WorldWideScience

Sample records for integration laboratory pdil

  1. Tactical Systems Integration Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Tactical Systems Integration Laboratory is used to design and integrate computer hardware and software and related electronic subsystems for tactical vehicles....

  2. Laboratories: Integrating Services

    Centers for Disease Control (CDC) Podcasts

    2011-04-04

    This podcast highlights the importance of integrating laboratory services to maximize service delivery to patients.  Created: 4/4/2011 by National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP).   Date Released: 4/7/2011.

  3. Smart Grid Integration Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Troxell, Wade [Colorado State Univ., Fort Collins, CO (United States)

    2011-12-22

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU's overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory's focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3

  4. Integrated Support Environment (ISE) Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Integrated Support Environment (ISE) Laboratory serves the fleet, in-service engineers, logisticians and program management offices by automatically and...

  5. Power Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Power Systems Integration Laboratory Power Systems Integration Laboratory Research in the Energy System Integration Facility's Power Systems Integration Laboratory focuses on the microgrid applications. Photo of engineers testing an inverter in the Power Systems Integration Laboratory

  6. Energy Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Integration Laboratory Energy Systems Integration Laboratory Research in the Energy Systems Integration Laboratory is advancing engineering knowledge and market deployment of hydrogen technologies. Applications include microgrids, energy storage for renewables integration, and home- and station

  7. Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL) provides a variety of research, design engineering and prototype fabrication services...

  8. Research System Integration Laboratory (SIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The VEA Research SIL (VRS) is essential to the success of the TARDEC 30-Year Strategy. The vast majority of the TARDEC Capability Sets face challenging electronics...

  9. An analog integrated circuit design laboratory

    OpenAIRE

    Mondragon-Torres, A.F.; Mayhugh, Jr.; Pineda de Gyvez, J.; Silva-Martinez, J.; Sanchez-Sinencio, E.

    2003-01-01

    We present the structure of an analog integrated circuit design laboratory to instruct at both, senior undergraduate and entry graduate levels. The teaching material includes: a laboratory manual with analog circuit design theory, pre-laboratory exercises and circuit design specifications; a reference web page with step by step instructions and examples; the use of mathematical tools for automation and analysis; and state of the art CAD design tools in use by industry. Upon completion of the ...

  10. Integrated Circuits in the Introductory Electronics Laboratory

    Science.gov (United States)

    English, Thomas C.; Lind, David A.

    1973-01-01

    Discusses the use of an integrated circuit operational amplifier in an introductory electronics laboratory course for undergraduate science majors. The advantages of this approach and the implications for scientific instrumentation are identified. Describes a number of experiments suitable for the undergraduate laboratory. (Author/DF)

  11. Laboratory and the art of enterprise integration.

    Science.gov (United States)

    Gale, Kent

    2009-10-01

    Many healthcare organizations are weighing the advantages of investing in a new laboratory information system (LIS) that promises greater accuracy and efficiency against the challenges of replacing the organization's existing LIS system. A recent KLAS survey considers the ROI of replacing an LIS with a next-generation solution, and whether providers are trending toward single-vendor integration or best-of-breed feature sets. Almost 70 percent of the 266 providers interviewed believe there is no "best" LIS.

  12. CMDS System Integration and IAMD End-to-End Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Cruise Missile Defense Systems (CMDS) Project Office is establishing a secure System Integration Laboratory at the AMRDEC. This lab will contain tactical Signal...

  13. Development and integration of modern laboratories in aerospace education

    Science.gov (United States)

    Desautel, D.; Hunter, N.; Mourtos, N.; Pernicka, H.

    1992-01-01

    This paper describes the development and integration of a suite of laboratories in an aerospace engineering program. The program's approach to undergraduate education is described as the source for the development of the supporting laboratories. Nine laboratories supporting instruction were developed and installed. The nine laboratories include most major flight-vehicle disciplines. The purpose and major equipments/experiments of each laboratory are briefly described, as is the integration of the laboratory with coursework. The laboratory education provided by this program successfully achieves its purpose of producing competitive aerospace engineering graduates and advancing the level of undergraduate education.

  14. Integrated waste plan for Chalk River Laboratories

    International Nuclear Information System (INIS)

    McClelland, P.; Bainbridge, I.

    2011-01-01

    The core missions for Chalk River Laboratories (CRL) will involve a complex suite of activities for decades to come, many of these activities resulting in production of some amount of wastes. In order to support the business of the Nuclear Laboratories there is a requirement to responsibly manage the wastes arising from these activities. Capability to develop waste stream pathway scenarios and be able to make informed strategic decisions regarding the various options for waste processing, storage and long-term management (i.e. e nabling facilities ) is necessary to discharge this responsibility in the most cost effective and sustainable manner. A holistic waste management plan integrated with the decommissioning, environmental remediation and operations programs is the desired result such that: - Waste inputs and timings are identified; - Timing of key decisions regarding enabling facilities is clearly identified; and - A defensible decision-making framework for enabling facilities is established, thereby ensuring value for Canadians. The quantities of wastes that require managing as part of the Nuclear Legacy Liabilities Program and AECL operations activities is in the range of 200,000 to 300,000 m 3 , with a yearly increase of several thousand m 3 . This volume can be classified into over thirty distinct waste streams having differing life cycle waste management pathways from generation to disposition. The time phasing of the waste management activities required for these wastes spans several decades and involves a complex array of processes and facilities. Several factors typical of wastes from the development of nuclear technology further complicate the situation. For example, there is considerable variation in the level of detail and format of waste records generated over several decades. Also, wastes were put into storage over several decades without knowledge or consideration of what the final disposition path will be. Prior to proceeding with any major new

  15. Fuel Cell Development and Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Fuel Cell Development and Test Laboratory Fuel Cell Development and Test Laboratory The Energy System Integration Facility's Fuel Cell Development and Test Laboratory supports fuel cell research and development projects through in-situ fuel cell testing. Photo of a researcher running

  16. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  17. Sandia National Laboratories: Integrated Military Systems

    Science.gov (United States)

    Defense Systems & Assessments About Defense Systems & Assessments Program Areas Accomplishments Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios ; Culture Work-Life Balance Special Programs Integrated Military Systems (IMS) Capabilities Facilities

  18. Atypical protein disulfide isomerases (PDI: Comparison of the molecular and catalytic properties of poplar PDI-A and PDI-M with PDI-L1A.

    Directory of Open Access Journals (Sweden)

    Benjamin Selles

    Full Text Available Protein disulfide isomerases are overwhelmingly multi-modular redox catalysts able to perform the formation, reduction or isomerisation of disulfide bonds. We present here the biochemical characterization of three different poplar PDI isoforms. PDI-A is characterized by a single catalytic Trx module, the so-called a domain, whereas PDI-L1a and PDI-M display an a-b-b'-a' and a°-a-b organisation respectively. Their activities have been tested in vitro using purified recombinant proteins and a series of model substrates as insulin, NADPH thioredoxin reductase, NADP malate dehydrogenase (NADP-MDH, peroxiredoxins or RNase A. We demonstrated that PDI-A exhibited none of the usually reported activities, although the cysteines of the WCKHC active site signature are able to form a disulfide with a redox midpoint potential of -170 mV at pH 7.0. The fact that it is able to bind a [Fe2S2] cluster upon Escherichia coli expression and anaerobic purification might indicate that it does not have a function in dithiol-disulfide exchange reactions. The two other proteins were able to catalyze oxidation or reduction reactions, PDI-L1a being more efficient in most cases, except that it was unable to activate the non-physiological substrate NADP-MDH, in contrast to PDI-M. To further evaluate the contribution of the catalytic domains of PDI-M, the dicysteinic motifs have been independently mutated in each a domain. The results indicated that the two a domains seem interconnected and that the a° module preferentially catalyzed oxidation reactions whereas the a module catalyzed reduction reactions, in line with the respective redox potentials of -170 mV and -190 mV at pH 7.0. Overall, these in vitro results illustrate that the number and position of a and b domains influence the redox properties and substrate recognition (both electron donors and acceptors of PDI which contributes to understand why this protein family expanded along evolution.

  19. The Effects of Integrating Laboratory Work with Theory on Academic ...

    African Journals Online (AJOL)

    The Effects of Integrating Laboratory Work with Theory on Academic Achievement in Secondary School Physics. ... Journal Home > Vol 4, No 4 (2010) > ... better than those taught by treating practical work after and separate from theory.

  20. Cab technology integration laboratory demonstration with moving map technology

    Science.gov (United States)

    2013-03-31

    A human performance study was conducted at the John A. Volpe National Transportation Systems Center (Volpe Center) using a locomotive research simulatorthe Cab Technology Integration Laboratory (CTIL)that was acquired by the Federal Railroad Ad...

  1. Integrating the ChE Curriculum via a Recurring Laboratory

    Science.gov (United States)

    Kubilius, Matthew B.; Tu, Raymond S.; Anderson, Ryan

    2014-01-01

    A recurring framework has been integrated throughout the curriculum via a Continuously Stirred Tank Reactor (CSTR) platform. This laboratory is introduced during the material and energy balance course, and subsequent courses can use these results when explaining more advanced concepts. Further, this laboratory gives students practical experience…

  2. PDIL's role in development of technology for production of heavy water from water by ammonia-water exchange (Preprint No. PM-7)

    International Nuclear Information System (INIS)

    Mukherjee, P.K.; Mishra, B.N.

    1989-04-01

    In the year 1980, the Department of Atomic Energy, (DAE), decided to set up a pilot plant for ammonia-water exchange process at Baroda. Based on basic data and information provided by DAE about basic process parameters such as flows, de uterium concentrations, temperatures, pressures, desired recovery effficiency etc, PDIL' s role included the following for the design and engineering of the pilot plant: (a) Process study for ammonia-water exchange system at an operating pressure of 20-30 Kg/Cm 2 and temperature in the range of 150-200degC. (b) Process study for ammonia-water rectification system to get water free ammonia in the overhead. (c) Process study of the ammonia-water stripping system for getting ammonia free water. Based on the above study a scheme has been prepared for a suitable sized pilot plant. This included the design and engineering of the pilot plant covering the above sections alongwith the piping, instruments, control and layout. The specifications for procurement of equipments and components including vendors' items were also prepared. The plant is totally independent of the fertilizer plant. (author)

  3. An Integrated Biochemistry Laboratory, Including Molecular Modeling

    Science.gov (United States)

    Hall, Adele J. Wolfson Mona L.; Branham, Thomas R.

    1996-11-01

    The dilemma of designing an advanced undergraduate laboratory lies in the desire to teach and reinforce basic principles and techniques while at the same time exposing students to the excitement of research. We report here on a one-semester, project-based biochemistry laboratory that combines the best features of a cookbook approach (high success rate, achievement of defined goals) with those of an investigative, discovery-based approach (student involvement in the experimental design, excitement of real research). Individual modules may be selected and combined to meet the needs of different courses and different institutions. The central theme of this lab is protein purification and design. This laboratory accompanies the first semester of biochemistry (Structure and Function of Macromolecules, a course taken mainly by junior and senior chemistry and biological chemistry majors). The protein chosen as the object of study is the enzyme lysozyme, which is utilized in all projects. It is suitable for a student lab because it is easily and inexpensively obtained from egg white and is extremely stable, and its high isoelectric point (pI = 11) allows for efficient separation from other proteins by ion-exchange chromatography. Furthermore, a literature search conducted by the resourceful student reveals a wealth of information, since lysozyme has been the subject of numerous studies. It was the first enzyme whose structure was determined by crystallography (1). Hendrickson et al. (2) have previously described an intensive one-month laboratory course centered around lysozyme, although their emphasis is on protein stability rather than purification and engineering. Lysozyme continues to be the focus of much exciting new work on protein folding and dynamics, structure and activity (3 - 5). This lab course includes the following features: (i) reinforcement of basic techniques, such as preparation of buffers, simple enzyme kinetics, and absorption spectroscopy; (ii

  4. Project of an integrated calibration laboratory of instruments at IPEN

    International Nuclear Information System (INIS)

    Barros, Gustavo Adolfo San Jose

    2009-01-01

    The Calibration Laboratory of Instruments of Instituto de Pesquisas Energeticas e Nucleares offers calibration services of radiation detectors used in radioprotection, diagnostic radiology and radiotherapy, for IPEN and for external facilities (public and private). One part of its facilities is located in the main building, along with other laboratories and study rooms, and another part in an isolated building called Bunker. For the optimization, modernization and specially the safety, the laboratories in the main building shall be transferred to an isolated place. In this work, a project of an integrated laboratory for calibration of instruments was developed, and it will be an expansion of the current Calibration Laboratory of Instruments of IPEN. Therefore, a series of radiometric monitoring of the chosen localization of the future laboratory was realized, and all staff needs (dimensions and disposition of the study rooms and laboratories) were defined. In this project, the laboratories with X ray equipment, alpha and beta radiation sources were located at an isolated part of the building, and the wall shielding was determined, depending on the use of each laboratory. (author)

  5. The integral fast reactor fuels reprocessing laboratory at Argonne National Laboratory, Illinois

    International Nuclear Information System (INIS)

    Wolson, R.D.; Tomczuk, Z.; Fischer, D.F.; Slawecki, M.A.; Miller, W.E.

    1986-09-01

    The processing of Integral Fast Reactor (IFR) metal fuel utilizes pyrochemical fuel reprocessing steps. These steps include separation of the fission products from uranium and plutonium by electrorefining in a fused salt, subsequent concentration of uranium and plutonium for reuse, removal, concentration, and packaging of the waste material. Approximately two years ago a facility became operational at Argonne National Laboratory-Illinois to establish the chemical feasibility of proposed reprocessing and consolidation processes. Sensitivity of the pyroprocessing melts to air oxidation necessitated operation in atmosphere-controlled enclosures. The Integral Fast Reactor Fuels Reprocessing Laboratory is described

  6. Integrated management system best practices in radioecological laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Claudia Aparecida Zerbinatti de [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil). Dept. da Qualidade], e-mail: clau.zerbina@gmail.com; Zouain, Desiree Moraes [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: dmzouain@ipen.br

    2009-07-01

    This paper presents a Master dissertation advancements with the target of studying the best practices, in order to give support to an IMS conceptual model ?Integrated Management System (quality, environment, work safety and health), applied to radioecological laboratories. The planning of the proposed research comprises the following stages: first stage - the bibliographic and documental survey in IMS; a survey and study of the applied standards (QMS NBR ISO 9000 (2005), NBR ISO 9001 (2008), NBR ISO 9004 (2000), EMS 14001(2004) and OHSMS OHSAS 18001 (2007) and OHSAS 18002 (2008)); identification and characterization in radioecological laboratories processes; a methodological study of better practices and benchmarking is carried out. In the second stage of the research, the development of a case study is forecast (qualitative research, with electronic questionnaires and personal interviews, when possible), preceded by a survey and selection of international and national radioecological laboratories to be studied and, in sequence, these laboratories should be contacted and agree to participate in the research; in a third stage, the construction of a matrix of better practices, which incur in the results able to subside an IMS conceptual model proposition for radioecological laboratories; the fourth and last stage of the research comprises the construction of a conceptual proposal of an IMS structure for radioecological laboratories. The first stage of the research results are presented concisely, as well as a preliminary selection of laboratories to be studied. (author)

  7. Integrated management system best practices in radioecological laboratories

    International Nuclear Information System (INIS)

    Carvalho, Claudia Aparecida Zerbinatti de

    2009-01-01

    This paper presents a Master dissertation advancements with the target of studying the best practices, in order to give support to an IMS conceptual model ?Integrated Management System (quality, environment, work safety and health), applied to radioecological laboratories. The planning of the proposed research comprises the following stages: first stage - the bibliographic and documental survey in IMS; a survey and study of the applied standards (QMS NBR ISO 9000 (2005), NBR ISO 9001 (2008), NBR ISO 9004 (2000), EMS 14001(2004) and OHSMS OHSAS 18001 (2007) and OHSAS 18002 (2008)); identification and characterization in radioecological laboratories processes; a methodological study of better practices and benchmarking is carried out. In the second stage of the research, the development of a case study is forecast (qualitative research, with electronic questionnaires and personal interviews, when possible), preceded by a survey and selection of international and national radioecological laboratories to be studied and, in sequence, these laboratories should be contacted and agree to participate in the research; in a third stage, the construction of a matrix of better practices, which incur in the results able to subside an IMS conceptual model proposition for radioecological laboratories; the fourth and last stage of the research comprises the construction of a conceptual proposal of an IMS structure for radioecological laboratories. The first stage of the research results are presented concisely, as well as a preliminary selection of laboratories to be studied. (author)

  8. [Integrated skills laboratory concept for undergraduate training in internal medicine].

    Science.gov (United States)

    Nikendei, C; Schilling, T; Nawroth, P; Hensel, M; Ho, A D; Schwenger, V; Zeier, M; Herzog, W; Schellberg, D; Katus, H A; Dengler, T; Stremmel, W; Müller, M; Jünger, J

    2005-05-06

    An amendment to the German medical curriculum in April 2002 will place basic practical skills at the centre of medical training. We report here on the implementation and evaluation of an obligatory, tutor-guided, and integrated skills laboratory concept in the field of internal medicine. To test the effectiveness of a skills laboratory training on OSCE performance a pilot study was carried out. The experimental group, of 77 students, participated in seven sessions of communication training, skills laboratory training, and bedside teaching, each lasting one and a half hours. The control group of 66 students had as many sessions but was only offered bedside-teaching. The evaluation of acceptance of skills' training as well as the related increase in individual competence is on-going (summer term 2004: n = 176 students). The integrated skills laboratory concept was rated at 3.5 (SD = 1.2) on a 5-point scale and was acknowledged as practice-oriented (M = 4.2; SD = 1.0) and relevant for doctors' everyday lives (M = 3.6; SD = 1.1). Increased levels of competence according to individual self-evaluations proved to be highly significant (p<.001), and results of the pilot study showed that the experimental group had a significantly better OSCE performance than the control group (p<.001). This pilot study shows that curriculum changes promoting basic clinical skills are effective and lead to an improved practical education of tomorrow's physicians. The integrated skills laboratory concept is well accepted and leads to a relevant increase in competence in the practice of internal medical. The presented skills laboratory concept in internal medicine is proving to be a viable and efficient learning tool.

  9. Integrated management system best practices in radioecological laboratories

    International Nuclear Information System (INIS)

    Carvalho, Claudia Aparecida Zerbinatti de

    2010-01-01

    The research aims to study the best practices to support a conceptual proposal for IMS - Integrated Management System (quality, environment, safety and health) applicable to Radioecology laboratories. The research design is organized into the following steps: in a first step, it was developed the bibliographic and documentary research in IMS, survey and study of standards (QMS ISO 9000 (2005), ISO 9001 (2008), ISO 9004 (2000), EMS ISO 14001 (2004) and OHSMS OHSAS 18001 (2007) and OHSAS 18002 (2008)), identification and characterization of processes in Radioecology Laboratories and study of best practices methodology and benchmarking; in the second stage of the research it was developed a case study (qualitative research, with questionnaires via e-mail and interviews, when possible), preceded by a survey and selection of international and national radioecology laboratories and then these laboratories were contacted and some of them agreed to participate in this research; in the third stage of the research it was built the framework of best practices that showed results that could support the conceptual proposal for the IMS Radioecology Laboratory; the fourth and final stage of research consisted in the construction of the proposed conceptual framework of SGI for Radioecology Laboratory, being then achieved the initial objective of the research. (author)

  10. Laboratory informatics tools integration strategies for drug discovery: integration of LIMS, ELN, CDS, and SDMS.

    Science.gov (United States)

    Machina, Hari K; Wild, David J

    2013-04-01

    There are technologies on the horizon that could dramatically change how informatics organizations design, develop, deliver, and support applications and data infrastructures to deliver maximum value to drug discovery organizations. Effective integration of data and laboratory informatics tools promises the ability of organizations to make better informed decisions about resource allocation during the drug discovery and development process and for more informed decisions to be made with respect to the market opportunity for compounds. We propose in this article a new integration model called ELN-centric laboratory informatics tools integration.

  11. LLIMAS: Revolutionizing integrating modeling and analysis at MIT Lincoln Laboratory

    Science.gov (United States)

    Doyle, Keith B.; Stoeckel, Gerhard P.; Rey, Justin J.; Bury, Mark E.

    2017-08-01

    MIT Lincoln Laboratory's Integrated Modeling and Analysis Software (LLIMAS) enables the development of novel engineering solutions for advanced prototype systems through unique insights into engineering performance and interdisciplinary behavior to meet challenging size, weight, power, environmental, and performance requirements. LLIMAS is a multidisciplinary design optimization tool that wraps numerical optimization algorithms around an integrated framework of structural, thermal, optical, stray light, and computational fluid dynamics analysis capabilities. LLIMAS software is highly extensible and has developed organically across a variety of technologies including laser communications, directed energy, photometric detectors, chemical sensing, laser radar, and imaging systems. The custom software architecture leverages the capabilities of existing industry standard commercial software and supports the incorporation of internally developed tools. Recent advances in LLIMAS's Structural-Thermal-Optical Performance (STOP), aeromechanical, and aero-optical capabilities as applied to Lincoln prototypes are presented.

  12. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    International Nuclear Information System (INIS)

    Williams, C.V.; Burford, T.D.

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy's (DOE's) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID's technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID

  13. Integrating a FISH imaging system into the cytology laboratory

    Directory of Open Access Journals (Sweden)

    Denice Smith G

    2010-01-01

    Full Text Available We have implemented an interactive imaging system for the interpretation of UroVysion fluorescence in situ hybridization (FISH to improve throughput, productivity, quality control and diagnostic accuracy. We describe the Duet imaging system, our experiences with implementation, and outline the financial investment, space requirements, information technology needs, validation, and training of cytotechnologists needed to integrate such a system into a cytology laboratory. Before purchasing the imaging system, we evaluated and validated the instrument at our facility. Implementation required slide preparation changes, IT modifications, development of training programs, and revision of job descriptions for cytotechnologists. A darkened room was built to house the automated scanning station and microscope, as well as two imaging stations. IT changes included generation of storage for archival images on the LAN, addition of external hard drives for back-up, and changes to cable connections for communication between remote locations. Training programs for cytotechnologists, and pathologists/fellows/residents were developed, and cytotechnologists were integrated into multiple steps of the process. The imaging system has resulted in increased productivity for pathologists, concomitant with an expanded role of cytotechnologists in multiple critical steps, including FISH, scan setup, reclassification, and initial interpretation.

  14. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

  15. Hydrodynamic Instability, Integrated Code, Laboratory Astrophysics, and Astrophysics

    Science.gov (United States)

    Takabe, Hideaki

    2016-10-01

    This is an article for the memorial lecture of Edward Teller Medal and is presented as memorial lecture at the IFSA03 conference held on September 12th, 2003, at Monterey, CA. The author focuses on his main contributions to fusion science and its extension to astrophysics in the field of theory and computation by picking up five topics. The first one is the anomalous resisitivity to hot electrons penetrating over-dense region through the ion wave turbulence driven by the return current compensating the current flow by the hot electrons. It is concluded that almost the same value of potential as the average kinetic energy of the hot electrons is realized to prevent the penetration of the hot electrons. The second is the ablative stabilization of Rayleigh-Taylor instability at ablation front and its dispersion relation so-called Takabe formula. This formula gave a principal guideline for stable target design. The author has developed an integrated code ILESTA (ID & 2D) for analyses and design of laser produced plasma including implosion dynamics. It is also applied to design high gain targets. The third is the development of the integrated code ILESTA. The forth is on Laboratory Astrophysics with intense lasers. This consists of two parts; one is review on its historical background and the other is on how we relate laser plasma to wide-ranging astrophysics and the purposes for promoting such research. In relation to one purpose, I gave a comment on anomalous transport of relativistic electrons in Fast Ignition laser fusion scheme. Finally, I briefly summarize recent activity in relation to application of the author's experience to the development of an integrated code for studying extreme phenomena in astrophysics.

  16. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of U.S. climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt™ whole-house building simulations.

  17. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

  18. 1. Introduction. 2. Laboratory experiments. 3. Field experiments. 4. Integrated field-laboratory experiments. 5. Panel recommendations

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Some recommendations for the design of laboratory and field studies in marine radioecology are formulated. The difficulties concerning the comparability of various experimental methods used to measure the fluxes of radionuclides through marine organisms and ecosystems, and also the use of laboratory results to make predictions for the natural environment are discussed. Three working groups were established during the panel meeting, to consider laboratory experiments, field studies, and the design and execution of integrated laboratory and field studies respectively. A number of supporting papers dealing with marine radioecological experiments were presented

  19. Sandia National Laboratories Mixed Waste Landfill Integrated Demonstration

    International Nuclear Information System (INIS)

    Tyler, L.D.; Phelan, J.M.; Prindle, N.K.; Purvis, S.T.; Stormont, J.C.

    1992-01-01

    The Mixed-Waste Landfill Integrated Demonstration (MWLID) has been assigned to Sandia National Laboratories (SNL) by the US Department of Energy (DOE) Office of Technology Development. The mission of the MWLID is to assess, implement and transfer technologies and systems that lead to quicker, safer, and more efficient remediation of buried chemical and mixed-waste sites. The MWLID focus is on two landfills at SNL in Albuquerque, New Mexico: The Chemical Waste Landfill (CWL) and the Mixed-Waste Landfill (MWL). These landfills received chemical, radioactive and mixed wastes from various SNL nuclear research programs. A characterization system has been designed for the definition of the extent and concentration of contamination. This system includes historical records, directional drilling, and emplacement membrane, sensors, geophysics, sampling strategy, and on site sample analysis. In the remediation task, in-situ remediation systems are being designed to remove volatile organic compounds (VOC's) and heavy metals from soils. The VOC remediation includes vacuum extraction with electrical and radio-frequency heating. For heavy metal contamination, electrokinetic processes are being considered. The MWLID utilizes a phased, parallel approach. Initial testing is performed at an uncontaminated site adjacent to the CWL. Once characterization is underway at the CWL, lessons learned can be directly transferred to the more challenging problem of radioactive waste in the MWL. The MWL characterization can proceed in parallel with the remediation work at CWL. The technologies and systems demonstrated in the MWLID are to be evaluated based on their performance and cost in the real remediation environment of the landfills

  20. Implementing and measuring the level of laboratory service integration in a program setting in Nigeria.

    Science.gov (United States)

    Mbah, Henry; Negedu-Momoh, Olubunmi Ruth; Adedokun, Oluwasanmi; Ikani, Patrick Anibbe; Balogun, Oluseyi; Sanwo, Olusola; Ochei, Kingsley; Ekanem, Maurice; Torpey, Kwasi

    2014-01-01

    The surge of donor funds to fight HIV&AIDS epidemic inadvertently resulted in the setup of laboratories as parallel structures to rapidly respond to the identified need. However these parallel structures are a threat to the existing fragile laboratory systems. Laboratory service integration is critical to remedy this situation. This paper describes an approach to quantitatively measure and track integration of HIV-related laboratory services into the mainstream laboratory services and highlight some key intervention steps taken, to enhance service integration. A quantitative before-and-after study conducted in 122 Family Health International (FHI360) supported health facilities across Nigeria. A minimum service package was identified including management structure; trainings; equipment utilization and maintenance; information, commodity and quality management for laboratory integration. A check list was used to assess facilities at baseline and 3 months follow-up. Level of integration was assessed on an ordinal scale (0 = no integration, 1 = partial integration, 2 = full integration) for each service package. A composite score grading expressed as a percentage of total obtainable score of 14 was defined and used to classify facilities (≤ 80% FULL, 25% to 79% PARTIAL and laboratory systems were 64 (52.5%) and 0 (0.0%) at baseline, compared to 100 (82.0%) and 3 (2.4%) respectively at 3 months follow-up (p = 0.000). This project showcases our novel approach to measure the status of each laboratory on the integration continuum.

  1. Solar Radiation Research Laboratory | Energy Systems Integration Facility |

    Science.gov (United States)

    Solar Radiation Research Laboratory (SRRL) has been collecting continuous measurements of basic solar continuous operation. More than 75 instruments contribute to the Baseline Measurement System by recording

  2. Implementing and measuring the level of laboratory service integration in a program setting in Nigeria.

    Directory of Open Access Journals (Sweden)

    Henry Mbah

    Full Text Available The surge of donor funds to fight HIV&AIDS epidemic inadvertently resulted in the setup of laboratories as parallel structures to rapidly respond to the identified need. However these parallel structures are a threat to the existing fragile laboratory systems. Laboratory service integration is critical to remedy this situation. This paper describes an approach to quantitatively measure and track integration of HIV-related laboratory services into the mainstream laboratory services and highlight some key intervention steps taken, to enhance service integration.A quantitative before-and-after study conducted in 122 Family Health International (FHI360 supported health facilities across Nigeria. A minimum service package was identified including management structure; trainings; equipment utilization and maintenance; information, commodity and quality management for laboratory integration. A check list was used to assess facilities at baseline and 3 months follow-up. Level of integration was assessed on an ordinal scale (0 = no integration, 1 = partial integration, 2 = full integration for each service package. A composite score grading expressed as a percentage of total obtainable score of 14 was defined and used to classify facilities (≤ 80% FULL, 25% to 79% PARTIAL and <25% NO integration. Weaknesses were noted and addressed.We analyzed 9 (7.4% primary, 104 (85.2% secondary and 9 (7.4% tertiary level facilities. There were statistically significant differences in integration levels between baseline and 3 months follow-up period (p<0.01. Baseline median total integration score was 4 (IQR 3 to 5 compared to 7 (IQR 4 to 9 at 3 months follow-up (p = 0.000. Partial and fully integrated laboratory systems were 64 (52.5% and 0 (0.0% at baseline, compared to 100 (82.0% and 3 (2.4% respectively at 3 months follow-up (p = 0.000.This project showcases our novel approach to measure the status of each laboratory on the integration continuum.

  3. Integrating environment, safety and health training at a national laboratory

    International Nuclear Information System (INIS)

    Larson, D.R.

    1993-01-01

    In a multi-purpose research laboratory, innovation and creativity are required to satisfy the training requirements for hazards to people and the environment. A climate that encourages excellence in research and enhances hazard minimization skills is created by combining technical expertise with instructional design talent

  4. Integrating Interdisciplinary Research-Based Experiences in Biotechnology Laboratories

    Science.gov (United States)

    Iyer, Rupa S.; Wales, Melinda E.

    2012-01-01

    The increasingly interdisciplinary nature of today's scientific research is leading to the transformation of undergraduate education. In addressing these needs, the University of Houston's College of Technology has developed a new interdisciplinary research-based biotechnology laboratory curriculum. Using the pesticide degrading bacterium,…

  5. Integrated Data-Driven DSS in a Laboratory Environment

    National Research Council Canada - National Science Library

    Hargrave, Brian L

    2008-01-01

    ...) can potentially increase a user's ability to create more complex decision support projects. A well-designed IDTE will allow users to identify, learn about, access, execute and integrate disparate decision technologies...

  6. Vehicle Testing and Integration Facility; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-02

    Engineers at the National Renewable Energy Laboratory’s (NREL’s) Vehicle Testing and Integration Facility (VTIF) are developing strategies to address two separate but equally crucial areas of research: meeting the demands of electric vehicle (EV) grid integration and minimizing fuel consumption related to vehicle climate control. Dedicated to renewable and energy-efficient solutions, the VTIF showcases technologies and systems designed to increase the viability of sustainably powered vehicles. NREL researchers instrument every class of on-road vehicle, conduct hardware and software validation for EV components and accessories, and develop analysis tools and technology for the Department of Energy, other government agencies, and industry partners.

  7. 412 The Effects of Integrating Laboratory Work with Theory on ...

    African Journals Online (AJOL)

    User

    2010-10-17

    Oct 17, 2010 ... This study was an attempt to investigate the effects of integrating ... which is antithesis of true science. ... Where O1 and O3 are pretest measurement of experimental and ... schools in the study area formed the sample for the study. ... questions drawn from the selected physics concepts, elasticity, simple.

  8. The INTErnational Gamma Ray Astrophysics Laboratory: INTEGRAL Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Ubertini, Pietro, E-mail: pietro.ubertini@iaps.inaf.it; Bazzano, Angela

    2014-04-01

    The INTEGRAL Space Observatory was selected as the second Medium size mission (M2) of the ESAs Horizon 2000 vision programme. INTEGRAL is the first high angular and spectral resolution hard X-ray and soft γ-ray observatory with a wide band spectral response ranging from 3 keV up to 10 MeV energy band. This capability is supplemented by an unprecedented sensitivity enhanced by the 3 days orbit allowing long and uninterrupted observations over very wide field of view (up to ∼1000 squared degrees to zero response) and sub-ms time resolution. Part of the observatory success is due to its capability to link the high energy sky with the lower energy band. The complementarity and synergy with pointing soft X-ray missions such as XMM-Newton and CHANDRA and more recently with NuSTAR is a strategic feature to link the “thermal” and the “non-thermal” Universe observed at higher energies by space missions such as Fermi and AGILE and ground based TeV observatories sensitive to extremely high energies. INTEGRAL was launched on 17 October 2002 from the Baikonur Cosmodrome (Kazakistan) aboard a Proton rocket as part of the Russian contribution to the mission, and has successfully spent almost 11 years in orbit. In view of its successful science outcome the ESA Space Programme Committee haw recently approved its scientific operation till the end of 2016. To date the spacecraft, ground segment and scientific payload are in excellent state-of-health, and INTEGRAL is continuing its scientific operations, originally planned for a 5-year technical design and scientific nominal operation plan. This paper summarizes the current INTEGRAL scientific achievements and future prospects, with particular regard to the high energy domain.

  9. Science and production laboratories: integration between the industry and universities

    International Nuclear Information System (INIS)

    Anokhin, A.N.; Sivokon', V.P.; Rakitin, I.D.

    2010-01-01

    Industry laboratories provide students with an opportunity to resolve real serious tasks and be exposed to a wide range of professional activities. Staffing in the Russian nuclear industry is a serious concern. There is a shortage of experienced specialists, and it is impossible to train a replacement for them quickly. Creation of a true professional is a long and thorough process, whereby the amount of knowledge and experience very slowly transforms into quality of performance. The authors underline that the teacher of a modern technical university should not and must not act as a middle man between the textbook and the students. The teacher must instead become a holder of the latest technological knowledge, which he will pass to students during lessons. The authors report on the ERGOLAB, a problematic science and research laboratory for ergonomic research and development in the nuclear field. Ergonomic support is one of the more important factors in the prevention of human errors, maintenance of professional health and improvement of performance efficiency [ru

  10. Students integrate knowledge acquisition and practical work in the laboratory.

    Science.gov (United States)

    Agüera, E I; Sánchez-Hermosín, P; Díz-Pérez, J; Tovar, P; Camacho, R; Escribano, B M

    2015-09-01

    The aim of the present work was to transfer a wider concept of teamwork and self-learning to the laboratory, encouraging students' capabilities when seeking, acquiring, and processing knowledge. This educational innovation was carried out with a total of 38 students (fourth year of degree in Biology) in the area of physiology (Advances in Reproduction course) at University of Córdoba in Córdoba, Spain. The design of the project's application methodology consisted of establishing a way in which problems would be tackled in the practical classes. For this purpose, the different tasks were set up so that students could relate them to the concepts learned in the theory classes. On the first day of class, the project was presented to the students. Groups of two to three students worked in the laboratory and set up an outline of the protocol of the practical work that they had done. This outline was performed individually and sent to the lecturers through a learning management system (Moodle). The teachers gave feedback and assessed student submissions. Upon finishing the course, students completed a survey. The project-based learning method promotes practical self-learning on the part of students. This methodology demonstrated to us that it stimulates a critical and self-critical capacity in students, both individually and in groups, and that writing didactic practical material helped students to enhance their theory knowledge. The experiment was a success in view of the scores obtained upon finishing the subject. Copyright © 2015 The American Physiological Society.

  11. Systems integration for the Kennedy Space Center (KSC) Robotics Applications Development Laboratory (RADL)

    Science.gov (United States)

    Davis, V. Leon; Nordeen, Ross

    1988-01-01

    A laboratory for developing robotics technology for hazardous and repetitive Shuttle and payload processing activities is discussed. An overview of the computer hardware and software responsible for integrating the laboratory systems is given. The center's anthropomorphic robot is placed on a track allowing it to be moved to different stations. Various aspects of the laboratory equipment are described, including industrial robot arm control, smart systems integration, the supervisory computer, programmable process controller, real-time tracking controller, image processing hardware, and control display graphics. Topics of research include: automated loading and unloading of hypergolics for space vehicles and payloads; the use of mobile robotics for security, fire fighting, and hazardous spill operations; nondestructive testing for SRB joint and seal verification; Shuttle Orbiter radiator damage inspection; and Orbiter contour measurements. The possibility of expanding the laboratory in the future is examined.

  12. Implementing an integrated standards-based management system to ensure compliance at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Hjeresen, D.; Roybal, S.; Bertino, P.; Gherman, C.; Hosteny, B.

    1995-01-01

    Los Alamos National Laboratory (LANL or the Laboratory) is developing and implementing a comprehensive, Integrated Standards-Based Management System (ISBMS) to enhance environmental, safety, and health (ESH) compliance efforts and streamline management of ESH throughout the Laboratory. The Laboratory recognizes that to be competitive in today's business environment and attractive to potential Partnerships, Laboratory operations must be efficient and cost-effective. The Laboratory also realizes potential growth opportunities for developing ESH as a strength in providing new or improved services to its customers. Overall, the Laboratory desires to establish and build upon an ESH management system which ensures continuous improvement in protecting public health and safety and the environment and which fosters a working relationship with stakeholders. A team of process experts from the LANL Environmental Management (EM) Program Office, worked with management system consultants, and the Department of Energy (DOE) to develop an ESH management systems process to compare current LANL ESH management Systems and programs against leading industry standards. The process enabled the Laboratory to gauge its performance in each of the following areas: Planning and Policy Setting; Systems and Procedures; Implementation and Education; and Monitoring and Reporting. The information gathered on ESH management systems enabled LANL to pinpoint and prioritize opportunities for improvement in the provision of ESH services throughout the Laboratory and ultimately overall ESH compliance

  13. Idaho National Laboratory Integrated Safety Management System 2011 Effectiveness Review and Declaration Report

    Energy Technology Data Exchange (ETDEWEB)

    Farren Hunt

    2011-12-01

    Idaho National Laboratory (INL) performed an annual Integrated Safety Management System (ISMS) effectiveness review per 48 Code of Federal Regulations (CFR) 970.5223-1, 'Integration of Environment, Safety and Health into Work Planning and Execution.' The annual review assessed Integrated Safety Management (ISM) effectiveness, provided feedback to maintain system integrity, and helped identify target areas for focused improvements and assessments for fiscal year (FY) 2012. The information presented in this review of FY 2011 shows that the INL has performed many corrective actions and improvement activities, which are starting to show some of the desired results. These corrective actions and improvement activities will continue to help change culture that will lead to better implementation of defined programs, resulting in moving the Laboratory's performance from the categorization of 'Needs Improvement' to the desired results of 'Effective Performance.'

  14. Summative Mass Analysis of Algal Biomass - Integration of Analytical Procedures: Laboratory Analytical Procedure (LAP)

    Energy Technology Data Exchange (ETDEWEB)

    Laurens, Lieve M. L.

    2016-01-13

    This procedure guides the integration of laboratory analytical procedures to measure algal biomass constituents in an unambiguous manner and ultimately achieve mass balance closure for algal biomass samples. Many of these methods build on years of research in algal biomass analysis.

  15. Integration of Behaviour-Based Safety Programme into Engineering Laboratories and Workshops Conceptually

    Science.gov (United States)

    Koo, Kean Eng; Zain, Ahmad Nurulazam Md; Zainal, Siti Rohaida Mohamed

    2012-01-01

    The purpose of this conceptual research framework is to develop and integrate a safety training model using a behaviour-based safety training programme into laboratories for young adults, during their tertiary education, particularly in technical and vocational education. Hence, this research will be investigating the outcome of basic safety…

  16. Vertical and Horizontal Integration of Laboratory Curricula and Course Projects across the Electronic Engineering Technology Program

    Science.gov (United States)

    Zhan, Wei; Goulart, Ana; Morgan, Joseph A.; Porter, Jay R.

    2011-01-01

    This paper discusses the details of the curricular development effort with a focus on the vertical and horizontal integration of laboratory curricula and course projects within the Electronic Engineering Technology (EET) program at Texas A&M University. Both software and hardware aspects are addressed. A common set of software tools are…

  17. Flexible System Integration and Advanced Hierarchical Control Architectures in the Microgrid Research Laboratory of Aalborg University

    DEFF Research Database (Denmark)

    Meng, Lexuan; Hernández, Adriana Carolina Luna; Diaz, Enrique Rodriguez

    2016-01-01

    This paper presents the system integration and hierarchical control implementation in an inverter-based microgrid research laboratory (MGRL) in Aalborg University, Denmark. MGRL aims to provide a flexible experimental platform for comprehensive studies of microgrids. The structure of the laborato...

  18. Space shuttle program: Shuttle Avionics Integration Laboratory. Volume 7: Logistics management plan

    Science.gov (United States)

    1974-01-01

    The logistics management plan for the shuttle avionics integration laboratory defines the organization, disciplines, and methodology for managing and controlling logistics support. Those elements requiring management include maintainability and reliability, maintenance planning, support and test equipment, supply support, transportation and handling, technical data, facilities, personnel and training, funding, and management data.

  19. Technical Feasibility of Integrated Laboratory in Faculty of Sports Science Universitas Negeri Semarang

    Directory of Open Access Journals (Sweden)

    Ipang Setiawan

    2017-11-01

    Full Text Available This research aims to analyze the requirements of technical integrated laboratory FIK Unnes in improving sports achievement in Central Java Province, Indonesia. Research method used in this research was qualitative descriptive, with evaluation approach, the instrument used document analysis, observation, interview and inquiry. Data analysis used by using Miles and Huberman interactive cycle then the pattern tendency was explained, qualitative analysis was initiated by describing reality happened in narration form then it was interpreted by a guidebook with ISO 17025 or SNI 17025 standard in laboratory. The result shows that the requirements of technical integrated laboratory FIK Unnes was quite maximum to contribute in improving sports achievement in Central Java Province, Indonesia, it was based on the technical standard from equipment, personnel, accommodation and environment condition, finding of test and measurement, quality assurance of measurement and test result, and reporting of result conducted based on ISO 17025 or SNI 17025 standard.

  20. Idaho National Laboratory Integrated Safety Management System 2010 Effectiveness Review and Declaration Report

    Energy Technology Data Exchange (ETDEWEB)

    Thomas J. Haney

    2010-12-01

    Idaho National Laboratory completes an annual Integrated Safety Management System effectiveness review per 48 CFR 970.5223-1 “Integration of Environment, Safety and Health into Work Planning and Execution.” The annual review assesses ISMS effectiveness, provides feedback to maintain system integrity, and helps identify target areas for focused improvements and assessments for the following year. Using one of the three Department of Energy (DOE) descriptors in DOE M 450.4-1 regarding the state of ISMS effectiveness during Fiscal Year (FY) 2010, the information presented in this review shows that INL achieved “Effective Performance.”

  1. Integration Head Mounted Display Device and Hand Motion Gesture Device for Virtual Reality Laboratory

    Science.gov (United States)

    Rengganis, Y. A.; Safrodin, M.; Sukaridhoto, S.

    2018-01-01

    Virtual Reality Laboratory (VR Lab) is an innovation for conventional learning media which show us whole learning process in laboratory. There are many tools and materials are needed by user for doing practical in it, so user could feel new learning atmosphere by using this innovation. Nowadays, technologies more sophisticated than before. So it would carry in education and it will be more effective, efficient. The Supported technologies are needed us for making VR Lab such as head mounted display device and hand motion gesture device. The integration among them will be used us for making this research. Head mounted display device for viewing 3D environment of virtual reality laboratory. Hand motion gesture device for catching user real hand and it will be visualized in virtual reality laboratory. Virtual Reality will show us, if using the newest technologies in learning process it could make more interesting and easy to understand.

  2. Integration of scanned document management with the anatomic pathology laboratory information system: analysis of benefits.

    Science.gov (United States)

    Schmidt, Rodney A; Simmons, Kim; Grimm, Erin E; Middlebrooks, Michael; Changchien, Rosy

    2006-11-01

    Electronic document management systems (EDMSs) have the potential to improve the efficiency of anatomic pathology laboratories. We implemented a novel but simple EDMS for scanned documents as part of our laboratory information system (AP-LIS) and collected cost-benefit data with the intention of discerning the value of such a system in general and whether integration with the AP-LIS is advantageous. We found that the direct financial benefits are modest but the indirect and intangible benefits are large. Benefits of time savings and access to data particularly accrued to pathologists and residents (3.8 h/d saved for 26 pathologists and residents). Integrating the scanned document management system (SDMS) into the AP-LIS has major advantages in terms of workflow and overall simplicity. This simple, integrated SDMS is an excellent value in a practice like ours, and many of the benefits likely apply in other practice settings.

  3. Computer simulation of thermal and fluid systems for MIUS integration and subsystems test /MIST/ laboratory. [Modular Integrated Utility System

    Science.gov (United States)

    Rochelle, W. C.; Liu, D. K.; Nunnery, W. J., Jr.; Brandli, A. E.

