaining unit standardization in all the fleet, - a Life Management Program, at corporate level, which permanently scrutinizes operation and maintenance activities to identify decisions which could impair plant lifetime and which surveys research and development programs related to ageing phenomenon understanding. 3 - INTEGRATION OF LIFETIME CONCERN IN O and M ACTIVITIES. It is outmost important to take in account lifetime concern in daily operation and maintenance activities and this must be done as early as possible in plant life. Even though sophisticated assessments require engineering capacity, many good ideas may arise from plant staff. For that reason, increasing lifetime awareness of plant

  11. Blueprints for green biotech: development and application of standards for plant synthetic biology.

    Science.gov (United States)

    Patron, Nicola J

    2016-06-15

    Synthetic biology aims to apply engineering principles to the design and modification of biological systems and to the construction of biological parts and devices. The ability to programme cells by providing new instructions written in DNA is a foundational technology of the field. Large-scale de novo DNA synthesis has accelerated synthetic biology by offering custom-made molecules at ever decreasing costs. However, for large fragments and for experiments in which libraries of DNA sequences are assembled in different combinations, assembly in the laboratory is still desirable. Biological assembly standards allow DNA parts, even those from multiple laboratories and experiments, to be assembled together using the same reagents and protocols. The adoption of such standards for plant synthetic biology has been cohesive for the plant science community, facilitating the application of genome editing technologies to plant systems and streamlining progress in large-scale, multi-laboratory bioengineering projects. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  12. Application of X-ray fluorescence analytical techniques in phytoremediation and plant biology studies

    International Nuclear Information System (INIS)

    Necemer, Marijan; Kump, Peter; Scancar, Janez; Jacimovic, Radojko; Simcic, Jurij; Pelicon, Primoz; Budnar, Milos; Jeran, Zvonka; Pongrac, Paula; Regvar, Marjana; Vogel-Mikus, Katarina

    2008-01-01

    Phytoremediation is an emerging technology that employs the use of higher plants for the clean-up of contaminated environments. Progress in the field is however handicapped by limited knowledge of the biological processes involved in plant metal uptake, translocation, tolerance and plant-microbe-soil interactions; therefore a better understanding of the basic biological mechanisms involved in plant/microbe/soil/contaminant interactions would allow further optimization of phytoremediation technologies. In view of the needs of global environmental protection, it is important that in phytoremediation and plant biology studies the analytical procedures for elemental determination in plant tissues and soil should be fast and cheap, with simple sample preparation, and of adequate accuracy and reproducibility. The aim of this study was therefore to present the main characteristics, sample preparation protocols and applications of X-ray fluorescence-based analytical techniques (energy dispersive X-ray fluorescence spectrometry-EDXRF, total reflection X-ray fluorescence spectrometry-TXRF and micro-proton induced X-ray emission-micro-PIXE). Element concentrations in plant leaves from metal polluted and non-polluted sites, as well as standard reference materials, were analyzed by the mentioned techniques, and additionally by instrumental neutron activation analysis (INAA) and atomic absorption spectrometry (AAS). The results were compared and critically evaluated in order to assess the performance and capability of X-ray fluorescence-based techniques in phytoremediation and plant biology studies. It is the EDXRF, which is recommended as suitable to be used in the analyses of a large number of samples, because it is multi-elemental, requires only simple preparation of sample material, and it is analytically comparable to the most frequently used instrumental chemical techniques. The TXRF is compatible to FAAS in sample preparation, but relative to AAS it is fast, sensitive and

  13. LEGO® bricks as building blocks for centimeter-scale biological environments: the case of plants.

    Directory of Open Access Journals (Sweden)

    Kara R Lind

    Full Text Available LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil.

  14. LEGO® bricks as building blocks for centimeter-scale biological environments: the case of plants.

    Science.gov (United States)

    Lind, Kara R; Sizmur, Tom; Benomar, Saida; Miller, Anthony; Cademartiri, Ludovico

    2014-01-01

    LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil.

  15. From Charles Darwin's botanical country-house studies to modern plant biology.

    Science.gov (United States)

    Kutschera, U; Briggs, W R

    2009-11-01

    As a student of theology at Cambridge University, Charles Darwin (1809-1882) attended the lectures of the botanist John S. Henslow (1796-1861). This instruction provided the basis for his life-long interest in plants as well as the species question. This was a major reason why in his book On the Origin of Species, which was published 150 years ago, Darwin explained his metaphorical phrase 'struggle for life' with respect to animals and plants. In this article, we review Darwin's botanical work with reference to the following topics: the struggle for existence in the vegetable kingdom with respect to the phytochrome-mediated shade avoidance response; the biology of flowers and Darwin's plant-insect co-evolution hypothesis; climbing plants and the discovery of action potentials; the power of movement in plants and Darwin's conflict with the German plant physiologist Julius Sachs; and light perception by growing grass coleoptiles with reference to the phototropins. Finally, we describe the establishment of the scientific discipline of Plant Biology that took place in the USA 80 years ago, and define this area of research with respect to Darwin's work on botany and the physiology of higher plants.

  16. Carbon sequestration, biological diversity, and sustainable development: Integrated forest management

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, M.A. (Environmental Research Lab., Corvallis, OR (United States)); Meganck, R.A. (United Nations Environment Programme for the Wider Caribbean, Kingston (Jamaica))

    Tropical deforestation provides a significant contribution to anthropogenic increases in atmospheric CO[sub 2] concentration that may lead to global warming. Forestation and other forest management options to sequester CO[sub 2] in the tropical latitudes may fail unless they address local economic, social, environmental, and political needs of people in the developing world. Forest management is discussed in terms of three objectives: Carbon sequestration, sustainable development, and biodiversity conservation. An integrated forest management strategy of land-use planning is proposed to achieve these objectives and is centered around: Preservation of primary forest, intensified use of nontimber resources, agroforestry, and selective use of plantation forestry. 89 refs., 1 fig., 1 tab.

  17. Treatment of atrazine by integrating photocatalytic and biological processes

    International Nuclear Information System (INIS)

    Chan, C.Y.; Tao, S.; Dawson, R.; Wong, P.K.

    2004-01-01

    This research examines the degradation of atrazine by photocatalytic oxidation (PCO) under different experimental conditions. Deisopropylatrazine, deethylatrazine and deethyldeisopropylatrazine were formed as major intermediates based on gas chromatography-mass spectrometry. The reaction mixture was found to be toxic towards two bioassays, i.e. the Microtox[reg] and amphipods survival tests even when atrazine was completely degraded by PCO within 2 h under optimized conditions. The results indicate that adding H 2 O 2 could significantly enhance the degradation of atrazine by PCO. Ammeline, ammelide and cyanuric acid (CA) became the major intermediates/products as detected by high performance liquid chromatography from 6th to the 40th h of PCO treatment. After 72 h PCO treatment, only CA was detectable in the reaction mixture. Further degradation of CA was carried out by a newly isolated CA-degrading bacterium, Sphingomonas capsulata. The photochemical pretreatment integrated with microbial degradation lead to the complete degradation and detoxification of atrazine

  18. Value-Based Medicine and Integration of Tumor Biology.

    Science.gov (United States)

    Brooks, Gabriel A; Bosserman, Linda D; Mambetsariev, Isa; Salgia, Ravi

    2017-01-01

    Clinical oncology is in the midst of a genomic revolution, as molecular insights redefine our understanding of cancer biology. Greater awareness of the distinct aberrations that drive carcinogenesis is also contributing to a growing armamentarium of genomically targeted therapies. Although much work remains to better understand how to combine and sequence these therapies, improved outcomes for patients are becoming manifest. As we welcome this genomic revolution in cancer care, oncologists also must grapple with a number of practical problems. Costs of cancer care continue to grow, with targeted therapies responsible for an increasing proportion of spending. Rising costs are bringing the concept of value into sharper focus and challenging the oncology community with implementation of value-based cancer care. This article explores the ways that the genomic revolution is transforming cancer care, describes various frameworks for considering the value of genomically targeted therapies, and outlines key challenges for delivering on the promise of personalized cancer care. It highlights practical solutions for the implementation of value-based care, including investment in biomarker development and clinical trials to improve the efficacy of targeted therapy, the use of evidence-based clinical pathways, team-based care, computerized clinical decision support, and value-based payment approaches.

  19. Integrating fluid dynamic and biologic effects on staphylococci bacteria biofilms

    Science.gov (United States)

    Sherman, Erica; Endres, Jennifer; Bayles, Kenneth; Wei, Timothy

    2017-11-01

    Staphylococcus aureus bacteria are able to form biofilms and distinctive tower structures that facilitate their ability to tolerate treatment and to spread within the human body. The formation of towers, which break off, get carried downstream and serve to initiate biofilms in other parts of the body are of particular interest here. In previous work on biofilm growth and evolution in steady, laminar microchannel flows, it has been established that tower formation occurs around a very limited range of applied shear stresses centered on 0.6 dynes/cm2. Quantifying cell density characteristics as a function of time during biofilm formation reveals indicators of tower development hours before towers actually form and become visible. The next step in this research is to explore biological factors that might explain why this specific shear is so important. Additional studies with mutants, e.g. ica-A, that have been tied to tower formation have been conducted. The shear dependence of these mutants and their correlation to the behavior of wild type S. aureus is examined.

  20. Making United States Integrated Ocean Observing System (U.S. IOOS) inclusive of marine biological resources

    Science.gov (United States)

    Moustahfid, H.; Potemra, J.; Goldstein, P.; Mendelssohn, R.; Desrochers, A.

    2011-01-01

    An important Data Management and Communication (DMAC) goal is to enable a multi-disciplinary view of the ocean environment by facilitating discovery and integration of data from various sources, projects and scientific domains. United States Integrated Ocean Observing System (U.S. IOOS) DMAC functional requirements are based upon guidelines for standardized data access services, data formats, metadata, controlled vocabularies, and other conventions. So far, the data integration effort has focused on geophysical U.S. IOOS core variables such as temperature, salinity, ocean currents, etc. The IOOS Biological Observations Project is addressing the DMAC requirements that pertain to biological observations standards and interoperability applicable to U.S. IOOS and to various observing systems. Biological observations are highly heterogeneous and the variety of formats, logical structures, and sampling methods create significant challenges. Here we describe an informatics framework for biological observing data (e.g. species presence/absence and abundance data) that will expand information content and reconcile standards for the representation and integration of these biological observations for users to maximize the value of these observing data. We further propose that the approach described can be applied to other datasets generated in scientific observing surveys and will provide a vehicle for wider dissemination of biological observing data. We propose to employ data definition conventions that are well understood in U.S. IOOS and to combine these with ratified terminologies, policies and guidelines. ?? 2011 MTS.

  1. Influence of fly dust from coking plants on some biological processes of plants

    Energy Technology Data Exchange (ETDEWEB)

    Masek, V

    1972-03-01

    The influence of three typical samples of fly dust from a coking plant on enzymatic reactions, photosynthesis, chlorophyll concentration in leaves of bean plants was studied. The hydrolysis of starch with amylases and of the albumen with pepsin at 37 C and the inversion of sacharosis by invertase in a buffered environment were also examined. None of the three dust samples had a significant effect on enzymatic reactions. Applying the dust samples to the leaves of young bean plants reduced the intensity of photosynthesis and chlorophyll concentration. In aqueous extracts, the dust samples liberated only small quantities of nutrients, plants which were grown in a dust suspension showed no increase of dry substance and growth rate. A stimulating effect of the dust samples on root growth was determined. Mixing the dust samples with the soil influenced the accessibility of water to plants. 17 references, 6 figures, 9 tables.

  2. Development of SRS.php, a Simple Object Access Protocol-based library for data acquisition from integrated biological databases.

    Science.gov (United States)

    Barbosa-Silva, A; Pafilis, E; Ortega, J M; Schneider, R

    2007-12-11

    Data integration has become an important task for biological database providers. The current model for data exchange among different sources simplifies the manner that distinct information is accessed by users. The evolution of data representation from HTML to XML enabled programs, instead of humans, to interact with biological databases. We present here SRS.php, a PHP library that can interact with the data integration Sequence Retrieval System (SRS). The library has been written using SOAP definitions, and permits the programmatic communication through webservices with the SRS. The interactions are possible by invoking the methods described in WSDL by exchanging XML messages. The current functions available in the library have been built to access specific data stored in any of the 90 different databases (such as UNIPROT, KEGG and GO) using the same query syntax format. The inclusion of the described functions in the source of scripts written in PHP enables them as webservice clients to the SRS server. The functions permit one to query the whole content of any SRS database, to list specific records in these databases, to get specific fields from the records, and to link any record among any pair of linked databases. The case study presented exemplifies the library usage to retrieve information regarding registries of a Plant Defense Mechanisms database. The Plant Defense Mechanisms database is currently being developed, and the proposal of SRS.php library usage is to enable the data acquisition for the further warehousing tasks related to its setup and maintenance.

  3. INFLUENCE OF BIOLOGICAL AND THERMAL TRANSFORMED SEWAGE SLUDGE APPLICATION ON MANGANESE CONTENT IN PLANTS AND SOIL

    Directory of Open Access Journals (Sweden)

    Małgorzata Koncewicz-Baran

    2014-10-01

    Full Text Available A great variety of sewage sludge treatment methods, due to the agent (chemical, biological, thermal leads to the formation of varying ‘products’ properties, including the content of heavy metals forms. The aim of the study was to determine the effects of biologically and thermally transformed sewage sludge on the manganese content in plants and form of this element in the soil. The study was based on a two-year pot experiment. In this study was used stabilized sewage sludge collected from Wastewater Treatment Plant Krakow – ”Płaszów” and its mixtures with wheat straw in the gravimetric ratio 1:1 in conversion to material dry matter, transformed biologically (composting by 117 days in a bioreactor and thermally (in the furnace chamber with no air access by the following procedure exposed to temperatures of 130 °C for 40 min → 200 °C for 30 min. In both years of the study biologically and thermally transformed mixtures of sewage sludge with wheat straw demonstrated similar impact on the amount of biomass plants to the pig manure. Bigger amounts of manganese were assessed in oat biomass than in spring rape biomass. The applied sewage sludge and its biologically and thermally converted mixtures did not significantly affect manganese content in plant biomass in comparison with the farmyard manure. The applied fertilization did not modify the values of translocation and bioaccumulation ratios of manganese in the above-ground parts and roots of spring rape and oat. No increase in the content of the available to plants forms of manganese in the soil after applying biologically and thermally transformed sewage sludge mixtures with straw was detected. In the second year, lower contents of these manganese forms were noted in the soil of all objects compared with the first year of the experiment.

  4. Supplementary Material for: The flora phenotype ontology (FLOPO): tool for integrating morphological traits and phenotypes of vascular plants

    KAUST Repository

    Hoehndorf, Robert

    2016-01-01

    Abstract Background The systematic analysis of a large number of comparable plant trait data can support investigations into phylogenetics and ecological adaptation, with broad applications in evolutionary biology, agriculture, conservation, and the functioning of ecosystems. Floras, i.e., books collecting the information on all known plant species found within a region, are a potentially rich source of such plant trait data. Floras describe plant traits with a focus on morphology and other traits relevant for species identification in addition to other characteristics of plant species, such as ecological affinities, distribution, economic value, health applications, traditional uses, and so on. However, a key limitation in systematically analyzing information in Floras is the lack of a standardized vocabulary for the described traits as well as the difficulties in extracting structured information from free text. Results We have developed the Flora Phenotype Ontology (FLOPO), an ontology for describing traits of plant species found in Floras. We used the Plant Ontology (PO) and the Phenotype And Trait Ontology (PATO) to extract entity-quality relationships from digitized taxon descriptions in Floras, and used a formal ontological approach based on phenotype description patterns and automated reasoning to generate the FLOPO. The resulting ontology consists of 25,407 classes and is based on the PO and PATO. The classified ontology closely follows the structure of Plant Ontology in that the primary axis of classification is the observed plant anatomical structure, and more specific traits are then classified based on parthood and subclass relations between anatomical structures as well as subclass relations between phenotypic qualities. Conclusions The FLOPO is primarily intended as a framework based on which plant traits can be integrated computationally across all species and higher taxa of flowering plants. Importantly, it is not intended to replace established

  5. Integrating fuel cell power systems into building physical plants

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J. [KCI Technologies, Inc., Hunt Valley, MD (United States)

    1996-12-31

    This paper discusses the integration of fuel cell power plants and absorption chillers to cogenerate chilled water or hot water/steam for all weather air conditioning as one possible approach to building system applications. Absorption chillers utilize thermal energy in an absorption based cycle to chill water. It is feasible to use waste heat from fuel cells to provide hydronic heating and cooling. Performance regimes will vary as a function of the supply and quality of waste heat. Respective performance characteristics of fuel cells, absorption chillers and air conditioning systems will define relationships between thermal and electrical load capacities for the combined systems. Specifically, this paper develops thermodynamic relationships between bulk electrical power and cooling/heating capacities for combined fuel cell and absorption chiller system in building applications.

  6. Integrated CAD/CAE for nuclear power plants

    International Nuclear Information System (INIS)

    Lecoq, P.; Lachat, J.C.

    1987-01-01

    The size of the French nuclear power program has led both EDF and Framatome to equip themselves progressively with management software, computer-assisted design (CAD) systems, and computer-assisted engineering (CAE) systems. The nature of the projects and of the respective activities of EDF and Framatome determined the essential specifications of these computerized systems. EDF and Framatome have pooled their CAD/CAE efforts in a joint venture (Groupement d'Interet Economique) called GIAO, set up in 1985 by EDF and Aquitaine Systeme (a subsidiary of Framatome and Elf Aquitaine). GIAO's ambition is to become a pole of French CAD/CAE efforts and to foster progress in integrated computer-assisted engineering, by enlarging the synergy of EDF and Framatome in this field to other enterprises that participate in design and construction of complex industrial plants

  7. Biological Effects of Potato Plants Transformation with Glucose Oxidase Gene and their Resistance to Hyperthermia

    Directory of Open Access Journals (Sweden)

    O.I. Grabelnych

    2017-02-01

    Full Text Available It is known that regulation of plant tolerance to adverse environmental factors is connected with short term increase of the concentration of endogenous reactive oxygen species (ROS, which are signalling molecules for the induction of protective mechanisms. Introduction and expression of heterologous gox gene, which encodes glucose oxidase enzyme in plant genome, induce constantly higher content of hydrogen peroxide in plant tissues. It is not known how the introduction of native or modified gox gene affects the plant resistance to high-temperature stress, one of the most commonly used model for the study of stress response and thermal tolerance. In this study, we investigated biological effects of transformation and evaluated the resistance to temperature stress of potato plants with altered levels of glucose oxidase expression. Transformation of potato plants by gox gene led to the more early coming out from tuber dormancy of transformed plants and slower growth rate. Transformants containing the glucose oxidase gene were more sensitive to lethal thermal shock (50 °C, 90 min than the transformant with the empty vector (pBI or untransformed plants (CK. Pre-heating of plants at 37 °C significantly weakened the damaging effect of lethal thermal shock. This attenuation was more significant in the non-transformed plants.