    1975-01-01

    This paper describes the application of the SINDA (systems improved numerical differencing analyzer) computer program to simulate the operation of the NASA/JSC MIUS integration and subsystems test (MIST) laboratory. The MIST laboratory is designed to test the integration capability of the following subsystems of a modular integrated utility system (MIUS): (1) electric power generation, (2) space heating and cooling, (3) solid waste disposal, (4) potable water supply, and (5) waste water treatment. The SINDA/MIST computer model is designed to simulate the response of these subsystems to externally impressed loads. The computer model determines the amount of recovered waste heat from the prime mover exhaust, water jacket and oil/aftercooler and from the incinerator. This recovered waste heat is used in the model to heat potable water, for space heating, absorption air conditioning, waste water sterilization, and to provide for thermal storage. The details of the thermal and fluid simulation of MIST including the system configuration, modes of operation modeled, SINDA model characteristics and the results of several analyses are described.

  4. Survey of biomedical and environental data bases, models, and integrated computer systems at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Murarka, I.P.; Bodeau, D.J.; Scott, J.M.; Huebner, R.H.

    1978-08-01

    This document contains an inventory (index) of information resources pertaining to biomedical and environmental projects at Argonne National Laboratory--the information resources include a data base, model, or integrated computer system. Entries are categorized as models, numeric data bases, bibliographic data bases, or integrated hardware/software systems. Descriptions of the Information Coordination Focal Point (ICFP) program, the system for compiling this inventory, and the plans for continuing and expanding it are given, and suggestions for utilizing the services of the ICFP are outlined

  5. Survey of biomedical and environental data bases, models, and integrated computer systems at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Murarka, I.P.; Bodeau, D.J.; Scott, J.M.; Huebner, R.H.

    1978-08-01

    This document contains an inventory (index) of information resources pertaining to biomedical and environmental projects at Argonne National Laboratory--the information resources include a data base, model, or integrated computer system. Entries are categorized as models, numeric data bases, bibliographic data bases, or integrated hardware/software systems. Descriptions of the Information Coordination Focal Point (ICFP) program, the system for compiling this inventory, and the plans for continuing and expanding it are given, and suggestions for utilizing the services of the ICFP are outlined.

  6. Effects of earthquake induced rock shear on containment system integrity. Laboratory testing plan development

    International Nuclear Information System (INIS)

    Read, Rodney S.

    2011-07-01

    This report describes a laboratory-scale testing program plan to address the issue of earthquake induced rock shear effects on containment system integrity. The document contains a review of relevant literature from SKB covering laboratory testing of bentonite clay buffer material, scaled analogue tests, and the development of related material models to simulate rock shear effects. The proposed testing program includes standard single component tests, new two-component constant volume tests, and new scaled analogue tests. Conceptual drawings of equipment required to undertake these tests are presented along with a schedule of tests. The information in this document is considered sufficient to engage qualified testing facilities, and to guide implementation of laboratory testing of rock shear effects. This document was completed as part of a collaborative agreement between SKB and Nuclear Waste Management Organization (NWMO) in Canada

  7. Effects of earthquake induced rock shear on containment system integrity. Laboratory testing plan development

    Energy Technology Data Exchange (ETDEWEB)

    Read, Rodney S. (RSRead Consulting Inc. (Canada))

    2011-07-15

    This report describes a laboratory-scale testing program plan to address the issue of earthquake induced rock shear effects on containment system integrity. The document contains a review of relevant literature from SKB covering laboratory testing of bentonite clay buffer material, scaled analogue tests, and the development of related material models to simulate rock shear effects. The proposed testing program includes standard single component tests, new two-component constant volume tests, and new scaled analogue tests. Conceptual drawings of equipment required to undertake these tests are presented along with a schedule of tests. The information in this document is considered sufficient to engage qualified testing facilities, and to guide implementation of laboratory testing of rock shear effects. This document was completed as part of a collaborative agreement between SKB and Nuclear Waste Management Organization (NWMO) in Canada

  8. Establishment of Next-Generation Neurosurgery Research and Training Laboratory with Integrated Human Performance Monitoring.

    Science.gov (United States)

    Bernardo, Antonio

    2017-10-01

    Quality of neurosurgical care and patient outcomes are inextricably linked to surgical and technical proficiency and a thorough working knowledge of microsurgical anatomy. Neurosurgical laboratory-based cadaveric training is essential for the development and refinement of technical skills before their use on a living patient. Recent biotechnological advances including 3-dimensional (3D) microscopy and endoscopy, 3D printing, virtual reality, surgical simulation, surgical robotics, and advanced neuroimaging have proved to reduce the learning curve, improve conceptual understanding of complex anatomy, and enhance visuospatial skills in neurosurgical training. Until recently, few means have allowed surgeons to obtain integrated surgical and technological training in an operating room setting. We report on a new model, currently in use at our institution, for technologically integrated surgical training and innovation using a next-generation microneurosurgery skull base laboratory designed to recreate the setting of a working operating room. Each workstation is equipped with a 3D surgical microscope, 3D endoscope, surgical drills, operating table with a Mayfield head holder, and a complete set of microsurgical tools. The laboratory also houses a neuronavigation system, a surgical robotic, a surgical planning system, 3D visualization, virtual reality, and computerized simulation for training of surgical procedures and visuospatial skills. In addition, the laboratory is equipped with neurophysiological monitoring equipment in order to conduct research into human factors in surgery and the respective roles of workload and fatigue on surgeons' performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Optical Beam Deflection Based AFM with Integrated Hardware and Software Platform for an Undergraduate Engineering Laboratory

    Directory of Open Access Journals (Sweden)

    Siu Hong Loh

    2017-02-01

    Full Text Available Atomic force microscopy (AFM has been used extensively in nanoscience research since its invention. Recently, many teaching laboratories in colleges, undergraduate institutions, and even high schools incorporate AFM as an effective teaching tool for nanoscience education. This paper presents an optical beam deflection (OBD based atomic force microscope, designed specifically for the undergraduate engineering laboratory as a teaching instrument. An electronic module for signal conditioning was built with components that are commonly available in an undergraduate electronic laboratory. In addition to off-the-shelf mechanical parts and optics, the design of custom-built mechanical parts waskept as simple as possible. Hence, the overall cost for the setup is greatly reduced. The AFM controller was developed using National Instruments Educational Laboratory Virtual Instrumentation Suite (NI ELVIS, an integrated hardware and software platform which can be programmed in LabVIEW. A simple yet effective control algorithm for scanning and feedback control was developed. Despite the use of an educational platform and low-cost components from the undergraduate laboratory, the developed AFM is capable of performing imaging in constant-force mode with submicron resolution and at reasonable scanning speed (approximately 18 min per image. Therefore, the AFM is suitable to be used as an educational tool for nanoscience. Moreover, the construction of the system can be a valuable educational experience for electronic and mechanical engineering students.

  10. Oceanic crustal velocities from laboratory and logging measurements of Integrated Ocean Drilling Program Hole 1256D

    Science.gov (United States)

    Gilbert, Lisa A.; Salisbury, Matthew H.

    2011-09-01

    Drilling and logging of Integrated Ocean Drilling Program (IODP) Hole 1256D have provided a unique opportunity for systematically studying a fundamental problem in marine geophysics: What influences the seismic structure of oceanic crust, porosity or composition? Compressional wave velocities (Vp) logged in open hole or from regional refraction measurements integrate both the host rock and cracks in the crust. To determine the influence of cracks on Vp at several scales, we first need an accurate ground truth in the form of laboratory Vp on crack-free, or nearly crack-free samples. We measured Vp on 46 water-saturated samples at in situ pressures to determine the baseline velocities of the host rock. These new results match or exceed Vp logs throughout most of the hole, especially in the lower dikes and gabbros, where porosities are low. In contrast, samples measured at sea under ambient laboratory conditions, had consistently lower Vp than the Vp logs, even after correction to in situ pressures. Crack-free Vp calculated from simple models of logging and laboratory porosity data for different lithologies and facies suggest that crustal velocities in the lavas and upper dikes are controlled by porosity. In particular, the models demonstrate significant large-scale porosity in the lavas, especially in the sections identified as fractured flows and breccias. However, crustal velocities in the lower dikes and gabbros are increasingly controlled by petrology as the layer 2-3 boundary is approached.

  11. Astrophysics Laboratory-Based Lecture Material Development of Solarscope with Integration and Interconnection

    Directory of Open Access Journals (Sweden)

    Asih Melati

    2015-12-01

    Full Text Available The development of laboratory-based lecture materials with integrated and interconnected value is a requirement for study and practical materials and in line with the vision and mission of UIN Sunan Kalijaga. As a result, the optimization of laboratory’s equipment is urgently needed. Although UIN Sunan Kalijaga Laboratory have had Solarscope telescope – which have a guidebook in German language – for six years, it was not optimally used even it can be used to satisfy the desires to observe astronomical objects economically, accurately and easy to operate. Based on above, this research propose to create a lab-work module for Solarscope with integration and interconnection value. This research used 4D methodology (Define, Design, Develop and Disseminate and have passed the assessment and validation phase from material, media and integrated-interconnected value experts. The data analysis of the module which was mapped by Sukarja into 5 scale mark resulted in good grade in the module assessment by material experts with 80% from the ideal mark with most of the complaint is in the formula typing which is not clear in its derivative. The module assessment by media experts scored very good grade with 88.89% from the ideal mark regarding the content and the figures of the module. Lastly, from the integrated-interconnected value experts marked in good grade with 73.50% from the ideal mark and suggested the addition of supported Al-Qur’an verses and relevant exclamation of the Al-Qur’an’s passages. With all of these assessment results, this module can be used as the material of astrophysics lab-work and for supporting students’ researches with integration-interconnection value and enhance the university’s book collection which will support the vision and mission of UIN Sunan Kalijaga

  12. Idaho National Laboratory Integrated Safety Management System FY 2012 Effectiveness Review and Declaration Report

    Energy Technology Data Exchange (ETDEWEB)

    Farren Hunt

    2012-12-01

    Idaho National Laboratory (INL) performed an Annual Effectiveness Review of the Integrated Safety Management System (ISMS), per 48 Code of Federal Regulations (CFR) 970.5223 1, “Integration of Environment, Safety and Health into Work Planning and Execution.” The annual review assessed Integrated Safety Management (ISM) effectiveness, provided feedback to maintain system integrity, and identified target areas for focused improvements and assessments for fiscal year (FY) 2013. Results of the FY 2012 annual effectiveness review demonstrated that the INL’s ISMS program was significantly strengthened. Actions implemented by the INL demonstrate that the overall Integrated Safety Management System is sound and ensures safe and successful performance of work while protecting workers, the public, and environment. This report also provides several opportunities for improvement that will help further strengthen the ISM Program and the pursuit of safety excellence. Demonstrated leadership and commitment, continued surveillance, and dedicated resources have been instrumental in maturing a sound ISMS program. Based upon interviews with personnel, reviews of assurance activities, and analysis of ISMS process implementation, this effectiveness review concludes that ISM is institutionalized and is “Effective”.

  13. Integrating bio-inorganic and analytical chemistry into an undergraduate biochemistry laboratory.

    Science.gov (United States)

    Erasmus, Daniel J; Brewer, Sharon E; Cinel, Bruno

    2015-01-01

    Undergraduate laboratories expose students to a wide variety of topics and techniques in a limited amount of time. This can be a challenge and lead to less exposure to concepts and activities in bio-inorganic chemistry and analytical chemistry that are closely-related to biochemistry. To address this, we incorporated a new iron determination by atomic absorption spectroscopy exercise as part of a five-week long laboratory-based project on the purification of myoglobin from beef. Students were required to prepare samples for chemical analysis, operate an atomic absorption spectrophotometer, critically evaluate their iron data, and integrate these data into a study of myoglobin. © 2015 The International Union of Biochemistry and Molecular Biology.

  14. Development of the environmental management integrated baseline at the Idaho National Engineering Laboratory using systems engineering

    International Nuclear Information System (INIS)

    Murphy, J.A.; Caliva, R.M.; Wixson, J.R.

    1997-01-01

    The Idaho National Engineering Laboratory (INEL) is one of many Department of Energy (DOE) national laboratories that has been performing environmental cleanup and stabilization, which was accelerated upon the end of the cold war. In fact, the INEL currently receives two-thirds of its scope to perform these functions. However, the cleanup is a highly interactive system that creates an opportunity for systems engineering methodology to be employed. At the INEL, a group called EM (Environmental Management) Integration has been given this charter along with a small core of systems engineers. This paper discusses the progress to date of converting the INEL legacy system into one that uses the systems engineering discipline as the method to ensure that external requirements are met

  15. Idaho National Laboratory Integrated Safety Management System FY 2016 Effectiveness Review and Declaration Report

    International Nuclear Information System (INIS)

    Hunt, Farren J.

    2016-01-01

    Idaho National Laboratory's (INL's) Integrated Safety Management System (ISMS) effectiveness review of fiscal year (FY) 2016 shows that INL has integrated management programs and safety elements throughout the oversight and operational activities performed at INL. The significant maturity of Contractor Assurance System (CAS) processes, as demonstrated across INL's management systems and periodic reporting through the Management Review Meeting process, over the past two years has provided INL with current real-time understanding and knowledge pertaining to the health of the institution. INL's sustained excellence of the Integrated Safety and effective implementation of the Worker Safety and Health Program is also evidenced by other external validations and key indicators. In particular, external validations include VPP, ISO 14001, DOELAP accreditation, and key Laboratory level indicators such as ORPS (number, event frequency and severity); injury/illness indicators such as Days Away, Restricted and Transfer (DART) case rate, back & shoulder metric and open reporting indicators, demonstrate a continuous positive trend and therefore improved operational performance over the last few years. These indicators are also reflective of the Laboratory's overall organizational and safety culture improvement. Notably, there has also been a step change in ESH&Q Leadership actions that have been recognized both locally and complex-wide. Notwithstanding, Laboratory management continues to monitor and take action on lower level negative trends in numerous areas including: Conduct of Operations, Work Control, Work Site Analysis, Risk Assessment, LO/TO, Fire Protection, and Life Safety Systems, to mention a few. While the number of severe injury cases has decreased, as evidenced by the reduction in the DART case rate, the two hand injuries and the fire truck/ambulance accident were of particular concern. Aggressive actions continue in order to understand the causes and define actions

  16. Integration of laboratory bioassays into the risk-based corrective action process

    International Nuclear Information System (INIS)

    Edwards, D.; Messina, F.; Clark, J.

    1995-01-01

    Recent data generated by the Gas Research Institute (GRI) and others indicate that residual hydrocarbon may be bound/sequestered in soil such that it is unavailable for microbial degradation, and thus possibly not bioavailable to human/ecological receptors. A reduction in bioavailability would directly equate to reduced exposure and, therefore, potentially less-conservative risk-based cleanup soil goals. Laboratory bioassays which measure bioavailability/toxicity can be cost-effectively integrated into the risk-based corrective action process. However, in order to maximize the cost-effective application of bioassays several site-specific parameters should be addressed up front. This paper discusses (1) the evaluation of parameters impacting the application of bioassays to soils contaminated with metals and/or petroleum hydrocarbons and (2) the cost-effective integration of bioassays into a tiered ASTM type framework for risk-based corrective action

  17. Idaho National Laboratory Integrated Safety Management System FY 2013 Effectiveness Review and Declaration Report

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, Farren [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-12-01

    Idaho National Laboratory (INL) performed an Annual Effectiveness Review of the Integrated Safety Management System (ISMS), per 48 Code of Federal Regulations (CFR) 970.5223 1, “Integration of Environment, Safety and Health into Work Planning and Execution.” The annual review assessed Integrated Safety Management (ISM) effectiveness, provided feedback to maintain system integrity, and identified target areas for focused improvements and assessments for Fiscal Year (FY) 2014. Results of the FY 2013 annual effectiveness review demonstrate that the INL’s ISMS program is “Effective” and continually improving and shows signs of being significantly strengthened. Although there have been unacceptable serious events in the past, there has also been significant attention, dedication, and resources focused on improvement, lessons learned and future prevention. BEA’s strategy of focusing on these improvements includes extensive action and improvement plans that include PLN 4030, “INL Sustained Operational Improvement Plan, PLN 4058, “MFC Strategic Excellence Plan,” PLN 4141, “ATR Sustained Excellence Plan,” and PLN 4145, “Radiological Control Road to Excellence,” and the development of LWP 20000, “Conduct of Research.” As a result of these action plans, coupled with other assurance activities and metrics, significant improvement in operational performance, organizational competence, management oversight and a reduction in the number of operational events is being realized. In short, the realization of the fifth core function of ISMS (feedback and continuous improvement) and the associated benefits are apparent.

  18. A Mixed Learning Approach to Integrating Digital Signal Processing Laboratory Exercises into a Non-Lab Junior Year DSP Course

    Science.gov (United States)

    McPheron, Benjamin D.; Thangaraj, Charles V.; Thomas, Charles R.

    2017-01-01

    Laboratory courses can be difficult to fit into an engineering program at a liberal arts-focused university, which requires students to be exposed to appropriate breadth, as well as sufficient depth in their engineering education. One possible solution to this issue is to integrate laboratory exercises with lecture in a "studio" format,…

  19. The electromagnetic integrated demonstration at the Idaho National Engineering Laboratory cold test pit

    International Nuclear Information System (INIS)

    Pellerin, L.; Alumbaugh, D.L.; Pfeifer, M.C.

    1997-01-01

    The electromagnetic integrated demonstration (EMID) is a baseline study in electromagnetic (EM) exploration of the shallow subsurface (< 10 m). Eleven distinct EM systems, covering the geophysical spectrum, acquired data on a grid over the Idaho National Engineering Laboratory (INEL) Cold Test Pit (CTP). The systems are investigated and evaluated for the purpose of identifying and reviewing existing geophysical characterization instrumentation (commercial and experimental), integrating those technologies with multi-dimensional interpretational algorithms, and identifying gaps in shallow subsurface EM imaging technology. The EMID data, are valuable for testing and evaluating new interpretational software, and developing techniques for integrating multiple datasets. The experimental field techniques shows how the acquisition of data in a variety of array configurations can considerably enhance interpretation. All data are available on the world wide web. Educators and students are encouraged to use the data for both classroom and graduate studies. The purpose of this paper is to explain why, where, how and what kind of data were collected. It is left to the reader to assess the value of a given system for their particular application. Information about the EMID is organized into two general categories: survey description and system evaluation

  20. Integration agent-based models and GIS as a virtual urban dynamic laboratory

    Science.gov (United States)

    Chen, Peng; Liu, Miaolong

    2007-06-01

    Based on the Agent-based Model and spatial data model, a tight-coupling integrating method of GIS and Agent-based Model (ABM) is to be discussed in this paper. The use of object-orientation for both spatial data and spatial process models facilitates their integration, which can allow exploration and explanation of spatial-temporal phenomena such as urban dynamic. In order to better understand how tight coupling might proceed and to evaluate the possible functional and efficiency gains from such a tight coupling, the agent-based model and spatial data model are discussed, and then the relationships affecting spatial data model and agent-based process models interaction. After that, a realistic crowd flow simulation experiment is presented. Using some tools provided by general GIS systems and a few specific programming languages, a new software system integrating GIS and MAS as a virtual laboratory applicable for simulating pedestrian flows in a crowd activity centre has been developed successfully. Under the environment supported by the software system, as an applicable case, a dynamic evolution process of the pedestrian's flows (dispersed process for the spectators) in a crowds' activity center - The Shanghai Stadium has been simulated successfully. At the end of the paper, some new research problems have been pointed out for the future.

  1. Idaho National Laboratory Integrated Safety Management System FY 2016 Effectiveness Review and Declaration Report

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, Farren J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-01

    Idaho National Laboratory’s (INL’s) Integrated Safety Management System (ISMS) effectiveness review of fiscal year (FY) 2016 shows that INL has integrated management programs and safety elements throughout the oversight and operational activities performed at INL. The significant maturity of Contractor Assurance System (CAS) processes, as demonstrated across INL’s management systems and periodic reporting through the Management Review Meeting process, over the past two years has provided INL with current real-time understanding and knowledge pertaining to the health of the institution. INL’s sustained excellence of the Integrated Safety and effective implementation of the Worker Safety and Health Program is also evidenced by other external validations and key indicators. In particular, external validations include VPP, ISO 14001, DOELAP accreditation, and key Laboratory level indicators such as ORPS (number, event frequency and severity); injury/illness indicators such as Days Away, Restricted and Transfer (DART) case rate, back & shoulder metric and open reporting indicators, demonstrate a continuous positive trend and therefore improved operational performance over the last few years. These indicators are also reflective of the Laboratory’s overall organizational and safety culture improvement. Notably, there has also been a step change in ESH&Q Leadership actions that have been recognized both locally and complex-wide. Notwithstanding, Laboratory management continues to monitor and take action on lower level negative trends in numerous areas including: Conduct of Operations, Work Control, Work Site Analysis, Risk Assessment, LO/TO, Fire Protection, and Life Safety Systems, to mention a few. While the number of severe injury cases has decreased, as evidenced by the reduction in the DART case rate, the two hand injuries and the fire truck/ambulance accident were of particular concern. Aggressive actions continue in order to understand the causes and

  2. Integrating Safety with Science,Technology and Innovation at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Rich, Bethany M [Los Alamos National Laboratory

    2012-04-02

    The mission of Los Alamos National Laboratory (LANL) is to develop and apply science, technology and engineering solutions to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve emerging national security challenges. The most important responsibility is to direct and conduct efforts to meet the mission with an emphasis on safety, security, and quality. In this article, LANL Environmental, Safety, and Health (ESH) trainers discuss how their application and use of a kinetic learning module (learn by doing) with a unique fall arrest system is helping to address one the most common industrial safety challenges: slips and falls. A unique integration of Human Performance Improvement (HPI), Behavior Based Safety (BBS) and elements of the Voluntary Protection Program (VPP) combined with an interactive simulator experience is being used to address slip and fall events at Los Alamos.

  3. Final report for the Integrated and Robust Security Infrastructure (IRSI) laboratory directed research and development project

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, R.L.; Hamilton, V.A.; Istrail, G.G.; Espinoza, J.; Murphy, M.D.

    1997-11-01

    This report describes the results of a Sandia-funded laboratory-directed research and development project titled {open_quotes}Integrated and Robust Security Infrastructure{close_quotes} (IRSI). IRSI was to provide a broad range of commercial-grade security services to any software application. IRSI has two primary goals: application transparency and manageable public key infrastructure. IRSI must provide its security services to any application without the need to modify the application to invoke the security services. Public key mechanisms are well suited for a network with many end users and systems. There are many issues that make it difficult to deploy and manage a public key infrastructure. IRSI addressed some of these issues to create a more manageable public key infrastructure.

  4. Interfacing Space Communications and Navigation Network Simulation with Distributed System Integration Laboratories (DSIL)

    Science.gov (United States)

    Jennings, Esther H.; Nguyen, Sam P.; Wang, Shin-Ywan; Woo, Simon S.

    2008-01-01

    NASA's planned Lunar missions will involve multiple NASA centers where each participating center has a specific role and specialization. In this vision, the Constellation program (CxP)'s Distributed System Integration Laboratories (DSIL) architecture consist of multiple System Integration Labs (SILs), with simulators, emulators, testlabs and control centers interacting with each other over a broadband network to perform test and verification for mission scenarios. To support the end-to-end simulation and emulation effort of NASA' exploration initiatives, different NASA centers are interconnected to participate in distributed simulations. Currently, DSIL has interconnections among the following NASA centers: Johnson Space Center (JSC), Kennedy Space Center (KSC), Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). Through interconnections and interactions among different NASA centers, critical resources and data can be shared, while independent simulations can be performed simultaneously at different NASA locations, to effectively utilize the simulation and emulation capabilities at each center. Furthermore, the development of DSIL can maximally leverage the existing project simulation and testing plans. In this work, we describe the specific role and development activities at JPL for Space Communications and Navigation Network (SCaN) simulator using the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) tool to simulate communications effects among mission assets. Using MACHETE, different space network configurations among spacecrafts and ground systems of various parameter sets can be simulated. Data that is necessary for tracking, navigation, and guidance of spacecrafts such as Crew Exploration Vehicle (CEV), Crew Launch Vehicle (CLV), and Lunar Relay Satellite (LRS) and orbit calculation data are disseminated to different NASA centers and updated periodically using the High Level Architecture (HLA). In

  5. The Los Alamos, Sandia, and Livermore Laboratories: Integration and collaboration solving science and technology problems for the nation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    More than 40 years ago, three laboratories were established to take on scientific responsibility for the nation`s nuclear weapons - Los Alamos, Sandia, and Livermore. This triad of laboratories has provided the state-of-the-art science and technology to create America`s nuclear deterrent and to ensure that the weapons are safe, secure, and to ensure that the weapons are safe, secure, and reliable. These national security laboratories carried out their responsibilities through intense efforts involving almost every field of science, engineering, and technology. Today, they are recognized as three of the world`s premier research and development laboratories. This report sketches the history of the laboratories and their evolution to an integrated three-laboratory system. The characteristics that make them unique are described and some of the major contributions they have made over the years are highlighted.

  6. Timely integration of safeguards and security with projects at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Price, R.; Blount, P.M.; Garcia, S.W.; Gonzales, R.L.; Salazar, J.B.; Campbell, C.H.

    2004-01-01

    The Safeguards and Security (S and S) Requirements Integration Team at Los Alamos National Laboratory (LANL) has developed and implemented an innovative management process that will be described in detail. This process systematically integrates S and S planning into construction, facility modifications or upgrades, mission changes, and operational projects. It extends and expands the opportunities provided by the DOE project management manual, DOE M 413.3-1. Through a series of LANL documents, a process is defined and implemented that formally identifies an S and S professional to oversee, coordinate, facilitate, and communicate among the identified S and S organizations and the project organizations over the life cycle of the project. The derived benefits, namely (1) elimination/reduction of re-work or costly retrofitting, (2) overall project cost savings because of timely and improved planning, (3) formal documentation, and (4) support of Integrated Safeguards and Security Management at LANL, will be discussed. How many times, during the construction of a new facility or the modification of an existing facility, have the persons responsible for the project waited until the last possible minute or until after construction is completed to approach the security organizations for their help in safeguarding and securing the facility? It's almost like, 'Oh, by the way, do we need access control and a fence around this building and just what are we going to do with our classified anyway?' Not only is it usually difficult; it's also typically expensive to retrofit or plan for safeguards and security after the fact. Safeguards and security organizations are often blamed for budget overruns and delays in facility occupancy and program startup, but these problems are usually due to poor front-end planning. In an effort to help projects engage safeguards and security in the pre-conceptual or conceptual stages, we implemented a high level formality of operations. We

  7. Complete data lifecycles and citizen science integration via The Public Laboratory

    Science.gov (United States)

    Griffith, A.; Dosemagen, S.; Warren, J.

    2012-04-01

    for use without restriction. Public Laboratory techniques are cheaper, more temporally relevant, more portable, and more accurate than other methods of remote sensing. In some cases, our spatial resolutions were 20 times better than those of Google Earth. Our integration of community members represents a bottom up approach in data collection, management, and literacy. The Public Laboratory data archives are maintained on-line with public access and all our software is open source with the source code publicly available. We believe this approach to be the new paradigm in data transparency, whether privately or publicly funded. The Public Laboratory has even initiated discussions with lawyers familiar with environmental laws to increase possible uses in litigation. But the data are collected for the public, by the public. By involving the public and any interested parties in the collection of data and tracking that data horizontally from collection to publication, we engage a larger number of people making transparency inherent in the process. We have found greater levels of interest and comprehension by citizens when they are involved in the inclusive process.

  8. Critical Causes of Degradation in Integrated Laboratory Scale Cells during High Temperature Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    M.S. Sohal; J.E. O' Brien; C.M. Stoots; J. J. Hartvigsen; D. Larsen; S. Elangovan; J.S. Herring; J.D. Carter; V.I. Sharma; B. Yildiz

    2009-05-01

    An ongoing project at Idaho National Laboratory involves generating hydrogen from steam using solid oxide electrolysis cells (SOEC). This report describes background information about SOECs, the Integrated Laboratory Scale (ILS) testing of solid-oxide electrolysis stacks, ILS performance degradation, and post-test examination of SOECs by various researchers. The ILS test was a 720- cell, three-module test comprised of 12 stacks of 60 cells each. A peak H2 production rate of 5.7 Nm3/hr was achieved. Initially, the module area-specific resistance ranged from 1.25 Ocm2 to just over 2 Ocm2. Total H2 production rate decreased from 5.7 Nm3/hr to a steady state value of 0.7 Nm3/hr. The decrease was primarily due to cell degradation. Post test examination by Ceramatec showed that the hydrogen electrode appeared to be in good condition. The oxygen evolution electrode does show delamination in operation and an apparent foreign layer deposited at the electrolyte interface. Post test examination by Argonne National Laboratory showed that the O2-electrode delaminated from the electrolyte near the edge. One possible reason for this delamination is excessive pressure buildup with high O2 flow in the over-sintered region. According to post test examination at the Massachusetts Institute of Technology, the electrochemical reactions have been recognized as one of the prevalent causes of their degradation. Specifically, two important degradation mechanisms were examined: (1) transport of Crcontaining species from steel interconnects into the oxygen electrode and LSC bond layers in SOECs, and (2) cation segregation and phase separation in the bond layer. INL conducted a workshop October 27, 2008 to discuss possible causes of degradation in a SOEC stack. Generally, it was agreed that the following are major degradation issues relating to SOECs: • Delamination of the O2-electrode and bond layer on the steam/O2-electrode side • Contaminants (Ni, Cr, Si, etc.) on reaction sites

  9. The Integrated Cloud-based Environmental Data Management System at Los Alamos National Laboratory - 13391

    International Nuclear Information System (INIS)

    Schultz Paige, Karen; Gomez, Penny; Patel, Nita P.; EchoHawk, Chris; Dorries, Alison M.

    2013-01-01

    In today's world, instant access to information is taken for granted. The national labs are no exception; our data users expect immediate access to their data. Los Alamos National Laboratory (LANL) has collected over ten million records, and the data needs to be accessible to scientists as well as the public. The data span a wide range of media, analytes, time periods, formats, and quality and have traditionally existed in scattered databases, making comprehensive work with the data impossible. Recently, LANL has successfully integrated all their environmental data into a single, cloud-based, web-accessible data management system. The system combines data transparency to the public with immediate access required by the technical staff. The use of automatic electronic data validation has been critical to immediate data access while saving millions of dollars and increasing data consistency and quality. The system includes a Google Maps based GIS tool that is simple enough for people to locate potentially contaminated sites near their home or workplace, and complex enough to allow scientists to plot and trend their data at the surface and at depth as well as over time. A variety of formatted reports can be run at any desired frequency to report the most current data available in the data base. The advanced user can also run free form queries of the data base. This data management system has saved LANL time and money, an increasingly important accomplishment during periods of budget cuts with increasing demand for immediate electronic services. (authors)

  10. An integrated performance measure for environmental restoration at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Boston, H.L.; Kuhaida, A.J. Jr.; Garland, S.B.

    1992-01-01

    A number of contaminated sites at the Oak Ridge National Laboratory (ORNL) require remediation. A strategy has been developed to support the remediation of individual sites, while providing an integrated measure of contaminant release from all sites and serving as a performance measure for remedial efforts. Most ORNL facilities are in one watershed and groundwater pathways are known to be localized within the watershed. Thus the stream system is the receptor for contaminants released from individual sites and a conduit for contaminant transport off site. Monitoring at key locations in the watershed is linked with information from environmental investigations to: (1) identify and quantify contaminant fluxes; (2) identify the pathways of greatest concern for human health and ecological risk; (3) improve conceptual models of contaminant movement; (4) evaluate remedial alternatives; (5) prioritize sites for remediation; and, (6) document reduced contaminant fluxes following remediation. The contaminants of greatest concern are associated with soil and aquatic sediment. The subjects of investigations range from soil processes and bioindicators of contaminant exposure, to phenomena at the watershed-level such as models predicting contaminant movement during large storms and predicting groundwater transport of contaminants. These efforts provide the foundation needed to coordinate the remediation of individual sites and to assess the overall performance of remedial actions

  11. The Integrated Cloud-based Environmental Data Management System at Los Alamos National Laboratory - 13391

    Energy Technology Data Exchange (ETDEWEB)

    Schultz Paige, Karen; Gomez, Penny; Patel, Nita P.; EchoHawk, Chris; Dorries, Alison M. [Los Alamos National Laboratory, MS M996, Los Alamos, NM, 87544 (United States)

    2013-07-01

    In today's world, instant access to information is taken for granted. The national labs are no exception; our data users expect immediate access to their data. Los Alamos National Laboratory (LANL) has collected over ten million records, and the data needs to be accessible to scientists as well as the public. The data span a wide range of media, analytes, time periods, formats, and quality and have traditionally existed in scattered databases, making comprehensive work with the data impossible. Recently, LANL has successfully integrated all their environmental data into a single, cloud-based, web-accessible data management system. The system combines data transparency to the public with immediate access required by the technical staff. The use of automatic electronic data validation has been critical to immediate data access while saving millions of dollars and increasing data consistency and quality. The system includes a Google Maps based GIS tool that is simple enough for people to locate potentially contaminated sites near their home or workplace, and complex enough to allow scientists to plot and trend their data at the surface and at depth as well as over time. A variety of formatted reports can be run at any desired frequency to report the most current data available in the data base. The advanced user can also run free form queries of the data base. This data management system has saved LANL time and money, an increasingly important accomplishment during periods of budget cuts with increasing demand for immediate electronic services. (authors)

  12. Hazards and accident analyses, an integrated approach, for the Plutonium Facility at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pan, P.Y.; Goen, L.K.; Letellier, B.C.; Sasser, M.K.

    1995-01-01

    This paper describes an integrated approach to perform hazards and accident analyses for the Plutonium Facility at Los Alamos National Laboratory. A comprehensive hazards analysis methodology was developed that extends the scope of the preliminary/process hazard analysis methods described in the AIChE Guidelines for Hazard Evaluations. Results fro the semi-quantitative approach constitute a full spectrum of hazards. For each accident scenario identified, there is a binning assigned for the event likelihood and consequence severity. In addition, each accident scenario is analyzed for four possible sectors (workers, on-site personnel, public, and environment). A screening process was developed to link the hazard analysis to the accident analysis. Specifically the 840 accident scenarios were screened down to about 15 accident scenarios for a more through deterministic analysis to define the operational safety envelope. The mechanics of the screening process in the selection of final scenarios for each representative accident category, i.e., fire, explosion, criticality, and spill, is described

  13. Carbon Stock in Integrated Field Laboratory Faculty of Agriculture University of Lampung

    Directory of Open Access Journals (Sweden)

    Irwan Sukri Banuwa

    2016-05-01

    Full Text Available This study aimed to determine the amount of carbon stock and CO2 plant uptake in the Integrated Field Laboratory (IFL Faculty of Agriculture University of Lampung. The research was conducted from April to November 2015. The study was arranged in a completely randomized block design (CRBD, consisting of five land units as treatment with four replications for each treatment. Biomass of woody plants was estimated using allometric equation, biomass of understorey plants was estimated using plant dry weight equation, and organic C content in plants and soils were analyzed using a Walkey and Black method. The results showed that land unit consisting of densely woody plants significantly affects total biomass of woody plants, organic C content in woody plants and total carbon content (above and below ground. The highest amount of woody plant biomass was observed in land unit 5, i.e. 1,196.88 Mg ha-1, and above ground total carbon was 437.19 Mg ha-1. IFL Faculty of Agriculture University of Lampung has a total carbon stock of 2,051.90 Mg and capacity to take up total CO2 of 6,656.88 Mg.

  14. Service Integration to Enhance Research Data Management: RSpace Electronic Laboratory Notebook Case Study

    Directory of Open Access Journals (Sweden)

    Stuart Macdonald

    2015-02-01

    Full Text Available Research Data Management (RDM provides a framework that supports researchers and their data throughout the course of their research and is increasingly regarded as one of the essential areas of responsible conduct of research. New tools and infrastructures make possible the generation of large volumes of digital research data in a myriad of formats. This facilitates new ways to analyse, share and reuse these outputs, with libraries, IT services and other service units within academic institutions working together with the research community to develop RDM infrastructures to curate and preserve this type of research output and make them re-usable for future generations. Working on the principle that a rationalised and continuous flow of data between systems and across institutional boundaries is one of the core goals of information management, this paper will highlight service integration via Electronic Laboratory Notebooks (ELN, which streamline research data workflows, result in efficiency gains for researchers, research administrators and other stakeholders, and ultimately enhance the RDM process.

  15. Development of an Integrated Waste Plan for Chalk River Laboratories - 13376

    International Nuclear Information System (INIS)

    Jones, L.

    2013-01-01

    To further its Strategic Planning, the Atomic Energy of Canada Limited (AECL) required an effective approach to developing a fully integrated waste plan for its Chalk River Laboratories (CRL) site. Production of the first Integrated Waste Plan (IWP) for Chalk River was a substantial task involving representatives from each of the major internal stakeholders. Since then, a second revision has been produced and a third is underway. The IWP remains an Interim IWP until all gaps have been resolved and all pathways are at an acceptable level of detail. Full completion will involve a number of iterations, typically annually for up to six years. The end result of completing this process is a comprehensive document and supporting information that includes: - An Integrated Waste Plan document summarizing the entire waste management picture in one place; - Details of all the wastes required to be managed, including volume and timings by waste stream; - Detailed waste stream pathway maps for the whole life-cycle for each waste stream to be managed from pre-generation planning through to final disposition; and - Critical decision points, i.e. decisions that need to be made and timings by when they need to be made. A waste inventory has been constructed that serves as the master reference inventory of all waste that has been or is committed to be managed at CRL. In the past, only the waste that is in storage has been effectively captured, and future predictions of wastes requiring to be managed were not available in one place. The IWP has also provided a detailed baseline plan at the current level of refinement. Waste flow maps for all identified waste streams, for the full waste life cycle complete to disposition have been constructed. The maps identify areas requiring further development, and show the complexities and inter-relationships between waste streams. Knowledge of these inter-dependencies is necessary in order to perform effective options studies for enabling

  16. Integration of Video-Based Demonstrations to Prepare Students for the Organic Chemistry Laboratory

    Science.gov (United States)

    Nadelson, Louis S.; Scaggs, Jonathan; Sheffield, Colin; McDougal, Owen M.

    2015-01-01

    Consistent, high-quality introductions to organic chemistry laboratory techniques effectively and efficiently support student learning in the organic chemistry laboratory. In this work, we developed and deployed a series of instructional videos to communicate core laboratory techniques and concepts. Using a quasi-experimental design, we tested the…

  17. Remediation Approach for the Integrated Facility Disposition Project at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kirk, P.G.; Stephens, Jr.J.M.

    2009-01-01

    The Integrated Facility Disposition Project (IFDP) is a multi-billion-dollar remediation effort being conducted by the U.S. Department of Energy (DOE) Office of Environmental Management in Oak Ridge, Tennessee. The scope of the IFDP encompasses remedial actions related to activities conducted over the past 65 years at the Oak Ridge National Laboratory (ORNL) and the Y-12 National Security Complex (Y-12). Environmental media and facilities became contaminated as a result of operations, leaks, spills, and past waste disposal practices. ORNL's mission includes energy, environmental, nuclear security, computational, and materials research and development. Remediation activities will be implemented at ORNL as part of IFDP scope to meet remedial action objectives established in existing and future decision documents. Remedial actions are necessary (1) to comply with environmental regulations to reduce human health and environmental risk and (2) to release strategic real estate needed for modernization initiatives at ORNL. The scope of remedial actions includes characterization, waste management, transportation and disposal, stream restoration, and final remediation of contaminated soils, sediments, and groundwater. Activities include removal of at or below-grade substructures such as slabs, underground utilities, underground piping, tanks, basins, pits, ducts, equipment housings, manholes, and concrete-poured structures associated with equipment housings and basement walls/floors/columns. Many interim remedial actions involving groundwater and surface water that have not been completed are included in the IFDP remedial action scope. The challenges presented by the remediation of Bethel Valley at ORNL are formidable. The proposed approach to remediation endeavors to use the best available technologies and technical approaches from EPA and other federal agencies and lessons learned from previous cleanup efforts. The objective is to minimize cost, maximize remedial

  18. Writing Material in Chemical Physics Research: The Laboratory Notebook as Locus of Technical and Textual Integration

    Science.gov (United States)

    Wickman, Chad

    2010-01-01

    This article, drawing on ethnographic study in a chemical physics research facility, explores how notebooks are used and produced in the conduct of laboratory science. Data include written field notes of laboratory activity; visual documentation of "in situ" writing processes; analysis of inscriptions, texts, and material artifacts produced in the…

  19. Integrated management system best practices in radioecological laboratories; Sistema de gestao integrado: melhores praticas para laboratorios radioecologicos

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Claudia Aparecida Zerbinatti de

    2010-07-01

    The research aims to study the best practices to support a conceptual proposal for IMS - Integrated Management System (quality, environment, safety and health) applicable to Radioecology laboratories. The research design is organized into the following steps: in a first step, it was developed the bibliographic and documentary research in IMS, survey and study of standards (QMS ISO 9000 (2005), ISO 9001 (2008), ISO 9004 (2000), EMS ISO 14001 (2004) and OHSMS OHSAS 18001 (2007) and OHSAS 18002 (2008)), identification and characterization of processes in Radioecology Laboratories and study of best practices methodology and benchmarking; in the second stage of the research it was developed a case study (qualitative research, with questionnaires via e-mail and interviews, when possible), preceded by a survey and selection of international and national radioecology laboratories and then these laboratories were contacted and some of them agreed to participate in this research; in the third stage of the research it was built the framework of best practices that showed results that could support the conceptual proposal for the IMS Radioecology Laboratory; the fourth and final stage of research consisted in the construction of the proposed conceptual framework of SGI for Radioecology Laboratory, being then achieved the initial objective of the research. (author)

  20. Experience of Integrated Safeguards Approach for Large-scale Hot Cell Laboratory

    International Nuclear Information System (INIS)

    Miyaji, N.; Kawakami, Y.; Koizumi, A.; Otsuji, A.; Sasaki, K.

    2010-01-01

    The Japan Atomic Energy Agency (JAEA) has been operating a large-scale hot cell laboratory, the Fuels Monitoring Facility (FMF), located near the experimental fast reactor Joyo at the Oarai Research and Development Center (JNC-2 site). The FMF conducts post irradiation examinations (PIE) of fuel assemblies irradiated in Joyo. The assemblies are disassembled and non-destructive examinations, such as X-ray computed tomography tests, are carried out. Some of the fuel pins are cut into specimens and destructive examinations, such as ceramography and X-ray micro analyses, are performed. Following PIE, the tested material, in the form of a pin or segments, is shipped back to a Joyo spent fuel pond. In some cases, after reassembly of the examined irradiated fuel pins is completed, the fuel assemblies are shipped back to Joyo for further irradiation. For the IAEA to apply the integrated safeguards approach (ISA) to the FMF, a new verification system on material shipping and receiving process between Joyo and the FMF has been established by the IAEA under technical collaboration among the Japan Safeguard Office (JSGO) of MEXT, the Nuclear Material Control Center (NMCC) and the JAEA. The main concept of receipt/shipment verification under the ISA for JNC-2 site is as follows: under the IS, the FMF is treated as a Joyo-associated facility in terms of its safeguards system because it deals with the same spent fuels. Verification of the material shipping and receiving process between Joyo and the FMF can only be applied to the declared transport routes and transport casks. The verification of the nuclear material contained in the cask is performed with the method of gross defect at the time of short notice random interim inspections (RIIs) by measuring the surface neutron dose rate of the cask, filled with water to reduce radiation. The JAEA performed a series of preliminary tests with the IAEA, the JSGO and the NMCC, and confirmed from the standpoint of the operator that this

  1. Laboratory Testing and Performance Verification of the CHARIS Integral Field Spectrograph

    Science.gov (United States)

    Groff, Tyler D.; Chilcote, Jeffrey; Kasdin, N. Jeremy; Galvin, Michael; Loomis, Craig; Carr, Michael A.; Brandt, Timothy; Knapp, Gillian; Limbach, Mary Anne; Guyon, Olivier; hide

    2016-01-01

    The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an integral field spectrograph (IFS) that has been built for the Subaru telescope. CHARIS has two imaging modes; the high-resolution mode is R82, R69, and R82 in J, H, and K bands respectively while the low-resolution discovery mode uses a second low-resolution prism with R19 spanning 1.15-2.37 microns (J+H+K bands). The discovery mode is meant to augment the low inner working angle of the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) adaptive optics system, which feeds CHARIS a coronagraphic image. The goal is to detect and characterize brown dwarfs and hot Jovian planets down to contrasts five orders of magnitude dimmer than their parent star at an inner working angle as low as 80 milliarcseconds. CHARIS constrains spectral crosstalk through several key aspects of the optical design. Additionally, the repeatability of alignment of certain optical components is critical to the calibrations required for the data pipeline. Specifically the relative alignment of the lens let array, prism, and detector must be highly stable and repeatable between imaging modes. We report on the measured repeatability and stability of these mechanisms, measurements of spectral crosstalk in the instrument, and the propagation of these errors through the data pipeline. Another key design feature of CHARIS is the prism, which pairs Barium Fluoride with Ohara L-BBH2 high index glass. The dispersion of the prism is significantly more uniform than other glass choices, and the CHARIS prisms represent the first NIR astronomical instrument that uses L-BBH2as the high index material. This material choice was key to the utility of the discovery mode, so significant efforts were put into cryogenic characterization of the material. The final performance of the prism assemblies in their operating environment is described in detail. The spectrograph is going through final alignment, cryogenic cycling, and is being

  2. FOOTWEAR PERFORMANCE LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory provides biomechanical and physical analyses for both military and commercial footwear. The laboratory contains equipment that is integral to the us...

  3. Peer Teaching in the Food Chemistry Laboratory: Student-produced Experiments, Peer and Audio Feedback and Integration of Employability

    OpenAIRE

    Dunne, Julie

    2014-01-01

    This paper describes the author’s experience over the last several years of implementing an alternative Food Chemistry laboratory practical for a group of third-year BSc Nutraceuticals students. The initial main objectives were to prepare students for the more independent final-year research project; to incorporate innovative approaches to feedback; and to integrate key employability skills into the curriculum. These were achieved through building the skills required to ultimately allow stude...

  4. Improved dissection efficiency in the human gross anatomy laboratory by the integration of computers and modern technology.

    Science.gov (United States)

    Reeves, Rustin E; Aschenbrenner, John E; Wordinger, Robert J; Roque, Rouel S; Sheedlo, Harold J

    2004-05-01

    The need to increase the efficiency of dissection in the gross anatomy laboratory has been the driving force behind the technologic changes we have recently implemented. With the introduction of an integrated systems-based medical curriculum and a reduction in laboratory teaching hours, anatomy faculty at the University of North Texas Health Science Center (UNTHSC) developed a computer-based dissection manual to adjust to these curricular changes and time constraints. At each cadaver workstation, Apple iMac computers were added and a new dissection manual, running in a browser-based format, was installed. Within the text of the manual, anatomical structures required for dissection were linked to digital images from prosected materials; in addition, for each body system, the dissection manual included images from cross sections, radiographs, CT scans, and histology. Although we have placed a high priority on computerization of the anatomy laboratory, we remain strong advocates of the importance of cadaver dissection. It is our belief that the utilization of computers for dissection is a natural evolution of technology and fosters creative teaching strategies adapted for anatomy laboratories in the 21st century. Our strategy has significantly enhanced the independence and proficiency of our students, the efficiency of their dissection time, and the quality of laboratory instruction by the faculty. Copyright 2004 Wiley-Liss, Inc.

  5. Senior Research Connects Students with a Living Laboratory As Part of an Integrated Crop and Livestock System

    Science.gov (United States)

    Senturklu, Songul; Landblom, Douglas; Brevik, Eric C.

    2015-04-01

    Soil, water, soil microbes, and solar energy are the main sources that sustain life on this planet. Without them working in concert, neither plants nor animals would survive. Considering the efficiency of animal production targets, soil must be protected and improved. Therefore, through our sustainable integrated crop and livestock research, we are studying animal and soil interactions from the soil to the plate. Integrating beef cattle systems into a diverse cropping system is providing a living laboratory for education beyond the traditional classroom setting. To establish the living learning laboratory at the Dickinson Research Extension Center, a five-crop rotation was established that included adapted cool and warm season grasses and broadleaf crops. The crop rotation is: sunflower > hard red spring wheat > fall seeded winter triticale-hairy vetch (hay)/spring seeded 7-species cover crop > Corn (85-95 day varieties) > field pea-barley intercrop. Sunflower and spring wheat are harvested for cash crop income in the rotation. Livestock integration occurs when yearling steers that had previously grazed perennial pastures until mid-August graze field pea-barley and subsequently unharvested corn. Average grazing days for field pea-barley and unharvested corn is 30 and 70 days, respectively. At the end of the grazing period, the yearling steers average 499-544 kg and are moved to a feedlot and fed an additional 75 days until slaughter. Maximizing grazing days and extending the grazing season through integration with the cropping system reduces custom feeding costs and enhances animal profit. Beef cows do not require high quality feed after their calves have been weaned. Therefore, gestating beef cows are an ideal animal to graze cover crops and crop aftermath (residue) after yearling steer grazing and farming operations have been completed. Extending the grazing season for beef cows by grazing cover crops and residues reduces winter feed cost, which is one of the

  6. TECHNOLOGICAL COMPETENCE OF FUTURE ENGINEER: FORMATION AND DEVELOPMENT IN COMPUTER INTEGRATED LABORATORY WORKSHOP ON PHYSICS

    Directory of Open Access Journals (Sweden)

    Ihor S. Chernetskyi

    2013-12-01

    Full Text Available The article examines the category «technological competence» and the definition of its components according to the educational process. A structural and functional model of technological competence of future engineers through forms, means, methods and technologies of computer oriented laboratory work. Selected blocks and elements of the model in the course of a typical student laboratory work on the course of general physics. We consider the possibility of using some type of digital labs «Phywe», «Fourier» and modern electronic media (flash books to optimize laboratory work at the Technical University. The analysis of the future research of structural elements model of technological competence.

  7. Shield calculation of project for instrument calibration integrated laboratory of IPEN-Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Barros, Gustavo A.S.J.; Caldas, Linda V.E.

    2009-01-01

    This work performed the shield calculation of the future rooms walls of the five X-ray equipment of the Instrument Calibration Laboratory of the IPEN, Sao Paulo, Brazil, which will be constructed in project of laboratory enlargement. The obtained results by application of a calculation methodology from an international regulation have shown that the largest thickness of shielding (25.7 cm of concrete or 7.1 mm of lead) will be of the wall which will receive the primary beam of the equipment with a 320 kV voltage. The cost/benefit analysis indicated the concrete as the best material option for the shielding

  8. Integrated field and laboratory tests to evaluate effects of metals-impacted wetlands on amphibians: A case study from Montana

    Science.gov (United States)

    Linder, G.; ,

    2003-01-01

    Mining activities frequently impact wildlife habitats, and a wide range of habitats may require evaluations of the linkages between wildlife and environmental stressors common to mining activities (e.g., physical alteration of habitat, releases of chemicals such as metals and other inorganic constituents as part of the mining operation). Wetlands, for example, are frequently impacted by mining activities. Within an ecological assessment for a wetland, toxicity evaluations for representative species may be advantageous to the site evaluation, since these species could be exposed to complex chemical mixtures potentially released from the site. Amphibian species common to these transition zones between terrestrial and aquatic habitats are one key biological indicator of exposure, and integrated approaches which involve both field and laboratory methods focused on amphibians are critical to the assessment process. The laboratory and field evaluations of a wetland in western Montana illustrates the integrated approach to risk assessment and causal analysis. Here, amphibians were used to evaluate the potential toxicity associated with heavy metal-laden sediments deposited in a reservoir. Field and laboratory methods were applied to a toxicity assessment for metals characteristic of mine tailings to reduce potential "lab to field" extrapolation errors and provide adaptive management programs with critical site-specific information targeted on remediation.

  9. Integrating and accessing medical data resources within the ViroLab Virtual Laboratory

    NARCIS (Netherlands)

    Assel, M.; Nowakowski, P.; Bubak, M.

    2008-01-01

    This paper presents the data access solutions which have been developed in the ViroLab Virtual Laboratory infrastructure to enable medical researchers and practitioners to conduct experiments in the area of HIV treatment. Such experiments require access to a number of geographically distributed data

  10. Degradation of herbicides in shallow Danish aquifers - an integrated laboratory and field study

    DEFF Research Database (Denmark)

    Albrechtsen, Hans-Jørgen; Mills, M.; Aamand, J.

    2001-01-01

    Degradation of pesticides in aquifers has been evaluated based on a number of co-ordinated field and laboratory studies carried out in Danish aquifers. These studies included investigations of vertical and horizontal variability in degradation rates from the vadose zone to an aquifer, the effects...

  11. Integrating Biology into the General Chemistry Laboratory: Fluorometric Analysis of Chlorophyll "a"

    Science.gov (United States)

    Wesolowski, Meredith C.

    2014-01-01

    A laboratory experiment that introduces fluorometry of chlorophyll "a" at the general chemistry level is described. The use of thin-layer chromatography to isolate chlorophyll "a" from spirulina and leaf matter enables quantification of small amounts of chlorophyll "a" via fluorometry. Student results were reasonably…

  12. Are Chicken Embryos Endotherms or Ectotherms? A Laboratory Exercise Integrating Concepts in Thermoregulation and Metabolism

    Science.gov (United States)

    Hiebert, Sara M; Noveral, Jocelyne

    2007-01-01

    This investigative laboratory exercise uses the different relations between ambient temperature and metabolic rate in endotherms and ectotherms as a core concept to answer the following question: What thermoregulatory mode is employed by chicken embryos? Emphasis is placed on the physiological concepts that can be taught with this exercise,…

  13. Integrating Bio-Inorganic and Analytical Chemistry into an Undergraduate Biochemistry Laboratory

    Science.gov (United States)

    Erasmus, Daniel J.; Brewer, Sharon E.; Cinel, Bruno

    2015-01-01

    Undergraduate laboratories expose students to a wide variety of topics and techniques in a limited amount of time. This can be a challenge and lead to less exposure to concepts and activities in bio-inorganic chemistry and analytical chemistry that are closely-related to biochemistry. To address this, we incorporated a new iron determination by…

  14. An Integrated Visualization and Basic Molecular Modeling Laboratory for First-Year Undergraduate Medicinal Chemistry

    Science.gov (United States)

    Hayes, Joseph M.

    2014-01-01

    A 3D model visualization and basic molecular modeling laboratory suitable for first-year undergraduates studying introductory medicinal chemistry is presented. The 2 h practical is embedded within a series of lectures on drug design, target-drug interactions, enzymes, receptors, nucleic acids, and basic pharmacokinetics. Serving as a teaching aid…

  15. Wind Integration National Dataset (WIND) Toolkit; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, Caroline; Hodge, Bri-Mathias

    2015-07-14

    A webinar about the Wind Integration National Dataset (WIND) Toolkit was presented by Bri-Mathias Hodge and Caroline Draxl on July 14, 2015. It was hosted by the Southern Alliance for Clean Energy. The toolkit is a grid integration data set that contains meteorological and power data at a 5-minute resolution across the continental United States for 7 years and hourly power forecasts.

  16. Building an integrated nuclear engineering and nuclear science human resources pipeline at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Sneed, A.; Sikorski, B.; Lineberry, M.; Jolly, J.

    2004-01-01

    In a joint effort with the Argonne National Laboratory - West (ANL-W), the Idaho National Engineering and Environmental Laboratory (INEEL) has assumed the lead role for nuclear energy reactor research for the United States Government. In 2005, these two laboratories will be combined into one entity, the Idaho National Laboratory (INL). There are two objectives for the INL: (1) to act as the lead systems integrator for the Department of Energy's Office of Nuclear Energy Science and Technology and, (2) to establish a Center for Advanced Energy Studies. Focusing on the Center for Advanced Energy Studies, this paper presents a Human Resources Pipeline Model outlining a nuclear educational pathway that leads to university and industry research partnerships. The pathway progresses from education to employment and into retirement. Key to the model is research and mentoring and their impact upon each stage. The Center's success will be the result of effective and advanced communications, faculty/student involvement, industry support, inclusive broadbased involvement, effective long-term partnering, and increased federal and state support. (author)

  17. A monitor for the laboratory evaluation of control integrity in digital control systems operating in harsh electromagnetic environments

    Science.gov (United States)

    Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe

    1992-01-01

    This paper presents a strategy for dynamically monitoring digital controllers in the laboratory for susceptibility to electromagnetic disturbances that compromise control integrity. The integrity of digital control systems operating in harsh electromagnetic environments can be compromised by upsets caused by induced transient electrical signals. Digital system upset is a functional error mode that involves no component damage, can occur simultaneously in all channels of a redundant control computer, and is software dependent. The motivation for this work is the need to develop tools and techniques that can be used in the laboratory to validate and/or certify critical aircraft controllers operating in electromagnetically adverse environments that result from lightning, high-intensity radiated fields (HIRF), and nuclear electromagnetic pulses (NEMP). The detection strategy presented in this paper provides dynamic monitoring of a given control computer for degraded functional integrity resulting from redundancy management errors, control calculation errors, and control correctness/effectiveness errors. In particular, this paper discusses the use of Kalman filtering, data fusion, and statistical decision theory in monitoring a given digital controller for control calculation errors.

  18. Usability evaluation of Laboratory and Radiology Information Systems integrated into a hospital information system.

    Science.gov (United States)

    Nabovati, Ehsan; Vakili-Arki, Hasan; Eslami, Saeid; Khajouei, Reza

    2014-04-01

    This study was conducted to evaluate the usability of widely used laboratory and radiology information systems. Three usability experts independently evaluated the user interfaces of Laboratory and Radiology Information Systems using heuristic evaluation method. They applied Nielsen's heuristics to identify and classify usability problems and Nielsen's severity rating to judge their severity. Overall, 116 unique heuristic violations were identified as usability problems. In terms of severity, 67 % of problems were rated as major and catastrophic. Among 10 heuristics, "consistency and standards" was violated most frequently. Moreover, mean severity of problems concerning "error prevention" and "help and documentation" heuristics was higher than of the others. Despite widespread use of specific healthcare information systems, they suffer from usability problems. Improving the usability of systems by following existing design standards and principles from the early phased of system development life cycle is recommended. Especially, it is recommended that the designers design systems that inhibit the initiation of erroneous actions and provide sufficient guidance to users.

  19. Integrated safeguards testing laboratories in support of the advanced fuel cycle initiative

    International Nuclear Information System (INIS)

    Santi, Peter A.; Demuth, Scott F.; Klasky, Kristen L.; Lee, Haeok; Miller, Michael C.; Sprinkle, James K.; Tobin, Stephen J.; Williams, Bradley

    2009-01-01

    A key enabler for advanced fuel cycle safeguards research and technology development for programs such as the Advanced Fuel Cycle Initiative (AFCI) is access to facilities and nuclear materials. This access is necessary in many cases in order to ensure that advanced safeguards techniques and technologies meet the measurement needs for which they were designed. One such crucial facility is a hot cell based laboratory which would allow developers from universities, national laboratories, and commercial companies to perform iterative research and development of advanced safeguards instrumentation under realistic operating conditions but not be subject to production schedule limitations. The need for such a facility arises from the requirement to accurately measure minor actinide and/or fission product bearing nuclear materials that cannot be adequately shielded in glove boxes. With the contraction of the DOE nuclear complex following the end of the cold war, many suitable facilities at DOE sites are increasingly costly to operate and are being evaluated for closure. A hot cell based laboratory that allowed developers to install and remove instrumentation from the hot cell would allow for both risk mitigation and performance optimization of the instrumentation prior to fielding equipment in facilities where maintenance and repair of the instrumentation is difficult or impossible. These benefits are accomplished by providing developers the opportunity to iterate between testing the performance of the instrumentation by measuring realistic types and amounts of nuclear material, and adjusting and refining the instrumentation based on the results of these measurements. In this paper, we review the requirements for such a facility using the Wing 9 hot cells in the Los Alamos National Laboratory's Chemistry and Metallurgy Research facility as a model for such a facility and describe recent use of these hot cells in support of AFCI.

  20. Easily Integrable Platform for the Deployment of a Remote Laboratory for Microcontrollers

    Directory of Open Access Journals (Sweden)

    Elio San-Cristobal

    2010-08-01

    Full Text Available Remote laboratories are the natural solution in order to perform real experimentation under e-learning tools. Nevertheless these tools are the result of the research developed by the universities to cover their own needs without having in consideration the deployment of this technology by other institutions. This paper presents a hw prototype for a Remote Lab for microcontrollers that tries to solve these problems contributing new possibilities from the commercial and professional point of view.

  1. Integrated safeguards testing laboratories in support of the advanced fuel cycle initiative

    Energy Technology Data Exchange (ETDEWEB)

    Santi, Peter A [Los Alamos National Laboratory; Demuth, Scott F [Los Alamos National Laboratory; Klasky, Kristen L [Los Alamos National Laboratory; Lee, Haeok [Los Alamos National Laboratory; Miller, Michael C [Los Alamos National Laboratory; Sprinkle, James K [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory; Williams, Bradley [DOE, NE

    2009-01-01

    A key enabler for advanced fuel cycle safeguards research and technology development for programs such as the Advanced Fuel Cycle Initiative (AFCI) is access to facilities and nuclear materials. This access is necessary in many cases in order to ensure that advanced safeguards techniques and technologies meet the measurement needs for which they were designed. One such crucial facility is a hot cell based laboratory which would allow developers from universities, national laboratories, and commercial companies to perform iterative research and development of advanced safeguards instrumentation under realistic operating conditions but not be subject to production schedule limitations. The need for such a facility arises from the requirement to accurately measure minor actinide and/or fission product bearing nuclear materials that cannot be adequately shielded in glove boxes. With the contraction of the DOE nuclear complex following the end of the cold war, many suitable facilities at DOE sites are increasingly costly to operate and are being evaluated for closure. A hot cell based laboratory that allowed developers to install and remove instrumentation from the hot cell would allow for both risk mitigation and performance optimization of the instrumentation prior to fielding equipment in facilities where maintenance and repair of the instrumentation is difficult or impossible. These benefits are accomplished by providing developers the opportunity to iterate between testing the performance of the instrumentation by measuring realistic types and amounts of nuclear material, and adjusting and refining the instrumentation based on the results of these measurements. In this paper, we review the requirements for such a facility using the Wing 9 hot cells in the Los Alamos National Laboratory's Chemistry and Metallurgy Research facility as a model for such a facility and describe recent use of these hot cells in support of AFCI.

  2. E-health, phase two: the imperative to integrate process automation with communication automation for large clinical reference laboratories.

    Science.gov (United States)

    White, L; Terner, C

    2001-01-01

    The initial efforts of e-health have fallen far short of expectations. They were buoyed by the hype and excitement of the Internet craze but limited by their lack of understanding of important market and environmental factors. E-health now recognizes that legacy systems and processes are important, that there is a technology adoption process that needs to be followed, and that demonstrable value drives adoption. Initial e-health transaction solutions have targeted mostly low-cost problems. These solutions invariably are difficult to integrate into existing systems, typically requiring manual interfacing to supported processes. This limitation in particular makes them unworkable for large volume providers. To meet the needs of these providers, e-health companies must rethink their approaches, appropriately applying technology to seamlessly integrate all steps into existing business functions. E-automation is a transaction technology that automates steps, integration of steps, and information communication demands, resulting in comprehensive automation of entire business functions. We applied e-automation to create a billing management solution for clinical reference laboratories. Large volume, onerous regulations, small margins, and only indirect access to patients challenge large laboratories' billing departments. Couple these problems with outmoded, largely manual systems and it becomes apparent why most laboratory billing departments are in crisis. Our approach has been to focus on the most significant and costly problems in billing: errors, compliance, and system maintenance and management. The core of the design relies on conditional processing, a "universal" communications interface, and ASP technologies. The result is comprehensive automation of all routine processes, driving out errors and costs. Additionally, compliance management and billing system support and management costs are dramatically reduced. The implications of e-automated processes can extend

  3. Life sciences payload definition and integration study. Volume 1: Executive summary. [carry-on laboratory for Spacelab

    Science.gov (United States)

    1974-01-01

    The definition and integration tasks involved in the development of design concepts for a carry-on laboratory (COL), to be compatible with Spacelab operations, were divided into the following study areas: (1) identification of research and equipment requirements of the COL; (2) development of a number of conceptual layouts for COL based on the defined research of final conceptual designs; and (4) development of COL planning information for definition of COL/Spacelab interface data, cost data, and program cost schedules, including design drawings of a selected COL to permit fabrication of a functional breadboard.

  4. Laboratories of Community : How Digital Humanities Can Further New European Integration History

    NARCIS (Netherlands)

    van den Bos, Maarten; Coll Ardanuy, Mariona; Sporleder, Caroline

    2015-01-01

    It has been said that media is an important but mostly overlooked player in European integration history. Now, the mass digitisation of newspapers and the introduction of new digital techniques promise great potential to remedy this inattention. With the conjecture that people are drivers and

  5. The laboratory testing system for radiation rsistance investigations of integrated circuits

    International Nuclear Information System (INIS)

    Wronski, W.; Wislowski, J.

    1986-01-01

    In order to evaluate the radiation tolerance of integrated circuits MCY 7102 type /MOS RAM/ two devices were built: isotope arrangement for irradiation, and portable tester registering every error of storage block which consists of 32 IC's. Principle of operation and construction of this devices is described. Exemplary results of investigations are shown. (author)

  6. Advanced Stirling Convertor Dual Convertor Controller Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    Science.gov (United States)

    Dugala, Gina M.; Taylor, Linda M.; Bell, Mark E.; Dolce, James L.; Fraeman, Martin; Frankford, David P.

    2015-01-01

    NASA Glenn Research Center developed a nonnuclear representation of a Radioisotope Power System (RPS) consisting of a pair of Advanced Stirling Convertors (ASCs), Dual Convertor Controller (DCC) EMs (engineering models) 2 and 3, and associated support equipment, which were tested in the Radioisotope Power Systems System Integration Laboratory (RSIL). The DCC was designed by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) to actively control a pair of ASCs. The first phase of testing included a Dual Advanced Stirling Convertor Simulator (DASCS), which was developed by JHU/APL and simulates the operation and electrical behavior of a pair of ASCs in real time via a combination of hardware and software. RSIL provides insight into the electrical interactions between a representative radioisotope power generator, its associated control schemes, and realistic electric system loads. The first phase of integration testing included the following spacecraft bus configurations: capacitive, battery, and super-capacitor. A load profile, created based on data from several missions, tested the RPS's and RSIL's ability to maintain operation during load demands above and below the power provided by the RPS. The integration testing also confirmed the DCC's ability to disconnect from the spacecraft when the bus voltage dipped below 22 volts or exceeded 36 volts. Once operation was verified with the DASCS, the tests were repeated with actual operating ASCs. The goal of this integration testing was to verify operation of the DCC when connected to a spacecraft and to verify the functionality of the newly designed RSIL. The results of these tests are presented in this paper.

  7. Mapping SOC in a river catchment by integrating laboratory spectra wavelength with remote sensing spectra

    DEFF Research Database (Denmark)

    Peng, Yi; Xiong, Xiong; Knadel, Maria

    There is potential to use soil ·-proximal and remote sensing derived spectra concomitantly to develop soil organic carbon (SOC) models. Yet mixing spectral data from different sources and technologies to improve soil models is still in its infancy. The objective of this study was to incorporate...... soil spectral features indicative of SOC from laboratory visible near-infrared reflectance (vis-NlR) spectra and incorporate them with remote sensing (RS) images to improve predictions of top SOC in the Skjem river catchment, Denmark. The secondary objective was to improve prediction results...

  8. Building an integrated nuclear engineering and nuclear science human resources pipeline at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Sneed, A.; Sikorski, B.; Lineberry, M.; Jolly, J.

    2004-01-01

    Full text: In 2002, the US Department of Energy (US DOE) transferred sponsorship of the INEEL and ANL-W to the DOE Office of Nuclear Energy, Science and Technology and designated the INEEL and ANL-W as the nation's lead laboratories for nuclear reactor and nuclear fuel cycle research and development. This transfer acknowledged the laboratories' history, infrastructure, expertise and commitment to collaborate broadly in order to fulfill its assigned role as the nation's center for nuclear energy research and development. Key to this role is the availability of well-educated and trained nuclear engineers, professionals from other disciplines of engineering, nuclear scientists, and others with advanced degrees in supporting disciplines such as physics, chemistry, and math. In 2005 the INEEL and ANL-W will be combined into the Idaho National Laboratory (INL). One of US DOE's objectives for the INL will be for it to take a strong role in the revitalization of nuclear engineering and nuclear science education in the US. Responding to this objective for the INL and the national need to rejuvenate nuclear engineering and nuclear science research and education, ISU, University of Idaho (UI), Boise State University, the INEEL, and ANL-W are all supporting a new Institute of Nuclear Science and Engineering (INSE), initially proposed by and to be administered by ISU. The Institute will rely on the resources of both universities and the INL to create a US center for reactor and fuel cycle research to development and attract outstanding faculty and students to Idaho and to the INL. The Institute and other university based education development efforts represent only one component of a viable Human Resources Pipeline from university to leading edge laboratory researcher. Another critical component is the successful integration of new graduates into the laboratory research environment, the transfer of knowledge from senior researchers, and the development of these individuals into

  9. Reactor pressure vessel integrity research at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Corwin, W.R.; Pennell, W.E.; Pace, J.V.

    1995-01-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. The RPV is the only key safety-related component of the plant for which a duplicate or redundant backup system does not exist. It is therefore imperative to understand and be able to predict the integrity inherent in the RPV. For this reason, the U.S. Nuclear Regulatory Commission has established the related research programs at ORNL described herein to provide for the development and confirmation of the methods used for: (1) establishing the irradiation exposure conditions within the RPV in the Embrittlement Data Base and Dosimetry Evaluation Program, (2) assessing the effects of irradiation on the RPV materials in the Heavy-Section Steel Irradiation Program, and (3) developing overall structural and fracture analyses of RPVs in the Heavy-Section Steel Technology Program

  10. Integrated assessment of soil quality after application of the biogas fermentation residues - a laboratory experiment

    Science.gov (United States)

    Telesiński, Arkadiusz; Cybulska, Krystyna; Płatkowski, Maciej; Stręk, Michał; Jarnuszewski, Grzegorz; Wrońska, Ilona; Mularewicz, Piotr; Kajdan, Tomasz; Biczak, Robert; Kołosowski, Paweł

    2017-11-01

    The aim of study was to determine the impact of three different biogas fermentation residues on some chemical and biochemical characteristics in sandy soil. The laboratory experiment was carried out on loamy sand. Residues were added to soil samples in the forms of pulp, drought, and granulate at dosages of 10, 50, and 100 g·kg-1. The reference was the soil sample without residues. On day 28, the content of macroelements and heavy metals was determined. In addition, on days 1, 7, 14, 28, and 56, the content of biomass and the activities of some hydrolases and oxidoreductases were assayed. Results showed that the application of all fermentation residues caused an increase in most of the chemical parameters. The highest impact on pH and the content of Ctot, Ntot, Stot, K, and P was observed in the soil treated with granulate, whereas the increase in the content of heavy metals was the highest after the drought application. The effect of biogas fermentation residues on all hydrolases and o-diphenol oxidase activities was mostly significant, but depended on the kind of residues and the day of experiment. Biomass content and the activity of dehydrogenase were increased in the whole experiment.

  11. Hydrogen storage systems based on magnesium hydride: from laboratory tests to fuel cell integration

    Science.gov (United States)

    de Rango, P.; Marty, P.; Fruchart, D.

    2016-02-01

    The paper reviews the state of the art of hydrogen storage systems based on magnesium hydride, emphasizing the role of thermal management, whose effectiveness depends on the effective thermal conductivity of the hydride, but also depends of other limiting factors such as wall contact resistance and convective exchanges with the heat transfer fluid. For daily cycles, the use of phase change material to store the heat of reaction appears to be the most effective solution. The integration with fuel cells (1 kWe proton exchange membrane fuel cell and solid oxide fuel cell) highlights the dynamic behaviour of these systems, which is related to the thermodynamic properties of MgH2. This allows for "self-adaptive" systems that do not require control of the hydrogen flow rate at the inlet of the fuel cell.

  12. Life sciences payload definition and integration study. Volume 4: Appendix, costs, and data management requirements of the dedicated 30-day laboratory. [carry-on laboratory for Spacelab

    Science.gov (United States)

    1974-01-01

    The results of the updated 30-day life sciences dedicated laboratory scheduling and costing activities are documented, and the 'low cost' methodology used to establish individual equipment item costs is explained in terms of its allowances for equipment that is commerical off-the-shelf, modified commercial, and laboratory prototype; a method which significantly lowers program costs. The costs generated include estimates for non-recurring development, recurring production, and recurring operations costs. A cost for a biomedical emphasis laboratory and a Delta cost to provide a bioscience and technology laboratory were also generated. All cost reported are commensurate with the design and schedule definitions available.

  13. Integrated Earth Science Research in Deep Underground Science and Engineering Laboratories

    Science.gov (United States)

    Wang, J. S.; Hazen, T. C.; Conrad, M. E.; Johnson, L. R.; Salve, R.

    2004-12-01

    There are three types of sites being considered for deep-underground earth science and physics experiments: (1) abandoned mines (e.g., the Homestake Gold Mine, South Dakota; the Soudan Iron Mine, Minnesota), (2) active mines/facilities (e.g., the Henderson Molybdenum Mine, Colorado; the Kimballton Limestone Mine, Virginia; the Waste Isolation Pilot Plant [in salt], New Mexico), and (3) new tunnels (e.g., Icicle Creek in the Cascades, Washington; Mt. San Jacinto, California). Additional sites have been considered in the geologically unique region of southeastern California and southwestern Nevada, which has both very high mountain peaks and the lowest point in the United States (Death Valley). Telescope Peak (along the western border of Death Valley), Boundary Peak (along the California-Nevada border), Mt. Charleston (outside Las Vegas), and Mt. Tom (along the Pine Creek Valley) all have favorable characteristics for consideration. Telescope Peak can site the deepest laboratory in the United States. The Mt. Charleston tunnel can be a highway extension connecting Las Vegas to Pahrump. The Pine Creek Mine next to Mt. Tom is an abandoned tungsten mine. The lowest levels of the mine are accessible by nearly horizontal tunnels from portals in the mining base camp. Drainage (most noticeable in the springs resulting from snow melt) flows (from the mountain top through upper tunnel complex) out of the access tunnel without the need for pumping. While the underground drifts at Yucca Mountain, Nevada, have not yet been considered (since they are relatively shallow for physics experiments), they have undergone extensive earth science research for nearly 10 years, as the site for future storage of nation's spent nuclear fuels. All these underground sites could accommodate different earth science and physics experiments. Most underground physics experiments require depth to reduce the cosmic-ray-induced muon flux from atmospheric sources. Earth science experiments can be

  14. Standardization and integration of ecological and human risk assessments at Department of Energy national laboratories

    International Nuclear Information System (INIS)

    Breckenridge, R.P.; Berry, D.

    1995-01-01

    In 1990, the directors of twelve national laboratories operated by the US Department of Energy (DOE) chartered a steering group to address DOE's concerns about the effectiveness of any regulations driving the cost of environmental restoration and waste management. The goal of this presentation is to inform and to seek collaboration on the challenge of standardizing ecological and human health risk assessment approaches and development of an approach to address the differences between environmental remediation and restoration activities at DOE's waste management sites across the country. Recent changes in risk related regulations and budget cuts have prompted significant changes in DOE's approach to conducting and standardizing risk-based approaches for waste management. The steering group was established in 1990 to organize a broad, long-term educational outreach and research program focused on better science and public understanding of the risks associated with hazardous agents (chemical, biological, radiological, and physical) in the environment and the workplace. This presentation discusses the group's goal to (1) act as one resource for providing the technical basis for health and environmental standards; (2) catalyze a national effort to improve public understanding of risk and the importance of cost benefit analysis in evaluating mitigation of risk; (3) catalyze improvements in understanding of health and environmental effects of hazardous agents; and (4) analyze with regulatory agencies, industry, and the public the potential for evolution of risk-based consensus standard into federal and state environmental and occupational/public health regulations. Major accomplishments will be presented along with the group's agenda for standardizing risk, environmental, and occupational/public health standards

  15. Integration of tablet technologies in the e-laboratory of cytology: a health technology assessment.

    Science.gov (United States)

    Giansanti, Daniele; Pochini, Marco; Giovagnoli, Maria Rosaria

    2014-10-01

    Although tablet systems are becoming a powerful technology, particularly useful in every application of medical imaging, to date no one has investigated the acceptance and performance of this technology in digital cytology. The specific aims of the work were (1) to design a health technology assessment (HTA) tool to assess, in terms of performance and acceptance, the introduction of tablet technologies (wearable, portable, and non portable) in the e-laboratories of cytology and (2) to test the tool in a first significant application of digital cytology. An HTA tool was proposed operating on a domain of five dimensions of investigation comprising the basic information of the product of digital cytology, the perceived subjective quality of images, the assessment of the virtual navigation on the e-slide, the assessment of the information and communication technologies features, and the diagnostic power. Six e-slides regarding studies of cervicovaginal cytology digitalized by means of an Aperio ( www.aperio.com ) scanner and uploaded onto the www.digitalslide.it Web site were used for testing the methodology on three different network connections. Three experts of cytology successfully tested the methodology on seven tablets found suitable for the study in their own standard configuration. Specific indexes furnished by the tool indicated both a high degree of performance and subjective acceptance of the investigated technology. The HTA tool thus could be useful to investigate new tablet technologies in digital cytology and furnish stakeholders with useful information that may help them make decisions involving the healthcare system. From a global point of view the study demonstrates the feasibility of using the tablet technology in digital cytology.

  16. Final deactivation project report on the Integrated Process Demonstration Facility, Building 7602 Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of this report is to document the condition of the Integrated Process Demonstration Facility (Building 7602) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities by the High Ranking Facilities Deactivation Project (HRFDP). This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the U.S. Department of Energy (DOE) Environmental Restoration EM-40 Program. This report provides a history and description of the facility prior to commencing deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S ampersand M) Plan, remaining hazardous and radioactive materials inventory, radiological controls, Safeguards and Security, and supporting documentation provided in the Office of Nuclear Material and Facility Stabilization Program (EM-60) Turnover package are discussed

  17. Integrated laboratory coagulation tests in hypercoagulation diagnosis and thrombosis risk assessment. Part I. The pathophysiology of thrombosis and hypercoagulation

    Directory of Open Access Journals (Sweden)

    E. N. Lipets

    2015-01-01

    Full Text Available Thrombosis is a fatal hemostatic disorders occurring in various conditions ranging from pregnancy and surgery to cancer, sepsis and heart attack. Despite the availability of different anticoagulants and accumulated clinical experience, proving their effectiveness, thrombosis remains a major cause of morbidity and mortality. This is largely due to the fact that conventional laboratory coagulation tests are not sufficiently sensitive to the hypercoagulable state, and they are difficult to use for assessing the risk of thrombosis. Specific molecular markers (D-dimers, fibrinopeptide, thrombin-antithrombin complex are more effective, but also have a large number of disadvantages. A possible solution is the use of integrated test, which simulate in vitro the majority of the physiological coagulation processes. In the first part of this paper the biochemical processes that cause the risk of thrombosis were discussed.

  18. Environmental Assessment and Finding of No Significant Impact: Center for Integrated Nanotechnologies at Sandia National Laboratories/New Mexico

    International Nuclear Information System (INIS)

    2003-01-01

    In 1999, the United States government announced the National Nanotechnology Initiative (NNI) that included a proposal directed at doubling the nation's investment in nanotechnology to ensure the United States' competitive position in the rapidly developing field of nanotechnology. As part of the NNI, the National Science and Technology Council Interagency Working Group on Nanoscale Science, Engineering, and Technology (IWGN) concluded that research centers would permit activities that cannot be accomplished in the traditional mode of small groups or single investigators or with the current research infrastructure. The IWGN recognized the importance of establishing research centers with major Department of Energy (DOE) specialized and user facilities. Consequently, the DOE Office of Basic Energy Sciences (OBES) plans to support the NNI, in part, through the establishment of an integrated national program of Nanoscale Science Research Centers (NSRC) affiliated with major facilities at DOE's national laboratories. Specific objectives of the NSRCs are to accomplish the following: (1) Advance the fundamental understanding and control of materials at the nanoscale regime; (2) Provide an environment to support research of a scope, complexity, and disciplinary breadth not possible under traditional investigator or small group efforts; (3) Provide the foundation for the development of nanotechnologies important to the DOE; (4) Provide state-of-the-art equipment to in-house laboratory, university, and industry researchers and optimize the use of national user facilities for materials characterization employing electrons, photons, and neutrons; (5) Provide a formal mechanism for both short- and long-term collaborations and partnerships among DOE laboratory, academic, and industrial researchers; and (6) Provide training for graduate students and postdoctoral associates in interdisciplinary nanoscale science, engineering, and technology research

  19. Environmental Survey preliminary report, Idaho National Engineering Laboratory, Idaho Falls, Idaho and Component Development and Integration Facility, Butte, Montana

    International Nuclear Information System (INIS)

    1988-09-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Idaho National Engineering Laboratory (INEL) and Component Development and Integration Facility (CDIF), conducted September 14 through October 2, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the INEL and CDIF. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations' carried on at the INEL and the CDIF, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S ampersand A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S ampersand A Plan will be executed by the Oak Ridge National Laboratory. When completed, the S ampersand A results will be incorporated into the INEL/CDIF Survey findings for inclusion into the Environmental Survey Summary Report. 90 refs., 95 figs., 77 tabs

  20. An integrated biomarker response index for the mussel Mytilus edulis based on laboratory exposure to anthracene and field transplantation experiments

    Science.gov (United States)

    Yuan, Mengqi; Wang, You; Zhou, Bin; Jian, Xiaoyang; Dong, Wenlong; Tang, Xuexi

    2017-09-01

    Organic pollution is a serious environmental problem in coastal areas and it is important to establish quantitative methods for monitoring this pollution. This study screened a series of sensitive biomarkers to construct an integrated biomarker response (IBR) index using Mytilus edulis. Mussels were exposed to the polycyclic aromatic hydrocarbon anthracene under controlled laboratory conditions and the activities of components of the glutathione antioxidant system, and the concentrations of oxidative-damage markers, were measured in the gills and digestive glands. Anthracene exposure resulted in increased levels of malondialdehyde (MDA) and superoxide radicals (O 2 • ), indicating that oxidative damage had occurred. Correspondingly, anthracene exposure induced increased activities of glutathione S-transferase (GST), glutathione peroxidase (GPx) and reduced glutathione (GSH) in digestive glands, and GPx and glutathione reductase (GR) in gills, consistent with stimulation of the antioxidant system. A field experiment was set up, in which mussels from a relatively clean area were transplanted to a contaminated site. One month later, the activities of GST, GPx and GR had increased in several tissues, particularly in the digestive glands. Based on the laboratory experiment, an IBR, which showed a positive relationship with anthracene exposure, was constructed. The IBR is suggested to be a potentially useful tool for assessing anthracene pollution.

  1. Environmental Survey preliminary report, Idaho National Engineering Laboratory, Idaho Falls, Idaho and Component Development and Integration Facility, Butte, Montana

    Energy Technology Data Exchange (ETDEWEB)

    1988-09-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Idaho National Engineering Laboratory (INEL) and Component Development and Integration Facility (CDIF), conducted September 14 through October 2, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the INEL and CDIF. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations' carried on at the INEL and the CDIF, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory. When completed, the S A results will be incorporated into the INEL/CDIF Survey findings for inclusion into the Environmental Survey Summary Report. 90 refs., 95 figs., 77 tabs.

  2. Integrated planning of laboratory, in-situ, modelling and natural analogue studies in the Swiss radioactive waste management programme

    International Nuclear Information System (INIS)

    McKinley, I.G.; Zuidema, P.

    2001-01-01

    After more than 25 years of development, the Swiss radioactive waste management programme has a well established disposal strategy supported by an integrated R and D infrastructure. The process of implementation of repository projects is constrained by political factors, but a dynamic R and D programme is strongly guided by periodic integrated performance assessments and includes: Experimental studies in conventional and ''hot'' laboratories; Projects in underground test facilities and field test sites; Model development verification and validation; Natural and archaeological analogue projects. R and D in the Swiss national programme focuses on filling remaining gaps in system understanding, enhancing confidence via validation and demonstration projects, system optimisation and maintaining state of the art technical capacity in key areas. Increasingly, such work is carried out in collaboration with partner national waste management organisations. In addition, The National Cooperative for the Disposal of Radioactive Waste (Nagra) provides support services to developing programmes - which allows Nagra to widen its range of experience while providing attractive access to a knowledge base accumulated at a cost of over 750 M CHF. (author)

  3. Digital immunohistochemistry platform for the staining variation monitoring based on integration of image and statistical analyses with laboratory information system.

    Science.gov (United States)

    Laurinaviciene, Aida; Plancoulaine, Benoit; Baltrusaityte, Indra; Meskauskas, Raimundas; Besusparis, Justinas; Lesciute-Krilaviciene, Daiva; Raudeliunas, Darius; Iqbal, Yasir; Herlin, Paulette; Laurinavicius, Arvydas

    2014-01-01

    Digital immunohistochemistry (IHC) is one of the most promising applications brought by new generation image analysis (IA). While conventional IHC staining quality is monitored by semi-quantitative visual evaluation of tissue controls, IA may require more sensitive measurement. We designed an automated system to digitally monitor IHC multi-tissue controls, based on SQL-level integration of laboratory information system with image and statistical analysis tools. Consecutive sections of TMA containing 10 cores of breast cancer tissue were used as tissue controls in routine Ki67 IHC testing. Ventana slide label barcode ID was sent to the LIS to register the serial section sequence. The slides were stained and scanned (Aperio ScanScope XT), IA was performed by the Aperio/Leica Colocalization and Genie Classifier/Nuclear algorithms. SQL-based integration ensured automated statistical analysis of the IA data by the SAS Enterprise Guide project. Factor analysis and plot visualizations were performed to explore slide-to-slide variation of the Ki67 IHC staining results in the control tissue. Slide-to-slide intra-core IHC staining analysis revealed rather significant variation of the variables reflecting the sample size, while Brown and Blue Intensity were relatively stable. To further investigate this variation, the IA results from the 10 cores were aggregated to minimize tissue-related variance. Factor analysis revealed association between the variables reflecting the sample size detected by IA and Blue Intensity. Since the main feature to be extracted from the tissue controls was staining intensity, we further explored the variation of the intensity variables in the individual cores. MeanBrownBlue Intensity ((Brown+Blue)/2) and DiffBrownBlue Intensity (Brown-Blue) were introduced to better contrast the absolute intensity and the colour balance variation in each core; relevant factor scores were extracted. Finally, tissue-related factors of IHC staining variance were

  4. Downtime procedures for the 21st century: using a fully integrated health record for uninterrupted electronic reporting of laboratory results during laboratory information system downtimes.

    Science.gov (United States)

    Oral, Bulent; Cullen, Regina M; Diaz, Danny L; Hod, Eldad A; Kratz, Alexander

    2015-01-01

    Downtimes of the laboratory information system (LIS) or its interface to the electronic medical record (EMR) disrupt the reporting of laboratory results. Traditionally, laboratories have relied on paper-based or phone-based reporting methods during these events. We developed a novel downtime procedure that combines advance placement of orders by clinicians for planned downtimes, the printing of laboratory results from instruments, and scanning of the instrument printouts into our EMR. The new procedure allows the analysis of samples from planned phlebotomies with no delays, even during LIS downtimes. It also enables the electronic reporting of all clinically urgent results during downtimes, including intensive care and emergency department samples, thereby largely avoiding paper- and phone-based communication of laboratory results. With the capabilities of EMRs and LISs rapidly evolving, information technology (IT) teams, laboratories, and clinicians need to collaborate closely, review their systems' capabilities, and design innovative ways to apply all available IT functions to optimize patient care during downtimes. Copyright© by the American Society for Clinical Pathology.

  5. Project of an integrated calibration laboratory of instruments at IPEN; Projeto de um laboratorio integrado de calibracao de instrumentos no IPEN

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Gustavo Adolfo San Jose

    2009-07-01

    The Calibration Laboratory of Instruments of Instituto de Pesquisas Energeticas e Nucleares offers calibration services of radiation detectors used in radioprotection, diagnostic radiology and radiotherapy, for IPEN and for external facilities (public and private). One part of its facilities is located in the main building, along with other laboratories and study rooms, and another part in an isolated building called Bunker. For the optimization, modernization and specially the safety, the laboratories in the main building shall be transferred to an isolated place. In this work, a project of an integrated laboratory for calibration of instruments was developed, and it will be an expansion of the current Calibration Laboratory of Instruments of IPEN. Therefore, a series of radiometric monitoring of the chosen localization of the future laboratory was realized, and all staff needs (dimensions and disposition of the study rooms and laboratories) were defined. In this project, the laboratories with X ray equipment, alpha and beta radiation sources were located at an isolated part of the building, and the wall shielding was determined, depending on the use of each laboratory. (author)

  6. Report of investigation into allegations of retaliation for raising safety and quality of work issues regarding Argonne National Laboratory's Integral Fast Reactor project

    International Nuclear Information System (INIS)

    1991-12-01

    In August 1990 James A. Smith resigned his position as an experimenter at Argonne National Laboratory-West (ANL-W), located near Idaho Falls, Idaho. Smith who holds a Ph.D. in metallurgy, had worked at the Laboratory since 1988, primarily on its Integral Fast Reactor (IFR) project. He alleged that the quality of the Laboratory's work on that project had been undermined by fundamental errors in metallurgy and related sciences, at least some of which had nuclear safety implications; that the Laboratory had published false and misleading accounts of its work; that prevailing attitudes at the Laboratory were antithetical to quality scientific work; and that because he had expressed concerns about these matters his job was threatened by his managers. Evidence gathered during an investigation by the Department of Energy's Office of Nuclear Safety (NS) is presented and conclusions and recommendations are provided

  7. Fabrication and laboratory-based performance testing of a building-integrated photovoltaic-thermal roofing panel

    International Nuclear Information System (INIS)

    Chen, Fangliang; Yin, Huiming

    2016-01-01

    Highlights: • A BIPVT solar panel is designed and fabricated for energy efficient buildings. • A high-speed manufacture method is developed to produce the functionally graded materials. • Laboratory tests demonstrate BIPVT’s energy efficiency improvement and innovations. • The PV efficiency is enhanced ∼24% through temperature control of the panel by water flow. • The combined electric and thermal efficiency reaches >75% of solar irradiation. - Abstract: A building integrated photovoltaic-thermal (BIPVT) multifunctional roofing panel has been developed in this study to harvest solar energy in the form of PV electricity as well as heat energy through the collection of warm water. As a key component of the multifunctional building envelope, an aluminum/high-density polyethylene (HDPE) functionally graded material (FGM) panel embedded with aluminum water tubes has been fabricated through the vibration-sedimentation approach. The FGM layer gradually transits material phases from well-conductive side (with aluminum dominated) to another highly insulated side (with HDPE). The heat in the PV cells can be easily transferred into the conductive side of the FGM and then collected by the water flow in the embedded tubes. Therefore, the operational temperature of the PV cells can be significantly lowered down, which recovers the PV efficiency in hot weather. In this way, the developed BIPVT panel is able to efficiently harvest solar energy in the form of both PV electricity and heat. The performance of a prototype BIPVT panel has been evaluated in terms of its thermal efficiency via warm water collection and PV efficiency via the output electricity. The laboratory test results demonstrate that significant energy conversion efficiency improvement can be achieved for both electricity generation and heat collection by the presented BIPVT roofing system. Overall, the performance indicates a very promising prospective of the new BIPVT multifunctional roofing panel.