  8. Human evolution. Evolution of early Homo: an integrated biological perspective.

    Science.gov (United States)

    Antón, Susan C; Potts, Richard; Aiello, Leslie C

    2014-07-04

    Integration of evidence over the past decade has revised understandings about the major adaptations underlying the origin and early evolution of the genus Homo. Many features associated with Homo sapiens, including our large linear bodies, elongated hind limbs, large energy-expensive brains, reduced sexual dimorphism, increased carnivory, and unique life history traits, were once thought to have evolved near the origin of the genus in response to heightened aridity and open habitats in Africa. However, recent analyses of fossil, archaeological, and environmental data indicate that such traits did not arise as a single package. Instead, some arose substantially earlier and some later than previously thought. From ~2.5 to 1.5 million years ago, three lineages of early Homo evolved in a context of habitat instability and fragmentation on seasonal, intergenerational, and evolutionary time scales. These contexts gave a selective advantage to traits, such as dietary flexibility and larger body size, that facilitated survival in shifting environments. Copyright © 2014, American Association for the Advancement of Science.

  9. An integrated platform for assessing biologics (Conference Presentation)

    Science.gov (United States)

    Schein, Perry; O'Dell, Dakota; Erickson, David

    2016-04-01

    Protein therapeutics are a rapidly growing portion of the pharmaceuticals market and have many significant advantages over traditional small molecule drugs. As this market expands, however, critical regulatory and quality control issues remain, most notably the problem of protein aggregation. Individual target proteins often aggregate into larger masses which trigger an immune response in the body, which can reduce the efficacy of the drug for its intended purpose, or cause serious anaphylactic side-effects. Although detecting and minimizing aggregate formation is critical to ensure an effective product, aggregation dynamics are often highly complicated and there is little hope of reliable prediction and prevention from first principles. This problem is compounded for aggregates in the subvisible range of 100 nm to 10 micrometers where traditional techniques for detecting aggregates have significant limitations. Here, we present an integrated optofluidic platform for detecting nanoscale protein aggregates and characterizing interactions between these aggregates and a reference surface. By delivering light to a solution of proteins with an optical waveguide, scattered light from individual protein aggregates can be detected and analyzed to determine the force profile between each particle and the waveguide surface. Unlike existing methods which only determine size or charge, our label-free screening technique can directly measure the surface interaction forces between single aggregates and the glass substrate. This direct measurement capability may allow for better empirical predictions of the stability of protein aggregates during drug manufacturing and storage.

  10. Biological indices for classification of water quality around Mae Moh power plant, Thailand

    Directory of Open Access Journals (Sweden)

    Pongsarun Junshum and Siripen Traichaiyaporn

    2007-12-01

    Full Text Available The algal communities and water quality were monitored at eight sampling sites around Mae Moh power plant during January-December 2003. Three biological indices, viz. algal genus pollution index, saprobic index, and Shannon-Weaver index, were adopted to classify the water quality around the power plant in comparison with the measured physico-chemical water quality. The result shows that the Shannon-Weaver diversity index appears to be much more applicable and interpretable for the classification of water quality around the Mae Moh power plant than the algal genus pollution index and the saprobic index.

  11. Microgravity research in plant biological systems: Realizing the potential of molecular biology

    Science.gov (United States)

    Lewis, Norman G.; Ryan, Clarence A.

    1993-01-01

    The sole all-pervasive feature of the environment that has helped shape, through evolution, all life on Earth is gravity. The near weightlessness of the Space Station Freedom space environment allows gravitational effects to be essentially uncoupled, thus providing an unprecedented opportunity to manipulate, systematically dissect, study, and exploit the role of gravity in the growth and development of all life forms. New and exciting opportunities are now available to utilize molecular biological and biochemical approaches to study the effects of microgravity on living organisms. By careful experimentation, we can determine how gravity perception occurs, how the resulting signals are produced and transduced, and how or if tissue-specific differences in gene expression occur. Microgravity research can provide unique new approaches to further our basic understanding of development and metabolic processes of cells and organisms, and to further the application of this new knowledge for the betterment of humankind.

  12. Selfishness, warfare and economics; or integration, cooperation and biology

    Directory of Open Access Journals (Sweden)

    Emiliano Jesus Salvucci

    2012-05-01

    Full Text Available The acceptance of Darwin's theory of evolution by natural selection is not complete and it has been pointed out its limitation to explain the complex processes that constitute the transformation of species. The darwinian paradigm had its origin in the free market theories and concepts of Malthus and Spencer. Nature was explained on the basis of market theories moving away from an accurate explanation of natural phenomena. It is common that new discoveries bring about contradictions that are intended to be overcome by adjusting results to the dominant reductionist paradigm using all sorts of gradations and combinations that are admitted for each case. Modern findings represent a challenge to the interpretation of the observations with the Darwinian view of competition and struggle for life as theoretical basis. New holistic interpretations are emerging related with the Net of Life, in which the interconnection of ecosystems constitutes a dynamic and self-regulating biosphere: Viruses are recognized as a macroorganism with a huge collection of genes, most unknown, that constitute the major planet's gene pool with a fundamental role in evolution. The hologenome theory considers an organism and all of its associated symbiotic microbes as a result of symbiopoiesis. Microbes, helmints, that normally are understood as parasites, are cohabitants and they have cohabited with their host and drives the evolution and existence of the partners. Each organism is a result of integration of complex systems. The eukaryotic organism is the result of combination of bacterial, virus and eukaryotic DNA and the interaction of its own genome with the genome of its microbiota resulting in an intertwined metabolism (a superorganism along evolution. These new interpretations are remarkable points to be considered in order to construct a solid theory adjusted to the facts and with less speculations and tortuous semantic traps.

  13. The biology of lysine acetylation integrates transcriptional programming and metabolism

    Directory of Open Access Journals (Sweden)

    Mujtaba Shiraz

    2011-03-01

    Full Text Available Abstract The biochemical landscape of lysine acetylation has expanded from a small number of proteins in the nucleus to a multitude of proteins in the cytoplasm. Since the first report confirming acetylation of the tumor suppressor protein p53 by a lysine acetyltransferase (KAT, there has been a surge in the identification of new, non-histone targets of KATs. Added to the known substrates of KATs are metabolic enzymes, cytoskeletal proteins, molecular chaperones, ribosomal proteins and nuclear import factors. Emerging studies demonstrate that no fewer than 2000 proteins in any particular cell type may undergo lysine acetylation. As described in this review, our analyses of cellular acetylated proteins using DAVID 6.7 bioinformatics resources have facilitated organization of acetylated proteins into functional clusters integral to cell signaling, the stress response, proteolysis, apoptosis, metabolism, and neuronal development. In addition, these clusters also depict association of acetylated proteins with human diseases. These findings not only support lysine acetylation as a widespread cellular phenomenon, but also impel questions to clarify the underlying molecular and cellular mechanisms governing target selectivity by KATs. Present challenges are to understand the molecular basis for the overlapping roles of KAT-containing co-activators, to differentiate between global versus dynamic acetylation marks, and to elucidate the physiological roles of acetylated proteins in biochemical pathways. In addition to discussing the cellular 'acetylome', a focus of this work is to present the widespread and dynamic nature of lysine acetylation and highlight the nexus that exists between epigenetic-directed transcriptional regulation and metabolism.

  14. The observation of biology implemented by integrated religion values in integrated Islamic school (Decriptive Study in X Integrated Senior Hight School Tasikmalaya)

    Science.gov (United States)

    Nurjanah, E.; Adisendjaja, Y. H.; Kusumastuti, M. N.

    2018-05-01

    The learning Integrated Religious value is one of the efforts to increase the motivation of learning and building the student character. This study aims to describe the application of Biology learning integrated religion values in Integrated Islamic School. Research methods used in this research is descriptive. Participants in this study involved the headmaster, headmaster of curriculum, biology teachers, boarding school teachers, the lead of boarding schools, and students. The instruments used are interview, observation and the student questionnaire about learning biology. The results showed that learning in X school consists of two curriculums, there was the curriculum of national education and curriculum of boarding school. The curriculum of national education referred to 2013 curriculum and boarding school curriculum referred to the curriculum of Salafi boarding school (Kitab Kuning). However, in its learning process not delivered integrated. The main obstacle to implementing the learning integrated religious values are 1) the background of general teacher education did not know of any connection between biology subject and subject that are studied in boarding school; 2) schools did not form the teaching team; 3) unavailability of materials integrated religious values.

  15. Some Contributions for a Pedagogical Treatment of Alternative Conceptions in Biology: An Example from Plant Nutrition.

    Science.gov (United States)

    Vaz, Adelaine Neto; And Others

    This paper reports on a study that investigated the alternative conceptions of students in a biology and geology teacher education course regarding plant nutrition. Data were collected from first year and final year students using a questionnaire that had both multiple choice and descriptive items. Findings indicate common features related to the…

  16. Recent developments in systems biology and metabolic engineering of plant microbe interactions

    Directory of Open Access Journals (Sweden)

    Vishal Kumar

    2016-09-01

    Full Text Available Microorganisms play a crucial role in the sustainability of the various ecosystems. The characterization of various interactions between microorganisms and other biotic factors is a necessary footstep to understand the association and functions of microbial communities. Among the different microbial interactions in an ecosystem, plant-microbe interaction plays an important role to balance the ecosystem. The present review explores plant microbe interactions using gene editing and system biology tools towards the comprehension in improvement of plant traits. Further, system biology tools like FBA, OptKnock and constrain based modeling helps in understanding such interactions as a whole. In addition, various gene editing tools have been summarized and a strategy has been hypothesized for the development of disease free plants. Furthermore, we have tried to summarize the predictions through data retrieved from various types of sources such as high throughput sequencing data (e.g. single nucleotide polymorphism (SNP detection, RNA-seq, proteomics and metabolic models have been reconstructed from such sequences for species communities. It is well known fact that systems biology approaches and modeling of biological networks will enable us to learn the insight of such network and will also help further in understanding these interactions.

  17. Benchmarking biological nutrient removal in wastewater treatment plants: influence of mathematical model assumptions

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Gernaey, Krist V.; Jeppsson, Ulf

    2012-01-01

    This paper examines the effect of different model assumptions when describing biological nutrient removal (BNR) by the activated sludge models (ASM) 1, 2d & 3. The performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) benchmark wastewater treatment plant...

  18. Effects of biological control agents and exotic plant invasion on deer mouse populations

    Science.gov (United States)

    Yvette K. Ortega; Dean E. Pearson; Kevin S. McKelvey

    2004-01-01

    Exotic insects are commonly introduced as biological control agents to reduce densities of invasive exotic plants. Although current biocontrol programs for weeds take precautions to minimize ecological risks, little attention is paid to the potential nontarget effects of introduced food subsidies on native consumers. Previous research demonstrated that two gall flies (...

  19. Aromatic Medicinal Plants of the Lamiaceae Family from Uzbekistan: Ethnopharmacology, Essential Oils Composition, and Biological Activities

    Directory of Open Access Journals (Sweden)

    Nilufar Z. Mamadalieva

    2017-02-01

    Full Text Available Plants of the Lamiaceae family are important ornamental, medicinal, and aromatic plants, many of which produce essential oils that are used in traditional and modern medicine, and in the food, cosmetics, and pharmaceutical industry. Various species of the genera Hyssopus, Leonurus, Mentha, Nepeta, Origanum, Perovskia, Phlomis, Salvia, Scutellaria, and Ziziphora are widespread throughout the world, are the most popular plants in Uzbek traditional remedies, and are often used for the treatment of wounds, gastritis, infections, dermatitis, bronchitis, and inflammation. Extensive studies of the chemical components of these plants have led to the identification of many compounds, as well as essentials oils, with medicinal and other commercial values. The purpose of this review is to provide a critical overview of the literature surrounding the traditional uses, ethnopharmacology, biological activities, and essential oils composition of aromatic plants of the family Lamiaceae, from the Uzbek flora.

  20. Expanding Kenya's protected areas under the Convention on Biological Diversity to maximize coverage of plant diversity.

    Science.gov (United States)

    Scherer, Laura; Curran, Michael; Alvarez, Miguel

    2017-04-01

    Biodiversity is highly valuable and critically threatened by anthropogenic degradation of the natural environment. In response, governments have pledged enhanced protected-area coverage, which requires scarce biological data to identify conservation priorities. To assist this effort, we mapped conservation priorities in Kenya based on maximizing alpha (species richness) and beta diversity (species turnover) of plant communities while minimizing economic costs. We used plant-cover percentages from vegetation surveys of over 2000 plots to build separate models for each type of diversity. Opportunity and management costs were based on literature data and interviews with conservation organizations. Species richness was predicted to be highest in a belt from Lake Turkana through Mount Kenya and in a belt parallel to the coast, and species turnover was predicted to be highest in western Kenya and along the coast. Our results suggest the expanding reserve network should focus on the coast and northeastern provinces of Kenya, where new biological surveys would also fill biological data gaps. Meeting the Convention on Biological Diversity target of 17% terrestrial coverage by 2020 would increase representation of Kenya's plant communities by 75%. However, this would require about 50 times more funds than Kenya has received thus far from the Global Environment Facility. © 2016 Society for Conservation Biology.

  1. Implementation of integrated safeguards at Nuclear Fuel Plant Pitesti, Romania

    International Nuclear Information System (INIS)

    Olaru, Vasilica; Ivana, Tiberiu; Epure, Gheorghe

    2010-01-01

    The nuclear activity in ROMANIA was for many years under Traditional Safeguards (TS) and has developed in good conditions this type of nuclear safeguards. Now, the opportunity exists to improve the performance and quality of the safeguards activity and increase the accountancy and control of nuclear material by passing to Integrated Safeguards (IS). The legal framework is the Law 100/2000 for ratification of the Protocol between Romania and International Atomic Energy Agency (IAEA), additional to the Agreement between the Socialist Republic of Romania Government and IAEA related to safeguards as part of the Treaty on the non-proliferation of nuclear weapons published in the Official Gazette no. 3/31 January 1970, and the Additional Protocol content published in the Official Gazette no. 295/ 29.06.2000. The first discussion about Integrated Safeguards (IS) between Nuclear Fuel Plant (NFP) representatives and IAEA inspectors was in June 2005. In Feb. 2007 an IAEA mission visited NFP and established the main steps for implementing the IS. There were visited the storages, technological flow, and was reviewed the disposal times for different nuclear materials, the applied chemical analysis, measuring methods, weighting method and elaborating procedure of the documents and lists. At that time the IAEA and NFP representatives established the main points for starting the IS at NFP: performing the Short Notice Random Inspections (SNRI); communication of the days established for SNRI for each year; communication of the estimated deliveries and shipments for first quarter and then for the rest of the year: daily mail box declaration (DD) with respect to the deposit time for several nuclear materials i.e. advance notification (AN) for each nuclear material transfer (shipments and receipts), others. At 01 June 2007 Romania has passed officially to Integrated Safeguards and NFP (WRMD) has taken all measures to implement this objective. (authors)

  2. Effect of Planting Date and Biological and Chemical Fertilizers on Phenology and Physiological Indices of Peanuts

    Directory of Open Access Journals (Sweden)

    A Sepehri

    2017-06-01

    Full Text Available Introduction Peanut (Arachis hypogaea L. is an annual herbaceous plant in Fabaceae which grown in tropical to temperate regions worldwide for extracting its seed oil and nut consumption. Select the optimum planting date is one of the most important agricultural techniques that comply with the seed yield is maximized . For instance, delay planting date can reduce the number of fertile nodes and the number of pods per plant. The delay in planting date reduces total dry matter (TDM, leaf area index (LAI, crop growth rate (CGR and yield in bean (Phaseolus vulgaris L.. Daneshian et al., (2008 reported that the delay in planting date reduced sunflower (Helianthus annuus yield due to high temperatures in early growth which shortened flowering time and reduced solar radiation. On the other hand, due to increase importance of environmental issues has been attending biofertilizers to replace chemical fertilizers. Biofertilizers has formed by beneficial bacteria and fungi that each of them are produced for a specific purpose, such as nitrogen fixation, release of phosphate, potassium and iron ions of insoluble compound. The use of nitrogen fertilizer with slow-releasing ability stimulated shoot growth in soybean (Glycine max and be created more LAI in the reproductive process, particularly during grain filling stage and finally increased seed yield . Therefore, this study was conducted in order to evaluate the interaction of biological and chemical fertilizers in the purpose of achieving sustainable agriculture with emphasis of the effects of various planting dates on physiological parameters and growth of peanut in Hamadan. Materials and Methods In order to investigate the effects of planting date on important physiological indices of peanuts (Arachis hypogaea L. under the influence of biological and chemical fertilizers. A field experiment was conducted in the research farm of Bu-Ali Sina University, Hamedan during 2013 growing season. This study was

  3. Dovetailing biology and chemistry: integrating the Gene Ontology with the ChEBI chemical ontology

    Science.gov (United States)

    2013-01-01

    Background The Gene Ontology (GO) facilitates the description of the action of gene products in a biological context. Many GO terms refer to chemical entities that participate in biological processes. To facilitate accurate and consistent systems-wide biological representation, it is necessary to integrate the chemical view of these entities with the biological view of GO functions and processes. We describe a collaborative effort between the GO and the Chemical Entities of Biological Interest (ChEBI) ontology developers to ensure that the representation of chemicals in the GO is both internally consistent and in alignment with the chemical expertise captured in ChEBI. Results We have examined and integrated the ChEBI structural hierarchy into the GO resource through computationally-assisted manual curation of both GO and ChEBI. Our work has resulted in the creation of computable definitions of GO terms that contain fully defined semantic relationships to corresponding chemical terms in ChEBI. Conclusions The set of logical definitions using both the GO and ChEBI has already been used to automate aspects of GO development and has the potential to allow the integration of data across the domains of biology and chemistry. These logical definitions are available as an extended version of the ontology from http://purl.obolibrary.org/obo/go/extensions/go-plus.owl. PMID:23895341

  4. Disrupted seasonal biology impacts health, food security, and ecosystems: a call for integrated research

    NARCIS (Netherlands)

    Stevenson, T.J.; Visser, M.E.; Arnold, W.; Barrett, P.; Biello, S.; Dawson, A.; Denlinger, D.L.; Dominoni, Davide; Ebling, F.J.; Elton, S.; Evans, N.; Ferguson, H.M.; Foster, R.G.; Hau, M.; Haydon, D.T.; Hazlerigg, D.G.; Heideman, P.; Hopcraft, J.G.C.; Jonsson, N.N.; Kronfeld-Schor, N.; Kumar, V.; Lincoln, G.A.; MacLeod, R.; Martin, S.A.M.; Martinez-Bakker, M.; Nelson, R.J.; Reed, T.; Robinso, J.E.; Rock, D.; Schwartz, W.J.; Steffan-Dewenter, I.; Tauber, E.; Thackeray, S.J.; Umstatter, C.; Yoshimura, T.; Helm, B.

    2015-01-01

    The rhythm of life on earth is shaped by seasonal changes in the environment. Plants and animals show profound annual cycles in physiology, health, morphology, behaviour and demography in response to environmental cues. Seasonal biology impacts ecosystems and agriculture, with consequences for

  5. An Introductory "How-to" Guide for Incorporating Microbiome Research into Integrative and Comparative Biology.

    Science.gov (United States)

    Kohl, Kevin D

    2017-10-01

    Research on host-associated microbial communities has grown rapidly. Despite the great body of work, inclusion of microbiota-related questions into integrative and comparative biology is still lagging behind other disciplines. The purpose of this paper is to offer an introduction into the basic tools and techniques of host-microbe research. Specifically, what considerations should be made before embarking on such projects (types of samples, types of controls)? How is microbiome data analyzed and integrated with data measured from the hosts? How can researchers experimentally manipulate the microbiome? With this information, integrative and comparative biologists should be able to include host-microbe studies into their research and push the boundaries of both fields. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  6. Integrating biological and social values when prioritizing places for biodiversity conservation.

    Science.gov (United States)

    Whitehead, Amy L; Kujala, Heini; Ives, Christopher D; Gordon, Ascelin; Lentini, Pia E; Wintle, Brendan A; Nicholson, Emily; Raymond, Christopher M

    2014-08-01

    The consideration of information on social values in conjunction with biological data is critical for achieving both socially acceptable and scientifically defensible conservation planning outcomes. However, the influence of social values on spatial conservation priorities has received limited attention and is poorly understood. We present an approach that incorporates quantitative data on social values for conservation and social preferences for development into spatial conservation planning. We undertook a public participation GIS survey to spatially represent social values and development preferences and used species distribution models for 7 threatened fauna species to represent biological values. These spatially explicit data were simultaneously included in the conservation planning software Zonation to examine how conservation priorities changed with the inclusion of social data. Integrating spatially explicit information about social values and development preferences with biological data produced prioritizations that differed spatially from the solution based on only biological data. However, the integrated solutions protected a similar proportion of the species' distributions, indicating that Zonation effectively combined the biological and social data to produce socially feasible conservation solutions of approximately equivalent biological value. We were able to identify areas of the landscape where synergies and conflicts between different value sets are likely to occur. Identification of these synergies and conflicts will allow decision makers to target communication strategies to specific areas and ensure effective community engagement and positive conservation outcomes. © 2014 Society for Conservation Biology.

  7. Systems biology of bacterial nitrogen fixation: High-throughput technology and its integrative description with constraint-based modeling

    Directory of Open Access Journals (Sweden)

    Resendis-Antonio Osbaldo

    2011-07-01

    Full Text Available Abstract Background Bacterial nitrogen fixation is the biological process by which atmospheric nitrogen is uptaken by bacteroids located in plant root nodules and converted into ammonium through the enzymatic activity of nitrogenase. In practice, this biological process serves as a natural form of fertilization and its optimization has significant implications in sustainable agricultural programs. Currently, the advent of high-throughput technology supplies with valuable data that contribute to understanding the metabolic activity during bacterial nitrogen fixation. This undertaking is not trivial, and the development of computational methods useful in accomplishing an integrative, descriptive and predictive framework is a crucial issue to decoding the principles that regulated the metabolic activity of this biological process. Results In this work we present a systems biology description of the metabolic activity in bacterial nitrogen fixation. This was accomplished by an integrative analysis involving high-throughput data and constraint-based modeling to characterize the metabolic activity in Rhizobium etli bacteroids located at the root nodules of Phaseolus vulgaris (bean plant. Proteome and transcriptome technologies led us to identify 415 proteins and 689 up-regulated genes that orchestrate this biological process. Taking into account these data, we: 1 extended the metabolic reconstruction reported for R. etli; 2 simulated the metabolic activity during symbiotic nitrogen fixation; and 3 evaluated the in silico results in terms of bacteria phenotype. Notably, constraint-based modeling simulated nitrogen fixation activity in such a way that 76.83% of the enzymes and 69.48% of the genes were experimentally justified. Finally, to further assess the predictive scope of the computational model, gene deletion analysis was carried out on nine metabolic enzymes. Our model concluded that an altered metabolic activity on these enzymes induced

  8. Manufacturing economics of plant-made biologics: case studies in therapeutic and industrial enzymes.

    Science.gov (United States)

    Tusé, Daniel; Tu, Tiffany; McDonald, Karen A

    2014-01-01

    Production of recombinant biologics in plants has received considerable attention as an alternative platform to traditional microbial and animal cell culture. Industrially relevant features of plant systems include proper eukaryotic protein processing, inherent safety due to lack of adventitious agents, more facile scalability, faster production (transient systems), and potentially lower costs. Lower manufacturing cost has been widely claimed as an intuitive feature of the platform by the plant-made biologics community, even though cost information resides within a few private companies and studies accurately documenting such an advantage have been lacking. We present two technoeconomic case studies representing plant-made enzymes for diverse applications: human butyrylcholinesterase produced indoors for use as a medical countermeasure and cellulases produced in the field for the conversion of cellulosic biomass into ethanol as a fuel extender. Production economics were modeled based on results reported with the latest-generation expression technologies on Nicotiana host plants. We evaluated process unit operations and calculated bulk active and per-dose or per-unit costs using SuperPro Designer modeling software. Our analyses indicate that substantial cost advantages over alternative platforms can be achieved with plant systems, but these advantages are molecule/product-specific and depend on the relative cost-efficiencies of alternative sources of the same product.

  9. Manufacturing Economics of Plant-Made Biologics: Case Studies in Therapeutic and Industrial Enzymes

    Directory of Open Access Journals (Sweden)

    Daniel Tusé

    2014-01-01

    Full Text Available Production of recombinant biologics in plants has received considerable attention as an alternative platform to traditional microbial and animal cell culture. Industrially relevant features of plant systems include proper eukaryotic protein processing, inherent safety due to lack of adventitious agents, more facile scalability, faster production (transient systems, and potentially lower costs. Lower manufacturing cost has been widely claimed as an intuitive feature of the platform by the plant-made biologics community, even though cost information resides within a few private companies and studies accurately documenting such an advantage have been lacking. We present two technoeconomic case studies representing plant-made enzymes for diverse applications: human butyrylcholinesterase produced indoors for use as a medical countermeasure and cellulases produced in the field for the conversion of cellulosic biomass into ethanol as a fuel extender. Production economics were modeled based on results reported with the latest-generation expression technologies on Nicotiana host plants. We evaluated process unit operations and calculated bulk active and per-dose or per-unit costs using SuperPro Designer modeling software. Our analyses indicate that substantial cost advantages over alternative platforms can be achieved with plant systems, but these advantages are molecule/product-specific and depend on the relative cost-efficiencies of alternative sources of the same product.

  10. Trends in biological activity research of wild-growing aromatic plants from Central Balkans

    Directory of Open Access Journals (Sweden)

    Džamić, A.M.

    2016-12-01

    Full Text Available Flowering plants consists of more than 300.000 species around the world, out of which a small percentage has been sufficiently investigated from phytochemical and biological activity aspects. Plant diversity of the Balkans is very rich, but still poorly investigated. The aim of this paper is survey of current status and trends in research of wild-growing aromatic plants from Central Balkans. Many aromatic plants are investigated from morphological, physiological, ecological, systematic and phytochemical aspects. However, traditionally used medicinal and aromatic plants can also be considered from applicative aspects, concerning their health effects, and from wide range of usage in cosmetics, and as food, agrochemical and pharmaceutical products. In order to achieve all planned objectives, following methodology has been applied: field research, taxonomic authentication and, comparative biologically assayed phytochemical investigations. The total herbal extracts, postdistillation waste (deodorized extracts, essential oils and individual compounds of some autochthonous plants have been considered as potential source of antibacterial, antifungal, anti-biofilm, antioxidant and cytotoxic agents. In this manuscript, composition of essential oils and extracts were evaluated in a number of species, from the Apiaceae, Lamiaceae, Rosaceae and Asteraceae families. Extracts which were rich in phenols mostly of flavonoids, often showed high antioxidant potential. Also, phenolic compounds identified in essential oils and extracts were mostly responsible for expected antimicrobial activity. Current worldwide demand is to reduce or, if possible, eliminate chemically synthesized food additives. Plant-produced compounds are becoming of interest as a source of more effective and safe substances than synthetically produced antimicrobial agents (as inhibitors, growth reducers or even inactivators that control growth of microorganisms. Many different pathogens have

  11. Management of plant pathogens and pests using microbial biological control agents. In: Trigiano, R.N. and Ownley, B.H., editors. Plant Pathology Concepts and Laboratory Exercises

    Science.gov (United States)

    All parts of plants face continual attack by plant pathogens and insects. Some insects are vectors of pathogens. Plant pests can be controlled by a variety of methods including application of pesticides but one of the most stainable and environmentally friendly approaches is biological control. Mic...

  12. Potentials of biological control of plant diseases in the tropics | Ofor ...

    African Journals Online (AJOL)

    This paper highlights the various categories of biological control, which are employed in an Integrated Disease Management (IDM) scheme. These include conservation, classical biocontrol and augmentation. Also, the various types of biocontrol agents/agencies which are currently in use in various parts of the world like, ...

  13. Physical interactions among plant MADS-box transcription factors and their biological relevance

    NARCIS (Netherlands)

    Nougalli Tonaco, I.A.

    2008-01-01

    The biological interpretation of the genome starts from transcription, and many different signaling pathways are integrated at this level. Transcription factors play a central role in the transcription process, because they select the down-stream genes and determine their spatial and temporal

  14. The Plant-Window System: A framework for an integrated computing environment at advanced nuclear power plants

    International Nuclear Information System (INIS)

    Wood, R.T.; Mullens, J.A.; Naser, J.A.

    1997-01-01

    Power plant data, and the information that can be derived from it, provide the link to the plant through which the operations, maintenance and engineering staff understand and manage plant performance. The extensive use of computer technology in advanced reactor designs provides the opportunity to greatly expand the capability to obtain, analyze, and present data about the plant to station personnel. However, to support highly efficient and increasingly safe operation of nuclear power plants, it is necessary to transform the vast quantity of available data into clear, concise, and coherent information that can be readily accessed and used throughout the plant. This need can be met by an integrated computer workstation environment that provides the necessary information and software applications, in a manner that can be easily understood and sued, to the proper users throughout the plan. As part of a Cooperative Research and Development Agreement with the Electric Power Research Institute, the Oak Ridge National laboratory has developed functional requirements for a Plant-Wide Integrated Environment Distributed On Workstations (Plant-Window) System. The Plant-Window System (PWS) can serve the needs of operations, engineering, and maintenance personnel at nuclear power stations by providing integrated data and software applications within a common computing environment. The PWS requirements identify functional capabilities and provide guidelines for standardized hardware, software, and display interfaces so as to define a flexible computing environment for both current generation nuclear power plants and advanced reactor designs

  15. Biological methanation of hydrogen within biogas plants: A model-based feasibility study

    International Nuclear Information System (INIS)

    Bensmann, A.; Hanke-Rauschenbach, R.; Heyer, R.; Kohrs, F.; Benndorf, D.; Reichl, U.; Sundmacher, K.

    2014-01-01

    Highlights: • Simulation study about direct methanation of hydrogen within biogas plants. • In stationary operation two limitations, namely biological and transfer limit. • Biological limit at 4m H2 3 /m CO2 3 due to stoichiometry. • Dynamic behaviour shows three qualitatively different step responses. • A simple control scheme to meet the output quality was developed. - Abstract: One option to utilize excess electric energy is its conversion to hydrogen and the subsequent methanation. An alternative to the classical chemical Sabatier process is the biological methanation (methanogenesis) within biogas plants. In conventional biogas plants methane and carbon dioxide is produced. The latter can be directly converted to methane by feeding hydrogen into the reactor, since hydrogenotrophic bacteria are present. In the present contribution, a comprehensive simulation study with respect to stationary operating conditions and disturbances is presented. It reveals two qualitative different limitations, namely a biological limit (appr. at 4m H2 3 /m CO2 3 corresponds to 4.2m H2,STP 3 /m liq 3 /d) as well as a transfer limit. A parameter region for a safe operation was defined. The temporary operation with stationary unfeasible conditions was analysed and thereby three qualitatively different disturbances can be distinguished. In one of these the operation for several days is possible. On the basis of these results, a controller was proposed and tested that meets the demands on the conversion of hydrogen and also prevents the washout of the microbial community due to hydrogen overload

  16. Development of an integrated database management system to evaluate integrity of flawed components of nuclear power plant

    International Nuclear Information System (INIS)

    Mun, H. L.; Choi, S. N.; Jang, K. S.; Hong, S. Y.; Choi, J. B.; Kim, Y. J.

    2001-01-01

    The object of this paper is to develop an NPP-IDBMS(Integrated DataBase Management System for Nuclear Power Plants) for evaluating the integrity of components of nuclear power plant using relational data model. This paper describes the relational data model, structure and development strategy for the proposed NPP-IDBMS. The NPP-IDBMS consists of database, database management system and interface part. The database part consists of plant, shape, operating condition, material properties and stress database, which are required for the integrity evaluation of each component in nuclear power plants. For the development of stress database, an extensive finite element analysis was performed for various components considering operational transients. The developed NPP-IDBMS will provide efficient and accurate way to evaluate the integrity of flawed components

  17. The Waste Isolation Pilot Plant (WIPP) integrated project management system

    International Nuclear Information System (INIS)

    Olona, D.; Sala, D.

    1993-01-01

    The Waste Isolation Pilot Plant (WIPP), located 26 miles east of Carlsbad, New Mexico, is a research and development project of the Department of Energy (DOE), tasked with the mission of demonstrating the safe disposal of transuranic (TRU) radioactive wastes. This unique project was authorized by Congress in 1979 in response to the national need for long-term, safe methods for disposing of radioactive by-products from our national defense programs. The WIPP was originally established in December of 1979, by Public Law 96-164, DOE National Security and Military Applications of Nuclear Energy Authorization Act of 1980. Since the inception of the WIPP Project, work has continued to prepare the facility to receive TRU wastes. Studies continue to be conducted to demonstrate the safety of the WIPP facility in accordance with federal and state laws, state agreements, environmental regulations, and DOE Orders. The objectives of implementing an integrated project management system are to assure compliance with all regulatory and federal regulations, identify areas of concern, provide justification for funding, provide a management tool for control of program workscope, and establish a project baseline from which accountability and performance will be assessed. Program management and project controls are essential for the success of the WIPP Project. The WIPP has developed an integrated project management system to establish the process for the control of the program which has an expected total dollar value of $2B over the ten-year period from 1990-2000. The implementation of this project management system was motivated by the regulatory requirements of the project, the highly public environment in which the project takes place, limited funding and resources, and the dynamic nature of the project. Specific areas to be addressed in this paper include strategic planning, project organization, planning and scheduling, fiscal planning, and project monitoring and reporting

  18. Integrated safety assessment report, Haddam Neck Plant (Docket No. 50-213): Integrated Safety Assessment Program: Draft report

    International Nuclear Information System (INIS)

    1987-07-01

    The integrated assessment is conducted on a plant-specific basis to evaluate all licensing actions, licensee initiated plant improvements and selected unresolved generic/safety issues to establish implementation schedules for each item. Procedures allow for a periodic updating of the schedules to account for licensing issues that arise in the future. The Haddam Neck Plant is one of two plants being reviewed under the pilot program. This report indicates how 82 topics selected for review were addressed, and presents the staff's recommendations regarding the corrective actions to resolve the 82 topics and other actions to enhance plant safety. 135 refs., 4 figs., 5 tabs

  19. Mapping the Metal Uptake in Plants from Jasper Ridge Biological Preserve - Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Allison [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-24

    Serpentine soil originates in the Earth’s mantle and contains high concentrations of potentially toxic transition metals. Although serpentine soil limits plant growth, endemic and adapted plants at Jasper Ridge Biological Preserve, located behind SLAC National Accelerator Laboratory, can tolerate these conditions. Serpentine soil and seeds belonging to native California and invasive plants were collected at Jasper Ridge. The seeds were grown hydroponically and on serpentine and potting soil to examine the uptake and distribution of ions in the roots and shoots using synchrotron micro-focused X-ray fluorescence spectroscopy. The results were used to determine differences between serpentinetolerant plants. Rye grown on potting soil was enriched in Ni, Fe, Mn, and Cr compared to purple needlegrass grown on serpentine soil. Serpentine vegetation equally suppressed the uptake of Mn, Ni, and Fe in the roots and shoots. The uptake of Ca and Mg affected the uptake of other elements such as K, S, and P.

  20. Population dynamics of bacteria involved in enhanced biological phosphorus removal in Danish wastewater treatment plants.

    Science.gov (United States)

    Mielczarek, Artur Tomasz; Nguyen, Hien Thi Thu; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2013-03-15

    The enhanced biological phosphorus removal (EBPR) process is increasingly popular as a sustainable method for removal of phosphorus (P) from wastewater. This study consisted of a comprehensive three-year investigation of the identity and population dynamics of polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs) in 28 Danish municipal wastewater treatment plants with nutrient removal. Fluorescence in situ hybridization was applied to quantify ten probe-defined populations of PAO and GAO that in total constituted a large fraction (30% on average) of the entire microbial community targeted by the EUBmix probes. Two PAO genera, Accumulibacter and Tetrasphaera, were very abundant in all EBPR plants (average of 3.7% and 27% of all bacteria, respectively), and their abundance was relatively stable in the Danish full-scale plants without clear temporal variations. GAOs were occasionally present in some plants (Competibacter in 11 plants, Defluviicoccus in 6 plants) and were consistent in only a few plants. This shows that these were not core species in the EBPR communities. The total GAO abundance was always lower than that of Accumulibacter. In plants without EBPR design, the abundance of PAO and GAO was significantly lower. Competibacter correlated in general with high fraction of industrial wastewater. In specific plants Accumulibacter correlated with high C/P ratio of the wastewater and Tetrasphaera with high organic loading. Interestingly, the relative microbial composition of the PAO/GAO species was unique to each plant over time, which gives a characteristic plant-specific "fingerprint". Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Promoting Student Learning through the Integration of Lab and Lecture: The Seamless Biology Curriculum

    Science.gov (United States)

    Burrowes, Patricia; Nazario, Gladys

    2008-01-01

    The authors engaged in an education experiment to determine if the integration of lab and lecture activities in zoology and botany proved beneficial to student learning and motivation toward biology. Their results revealed that this strategy positively influenced students' academic achievement, conceptual understanding, and ability to apply…

  2. Management of vascular wilt of lentil through host plant resistance, biological control agents and chemicals

    International Nuclear Information System (INIS)

    Rafique, K.; Rauf, C.A.; Naz, F.