  8. Advanced Stirling Convertor Control Unit Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    Science.gov (United States)

    Dugala, Gina M.; Taylor, Linda M.; Kussmaul, Michael; Casciani, Michael; Brown, Gregory; Wiser, Joel

    2017-01-01

    Future NASA missions could include establishing Lunar or Martian base camps, exploring Jupiters moons and travelling beyond where generating power from sunlight may be limited. Radioisotope Power Systems (RPS) provide a dependable power source for missions where inadequate sunlight or operational requirements make other power systems impractical. Over the past decade, NASA Glenn Research Center (GRC) has been supporting the development of RPSs. The Advanced Stirling Radioisotope Generator (ASRG) utilized a pair of Advanced Stirling Convertors (ASC). While flight development of the ASRG has been cancelled, much of the technology and hardware continued development and testing to guide future activities. Specifically, a controller for the convertor(s) is an integral part of a Stirling-based RPS. For the ASRG design, the controller maintains stable operation of the convertors, regulates the alternating current produced by the linear alternator of the convertor, provides a specified direct current output voltage for the spacecraft, synchronizes the piston motion of the two convertors in order to minimize vibration as well as manage and maintain operation with a stable piston amplitude and hot end temperature. It not only provides power to the spacecraft but also must regulate convertor operation to avoid damage to internal components and maintain safe thermal conditions after fueling. Lockheed Martin Coherent Technologies has designed, developed and tested an Engineering Development Unit (EDU) Advanced Stirling Convertor Control Unit (ACU) to support this effort. GRC used the ACU EDU as part of its non-nuclear representation of a RPS which also consists of a pair of Dual Advanced Stirling Convertor Simulator (DASCS), and associated support equipment to perform a test in the Radioisotope Power Systems System Integration Laboratory (RSIL). The RSIL was designed and built to evaluate hardware utilizing RPS technology. The RSIL provides insight into the electrical

  9. Design, fabrication, and calibration of curved integral coils for measuring transfer function, uniformity, and effective length of LBL ALS [Lawrence Berkeley Laboratory Advanced Light Source] Booster Dipole Magnets

    International Nuclear Information System (INIS)

    Green, M.I.; Nelson, D.; Marks, S.; Gee, B.; Wong, W.; Meneghetti, J.

    1989-03-01

    A matched pair of curved integral coils has been designed, fabricated and calibrated at Lawrence Berkeley Laboratory for measuring Advanced Light Source (ALS) Booster Dipole Magnets. Distinctive fabrication and calibration techniques are described. The use of multifilar magnet wire in fabrication integral search coils is described. Procedures used and results of AC and DC measurements of transfer function, effective length and uniformity of the prototype booster dipole magnet are presented in companion papers. 8 refs

  10. Revealing the control of migratory fueling: An integrated approach combining laboratory and field studies in northern wheatears Oenanthe oenanthe

    Directory of Open Access Journals (Sweden)

    Franz BAIRLEIN,Volker DIERSCHKE, Julia DELINGAT, Cas EIKENAAR, Ivan MAGGINI, Marc BULTE, Heiko SCHMALJOHANN

    2013-06-01

    Full Text Available Migratory birds rely on fueling prior to migratory flights. Fueling in migrants is controlled by intrinsic as well as extrinsic factors. From captive studies we have started understanding the internal mechanisms controlling bird migration. Field studies have demonstrated the effects of external factors, such as food availability, weather, competitors, parasites or diseases, on the stopover behavior of migrants. However, an integrated approach is still missing to study coherently how the innate migration program interacts with the varying environmental cues and to estimate the contribution of the innate migration program and the environment to realized migration. The northern wheatear Oenanthe oenanthe offers a unique opportunity for integrated studies. It breeds across almost the whole Holarctic with just a “gap” between eastern Canada and Alaska. All breeding populations overwinter in sub-Saharan Africa which makes the northern wheatear one of the most long-distant migratory songbirds with extraordinary long non-stop flights across oceans. It is a nocturnal migrant which travels without parental or social aid/guidance. Thus, young birds rely entirely on endogenous mechanisms of timing, route selection and fueling on their first outbound migration. By establishing indoor housing under controlled conditions the endogenous control mechanisms of northern wheatear migration could be revealed. At the same time, environmental factors controlling fueling could be investigated in the field. On migration wheatears occur in a variety of habitats with sparse vegetation where their stopover behavior could be quantitatively studied in the light of “optimal migration” theory by the use of remote balances, radio-tagging and even experimentally manipulated food availability. The present paper summarizes our approach to understand the control of migration in northern wheatears by combining field and laboratory studies at various spatial and temporal

  11. A Hybrid Integrated Laboratory and Inquiry-Based Research Experience: Replacing Traditional Laboratory Instruction with a Sustainable Student-Led Research Project

    Science.gov (United States)

    Hartings, Matthew R.; Fox, Douglas M.; Miller, Abigail E.; Muratore, Kathryn E.

    2015-01-01

    The Department of Chemistry at American University has replaced its junior- and senior-level laboratory curriculum with two, two-semester long, student-led research projects as part of the department's American Chemical Society-accredited program. In the first semester of each sequence, a faculty instructor leads the students through a set of…

  12. Integral Analysis of Field Work and Laboratory Electrical Resistivity Imaging for Saline Water Intrusion Prediction in Groundwater

    Science.gov (United States)

    Zawawi, M. H.; Zahar, M. F.; Hashim, M. M. M.; Hazreek, Z. A. M.; Zahari, N. M.; Kamaruddin, M. A.

    2018-04-01

    Saline water intrusion is a serious threat to the groundwater as many part of the world utilize groundwater as their main source of fresh water supply. The usage of high salinity level of water as drinking water can lead to a very serious health hazard towards human. Saline water intrusion is a process by which induced flow of seawater into freshwater aquifer along the coastal area. It might happen due to human action and/or by natural event. The climate change and rise up of sea level may speed up the saline water intrusion process. The conventional method for distinguishing and checking saltwater interference to groundwater along the coast aquifers is to gather and test the groundwater from series of observation wells (borehole) with an end goal to give the important information about the hydrochemistry data to conclude whether the water in the well are safe to consume or not. An integrated approach of field and laboratory electrical resistivity investigation is proposed for indicating the contact region between saline and fresh groundwater. It was found that correlation for both soilbox produced almost identical curvilinear trends for 2% increment of seawater tested using sand sample. This project contributes towards predicting the saline water intrusion to the groundwater by non-destructive test that can replaced the conventional method of groundwater monitoring using series of boreholes in the coastal area

  13. A Laboratory Experimental Study: An FBG-PVC Tube Integrated Device for Monitoring the Slip Surface of Landslides

    Science.gov (United States)

    Zhang, Shaojie; Chen, Jiang; Teng, Pengxiao; Wei, Fangqiang; Chen, Qiao

    2017-01-01

    A new detection device was designed by integrating fiber Bragg grating (FBG) and polyvinyl chloride (PVC) tube in order to monitor the slip surface of a landslide. Using this new FBG-based device, a corresponding slope model with a pre-set slip surface was designed, and seven tests with different soil properties were carried out in laboratory conditions. The FBG sensing fibers were fixed on the PVC tube to measure strain distributions of PVC tube at different elevation. Test results indicated that the PVC tube could keep deformation compatible with soil mass. The new device was able to monitor slip surface location before sliding occurrence, and the location of monitored slip surface was about 1–2 cm above the pre-set slip surface, which basically agreed with presupposition results. The monitoring results are expected to be used to pre-estimate landslide volume and provide a beneficial option for evaluating the potential impact of landslides on shipping safety in the Three Gorges area. PMID:29084157

  14. Actin Immobilization on Chitin for Purifying Myosin II: A Laboratory Exercise That Integrates Concepts of Molecular Cell Biology and Protein Chemistry

    Science.gov (United States)

    de Souza, Marcelle Gomes; Grossi, Andre Luiz; Pereira, Elisangela Lima Bastos; da Cruz, Carolina Oliveira; Mendes, Fernanda Machado; Cameron, Luiz Claudio; Paiva, Carmen Lucia Antao

    2008-01-01

    This article presents our experience on teaching biochemical sciences through an innovative approach that integrates concepts of molecular cell biology and protein chemistry. This original laboratory exercise is based on the preparation of an affinity chromatography column containing F-actin molecules immobilized on chitin particles for purifying…

  15. Assessing students' learning outcomes, self-efficacy and attitudes toward the integration of virtual science laboratory in general physics

    Science.gov (United States)

    Ghatty, Sundara L.

    Over the past decade, there has been a dramatic rise in online delivery of higher education in the United States. Recent developments in web technology and access to the internet have led to a vast increase in online courses. For people who work during the day and whose complicated lives prevent them from taking courses on campus, online courses are the only alternatives by which they may achieve their goals in education. The laboratory courses are the major requirements for college and university students who want to pursue degree and certification programs in science. It is noted that there is a lack of laboratory courses in online physics courses. The present study addressed the effectiveness of a virtual science laboratory in physics instruction in terms of learning outcomes, attitudes, and self-efficacy of students in a Historically Black University College. The study included fifty-eight students (36 male and 22 female) of different science majors who were enrolled in a general physics laboratory course. They were divided into virtual and traditional groups. Three experiments were selected from the syllabus. The traditional group performed one experiment in a traditional laboratory, while the virtual group performed the same experiment in a virtual laboratory. For the second experiment, the use of laboratories by both groups was exchanged. Learner's Assessment Test (LAT), Attitudes Toward Physics Laboratories (ATPL), and Self-Efficacy Survey (SES) instruments were used. Additionally, quantitative methods such as an independent t-test, a paired t-test, and correlation statistics were used to analyze the data. The results of the first experiment indicated the learning outcomes were higher in the Virtual Laboratory than in the traditional laboratory, whereas there was no significant difference in learning outcomes with either type of lab instruction. However, significant self-efficacy gains were observed. Students expressed positive attitudes in terms of liking

  16. Final Report - Phase II - Biogeochemistry of Uranium Under Reducing and Re-oxidizing Conditions: An Integrated Laboratory and Field Study

    Energy Technology Data Exchange (ETDEWEB)

    Peyton, Brent; Sani, Rajesh

    2006-09-28

    Our understanding of subsurface microbiology is hindered by the inaccessibility of this environment, particularly when the hydrogeologic medium is contaminated with toxic substances. Past research in our labs indicated that the composition of the growth medium (e.g., bicarbonate complexation of U(VI)) and the underlying mineral phase (e.g., hematite) significantly affects the rate and extent of U(VI) reduction and immobilization through a variety of effects. Our research was aimed at elucidating those effects to a much greater extent, while exploring the potential for U(IV) reoxidation and subsequent re-mobilization, which also appears to depend on the mineral phases present in the system. The project reported on here was an extension ($20,575) of the prior (much larger) project. This report is focused only on the work completed during the extension period. Further information on the larger impacts of our research, including 28 publications, can be found in the final report for the following projects: 1) Biogeochemistry of Uranium Under Reducing and Re-oxidizing Conditions: An Integrated Laboratory and Field Study Grant # DE-FG03-01ER63270, and 2) Acceptable Endpoints for Metals and Radionuclides: Quantifying the Stability of Uranium and Lead Immobilized Under Sulfate Reducing Conditions Grant # DE-FG03-98ER62630/A001 In this Phase II project, the toxic effects of uranium(VI) were studied using Desulfovibrio desulfuricans G20 in a medium containing bicarbonate or 1, 4-piperazinediethane sulfonic acid disodium salt monohydrate (PIPES) buffer (each at 30 mM, pH 7). The toxicity of uranium(VI) was dependent on the medium buffer and was observed in terms of longer lag times and in some cases, no measurable growth. The minimum inhibiting concentration (MIC) was 140 M U(VI) in PIPES buffered medium. This is 36 times lower than previously reported for D. desulfuricans. These results suggest that U(VI) toxicity and the detoxification mechanisms of G20 depend greatly on the

  17. Peer-teaching in the food chemistry laboratory: student-produced experiments, peer and audio feedback, and integration of employability skills

    OpenAIRE

    Julie Lisa Dunne

    2014-01-01

    This paper describes the author’s experience over the last several years of implementing an alternative Food Chemistry laboratory practical model for a group of third-year BSc Nutraceuticals students. The initial main objectives were to prepare students for the more independent final-year research project; to incorporate innovative approaches to feedback; and to integrate key employability skills into the curriculum. These were achieved through building the skills required to ultimately allow...

  18. Real-Time Rocket/Vehicle System Integrated Health Management Laboratory For Development and Testing of Health Monitoring/Management Systems

    Science.gov (United States)

    Aguilar, R.

    2006-01-01

    Pratt & Whitney Rocketdyne has developed a real-time engine/vehicle system integrated health management laboratory, or testbed, for developing and testing health management system concepts. This laboratory simulates components of an integrated system such as the rocket engine, rocket engine controller, vehicle or test controller, as well as a health management computer on separate general purpose computers. These general purpose computers can be replaced with more realistic components such as actual electronic controllers and valve actuators for hardware-in-the-loop simulation. Various engine configurations and propellant combinations are available. Fault or failure insertion capability on-the-fly using direct memory insertion from a user console is used to test system detection and response. The laboratory is currently capable of simulating the flow-path of a single rocket engine but work is underway to include structural and multiengine simulation capability as well as a dedicated data acquisition system. The ultimate goal is to simulate as accurately and realistically as possible the environment in which the health management system will operate including noise, dynamic response of the engine/engine controller, sensor time delays, and asynchronous operation of the various components. The rationale for the laboratory is also discussed including limited alternatives for demonstrating the effectiveness and safety of a flight system.

  19. New developments of the Integrated Stress Determination Method and application to the Aespoe Hard Rock Laboratory, Sweden

    International Nuclear Information System (INIS)

    Ask, Daniel

    2004-04-01

    This thesis presents new developments of the Integrated Stress Determination Method (ISDM) with application to the Aespoe Hard Rock Laboratory (HRL), Oskarshamn, Sweden. The new developments involve a 12-parameter representation of the regional stress field in the rock mass. The method is applicable to data from hydraulic fracturing, hydraulic tests on pre-existing fractures (HTPF), and overcoring data from CSIR- and CSIRO-type of devices. When hydraulic fracturing/HTPF data are combined with overcoring data, the former may be used to constrain the elastic parameters, i.e. the problem involves 14 model parameters. The Swedish Nuclear Fuel and Waste Management Co. (SKB), have conducted a vast amount of rock stress measurements at the Aespoe HRL since the late 1980s. However, despite the large number of stress measurement data collected in this limited rock volume, variability in the stress field exists. Not only does the result vary depending on measuring technique, e.g. overcoring data indicated larger stress magnitudes compared to hydraulic fracturing data; the results are also affected by existing discontinuities, indicated by non-linear stress magnitudes and orientations versus depth. The objectives for this study are therefore threefold: (1) find explanations to the observed differences between existing hydraulic and overcoring stress data at the Aspo HRL; (2) explain the non-linear stress distribution indicated by existing stress data; and (3) apply the ISDM, including the new developments, based on the results obtained in step 1 and 2. To evaluate the observed differences between existing hydraulic and overcoring stress data, a detailed re-interpretation was conducted. Several measurement-related uncertainties were identified and corrected for when possible, which effectively reduced the discrepancies between the hydraulic and overcoring measuring results. Modeling studies managed by SKB have shown that the redistribution of the stresses at Aespoe HRL to a

  20. Integration of a Faculty's Ongoing Research into an Undergraduate Laboratory Teaching Class in Developmental Biology

    Science.gov (United States)

    Nam, Sang-Chul

    2018-01-01

    Traditional developmental biology laboratory classes have utilized a number of different model organisms to allow students to be exposed to diverse biological phenomena in developing organisms. This traditional approach has mainly focused on the diverse morphological and anatomical descriptions of the developing organisms. However, modern…

  1. Integration

    DEFF Research Database (Denmark)

    Emerek, Ruth

    2004-01-01

    Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...

  2. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL)Established to investigate, integrate, testand verifyperformance and technology readiness offuel cell systems and fuel reformers for use with...

  3. Fuzzy-TLX: using fuzzy integrals for evaluating human mental workload with NASA-Task Load indeX in laboratory and field studies.

    Science.gov (United States)

    Mouzé-Amady, Marc; Raufaste, Eric; Prade, Henri; Meyer, Jean-Pierre

    2013-01-01

    The aim of this study was to assess mental workload in which various load sources must be integrated to derive reliable workload estimates. We report a new algorithm for computing weights from qualitative fuzzy integrals and apply it to the National Aeronautics and Space Administration -Task Load indeX (NASA-TLX) subscales in order to replace the standard pair-wise weighting technique (PWT). In this paper, two empirical studies were reported: (1) In a laboratory experiment, age- and task-related variables were investigated in 53 male volunteers and (2) In a field study, task- and job-related variables were studied on aircrews during 48 commercial flights. The results found in this study were as follows: (i) in the experimental setting, fuzzy estimates were highly correlated with classical (using PWT) estimates; (ii) in real work conditions, replacing PWT by automated fuzzy treatments simplified the NASA-TLX completion; (iii) the algorithm for computing fuzzy estimates provides a new classification procedure sensitive to various variables of work environments and (iv) subjective and objective measures can be used for the fuzzy aggregation of NASA-TLX subscales. NASA-TLX, a classical tool for mental workload assessment, is based on a weighted sum of ratings from six subscales. A new algorithm, which impacts on input data collection and computes weights and indexes from qualitative fuzzy integrals, is evaluated through laboratory and field studies. Pros and cons are discussed.

  4. Equipment concept design and development plans for microgravity science and applications research on space station: Combustion tunnel, laser diagnostic system, advanced modular furnace, integrated electronics laboratory

    Science.gov (United States)

    Uhran, M. L.; Youngblood, W. W.; Georgekutty, T.; Fiske, M. R.; Wear, W. O.

    1986-01-01

    Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware.

  5. [Integrity].

    Science.gov (United States)

    Gómez Rodríguez, Rafael Ángel

    2014-01-01

    To say that someone possesses integrity is to claim that that person is almost predictable about responses to specific situations, that he or she can prudentially judge and to act correctly. There is a closed interrelationship between integrity and autonomy, and the autonomy rests on the deeper moral claim of all humans to integrity of the person. Integrity has two senses of significance for medical ethic: one sense refers to the integrity of the person in the bodily, psychosocial and intellectual elements; and in the second sense, the integrity is the virtue. Another facet of integrity of the person is la integrity of values we cherish and espouse. The physician must be a person of integrity if the integrity of the patient is to be safeguarded. The autonomy has reduced the violations in the past, but the character and virtues of the physician are the ultimate safeguard of autonomy of patient. A field very important in medicine is the scientific research. It is the character of the investigator that determines the moral quality of research. The problem arises when legitimate self-interests are replaced by selfish, particularly when human subjects are involved. The final safeguard of moral quality of research is the character and conscience of the investigator. Teaching must be relevant in the scientific field, but the most effective way to teach virtue ethics is through the example of the a respected scientist.

  6. Life sciences payload definition and integration study. Volume 2: Requirements, design, and planning studies for the carry-on laboratories. [for Spacelab

    Science.gov (United States)

    1974-01-01

    The task phase concerned with the requirements, design, and planning studies for the carry-on laboratory (COL) began with a definition of biomedical research areas and candidate research equipment, and then went on to develop conceptual layouts for COL which were each evaluated in order to arrive at a final conceptual design. Each step in this design/evaluation process concerned itself with man/systems integration research and hardware, and life support and protective systems research and equipment selection. COL integration studies were also conducted and include attention to electrical power and data management requirements, operational considerations, and shuttle/Spacelab interface specifications. A COL program schedule was compiled, and a cost analysis was finalized which takes into account work breakdown, annual funding, and cost reduction guidelines.

  7. Large space antenna communications systems: Integrated Langley Research Center/Jet Propulsion Laboratory development activities. 2: Langley Research Center activities

    Science.gov (United States)

    Cambell, T. G.; Bailey, M. C.; Cockrell, C. R.; Beck, F. B.

    1983-01-01

    The electromagnetic analysis activities at the Langley Research Center are resulting in efficient and accurate analytical methods for predicting both far- and near-field radiation characteristics of large offset multiple-beam multiple-aperture mesh reflector antennas. The utilization of aperture integration augmented with Geometrical Theory of Diffraction in analyzing the large reflector antenna system is emphasized.

  8. MOOC as a Laboratory of Culture Shock: Helping Non-U.S. Students Integrate into All-American Virtual Environment

    Science.gov (United States)

    Chukhlomin, Valeri; Deshpande, Anant

    2017-01-01

    "iMOOC101: Mastering American e-Learning" is a Coursera-based, free, massive online course aimed at preparing non-U.S. students to succeed in regular, for-credit, online classes in American universities. The course is also intended to help foreign-born professionals integrate into virtual work environments in U.S.-based companies. The…

  9. Preliminary evaluation of liquid integrity monitoring methods for gunite and associated tanks at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-02-01

    The Gunite and Associated Tanks (GAAT) are inactive, liquid low-level waste (LLLW) tanks located in and around the North and South Tank Farms (NTF and STF) at Oak Ridge National Laboratory (ORNL). These tanks, which contain a supernatant over a layer of radioactive sludge, are the subject of an ongoing treatability study that will determine the best way to remove the sludge and remediate the tanks. As part of this study, a preliminary assessment of liquid integrity (or ''tightness'') monitoring methods for the Gunite tanks has been conducted. Both an external and an internal liquid integrity monitoring method were evaluated, and a preliminary assessment of the liquid integrity of eight Gunite tanks was made with the internal method. The work presented in this report shows that six of the eight GAAT considered here are liquid tight and that, in the case of the other two, data quality was too poor to allow a conclusive decision. The analysis indicates that when the release detection approach described in this report is used during the upcoming treatability study, it will function as a sensitive and robust integrity monitoring system. Integrity assessments based on both the internal and external methods can be used as a means of documenting the integrity of the tanks before the initiation of in-tank operations. Assessments based on the external method can be used during these operations as a means of providing a nearly immediate indication of a release, should one occur. The external method of release detection measures the electrical conductivity of the water found in the dry wells associated with each of the tanks. This method is based on the fact that the conductivity of the liquid in the GAAT is very high, while the conductivity of the groundwater in the dry wells and the underdrain system for the GAAT is very low

  10. Facilitating quality control for spectra assignments of small organic molecules: nmrshiftdb2--a free in-house NMR database with integrated LIMS for academic service laboratories.

    Science.gov (United States)

    Kuhn, Stefan; Schlörer, Nils E

    2015-08-01

    nmrshiftdb2 supports with its laboratory information management system the integration of an electronic lab administration and management into academic NMR facilities. Also, it offers the setup of a local database, while full access to nmrshiftdb2's World Wide Web database is granted. This freely available system allows on the one hand the submission of orders for measurement, transfers recorded data automatically or manually, and enables download of spectra via web interface, as well as the integrated access to prediction, search, and assignment tools of the NMR database for lab users. On the other hand, for the staff and lab administration, flow of all orders can be supervised; administrative tools also include user and hardware management, a statistic functionality for accounting purposes, and a 'QuickCheck' function for assignment control, to facilitate quality control of assignments submitted to the (local) database. Laboratory information management system and database are based on a web interface as front end and are therefore independent of the operating system in use. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Fault geometry and mechanics of marly carbonate multilayers: An integrated field and laboratory study from the Northern Apennines, Italy

    Science.gov (United States)

    Giorgetti, C.; Collettini, C.; Scuderi, M. M.; Barchi, M. R.; Tesei, T.

    2016-12-01

    Sealing layers are often represented by sedimentary sequences characterized by alternating strong and weak lithologies. When involved in faulting processes, these mechanically heterogeneous multilayers develop complex fault geometries. Here we investigate fault initiation and evolution within a mechanical multilayer by integrating field observations and rock deformation experiments. Faults initiate with a staircase trajectory that partially reflects the mechanical properties of the involved lithologies, as suggested by our deformation experiments. However, some faults initiating at low angles in calcite-rich layers (θi = 5°-20°) and at high angles in clay-rich layers (θi = 45°-86°) indicate the important role of structural inheritance at the onset of faulting. With increasing displacement, faults develop well-organized fault cores characterized by a marly, foliated matrix embedding fragments of limestone. The angles of fault reactivation, which concentrate between 30° and 60°, are consistent with the low friction coefficient measured during our experiments on marls (μs = 0.39), indicating that clay minerals exert a main control on fault mechanics. Moreover, our integrated analysis suggests that fracturing and faulting are the main mechanisms allowing fluid circulation within the low-permeability multilayer, and that its sealing integrity can be compromised only by the activity of larger faults cutting across its entire thickness.

  12. The Planetary Virtual Observatory and Laboratory (PVOL) and its integration into the Virtual European Solar and Planetary Access (VESPA)

    Science.gov (United States)

    Hueso, R.; Juaristi, J.; Legarreta, J.; Sánchez-Lavega, A.; Rojas, J. F.; Erard, S.; Cecconi, B.; Le Sidaner, Pierre

    2018-01-01

    Since 2003 the Planetary Virtual Observatory and Laboratory (PVOL) has been storing and serving publicly through its web site a large database of amateur observations of the Giant Planets (Hueso et al., 2010a). These images are used for scientific research of the atmospheric dynamics and cloud structure on these planets and constitute a powerful resource to address time variable phenomena in their atmospheres. Advances over the last decade in observation techniques, and a wider recognition by professional astronomers of the quality of amateur observations, have resulted in the need to upgrade this database. We here present major advances in the PVOL database, which has evolved into a full virtual planetary observatory encompassing also observations of Mercury, Venus, Mars, the Moon and the Galilean satellites. Besides the new objects, the images can be tagged and the database allows simple and complex searches over the data. The new web service: PVOL2 is available online in http://pvol2.ehu.eus/.

  13. Peer-teaching in the food chemistry laboratory: student-produced experiments, peer and audio feedback, and integration of employability skills

    Directory of Open Access Journals (Sweden)

    Julie Lisa Dunne

    2014-10-01

    Full Text Available This paper describes the author’s experience over the last several years of implementing an alternative Food Chemistry laboratory practical model for a group of third-year BSc Nutraceuticals students. The initial main objectives were to prepare students for the more independent final-year research project; to incorporate innovative approaches to feedback; and to integrate key employability skills into the curriculum. These were achieved through building the skills required to ultimately allow students working in groups to research, design and run a laboratory for their class. The first year of the project involved innovative approaches to feedback, including weekly feedback sessions, report checklists and audio feedback podcasts. Student evaluation after one year suggested the case group felt more prepared for final-year research projects and work placement owing to the redesign of the laboratory assessment. This, together with general positive feedback across several indicators, was proof of concept, and was a foundation for an improved model. The improvements related to the organisation and management of the project, but the same pedagogical approach has been retained. The second year saw the introduction of a more rigorous and easier to manage peer evaluation though use of the online Comprehensive Assessment for Team-Member Effectiveness (CATME tool. The most recent revision has included a Project Wiki hosted on Blackboard to facilitate the organisation, communication, assessment and feedback of student-generated resources.More recently, the final-year students who had participated in the peer-teaching Food Chemistry labs when in third year have been evaluated. This evaluation took place following their research projects, and suggests that the peer-teaching model better prepared them for these activities, compared to traditional laboratories.

  14. Structural integrity assessments for the category C liquid low-level waste tank systems at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This document provides a report of the efforts made to satisfy the Federal Facility Agreement (FFA) for the structural integrity certification of 14 Category C Liquid Low Level Waste (LLLW) Tank Systems on the Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. Within this document, each tank system is described including the associated pipeline segments evaluated as a part of those tank systems. A separate structural integrity assessment was conducted for each of the LLLW Tank Systems, four of which are located in Melton Valley, and ten of which are located in Bethel Valley. The results of the structural integrity assessments are reported herein. The assessments are based on (1) a review of available tank design drawings, (2) a qualitative assessment of corrosion on the tank and pipelines, and primarily, and (3) leak testing program results. Design plans and specifications were reviewed for a general description of the tanks and associated pipelines. Information of primary significance included tank age, material of construction, tank design and construction specifications. Design plans were also reviewed for the layouts and materials of pipeline constructions, and ages of pipelines. Next, a generic corrosion assessment was conducted for each tank system. Information was gathered, when available, related to the historical use of the tank and the likely contents. The corrosion assessments included a qualitative evaluation of the walls of each tank and pipelines associated with each tank, as well as the welds and joints of the systems. A general discussion of the stainless steel types encountered is included in Section 4.0 of this report. The potential for soils to have caused corrosion is also evaluated within the sections on the individual tank systems.

  15. OSMOSIS: a new joint laboratory between SOFRADIR and ONERA for the development of advanced DDCA with integrated optics

    Science.gov (United States)

    Druart, Guillaume; Matallah, Noura; Guerineau, Nicolas; Magli, Serge; Chambon, Mathieu; Jenouvrier, Pierre; Mallet, Eric; Reibel, Yann

    2014-06-01

    Today, both military and civilian applications require miniaturized optical systems in order to give an imagery function to vehicles with small payload capacity. After the development of megapixel focal plane arrays (FPA) with micro-sized pixels, this miniaturization will become feasible with the integration of optical functions in the detector area. In the field of cooled infrared imaging systems, the detector area is the Detector-Dewar-Cooler Assembly (DDCA). SOFRADIR and ONERA have launched a new research and innovation partnership, called OSMOSIS, to develop disruptive technologies for DDCA to improve the performance and compactness of optronic systems. With this collaboration, we will break down the technological barriers of DDCA, a sealed and cooled environment dedicated to the infrared detectors, to explore Dewar-level integration of optics. This technological breakthrough will bring more compact multipurpose thermal imaging products, as well as new thermal capabilities such as 3D imagery or multispectral imagery. Previous developments will be recalled (SOIE and FISBI cameras) and new developments will be presented. In particular, we will focus on a dual-band MWIR-LWIR camera and a multichannel camera.

  16. Novel Networked Remote Laboratory Architecture for Open Connectivity Based on PLC-OPC-LabVIEW-EJS Integration. Application in Remote Fuzzy Control and Sensors Data Acquisition.

    Science.gov (United States)

    González, Isaías; Calderón, Antonio José; Mejías, Andrés; Andújar, José Manuel

    2016-10-31

    In this paper the design and implementation of a network for integrating Programmable Logic Controllers (PLC), the Object-Linking and Embedding for Process Control protocol (OPC) and the open-source Easy Java Simulations (EJS) package is presented. A LabVIEW interface and the Java-Internet-LabVIEW (JIL) server complete the scheme for data exchange. This configuration allows the user to remotely interact with the PLC. Such integration can be considered a novelty in scientific literature for remote control and sensor data acquisition of industrial plants. An experimental application devoted to remote laboratories is developed to demonstrate the feasibility and benefits of the proposed approach. The experiment to be conducted is the parameterization and supervision of a fuzzy controller of a DC servomotor. The graphical user interface has been developed with EJS and the fuzzy control is carried out by our own PLC. In fact, the distinctive features of the proposed novel network application are the integration of the OPC protocol to share information with the PLC and the application under control. The user can perform the tuning of the controller parameters online and observe in real time the effect on the servomotor behavior. The target group is engineering remote users, specifically in control- and automation-related tasks. The proposed architecture system is described and experimental results are presented.

  17. Novel Networked Remote Laboratory Architecture for Open Connectivity Based on PLC-OPC-LabVIEW-EJS Integration. Application in Remote Fuzzy Control and Sensors Data Acquisition

    Directory of Open Access Journals (Sweden)

    Isaías González

    2016-10-01

    Full Text Available In this paper the design and implementation of a network for integrating Programmable Logic Controllers (PLC, the Object-Linking and Embedding for Process Control protocol (OPC and the open-source Easy Java Simulations (EJS package is presented. A LabVIEW interface and the Java-Internet-LabVIEW (JIL server complete the scheme for data exchange. This configuration allows the user to remotely interact with the PLC. Such integration can be considered a novelty in scientific literature for remote control and sensor data acquisition of industrial plants. An experimental application devoted to remote laboratories is developed to demonstrate the feasibility and benefits of the proposed approach. The experiment to be conducted is the parameterization and supervision of a fuzzy controller of a DC servomotor. The graphical user interface has been developed with EJS and the fuzzy control is carried out by our own PLC. In fact, the distinctive features of the proposed novel network application are the integration of the OPC protocol to share information with the PLC and the application under control. The user can perform the tuning of the controller parameters online and observe in real time the effect on the servomotor behavior. The target group is engineering remote users, specifically in control- and automation-related tasks. The proposed architecture system is described and experimental results are presented.

  18. Novel Networked Remote Laboratory Architecture for Open Connectivity Based on PLC-OPC-LabVIEW-EJS Integration. Application in Remote Fuzzy Control and Sensors Data Acquisition

    Science.gov (United States)

    González, Isaías; Calderón, Antonio José; Mejías, Andrés; Andújar, José Manuel

    2016-01-01

    In this paper the design and implementation of a network for integrating Programmable Logic Controllers (PLC), the Object-Linking and Embedding for Process Control protocol (OPC) and the open-source Easy Java Simulations (EJS) package is presented. A LabVIEW interface and the Java-Internet-LabVIEW (JIL) server complete the scheme for data exchange. This configuration allows the user to remotely interact with the PLC. Such integration can be considered a novelty in scientific literature for remote control and sensor data acquisition of industrial plants. An experimental application devoted to remote laboratories is developed to demonstrate the feasibility and benefits of the proposed approach. The experiment to be conducted is the parameterization and supervision of a fuzzy controller of a DC servomotor. The graphical user interface has been developed with EJS and the fuzzy control is carried out by our own PLC. In fact, the distinctive features of the proposed novel network application are the integration of the OPC protocol to share information with the PLC and the application under control. The user can perform the tuning of the controller parameters online and observe in real time the effect on the servomotor behavior. The target group is engineering remote users, specifically in control- and automation-related tasks. The proposed architecture system is described and experimental results are presented. PMID:27809229

  19. The Genomics Education Partnership: Successful Integration of Research into Laboratory Classes at a Diverse Group of Undergraduate Institutions

    Science.gov (United States)

    Shaffer, Christopher D.; Alvarez, Consuelo; Bailey, Cheryl; Barnard, Daron; Bhalla, Satish; Chandrasekaran, Chitra; Chandrasekaran, Vidya; Chung, Hui-Min; Dorer, Douglas R.; Du, Chunguang; Eckdahl, Todd T.; Poet, Jeff L.; Frohlich, Donald; Goodman, Anya L.; Gosser, Yuying; Hauser, Charles; Hoopes, Laura L.M.; Johnson, Diana; Jones, Christopher J.; Kaehler, Marian; Kokan, Nighat; Kopp, Olga R.; Kuleck, Gary A.; McNeil, Gerard; Moss, Robert; Myka, Jennifer L.; Nagengast, Alexis; Morris, Robert; Overvoorde, Paul J.; Shoop, Elizabeth; Parrish, Susan; Reed, Kelynne; Regisford, E. Gloria; Revie, Dennis; Rosenwald, Anne G.; Saville, Ken; Schroeder, Stephanie; Shaw, Mary; Skuse, Gary; Smith, Christopher; Smith, Mary; Spana, Eric P.; Spratt, Mary; Stamm, Joyce; Thompson, Jeff S.; Wawersik, Matthew; Wilson, Barbara A.; Youngblom, Jim; Leung, Wilson; Buhler, Jeremy; Mardis, Elaine R.; Lopatto, David

    2010-01-01

    Genomics is not only essential for students to understand biology but also provides unprecedented opportunities for undergraduate research. The goal of the Genomics Education Partnership (GEP), a collaboration between a growing number of colleges and universities around the country and the Department of Biology and Genome Center of Washington University in St. Louis, is to provide such research opportunities. Using a versatile curriculum that has been adapted to many different class settings, GEP undergraduates undertake projects to bring draft-quality genomic sequence up to high quality and/or participate in the annotation of these sequences. GEP undergraduates have improved more than 2 million bases of draft genomic sequence from several species of Drosophila and have produced hundreds of gene models using evidence-based manual annotation. Students appreciate their ability to make a contribution to ongoing research, and report increased independence and a more active learning approach after participation in GEP projects. They show knowledge gains on pre- and postcourse quizzes about genes and genomes and in bioinformatic analysis. Participating faculty also report professional gains, increased access to genomics-related technology, and an overall positive experience. We have found that using a genomics research project as the core of a laboratory course is rewarding for both faculty and students. PMID:20194808

  20. Argonne National Laboratory Expedited Site Characterization: First International Symposium on Integrated Technical Approaches to Site Characterization - Proceedings Volume

    International Nuclear Information System (INIS)

    1998-01-01

    Laboratory applications for the analysis of PCBS (polychlorinated biphenyls) in environmental matrices such as soil/sediment/sludge and oil/waste oil were evaluated for potential reduction in waste, source reduction, and alternative techniques for final determination. As a consequence, new procedures were studied for solvent substitution, miniaturization of extraction and cleanups, minimization of reagent consumption, reduction of cost per analysis, and reduction of time. These new procedures provide adequate data that meet all the performance requirements for the determination of PCBS. Use of the new procedures reduced costs for all sample preparation techniques. Time and cost were also reduced by combining the new sample preparation procedures with the power of fast gas chromatography. Separation of Aroclor 1254 was achieved in less than 6 min by using DB-1 and SPB-608 columns. With the greatly shortened run times, reproducibility can be tested quickly and consequently with low cost. With performance-based methodology, the applications presented here can be applied now, without waiting for regulatory approval

  1. Argonne National Laboratory Expedited Site Characterization: First International Symposium on Integrated Technical Approaches to Site Characterization - Proceedings Volume

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-08

    Laboratory applications for the analysis of PCBS (polychlorinated biphenyls) in environmental matrices such as soil/sediment/sludge and oil/waste oil were evaluated for potential reduction in waste, source reduction, and alternative techniques for final determination. As a consequence, new procedures were studied for solvent substitution, miniaturization of extraction and cleanups, minimization of reagent consumption, reduction of cost per analysis, and reduction of time. These new procedures provide adequate data that meet all the performance requirements for the determination of PCBS. Use of the new procedures reduced costs for all sample preparation techniques. Time and cost were also reduced by combining the new sample preparation procedures with the power of fast gas chromatography. Separation of Aroclor 1254 was achieved in less than 6 min by using DB-1 and SPB-608 columns. With the greatly shortened run times, reproducibility can be tested quickly and consequently with low cost. With performance-based methodology, the applications presented here can be applied now, without waiting for regulatory approval.

  2. A laboratory assessment of the Waveband Integrated Bioaerosol Sensor (WIBS-4) using individual samples of pollen and fungal spore material

    Science.gov (United States)

    Healy, David A.; O'Connor, David J.; Burke, Aoife M.; Sodeau, John R.

    2012-12-01

    A Bioaerosol sensing instrument referred to as WIBS-4, designed to continuously monitor ambient bioaerosols on-line, has been used to record a multiparameter “signature” from each of a number of Primary Biological Aerosol Particulate (PBAP) samples found in air. These signatures were obtained in a controlled laboratory environment and are based on the size, asymmetry (“shape”) and auto-fluorescence of the particles. Fifteen samples from two separate taxonomic ranks (kingdoms), Plantae (×8) and Fungi (×7) were individually introduced to the WIBS-4 for measurement along with two non-fluorescing chemical solids, common salt and chalk. Over 2000 individual-particle measurements were recorded for each sample type and the ability of the WIBS spectroscopic technique to distinguish between chemicals, pollen and fungal spore material was examined by identifying individual PBAP signatures. The results obtained show that WIBS-4 could potentially be a very useful analytical tool for distinguishing between natural airborne PBAP samples, such as the fungal spores and may potentially play an important role in detecting and discriminating the toxic fungal spore, Aspergillus fumigatus, from others in real-time. If the sizing range of the commercial instrument was customarily increased and permitted to operate simultaneously in its two sizing ranges, pollen and spores could potentially be discriminated between. The data also suggest that the gain setting sensitivity on the detector would also have to be reduced by a factor >5, to routinely detect, in-range fluorescence measurements for pollen samples.

  3. SensorDB: a virtual laboratory for the integration, visualization and analysis of varied biological sensor data.

    Science.gov (United States)

    Salehi, Ali; Jimenez-Berni, Jose; Deery, David M; Palmer, Doug; Holland, Edward; Rozas-Larraondo, Pablo; Chapman, Scott C; Georgakopoulos, Dimitrios; Furbank, Robert T

    2015-01-01

    To our knowledge, there is no software or database solution that supports large volumes of biological time series sensor data efficiently and enables data visualization and analysis in real time. Existing solutions for managing data typically use unstructured file systems or relational databases. These systems are not designed to provide instantaneous response to user queries. Furthermore, they do not support rapid data analysis and visualization to enable interactive experiments. In large scale experiments, this behaviour slows research discovery, discourages the widespread sharing and reuse of data that could otherwise inform critical decisions in a timely manner and encourage effective collaboration between groups. In this paper we present SensorDB, a web based virtual laboratory that can manage large volumes of biological time series sensor data while supporting rapid data queries and real-time user interaction. SensorDB is sensor agnostic and uses web-based, state-of-the-art cloud and storage technologies to efficiently gather, analyse and visualize data. Collaboration and data sharing between different agencies and groups is thereby facilitated. SensorDB is available online at http://sensordb.csiro.au.

  4. Los Alamos National Laboratory Site Integrated Management plan, uranium 233 storage and disposition. Volume 1: Project scope and description

    International Nuclear Information System (INIS)

    Nielsen, J.B.; Erickson, R.

    1997-01-01

    This Site Integration Management plan provides the Los Alamos Response to the Defense Nuclear Facility Safety Board (DNFSB) Recommendation 97-1. This recommendation addresses the safe storage and management of the Departments uranium 233 ( 233 U) inventory. In the past, Los Alamos has used 233 U for a variety of different weapons related projects. The material was used at a variety of sites in varying quantities. Now, there is a limited need for this material and the emphasis has shifted from use to storage and disposition of the material. The Los Alamos program to address the DNFSB Recommendation 97-1 has two emphases. First, take corrective action to address near term deficiencies required to provide safe interim storage of 233 U. Second, provide a plan to address long term storage and disposition of excess inventory at Los Alamos

  5. Personalized laboratory medicine

    DEFF Research Database (Denmark)

    Pazzagli, M.; Malentacchi, F.; Mancini, I.

    2015-01-01

    diagnostic tools and expertise and commands proper state-of-the-art knowledge about Personalized Medicine and Laboratory Medicine in Europe, the joint Working Group "Personalized Laboratory Medicine" of the EFLM and ESPT societies compiled and conducted the Questionnaire "Is Laboratory Medicine ready...... in "omics"; 2. Additional training for the current personnel focused on the new methodologies; 3. Incorporation in the Laboratory of new competencies in data interpretation and counselling; 4. Improving cooperation and collaboration between professionals of different disciplines to integrate information...

  6. Estimating Implementation and Operational Costs of an Integrated Tiered CD4 Service including Laboratory and Point of Care Testing in a Remote Health District in South Africa

    Science.gov (United States)

    Cassim, Naseem; Coetzee, Lindi M.; Schnippel, Kathryn; Glencross, Deborah K.

    2014-01-01

    Background An integrated tiered service delivery model (ITSDM) has been proposed to provide ‘full-coverage’ of CD4 services throughout South Africa. Five tiers are described, defined by testing volumes and number of referring health-facilities. These include: (1) Tier-1/decentralized point-of-care service (POC) in a single site; Tier-2/POC-hub servicing processing 600 samples/day and serving >100 or >200 health-clinics, respectively. The objective of this study was to establish costs of existing and ITSDM-tiers 1, 2 and 3 in a remote, under-serviced district in South Africa. Methods Historical health-facility workload volumes from the Pixley-ka-Seme district, and the total volumes of CD4 tests performed by the adjacent district referral CD4 laboratories, linked to locations of all referring clinics and related laboratory-to-result turn-around time (LTR-TAT) data, were extracted from the NHLS Corporate-Data-Warehouse for the period April-2012 to March-2013. Tiers were costed separately (as a cost-per-result) including equipment, staffing, reagents and test consumable costs. A one-way sensitivity analyses provided for changes in reagent price, test volumes and personnel time. Results The lowest cost-per-result was noted for the existing laboratory-based Tiers- 4 and 5 ($6.24 and $5.37 respectively), but with related increased LTR-TAT of >24–48 hours. Full service coverage with TAT cost-per-result of $32.32 and $15.88 respectively. A single district Tier-3 laboratory also ensured ‘full service coverage’ and Implementing a single Tier-3/community laboratory to extend and improve delivery of services in Pixley-ka-Seme, with an estimated local ∼12–24-hour LTR-TAT, is ∼$2 more than existing referred services per-test, but 2–4 fold cheaper than implementing eight Tier-2/POC-hubs or providing twenty-seven Tier-1/POCT CD4 services. PMID:25517412

  7. Integração laboratórios-vigilância sanitária: uma revisão | Integration laboratories-sanitary surveillance: a review

    Directory of Open Access Journals (Sweden)

    Rosane Gomes Alves Lopes

    2017-05-01

    Full Text Available Identificar literatura nacional e internacional sobre laboratório e vigilância sanitária para refletir sobre a integração desses serviços no Sistema Nacional de Vigilância Sanitária foi o objetivo da revisão integrativa com busca sistemática em três repositórios: Banco de Teses e Dissertações; Scientific Electronic Library Online – Brasil e Pubmed Central. A seleção seguiu critérios pré-definidos e a análise considerou: tipo de produção acadêmica (mestrado, doutorado ou artigo científico, ano e instituição de origem, tema focalizado. Predominaram trabalhos oriundos do mestrado (64,7% e, como instituição, a Fundação Oswaldo Cruz (36,5%, sendo 90,0% no Instituto Nacional de Controle da Qualidade em Saúde. O controle da qualidade de produtos é área expressiva das publicações (71,0%, incluindo-se nela alimentos, medicamentos e vacinas. Estudos relacionados a políticas públicas e vigilância sanitária tematizaram: medicamentos genéricos; estudos de equivalência farmacêutica; alimentação e nutrição; e integração da Agência Nacional de Vigilância Sanitária com outros atores na inovação de vacinas e na Rede Brasileira de Laboratórios Analíticos em Saúde. A integração se expressou mediante as atividades cooperativas entre laboratórios e serviços, restando aprimorá-la, tendo-se em vista que, no Brasil, os laboratórios e os serviços de vigilância são diferenciados e vinculam-se a entes governamentais distintos. ============================================= This integrative review with systematic search aimed to identify national and international literature on laboratory and sanitary surveillance to reflect on the integration of these services in the National System of Sanitary Surveillance Three repositories were used: Banco de Teses e Dissertações; Scientific Electronic Library Online - Brazil and Pubmed Central. The selection followed pre-defined criteria and the analysis considered

  8. Integrated Verification Experiment data collected as part of the Los Alamos National Laboratory's Source Region Program

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, R.W.; Noel, S.D.