    2016-01-01

    The management of devastating lentil (Lens culinaris Medik.) wilt disease was investigated through evaluation of host plant resistance, biological control agents and seed treatment with different fungicides against a known most aggressive isolate i.e. FWL12 (KP297995) of Fusarium oxysporum f. sp. lentis. The In vitro screening of germplasm (23 advanced lines and cultivars) for host resistance by root dip method revealed five cultivars viz. Markaz-09, Masoor-86, Masoor-2006, Punjab Masoor-00518 and Punjab Masoor-09 resistant with 20 to 46.67% incidence, 4.44 to 12.95% severity index and 9.60 to 24.94% yield reduction compared with highly susceptible (100% incidence) local lentil line (NARC-08-1). The later line was treated with Trichoderma species as antagonists in pot experiment by drenching. The bio-control treatment revealed maximum positive effect of T. harzianum (26.7% incidence, 8.9% severity index and 16.27% yield reduction), followed by T. viride (66.7% incidence, 17.8% severity index and 31.13% yield reduction). On inoculated untreated control, the fungus produced the characteristic wilt symptoms and significantly caused increased severity index, incidence and decreased 100% yield. In vitro evaluation of four fungicides at five concentrations (10, 20, 30, 50 and 100 ppm) revealed maximum inhibition of the test fungus with benomyl (85.9%), followed by thiophanate methyl (81.2%). Determination of the efficacy of two best fungicides viz. benomyl and thiophanate methyl in reducing wilt infection through In vivo seed treatment of NARC-08-1 in previously inoculated potting mixture revealed 100% seed germination and suppressed wilt disease, the most effective being benomyl with 6.7% incidence, 1.5% wilt severity and 17.16% yield reduction compared to the control. The study concluded that the genetic diversity already present in lentil cultivars is an important source, which could be exploited for breeding wilt resistant lentil genotypes. Moreover, being seed and

  3. Biological and Psychosocial Predictors of Postpartum Depression: Systematic Review and Call for Integration

    Science.gov (United States)

    Tanner Stapleton, Lynlee R.; Guardino, Christine M.; Hahn-Holbrook, Jennifer; Schetter, Christine Dunkel

    2017-01-01

    Postpartum depression (PPD) adversely affects the health and well being of many new mothers, their infants, and their families. A comprehensive understanding of biopsychosocial precursors to PPD is needed to solidify the current evidence base for best practices in translation. We conducted a systematic review of research published from 2000 through 2013 on biological and psychosocial factors associated with PPD and postpartum depressive symptoms. Two hundred fourteen publications based on 199 investigations of 151,651 women in the first postpartum year met inclusion criteria. The biological and psychosocial literatures are largely distinct, and few studies provide integrative analyses. The strongest PPD risk predictors among biological processes are hypothalamic-pituitary-adrenal dysregulation, inflammatory processes, and genetic vulnerabilities. Among psychosocial factors, the strongest predictors are severe life events, some forms of chronic strain, relationship quality, and support from partner and mother. Fully integrated biopsychosocial investigations with large samples are needed to advance our knowledge of PPD etiology. PMID:25822344

  4. Camels, Cormorants, and Kangaroo Rats: Integration and Synthesis in Organismal Biology After World War II.

    Science.gov (United States)

    Hagen, Joel B

    2015-01-01

    During the decades following World War II diverse groups of American biologists established a variety of distinctive approaches to organismal biology. Rhetorically, organismal biology could be used defensively to distinguish established research traditions from perceived threats from newly emerging fields such as molecular biology. But, organismal biologists were also interested in integrating biological disciplines and using a focus on organisms to synthesize levels of organization from molecules and cells to populations and communities. Part of this broad movement was the development of an area of research variously referred to as physiological ecology, environmental physiology, or ecophysiology. This area of research was distinctive in its self-conscious blend of field and laboratory practices and its explicit integration with other areas of biology such as ecology, animal behavior, and evolution in order to study adaptation. Comparing the intersecting careers of Knut Schmidt-Nielsen and George Bartholomew highlights two strikingly different approaches to physiological ecology. These alternative approaches to studying the interactions of organisms and environments also differed in important ways from the organismal biology championed by leading figures in the modern synthesis.

  5. A data integration approach for cell cycle analysis oriented to model simulation in systems biology

    Directory of Open Access Journals (Sweden)

    Mosca Ettore

    2007-08-01

    Full Text Available Abstract Background The cell cycle is one of the biological processes most frequently investigated in systems biology studies and it involves the knowledge of a large number of genes and networks of protein interactions. A deep knowledge of the molecular aspect of this biological process can contribute to making cancer research more accurate and innovative. In this context the mathematical modelling of the cell cycle has a relevant role to quantify the behaviour of each component of the systems. The mathematical modelling of a biological process such as the cell cycle allows a systemic description that helps to highlight some features such as emergent properties which could be hidden when the analysis is performed only from a reductionism point of view. Moreover, in modelling complex systems, a complete annotation of all the components is equally important to understand the interaction mechanism inside the network: for this reason data integration of the model components has high relevance in systems biology studies. Description In this work, we present a resource, the Cell Cycle Database, intended to support systems biology analysis on the Cell Cycle process, based on two organisms, yeast and mammalian. The database integrates information about genes and proteins involved in the cell cycle process, stores complete models of the interaction networks and allows the mathematical simulation over time of the quantitative behaviour of each component. To accomplish this task, we developed, a web interface for browsing information related to cell cycle genes, proteins and mathematical models. In this framework, we have implemented a pipeline which allows users to deal with the mathematical part of the models, in order to solve, using different variables, the ordinary differential equation systems that describe the biological process. Conclusion This integrated system is freely available in order to support systems biology research on the cell cycle and

  6. Biological fluidized-bed treatment of groundwater from a manufactured gas plant site

    International Nuclear Information System (INIS)

    Grey, G.M.; Scheible, O.K.; Maiello, J.A.; Guarini, W.J.; Sutton, P.M.

    1995-01-01

    Bench- and pilot-scale biological treatability studies were performed as part of a comprehensive study for developing an on-site treatment system for contaminated groundwater at a former manufactured gas plant site. The bench-scale work, which included evaluations of activated sludge and fluidized-bed biological processes, indicated that a carbon-based fluidized-bed process was most appropriate. The process was then demonstrated on a pilot level at the site. The bench and pilot studies demonstrated significant reductions of chemical oxygen demand (COD), and all target organics including polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs)

  7. Combined cycle power plant with integrated low temperature heat (LOTHECO)

    International Nuclear Information System (INIS)

    Kakaras, E.; Doukelis, A.; Leithner, R.; Aronis, N.

    2004-01-01

    The major driver to enhance the efficiency of the simple gas turbine cycle has been the increase in process conditions through advancements in materials and cooling methods. Thermodynamic cycle developments or cycle integration are among the possible ways to further enhance performance. The current paper presents the possibilities and advantages from the LOTHECO natural gas-fired combined cycle concept. In the LOTHECO cycle, low-temperature waste heat or solar heat is used for the evaporation of injected water droplets in the compressed air entering the gas turbine's combustion chamber. Following a description of this innovative cycle, its advantages are demonstrated by comparison between different gas turbine power generation systems for small and large-scale applications, including thermodynamic and economic analysis. A commercial gas turbine (ALSTOM GT10C) has been selected and computed with the heat mass balance program ENBIPRO. The results from the energy analysis are presented and the features of each concept are discussed. In addition, the exergy analysis provides information on the irreversibilities of each process and suggested improvements. Finally, the economic analysis reveals that the combined cycle plant with a heavy-duty gas turbine is the most efficient and economic way to produce electricity at base load. However, on a smaller scale, innovative designs, such as the LOTHECO concept, are required to reach the same level of performance at feasible costs

  8. Anthropogenic climate change and allergen exposure: The role of plant biology.

    Science.gov (United States)

    Ziska, Lewis H; Beggs, Paul J

    2012-01-01

    Accumulation of anthropogenic gases, particularly CO(2), is likely to have 2 fundamental effects on plant biology. The first is an indirect effect through Earth's increasing average surface temperatures, with subsequent effects on other aspects of climate, such as rainfall and extreme weather events. The second is a direct effect caused by CO(2)-induced stimulation of photosynthesis and plant growth. Both effects are likely to alter a number of fundamental aspects of plant biology and human health, including aerobiology and allergic diseases, respectively. This review highlights the current and projected effect of increasing CO(2) and climate change in the context of plants and allergen exposure, emphasizing direct effects on plant physiologic parameters (eg, pollen production) and indirect effects (eg, fungal sporulation) related to diverse biotic and abiotic interactions. Overall, the review assumes that future global mitigation efforts will be limited and suggests a number of key research areas that will assist in adapting to the ongoing challenges to public health associated with increased allergen exposure. Published by Mosby, Inc.

  9. A method for evaluation of UV and biologically effective exposures to plants

    International Nuclear Information System (INIS)

    Paris, A.V.; Southern Queensland Univ., Toowoomba, QLD; Wong, J.C.F.; Galea, V.

    1996-01-01

    This paper presents a method for evaluating the UV and biologically effective exposures to a plant canopy during the irradiation of soybean with supplemental levels of UV radiation in a greenhouse study. The method employs four materials as dosimeters that allow evaluation of the UV spectra. The exposures evaluated at three growth stages were less by factors of 0.44, 0.49 and 0.56 compared to the ambient exposures. At the end of the irradiation period, the ambient biologically effective exposure for generalized plant response was higher by 180% compared to that calculated over the canopy. This is the magnitude of the error in UV studies that provide the ambient exposure as a measure of the UV incident on the plant. Additionally, the difference between the ambient and canopy exposures varied during the growth stages. These results indicate that the dosimetric technique applied to evaluating the UV exposures over a plant canopy is a more accurate representation of the UV exposure incidence on a plant than any obtained by measuring the ambient exposures only. (Author)

  10. Recombinant biologic products versus nutraceuticals from plants – a regulatory choice?

    Science.gov (United States)

    Drake, Pascal M. W.; Szeto, Tim H.; Paul, Mathew J.; Teh, Audrey Y.‐H.

    2016-01-01

    Biotechnology has transformed the potential for plants to be a manufacturing source of pharmaceutical compounds. Now, with transgenic and transient expression techniques, virtually any biologic, including vaccines and therapeutics, could be manufactured in plants. However, uncertainty over the regulatory path for such new pharmaceuticals has been a deterrent. Consideration has been given to using alternative regulatory paths, including those for nutraceuticals or cosmetic agents. This review will consider these possibilities, and discuss the difficulties in establishing regulatory guidelines for new pharmaceutical manufacturing technologies. PMID:27297459

  11. Fukushima Daiichi Nuclear Power Plant accident: facts, environmental contamination, possible biological effects, and countermeasures.

    Science.gov (United States)

    Anzai, Kazunori; Ban, Nobuhiko; Ozawa, Toshihiko; Tokonami, Shinji

    2012-01-01

    On March 11, 2011, an earthquake led to major problems at the Fukushima Daiichi Nuclear Power Plant. A 14-m high tsunami triggered by the earthquake disabled all AC power to Units 1, 2, and 3 of the Power Plant, and carried off fuel tanks for emergency diesel generators. Despite many efforts, cooling systems did not work and hydrogen explosions damaged the facilities, releasing a large amount of radioactive material into the environment. In this review, we describe the environmental impact of the nuclear accident, and the fundamental biological effects, acute and late, of the radiation. Possible medical countermeasures to radiation exposure are also discussed.

  12. Application of vascular aquatic plants for pollution removal, energy and food production in a biological system

    Science.gov (United States)

    Wolverton, B. C.; Barlow, R. M.; Mcdonald, R. C.

    1975-01-01

    Vascular aquatic plants such as water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxeroides) (Mart.) Griesb., when utilized in a controlled biological system (including a regular program of harvesting to achieve maximum growth and pollution removal efficiency), may represent a remarkably efficient and inexpensive filtration and disposal system for toxic materials and sewage released into waters near urban and industrial areas. The harvested and processed plant materials are sources of energy, fertilizer, animal feed, and human food. Such a system has industrial, municipal, and agricultural applications.

  13. Integrated analysis of multiple data sources reveals modular structure of biological networks

    International Nuclear Information System (INIS)

    Lu Hongchao; Shi Baochen; Wu Gaowei; Zhang Yong; Zhu Xiaopeng; Zhang Zhihua; Liu Changning; Zhao, Yi; Wu Tao; Wang Jie; Chen Runsheng

    2006-01-01

    It has been a challenging task to integrate high-throughput data into investigations of the systematic and dynamic organization of biological networks. Here, we presented a simple hierarchical clustering algorithm that goes a long way to achieve this aim. Our method effectively reveals the modular structure of the yeast protein-protein interaction network and distinguishes protein complexes from functional modules by integrating high-throughput protein-protein interaction data with the added subcellular localization and expression profile data. Furthermore, we take advantage of the detected modules to provide a reliably functional context for the uncharacterized components within modules. On the other hand, the integration of various protein-protein association information makes our method robust to false-positives, especially for derived protein complexes. More importantly, this simple method can be extended naturally to other types of data fusion and provides a framework for the study of more comprehensive properties of the biological network and other forms of complex networks

  14. The Plant-Window system: A flexible, expandable computing environment for the integration of power plant activities

    International Nuclear Information System (INIS)

    Wood, R.T.; Mullens, J.A.; Naser, J.A.

    1994-01-01

    Power plant data, and the information that can be derived from it, provide the link to the plant through which the operations, maintenance and engineering staff understand and manage plant performance. The increasing use of computer technology in the US nuclear power industry has greatly expanded the capability to obtain, analyze, and present data about the plant to station personnel. However, it is necessary to transform the vast quantity of available data into clear, concise, and coherent information that can be readily accessed and used throughout the plant. This need can be met by an integrated computer workstation environment that provides the necessary information and software applications, in a manner that can be easily understood and used, to the proper users throughout the plant. As part of a Cooperative Research and Development Agreement with the Electric Power Research Institute, the Oak Ridge National Laboratory has developed functional requirements for a Plant-Wide Integrated Environment Distributed on Workstations (Plant-Window) System. The Plant-Window System (PWS) can serve the needs of operations, engineering, and maintenance personnel at nuclear power stations by providing integrated data and software applications (e.g., monitoring, analysis, diagnosis, and control applications) within a common environment. The PWS requirements identify functional capabilities and provide guidelines for standardized hardware, software, and display interfaces to define a flexible computer environment that permits a tailored implementation of workstation capabilities and facilitates future upgrades

  15. History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience.

    Science.gov (United States)

    Baldani, José I; Baldani, Vera L D

    2005-09-01

    This review covers the history on Biological Nitrogen Fixation (BNF) in Graminaceous plants grown in Brazil, and describes research progress made over the last 40 years, most of which was coordinated by Johanna Döbereiner. One notable accomplishment during this period was the discovery of several nitrogen-fixing bacteria such as the rhizospheric (Beijerinckia fluminensis and Azotobacter paspali), associative (Azospirillum lipoferum, A. brasilense, A. amazonense) and the endophytic (Herbaspirillum seropedicae, H. rubrisubalbicans, Gluconacetobacter diazotrophicus, Burkholderia brasilensis and B. tropica). The role of these diazotrophs in association with grasses, mainly with cereal plants, has been studied and a lot of progress has been achieved in the ecological, physiological, biochemical, and genetic aspects. The mechanisms of colonization and infection of the plant tissues are better understood, and the BNF contribution to the soil/plant system has been determined. Inoculation studies with diazotrophs showed that endophytic bacteria have a much higher BNF contribution potential than associative diazotrophs. In addition, it was found that the plant genotype influences the plant/bacteria association. Recent data suggest that more studies should be conducted on the endophytic association to strengthen the BNF potential. The ongoing genome sequencing programs: RIOGENE (Gluconacetobacter diazotrophicus) and GENOPAR (Herbaspirillum seropedicae) reflect the commitment to the BNF study in Brazil and should allow the country to continue in the forefront of research related to the BNF process in Graminaceous plants.

  16. Integration of hydrothermal carbonization and a CHP plant: Part 2 –operational and economic analysis

    International Nuclear Information System (INIS)

    Saari, Jussi; Sermyagina, Ekaterina; Kaikko, Juha; Vakkilainen, Esa; Sergeev, Vitaly

    2016-01-01

    Wood-fired combined heat and power (CHP) plants are a proven technology for producing domestic, carbon-neutral heat and power in Nordic countries. One drawback of CHP plants is the low capacity factors due to varying heat loads. In the current economic environment, uncertainty over energy prices creates also uncertainty over investment profitability. Hydrothermal carbonization (HTC) is a promising thermochemical conversion technology for producing an improved, more versatile wood-based fuel. Integrating HTC with a CHP plant allows simplifying the HTC process and extending the CHP plant operating time. An integrated polygeneration plant producing three energy products is also less sensitive to price changes in any one product. This study compares three integration cases chosen from the previous paper, and the case of separate stand-alone plants. The best economic performance is obtained using pressurized hot water from the CHP plant boiler drum as HTC process water. This has the poorest efficiency, but allows the greatest cost reduction in the HTC process and longest CHP plant operating time. The result demonstrates the suitability of CHP plants for integration with a HTC process, and the importance of economic and operational analysis considering annual load variations in sufficient detail. - Highlights: • Integration of wood hydrothermal carbonization with a small CHP plant studied. • Operation and economics of three concepts and stand-alone plants are compared. • Sensitivity analysis is performed. • Results show technical and thermodynamic analysis inadequate and misleading alone. • Minimizing HTC investment, extending CHP operating time important for profitability.

  17. Plant bio-stimulator fertilizers can be applied in integrated plant management (IPM in forest nurseries

    Directory of Open Access Journals (Sweden)

    Tkaczyk Miłosz

    2015-12-01

    Full Text Available In the circumstances of only a limited number of pesticides being approved for use in forest nurseries, it is necessary to also examine the efficacy of new products available on the European market that stimulate growth and improve resilience and vitality among seedlings and saplings, with a view to the application of these products forming part of an integrated programme of plant protection. This paper describes trials of the three commercially available fertilizer products Actifos, Zielony Busz and Effective Microorganisms (EM, as carried out in seven Polish nurseries in an attempt to promote the growth of shoots and root systems of seedlings and saplings. In 64% of cases of it being used, Actifos was shown to stimulate growth significantly beyond control levels in the shoots of oak, beech, pine, spruce and alder saplings as well as the roots of young alders and oaks.

  18. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides?

    Directory of Open Access Journals (Sweden)

    Marc eBardin

    2015-07-01

    Full Text Available The durability of a control method for plant protection is defined as the persistence of its efficacy in space and time. It depends on (i the selection pressure exerted by it on populations of plant pathogens and (ii on the capacity of these pathogens to adapt to the control method. Erosion of effectiveness of conventional plant protection methods has been widely studied in the past. For example, apparition of resistance to chemical pesticides in plant pathogens or pests has been extensively documented. The durability of biological control has often been assumed to be higher than that of chemical control. Results concerning pest management in agricultural systems have shown that this assumption may not always be justified. Resistance of various pests to one or several toxins of Bacillus thuringensis and apparition of resistance of the codling moth Cydia pomonella to the Cydia pomonella granulovirus have, for example, been described. In contrast with the situation for pests, the durability of biological control of plant diseases has hardly been studied and no scientific reports proving the loss of efficiency of biological control agents against plant pathogens in practice has been published so far. Knowledge concerning the possible erosion of effectiveness of biological control is essential to ensure a durable efficacy of biological control agents on target plant pathogens. This knowledge will result in identifying risk factors that can foster the selection of strains of plant pathogens resistant to biological control agents. It will also result in identifying types of biological control agents with lower risk of efficacy loss i.e. modes of action of biological control agents that does not favor the selection of resistant isolates in natural populations of plant pathogens. An analysis of the scientific literature was then conducted to assess the potential for plant pathogens to become resistant to biological control agents.

  19. Integrating Botany with Chemistry & Art to Improve Elementary School Children's Awareness of Plants

    Science.gov (United States)

    Çil, Emine

    2015-01-01

    Students need to be aware of plants in order to learn about, appreciate, care for, and protect them. However, research has found that many children are not aware of the plants in their environment. A way to address this issue might be integration of plants with various disciplines. I investigated the effectiveness of an instructional approach…

  20. The female gametophyte: an emerging model for cell type-specific systems biology in plant development

    Directory of Open Access Journals (Sweden)

    Marc William Schmid

    2015-11-01

    Full Text Available Systems biology, a holistic approach describing a system emerging from the interactions of its molecular components, critically depends on accurate qualitative determination and quantitative measurements of these components. Development and improvement of large-scale profiling methods (omics now facilitates comprehensive measurements of many relevant molecules. For multicellular organisms, such as animals, fungi, algae, and plants, the complexity of the system is augmented by the presence of specialized cell types and organs, and a complex interplay within and between them. Cell type-specific analyses are therefore crucial for the understanding of developmental processes and environmental responses. This review first gives an overview of current methods used for large-scale profiling of specific cell types exemplified by recent advances in plant biology. The focus then lies on suitable model systems to study plant development and cell type specification. We introduce the female gametophyte of flowering plants as an ideal model to study fundamental developmental processes. Moreover, the female reproductive lineage is of importance for the emergence of evolutionary novelties such as an unequal parental contribution to the tissue nurturing the embryo or the clonal production of seeds by asexual reproduction (apomixis. Understanding these processes is not only interesting from a developmental or evolutionary perspective, but bears great potential for further crop improvement and the simplification of breeding efforts. We finally highlight novel methods, which are already available or which will likely soon facilitate large-scale profiling of the specific cell types of the female gametophyte in both model and non-model species. We conclude that it may take only few years until an evolutionary systems biology approach toward female gametogenesis may decipher some of its biologically most interesting and economically most valuable processes.

  1. Integrated plant safety assessment: systematic evaluation program. Haddam Neck Plant, Connecticut Yankee Atomic Power Company. Docket No. 50-213

    International Nuclear Information System (INIS)

    1983-03-01

    The Systematic Evaluation Program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to confirm and document their safety. The review provides: (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of Haddam Neck Plant, operated by Connecticut Yankee Atomic Power Company. The Haddam Neck Plant is one of 10 plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review

  2. The biologically active zone in upland habitats at the Hanford Site, Washington, USA: Focus on plant rooting depth and biomobilization.

    Science.gov (United States)

    Lovtang, Sara; Delistraty, Damon; Rochette, Elizabeth

    2018-07-01

    We challenge the suggestion by Sample et al. (2015) that a depth of 305 cm (10 ft) exceeds the depth of biological activity in soils at the Hanford Site, Washington, USA, or similar sites. Instead, we support the standard point of compliance, identified in the Model Toxics Control Act in the state of Washington, which specifies a depth of 457 cm (15 ft) for the protection of both human and ecological receptors at the Hanford Site. Our position is based on additional information considered in our expanded review of the literature, the influence of a changing environment over time, plant community dynamics at the Hanford Site, and inherent uncertainty in the Sample et al. (2015) analysis. Integr Environ Assess Manag 2018;14:442-446. © 2018 SETAC. © 2018 SETAC.

  3. Sequence-Related Amplified Polymorphism (SRAP Markers: A Potential Resource for Studies in Plant Molecular Biology

    Directory of Open Access Journals (Sweden)

    Daniel W. H. Robarts

    2014-07-01

    Full Text Available In the past few decades, many investigations in the field of plant biology have employed selectively neutral, multilocus, dominant markers such as inter-simple sequence repeat (ISSR, random-amplified polymorphic DNA (RAPD, and amplified fragment length polymorphism (AFLP to address hypotheses at lower taxonomic levels. More recently, sequence-related amplified polymorphism (SRAP markers have been developed, which are used to amplify coding regions of DNA with primers targeting open reading frames. These markers have proven to be robust and highly variable, on par with AFLP, and are attained through a significantly less technically demanding process. SRAP markers have been used primarily for agronomic and horticultural purposes, developing quantitative trait loci in advanced hybrids and assessing genetic diversity of large germplasm collections. Here, we suggest that SRAP markers should be employed for research addressing hypotheses in plant systematics, biogeography, conservation, ecology, and beyond. We provide an overview of the SRAP literature to date, review descriptive statistics of SRAP markers in a subset of 171 publications, and present relevant case studies to demonstrate the applicability of SRAP markers to the diverse field of plant biology. Results of these selected works indicate that SRAP markers have the potential to enhance the current suite of molecular tools in a diversity of fields by providing an easy-to-use. highly variable marker with inherent biological significance.

  4. Synthetic biology approaches for the production of plant metabolites in unicellular organisms.

    Science.gov (United States)

    Moses, Tessa; Mehrshahi, Payam; Smith, Alison G; Goossens, Alain

    2017-07-10

    Synthetic biology is the repurposing of biological systems for novel objectives and applications. Through the co-ordinated and balanced expression of genes, both native and those introduced from other organisms, resources within an industrial chassis can be siphoned for the commercial production of high-value commodities. This developing interdisciplinary field has the potential to revolutionize natural product discovery from higher plants, by providing a diverse array of tools, technologies, and strategies for exploring the large chemically complex space of plant natural products using unicellular organisms. In this review, we emphasize the key features that influence the generation of biorefineries and highlight technologies and strategic solutions that can be used to overcome engineering pitfalls with rational design. Also presented is a succinct guide to assist the selection of unicellular chassis most suited for the engineering and subsequent production of the desired natural product, in order to meet the global demand for plant natural products in a safe and sustainable manner. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. MODELLING OF RADIONUCLIDE MIGRATION IN THE SYSTEM OF NUCLEAR POWER PLANT BIOLOGICAL PONDS

    Directory of Open Access Journals (Sweden)

    Ю. Кутлахмедов

    2011-04-01

    Full Text Available Migration of radionuclide coming from nuclear power plant into the system of biological pondsand then into the water reservoir-cooler is considered in the article. The theme of the work ismodeling of radionuclide migration process in the system of biological ponds on the example of thePivdennoukrainska nuclear power plant using chamber models method. Typical water ecosystemconsisting of three chambers (chamber-water, chamber-biota and chamber-bed silt was the basistaken by the authors. Application of chamber models method allowed authors to develop thedynamic chamber model of radionuclide migration in nuclear power plant biological ponds. Thismodel allows to forecast values and dynamics of radioactive water pollution based on limitedecosystem monitoring data. Thus, parameters of radioactive capacity of nuclear power plantbiological ponds system and water reservoir-cooler were modeled by authors, the estimation andprognosis of radionuclide distribution and accumulation in the system of nuclear power plantbiological ponds were done. Authors also explain the roles of basin water, biomass and bed silt inradionuclide deposition

  6. Integrated approach methodology: A handbook for power plant assessment

    International Nuclear Information System (INIS)

    Roush, M.L.; Modarres, M.; Hunt, R.N.M.; Kreps, D.; Pearce, R.

    1987-10-01

    This handbook is a practical document that provides the principles and steps of a method to help a utility's decision-making process on matters concerning plant safety and economy. It provides a framework for analyzing the manner in which plant equipment and personnel work together to achieve successful operation; also making possible the quantitative evaluation of individual contributors to success in overall plant operation. The methodology does not purport to instruct utilities on the proper way to run a power plant. Rather, it is an analytical tool to aid a utility in using plant data and other hands-on knowledge of its own personnel to solve practical problems

  7. Multilevel functional genomics data integration as a tool for understanding physiology: a network biology perspective.

    Science.gov (United States)

    Davidsen, Peter K; Turan, Nil; Egginton, Stuart; Falciani, Francesco

    2016-02-01

    The overall aim of physiological research is to understand how living systems function in an integrative manner. Consequently, the discipline of physiology has since its infancy attempted to link multiple levels of biological organization. Increasingly this has involved mathematical and computational approaches, typically to model a small number of components spanning several levels of biological organization. With the advent of "omics" technologies, which can characterize the molecular state of a cell or tissue (intended as the level of expression and/or activity of its molecular components), the number of molecular components we can quantify has increased exponentially. Paradoxically, the unprecedented amount of experimental data has made it more difficult to derive conceptual models underlying essential mechanisms regulating mammalian physiology. We present an overview of state-of-the-art methods currently used to identifying biological networks underlying genomewide responses. These are based on a data-driven approach that relies on advanced computational methods designed to "learn" biology from observational data. In this review, we illustrate an application of these computational methodologies using a case study integrating an in vivo model representing the transcriptional state of hypoxic skeletal muscle with a clinical study representing muscle wasting in chronic obstructive pulmonary disease patients. The broader application of these approaches to modeling multiple levels of biological data in the context of modern physiology is discussed. Copyright © 2016 the American Physiological Society.

  8. Integrative multicellular biological modeling: a case study of 3D epidermal development using GPU algorithms

    Directory of Open Access Journals (Sweden)

    Christley Scott

    2010-08-01

    Full Text Available Abstract Background Simulation of sophisticated biological models requires considerable computational power. These models typically integrate together numerous biological phenomena such as spatially-explicit heterogeneous cells, cell-cell interactions, cell-environment interactions and intracellular gene networks. The recent advent of programming for graphical processing units (GPU opens up the possibility of developing more integrative, detailed and predictive biological models while at the same time decreasing the computational cost to simulate those models. Results We construct a 3D model of epidermal development and provide a set of GPU algorithms that executes significantly faster than sequential central processing unit (CPU code. We provide a parallel implementation of the subcellular element method for individual cells residing in a lattice-free spatial environment. Each cell in our epidermal model includes an internal gene network, which integrates cellular interaction of Notch signaling together with environmental interaction of basement membrane adhesion, to specify cellular state and behaviors such as growth and division. We take a pedagogical approach to describing how modeling methods are efficiently implemented on the GPU including memory layout of data structures and functional decomposition. We discuss various programmatic issues and provide a set of design guidelines for GPU programming that are instructive to avoid common pitfalls as well as to extract performance from the GPU architecture. Conclusions We demonstrate that GPU algorithms represent a significant technological advance for the simulation of complex biological models. We further demonstrate with our epidermal model that the integration of multiple complex modeling methods for heterogeneous multicellular biological processes is both feasible and computationally tractable using this new technology. We hope that the provided algorithms and source code will be a

  9. Tav4SB: integrating tools for analysis of kinetic models of biological systems.

    Science.gov (United States)

    Rybiński, Mikołaj; Lula, Michał; Banasik, Paweł; Lasota, Sławomir; Gambin, Anna

    2012-04-05

    Progress in the modeling of biological systems strongly relies on the availability of specialized computer-aided tools. To that end, the Taverna Workbench eases integration of software tools for life science research and provides a common workflow-based framework for computational experiments in Biology. The Taverna services for Systems Biology (Tav4SB) project provides a set of new Web service operations, which extend the functionality of the Taverna Workbench in a domain of systems biology. Tav4SB operations allow you to perform numerical simulations or model checking of, respectively, deterministic or stochastic semantics of biological models. On top of this functionality, Tav4SB enables the construction of high-level experiments. As an illustration of possibilities offered by our project we apply the multi-parameter sensitivity analysis. To visualize the results of model analysis a flexible plotting operation is provided as well. Tav4SB operations are executed in a simple grid environment, integrating heterogeneous software such as Mathematica, PRISM and SBML ODE Solver. The user guide, contact information, full documentation of available Web service operations, workflows and other additional resources can be found at the Tav4SB project's Web page: http://bioputer.mimuw.edu.pl/tav4sb/. The Tav4SB Web service provides a set of integrated tools in the domain for which Web-based applications are still not as widely available as for other areas of computational biology. Moreover, we extend the dedicated hardware base for computationally expensive task of simulating cellular models. Finally, we promote the standardization of models and experiments as well as accessibility and usability of remote services.

  10. B plant/WESF integrated annual safety appraisal

    International Nuclear Information System (INIS)

    Anderson, J.K.

    1990-12-01

    This report provides the results of the Fiscal Year 1990 Annual Integrated Safety Appraisal of the B Plant and Waste Encapsulation and Storage Facility in the Hanford Site 200 East Area. The appraisal was conducted in August and September 1990, by the Defense Waste Disposal Safety group, in conjunction with Health Physics and Emergency Preparedness. Reports of these three organizations for their areas of responsibility are presented. The purpose of the appraisal was to determine if the areas being appraised meet US Department of Energy (DOE) and Westinghouse Hanford Company (WHC) requirements and current industry standards of good practice. A further purpose was to identify areas in which program effectiveness could be improved. In accordance with the guidance of WHC Management Requirements and Procedures 5.6, previously identified deficiencies which are being resolved by line management were not repeated as Findings or Observations unless progress or intended disposition was considered to be unsatisfactory. The overall assessment is that there are no major safety problems associated with current operations. Programs are in place to provide the necessary safety controls, evaluations, overviews, and support. In most respects these programs are being implemented effectively. However, there are a number of deficiencies in details of program design and implementation. The appraisal identified a total of 23 Findings and 27 Observations of deficiencies. All Observations are Seriousness Category 3. Fifteen Findings were Category 2 and 8 were Category 3. Most of the Category 2 Findings were so categorized on the basis of noncompliance with mandatory DOE Orders or WHC policies and procedures, rather than potential risk to personnel

  11. Integral power evaluation in fossil fuel power plants; Evaluacion energetica integral en unidades de centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa I, Luis R; Sanchez H, Laura E; Rodriguez M, Jose H [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Nebradt G, Jesus [Unidad de Investigacion y Desarrollo de la Subdireccion de Generacion de la Comision Federal de Electricidad, (Mexico)

    2006-07-01

    In this occasion, a methodology is presented that carries out an integral energy evaluation of fossil fuel power plants units (FFPPU) with the purpose of determining the root of the significant decrements of power produced soon after the annual maintenance service. This proposal, besides identifying the origin of the energy efficiency problems, offers information about the contributions of each one of the involved equipment in the total decrement of the unit. With this methodology, the maintenance focuses in the equipment that contributes to the greater energy loss. This document presents such methodology along with its application in a real case, results and necessary remedial actions, demonstrating that its application offers bases for the investment in corrective measures. [Spanish] En esta ocasion se presenta una metodologia que efectua una evaluacion energetica integral de las unidades de centrales termoelectricas (UCT) con el fin de determinar la raiz de los decrementos de potencia significativos producidos luego del servicio anual de mantenimiento. Dicha propuesta, ademas de identificar el origen de los problemas de eficiencia energetica, brinda informacion acerca de las aportaciones de cada uno de los equipos involucrados al decremento total de la unidad. Con esta metodologia, el mantenimiento se enfoca a los equipos que contribuyen a la mayor perdida de potencia. Este documento exhibe tal metodologia junto con su aplicacion en un caso real, resultados y las acciones correctivas necesarias, demostrando que su aplicacion ofrece bases para una inversion futura en medidas correctivas.

  12. Biological and Chemical Aspects of Natural Biflavonoids from Plants: A Brief Review.

    Science.gov (United States)

    Gontijo, Vanessa Silva; Dos Santos, Marcelo Henrique; Viegas, Claudio

    2017-01-01

    Biflavonoids belong to a subclass of the plant flavonoids family and are limited to several species in the plant kingdom. In the literature, biflavonoids are extensively reported for their pharmacological properties including anti-inflammatory, antioxidant, inhibitory activity against phospholipase A2 (PLA2) and antiprotozoal activity. These activities have been discovered from the small number of biflavonoid structures that have been investigated, although the natural biflavonoids library is likely to be large. In addition, many medicinal properties and traditional use of plants are attributed to the presence of bioflavonoids among their secondary metabolites. Structurally, biflavonoids are polyphenol compounds comprising of two identical or non-identical flavonflavonoid units joined in a symmetrical or unsymmetrical manner through an alkyl or an alkoxy-based linker of varying length. Due to their chemical and biological importance, several bioprospective phytochemical studies and chemical approaches using coupling and molecular rearrangement strategies have been developed to identify and synthesize new bioactive biflavonoids. In this brief review, we present some basic structural aspects for classification and nomenclature of bioflavonoids and a compilation of the literature data published in the last 7 years, concerning the discovery of new natural biflavonoids of plant origin and their pharmacological and biological properties. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Plants from The Genus Daphne: A Review of its Traditional Uses, Phytochemistry, Biological and Pharmacological Activity

    Directory of Open Access Journals (Sweden)

    Sovrlić Miroslav M.

    2017-03-01

    Full Text Available Plants have an important role in maintaining people’s health and improving the quality of human life. They are an important component of people’s diet, but they are also used in other spheres of human life as a therapeutic resources, ingredients of cosmetic products, paints and others. The Daphne genus belongs to family Thymeleaceae which includes 44 families with approximately 500 herbal species. The plant species of the genus Daphne are used in the traditional medicine in China and tropical part of Africa for the treatment of various conditions. Previous studies showed significant biological potential of these species as a source of pharmacologically active compounds. This indicates that this genus possess a broad spectrum of biological activity including antimicrobial, antioxidant, analgesic, anti-inflammatory, cytotoxic, anti-ulcerogenic, abortive, hypocholesterolemic and hemostatic effects. Additionally, Daphne plants are the source of valuable bioactive phytochemicals such as coumarins, flavonoids, lignans, steroids and different classes of terpenes. Different parts of the Daphne plants contain specific bioactive metabolites and can represent a source of new, natural, pharmacologically active compounds, which may potentially be used in pharmaceutical, cosmetic and food industries.

  14. Conservation, genetic characterization, phytochemical and biological investigation of black calla lily: A wild endangered medicinal plant

    Directory of Open Access Journals (Sweden)

    Mai Mohammed Farid

    2016-10-01

    Full Text Available Scientists continue to search for and conserve plants whose medicinal properties have become crucial in the fight against diseases. Moreover, lessons from folk medicine, indigenous knowledge and Chinese medicine on crude extracts points to possible findings of novel promising and strong pharmaceutically bioactive constituents. Arum palaestinum, commonly known as black calla lily, is one of the most important medicinal plants belonging to the family Araceae, which has not been well studied. Little is known about its pharmaceutically bioactive constituents and the effective conservation through the use of biotechnology. Thus, Arum Palaestinum is selected and reviewed for its phytochemical analysis and biological activities. Besides, the tissue culture and genetic characterization developed for effective conservation of the plant were also summarized.