    1992-12-01

    The summary report by Tom Weaver gives the overall background for the series of IVE (Integrated Verification Experiment) experiments including information on the full set of measurements made. This appendix presents details of the infrasound data for the and discusses certain aspects of a few special experiments. Prior to FY90, the emphasis of the Infrasound Program was on underground nuclear test (UGT) detection and yield estimation. During this time the Infrasound Program was a separate program at Los Alamos, and it was suggested to DOE/OAC that a regional infrasound network be established around NTS. The IVE experiments took place in a time frame that allowed simultaneous testing of possible network sites and examination of propagation in different directions. Whenever possible, infrasound stations were combined with seismic stations so that a large number could be efficiently fielded. The regional infrasound network was not pursued by DOE, as world events began to change the direction of verification toward non-proliferation. Starting in FY90 the infrasound activity became part of the Source Region Program which has a goal of understanding how energy is transported from the UGT to a variety of measurement locations.

  9. Aespoe Hard Rock Laboratory. Analysis of fracture networks based on the integration of structural and hydrogeological observations on different scales

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, P. [Geotechnical Inst. Ltd., Bern (Switzerland); Hermanson, Jan [Golder Associates, Stockholm (Sweden); Mazurek, M. [Univ. of Bern (Switzerland)

    2001-05-01

    Fracture networks at Aespoe have been studied for several rock types exhibiting different degrees of ductile and brittle deformation, as well as on different scales. Mesoscopic fault systems have been characterised and classified in an earlier report, this report focuses mainly on fracture networks derived on smaller scales, but also includes mesoscopic and larger scales. The TRUE-1 block has been selected for detailed structural analysis on a small scale due to the high density of relevant information. In addition to the data obtained from core materials, structural maps, BIP data and the results of hydro tests were synthesised to derive a conceptual structural model. The approach used to derive this conceptual model is based on the integration of deterministic structural evidence, probabilistic information and both upscaling and downscaling of observations and concepts derived on different scales. Twelve fracture networks mapped at different sites and scales and exhibiting various styles of tectonic deformation were analysed for fractal properties and structural and hydraulic interconnectedness. It was shown that these analysed fracture networks are not self-similar. An important result is the structural and hydraulic interconnectedness of fracture networks on all scales in the Aespoe rocks, which is further corroborated by geochemical evidence. Due to the structural and hydraulic interconnectedness of fracture systems on all scales at Aespoe, contaminants from waste canisters placed in tectonically low deformation environments would be transported - after having passed through the engineered barriers -from low-permeability fractures towards higher permeability fractures and may thus eventually reach high-permeability features.

  10. Aespoe Hard Rock Laboratory. Analysis of fracture networks based on the integration of structural and hydrogeological observations on different scales

    International Nuclear Information System (INIS)

    Bossart, P.; Hermanson, Jan; Mazurek, M.

    2001-05-01

    Fracture networks at Aespoe have been studied for several rock types exhibiting different degrees of ductile and brittle deformation, as well as on different scales. Mesoscopic fault systems have been characterised and classified in an earlier report, this report focuses mainly on fracture networks derived on smaller scales, but also includes mesoscopic and larger scales. The TRUE-1 block has been selected for detailed structural analysis on a small scale due to the high density of relevant information. In addition to the data obtained from core materials, structural maps, BIP data and the results of hydro tests were synthesised to derive a conceptual structural model. The approach used to derive this conceptual model is based on the integration of deterministic structural evidence, probabilistic information and both upscaling and downscaling of observations and concepts derived on different scales. Twelve fracture networks mapped at different sites and scales and exhibiting various styles of tectonic deformation were analysed for fractal properties and structural and hydraulic interconnectedness. It was shown that these analysed fracture networks are not self-similar. An important result is the structural and hydraulic interconnectedness of fracture networks on all scales in the Aespoe rocks, which is further corroborated by geochemical evidence. Due to the structural and hydraulic interconnectedness of fracture systems on all scales at Aespoe, contaminants from waste canisters placed in tectonically low deformation environments would be transported - after having passed through the engineered barriers -from low-permeability fractures towards higher permeability fractures and may thus eventually reach high-permeability features

  11. Bioassay Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Bioassay Laboratory is an accredited laboratory capable of conducting standardized and innovative environmental testing in the area of aquatic ecotoxicology. The...

  12. HYDROMECHANICS LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — Naval Academy Hydromechanics LaboratoryThe Naval Academy Hydromechanics Laboratory (NAHL) began operations in Rickover Hall in September 1976. The primary purpose of...

  13. A Systems Engineering Methodology for Designing and Planning the Built Environment—Results from the Urban Research Laboratory Nuremberg and Their Integration in Education

    Directory of Open Access Journals (Sweden)

    Philipp Geyer

    2014-04-01

    Full Text Available Sustainable urban development requires a long-term sector-integrative approach. This paper proposes a method of system analysis and partial simulation for urban structures for this purpose. It couples a discussion-based holistic approach for systems analysis and modelling of urban structures with quantitative modelling and simulation of partial scenarios that serve to examine specific questions regarding the long-term development of urban structures. In the first part, the application in the City Lab Nuremberg West, a multidisciplinary urban research laboratory, serves to develop the methodology and its illustration. The main objective is to examine the transition of the existing underperforming quarter to a sustainable and livable urban environment. Scenario-based experiments with respect to development paths determine robustness and risks of different configurations. The second part of the paper describes the transfer of the methodology to education. The approach serves to teach students in the Energy-Efficient and Sustainable Building master course program an integrative way of planning a sustainable built environment. The definition of educational objectives concerning the students’ understanding and management of systemic interdependencies of sustainability help assess the use of the method in the classroom. The aim is to provide them with the competence to develop strategies for complex situations while planning a sustainable built environment.

  14. 1997 structural integrity assessments for the Category C liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report presents the results of a series of evaluations to determine if the individual Category C tank systems retain sufficient structural integrity to continue being used for liquid storage. The approach used to reach the final certification/conclusion consisted of three phases, including: (1) Review of the original engineering design drawings and construction materials to determine whether the tank and line systems were capable of containing liquids without leaking (and also to check that the construction materials were compatible with liquids that might have been placed in these systems). While drawings in this report may be of poor quality, they are copies of the best available originals. (2) A qualitative corrosion assessment conducted in 1995 that further evaluated both the potential internal corrosion effects of materials in the tank and in the potential external corrosion effects of the backfill and native soil at the Oak Ridge National Laboratory (ORNL). The ability to accurately measure or predict the amount of corrosion present on both the internal and external walls of the tanks and pipelines is extremely limited. However, when available, data were used to assess the historical tank contents and usage and the probable corrosive effects on the tank system materials of construction. (3) Performance of monthly leak tests were completed on the tanks and annual leak tests were completed on associated testable pipelines. This task was judged to be the most important criteria for determining structural integrity due to the proven performance of the technology and processes involved.

  15. Use of a virtual human performance laboratory to improve integration of mathematics and biology in sports science curricula in Sweden and the United States.

    Science.gov (United States)

    Garza, D; Besier, T; Johnston, T; Rolston, B; Schorsch, A; Matheson, G; Annerstedt, C; Lindh, J; Rydmark, M

    2007-01-01

    New fields such as bioengineering are exploring the role of the physical sciences in traditional biological approaches to problems, with exciting results in device innovation, medicine, and research biology. The integration of mathematics, biomechanics, and material sciences into the undergraduate biology curriculum will better prepare students for these opportunities and enhance cooperation among faculty and students at the university level. We propose the study of sports science as the basis for introduction of this interdisciplinary program. This novel integrated approach will require a virtual human performance laboratory dual-hosted in Sweden and the United States. We have designed a course model that involves cooperative learning between students at Göteborg University and Stanford University, utilizes new technologies, encourages development of original research and will rely on frequent self-assessment and reflective learning. We will compare outcomes between this course and a more traditional didactic format as well as assess the effectiveness of multiple web-hosted virtual environments. We anticipate the grant will result in a network of original faculty and student research in exercise science and pedagogy as well as provide the opportunity for implementation of the model in more advance training levels and K-12 programs.

  16. 1997 structural integrity assessments for the Category C liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    This report presents the results of a series of evaluations to determine if the individual Category C tank systems retain sufficient structural integrity to continue being used for liquid storage. The approach used to reach the final certification/conclusion consisted of three phases, including: (1) Review of the original engineering design drawings and construction materials to determine whether the tank and line systems were capable of containing liquids without leaking (and also to check that the construction materials were compatible with liquids that might have been placed in these systems). While drawings in this report may be of poor quality, they are copies of the best available originals. (2) A qualitative corrosion assessment conducted in 1995 that further evaluated both the potential internal corrosion effects of materials in the tank and in the potential external corrosion effects of the backfill and native soil at the Oak Ridge National Laboratory (ORNL). The ability to accurately measure or predict the amount of corrosion present on both the internal and external walls of the tanks and pipelines is extremely limited. However, when available, data were used to assess the historical tank contents and usage and the probable corrosive effects on the tank system materials of construction. (3) Performance of monthly leak tests were completed on the tanks and annual leak tests were completed on associated testable pipelines. This task was judged to be the most important criteria for determining structural integrity due to the proven performance of the technology and processes involved

  17. 'Integration'

    DEFF Research Database (Denmark)

    Olwig, Karen Fog

    2011-01-01

    , while the countries have adopted disparate policies and ideologies, differences in the actual treatment and attitudes towards immigrants and refugees in everyday life are less clear, due to parallel integration programmes based on strong similarities in the welfare systems and in cultural notions...... of equality in the three societies. Finally, it shows that family relations play a central role in immigrants’ and refugees’ establishment of a new life in the receiving societies, even though the welfare society takes on many of the social and economic functions of the family....

  18. Aviation Information Systems Development Laboratory (AISDL)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Aviation Information Systems Development Laboratory (AISDL) provides the tools, reconfigurability and support to ensure the quality and integrity of new...

  19. NAS Human Factors Safety Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory conducts an integrated program of research on the relationship of factors concerning individuals, work groups, and organizations as employees perform...

  20. Fluorescent biological aerosol particles measured with the Waveband Integrated Bioaerosol Sensor WIBS-4: laboratory tests combined with a one year field study

    Directory of Open Access Journals (Sweden)

    E. Toprak

    2013-01-01

    Full Text Available In this paper bioaerosol measurements conducted with the Waveband Integrated Bioaerosol Sensor mark 4 (WIBS-4 are presented. The measurements comprise aerosol chamber characterization experiments and a one-year ambient measurement period at a semi-rural site in South Western Germany. This study aims to investigate the sensitivity of WIBS-4 to biological and non-biological aerosols and detection of biological particles in the ambient aerosol. Several types of biological and non-biological aerosol samples, including fungal spores, bacteria, mineral dust, ammonium sulphate, combustion soot, and fluorescent polystyrene spheres, were analyzed by WIBS-4 in the laboratory. The results confirm the sensitivity of the ultraviolet light-induced fluorescence (UV-LIF method to biological fluorophores and show the good discrimination capabilities of the two excitation wavelengths/detection wavebands method applied in WIBS-4. However, a weak cross-sensitivity to non-biological fluorescent interferers remains and is discussed in this paper.

    All the laboratory studies have been undertaken in order to prepare WIBS-4 for ambient aerosol measurements. According to the one-year ambient aerosol study, number concentration of fluorescent biological aerosol particles (FBAP show strong seasonal and diurnal variability. The highest number concentration of FBAP was measured during the summer term and decreased towards the winter period when colder and drier conditions prevail. Diurnal FBAP concentrations start to increase after sunset and reach maximum values during the late night and early morning hours. On the other hand, the total aerosol number concentration was almost always higher during daytime than during nighttime and a sharp decrease after sunset was observed. There was no correlation observed between the FBAP concentration and the meteorological parameters temperature, precipitation, wind direction and wind speed. However, a clear correlation was

  1. From gene to structure: Lactobacillus bulgaricus D-lactate dehydrogenase from yogurt as an integrated curriculum model for undergraduate molecular biology and biochemistry laboratory courses.

    Science.gov (United States)

    Lawton, Jeffrey A; Prescott, Noelle A; Lawton, Ping X

    2018-05-01

    We have developed an integrated, project-oriented curriculum for undergraduate molecular biology and biochemistry laboratory courses spanning two semesters that is organized around the ldhA gene from the yogurt-fermenting bacterium Lactobacillus bulgaricus, which encodes the enzyme d-lactate dehydrogenase. The molecular biology module, which consists of nine experiments carried out over eleven sessions, begins with the isolation of genomic DNA from L. bulgaricus in yogurt and guides students through the process of cloning the ldhA gene into a prokaryotic expression vector, followed by mRNA isolation and characterization of recombinant gene expression levels using RT-PCR. The biochemistry module, which consists of nine experiments carried out over eight sessions, begins with overexpression of the cloned ldhA gene and guides students through the process of affinity purification, biochemical characterization of the purified LdhA protein, and analysis of enzyme kinetics using various substrates and an inhibitor, concluding with a guided inquiry investigation of structure-function relationships in the three-dimensional structure of LdhA using molecular visualization software. Students conclude by writing a paper describing their work on the project, formatted as a manuscript to be submitted for publication in a scientific journal. Overall, this curriculum, with its emphasis on experiential learning, provides hands-on training with a variety of common laboratory techniques in molecular biology and biochemistry and builds experience with the process of scientific reasoning, along with reinforcement of essential transferrable skills such as critical thinking, information literacy, and written communication, all within the framework of an extended project having the look and feel of a research experience. © 2018 by The International Union of Biochemistry and Molecular Biology, 46(3):270-278, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.

  2. Demonstration of the iodine and NO/sub x/ removal systems in the Oak Ridge National Laboratory integrated equipment test facility

    International Nuclear Information System (INIS)

    Lewis, B.E.; Jubin, R.T.

    1987-03-01

    This report summarizes the findings from three sets of experiments on iodine and NO/sub x/ removal performance using dual downdraft condensers in the dissolver off-gas line. The initial experiments were conducted in the laboratory using glassware in proof-of-principle tests. Two additional sets of condenser experiments were conducted using equipment prototyical for a 0.5-t/d plant in the Integrated Equipment Test (IET) facility at the Oak Ridge National Laboratory. This report also describes the NO/sub x/ removal performance of a packed scrubber in the IET during the dissolution of depleted uranium oxides. The overall iodine pass-through efficiency of the condensers in the IET was high as desired. Removal efficiencies ranged from only 0.35 to 6.29%, indicating that the bulk of the iodine in the off-gas will be transferred on through the condensers to the iodox process for final disposal rather than recycled to the dissolver. The optimum operating temperature for the first condenser was in the range of 50 to 70 0 C, with the temperature of the second condenser held near 20 0 C. The NO/sub x/ removal performance of the combined dual condensers and packed scrubber resulted in effluent off-gas stream NO/sub x/ compositions of ∼0.4 to 1.0%, which are acceptable levels for the iodox process. The NO/sub x/ removal efficiency of the condensers ranged from ∼5 to 58%, but was generally around 20%. The removal efficiency of the packed tower scrubber was observed to be in the range of 40 to 60%. The NO/sub x/ removal performance of the condensers tended to complement the performance of the scrubber in that the condenser removal afficiency was high when the scrubber efficiency was low and vice versa

  3. Clays as mineral dust aerosol: An integrated approach to studying climate, atmospheric chemistry, and biogeochemical effects of atmospheric clay minerals in an undergraduate research laboratory

    Science.gov (United States)

    Hatch, C. D.; Crane, C. C.; Harris, K. J.; Thompson, C. E.; Miles, M. K.; Weingold, R. M.; Bucuti, T.

    2011-12-01

    Entrained mineral dust aerosol accounts for 45% of the global annual atmospheric aerosol load and can have a significant influence on important environmental issues, including climate, atmospheric chemistry, cloud formation, biogeochemical processes, visibility, and human health. 70% of all mineral aerosol mass originating from Africa consists of layered aluminosilicates, including illite, kaolinite, and montmorillonite clays. Clay minerals are a largely neglected component of mineral aerosol, yet they have unique physiochemical properties, including a high reactive surface area, large cation exchange capacities, small particle sizes, and a relatively large capacity to take up adsorbed water, resulting in expansion of clay layers (and a larger reactive surface area for heterogeneous interactions) in some cases. An integrated laboratory research approach has been implemented at Hendrix College, a Primarily Undergraduate Institution, in which undergraduate students are involved in independent and interdisciplinary research projects that relate the chemical aging processes (heterogeneous chemistry) of clay minerals as a major component of mineral aerosol to their effects on climate (water adsorption), atmospheric chemistry (trace gas uptake), and biogeochemistry (iron dissolution and phytoplankton biomarker studies). Preliminary results and future directions will be reported.

  4. Analyses of TIMS and AVIRIS data, integrated with field and laboratory spectra, for lithological and mineralogical interpretation of Vulcano Island, Italy

    Science.gov (United States)

    Buongiorno, M. Fabrizia; Bogliolo, M. Paola; Salvi, Stefano; Pieri, David C.; Geneselli, Francesco

    1995-01-01

    Vulcano Island is part of the Eolian archipelago, located about 25 km from the northeast coast of Sicily. The archipelago comprises seven major volcanic islands, two of which are active volcanoes (Vulcano and Stromboli). Vulcano covers an area of about 50 square km, and is about 10 km long. Explosive volcanic activity has predominated in the geological evolution of Vulcano Island, and there is no evidence that this pattern has ceased. Rather, the current situation is one of unrest, so a strict regimen of continuous geophysical and geochemical monitoring has been undertaken over the last decade. Though the year-round population of Vulcano is small (under 1000), during the summer the island becomes a very popular resort, and has thousands of additional tourists at any time throughout the high season, thus substantially increasing the number of people potentially at risk from an explosive eruption or other hazards such as noxious gas emissions (e.g., CO2, H2S, SO2). During the past ten years, remote sensing data have been repetitively acquired with optical and microwave airborne sensors. The present work shows the preliminary results of a study based on the integration of various remote sensing data sets with field spectroscopy, and other laboratory analyses, for the geological and geomorphological mapping of the island. It is hoped that such work will also usefully contribute to the evaluation of the volcanic hazard potential of the islands as well as to the evaluation of the status of its current activity.

  5. High heterogeneity in methods used for the laboratory confirmation of pertussis diagnosis among European countries, 2010: integration of epidemiological and laboratory surveillance must include standardisation of methodologies and quality assurance.

    Science.gov (United States)

    He, Q; Barkoff, A M; Mertsola, J; Glismann, S; Bacci, S

    2012-08-09

    Despite extensive childhood immunisation, pertussis remains one of the world’s leading causes of vaccine preventable deaths. The current methods used for laboratory diagnosis of pertussis include bacterial culture, polymerase chain reaction (PCR) and enzyme linked immunosorbent assay (ELISA) serology. We conducted a questionnaire survey to identify variations in the laboratory methods and protocols used among participating countries included in the European surveillance network for vaccine-preventable diseases(EUVAC.NET). In February 2010, we performed the survey using a web-based questionnaire and sent it to the country experts of 25 European Union countries,and two European Economic Area (EEA) countries,Norway and Iceland. The questionnaire consisted of 37 questions which covered both general information on surveillance methods and detailed laboratory methods used. A descriptive analysis was performed.Questionnaires were answered by all 27 contacted countries. Nineteen countries had pertussis reference laboratories at the national level; their functions varied from performing diagnosis to providing technical advice for routine microbiology laboratories. Culture,PCR and serology were used in 17, 18 and 20 countries,respectively. For PCR, nine laboratories used insertion sequence IS481 as the target gene, which is present in multiple copies in the Bordetella pertussis genome and thus has a greater sensitivity over single copy targets, but has been proved not to be specific for B.pertussis. Antibodies directed against pertussis toxin(PT) are specific for B. pertussis infections. For ELISA serology, only 13 countries’ laboratories used purified PT as coating antigen and 10 included World Health Organization (WHO) or Food and Drug Administration (FDA) reference sera in their tests. This present survey shows that methods used for laboratory confirmation of pertussis differ widely among European countries and that there is a great heterogeneity of the reference

  6. Photometrics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Photometrics Laboratory provides the capability to measure, analyze and characterize radiometric and photometric properties of light sources and filters,...

  7. Blackroom Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Enables evaluation and characterization of materials ranging from the ultraviolet to the longwave infrared (LWIR).DESCRIPTION: The Blackroom Laboratory is...

  8. Integration of next-generation sequencing in clinical diagnostic molecular pathology laboratories for analysis of solid tumours; an expert opinion on behalf of IQN Path ASBL

    NARCIS (Netherlands)

    Deans, Zandra C.; Costa, Jose Luis; Cree, Ian; Dequeker, Els; Edsjo, Anders; Henderson, Shirley; Hummel, Michael; Ligtenberg, Marjolijn J. L.; Loddo, Marco; Machado, Jose Carlos; Marchetti, Antonio; Marquis, Katherine; Mason, Joanne; Normanno, Nicola; Rouleau, Etienne; Schuuring, Ed; Snelson, Keeda-Marie; Thunnissen, Erik; Tops, Bastiaan; Williams, Gareth; van Krieken, Han; Hall, Jacqueline A.

    The clinical demand for mutation detection within multiple genes from a single tumour sample requires molecular diagnostic laboratories to develop rapid, high-throughput, highly sensitive, accurate and parallel testing within tight budget constraints. To meet this demand, many laboratories employ

  9. Integration of next-generation sequencing in clinical diagnostic molecular pathology laboratories for analysis of solid tumours; an expert opinion on behalf of IQN Path ASBL

    NARCIS (Netherlands)

    Deans, Z.C.; Costa, J.L.; Cree, I.; Dequeker, E.; Edsjo, A.; Henderson, S.; Hummel, M.; Ligtenberg, M.J.L.; Loddo, M.; Machado, J.C.; Marchetti, A.; Marquis, K.; Mason, J.; Normanno, N.; Rouleau, E.; Schuuring, E.; Snelson, K.M.; Thunnissen, E.; Tops, B.B.; Williams, G.; Krieken, H. van; Hall, J.A.

    2017-01-01

    The clinical demand for mutation detection within multiple genes from a single tumour sample requires molecular diagnostic laboratories to develop rapid, high-throughput, highly sensitive, accurate and parallel testing within tight budget constraints. To meet this demand, many laboratories employ

  10. Final Report - Phase II - Biogeochemistry of Uranium Under Reducing and Re-oxidizing Conditions: An Integrated Laboratory and Field Study ($20,575 extension)

    International Nuclear Information System (INIS)

    Brent Peyton; Rajesh Sani

    2006-01-01

    Our understanding of subsurface microbiology is hindered by the inaccessibility of this environment, particularly when the hydrogeologic medium is contaminated with toxic substances. Past research in our labs indicated that the composition of the growth medium (e.g., bicarbonate complexation of U(VI)) and the underlying mineral phase (e.g., hematite) significantly affects the rate and extent of U(VI) reduction and immobilization through a variety of effects. Our research was aimed at elucidating those effects to a much greater extent, while exploring the potential for U(IV) reoxidation and subsequent re-mobilization, which also appears to depend on the mineral phases present in the system. The project reported on here was an extension ($20,575) of the prior (much larger) project. This report is focused only on the work completed during the extension period. Further information on the larger impacts of our research, including 28 publications, can be found in the final report for the following projects: (1) Biogeochemistry of Uranium Under Reducing and Re-oxidizing Conditions: An Integrated Laboratory and Field Study Grant DE-FG03-01ER63270, and (2) Acceptable Endpoints for Metals and Radionuclides: Quantifying the Stability of Uranium and Lead Immobilized Under Sulfate Reducing Conditions Grant DE-FG03-98ER62630/A001 In this Phase II project, the toxic effects of uranium(VI) were studied using Desulfovibrio desulfuricans G20 in a medium containing bicarbonate or 1, 4-piperazinediethane sulfonic acid disodium salt monohydrate (PIPES) buffer (each at 30 mM, pH 7). The toxicity of uranium(VI) was dependent on the medium buffer and was observed in terms of longer lag times and in some cases, no measurable growth. The minimum inhibiting concentration (MIC) was 140 (micro)M U(VI) in PIPES buffered medium. This is 36 times lower than previously reported for D. desulfuricans. These results suggest that U(VI) toxicity and the detoxification mechanisms of G20 depend greatly

  11. Computational Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains a number of commercial off-the-shelf and in-house software packages allowing for both statistical analysis as well as mathematical modeling...

  12. National laboratories

    International Nuclear Information System (INIS)

    Moscati, G.

    1983-01-01

    The foundation of a 'National Laboratory' which would support a Research center in synchrotron radiation applications is proposed. The essential features of such a laboratory differing of others centers in Brazil are presented. (L.C.) [pt

  13. Geomechanics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Geomechanics Laboratory allows its users to measure rock properties under a wide range of simulated service conditions up to very high pressures and complex load...

  14. Laboratory Building

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Joshua M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  15. Chemistry Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: To conduct fundamental studies of highway materials aimed at understanding both failure mechanisms and superior performance. New standard test methods are...

  16. Montlake Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The NWFSC conducts critical fisheries science research at its headquarters in Seattle, WA and at five research stations throughout Washington and Oregon. The unique...

  17. Dynamics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Dynamics Lab replicates vibration environments for every Navy platform. Testing performed includes: Flight Clearance, Component Improvement, Qualification, Life...

  18. Psychology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This facility provides testing stations for computer-based assessment of cognitive and behavioral Warfighter performance. This 500 square foot configurable space can...

  19. Visualization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Evaluates and improves the operational effectiveness of existing and emerging electronic warfare systems. By analyzing and visualizing simulation results...

  20. Analytical Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Analytical Labspecializes in Oil and Hydraulic Fluid Analysis, Identification of Unknown Materials, Engineering Investigations, Qualification Testing (to support...

  1. Propulsion Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Propulsion Lab simulates field test conditions in a controlled environment, using standardized or customized test procedures. The Propulsion Lab's 11 cells can...

  2. Process innovation laboratory

    DEFF Research Database (Denmark)

    Møller, Charles

    2007-01-01

    to create a new methodology for developing and exploring process models and applications. The paper outlines the process innovation laboratory as a new approach to BPI. The process innovation laboratory is a comprehensive framework and a collaborative workspace for experimenting with process models....... The process innovation laboratory facilitates innovation by using an integrated action learning approach to process modelling in a controlled environment. The study is based on design science and the paper also discusses the implications to EIS research and practice......Most organizations today are required not only to operate effective business processes but also to allow for changing business conditions at an increasing rate. Today nearly every business relies on their enterprise information systems (EIS) for process integration and future generations of EIS...

  3. Life sciences payload definition and integration study. Volume 3: Preliminary equipment item specification catalog for the carry-on laboratories. [for Spacelab

    Science.gov (United States)

    1974-01-01

    All general purpose equipment items contained in the final carry-on laboratory (COL) design concepts are described in terms of specific requirements identified for COL use, hardware status, and technical parameters such as weight, volume, power, range, and precision. Estimated costs for each item are given, along with projected development times.

  4. System of diagnosis of generators computer aided integrated into a movable laboratory; Sistema de diagnostico de generadores asistido por computadora integrado a un laboratorio movil

    Energy Technology Data Exchange (ETDEWEB)

    De la Torre Vega, H. Octavio; Escorsa Morales, Oscar; Castaneda Parra, Adelina; Garcia- Colon H, Rodolfo [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico); Lopez Azamar, Ernesto [Comision Federal de Electricidad (Mexico)

    1999-07-01

    The development of the Movable Laboratory is presented, which will allow to combine and document the knowledge acquired by more than ten years of experience in diagnosis of electrical generators. The development of the project is divided into three main parts: laboratory design, data acquisition system (Datec) and system of diagnosis of generators computer aided (Cadis). [Spanish] Se presenta el desarrollo del Laboratorio Movil, el cual permitira conjuntar y documentar el conocimiento adquirido por mas de diez anos de experiencia en diagnostico de generadores electricos. El desarrollo del proyecto se divide en tres grandes partes: diseno de laboratorio, sistema de adquisicion de datos (Datec) y sistema de diagnostico de generadores asistido por computadora (Cadis).

  5. Integration of Environmental Restoration and Waste Management Activities for a More Cost-Effective Tank Remediation Program Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Brill, A.; Clark, R.; Stewart, R.

    1998-01-01

    This paper presents plans and strategies for remediation of the liquid low-level radioactive waste (LLLW) tanks that have been removed from service (also known as inactive tanks) at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee. Much of the LLLW system at ORNL was installed more than 50 years ago. The overall objective of the Inactive Tank Program is to remediate all LLLW tanks that have been removed from service to the extent practicable in accordance with the regulatory requirements

  6. The Integration of a Small Thermal Desorption (TD) System for Air Monitoring into a Mobile Analytical Laboratory in France Used by the NRBC Emergency First Responder Police Organization

    International Nuclear Information System (INIS)

    Roberts, G. M.

    2007-01-01

    A mobile analytical laboratory has been developed in France by Thales Security Systems in conjunction with the French department of defense (DGA) to rapidly identify the composition of toxic substances released accidentally or by terrorist activity at a location of high civilian population density. Accurate and fast identification of toxic material is critical for first responder teams that attend an incident site. Based on this analysis defined decontamination protocols for contaminated people can be implemented, and specific medical treatment can be administered to those worst affected. Analysing samples with high technology instrumentation close to the point of release is therefore highly advantageous and is only possible with mobile analytical platforms. Transporting samples back to a central laboratory for analysis is not realistic due to time limitations. This paper looks at one particular aspect of analysis performed in this mobile multi-technique laboratory namely air monitoring for CW or TIC compounds. Air sampling and pre concentration is achieved using a small, innovative Thermal Desorption system (Unitytm) in combination with a gas chromatograph-mass spectroscopy system for the detection and identification of specific analytes. Implementation of the Unity TD system in the confines of this small mobile environment will be reviewed in this paper. (author)

  7. Biometrics Research and Engineering Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — As the Department of Defense moves forward in its pursuit of integrating biometrics technology into facility access control, the Global War on Terrorism and weapon...

  8. 1996 structural integrity assessments for the Category C Liquid Low-Level Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-09-01

    This document provides a report of the efforts made to satisfy the Federal Facility Agreement for the structural integrity certification of ten Category C Liquid Low Level Waste (LLLW) tank systems on the Oak Ridge Reservation in Oak Ridge, Tennessee. Within this document, each Category C tank system is described including the associated pipeline segments evaluated as a part of those tank systems. A separate structural integrity assessment was conducted for each of the LLLW Tank Systems, four of which are located in Melton Valley, and six of which are located in Bethel Valley. The results of the structural integrity assessments are reported herein. The assessments are based on (1) a review of available tank design drawings, (2) a qualitative assessment of corrosion on the tank and pipelines, and primarily (3) leak testing program results

  9. 1996 structural integrity assessments for the Category C Liquid Low-Level Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This document provides a report of the efforts made to satisfy the Federal Facility Agreement for the structural integrity certification of ten Category C Liquid Low Level Waste (LLLW) tank systems on the Oak Ridge Reservation in Oak Ridge, Tennessee. Within this document, each Category C tank system is described including the associated pipeline segments evaluated as a part of those tank systems. A separate structural integrity assessment was conducted for each of the LLLW Tank Systems, four of which are located in Melton Valley, and six of which are located in Bethel Valley. The results of the structural integrity assessments are reported herein. The assessments are based on (1) a review of available tank design drawings, (2) a qualitative assessment of corrosion on the tank and pipelines, and primarily (3) leak testing program results.

  10. Laboratory Tests

    Science.gov (United States)

    ... Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & ... What are lab tests? Laboratory tests are medical devices that are intended for use on samples of blood, urine, or other tissues ...

  11. Audio Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides an environment and facilities for auditory display research. A primary focus is the performance use of binaurally rendered 3D sound in conjunction...

  12. Target laboratory

    International Nuclear Information System (INIS)

    Ephraim, D.C.; Pednekar, A.R.

    1993-01-01

    A target laboratory to make stripper foils for the accelerator and various targets for use in the experiments is set up in the pelletron accelerator facility. The facilities available in the laboratory are: (1) D.C. glow discharge setup, (2) carbon arc set up, and (3) vacuum evaporation set up (resistance heating), electron beam source, rolling mill - all for target preparation. They are described. Centrifugal deposition technique is used for target preparation. (author). 3 figs

  13. Semiconductor Electrical Measurements Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Semiconductor Electrical Measurements Laboratory is a research laboratory which complements the Optical Measurements Laboratory. The laboratory provides for Hall...

  14. An integrative approach-using field and laboratory data to characterize shell utilization and selection pattern by the hermit crab Pagurus criniticornis (Paguridae from Anchieta Island, Brazil

    Directory of Open Access Journals (Sweden)

    Fernando L. Mantelatto

    Full Text Available Abstract The aim of this study was to characterize the pattern of gastropod shell occupation in the field and selection of shell size and type under laboratory conditions by the hermit crab Pagurus criniticornis (Dana, 1852, inhabiting the infralittoral area of Anchieta Island, São Paulo, Brazil. Hermit crabs were obtained monthly during 1999 by SCUBA diving. For experiments under laboratory conditions, samplings were performed in 2002. The hermit crabs occupied 16 species of gastropods shells. Cerithium atratum (Born, 1778 was the most occupied shell (89.31%, followed by Morula nodulosa (4.73% (Adams, 1845. No difference was observed in the pattern of occupation between males and females. The equations that best demonstrated the relationship between hermit crabs and their shells were those that involved Shell Wet Weight (SWW and Shell Internal Volume (SIV. The laboratory experiments were in accordance to the pattern of occupation observed in the field; the mean value of SAI (Shell Adequacy Index recorded to the population studied was 1.13 with a trend to increase this value in the last size classes. The results obtained corroborate with the hypothesis of the occupation process of shells governed not only by availability of shells, but also by its architecture. In addition, the shell stock in the area is one another important condition related to the exhibited pattern of shell occupation by P. criniticornis, and allows the stable coexistence among the island assemblage. The pattern of occupation observed promotes a high reproductive profile for the population studied, maximizing the populational growth.

  15. Cuadro de mando integral en el laboratorio clínico: indicadores de perspectiva interna del negocio The balanced scorecard used as a management tool in a clinical laboratory: internal business processes indicators

    Directory of Open Access Journals (Sweden)

    Maria Salinas La Casta

    2009-06-01

    Full Text Available Objetivo: proponer un sistema de indicadores como instrumento de dirección para el laboratorio clínico, desde la perspectiva de gestión interna de un cuadro de mando integral. Material y métodos: los indicadores se obtienen de distintas fuentes, a través de registros internos del sistema informático del laboratorio, control externo de calidad de la Generalitat Valenciana. Se muestran los resultados de los indicadores de proceso analítico (proporción de un año. Resultados: se proponen indicadores de gestión interna (divididos en proceso, adecuación y control de calidad. Los indicadores de proceso muestran una progresiva mejora desde su establecimiento. Conclusión: tras un año de utilización de los indicadores de proceso analítico de un cuadro de mando integral en el laboratorio, los resultados obtenidos validan su utilidad como instrumento para la gestión del laboratorio.Objective: to propose a set of indicators as a management tool for a clinical laboratory, by using the balanced scorecard internal business processes perspective. Material and methods: indicators proposed are obtained from different sources; external proficiency testing of the Valencia Community Government, by means of internal surveys and laboratory information system registers. One year testing process proportion indicators results are showed. Results: internal management indicators are proposed (process, appropriateness and proficiency testing. The process indicators results show gradual improvement since its establishment. Conclusion: after one years of using a conceptually solid Balanced Scorecard Internal business processes perspective indicators, the obtained results validate the usefulness as a laboratory management tool.

  16. Isotope laboratories

    International Nuclear Information System (INIS)

    1978-01-01

    This report from the Dutch Ministry of Health is an advisory document concerned with isotope laboratories in hospitals, in connection with the Dutch laws for hospitals. It discusses which hospitals should have isotope laboratories and concludes that as many hospitals as possible should have small laboratories so that emergency cases can be dealt with. It divides the Netherlands into regions and suggests which hospitals should have these facilities. The questions of how big each lab. is to be, what equipment each has, how each lab. is organised, what therapeutic and diagnostic work should be carried out by each, etc. are discussed. The answers are provided by reports from working groups for in vivo diagnostics, in vitro diagnostics, therapy, and safety and their results form the criteria for the licences of isotope labs. The results of a questionnaire for isotope labs. already in the Netherlands are presented, and their activities outlined. (C.F.)

  17. Kingsbury Laboratories

    International Nuclear Information System (INIS)

    Hughes, S.B.

    1986-01-01

    The paper concerns the work of the Kingsbury Laboratories of Fairey Engineering Company, for the nuclear industry. The services provided include: monitoring of nuclear graphite machining, specialist welding, non-destructive testing, and metallurgy testing; and all are briefly described. (U.K.)

  18. The Integration of Plant Sample Analysis, Laboratory Studies, and Thermodynamic Modeling to Predict Slag-Matte Equilibria in Nickel Sulfide Converting

    Science.gov (United States)

    Hidayat, Taufiq; Shishin, Denis; Grimsey, David; Hayes, Peter C.; Jak, Evgueni

    2018-02-01

    The Kalgoorlie Nickel Smelter (KNS) produces low Fe, low Cu nickel matte in its Peirce-Smith converter operations. To inform process development in the plant, new fundamental data are required on the effect of CaO in slag on the distribution of arsenic between slag and matte. A combination of plant sample analysis, high-temperature laboratory experiments, and thermodynamic modeling was carried out to identify process conditions in the converter and to investigate the effect of slag composition on the chemical behavior of the system. The high-temperature experiments involved re-equilibration of industrial matte-slag-lime samples at 1498 K (1225 °C) and P(SO2) = 0.12 atm on a magnetite/quartz substrate, rapid quenching in water, and direct measurement of phase compositions using electron probe X-ray microanalysis (EPMA) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). A private thermodynamic database for the Ca-Cu-Fe-Mg-Ni-O-S-Si-(As) system was used together with the FactSage software package to assist in the analysis. Thermodynamic predictions combined with plant sample characterization and the present experimental data provide a quantitative basis for the analysis of the effect of CaO fluxing on the slag-matte thermochemistry during nickel sulfide converting, in particular on the spinel liquidus and the distribution of elements between slag and matte as a function of CaO addition.

  19. Combination effect of sponge iron and calcium nitrate on severely eutrophic urban landscape water: an integrated study from laboratory to fields.

    Science.gov (United States)

    Wang, Guan-Bai; Wang, Yi; Zhang, Ying

    2018-03-01

    In this study, the in situ restoration of urban landscape water through the combined application of sponge iron (SI) and calcium nitrate (CN) was conducted in the Xi'an Moat of China. The combination effect of SI and CN on the phosphorus (P) control was explored through laboratory and field experiments. Results showed that the optimum mass ratio of SI and CN was 4:1, and the optimum dosage of combined SI and CN was 1.4 g/L for controlling eutrophication in the water body at Xi'an Moat. The field experiment demonstrated that SI and CN efficiently controlled P concentration in overlying and interstitial water and obtained a maximum efficiency of 88.6 and 65.2% in soluble reactive P locking, respectively. The total P, organic P, and Ca-bound P contents in sediment simultaneously increased by 7.7, 15.2, and 2.4%, respectively, after 56 days. Therefore, the combined application of SI and CN achieved the goal of transferring the P from overlying and interstitial water to the sediment. Considering the environmental effect and economic investment, the combined application of SI and CN at a mass ratio of 4:1 and dosage of 1.4 g/L is an excellent choice for the in situ rehabilitation of eutrophic water with a high internal P load.

  20. Integration of Microsoft Windows applications with MDSplus data acquisition on the National Spherical Torus Experiment at the Princeton Plasma Physics Laboratory

    International Nuclear Information System (INIS)

    Mastrovito, Dana M.

    2002-01-01

    Data acquisition on the National Spherical Torus Experiment at the Princeton Plasma Physics Laboratory (PPPL) has increasingly involved the use of Personal Computers and specially developed 'turn-key' hardware and software systems to control diagnostics. Interaction with these proprietary software packages is accomplished through use of Visual Basic, or Visual C++ and Component Object Model (COM) technology. COM is a software architecture that allows the components made by different software vendors to be combined into a variety of applications. This technology is particularly well suited to these systems because of its programming language independence, standards for function calling between components, and ability to transparently reference remote processes. COM objects make possible the creation of acquisition software that can control the experimental parameters of both the hardware and software. Synchronization of these applications for diagnostics, such as charged couple device cameras and residual gas analyzers, with the rest of the experiment event cycle at PPPL has been made possible by utilization of the MDSplus libraries for Windows. Instead of transferring large data files to remote disk space, Windows MDSplus events and I/O functions allow us to put raw data into MDSplus directly from interactive data language for Windows and Visual Basic. The combination of COM technology and the MDSplus libraries for Windows provide the tools for many new possibilities in versatile acquisition applications and future diagnostics

  1. Integration of Microsoft Windows Applications with MDSplus Data Acquisition on the National Spherical Torus Experiment at the Princeton Plasma Physics Laboratory; TOPICAL

    International Nuclear Information System (INIS)

    Dana M. Mastrovito

    2002-01-01

    Data acquisition on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory (PPPL) has increasingly involved the use of Personal Computers (PC's) and specially developed ''turn-key'' hardware and software systems to control diagnostics. Interaction with these proprietary software packages is accomplished through use of Visual Basic, or Visual C++ and COM (Component Object Model) technology. COM is a software architecture that allows the components made by different software vendors to be combined into a variety of applications. This technology is particularly well suited to these systems because of its programming language independence, standards for function calling between components, and ability to transparently reference remote processes. COM objects make possible the creation of acquisition software that can control the experimental parameters of both the hardware and software. Synchronization of these applications for diagnostics, such as CCD camer as and residual gas analyzers, with the rest of the experiment event cycle at PPPL has been made possible by utilization of the MDSplus libraries for Windows. Instead of transferring large data files to remote disk space, Windows MDSplus events and I/O functions allow us to put raw data into MDSplus directly from IDL for Windows and Visual Basic. The combination of COM technology and the MDSplus libraries for Windows provide the tools for many new possibilities in versatile acquisition applications and future diagnostics

  2. Integration of Microsoft Windows Applications with MDSplus Data Acquisition on the National Spherical Torus Experiment at the Princeton Plasma Physics Laboratory

    International Nuclear Information System (INIS)

    Dana M. Mastrovito

    2002-03-01

    Data acquisition on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory (PPPL) has increasingly involved the use of Personal Computers (PC's) and specially developed ''turn-key'' hardware and software systems to control diagnostics. Interaction with these proprietary software packages is accomplished through use of Visual Basic, or Visual C++ and COM (Component Object Model) technology. COM is a software architecture that allows the components made by different software vendors to be combined into a variety of applications. This technology is particularly well suited to these systems because of its programming language independence, standards for function calling between components, and ability to transparently reference remote processes. COM objects make possible the creation of acquisition software that can control the experimental parameters of both the hardware and software. Synchronization of these applications for diagnostics, such as CCD camer as and residual gas analyzers, with the rest of the experiment event cycle at PPPL has been made possible by utilization of the MDSplus libraries for Windows. Instead of transferring large data files to remote disk space, Windows MDSplus events and I/O functions allow us to put raw data into MDSplus directly from IDL for Windows and Visual Basic. The combination of COM technology and the MDSplus libraries for Windows provide the tools for many new possibilities in versatile acquisition applications and future diagnostics

  3. Integration of new biological and physical retrospective dosimetry methods into EU emergency response plans - joint RENEB and EURADOS inter-laboratory comparisons.