  15. Some applications of neutron activation analysis in plant biology and agronomy

    International Nuclear Information System (INIS)

    Fourcy, A.

    1966-06-01

    Plants materials are not so commonly analysed by radioactivation than biological extracts of medical importance. With help of concrete examples, applications of neutrons activation analysis to the determination of some metals (Mn, Cu, Co, Fe, Zn, and K) in plant materials, are proposed. Samples are activated in a swimming-pool reactor at the thermal flux of 5.10 12 n.cm -2 s -1 for a time varying between few minutes and several days according to the element being analysed. The induced radioactivity is measured by spectrometry, with radiochemical separation ( Cu, Co, Fe, Zn and K) or without separation in best cases (Mn,Cu, K). Described dosages are related to: manganese in a graminaceous plant, copper in vine treatments, cobalt, iron and zinc in animal feeding, potassium in a radiological experiment. (author) [fr

  16. Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems

    Directory of Open Access Journals (Sweden)

    Javad Sharifi-Rad

    2017-01-01

    Full Text Available Essential oils are complex mixtures of hydrocarbons and their oxygenated derivatives arising from two different isoprenoid pathways. Essential oils are produced by glandular trichomes and other secretory structures, specialized secretory tissues mainly diffused onto the surface of plant organs, particularly flowers and leaves, thus exerting a pivotal ecological role in plant. In addition, essential oils have been used, since ancient times, in many different traditional healing systems all over the world, because of their biological activities. Many preclinical studies have documented antimicrobial, antioxidant, anti-inflammatory and anticancer activities of essential oils in a number of cell and animal models, also elucidating their mechanism of action and pharmacological targets, though the paucity of in human studies limits the potential of essential oils as effective and safe phytotherapeutic agents. More well-designed clinical trials are needed in order to ascertain the real efficacy and safety of these plant products.

  17. Mechanical–biological treatment: Performance and potentials. An LCA of 8 MBT plants including waste characterization

    DEFF Research Database (Denmark)

    Montejo, Cristina; Tonini, Davide; Márquez, María del Carmen

    2013-01-01

    recovery through increased automation of the selection and to prioritize biogas-electricity production from the organic fraction over direct composting. The optimal strategy for refuse derived fuel (RDF) management depends upon the environmental compartment to be prioritized and the type of marginal...... of the MBT plants. These widely differed in type of biological treatment and recovery efficiencies. The results indicated that the performance is strongly connected with energy and materials recovery efficiency. The recommendation for upgrading and/or commissioning of future plants is to optimize materials...... electricity source in the system. It was estimated that, overall, up to ca. 180—190 kt CO2-eq. y−1 may be saved by optimizing the MBT plants under assessment....

  18. Field demonstration of ex situ biological treatability of contaminated groundwater at the Strachan gas plant

    International Nuclear Information System (INIS)

    Kurz, M.D.; Stepan, D.J.

    1997-03-01

    A multi-phase study was conducted to deal with the issues of groundwater and soil contamination by sour gas processing plants in Alberta. Phase One consisted of a review of all soil and groundwater monitoring data submitted to Alberta Environment by sour gas plants in accordance with the Canadian Clean Water Act. The current phase involves the development, evaluation and demonstration of selected remediation technologies to address subsurface contamination of sediments and groundwater at sour gas treatment plants with special attention to the presence of natural gas condensate in the subsurface. Results are presented from a pilot-scale biological treatability test that was performed at the Gulf Strachan Natural Gas Processing Plant in Rocky Mountain House, Alberta, where contaminated groundwater from the plant was being pumped to the surface through many recovery wells to control contaminant migration. The recovered groundwater was directed to a pump-and-treat system that consisted of oil-water separation, iron removal, hardness removal, and air stripping, before being reinjected. The pilot-scale biological treatability testing was conducted to evaluate process stability in treating groundwater without pretreatment for iron and hardness reduction and to evaluate the removal of organic contaminants. Results of a groundwater characterization analysis are discussed. Chemical characteristics of the groundwater at the Strachan Gas Plant showed that an ex situ remediation technology would address the dissolved volatile and semi-volatile organic contamination from natural gas condensates, as well as the nitrogenous compounds resulting from the use of amine-based process chemicals. 4 refs., 5 tabs., 4 figs

  19. Measurement of the Ecological Integrity of Cerrado Streams Using Biological Metrics and the Index of Habitat Integrity

    Directory of Open Access Journals (Sweden)

    Deusiano Florêncio dos Reis

    2017-01-01

    Full Text Available Generally, aquatic communities reflect the effects of anthropogenic changes such as deforestation or organic pollution. The Cerrado stands among the most threatened ecosystems by human activities in Brazil. In order to evaluate the ecological integrity of the streams in a preserved watershed in the Northern Cerrado biome corresponding to a mosaic of ecosystems in transition to the Amazonia biome in Brazil, biological metrics related to diversity, structure, and sensitivity of aquatic macroinvertebrates were calculated. Sampling included collections along stretches of 200 m of nine streams and measurements of abiotic variables (temperature, electrical conductivity, pH, total dissolved solids, dissolved oxygen, and discharge and the Index of Habitat Integrity (HII. The values of the abiotic variables and the HII indicated that most of the streams have good ecological integrity, due to high oxygen levels and low concentrations of dissolved solids and electric conductivity. Two streams showed altered HII scores mainly related to small dams for recreational and domestic use, use of Cerrado natural pasture for cattle raising, and spot deforestation in bathing areas. However, this finding is not reflected in the biological metrics that were used. Considering all nine streams, only two showed satisfactory ecological quality (measured by Biological Monitoring Working Party (BMWP, total richness, and EPT (Ephemeroptera, Plecoptera, and Trichoptera richness, only one of which had a low HII score. These results indicate that punctual measures of abiotic parameters do not reveal the long-term impacts of anthropic activities in these streams, including related fire management of pasture that annually alters the vegetation matrix and may act as a disturbance for the macroinvertebrate communities. Due to this, biomonitoring of low order streams in Cerrado ecosystems of the Northern Central Brazil by different biotic metrics and also physical attributes of the

  20. Methods of integrating Islamic values in teaching biology for shaping attitude and character

    Science.gov (United States)

    Listyono; Supardi, K. I.; Hindarto, N.; Ridlo, S.

    2018-03-01

    Learning is expected to develop the potential of learners to have the spiritual attitude: moral strength, self-control, personality, intelligence, noble character, as well as the skills needed by themselves, society, and nation. Implementation of role and morale in learning is an alternative way which is expected to answer the challenge. The solution offered is to inject student with religious material Islamic in learning biology. The content value of materials teaching biology includes terms of practical value, religious values, daily life value, socio-political value, and the value of art. In Islamic religious values (Qur'an and Hadith) various methods can touch human feelings, souls, and generate motivation. Integrating learning with Islamic value can be done by the deductive or inductive approach. The appropriate method of integration is the amtsal (analog) method, hiwar (dialog) method, targhib & tarhib (encouragement & warning) method, and example method (giving a noble role model / good example). The right strategy in integrating Islamic values is outlined in the design of lesson plan. The integration of Islamic values in lesson plan will facilitate teachers to build students' character because Islamic values can be implemented in every learning steps so students will be accustomed to receiving the character value in this integrated learning.

  1. The integrated workstation: A common, consistent link between nuclear plant personnel and plant information and computerized resources

    International Nuclear Information System (INIS)

    Wood, R.T.; Knee, H.E.; Mullens, J.A.; Munro, J.K. Jr.; Swail, B.K.; Tapp, P.A.

    1993-01-01

    The increasing use of computer technology in the US nuclear power industry has greatly expanded the capability to obtain, analyze, and present data about the plant to station personnel. Data concerning a power plant's design, configuration, operational and maintenance histories, and current status, and the information that can be derived from them, provide the link between the plant and plant staff. It is through this information bridge that operations, maintenance and engineering personnel understand and manage plant performance. However, it is necessary to transform the vast quantity of data available from various computer systems and across communications networks into clear, concise, and coherent information. In addition, it is important to organize this information into a consolidated, structured form within an integrated environment so that various users throughout the plant have ready access at their local station to knowledge necessary for their tasks. Thus, integrated workstations are needed to provide the inquired information and proper software tools, in a manner that can be easily understood and used, to the proper users throughout the plant. An effort is underway at the Oak Ridge National Laboratory to address this need by developing Integrated Workstation functional requirements and implementing a limited-scale prototype demonstration. The integrated Workstation requirements will define a flexible, expandable computer environment that permits a tailored implementation of workstation capabilities and facilitates future upgrades to add enhanced applications. The functionality to be supported by the integrated workstation and inherent capabilities to be provided by the workstation environment win be described. In addition, general technology areas which are to be addressed in the Integrated Workstation functional requirements will be discussed

  2. Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.; Graf, P.; Scott, G.; Ning, A.; King, R.; Guo, Y.; Parsons, T.; Damiani, R.; Felker, F.; Veers, P.

    2015-01-01

    The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.

  3. Final Report: RPP-WTP Semi-Integrated Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M. R.; Adamson, D. J.; Calloway, T. B.; Fowley, M. D.; Qureshi, Z. H.; Steimke, J. L.; Williams, M. R.; Zamecnik, J. R.

    2005-06-01

    In August 2004 the last of the SIPP task testing ended--a task that formally began with the issuance of the RPP-WTP Test Specification in June 2003. The planning for the task was a major effort in itself and culminated with the input of all stakeholders, DOE, Bechtel National, Inc., Washington Group International, in October 2003 at Hanford, WA (Appendix A). This report documents the activities carried out as a result of that planning. Campaign IV, the fourth and final step towards the Semi-Integrated Pilot Plant (SIPP) task, conducted by the Savannah River National Laboratory (SRNL) at the Savannah River Site, was to take the several recycle streams produced in Campaign III, the third step of the task, and combine them with other simulated recycle and chosen waste streams. (Campaign III was fed recycles from Campaign II, as Campaign II was fed by Campaign I.) The combined stream was processed in a fashion that mimicked the pretreatment operations of the DOE River Protection Project--Waste Treatment and Immobilization Plant (RPP-WTP) with the exception of the Ion Exchange Process. The SIPP task is considered semi-integrated because it only deals with the pretreatment operations of the RPP-WTP. That is, the pilot plant starts by receiving waste from the tank farm and ends when waste is processed to the point of being sent for vitrification. The resulting pretreated LAW and HLW simulants produced by the SIPP were shipped to VSL (Vitreous State Laboratory) and successfully vitrified in pilot WTP melters. Within the SIPP task these steps are referred to as Campaigns and there were four Campaigns in all. Campaign I, which is completely different than other campaigns, subjected a simulant of Hanford Tank 241-AY-102/C-106 (AY102) waste to cross-flow ultrafiltration only and in that process several important recycle streams were produced as a result of washing the simulant and cleaning the cross-flow filter. These streams were fed to subsequent campaigns and that work was

  4. Final Report: RPP-WTP Semi-Integrated Pilot Plant

    International Nuclear Information System (INIS)

    Duignan, M. R.; Adamson, D. J.; Calloway, T. B.; Fowley, M. D.; Qureshi, Z. H.; Steimke, J. L.; Williams, M. R.; Zamecnik, J. R.

    2005-01-01

    In August 2004 the last of the SIPP task testing ended--a task that formally began with the issuance of the RPP-WTP Test Specification in June 2003. The planning for the task was a major effort in itself and culminated with the input of all stakeholders, DOE, Bechtel National, Inc., Washington Group International, in October 2003 at Hanford, WA (Appendix A). This report documents the activities carried out as a result of that planning. Campaign IV, the fourth and final step towards the Semi-Integrated Pilot Plant (SIPP) task, conducted by the Savannah River National Laboratory (SRNL) at the Savannah River Site, was to take the several recycle streams produced in Campaign III, the third step of the task, and combine them with other simulated recycle and chosen waste streams. (Campaign III was fed recycles from Campaign II, as Campaign II was fed by Campaign I.) The combined stream was processed in a fashion that mimicked the pretreatment operations of the DOE River Protection Project--Waste Treatment and Immobilization Plant (RPP-WTP) with the exception of the Ion Exchange Process. The SIPP task is considered semi-integrated because it only deals with the pretreatment operations of the RPP-WTP. That is, the pilot plant starts by receiving waste from the tank farm and ends when waste is processed to the point of being sent for vitrification. The resulting pretreated LAW and HLW simulants produced by the SIPP were shipped to VSL (Vitreous State Laboratory) and successfully vitrified in pilot WTP melters. Within the SIPP task these steps are referred to as Campaigns and there were four Campaigns in all. Campaign I, which is completely different than other campaigns, subjected a simulant of Hanford Tank 241-AY-102/C-106 (AY102) waste to cross-flow ultrafiltration only and in that process several important recycle streams were produced as a result of washing the simulant and cleaning the cross-flow filter. These streams were fed to subsequent campaigns and that work was

  5. PathJam: a new service for integrating biological pathway information

    Directory of Open Access Journals (Sweden)

    Glez-Peña Daniel

    2010-03-01

    Full Text Available Biological pathways are crucial to much of the scientific research today including the study of specific biological processes related with human diseases. PathJam is a new comprehensive and freely accessible web-server application integrating scattered human pathway annotation from several public sources. The tool has been designed for both (i being intuitive for wet-lab users providing statistical enrichment analysis of pathway annotations and (ii giving support to the development of new integrative pathway applications. PathJam’s unique features and advantages include interactive graphs linking pathways and genes of interest, downloadable results in fully compatible formats, GSEA compatible output files and a standardized RESTful API.

  6. Integration of distributed plant process computer systems to nuclear power generation facilities

    International Nuclear Information System (INIS)

    Bogard, T.; Finlay, K.

    1996-01-01

    Many operating nuclear power generation facilities are replacing their plant process computer. Such replacement projects are driven by equipment obsolescence issues and associated objectives to improve plant operability, increase plant information access, improve man machine interface characteristics, and reduce operation and maintenance costs. This paper describes a few recently completed and on-going replacement projects with emphasis upon the application integrated distributed plant process computer systems. By presenting a few recent projects, the variations of distributed systems design show how various configurations can address needs for flexibility, open architecture, and integration of technological advancements in instrumentation and control technology. Architectural considerations for optimal integration of the plant process computer and plant process instrumentation ampersand control are evident from variations of design features

  7. Biosocial Conservation: Integrating Biological and Ethnographic Methods to Study Human-Primate Interactions.

    Science.gov (United States)

    Setchell, Joanna M; Fairet, Emilie; Shutt, Kathryn; Waters, Siân; Bell, Sandra

    2017-01-01

    Biodiversity conservation is one of the grand challenges facing society. Many people interested in biodiversity conservation have a background in wildlife biology. However, the diverse social, cultural, political, and historical factors that influence the lives of people and wildlife can be investigated fully only by incorporating social science methods, ideally within an interdisciplinary framework. Cultural hierarchies of knowledge and the hegemony of the natural sciences create a barrier to interdisciplinary understandings. Here, we review three different projects that confront this difficulty, integrating biological and ethnographic methods to study conservation problems. The first project involved wildlife foraging on crops around a newly established national park in Gabon. Biological methods revealed the extent of crop loss, the species responsible, and an effect of field isolation, while ethnography revealed institutional and social vulnerability to foraging wildlife. The second project concerned great ape tourism in the Central African Republic. Biological methods revealed that gorilla tourism poses risks to gorillas, while ethnography revealed why people seek close proximity to gorillas. The third project focused on humans and other primates living alongside one another in Morocco. Incorporating shepherds in the coproduction of ecological knowledge about primates built trust and altered attitudes to the primates. These three case studies demonstrate how the integration of biological and social methods can help us to understand the sustainability of human-wildlife interactions, and thus promote coexistence. In each case, an integrated biosocial approach incorporating ethnographic data produced results that would not otherwise have come to light. Research that transcends conventional academic boundaries requires the openness and flexibility to move beyond one's comfort zone to understand and acknowledge the legitimacy of "other" kinds of knowledge. It is

  8. Integrating external biological knowledge in the construction of regulatory networks from time-series expression data

    Directory of Open Access Journals (Sweden)

    Lo Kenneth

    2012-08-01

    Full Text Available Abstract Background Inference about regulatory networks from high-throughput genomics data is of great interest in systems biology. We present a Bayesian approach to infer gene regulatory networks from time series expression data by integrating various types of biological knowledge. Results We formulate network construction as a series of variable selection problems and use linear regression to model the data. Our method summarizes additional data sources with an informative prior probability distribution over candidate regression models. We extend the Bayesian model averaging (BMA variable selection method to select regulators in the regression framework. We summarize the external biological knowledge by an informative prior probability distribution over the candidate regression models. Conclusions We demonstrate our method on simulated data and a set of time-series microarray experiments measuring the effect of a drug perturbation on gene expression levels, and show that it outperforms leading regression-based methods in the literature.

  9. Biologic and clinical aspects of integration of different bone substitutes in oral surgery: a literature review.

    Science.gov (United States)

    Zizzari, Vincenzo Luca; Zara, Susi; Tetè, Giulia; Vinci, Raffaele; Gherlone, Enrico; Cataldi, Amelia

    2016-10-01

    Many bone substitutes have been proposed for bone regeneration, and researchers have focused on the interactions occurring between grafts and host tissue, as the biologic response of host tissue is related to the origin of the biomaterial. Bone substitutes used in oral and maxillofacial surgery could be categorized according to their biologic origin and source as autologous bone graft when obtained from the same individual receiving the graft; homologous bone graft, or allograft, when harvested from an individual other than the one receiving the graft; animal-derived heterologous bone graft, or xenograft, when derived from a species other than human; and alloplastic graft, made of bone substitute of synthetic origin. The aim of this review is to describe the most commonly used bone substitutes, according to their origin, and to focus on the biologic events that ultimately lead to the integration of a biomaterial with the host tissue. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Improving integrative searching of systems chemical biology data using semantic annotation.

    Science.gov (United States)

    Chen, Bin; Ding, Ying; Wild, David J

    2012-03-08

    Systems chemical biology and chemogenomics are considered critical, integrative disciplines in modern biomedical research, but require data mining of large, integrated, heterogeneous datasets from chemistry and biology. We previously developed an RDF-based resource called Chem2Bio2RDF that enabled querying of such data using the SPARQL query language. Whilst this work has proved useful in its own right as one of the first major resources in these disciplines, its utility could be greatly improved by the application of an ontology for annotation of the nodes and edges in the RDF graph, enabling a much richer range of semantic queries to be issued. We developed a generalized chemogenomics and systems chemical biology OWL ontology called Chem2Bio2OWL that describes the semantics of chemical compounds, drugs, protein targets, pathways, genes, diseases and side-effects, and the relationships between them. The ontology also includes data provenance. We used it to annotate our Chem2Bio2RDF dataset, making it a rich semantic resource. Through a series of scientific case studies we demonstrate how this (i) simplifies the process of building SPARQL queries, (ii) enables useful new kinds of queries on the data and (iii) makes possible intelligent reasoning and semantic graph mining in chemogenomics and systems chemical biology. Chem2Bio2OWL is available at http://chem2bio2rdf.org/owl. The document is available at http://chem2bio2owl.wikispaces.com.