    Science.gov (United States)

    Ainsbury, Elizabeth; Badie, Christophe; Barnard, Stephen; Manning, Grainne; Moquet, Jayne; Abend, Michael; Antunes, Ana Catarina; Barrios, Lleonard; Bassinet, Celine; Beinke, Christina; Bortolin, Emanuela; Bossin, Lily; Bricknell, Clare; Brzoska, Kamil; Buraczewska, Iwona; Castaño, Carlos Huertas; Čemusová, Zina; Christiansson, Maria; Cordero, Santiago Mateos; Cosler, Guillaume; Monaca, Sara Della; Desangles, François; Discher, Michael; Dominguez, Inmaculada; Doucha-Senf, Sven; Eakins, Jon; Fattibene, Paola; Filippi, Silvia; Frenzel, Monika; Georgieva, Dimka; Gregoire, Eric; Guogyte, Kamile; Hadjidekova, Valeria; Hadjiiska, Ljubomira; Hristova, Rositsa; Karakosta, Maria; Kis, Enikő; Kriehuber, Ralf; Lee, Jungil; Lloyd, David; Lumniczky, Katalin; Lyng, Fiona; Macaeva, Ellina; Majewski, Matthaeus; Vanda Martins, S; McKeever, Stephen W S; Meade, Aidan; Medipally, Dinesh; Meschini, Roberta; M'kacher, Radhia; Gil, Octávia Monteiro; Montero, Alegria; Moreno, Mercedes; Noditi, Mihaela; Oestreicher, Ursula; Oskamp, Dominik; Palitti, Fabrizio; Palma, Valentina; Pantelias, Gabriel; Pateux, Jerome; Patrono, Clarice; Pepe, Gaetano; Port, Matthias; Prieto, María Jesús; Quattrini, Maria Cristina; Quintens, Roel; Ricoul, Michelle; Roy, Laurence; Sabatier, Laure; Sebastià, Natividad; Sholom, Sergey; Sommer, Sylwester; Staynova, Albena; Strunz, Sonja; Terzoudi, Georgia; Testa, Antonella; Trompier, Francois; Valente, Marco; Hoey, Olivier Van; Veronese, Ivan; Wojcik, Andrzej; Woda, Clemens

    2017-01-01

    RENEB, 'Realising the European Network of Biodosimetry and Physical Retrospective Dosimetry,' is a network for research and emergency response mutual assistance in biodosimetry within the EU. Within this extremely active network, a number of new dosimetry methods have recently been proposed or developed. There is a requirement to test and/or validate these candidate techniques and inter-comparison exercises are a well-established method for such validation. The authors present details of inter-comparisons of four such new methods: dicentric chromosome analysis including telomere and centromere staining; the gene expression assay carried out in whole blood; Raman spectroscopy on blood lymphocytes, and detection of radiation-induced thermoluminescent signals in glass screens taken from mobile phones. In general the results show good agreement between the laboratories and methods within the expected levels of uncertainty, and thus demonstrate that there is a lot of potential for each of the candidate techniques. Further work is required before the new methods can be included within the suite of reliable dosimetry methods for use by RENEB partners and others in routine and emergency response scenarios.

  4. Iodine and NOx behavior in the dissolver off-gas and IODOX [Iodine Oxidation] systems in the Oak Ridge National Laboratory Integrated Equipment Test facility

    International Nuclear Information System (INIS)

    Birdwell, J.F.

    1990-01-01

    This paper describes the most recent in a series of experiments evaluating the behavior of iodine and NO x in the Integrated Equipment Test (IET) Dissolver Off-Gas (DOG) System. This work was performed as part of a joint collaborative program between the US Department of Energy and the Power and Nuclear Fuel Development Corporation of Japan. The DOG system consists of two shell-and-tube heat exchangers in which water and nitric acid are removed from the dissolver off-gas by condensation, followed by a packed tower in which NO x is removed by absorption into a dilute nitric acid solution. The paper also describes the results of the operation of the Iodine Oxidation (IODOX) System. This system serves to remove iodine from the DOG system effluent by absorption into hyperazeotropic nitric acid. 7 refs., 11 figs., 10 tabs

  5. Saxton Transportation Operations Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Saxton Transportation Operations Laboratory (Saxton Laboratory) is a state-of-the-art facility for conducting transportation operations research. The laboratory...

  6. Laboratory investigations

    International Nuclear Information System (INIS)

    Handin, J.

    1980-01-01

    Our task is to design mined-repository systems that will adequately secure high-level nuclear waste for at least 10,000 yr and that will be mechanically stable for 50 to 100-yr periods of retrievability during which mistakes could be corrected and a valuable source of energy could be reclaimed, should national policy on the reprocessing of spent fuel ever change. The only credible path for the escape of radionuclides from the repository to the biosphere is through ground-water, and in hard rock, bulk permeability is largely governed by natural and artificial fracture systems. Catastrophic failure of an excavation in hard rock is likely to occur at the weakest links - the discontinuities in the rock mass that is perturbed first by mining and then by radiogenic heating. The laboratory can contribute precise measurements of the pertinent thermomechanical, hydrological and chemical properties and improve our understanding of the fundamental processes through careful experiments under well controlled conditions that simulate the prototype environment. Thus laboratory investigations are necessary, but they are not sufficient, for conventional sample sizes are small relative to natural defects like joints - i.e., the rock mass is not a continuum - and test durations are short compared to those that predictive modeling must take into account. Laboratory investigators can contribute substantially more useful data if they are provided facilities for testing large specimens(say one cubic meter) and for creep testing of all candidate host rocks. Even so, extrapolations of laboratory data to the field in neither space nor time are valid without the firm theoretical foundations yet to be built. Meanwhile in-situ measurements of structure-sensitive physical properties and access to direct observations of rock-mass character will be absolutely necessary

  7. Culham Laboratory

    International Nuclear Information System (INIS)

    1980-06-01

    The report contains summaries of work carried out under the following headings: fusion research experiments; U.K. contribution to the JET project; supporting studies; theoretical plasma physics, computational physics and computing; fusion reactor studies; engineering and technology; contract research; external relations; staff, finance and services. Appendices cover main characteristics of Culham fusion experiments, staff, extra-mural projects supported by Culham Laboratory, and a list of papers written by Culham staff. (U.K.)

  8. Plating laboratory

    International Nuclear Information System (INIS)

    Seamster, A.G.; Weitkamp, W.G.

    1984-01-01

    The lead plating of the prototype resonator has been conducted entirely in the plating laboratory at SUNY Stony Brook. Because of the considerable cost and inconvenience in transporting personnel and materials to and from Stony Brook, it is clearly impractical to plate all the resonators there. Furthermore, the high-beta resonator cannot be accommodated at Stony Brook without modifying the set up there. Consequently the authors are constructing a plating lab in-house

  9. Underground laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Bettini, A., E-mail: Bettini@pd.infn.i [Padua University and INFN Section, Dipartimento di Fisca G. Galilei, Via Marzolo 8, 35131 Padova (Italy); Laboratorio Subterraneo de Canfranc, Plaza Ayuntamiento n1 2piso, Canfranc (Huesca) (Spain)

    2011-01-21

    Underground laboratories provide the low radioactive background environment necessary to frontier experiments in particle and nuclear astrophysics and other disciplines, geology and biology, that can profit of their unique characteristics. The cosmic silence allows to explore the highest energy scales that cannot be reached with accelerators by searching for extremely rare phenomena. I will briefly review the facilities that are operational or in an advanced status of approval around the world.

  10. Prioritizing factors affecting the hospital employees' productivity from the hospital managers' viewpoint using integrated decision-making trial and evaluation laboratory and analytic network process

    Directory of Open Access Journals (Sweden)

    Ardalan Feili

    2018-01-01

    Full Text Available Objectives: This study aimed to identify and prioritize factors affecting the hospital employees' productivity from the viewpoint of hospital managers working in the teaching hospitals affiliated to Iran, Shiraz University of Medical Sciences, in 2017. Materials and Methods: This was an applied, cross-sectional, and descriptive-analytical study conducted in 2017 in all teaching hospitals affiliated to Iran, Shiraz University of Medical Sciences. After identifying factors affecting hospital employees' productivity using the results of previous studies, all hospital managers (56 managers were selected as the study population using census method to prioritize the factors. The decision-making trial and evaluation laboratory (DEMATEL and analytic network process (ANP techniques were used for analyzing the collected data through Excel 2010 and Super Decision 2.8. Results: Fifteen factors affecting employees' productivity were determined using the results of previous studies which were classified into four clusters. The results of DEMATEL technique showed that “employees' attitude toward the organization” was the most affecting factor (r = 11.928 and also the most affected factor (c = 12.120, as well as the most important factor affecting the employees' productivity (r + c = 24.048. In addition, the results of ANP showed that the cluster of “leadership and management styles” (relative weight [RW] = 0.274 and its factors, especially “involving employees in the decision-making processes” (L1 (RW = 0.102 and “delegation of authority to the employees” (L2 (RW = 0.100 were the most important factors affecting the employees' productivity. Conclusion: According to the results, adopting an appropriate leadership style and providing participatory management, involving the employees in the hospital decision-making processes, etc., had significant effects on the increases in the employees' motivation and productivity.

  11. Use of integrated geologic and geophysical information for characterizing the structure of fracture systems at the US/BK Site, Grimsel Laboratory, Switzerland

    International Nuclear Information System (INIS)

    Martel, S.J.; Peterson, J.E. Jr.

    1990-05-01

    Fracture systems form the primary fluid flow paths in a number of rock types, including some of those being considered for high level nuclear waste repositories. In some cases, flow along fractures must be modeled explicitly as part of a site characterization effort. Fractures commonly are concentrated in fracture zones, and even where fractures are seemingly ubiquitous, the hydrology of a site can be dominated by a few discrete fracture zones. We have implemented a site characterization methodology that combines information gained from geophysical and geologic investigations. The general philosophy is to identify and locate the major fracture zones, and then to characterize their systematics. Characterizing the systematics means establishing the essential and recurring patterns in which fractures are organized within the zones. We make a concerted effort to use information on the systematics of the fracture systems to link the site-specific geologic, borehole and geophysical information. This report illustrates how geologic and geophysical information on geologic heterogeneities can be integrated to guide the development of hydrologic models. The report focuses on fractures, a particularly common type of geologic heterogeneity. However, many aspects of the methodology we present can be applied to other geologic heterogeneities as well. 57 refs., 40 figs., 1 tab

  12. The U.S. Geological Survey Bird Banding Laboratory: an integrated scientific program supporting research and conservation of North American birds

    Science.gov (United States)

    Smith, Gregory J.

    2013-01-01

    The U.S. Geological Survey (USGS) Bird Banding Laboratory (BBL) was established in 1920 after ratification of the Migratory Bird Treaty Act with the United Kingdom in 1918. During World War II, the BBL was moved from Washington, D.C., to what is now the USGS Patuxent Wildlife Research Center (PWRC). The BBL issues permits and bands to permittees to band birds, records bird band recoveries or encounters primarily through telephone and Internet reporting, and manages more than 72 million banding records and more than 4.5 million records of encounters using state-of-the-art technologies. Moreover, the BBL also issues bands and manages banding and encounter data for the Canadian Bird Banding Office (BBO). Each year approximately 1 million bands are shipped from the BBL to banders in the United States and Canada, and nearly 100,000 encounter reports are entered into the BBL systems. Banding data are essential for regulatory programs, especially migratory waterfowl harvest regulations. The USGS BBL works closely with the U.S. Fish and Wildlife Service (USFWS) to develop regulations for the capture, handling, banding, and marking of birds. These regulations are published in the Code of Federal Regulations (CFR). In 2006, the BBL and the USFWS Division of Migratory Bird Management (DMBM) began a comprehensive revision of the banding regulations. The bird banding community has three major constituencies: Federal and State agency personnel involved in the management and conservation of bird populations that include the Flyway Councils, ornithological research scientists, and avocational banders. With increased demand for banding activities and relatively constant funding, a Federal Advisory Committee (Committee) was chartered and reviewed the BBL program in 2005. The final report of the Committee included six major goals and 58 specific recommendations, 47 of which have been addressed by the BBL. Specifically, the Committee recommended the BBL continue to support science

  13. Demonstration of the iodine and NO/sub x/ removal systems in the Oak Ridge National Laboratory (ORNL) Integrated Equipment Test (IET) facility

    International Nuclear Information System (INIS)

    Jubin, R.T.; Lewis, B.E.

    1986-01-01

    The overall iodine removal performance of the condensers during phase-two experiments was good (i.e., very small amounts of iodine were recycled), with removal efficiency for both condensers ranging from 0.35 to 6.29%. The removal efficiency for the first condenser ranged from 0.03 to 5.78%, and the second condenser, from 0.02 to 3.42%. In all the cases studied, the overall iodine removal efficiency appeared to be smallest, with the first condenser operating near 50 0 C. While the 50 0 C operating temperature is not necessarily the optimum temperature, the data appear to indicate that the optimum is bounded by 50 and 70 0 C. Phase three of the Integrated Equipment Test dissolver off-gas (DOG) system tests verified the operation of the dual condensers and the NO/sub x/ scrubber column under a variety of operating conditions. The removal efficiencies of the condensers were higher than anticipated, generally approx.20% in these tests. The scrubber provided an NO/sub x/ effluent of approx.0.4 to 1.0% during the entire campaign, which is consistent with the acceptable NO/sub x/ levels in the off-gas to Iodox. In addition, this 0.4-to-1.0% NO/sub x/ level in the scrubber effluent confirms the BRET design decision to omit the NO/sub x/ scrubber in a system with a DOG NO/sub x/ concentration of approx.1.0%

  14. Consolidated clinical microbiology laboratories.

    Science.gov (United States)

    Sautter, Robert L; Thomson, Richard B

    2015-05-01

    The manner in which medical care is reimbursed in the United States has resulted in significant consolidation in the U.S. health care system. One of the consequences of this has been the development of centralized clinical microbiology laboratories that provide services to patients receiving care in multiple off-site, often remote, locations. Microbiology specimens are unique among clinical specimens in that optimal analysis may require the maintenance of viable organisms. Centralized laboratories may be located hours from patient care settings, and transport conditions need to be such that organism viability can be maintained under a variety of transport conditions. Further, since the provision of rapid results has been shown to enhance patient care, effective and timely means for generating and then reporting the results of clinical microbiology analyses must be in place. In addition, today, increasing numbers of patients are found to have infection caused by pathogens that were either very uncommon in the past or even completely unrecognized. As a result, infectious disease specialists, in particular, are more dependent than ever on access to high-quality diagnostic information from clinical microbiology laboratories. In this point-counterpoint discussion, Robert Sautter, who directs a Charlotte, NC, clinical microbiology laboratory that provides services for a 40-hospital system spread over 3 states in the southeastern United States explains how an integrated clinical microbiology laboratory service has been established in a multihospital system. Richard (Tom) Thomson of the NorthShore University HealthSystem in Evanston, IL, discusses some of the problems and pitfalls associated with large-scale laboratory consolidation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Building Technologies Research and Integration Center (BTRIC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Building Technologies Research and Integration Center (BTRIC), in the Energy and Transportation Science Division (ETSD) of Oak Ridge National Laboratory (ORNL),...

  16. Laboratory hemostasis: milestones in Clinical Chemistry and Laboratory Medicine.

    Science.gov (United States)

    Lippi, Giuseppe; Favaloro, Emmanuel J

    2013-01-01

    Hemostasis is a delicate, dynamic and intricate system, in which pro- and anti-coagulant forces cooperate for either maintaining blood fluidity under normal conditions, or else will prompt blood clot generation to limit the bleeding when the integrity of blood vessels is jeopardized. Excessive prevalence of anticoagulant forces leads to hemorrhage, whereas excessive activation of procoagulant forces triggers excessive coagulation and thrombosis. The hemostasis laboratory performs a variety of first, second and third line tests, and plays a pivotal role in diagnostic and monitoring of most hemostasis disturbances. Since the leading targets of Clinical Chemistry and Laboratory Medicine include promotion of progress in fundamental and applied research, along with publication of guidelines and recommendations in laboratory diagnostics, this journal is an ideal source of information on current developments in the laboratory technology of hemostasis, and this article is aimed to celebrate some of the most important and popular articles ever published by the journal in the filed of laboratory hemostasis.

  17. Design/installation and structural integrity assessment under the Federal Facility Agreement for Bethel Valley Low-Level Waste Collection and Transfer System upgrade for Building 2026 (High Radiation Level Analytical Laboratory) and Building 2099 (Monitoring and Control Station) at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1994-10-01

    This document presents a Design/Installation and Structural Integrity Assessment for a replacement tank system for portions of the Bethel Valley Low Level Waste (LLW) System, located at the Oak Ridge Reservation, Oak Ridge, Tennessee. This issue of the assessment covers the design aspects of the replacement tank system, and certifies that the design has sufficient structural integrity and is acceptable for the storing or treating of hazardous and/or radioactive substances. The present issue identifies specific activities that must be completed during the fabrication, installation, and testing of the replacement tank system in order to provide assurance that the final installation complies with governing requirements. Portions of the LLW system are several decades old, or older, and do not comply with current environmental protection regulations. Several subsystems of the LLW system have been designated to receive a state-of-the-art replacement and refurbishment. One such subsystem serves Building 2026, the High Radiation Level Analytical Laboratory. This assessment focuses on the scope of work for the Building 2026 replacement LLW Collection and Transfer System, including the provision of a new Monitoring and Control Station (Building 2099) to receive, store, and treat (adjust pH) low level radioactive waste

  18. Bio Engineering Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry and biology laboratoriesThe Bio Engineering Laboratory (BeL) is theonly full spectrum biotechnology capability within the Department...

  19. Nanotechnology Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Nanotechnology Characterization Laboratory (NCL) at the Frederick National Laboratory for Cancer Research performs preclinical characterization of nanomaterials...

  20. Physical Sciences Laboratory (PSL)

    Data.gov (United States)

    Federal Laboratory Consortium — PNNL's Physical Sciences Laboratory (PSL) houses 22 research laboratories for conducting a wide-range of research including catalyst formulation, chemical analysis,...

  1. Distributed Energy Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Distributed Energy Technologies Laboratory (DETL) is an extension of the power electronics testing capabilities of the Photovoltaic System Evaluation Laboratory...

  2. Laboratory-scale integrated ARP filter test

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. There is a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. This task attempted to simulate the entire ARP process, including multiple batches (5), washing, chemical cleaning, and blending the feed with heels and recycle streams. The objective of the tests was to determine whether one of these processes is causing excessive fouling of the crossflow or secondary filter. The authors conducted the tests with feed solutions containing 6.6 M sodium Salt Batch 6 simulant supernate with no MST.

  3. Air Force Research Laboratory Integrated Omics Research

    Science.gov (United States)

    2015-10-01

    fuel exposures and cognitive fatigue. 15. SUBJECT TERMS biomonitoring, omics, metabonomics, proteomics, genomics, epigenetics, biomarker, toxin...biomarker discovery in a number of toxicology and human performance projects, including jet fuel exposures and cognitive fatigue. INTRODUCTION One of...chemical exposure for U.S. and NATO military personnel46; inhalation and dermal have been shown to represent the primary routes of exposure47 This

  4. Laboratory for Extraterrestrial Physics

    Science.gov (United States)

    Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    The NASA Goddard Space Flight Center (GSFC) Laboratory for Extraterrestrial Physics (LEP) performs experimental and theoretical research on the heliosphere, the interstellar medium, and the magnetospheres and upper atmospheres of the planets, including Earth. LEP space scientists investigate the structure and dynamics of the magnetospheres of the planets including Earth. Their research programs encompass the magnetic fields intrinsic to many planetary bodies as well as their charged-particle environments and plasma-wave emissions. The LEP also conducts research into the nature of planetary ionospheres and their coupling to both the upper atmospheres and their magnetospheres. Finally, the LEP carries out a broad-based research program in heliospheric physics covering the origins of the solar wind, its propagation outward through the solar system all the way to its termination where it encounters the local interstellar medium. Special emphasis is placed on the study of solar coronal mass ejections (CME's), shock waves, and the structure and properties of the fast and slow solar wind. LEP planetary scientists study the chemistry and physics of planetary stratospheres and tropospheres and of solar system bodies including meteorites, asteroids, comets, and planets. The LEP conducts a focused program in astronomy, particularly in the infrared and in short as well as very long radio wavelengths. We also perform an extensive program of laboratory research, including spectroscopy and physical chemistry related to astronomical objects. The Laboratory proposes, develops, fabricates, and integrates experiments on Earth-orbiting, planetary, and heliospheric spacecraft to measure the characteristics of planetary atmospheres and magnetic fields, and electromagnetic fields and plasmas in space. We design and develop spectrometric instrumentation for continuum and spectral line observations in the x-ray, gamma-ray, infrared, and radio regimes; these are flown on spacecraft to study

  5. Risk management at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Cummings, G.E.; Strait, R.S.

    1993-10-01

    Managing risks at a large national laboratory presents a unique set of challenges. These challenges include the management of a broad diversity of activities, the need to balance research flexibility against management control, and a plethora of requirements flowing from regulatory and oversight bodies. This paper will present the experiences of Lawrence Livermore National Laboratory (LLNL) in risk management and in dealing with these challenges. While general risk management has been practiced successfully by all levels of Laboratory management, this paper will focus on the Laboratory's use of probabilistic safety assessment and prioritization techniques and the integration of these techniques into Laboratory operations

  6. Sandia National Laboratories embraces ISDN

    Energy Technology Data Exchange (ETDEWEB)

    Tolendino, L.F.; Eldridge, J.M.

    1994-08-01

    Sandia National Laboratories (Sandia), a multidisciplinary research and development laboratory located on Kirtland Air Force Base, has embraced Integrated Services Digital Network technology as an integral part of its communication network. Sandia and the Department of Energy`s Albuquerque Operations Office have recently completed the installation of a modernized and expanded telephone system based, on the AT&T 5ESS telephone switch. Sandia is committed to ISDN as an integral part of data communication services, and it views ISDN as one part of a continuum of services -- services that range from ISDN`s asynchronous and limited bandwidth Ethernet (250--1000 Kbps) through full bandwidth Ethernet, FDDI, and ATM at Sonet rates. Sandia has demonstrated this commitment through its use of ISDN data features to support critical progmmmatic services such as access to corporate data base systems. In the future, ISDN will provide enhanced voice, data communication, and video services.

  7. Egg Yolk Lecithin: A Biochemical Laboratory Project

    Science.gov (United States)

    White, Bernard J.; And Others

    1974-01-01

    Describes an undergraduate laboratory project involving lecithin which integrates two general aspects of lipid methodology: chromatographic techniques and use of enzymes specificity to obtain structural information. (Author/SLH)

  8. Energy Systems Integration Facility News | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems Integration Facility News Energy Systems Integration Facility Energy Dataset A massive amount of wind data was recently made accessible online, greatly expanding the Energy's National Renewable Energy Laboratory (NREL) has completed technology validation testing for Go

  9. Common Systems Integration Lab (CSIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Common Systems Integration Lab (CSIL)supports the PMA-209 Air Combat Electronics Program Office. CSIL also supports development, test, integration and life cycle...

  10. Integrated Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the center of the 586-square-mile Hanford Site is the Integrated Disposal Facility, also known as the IDF.This facility is a landfill similar in concept...

  11. Purdue Hydrogen Systems Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up

  12. Purdue Hydrogen Systems Laboratory

    International Nuclear Information System (INIS)

    Gore, Jay P.; Kramer, Robert; Pourpoint, Timothee L.; Ramachandran, P.V.; Varma, Arvind; Zheng, Yuan

    2011-01-01

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts

  13. Laboratory automation and LIMS in forensics

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Hansen, Anders Johannes; Morling, Niels

    2013-01-01

    . Furthermore, implementation of automated liquid handlers reduces the risk of sample misplacement. A LIMS can efficiently control the sample flow through the laboratory and manage the results of the conducted tests for each sample. Integration of automated liquid handlers with a LIMS provides the laboratory......Implementation of laboratory automation and LIMS in a forensic laboratory enables the laboratory, to standardize sample processing. Automated liquid handlers can increase throughput and eliminate manual repetitive pipetting operations, known to result in occupational injuries to the technical staff...... with the tools required for setting up automated production lines of complex laboratory processes and monitoring the whole process and the results. Combined, this enables processing of a large number of samples. Selection of the best automated solution for an individual laboratory should be based on user...

  14. Advanced Chemistry Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry laboratoryThe Advanced Chemistry Laboratory (ACL) is a unique facility designed for working with the most super toxic compounds known...

  15. Lincoln Laboratory Grid

    Data.gov (United States)

    Federal Laboratory Consortium — The Lincoln Laboratory Grid (LLGrid) is an interactive, on-demand parallel computing system that uses a large computing cluster to enable Laboratory researchers to...

  16. Gun Dynamics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Gun Dynamics Laboratory is a research multi-task facility, which includes two firing bays, a high bay area and a second floor laboratory space. The high bay area...

  17. NASA Space Radiation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory is a NASA funded facility, delivering heavy ion beams to a target area where scientists...

  18. Denver District Laboratory (DEN)

    Data.gov (United States)

    Federal Laboratory Consortium — Program CapabilitiesDEN-DO Laboratory is a multi-functional laboratory capable of analyzing most chemical analytes and pathogenic/non-pathogenic microorganisms found...

  19. Laboratory-acquired brucellosis

    DEFF Research Database (Denmark)

    Fabiansen, C.; Knudsen, J.D.; Lebech, A.M.

    2008-01-01

    Brucellosis is a rare disease in Denmark. We describe one case of laboratory-acquired brucellosis from an index patient to a laboratory technician following exposure to an infected blood culture in a clinical microbiology laboratory Udgivelsesdato: 2008/6/9......Brucellosis is a rare disease in Denmark. We describe one case of laboratory-acquired brucellosis from an index patient to a laboratory technician following exposure to an infected blood culture in a clinical microbiology laboratory Udgivelsesdato: 2008/6/9...

  20. Synthesizing Novel Anthraquinone Natural Product-Like Compounds to Investigate Protein-Ligand Interactions in Both an in Vitro and in Vivo Assay: An Integrated Research-Based Third-Year Chemical Biology Laboratory Course

    Science.gov (United States)

    McKenzie, Nancy; McNulty, James; McLeod, David; McFadden, Meghan; Balachandran, Naresh

    2012-01-01

    A new undergraduate program in chemical biology was launched in 2008 to provide a unique learning experience for those students interested in this interdisciplinary science. An innovative undergraduate chemical biology laboratory course at the third-year level was developed as a key component of the curriculum. The laboratory course introduces…

  1. Photovoltaic Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NIST's PV characterization laboratory is used to measure the electrical performance and opto-electronic properties of solar cells and modules. This facility consists...

  2. Rapid Prototyping Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The ARDEC Rapid Prototyping (RP) Laboratory was established in December 1992 to provide low cost RP capabilities to the ARDEC engineering community. The Stratasys,...

  3. Central Laboratories Services

    Data.gov (United States)

    Federal Laboratory Consortium — The TVA Central Laboratories Services is a comprehensive technical support center, offering you a complete range of scientific, engineering, and technical services....

  4. Sandia National Laboratories

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 60 years, Sandia has delivered essential science and technology to resolve the nation's most challenging security issues.Sandia National Laboratories...

  5. Wireless Emulation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Wireless Emulation Laboratory (WEL) is a researchtest bed used to investigate fundamental issues in networkscience. It is a research infrastructure that emulates...

  6. FOOD SAFETY TESTING LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory develops screening assays, tests and modifies biosensor equipment, and optimizes food safety testing protocols for the military and civilian sector...

  7. Embedded Processor Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Embedded Processor Laboratory provides the means to design, develop, fabricate, and test embedded computers for missile guidance electronics systems in support...

  8. Vehicle Development Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports the development of prototype deployment platform vehicles for offboard countermeasure systems.DESCRIPTION: The Vehicle Development Laboratory is...

  9. Acoustic Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains an electro-magnetic worldwide data collection and field measurement capability in the area of acoustic technology. Outfitted by NASA Langley...

  10. COGNITIVE PERFORMANCE LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory conducts basic and applied human research studies to characterize cognitive performance as influenced by militarily-relevant contextual and physical...

  11. Space Weather Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Weather Computational Laboratory is a Unix and PC based modeling and simulation facility devoted to research analysis of naturally occurring electrically...

  12. Atmospheric Measurements Laboratory (AML)

    Data.gov (United States)

    Federal Laboratory Consortium — The Atmospheric Measurements Laboratory (AML) is one of the nation's leading research facilities for understanding aerosols, clouds, and their interactions. The AML...

  13. Composites Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose of the Composites Characterization Laboratory is to investigate new and/or modified matrix materials and fibers for advanced composite applications both...

  14. Microgravity Emissions Laboratory (MEL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Microgravity Emissions Laboratory (MEL) utilizes a low-frequency acceleration measurement system for the characterization of rigid body inertial forces generated...

  15. Semiconductor Laser Measurements Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Semiconductor Laser Measurements Laboratory is equipped to investigate and characterize the lasing properties of semiconductor diode lasers. Lasing features such...

  16. Fuels Processing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s Fuels Processing Laboratory in Morgantown, WV, provides researchers with the equipment they need to thoroughly explore the catalytic issues associated with...

  17. Advanced Manufacturing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Manufacturing Laboratory at the University of Maryland provides the state of the art facilities for realizing next generation products and educating the...

  18. Virtual Training Devices Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Virtual Training Devices (VTD) Laboratory at the Life Cycle Software Engineering Center, Picatinny Arsenal, provides a software testing and support environment...

  19. Intelligent Optics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Intelligent Optics Laboratory supports sophisticated investigations on adaptive and nonlinear optics; advancedimaging and image processing; ground-to-ground and...

  20. ANALYTICAL MICROBIOLOGY LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains equipment that performs a broad array of microbiological analyses for pathogenic and spoilage microorganisms. It performs challenge studies...

  1. [Theme: Using Laboratories.

    Science.gov (United States)

    Pritchard, Jack; Braker, Clifton

    1982-01-01

    Pritchard discusses the opportunities for applied learning afforded by laboratories. Braker describes the evaluation of cognitive, affective, and psychomotor skills in the agricultural mechanics laboratory. (SK)

  2. Wind Structural Testing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This facility provides office space for industry researchers, experimental laboratories, computer facilities for analytical work, and space for assembling components...

  3. Geospatial Services Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: To process, store, and disseminate geospatial data to the Department of Defense and other Federal agencies.DESCRIPTION: The Geospatial Services Laboratory...

  4. Thermogravimetric Analysis Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Thermogravimetric Analysis Laboratory in Morgantown, WV, researchers study how chemical looping combustion (CLC) can be applied to fossil energy systems....

  5. Research Combustion Laboratory (RCL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Research Combustion Laboratory (RCL) develops aerospace propulsion technology by performing tests on propulsion components and materials. Altitudes up to 137,000...

  6. Combustion Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Combustion Research Laboratory facilitates the development of new combustion systems or improves the operation of existing systems to meet the Army's mission for...

  7. Coatings and Corrosion Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The mission of the Coatings and Corrosion Laboratory is to develop and analyze the effectiveness of innovative coatings test procedures while evaluating the...

  8. Laboratory of Chemical Physics

    Data.gov (United States)

    Federal Laboratory Consortium — Current research in the Laboratory of Chemical Physics is primarily concerned with experimental, theoretical, and computational problems in the structure, dynamics,...

  9. Optical Remote Sensing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optical Remote Sensing Laboratory deploys rugged, cutting-edge electro-optical instrumentation for the collection of various event signatures, with expertise in...

  10. Neural Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — As part of the Electrical and Computer Engineering Department and The Institute for System Research, the Neural Systems Laboratory studies the functionality of the...

  11. Environmental Microbiology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Environmental Microbiology Laboratory, located in Bldg. 644 provides a dual-gas respirometer for measurement of oxygen consumption and carbon dioxide evolution...

  12. Laboratory quality assurance

    International Nuclear Information System (INIS)

    Delvin, W.L.

    1977-01-01

    The elements (principles) of quality assurance can be applied to the operation of the analytical chemistry laboratory to provide an effective tool for indicating the competence of the laboratory and for helping to upgrade competence if necessary. When used, those elements establish the planned and systematic actions necessary to provide adequate confidence in each analytical result reported by the laboratory (the definition of laboratory quality assurance). The elements, as used at the Hanford Engineering Development Laboratory (HEDL), are discussed and they are qualification of analysts, written methods, sample receiving and storage, quality control, audit, and documentation. To establish a laboratory quality assurance program, a laboratory QA program plan is prepared to specify how the elements are to be implemented into laboratory operation. Benefits that can be obtained from using laboratory quality assurance are given. Experience at HEDL has shown that laboratory quality assurance is not a burden, but it is a useful and valuable tool for the analytical chemistry laboratory

  13. Aviation Systems Test and Integration Lab (AvSTIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aviation Systems Test and Integration Laboratory offers an innovative approach to aviation system and subsystem testing by fully immersing aviation platforms in...

  14. Modern clinical laboratory diagnostics

    International Nuclear Information System (INIS)

    Balakhovskij, I.S.

    1986-01-01

    Laboratory diagnosis is auxillary medical discipline studying specific laboratory symptoms of diseases, revealed by investigations of materials taken from patients. The structure of laboratory servie in our country and abroad, items of laboratory investigations, organizational principles are described. Attention is being given to the cost of analyses, the amount of conducted investigations, methods of result presentation, problems of accuracy, quality control and information content

  15. Mobile spectrometric laboratory

    International Nuclear Information System (INIS)

    Isajenko, K.A.; Lipinski, P.

    2002-01-01

    The article presents the Mobile Spectrometric Laboratory used by Central Laboratory for Radiological Protection since year 2000. The equipment installed in the Mobile Laboratory and its uses is described. The results of international exercises and intercalibrations, in which the Laboratory participated are presented. (author)

  16. Clinical laboratory analytics: Challenges and promise for an emerging discipline

    Directory of Open Access Journals (Sweden)

    Brian H Shirts

    2015-01-01

    Full Text Available The clinical laboratory is a major source of health care data. Increasingly these data are being integrated with other data to inform health system-wide actions meant to improve diagnostic test utilization, service efficiency, and "meaningful use." The Academy of Clinical Laboratory Physicians and Scientists hosted a satellite meeting on clinical laboratory analytics in conjunction with their annual meeting on May 29, 2014 in San Francisco. There were 80 registrants for the clinical laboratory analytics meeting. The meeting featured short presentations on current trends in clinical laboratory analytics and several panel discussions on data science in laboratory medicine, laboratory data and its role in the larger healthcare system, integrating laboratory analytics, and data sharing for collaborative analytics. One main goal of meeting was to have an open forum of leaders that work with the "big data" clinical laboratories produce. This article summarizes the proceedings of the meeting and content discussed.

  17. Virtual laboratory for radiation experiments

    International Nuclear Information System (INIS)

    Tiftikci, A.; Kocar, C.; Tombakoglu, M.

    2009-01-01

    Simulation of alpha, beta and gamma radiation detection and measurement experiments which are part of real nuclear physics laboratory courses was realized with Monte Carlo method and JAVA Programming Language. As being known, establishing this type of laboratories are very expensive. At the same time, highly radioactive sources used in some experiments carries risk for students and also for experimentalists. By taking into consideration of those problems, the aim of this study is to setup a virtual radiation laboratory with minimum cost and to speed up the training of radiation physics for students with no radiation risk. Software coded possesses the nature of radiation and radiation transport with the help of Monte Carlo method. In this software, experimental parameters can be changed manually by the user and experimental results can be followed synchronous in an MCA (Multi Channel Analyzer) or an SCA (Single Channel Analyzer). Results obtained in experiments can be analyzed by these MCA or SCA panels. Virtual radiation laboratory which is developed in this study with reliable results and unlimited experimentation capability seems as an useful educational material. Moreover, new type of experiments can be integrated to this software easily and as a result, virtual laboratory can be extended.

  18. Energy Materials Research Laboratory (EMRL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energy Materials Research Laboratory at the Savannah River National Laboratory (SRNL) creates a cross-disciplinary laboratory facility that lends itself to the...

  19. Malaria diagnosis and treatment under the strategy of the integrated management of childhood illness (IMCI): relevance of laboratory support from the rapid immunochromatographic tests of ICT Malaria P.f/P.v and OptiMal.

    Science.gov (United States)

    Tarimo, D S; Minjas, J N; Bygbjerg, I C

    2001-07-01

    The algorithm developed for the integrated management of childhood illness (IMCI) provides guidelines for the treatment of paediatric malaria. In areas where malaria is endemic, for example, the IMCI strategy may indicate that children who present with fever, a recent history of fever and/or pallor should receive antimalarial chemotherapy. In many holo-endemic areas, it is unclear whether laboratory tests to confirm that such signs are the result of malaria would be very relevant or useful. Children from a holo-endemic region of Tanzania were therefore checked for malarial parasites by microscopy and by using two rapid immunochromatographic tests (RIT) for the diagnosis of malaria (ICT Malaria P.f/P.v and OptiMal. At the time they were tested, each of these children had been targeted for antimalarial treatment (following the IMCI strategy) because of fever and/or pallor. Only 70% of the 395 children classified to receive antimalarial drugs by the IMCI algorithm had malarial parasitaemias (68.4% had Plasmodium falciparum trophozoites, 1.3% only P. falciparum gametocytes, 0.3% P. ovale and 0.3% P. malariae). As indicators of P. falciparum trophozoites in the peripheral blood, fever had a sensitivity of 93.0% and a specificity of 15.5% whereas pallor had a sensitivity of 72.2% and a specificity of 50.8%. The RIT both had very high corresponding sensitivities (of 100.0% for the ICT and 94.0% for OptiMal) but the specificity of the ICT (74.0%) was significantly lower than that for OptiMal (100.0%). Fever and pallor were significantly associated with the P. falciparum asexual parasitaemias that equalled or exceeded the threshold intensity (2000/microl) that has the optimum sensitivity and specificity for the definition of a malarial episode. Diagnostic likelihood ratios (DLR) showed that a positive result in the OptiMal test (DLR = infinity) was a better indication of malaria than a positive result in the ICT (DLR = 3.85). In fact, OptiMal had diagnostic reliability (0

  20. Scientific Assistant Virtual Laboratory (SAVL)

    Science.gov (United States)

    Alaghband, Gita; Fardi, Hamid; Gnabasik, David

    2007-03-01

    The Scientific Assistant Virtual Laboratory (SAVL) is a scientific discovery environment, an interactive simulated virtual laboratory, for learning physics and mathematics. The purpose of this computer-assisted intervention is to improve middle and high school student interest, insight and scores in physics and mathematics. SAVL develops scientific and mathematical imagination in a visual, symbolic, and experimental simulation environment. It directly addresses the issues of scientific and technological competency by providing critical thinking training through integrated modules. This on-going research provides a virtual laboratory environment in which the student directs the building of the experiment rather than observing a packaged simulation. SAVL: * Engages the persistent interest of young minds in physics and math by visually linking simulation objects and events with mathematical relations. * Teaches integrated concepts by the hands-on exploration and focused visualization of classic physics experiments within software. * Systematically and uniformly assesses and scores students by their ability to answer their own questions within the context of a Master Question Network. We will demonstrate how the Master Question Network uses polymorphic interfaces and C# lambda expressions to manage simulation objects.

  1. Shield calculation of project for instrument calibration integrated laboratory of IPEN-Sao Paulo, Brazil; Calculo das blindagens do projeto de um laboratorio integrado de calibracao de instrumentos no IPEN - Sao Paulo, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Gustavo A.S.J.; Caldas, Linda V.E., E-mail: gustavaobarros@gmail.co, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    This work performed the shield calculation of the future rooms walls of the five X-ray equipment of the Instrument Calibration Laboratory of the IPEN, Sao Paulo, Brazil, which will be constructed in project of laboratory enlargement. The obtained results by application of a calculation methodology from an international regulation have shown that the largest thickness of shielding (25.7 cm of concrete or 7.1 mm of lead) will be of the wall which will receive the primary beam of the equipment with a 320 kV voltage. The cost/benefit analysis indicated the concrete as the best material option for the shielding

  2. Exploration Laboratory Analysis FY13

    Science.gov (United States)

    Krihak, Michael; Perusek, Gail P.; Fung, Paul P.; Shaw, Tianna, L.

    2013-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk, which is stated as the Risk of Inability to Adequately Treat an Ill or Injured Crew Member, and ExMC Gap 4.05: Lack of minimally invasive in-flight laboratory capabilities with limited consumables required for diagnosing identified Exploration Medical Conditions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability in future exploration missions. Mission architecture poses constraints on equipment and procedures that will be available to treat evidence-based medical conditions according to the Space Medicine Exploration Medical Conditions List (SMEMCL), and to perform human research studies on the International Space Station (ISS) that are supported by the Human Health and Countermeasures (HHC) element. Since there are significant similarities in the research and medical operational requirements, ELA hardware development has emerged as a joint effort between ExMC and HHC. In 2012, four significant accomplishments were achieved towards the development of exploration laboratory analysis for medical diagnostics. These achievements included (i) the development of high priority analytes for research and medical operations, (ii) the development of Level 1 functional requirements and concept of operations documentation, (iii) the selection and head-to-head competition of in-flight laboratory analysis instrumentation, and (iv) the phase one completion of the Small Business Innovation Research (SBIR) projects under the topic Smart Phone Driven Blood-Based Diagnostics. To utilize resources efficiently, the associated documentation and advanced technologies were integrated into a single ELA plan that encompasses ExMC and HHC development efforts. The requirements and high priority analytes was used in the selection of the four in-flight laboratory analysis performers. Based upon the

  3. Aircraft Fire Protection Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Navy Aircraft Protection Laboratory provides complete test support for all Navy air vehicle fire protection systems.The facility allows for the simulation of a...

  4. Electro-Deposition Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The electro-deposition laboratory can electro-deposit various coatings onto small test samples and bench level prototypes. This facility provides the foundation for...

  5. Radiochemical Processing Laboratory (RPL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Radiochemical Processing Laboratory (RPL)�is a scientific facility funded by DOE to create and implement innovative processes for environmental clean-up and...

  6. Clinical Laboratory Fee Schedule

    Data.gov (United States)

    U.S. Department of Health & Human Services — Outpatient clinical laboratory services are paid based on a fee schedule in accordance with Section 1833(h) of the Social Security Act. The clinical laboratory fee...

  7. Environment | Argonne National Laboratory

    Science.gov (United States)

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Environment Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment National Security User Facilities Science Work with Us Environment Atmospheric and Climate Science Ecological

  8. Product Evaluation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory offers the services of highly trained and experienced specialists that have a full complement of measuring equipment. It is equipped with two optical...

  9. Geological Services Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Researchers use computed tomography (CT) scanners at NETL’s Geological Services Laboratory in Morgantown, WV, to peer into geologic core samples to determine how...

  10. Building the Korogwe Laboratory

    DEFF Research Database (Denmark)

    Knudsen, Jakob; von Seidlein, Lorenz; Richard, Jean Pierre

    2011-01-01

    An illustrated description of the building of a biomedical research laboratory in Korogwe, Tanzania.......An illustrated description of the building of a biomedical research laboratory in Korogwe, Tanzania....

  11. Laboratory of Biological Modeling

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory of Biological Modeling is defined by both its methodologies and its areas of application. We use mathematical modeling in many forms and apply it to a...

  12. Energy | Argonne National Laboratory

    Science.gov (United States)

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Batteries and Energy Storage Energy Systems Modeling Materials for Energy Nuclear Energy Renewable Energy Smart Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment National

  13. Los Alamos National Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Lab has a proud history and heritage of almost 70 years of science and innovation. The people at the Laboratory work on advanced technologies to provide the best...

  14. High Bay Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory is a specially constructed facility with elevated (37 feet) ceilings and an overhead catwalk, and which is dedicated to research efforts in reducing...

  15. Geometric Design Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The mission of the Geometric Design Laboratory (GDL) is to support the Office of Safety Research and Development in research related to the geometric design...

  16. Detroit District Laboratory (DET)

    Data.gov (United States)

    Federal Laboratory Consortium — Program CapabilitiesDET-DO Laboratory is equipped with the usual instrumentation necessary to perform a wide range of analyses of food, drugs and cosmetics. Program...

  17. FLEXIBLE FOOD PACKAGING LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains equipment to fabricate and test prototype packages of many types and sizes (e.g., bags, pouches, trays, cartons, etc.). This equipment can...

  18. Aquatic Research Laboratory (ARL)

    Data.gov (United States)

    Federal Laboratory Consortium — Columbia River and groundwater well water sources are delivered to the Aquatic Research Laboratory (ARL), where these resources are used to conduct research on fish...

  19. Human Factors Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The purpose of the Human Factors Laboratory is to further the understanding of highway user needs so that those needs can be incorporated in roadway design,...

  20. Philadelphia District Laboratory (PHI)

    Data.gov (United States)

    Federal Laboratory Consortium — Program CapabilitiesPHI-DO Pharmaceutical Laboratory specializes in the analyses of all forms and types of drug products.Its work involves nearly all phases of drug...

  1. Energetics Laboratory Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — These energetic materials laboratories are equipped with explosion proof hoods with blow out walls for added safety, that are certified for safe handling of primary...

  2. Neutral Buoyancy Laboratory (NBL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutral Buoyancy Laboratory (NBL) is an astronaut training facility and neutral buoyancy pool operated by NASA and located at the Sonny Carter Training Facility,...

  3. Protective Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory is a 40 by 28 by 9 foot facility that is equipped with tools for the development of various items of control technology related to the transmission...

  4. Laboratory Demographics Lookup Tool

    Data.gov (United States)

    U.S. Department of Health & Human Services — This website provides demographic information about laboratories, including CLIA number, facility name and address, where the laboratory testing is performed, the...