  11. Biological and psychological rhythms: an integrative approach to rhythm disturbances in autistic disorder.

    Science.gov (United States)

    Botbol, Michel; Cabon, Philippe; Kermarrec, Solenn; Tordjman, Sylvie

    2013-09-01

    Biological rhythms are crucial phenomena that are perfect examples of the adaptation of organisms to their environment. A considerable amount of work has described different types of biological rhythms (from circadian to ultradian), individual differences in their patterns and the complexity of their regulation. In particular, the regulation and maturation of the sleep-wake cycle have been thoroughly studied. Its desynchronization, both endogenous and exogenous, is now well understood, as are its consequences for cognitive impairments and health problems. From a completely different perspective, psychoanalysts have shown a growing interest in the rhythms of psychic life. This interest extends beyond the original focus of psychoanalysis on dreams and the sleep-wake cycle, incorporating central theoretical and practical psychoanalytic issues related to the core functioning of the psychic life: the rhythmic structures of drive dynamics, intersubjective developmental processes and psychic containment functions. Psychopathological and biological approaches to the study of infantile autism reveal the importance of specific biological and psychological rhythmic disturbances in this disorder. Considering data and hypotheses from both perspectives, this paper proposes an integrative approach to the study of these rhythmic disturbances and offers an etiopathogenic hypothesis based on this integrative approach. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Conservation Biology and Traditional Ecological Knowledge: Integrating Academic Disciplines for Better Conservation Practice

    Directory of Open Access Journals (Sweden)

    Joshua A. Drew

    2006-12-01

    Full Text Available Conservation biology and environmental anthropology are disciplines that are both concerned with the identification and preservation of diversity, in one case biological and in the other cultural. Both conservation biology and the study of traditional ecoloigcal knowledge function at the nexus of the social and natural worlds, yet historically there have been major impediments to integrating the two. Here we identify linguistic, cultural, and epistemological barriers between the two disciplines. We argue that the two disciplines are uniquely positioned to inform each other and to provide critical insights and new perspectives on the way these sciences are practiced. We conclude by synthesizing common themes found in conservation success stories, and by making several suggestions on integration. These include cross-disciplinary publication, expanding memberships in professional societies and conducting multidisciplinary research based on similar interests in ecological process, taxonomy, or geography. Finally, we argue that extinction threats, be they biological or cultural/linguistic are imminent, and that by bringing these disciplines together we may be able to forge synergistic conservation programs capable of protecting the vivid splendor of life on Earth.

  13. Improving integrative searching of systems chemical biology data using semantic annotation

    Directory of Open Access Journals (Sweden)

    Chen Bin

    2012-03-01

    Full Text Available Abstract Background Systems chemical biology and chemogenomics are considered critical, integrative disciplines in modern biomedical research, but require data mining of large, integrated, heterogeneous datasets from chemistry and biology. We previously developed an RDF-based resource called Chem2Bio2RDF that enabled querying of such data using the SPARQL query language. Whilst this work has proved useful in its own right as one of the first major resources in these disciplines, its utility could be greatly improved by the application of an ontology for annotation of the nodes and edges in the RDF graph, enabling a much richer range of semantic queries to be issued. Results We developed a generalized chemogenomics and systems chemical biology OWL ontology called Chem2Bio2OWL that describes the semantics of chemical compounds, drugs, protein targets, pathways, genes, diseases and side-effects, and the relationships between them. The ontology also includes data provenance. We used it to annotate our Chem2Bio2RDF dataset, making it a rich semantic resource. Through a series of scientific case studies we demonstrate how this (i simplifies the process of building SPARQL queries, (ii enables useful new kinds of queries on the data and (iii makes possible intelligent reasoning and semantic graph mining in chemogenomics and systems chemical biology. Availability Chem2Bio2OWL is available at http://chem2bio2rdf.org/owl. The document is available at http://chem2bio2owl.wikispaces.com.

  14. Development and Assessment of Modules to Integrate Quantitative Skills in Introductory Biology Courses.

    Science.gov (United States)

    Hoffman, Kathleen; Leupen, Sarah; Dowell, Kathy; Kephart, Kerrie; Leips, Jeff

    2016-01-01

    Redesigning undergraduate biology courses to integrate quantitative reasoning and skill development is critical to prepare students for careers in modern medicine and scientific research. In this paper, we report on the development, implementation, and assessment of stand-alone modules that integrate quantitative reasoning into introductory biology courses. Modules are designed to improve skills in quantitative numeracy, interpreting data sets using visual tools, and making inferences about biological phenomena using mathematical/statistical models. We also examine demographic/background data that predict student improvement in these skills through exposure to these modules. We carried out pre/postassessment tests across four semesters and used student interviews in one semester to examine how students at different levels approached quantitative problems. We found that students improved in all skills in most semesters, although there was variation in the degree of improvement among skills from semester to semester. One demographic variable, transfer status, stood out as a major predictor of the degree to which students improved (transfer students achieved much lower gains every semester, despite the fact that pretest scores in each focus area were similar between transfer and nontransfer students). We propose that increased exposure to quantitative skill development in biology courses is effective at building competency in quantitative reasoning. © 2016 K. Hoffman, S. Leupen, et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. The Microphenotron: a robotic miniaturized plant phenotyping platform with diverse applications in chemical biology

    KAUST Repository

    Burrell, Thomas

    2017-03-01

    Background Chemical genetics provides a powerful alternative to conventional genetics for understanding gene function. However, its application to plants has been limited by the lack of a technology that allows detailed phenotyping of whole-seedling development in the context of a high-throughput chemical screen. We have therefore sought to develop an automated micro-phenotyping platform that would allow both root and shoot development to be monitored under conditions where the phenotypic effects of large numbers of small molecules can be assessed. Results The ‘Microphenotron’ platform uses 96-well microtitre plates to deliver chemical treatments to seedlings of Arabidopsis thaliana L. and is based around four components: (a) the ‘Phytostrip’, a novel seedling growth device that enables chemical treatments to be combined with the automated capture of images of developing roots and shoots; (b) an illuminated robotic platform that uses a commercially available robotic manipulator to capture images of developing shoots and roots; (c) software to control the sequence of robotic movements and integrate these with the image capture process; (d) purpose-made image analysis software for automated extraction of quantitative phenotypic data. Imaging of each plate (representing 80 separate assays) takes 4 min and can easily be performed daily for time-course studies. As currently configured, the Microphenotron has a capacity of 54 microtitre plates in a growth room footprint of 2.1 m2, giving a potential throughput of up to 4320 chemical treatments in a typical 10 days experiment. The Microphenotron has been validated by using it to screen a collection of 800 natural compounds for qualitative effects on root development and to perform a quantitative analysis of the effects of a range of concentrations of nitrate and ammonium on seedling development. Conclusions The Microphenotron is an automated screening platform that for the first time is able to combine large

  16. Towards systems biology of the gravity response of higher plants -multiscale analysis of Arabidopsis thaliana root growth

    Science.gov (United States)

    Palme, Klaus; Aubry, D.; Bensch, M.; Schmidt, T.; Ronneberger, O.; Neu, C.; Li, X.; Wang, H.; Santos, F.; Wang, B.; Paponov, I.; Ditengou, F. A.; Teale, W. T.; Volkmann, D.; Baluska, F.; Nonis, A.; Trevisan, S.; Ruperti, B.; Dovzhenko, A.

    Gravity plays a fundamental role in plant growth and development. Up to now, little is known about the molecular organisation of the signal transduction cascades and networks which co-ordinate gravity perception and response. By using an integrated systems biological approach, a systems analysis of gravity perception and the subsequent tightly-regulated growth response is planned in the model plant Arabidopsis thaliana. This approach will address questions such as: (i) what are the components of gravity signal transduction pathways? (ii) what are the dynamics of these components? (iii) what is their spatio-temporal regulation in different tis-sues? Using Arabidopsis thaliana as a model-we use root growth to obtain insights in the gravity response. New techniques enable identification of the individual genes affected by grav-ity and further integration of transcriptomics and proteomics data into interaction networks and cell communication events that operate during gravitropic curvature. Using systematic multiscale analysis we have identified regulatory networks consisting of transcription factors, the protein degradation machinery, vesicle trafficking and cellular signalling during the gravire-sponse. We developed approach allowing to incorporate key features of the root system across all relevant spatial and temporal scales to describe gene-expression patterns and correlate them with individual gene and protein functions. Combination of high-resolution microscopy and novel computational tools resulted in development of the root 3D model in which quantitative descriptions of cellular network properties and of multicellular interactions important in root growth and gravitropism can be integrated for the first time.

  17. Influence of integrated phosphorus supply and plant growth ...

    African Journals Online (AJOL)

    To guarantee a sufficient phosphorus supply for plants, a rapid and permanent mobilization of phosphorus from the labile phosphorus fractions is necessary, because phosphorus concentrations in soil solution are generally low. Several plant growth-promoting rhizobacteria (PGPR) have shown potential to enhance ...

  18. On the possibility of using biological toxicity tests to monitor the work of wastewater treatment plants

    Directory of Open Access Journals (Sweden)

    Zorić Jelena

    2008-01-01

    Full Text Available The aim of this study was to ascertain the possibility of using biological toxicity tests to monitor influent and effluent wastewaters of wastewater treatment plants. The information obtained through these tests is used to prevent toxic pollutants from entering wastewater treatment plants and discharge of toxic pollutants into the recipient. Samples of wastewaters from the wastewater treatment plants of Kragujevac and Gornji Milanovac, as well as from the Lepenica and Despotovica Rivers immediately before and after the influx of wastewaters from the plants, were collected between October 2004 and June 2005. Used as the test organism in these tests was the zebrafish Brachydanio rerio Hamilton - Buchanon (Cyprinidae. The acute toxicity test of 96/h duration showed that the tested samples had a slight acutely toxic effect on B. rerio, except for the sample of influent wastewater into the Cvetojevac wastewater treatment plant, which had moderately acute toxicity, indicating that such water should be prevented from entering the system in order to eliminate its detrimental effect on the purification process.

  19. 1. Biologic monitoring at Barsebaeck nuclear power plant 1985-1997. 2. Biological monitoring at Swedish nuclear power plants in 1998. Annual report 1998

    International Nuclear Information System (INIS)

    Andersson, Jan; Mo, K.; Thoernqvist, S.

    1999-06-01

    This report gives an account for two studies on the ecological effects of effluents to the aquatic environment from the Swedish nuclear power plants: 1. The results of biological monitoring at the Barsebaeck nuclear power plant during the period 1985-1997 are summarised. Comparisons are made with a previous report from 1969-1983. The fish community was studied by fyke net test fishing in the cooling water effluent area along a gradient out to unaffected sites. The loss of young eels in the cooling water intake was estimated annually. Damage on female grey mullet oocyte development was analysed on samples of cooling water exposed fish. 2. The biological monitoring at the Swedish nuclear power plants during 1998 was with minor exceptions performed according to the established programmes. The monitoring at Forsmark is running in the enclosed Biotest basin at the cooling water outlet and in the surrounding archipelago. Reference data are collected at Finbo, NW Aaland, and in the nearby Graesoe archipelago. In 1998 as in previous years the benthic macro fauna abundance within the Biotest basin showed strong variations. In the beginning of the year abundance and biomass were low, in the autumn though, higher than average. Oskarshamn: The monitoring is performed in the small effluent bay, Hamnefjaerden bay, in the waters surrounding the cooling water plume and in a reference area, Kvaedoe-fjaerden, 100 km north of the power plant. Perch and roach catches have been high in the Hamnefjaerden bay since the late 1980's. In 1998 catches of perch were on a higher level than in 1997, both in spring and in summer. The changes for roach were small. A moderate decrease in eel catches took place in 1997 and 1998, indicating a reduced effect of stockings in the late 1980's. Ringhals: The monitoring is performed in the area close to the cooling water outlet, which is located at an open coast, and in a reference area. An attraction of yellow eel to the effluent area has been

  20. Biological Nitrogen Fixation by Legumes and N Uptake by Coffee Plants

    Directory of Open Access Journals (Sweden)

    Eduardo de Sá Mendonça

    Full Text Available ABSTRACT Green manures are an alternative for substituting or supplementing mineral nitrogen fertilizers. The aim of this study was to quantify biological N fixation (BNF and the N contribution derived from BNF (N-BNF to N levels in leaves of coffee intercropped with legumes grown on four family farms located in the mountainous region of the Atlantic Forest Biome in the state of Minas Gerais, Brazil. The following green manures were evaluated: pinto peanuts (Arachis pintoi, calopo (Calopogonium mucunoides, crotalaria (Crotalaria spectabilis, Brazilian stylo (Stylosanthes guianensis, pigeon pea (Cajanus cajan, lablab beans (Dolichos lablab, and velvet beans (Stizolobium deeringianum, and spontaneous plants. The experimental design was randomized blocks with a 4 × 8 factorial arrangement (four agricultural properties and eight green manures, and four replications. One hundred grams of fresh matter of each green manure plant were dried in an oven to obtain the dry matter. We then performed chemical and biochemical characterizations and determined the levels of 15N and 14N, which were used to quantify BNF through the 15N (δ15N natural abundance technique. The legumes C. mucunoides, S. guianensis, C. cajan, and D. lablab had the highest rates of BNF, at 46.1, 45.9, 44.4, and 42.9 %, respectively. C. cajan was the legume that contributed the largest amount of N (44.42 kg ha-1 via BNF.C. cajan, C. spectabilis, and C. mucunoides transferred 55.8, 48.8, and 48.1 %, respectively, of the N from biological fixation to the coffee plants. The use of legumes intercropped with coffee plants is important in supplying N, as well as in transferring N derived from BNF to nutrition of the coffee plants.

  1. Protective Effect of Selected Medicinal Plants against Hydrogen Peroxide Induced Oxidative Damage on Biological Substrates

    Directory of Open Access Journals (Sweden)

    Namratha Pai Kotebagilu

    2014-01-01

    Full Text Available Oxidative stress is developed due to susceptibility of biological substrates to oxidation by generation of free radicals. In degenerative diseases, oxidative stress level can be reduced by antioxidants which neutralize free radicals. Primary objective of this work was to screen four medicinal plants, namely, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, for their antioxidant property using two biological substrates—RBC and microsomes. The antioxidative ability of three solvent extracts, methanol (100% and 80% and aqueous leaf extracts, was studied at different concentrations by thiobarbituric acid reactive substances method using Fenton’s reagent to induce oxidation in the substrates. The polyphenol and flavonoid content were analyzed to relate with the observed antioxidant effect of the extracts. The phytochemical screening indicated the presence of flavonoids, polyphenols, tannins, and β-carotene in the samples. In microsomes, 80% methanol extract of Canthium and Costus and, in RBC, 80% methanol extract of Costus showed highest inhibition of oxidation and correlated well with the polyphenol and flavonoid content. From the results it can be concluded that antioxidants from medicinal plants are capable of inhibiting oxidation in biological systems, suggesting scope for their use as nutraceuticals.

  2. Integration of new nuclear power plants into transmission grids part I: Transmission system issues

    International Nuclear Information System (INIS)

    Abi-Samra, N.

    2008-01-01

    Integration of new nuclear plants into a transmission system is a two sided problem. On one side, adding the nuclear plant into an existing grid will change the attributes of that grid: e.g., loading of certain transmission lines will increase; voltages will be affected, etc. On the other side, the grid itself will affect the plant, and the plant needs to be designed to accommodate the specifics of the grid. Based on that, this paper is divided into two parts. Part I addresses the grid issues with the integration of the new plant, with emphasis on the electrical aspects of these issues. Part II of this paper, concentrates on the vulnerability of the plant from grid disturbances. Part II reintroduces a relatively new concept by this author called the Zone of Vulnerability (ZoV) for the new nuclear plants. (authors)

  3. In vitro antimalarial activity of extracts of some plants from a biological reserve in Costa Rica

    Directory of Open Access Journals (Sweden)

    Misael Chinchilla

    2012-06-01

    Full Text Available Treatment with the usual antimalarial drugs, have induced parasite resistance, reinforcing the need to finding natural antimalarial components that would be found on plants from the forest. Therefore, we decided to look for these components in Costa Rican plants from a protected forest area. Fresh and dry extracts of roots, bark, leaves, flowers and fruits of 25 plants from a biological reserve in Costa Rica, Reserva Biológica Alberto Manuel Brenes (REBAMB, were studied in vitro for the presence of substances with antimalarial activity. By studying the inhibition of P. berghei schizogony, we assessed the antimalarial activity of several plant extracts: Aphelandra aurantiaca, A. tridentata (Acanthaceae; Xanthosoma undipes (Araceae; Iriartea deltoidea (Arecaceae; Neurolaena lobata (Asteraceae; Senna papillosa, Pterocarpus hayessi, Lonchocarpus pentaphyllus (Fabaceae; Nectandra membranacea, Persea povedae, Cinamomum chavarrianum (Lauraceae; Hampea appendiculata (Malvaceae; Ruagea glabra, Guarea glabra (Meliaceae; Psidium guajava (Myrtaceae; Bocconia frutescens (Papaveraceae; Piper friedrichsthalii (Piperaceae; Clematis dioica (Ranunculaceae; Prunus annularis (Rosaceae; Siparuna thecaphora (Siparunaceae; Solanum arboreum, Witheringia solanácea (Solanaceae; Ticodendrum incognitum (Ticodendraceae; Heliocarpus appendiculatus (Tiliaceae and Myriocarpa longipes (Urticaceae. We used different parts of the plants as well as fresh and dried extracts for testing IC50. The solid content of the extracts ranged from 1-71.9μg/mL. The fresh extracts showed stronger activity than the dry ones. Since the plants showing the strongest antimalarial activity are very common in Central America, and some similar genera of these plants have shown positives results in South America, we considered important to present these findings for discussion. On the other hand, this is the first systematic study of this kind ever realized in a circumscribed and protected area of

  4. In vitro antimalarial activity of extracts of some plants from a biological reserve in Costa Rica.

    Science.gov (United States)

    Chinchilla, Misael; Valerio, Idalia; Sánchez, Ronald; Mora, Víctor; Bagnarello, Vanessa; Martínez, Laura; Gonzalez, Antonieta; Vanegas, Juan Carlos; Apestegui, Alvaro