  5. Keeping a Laboratory Notebook.

    Science.gov (United States)

    Eisenberg, Anne

    1982-01-01

    Since the keeping of good records is essential in the chemistry laboratory, general guidelines for maintaining a laboratory notebook are provided. Includes rationale for having entries documented or witnessed. (Author/JN)

  6. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Science.gov (United States)

    Defense Systems & Assessments: About Us Sandia National Laboratories Exceptional service in ; Security Weapons Science & Technology Defense Systems & Assessments About Defense Systems & Information Construction & Facilities Contract Audit Sandia's Economic Impact Licensing & Technology

  7. The Laboratory Diagnosis of HIV Infections

    Directory of Open Access Journals (Sweden)

    Margaret Fearon

    2005-01-01

    Full Text Available HIV diagnostic testing has come a long way since its inception in the early 1980s. Current enzyme immunoassays are sensitive enough to detect antibody as early as one to two weeks after infection. A variety of other assays are essential to confirm positive antibody screens (Western blot, polymerase chain reaction [PCR], provide an adjunct to antibody testing (p24 antigen, PCR, or provide additional information for the clinician treating HIV-positive patients (qualitative and quantitative PCR, and genotyping. Most diagnostic laboratories have complex testing algorithms to ensure accuracy of results and optimal use of laboratory resources. The choice of assays is guided by the initial screening results and the clinical information provided by the physician; both are integral to the laboratory's ability to provide an accurate laboratory diagnosis. Laboratories should also provide specific information on specimen collection, storage and transport so that specimen integrity is not compromised, thereby preserving the accuracy of laboratory results. Point of Care tests have become increasingly popular in the United States and some places in Canada over the past several years. These tests provide rapid, on-site HIV results in a format that is relatively easy for clinic staff to perform. However, the performance of these tests requires adherence to good laboratory quality control practices, as well as the backup of a licensed diagnostic laboratory to provide confirmation and resolution of positive or indeterminate results. Laboratory quality assurance programs and the participation in HIV proficiency testing programs are essential to ensure that diagnostic laboratories provide accurate, timely and clinically relevant laboratory results.

  8. EPA Environmental Chemistry Laboratory

    Science.gov (United States)

    1993-01-01

    The Environmental Protection Agency's (EPA) Chemistry Laboratory (ECL) is a national program laboratory specializing in residue chemistry analysis under the jurisdiction of the EPA's Office of Pesticide Programs in Washington, D.C. At Stennis Space Center, the laboratory's work supports many federal anti-pollution laws. The laboratory analyzes environmental and human samples to determine the presence and amount of agricultural chemicals and related substances. Pictured, ECL chemists analyze environmental and human samples for the presence of pesticides and other pollutants.

  9. Laboratory performance evaluation reports for management

    International Nuclear Information System (INIS)

    Lindahl, P.C.; Hensley, J.E.; Bass, D.A.; Johnson, P.L.; Marr, J.J.; Streets, W.E.; Warren, S.W.; Newberry, R.W.

    1995-01-01

    In support of the US DOE's environmental restoration efforts, the Integrated Performance Evaluation Program (IPEP) was developed to produce laboratory performance evaluation reports for management. These reports will provide information necessary to allow DOE headquarters and field offices to determine whether or not contracted analytical laboratories have the capability to produce environmental data of the quality necessary for the remediation program. This document describes the management report

  10. The Canfranc Underground Laboratory

    International Nuclear Information System (INIS)

    Amare, J.; Beltran, B.; Carmona, J.M.; Cebrian, S.; Garcia, E.; Irastorza, I.G.; Gomez, H.; Luzon, G.; Martinez, M.; Morales, J.; Ortiz de Solorzano, A.; Pobes, C.; Puimedon, J.; Rodriguez, A.; Ruz, J.; Sarsa, M.L.; Torres, L.; Villar, J.A.

    2005-01-01

    This paper describes the forthcoming enlargement of the Canfranc Underground Laboratory (LSC) which will allow to host new international Astroparticle Physics experiments and therefore to broaden the European underground research area. The new Canfranc Underground Laboratory will operate in coordination (through the ILIAS Project) with the Gran Sasso (Italy), Modane (France) and Boulby (UK) underground laboratories

  11. Remote Experiments in Control Engineering Education Laboratory

    Directory of Open Access Journals (Sweden)

    Milica B Naumović

    2008-05-01

    Full Text Available This paper presents Automatic Control Engineering Laboratory (ACEL - WebLab, an under-developed, internet-based remote laboratory for control engineering education at the Faculty of Electronic Engineering in Niš. Up to now, the remote laboratory integrates two physical systems (velocity servo system and magnetic levitation system and enables some levels of measurement and control. To perform experiments in ACEL-WebLab, the "LabVIEW Run Time Engine"and a standard web browser are needed.

  12. Characterizing the Laboratory Market

    Energy Technology Data Exchange (ETDEWEB)

    Shehabi, Arman [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ganeshalingam, Mohan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DeMates, Lauren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mathew, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sartor, Dale [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-11

    Laboratories are estimated to be 3-5 times more energy intensive than typical office buildings and offer significant opportunities for energy use reductions. Although energy intensity varies widely, laboratories are generally energy intensive due to ventilation requirements, the research instruments used, and other health and safety concerns. Because the requirements of laboratory facilities differ so dramatically from those of other buildings, a clear need exists for an initiative exclusively targeting these facilities. The building stock of laboratories in the United States span different economic sectors, include governmental and academic institution, and are often defined differently by different groups. Information on laboratory buildings is often limited to a small subsection of the total building stock making aggregate estimates of the total U.S. laboratories and their energy use challenging. Previous estimates of U.S. laboratory space vary widely owing to differences in how laboratories are defined and categorized. A 2006 report on fume hoods provided an estimate of 150,000 laboratories populating the U.S. based in part on interviews of industry experts, however, a 2009 analysis of the 2003 Commercial Buildings Energy Consumption Survey (CBECS) generated an estimate of only 9,000 laboratory buildings. This report draws on multiple data sources that have been evaluated to construct an understanding of U.S. laboratories across different sizes and markets segments. This 2016 analysis is an update to draft reports released in October and December 2016.

  13. Integral or integrated marketing

    Directory of Open Access Journals (Sweden)

    Davčik Nebojša

    2006-01-01

    Full Text Available Marketing theorists and experts try to develop business efficient organization and to get marketing performance at higher, business integrated level since its earliest beginnings. The core issue in this paperwork is the dialectic and practical approach dilemma should we develop integrated or integral marketing approach in the organization. The presented company cases as well as dialectic and functional explanations of this dilemma clearly shows that integrated marketing is narrower approach than integral marketing if we take as focal point new, unique and completed entity. In the integration the essence is in getting different parts together, which do not have to make necessary the new entity. The key elements in the definition of the integral marketing are necessity and holistic, e.g. necessity to develop new, holistic entity.

  14. Laboratory course on silicon sensors

    CERN Document Server

    Crescio, E; Roe, S; Rudge, A

    2003-01-01

    The laboratory course consisted of four different mini sessions, in order to give the student some hands-on experience on various aspects of silicon sensors and related integrated electronics. The four experiments were. 1. Characterisation of silicon diodes for particle detection 2. Study of noise performance of the Viking readout circuit 3. Study of the position resolution of a silicon microstrip sensor 4. Study of charge transport in silicon with a fast amplifier The data in the following were obtained during the ICFA school by the students.

  15. Optical Array Processor: Laboratory Results

    Science.gov (United States)

    Casasent, David; Jackson, James; Vaerewyck, Gerard

    1987-01-01

    A Space Integrating (SI) Optical Linear Algebra Processor (OLAP) is described and laboratory results on its performance in several practical engineering problems are presented. The applications include its use in the solution of a nonlinear matrix equation for optimal control and a parabolic Partial Differential Equation (PDE), the transient diffusion equation with two spatial variables. Frequency-multiplexed, analog and high accuracy non-base-two data encoding are used and discussed. A multi-processor OLAP architecture is described and partitioning and data flow issues are addressed.

  16. Avionics systems integration technology

    Science.gov (United States)

    Stech, George; Williams, James R.

    1988-01-01

    A very dramatic and continuing explosion in digital electronics technology has been taking place in the last decade. The prudent and timely application of this technology will provide Army aviation the capability to prevail against a numerically superior enemy threat. The Army and NASA have exploited this technology explosion in the development and application of avionics systems integration technology for new and future aviation systems. A few selected Army avionics integration technology base efforts are discussed. Also discussed is the Avionics Integration Research Laboratory (AIRLAB) that NASA has established at Langley for research into the integration and validation of avionics systems, and evaluation of advanced technology in a total systems context.

  17. Continuation of the Ecological Risk Assessment of Explosive Residues in Rodents, Reptiles, Amphibians, Fish and Invertebrates: An Integrated Laboratory and Field Investigation Related to Live-Fire Ranges in the Department of Defense

    Science.gov (United States)

    2008-08-01

    as new herbivorous laboratory animals: Reproduction, bacterial flora and fermentation in the digestive tracts, and nutritional physiology. Vet. Res...Strain: Outbred Age: embryo/Larvae/Adults Source: All of Xenopus used in this proposal were bred from captive stocks currently maintained in our...PAHs may stimulate the induction of hepatic monooxygenase activity in birds , although PAHs are rapidly metabolized, and the bulk load is excreted from

  18. Buried waste integrated demonstration technology integration process

    International Nuclear Information System (INIS)

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD)

  19. NPS ARIES Forward Look Sonar Integration

    National Research Council Canada - National Science Library

    Healey, A. J; Horner, D. P

    2004-01-01

    This work integrated an experimental Blazed Array Forward Looking Sonar (FLS) developed by the University of Washington, Applied Physics Laboratories into the ARIES autonomous underwater vehicle (AUV...

  20. Heat Flux Instrumentation Laboratory (HFIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Heat Flux Instrumentation Laboratory is used to develop advanced, flexible, thin film gauge instrumentation for the Air Force Research Laboratory....

  1. Optics/Optical Diagnostics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optics/Optical Diagnostics Laboratory supports graduate instruction in optics, optical and laser diagnostics and electro-optics. The optics laboratory provides...

  2. COMMERCIALLY ORIENTED CLINICAL LABORATORIES

    Science.gov (United States)

    Chapman, W. Max

    1964-01-01

    Out-of-state flat-rate mail order contract laboratories operating from states which have little or no legal control over them can do business in California without obedience to regulations that govern laboratories located within the state. The flat-rate contract principle under which some out-of-state laboratories operate is illegal in California. The use of such laboratories increases physician liability. Legislation for the control of these laboratories is difficult to construct, and laws which might result would be awkward to administer. The best remedy is for California physicians not to use an out-of-state laboratory offering contracts or conditions that it could not legally offer if it were located in California. PMID:14165875

  3. Medical Laboratory Assistant. Laboratory Occupations Cluster.

    Science.gov (United States)

    Michigan State Univ., East Lansing. Coll. of Agriculture and Natural Resources Education Inst.

    This task-based curriculum guide for medical laboratory assistant is intended to help the teacher develop a classroom management system where students learn by doing. Introductory materials include a Dictionary of Occupational Titles job code and title sheet, a career ladder, a matrix relating duty/task numbers to job titles, and a task list. Each…

  4. Head Impact Laboratory (HIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The HIL uses testing devices to evaluate vehicle interior energy attenuating (EA) technologies for mitigating head injuries resulting from head impacts during mine/...

  5. Metallurgical Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to increase basic knowledge of metallurgical processing for controlling the microstructure and mechanical properties of metallic aerospace alloys and...

  6. Biochemical Neuroscience Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This biochemistry lab is set up for protein analysis using Western blot, enzyme linked immunosorbent assays, immunohistochemistry, and bead-based immunoassays. The...

  7. Applied Neuroscience Laboratory Complex

    Data.gov (United States)

    Federal Laboratory Consortium — Located at WPAFB, Ohio, the Applied Neuroscience lab researches and develops technologies to optimize Airmen individual and team performance across all AF domains....

  8. Behavioral Neuroscience Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This lab supports cognitive research using rodent models. Capabilities for behavioral assessments include:Morris water maze and Barnes maze (spatial memory)elevate...

  9. Materials Behavior Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to evaluate mechanical properties of materials including metals, intermetallics, metal-matrix composites, and ceramic-matrix composites under typical...

  10. Free Surface Hydrodynamics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Investigates processes and interactions at the air-sea interface, and compares measurements to numerical simulations and field data. Typical phenomena of...

  11. Interactive virtual optical laboratories

    Science.gov (United States)

    Liu, Xuan; Yang, Yi

    2017-08-01

    Laboratory experiences are essential for optics education. However, college students have limited access to advanced optical equipment that is generally expensive and complicated. Hence there is a need for innovative solutions to expose students to advanced optics laboratories. Here we describe a novel approach, interactive virtual optical laboratory (IVOL) that allows unlimited number of students to participate the lab session remotely through internet, to improve laboratory education in photonics. Although students are not physically conducting the experiment, IVOL is designed to engage students, by actively involving students in the decision making process throughout the experiment.

  12. Sediment Core Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides instrumentation and expertise for physical and geoacoustic characterization of marine sediments.DESCRIPTION: The multisensor core logger measures...

  13. Virtual Reality Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs basic and applied research in interactive 3D computer graphics, including visual analytics, virtual environments, and augmented reality (AR). The...

  14. Flying Electronic Warfare Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides NP-3D aircraft host platforms for Effectiveness of Navy Electronic Warfare Systems (ENEWS) Program antiship missile (ASM) seeker simulators used...

  15. Shallow Water Acoustic Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where high-frequency acoustic scattering and surface vibration measurements of fluid-loaded and non-fluid-loaded structures...

  16. Laboratory for Structural Acoustics

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where acoustic radiation, scattering, and surface vibration measurements of fluid-loaded and non-fluid-loaded structures are...

  17. Sandia National Laboratories

    Science.gov (United States)

    Gilliom, Laura R.

    1992-01-01

    Sandia National Laboratories has identified technology transfer to U.S. industry as a laboratory mission which complements our national security mission and as a key component of the Laboratory's future. A number of technology transfer mechanisms - such as CRADA's, licenses, work-for-others, and consortia - are identified and specific examples are given. Sandia's experience with the Specialty Metals Processing Consortium is highlighted with a focus on the elements which have made it successful. A brief discussion of Sandia's potential interactions with NASA under the Space Exploration Initiative was included as an example of laboratory-to-NASA technology transfer. Viewgraphs are provided.

  18. Structural Dynamics Laboratory (SDL)

    Data.gov (United States)

    Federal Laboratory Consortium — Structural dynamic testing is performed to verify the survivability of a component or assembly when exposed to vibration stress screening, or a controlled simulation...

  19. Quality assurance handbook for measurement laboratories

    International Nuclear Information System (INIS)

    Delvin, W.L.

    1984-10-01

    This handbook provides guidance in the application of quality assurance to measurement activities. It is intended to help those persons making measurements in applying quality assurance to their work activities by showing how laboratory practices and quality assurance requirements are integrated to provide control within those activities. The use of the guidance found in this handbook should help provide consistency in the interpretation of quality assurance requirements across all types of measurement laboratories. This handbook also can assist quality assurance personnel in understanding the relationships between laboratory practices and quality assurance requirements. The handbook is composed of three chapters and several appendices. Basic guidance is provided by the three chapters. In Chapter 1, the role of quality assurance in obtaining quality data and the importance of such data are discussed. Chapter 2 presents the elements of laboratory quality assurance in terms of practices that can be used in controlling work activities to assure the acquisition of quality data. Chapter 3 discusses the implementation of laboratory quality assurance. The appendices provide supplemental information to give the users a better understanding of the following: what is quality assurance; why quality assurance is required; where quality assurance requirements come from; how those requirements are interpreted for application to laboratory operations; how the elements of laboratory quality assurance relate to various laboratory activities; and how a quality assurance program can be developed

  20. Clinical laboratory: bigger is not always better.

    Science.gov (United States)

    Plebani, Mario

    2018-06-27

    Laboratory services around the world are undergoing substantial consolidation and changes through mechanisms ranging from mergers, acquisitions and outsourcing, primarily based on expectations to improve efficiency, increasing volumes and reducing the cost per test. However, the relationship between volume and costs is not linear and numerous variables influence the end cost per test. In particular, the relationship between volumes and costs does not span the entire platter of clinical laboratories: high costs are associated with low volumes up to a threshold of 1 million test per year. Over this threshold, there is no linear association between volumes and costs, as laboratory organization rather than test volume more significantly affects the final costs. Currently, data on laboratory errors and associated diagnostic errors and risk for patient harm emphasize the need for a paradigmatic shift: from a focus on volumes and efficiency to a patient-centered vision restoring the nature of laboratory services as an integral part of the diagnostic and therapy process. Process and outcome quality indicators are effective tools to measure and improve laboratory services, by stimulating a competition based on intra- and extra-analytical performance specifications, intermediate outcomes and customer satisfaction. Rather than competing with economic value, clinical laboratories should adopt a strategy based on a set of harmonized quality indicators and performance specifications, active laboratory stewardship, and improved patient safety.

  1. DebriSat Pre Preshot Laboratory Analyses

    Science.gov (United States)

    2015-03-27

    INTEGRATION DIVISION OFFICE OF EVP/SSG Shant Kenderian, DIRECTOR DEPT MATERIALS PROCESSING DEPT SPACE MATERIALS LABORATORY ENGINEERING & TECHNOLOGY ...UNCLASSIFIED Norman Fitz-Coy University of Florida nfc @ufl.edu Heather Cowardin NASA-JSC heather.cowardin@nasa.gov Brian Roebuck AEDC

  2. "WGL," a Web Laboratory for Geometry

    Science.gov (United States)

    Quaresma, Pedro; Santos, Vanda; Maric, Milena

    2018-01-01

    The role of information and communication technologies (ICT) in education is nowadays well recognised. The "Web Geometry Laboratory," is an e-learning, collaborative and adaptive, Web environment for geometry, integrating a well known dynamic geometry system. In a collaborative session, teachers and students, engaged in solving…

  3. Integral-preserving integrators

    International Nuclear Information System (INIS)

    McLaren, D I; Quispel, G R W

    2004-01-01

    Ordinary differential equations having a first integral may be solved numerically using one of several methods, with the integral preserved to machine accuracy. One such method is the discrete gradient method. It is shown here that the order of the method can be bootstrapped repeatedly to higher orders of accuracy. The method is illustrated using the Henon-Heiles system. (letter to the editor)

  4. An Integrated Virtual Environment System

    National Research Council Canada - National Science Library

    Hahn, James K; Gritz, Larry; Darken, Rudolph; Geigel, Joseph; Lee, Jong W

    1993-01-01

    .... A joint research at the George Washington University and the Naval Research Laboratory is bringing together issues from these domains to study the factors that contribute to an integrated virtual environment...

  5. Integrated Systems Engineering Framework (ISEF)

    Data.gov (United States)

    Federal Laboratory Consortium — The ISEF is an integrated SE framework built to create and capture knowledge using a decision-centric method, high-quality data visualizations, intuitive navigation...

  6. Underground laboratories in Europe

    International Nuclear Information System (INIS)

    Coccia, E

    2006-01-01

    The only clear evidence today for physics beyond the standard model comes from underground experiments and the future activity of underground laboratories appears challenging and rich. I review here the existing underground research facilities in Europe. I present briefly the main characteristics, scientific activity and perspectives of these Laboratories and discuss the present coordination actions in the framework of the European Union

  7. NVLAP calibration laboratory program

    Energy Technology Data Exchange (ETDEWEB)

    Cigler, J.L.

    1993-12-31

    This paper presents an overview of the progress up to April 1993 in the development of the Calibration Laboratories Accreditation Program within the framework of the National Voluntary Laboratory Accreditation Program (NVLAP) at the National Institute of Standards and Technology (NIST).

  8. NVLAP calibration laboratory program

    International Nuclear Information System (INIS)

    Cigler, J.L.

    1993-01-01

    This paper presents an overview of the progress up to April 1993 in the development of the Calibration Laboratories Accreditation Program within the framework of the National Voluntary Laboratory Accreditation Program (NVLAP) at the National Institute of Standards and Technology (NIST)

  9. The Virtual Robotics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Love, L.J.

    1999-09-01

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory secondary education programs. In the past, the ORNL Robotics and Process Systems Division has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics. but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his/her students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations.

  10. The Virtual Robotics Laboratory

    International Nuclear Information System (INIS)

    Kress, R.L.; Love, L.J.

    1997-01-01

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory equipment to outside universities, industrial researchers, and elementary and secondary education programs. In the past, the ORNL Robotics and Process Systems Division (RPSD) has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics, but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations

  11. Design/Installation and Structural Integrity Assessment of Bethel Valley Low-Level Waste Collection and transfer system upgrade for Building 2649 (Transported Waste Receiving Facility) at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1995-01-01

    This document covers the design aspects of the new tank system and certifies that the design has sufficient structural integrity and is acceptable for storing or treating hazardous and/or radioactive substances. This issue identifies specific activities that must be completed during fabrication, installation, and testing of the new tank system in order to prove compliance of the final installation with governing requirements. The assessment is responsive to the Environmental Restoration Agreement for the Oak Ridge Reservation

  12. The radiological services laboratory

    International Nuclear Information System (INIS)

    Hardt, T.L.; Schutt, S.M.; Doran, K.S.; Dihel, D.L.; Lucas, R.O. II; Eifert, T.K.

    1992-01-01

    A new state of the art radiochemistry laboratory incorporating advanced design and environmental control elements has been constructed in Atlanta, Georgia. The design of the facility is oriented to the efficient production of analytical sample results which meet regulatory requirements while at the same time provides an atmosphere that is pleasurable for analysts and visitors alike. The laboratory building contains two separate and distinct laboratories under one roof. This allows the facility to handle samples with low levels of radioactivity on one side of the lab without fear of contamination of environmental work on the other side. Unlike most laboratories, this facility utilizes a scrubber system and liquid waste holdup system to prevent accidental releases to the environment. The potential spread of radioactive contamination is controlled through the use of negative pressure ventillation zones. Construction techniques, laboratory systems, instrumentation and ergonomic considerations will also be discussed. (author) 1 fig

  13. Calgary Laboratory Services

    Directory of Open Access Journals (Sweden)

    James R. Wright MD, PhD

    2015-12-01

    Full Text Available Calgary Laboratory Services provides global hospital and community laboratory services for Calgary and surrounding areas (population 1.4 million and global academic support for the University of Calgary Cumming School of Medicine. It developed rapidly after the Alberta Provincial Government implemented an austerity program to address rising health care costs and to address Alberta’s debt and deficit in 1994. Over roughly the next year, all hospital and community laboratory test funding within the province was put into a single budget, fee codes for fee-for-service test billing were closed, roughly 40% of the provincial laboratory budget was cut, and roughly 40% of the pathologists left the province of Alberta. In Calgary, in the face of these abrupt changes in the laboratory environment, private laboratories, publicly funded hospital laboratories and the medical school department precipitously and reluctantly merged in 1996. The origin of Calgary Laboratory Services was likened to an “unhappy shotgun marriage” by all parties. Although such a structure could save money by eliminating duplicated services and excess capacity and could provide excellent city-wide clinical service by increasing standardization, it was less clear whether it could provide strong academic support for a medical school. Over the past decade, iterations of the Calgary Laboratory Services model have been implemented or are being considered in other Canadian jurisdictions. This case study analyzes the evolution of Calgary Laboratory Services, provides a metric-based review of academic performance over time, and demonstrates that this model, essentially arising as an unplanned experiment, has merit within a Canadian health care context.

  14. Tendências em medicina laboratorial Trends in laboratory medicine

    Directory of Open Access Journals (Sweden)

    Gustavo Aguiar Campana

    2011-08-01

    drivers. The major trends that will cause substantial impact on laboratory medicine are: management tools, inclusion of new tests and procedures, service quality, operational models, automation, consolidation and integration, information technology, personalized and genetic medicine. Laboratory medicine occupies a pivotal role in 70% of all clinical decisions with minimal healthcare costs of approximately 10%. All trends discussed herein sustain an increase in the use of laboratory tests as well as its importance in health care. Both this new model and the expectation of optimal solutions have led the market to search for changes and new management strategies.

  15. [Accreditation of medical laboratories].

    Science.gov (United States)

    Horváth, Andrea Rita; Ring, Rózsa; Fehér, Miklós; Mikó, Tivadar

    2003-07-27

    In Hungary, the National Accreditation Body was established by government in 1995 as an independent, non-profit organization, and has exclusive rights to accredit, amongst others, medical laboratories. The National Accreditation Body has two Specialist Advisory Committees in the health care sector. One is the Health Care Specialist Advisory Committee that accredits certifying bodies, which deal with certification of hospitals. The other Specialist Advisory Committee for Medical Laboratories is directly involved in accrediting medical laboratory services of health care institutions. The Specialist Advisory Committee for Medical Laboratories is a multidisciplinary peer review group of experts from all disciplines of in vitro diagnostics, i.e. laboratory medicine, microbiology, histopathology and blood banking. At present, the only published International Standard applicable to laboratories is ISO/IEC 17025:1999. Work has been in progress on the official approval of the new ISO 15189 standard, specific to medical laboratories. Until the official approval of the International Standard ISO 15189, as accreditation standard, the Hungarian National Accreditation Body has decided to progress with accreditation by formulating explanatory notes to the ISO/IEC 17025:1999 document, using ISO/FDIS 15189:2000, the European EC4 criteria and CPA (UK) Ltd accreditation standards as guidelines. This harmonized guideline provides 'explanations' that facilitate the application of ISO/IEC 17025:1999 to medical laboratories, and can be used as a checklist for the verification of compliance during the onsite assessment of the laboratory. The harmonized guideline adapted the process model of ISO 9001:2000 to rearrange the main clauses of ISO/IEC 17025:1999. This rearrangement does not only make the guideline compliant with ISO 9001:2000 but also improves understanding for those working in medical laboratories, and facilitates the training and education of laboratory staff. With the

  16. Integral Fast Reactor concept

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that fully exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes key features and potential advantages of the IFR concept, technology development status, fuel cycle economics potential, and future development path

  17. Integral Fast Reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that fully exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes key features and potential advantages of the IFR concept, technology development status, fuel cycle economics potential, and future development path.

  18. Chewing Over Physiology Integration

    Science.gov (United States)

    Abdulkader, Fernando; Azevedo-Martins, Anna Karenina; de Arcisio Miranda, Manoel; Brunaldi, Kellen

    2005-01-01

    An important challenge for both students and teachers of physiology is to integrate the differentareas in which physiological knowledge is didactically divided. In developing countries, such an issue is even more demanding, because budget restrictions often affect the physiology program with laboratory classes being the first on the list when it…

  19. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.; Lineberry, M.J.

    1990-01-01

    Argonne National Laboratory, since 1984, has been developing the Integral Fast Reactor (IFR). This paper will describe the way in which this new reactor concept came about; the technical, public acceptance, and environmental issues that are addressed by the IFR; the technical progress that has been made; and our expectations for this program in the near term. 5 refs., 3 figs

  20. Design/installation and structural integrity assessment under the Federal Facility Agreement for Bethel Valley low-level waste collection and transfer system upgrade for Building 2026 (High Radiation Level Analytical Laboratory) and Building 2099 (Monitoring and Control Station) at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1994-11-01

    This document presents a Design/Installation and Structural Integrity Assessment for a replacement tank system for portions of the Bethel Valley Low-Level Waste (LLW) System, located at the Oak Ridge Reservation, Oak Ridge, Tennessee. This issue of the assessment covers the design aspects of the replacement tank system, and certifies that the design has sufficient structural integrity and is acceptable for the storing or treating of hazardous and/or radioactive substances. This document will be reissued at a future date and will then include the assessment of the installation of the replacement tank system. The present issue identifies specific activities that must be completed during the fabrication, installation, and testing of the replacement tank system in order to provide assurance that the final installation complies with governing requirements

  1. Laboratory Automation and Middleware.

    Science.gov (United States)

    Riben, Michael

    2015-06-01

    The practice of surgical pathology is under constant pressure to deliver the highest quality of service, reduce errors, increase throughput, and decrease turnaround time while at the same time dealing with an aging workforce, increasing financial constraints, and economic uncertainty. Although not able to implement total laboratory automation, great progress continues to be made in workstation automation in all areas of the pathology laboratory. This report highlights the benefits and challenges of pathology automation, reviews middleware and its use to facilitate automation, and reviews the progress so far in the anatomic pathology laboratory. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Rethinking Laboratory Notebooks

    DEFF Research Database (Denmark)

    Klokmose, Clemens Nylandsted; Zander, Pär-Ola

    2010-01-01

    We take digitalization of laboratory work practice as a challenging design domain to explore. There are obvious drawbacks with the use of paper instead of ICT in the collaborative writing that takes place in laboratory notebooks; yet paper persist in being the most common solution. The ultimate aim...... with our study is to produce design relevant knowledge that can envisage an ICT solution that keeps as many advantages of paper as possible, but with the strength of electronic laboratory notebooks as well. Rather than assuming that users are technophobic and unable to appropriate state of the art software...

  3. Laboratory testing in hyperthyroidism.

    Science.gov (United States)

    Grebe, Stefan K G; Kahaly, George J

    2012-09-01

    The clinical diagnosis of hypo- or hyperthyroidism is difficult (full text available online: http://education.amjmed.com/pp1/272). Clinical symptoms and signs are often non-specific, and there is incomplete correlation between structural and functional thyroid gland changes. Laboratory testing is therefore indispensible in establishing the diagnosis of thyrotoxicosis. Similar considerations apply to treatment monitoring. Laboratory testing also plays a crucial role in establishing the most likely cause for a patient's hyperthyroidism. Finally, during pregnancy, when isotopic scanning is relatively contraindicated and ultrasound is more difficult to interpret, laboratory testing becomes even more important. Copyright © 2012. Published by Elsevier Inc.

  4. Medical laboratory scientist

    DEFF Research Database (Denmark)

    Smith, Julie; Qvist, Camilla Christine; Jacobsen, Katja Kemp

    2017-01-01

    Previously, biomarker research and development was performed by laboratory technicians working as craftsmen in laboratories under the guidance of medical doctors. This hierarchical structure based on professional boundaries appears to be outdated if we want to keep up with the high performance...... of our healthcare system, and take advantage of the vast potential of future biomarkers and personalized medicine. We ask the question; does our healthcare system benefit from giving the modern medical laboratory scientist (MLS) a stronger academic training in biomarker research, development...

  5. Simula Research Laboratory

    CERN Document Server

    Tveito, Aslak

    2010-01-01

    The Simula Research Laboratory, located just outside Oslo in Norway, is rightly famed as a highly successful research facility, despite being, at only eight years old, a very young institution. This fascinating book tells the history of Simula, detailing the culture and values that have been the guiding principles of the laboratory throughout its existence. Dedicated to tackling scientific challenges of genuine social importance, the laboratory undertakes important research with long-term implications in networks, computing and software engineering, including specialist work in biomedical comp

  6. The Structural Integrity Centre

    International Nuclear Information System (INIS)

    Tomkins, B.

    1987-01-01

    The paper concerns the development and work of the Structural Integrity Centre (SIC) at Risley Nuclear Laboratories, United Kingdom. The centre was set up to provide authoritative advice to plant designers and operators on the integrity and life assessment of structures and components across the reactor projects in the United Kingdom. A description is given of the structure and role of the SIC, as well as the Structural Integrity Assessment work. The assessment methods are described for thermally loaded structures and welded structures. Finally, defect significance assessment and environmental effects are outlined. (U.K.)

  7. Laboratory automation: trajectory, technology, and tactics.

    Science.gov (United States)

    Markin, R S; Whalen, S A

    2000-05-01

    Laboratory automation is in its infancy, following a path parallel to the development of laboratory information systems in the late 1970s and early 1980s. Changes on the horizon in healthcare and clinical laboratory service that affect the delivery of laboratory results include the increasing age of the population in North America, the implementation of the Balanced Budget Act (1997), and the creation of disease management companies. Major technology drivers include outcomes optimization and phenotypically targeted drugs. Constant cost pressures in the clinical laboratory have forced diagnostic manufacturers into less than optimal profitability states. Laboratory automation can be a tool for the improvement of laboratory services and may decrease costs. The key to improvement of laboratory services is implementation of the correct automation technology. The design of this technology should be driven by required functionality. Automation design issues should be centered on the understanding of the laboratory and its relationship to healthcare delivery and the business and operational processes in the clinical laboratory. Automation design philosophy has evolved from a hardware-based approach to a software-based approach. Process control software to support repeat testing, reflex testing, and transportation management, and overall computer-integrated manufacturing approaches to laboratory automation implementation are rapidly expanding areas. It is clear that hardware and software are functionally interdependent and that the interface between the laboratory automation system and the laboratory information system is a key component. The cost-effectiveness of automation solutions suggested by vendors, however, has been difficult to evaluate because the number of automation installations are few and the precision with which operational data have been collected to determine payback is suboptimal. The trend in automation has moved from total laboratory automation to a

  8. Advances by the Integral Fast Reactor Program

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Pedersen, D.R.; Walters, L.C.; Cahalan, J.E.

    1991-01-01

    The advances by the Integral Fast Reactor Program at Argonne National Laboratory are the subject of this paper. The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The advances stressed in the paper include fuel irradiation performance, improved passive safety, and the development of a prototype fuel cycle facility. 14 refs

  9. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas

    2001-01-01

    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft...... of the laboratory is to conduct dynamic tests of the control and attitude determination algorithms during nominal operation and in abnormal conditions. Further it is intended to use SatLab for validation of various algorithms for fault detection, accommodation and supervisory control. Different mission objectives...... can be implemented in the laboratory, e.g. three-axis attitude control, slew manoeuvres, spins stabilization using magnetic actuation and/or reaction wheels. The spacecraft attitude can be determined applying magnetometer measurements...

  10. Immersive Simulation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Develops and tests novel user interfaces for 3D virtual simulators and first-person shooter games that make user interaction more like natural interaction...

  11. Laboratory of minerals purification

    International Nuclear Information System (INIS)

    2002-01-01

    The laboratory of minerals purification was organized in 1962 where with application of modern physical and chemical methods were investigated the mechanism of flotation reagents interaction with minerals' surface, was elaborated technologies on rising complexity of using of republic's minerals

  12. European Molecular Biology Laboratory

    CERN Multimedia

    1973-01-01

    On 10 May an Agreement was signed at CERN setting up a new European Laboratory. It will be concerned with research in molecularbiology and will be located at Heidelberg in the Federal Republic of Germany.

  13. Laboratory Handbook Electronics

    CERN Multimedia

    1966-01-01

    Laboratory manual 1966 format A3 with the list of equipment cables, electronic tubes, chassis, diodes transistors etc. One of CERN's first material catalogue for construction components for mechanical and electronic chassis.

  14. Shipboard and laboratory equipment

    Digital Repository Service at National Institute of Oceanography (India)

    Shyamprasad, M.; Ramaswamy, V.

    The polymetallic nodules occur at an average depth of 4500 m. Adequate equipment and techniques are required for the exploration at such depths. Shipboard and various laboratory equipments for the sampling of polymetallic nodules is described...

  15. Understanding Laboratory Tests

    Science.gov (United States)

    ... and Drug Administration (FDA) regulates the development and marketing of all laboratory tests that use test kits ... Cancer.gov en español Multimedia Publications Site Map Digital Standards for NCI Websites POLICIES Accessibility Comment Policy ...

  16. Inorganic Coatings Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The inorganic Coatings Lab provides expertise to Navy and Joint Service platforms acquisition IPTs to aid in materials and processing choices which balance up-front...

  17. Science | Argonne National Laboratory

    Science.gov (United States)

    Security Photon Sciences Physical Sciences & Engineering Energy Frontier Research Centers Scientific Publications Researchers Postdocs Exascale Computing Institute for Molecular Engineering at Argonne Work with Us About Safety News Careers Education Community Diversity Directory Argonne National Laboratory

  18. Sandia National Laboratories:

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers

  19. Fritz Engineering Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Features 800,000 lb and 5,000,000 lb universal testing machines, and a dynamic test bed with broad fatigue-testing capabilities, and a wide range of instrumentation....

  20. GSPEL - Air Filtration Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Evaluation capabilities for air filtration devicesThe Air Filtration Lab provides testing of air filtration devices to demonstrate and validate new or legacy system...

  1. Geocentrifuge Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The geocentrifuge subjects a sample to a high-gravity field by spinning it rapidly around a central shaft. In this high-gravity field, processes, such as fluid flow,...

  2. GSPEL - Calorimeter Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Testing performance claims on heat transfer componentsThe Calorimeter Lab, located in the Ground Systems Power and Energy Lab (GSPEL), is one of the largest in the...

  3. Alloy Fabrication Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Alloy Fabrication Facility in Albany, OR, researchers conduct DOE research projects to produce new alloys suited to a variety of applications, from gas...

  4. Key Management Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides a secure environment to research and develop advanced electronic key management and networked key distribution technologies for the Navy and DoD....

  5. Lawrence and his laboratory

    International Nuclear Information System (INIS)

    Hellbron, J.L.; Seidel, R.W.

    1989-01-01

    The birthplace of nuclear chemistry and nuclear medicine is the subject of this study of the Radiation Laboratory in Berkeley, California, where Ernest Lawrence used local and national technological, economic, and manpower resources to build the cyclotron

  6. Microcontrollers in the Laboratory.

    Science.gov (United States)

    Williams, Ron

    1989-01-01

    Described is the use of automated control using microcomputers. Covers the development of the microcontroller and describes advantages and characteristics of several brands of chips. Provides several recent applications of microcontrollers in laboratory automation. (MVL)

  7. Laboratory equipment maintenance contracts.

    Science.gov (United States)

    Boudreau, D A; Scheer, W D; Catrou, P G

    1985-12-01

    The increasing level of technical sophistication and complexity found in clinical laboratory instrumentation today more than ever demands careful attention to maintenance service needs. The time-worn caution for careful definition of requirements for acquisition of a system should also carry over to acquisition of maintenance service. Guidelines are presented for specifications of terms and conditions for maintenance service from the perspective of the laboratorian in the automated clinical laboratory.

  8. Laboratory biosafety manual

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    This book is in three sections; basic standards of laboratory design and equipment; procedures for safe laboratory practice; and the selection and use of essential biosafety equipment. The intention is that the guidance given in the book should have a broad basis and international application, and that it should be a source from which manuals applicable to local and special conditions can be usefully derived.

  9. Managing laboratory automation

    OpenAIRE

    Saboe, Thomas J.

    1995-01-01

    This paper discusses the process of managing automated systems through their life cycles within the quality-control (QC) laboratory environment. The focus is on the process of directing and managing the evolving automation of a laboratory; system examples are given. The author shows how both task and data systems have evolved, and how they interrelate. A BIG picture, or continuum view, is presented and some of the reasons for success or failure of the various examples cited are explored. Fina...

  10. A Laboratory Notebook System

    OpenAIRE

    Schreiber, Andreas

    2012-01-01

    Many scientists are using a laboratory notebook when conducting experiments. The scientist documents each step, either taken in the experiment or afterwards when processing data. Due to computerized research systems, acquired data increases in volume and becomes more elaborate. This increases the need to migrate from originally paper-based to electronic notebooks with data storage, computational features and reliable electronic documentation. This talks describes a laboratory notebook bas...

  11. Results from the Savannah River Laboratory model validation workshop

    International Nuclear Information System (INIS)

    Pepper, D.W.

    1981-01-01

    To evaluate existing and newly developed air pollution models used in DOE-funded laboratories, the Savannah River Laboratory sponsored a model validation workshop. The workshop used Kr-85 measurements and meteorology data obtained at SRL during 1975 to 1977. Individual laboratories used models to calculate daily, weekly, monthly or annual test periods. Cumulative integrated air concentrations were reported at each grid point and at each of the eight sampler locations

  12. A Multi-User Remote Academic Laboratory System

    Science.gov (United States)

    Barrios, Arquimedes; Panche, Stifen; Duque, Mauricio; Grisales, Victor H.; Prieto, Flavio; Villa, Jose L.; Chevrel, Philippe; Canu, Michael

    2013-01-01

    This article describes the development, implementation and preliminary operation assessment of Multiuser Network Architecture to integrate a number of Remote Academic Laboratories for educational purposes on automatic control. Through the Internet, real processes or physical experiments conducted at the control engineering laboratories of four…

  13. Oil water laboratory

    International Nuclear Information System (INIS)

    P Junior, Oswaldo A.; Verli, Fernando; Lopes, Humberto E.

    2000-01-01

    Usually, the oily water effluent from petroleum processes needs to be treated prior to its environment discard and/or reuse. The synthesis of such water effluent residues in an Oily Water Laboratory - equipped with Water Treatment Pilot Scale Units - is fundamental to the study and effectiveness comparison among the typical industrial water treatment processes. The Oily Water Laboratory will allow the reproduction - in a small scale - of any oily water effluent produced in the industrial PETROBRAS units - such reproduction can be obtained by using the same fluids, oily concentration, salinity, process temperature, particle size distribution etc. Such Laboratory also allows the performance analysis of typical industrial equipment used throughout the water treatment schemes (e.g., hydro-cyclones), resulting in design and/or operational guidelines for these industrial scale schemes. In the particular niche of very small diameter oil droplet removal, more efficient and non-conventional schemes - such as centrifuges and/or membrane filtration - will be also studied in the Laboratory. In addition, the Laboratory shall be used in the certification of in-line oily water analyzers (e.g., TOC - Total Organic Carbon and OWC - Oil Wax Content). This paper describes the characteristics of such Laboratory and its main operational philosophy. (author)

  14. ABACC's laboratory intercomparison program

    International Nuclear Information System (INIS)

    Almeida, Gevaldo L. de; Esteban, Adolfo; Almeida, Silvio G. de; Araujo, Radier M. de; Rocha, Zildete

    1996-01-01

    A Laboratory Intercomparison Program involving Brazilian and Argentine laboratories, with the special participation of New Brunswick Laboratory - DOE and IAEA Seibersdorf Safeguards Laboratory, was implanted by ABACC having as main purpose to qualify a network to provide analytical services to this Agency on its role as administrator of the Common System of Accountability and Control of Nuclear Materials. For the first round robin of this Program, 15 laboratories were invited to perform elemental analysis on UO 2 samples, by using any desired method. Thirteen confirmed the participation and 10 reported the results. After an evaluation of the results by using a Two-Way Variance Analysis applied to a nested error model, it was found that 5 of them deviate less than 0.1% from the reference value established for the UO 2 uranium contents, being thus situated within the limits adopted for the target values, while the remaining ones reach a maximal deviation of 0.44%. The outcome of this evaluation, was sent to the laboratories, providing them with a feedback to improve their performance by applying corrective actions to the detected sources of errors or bias related to the methods techniques and procedures. (author)

  15. Design/installation and structural integrity assessment of Bethel Valley low-level waste collection and transfer system upgrade for Building 3092 (Central Off-Gas Scrubber Facility) at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1995-01-01

    This document describes and assesses planned modifications to be made to the Building 3092 Central Off-Gas Scrubber Facility of the Oak Ridge National Laboratory, Oak Ridge, Tennessee. The modifications are made in responsible to the requirements of 40CFR264 Subpart J, relating to environmental protection requirements for buried tank systems. The modifications include the provision of a new scrubber recirculation tank in a new, below ground, lines concrete vault, replacing and existing recirculation sump that does not provide double containment. A new buried, double contained pipeline is provided to permit discharge of spent scrubber recirculation fluid to the Central Waste Collection Header. The new vault, tank, and discharge line are provided with leak detection and provisions to remove accumulated liquid. New scrubber recirculation pumps, piping, and accessories are also provided. This assessment concludes that the planned modifications comply with applicable requirements of 40CFR264 Subpart J, as set forth in Appendix F to the Federal Facility Agreement, Docket No. 89-04-FF, covering the Oak Ridge Reservation

  16. Design/Installation and Structural Integrity Assessment of Bethel Valley Low-Level Waste collection and transfer system upgrade for Building 3092 (central off-gas scrubber facility) at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1994-10-01

    This document describes and assesses planned modifications to be made to the Building 3092 Central Off-Gas Scrubber Facility of the Oak Ridge National Laboratory, Oak Ridge, Tennessee. The modifications are made in response to the requirements of 40CFR264 Subpart J, relating to environmental protection requirements for buried tank systems. The modifications include the provision of a new scrubber recirculation tank in a new, below ground, lined concrete vault, replacing an existing recirculation sump that does not provide double containment. A new buried, double contained pipeline is provided to permit discharge of spent scrubber recirculation fluid to the Central Waste Collection Header. The new vault, tank, and discharge line are provided with leak detection and provisions to remove accumulated liquid. Ne scrubber recirculation pumps, piping, and accessories are also provided. This assessment concludes that the planned modifications comply with applicable requirements of 40CFR264 Subpart J, as set forth in Appendix F to the Federal Facility Agreement, Docket No. 89-04-FF, covering the Oak Ridge Reservation. A formal design certification statement is included herein on Page 53, a certification covering the installation shall be executed prior to placing the modified facility into service

  17. Design/Installation and Structural Integrity Assessment of the Bethel Valley Low-Level Waste Collection and Transfer System Upgrade for Building 3544 (Process Waste Treatment Plant) at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-12-01

    This document describes and assesses planned modifications to be made to the Building 3544 Process Waste Treatment Plant of the Oak Ridge National Laboratory, Oak Ridge, Tennessee. The modifications are made in response to the requirements of the Federal Facility Agreement (FFA) relating to environmental protection requirements for tank systems. The modifications include the provision of a new double contained LLW line replacing an existing buried line that does not provide double containment. This new above ground, double contained pipeline is provided to permit discharge of treated process waste fluid to an outside truck loading station. The new double contained discharge line is provided with leak detection and provisions to remove accumulated liquid. An existing LLW transfer pump, concentrated waste tank, piping and accessories are being utilized, with the addition of a secondary containment system comprised of a dike, a chemically resistant internal coating on the diked area surfaces and operator surveillance on a daily basis for the diked area leak detection. This assessment concludes that the planned modifications comply with applicable requirements of Federal Facility Agreement, Docket No. 89-04-FF, covering the Oak Ridge Reservation

  18. A laboratory evaluation of color video monitors

    International Nuclear Information System (INIS)

    Terry, P.L.

    1993-07-01

    Sandia National Laboratories has considerable experience with monochrome video monitors used in alarm assessment video systems. Most of these systems, used for perimeter protection, were designed to classify rather than to identify intruders. There is a growing interest in the identification function of security video systems for both access control and insider protection. Because color video technology is rapidly changing and because color information is useful for identification purposes, Sandia National Laboratories established a program to evaluate the newest relevant color video equipment. This report documents the evaluation of an integral component, color monitors. It briefly discusses a critical parameter, dynamic range, details test procedures, and evaluates the results

  19. Robotic Manufacturing Science and Engineering Laboratory (RMSEL)

    International Nuclear Information System (INIS)

    1994-04-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Robotic Manufacturing Science and Engineering Laboratory (RMSEL) at Sandia National Laboratories/New Mexico (SNL). This facility is needed to integrate, consolidate, and enhance the robotics research and testing currently in progress at SNL. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI)

  20. A laboratory evaluation of color video monitors

    Energy Technology Data Exchange (ETDEWEB)

    Terry, P.L.

    1993-07-01

    Sandia National Laboratories has considerable experience with monochrome video monitors used in alarm assessment video systems. Most of these systems, used for perimeter protection, were designed to classify rather than to identify intruders. There is a growing interest in the identification function of security video systems for both access control and insider protection. Because color video technology is rapidly changing and because color information is useful for identification purposes, Sandia National Laboratories established a program to evaluate the newest relevant color video equipment. This report documents the evaluation of an integral component, color monitors. It briefly discusses a critical parameter, dynamic range, details test procedures, and evaluates the results.

  1. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - GEOCHEMISTRY LABORATORY AT SANDIA NATIONAL LABORATORIES

    Science.gov (United States)

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  2. Phillips Laboratory small satellite initiatives

    Science.gov (United States)

    Lutey, Mark K.; Imler, Thomas A.; Davis, Robert J.

    1993-09-01

    The Phillips Laboratory Space Experiments Directorate in conjunction with the Air Force Space Test Program (AF STP), Defense Advanced Research and Projects Agency (DARPA) and Strategic Defense Initiative Organization (SDIO), are managing five small satellite program initiatives: Lightweight Exo-Atmospheric Projectile (LEAP) sponsored by SDIO, Miniature Sensor Technology Integration (MSTI) sponsored by SDIO, Technology for Autonomous Operational Survivability (TAOS) sponsored by Phillips Laboratory, TechSat sponsored by SDIO, and the Advanced Technology Standard Satellite Bus (ATSSB) sponsored by DARPA. Each of these spacecraft fulfills a unique set of program requirements. These program requirements range from a short-lived `one-of-a-kind' mission to the robust multi- mission role. Because of these diverging requirements, each program is driven to use a different design philosophy. But regardless of their design, there is the underlying fact that small satellites do not always equate to small missions. These spacecraft with their use of or ability to insert new technologies provide more capabilities and services for their respective payloads which allows the expansion of their mission role. These varying program efforts culminate in an ATSSB spacecraft bus approach that will support moderate size payloads, up to 500 pounds, in a large set of orbits while satisfying the `cheaper, faster, better' method of doing business. This technical paper provides an overview of each of the five spacecraft, focusing on the objectives, payoffs, technologies demonstrated, and program status.

  3. NASA's Propulsion Research Laboratory

    Science.gov (United States)

    2004-01-01

    The grand opening of NASA's new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.

  4. Laboratory safety handbook

    Science.gov (United States)

    Skinner, E.L.; Watterson, C.A.; Chemerys, J.C.

    1983-01-01

    Safety, defined as 'freedom from danger, risk, or injury,' is difficult to achieve in a laboratory environment. Inherent dangers, associated with water analysis and research laboratories where hazardous samples, materials, and equipment are used, must be minimized to protect workers, buildings, and equipment. Managers, supervisors, analysts, and laboratory support personnel each have specific responsibilities to reduce hazards by maintaining a safe work environment. General rules of conduct and safety practices that involve personal protection, laboratory practices, chemical handling, compressed gases handling, use of equipment, and overall security must be practiced by everyone at all levels. Routine and extensive inspections of all laboratories must be made regularly by qualified people. Personnel should be trained thoroughly and repetitively. Special hazards that may involve exposure to carcinogens, cryogenics, or radiation must be given special attention, and specific rules and operational procedures must be established to deal with them. Safety data, reference materials, and texts must be kept available if prudent safety is to be practiced and accidents prevented or minimized.

  5. Radioisotope laboratory in Turkey

    International Nuclear Information System (INIS)

    1961-01-01

    The Turkish Government formally requested that the Agency provide for one year the services of an expert in the agricultural applications of radioisotopes. Specifically, they wanted this expert first of all to assist in setting up and equipping a pioneer laboratory for the utilization of radioisotopes in agricultural research. Once the laboratory was in operation, the expert was to initiate various research projects using isotope techniques, and to train personnel to carry on this work. The Agency was also asked to supply various specialized equipment for the laboratory, including some radioisotopes. On 10 December 1960 the first phase was complete - the new laboratory was formally opened. It is foreseen that the research projects which will be initiated at the laboratory will include the following: determination of the effect of fertilizers upon yield and quality of field crops and fruit trees, soil fertility studies, studies of mineral element uptake and localization of nutrients in plant body, studies of the folar application of mineral nutrients, especially in fruit trees, investigation of microelements in field crops and fruit trees, investigation of pollination problems, study of the distribution of mineral elements in different fruit seedlings, study of the uptake of nutrients by fruit trees during the rest period, dispersal studies on insects, insecticide studies

  6. Radioisotope laboratory in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1961-04-15

    The Turkish Government formally requested that the Agency provide for one year the services of an expert in the agricultural applications of radioisotopes. Specifically, they wanted this expert first of all to assist in setting up and equipping a pioneer laboratory for the utilization of radioisotopes in agricultural research. Once the laboratory was in operation, the expert was to initiate various research projects using isotope techniques, and to train personnel to carry on this work. The Agency was also asked to supply various specialized equipment for the laboratory, including some radioisotopes. On 10 December 1960 the first phase was complete - the new laboratory was formally opened. It is foreseen that the research projects which will be initiated at the laboratory will include the following: determination of the effect of fertilizers upon yield and quality of field crops and fruit trees, soil fertility studies, studies of mineral element uptake and localization of nutrients in plant body, studies of the folar application of mineral nutrients, especially in fruit trees, investigation of microelements in field crops and fruit trees, investigation of pollination problems, study of the distribution of mineral elements in different fruit seedlings, study of the uptake of nutrients by fruit trees during the rest period, dispersal studies on insects, insecticide studies.

  7. Physics laboratory 2

    International Nuclear Information System (INIS)

    1980-01-01

    The report covers the research activities of the Physics laboratory of H.C. Oersted Institute, University of Copenhagen in the period January 1, 1976 - January 1, 1979. It gives also an idea about the teaching carried out by yhe laboratory. The research - broadly speaking - deals mainly with the interaction of particles (ions, electrons and neutrons) and electromagnetic radiation (X-rays) with matter. Use is made in studies of: atomic physics, radiation effects, surface physics, the electronic and crystallographic structure of matter and some biological problems. The research is carried out partly in the laboratory itself and partly at and in collaboration with other institutes in this country (H.C. Oersted Institute, Chemical Laboratories, Denmark's Technical University, Aarhus University, Institute of Physics and Risoe National Laboratory) and abroad (Federal Republic of Germany, France, India, Sweden, U.K., U.S.A. and U.S.S.R.). All these institutes are listed in the abstract titles. Bibliography comprehends 94 publications. A substantial part of the research is supported by the Danish Natural Sciences Research Council. (author)

  8. The activities of the IAEA laboratories Vienna. Annual report - 1980

    International Nuclear Information System (INIS)

    Taylor, C.B.G.

    1982-03-01

    The report outlines the activities of the laboratory of the International Atomic Energy Agency at Seibersdorf in the province of Lower Austria. The report covers the following sections of the laboratory: chemistry, medical applications, dosimetry, soil science, entomology, plant breeding, electronics and measurement laboratory, isotope hydrology and the safeguards analytical laboratory. The extension to the main laboratory buildings - a new wing for medical applications and dosimetry - was fitted out and fully integrated into the laboratory by the end of the year. In July 1980 the high-level cobalt-60 dosimetry equipment (a teletherapy unit) was transferred from the old IAEA headquarters building in the centre of Vienna and installed in a specially designed annex to the new wing. A successful 8 week training course was given in the agriculture laboratory and arrangements were made for several of the course members to stay on as research fellows for several months after the course had ended

  9. Development of the integrated, in-situ remediation technology. Topical report for tasks No. 8 and No. 10 entitled: Laboratory and pilot scale experiments of Lasagna trademark process, September 26, 1994--May 25, 1996

    International Nuclear Information System (INIS)

    Ho, Sa V.; Athmer, C.J.; Sheridan, P.W.

    1997-01-01

    Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. This technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated W and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. This topical report summarizes the results of the lab and pilot sized Lasagna trademark experiments conducted at Monsanto. Experiments were conducted with kaofinite and an actual Paducah soil in units ranging from bench-scale containing kg-quantity of soil to pilot-scale containing about half a ton of soil having various treatment zone configurations. The obtained data support the feasibility of scaling up this technology with respect to electrokinetic parameters as well as removal of organic contaminants. A mathematical model was developed that was successful in predicting the temperature rises in the soil. The information and experience gained from these experiments along with the modeling effort enabled us to successfully design and operate a larger field experiment at a DOE TCE-contaminated clay site

  10. Design, construction, system integration, and test results of the 1 MW CW RF system for the e-gun cavity in the energy recovery LINAC at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Lenci, S.J.; Eisen, E.L.; Dickey, D.L.; Sainz, J.E.; Utay, P.F.; Zaltsman, A.; Lambiase, R.

    2009-01-01

    Brookhaven's ERL (Energy Recovery LINAC) requires a 1 MW CW RF system for the superconducting electron gun cavity. The system consists primarily of a klystron tube, transmitter, and High-Voltage Power Supply (HVPS). The 703.75 MHz klystron made by CPl, Inc. provides RF power of 1MW CW with efficiency of 65%. It has a single output window, diode-type electron gun, and collector capable of dissipating the entire beam power. It was fully factory tested including 24-hour heat run at 1.1 MW CWo The solid state HVPS designed by Continental Electronics provides up to 100 kV at low ripple and 2.1 MW CW with over 95% efficiency. With minimal stored energy and a fast shut-down mode no crowbar circuit is needed. Continental 's transmitter includes PLC based user interface and monitoring, RF pre-amplifier, magnet and Vac-Ion pump supplies, cooling water instrumentation, and integral safety interlock system. BNL installed the klystron, HVPS, and transmitter along with other items, such as circulator, water load, and waveguide components. The collaboration of BNL, CPI, and Continental in the design, installation, and testing was essential to the successful operation of the 1MW system

  11. Development of the integrated, in-situ remediation technology. Topical report for tasks No. 8 and No. 10 entitled: Laboratory and pilot scale experiments of Lasagna{trademark} process, September 26, 1994--May 25, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Sa V.; Athmer, C.J.; Sheridan, P.W. [and others

    1997-04-01

    Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. This technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated W and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. This topical report summarizes the results of the lab and pilot sized Lasagna{trademark} experiments conducted at Monsanto. Experiments were conducted with kaofinite and an actual Paducah soil in units ranging from bench-scale containing kg-quantity of soil to pilot-scale containing about half a ton of soil having various treatment zone configurations. The obtained data support the feasibility of scaling up this technology with respect to electrokinetic parameters as well as removal of organic contaminants. A mathematical model was developed that was successful in predicting the temperature rises in the soil. The information and experience gained from these experiments along with the modeling effort enabled us to successfully design and operate a larger field experiment at a DOE TCE-contaminated clay site.

  12. Soil/Rock Properties Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Soil/Rock Properties LaboratoryLocation: Spokane SiteThe Soil/Rock Properties Laboratory is contained in the soils bay, a 4,700 sq. ft. facility that provides space...

  13. San Juan District Laboratory (SJN)

    Data.gov (United States)

    Federal Laboratory Consortium — Program CapabilitiesSJN-DO Pharmaceutical Laboratory is an A2LA/ISO/IEC 17025 accredited National Servicing Laboratory specialized in Drug Analysis, is a member of...

  14. Quality system for Medical laboratories

    Directory of Open Access Journals (Sweden)

    Shiva Raj K.C.

    2015-03-01

    Full Text Available According to William Edwards Deming “Good quality does not necessarily mean high quality. Instead it means a predicable degree of uniformity and dependability at low cost with a quality suited to the market.” Whereas according to famous engineer and management consultant Joseph M. Juran quality is “fitness for purpose”. It should meet the customers’ expectations and requirements, should be cost effective.ISO began in 1926 as the International Federation of the National Standardizing Associations (ISA. The name, "ISO" was derived from the Greek word "isos" meaning "equal". (The relation to standards is that if two objects meet the same standard, they should be equal. This name eliminates any confusion that could result from the translation of "International Organization for Standardization" into different languages which would lead to different acronyms.In health sector, quality plays pivotal role, as it is directly related to patient’s care. Earlier time, health service was simple, quite safe but ineffective. Now health care system is an organizational system with more complex processes to deliver care. Medical laboratory service is an integral part in patient’s management system. So, for everyone involved in the treatment of the patient, the accuracy, reliability and safety of those services must be the primary concerns. Accreditation is a significant enabler of quality, thereby delivering confidence to healthcare providers, clinicians, the medical laboratories and the patients themselves.ISO announced meeting in Philadelphia to form a technical committee to develop a new standard for medical laboratory quality. It took 7 years for the creation of a new Quality standard for medical laboratories. It was named as “ISO 15189” and was first published in 2003. The ISO has released three versions of the standard. The first two were released in 2003 and 2007. In 2012, a revised and updated version of the standard, ISO 15189

  15. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas

    2001-01-01

    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft......-axis magnetometer, three piezoelectric gyros, and four reaction wheels in a tetrahedron configuration. The operation of the spacecraft is fully autonomous. The data flow between the transducers and the onboard computer placed physically outside the satellite is provided by a radio link. The purpose...... can be implemented in the laboratory, e.g. three-axis attitude control, slew manoeuvres, spins stabilization using magnetic actuation and/or reaction wheels. The spacecraft attitude can be determined applying magnetometer measurements....

  16. Linear Accelerator Laboratory

    International Nuclear Information System (INIS)

    1976-01-01

    This report covers the activity of the Linear Accelerator Laboratory during the period June 1974-June 1976. The activity of the Laboratory is essentially centered on high energy physics. The main activities were: experiments performed with the colliding rings (ACO), construction of the new colliding rings and beginning of the work at higher energy (DCI), bubble chamber experiments with the CERN PS neutrino beam, counter experiments with CERN's PS and setting-up of equipment for new experiments with CERN's SPS. During this period a project has also been prepared for an experiment with the new PETRA colliding ring at Hamburg. On the other hand, intense collaboration with the LURE Laboratory, using the electron synchrotron radiation emitted by ACO and DCI, has been developed [fr

  17. Challenges in small screening laboratories: implementing an on-demand laboratory information management system.

    Science.gov (United States)

    Lemmon, Vance P; Jia, Yuanyuan; Shi, Yan; Holbrook, S Douglas; Bixby, John L; Buchser, William

    2011-11-01

    The Miami Project to Cure Paralysis, part of the University of Miami Miller School of Medicine, includes a laboratory devoted to High Content Analysis (HCA) of neurons. The goal of the laboratory is to uncover signaling pathways, genes, compounds, or drugs that can be used to promote nerve growth. HCA permits the quantification of neuronal morphology, including the lengths and numbers of axons. HCA of various libraries on primary neurons requires a team-based approach, a variety of process steps and complex manipulations of cells and libraries to obtain meaningful results. HCA itself produces vast amounts of information including images, well-based data and cell-based phenotypic measures. Documenting and integrating the experimental workflows, library data and extensive experimental results is challenging. For academic laboratories generating large data sets from experiments involving thousands of perturbagens, a Laboratory Information Management System (LIMS) is the data tracking solution of choice. With both productivity and efficiency as driving rationales, the Miami Project has equipped its HCA laboratory with an On Demand or Software As A Service (SaaS) LIMS to ensure the quality of its experiments and workflows. The article discusses how the system was selected and integrated into the laboratory. The advantages of a SaaS based LIMS over a client-server based system are described. © 2011 Bentham Science Publishers

  18. Laboratory Medicine is Faced with the Evolution of Medical Practice

    Directory of Open Access Journals (Sweden)

    Collinson Paul

    2017-09-01

    Full Text Available Laboratory medicine and clinical medicine are co-dependent components of medicine. Laboratory medicine functions most effectively when focused through a clinical lens. Me dical practice as a whole undergoes change. New drugs, treatments and changes in management strategies are introduced. New techniques, new technologies and new tests are developed. These changes may be either clinically or laboratory initiated, and so their introduction requires dialogue and interaction between clinical and laboratory medicine specialists. Treatment monitoring is integral to laboratory medicine, varying from direct drug measurement to monitoring cholesterol levels in response to treatment. The current trend to »personalised medicine« is an extension of this process with the development of companion diagnostics. Technological innovation forms part of modern laboratory practice. Introduction of new technology both facilitates standard laboratory approaches and permits introduction of new tests and testing strategies previously confined to the research laboratory only. The revolution in cardiac biomarker testing has been largely a laboratory led change. Flexibility in service provision in response to changing clinical practice or evolving technology provides a significant laboratory management challenge in the light of increasing expectations, shifts in population demographics and constraint in resource availability. Laboratory medicine practitioners are adept at meeting these challenges. One thing remains constant, that there will be a constant need laboratory medicine to meet the challenges of novel clinical challenges from infectious diseases to medical conditions developing from lifestyle and longevity.

  19. Components of laboratory accreditation.

    Science.gov (United States)

    Royal, P D

    1995-12-01

    Accreditation or certification is a recognition given to an operation or product that has been evaluated against a standard; be it regulatory or voluntary. The purpose of accreditation is to provide the consumer with a level of confidence in the quality of operation (process) and the product of an organization. Environmental Protection Agency/OCM has proposed the development of an accreditation program under National Environmental Laboratory Accreditation Program for Good Laboratory Practice (GLP) laboratories as a supplement to the current program. This proposal was the result of the Inspector General Office reports that identified weaknesses in the current operation. Several accreditation programs can be evaluated and common components identified when proposing a structure for accrediting a GLP system. An understanding of these components is useful in building that structure. Internationally accepted accreditation programs provide a template for building a U.S. GLP accreditation program. This presentation will discuss the traditional structure of accreditation as presented in the Organization of Economic Cooperative Development/GLP program, ISO-9000 Accreditation and ISO/IEC Guide 25 Standard, and the Canadian Association for Environmental Analytical Laboratories, which has a biological component. Most accreditation programs are managed by a recognized third party, either privately or with government oversight. Common components often include a formal review of required credentials to evaluate organizational structure, a site visit to evaluate the facility, and a performance evaluation to assess technical competence. Laboratory performance is measured against written standards and scored. A formal report is then sent to the laboratory indicating accreditation status. Usually, there is a scheduled reevaluation built into the program. Fee structures vary considerably and will need to be examined closely when building a GLP program.

  20. Mechanical Components and Tribology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory evaluates fundamental friction, wear, and lubrication technologies for improved, robust, and power-dense vehicle transmissions. The facility explores...

  1. SENSORY AND CONSUMER TESTING LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — These laboratories conduct a wide range of studies to characterize the sensory properties of and consumer responses to foods, beverages, and other consumer products....

  2. Robotics and Autonomous Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides an environment for developing and evaluating intelligent software for both actual and simulated autonomous vehicles. Laboratory computers provide...

  3. Atlantic Oceanographic and Meteorological Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Atlantic Oceanographic and Meteorological Laboratory conducts research to understand the physical, chemical, and biological characteristics and processes of the...

  4. NDE Acoustic Microscopy Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to develop advanced, more effective high-resolution micro-NDE materials characterization methods using scanning acoustic microscopy. The laboratory's...

  5. Laboratory Animal Sciences Program (LASP)

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory Animal Sciences Program (LASP) is a comprehensive resource for scientists performing animal-based research to gain a better understanding of cancer,...

  6. The isotope laboratory

    International Nuclear Information System (INIS)

    Anon.

    The various research projects and investigations carried out at the laboratory are briefly described. These include:- hormone investigations (thyroxine and triiodothyronine) by radioimmunology in cattle and swine; the synthesis of fatty acids in sheep digestive juices; vitamin E in pigs; the uptake of phosphorus in cloudberries; the uptake and breaking down of glyphosate in spruce and wild oats; transport and assimilation of MCPA; ground water pollution from sewage; process investigations in fish oil production; cleaning process in dairy piping; soil humidity radiometric gage calibration; mass spectroscopy. The courses held by the laboratory for students and the consumption of radioisotope tracers are summarised. (JIW)

  7. Underground laboratories in Asia

    International Nuclear Information System (INIS)

    Lin, Shin Ted; Yue, Qian

    2015-01-01

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed

  8. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1997-01-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  9. Underground laboratories in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shin Ted, E-mail: linst@mails.phys.sinica.edu.tw [College of Physical Science and Technology, Sichuan University, Chengdu 610064 China (China); Yue, Qian, E-mail: yueq@mail.tsinghua.edu.cn [Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084 China (China)

    2015-08-17

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed.

  10. Managing laboratory automation.

    Science.gov (United States)

    Saboe, T J

    1995-01-01

    This paper discusses the process of managing automated systems through their life cycles within the quality-control (QC) laboratory environment. The focus is on the process of directing and managing the evolving automation of a laboratory; system examples are given. The author shows how both task and data systems have evolved, and how they interrelate. A BIG picture, or continuum view, is presented and some of the reasons for success or failure of the various examples cited are explored. Finally, some comments on future automation need are discussed.

  11. ISO 14001 IMPLEMENTATION AT A NATIONAL LABORATORY

    International Nuclear Information System (INIS)

    BRIGGS, S.L.K.

    2001-01-01

    After a tumultuous year discovering serious lapses in environment, safety and health management at Brookhaven National Laboratory, the Department of Energy established a new management contract. It called for implementation of an IS0 14001 Environmental Management System and registration of key facilities. Brookhaven Science Associates, the managing contractor for the Laboratory, designed and developed a three-year project to change culture and achieve the goals of the contract. The focus of its efforts were to use IS0 14001 to integrate environmental stewardship into all facets of the Laboratory's mission, and manage its programs in a manner that protected the ecosystem and public health. A large multidisciplinary National Laboratory with over 3,000 employees and 4,000 visiting scientists annually posed significant challenges for IS0 14001 implementation. Activities with environmental impacts varied from regulated industrial waste generation, to soil activation from particle accelerator operations, to radioactive groundwater contamination from research reactors. A project management approach was taken to ensure project completion on schedule and within budget. The major work units for the Environmental Management System Project were as follows: Institutional EMS Program Requirements, Communications, Training, Laboratory-wide Implementation, and Program Assessments. To minimize costs and incorporate lessons learned before full-scale deployment throughout the Laboratory, a pilot process was employed at three facilities. Brookhaven National Laboratory has completed its second year of the project in the summer of 2000, successfully registering nine facilities and self-declaring conformance in all remaining facilities. Project controls, including tracking and reporting progress against a model, have been critical to the successful implementation. Costs summaries are lower than initial estimates, but as expected legal requirements, training, and assessments are key cost

  12. Aespoe Hard Rock Laboratory. Annual Report 1993

    International Nuclear Information System (INIS)

    1994-06-01

    The Aespoe Hard Rock Laboratory is being constructed in preparation for the deep geological repository of spent fuel in Sweden. This Annual Report 1993 for the Aespoe Hard Rock Laboratory contains an overview of the work conducted. Present work is focused on verification of pre-investigation methods and development of the detailed investigation methodology. Construction of the facility and investigation of the bedrock are carried out in parallel. As of December 1993, 2760 m of the tunnel had been excavated to a depth of 370 m below the surface. An important and integral part of the work is further refinement of conceptual and numerical models for groundwater flow and radionuclide migration. Detailed plans have been prepared for several experiments to be conducted after the end of the construction work. Eight organizations from seven countries are now participating in the work at the Aespoe Hard Rock Laboratory and are contributing in different ways to the results being achieved

  13. Emerging Technologies for the Clinical Microbiology Laboratory

    Science.gov (United States)

    Buchan, Blake W.

    2014-01-01

    SUMMARY In this review we examine the literature related to emerging technologies that will help to reshape the clinical microbiology laboratory. These topics include nucleic acid amplification tests such as isothermal and point-of-care molecular diagnostics, multiplexed panels for syndromic diagnosis, digital PCR, next-generation sequencing, and automation of molecular tests. We also review matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) and electrospray ionization (ESI) mass spectrometry methods and their role in identification of microorganisms. Lastly, we review the shift to liquid-based microbiology and the integration of partial and full laboratory automation that are beginning to impact the clinical microbiology laboratory. PMID:25278575

  14. 75 FR 80011 - Good Laboratory Practice for Nonclinical Laboratory Studies

    Science.gov (United States)

    2010-12-21

    .... FDA-2010-N-0548] Good Laboratory Practice for Nonclinical Laboratory Studies AGENCY: Food and Drug... (FDA) is seeking comment on whether to amend the regulations governing good laboratory practices (GLPs..., 1978 (43 FR 60013). As stated in its scope (Sec. 58.1), this regulation prescribes good laboratory...

  15. Laboratory Astrophysics Prize: Laboratory Astrophysics with Nuclei

    Science.gov (United States)

    Wiescher, Michael

    2018-06-01

    Nuclear astrophysics is concerned with nuclear reaction and decay processes from the Big Bang to the present star generation controlling the chemical evolution of our universe. Such nuclear reactions maintain stellar life, determine stellar evolution, and finally drive stellar explosion in the circle of stellar life. Laboratory nuclear astrophysics seeks to simulate and understand the underlying processes using a broad portfolio of nuclear instrumentation, from reactor to accelerator from stable to radioactive beams to map the broad spectrum of nucleosynthesis processes. This talk focuses on only two aspects of the broad field, the need of deep underground accelerator facilities in cosmic ray free environments in order to understand the nucleosynthesis in stars, and the need for high intensity radioactive beam facilities to recreate the conditions found in stellar explosions. Both concepts represent the two main frontiers of the field, which are being pursued in the US with the CASPAR accelerator at the Sanford Underground Research Facility in South Dakota and the FRIB facility at Michigan State University.

  16. Acoustic testing and modeling: an advanced undergraduate laboratory.

    Science.gov (United States)

    Russell, Daniel A; Ludwigsen, Daniel O

    2012-03-01

    This paper describes an advanced laboratory course in acoustics, specifically targeted for students with an interest in engineering applications at a school with a strongly integrated industrial co-op program. The laboratory course is developed around a three-pronged approach to problem solving that combines and integrates theoretical models, computational models, and experimental data. The course is structured around modules that begin with fundamental concepts and build laboratory skills and expand the knowledge base toward a final project. Students keep a detailed laboratory notebook, write research papers in teams, and must pass laboratory certification exams. This paper describes the course layout and philosophy and shares personal experience from both faculty and student perspectives. © 2012 Acoustical Society of America

  17. Life sciences laboratory breadboard simulations for shuttle

    Science.gov (United States)

    Taketa, S. T.; Simmonds, R. C.; Callahan, P. X.

    1975-01-01

    Breadboard simulations of life sciences laboratory concepts for conducting bioresearch in space were undertaken as part of the concept verification testing program. Breadboard simulations were conducted to test concepts of and scope problems associated with bioresearch support equipment and facility requirements and their operational integration for conducting manned research in earth orbital missions. It emphasized requirements, functions, and procedures for candidate research on crew members (simulated) and subhuman primates and on typical radioisotope studies in rats, a rooster, and plants.

  18. Synchronous collaboration of virtual and remote laboratories

    OpenAIRE

    Jara, Carlos A.; Candelas-Herías, Francisco A.; Torres, Fernando; Dormido Bencomo, Sebastián; Esquembre Martínez, Francisco

    2009-01-01

    Virtual and remote laboratories(VRLs) are e-learning resources which enhance the accessibility of experimental setups providing a distance teaching framework which meets the student's hands-on learning needs. In addition, online collaborative communication represents a practical and a constructivist method to transmit the knowledge and experience from the teacher to students, overcoming physical distance and isolation. Thus, the integration of learning environments in the form of VRLs inside ...

  19. Sandia Laboratories technical capabilities. Auxiliary capabilities: environmental health information science

    International Nuclear Information System (INIS)

    1975-09-01

    Sandia Laboratories is an engineering laboratory in which research, development, testing, and evaluation capabilities are integrated by program management for the generation of advanced designs. In fulfilling its primary responsibility to ERDA, Sandia Laboratories has acquired extensive research and development capabilities. The purpose of this series of documents is to catalog the many technical capabilities of the Laboratories. After the listing of capabilities, supporting information is provided in the form of highlights, which show applications. This document deals with auxiliary capabilities, in particular, environmental health and information science. (11 figures, 1 table) (RWR)

  20. Aquatic Microbiology Laboratory Manual.

    Science.gov (United States)

    Cooper, Robert C.; And Others

    This laboratory manual presents information and techniques dealing with aquatic microbiology as it relates to environmental health science, sanitary engineering, and environmental microbiology. The contents are divided into three categories: (1) ecological and physiological considerations; (2) public health aspects; and (3)microbiology of water…

  1. Saclay Laboratory report

    International Nuclear Information System (INIS)

    Bonin, B.

    1996-01-01

    R and D activities on RF Superconductivity have continued at Saclay during the last two years. An important effort has been made to update a picture of the laboratory latest results. A mere 'table of contents' of 19 contributed papers are summarized. (R.P.)

  2. Introducing Laboratory Safety.

    Science.gov (United States)

    DeLorenzo, Ronald

    1985-01-01

    Presents a simple, 10-item quiz designed to make students aware that they must learn laboratory safety. The items include questions on acid/base accidents, several types of fire extinguishers, and safety glassses. Answers and some explanations are included. (DH)

  3. Nuclear physics laboratory

    International Nuclear Information System (INIS)

    Deruytter, A.J.

    1979-01-01

    The report summarizes the main activities of the Linear Electron Accelerator Section of the Physics Laboratory of the State University of Ghent. The research fields are relative to: 1. Nuclear fission. 2. Photonuclear reactions. 3. Nuclear spectroscopy and positron annihilation. 4. Dosimetry. 5. Theoretical studies. (MDC)

  4. The IAEA laboratories

    International Nuclear Information System (INIS)

    1973-01-01

    While nuclear technology continues to expand in all scientific fields, both research and analysis become increasingly important aspects of the work carried out at the IAEA's two principal laboratories at Seibersdorf and Monaco. They also provide training facilities for students and graduates from many Member States. The following outlines give a brief history of their development, and their present work. (author)

  5. Green Building Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sailor, David Jean [Portland State Univ., Portland, OR (United States)

    2013-12-29

    This project provided support to the Green Building Research Laboratory at Portland State University (PSU) so it could work with researchers and industry to solve technical problems for the benefit of the green building industry. It also helped to facilitate the development of PSU’s undergraduate and graduate-level training in building science across the curriculum.

  6. Nuclear physics laboratory

    International Nuclear Information System (INIS)

    Deruytter, A.J.

    1978-01-01

    The report summarizes the main activities of the Linear Electron Accelerator Section of the Physics Laboratory of the State University of Ghent. The research fields are relative to: 1. Nuclear fission. 2. Photonuclear reactions. 3. Nuclear spectroscopy and positron annihilation. 4. Dosimetry. 5. Theoretical studies. (MDC)

  7. Laboratory Density Functionals

    OpenAIRE

    Giraud, B. G.

    2007-01-01

    We compare several definitions of the density of a self-bound system, such as a nucleus, in relation with its center-of-mass zero-point motion. A trivial deconvolution relates the internal density to the density defined in the laboratory frame. This result is useful for the practical definition of density functionals.

  8. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1996-01-01

    The National Institute for Nuclear Research has established a Radiation detector laboratory that has the possibility of providing to the consultants on the handling and applications of the nuclear radiation detectors. It has special equipment to repair the radiation detectors used in spectroscopy as the hyper pure Germanium for gamma radiation and the Lithium-silica for X-rays. There are different facilities in the laboratory that can become useful for other institutions that use radiation detectors. This laboratory was created to satisfy consultant services, training and repairing of the radiation detectors both in national and regional levels for Latin America. The laboratory has the following sections: Nuclear Electronic Instrumentation; where there are all kind of instruments for the measurement and characterization of detectors like multichannel analyzers of pulse height, personal computers, amplifiers and nuclear pulse preamplifiers, nuclear pulses generator, aleatories, computer programs for radiation spectra analysis, etc. High vacuum; there is a vacuum escape measurer, two high vacuum pumps to restore the vacuum of detectors, so the corresponding measurers and the necessary tools. Detectors cleaning; there is an anaerobic chamber for the detectors handling at inert atmosphere, a smoke extraction bell for cleaning with the detector solvents. Cryogenic; there are vessels and tools for handling liquid nitrogen which is used for cooling the detectors when they required it. (Author)

  9. The IAEA laboratories

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1973-07-01

    While nuclear technology continues to expand in all scientific fields, both research and analysis become increasingly important aspects of the work carried out at the IAEA's two principal laboratories at Seibersdorf and Monaco. They also provide training facilities for students and graduates from many Member States. The following outlines give a brief history of their development, and their present work. (author)

  10. Nuclear physics laboratory

    International Nuclear Information System (INIS)

    Deruytter, A.J.

    1980-01-01

    The report summarizes the main activities of the linear Electron Accelerator Section of the Physics Laboratory of the State University of Ghent. The research fields are relative to: 1. Nuclear fission 2. Photonuclear reactions 3. Nuclear spectroscopy and positron annihilation 4. Dosimetry 5. Theoretical studies. (MDC)

  11. Writing the Laboratory Notebook.

    Science.gov (United States)

    Kanare, Howard M.

    The purpose of this book is to teach the principles of proper scientific notekeeping. The principles presented in this book are goals for which working scientists must strive. Chapter 1, "The Reasons for Notekeeping," is an overview of the process of keeping a laboratory notebook. Chapter 2, "The Hardware of Notekeeping," is intended especially…

  12. Safety in laboratories: Indian scenario.

    Science.gov (United States)

    Mustafa, Ajaz; Farooq, A Jan; Qadri, Gj; S A, Tabish

    2008-07-01

    Health and safety in clinical laboratories is becoming an increasingly important subject as a result of emergence of highly infectious diseases such as Hepatitis and HIV. A cross sectional study was carried out to study the safety measures being adopted in clinical laboratories of India. Heads of laboratories of teaching hospitals of India were subjected to a standardized, pretested questionnaire. Response rate was 44.8%. only 60% of laboratories had person in-charge of safety in laboratory. Seventy three percent of laboratories had safety education program regarding hazards. In 91% of laboratories staff is using protective clothing while working in laboratories. Hazardous material regulations are followed in 78% of laboratories. Regular health check ups are carried among laboratory staff in 43.4% of laboratories.Safety manual is available in 56.5% of laboratories. 73.9% of laboratories are equipped with fire extinguishers. Fume cupboards are provided in 34.7% of laboratories and they are regularly checked in 87.5% of these laboratories. In 78.26% of laboratories suitable measures are taken to minimize formation of aerosols.In 95.6% of laboratories waste is disposed off as per bio-medical waste management handling rules. Laboratory of one private medical college was accredited with NABL and safety parameters were better in that laboratory. Installing safety engineered devices apparently contributes to significant decrease in injuries in laboratories; laboratory safety has to be a part of overall quality assurance programme in hospitals. Accreditation has to be made necessary for all laboratories.

  13. Health Physics Laboratory - Overview

    International Nuclear Information System (INIS)

    Olko, P.

    2000-01-01

    Full text: The activities of the Health Physics Laboratory at the Institute of Nuclear Physics in Cracow are principally research in the general area of radiation physics, and radiation protection of the employees of the Institute of Nuclear Physics. Theoretical research concerns modelling of radiation effects in radiation detectors and studies of concepts in radiation protection. Experimental research, in the general area of solid state dosimetry, is primarily concerned with thermoluminescence (TL) dosimetry, and more specifically: development of LiF:Mg, Ti and CVD diamond detectors for medical applications in conventional and hadron radiotherapy and of LiF:Mg, Cu, P for low-level natural external ionising radiation. Environmental radiation measurements (cosmic-rays on aircraft and radon in dwellings and soil) are also performed using track CR-39 and TLD detectors. The Laboratory provides expert advice on radiation protection regulations at national and international levels. Routine work of the Health Physics Laboratory involves design and maintenance of an in-house developed TL-based personnel dosimetry system for over 200 radiation workers at the INP, supervision of radiation safety on INP premises, and advising other INP laboratories on all matters pertaining to radiation safety. We provide personal and environmental TLD dosimetry service for several customers outside the INP, mainly in hospitals and nuclear research institutes in Poland. We also calibrate radiation protection instruments for customers in southern Poland. The year 2000 was another eventful year for the Health Physics Laboratory. We started three new research projects granted by the Polish State Committee of Scientific Research. Mr P. Bilski co-ordinates the project on the measurements of radiation doses on board of commercial aircraft of Polish LOT Airlines. Dr B. Marczewska and I worked on the application of artificial diamonds for dosimetry of ionising radiation. We also participate in a

  14. Health Physics Laboratory - Overview

    International Nuclear Information System (INIS)

    Olko, P.

    1999-01-01

    The activities of the Health Physics Laboratory at the Institute of Nuclear Physics in Cracow are principally research in the general area of radiation physics, and radiation protection of the employees of the Institute of Nuclear Physics. Theoretical research concerns modelling of radiation effects in radiation detectors and studies of concepts in radiation protection. Experimental research, in the general area of solid state dosimetry, is primarily concerned with thermoluminescence (TL) dosimetry, and more specifically: development of LiF:Mg, Ti for medical applications in conventional and hadron radiotherapy, and of LiF:Mg, Cu, P for low-level natural external ionising radiation. Environmental radiation measurements (radon in dwellings and in soil air) are also performed using track detectors. The Laboratory provides expert advice on radiation protection regulations at national and international levels. Routine work of the Health Physics Laboratory involves design and maintenance of an in-house developed TL-based personnel dosimetry system for over 200 radiation workers at the INP, monitoring and supervision of radiation safety on INP premises, and advising other INP laboratories on all matters pertaining to radiation safety. The year 1998 was another eventful year for the Health Physics Laboratory. In retrospective, the main effort in 1998 has been directed towards preparation and participation in the 12th International Conference on Solid State Dosimetry in Burgos, Spain. One of the research projects is aimed at developing novel miniature TLD detectors with improved LET and dose characteristics for precise phantom measurements in eye cancer radiotherapy with proton beams. The second project concerns the application of ultra-sensitive LiF:Mg, Cu, P (MCP-N) TLD detectors in environmental monitoring of gamma ionising radiation. The main objective of this last project is to develop and to test a system for rapid, short-term monitoring of environmental radiation

  15. Laboratory Waste Management. A Guidebook.

    Science.gov (United States)

    American Chemical Society, Washington, DC.

    A primary goal of the American Chemical Society Task Force on Laboratory Waste Management is to provide laboratories with the information necessary to develop effective strategies and training programs for managing laboratory wastes. This book is intended to present a fresh look at waste management from the laboratory perspective, considering both…

  16. Total laboratory automation: Do stat tests still matter?

    Science.gov (United States)

    Dolci, Alberto; Giavarina, Davide; Pasqualetti, Sara; Szőke, Dominika; Panteghini, Mauro

    2017-07-01

    During the past decades the healthcare systems have rapidly changed and today hospital care is primarily advocated for critical patients and acute treatments, for which laboratory test results are crucial and need to be always reported in predictably short turnaround time (TAT). Laboratories in the hospital setting can face this challenge by changing their organization from a compartmentalized laboratory department toward a decision making-based laboratory department. This requires the implementation of a core laboratory, that exploits total laboratory automation (TLA) using technological innovation in analytical platforms, track systems and information technology, including middleware, and a number of satellite specialized laboratory sections cooperating with care teams for specific medical conditions. In this laboratory department model, the short TAT for all first-line tests performed by TLA in the core laboratory represents the key paradigm, where no more stat testing is required because all samples are handled in real-time and (auto)validated results dispatched in a time that fulfills clinical needs. To optimally reach this goal, laboratories should be actively involved in managing all the steps covering the total examination process, speeding up also extra-laboratory phases, such sample delivery. Furthermore, to warrant effectiveness and not only efficiency, all the processes, e.g. specimen integrity check, should be managed by middleware through a predefined set of rules defined in light of the clinical governance. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  17. Maui Space Surveillance System Satellite Categorization Laboratory

    Science.gov (United States)

    Deiotte, R.; Guyote, M.; Kelecy, T.; Hall, D.; Africano, J.; Kervin, P.

    The MSSS satellite categorization laboratory is a fusion of robotics and digital imaging processes that aims to decompose satellite photometric characteristics and behavior in a controlled setting. By combining a robot, light source and camera to acquire non-resolved images of a model satellite, detailed photometric analyses can be performed to extract relevant information about shape features, elemental makeup, and ultimately attitude and function. Using the laboratory setting a detailed analysis can be done on any type of material or design and the results cataloged in a database that will facilitate object identification by "curve-fitting" individual elements in the basis set to observational data that might otherwise be unidentifiable. Currently the laboratory has created, an ST-Robotics five degree of freedom robotic arm, collimated light source and non-focused Apogee camera have all been integrated into a MATLAB based software package that facilitates automatic data acquisition and analysis. Efforts to date have been aimed at construction of the lab as well as validation and verification of simple geometric objects. Simple tests on spheres, cubes and simple satellites show promising results that could lead to a much better understanding of non-resolvable space object characteristics. This paper presents a description of the laboratory configuration and validation test results with emphasis on the non-resolved photometric characteristics for a variety of object shapes, spin dynamics and orientations. The future vision, utility and benefits of the laboratory to the SSA community as a whole are also discussed.

  18. Procedures of Exercise Physiology Laboratories

    Science.gov (United States)

    Bishop, Phillip A.; Fortney, Suzanne; Greenisen, Michael; Siconolfi, Steven F.; Bamman, Marcas M.; Moore, Alan D., Jr.; Squires, William

    1998-01-01

    This manual describes the laboratory methods used to collect flight crew physiological performance data at the Johnson Space Center. The Exercise Countermeasures Project Laboratory is a standard physiology laboratory; only the application to the study of human physiological adaptations to spaceflight is unique. In the absence of any other recently published laboratory manual, this manual should be a useful document staffs and students of other laboratories.

  19. Integrated test schedule for buried waste integrated demonstration

    International Nuclear Information System (INIS)

    Brown, J.T.; McDonald, J.K.

    1992-05-01

    The Integrated Test Schedule incorporates the various schedules the Buried Waste Integrated Demonstration (BWID) supports into one document. This document contains the Federal Facilities Agreement and Consent Order schedules for the Idaho National Engineering Laboratory, Hanford Reservation, Oak Ridge Reservation, and Fernald Environmental Materials Center. Included in the Integrated Test Schedule is the Buried Waste Integrated Demonstration ''windows of opportunity'' schedule. The ''windows of opportunity'' schedule shows periods of time in which Buried Waste Integrated Demonstration Program-sponsored technology demonstrations could support key decisions in the Federal Facilities Agreement and Consent Order. Schedules for the Buried Waste Integrated Demonstration-sponsored technology task plans are categorized by technology area and divided by current fiscal year and out-year. Total estimated costs for Buried Waste Integrated Demonstration-sponsored Technology Task Plans for FY-92 through FY-97 are $74.756M

  20. Health Physics Laboratory - Overview

    International Nuclear Information System (INIS)

    Olko, P.

    2002-01-01

    Full text: The activities of the Health Physics Laboratory at the Institute of Nuclear Physics (IFJ) in Cracow are principally research in the general area of radiation physics, dosimetry and radiation protection of the employees of the Institute. Theoretical research concerns modelling of radiation effects in radiation detectors and studies of concepts in radiation protection. Experimental research, in the general area of solid state dosimetry, is primarily concerned with thermoluminescence (TL) dosimetry, and more specifically: development of LiF:Mg, Ti, CaF 2 :Tm and CVD diamond detectors for medical applications in conventional and hadron radiotherapy and of LiF:Mg, Cu, P and LiF:Mg, Cu, Si, Na for low-level natural external ionising radiation. Environmental radiation measurements (cosmic-rays on aircraft and radon in dwellings and soil) are also performed using track CR-39 and TLD detectors. The Laboratory provides expert advice on radiation protection regulations at national and international levels. Routine work of the Health Physics Laboratory involves design and maintenance of an in-house developed TL-based personnel dosimetry system for over 200 radiation workers at the INP, supervision of radiation safety on IFJ premises, and advising other INP laboratories on all matters pertaining to radiation safety. We provide personal and environmental TLD dosimetry services for several customers outside the IFJ, mainly in hospitals and nuclear research institutes in Poland. We also calibrate radiation protection instruments (400 per year) for customers in the southern region of Poland. The year 2001 was another eventful year for the Health Physics Laboratory. M. Waligorski has received his Professor of Physics state nomination from A. Kwasniewski, the President of Poland. P. Bilski and M. Budzanowski were granted their Ph.D. degrees by the Scientific Council of the Institute of Nuclear Physics. We continued several national and international research projects. Dr