    2012-06-01

    Treatment with the usual antimalarial drugs, have induced parasite resistance, reinforcing the need to finding natural antimalarial components that would be found on plants from the forest. Therefore, we decided to look for these components in Costa Rican plants from a protected forest area. Fresh and dry extracts of roots, bark, leaves, flowers and fruits of 25 plants from a biological reserve in Costa Rica, Reserva Biol6gica Alberto Manuel Brenes (REBAMB), were studied in vitro for the presence of substances with antimalarial activity. By studying the inhibition of P berghei schizogony, we assessed the antimalarial activity of several plant extracts: Aphelandra aurantiaca, A. tridentata (Acanthaceae); Xanthosoma undipes (Araceae); Iriartea deltoidea (Arecaceae); Neurolaena lobata (Asteraceae); Senna papillosa, Pterocarpus hayessi, Lonchocarpus pentaphyllus (Fabaceae); Nectandra membranacea, Persea povedae, Cinamomum chavarrianum (Lauraceae); Hampea appendiculata (Malvaceae); Ruagea glabra, Guarea glabra (Meliaceae); Psidium guajava (Myrtaceae); Bocconia frutescens (Papaveraceae); Piper friedrichsthalii (Piperaceae); Clematis dioica (Ranunculaceae); Prunus annularis (Rosaceae); Siparuna thecaphora (Siparunaceae); Solanum arboreum, Witheringia solanacea (Solanaceae); Ticodendrum incognitum (Ticodendraceae); Heliocarpus appendiculatus (Tiliaceae) and Myriocarpa longipes (Urticaceae). We used different parts of the plants as well as fresh and dried extracts for testing IC50. The solid content of the extracts ranged from 1-71.9 microg/mL. The fresh extracts showed stronger activity than the dry ones. Since the plants showing the strongest antimalarial activity are very common in Central America, and some similar genera of these plants have shown positives results in South America, we considered important to present these findings for discussion. On the other hand, this is the first systematic study of this kind ever realized in a circumscribed and protected area of

  5. Chemical constituents and biological research on plants in the genus Curcuma.

    Science.gov (United States)

    Sun, Wen; Wang, Sheng; Zhao, Wenwen; Wu, Chuanhong; Guo, Shuhui; Gao, Hongwei; Tao, Hongxun; Lu, Jinjian; Wang, Yitao; Chen, Xiuping

    2017-05-03

    Curcuma, a valuable genus in the family Zingiberaceae, includes approximately 110 species. These plants are native to Southeast Asia and are extensively cultivated in India, China, Sri Lanka, Indonesia, Peru, Australia, and the West Indies. The plants have long been used in folk medicine to treat stomach ailments, stimulate digestion, and protect the digestive organs, including the intestines, stomach, and liver. In recent years, substantial progress has been achieved in investigations regarding the chemical and pharmacological properties, as well as in clinical trials of certain Curcuma species. This review comprehensively summarizes the current knowledge on the chemistry and briefly discusses the biological activities of Curcuma species. A total of 720 compounds, including 102 diphenylalkanoids, 19 phenylpropene derivatives, 529 terpenoids, 15 flavonoids, 7 steroids, 3 alkaloids, and 44 compounds of other types isolated or identified from 32 species, have been phytochemically investigated. The biological activities of plant extracts and pure compounds are classified into 15 groups in detail, with emphasis on anti-inflammatory and antitumor activities.

  6. Proceedings of the FNCA workshop on plant mutation breeding 2001. Molecular biological techniques

    International Nuclear Information System (INIS)

    Kume, Tamikazu; Watanabe, Kazuo; Tano, Shigemitsu

    2002-02-01

    The FNCA (Forum for Nuclear Cooperation in Asia) Workshop on Plant Mutation Breeding was held on 20-24 August 2001 in Bangkok, Thailand. The Workshop was sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT). The Kasetsart University (KU), the Office of Atomic Energy for Peace (OAEP) and Department of Agriculture (DOA) acted as local host and the organizer with the cooperation of the Ministry of Agriculture, Forestry and Fisheries (MAFF) of Japan, the Japan Atomic Industrial Forum (JAIF) and Japan Atomic Energy Research Institute (JAERI). The Workshop was attended by two participants, a Project Leader and an expert on molecular biological techniques for plant mutation breeding, from each of the participating countries, i.e. China, Indonesia, Malaysia, the Philippines and Vietnam. One participant from the Republic of Korea, nine participants from Japan and thirteen participants from Thailand including three invited speakers attended the Workshop. Eleven papers including three invited papers on the current status of molecular biological techniques for plant mutation breeding were presented. Discussions were focused to further regional cooperation, to review and discuss results of past activities. The Medium-Term Plan of the project on the application of radiation and radioisotopes for agriculture in participating countries of Regional Nuclear Cooperation Activities (RNCA) was formulated and agreed. This proceeding compiles the invited and contributed papers that were submitted from the speakers. (author)

  7. Current status of molecular biological techniques for plant breeding in the Republic of Korea

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Seong-Han; Lee, Si-Myung; Park, Bum-Seok; Yun, In-Sun; Goo, Doe-Hoe; Kim, Seok-Dong [Rural Development Administration, National Institute of Agricultural Science and Technology, Suwon (Korea)

    2002-02-01

    Classical plant breeding has played an important role in developing new varieties in current agriculture. For decades, the technique of cross-pollination has been popular for breeding in cereal and horticultural crops to introduce special traits. However, recently the molecular techniques get widely accepted as an alternative tool in both introducing a useful trait for developing the new cultivars and investigating the characteristics of a trait in plant, like the identification of a gene. Using the advanced molecular technique, several genetically modified (GM) crops (e.g., Roundup Ready Soybean, YieldGard, LibertyLink etc.) became commercially cultivated and appeared in the global market since 1996. The GM crops, commercially available at the moment, could be regarded as successful achievements in history of crop breeding conferring the specific gene into economically valuable crops to make them better. Along with such achievements, on the other hand these new crops have also caused the controversial debate on the safety of GM crops as human consumption and environmental release as well. Nevertheless, molecular techniques are widespread and popular in both investigating the basic science of plant biology and breeding new varieties compared to their conventional counterparts. Thus, the Department of Bioresources at the National Institute of Agricultural Science and Technology (NIAST) has been using the molecular biological techniques as a complimentary tool for the improvement of crop varieties for almost two decades. (author)

  8. Developments of integrity evaluation technology for pressurized components in nuclear power plant and IT based integrity evaluation system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Choi, Jae Boong; Shim, Do Jun [Sungkyunkwan Univ., Seoul (Korea, Republic of)] (and others)

    2003-03-15

    The objective of this research is to develop an efficient evaluation technology and to investigate applicability of newly-developed technology, such as internet-based cyber platform, to operating power plants. Development of efficient evaluation systems for Nuclear Power Plant components, based on structural integrity assessment techniques, are increasingly demanded for safe operation with the increasing operating period of Nuclear Power Plants. The following five topics are covered in this project: development of assessment method for wall-thinned nuclear piping based on pipe test; development of structural integrity program for steam generator tubes with cracks of various shape; development of fatigue life evaluation system for mam components of NPP; development of internet-based cyber platform and integrity program for primary components of NPP; effect of aging on strength of dissimilar welds.

  9. IS IT POSSIBLE TO INTEGRATE BASIC BIOLOGICAL DISCIPLINES IN A PRIVATE INSTITUTION?

    Directory of Open Access Journals (Sweden)

    L.A. Azzalis

    2008-05-01

    Full Text Available Basic biological disciplines as biochemistry, genetic and molecular biology have grown faster than any of other sciences. Moreover, those disciplines contribute to the understanding and treatment of an elevated number of illnesses. On the other hand, teachers cannot assure the graduating students that each particular discipline  is essential.  Furthermore,  those disciplines are often studied separately without any interdisciplinary integration between them.  The new curriculum proposed at Anhembi Morumbi University  - a private institution placed at São Paulo city  - incorporates learning blocks that  have been designed to integrate basic biological disciplines and clinical contents from the beginning in order to provide the stimulation and motivation to guide the  student through his learning.  The educational trend has concentrated on the following steps: 1 Biochemistry, genetic, cellular and molecular biology teachers´ from that institution have elaborated a new discipline  that was named Biologic Process. The aim of this new discipline was integrate basic biological sciences in a single content;  2  Selecting problems that could be discussed in the light of biochemistry, genetic and molecular contents; e.g. sickle cell anemia; 3 Developing  an innovative instructional method that challenges students “learn to learn” different from problem-based learning , economically unavailable at any particular university,  and  4 Assessments that measure knowledge, skills, attitudes and beliefs.  We believe that the future pedagogical system in  private health university will be a combination of “classical”  presentation of contents combined with actively involved students in the educational process and instruction based on either hypothetical  or real clinical cases in order to create  the stimulus for  the student continues to  integrate basic and clinical investigation.

  10. ChlamyCyc: an integrative systems biology database and web-portal for Chlamydomonas reinhardtii

    OpenAIRE

    May, P.; Christian, J.O.; Kempa, S.; Walther, D.

    2009-01-01

    Abstract Background The unicellular green alga Chlamydomonas reinhardtii is an important eukaryotic model organism for the study of photosynthesis and plant growth. In the era of modern high-throughput technologies there is an imperative need to integrate large-scale data sets from high-throughput experimental techniques using computational methods and database resources to provide comprehensive information about the molecular and cellular organization of a single organism. Results In the fra...

  11. [Problems of world outlook and methodology of science integration in biological studies].

    Science.gov (United States)

    Khododova, Iu D

    1981-01-01

    Problems of worldoutlook and methodology of the natural-science knowledge are considered basing on the analysis of tendencies in the development of the membrane theory of cell processes and the use of principles of biological membrane functioning when solving some scientific and applied problems pertaining to different branches of chemistry and biology. The notion scientific knowledge integration is defined as interpenetration of approaches, methods and ideas of different branches of knowledge and enrichment on this basis of their content resulting in knowledge augmentation in each field taken separately. These processes are accompanied by appearance of new branches of knowledge - sciences "on junction" and their subsequent differentiations. The analysis of some gnoseological situations shows that integration of sciences contributes to coordination and some agreement of thinking styles of different specialists, puts forward keen personality of a scientist demanding, in particular, his high professional mobility. Problems of scientific activity organization are considered, which involve social sciences into the integration processes. The role of philosophy in the integration processes is emphasized.

  12. Optimal integration of linear Fresnel reflector with gas turbine cogeneration power plant

    International Nuclear Information System (INIS)

    Dabwan, Yousef N.; Mokheimer, Esmail M.A.

    2017-01-01

    Highlights: • A LFR integrated solar gas turbine cogeneration plant (ISGCPP) has been simulated. • The optimally integrated LFR with gas turbine cogeneration plant can achieve an annual solar share of 23%. • Optimal integration of LFR with gas turbine cogeneration system can reduce CO 2 emission by 18%. • Compared to a fully-solar-powered LFR plant, the optimal ISGCPP reduces the LEC by 83%. • ISGCPP reduces the LEC by 50% compared to plants integrated with carbon capture technology. - Abstract: Solar energy is an abundant resource in many countries in the Sunbelt, especially in the middle east, countries, where recent expansion in the utilization of natural gas for electricity generation has created a significant base for introducing integrated solar‐natural gas power plants (ISGPP) as an optimal solution for electricity generation in these countries. ISGPP reduces the need for thermal energy storage in traditional concentrated solar thermal plants and results in dispatchable power on demand at lower cost than stand-alone concentrated thermal power and much cheaper than photovoltaic plants. Moreover, integrating concentrated solar power (CSP) with conventional fossil fuel based thermal power plants is quite suitable for large-scale central electric power generation plants and it can be implemented in the design of new installed plants or during retrofitting of existing plants. The main objective of the present work is to investigate the possible modifications of an existing gas turbine cogeneration plant, which has a gas turbine of 150 MWe electricity generation capacity and produces steam at a rate of 81.4 at 394 °C and 45.88 bars for an industrial process, via integrating it with concentrated solar power system. In this regard, many simulations have been carried out using Thermoflow software to explore the thermo-economic performance of the gas turbine cogeneration plant integrated with LFR concentrated solar power field. Different electricity

  13. Multi-omic data integration enables discovery of hidden biological regularities

    DEFF Research Database (Denmark)

    Ebrahim, Ali; Brunk, Elizabeth; Tan, Justin

    2016-01-01

    Rapid growth in size and complexity of biological data sets has led to the 'Big Data to Knowledge' challenge. We develop advanced data integration methods for multi- level analysis of genomic, transcriptomic, ribosomal profiling, proteomic and fluxomic data. First, we show that pairwise integration...... of primary omics data reveals regularities that tie cellular processes together in Escherichia coli: the number of protein molecules made per mRNA transcript and the number of ribosomes required per translated protein molecule. Second, we show that genome- scale models, based on genomic and bibliomic data......, enable quantitative synchronization of disparate data types. Integrating omics data with models enabled the discovery of two novel regularities: condition invariant in vivo turnover rates of enzymes and the correlation of protein structural motifs and translational pausing. These regularities can...

  14. Technical Feasibility Study of Thermal Energy Storage Integration into the Conventional Power Plant Cycle

    Directory of Open Access Journals (Sweden)

    Jacek D. Wojcik

    2017-02-01

    Full Text Available The current load balance in the grid is managed mainly through peaking fossil-fuelled power plants that respond passively to the load changes. Intermittency, which comes from renewable energy sources, imposes additional requirements for even more flexible and faster responses from conventional power plants. A major challenge is to keep conventional generation running closest to the design condition with higher load factors and to avoid switching off periods if possible. Thermal energy storage (TES integration into the power plant process cycle is considered as a possible solution for this issue. In this article, a technical feasibility study of TES integration into a 375-MW subcritical oil-fired conventional power plant is presented. Retrofitting is considered in order to avoid major changes in the power plant process cycle. The concept is tested based on the complete power plant model implemented in the ProTRAX software environment. Steam and water parameters are assessed for different TES integration scenarios as a function of the plant load level. The best candidate points for heat extraction in the TES charging and discharging processes are evaluated. The results demonstrate that the integration of TES with power plant cycle is feasible and provide a provisional guidance for the design of the TES system that will result in the minimal influence on the power plant cycle.

  15. Waste water biological purification plants of dairy products industry and energy management

    Science.gov (United States)

    Stepanov, Sergey; Solkina, Olga; Stepanov, Alexander; Zhukova, Maria

    2017-10-01

    The paper presents results of engineering and economical comparison of waste water biological purification plants of dairy products industry. Three methods of purification are compared: traditional biological purification with the use of secondary clarifiers and afterpurification through granular-bed filters, biomembrane technology and physical-and-chemical treatment together with biomembrane technology for new construction conditions. The improvement of the biological purification technology using nitro-denitrification and membrane un-mixing of sludge mixture is a promising trend in this area. In these calculations, an energy management which is widely applied abroad was used. The descriptions of the three methods are illustrated with structural schemes. Costs of equipment and production areas are taken from manufacturers’ data. The research is aimed at an engineering and economical comparison of new constructions of waste water purification of dairy products industry. The experiment demonstrates advantages of biomembrane technology in waste water purification. This technology offers prospects of 122 million rubles cost saving during 25 years of operation when compared with of the technology of preparatory reagent flotation and of 13.7 million rubles cost saving compared to the option of traditional biological purification.

  16. Analysis of Optimal Operation of an Energy Integrated Distillation Plant

    DEFF Research Database (Denmark)

    Li, Hong Wen; Hansen, C.A.; Gani, Rafiqul

    2003-01-01

    The efficiency of manufacturing systems can be significantly increased through diligent application of control based on mathematical models thereby enabling more tight integration of decision making with systems operation. In the present paper analysis of optimal operation of an energy integrated...

  17. Integration of the ITER diagnostic plant systems with CODAC

    International Nuclear Information System (INIS)

    Simrock, S.; Barnsley, R.; Bertalot, L.; Hansalia, C.; Klotz, W.D.; Makijarvi, P.; Reichle, R.; Vayakis, G.; Yonekawa, I.; Walker, C.; Wallander, A.; Walsh, M.; Winter, A.

    2011-01-01

    ITER requires extensive diagnostic systems in order to meet the requirements for machine operation, protection, plasma control and physics studies. The realization of these systems is a major challenge not only because of the harsh environment and the nuclear requirements but also with respect to Instrumentation and Control (I and C) of all the 59 diagnostics plants. The Plant Systems I and C are mostly 'in-kind', i.e. procured by the seven ITER Domestic Agencies (DAs), while the Central I and C Systems are 'in-fund', i.e. procured by ITER Organization (IO). Standardization of Plant Systems I and C is of primary importance and has been one of the highest priority tasks of CODAC. The standards are published in the Plant Control Design Handbook (PCDH) which will be followed to ensure a homogeneous design, guarantee high availability and simplify maintenance and support future upgrades. Most important for a successful commissioning and operation of the ITER facility are the concepts of interfacing the diagnostics plant systems with CODAC and the standards for instrumentation and control which must be followed all contributing parties. In this paper, we will elaborate on the concepts of interfacing the diagnostics plant systems with CODAC and the standards that must be followed for the design.

  18. Radiation degradation of alginate and some results of biological effect of degraded alginate on plants

    International Nuclear Information System (INIS)

    Hien, N.Q.; Hai, L.; Luan, L.Q.; Hanh, T.T.; Nagasawa, Naotsugu; Yoshii, Fumio; Makuuchi, Keizo; Kume, Tamikazu

    2000-01-01

    Radiation degradation yields (Gd) of alginate in aqueous solution with different concentration were determined by viscometry method. The relationship between Gd and the alginate concentration was found out as: Gd=33.5 x C -0.68 , with C% (w/v) and dry alginate referred to C=100%. An empirical equation for preparing degraded alginate with the desired low viscometry average molecular weight (Mv) by radiation was proposed. Alginate extracted directly horn seaweed'Sagassum, degraded by radiation was used for field experiments and results of the biological effect on plants (tea, carrot, chrysanthemum) were presented. (author)

  19. Effect of biological and chemical preparations on peroxidase activity in leaves of tomato plants

    Directory of Open Access Journals (Sweden)

    Yulia Kolomiets

    2016-10-01

    Full Text Available In terms of treating tomato variety Chaika with chemical preparations with active substances if aluminum phosphate, 570 g/l + phosphorous acid 80 g/,l and mankotseb in concentration of 640 g/kg, the maximum increase in peroxidase activity in leaves of plants was observed in12 hours. In terms of use of biological preparations based on living cells Bacillus subtilis and Azotobacter chroococcum its activity was maximum in 24 hours and ranged from 77.7 to 112.7 un.mg-1•s-1

  20. Radiation degradation of alginate and some results of biological effect of degraded alginate on plants

    Energy Technology Data Exchange (ETDEWEB)

    Hien, N.Q.; Hai, L.; Luan, L.Q.; Hanh, T.T. [Nuclear Research Institute, Dalat (Viet Nam); Nagasawa, Naotsugu; Yoshii, Fumio; Makuuchi, Keizo; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasa