WorldWideScience

Sample records for integration applied mathematical

  1. Applied mathematics

    CERN Document Server

    Logan, J David

    2013-01-01

    Praise for the Third Edition"Future mathematicians, scientists, and engineers should find the book to be an excellent introductory text for coursework or self-study as well as worth its shelf space for reference." -MAA Reviews Applied Mathematics, Fourth Edition is a thoroughly updated and revised edition on the applications of modeling and analyzing natural, social, and technological processes. The book covers a wide range of key topics in mathematical methods and modeling and highlights the connections between mathematics and the applied and nat

  2. Applied mathematics

    International Nuclear Information System (INIS)

    Nedelec, J.C.

    1988-01-01

    The 1988 progress report of the Applied Mathematics center (Polytechnic School, France), is presented. The research fields of the Center are the scientific calculus, the probabilities and statistics and the video image synthesis. The research topics developed are: the analysis of numerical methods, the mathematical analysis of the physics and mechanics fundamental models, the numerical solution of complex models related to the industrial problems, the stochastic calculus and the brownian movement, the stochastic partial differential equations, the identification of the adaptive filtering parameters, the discrete element systems, statistics, the stochastic control and the development, the image synthesis techniques for education and research programs. The published papers, the congress communications and the thesis are listed [fr

  3. Methods of applied mathematics

    CERN Document Server

    Hildebrand, Francis B

    1992-01-01

    This invaluable book offers engineers and physicists working knowledge of a number of mathematical facts and techniques not commonly treated in courses in advanced calculus, but nevertheless extremely useful when applied to typical problems in many different fields. It deals principally with linear algebraic equations, quadratic and Hermitian forms, operations with vectors and matrices, the calculus of variations, and the formulations and theory of linear integral equations. Annotated problems and exercises accompany each chapter.

  4. Journal of applied mathematics

    National Research Council Canada - National Science Library

    2001-01-01

    "[The] Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics...

  5. Applied Mathematics Seminar 1982

    International Nuclear Information System (INIS)

    1983-01-01

    This report contains the abstracts of the lectures delivered at 1982 Applied Mathematics Seminar of the DPD/LCC/CNPq and Colloquy on Applied Mathematics of LCC/CNPq. The Seminar comprised 36 conferences. Among these, 30 were presented by researchers associated to brazilian institutions, 9 of them to the LCC/CNPq, and the other 6 were given by visiting lecturers according to the following distribution: 4 from the USA, 1 from England and 1 from Venezuela. The 1981 Applied Mathematics Seminar was organized by Leon R. Sinay and Nelson do Valle Silva. The Colloquy on Applied Mathematics was held from october 1982 on, being organized by Ricardo S. Kubrusly and Leon R. Sinay. (Author) [pt

  6. Applied impulsive mathematical models

    CERN Document Server

    Stamova, Ivanka

    2016-01-01

    Using the theory of impulsive differential equations, this book focuses on mathematical models which reflect current research in biology, population dynamics, neural networks and economics. The authors provide the basic background from the fundamental theory and give a systematic exposition of recent results related to the qualitative analysis of impulsive mathematical models. Consisting of six chapters, the book presents many applicable techniques, making them available in a single source easily accessible to researchers interested in mathematical models and their applications. Serving as a valuable reference, this text is addressed to a wide audience of professionals, including mathematicians, applied researchers and practitioners.

  7. Applied mathematics made simple

    CERN Document Server

    Murphy, Patrick

    1982-01-01

    Applied Mathematics: Made Simple provides an elementary study of the three main branches of classical applied mathematics: statics, hydrostatics, and dynamics. The book begins with discussion of the concepts of mechanics, parallel forces and rigid bodies, kinematics, motion with uniform acceleration in a straight line, and Newton's law of motion. Separate chapters cover vector algebra and coplanar motion, relative motion, projectiles, friction, and rigid bodies in equilibrium under the action of coplanar forces. The final chapters deal with machines and hydrostatics. The standard and conte

  8. Applied geometry and discrete mathematics

    CERN Document Server

    Sturm; Gritzmann, Peter; Sturmfels, Bernd

    1991-01-01

    This volume, published jointly with the Association for Computing Machinery, comprises a collection of research articles celebrating the occasion of Victor Klee's sixty-fifth birthday in September 1990. During his long career, Klee has made contributions to a wide variety of areas, such as discrete and computational geometry, convexity, combinatorics, graph theory, functional analysis, mathematical programming and optimization, and theoretical computer science. In addition, Klee made important contributions to mathematics education, mathematical methods in economics and the decision sciences, applications of discrete mathematics in the biological and social sciences, and the transfer of knowledge from applied mathematics to industry. In honor of Klee's achievements, this volume presents more than forty papers on topics related to Klee's research. While the majority of the papers are research articles, a number of survey articles are also included. Mirroring the breadth of Klee's mathematical contributions, th...

  9. Applied Mathematical Problems in Engineering

    Directory of Open Access Journals (Sweden)

    Carlos Llopis-Albert

    2016-10-01

    Full Text Available There is a close relationship between engineering and mathematics, which has led to the development of new techniques in recent years. Likewise the developments in technology and computers have led to new ways of teaching mathematics for engineering students and the use of modern techniques and methods.  This research aims to provide insight on how to deal with mathematical problems for engineering students. This is performed by means of a fuzzy set/Qualitative Comparative Analysis applied to conflict resolution of Public Participation Projects in support to the EU Water Framework Directive.

  10. Mathematical physics applied mathematics for scientists and engineers

    CERN Document Server

    Kusse, Bruce R

    2006-01-01

    What sets this volume apart from other mathematics texts is its emphasis on mathematical tools commonly used by scientists and engineers to solve real-world problems. Using a unique approach, it covers intermediate and advanced material in a manner appropriate for undergraduate students. Based on author Bruce Kusse's course at the Department of Applied and Engineering Physics at Cornell University, Mathematical Physics begins with essentials such as vector and tensor algebra, curvilinear coordinate systems, complex variables, Fourier series, Fourier and Laplace transforms, differential and integral equations, and solutions to Laplace's equations

  11. Applied Mathematics Should Be Taught Mixed.

    Science.gov (United States)

    Brown, Gary I.

    1994-01-01

    Discusses the differences between applied and pure mathematics and provides extensive history of mixed mathematics. Argues that applied mathematics should be taught allowing for speculative mathematics, which involves breaking down a given problem into simpler parts until one arrives at first principles. (ASK)

  12. Solving applied mathematical problems with Matlab

    CERN Document Server

    Xue, Dingyu

    2008-01-01

    Computer Mathematics Language-An Overview. Fundamentals of MATLAB Programming. Calculus Problems. MATLAB Computations of Linear Algebra Problems. Integral Transforms and Complex Variable Functions. Solutions to Nonlinear Equations and Optimization Problems. MATLAB Solutions to Differential Equation Problems. Solving Interpolations and Approximations Problems. Solving Probability and Mathematical Statistics Problems. Nontraditional Solution Methods for Mathematical Problems.

  13. A First Course in Applied Mathematics

    CERN Document Server

    Rebaza, Jorge

    2012-01-01

    Explore real-world applications of selected mathematical theory, concepts, and methods Exploring related methods that can be utilized in various fields of practice from science and engineering to business, A First Course in Applied Mathematics details how applied mathematics involves predictions, interpretations, analysis, and mathematical modeling to solve real-world problems. Written at a level that is accessible to readers from a wide range of scientific and engineering fields, the book masterfully blends standard topics with modern areas of application and provides the needed foundation

  14. Mathematics applied to nuclear geophysics

    International Nuclear Information System (INIS)

    Pereira, E.B.; Nordemann, D.J.R.

    1987-01-01

    One of the powerful auxiliary to nuclear geophysics is the obtention and interpretation of the alpha and gamma radiation spectra. This work discuss, qualitative and quantitative, the lost information problem, motivated by the noise in the process of information codification. The decodification process must be suppield by the appropriate mathematical model on the measure system to recovery the information from nuclear source. (C.D.G.) [pt

  15. The 1989 progress report: Applied Mathematics

    International Nuclear Information System (INIS)

    Nedelec, J.C.

    1989-01-01

    The 1989 progress report of the laboratory of Applied Mathematics of the Polytechnic School (France) is presented. The investigations reported were performed in the following fields: mathematical and numerical aspects of wave propagation, nonlinear hyperbolic fluid mechanics, numerical simulations and mathematical aspects of semiconductors and electron beams, mechanics of solids, plasticity, viscoelasticity, stochastic, automatic and statistic calculations, synthesis and image processing. The published papers, the conferences and the Laboratory staff are listed [fr

  16. Applied Computational Mathematics in Social Sciences

    CERN Document Server

    Damaceanu, Romulus-Catalin

    2010-01-01

    Applied Computational Mathematics in Social Sciences adopts a modern scientific approach that combines knowledge from mathematical modeling with various aspects of social science. Special algorithms can be created to simulate an artificial society and a detailed analysis can subsequently be used to project social realities. This Ebook specifically deals with computations using the NetLogo platform, and is intended for researchers interested in advanced human geography and mathematical modeling studies.

  17. Proceedings of the workshop on applied mathematics

    International Nuclear Information System (INIS)

    Lee, H.C.; Couture, M.; Douglas, S.; Leivo, H.P.

    1992-10-01

    The Workshop on Applied Mathematics was held at the Cockcroft Centre, Deep River, Ontario, 1992 February 7-8. The purpose of the workshop was to provide a forum for applied mathematicians to survey the use and to discuss the future of applied mathematics at AECL Research. There were 57 participants at the workshop A total of eight 30-minute and 25 15-minute talks were presented describing mathematical techniques used in the whole range of activities at AECL Research, from numerical simulation of fluid flow through eddy current testing to quantum algebra and accelerator physics

  18. Proceedings of the workshop on applied mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H C; Couture, M; Douglas, S; Leivo, H P

    1992-10-01

    The Workshop on Applied Mathematics was held at the Cockcroft Centre, Deep River, Ontario, 1992 February 7-8. The purpose of the workshop was to provide a forum for applied mathematicians to survey the use and to discuss the future of applied mathematics at AECL Research. There were 57 participants at the workshop A total of eight 30-minute and 25 15-minute talks were presented describing mathematical techniques used in the whole range of activities at AECL Research, from numerical simulation of fluid flow through eddy current testing to quantum algebra and accelerator physics.

  19. Applied Mathematical Methods in Theoretical Physics

    Science.gov (United States)

    Masujima, Michio

    2005-04-01

    All there is to know about functional analysis, integral equations and calculus of variations in a single volume. This advanced textbook is divided into two parts: The first on integral equations and the second on the calculus of variations. It begins with a short introduction to functional analysis, including a short review of complex analysis, before continuing a systematic discussion of different types of equations, such as Volterra integral equations, singular integral equations of Cauchy type, integral equations of the Fredholm type, with a special emphasis on Wiener-Hopf integral equations and Wiener-Hopf sum equations. After a few remarks on the historical development, the second part starts with an introduction to the calculus of variations and the relationship between integral equations and applications of the calculus of variations. It further covers applications of the calculus of variations developed in the second half of the 20th century in the fields of quantum mechanics, quantum statistical mechanics and quantum field theory. Throughout the book, the author presents over 150 problems and exercises -- many from such branches of physics as quantum mechanics, quantum statistical mechanics, and quantum field theory -- together with outlines of the solutions in each case. Detailed solutions are given, supplementing the materials discussed in the main text, allowing problems to be solved making direct use of the method illustrated. The original references are given for difficult problems. The result is complete coverage of the mathematical tools and techniques used by physicists and applied mathematicians Intended for senior undergraduates and first-year graduates in science and engineering, this is equally useful as a reference and self-study guide.

  20. MATHEMATICAL PROBLEMS OF INTEGRATIVE CONTENTS

    Directory of Open Access Journals (Sweden)

    V. Kushnir

    2014-09-01

    Full Text Available The tasks of integrative content requires the use of knowledge and skills on various themes both one discipline and different disciplines. Mostly in the classroom (or in homework the tasks on the properties absorption of different concepts using different theories are considered. Thus knowledge within only one discipline is formed, knowledge of the narrow sense (one subject. Such knowledge is "prescriptional", we call it idealized. After all, it is far from models of the real professional problems and problems of life in general, in order to solve them it is necessary to apply knowledge and skills acquired in different themes of the same objects,life experience. Practical formation of integrative knowledge requires statement of the educational problems before the subjects of studying, the problems within the "narrow objectivity" can not be resolved at all, or such kind of solving is too difficult to solve, for example, the nature and the context of solving problems (scientific approaches to solving problems, creating mathematical models, methods for solving such models, means of solving, application of methods, analysis of the models solution and the right choice, the inspection of solutions, etc. will sink in the conglomeration of technical operations. The problems with integrative content are usually more complicated than the problems of "narrow objectivity." In our problems the index of such difficulty is the essence of educational content, which is disclosed in the previous paragraph. The problems solution proposed in this article requires knowledge of the structural geometry (circle construction, touching two or three laps: with analytic geometry (method of coordinates on the plane; the distance between two points on the coordinate plane; algebra (system drawing irrational equations, method for solving such system, the solution of the system, analysis of the results and the right choose of the desired solution for found criterion, testing

  1. International Conference on Advances in Applied Mathematics

    CERN Document Server

    Hammami, Mohamed; Masmoudi, Afif

    2015-01-01

    This contributed volume presents some recent theoretical advances in mathematics and its applications in various areas of science and technology.   Written by internationally recognized scientists and researchers, the chapters in this book are based on talks given at the International Conference on Advances in Applied Mathematics (ICAAM), which took place December 16-19, 2013, in Hammamet, Tunisia.  Topics discussed at the conference included spectral theory, operator theory, optimization, numerical analysis, ordinary and partial differential equations, dynamical systems, control theory, probability, and statistics.  These proceedings aim to foster and develop further growth in all areas of applied mathematics.

  2. Applied mathematics for science and engineering

    CERN Document Server

    Glasgow, Larry A

    2014-01-01

    Prepare students for success in using applied mathematics for engineering practice and post-graduate studies moves from one mathematical method to the next sustaining reader interest and easing the application of the techniques Uses different examples from chemical, civil, mechanical and various other engineering fields Based on a decade's worth of the authors lecture notes detailing the topic of applied mathematics for scientists and engineers Concisely writing with numerous examples provided including historical perspectives as well as a solutions manual for academic adopters

  3. Intelligent mathematics II applied mathematics and approximation theory

    CERN Document Server

    Duman, Oktay

    2016-01-01

    This special volume is a collection of outstanding more applied articles presented in AMAT 2015 held in Ankara, May 28-31, 2015, at TOBB Economics and Technology University. The collection is suitable for Applied and Computational Mathematics and Engineering practitioners, also for related graduate students and researchers. Furthermore it will be a useful resource for all science and engineering libraries. This book includes 29 self-contained and well-edited chapters that can be among others useful for seminars in applied and computational mathematics, as well as in engineering.

  4. Line integral on engineering mathematics

    Science.gov (United States)

    Wiryanto, L. H.

    2018-01-01

    Definite integral is a basic material in studying mathematics. At the level of calculus, calculating of definite integral is based on fundamental theorem of calculus, related to anti-derivative, as the inverse operation of derivative. At the higher level such as engineering mathematics, the definite integral is used as one of the calculating tools of line integral. the purpose of this is to identify if there is a question related to line integral, we can use definite integral as one of the calculating experience. The conclusion of this research says that the teaching experience in introducing the relation between both integrals through the engineer way of thinking can motivate and improve students in understanding the material.

  5. Expander graphs in pure and applied mathematics

    OpenAIRE

    Lubotzky, Alexander

    2012-01-01

    Expander graphs are highly connected sparse finite graphs. They play an important role in computer science as basic building blocks for network constructions, error correcting codes, algorithms and more. In recent years they have started to play an increasing role also in pure mathematics: number theory, group theory, geometry and more. This expository article describes their constructions and various applications in pure and applied mathematics.

  6. Mathematical aspects of Feynman integrals

    International Nuclear Information System (INIS)

    Bogner, Christian

    2009-08-01

    In the present dissertation we consider Feynman integrals in the framework of dimensional regularization. As all such integrals can be expressed in terms of scalar integrals, we focus on this latter kind of integrals in their Feynman parametric representation and study their mathematical properties, partially applying graph theory, algebraic geometry and number theory. The three main topics are the graph theoretic properties of the Symanzik polynomials, the termination of the sector decomposition algorithm of Binoth and Heinrich and the arithmetic nature of the Laurent coefficients of Feynman integrals. The integrand of an arbitrary dimensionally regularised, scalar Feynman integral can be expressed in terms of the two well-known Symanzik polynomials. We give a detailed review on the graph theoretic properties of these polynomials. Due to the matrix-tree-theorem the first of these polynomials can be constructed from the determinant of a minor of the generic Laplacian matrix of a graph. By use of a generalization of this theorem, the all-minors-matrix-tree theorem, we derive a new relation which furthermore relates the second Symanzik polynomial to the Laplacian matrix of a graph. Starting from the Feynman parametric parameterization, the sector decomposition algorithm of Binoth and Heinrich serves for the numerical evaluation of the Laurent coefficients of an arbitrary Feynman integral in the Euclidean momentum region. This widely used algorithm contains an iterated step, consisting of an appropriate decomposition of the domain of integration and the deformation of the resulting pieces. This procedure leads to a disentanglement of the overlapping singularities of the integral. By giving a counter-example we exhibit the problem, that this iterative step of the algorithm does not terminate for every possible case. We solve this problem by presenting an appropriate extension of the algorithm, which is guaranteed to terminate. This is achieved by mapping the iterative

  7. Mathematical aspects of Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Bogner, Christian

    2009-08-15

    In the present dissertation we consider Feynman integrals in the framework of dimensional regularization. As all such integrals can be expressed in terms of scalar integrals, we focus on this latter kind of integrals in their Feynman parametric representation and study their mathematical properties, partially applying graph theory, algebraic geometry and number theory. The three main topics are the graph theoretic properties of the Symanzik polynomials, the termination of the sector decomposition algorithm of Binoth and Heinrich and the arithmetic nature of the Laurent coefficients of Feynman integrals. The integrand of an arbitrary dimensionally regularised, scalar Feynman integral can be expressed in terms of the two well-known Symanzik polynomials. We give a detailed review on the graph theoretic properties of these polynomials. Due to the matrix-tree-theorem the first of these polynomials can be constructed from the determinant of a minor of the generic Laplacian matrix of a graph. By use of a generalization of this theorem, the all-minors-matrix-tree theorem, we derive a new relation which furthermore relates the second Symanzik polynomial to the Laplacian matrix of a graph. Starting from the Feynman parametric parameterization, the sector decomposition algorithm of Binoth and Heinrich serves for the numerical evaluation of the Laurent coefficients of an arbitrary Feynman integral in the Euclidean momentum region. This widely used algorithm contains an iterated step, consisting of an appropriate decomposition of the domain of integration and the deformation of the resulting pieces. This procedure leads to a disentanglement of the overlapping singularities of the integral. By giving a counter-example we exhibit the problem, that this iterative step of the algorithm does not terminate for every possible case. We solve this problem by presenting an appropriate extension of the algorithm, which is guaranteed to terminate. This is achieved by mapping the iterative

  8. Applied mathematics for engineers and physicists

    CERN Document Server

    Pipes, Louis A

    2014-01-01

    One of the most widely used reference books on applied mathematics for a generation, distributed in multiple languages throughout the world, this text is geared toward use with a one-year advanced course in applied mathematics for engineering students. The treatment assumes a solid background in the theory of complex variables and a familiarity with complex numbers, but it includes a brief review. Chapters are as self-contained as possible, offering instructors flexibility in designing their own courses. The first eight chapters explore the analysis of lumped parameter systems. Succeeding topi

  9. Applied Mathematics, Modelling and Computational Science

    CERN Document Server

    Kotsireas, Ilias; Makarov, Roman; Melnik, Roderick; Shodiev, Hasan

    2015-01-01

    The Applied Mathematics, Modelling, and Computational Science (AMMCS) conference aims to promote interdisciplinary research and collaboration. The contributions in this volume cover the latest research in mathematical and computational sciences, modeling, and simulation as well as their applications in natural and social sciences, engineering and technology, industry, and finance. The 2013 conference, the second in a series of AMMCS meetings, was held August 26–30 and organized in cooperation with AIMS and SIAM, with support from the Fields Institute in Toronto, and Wilfrid Laurier University. There were many young scientists at AMMCS-2013, both as presenters and as organizers. This proceedings contains refereed papers contributed by the participants of the AMMCS-2013 after the conference. This volume is suitable for researchers and graduate students, mathematicians and engineers, industrialists, and anyone who would like to delve into the interdisciplinary research of applied and computational mathematics ...

  10. Gulf International Conference on Applied Mathematics 2013

    CERN Document Server

    Advances in Applied Mathematics

    2014-01-01

    This volume contains contributions from the Gulf International Conference in Applied Mathematics, held at the Gulf University for Science & Technology. The proceedings reflects the three major themes of the conference. The first of these was mathematical biology, including a keynote address by Professor Philip Maini. The second theme was computational science/numerical analysis, including a keynote address by Professor Grigorii Shishkin. The conference also addressed more general applications topics, with papers in business applications, fluid mechanics, optimization, scheduling problems, and engineering applications, as well as a keynote by Professor Ali Nayfeh.

  11. Study guide for applied finite mathematics

    CERN Document Server

    Macri, Nicholas A

    1982-01-01

    Study Guide for Applied Finite Mathematics, Third Edition is a study guide that introduces beginners to the fundamentals of finite mathematics and its various realistic and relevant applications. Some applications of probability, game theory, and Markov chains are given. Each chapter includes exercises, and each set begins with basic computational ""drill"" problems and then progresses to problems with more substance.Comprised of 10 chapters, this book begins with exercises related to set theory and concepts such as the union and intersection of sets. Exercises on Cartesian coordinate

  12. The Applied Mathematics for Power Systems (AMPS)

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, Michael [Los Alamos National Laboratory

    2012-07-24

    Increased deployment of new technologies, e.g., renewable generation and electric vehicles, is rapidly transforming electrical power networks by crossing previously distinct spatiotemporal scales and invalidating many traditional approaches for designing, analyzing, and operating power grids. This trend is expected to accelerate over the coming years, bringing the disruptive challenge of complexity, but also opportunities to deliver unprecedented efficiency and reliability. Our Applied Mathematics for Power Systems (AMPS) Center will discover, enable, and solve emerging mathematics challenges arising in power systems and, more generally, in complex engineered networks. We will develop foundational applied mathematics resulting in rigorous algorithms and simulation toolboxes for modern and future engineered networks. The AMPS Center deconstruction/reconstruction approach 'deconstructs' complex networks into sub-problems within non-separable spatiotemporal scales, a missing step in 20th century modeling of engineered networks. These sub-problems are addressed within the appropriate AMPS foundational pillar - complex systems, control theory, and optimization theory - and merged or 'reconstructed' at their boundaries into more general mathematical descriptions of complex engineered networks where important new questions are formulated and attacked. These two steps, iterated multiple times, will bridge the growing chasm between the legacy power grid and its future as a complex engineered network.

  13. Global Conference on Applied Physics and Mathematics

    CERN Document Server

    2016-01-01

    The Global Conference on Applied Physics and Mathematics is organized by academics and researchers belonging to different scientific areas of the C3i/Polytechnic Institute of Portalegre (Portugal) and the University of Extremadura (Spain) with the technical support of ScienceKnow Conferences. The event has the objective of creating an international forum for academics, researchers and scientists from worldwide to discuss worldwide results and proposals regarding to the soundest issues related to Applied Physics and Mathematics. This event will include the participation of renowned keynote speakers, oral presentations, posters sessions and technical conferences related to the topics dealt with in the Scientific Program as well as an attractive social and cultural program. The papers will be published in the Proceedings e-books. The proceedings of the conference will be sent to possible indexing on Thomson Reuters (selective by Thomson Reuters, not all-inclusive) and Google Scholar. Those communications con...

  14. Handbook of mathematical formulas and integrals

    CERN Document Server

    Jeffrey, Alan

    2003-01-01

    The updated Handbook is an essential reference for researchers and students in applied mathematics, engineering, and physics. It provides quick access to important formulas, relations, and methods from algebra, trigonometric and exponential functions, combinatorics, probability, matrix theory, calculus and vector calculus, ordinary and partial differential equations, Fourier series, orthogonal polynomials, and Laplace transforms. Many of the entries are based upon the updated sixth edition of Gradshteyn and Ryzhik''s Table of Integrals, Series, and Products and other important reference works.The Third Edition has new chapters covering solutions of elliptic, parabolic and hyperbolic equations and qualitative properties of the heat and Laplace equation.Key Features: * Comprehensive coverage of frequently used integrals, functions and fundamental mathematical results * Contents selected and organized to suit the needs of students, scientists, and engineers * Contains tables of Laplace and Fourier transfor...

  15. Applied mathematical methods in nuclear thermal hydraulics

    International Nuclear Information System (INIS)

    Ransom, V.H.; Trapp, J.A.

    1983-01-01

    Applied mathematical methods are used extensively in modeling of nuclear reactor thermal-hydraulic behavior. This application has required significant extension to the state-of-the-art. The problems encountered in modeling of two-phase fluid transients and the development of associated numerical solution methods are reviewed and quantified using results from a numerical study of an analogous linear system of differential equations. In particular, some possible approaches for formulating a well-posed numerical problem for an ill-posed differential model are investigated and discussed. The need for closer attention to numerical fidelity is indicated

  16. Sustaining Integrated Technology in Undergraduate Mathematics

    Science.gov (United States)

    Oates, Greg

    2011-01-01

    The effective integration of technology into the teaching and learning of mathematics remains one of the critical challenges facing contemporary tertiary mathematics. This article reports on some significant findings of a wider study investigating the use of technology in undergraduate mathematics. It first discusses a taxonomy developed to…

  17. Interval Mathematics Applied to Critical Point Transitions

    Directory of Open Access Journals (Sweden)

    Benito A. Stradi

    2012-03-01

    Full Text Available The determination of critical points of mixtures is important for both practical and theoretical reasons in the modeling of phase behavior, especially at high pressure. The equations that describe the behavior of complex mixtures near critical points are highly nonlinear and with multiplicity of solutions to the critical point equations. Interval arithmetic can be used to reliably locate all the critical points of a given mixture. The method also verifies the nonexistence of a critical point if a mixture of a given composition does not have one. This study uses an interval Newton/Generalized Bisection algorithm that provides a mathematical and computational guarantee that all mixture critical points are located. The technique is illustrated using several example problems. These problems involve cubic equation of state models; however, the technique is general purpose and can be applied in connection with other nonlinear problems.

  18. Particulate morphology mathematics applied to particle assemblies

    CERN Document Server

    Gotoh, Keishi

    2012-01-01

    Encompassing over fifty years of research, Professor Gotoh addresses the correlation function of spatial structures and the statistical geometry of random particle assemblies. In this book morphological study is formed into random particle assemblies to which various mathematics are applied such as correlation function, radial distribution function and statistical geometry. This leads to the general comparison between the thermodynamic state such as gases and liquids and the random particle assemblies. Although structures of molecular configurations change at every moment due to thermal vibration, liquids can be regarded as random packing of particles. Similarly, gaseous states correspond to particle dispersion. If physical and chemical properties are taken away from the subject, the remainder is the structure itself. Hence, the structural study is ubiquitous and of fundamental importance. This book will prove useful to chemical engineers working on powder technology as well as mathematicians interested in le...

  19. Current problems in applied mathematics and mathematical physics

    Science.gov (United States)

    Samarskii, A. A.

    Papers are presented on such topics as mathematical models in immunology, mathematical problems of medical computer tomography, classical orthogonal polynomials depending on a discrete variable, and boundary layer methods for singular perturbation problems in partial derivatives. Consideration is also given to the computer simulation of supernova explosion, nonstationary internal waves in a stratified fluid, the description of turbulent flows by unsteady solutions of the Navier-Stokes equations, and the reduced Galerkin method for external diffraction problems using the spline approximation of fields.

  20. International Conference on Applied Mathematics and Informatics

    CERN Document Server

    Vasilieva, Olga

    2015-01-01

    This book highlights recent compelling research results and trends in various aspects of contemporary mathematics, emphasizing applications to real-world situations. The chapters present exciting new findings and developments in situations where mathematical rigor is combined with common sense. A multi-disciplinary approach, both within each chapter and in the volume as a whole, leads to practical insights that may result in a more synthetic understanding of specific global issues—as well as their possible solutions. The volume will be of interest not only to experts in mathematics, but also to graduate students, scientists, and practitioners from other fields including physics, biology, geology, management, and medicine.

  1. How to solve applied mathematics problems

    CERN Document Server

    Moiseiwitsch, B L

    2011-01-01

    This workbook bridges the gap between lectures and practical applications, offering students of mathematics, engineering, and physics the chance to practice solving problems from a wide variety of fields. 2011 edition.

  2. Mathematical Modeling Applied to Maritime Security

    OpenAIRE

    Center for Homeland Defense and Security

    2010-01-01

    Center for Homeland Defense and Security, OUT OF THE CLASSROOM Download the paper: Layered Defense: Modeling Terrorist Transfer Threat Networks and Optimizing Network Risk Reduction” Students in Ted Lewis’ Critical Infrastructure Protection course are taught how mathematic modeling can provide...

  3. Quantum mechanics as applied mathematical statistics

    International Nuclear Information System (INIS)

    Skala, L.; Cizek, J.; Kapsa, V.

    2011-01-01

    Basic mathematical apparatus of quantum mechanics like the wave function, probability density, probability density current, coordinate and momentum operators, corresponding commutation relation, Schroedinger equation, kinetic energy, uncertainty relations and continuity equation is discussed from the point of view of mathematical statistics. It is shown that the basic structure of quantum mechanics can be understood as generalization of classical mechanics in which the statistical character of results of measurement of the coordinate and momentum is taken into account and the most important general properties of statistical theories are correctly respected.

  4. Problems in mathematical analysis III integration

    CERN Document Server

    Kaczor, W J

    2003-01-01

    We learn by doing. We learn mathematics by doing problems. This is the third volume of Problems in Mathematical Analysis. The topic here is integration for real functions of one real variable. The first chapter is devoted to the Riemann and the Riemann-Stieltjes integrals. Chapter 2 deals with Lebesgue measure and integration. The authors include some famous, and some not so famous, integral inequalities related to Riemann integration. Many of the problems for Lebesgue integration concern convergence theorems and the interchange of limits and integrals. The book closes with a section on Fourier series, with a concentration on Fourier coefficients of functions from particular classes and on basic theorems for convergence of Fourier series. The book is primarily geared toward students in analysis, as a study aid, for problem-solving seminars, or for tutorials. It is also an excellent resource for instructors who wish to incorporate problems into their lectures. Solutions for the problems are provided in the boo...

  5. Functional analysis in modern applied mathematics

    CERN Document Server

    Curtain, Ruth F

    1977-01-01

    In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat

  6. Research in Applied Mathematics, Fluid Mechanics and Computer Science

    Science.gov (United States)

    1999-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999.

  7. [Research activities in applied mathematics, fluid mechanics, and computer science

    Science.gov (United States)

    1995-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995.

  8. Applying Mathematical Models to Surgical Patient Planning

    NARCIS (Netherlands)

    J.M. van Oostrum (Jeroen)

    2009-01-01

    textabstractOn a daily basis surgeons, nurses, and managers face cancellation of surgery, peak demands on wards, and overtime in operating rooms. Moreover, the lack of an integral planning approach for operating rooms, wards, and intensive care units causes low resource utilization and makes patient

  9. Activities report 1977--78. Applied mathematics department 5640

    International Nuclear Information System (INIS)

    1979-03-01

    This report is a compilation of independent articles highlighting some of the work done in the Applied Mathematics Department during the years 1977 and 1978. It is neither an exhaustive report on all activities in the department during this period nor a list of the most substantial mathematical contributions. Instead, it is a selection of topics which are thought to be of greatest interest because of their importance to Sandia. The report is divided into four principal sections which reflect the department's major areas of interest: Mathematical Physics, Computational Mathematics, Probability and Statistics, and Discrete Mathematics. To provide a smoother narrative, references are omitted from the text. However, a complete department bibliography of corporate and open publications as well as technical presentations for the period October 1977 through December 1978 is appended. 4 figures, 3 tables

  10. International Conference on Applied Mathematics, Modeling and Computational Science & Annual meeting of the Canadian Applied and Industrial Mathematics

    CERN Document Server

    Bélair, Jacques; Kunze, Herb; Makarov, Roman; Melnik, Roderick; Spiteri, Raymond J

    2016-01-01

    Focusing on five main groups of interdisciplinary problems, this book covers a wide range of topics in mathematical modeling, computational science and applied mathematics. It presents a wealth of new results in the development of modeling theories and methods, advancing diverse areas of applications and promoting interdisciplinary interactions between mathematicians, scientists, engineers and representatives from other disciplines. The book offers a valuable source of methods, ideas, and tools developed for a variety of disciplines, including the natural and social sciences, medicine, engineering, and technology. Original results are presented on both the fundamental and applied level, accompanied by an ample number of real-world problems and examples emphasizing the interdisciplinary nature and universality of mathematical modeling, and providing an excellent outline of today’s challenges. Mathematical modeling, with applied and computational methods and tools, plays a fundamental role in modern science a...

  11. The "Human Factor" in Pure and in Applied Mathematics. Systems Everywhere: Their Impact on Mathematics Education.

    Science.gov (United States)

    Fischer, Roland

    1992-01-01

    Discusses the impact that the relationship between people and mathematics could have on the development of pure and applied mathematics. Argues for (1) a growing interest in philosophy, history and sociology of science; (2) new models in educational and psychological research; and (3) a growing awareness of the human factor in technology,…

  12. Development of Contextual Mathematics teaching Material integrated related sciences and realistic for students grade xi senior high school

    Science.gov (United States)

    Helma, H.; Mirna, M.; Edizon, E.

    2018-04-01

    Mathematics is often applied in physics, chemistry, economics, engineering, and others. Besides that, mathematics is also used in everyday life. Learning mathematics in school should be associated with other sciences and everyday life. In this way, the learning of mathematics is more realstic, interesting, and meaningful. Needs analysis shows that required contextual mathematics teaching materials integrated related sciences and realistic on learning mathematics. The purpose of research is to produce a valid and practical contextual mathematics teaching material integrated related sciences and realistic. This research is development research. The result of this research is a valid and practical contextual mathematics teaching material integrated related sciences and realistic produced

  13. 3rd International Conference on Applied Mathematics and Approximation Theory

    CERN Document Server

    Duman, Oktay

    2016-01-01

    This special volume is a collection of outstanding theoretical articles presented at the conference AMAT 2015, held in Ankara, Turkey from May 28-31, 2015, at TOBB University of Economics and Technology. The collection is suitable for a range of applications: from researchers and practitioners of applied and computational mathematics, to students in graduate-level seminars. Furthermore it will be a useful resource for all science libraries. This book includes 27 self-contained and expertly-refereed chapters that provide numerous insights into the latest developments at the intersection of applied and computational mathematics, engineering, and statistics.

  14. Workshop on Women of Applied Mathematics: Research and Leadership

    Energy Technology Data Exchange (ETDEWEB)

    Dianne P. O' Leary; Tamara G. Kolda

    2004-09-28

    We held a two and a half day workshop on Women of Applied Mathematics: Research and Leadership at the University of Maryland in College Park, Maryland, October 8--10, 2003. The workshop provided a technical and professional forum for eleven senior women and twenty-four early-career women in applied mathematics. Each participant committed to an outreach activity and publication of a report on the workshop's web site. The final session of the workshop produced recommendations for future action.

  15. System for corrosion monitoring in pipeline applying fuzzy logic mathematics

    Science.gov (United States)

    Kuzyakov, O. N.; Kolosova, A. L.; Andreeva, M. A.

    2018-05-01

    A list of factors influencing corrosion rate on the external side of underground pipeline is determined. Principles of constructing a corrosion monitoring system are described; the system performance algorithm and program are elaborated. A comparative analysis of methods for calculating corrosion rate is undertaken. Fuzzy logic mathematics is applied to reduce calculations while considering a wider range of corrosion factors.

  16. Applied mathematics and condensed matter; Mathematiques appliquees et matiere condensee

    Energy Technology Data Exchange (ETDEWEB)

    Bouche, D.; Jollet, F. [CEA Bruyeres-le-Chatel, 91 (France)

    2011-01-15

    Applied mathematics have always been a key tool in computing the structure of condensed matter. In this paper, we present the most widely used methods, and show the importance of mathematics in their genesis and evolution. After a brief survey of quantum Monte Carlo methods, which try to compute the N electrons wave function, the paper describes the theoretical foundations of N independent particle approximations. We mainly focus on density functional theory (DFT). This theory associated with advanced numerical methods, and high performance computing, has produced significant achievements in the field. This paper presents the foundations of the theory, as well as different numerical methods used to solve DFT equations. (authors)

  17. Molecular modeling: An open invitation for applied mathematics

    Science.gov (United States)

    Mezey, Paul G.

    2013-10-01

    Molecular modeling methods provide a very wide range of challenges for innovative mathematical and computational techniques, where often high dimensionality, large sets of data, and complicated interrelations imply a multitude of iterative approximations. The physical and chemical basis of these methodologies involves quantum mechanics with several non-intuitive aspects, where classical interpretation and classical analogies are often misleading or outright wrong. Hence, instead of the everyday, common sense approaches which work so well in engineering, in molecular modeling one often needs to rely on rather abstract mathematical constraints and conditions, again emphasizing the high level of reliance on applied mathematics. Yet, the interdisciplinary aspects of the field of molecular modeling also generates some inertia and perhaps too conservative reliance on tried and tested methodologies, that is at least partially caused by the less than up-to-date involvement in the newest developments in applied mathematics. It is expected that as more applied mathematicians take up the challenge of employing the latest advances of their field in molecular modeling, important breakthroughs may follow. In this presentation some of the current challenges of molecular modeling are discussed.

  18. Methods of applied mathematics with a software overview

    CERN Document Server

    Davis, Jon H

    2016-01-01

    This textbook, now in its second edition, provides students with a firm grasp of the fundamental notions and techniques of applied mathematics as well as the software skills to implement them. The text emphasizes the computational aspects of problem solving as well as the limitations and implicit assumptions inherent in the formal methods. Readers are also given a sense of the wide variety of problems in which the presented techniques are useful. Broadly organized around the theme of applied Fourier analysis, the treatment covers classical applications in partial differential equations and boundary value problems, and a substantial number of topics associated with Laplace, Fourier, and discrete transform theories. Some advanced topics are explored in the final chapters such as short-time Fourier analysis and geometrically based transforms applicable to boundary value problems. The topics covered are useful in a variety of applied fields such as continuum mechanics, mathematical physics, control theory, and si...

  19. Integrating Mathematics and Science: Ecology and Venn Diagrams

    Science.gov (United States)

    Leszczynski, Eliza; Munakata, Mika; Evans, Jessica M.; Pizzigoni, Francesca

    2014-01-01

    Efforts to integrate mathematics and science have been widely recognized by mathematics and science educators. However, successful integration of these two important school disciplines remains a challenge. In this article, a mathematics and science activity extends the use of Venn diagrams to a life science context and then circles back to a…

  20. Johannes Kepler and his contribution to Applied Mathematics

    Science.gov (United States)

    Pichler, Franz

    The worldwide renown of Johannes Kepler is based above all on his contribution to astronomy. The 3 Kepler's Laws relating to the planets are well known and will ensure that his name is remembered by future generations. Besides his astronomical work, Kepler also made important contributions in the fields of theology, physics, phylosophy and mathematics. The actual paper discusses the advances by Kepler in the application of mathematics to the solution of "real life problems". The author made a concise account of some of the disciples by Kepler: Klug, Wieleitner, Caspar, Hammer, paying particular attention to works published by Kepler while he was living in Linz (1612-1628). The Kepler's contribution to applied mathematics is an example supremely worthy of emulation, the author concludes.

  1. 12th International School of Mathematics "G Stampacchia" : Applied Mathematics in the Aerospace Field "Ettore Majorana"

    CERN Document Server

    Salvetti, Attilio; Applied Mathematics in Aerospace Science and Engineering

    1994-01-01

    This book contains the proceedings ofthe meeting on "Applied Mathematics in the Aerospace Field," held in Erice, Sicily, Italy from September 3 to September 10, 1991. The occasion of the meeting was the 12th Course of the School of Mathematics "Guido Stampacchia," directed by Professor Franco Giannessi of the University of Pisa. The school is affiliated with the International Center for Scientific Culture "Ettore Majorana," which is directed by Professor Antonino Zichichi of the University of Bologna. The objective of the course was to give a perspective on the state-of­ the-art and research trends concerning the application of mathematics to aerospace science and engineering. The course was structured with invited lectures and seminars concerning fundamental aspects of differential equa­ tions, mathematical programming, optimal control, numerical methods, per­ turbation methods, and variational methods occurring in flight mechanics, astrodynamics, guidance, control, aircraft design, fluid mechanic...

  2. Profile of Metacognition of Mathematics and Mathematics Education Students in Understanding the Concept of Integral Calculus

    Science.gov (United States)

    Misu, La; Ketut Budayasa, I.; Lukito, Agung

    2018-03-01

    This study describes the metacognition profile of mathematics and mathematics education students in understanding the concept of integral calculus. The metacognition profile is a natural and intact description of a person’s cognition that involves his own thinking in terms of using his knowledge, planning and monitoring his thinking process, and evaluating his thinking results when understanding a concept. The purpose of this study was to produce the metacognition profile of mathematics and mathematics education students in understanding the concept of integral calculus. This research method is explorative method with the qualitative approach. The subjects of this study are mathematics and mathematics education students who have studied integral calculus. The results of this study are as follows: (1) the summarizing category, the mathematics and mathematics education students can use metacognition knowledge and metacognition skills in understanding the concept of indefinite integrals. While the definite integrals, only mathematics education students use metacognition skills; and (2) the explaining category, mathematics students can use knowledge and metacognition skills in understanding the concept of indefinite integrals, while the definite integrals only use metacognition skills. In addition, mathematics education students can use knowledge and metacognition skills in understanding the concept of both indefinite and definite integrals.

  3. Applied Mathematics for agronomical engineers in Spain at UPM

    Science.gov (United States)

    Anton, J. M.; Grau, J. B.; Tarquis, A. M.; Fabregat, J.; Sanchez, M. E.

    2009-04-01

    Mathematics, created or discovered, are a global human conceptual endowment, containing large systems of knowledge, and varied skills to use definite parts of them, in creation or discovery, or for applications, e.g. in Physics, or notably in engineering behaviour. When getting upper intellectual levels in the 19th century, the agronomical science and praxis was noticeably or mainly organised in Spain in agronomical engineering schools and also in institutes, together with technician schools, also with different lower lever centres, and they have evolved with progress and they are much changing at present to a EEES schema (Bolonia process). They work in different lines that need some basis or skills from mathematics. The vocation to start such careers, that have varied curriculums, contains only some mathematics, and the number of credits for mathematics is restrained because time is necessary for other initial sciences such as applied chemistry, biology, ecology and soil sciences, but some basis and skill of maths are needed, also with Physics, at least for electricity, machines, construction, economics at initial ground levels, and also for Statistics that are here considered part of Applied Mathematics. The ways of teaching mathematical basis and skills are especial, and are different from the practical ways needed e. g. for Soil Sciences, and they involve especial efforts from students, and especial controls or exams that guide much learning. The mathematics have a very large accepted content that uses mostly a standard logic, and that is remarkably stable and international, rather similar notation and expressions being used with different main languages. For engineering the logical basis is really often not taught, but the use of it is transferred, especially for calculus that requires both adapted somehow simplified schemas and the learning of a specific skill to use it, and also for linear algebra. The basic forms of differential calculus in several

  4. Integrating Dynamic Mathematics Software into Cooperative Learning Environments in Mathematics

    Science.gov (United States)

    Zengin, Yilmaz; Tatar, Enver

    2017-01-01

    The aim of this study was to evaluate the implementation of the cooperative learning model supported with dynamic mathematics software (DMS), that is a reflection of constructivist learning theory in the classroom environment, in the teaching of mathematics. For this purpose, a workshop was conducted with the volunteer teachers on the…

  5. Pocket book of integrals and mathematical formulas

    CERN Document Server

    Tallarida, Ronald J

    2008-01-01

    Convenient Organization of Essential Material so You Can Look up Formulas Fast Containing a careful selection of standard and timely topics, the Pocket Book of Integrals and Mathematical Formulas, Fourth Edition presents many numerical and statistical tables, scores of worked examples, and the most useful mathematical formulas for engineering and scientific applications. This fourth edition of a bestseller provides even more comprehensive coverage with the inclusion of several additional topics, all while maintaining its accessible, clear style and handy size. New to the Fourth Edition           An expanded chapter on series that covers many fascinating properties of the natural numbers that follow from number theory           New applications such as geostationary satellite orbits and drug kinetics           An expanded statistics section that discusses nonlinear regression as well as the normal approximation of the binomial distribution           Revised f...

  6. Enabling collaboration on semiformal mathematical knowledge by semantic web integration

    CERN Document Server

    Lange, C

    2011-01-01

    Mathematics is becoming increasingly collaborative, but software does not sufficiently support that: Social Web applications do not currently make mathematical knowledge accessible to automated agents that have a deeper understanding of mathematical structures. Such agents exist but focus on individual research tasks, such as authoring, publishing, peer-review, or verification, instead of complex collaboration workflows. This work effectively enables their integration by bridging the document-oriented perspective of mathematical authoring and publishing, and the network perspective of threaded

  7. Research in applied mathematics, numerical analysis, and computer science

    Science.gov (United States)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.

  8. Applying Lakatos' Theory to the Theory of Mathematical Problem Solving.

    Science.gov (United States)

    Nunokawa, Kazuhiko

    1996-01-01

    The relation between Lakatos' theory and issues in mathematics education, especially mathematical problem solving, is investigated by examining Lakatos' methodology of a scientific research program. (AIM)

  9. Integral transformations applied to image encryption

    International Nuclear Information System (INIS)

    Vilardy, Juan M.; Torres, Cesar O.; Perez, Ronal

    2017-01-01

    In this paper we consider the application of the integral transformations for image encryption through optical systems, a mathematical algorithm under Matlab platform using fractional Fourier transform (FrFT) and Random Phase Mask (RPM) for digital images encryption is implemented. The FrFT can be related to others integral transforms, such as: Fourier transform, Sine and Cosine transforms, Radial Hilbert transform, fractional Sine transform, fractional Cosine transform, fractional Hartley transform, fractional Wavelet transform and Gyrator transform, among other transforms. The encryption scheme is based on the use of the FrFT, the joint transform correlator and two RPMs, which provide security and robustness to the implemented security system. One of the RPMs used during encryption-decryption and the fractional order of the FrFT are the keys to improve security and make the system more resistant against security attacks. (paper)

  10. Discussing Perception, Determining Provision: Teachers' Perspectives on the Applied Options of A-Level Mathematics

    Science.gov (United States)

    Ward-Penny, Robert; Johnston-Wilder, Sue; Johnston-Wilder, Peter

    2013-01-01

    One-third of the current A-level mathematics curriculum is determined by choice, constructed out of "applied mathematics" modules in mechanics, statistics and decision mathematics. Although this choice arguably involves the most sizeable instance of choice in the current English school mathematics curriculum, and it has a significant…

  11. Development of a Mathematics, Science, and Technology Education Integrated Program for a Maglev

    Science.gov (United States)

    Park, Hyoung Seo

    2006-01-01

    The purpose of the study was to develop an MST Integrated Program for making a Maglev hands-on activity for higher elementary school students in Korea. In this MST Integrated Program, students will apply Mathematics, Science, and Technology principles and concepts to the design, construction, and evaluation of a magnetically levitated vehicle. The…

  12. The Threshold Hypothesis Applied to Spatial Skill and Mathematics

    Science.gov (United States)

    Freer, Daniel

    2017-01-01

    This cross-sectional study assessed the relation between spatial skills and mathematics in 854 participants across kindergarten, third grade, and sixth grade. Specifically, the study probed for a threshold for spatial skills when performing mathematics, above which spatial scores and mathematics scores would be significantly less related. This…

  13. The Effects of Teacher Collaboration in Grade 9 Applied Mathematics

    Science.gov (United States)

    Egodawatte, Gunawardena; McDougall, Douglas; Stoilescu, Dorian

    2011-01-01

    The current emphasis of many mathematics education reform documents is on the need to change the environment of mathematics classrooms from the transmission of knowledge by the teacher to the transaction of knowledge between the teacher and the students which promotes mathematical investigation and exploration. In this article, we discuss the…

  14. The Integration of Mathematics in Middle School Science: Student and Teacher Impacts Related to Science Achievement and Attitudes Towards Integration

    Science.gov (United States)

    McHugh, Luisa

    Contemporary research has suggested that in order for students to compete globally in the 21st century workplace, pedagogy must shift to include the integration of science and mathematics, where teachers effectively incorporate the two disciplines seamlessly. Mathematics facilitates a deeper understanding of science concepts and has been linked to improved student perception of the integration of science and mathematics. Although there is adequate literature to substantiate students' positive responses to integration in terms of attitudes, there has been little empirical data to support significant academic improvement when both disciplines are taught in an integrated method. This research study, conducted at several school districts on Long Island and New York City, New York, examined teachers' attitudes toward integration and students' attitudes about, and achievement on assessments in, an integrated 8th grade science classroom compared to students in a non-integrated classroom. An examination of these parameters was conducted to analyze the impact of the sizeable investment of time and resources needed to teach an integrated curriculum effectively. These resources included substantial teacher training, planning time, collaboration with colleagues, and administration of student assessments. The findings suggest that students had positive outcomes associated with experiencing an integrated science and mathematics curriculum, though these were only weakly correlated with teacher confidence in implementing the integrated model successfully. The positive outcomes included the ability of students to understand scientific concepts within a concrete mathematical framework, improved confidence in applying mathematics to scientific ideas, and increased agreement with the usefulness of mathematics in interpreting science concepts. Implications of these research findings may be of benefit to educators and policymakers looking to adapt integrated curricula in order to

  15. The Opinions of Middle School Mathematics Teachers on the Integration of Mathematics Course and Social Issues

    Directory of Open Access Journals (Sweden)

    Buket Turhan Turkkan

    2018-04-01

    Full Text Available The purpose of this study is to examine the opinions of middle school mathematics teachers on the integration of mathematics course and social issues. For this purpose, qualitative research method was used in this study. As for determining the participants of the research, criterion sampling among purposeful sampling methods was used. Being a middle school mathematics teacher as an occupation was considered as a criterion for determining the participants. The participants of the research consist of 13 middle school mathematics teachers in Turkey. So as to collect the research data, the semi-structured interview form created by the researchers was used. The data analysis was performed according to the content analysis, and Nvivo 10 program was used for the analysis. As a result of this study, the themes of the situation and methods of the integration of mathematics course and social issues, the attainment of democratic values in mathematics course and the ways of its attainment, gaining awareness of social justice and equality in mathematics course and the ways of its gaining, the activities performed by teachers for social issues in mathematics course and the teachers’ suggestions for the integration of mathematics course and social issues were reached and the results were discussed within this frame.

  16. Integrating interactive multimedia into mathematics course modules ...

    African Journals Online (AJOL)

    kofi.mereku

    African Journal of Educational Studies in Mathematics and Sciences Vol. 12, 2016. 35 ... diploma in basic education at one of 23 study centers of the University of Education, Winneba participated. ..... State College, PA: Learning. Services.

  17. The Views of Mathematics Teachers on the Factors Affecting the Integration of Technology in Mathematics Courses

    Science.gov (United States)

    Kaleli-Yilmaz, Gül

    2015-01-01

    The aim of this study was to determine the views of mathematics teachers on the factors that affect the integration of technology in mathematic courses. It is a qualitative case study. The sample size of the study is 10 teachers who are receiving postgraduate education in a university in Turkey. The current study was conducted in three stages. At…

  18. The Opinions of Middle School Mathematics Teachers on the Integration of Mathematics Course and Social Issues

    Science.gov (United States)

    Turhan Turkkan, Buket; Karakus, Memet

    2018-01-01

    The purpose of this study is to examine the opinions of middle school mathematics teachers on the integration of mathematics course and social issues. For this purpose, qualitative research method was used in this study. As for determining the participants of the research, criterion sampling among purposeful sampling methods was used. Being a…

  19. Notes for Applied Mathematics in Trigonometry and Earth Geometry/Navigation

    Science.gov (United States)

    Faulkner, Peter

    2004-01-01

    As time has progressed, the role of applied mathematics has become increasingly important. Indeed there are now more students enrolled in applied mathematics courses in senior high schools and colleges than in pure mathematics. Such courses become more relevant both to the student and to future employers, if the same constants and equations that…

  20. INVOLVING STUDENTS IN RESEARCH AS A FORM OF INTEGRATION OF ENGINEERING WITH MATHEMATICAL EDUCATION

    Directory of Open Access Journals (Sweden)

    Viktor M. Fedoseyev

    2016-03-01

    Full Text Available Introduction: questions of integration of mathematical with engineering training in educational process of higher education institution are explored. The existing technologies of the integrated training are analyzed, and the project-oriented direction is distinguished. Research involving students as an organisational and methodical form of training bachelors of the technical speciali sations is discussed. Materials and Methods: results of article are based on researches of tendencies of development of technical and mathematical education, works on the theory and methodology of pedagogical integration, methodology of mathematics and technical science. Methods of historical and pedagogical research, analytical, a method of mathematical modeling were used. Results: the main content of the paper is to make discussion of experience in developing and using integrated educational tasks in real educational process. Discussion is based on a specific technological assignment including a number of mathematical tasks used as a subject of research for students. In the assignment a special place is allocated to the questions reflecting the interplay of a technical task with a mathematical method of research highlighting the objective significance of mathematics as a method to solve engineering problems. Discussion and Conclusions: the paper gives reasons to conditions for using research work with students as an organisational and methodical form of integrated training in mathematics. In realisation of educational technology it is logical to apply the method of projects. It is necessary to formulate a task as an engineering project: to set an engineering objective of research, to formulate specifications; to differentiate between engineering and mathematical tasks of the project, to make actual interrelations between them; the mathematical part of the project has to be a body of research; assessment of the project must be carried out not only accounting for

  1. Applying contemporary philosophy in mathematics and statistics education : The perspective of inferentialism

    NARCIS (Netherlands)

    Schindler, Maike; Mackrell, Kate; Pratt, Dave; Bakker, A.

    2017-01-01

    Schindler, M., Mackrell, K., Pratt, D., & Bakker, A. (2017). Applying contemporary philosophy in mathematics and statistics education: The perspective of inferentialism. In G. Kaiser (Ed.). Proceedings of the 13th International Congress on Mathematical Education, ICME-13

  2. Mathematical methods linear algebra normed spaces distributions integration

    CERN Document Server

    Korevaar, Jacob

    1968-01-01

    Mathematical Methods, Volume I: Linear Algebra, Normed Spaces, Distributions, Integration focuses on advanced mathematical tools used in applications and the basic concepts of algebra, normed spaces, integration, and distributions.The publication first offers information on algebraic theory of vector spaces and introduction to functional analysis. Discussions focus on linear transformations and functionals, rectangular matrices, systems of linear equations, eigenvalue problems, use of eigenvectors and generalized eigenvectors in the representation of linear operators, metric and normed vector

  3. Technology-integrated Mathematics Education at the Secondary School Level

    Directory of Open Access Journals (Sweden)

    Hamdi Serin

    2017-06-01

    Full Text Available The potential of technological devices to enrich learning and teaching of Mathematics has been widely recognized recently. This study is founded on a case study that investigates how technology-related Mathematics teaching can enhance learning of Mathematical topics. The findings indicate that when teachers integrate technology into their teaching practices, students’ learning of Mathematics is significantly promoted. It was seen that the use of effective presentations through technological devices highly motivated the students and improved their mathematics achievement. This highlights that the availability of technological devices, teacher beliefs, easy access to resources and most importantly teacher skills of using technological devices effectively are decisive factors that can provide learners better understanding of mathematical concepts.

  4. The Integration of technology in teaching mathematics

    Science.gov (United States)

    Muhtadi, D.; Wahyudin; Kartasasmita, B. G.; Prahmana, R. C. I.

    2017-12-01

    This paper presents the Transformation of Technological Pedagogical and Content Knowledge (TPACK) of three pre-service math teacher. They participate in technology-based learning modules aligned with teaching practice taught school and became characteristic of teaching method by using the mathematical software. ICT-based learning environment has been the demands in practice learning to build a more effective approach to the learning process of students. Also, this paper presents the results of research on learning mathematics in middle school that shows the influence of design teaching on knowledge of math content specifically.

  5. Making mathematics and science integration happen: key aspects of practice

    Science.gov (United States)

    Ríordáin, Máire Ní; Johnston, Jennifer; Walshe, Gráinne

    2016-02-01

    The integration of mathematics and science teaching and learning facilitates student learning, engagement, motivation, problem-solving, criticality and real-life application. However, the actual implementation of an integrative approach to the teaching and learning of both subjects at classroom level, with in-service teachers working collaboratively, at second-level education, is under-researched due to the complexities of school-based research. This study reports on a year-long case study on the implementation of an integrated unit of learning on distance, speed and time, within three second-level schools in Ireland. This study employed a qualitative approach and examined the key aspects of practice that impact on the integration of mathematics and science teaching and learning. We argue that teacher perspective, teacher knowledge of the 'other subject' and of technological pedagogical content knowledge (TPACK), and teacher collaboration and support all impact on the implementation of an integrative approach to mathematics and science education.

  6. Applying Piaget's Theory of Cognitive Development to Mathematics Instruction

    Science.gov (United States)

    Ojose, Bobby

    2008-01-01

    This paper is based on a presentation given at National Council of Teachers of Mathematics (NCTM) in 2005 in Anaheim, California. It explicates the developmental stages of the child as posited by Piaget. The author then ties each of the stages to developmentally appropriate mathematics instruction. The implications in terms of not imposing…

  7. Applying recursive numerical integration techniques for solving high dimensional integrals

    International Nuclear Information System (INIS)

    Ammon, Andreas; Genz, Alan; Hartung, Tobias; Jansen, Karl; Volmer, Julia; Leoevey, Hernan

    2016-11-01

    The error scaling for Markov-Chain Monte Carlo techniques (MCMC) with N samples behaves like 1/√(N). This scaling makes it often very time intensive to reduce the error of computed observables, in particular for applications in lattice QCD. It is therefore highly desirable to have alternative methods at hand which show an improved error scaling. One candidate for such an alternative integration technique is the method of recursive numerical integration (RNI). The basic idea of this method is to use an efficient low-dimensional quadrature rule (usually of Gaussian type) and apply it iteratively to integrate over high-dimensional observables and Boltzmann weights. We present the application of such an algorithm to the topological rotor and the anharmonic oscillator and compare the error scaling to MCMC results. In particular, we demonstrate that the RNI technique shows an error scaling in the number of integration points m that is at least exponential.

  8. Applying recursive numerical integration techniques for solving high dimensional integrals

    Energy Technology Data Exchange (ETDEWEB)

    Ammon, Andreas [IVU Traffic Technologies AG, Berlin (Germany); Genz, Alan [Washington State Univ., Pullman, WA (United States). Dept. of Mathematics; Hartung, Tobias [King' s College, London (United Kingdom). Dept. of Mathematics; Jansen, Karl; Volmer, Julia [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Leoevey, Hernan [Humboldt Univ. Berlin (Germany). Inst. fuer Mathematik

    2016-11-15

    The error scaling for Markov-Chain Monte Carlo techniques (MCMC) with N samples behaves like 1/√(N). This scaling makes it often very time intensive to reduce the error of computed observables, in particular for applications in lattice QCD. It is therefore highly desirable to have alternative methods at hand which show an improved error scaling. One candidate for such an alternative integration technique is the method of recursive numerical integration (RNI). The basic idea of this method is to use an efficient low-dimensional quadrature rule (usually of Gaussian type) and apply it iteratively to integrate over high-dimensional observables and Boltzmann weights. We present the application of such an algorithm to the topological rotor and the anharmonic oscillator and compare the error scaling to MCMC results. In particular, we demonstrate that the RNI technique shows an error scaling in the number of integration points m that is at least exponential.

  9. Studies in Mathematics, Volume X. Applied Mathematics in the High School.

    Science.gov (United States)

    Schiffer, Max M.

    This publication contains a sequence of lectures given to high school mathematics teachers by the author. Applications of mathematics emphasized are elementary algebra, geometry, and matrix algebra. Included are: (1) an introduction concerning teaching applications of mathematics; (2) Chapter 1: Mechanics for the High School Student; (3) Chapter…

  10. Literature Review of Applying Visual Method to Understand Mathematics

    Directory of Open Access Journals (Sweden)

    Yu Xiaojuan

    2015-01-01

    Full Text Available As a new method to understand mathematics, visualization offers a new way of understanding mathematical principles and phenomena via image thinking and geometric explanation. It aims to deepen the understanding of the nature of concepts or phenomena and enhance the cognitive ability of learners. This paper collates and summarizes the application of this visual method in the understanding of mathematics. It also makes a literature review of the existing research, especially with a visual demonstration of Euler’s formula, introduces the application of this method in solving relevant mathematical problems, and points out the differences and similarities between the visualization method and the numerical-graphic combination method, as well as matters needing attention for its application.

  11. Annual report of the Center for Applied Mathematics, 1985

    International Nuclear Information System (INIS)

    1986-01-01

    Research on the mathematical aspects of wave propagation; particulate methods in fluid physics and mechanics; nonlinear problems; stochastic equations; martingales, and interacting particle systems; and computer programming and algorithms is presented [fr

  12. Annual report of the Center for Applied Mathematics, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    Research on the mathematical aspects of wave propagation; particulate methods in fluid physics and mechanics; nonlinear problems; stochastic equations; martingales, and interacting particle systems; and computer programming and algorithms is presented [fr

  13. A comparison between strategies applied by mathematicians and mathematics teachers to solve a problem

    OpenAIRE

    Guerrero-Ortiz, Carolina; Mena-Lorca, Jaime

    2015-01-01

    International audience; This study analyses the results obtained from comparing the paths shown by expert mathematicians on the one hand and mathematics teachers on the other, when addressing a hypothetical problem that requires the construction of a mathematical model. The research was conducted with a qualitative approach, applying a case study which involved a group of mathematics teachers and three experts from different mathematical areas. The results show that the process of constructin...

  14. Dealing with dissatisfaction in mathematical modelling to integrate QFD and Kano’s model

    Science.gov (United States)

    Retno Sari Dewi, Dian; Debora, Joana; Edy Sianto, Martinus

    2017-12-01

    The purpose of the study is to implement the integration of Quality Function Deployment (QFD) and Kano’s Model into mathematical model. Voice of customer data in QFD was collected using questionnaire and the questionnaire was developed based on Kano’s model. Then the operational research methodology was applied to build the objective function and constraints in the mathematical model. The relationship between voice of customer and engineering characteristics was modelled using linier regression model. Output of the mathematical model would be detail of engineering characteristics. The objective function of this model is to maximize satisfaction and minimize dissatisfaction as well. Result of this model is 62% .The major contribution of this research is to implement the existing mathematical model to integrate QFD and Kano’s Model in the case study of shoe cabinet.

  15. Applying an alternative mathematics pedagogy for students with weak mathematics: meta-analysis of alternative pedagogies

    Science.gov (United States)

    Lake, Warren; Wallin, Margie; Woolcott, Geoff; Boyd, Wendy; Foster, Alan; Markopoulos, Christos; Boyd, William

    2017-02-01

    Student mathematics performance and the need for work-ready graduates to be mathematics-competent is a core issue for many universities. While both student and teacher are responsible for learning outcomes, there is a need to explicitly acknowledge the weak mathematics foundation of many university students. A systematic literature review was undertaken of identified innovations and/or interventions that may lead to improvement in student outcomes for university mathematics-based units of study. The review revealed the importance of understanding the foundations of student performance in higher education mathematics learning, especially in first year. Pre-university mathematics skills were identified as significant in student retention and mathematics success at university, and a specific focus on student pre-university mathematics skill level was found to be more effective in providing help, rather than simply focusing on a particular at-risk group. Diagnostics tools were found to be important in identifying (1) student background and (2) appropriate intervention. The studies highlighted the importance of appropriate and validated interventions in mathematics teaching and learning, and the need to improve the learning model for mathematics-based subjects, communication and technology innovations.

  16. Research in progress in applied mathematics, numerical analysis, and computer science

    Science.gov (United States)

    1990-01-01

    Research conducted at the Institute in Science and Engineering in applied mathematics, numerical analysis, and computer science is summarized. The Institute conducts unclassified basic research in applied mathematics in order to extend and improve problem solving capabilities in science and engineering, particularly in aeronautics and space.

  17. Applied mathematical sciences research at Argonne, April 1, 1981-March 31, 1982

    International Nuclear Information System (INIS)

    Pieper, G.W.

    1982-01-01

    This report reviews the research activities in Applied Mathematical Sciences at Argonne National Laboratory for the period April 1, 1981, through March 31, 1982. The body of the report discusses various projects carried out in three major areas of research: applied analysis, computational mathematics, and software engineering. Information on section staff, visitors, workshops, and seminars is found in the appendices

  18. Instrumentation for Scientific Computing in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics.

    Science.gov (United States)

    1987-10-01

    include Security Classification) Instrumentation for scientific computing in neural networks, information science, artificial intelligence, and...instrumentation grant to purchase equipment for support of research in neural networks, information science, artificail intellignece , and applied mathematics...in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics Contract AFOSR 86-0282 Principal Investigator: Stephen

  19. Pre-Service Teachers' TPACK Competencies for Spreadsheet Integration: Insights from a Mathematics-Specific Instructional Technology Course

    Science.gov (United States)

    Agyei, Douglas D.; Voogt, Joke M.

    2015-01-01

    This article explored the impact of strategies applied in a mathematics instructional technology course for developing technology integration competencies, in particular in the use of spreadsheets, in pre-service teachers. In this respect, 104 pre-service mathematics teachers from a teacher training programme in Ghana enrolled in the mathematics…

  20. Pre-service teachers’ TPACK competencies for spreadsheet integration: insights from a mathematics-specific instructional technology course

    NARCIS (Netherlands)

    Agyei, D.D.; Voogt, J.M.

    2015-01-01

    This article explored the impact of strategies applied in a mathematics instructional technology course for developing technology integration competencies, in particular in the use of spreadsheets, in pre-service teachers. In this respect, 104 pre-service mathematics teachers from a teacher training

  1. Integrated sampling vs ion chromatography: Mathematical considerations

    International Nuclear Information System (INIS)

    Sundberg, L.L.

    1992-01-01

    This paper presents some general purpose considerations that can be utilized when comparisons are made between the results of integrated sampling over several hours or days, and ion chromatography where sample collection times are measured in minutes. The discussion is geared toward the measurement of soluble transition metal ions in BWR feedwater. Under steady-state conditions, the concentrations reported by both techniques should be in reasonable agreement. Transient operations effect both types of measurements. A simplistic model, applicable to both sampling techniques, is presented that demonstrates the effect of transients which occur during the acquisition of a steady-state sample. For a common set of conditions, the integrated concentration is proportional to the concentration and duration of the transient, and inversely proportional to the sample collection time. The adjustment of the collection period during a known transient allows an estimation of peak transient concentration. Though the probability of sampling a random transient with the integrated sampling technique is very high, the magnitude is severely diluted with long integration times. Transient concentrations are magnified with ion chromatography, but the probability of sampling a transient is significantly lower using normal ion chromatography operations. Various data averaging techniques are discussed for integrated sampling and IC determinations. The use of time-weighted averages appears to offer more advantages over arithmetic and geometric means for integrated sampling when the collection period is variable. For replicate steady-state ion chromatography determinations which bracket a transient sample, it may be advantageous to ignore the calculation of averages, and report the data as trending information only

  2. Integrating pedagogical content knowledge and pedagogical/psychological knowledge in mathematics

    Science.gov (United States)

    Harr, Nora; Eichler, Andreas; Renkl, Alexander

    2014-01-01

    In teacher education at universities, general pedagogical and psychological principles are often treated separately from subject matter knowledge and therefore run the risk of not being applied in the teaching subject. In an experimental study (N = 60 mathematics student teachers) we investigated the effects of providing aspects of general pedagogical/psychological knowledge (PPK) and pedagogical content knowledge (PCK) in an integrated or separated way. In both conditions (“integrated” vs. “separated”), participants individually worked on computer-based learning environments addressing the same topic: use and handling of multiple external representations, a central issue in mathematics. We experimentally varied whether PPK aspects and PCK aspects were treated integrated or apart from one another. As expected, the integrated condition led to greater application of pedagogical/psychological aspects and an increase in applying both knowledge types simultaneously compared to the separated condition. Overall, our findings indicate beneficial effects of an integrated design in teacher education. PMID:25191300

  3. Boolean integration. [applied to switching network synthesis

    Science.gov (United States)

    Tucker, J. H.; Tapia, M. A.; Bennett, A. W.

    1976-01-01

    This paper presents the necessary and sufficient conditions for a given differential expression to be compatibly integrable and it presents the necessary and sufficient conditions for a given expression to be exactly integrable. Methods are given for integrating a differential expression when it is exactly integrable and when it is compatibly integrable. The physical interpretation is given of the integral of order k, of a differential expression, and it is shown that any differential expression of the proper form is integrable by parts.

  4. Applying mathematical finance tools to the competitive Nordic electricity market

    OpenAIRE

    Vehviläinen, Iivo

    2004-01-01

    This thesis models competitive electricity markets using the methods of mathematical finance. Fundamental problems of finance are market price modelling, derivative pricing, and optimal portfolio selection. The same questions arise in competitive electricity markets. The thesis presents an electricity spot price model based on the fundamental stochastic factors that affect electricity prices. The resulting price model has sound economic foundations, is able to explain spot market price mo...

  5. ICT Integration Level of Mathematics Tutors of Colleges of Education ...

    African Journals Online (AJOL)

    ICT Integration Level of Mathematics Tutors of Colleges of Education in Ghana. ... International Journal of Pedagogy, Policy and ICT in Education ... The study used a developmental research design which is a disciplined inquiry conducted in the context of the development of a product or programme for the purpose of ...

  6. ICT Integration in Science and Mathematics Lessons: Teachers ...

    African Journals Online (AJOL)

    The study reported in this paper used Guskey's model (Guskey, 2000) to systematically investigate teachers' experiences about the professional development programme on ICT integration in teaching and learning of Science and Mathematics in secondary schools. The study employed survey research design and an ...

  7. Integrating quantitative thinking into an introductory biology course improves students' mathematical reasoning in biological contexts.

    Science.gov (United States)

    Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa

    2014-01-01

    Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students' apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course in which we integrated application of prerequisite mathematical skills with biology content and reasoning throughout all aspects of the course. In this paper, we describe the principles of our course design and present illustrative examples of course materials integrating mathematics and biology. We also designed an outcome assessment made up of items testing students' understanding of biology concepts and their ability to apply mathematical skills in biological contexts and administered it as a pre/postcourse test to students in the experimental section and other sections of the same course. Precourse results confirmed students' inability to spontaneously transfer their prerequisite mathematics skills to biological problems. Pre/postcourse outcome assessment comparisons showed that, compared with students in other sections, students in the experimental section made greater gains on integrated math/biology items. They also made comparable gains on biology items, indicating that integrating quantitative skills into an introductory biology course does not have a deleterious effect on students' biology learning.

  8. Integrating Quantitative Thinking into an Introductory Biology Course Improves Students’ Mathematical Reasoning in Biological Contexts

    Science.gov (United States)

    Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa

    2014-01-01

    Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students’ apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course in which we integrated application of prerequisite mathematical skills with biology content and reasoning throughout all aspects of the course. In this paper, we describe the principles of our course design and present illustrative examples of course materials integrating mathematics and biology. We also designed an outcome assessment made up of items testing students’ understanding of biology concepts and their ability to apply mathematical skills in biological contexts and administered it as a pre/postcourse test to students in the experimental section and other sections of the same course. Precourse results confirmed students’ inability to spontaneously transfer their prerequisite mathematics skills to biological problems. Pre/postcourse outcome assessment comparisons showed that, compared with students in other sections, students in the experimental section made greater gains on integrated math/biology items. They also made comparable gains on biology items, indicating that integrating quantitative skills into an introductory biology course does not have a deleterious effect on students’ biology learning. PMID:24591504

  9. Integrating spatial and numerical structure in mathematical patterning

    Science.gov (United States)

    Ni’mah, K.; Purwanto; Irawan, E. B.; Hidayanto, E.

    2018-03-01

    This paper reports a study monitoring the integrating spatial and numerical structure in mathematical patterning skills of 30 students grade 7th of junior high school. The purpose of this research is to clarify the processes by which learners construct new knowledge in mathematical patterning. Findings indicate that: (1) students are unable to organize the structure of spatial and numerical, (2) students were only able to organize the spatial structure, but the numerical structure is still incorrect, (3) students were only able to organize numerical structure, but its spatial structure is still incorrect, (4) students were able to organize both of the spatial and numerical structure.

  10. Applying science and mathematics to big data for smarter buildings.

    Science.gov (United States)

    Lee, Young M; An, Lianjun; Liu, Fei; Horesh, Raya; Chae, Young Tae; Zhang, Rui

    2013-08-01

    Many buildings are now collecting a large amount of data on operations, energy consumption, and activities through systems such as a building management system (BMS), sensors, and meters (e.g., submeters and smart meters). However, the majority of data are not utilized and are thrown away. Science and mathematics can play an important role in utilizing these big data and accurately assessing how energy is consumed in buildings and what can be done to save energy, make buildings energy efficient, and reduce greenhouse gas (GHG) emissions. This paper discusses an analytical tool that has been developed to assist building owners, facility managers, operators, and tenants of buildings in assessing, benchmarking, diagnosing, tracking, forecasting, and simulating energy consumption in building portfolios. © 2013 New York Academy of Sciences.

  11. Applied Wave Mathematics Selected Topics in Solids, Fluids, and Mathematical Methods

    CERN Document Server

    Quak, Ewald

    2009-01-01

    This edited volume addresses the importance of mathematics in wave-related research, and its tutorial style contributions provide educational material for courses or seminars. It presents highlights from research carried out at the Centre for Nonlinear Studies in Tallinn, Estonia, the Centre of Mathematics for Applications in Oslo, Norway, and by visitors from the EU project CENS-CMA. The example applications discussed include wave propagation in inhomogeneous solids, liquid crystals in mesoscopic physics, and long ship waves in shallow water bodies. Other contributions focus on specific mathe

  12. Applying mathematical finance tools to the competitive Nordic electricity market

    International Nuclear Information System (INIS)

    Vehvilaeinen, I.

    2004-01-01

    This thesis models competitive electricity markets using the methods of mathematical finance. Fundamental problems of finance are market price modelling, derivative pricing, and optimal portfolio selection. The same questions arise in competitive electricity markets. The thesis presents an electricity spot price model based on the fundamental stochastic factors that affect electricity prices. The resulting price model has sound economic foundations, is able to explain spot market price movements, and offers a computationally efficient way of simulating spot prices. The thesis shows that the connection between spot prices and electricity forward prices is nontrivial because electricity is a commodity that must be consumed immediately. Consequently, forward prices of different times are based on the supply-demand conditions at those times. This thesis introduces a statistical model that captures the main characteristics of observed forward price movements. The thesis presents the pricing problems relating to the common Nordic electricity derivatives, as well as the pricing relations between electricity derivatives. The special characteristics of electricity make spot electricity market incomplete. The thesis assumes the existence of a risk-neutral martingale measure so that formal pricing results can be obtained. Some concepts introduced in financial markets are directly usable in the electricity markets. The risk management application in this thesis uses a static optimal portfolio selection framework where Monte Carlo simulation provides quantitative results. The application of mathematical finance requires careful consideration of the special characteristics of the electricity markets. Economic theory and reasoning have to be taken into account when constructing financial models in competitive electricity markets. (orig.)

  13. Parallel Processing and Applied Mathematics. 10th International Conference, PPAM 2013. Revised Selected Papers

    DEFF Research Database (Denmark)

    The following topics are dealt with: parallel scientific computing; numerical algorithms; parallel nonnumerical algorithms; cloud computing; evolutionary computing; metaheuristics; applied mathematics; GPU computing; multicore systems; hybrid architectures; hierarchical parallelism; HPC systems......; power monitoring; energy monitoring; and distributed computing....

  14. Applied Mathematical Sciences research at Argonne, October 1, 1978-March 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Pieper, G. W. [ed.

    1980-01-01

    This report reviews the research activities of the Applied Mathematical Sciences Section for the period October 1, 1978, through March 31, 1980. The body of the report discusses various projects carried out in four major areas of research: applied analysis, computational mathematics, software engineering, and software clinics. Information on section staff, visitors, workshops, and seminars is found in the appendices. Descriptions of individual research topics are very brief.

  15. Mathematical theory of Feynman path integrals an introduction

    CERN Document Server

    Albeverio, Sergio A; Mazzucchi, Sonia

    2008-01-01

    Feynman path integrals, suggested heuristically by Feynman in the 40s, have become the basis of much of contemporary physics, from non-relativistic quantum mechanics to quantum fields, including gauge fields, gravitation, cosmology. Recently ideas based on Feynman path integrals have also played an important role in areas of mathematics like low-dimensional topology and differential geometry, algebraic geometry, infinite-dimensional analysis and geometry, and number theory. The 2nd edition of LNM 523 is based on the two first authors' mathematical approach of this theory presented in its 1st edition in 1976. To take care of the many developments since then, an entire new chapter on the current forefront of research has been added. Except for this new chapter and the correction of a few misprints, the basic material and presentation of the first edition has been maintained. At the end of each chapter the reader will also find notes with further bibliographical information.

  16. CIME-EMS Summer School on Applied Mathematics

    CERN Document Server

    Beyn, Wolf-Jürgen; Guglielmi, Nicola; Hairer, Ernst; Sanz-Serna, Jesús María; Zennaro, Marino

    2014-01-01

    This volume addresses some of the research areas in the general field of stability studies for differential equations, with emphasis on issues of concern for numerical studies. Topics considered include: (i) the long time integration of Hamiltonian Ordinary DEs and highly oscillatory systems, (ii) connection between stochastic DEs and geometric integration using the Markov chain Monte Carlo method, (iii) computation of dynamic patterns in evolutionary partial DEs, (iv) decomposition of matrices depending on parameters and localization of singularities, and (v) uniform stability analysis for time dependent linear initial value problems of ODEs. The problems considered in this volume are of interest to people working on numerical as well as qualitative aspects of differential equations, and it will serve both as a reference and as an entry point into further research.

  17. Preservice Teachers' Perceptions of the Integration of Mathematics, Reading, and Writing.

    Science.gov (United States)

    Reinke, Kathryn; Mokhtari, Kouider; Willner, Elizabeth

    1997-01-01

    Examined the perceptions of preservice elementary teachers enrolled in reading, mathematics, and integrating reading and mathematics methods courses about integrating mathematics, reading, and writing instruction at the elementary/middle school level. Surveys indicated that all students were generally positive about instructional integration. They…

  18. Signal integrity applied electromagnetics and professional practice

    CERN Document Server

    Russ, Samuel H

    2016-01-01

    This textbook teaches how to design working systems at very high frequencies. It is designed to introduce computer engineers to the design of extremely high speed digital systems. Combining an intuitive, physics-based approach to electromagnetics with a focus on solving realistic problems, the author presents concepts that are essential for computer and electrical engineers today. The book emphasizes an intuitive approach to electromagnetics, and then uses this foundation to show the reader how both physical phenomena can cause signals to propagate incorrectly; and how to solve commonly encountered issues. Emphasis is placed on real problems that the author has encountered in his professional career, integrating problem-solving strategies and real signal-integrity case studies throughout the presentation. Students are challenged to think about managing complex design projects and implementing successful engineering and manufacturing processes. Each chapter includes exercises to test concepts introduced.

  19. Integrative Systems Biology Applied to Toxicology

    DEFF Research Database (Denmark)

    Kongsbak, Kristine Grønning

    associated with combined exposure to multiple chemicals. Testing all possible combinations of the tens of thousands environmental chemicals is impractical. This PhD project was launched to apply existing computational systems biology methods to toxicological research. In this thesis, I present in three...... of a system thereby suggesting new ways of thinking specific toxicological endpoints. Furthermore, computational methods can serve as valuable input for the hypothesis generating phase of the preparations of a research project....

  20. Computational physics and applied mathematics capability review June 8-10, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Stephen R [Los Alamos National Laboratory

    2010-01-01

    Los Alamos National Laboratory will review its Computational Physics and Applied Mathematics (CPAM) capabilities in 2010. The goals of capability reviews are to assess the quality of science, technology, and engineering (STE) performed by the capability, evaluate the integration of this capability across the Laboratory and within the scientific community, examine the relevance of this capability to the Laboratory's programs, and provide advice on the current and future directions of this capability. This is the first such review for CPAM, which has a long and unique history at the Laboratory, starting from the inception of the Laboratory in 1943. The CPAM capability covers an extremely broad technical area at Los Alamos, encompassing a wide array of disciplines, research topics, and organizations. A vast array of technical disciplines and activities are included in this capability, from general numerical modeling, to coupled multi-physics simulations, to detailed domain science activities in mathematics, methods, and algorithms. The CPAM capability involves over 12 different technical divisions and a majority of our programmatic and scientific activities. To make this large scope tractable, the CPAM capability is broken into the following six technical 'themes.' These themes represent technical slices through the CPAM capability and collect critical core competencies of the Laboratory, each of which contributes to the capability (and each of which is divided into multiple additional elements in the detailed descriptions of the themes in subsequent sections), as follows. Theme 1: Computational Fluid Dynamics - This theme speaks to the vast array of scientific capabilities for the simulation of fluids under shocks, low-speed flow, and turbulent conditions - which are key, historical, and fundamental strengths of the Laboratory. Theme 2: Partial Differential Equations - The technical scope of this theme is the applied mathematics and numerical solution

  1. Recent progress and modern challenges in applied mathematics, modeling and computational science

    CERN Document Server

    Makarov, Roman; Belair, Jacques

    2017-01-01

    This volume is an excellent resource for professionals in various areas of applications of mathematics, modeling, and computational science. It focuses on recent progress and modern challenges in these areas. The volume provides a balance between fundamental theoretical and applied developments, emphasizing the interdisciplinary nature of modern trends and detailing state-of-the-art achievements in Applied Mathematics, Modeling, and Computational Science.  The chapters have been authored by international experts in their respective fields, making this book ideal for researchers in academia, practitioners, and graduate students. It can also serve as a reference in the diverse selected areas of applied mathematics, modelling, and computational sciences, and is ideal for interdisciplinary collaborations.

  2. Applied Integrated Design in Composite UAV Development

    Science.gov (United States)

    Vasić, Zoran; Maksimović, Stevan; Georgijević, Dragutin

    2018-04-01

    This paper presents a modern approach to integrated development of Unmanned Aerial Vehicle made of laminated composite materials from conceptual design, through detail design, strength and stiffness analyses, definition and management of design and production data, detailed tests results and other activities related to development of laminated composite structures with main of its particularities in comparison to metal structures. Special attention in this work is focused to management processes of product data during life cycle of an UAV and experimental tests of its composite wing. Experience shows that the automation management processes of product data during life cycle, as well as processes of manufacturing, are inevitable if a company wants to get cheaper and quality composite aircraft structures. One of the most effective ways of successful management of product data today is Product Life cycle Management (PLM). In terms of the PLM, a spectrum of special measures and provisions has to be implemented when defining fiber-reinforced composite material structures in comparison to designing with metals which is elaborated in the paper.

  3. Effects of Mathematics Integration in a Teaching Methods Course on Mathematics Ability of Preservice Agricultural Education Teachers

    Science.gov (United States)

    Stripling, Christopher T.; Roberts, T. Grady

    2014-01-01

    The purpose of this study was to determine the effects of incorporating mathematics teaching and integration strategies (MTIS) in a teaching methods course on preservice agricultural teachers' mathematics ability. The research design was quasi-experimental and utilized a nonequivalent control group. The MTIS treatment had a positive effect on the…

  4. 1st International Conference on Industrial and Applied Mathematics of the Indian Subcontinent

    CERN Document Server

    Kočvara, Michal

    2002-01-01

    An important objective of the study of mathematics is to analyze and visualize phenomena of nature and real world problems for its proper understanding. Gradually, it is also becoming the language of modem financial instruments. To project some of these developments, the conference was planned under the joint auspices of the Indian Society of Industrial and Applied mathematics (ISlAM) and Guru Nanak Dev University (G. N. D. U. ), Amritsar, India. Dr. Pammy Manchanda, chairperson of Mathematics Department, G. N. D. U. , was appointed the organizing secretary and an organizing committee was constituted. The Conference was scheduled in World Mathematics Year 2000 but, due one reason or the other, it could be held during 22. -25. January 2001. How­ ever, keeping in view the suggestion of the International Mathematics union, we organized two symposia, Role of Mathematics in industrial development and vice-versa and How image of Mathematics can be improved in public. These two symposia aroused great interest among...

  5. APPLYING PROFESSIONALLY ORIENTED PROBLEMS OF MATHEMATICAL MODELING IN TEACHING STUDENTS OF ENGINEERING DEPARTMENTS

    Directory of Open Access Journals (Sweden)

    Natal’ya Yur’evna Gorbunova

    2017-06-01

    Full Text Available We described several aspects of organizing student research work, as well as solving a number of mathematical modeling problems: professionally-oriented, multi-stage, etc. We underlined the importance of their economic content. Samples of using such problems in teaching Mathematics at agricultural university were given. Several questions connected with information material selection and peculiarities of research problems application were described. Purpose. The author aims to show the possibility and necessity of using professionally-oriented problems of mathematical modeling in teaching Mathematics at agricultural university. The subject of analysis is including such problems into educational process. Methodology. The main research method is dialectical method of obtaining knowledge of finding approaches to selection, writing and using mathematical modeling and professionally-oriented problems in educational process; the methodology is study of these methods of obtaining knowledge. Results. As a result of analysis of literature, students opinions, observation of students work, and taking into account personal teaching experience, it is possible to make conclusion about importance of using mathematical modeling problems, as it helps to systemize theoretical knowledge, apply it to practice, raise students study motivation in engineering sphere. Practical implications. Results of the research can be of interest for teachers of Mathematics in preparing Bachelor and Master students of engineering departments of agricultural university both for theoretical research and for modernization of study courses.

  6. Research in progress in applied mathematics, numerical analysis, fluid mechanics, and computer science

    Science.gov (United States)

    1994-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.

  7. Integrating Mathematics, Science, and Language Arts Instruction Using the World Wide Web.

    Science.gov (United States)

    Clark, Kenneth; Hosticka, Alice; Kent, Judi; Browne, Ron

    1998-01-01

    Addresses issues of access to World Wide Web sites, mathematics and science content-resources available on the Web, and methods for integrating mathematics, science, and language arts instruction. (Author/ASK)

  8. Student School-Level Math Knowledge Influence on Applied Mathematics Study Courses

    Directory of Open Access Journals (Sweden)

    Rima Kriauzienė

    2013-08-01

    Full Text Available Purpose—to find out the influence of student school-level math knowledge on courses of applied mathematics studies: what is the importance of having a math maturity exam for students, an estimate of social science students’ motivation to learn math, and attendance of seminars. Students who did take the state exam attended more seminars than the students who did not take math exam, and vice versa. Design/methodology/approach—this work describes research which involved persistent MRU Public Administration degree program second-year students. Doing statistical analysis of the data will be a link between school-level mathematics knowledge and attendance activity in seminars and motivation to learn mathematics. Findings—the research is expected to establish a connection between school-level mathematics knowledge and student motivation to learn mathematics. It was found that there is no correlation between student opinions about school mathematics courses and result of their first test. Determine relationship between attendance of exercises and public examinations. Between the stored type of exam and test results are dependent. Determine relationship between exercise attendance and test results, as shown by the calculated correlation coefficient Based on the results, it’s recommended to increase the number of exercises. A more refined analysis of the data is subject to further investigation. Research limitations/implications—this method is just one of the possible ways of application. Practical implications—that kind of research and its methodology can be applied not only to the subject of applied mathematics studies, but also to other natural or social sciences. Originality/Value—empirical experiment data can be used in other studies of Educology nature analysis.

  9. Student School-Level Math Knowledge Influence on Applied Mathematics Study Courses

    Directory of Open Access Journals (Sweden)

    Tadas Laukevičius

    2011-12-01

    Full Text Available Purpose—to find out the influence of student school-level math knowledge on courses of applied mathematics studies: what is the importance of having a math maturity exam for students, an estimate of social science students’ motivation to learn math, and attendance of seminars. Students who did take the state exam attended more seminars than the students who did not take math exam, and vice versa.Design/methodology/approach—this work describes research which involved persistent MRU Public Administration degree program second-year students. Doing statistical analysis of the data will be a link between school-level mathematics knowledge and attendance activity in seminars and motivation to learn mathematics.Findings—the research is expected to establish a connection between school-level mathematics knowledge and student motivation to learn mathematics.It was found that there is no correlation between student opinions about school mathematics courses and result of their first test.Determine relationship between attendance of exercises and public examinations.Between the stored type of exam and test results are dependent.Determine relationship between exercise attendance and test results, as shown by the calculated correlation coefficientBased on the results, it’s recommended to increase the number of exercises. A more refined analysis of the data is subject to further investigation.Research limitations/implications—this method is just one of the possible ways of application.Practical implications—that kind of research and its methodology can be applied not only to the subject of applied mathematics studies, but also to other natural or social sciences.Originality/Value—empirical experiment data can be used in other studies of Educology nature analysis.

  10. Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model.

    Science.gov (United States)

    Said, Nadia; Engelhart, Michael; Kirches, Christian; Körkel, Stefan; Holt, Daniel V

    2016-01-01

    Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods.

  11. Proceedings: Summer Conference for College Teachers on Applied Mathematics, University of Missouri-Rolla, 1971.

    Science.gov (United States)

    Committee on the Undergraduate Program in Mathematics, Berkeley, CA.

    Proceedings from four sessions of the Summer Conference for College Teachers on Applied Mathematics are presented. The four sessions were: (1) Applications of Elementary Calculus, (2) Applications of Linear Algebra, (3) Applications of Elementary Differential Equations, and (4) Applications of Probability and Statistics. Nine lectures were given…

  12. On the Formal-Logical Analysis of the Foundations of Mathematics Applied to Problems in Physics

    Science.gov (United States)

    Kalanov, Temur Z.

    2016-03-01

    Analysis of the foundations of mathematics applied to problems in physics was proposed. The unity of formal logic and of rational dialectics is methodological basis of the analysis. It is shown that critical analysis of the concept of mathematical quantity - central concept of mathematics - leads to the following conclusion: (1) The concept of ``mathematical quantity'' is the result of the following mental operations: (a) abstraction of the ``quantitative determinacy of physical quantity'' from the ``physical quantity'' at that the ``quantitative determinacy of physical quantity'' is an independent object of thought; (b) abstraction of the ``amount (i.e., abstract number)'' from the ``quantitative determinacy of physical quantity'' at that the ``amount (i.e., abstract number)'' is an independent object of thought. In this case, unnamed, abstract numbers are the only sign of the ``mathematical quantity''. This sign is not an essential sign of the material objects. (2) The concept of mathematical quantity is meaningless, erroneous, and inadmissible concept in science because it represents the following formal-logical and dialectical-materialistic error: negation of the existence of the essential sign of the concept (i.e., negation of the existence of the essence of the concept) and negation of the existence of measure of material object.

  13. A simple mathematical model of society collapse applied to Easter Island

    Science.gov (United States)

    Bologna, M.; Flores, J. C.

    2008-02-01

    In this paper we consider a mathematical model for the evolution and collapse of the Easter Island society. Based on historical reports, the available primary resources consisted almost exclusively in the trees, then we describe the inhabitants and the resources as an isolated dynamical system. A mathematical, and numerical, analysis about the Easter Island community collapse is performed. In particular, we analyze the critical values of the fundamental parameters and a demographic curve is presented. The technological parameter, quantifying the exploitation of the resources, is calculated and applied to the case of another extinguished civilization (Copán Maya) confirming the consistency of the adopted model.

  14. 3rd International Conference on Computer Science, Applied Mathematics and Applications

    CERN Document Server

    Nguyen, Ngoc; Do, Tien

    2015-01-01

    This volume contains the extended versions of papers presented at the 3rd International Conference on Computer Science, Applied Mathematics and Applications (ICCSAMA 2015) held on 11-13 May, 2015 in Metz, France. The book contains 5 parts: 1. Mathematical programming and optimization: theory, methods and software, Operational research and decision making, Machine learning, data security, and bioinformatics, Knowledge information system, Software engineering. All chapters in the book discuss theoretical and algorithmic as well as practical issues connected with computation methods & optimization methods for knowledge engineering and machine learning techniques.  

  15. Attitudes Toward Integration as Perceived by Preservice Teachers Enrolled in an Integrated Mathematics, Science, and Technology Teacher Education Program.

    Science.gov (United States)

    Berlin, Donna F.; White, Arthur L.

    2002-01-01

    Describes the purpose of the Master of Education (M. Ed.) Program in Integrated Mathematics, Science, and Technology Education (MSAT Program) at The Ohio State University and discusses preservice teachers' attitudes and perceptions toward integrated curriculum. (Contains 35 references.) (YDS)

  16. Preface to the Special Issue on the International Workshop on Applied Mathematics Errachidia (IWAM’2017

    Directory of Open Access Journals (Sweden)

    M. R. Sidi Ammi

    2017-04-01

    Full Text Available The International Workshop on Applied Mathematics, Errachidia (IWAM’2017 took place in Errachidia, Morocco at the Faculty of Sciences and Technics during March 13, 2017 (https://iwam2017.sciencesconf.org/. The workshop was held with the support of FST Errachidia, the University Moulay Isma¨ıl. It is aimed at celebrating the collaborative research in applied mathematics by the mathematicians of the FST Errachidia, the Systems and Control Group of CIDMA, University of Aveiro, and with the MIA Lab, University of La Rochelle. It was attended by about 100 Mathematicians and Ph.D. and M.S. students, coming from universities from different countries, such as Algeria, Egypt, France, Portugal, and Morocco. The aim of IWAM’2017 is to bring researchers and professionals to discuss recent developments in both theoretical and applied mathematics, to create the knowledge exchange platform between mathematicians. The workshop is broad-based that covers several branches of engineering sciences, mathematics and interdisciplinary researches mainly in the fields of optimization and variational analysis, theoretical, asymptotic and numerical analysis of ordinary, partial and fractional differential equations

  17. Path Integration Applied to Structural Systems with Uncertain Properties

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Köylüoglu, H. Ugur

    Path integration (cell-to-cell mapping) method is applied to evaluate the joint probability density function (jpdf) of the response of the structural systems, with uncertain properties, subject to white noise excitation. A general methodology to deal with uncertainties is outlined and applied...... to the friction controlled slip of a structure on a foundation where the friction coefficient is modelled as a random variable. Exact results derived using the total probability theorem are compared to the ones obtained via path integration....

  18. Variables that Affect Math Teacher Candidates' Intentions to Integrate Computer-Assisted Mathematics Education (CAME)

    Science.gov (United States)

    Erdogan, Ahmet

    2010-01-01

    Based on Social Cognitive Carier Theory (SCCT) (Lent, Brown, & Hackett, 1994, 2002), this study tested the effects of mathematics teacher candidates' self-efficacy in, outcome expectations from, and interest in CAME on their intentions to integrate Computer-Assisted Mathematics Education (CAME). While mathematics teacher candidates' outcome…

  19. Developing the STS sound pollution unit for enhancing students' applying knowledge among science technology engineering and mathematics

    Science.gov (United States)

    Jumpatong, Sutthaya; Yuenyong, Chokchai

    2018-01-01

    STEM education suggested that students should be enhanced to learn science with integration between Science, Technology, Engineering and Mathematics. To help Thai students make sense of relationship between Science, Technology, Engineering and Mathematics, this paper presents learning activities of STS Sound Pollution. The developing of STS Sound Pollution is a part of research that aimed to enhance students' perception of the relationship between Science Technology Engineering and Mathematics. This paper will discuss how to develop Sound Pollution through STS approach in framework of Yuenyong (2006) where learning activities were provided based on 5 stages. These included (1) identification of social issues, (2) identification of potential solutions, (3) need for knowledge, (4) decisionmaking, and (5) socialization stage. The learning activities could be highlighted as following. First stage, we use video clip of `Problem of people about Sound Pollution'. Second stage, students will need to identification of potential solutions by design Home/Factory without noisy. The need of scientific and other knowledge will be proposed for various alternative solutions. Third stage, students will gain their scientific knowledge through laboratory and demonstration of sound wave. Fourth stage, students have to make decision for the best solution of designing safety Home/Factory based on their scientific knowledge and others (e.g. mathematics, economics, art, value, and so on). Finally, students will present and share their Design Safety Home/Factory in society (e.g. social media or exhibition) in order to validate their ideas and redesigning. The paper, then, will discuss how those activities would allow students' applying knowledge of science technology engineering, mathematics and others (art, culture and value) for their possible solution of the STS issues.

  20. Ways That Preservice Teachers Integrate Children's Literature into Mathematics Lessons

    Science.gov (United States)

    Rogers, Rachelle Meyer; Cooper, Sandi; Nesmith, Suzanne M.; Purdum-Cassidy, Barbara

    2015-01-01

    Children's literature involving mathematics provides a common, natural context for the sharing of mathematics. To learn more about how preservice teachers included children's literature in their mathematics lessons, a study was conducted over two semesters during a required field experience component of an undergraduate teacher education program.…

  1. Washback Effect of University Entrance exams in Applied Mathematics to Social Sciences.

    Science.gov (United States)

    Rodríguez-Muñiz, Luis J; Díaz, Patricia; Mier, Verónica; Alonso, Pedro

    2016-01-01

    Curricular issues of subject Applied Mathematics to Social Sciences are studied in relation to university entrance exams performed in several Spanish regions between 2009-2014. By using quantitative and qualitative analyses, it has been studied how these exams align with curriculum and how they produce a washback on curriculum and teachers' work. Additionally, one questionnaire about teachers' practices has been performed, in order to find out how the exams are influencing teaching methodology development. Main results obtained show that evaluation is producing a bias on the official curriculum, substantially simplifying the specific orientation that should guide applied mathematics. Furthermore, teachers' practices are influenced by the exams, and they usually approach their teaching methodology to the frequent types of exams. Also, slight differences among the teachers lead to distinguish two behavioral subgroups. Results can also be useful in an international context, because of the importance of standardized exit exams in OECD countries.

  2. Washback Effect of University Entrance exams in Applied Mathematics to Social Sciences

    Science.gov (United States)

    Díaz, Patricia; Mier, Verónica; Alonso, Pedro

    2016-01-01

    Curricular issues of subject Applied Mathematics to Social Sciences are studied in relation to university entrance exams performed in several Spanish regions between 2009–2014. By using quantitative and qualitative analyses, it has been studied how these exams align with curriculum and how they produce a washback on curriculum and teachers’ work. Additionally, one questionnaire about teachers’ practices has been performed, in order to find out how the exams are influencing teaching methodology development. Main results obtained show that evaluation is producing a bias on the official curriculum, substantially simplifying the specific orientation that should guide applied mathematics. Furthermore, teachers’ practices are influenced by the exams, and they usually approach their teaching methodology to the frequent types of exams. Also, slight differences among the teachers lead to distinguish two behavioral subgroups. Results can also be useful in an international context, because of the importance of standardized exit exams in OECD countries. PMID:27936103

  3. THE INTEGRATION MODEL OF SYSTEMS OF DISTANCE AND OF TRADITIONAL MATHEMATICS LEARNING OF SENIOR PUPILS

    OpenAIRE

    Игорь Николаевич Макарьев

    2013-01-01

    In this article the author dwells on the content and structure of the model of integration of system of distance learning to mathematics of senior pupils and traditional paradigm of education. This kind of integration is based on such principles as independence, individualization, flexibility, nonlinearity, openness. Specifics of the methodological support of distance mathematics learning are also analyzed. Particularly the author asserts that the system of distance mathematics learning can t...

  4. The Benefits of Fine Art Integration into Mathematics in Primary School

    Science.gov (United States)

    Brezovnik, Anja

    2015-01-01

    The main purpose of the article is to research the effects of the integration of fine art content into mathematics on students at the primary school level. The theoretical part consists of the definition of arts integration into education, a discussion of the developmental process of creative mathematical thinking, an explanation of the position…

  5. Integrating Touch-Enabled and Mobile Devices into Contemporary Mathematics Education

    Science.gov (United States)

    Meletiou-Mavrotheris, Maria, Ed.; Mavrou, Katerina, Ed.; Paparistodemou, Efi, Ed.

    2015-01-01

    Despite increased interest in mobile devices as learning tools, the amount of available primary research studies on their integration into mathematics teaching and learning is still relatively small due to the novelty of these technologies. "Integrating Touch-Enabled and Mobile Devices into Contemporary Mathematics Education" presents…

  6. Mathematical Formulation of Relationship between Applied Marketing Effort and Potential Ability of Determining Market Share

    Directory of Open Access Journals (Sweden)

    Mokhtar M. Metwally

    2008-01-01

    Full Text Available The aim of this paper is to formulate the mathematical relationship between firms potential ability and their applied efforts to attract the body of unattached customers. A method is devised in this paper by which management techniques imposed by a particular firm can evaluate its market share. This paper demonstrates the relationship between the applied marketing effort of management and the potential ability of the firm in determining its market share. This paper also investigates the effect of a number of simultaneous marketing impulses on the movement of the body of unattached customers and hence on the size of the market share.

  7. Mathematical model of an integrated circuit cooling through cylindrical rods

    Directory of Open Access Journals (Sweden)

    Beltrán-Prieto Luis Antonio

    2017-01-01

    Full Text Available One of the main challenges in integrated circuits development is to propose alternatives to handle the extreme heat generated by high frequency of electrons moving in a reduced space that cause overheating and reduce the lifespan of the device. The use of cooling fins offers an alternative to enhance the heat transfer using combined a conduction-convection systems. Mathematical model of such process is important for parametric design and also to gain information about temperature distribution along the surface of the transistor. In this paper, we aim to obtain the equations for heat transfer along the chip and the fin by performing energy balance and heat transfer by conduction from the chip to the rod, followed by dissipation to the surrounding by convection. Newton's law of cooling and Fourier law were used to obtain the equations that describe the profile temperature in the rod and the surface of the chip. Ordinary differential equations were obtained and the respective analytical solutions were derived after consideration of boundary conditions. The temperature along the rod decreased considerably from the initial temperature (in contatct with the chip surface. This indicates the benefit of using a cilindrical rod to distribute the heat generated in the chip.

  8. The Benefits of Fine Art Integration into Mathematics in Primary School

    Directory of Open Access Journals (Sweden)

    Anja Brezovnik

    2015-09-01

    Full Text Available The main purpose of the article is to research the effects of the integration of fine art content into mathematics on students at the primary school level. The theoretical part consists of the definition of arts integration into education, a discussion of the developmental process of creative mathematical thinking, an explanation of the position of art and mathematics in education today, and a summary of the benefits of arts integration and its positive effects on students. The empirical part reports on the findings of a pedagogical experiment involving two different ways of teaching fifth-grade students: the control group was taught mathematics in a traditional way, while the experimental group was taught with the integration of fine art content into the mathematics lessons. At the end of the teaching periods, four mathematics tests were administered in order to determine the difference in knowledge between the control group and the experimental group. The results of our study confirmed the hypotheses, as we found positive effects of fine art integration into mathematics, with the experimental group achieving higher marks in the mathematics tests than the control group. Our results are consistent with the findings of previous research and studies, which have demonstrated and confirmed that long-term participation in fine art activities offers advantages related to mathematical reasoning, such as intrinsic motivation, visual imagination and reflection on how to generate creative ideas.

  9. Partial differential equations of mathematical physics and integral equations

    CERN Document Server

    Guenther, Ronald B

    1996-01-01

    This book was written to help mathematics students and those in the physical sciences learn modern mathematical techniques for setting up and analyzing problems. The mathematics used is rigorous, but not overwhelming, while the authors carefully model physical situations, emphasizing feedback among a beginning model, physical experiments, mathematical predictions, and the subsequent refinement and reevaluation of the physical model itself. Chapter 1 begins with a discussion of various physical problems and equations that play a central role in applications. The following chapters take up the t

  10. Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model.

    Directory of Open Access Journals (Sweden)

    Nadia Said

    Full Text Available Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods.

  11. Comprehensive applied mathematical modeling in the natural and engineering sciences theoretical predictions compared with data

    CERN Document Server

    Wollkind, David J

    2017-01-01

    This text demonstrates the process of comprehensive applied mathematical modeling through the introduction of various case studies.  The case studies are arranged in increasing order of complexity based on the mathematical methods required to analyze the models. The development of these methods is also included, providing a self-contained presentation. To reinforce and supplement the material introduced, original problem sets are offered involving case studies closely related to the ones presented.  With this style, the text’s perspective, scope, and completeness of the subject matter are considered unique. Having grown out of four self-contained courses taught by the authors, this text will be of use in a two-semester sequence for advanced undergraduate and beginning graduate students, requiring rudimentary knowledge of advanced calculus and differential equations, along with a basic understanding of some simple physical and biological scientific principles. .

  12. Heat integration of an Olefins Plant: Pinch Analysis and mathematical optimization working together

    Directory of Open Access Journals (Sweden)

    M. Beninca

    2011-03-01

    Full Text Available This work explores a two-step, complexity reducing methodology, to analyze heat integration opportunities of an existing Olefins Plant, identify and quantify reduction of energy consumption, and propose changes of the existing heat exchanger network to achieve these goals. Besides the analysis of plant design conditions, multiple operational scenarios were considered to propose modifications for handling real plant operation (flexibility. On the strength of plant complexity and large dimension, work methodology was split into two parts: initially, the whole plant was evaluated with traditional Pinch Analysis tools. Several opportunities were identified and modifications proposed. Modifications were segregated to represent small and independent portions of the original process. One of them was selected to be re-analyzed, considering two scenarios. Reduction of problem dimension allowed mathematical methodologies (formulation with decomposition, applying LP, MILP and NLP optimization methods to synthesize flexible networks to be applied, generating a feasible modification capable of fulfilling the proposed operational scenarios.

  13. International seminar series on mathematics and applied mathematics and a series of three focused international research workshops on engineering mathematics organised by the Research Environment in Mathematics and Applied Mathematics at Mälardalen University from autumn 2014 to autumn 2015: the International Workshop on Engineering Mathematics for Electromagnetics and Health Technology; the International Workshop on Engineering Mathematics, Algebra, Analysis and Electromagnetics; and the 1st Swedish-Estonian International Workshop on Engineering Mathematics, Algebra, Analysis and Applications

    CERN Document Server

    Rancic, Milica

    2016-01-01

    This book highlights the latest advances in engineering mathematics with a main focus on the mathematical models, structures, concepts, problems and computational methods and algorithms most relevant for applications in modern technologies and engineering. It addresses mathematical methods of algebra, applied matrix analysis, operator analysis, probability theory and stochastic processes, geometry and computational methods in network analysis, data classification, ranking and optimisation. The individual chapters cover both theory and applications, and include a wealth of figures, schemes, algorithms, tables and results of data analysis and simulation. Presenting new methods and results, reviews of cutting-edge research, and open problems for future research, they equip readers to develop new mathematical methods and concepts of their own, and to further compare and analyse the methods and results discussed. The book consists of contributed chapters covering research developed as a result of a focused interna...

  14. The Integration of Mathematics in Middle School Science: Student and Teacher Impacts Related to Science Achievement and Attitudes towards Integration

    Science.gov (United States)

    McHugh, Luisa

    2016-01-01

    Contemporary research has suggested that in order for students to compete globally in the 21st century workplace, pedagogy must shift to include the integration of science and mathematics, where teachers effectively incorporate the two disciplines seamlessly. Mathematics facilitates a deeper understanding of science concepts and has been linked to…

  15. Influences of Technology Integrated Professional Development Course on Mathematics Teachers

    Science.gov (United States)

    Kul, Umit

    2018-01-01

    The aim of this study was to explore the degree to which a professional development (PD) program designed using GeoGebra influences a group of Turkish middle school teachers' beliefs in relation to mathematics and role of GeoGebra in mathematics education. In order to collect the required data, the PD course was established to provide six teachers…

  16. An Integrated Approach to Mathematical Modeling: A Classroom Study.

    Science.gov (United States)

    Doerr, Helen M.

    Modeling, simulation, and discrete mathematics have all been identified by professional mathematics education organizations as important areas for secondary school study. This classroom study focused on the components and tools for modeling and how students use these tools to construct their understanding of contextual problems in the content area…

  17. Mathematical Description and Mechanistic Reasoning: A Pathway toward STEM Integration

    Science.gov (United States)

    Weinberg, Paul J.

    2017-01-01

    Because reasoning about mechanism is critical to disciplined inquiry in science, technology, engineering, and mathematics (STEM) domains, this study focuses on ways to support the development of this form of reasoning. This study attends to how mechanistic reasoning is constituted through mathematical description. This study draws upon Smith's…

  18. Mathematical and Scientific Foundations for an Integrative Engineering Curriculum.

    Science.gov (United States)

    Carr, Robin; And Others

    1995-01-01

    Describes the Mathematical and Scientific Foundations of Engineering curriculum which emphasizes the mathematical and scientific concepts common to all engineering fields. Scientists and engineers together devised topics and experiments that emphasize the relevance of theory to real-world applications. Presents material efficiently while building…

  19. The Effectiveness of Guided Discovery Learning to Teach Integral Calculus for the Mathematics Students of Mathematics Education Widya Dharma University

    OpenAIRE

    Yuliana, Yuliana; Tasari, Tasari; Wijayanti, Septiana

    2017-01-01

    The objectives of this research are (1) to develop Guided Discovery Learning in integral calculus subject; (2) to identify the effectiveness of Guided Discovery Learning in improving the students' understanding toward integral calculus subject. This research was quasy experimental research with the students of even semester in Mathematics Education Widya Dharma University as the sample. Cluster Random sampling was conducted to determine control group that was taught using Conventional model a...

  20. How we understand mathematics conceptual integration in the language of mathematical description

    CERN Document Server

    Woźny, Jacek

    2018-01-01

    This volume examines mathematics as a product of the human mind and analyzes the language of "pure mathematics" from various advanced-level sources. Through analysis of the foundational texts of mathematics, it is demonstrated that math is a complex literary creation, containing objects, actors, actions, projection, prediction, planning, explanation, evaluation, roles, image schemas, metonymy, conceptual blending, and, of course, (natural) language. The book follows the narrative of mathematics in a typical order of presentation for a standard university-level algebra course, beginning with analysis of set theory and mappings and continuing along a path of increasing complexity. At each stage, primary concepts, axioms, definitions, and proofs will be examined in an effort to unfold the tell-tale traces of the basic human cognitive patterns of story and conceptual blending. This book will be of interest to mathematicians, teachers of mathematics, cognitive scientists, cognitive linguists, and anyone interested...

  1. The Gap between Expectations and Reality: Integrating Computers into Mathematics Classrooms

    Science.gov (United States)

    Guven, Bulent; Cakiroglu, Unal; Akkan, Yasar

    2009-01-01

    As a result of dramatic changes in mathematics education around the world, in Turkey both elementary and secondary school mathematics curriculums have changed in the light of new demands since 2005. In order to perform the expected change in newly developed curriculum, computer should be integrated into learning and teaching process. Teachers'…

  2. Secondary Mathematics Pre-Service Teachers' Processes of Selection and Integration of Technology

    Science.gov (United States)

    Uzan, Erol

    2017-01-01

    This study investigated secondary mathematics pre-service teachers' (PSTs) knowledge of resources in terms of digital technologies, and explored the processes of both selection and integration of technology into their lesson plans. This study employed a case study design. Participants were six secondary mathematics PSTs who enrolled in a methods…

  3. Longitudinal Effects of Technology Integration and Teacher Professional Development on Students' Mathematics Achievement

    Science.gov (United States)

    Bicer, Ali; Capraro, Robert M.

    2017-01-01

    MathForward is a program that provides teacher professional development and integrates the use of technology as a tool in the classroom. The present study examined students' mathematics growth from 2012 to 2013 and observed how students' mathematics scores changed after their school implemented the MathForward program. The sample consisted of two…

  4. A Special Assignment from NASA: Understanding Earth's Atmosphere through the Integration of Science and Mathematics

    Science.gov (United States)

    Fox, Justine E.; Glen, Nicole J.

    2012-01-01

    Have your students ever wondered what NASA scientists do? Have they asked you what their science and mathematics lessons have to do with the real world? This unit about Earth's atmosphere can help to answer both of those questions. The unit described here showcases "content specific integration" of science and mathematics in that the lessons meet…

  5. Integrating the Use of Interdisciplinary Learning Activity Task in Creating Students' Mathematical Knowledge

    Science.gov (United States)

    Mahanin, Hajah Umisuzimah Haji; Shahrill, Masitah; Tan, Abby; Mahadi, Mar Aswandi

    2017-01-01

    This study investigated the use of interdisciplinary learning activity task to construct students' knowledge in Mathematics, specifically on the topic of scale drawing application. The learning activity task involved more than one academic discipline, which is Mathematics, English Language, Art, Geography and integrating the Brunei Darussalam…

  6. Current research activities: Applied and numerical mathematics, fluid mechanics, experiments in transition and turbulence and aerodynamics, and computer science

    Science.gov (United States)

    1992-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, fluid mechanics including fluid dynamics, acoustics, and combustion, aerodynamics, and computer science during the period 1 Apr. 1992 - 30 Sep. 1992 is summarized.

  7. A Network for Integrated Science and Mathematics Teaching and Learning. NCSTL Monograph Series, #2.

    Science.gov (United States)

    Berlin, Donna F.; White, Arthur L.

    This monograph presents a summary of the results of the Wingspread Conference in April, 1991 concerning the viability and future of the concept of integration of mathematics and science teaching and learning. The conference focused on three critical issues: (1) development of definitions of integration and a rationale for integrated teaching and…

  8. The Enhancement of Mathematical Reasoning Ability of Junior High School Students by Applying Mind Mapping Strategy

    Science.gov (United States)

    Ayal, Carolina S.; Kusuma, Yaya S.; Sabandar, Jozua; Dahlan, Jarnawi Afgan

    2016-01-01

    Mathematical reasoning ability, are component that must be governable by the student. Mathematical reasoning plays an important role, both in solving problems and in conveying ideas when learning mathematics. In fact there ability are not still developed well, even in middle school. The importance of mathematical reasoning ability (KPM are…

  9. [Geometry, analysis, and computation in mathematics and applied science]. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D.

    1994-02-01

    The principal investigators` work on a variety of pure and applied problems in Differential Geometry, Calculus of Variations and Mathematical Physics has been done in a computational laboratory and been based on interactive scientific computer graphics and high speed computation created by the principal investigators to study geometric interface problems in the physical sciences. We have developed software to simulate various physical phenomena from constrained plasma flow to the electron microscope imaging of the microstructure of compound materials, techniques for the visualization of geometric structures that has been used to make significant breakthroughs in the global theory of minimal surfaces, and graphics tools to study evolution processes, such as flow by mean curvature, while simultaneously developing the mathematical foundation of the subject. An increasingly important activity of the laboratory is to extend this environment in order to support and enhance scientific collaboration with researchers at other locations. Toward this end, the Center developed the GANGVideo distributed video software system and software methods for running lab-developed programs simultaneously on remote and local machines. Further, the Center operates a broadcast video network, running in parallel with the Center`s data networks, over which researchers can access stored video materials or view ongoing computations. The graphical front-end to GANGVideo can be used to make ``multi-media mail`` from both ``live`` computing sessions and stored materials without video editing. Currently, videotape is used as the delivery medium, but GANGVideo is compatible with future ``all-digital`` distribution systems. Thus as a byproduct of mathematical research, we are developing methods for scientific communication. But, most important, our research focuses on important scientific problems; the parallel development of computational and graphical tools is driven by scientific needs.

  10. Mathematics, commonness and integral pedagogy: offering trends from a humanist integral optics

    Directory of Open Access Journals (Sweden)

    Milagros Elena Rodríguez

    2010-10-01

    Full Text Available In the educative institutions, numerous difficulties still are being perceived to teach Mathematics as it is circumscribed in a traditional pedagogy, th educative, cultural and social context is still being planned in an hegemonic way. Using a hermeneutical methodology in this qualitative research, offerer tendencies are given on the triad: Mathematics-daily life experiences-integral pedagogy, to provide a swerve to the teaching of science and to present it with an improved, active and liberating pedagogy; tending to change the perspective of the teaching of science. Among such tendencies we can find: the contribution to educate a honorable, supportive and humanist individual; the preparation on the intellectual, moral and spiritual levels; and authentic education, taking into account the scholar’s potentialities and an individual educated on mind, body and heart. To do so, the teacher must be skilled on history, philosophy, psychology, sociology, semiotics among other categories; and they must be ethical, critics on their own praxis, opened to the changes and innovations individuals.

  11. A Developmental Mapping Program Integrating Geography and Mathematics.

    Science.gov (United States)

    Muir, Sharon Pray; Cheek, Helen Neely

    Presented and discussed is a model which can be used by educators who want to develop an interdisciplinary map skills program in geography and mathematics. The model assumes that most children in elementary schools perform cognitively at Piaget's concrete operational stage, that readiness for map skills can be assessed with Piagetian or…

  12. Applying Integrated Computer Assisted Media (ICAM in Teaching Vocabulary

    Directory of Open Access Journals (Sweden)

    Opick Dwi Indah

    2015-02-01

    Full Text Available The objective of this research was to find out whether the use of integrated computer assisted media (ICAM is effective to improve the vocabulary achievement of the second semester students of Cokroaminoto Palopo University. The population of this research was the second semester students of English department of Cokroaminoto Palopo University in academic year 2013/2014. The samples of this research were 60 students and they were placed into two groups: experimental and control group where each group consisted of 30 students. This research used cluster random sampling technique. The research data was collected by applying vocabulary test and it was analyzed by using descriptive and inferential statistics. The result of this research was integrated computer assisted media (ICAM can improve vocabulary achievement of the students of English department of Cokroaminoto Palopo University. It can be concluded that the use of ICAM in the teaching vocabulary is effective to be implemented in improving the students’ vocabulary achievement.

  13. Mathematical Model and Artificial Intelligent Techniques Applied to a Milk Industry through DSM

    Science.gov (United States)

    Babu, P. Ravi; Divya, V. P. Sree

    2011-08-01

    The resources for electrical energy are depleting and hence the gap between the supply and the demand is continuously increasing. Under such circumstances, the option left is optimal utilization of available energy resources. The main objective of this chapter is to discuss about the Peak load management and overcome the problems associated with it in processing industries such as Milk industry with the help of DSM techniques. The chapter presents a generalized mathematical model for minimizing the total operating cost of the industry subject to the constraints. The work presented in this chapter also deals with the results of application of Neural Network, Fuzzy Logic and Demand Side Management (DSM) techniques applied to a medium scale milk industrial consumer in India to achieve the improvement in load factor, reduction in Maximum Demand (MD) and also the consumer gets saving in the energy bill.

  14. Positive Mathematical Programming Approaches – Recent Developments in Literature and Applied Modelling

    Directory of Open Access Journals (Sweden)

    Thomas Heckelei

    2012-05-01

    Full Text Available This paper reviews and discusses the more recent literature and application of Positive Mathematical Programming in the context of agricultural supply models. Specifically, advances in the empirical foundation of parameter specifications as well as the economic rationalisation of PMP models – both criticized in earlier reviews – are investigated. Moreover, the paper provides an overview on a larger set of models with regular/repeated policy application that apply variants of PMP. Results show that most applications today avoid arbitrary parameter specifications and rely on exogenous information on supply responses to calibrate model parameters. However, only few approaches use multiple observations to estimate parameters, which is likely due to the still considerable technical challenges associated with it. Equally, we found only limited reflection on the behavioral or technological assumptions that could rationalise the PMP model structure while still keeping the model’s advantages.

  15. Mathematical Practices and Arts Integration in an Activity-Based Projective Geometry Course

    Science.gov (United States)

    Ernest, Jessica Brooke

    It is a general assumption that the mathematical activity of students in school should, at least to some degree, parallel the practices of professional mathematicians (Brown, Collins, Duguid, 1989; Moschkovich, 2013). This assumption is reflected in the Common Core State Standards (CCSSI, 2010) and National Council of Teachers of Mathematics (NCTM, 2000) standards documents. However, the practices included in these standards documents, while developed to reflect the practices of professional mathematicians, may be idealized versions of what mathematicians actually do (Moschkovich, 2013). This might lead us to question then: "What is it that mathematicians do, and what practices are not being represented in the standards documents?" In general, the creative work of mathematicians is absent from the standards and, in turn, from school mathematics curricula, much to the dismay of some mathematicians and researchers (Lockhart, 2009; Rogers, 1999). As a result, creativity is not typically being fostered in mathematics students. As a response to this lack of focus on fostering creativity (in each of the science, technology, engineering, and mathematics disciplines--the STEM disciplines), a movement to integrate the arts emerged. This movement, called the STEAM movement--introducing the letter A into the acronym STEM to signify incorporating the arts--has been gaining momentum, yet limited research has been carried out on the efficacy of integrating the arts into mathematics courses. My experiences as the co-instructor for an activity-based course focused on projective geometry led me to consider the course as a setting for investigating both mathematical practices and arts integration. In this work, I explored the mathematical practices in which students engaged while working to develop an understanding of projective geometry through group activities. Furthermore, I explored the way in which students' learning experiences were enriched through artistic engagement in the

  16. Three-dimensional integrated CAE system applying computer graphic technique

    International Nuclear Information System (INIS)

    Kato, Toshisada; Tanaka, Kazuo; Akitomo, Norio; Obata, Tokayasu.

    1991-01-01

    A three-dimensional CAE system for nuclear power plant design is presented. This system utilizes high-speed computer graphic techniques for the plant design review, and an integrated engineering database for handling the large amount of nuclear power plant engineering data in a unified data format. Applying this system makes it possible to construct a nuclear power plant using only computer data from the basic design phase to the manufacturing phase, and it increases the productivity and reliability of the nuclear power plants. (author)

  17. International Conference Organized on the Occasion of the Silver Jubilee of the Indian Society of Industrial and Applied Mathematics (ISIAM)

    CERN Document Server

    Lozi, René; Siddiqi, Abul

    2017-01-01

    The book discusses essential topics in industrial and applied mathematics such as image processing with a special focus on medical imaging, biometrics and tomography. Applications of mathematical concepts to areas like national security, homeland security and law enforcement, enterprise and e-government services, personal information and business transactions, and brain-like computers are also highlighted. These contributions – all prepared by respected academicians, scientists and researchers from across the globe – are based on papers presented at the international conference organized on the occasion of the Silver Jubilee of the Indian Society of Industrial and Applied Mathematics (ISIAM) held from 29 to 31 January 2016 at Sharda University, Greater Noida, India. The book will help young scientists and engineers grasp systematic developments in those areas of mathematics that are essential to properly understand challenging contemporary problems.

  18. Mathematics

    CERN Document Server

    Eringen, A Cemal

    2013-01-01

    Continuum Physics: Volume 1 - Mathematics is a collection of papers that discusses certain selected mathematical methods used in the study of continuum physics. Papers in this collection deal with developments in mathematics in continuum physics and its applications such as, group theory functional analysis, theory of invariants, and stochastic processes. Part I explains tensor analysis, including the geometry of subspaces and the geometry of Finsler. Part II discusses group theory, which also covers lattices, morphisms, and crystallographic groups. Part III reviews the theory of invariants th

  19. Classroom-Based Integration of Text-Messaging in Mathematics Teaching-Learning Process

    Science.gov (United States)

    Aunzo, Rodulfo T., Jr.

    2017-01-01

    A lot of teachers are complaining that students are "texting" inside the classroom even during class hours. With this, this research study "on students' perception before the integration and the students' attitude after the integration of text messaging inside the classroom during the mathematics teaching-learning process was…

  20. Personalizing oncology treatments by predicting drug efficacy, side-effects, and improved therapy: mathematics, statistics, and their integration.

    Science.gov (United States)

    Agur, Zvia; Elishmereni, Moran; Kheifetz, Yuri

    2014-01-01

    Despite its great promise, personalized oncology still faces many hurdles, and it is increasingly clear that targeted drugs and molecular biomarkers alone yield only modest clinical benefit. One reason is the complex relationships between biomarkers and the patient's response to drugs, obscuring the true weight of the biomarkers in the overall patient's response. This complexity can be disentangled by computational models that integrate the effects of personal biomarkers into a simulator of drug-patient dynamic interactions, for predicting the clinical outcomes. Several computational tools have been developed for personalized oncology, notably evidence-based tools for simulating pharmacokinetics, Bayesian-estimated tools for predicting survival, etc. We describe representative statistical and mathematical tools, and discuss their merits, shortcomings and preliminary clinical validation attesting to their potential. Yet, the individualization power of mathematical models alone, or statistical models alone, is limited. More accurate and versatile personalization tools can be constructed by a new application of the statistical/mathematical nonlinear mixed effects modeling (NLMEM) approach, which until recently has been used only in drug development. Using these advanced tools, clinical data from patient populations can be integrated with mechanistic models of disease and physiology, for generating personal mathematical models. Upon a more substantial validation in the clinic, this approach will hopefully be applied in personalized clinical trials, P-trials, hence aiding the establishment of personalized medicine within the main stream of clinical oncology. © 2014 Wiley Periodicals, Inc.

  1. Teachers' Views of the Challenges of Teaching Grade 9 Applied Mathematics in Toronto Schools

    Science.gov (United States)

    Stoilescu, Dorian; McDougall, Douglas; Egodawatte, Gunawardena

    2016-01-01

    Mathematics teachers, mathematics department heads, curriculum leaders, and administrators from 11 schools in four school boards from Toronto, Ontario, Canada, participated in a project to improve the teaching and learning in grade 9 mathematics classrooms. In each of these schools, an implementation team was created, so that at least three…

  2. Computational physics and applied mathematics capability review June 8-10, 2010 (Advance materials to committee members)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Stephen R [Los Alamos National Laboratory

    2010-01-01

    Los Alamos National Laboratory will review its Computational Physics and Applied Mathematics (CPAM) capabilities in 2010. The goals of capability reviews are to assess the quality of science, technology, and engineering (STE) performed by the capability, evaluate the integration of this capability across the Laboratory and within the scientific community, examine the relevance of this capability to the Laboratory's programs, and provide advice on the current and future directions of this capability. This is the first such review for CPAM, which has a long and unique history at the laboratory, starting from the inception of the Laboratory in 1943. The CPAM capability covers an extremely broad technical area at Los Alamos, encompassing a wide array of disciplines, research topics, and organizations. A vast array of technical disciplines and activities are included in this capability, from general numerical modeling, to coupled mUlti-physics simulations, to detailed domain science activities in mathematics, methods, and algorithms. The CPAM capability involves over 12 different technical divisions and a majority of our programmatic and scientific activities. To make this large scope tractable, the CPAM capability is broken into the following six technical 'themes.' These themes represent technical slices through the CP AM capability and collect critical core competencies of the Laboratory, each of which contributes to the capability (and each of which is divided into multiple additional elements in the detailed descriptions of the themes in subsequent sections): (1) Computational Fluid Dynamics - This theme speaks to the vast array of scientific capabilities for the simulation of fluids under shocks, low-speed flow, and turbulent conditions - which are key, historical, and fundamental strengths of the laboratory; (2) Partial Differential Equations - The technical scope of this theme is the applied mathematics and numerical solution of partial

  3. My view of mathematics and physics (integration of mathematics into physics

    Directory of Open Access Journals (Sweden)

    Safronov S.V.

    2017-09-01

    Full Text Available this paper explores a new view of modern physics. New material is added to the modern mathematical physics. Filling a gap in physics theory and physical laws already in existence is the purpose of the article. The paper is devoted to contemporary issues. The work contains first development of formulas: gravitational pulse formula, vibration in pendulum formula, photon formula, three field energy density in atom formula, neutrino energy formula, equal energy of two kinds conversion formula and ray of light energy formula. The author introduces the conversion sign for scientific use in this article. The practical importance of the work involves innovative technology development.

  4. Integrated Sensing and Processing (ISP). A Mathematical Methodology for Managing and Integrating Sensors and Processors in Distributed Systems for Radar and Communication

    National Research Council Canada - National Science Library

    Spooner, Chad M

    2005-01-01

    .... The approach is to consider systems of targets and sensors in as general a general mathematical formulation as possible, to develop mathematical tools to study such systems, and to apply the tools...

  5. A modern theory of random variation with applications in stochastic calculus, financial mathematics, and Feynman integration

    CERN Document Server

    Muldowney, Patrick

    2012-01-01

    A Modern Theory of Random Variation is a new and radical re-formulation of the mathematical underpinnings of subjects as diverse as investment, communication engineering, and quantum mechanics. Setting aside the classical theory of probability measure spaces, the book utilizes a mathematically rigorous version of the theory of random variation that bases itself exclusively on finitely additive probability distribution functions. In place of twentieth century Lebesgue integration and measure theory, the author uses the simpler concept of Riemann sums, and the non-absolute Riemann-type integration of Henstock. Readers are supplied with an accessible approach to standard elements of probability theory such as the central limmit theorem and Brownian motion as well as remarkable, new results on Feynman diagrams and stochastic integrals. Throughout the book, detailed numerical demonstrations accompany the discussions of abstract mathematical theory, from the simplest elements of the subject to the most complex. I...

  6. Integrating HIV & AIDS education in pre-service mathematics education for social justice

    Directory of Open Access Journals (Sweden)

    Linda van Laren

    2011-01-01

    Full Text Available Since 1999, many South African education policy documents have mandated integration of HIV & AIDS education in learning areas/disciplines. Policy document research has shown that although South African politicians and managers have produced volumes of eloquent and compelling legislation regarding provision for HIV & AIDS education, little of this is translated into action. The impact of HIV & AIDS permeates the social, economic and political arenas in South Africa. Integration of HIV & AIDS education across disciplines can serve as a strategy to further the ideals of social justice. This paper focuses on how integration in the teaching and learning of Mathematics Education provides opportunities to take action for social justice. The inquiry explores the following question: How can the myth that there is 'nothing we can do' about HIV & AIDS, which is linked to social justice issues, be addressed through integration of HIV & AIDS education in Mathematics pre-service teacher education? Drawing on self-study, the work of a Mathematics teacher educator who worked with pre-service teachers to integrate HIV & AIDS education at a higher education institution is described. By considering integration of HIV & AIDS education in Mathematics Education and taking action it is possible to develop strategies which directly relate to social justice.

  7. Capturing student mathematical engagement through differently enacted classroom practices: applying a modification of Watson's analytical tool

    Science.gov (United States)

    Patahuddin, Sitti Maesuri; Puteri, Indira; Lowrie, Tom; Logan, Tracy; Rika, Baiq

    2018-04-01

    This study examined student mathematical engagement through the intended and enacted lessons taught by two teachers in two different middle schools in Indonesia. The intended lesson was developed using the ELPSA learning design to promote mathematical engagement. Based on the premise that students will react to the mathematical tasks in the forms of words and actions, the analysis focused on identifying the types of mathematical engagement promoted through the intended lesson and performed by students during the lesson. Using modified Watson's analytical tool (2007), students' engagement was captured from what the participants' did or said mathematically. We found that teachers' enacted practices had an influence on student mathematical engagement. The teacher who demonstrated content in explicit ways tended to limit the richness of the engagement; whereas the teacher who presented activities in an open-ended manner fostered engagement.

  8. Mathematics

    CERN Document Server

    Stein, Sherman K

    2010-01-01

    Anyone can appreciate the beauty, depth, and vitality of mathematics with the help of this highly readable text, specially developed from a college course designed to appeal to students in a variety of fields. Readers with little mathematical background are exposed to a broad range of subjects chosen from number theory, topology, set theory, geometry, algebra, and analysis. Starting with a survey of questions on weight, the text discusses the primes, the fundamental theorem of arithmetic, rationals and irrationals, tiling, tiling and electricity, probability, infinite sets, and many other topi

  9. Study of the asymptotic expansion of multiple integrals in mathematical physics

    International Nuclear Information System (INIS)

    Chako, N.

    1968-01-01

    We have applied the method of stationary phase to evaluate double and multiple integrals of the type: (A) U(k) = g(x)e ikφ(x) d(x), (x)=(x 1 ,..., x n ) for large values of the parameter k. In the first part we have established in a rigorous manner the stationary phase method to double and multiple integrals of type (A). Furthermore we have obtained an asymptotic expansion of (A), if the amplitude and phase functions can be developed in a canonical form near the vicinity of critical or stationary points of the integral. This development contains as particular cases all those which are important in physical applications, especially, to diffraction and scattering of electromagnetic and corpuscular waves by optical systems, diffracting bodies and potential scatterers. In the second part we have considered the problem of convergence of the expansion of the principal contribution to the integral in the asymptotic sense of Poincare. The proof is based on the increasing method used in mathematical analysis. The third part is devoted to the derivation of various asymptotic series due to different types of critical or stationary points associated with the amplitude and phase functions. In the fourth part we have generalized the method to multiple integrals and to the case where the parameter k enter implicitly in the phase function The latter type of integrals extend the scope of the former type to a number of important physical problems; for instance, to the propagation of waves in dispersive and absorbing media. In the last chapter we have made a study and compared the results obtained by the application of the stationary phase method to the integrals (double) of diffraction and the results derived by using the Young-Rubinowicz method. Result of our analysis shows the equivalence of the two methods of approach to the problems of diffraction based, on one hand, on the Fresnel-Kirchhoff theory and, on the other hand, the Young-Rubinowicz theory, provided one interprets in

  10. Mathematics

    International Nuclear Information System (INIS)

    Demazure, M.

    1988-01-01

    The 1988 progress report of the Mathematics center (Polytechnic School, France), is presented. The Center is composed of different research teams: analysis, Riemann geometry, group theory, formal calculus and algorithm geometry, dynamical systems, topology and singularity. For each team, the members, the research topics, the national and international cooperations, are given. The papers concerning the investigations carried out in 1988, are listed [fr

  11. Applied & Computational MathematicsChallenges for the Design and Control of Dynamic Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D L; Burns, J A; Collis, S; Grosh, J; Jacobson, C A; Johansen, H; Mezic, I; Narayanan, S; Wetter, M

    2011-03-10

    The Energy Independence and Security Act of 2007 (EISA) was passed with the goal 'to move the United States toward greater energy independence and security.' Energy security and independence cannot be achieved unless the United States addresses the issue of energy consumption in the building sector and significantly reduces energy consumption in buildings. Commercial and residential buildings account for approximately 40% of the U.S. energy consumption and emit 50% of CO{sub 2} emissions in the U.S. which is more than twice the total energy consumption of the entire U.S. automobile and light truck fleet. A 50%-80% improvement in building energy efficiency in both new construction and in retrofitting existing buildings could significantly reduce U.S. energy consumption and mitigate climate change. Reaching these aggressive building efficiency goals will not happen without significant Federal investments in areas of computational and mathematical sciences. Applied and computational mathematics are required to enable the development of algorithms and tools to design, control and optimize energy efficient buildings. The challenge has been issued by the U.S. Secretary of Energy, Dr. Steven Chu (emphasis added): 'We need to do more transformational research at DOE including computer design tools for commercial and residential buildings that enable reductions in energy consumption of up to 80 percent with investments that will pay for themselves in less than 10 years.' On July 8-9, 2010 a team of technical experts from industry, government and academia were assembled in Arlington, Virginia to identify the challenges associated with developing and deploying newcomputational methodologies and tools thatwill address building energy efficiency. These experts concluded that investments in fundamental applied and computational mathematics will be required to build enabling technology that can be used to realize the target of 80% reductions in energy

  12. Effects of Mathematics Integration in a Teaching Methods Course on Self-Efficacy of Preservice Agricultural Education Teachers

    Science.gov (United States)

    Stripling, Christopher T.; Roberts, T. Grady

    2013-01-01

    Teachers who are efficacious persevere through challenges in the learning environment and put forth more effort in designing learning activities. The purpose of this study was to determine the effects of mathematics teaching and integration strategies (MTIS) on preservice agricultural teachers' personal mathematics efficacy, mathematics teaching…

  13. Wari Construction Set Integrating Technology with Multicultural Mathematics.

    Science.gov (United States)

    Fowler, David

    1996-01-01

    Describes a Hypercard stack for playing one of many versions of the African game wari. Students can design their own variations of the game by determining the initial number of pieces and the number of pieces required for a capture. A list of activities related to the program and some recommendations about the integration of technology into…

  14. Integrating Study Skills and Problem Solving into Remedial Mathematics

    Science.gov (United States)

    Cornick, Jonathan; Guy, G. Michael; Beckford, Ian

    2015-01-01

    Students at a large urban community college enrolled in seven classes of an experimental remedial algebra programme, which integrated study skills instruction and collaborative problem solving. A control group of seven classes was taught in a traditional lecture format without study skills instruction. Student performance in the course was…

  15. Applying Mathematical Concepts with Hands-On, Food-Based Science Curriculum

    Science.gov (United States)

    Roseno, Ashley T.; Carraway-Stage, Virginia G.; Hoerdeman, Callan; Díaz, Sebastián R.; Geist, Eugene; Duffrin, Melani W.

    2015-01-01

    This article addresses the current state of the mathematics education system in the United States and provides a possible solution to the contributing issues. As a result of lower performance in primary mathematics, American students are not acquiring the necessary quantitative literacy skills to become successful adults. This study analyzed the…

  16. Applying Realistic Mathematics Education (RME) in teaching geometry in Indonesian primary schools

    NARCIS (Netherlands)

    Fauzan, Ahmad

    2002-01-01

    Similar to other countries (see for example Niss, 1996; NCTM, 2000), the mathematics curriculum for primary schools in Indonesia pays much attention to several important aspects such as developing pupils' reasoning, activity, creativity and attitude, and providing pupils with mathematics skills so

  17. Do mathematics textbooks cultivate shallow teaching? Applying the TIMSS Video Study criteria to Australian eighth-grade mathematics textbooks

    Science.gov (United States)

    Vincent, Jill; Stacey, Kaye

    2008-04-01

    Australian eighth-grade mathematics lessons were shown by the 1999 TIMSS Video Study to use a high proportion of problems of low procedural complexity, with considerable repetition, and an absence of deductive reasoning. Using definitions from the Video Study, this study re-investigated this `shallow teaching syndrome' by examining the problems on three topics in nine eighth-grade textbooks from four Australian states for procedural complexity, type of solving processes, degree of repetition, proportion of `application' problems and proportion of problems requiring deductive reasoning. Overall, there was broad similarity between the characteristics of problems in the textbooks and in the Australian Video Study lessons. There were, however, considerable differences between textbooks and between topics within textbooks. In some books, including the best-selling textbooks in several states, the balance is too far towards repetitive problems of low procedural complexity.

  18. ICT integration in mathematics initial teacher training and its impact on visualization: the case of GeoGebra

    Science.gov (United States)

    Dockendorff, Monika; Solar, Horacio

    2018-01-01

    This case study investigates the impact of the integration of information and communications technology (ICT) in mathematics visualization skills and initial teacher education programmes. It reports on the influence GeoGebra dynamic software use has on promoting mathematical learning at secondary school and on its impact on teachers' conceptions about teaching and learning mathematics. This paper describes how GeoGebra-based dynamic applets - designed and used in an exploratory manner - promote mathematical processes such as conjectures. It also refers to the changes prospective teachers experience regarding the relevance visual dynamic representations acquire in teaching mathematics. This study observes a shift in school routines when incorporating technology into the mathematics classroom. Visualization appears as a basic competence associated to key mathematical processes. Implications of an early integration of ICT in mathematics initial teacher training and its impact on developing technological pedagogical content knowledge (TPCK) are drawn.

  19. AN ADVANCED TOOL FOR APPLIED INTEGRATED SAFETY MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Potts, T. Todd; Hylko, James M.; Douglas, Terence A.

    2003-02-27

    WESKEM, LLC's Environmental, Safety and Health (ES&H) Department had previously assessed that a lack of consistency, poor communication and using antiquated communication tools could result in varying operating practices, as well as a failure to capture and disseminate appropriate Integrated Safety Management (ISM) information. To address these issues, the ES&H Department established an Activity Hazard Review (AHR)/Activity Hazard Analysis (AHA) process for systematically identifying, assessing, and controlling hazards associated with project work activities during work planning and execution. Depending on the scope of a project, information from field walkdowns and table-top meetings are collected on an AHR form. The AHA then documents the potential failure and consequence scenarios for a particular hazard. Also, the AHA recommends whether the type of mitigation appears appropriate or whether additional controls should be implemented. Since the application is web based, the information is captured into a single system and organized according to the >200 work activities already recorded in the database. Using the streamlined AHA method improved cycle time from over four hours to an average of one hour, allowing more time to analyze unique hazards and develop appropriate controls. Also, the enhanced configuration control created a readily available AHA library to research and utilize along with standardizing hazard analysis and control selection across four separate work sites located in Kentucky and Tennessee. The AHR/AHA system provides an applied example of how the ISM concept evolved into a standardized field-deployed tool yielding considerable efficiency gains in project planning and resource utilization. Employee safety is preserved through detailed planning that now requires only a portion of the time previously necessary. The available resources can then be applied to implementing appropriate engineering, administrative and personal protective equipment

  20. Pedagogical Factors Affecting Integration of Computers in Mathematics Instruction in Secondary Schools in Kenya

    Science.gov (United States)

    Wanjala, Martin M. S.; Aurah, Catherine M.; Symon, Koros C.

    2015-01-01

    The paper reports findings of a study which sought to examine the pedagogical factors that affect the integration of computers in mathematics instruction as perceived by teachers in secondary schools in Kenya. This study was based on the Technology Acceptance Model (TAM). A descriptive survey design was used for this study. Stratified and simple…

  1. Exploring the Associations among Nutrition, Science, and Mathematics Knowledge for an Integrative, Food-Based Curriculum

    Science.gov (United States)

    Stage, Virginia C.; Kolasa, Kathryn M.; Díaz, Sebastián R.; Duffrin, Melani W.

    2018-01-01

    Background: Explore associations between nutrition, science, and mathematics knowledge to provide evidence that integrating food/nutrition education in the fourth-grade curriculum may support gains in academic knowledge. Methods: Secondary analysis of a quasi-experimental study. Sample included 438 students in 34 fourth-grade classrooms across…

  2. Quality Assurance in Educational Administration in the Teaching of Farm Mathematics for National Integration in Nigeria

    Science.gov (United States)

    Enemali, I. A.; Adah, Obe Christopher

    2015-01-01

    Farm mathematics, an aspect of agricultural science education is being taught in our educational institutions in the country. This effort is to enhance agricultural productivity and quality of agricultural science education for national integration. For the realization of this, a quality assured educational administration is vital. The paper…

  3. Integrated Spreadsheets as a Paradigm of Type II Technology Applications in Mathematics Teacher Education

    Science.gov (United States)

    Abramovich, Sergei

    2016-01-01

    The paper presents the use of spreadsheets integrated with digital tools capable of symbolic computations and graphic constructions in a master's level capstone course for secondary mathematics teachers. Such use of spreadsheets is congruent with the Type II technology applications framework aimed at the development of conceptual knowledge in the…

  4. Integrating packing and distribution problems and optimization through mathematical programming

    Directory of Open Access Journals (Sweden)

    Fabio Miguel

    2016-06-01

    Full Text Available This paper analyzes the integration of two combinatorial problems that frequently arise in production and distribution systems. One is the Bin Packing Problem (BPP problem, which involves finding an ordering of some objects of different volumes to be packed into the minimal number of containers of the same or different size. An optimal solution to this NP-Hard problem can be approximated by means of meta-heuristic methods. On the other hand, we consider the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW, which is a variant of the Travelling Salesman Problem (again a NP-Hard problem with extra constraints. Here we model those two problems in a single framework and use an evolutionary meta-heuristics to solve them jointly. Furthermore, we use data from a real world company as a test-bed for the method introduced here.

  5. Applying Groebner bases to solve reduction problems for Feynman integrals

    International Nuclear Information System (INIS)

    Smirnov, Alexander V.; Smirnov, Vladimir A.

    2006-01-01

    We describe how Groebner bases can be used to solve the reduction problem for Feynman integrals, i.e. to construct an algorithm that provides the possibility to express a Feynman integral of a given family as a linear combination of some master integrals. Our approach is based on a generalized Buchberger algorithm for constructing Groebner-type bases associated with polynomials of shift operators. We illustrate it through various examples of reduction problems for families of one- and two-loop Feynman integrals. We also solve the reduction problem for a family of integrals contributing to the three-loop static quark potential

  6. Applying Groebner bases to solve reduction problems for Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, Alexander V. [Mechanical and Mathematical Department and Scientific Research Computer Center of Moscow State University, Moscow 119992 (Russian Federation); Smirnov, Vladimir A. [Nuclear Physics Institute of Moscow State University, Moscow 119992 (Russian Federation)

    2006-01-15

    We describe how Groebner bases can be used to solve the reduction problem for Feynman integrals, i.e. to construct an algorithm that provides the possibility to express a Feynman integral of a given family as a linear combination of some master integrals. Our approach is based on a generalized Buchberger algorithm for constructing Groebner-type bases associated with polynomials of shift operators. We illustrate it through various examples of reduction problems for families of one- and two-loop Feynman integrals. We also solve the reduction problem for a family of integrals contributing to the three-loop static quark potential.

  7. Strategy for integration of coastal culture in learning process of mathematics in junior high school

    Science.gov (United States)

    Suyitno, H.; Zaenuri; Florentinus, T. S.; Zakaria, E.

    2018-03-01

    Traditional life in the fishing family is part of the local culture. Many School-age children in the fishing family drop-outs due to lack of parents motivation and the environment was less supportive. The problems were: (1) How the strategy of integration of local culture in learning process of mathematics in Junior High School (JHS)? (2) How to prepare the Mathematics Student’s Book for grade 7 of JHS that based on coastal culture, that has an ISBN, has international level, applicable, and in accordance with the current curriculum? The purposes of this research were: (1) to obtain the strategy of integration of local culture in learning process of mathematics in JHS, through FGD between UNNES and UKM; (2) to obtain the experts validation, through Focus Group Discussion (FGD) between UNNES and UKM toward the draft of the Mathematics Student’s Book for grade 7 of JHS that based on coastal culture; (3) produces Mathematics Student’s Book for grade 7 SMP which based on coastal culture and has an ISBN, international, applicable, and in accordance with the curriculum. The research activity was a qualitative research, so that the research methods include: (1) data reduction, (2) display data, (3) data interpretation, and (4) conclusion/verification. The main activities of this research: drafting the Mathematics Student’s Book of Grade 7 which based on coastal culture; get the validation from international partners;conducting FGD at Education Faculty of Universiti Kebangsaan Malaysia through the program of visiting lecturers for getting the Mathematics Student’s Book of grade 7 which based on coastal culture, registering for ISBN, and publishing the reasearch results in International seminar and International Journals. The results of this research were as follows. (1) Getting a good strategy for integration of local culture in learning process of mathematics in JHS. (2) Getting the Mathematics Student’s Book for grade 7 of JHS that based on coastal culture

  8. THE EFFECTIVENESS OF GUIDED DISCOVERY LEARNING TO TEACH INTEGRAL CALCULUS FOR THE MATHEMATICS STUDENTS OF MATHEMATICS EDUCATION WIDYA DHARMA UNIVERSITY

    Directory of Open Access Journals (Sweden)

    Yuliana Yuliana

    2017-01-01

    Full Text Available The objectives of this research are (1 to develop Guided Discovery Learning in integral calculus subject; (2 to identify the effectiveness of Guided Discovery Learning in improving the students’ understanding toward integral calculus subject. This research was quasy experimental research with the students of even semester in Mathematics Education Widya Dharma University as the sample. Cluster Random sampling was conducted to determine control group that was taught using Conventional model and experimental group that was taught using Guided Discovery Learning model. The instruments of this research included pre-test, post-test, and student’s response questionnaire. The data of post-test was analyzed using T-test. The result was H0 was rejected for the level of significance The result of this data analysis found out that Guide Discovery Learning was more effective than Conventional Model. It was supported by the result questionnaire. The result of questionnaire that  more than 75% questionnaire items got 67.65% positive response. It means Guided Discovery Learning can increase students’ interest in joining integral calculus class.

  9. Exploring the Associations Among Nutrition, Science, and Mathematics Knowledge for an Integrative, Food-Based Curriculum.

    Science.gov (United States)

    Stage, Virginia C; Kolasa, Kathryn M; Díaz, Sebastián R; Duffrin, Melani W

    2018-01-01

    Explore associations between nutrition, science, and mathematics knowledge to provide evidence that integrating food/nutrition education in the fourth-grade curriculum may support gains in academic knowledge. Secondary analysis of a quasi-experimental study. Sample included 438 students in 34 fourth-grade classrooms across North Carolina and Ohio; mean age 10 years old; gender (I = 53.2% female; C = 51.6% female). Dependent variable = post-test-nutrition knowledge; independent variables = baseline-nutrition knowledge, and post-test science and mathematics knowledge. Analyses included descriptive statistics and multiple linear regression. The hypothesized model predicted post-nutrition knowledge (F(437) = 149.4, p mathematics knowledge were predictive of nutrition knowledge indicating use of an integrative science and mathematics curriculum to improve academic knowledge may also simultaneously improve nutrition knowledge among fourth-grade students. Teachers can benefit from integration by meeting multiple academic standards, efficiently using limited classroom time, and increasing nutrition education provided in the classroom. © 2018, American School Health Association.

  10. Mathematics Underground

    Science.gov (United States)

    Luther, Kenneth H.

    2012-01-01

    Mathematical modeling of groundwater flow is a topic at the intersection of mathematics and geohydrology and is rarely encountered in undergraduate mathematics. However, this subject is full of interesting and meaningful examples of truly "applied" mathematics accessible to undergraduates, from the pre-calculus to advanced mathematics levels. This…

  11. Using LabVIEW for Applying Mathematical Models in Representing Phenomena

    Science.gov (United States)

    Faraco, G.; Gabriele, L.

    2007-01-01

    Simulations make it possible to explore physical and biological phenomena, where conducting the real experiment is impracticable or difficult. The implementation of a software program describing and simulating a given physical situation encourages the understanding of a phenomenon itself. Fifty-nine students, enrolled at the Mathematical Methods…

  12. Developing digital technologies for university mathematics by applying participatory design methods

    DEFF Research Database (Denmark)

    Triantafyllou, Eva; Timcenko, Olga

    2013-01-01

    This paper presents our research efforts to develop digital technologies for undergraduate university mathematics. We employ participatory design methods in order to involve teachers and students in the design of such technologies. The results of the first round of our design are included...

  13. Applying Cognitive Psychology Based Instructional Design Principles in Mathematics Teaching and Learning: Introduction

    Science.gov (United States)

    Verschaffel, Lieven; Van Dooren, W.; Star, J.

    2017-01-01

    This special issue comprises contributions that address the breadth of current lines of recent research from cognitive psychology that appear promising for positively impacting students' learning of mathematics. More specifically, we included contributions (a) that refer to cognitive psychology based principles and techniques, such as explanatory…

  14. Linear Elastic Waves - Series: Cambridge Texts in Applied Mathematics (No. 26)

    Science.gov (United States)

    Harris, John G.

    2001-10-01

    Wave propagation and scattering are among the most fundamental processes that we use to comprehend the world around us. While these processes are often very complex, one way to begin to understand them is to study wave propagation in the linear approximation. This is a book describing such propagation using, as a context, the equations of elasticity. Two unifying themes are used. The first is that an understanding of plane wave interactions is fundamental to understanding more complex wave interactions. The second is that waves are best understood in an asymptotic approximation where they are free of the complications of their excitation and are governed primarily by their propagation environments. The topics covered include reflection, refraction, the propagation of interfacial waves, integral representations, radiation and diffraction, and propagation in closed and open waveguides. Linear Elastic Waves is an advanced level textbook directed at applied mathematicians, seismologists, and engineers. Aimed at beginning graduate students Includes examples and exercises Has application in a wide range of disciplines

  15. MATHEMATICAL MODEL DESIGNATED FOR THE ASSESSMENT OF THE INTEGRATED ENVIRONMENTAL LOAD PRODUCED BY A BUILDING PROJECT

    OpenAIRE

    Lapidus Azariy Abramovich; Berezhnyy Aleksandr Yurevich

    2012-01-01

    In the paper, the author proposes a mathematical model designated for the assessment of the ecological impact produced on the environment within the territory of the construction site. Integrated index EI (Environmental Index) is introduced as a vehicle designated for the evaluation of the ecological load. EI represents the intensity of the ecological load, or a generalized and optimized parameter reflecting the intensity of the anthropogenic impact of the construction site onto the natural e...

  16. Mathematical modeling of the integrated process of mercury bioremediation in the industrial bioreactor

    OpenAIRE

    Głuszcz, Paweł; Petera, Jerzy; Ledakowicz, Stanisław

    2010-01-01

    The mathematical model of the integrated process of mercury contaminated wastewater bioremediation in a fixed-bed industrial bioreactor is presented. An activated carbon packing in the bioreactor plays the role of an adsorbent for ionic mercury and at the same time of a carrier material for immobilization of mercury-reducing bacteria. The model includes three basic stages of the bioremediation process: mass transfer in the liquid phase, adsorption of mercury onto activated carbon and ionic me...

  17. Mathematical models applied to the Cr(III) and Cr(VI) breakthrough curves.

    Science.gov (United States)

    Ramirez C, Margarita; Pereira da Silva, Mônica; Ferreira L, Selma G; Vasco E, Oscar

    2007-07-19

    Trivalent and hexavalent chromium continuous biosorption was studied using residual brewer Saccharomyces cerevisiae immobilized in volcanic rock. The columns used in the process had a diameter of 4.5 cm and a length of 140 cm, working at an inlet flow rate of 15 mL/min. Breakthrough curves were used to study the yeast biosorption behavior in the process. The saturation time (ts) was 21 and 45 h for Cr(III) and Cr(VI), respectively, and a breakthrough time (tb) of 4 h for Cr(III) and 5 h for Cr(VI). The uptake capacity of the biosorbent for Cr(III) and Cr(VI) were 48 and 60 mg/g, respectively. Two non-diffusional mathematical models with parameters t0 and sigma were used to adjust the experimental data obtained. Microsoft Excel tools were used for the mathematical solution of the two parameters used.

  18. A Network for Integrated Science and Mathematics Teaching and Learning Conference Plenary Papers. NSF/SSMA Wingspread Conference (Racine, Wisconsin, April 1991). School Science and Mathematics Association Topics for Teachers Series Number 7.

    Science.gov (United States)

    Berlin, Donna F., Ed.

    The integration of mathematics and science is not a new concept. However, during recent years it has been a major focus in education reform. A Wingspread conference promoted discussion regarding the integration of mathematics and science and explored ways to improve science and mathematics education in grades K-12. Papers from the conference…

  19. Creating a YouTube-Like Collaborative Environment in Mathematics: Integrating Animated Geogebra Constructions and Student-Generated Screencast Videos

    Science.gov (United States)

    Lazarus, Jill; Roulet, Geoffrey

    2013-01-01

    This article discusses the integration of student-generated GeoGebra applets and Jing screencast videos to create a YouTube-like medium for sharing in mathematics. The value of combining dynamic mathematics software and screencast videos for facilitating communication and representations in a digital era is demonstrated herein. We share our…

  20. ICT Integration in Mathematics Initial Teacher Training and Its Impact on Visualization: The Case of GeoGebra

    Science.gov (United States)

    Dockendorff, Monika; Solar, Horacio

    2018-01-01

    This case study investigates the impact of the integration of information and communications technology (ICT) in mathematics visualization skills and initial teacher education programmes. It reports on the influence GeoGebra dynamic software use has on promoting mathematical learning at secondary school and on its impact on teachers' conceptions…

  1. Evaluation of NSF's Program of Grants and Vertical Integration of Research and Education in the Mathematical Sciences (VIGRE)

    Science.gov (United States)

    National Academies Press, 2009

    2009-01-01

    In 1998, the National Science Foundation (NSF) launched a program of Grants for Vertical Integration of Research and Education in the Mathematical Sciences (VIGRE). These grants were designed for institutions with PhD-granting departments in the mathematical sciences, for the purpose of developing high-quality education programs, at all levels,…

  2. Preservice Teachers' Reconciliation of an Epistemological Issue in an Integrated Mathematics/Science Methods Course

    Science.gov (United States)

    Cormas, Peter C.

    2017-01-01

    Preservice teachers in six sections (n = 87) of a sequenced, methodological and process-integrated elementary mathematics/science methods course were able to reconcile an issue centered on a similar area of epistemology. Preservice teachers participated in a science inquiry lesson on biological classification and a mathematics problem-solving…

  3. The integral equation method applied to eddy currents

    International Nuclear Information System (INIS)

    Biddlecombe, C.S.; Collie, C.J.; Simkin, J.; Trowbridge, C.W.

    1976-04-01

    An algorithm for the numerical solution of eddy current problems is described, based on the direct solution of the integral equation for the potentials. In this method only the conducting and iron regions need to be divided into elements, and there are no boundary conditions. Results from two computer programs using this method for iron free problems for various two-dimensional geometries are presented and compared with analytic solutions. (author)

  4. BATCH PROCESS INTEGRATION OF APPLYING TECHNOLOGY OF ACID CARMINIC PINCH

    OpenAIRE

    Erazo E., Raymundo; Cárdenas R., Jorge L.; Woolcott H., Juan C.

    2014-01-01

    This work was developed in order to implement the PINCH technology integration batch process for carminic acid. The method used consisted of the application of the concepts of bottle necks total process (OPB) together with part-time models (TAM) and time fractionated! (TSM). The drying operation is identified as the rate limiting step of the process identifying it as an OPB plant capacity. The extraction yield was 95% w / p carminic acid with an energy savings of approximately 60% of the...

  5. Corrected Integral Shape Averaging Applied to Obstructive Sleep Apnea Detection from the Electrocardiogram

    Directory of Open Access Journals (Sweden)

    C. O'Brien

    2007-01-01

    Full Text Available We present a technique called corrected integral shape averaging (CISA for quantifying shape and shape differences in a set of signals. CISA can be used to account for signal differences which are purely due to affine time warping (jitter and dilation/compression, and hence provide access to intrinsic shape fluctuations. CISA can also be used to define a distance between shapes which has useful mathematical properties; a mean shape signal for a set of signals can be defined, which minimizes the sum of squared shape distances of the set from the mean. The CISA procedure also allows joint estimation of the affine time parameters. Numerical simulations are presented to support the algorithm for obtaining the CISA mean and parameters. Since CISA provides a well-defined shape distance, it can be used in shape clustering applications based on distance measures such as k-means. We present an application in which CISA shape clustering is applied to P-waves extracted from the electrocardiogram of subjects suffering from sleep apnea. The resulting shape clustering distinguishes ECG segments recorded during apnea from those recorded during normal breathing with a sensitivity of 81% and specificity of 84%.

  6. Handbook of mathematics

    CERN Document Server

    Kuipers, L

    1969-01-01

    International Series of Monographs in Pure and Applied Mathematics, Volume 99: Handbook of Mathematics provides the fundamental mathematical knowledge needed for scientific and technological research. The book starts with the history of mathematics and the number systems. The text then progresses to discussions of linear algebra and analytical geometry including polar theories of conic sections and quadratic surfaces. The book then explains differential and integral calculus, covering topics, such as algebra of limits, the concept of continuity, the theorem of continuous functions (with examp

  7. Applying mathematical models to predict resident physician performance and alertness on traditional and novel work schedules.

    Science.gov (United States)

    Klerman, Elizabeth B; Beckett, Scott A; Landrigan, Christopher P

    2016-09-13

    In 2011 the U.S. Accreditation Council for Graduate Medical Education began limiting first year resident physicians (interns) to shifts of ≤16 consecutive hours. Controversy persists regarding the effectiveness of this policy for reducing errors and accidents while promoting education and patient care. Using a mathematical model of the effects of circadian rhythms and length of time awake on objective performance and subjective alertness, we quantitatively compared predictions for traditional intern schedules to those that limit work to ≤ 16 consecutive hours. We simulated two traditional schedules and three novel schedules using the mathematical model. The traditional schedules had extended duration work shifts (≥24 h) with overnight work shifts every second shift (including every third night, Q3) or every third shift (including every fourth night, Q4) night; the novel schedules had two different cross-cover (XC) night team schedules (XC-V1 and XC-V2) and a Rapid Cycle Rotation (RCR) schedule. Predicted objective performance and subjective alertness for each work shift were computed for each individual's schedule within a team and then combined for the team as a whole. Our primary outcome was the amount of time within a work shift during which a team's model-predicted objective performance and subjective alertness were lower than that expected after 16 or 24 h of continuous wake in an otherwise rested individual. The model predicted fewer hours with poor performance and alertness, especially during night-time work hours, for all three novel schedules than for either the traditional Q3 or Q4 schedules. Three proposed schedules that eliminate extended shifts may improve performance and alertness compared with traditional Q3 or Q4 schedules. Predicted times of worse performance and alertness were at night, which is also a time when supervision of trainees is lower. Mathematical modeling provides a quantitative comparison approach with potential to aid

  8. Stereotactically Standard Areas: Applied Mathematics in the Service of Brain Targeting in Deep Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Ioannis N. Mavridis

    2017-12-01

    Full Text Available The concept of stereotactically standard areas (SSAs within human brain nuclei belongs to the knowledge of the modern field of stereotactic brain microanatomy. These are areas resisting the individual variability of the nuclear location in stereotactic space. This paper summarizes the current knowledge regarding SSAs. A mathematical formula of SSAs was recently invented, allowing for their robust, reproducible, and accurate application to laboratory studies and clinical practice. Thus, SSAs open new doors for the application of stereotactic microanatomy to highly accurate brain targeting, which is mainly useful for minimally invasive neurosurgical procedures, such as deep brain stimulation.

  9. Stereotactically Standard Areas: Applied Mathematics in the Service of Brain Targeting in Deep Brain Stimulation.

    Science.gov (United States)

    Mavridis, Ioannis N

    2017-12-11

    The concept of stereotactically standard areas (SSAs) within human brain nuclei belongs to the knowledge of the modern field of stereotactic brain microanatomy. These are areas resisting the individual variability of the nuclear location in stereotactic space. This paper summarizes the current knowledge regarding SSAs. A mathematical formula of SSAs was recently invented, allowing for their robust, reproducible, and accurate application to laboratory studies and clinical practice. Thus, SSAs open new doors for the application of stereotactic microanatomy to highly accurate brain targeting, which is mainly useful for minimally invasive neurosurgical procedures, such as deep brain stimulation.

  10. Review Of Applied Mathematical Models For Describing The Behaviour Of Aqueous Humor In Eye Structures

    Science.gov (United States)

    Dzierka, M.; Jurczak, P.

    2015-12-01

    In the paper, currently used methods for modeling the flow of the aqueous humor through eye structures are presented. Then a computational model based on rheological models of Newtonian and non-Newtonian fluids is proposed. The proposed model may be used for modeling the flow of the aqueous humor through the trabecular meshwork. The trabecular meshwork is modeled as an array of rectilinear parallel capillary tubes. The flow of Newtonian and non-Newtonian fluids is considered. As a results of discussion mathematical equations of permeability of porous media and velocity of fluid flow through porous media have been received.

  11. Mathematics Teachers' Readiness to Integrate ICT in the Classroom: The Case of Elementary and Middle School Arab Teachers in Israel

    Directory of Open Access Journals (Sweden)

    Nimer F. Baya'a

    2013-03-01

    Full Text Available ICT integration in mathematics education provides mathematics teachers with integrative teaching methods that motivate students learning, support their independent learning and active participation in the discovery of mathematics concepts and topics, and, as a result, helps them have deeper understanding of the mathematical ideas. So, the integration of ICT in the teaching and learning of mathematics, as a result of ICT educational affordances, helps students have better achievement in mathematics. These potentialities of the ICT make its integration in the mathematics classroom a promising practice, but the success of this practice is dependent on various factors, among which are the following: teachers' perceptions of their ability in ICT, teachers' attitudes towards ICT contribution to the mathematics teaching, teachers' attitudes towards ICT contribution to students' mathematics learning, teachers' emotions towards the use of ICT in the mathematics classroom, teachers' feelings of self-esteem and control in the presence of ICT in the mathematics classroom, and teachers' intentions to actually integrate ICT in their teaching. The current research came to verify the readiness of Arab teachers in elementary and middle schools in Israel regarding the integration of ICT in the classroom, and hence its interest in the six above constructs. The research used a questionnaire that included statements related to each one of the above constructs. This questionnaire was administered to 475 Arab teachers in elementary and middle schools in the North, Center and Haifa regions in Israel. The research findings show that more than seventy percent of the participating teachers have positive perceptions of their competence in technology and technology integration in their teaching. Further, they have positive attitudes towards the integration of ICT in teaching and learning and of their self-esteem in the presence of technology, in addition to positive

  12. Applying multibeam sonar and mathematical modeling for mapping seabed substrate and biota of offshore shallows

    Science.gov (United States)

    Herkül, Kristjan; Peterson, Anneliis; Paekivi, Sander

    2017-06-01

    Both basic science and marine spatial planning are in a need of high resolution spatially continuous data on seabed habitats and biota. As conventional point-wise sampling is unable to cover large spatial extents in high detail, it must be supplemented with remote sensing and modeling in order to fulfill the scientific and management needs. The combined use of in situ sampling, sonar scanning, and mathematical modeling is becoming the main method for mapping both abiotic and biotic seabed features. Further development and testing of the methods in varying locations and environmental settings is essential for moving towards unified and generally accepted methodology. To fill the relevant research gap in the Baltic Sea, we used multibeam sonar and mathematical modeling methods - generalized additive models (GAM) and random forest (RF) - together with underwater video to map seabed substrate and epibenthos of offshore shallows. In addition to testing the general applicability of the proposed complex of techniques, the predictive power of different sonar-based variables and modeling algorithms were tested. Mean depth, followed by mean backscatter, were the most influential variables in most of the models. Generally, mean values of sonar-based variables had higher predictive power than their standard deviations. The predictive accuracy of RF was higher than that of GAM. To conclude, we found the method to be feasible and with predictive accuracy similar to previous studies of sonar-based mapping.

  13. Applying Mathematical Tools to Accelerate Vaccine Development: Modeling Shigella Immune Dynamics

    Science.gov (United States)

    Davis, Courtney L.; Wahid, Rezwanul; Toapanta, Franklin R.; Simon, Jakub K.

    2013-01-01

    We establish a mathematical framework for studying immune interactions with Shigella, a bacteria that kills over one million people worldwide every year. The long-term goal of this novel approach is to inform Shigella vaccine design by elucidating which immune components and bacterial targets are crucial for establishing Shigella immunity. Our delay differential equation model focuses on antibody and B cell responses directed against antigens like lipopolysaccharide in Shigella’s outer membrane. We find that antibody-based vaccines targeting only surface antigens cannot elicit sufficient immunity for protection. Additional boosting prior to infection would require a four-orders-of-magnitude increase in antibodies to sufficiently prevent epithelial invasion. However, boosting anti-LPS B memory can confer protection, which suggests these cells may correlate with immunity. We see that IgA antibodies are slightly more effective per molecule than IgG, but more total IgA is required due to spatial functionality. An extension of the model reveals that targeting both LPS and epithelial entry proteins is a promising avenue to advance vaccine development. This paper underscores the importance of multifaceted immune targeting in creating an effective Shigella vaccine. It introduces mathematical models to the Shigella vaccine development effort and lays a foundation for joint theoretical/experimental/clinical approaches to Shigella vaccine design. PMID:23589755

  14. Applied Mathematics at the U.S. Department of Energy: Past, Present and a View to the Future

    International Nuclear Information System (INIS)

    Brown, D.L; Bell, J.; Estep, D.; Gropp, W.; Hendrickson, B.; Keller-McNulty, S.; Keyes, D.; Oden, J.T.; Petzold, L.; Wright, M.

    2008-01-01

    Over the past half-century, the Applied Mathematics program in the U.S. Department of Energy's Office of Advanced Scientific Computing Research has made significant, enduring advances in applied mathematics that have been essential enablers of modern computational science. Motivated by the scientific needs of the Department of Energy and its predecessors, advances have been made in mathematical modeling, numerical analysis of differential equations, optimization theory, mesh generation for complex geometries, adaptive algorithms and other important mathematical areas. High-performance mathematical software libraries developed through this program have contributed as much or more to the performance of modern scientific computer codes as the high-performance computers on which these codes run. The combination of these mathematical advances and the resulting software has enabled high-performance computers to be used for scientific discovery in ways that could only be imagined at the program's inception. Our nation, and indeed our world, face great challenges that must be addressed in coming years, and many of these will be addressed through the development of scientific understanding and engineering advances yet to be discovered. The U.S. Department of Energy (DOE) will play an essential role in providing science-based solutions to many of these problems, particularly those that involve the energy, environmental and national security needs of the country. As the capability of high-performance computers continues to increase, the types of questions that can be answered by applying this huge computational power become more varied and more complex. It will be essential that we find new ways to develop and apply the mathematics necessary to enable the new scientific and engineering discoveries that are needed. In August 2007, a panel of experts in applied, computational and statistical mathematics met for a day and a half in Berkeley, California to understand the

  15. How does an ICT-competent mathematics teacher benefit from an ICT-integrative project?

    DEFF Research Database (Denmark)

    Skott, Charlotte Krog; Østergaard, Camilla Hellsten

    2016-01-01

    . We use a theoretical framework for classroom mathematical practices to conceptualise teachers´ learning from a participatory perspective. On the one hand, the teacher realises a potential for a more dialogical approach to teaching. On the other hand, she appears to maintain her habits in relation......We investigate an ICT-competent mathematics teacher’s potentials for professional development as she participates in a sixth-grade statistics project aimed at developing practices that integrate ICTs. This is a critical case study, partly because the teacher is not challenged by the proposed ICTs...... to ICT-use. These contrary tendencies negatively influence the students’ learning opportunities. We offer explanations for why the teacher seems to sticks with her ICT-habits as well as suggestions for future research- and development projects....

  16. The conceptual basis of mathematics in cardiology III: linear systems theory and integral transforms.

    Science.gov (United States)

    Bates, Jason H T; Sobel, Burton E

    2003-05-01

    This is the third in a series of four articles developed for the readers of Coronary Artery Disease. Without language ideas cannot be articulated. What may not be so immediately obvious is that they cannot be formulated either. One of the essential languages of cardiology is mathematics. Unfortunately, medical education does not emphasize, and in fact, often neglects empowering physicians to think mathematically. Reference to statistics, conditional probability, multicompartmental modeling, algebra, calculus and transforms is common but often without provision of genuine conceptual understanding. At the University of Vermont College of Medicine, Professor Bates developed a course designed to address these deficiencies. The course covered mathematical principles pertinent to clinical cardiovascular and pulmonary medicine and research. It focused on fundamental concepts to facilitate formulation and grasp of ideas.This series of four articles was developed to make the material available for a wider audience. The articles will be published sequentially in Coronary Artery Disease. Beginning with fundamental axioms and basic algebraic manipulations they address algebra, function and graph theory, real and complex numbers, calculus and differential equations, mathematical modeling, linear system theory and integral transforms and statistical theory. The principles and concepts they address provide the foundation needed for in-depth study of any of these topics. Perhaps of even more importance, they should empower cardiologists and cardiovascular researchers to utilize the language of mathematics in assessing the phenomena of immediate pertinence to diagnosis, pathophysiology and therapeutics. The presentations are interposed with queries (by Coronary Artery Disease abbreviated as CAD) simulating the nature of interactions that occurred during the course itself. Each article concludes with one or more examples illustrating application of the concepts covered to

  17. Operations research, engineering, and cyber security trends in applied mathematics and technology

    CERN Document Server

    Rassias, Themistocles

    2017-01-01

    Mathematical methods and theories with interdisciplinary applications are presented in this book. The eighteen contributions presented in this Work have been written by eminent scientists; a few papers are based on talks which took place at the International Conference at the Hellenic Artillery School in May 2015. Each paper evaluates possible solutions to long-standing problems such as the solvability of the direct electromagnetic scattering problem, geometric approaches to cyber security, ellipsoid targeting with overlap, non-equilibrium solutions of dynamic networks, measuring ballistic dispersion, elliptic regularity theory for the numerical solution of variational problems, approximation theory for polynomials on the real line and the unit circle, complementarity and variational inequalities in electronics, new two-slope parameterized achievement scalarizing functions for nonlinear multiobjective optimization, and strong and weak convexity of closed sets in a Hilbert space. Graduate students, scientists,...

  18. Business Intelligence Applied to the ALMA Software Integration Process

    Science.gov (United States)

    Zambrano, M.; Recabarren, C.; González, V.; Hoffstadt, A.; Soto, R.; Shen, T.-C.

    2012-09-01

    Software quality assurance and planning of an astronomy project is a complex task, specially if it is a distributed collaborative project such as ALMA, where the development centers are spread across the globe. When you execute a software project there is much valuable information about this process itself that you might be able to collect. One of the ways you can receive this input is via an issue tracking system that will gather the problem reports relative to software bugs captured during the testing of the software, during the integration of the different components or even worst, problems occurred during production time. Usually, there is little time spent on analyzing them but with some multidimensional processing you can extract valuable information from them and it might help you on the long term planning and resources allocation. We present an analysis of the information collected at ALMA from a collection of key unbiased indicators. We describe here the extraction, transformation and load process and how the data was processed. The main goal is to assess a software process and get insights from this information.

  19. Summary of research in applied mathematics, numerical analysis and computer science at the Institute for Computer Applications in Science and Engineering

    Science.gov (United States)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science during the period October 1, 1983 through March 31, 1984 is summarized.

  20. Summary of research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science

    Science.gov (United States)

    1989-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 1, 1988 through March 31, 1989 is summarized.

  1. The maxillae: integrated and applied anatomy relevant to dentistry.

    Science.gov (United States)

    Du Tolt, D F; Nortjé, Curly

    2003-09-01

    The union of the two paired maxillae form the whole upper jaw. Individual components of the maxilla contribute to the formation of the face, nose, mouth and orbit. The bony surfaces are in relation to the infratemporal and pterygopalatine fossae. Grooves, openings and foramina lend passage to structures such as the infra-orbital, posterior superior alveolar, nasopalatine and greater palatine nerves. These nerves are of great importance for regional anaesthesia in dentistry. The maxillary antrum of Highmore is frequently affected by pathological processes such as accidental tooth root impaction during an extraction procedure, sinusitis, cysts, fractures (LeFort) and tumours. Fast-growing maxillary sinus tumours often breach the thin walls of this cavity and encroach upon adjacent structures such as the orbit, nose, cheek, infratemporal fossa and mouth. 'Blow-out' fractures through the orbital component may result in nerve and muscle entrapment. Alveolar processes form an arcade for the two incisors, one canine, two premolars and three molars on each side. Knowledge of regional and applied anatomy, relevant to the maxillae, is essential when considering diagnostic imaging by X-rays, CT, and MRI.

  2. Evaluation of an Integrated Curriculum in Physics, Mathematics, Engineering, and Chemistry

    Science.gov (United States)

    Beichner, Robert

    1997-04-01

    An experimental, student centered, introductory curriculum called IMPEC (for Integrated Mathematics, Physics, Engineering, and Chemistry curriculum) is in its third year of pilot-testing at NCSU. The curriculum is taught by a multidisciplinary team of professors using a combination of traditional lecturing and alternative instructional methods including cooperative learning, activity-based class sessions, and extensive use of computer modeling, simulations, and the world wide web. This talk will discuss the research basis for our design and implementation of the curriculum, the qualitative and quantitative methods we have been using to assess its effectiveness, and the educational outcomes we have noted so far.

  3. Available clinical markers of treatment outcome integrated in mathematical models to guide therapy in HIV infection.

    Science.gov (United States)

    Vergu, Elisabeta; Mallet, Alain; Golmard, Jean-Louis

    2004-02-01

    Because treatment failure in many HIV-infected persons may be due to multiple causes, including resistance to antiretroviral agents, it is important to better tailor drug therapy to individual patients. This improvement requires the prediction of treatment outcome from baseline immunological or virological factors, and from results of resistance tests. Here, we review briefly the available clinical factors that have an impact on therapy outcome, and discuss the role of a predictive modelling approach integrating these factors proposed in a previous work. Mathematical and statistical models could become essential tools to address questions that are difficult to study clinically and experimentally, thereby guiding decisions in the choice of individualized drug regimens.

  4. Tenth-Grade High School Students' Mathematical Self-Efficacy, Mathematics Anxiety, Attitudes toward Mathematics, and Performance on the New York State Integrated Algebra Regents Examination

    Science.gov (United States)

    Catapano, Michael

    2013-01-01

    Strong mathematical abilities are important for the continuation of a successful society. Mathematics is required and involved in all aspects of daily life: banking, communications, business, education, and travel are just a few examples. More specifically the areas of finance, engineering, architecture, and technology require individuals with…

  5. Integrated learning of mathematics, science and technology concepts through LEGO/Logo projects

    Science.gov (United States)

    Wu, Lina

    This dissertation examined integrated learning in the domains of mathematics, science and technology based on Piaget's constructivism, Papert's constructionism, and project-based approach to education. Ten fifth grade students were involved in a two-month long after school program where they designed and built their own computer-controlled LEGO/Logo projects that required the use of gears, ratios and motion concepts. The design of this study centered on three notions of integrated learning: (1) integration in terms of what educational materials/settings provide, (2) integration in terms of students' use of those materials, and (3) integration in the psychological sense. In terms of the first notion, the results generally showed that the LEGO/Logo environment supported the integrated learning of math, science and technology concepts. Regarding the second notion, the students all completed impressive projects of their own design. They successfully combined gears, motors, and LEGO parts together to create motion and writing control commands to manipulate the motion. But contrary to my initial expectations, their successful designs did not require numerical reasoning about ratios in designing effective gear systems. When they did reason about gear relationships, they worked with "qualitative" ratios, e.g., "a larger driver gear with a smaller driven gear increases the speed." In terms of the third notion of integrated learning, there was evidence in all four case study students of the psychological processes involved in linking mathematical, scientific, and/or technological concepts together to achieve new conceptual units. The students not only made connections between ideas and experiences, but also recognized decisive patterns and relationships in their project work. The students with stronger overall project performances showed more evidence of synthesis than the students with relatively weaker performances did. The findings support the conclusion that all three

  6. An integrated mathematical model for chemical oxygen demand (COD) removal in moving bed biofilm reactors (MBBR) including predation and hydrolysis.

    Science.gov (United States)

    Revilla, Marta; Galán, Berta; Viguri, Javier R

    2016-07-01

    An integrated mathematical model is proposed for modelling a moving bed biofilm reactor (MBBR) for removal of chemical oxygen demand (COD) under aerobic conditions. The composite model combines the following: (i) a one-dimensional biofilm model, (ii) a bulk liquid model, and (iii) biological processes in the bulk liquid and biofilm considering the interactions among autotrophic, heterotrophic and predator microorganisms. Depending on the values for the soluble biodegradable COD loading rate (SCLR), the model takes into account a) the hydrolysis of slowly biodegradable compounds in the bulk liquid, and b) the growth of predator microorganisms in the bulk liquid and in the biofilm. The integration of the model and the SCLR allows a general description of the behaviour of COD removal by the MBBR under various conditions. The model is applied for two in-series MBBR wastewater plant from an integrated cellulose and viscose production and accurately describes the experimental concentrations of COD, total suspended solids (TSS), nitrogen and phosphorous obtained during 14 months working at different SCLRs and nutrient dosages. The representation of the microorganism group distribution in the biofilm and in the bulk liquid allow for verification of the presence of predator microorganisms in the second reactor under some operational conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Applying a Conceptual Mini Game for Supporting Simple Mathematical Calculation Skills: Students' Perceptions and Considerations

    Science.gov (United States)

    Panagiotakopoulos, Chris T.

    2011-01-01

    Mathematics is an area of study that particularly lacks student enthusiasm. Nevertheless, with the help of educational games, any phobias concerning mathematics can be considerably decreased and mathematics can become more appealing. In this study, an educational game addressing mathematics was designed, developed and evaluated by a sample of 33…

  8. Impact of Instructional Resources on Mathematics Performance of Learners with Dyscalculia in Integrated Primary Schools, Arusha City, Tanzania

    Science.gov (United States)

    Yusta, Nyudule; Karugu, Geoffrey; Muthee, Jessica; Tekle, Tesfu

    2016-01-01

    Learners with dyscalculia in the integrated primary schools in Arusha have been performing poorly in the Primary School Leaving Examination (PSLE). Thus, the journal sought to investigate the impact of instructional resources on mathematics performance of learners with dyscalculia in integrated primary schools found in Arusha city, Tanzania. The…

  9. High School Mathematics Curriculum Development Integrated with Character Education Within Project Assessment as Spiral System Leveled

    Directory of Open Access Journals (Sweden)

    Siti Badriatul Munawaroh

    2017-08-01

    Full Text Available The purpose of this research are: (1 description of characteristics and (2 validate thesenior hight school of mathematics syllabus integrated character education with the project assessment, (3 test the effectiveness of the learning material of function in class X. Testing procedure of syllabus and learning used research development of Borg & Gall (1987. The data were processed with descriptive analysis, statistical test t test and regression. The results obtained by the integration of the 10 characters on the senior hight school of mathematics syllabus show a valid syllabus by experts with an average score of 4 (both categories, the maximum score of 5. Test implementation on learning reach effective: (1 the percentage of learners achieve mastery learning by 89, 5%; (2 an increase of characters curiosity of learners of meeting 1 to 2, up to 3, up to 4 each score gain of 0.17; 0.30; 0.31; (3 the influence of the curiosity of students to the learning outcomes of 48.9%, (4 the average learning outcomes of students experimental class (77.2 is better than the control class (76.2. Thus, each character can bring a change in behavior according to the character programmed and observed in the learning process in focus. Coordination learning at every level stated in the syllabus.

  10. Mathematical Decision Models Applied for Qualifying and Planning Areas Considering Natural Hazards and Human Dealing

    Science.gov (United States)

    Anton, Jose M.; Grau, Juan B.; Tarquis, Ana M.; Sanchez, Elena; Andina, Diego

    2014-05-01

    The authors were involved in the use of some Mathematical Decision Models, MDM, to improve knowledge and planning about some large natural or administrative areas for which natural soils, climate, and agro and forest uses where main factors, but human resources and results were important, natural hazards being relevant. In one line they have contributed about qualification of lands of the Community of Madrid, CM, administrative area in centre of Spain containing at North a band of mountains, in centre part of Iberian plateau and river terraces, and also Madrid metropolis, from an official study of UPM for CM qualifying lands using a FAO model from requiring minimums of a whole set of Soil Science criteria. The authors set first from these criteria a complementary additive qualification, and tried later an intermediate qualification from both using fuzzy logic. The authors were also involved, together with colleagues from Argentina et al. that are in relation with local planners, for the consideration of regions and of election of management entities for them. At these general levels they have adopted multi-criteria MDM, used a weighted PROMETHEE, and also an ELECTRE-I with the same elicited weights for the criteria and data, and at side AHP using Expert Choice from parallel comparisons among similar criteria structured in two levels. The alternatives depend on the case study, and these areas with monsoon climates have natural hazards that are decisive for their election and qualification with an initial matrix used for ELECTRE and PROMETHEE. For the natural area of Arroyos Menores at South of Rio Cuarto town, with at North the subarea of La Colacha, the loess lands are rich but suffer now from water erosions forming regressive ditches that are spoiling them, and use of soils alternatives must consider Soil Conservation and Hydraulic Management actions. The use of soils may be in diverse non compatible ways, as autochthonous forest, high value forest, traditional

  11. Integration of the development of mathematical concepts and music education in preschool education by means of songs

    OpenAIRE

    Maričić, Sanja; Ćalić, Maja

    2015-01-01

    Starting from the fact that in early education the process of learning should be understood in its totality, as a system of activities in which the subject fields are interwoven and woven into every segment of a child's life together with other children and adults in preschool, the authors of the work point out the integration of the development of mathematical concepts and music education. Music education is viewed as a context which can contribute to the acquisition of mathematical concepts...

  12. Uncharted waters: Bivalves of midway atoll and integrating mathematics into biology education

    Science.gov (United States)

    McCully, Kristin M.

    To protect and conserve the Earth's biodiversity and ecosystem services, it is important not only to understand and conserve species and ecosystems, but also to instill an understanding and appreciation for biodiversity and ecosystem services in the next generations of both scientists and citizens. Thus, this dissertation combines research into the ecology and identity of large bivalves at Midway Atoll in the Northwestern Hawaiian Islands (NWHI) with research on pedagogical strategies for integrating mathematics into undergraduate biology education. The NWHI is one of the few remaining large, mainly intact, predator-dominated coral reef ecosystems and one of the world's largest marine protected areas. Previous bivalve studies focused on the black-lipped pearl oyster, Pinctada margaritifera, which was heavily harvested in the late 1920s, has not recovered, and is now a candidate species for restoration. First, I combined remote sensing, geographic information systems, SCUBA, and mathematical modeling to quantify the abundance, spatial distributions, and filtration capacity of large epifaunal bivalves at Midway Atoll. These bivalves are most abundant on the forereef outside the atoll, but densities are much lower than reported on other reefs, and Midway's bivalves are unlikely to affect plankton abundance and productivity inside the lagoon. Second, I used molecular techniques and phylogenetic reconstructions to identify pearl oysters (Pinctada) from Midway Atoll as P. maculata , a species not previously reported in Hawaii. As a small morphologically cryptic species, P. maculata may be a native species that has not been collected previously, a native species that has been identified incorrectly as the morphologically similar P. radiata, or it may be a recent introduction or natural range extension from the western Pacific. Finally, I review science education literature integrating mathematics into undergraduate biology curricula, and then present and evaluate a

  13. Using wavelet denoising and mathematical morphology in the segmentation technique applied to blood cells images.

    Science.gov (United States)

    Boix, Macarena; Cantó, Begoña

    2013-04-01

    Accurate image segmentation is used in medical diagnosis since this technique is a noninvasive pre-processing step for biomedical treatment. In this work we present an efficient segmentation method for medical image analysis. In particular, with this method blood cells can be segmented. For that, we combine the wavelet transform with morphological operations. Moreover, the wavelet thresholding technique is used to eliminate the noise and prepare the image for suitable segmentation. In wavelet denoising we determine the best wavelet that shows a segmentation with the largest area in the cell. We study different wavelet families and we conclude that the wavelet db1 is the best and it can serve for posterior works on blood pathologies. The proposed method generates goods results when it is applied on several images. Finally, the proposed algorithm made in MatLab environment is verified for a selected blood cells.

  14. Imperialist Competitive Algorithm with Dynamic Parameter Adaptation Using Fuzzy Logic Applied to the Optimization of Mathematical Functions

    Directory of Open Access Journals (Sweden)

    Emer Bernal

    2017-01-01

    Full Text Available In this paper we are presenting a method using fuzzy logic for dynamic parameter adaptation in the imperialist competitive algorithm, which is usually known by its acronym ICA. The ICA algorithm was initially studied in its original form to find out how it works and what parameters have more effect upon its results. Based on this study, several designs of fuzzy systems for dynamic adjustment of the ICA parameters are proposed. The experiments were performed on the basis of solving complex optimization problems, particularly applied to benchmark mathematical functions. A comparison of the original imperialist competitive algorithm and our proposed fuzzy imperialist competitive algorithm was performed. In addition, the fuzzy ICA was compared with another metaheuristic using a statistical test to measure the advantage of the proposed fuzzy approach for dynamic parameter adaptation.

  15. A software complex intended for constructing applied models and meta-models on the basis of mathematical programming principles

    Directory of Open Access Journals (Sweden)

    Михаил Юрьевич Чернышов

    2013-12-01

    Full Text Available A software complex (SC elaborated by the authors on the basis of the language LMPL and representing a software tool intended for synthesis of applied software models and meta-models constructed on the basis of mathematical programming (MP principles is described. LMPL provides for an explicit form of declarative representation of MP-models, presumes automatic constructing and transformation of models and the capability of adding external software packages. The following software versions of the SC have been implemented: 1 a SC intended for representing the process of choosing an optimal hydroelectric power plant model (on the principles of meta-modeling and 2 a SC intended for representing the logic-sense relations between the models of a set of discourse formations in the discourse meta-model.

  16. Quotable Quotes in Mathematics

    Science.gov (United States)

    Lo, Bruce W. N.

    1983-01-01

    As a way to dispel negative feelings toward mathematics, a variety of quotations are given. They are categorized by: what mathematics is, mathematicians, mathematics and other disciplines, different areas of mathematics, mathematics and humor, applications of mathematics, and pure versus applied mathematics. (MNS)

  17. Integrating Universal Design and Response to Intervention in Methods Courses for General Education Mathematics Teachers

    Science.gov (United States)

    Buchheister, Kelley; Jackson, Christa; Taylor, Cynthia E.

    2014-01-01

    Traditionally, teacher education programs have placed little emphasis on preparing mathematics teachers to work with students who struggle in mathematics. Therefore, it is crucial that mathematics teacher educators explicitly prepare prospective teachers to instruct students who struggle with mathematics by providing strategies and practices that…

  18. Proceedings of the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering - M and C 2013

    International Nuclear Information System (INIS)

    2013-01-01

    The Mathematics and Computation Division of the American Nuclear (ANS) and the Idaho Section of the ANS hosted the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M and C 2013). This proceedings contains over 250 full papers with topics ranging from reactor physics; radiation transport; materials science; nuclear fuels; core performance and optimization; reactor systems and safety; fluid dynamics; medical applications; analytical and numerical methods; algorithms for advanced architectures; and validation verification, and uncertainty quantification

  19. Proceedings of the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering - M and C 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    The Mathematics and Computation Division of the American Nuclear (ANS) and the Idaho Section of the ANS hosted the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M and C 2013). This proceedings contains over 250 full papers with topics ranging from reactor physics; radiation transport; materials science; nuclear fuels; core performance and optimization; reactor systems and safety; fluid dynamics; medical applications; analytical and numerical methods; algorithms for advanced architectures; and validation verification, and uncertainty quantification.

  20. Capturing Student Mathematical Engagement through Differently Enacted Classroom Practices: Applying a Modification of Watson's Analytical Tool

    Science.gov (United States)

    Patahuddin, Sitti Maesuri; Puteri, Indira; Lowrie, Tom; Logan, Tracy; Rika, Baiq

    2018-01-01

    This study examined student mathematical engagement through the intended and enacted lessons taught by two teachers in two different middle schools in Indonesia. The intended lesson was developed using the ELPSA learning design to promote mathematical engagement. Based on the premise that students will react to the mathematical tasks in the forms…

  1. Integrating the Learning of Mathematics and Science Using Interactive Teaching and Learning Strategies

    Science.gov (United States)

    Holmes, Mark H.

    2006-10-01

    To help students grasp the intimate connections that exist between mathematics and its applications in other disciplines a library of interactive learning modules was developed. This library covers the mathematical areas normally studied by undergraduate students and is used in science courses at all levels. Moreover, the library is designed not just to provide critical connections across disciplines but to also provide longitudinal subject reinforcement as students progress in their studies. In the process of developing the modules a complete editing and publishing system was constructed that is optimized for automated maintenance and upgradeability of materials. The result is a single integrated production system for web-based educational materials. Included in this is a rigorous assessment program, involving both internal and external evaluations of each module. As will be seen, the formative evaluation obtained during the development of the library resulted in the modules successfully bridging multiple disciplines and breaking down the disciplinary barriers commonly found in their math and non-math courses.

  2. Quantitative Circulatory Physiology: an integrative mathematical model of human physiology for medical education.

    Science.gov (United States)

    Abram, Sean R; Hodnett, Benjamin L; Summers, Richard L; Coleman, Thomas G; Hester, Robert L

    2007-06-01

    We have developed Quantitative Circulatory Physiology (QCP), a mathematical model of integrative human physiology containing over 4,000 variables of biological interactions. This model provides a teaching environment that mimics clinical problems encountered in the practice of medicine. The model structure is based on documented physiological responses within peer-reviewed literature and serves as a dynamic compendium of physiological knowledge. The model is solved using a desktop, Windows-based program, allowing students to calculate time-dependent solutions and interactively alter over 750 parameters that modify physiological function. The model can be used to understand proposed mechanisms of physiological function and the interactions among physiological variables that may not be otherwise intuitively evident. In addition to open-ended or unstructured simulations, we have developed 30 physiological simulations, including heart failure, anemia, diabetes, and hemorrhage. Additional stimulations include 29 patients in which students are challenged to diagnose the pathophysiology based on their understanding of integrative physiology. In summary, QCP allows students to examine, integrate, and understand a host of physiological factors without causing harm to patients. This model is available as a free download for Windows computers at http://physiology.umc.edu/themodelingworkshop.

  3. Designing a mathematical model for integrating dynamic cellular manufacturing into supply chain system

    Science.gov (United States)

    Aalaei, Amin; Davoudpour, Hamid

    2012-11-01

    This article presents designing a new mathematical model for integrating dynamic cellular manufacturing into supply chain system with an extensive coverage of important manufacturing features consideration of multiple plants location, multi-markets allocation, multi-period planning horizons with demand and part mix variation, machine capacity, and the main constraints are demand of markets satisfaction in each period, machine availability, machine time-capacity, worker assignment, available time of worker, production volume for each plant and the amounts allocated to each market. The aim of the proposed model is to minimize holding and outsourcing costs, inter-cell material handling cost, external transportation cost, procurement & maintenance and overhead cost of machines, setup cost, reconfiguration cost of machines installation and removal, hiring, firing and salary worker costs. Aimed to prove the potential benefits of such a design, presented an example is shown using a proposed model.

  4. Integrated intravital microscopy and mathematical modeling to optimize nanotherapeutics delivery to tumors

    Directory of Open Access Journals (Sweden)

    Anne L. van de Ven

    2012-03-01

    Full Text Available Inefficient vascularization hinders the optimal transport of cell nutrients, oxygen, and drugs to cancer cells in solid tumors. Gradients of these substances maintain a heterogeneous cell-scale microenvironment through which drugs and their carriers must travel, significantly limiting optimal drug exposure. In this study, we integrate intravital microscopy with a mathematical model of cancer to evaluate the behavior of nanoparticle-based drug delivery systems designed to circumvent biophysical barriers. We simulate the effect of doxorubicin delivered via porous 1000 x 400 nm plateloid silicon particles to a solid tumor characterized by a realistic vasculature, and vary the parameters to determine how much drug per particle and how many particles need to be released within the vasculature in order to achieve remission of the tumor. We envision that this work will contribute to the development of quantitative measures of nanoparticle design and drug loading in order to optimize cancer treatment via nanotherapeutics.

  5. DigitalHuman (DH): An Integrative Mathematical Model ofHuman Physiology

    Science.gov (United States)

    Hester, Robert L.; Summers, Richard L.; lIescu, Radu; Esters, Joyee; Coleman, Thomas G.

    2010-01-01

    Mathematical models and simulation are important tools in discovering the key causal relationships governing physiological processes and improving medical intervention when physiological complexity is a central issue. We have developed a model of integrative human physiology called DigitalHuman (DH) consisting of -5000 variables modeling human physiology describing cardiovascular, renal, respiratory, endocrine, neural and metabolic physiology. Users can view time-dependent solutions and interactively introduce perturbations by altering numerical parameters to investigate new hypotheses. The variables, parameters and quantitative relationships as well as all other model details are described in XML text files. All aspects of the model, including the mathematical equations describing the physiological processes are written in XML open source, text-readable files. Model structure is based upon empirical data of physiological responses documented within the peer-reviewed literature. The model can be used to understand proposed physiological mechanisms and physiological interactions that may not be otherwise intUitively evident. Some of the current uses of this model include the analyses of renal control of blood pressure, the central role of the liver in creating and maintaining insulin resistance, and the mechanisms causing orthostatic hypotension in astronauts. Additionally the open source aspect of the modeling environment allows any investigator to add detailed descriptions of human physiology to test new concepts. The model accurately predicts both qualitative and more importantly quantitative changes in clinically and experimentally observed responses. DigitalHuman provides scientists a modeling environment to understand the complex interactions of integrative physiology. This research was supported by.NIH HL 51971, NSF EPSCoR, and NASA

  6. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...

  7. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    ; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics...... to new problems. Relations and functions: Define a product set; define and apply equivalence relations; construct and apply functions. Apply these concepts to new problems. Natural numbers and induction: Define the natural numbers; apply the principle of induction to verify a selection of properties...

  8. THE CASE STUDY TASKS AS A BASIS FOR THE FUND OF THE ASSESSMENT TOOLS AT THE MATHEMATICAL ANALYSIS FOR THE DIRECTION 01.03.02 APPLIED MATHEMATICS AND COMPUTER SCIENCE

    Directory of Open Access Journals (Sweden)

    Dina Aleksandrovna Kirillova

    2015-12-01

    Full Text Available The modern reform of the Russian higher education involves the implementation of competence-based approach, the main idea of which is the practical orientation of education. Mathematics is a universal language of description, modeling and studies of phenomena and processes of different nature. Therefore creating the fund of assessment tools for mathematical disciplines based on the applied problems is actual. The case method is the most appropriate mean of monitoring the learning outcomes, it is aimed at bridging the gap between theory and practice.The aim of the research is the development of methodical materials for the creating the fund of assessment tools that are based on the case-study for the mathematical analisis for direction «Applied Mathematics and Computer Science». The aim follows from the contradiction between the need for the introduction of case-method in the educational process in high school and the lack of study of the theoretical foundations of using of this method as applied to mathematical disciplines, insufficient theoretical basis and the description of the process of creating case-problems for use their in the monitoring of the learning outcomes.

  9. Impact of Interdisciplinary Undergraduate Research in mathematics and biology on the development of a new course integrating five STEM disciplines.

    Science.gov (United States)

    Caudill, Lester; Hill, April; Hoke, Kathy; Lipan, Ovidiu

    2010-01-01

    Funded by innovative programs at the National Science Foundation and the Howard Hughes Medical Institute, University of Richmond faculty in biology, chemistry, mathematics, physics, and computer science teamed up to offer first- and second-year students the opportunity to contribute to vibrant, interdisciplinary research projects. The result was not only good science but also good science that motivated and informed course development. Here, we describe four recent undergraduate research projects involving students and faculty in biology, physics, mathematics, and computer science and how each contributed in significant ways to the conception and implementation of our new Integrated Quantitative Science course, a course for first-year students that integrates the material in the first course of the major in each of biology, chemistry, mathematics, computer science, and physics.

  10. A Novel Hybridization of Applied Mathematical, Operations Research and Risk-based Methods to Achieve an Optimal Solution to a Challenging Subsurface Contamination Problem

    Science.gov (United States)

    Johnson, K. D.; Pinder, G. F.

    2013-12-01

    The objective of the project is the creation of a new, computationally based, approach to the collection, evaluation and use of data for the purpose of determining optimal strategies for investment in the solution of remediation of contaminant source areas and similar environmental problems. The research focuses on the use of existing mathematical tools assembled in a unique fashion. The area of application of this new capability is optimal (least-cost) groundwater contamination source identification; we wish to identify the physical environments wherein it may be cost-prohibitive to identify a contaminant source, the optimal strategy to protect the environment from additional insult and formulate strategies for cost-effective environmental restoration. The computational underpinnings of the proposed approach encompass the integration into a unique of several known applied-mathematical tools. The resulting tool integration achieves the following: 1) simulate groundwater flow and contaminant transport under uncertainty, that is when the physical parameters such as hydraulic conductivity are known to be described by a random field; 2) define such a random field from available field data or be able to provide insight into the sampling strategy needed to create such a field; 3) incorporate subjective information, such as the opinions of experts on the importance of factors such as locations of waste landfills; 4) optimize a search strategy for finding a potential source location and to optimally combine field information with model results to provide the best possible representation of the mean contaminant field and its geostatistics. Our approach combines in a symbiotic manner methodologies found in numerical simulation, random field analysis, Kalman filtering, fuzzy set theory and search theory. Testing the algorithm for this stage of the work, we will focus on fabricated field situations wherein we can a priori specify the degree of uncertainty associated with the

  11. INTEGRATED PROGRAMMATIC ENVIRONMENT OF THE DEPARTMENTAL OF MATHEMATICAL LOGIC OF «MATLOG»

    Directory of Open Access Journals (Sweden)

    Yurii I. Sinko

    2010-09-01

    Full Text Available The article deals with the introduction of new information technologies into the process of mathematical logic learning at the Kherson State University. The basic components of program system of mathematical logic learning are considered.

  12. A mathematical model for smart functionally graded beam integrated with shape memory alloy actuators

    International Nuclear Information System (INIS)

    Sepiani, H.; Ebrahimi, F.; Karimipour, H.

    2009-01-01

    This paper presents a theoretical study of the thermally driven behavior of a shape memory alloy (SMA)/FGM actuator under arbitrary loading and boundary conditions by developing an integrated mathematical model. The model studied is established on the geometric parameters of the three-dimensional laminated composite box beam as an actuator that consists of a functionally graded core integrated with SMA actuator layers with a uniform rectangular cross section. The constitutive equation and linear phase transformation kinetics relations of SMA layers based on Tanaka and Nagaki model are coupled with the governing equation of the actuator to predict the stress history and to model the thermo-mechanical behavior of the smart shape memory alloy/FGM beam. Based on the classical laminated beam theory, the explicit solution to the structural response of the structure, including axial and lateral deflections of the structure, is investigated. As an example, a cantilever box beam subjected to a transverse concentrated load is solved numerically. It is found that the changes in the actuator's responses during the phase transformation due to the strain recovery are significant

  13. A MATHEMATICAL MODEL OF OPTIMIZATION OF THE VOLUME OF MATERIAL FLOWS IN GRAIN PROCESSING INTEGRATED PRODUCTION SYSTEMS

    OpenAIRE

    Baranovskaya T. P.; Loyko V. I.; Makarevich O. A.; Bogoslavskiy S. N.

    2014-01-01

    The article suggests a mathematical model of optimization of the volume of material flows: the model for the ideal conditions; the model for the working conditions; generalized model of determining the optimal input parameters. These models optimize such parameters of inventory management in technology-integrated grain production systems, as the number of cycles supply, the volume of the source material and financial flows. The study was carried out on the example of the integrated system of ...

  14. Integrating Mathematical Modeling for Undergraduate Pre-Service Science Education Learning and Instruction in Middle School Classrooms

    Science.gov (United States)

    Carrejo, David; Robertson, William H.

    2011-01-01

    Computer-based mathematical modeling in physics is a process of constructing models of concepts and the relationships between them in the scientific characteristics of work. In this manner, computer-based modeling integrates the interactions of natural phenomenon through the use of models, which provide structure for theories and a base for…

  15. Do Mathematics and Reading Competencies Integrated into Career and Technical Education Courses Improve High School Student State Assessment Scores?

    Science.gov (United States)

    Pierce, Kristin B.; Hernandez, Victor M.

    2015-01-01

    A quasi experimental study tested a contextual teaching and learning model for integrating reading and mathematics competencies through 13 introductory career and technical education (CTE) courses. The treatment group consisted of students in the 13 introductory courses taught by the CTE teachers who designed the units and the control group…

  16. Integration of Technology, Curriculum, and Professional Development for Advancing Middle School Mathematics: Three Large-Scale Studies

    Science.gov (United States)

    Roschelle, Jeremy; Shechtman, Nicole; Tatar, Deborah; Hegedus, Stephen; Hopkins, Bill; Empson, Susan; Knudsen, Jennifer; Gallagher, Lawrence P.

    2010-01-01

    The authors present three studies (two randomized controlled experiments and one embedded quasi-experiment) designed to evaluate the impact of replacement units targeting student learning of advanced middle school mathematics. The studies evaluated the SimCalc approach, which integrates an interactive representational technology, paper curriculum,…

  17. Integrating Mathematical Learning during Caregiving Routines: A Study of Toddlers in Swedish Preschools

    Science.gov (United States)

    Palmér, Hanna; Henriksson, Jenny; Hussein, Rania

    2016-01-01

    In recent years the interest in preschool mathematics has increased. However, studies seldom focus on children under the age of three and research is scarce on the early use of mathematics observed in natural settings. This article reports a study of mathematical possibilities during diaper changing in a preschool setting. A diaper change can be a…

  18. Exploring an Integrative Lens of Identity for a High School Mathematics Teacher

    Science.gov (United States)

    Wilson, Kimi

    2016-01-01

    Driven largely by societal discourse regarding the underrepresentation of African American males pursuing science, technology, engineering and mathematics (STEM) majors, careers and professions, it becomes salient to understand how African American males experience mathematics in K-12 public schools in relation to their mathematics identity…

  19. The effect of integrating lab experiments in electronic circuits into mathematic studies - a case study

    Science.gov (United States)

    Sabag, Nissim

    2017-10-01

    The importance of knowledge and skills in mathematics for electrical engineering students is well known. Engineers and engineering educators agree that any engineering curriculum must include plenty of mathematics studies to enrich the engineer's toolbox. Nevertheless, little attention has been given to the possible contribution of examples from engineering fields for the clarification of mathematical issues.

  20. Photovoltaic and Hydrogen Plant Integrated with a Gas Heat Pump for Greenhouse Heating: A Mathematical Study

    Directory of Open Access Journals (Sweden)

    Alexandros Sotirios Anifantis

    2018-02-01

    Full Text Available Nowadays, the traditional energy sources used for greenhouse heating are fossil fuels such as LPG, diesel and natural gas. The global energy demand will continue to grow and alternative technologies need to be developed in order to improve the sustainability of crop production in protected environments. Innovative solutions are represented by renewable energy plants such as photovoltaic, wind and geothermal integrated systems, however, these technologies need to be connected to the power grid in order to store the energy produced. On agricultural land, power grids are not widespread and stand-alone renewable energy systems should be investigated especially for greenhouse applications. The aim of this research is to analyze, by means of a mathematical model, the energy efficiency of a photovoltaic (8.2 kW, hydrogen (2.5 kW and ground source gas heat pump (2.2 kW integrated in a stand-alone system used for heating an experimental greenhouse tunnel (48 m2 during the winter season. A yearlong energy performance analysis was conducted for three different types of greenhouse cover materials, a single layer polyethylene film, an air inflated-double layer polyethylene film, and a double acrylic or polycarbonate. The results of one year showed that the integrated system had a total energy efficiency of 14.6%. Starting from the electric energy supplied by the photovoltaic array, the total efficiency of the hydrogen and ground source gas heat pump system was 112% if the coefficient of the performance of the heat pump is equal to 5. The heating system increased the greenhouse air temperatures by 3–9 °C with respect to the external air temperatures, depending on the greenhouse cover material used.

  1. Dilemma in Teaching Mathematics

    Science.gov (United States)

    Md Kamaruddin, Nafisah Kamariah; Md Amin, Zulkarnain

    2012-01-01

    The challenge in mathematics education is finding the best way to teach mathematics. When students learn the reasoning and proving in mathematics, they will be proficient in mathematics. Students must know mathematics before they can apply it. Symbolism and logic is the key to both the learning of mathematics and its effective application to…

  2. There is more variation within than across domains: an interview with Paul A. Kirschner about applying cognitive psychology based instructional design principles in mathematics teaching and learning

    NARCIS (Netherlands)

    Kirschner, Paul A.; Verschaffel, Lieven; Star, Jon; Van Dooren, Wim

    2018-01-01

    In this interview we asked Paul A. Kirschner about his comments and reflections regarding the idea to apply cognitive psychology-based instructional design principles to mathematics education and some related issues. With a main focus on cognitive psychology, educational psychology, educational

  3. There Is More Variation "within" than "across" Domains: An Interview with Paul A. Kirschner about Applying Cognitive Psychology-Based Instructional Design Principles in Mathematics Teaching and Learning

    Science.gov (United States)

    Kirschner, Paul A.; Verschaffel, Lieven; Star, Jon; Van Dooren, Wim

    2017-01-01

    In this interview we asked Paul A. Kirschner about his comments and reflections regarding the idea to apply cognitive psychology-based instructional design principles to mathematics education and some related issues. With a main focus on cognitive psychology, educational psychology, educational technology and instructional design, this…

  4. A Multifaceted Mathematical Approach for Complex Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, F.; Anitescu, M.; Bell, J.; Brown, D.; Ferris, M.; Luskin, M.; Mehrotra, S.; Moser, B.; Pinar, A.; Tartakovsky, A.; Willcox, K.; Wright, S.; Zavala, V.

    2012-03-07

    Applied mathematics has an important role to play in developing the tools needed for the analysis, simulation, and optimization of complex problems. These efforts require the development of the mathematical foundations for scientific discovery, engineering design, and risk analysis based on a sound integrated approach for the understanding of complex systems. However, maximizing the impact of applied mathematics on these challenges requires a novel perspective on approaching the mathematical enterprise. Previous reports that have surveyed the DOE's research needs in applied mathematics have played a key role in defining research directions with the community. Although these reports have had significant impact, accurately assessing current research needs requires an evaluation of today's challenges against the backdrop of recent advances in applied mathematics and computing. To address these needs, the DOE Applied Mathematics Program sponsored a Workshop for Mathematics for the Analysis, Simulation and Optimization of Complex Systems on September 13-14, 2011. The workshop had approximately 50 participants from both the national labs and academia. The goal of the workshop was to identify new research areas in applied mathematics that will complement and enhance the existing DOE ASCR Applied Mathematics Program efforts that are needed to address problems associated with complex systems. This report describes recommendations from the workshop and subsequent analysis of the workshop findings by the organizing committee.

  5. Modelling as a foundation for academic forming in mathematics education

    NARCIS (Netherlands)

    Perrenet, J.C.; Morsche, ter H.G.

    2004-01-01

    The Bachelor curriculum of Applied Mathematics in Eindhoven includes a series of modelling projects where pairs of students solve mathematical problems posed in non-mathematical language. Communication skills training is integrated with this track. Recently a new course has been added. The students

  6. Evaluation of the use of fresh water by four Egyptian farms applying integrated aquaculture – agriculture

    NARCIS (Netherlands)

    Heijden, van der P.G.M.; Nasr-Alla, A.; Kenawy, D.; El-Naggar, G.; Beveridge, M.

    2012-01-01

    This report describes a study done in 2010 by researchers of the WorldFish Center on water use in Egyptian farms that apply aquaculture – agriculture integration. Two of the four farms that were monitored derived the main income from farming and selling fish, the two other farms were mainly

  7. Feasibility of real-time calculation of correlation integral derived statistics applied to EGG time series

    NARCIS (Netherlands)

    van den Broek, PLC; van Egmond, J; van Rijn, CM; Takens, F; Coenen, AML; Booij, LHDJ

    2005-01-01

    Background: This study assessed the feasibility of online calculation of the correlation integral (C(r)) aiming to apply C(r)derived statistics. For real-time application it is important to reduce calculation time. It is shown how our method works for EEG time series. Methods: To achieve online

  8. Feasibility of real-time calculation of correlation integral derived statistics applied to EEG time series

    NARCIS (Netherlands)

    Broek, P.L.C. van den; Egmond, J. van; Rijn, C.M. van; Takens, F.; Coenen, A.M.L.; Booij, L.H.D.J.

    2005-01-01

    This study assessed the feasibility of online calculation of the correlation integral (C(r)) aiming to apply C(r)-derived statistics. For real-time application it is important to reduce calculation time. It is shown how our method works for EEG time series. Methods: To achieve online calculation of

  9. Integrating Opportunities: Applied Interdisciplinary Research in Undergraduate Geography and Geology Education

    Science.gov (United States)

    Viertel, David C.; Burns, Diane M.

    2012-01-01

    Unique integrative learning approaches represent a fundamental opportunity for undergraduate students and faculty alike to combine interdisciplinary methods with applied spatial research. Geography and geoscience-related disciplines are particularly well-suited to adapt multiple methods within a holistic and reflective mentored research paradigm.…

  10. Mathematical modeling of the dynamic stability of fluid conveying pipe based on integral equation formulations

    International Nuclear Information System (INIS)

    Elfelsoufi, Z.; Azrar, L.

    2016-01-01

    In this paper, a mathematical modeling of flutter and divergence analyses of fluid conveying pipes based on integral equation formulations is presented. Dynamic stability problems related to fluid pressure, velocity, tension, topography slope and viscoelastic supports and foundations are formulated. A methodological approach is presented and the required matrices, associated to the influencing fluid and pipe parameters, are explicitly given. Internal discretizations are used allowing to investigate the deformation, the bending moment, slope and shear force at internal points. Velocity–frequency, pressure-frequency and tension-frequency curves are analyzed for various fluid parameters and internal elastic supports. Critical values of divergence and flutter behaviors with respect to various fluid parameters are investigated. This model is general and allows the study of dynamic stability of tubes crossed by stationary and instationary fluid on various types of supports. Accurate predictions can be obtained and are of particular interest for a better performance and for an optimal safety of piping system installations. - Highlights: • Modeling the flutter and divergence of fluid conveying pipes based on RBF. • Dynamic analysis of a fluid conveying pipe with generalized boundary conditions. • Considered parameters fluid are the pressure, tension, slopes topography, velocity. • Internal support increase the critical velocity value. • This methodologies determine the fluid parameters effects.

  11. Development of pregnant female, hybrid voxel-mathematical models and their application to the dosimetry of applied magnetic and electric fields at 50 Hz

    International Nuclear Information System (INIS)

    Dimbylow, Peter

    2006-01-01

    This paper describes the development of 2 mm resolution hybrid voxel-mathematical models of the pregnant female. Mathematical models of the developing foetus at 8-, 13-, 26- and 38-weeks of gestation were converted into voxels and combined with the adult female model, NAOMI. This set of models was used to calculate induced current densities and electric fields in the foetus from applied 50 Hz magnetic and electric fields. The influence of foetal tissue conductivities was investigated and implications for electromagnetic field guidelines discussed

  12. Emerging Trends in Applied Mathematics: Dedicated to the Memory of Sir Asutosh Mookerjee and Contributions of S.N. Bose, M.N. Saha and N.R. Sen

    CERN Document Server

    Basu, Uma; De, Soumen

    2015-01-01

    The book is based on research presentations at the international conference, “Emerging Trends in Applied Mathematics: In the Memory of Sir Asutosh Mookerjee, S.N. Bose, M.N. Saha, and N.R. Sen”, held at the Department of Applied Mathematics, University of Calcutta, during 12–14 February 2014. It focuses on various emerging and challenging topics in the field of applied mathematics and theoretical physics. The book will be a valuable resource for postgraduate students at higher levels and researchers in applied mathematics and theoretical physics. Researchers presented a wide variety of themes in applied mathematics and theoretical physics—such as emergent periodicity in a field of chaos; Ricci flow equation and Poincare conjecture; Bose–Einstein condensation; geometry of local scale invariance and turbulence; statistical mechanics of human resource allocation: mathematical modelling of job-matching in labour markets; contact problem in elasticity; the Saha equation; computational fluid dynamics with...

  13. On randomized algorithms for numerical solution of applied Fredholm integral equations of the second kind

    Science.gov (United States)

    Voytishek, Anton V.; Shipilov, Nikolay M.

    2017-11-01

    In this paper, the systematization of numerical (implemented on a computer) randomized functional algorithms for approximation of a solution of Fredholm integral equation of the second kind is carried out. Wherein, three types of such algorithms are distinguished: the projection, the mesh and the projection-mesh methods. The possibilities for usage of these algorithms for solution of practically important problems is investigated in detail. The disadvantages of the mesh algorithms, related to the necessity of calculation values of the kernels of integral equations in fixed points, are identified. On practice, these kernels have integrated singularities, and calculation of their values is impossible. Thus, for applied problems, related to solving Fredholm integral equation of the second kind, it is expedient to use not mesh, but the projection and the projection-mesh randomized algorithms.

  14. The Mathematics Syllabus and Adult Learners in Community Colleges: Integrating Technique with Content.

    Science.gov (United States)

    Baker, Robert N.

    2001-01-01

    Presents a brief discussion of the challenges presented to mathematics education by changes in social dependence on mathematics, in professional response to the needs of students, in institutional expectations of students and teachers, and in student demographics and expectations. Provides an extended outline for a syllabus used to clearly…

  15. Prototype Images in Mathematics Education: The Case of The Graphical Representation of The Definite Integral

    Science.gov (United States)

    Jones, Steven R.

    2018-01-01

    Many mathematical concepts may have prototypical images associated with them. While prototypes can be beneficial for efficient thinking or reasoning, they may also have self-attributes that may impact reasoning about the concept. It is essential that mathematics educators understand these prototype images in order to fully recognize their benefits…

  16. Recruitment and Retention of Students--An Integrated and Holistic Vision of Mathematics Support

    Science.gov (United States)

    Croft, A. C.; Harrison, M. C.; Robinson, C. L.

    2009-01-01

    Students' lack of preparedness for the mathematical demands of higher education is affecting a wide range of programmes in universities worldwide. In the UK this has been recognized at the highest levels and provoked several inquiries. The ability to use mathematics in courses as varied as nursing, biosciences, and business is an essential skill…

  17. Mathematics for Maths Anxious Tertiary Students: Integrating the cognitive and affective domains using interactive multimedia

    Directory of Open Access Journals (Sweden)

    Janet Taylor

    2011-04-01

    Full Text Available Today, commencing university students come from a diversity of backgrounds and have a broad range of abilities and attitudes. It is well known that attitudes towards mathematics, especially mathematics anxiety, can affect students’ performance to the extent that mathematics is often seen as a barrier to success by many. This paper reports on the design, development and evaluation of an interactive multimedia resource designed to explicitly address students’ beliefs and attitudes towards mathematics by following five characters as they progress through the highs and low of studying a preparatory mathematics course. The resource was built within two theoretical frameworks, one related to effective numeracy teaching (Marr and Helme 1991 and the other related to effective educational technology development (Laurillard 2002. Further, it uses a number of multimedia alternatives (video, audio, animations, diarying, interactive examples and self assessment to encourage students to feel part of a group, to reflect on their feelings and beliefs about mathematics, to expose students to authentic problem solving and generally build confidence through practice and self-assessment. Evaluation of the resource indicated that it encouraged students to value their own mathematical ability and helped to build confidence, while developing mathematical problem solving skills. The evaluation clearly demonstrated that it is possible to address the affective domain through multimedia initiatives and that this can complement the current focus on computer mediated communication as the primary method of addressing affective goals within the online environment.

  18. Dual Treatments as Starting Point for Integrative Perceptions in Teaching Mathematics

    Science.gov (United States)

    Kërënxhi, Svjetllana; Gjoci, Pranvera

    2015-01-01

    In this paper, we recommend mathematical teaching through dual treatments. The dual treatments notion, classified in dual interpretations, dual analyses, dual solutions, and dual formulations, is explained through concrete examples taken from mathematical textbooks of elementary education. Dual treatments provide opportunities for creating…

  19. Mathematical Modeling and Algebraic Technique for Resolving a Single-Producer Multi-Retailer Integrated Inventory System with Scrap

    OpenAIRE

    Yuan-Shyi Peter Chiu; Chien-Hua Lee; Nong Pan; Singa Wang Chiu

    2013-01-01

    This study uses mathematical modeling along with an algebraic technique to resolve the production-distribution policy for a single-producer multi-retailer integrated inventory system with scrap in production. We assume that a product is manufactured through an imperfect production process where all nonconforming items will be picked up and scrapped in each production cycle. After the entire lot is quality assured, multiple shipments will be delivered synchronously to m different retailers in ...

  20. Lectures on Selected Topics in Mathematical Physics: Elliptic Functions and Elliptic Integrals

    Science.gov (United States)

    Schwalm, William A.

    2015-12-01

    This volume is a basic introduction to certain aspects of elliptic functions and elliptic integrals. Primarily, the elliptic functions stand out as closed solutions to a class of physical and geometrical problems giving rise to nonlinear differential equations. While these nonlinear equations may not be the types of greatest interest currently, the fact that they are solvable exactly in terms of functions about which much is known makes up for this. The elliptic functions of Jacobi, or equivalently the Weierstrass elliptic functions, inhabit the literature on current problems in condensed matter and statistical physics, on solitons and conformal representations, and all sorts of famous problems in classical mechanics. The lectures on elliptic functions have evolved as part of the first semester of a course on theoretical and mathematical methods given to first- and second-year graduate students in physics and chemistry at the University of North Dakota. They are for graduate students or for researchers who want an elementary introduction to the subject that nevertheless leaves them with enough of the details to address real problems. The style is supposed to be informal. The intention is to introduce the subject as a moderate extension of ordinary trigonometry in which the reference circle is replaced by an ellipse. This entre depends upon fewer tools and has seemed less intimidating that other typical introductions to the subject that depend on some knowledge of complex variables. The first three lectures assume only calculus, including the chain rule and elementary knowledge of differential equations. In the later lectures, the complex analytic properties are introduced naturally so that a more complete study becomes possible.

  1. Impacts of Integrated Marketing Communication Strategies Applied for Geographical Indications on Purchasing Behavior

    OpenAIRE

    Kırgız, Ayça

    2017-01-01

    The purpose of this study is to raise the awarenessfor products with geographical indication (GI) which directly influence thedevelopment of local and nation-wide economies, marketing of tourism activitiesand branding of destination and to investigate the integrated marketing communication(IMC) tools applied for realization of selling and the impact of such tools onshopping behavior. In this study, simple linear regression analysis have beenused. The data analysis showed that the perceived qu...

  2. Experiences in applying Bayesian integrative models in interdisciplinary modeling: the computational and human challenges

    DEFF Research Database (Denmark)

    Kuikka, Sakari; Haapasaari, Päivi Elisabet; Helle, Inari

    2011-01-01

    We review the experience obtained in using integrative Bayesian models in interdisciplinary analysis focusing on sustainable use of marine resources and environmental management tasks. We have applied Bayesian models to both fisheries and environmental risk analysis problems. Bayesian belief...... be time consuming and research projects can be difficult to manage due to unpredictable technical problems related to parameter estimation. Biology, sociology and environmental economics have their own scientific traditions. Bayesian models are becoming traditional tools in fisheries biology, where...

  3. Mathematics 2

    CERN Document Server

    Kodaira, Kunihiko

    1996-01-01

    This is the translation from the Japanese textbook for the grade 11 course, "General Mathematics". It is part of the easier of the three elective courses in mathematics offered at this level and is taken by about 40% of students. The book covers basic notions of probability and statistics, vectors, exponential, logarithmic, and trigonometric functions, and an introduction to differentiation and integration.

  4. Method to integrate clinical guidelines into the electronic health record (EHR) by applying the archetypes approach.

    Science.gov (United States)

    Garcia, Diego; Moro, Claudia Maria Cabral; Cicogna, Paulo Eduardo; Carvalho, Deborah Ribeiro

    2013-01-01

    Clinical guidelines are documents that assist healthcare professionals, facilitating and standardizing diagnosis, management, and treatment in specific areas. Computerized guidelines as decision support systems (DSS) attempt to increase the performance of tasks and facilitate the use of guidelines. Most DSS are not integrated into the electronic health record (EHR), ordering some degree of rework especially related to data collection. This study's objective was to present a method for integrating clinical guidelines into the EHR. The study developed first a way to identify data and rules contained in the guidelines, and then incorporate rules into an archetype-based EHR. The proposed method tested was anemia treatment in the Chronic Kidney Disease Guideline. The phases of the method are: data and rules identification; archetypes elaboration; rules definition and inclusion in inference engine; and DSS-EHR integration and validation. The main feature of the proposed method is that it is generic and can be applied toany type of guideline.

  5. The exploration and practice of integrated innovation teaching mode in the Applied Optics course

    Science.gov (United States)

    Liu, Dongmei; Zhao, Huifu; Fu, Xiuhua; Zhang, Jing

    2017-08-01

    In recent years, the Ministry of Education of China attaches great importance to the reform of higher education quality. As an important link in the reform of higher education, curriculum development is bound to promote the development of "quality-centered connotative education". Zhejiang University, Changchun University of Science and Technology, Southern Airlines University and other colleges and universities carried out a full range of close cooperation, proposed integrated innovation teaching mode of the course based on network technology. Based on this model, the course of "Applied Optics" has been practiced for two years. The results show that the integrated innovation teaching mode can fully realize the integration amplification effect among multiple colleges and universities and the depth sharing all types of resources. Based on the principle of co-building and sharing, mutual help, comprehensively improve the teaching quality of domestic related courses and promote the comprehensive development of the curriculum to meet the needs of learning society.

  6. Direct integration of the S-matrix applied to rigorous diffraction

    International Nuclear Information System (INIS)

    Iff, W; Lindlein, N; Tishchenko, A V

    2014-01-01

    A novel Fourier method for rigorous diffraction computation at periodic structures is presented. The procedure is based on a differential equation for the S-matrix, which allows direct integration of the S-matrix blocks. This results in a new method in Fourier space, which can be considered as a numerically stable and well-parallelizable alternative to the conventional differential method based on T-matrix integration and subsequent conversions from the T-matrices to S-matrix blocks. Integration of the novel differential equation in implicit manner is expounded. The applicability of the new method is shown on the basis of 1D periodic structures. It is clear however, that the new technique can also be applied to arbitrary 2D periodic or periodized structures. The complexity of the new method is O(N 3 ) similar to the conventional differential method with N being the number of diffraction orders. (fast track communication)

  7. Applying Constructionism and Problem Based Learning for Developing Dynamic Educational Material for Mathematics At Undergraduate University Level

    DEFF Research Database (Denmark)

    Triantafyllou, Eva; Timcenko, Olga

    2013-01-01

    As a result of changes in society and education, assumptions about the knowledge of entrants to university have become obsolete. One area in which this seems to be true is mathematics. This paper presents our research aiming at tackling with this problem by developing digital educational material...... for mathematics education, which will be student-driven, dynamic, and multimodal. Our approach will be supported by the theories of Constructionism and PBL. The impact of its use will be evaluated in university settings. It is expected that the evaluation will demonstrate an improvement in student engagement...

  8. Modelagem de um reator integral aplicado na reação de reforma a vapor de metano = Modeling of integral reactor applied methane steam reforming

    Directory of Open Access Journals (Sweden)

    Giane Gonçalves

    2007-07-01

    Full Text Available Freqüentemente, a validação de modelos matemáticos aplicados a reatores industriais esbarra na dificuldade de obtenção de medidas experimentais confiáveis. Uma maneira de contornar esta limitação corresponde à implantação de uma unidade em escala de bancada devidamente instrumentada, na qual são obtidos dados experimentais emcondições controladas. Neste contexto, foram efetuados ensaios em um reator integral de reforma a vapor de metano em escala de bancada, em diversas condições experimentais. As medidas de temperatura no leito foram efetuadas por meio de um termopar multiponto em seis posições axiais distintas, enquanto a composição do efluente do reator foi determinada por cromatografia gasosa. Estes dados experimentais foram comparados com as previsões de um modelo pseudo-homogêneo, unidimensional e dinâmico. Os resultados indicam que o modelo é adequado, sendo que tanto a atividade catalítica como a conversão são sensíveis à temperatura operacional, enquanto a temperatura do leito é praticamente insensível à vazão nas condições experimentais exploradas.Frequently, the validation of applied mathematical models of industrial reactors dash into the difficulty of obtaining reliable experimental data. A way to overcome this limitation is the proper use and operation or a in bench scale, experimental setup from whichexperimental data can be obtained in controlled conditions. In this context, experiments were carried out in an integral reactor of steam reform, in different experimental conditions. Thermocouples were placed along the catalyst bed to allow for temperature monitoring in six equally spaced and distinct positions of the reactor, the composition of the effluent of the reactor was determined by gas chromatography. These experimental data were compared with the theoretical results of a pseudo-homogeneous one-dimensional,dynamic mathematical model. The results indicate that the model can successfully

  9. A preliminary study on the integral relationship between critical thinking and mathematical thinking among practicing civil engineers

    Science.gov (United States)

    Osman, Sharifah; Mohammad, Shahrin; Abu, Mohd Salleh

    2015-05-01

    Mathematics and engineering are inexorably and significantly linked and essentially required in analyzing and accessing thought to make good judgment when dealing in complex and varied engineering problems. A study in the current engineering education curriculum to explore how the critical thinking and mathematical thinking relates to one another, is therefore timely crucial. Unfortunately, there is not much information available explicating about the link. This paper aims to report findings of a critical review as well as to provide brief description of an on-going research aimed to investigate the dispositions of critical thinking and the relationship and integration between critical thinking and mathematical thinking during the execution of civil engineering tasks. The first part of the paper reports an in-depth review on these matters based on rather limited resources. The review showed a considerable form of congruency between these two perspectives of thinking, with some prevalent trends of engineering workplace tasks, problems and challenges. The second part describes an on-going research to be conducted by the researcher to investigate rigorously the relationship and integration between these two types of thinking within the perspective of civil engineering tasks. A reasonably close non-participant observations and semi-structured interviews will be executed for the pilot and main stages of the study. The data will be analyzed using constant comparative analysis in which the grounded theory methodology will be adopted. The findings will serve as a useful grounding for constructing a substantive theory revealing the integral relationship between critical thinking and mathematical thinking in the real civil engineering practice context. The substantive theory, from an angle of view, is expected to contribute some additional useful information to the engineering program outcomes and engineering education instructions, aligns with the expectations of

  10. An Evaluation into the Views of Candidate Mathematics Teachers over "Tablet Computers" to be Applied in Secondary Schools

    Science.gov (United States)

    Aksu, Hasan Hüseyin

    2014-01-01

    This study aims to investigate, in terms of different variables, the views of prospective Mathematics teachers on tablet computers to be used in schools as an outcome of the Fatih Project, which was initiated by the Ministry of National Education. In the study, scanning model, one of the quantitative research methods, was used. In the population…

  11. The Language Factor in Elementary Mathematics Assessments: Computational Skills and Applied Problem Solving in a Multidimensional IRT Framework

    Science.gov (United States)

    Hickendorff, Marian

    2013-01-01

    The results of an exploratory study into measurement of elementary mathematics ability are presented. The focus is on the abilities involved in solving standard computation problems on the one hand and problems presented in a realistic context on the other. The objectives were to assess to what extent these abilities are shared or distinct, and…

  12. Does Personality Matter? Applying Holland's Typology to Analyze Students' Self-Selection into Science, Technology, Engineering, and Mathematics Majors

    Science.gov (United States)

    Chen, P. Daniel; Simpson, Patricia A.

    2015-01-01

    This study utilized John Holland's personality typology and the Social Cognitive Career Theory (SCCT) to examine the factors that may affect students' self-selection into science, technology, engineering, and mathematics (STEM) majors. Results indicated that gender, race/ethnicity, high school achievement, and personality type were statistically…

  13. Solar chimney integrated with passive evaporative cooler applied on glazing surfaces

    International Nuclear Information System (INIS)

    Al Touma, Albert; Ghali, Kamel; Ghaddar, Nesreen; Ismail, Nagham

    2016-01-01

    This study investigates the performance of a hybrid system applied on glazing surfaces for reducing the space cooling load and radiation asymmetry. The proposed system combines the principles of passive evaporative cooling with the natural buoyant flow in solar chimneys to entrain outdoor air and attenuate the window surface temperature. A predictive heat and mass transport model combining the evaporative cooler, glazing section, solar chimney and an office space is developed to study the system performance in harshly hot climates. The developed model was validated through experiments conducted in a twin climatic chamber for given ambient temperature, humidity, and solar radiation conditions. Good agreement was found between the measured and the predicted window temperatures and space loads at maximum discrepancy lower than 4.3%. The proposed system is applied to a typical office space to analyze its effectiveness in reducing the window temperature, the space load and radiation asymmetry, while maintaining the indoor comfort conditions. Results have shown that the system is reduced the space load by −19.8% and attenuated the radiation asymmetry significantly for office spaces having window-to-wall ratio of 40% in climate of Riyadh, KSA. The system performance diminished when applied in locations suffering from humid weather climates. - Highlights: • A passive evaporative-cooled solar chimney system is introduced to decrease window temperature. • A mathematical model is developed of the system to predict induce air flow and window surface temperature. • The model is validated with experiments in twin room climatic chamber and using artificial solar lamps. • The system reduces window maximum temperature by 5 °C in the hot dry climate of Riyadh, KSA. • It reduced the space load by 19.4% for office spaces at window-to-wall ratio of 40% in Riyadh, KSA.

  14. Which kind of mathematics was known by and referred to by those who wanted to integrate mathematics in «Wisdom» - Neopythagoreans and others?

    DEFF Research Database (Denmark)

    Høyrup, Jens

    Plato, so the story goes, held mathematics in high esteem, and those philosopher-kings that ought to rule his republic should have a thorough foundation in mathematics. This may well be true - but an observation made by Aristotle suggests that the mathematics which Plato intends is not the one...... based on theorems and proofs which we normally identify with "Greek mathematics". Most other ancient writers who speak of mathematics as a road towardWisdom also appear to be blissfully ignorant of the mathematics of Euclid, Archimedes, Apollonios, etc. The aim of the paper is to identify the kinds...... of mathematics which were available as external sources for this current (on the whole leaving out of consideration Liberal-Arts mathematics as not properly external). A number of borrowings can be traced to various practitioners' traditions - but always as bits borrowed out of context....

  15. The research of 4th grade mathematical curriculum electronic picture book construction and development in integrating indigenous culture

    Science.gov (United States)

    Chen, Yen Ting; Hsin Wang, Juei

    2017-02-01

    This research aimed at integrating Seediq culture and mathematical course design for fourth-grade elementary school, and then transforming this mathematical course into an electronic picture book. During the process of electronic book development, the researchers collected videos of six participants engaged in discussion, reflection minutes after the meeting written by the attendants, the researchers' observation and review journals, and conversations with the participants. Then, researchers utilized Content Analysis to explore, try, review and retry steps of electronic book making process. The main findings: There are four periods of electronic book making process, research occurrence period, curriculum design period, electronic book transformation period, and result evaluation period. The picture book included the White Stone Legend born from Seediq seniors, historical battle for hunting field between tribes, and concepts of approximation, angle, triangle, and quadrangle features. At last, with the research result, this article presents the corroboration of related works, and then proposes suggestions of electronic book teaching and follow-up studies.

  16. Financial mathematics

    CERN Document Server

    Jothi, A Lenin

    2009-01-01

    Financial services, particularly banking and insurance services is the prominent sector for the development of a nation. After the liberalisation of financial sector in India, the scope of getting career opportunities has been widened. It is heartening to note that various universities in India have introduced professional courses on banking and insurance. A new field of applied mathematics has come into prominence under the name of Financial Mathematics. Financial mathematics has attained much importance in the recent years because of the role played by mathematical concepts in decision - m

  17. Partial differential equations of mathematical physics

    CERN Document Server

    Sobolev, S L

    1964-01-01

    Partial Differential Equations of Mathematical Physics emphasizes the study of second-order partial differential equations of mathematical physics, which is deemed as the foundation of investigations into waves, heat conduction, hydrodynamics, and other physical problems. The book discusses in detail a wide spectrum of topics related to partial differential equations, such as the theories of sets and of Lebesgue integration, integral equations, Green's function, and the proof of the Fourier method. Theoretical physicists, experimental physicists, mathematicians engaged in pure and applied math

  18. Using HIV&AIDS statistics in pre-service Mathematics Education to integrate HIV&AIDS education.

    Science.gov (United States)

    van Laren, Linda

    2012-12-01

    In South Africa, the HIV&AIDS education policy documents indicate opportunities for integration across disciplines/subjects. There are different interpretations of integration/inclusion and mainstreaming HIV&AIDS education, and numerous levels of integration. Integration ensures that learners experience the disciplines/subjects as being linked and related, and integration is required to support and expand the learners' opportunities to attain skills, acquire knowledge and develop attitudes and values across the curriculum. This study makes use of self-study methodology where I, a teacher educator, aim to improve my practice through including HIV&AIDS statistics in Mathematics Education. This article focuses on how I used HIV&AIDS statistics to facilitate pre-service teacher reflection and introduce them to integration of HIV&AIDS education across the curriculum. After pre-service teachers were provided with HIV statistics, they drew a pie chart which graphically illustrated the situation and reflected on issues relating to HIV&AIDS. Three themes emerged from the analysis of their reflections. The themes relate to the need for further HIV&AIDS education, the changing pastoral role of teachers and the changing context of teaching. This information indicates that the use of statistics is an appropriate means of initiating the integration of HIV&AIDS education into the academic curriculum.

  19. Applying an international CAPM to herding behaviour model for integrated stock markets

    Directory of Open Access Journals (Sweden)

    Najmudin Najmudin

    2017-12-01

    Full Text Available Development of financial globalization in the form of stock market integration experiences a trend which is getting stronger. The analysis models in the field of finance and investments should be able to adjust to these developments. This adjustment includes the models used to detect the existence of herding behavior. All this time, the herding behavior model of individual stocks towards market consensus has been referring to CAPM theory. The basic assumption of CAPM is that financial assets at a domestic stock market are segmented from the financial assets’ movement at the global market. Therefore, this paper aims to provide an alternative view in the form of an international herding model that should be applied in the context of an integrated stock market. The model was created with reference to the international CAPM. This paper combined ICAPM method and international CSAD model to identify herding for eight stock markets, the sample period being from January 2003 to December 2016. The result found that for segmented stock markets, represented by China and the Philippines, herding happened for both overall the sample period and the market crisis period. In addition, for the integrated stock markets, represented by Indonesia, Japan, Malaysia, Singapore, Thailand, and the UK, herding behavior was only found during the market crisis period. Therefore, classification of market integrations should be considered in assessing the herding behaviour at stock markets.

  20. The mapping approach in the path integral formalism applied to curve-crossing systems

    International Nuclear Information System (INIS)

    Novikov, Alexey; Kleinekathoefer, Ulrich; Schreiber, Michael

    2004-01-01

    The path integral formalism in a combined phase-space and coherent-state representation is applied to the problem of curve-crossing dynamics. The system of interest is described by two coupled one-dimensional harmonic potential energy surfaces interacting with a heat bath consisting of harmonic oscillators. The mapping approach is used to rewrite the Lagrangian function of the electronic part of the system. Using the Feynman-Vernon influence-functional method the bath is eliminated whereas the non-Gaussian part of the path integral is treated using the generating functional for the electronic trajectories. The dynamics of a Gaussian wave packet is analyzed along a one-dimensional reaction coordinate within a perturbative treatment for a small coordinate shift between the potential energy surfaces

  1. The challenge of computer mathematics.

    Science.gov (United States)

    Barendregt, Henk; Wiedijk, Freek

    2005-10-15

    Progress in the foundations of mathematics has made it possible to formulate all thinkable mathematical concepts, algorithms and proofs in one language and in an impeccable way. This is not in spite of, but partially based on the famous results of Gödel and Turing. In this way statements are about mathematical objects and algorithms, proofs show the correctness of statements and computations, and computations are dealing with objects and proofs. Interactive computer systems for a full integration of defining, computing and proving are based on this. The human defines concepts, constructs algorithms and provides proofs, while the machine checks that the definitions are well formed and the proofs and computations are correct. Results formalized so far demonstrate the feasibility of this 'computer mathematics'. Also there are very good applications. The challenge is to make the systems more mathematician-friendly, by building libraries and tools. The eventual goal is to help humans to learn, develop, communicate, referee and apply mathematics.

  2. CLOSE RANGE HYPERSPECTRAL IMAGING INTEGRATED WITH TERRESTRIAL LIDAR SCANNING APPLIED TO ROCK CHARACTERISATION AT CENTIMETRE SCALE

    Directory of Open Access Journals (Sweden)

    T. H. Kurz

    2012-07-01

    Full Text Available Compact and lightweight hyperspectral imagers allow the application of close range hyperspectral imaging with a ground based scanning setup for geological fieldwork. Using such a scanning setup, steep cliff sections and quarry walls can be scanned with a more appropriate viewing direction and a higher image resolution than from airborne and spaceborne platforms. Integration of the hyperspectral imagery with terrestrial lidar scanning provides the hyperspectral information in a georeferenced framework and enables measurement at centimetre scale. In this paper, three geological case studies are used to demonstrate the potential of this method for rock characterisation. Two case studies are applied to carbonate quarries where mapping of different limestone and dolomite types was required, as well as measurements of faults and layer thicknesses from inaccessible parts of the quarries. The third case study demonstrates the method using artificial lighting, applied in a subsurface scanning scenario where solar radiation cannot be utilised.

  3. Applying fuzzy integral for evaluating intensity of knowledge work in jobs

    Directory of Open Access Journals (Sweden)

    Jalil Heidary Dahooie

    2013-10-01

    Full Text Available In this article, a framework is proposed to define and identify knowledge work intensity in jobs, quantitatively. For determining the Knowledge Work Intensity Score (KWIS of a job, it is supposed that the job comprises some tasks and KWIS of the job is determined based on knowledge intensity of these tasks. Functional Job Analysis (FJA method is applied to determine tasks of jobs and then Task’s Knowledge Intensity Score (TKIS is computed by using Fuzzy integral method. Besides, importance weight and time weight of tasks are determined by utilizing appropriate methods. Finally, KWIS is calculated by a formula composed of tasks’ TKISs and the weights. For evaluating applicability of the framework, it is applied to calculate KWISs of two jobs (Deputy of Finance and service, Laboratory technician.

  4. Enriching Practical Knowledge : Exploring Student teachers’ Competences in Integrating Theory and Practice of Mathematics Teaching

    NARCIS (Netherlands)

    Oonk, W.; Verloop, N.; Gravemeijer, K.P.E.

    2015-01-01

    This study concentrated on the theory–practice problem in mathematics teacher education. We examined 13 student teachers’ use of theory when they reflected on teaching practice in a class specifically designed to optimize the chance for theory use. We developed a Reflection Analysis Instrument with

  5. On the Edge of Mathematics and Biology Integration: Improving Quantitative Skills in Undergraduate Biology Education

    Science.gov (United States)

    Feser, Jason; Vasaly, Helen; Herrera, Jose

    2013-01-01

    In this paper, the authors describe how two institutions are helping their undergraduate biology students build quantitative competencies. Incorporation of quantitative skills and reasoning in biology are framed through a discussion of two cases that both concern introductory biology courses, but differ in the complexity of the mathematics and the…

  6. Tracking Professional Development of Novice Teachers When Integrating Technology in Teaching Mathematics

    Science.gov (United States)

    Gurevich, Irina; Stein, Hana; Gorev, Dvora

    2017-01-01

    This research traced changes in choices of technological tools and attitudes toward technology use among novice mathematics teachers at three stages of their professional development: as pre-service teachers, a year later, and in their work as novice teachers. At each stage, the participants were required to evaluate the benefits of technology use…

  7. Integration of Bioinformatics into an Undergraduate Biology Curriculum and the Impact on Development of Mathematical Skills

    Science.gov (United States)

    Wightman, Bruce; Hark, Amy T.

    2012-01-01

    The development of fields such as bioinformatics and genomics has created new challenges and opportunities for undergraduate biology curricula. Students preparing for careers in science, technology, and medicine need more intensive study of bioinformatics and more sophisticated training in the mathematics on which this field is based. In this…

  8. Instructional Efficiency of the Integration of Graphing Calculators in Teaching and Learning Mathematics

    Science.gov (United States)

    Tajuddin, Nor'ain Mohd; Tarmizi, Rohani Ahmad; Konting, Mohd Majid; Ali, Wan Zah Wan

    2009-01-01

    This quasi-experimental study with non-equivalent control group post-test only design was conducted to investigate the effects of using graphing calculators in mathematics teaching and learning on Form Four Malaysian secondary school students' performance and their meta-cognitive awareness level. Graphing calculator strategy refers to the use of…

  9. Integration of Technology in Elementary Pre-Service Teacher Education: An Examination of Mathematics Methods Courses

    Science.gov (United States)

    Mitchell, Rebecca; Laski, Elida

    2013-01-01

    Instructors (N = 204) of elementary mathematics methods courses completed a survey assessing the extent to which they stay informed about research related to effective uses of educational technology and the kinds and numbers of educational technologies they include in their courses. Findings indicate that, while they view educational technology…

  10. Integration of Media Design Processes in Science, Technology, Engineering, and Mathematics (STEM) Education

    Science.gov (United States)

    Karahan, Engin; Canbazoglu Bilici, Sedef; Unal, Aycin

    2015-01-01

    Problem Statement: Science, technology, engineering and mathematics (STEM) education aims at improving students' knowledge and skills in science and math, and thus their attitudes and career choices in these areas. The ultimate goal in STEM education is to create scientifically literate individuals who can survive in the global economy. The…

  11. Which kind of mathematics was known and referred to by those who wanted to integrate mathematics in «Wisdom»

    DEFF Research Database (Denmark)

    Høyrup, Jens

    2016-01-01

    Plato, so the story goes, held mathematics in high esteem, and those philosopher-kings that ought to rule his republic should have a thorough foundation in mathematics. This may well be true – but an observation made by Aristotle suggests that the mathematics which Plato intends is not the one...... based on theorems and proofs which we normally identify with “Greek mathematics”. Most other ancient writers who speak of mathematics as a road toward Wisdom also appear to be blissfully ignorant of the mathematics of Euclid, Archimedes, Apollonios, etc. – though not necessarily of their names. The aim...... of the paper is to identify the kinds of mathematics which were available as external sources for this current (on the whole leaving out of consideration Liberal-Arts mathematics as not properly external). A number of borrowings can be traced to various practitioners' traditions – but always as bits borrowed...

  12. Elementary Education Pre-Service Teachers' Development of Mathematics Technology Integration Skills in a Technology Integration Course

    Science.gov (United States)

    Polly, Drew

    2015-01-01

    Preparing pre-service teachers to effectively integrate technology in the classroom requires rich experiences that deepen their knowledge of technology, pedagogy, and content and the intersection of these aspects. This study examined elementary education pre-service teachers' development of skills and knowledge in a technology integration course…

  13. Applied methodology for replacement pipe arcs in integral pipelines TE 'Oslomej'

    Directory of Open Access Journals (Sweden)

    Temelkoska Bratica K.

    2016-01-01

    Full Text Available The integral pipelines in thermal power plants present a linear spatial bearing construction with high operating parameters, complex static and dynamic load. The integral pipelines along its entire length are hanging on construction spring hangers from the boiler building, where the boiler is placed, next to the machine hall where the turbine is placed. Therefore, it is important to monitor the condition and to remove any possible defects from the applied methods. This paper describes the methodology of replacement of the pipe arch on one of the integral pipelines-the line for hot superheated steam. In addition, in this paper are given the method methods that led to this methodology for testing and evaluation of the condition of the pipe arch material that had been in exploitation and the new pipe arch that will be embedded. Furthermore the approach, the technology of replacement, anchoring of the steam line, technology of welding etc., as well as the preparation of the final design of constructed condition are also covered in this paper.

  14. CTDB: An Integrated Chickpea Transcriptome Database for Functional and Applied Genomics.

    Directory of Open Access Journals (Sweden)

    Mohit Verma

    Full Text Available Chickpea is an important grain legume used as a rich source of protein in human diet. The narrow genetic diversity and limited availability of genomic resources are the major constraints in implementing breeding strategies and biotechnological interventions for genetic enhancement of chickpea. We developed an integrated Chickpea Transcriptome Database (CTDB, which provides the comprehensive web interface for visualization and easy retrieval of transcriptome data in chickpea. The database features many tools for similarity search, functional annotation (putative function, PFAM domain and gene ontology search and comparative gene expression analysis. The current release of CTDB (v2.0 hosts transcriptome datasets with high quality functional annotation from cultivated (desi and kabuli types and wild chickpea. A catalog of transcription factor families and their expression profiles in chickpea are available in the database. The gene expression data have been integrated to study the expression profiles of chickpea transcripts in major tissues/organs and various stages of flower development. The utilities, such as similarity search, ortholog identification and comparative gene expression have also been implemented in the database to facilitate comparative genomic studies among different legumes and Arabidopsis. Furthermore, the CTDB represents a resource for the discovery of functional molecular markers (microsatellites and single nucleotide polymorphisms between different chickpea types. We anticipate that integrated information content of this database will accelerate the functional and applied genomic research for improvement of chickpea. The CTDB web service is freely available at http://nipgr.res.in/ctdb.html.

  15. Teacher Formation in Super Learning Techniques Applied to the Teaching of the Mathematic in the Education Secondary

    Directory of Open Access Journals (Sweden)

    Avilner Rafael Páez Pereira

    2017-11-01

    Full Text Available The purpose of the study was to train LB "José Véliz" teacher for the teaching of mathematics through the application of super-learning techniques, based on the Research Participatory Action modality, proposed by López de Ceballos, (2008, following the model of the Lewin cycles of action (1946, quoted by Latorre (2007, based on the theories of humanism, Martínez (2009; multiple intelligence, Armstrong (2006; the Super learning of Sambrano and Stainer, (2003. Within the framework of the Critical - Social paradigm, in the type Qualitative Research, a plan of approach to the group was made, where through brainstorming and informal interviews the main problems were listed, which were hierarchized and then carried out an awareness - raising process. formulation of an overall plan of action. Among the results were 6 training workshops on techniques of breathing, relaxation, aromatherapy, music therapy, positive programming, color in the classroom, song in mathematical algorithms, in which processes of reflection were established on the benefits or obstacles obtained in the application of these in the transformation of the educational reality, elaborating a didactic strategy product of the experiences reached.

  16. Integrated design course of applied optics focusing on operating and maintaining abilities

    Science.gov (United States)

    Xu, Zhongjie; Ning, Yu; Jiang, Tian; Cheng, Xiangai

    2017-08-01

    The abilities of operating and maintaining optical instruments are crucial in modern society. Besides the basic knowledge in optics, the optics courses in the National University of Defense Technology also focus on the training on handling typical optical equipment. As the link between classroom courses on applied optics and the field trips, the integrated design course of applied optics aims to give the students a better understanding on several instantly used optical equipment, such as hand-held telescope and periscope, etc. The basic concepts of optical system design are also emphasized as well. The course is arranged rightly after the classroom course of applied optics and composed of experimental and design tasks. The experimental tasks include the measurements of aberrations and major parameters of a primitive telescope, while in the design parts, the students are asked to design a Keplerian telescope. The whole course gives a deepened understandings on the concepts, assembling, and operating of telescopes. The students are also encouraged to extend their interests on other typical optical instruments.

  17. An approach for evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems

    International Nuclear Information System (INIS)

    Nakae, Nobuo; Ozawa, Takayuki; Ohta, Hirokazu; Ogata, Takanari; Sekimoto, Hiroshi

    2014-01-01

    One of the important issues in the study of Innovative Nuclear Energy Systems is evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems. An approach for evaluating the integrity of the fuel is discussed here based on the procedure currently used in the integrity evaluation of fast reactor fuel. The fuel failure modes determining fuel life time were reviewed and fuel integrity was analyzed and compared with the failure criteria. Metal and nitride fuels with austenitic and ferritic stainless steel (SS) cladding tubes were examined in this study. For the purpose of representative irradiation behavior analyses of the fuel for Innovative Nuclear Energy Systems, the correlations of the cladding characteristics were modeled based on well-known characteristics of austenitic modified 316 SS (PNC316), ferritic–martensitic steel (PNC–FMS) and oxide dispersion strengthened steel (PNC–ODS). The analysis showed that the fuel lifetime is limited by channel fracture which is a nonductile type (brittle) failure associated with a high level of irradiation-induced swelling in the case of austenitic steel cladding. In case of ferritic steel, on the other hand, the fuel lifetime is controlled by cladding creep rupture. The lifetime evaluated here is limited to 200 GW d/t, which is lower than the target burnup value of 500 GW d/t. One of the possible measures to extend the lifetime may be reducing the fuel smeared density and ventilating fission gas in the plenum for metal fuel and by reducing the maximum cladding temperature from 650 to 600 °C for both metal and nitride fuel

  18. An approach for evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nakae, Nobuo, E-mail: nakae-nobuo@jnes.go.jp [Center for Research into Innovative Nuclear Energy System, Tokyo Institute of Technology, 2-12-1-N1-19, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Ozawa, Takayuki [Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency, 4-33, Muramatsu, Tokai-mura, Ibaraki-ken 319-1194 (Japan); Ohta, Hirokazu; Ogata, Takanari [Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1, Iwado Kita, Komae-shi, Tokyo 201-8511 (Japan); Sekimoto, Hiroshi [Center for Research into Innovative Nuclear Energy System, Tokyo Institute of Technology, 2-12-1-N1-19, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-03-15

    One of the important issues in the study of Innovative Nuclear Energy Systems is evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems. An approach for evaluating the integrity of the fuel is discussed here based on the procedure currently used in the integrity evaluation of fast reactor fuel. The fuel failure modes determining fuel life time were reviewed and fuel integrity was analyzed and compared with the failure criteria. Metal and nitride fuels with austenitic and ferritic stainless steel (SS) cladding tubes were examined in this study. For the purpose of representative irradiation behavior analyses of the fuel for Innovative Nuclear Energy Systems, the correlations of the cladding characteristics were modeled based on well-known characteristics of austenitic modified 316 SS (PNC316), ferritic–martensitic steel (PNC–FMS) and oxide dispersion strengthened steel (PNC–ODS). The analysis showed that the fuel lifetime is limited by channel fracture which is a nonductile type (brittle) failure associated with a high level of irradiation-induced swelling in the case of austenitic steel cladding. In case of ferritic steel, on the other hand, the fuel lifetime is controlled by cladding creep rupture. The lifetime evaluated here is limited to 200 GW d/t, which is lower than the target burnup value of 500 GW d/t. One of the possible measures to extend the lifetime may be reducing the fuel smeared density and ventilating fission gas in the plenum for metal fuel and by reducing the maximum cladding temperature from 650 to 600 °C for both metal and nitride fuel.

  19. Logic as a Key to Interdisciplinary Integration for Students in the Mathematical Sciences

    Directory of Open Access Journals (Sweden)

    Thomas Marlowe

    2017-08-01

    Full Text Available We describe the creation and development of a course on mathematical logic and its extensions and limitations, in which coverage of technical material is interleaved with and related to discussion of relevant historical, linguistic, philosophical, and theological issues and of individuals of note. The new course, Logic, Limitations to Knowledge, and Christianity, presents an overview of topics in and related to logic, including development of formal logic and an axiomatic first-order logic. It explores the history of mathematics and logic in the Catholic Intellectual and wider Western Traditions, as well as the mutual interactions of mathematics, philosophy, language, and religion. It then considers extensions of first-order logic, and provable limits to knowledge: the three unsolvable problems of Euclidean geometry, and examples from Gödel, Turing, Arrow, quantum physics, and others. Epistemological issues will be emphasized throughout the course. The translation between natural language and expression in logical and reasoning formalisms is emphasized throughout. As a Core Curriculum course at Seton Hall University, fundamental questions such as "What is logic?" and "What are its limits?" will be considered within the framework of Christianity's broader view of the human person and human intelligence.

  20. Experience of three-dimensional vision in the era of digital interaction new devices : opportunity and challenges for applied mathematics and visual design

    CERN Document Server

    Brunetti, Federico Alberto

    2014-01-01

    It will be soon presented to the public a new version of stereoscopic viewers designed for observing files and video projected images through a system of transparent optical prisms which allow the simultaneous perception of the surrounding environment. The real challenge for applied mathematics and visual design will be to prefigure how to use them and their applications, since these new devices can actually enable a deeper visual experience. A specific case study concerns the visualizations of the collisions at the LHC at CERN, selected to verify the traces of the boson theorized by Francois Englert and Peter Higgs, with Robert Brout, who recently (2013) received the Nobel Prize for their research.

  1. To Issue of Mathematical Management Methods Applied for Investment-Building Complex under Conditions of Economic Crisis

    Science.gov (United States)

    Novikova, V.; Nikolaeva, O.

    2017-11-01

    In the article the authors consider a cognitive management method of the investment-building complex in the crisis conditions. The factors influencing the choice of an investment strategy are studied, the basic lines of the activity in the field of crisis-management from a position of mathematical modelling are defined. The general approach to decision-making on investment in real assets on the basis of the discrete systems based on the optimum control theory is offered. With the use of a discrete maximum principle the task in view of the decision is found. The numerical algorithm to define the optimum control is formulated by investments. Analytical decisions for the case of constant profitability of the basic means are obtained.

  2. Mathematical model applied to decomposition rate of RIA radiotracers: 125I-insulin used as sample model

    International Nuclear Information System (INIS)

    Mesquita, C.H. de; Hamada, M.M.

    1987-09-01

    A mathematical model is described to fit the decomposition rate of labelled RIA compounds. The model was formulated using four parameters: one parameter correlated with the radioactive decay constant; the chemical decomposition rate 'K * ' of the radiolabelled molecules; the natural chemical decomposition rate 'K' and; the fraction 'f * ' of the labelled molecules in the substrate. According to the particular values that these parameters can assume, ten cases were discussed. To determine one of these cases which fit the experimental data, three types of samples were need: radioactive; simulated radiotracer ('false radiolabelled') and; on labelled common substrate. The radioinsulin 125 I was used as an example to illustrate the model application. The experimental data substantiate that the insulin labelled according to the substorchiometric procedures and kept at freezer temperature were degraded with K=0.45% per day. (Author) [pt

  3. ATLAS Detector Simulation in the Integrated Simulation Framework applied to the W Boson Mass Measurement

    CERN Document Server

    Ritsch, Elmar; Froidevaux, Daniel; Salzburger, Andreas

    One of the cornerstones for the success of the ATLAS experiment at the Large Hadron Collider (LHC) is a very accurate Monte Carlo detector simulation. However, a limit is being reached regarding the amount of simulated data which can be produced and stored with the computing resources available through the worldwide LHC computing grid (WLCG). The Integrated Simulation Framework (ISF) is a novel approach to detector simula- tion which enables a more efficient use of these computing resources and thus allows for the generation of more simulated data. Various simulation technologies are combined to allow for faster simulation approaches which are targeted at the specific needs of in- dividual physics studies. Costly full simulation technologies are only used where high accuracy is required by physics analyses and fast simulation technologies are applied everywhere else. As one of the first applications of the ISF, a new combined simulation approach is developed for the generation of detector calibration samples ...

  4. IMPORTANCE OF INTEGRATED MANAGEMENT SYSTEM APPLIED IN HEALTH ESTABLISHMENTS IN ORDER TO RAISE TREATMENT QUALITY.

    Science.gov (United States)

    Dodić, Biljana; Miljković, Tatjana; Bjelobrk, Marija; Cemerlic Ađić, Nada; Ađić, Filip; Dodić, Slobodan

    2016-01-01

    The term "management" is best characterized as "managing" economic or social processes to achieve objectives through a rational use of material and immaterial resources by applying the principles, functions, and management methods. This study has been aimed at evaluating the value of an integrated quality management system implemented at the Institute of Cardiovascular Diseases of Vojvodina to improve the quality of treatment. In the period from 2008 to 2010 about 40 employees from the Institute of Cardiovascular Diseases of Vojvodina attended various courses given by the lecturers of the Faculty of Technical Sciences, where the function and significance of the "International Standards Organization" were explained, after which standards of interest were implemented at the Institute of Cardiovascular Diseases of Vojvodina. The Department of Cardiology has introduced 11 cardiac procedures with 5 special instructions, 14 general procedures, and 7 specific procedures with 2 instructions. The Department of Cardiac Surgery has introduced 7 procedures to be implemented. The "Vojvodina score" model was put into practice for the perioperative evaluation of cardiac surgery risk. During 2014, the Institute of Cardiovascular Diseases ofVojvodina obtained accreditation for the period of 7 years. The integrated quality management system must be applied in order to achieve a high level of health care in the shortest possible time and with the least possible consumption of material and human resources. The application of this system in practice gives a realistic insight into the working processes and facilitates their functioning. It demands and requires constant monitoring of the system efficiency along with continuous changes and improvements of all elements of the working processes and functional units.

  5. Influence of Statins locally applied from orthopedic implants on osseous integration

    Directory of Open Access Journals (Sweden)

    Pauly Stephan

    2012-10-01

    Full Text Available Abstract Background Simvastatin increases the expression of bone morphogenetic protein 2 (BMP-2 in osteoblasts, therefore it is important to investigate the influence of statins on bone formation, fracture healing and implant integration. The aim of the present study was to investigate the effect of Simvastatin, locally applied from intramedullary coated and bioactive implants, on bone integration using biomechanical and histomorphometrical analyses. Methods Eighty rats received retrograde nailing of the femur with titanium implants: uncoated vs. polymer-only (poly(D,L-lactide vs. polymer plus drug coated (either Simvastatin low- or high dosed; “SIM low/ high”. Femurs were harvested after 56 days for radiographic and histomorphometric or biomechanical analysis (push-out. Results Radiographic analysis revealed no pathological findings for animals of the control and SIM low dose group. However, n=2/10 animals of the SIM high group showed osteolysis next to the implant without evidence of bacterial infection determined by microbiological analysis. Biomechanical results showed a significant decrease in fixation strength for SIM high coated implants vs. the control groups (uncoated and PDLLA. Histomorphometry revealed a significantly reduced total as well as direct bone/implant contact for SIM high- implants vs. controls (uncoated and PDLLA-groups. Total contact was reduced for SIM low vs. uncoated controls. Significantly reduced new bone formation was measured around SIM high coated implants vs. both control groups. Conclusions This animal study suggests impaired implant integration with local application of Simvastatin from intramedullary titanium implants after 8 weeks when compared to uncoated or carrier-only coated controls.

  6. Situational Awareness Applied to Geology Field Mapping using Integration of Semantic Data and Visualization Techniques

    Science.gov (United States)

    Houser, P. I. Q.

    2017-12-01

    21st century earth science is data-intensive, characterized by heterogeneous, sometimes voluminous collections representing phenomena at different scales collected for different purposes and managed in disparate ways. However, much of the earth's surface still requires boots-on-the-ground, in-person fieldwork in order to detect the subtle variations from which humans can infer complex structures and patterns. Nevertheless, field experiences can and should be enabled and enhanced by a variety of emerging technologies. The goal of the proposed research project is to pilot test emerging data integration, semantic and visualization technologies for evaluation of their potential usefulness in the field sciences, particularly in the context of field geology. The proposed project will investigate new techniques for data management and integration enabled by semantic web technologies, along with new techniques for augmented reality that can operate on such integrated data to enable in situ visualization in the field. The research objectives include: Develop new technical infrastructure that applies target technologies to field geology; Test, evaluate, and assess the technical infrastructure in a pilot field site; Evaluate the capabilities of the systems for supporting and augmenting field science; and Assess the generality of the system for implementation in new and different types of field sites. Our hypothesis is that these technologies will enable what we call "field science situational awareness" - a cognitive state formerly attained only through long experience in the field - that is highly desirable but difficult to achieve in time- and resource-limited settings. Expected outcomes include elucidation of how, and in what ways, these technologies are beneficial in the field; enumeration of the steps and requirements to implement these systems; and cost/benefit analyses that evaluate under what conditions the investments of time and resources are advisable to construct

  7. Towards intelligent diagnostic system employing integration of mathematical and engineering model

    International Nuclear Information System (INIS)

    Isa, Nor Ashidi Mat

    2015-01-01

    The development of medical diagnostic system has been one of the main research fields during years. The goal of the medical diagnostic system is to place a nosological system that could ease the diagnostic evaluation normally performed by scientists and doctors. Efficient diagnostic evaluation is essentials and requires broad knowledge in order to improve conventional diagnostic system. Several approaches on developing the medical diagnostic system have been designed and tested since the earliest 60s. Attempts on improving their performance have been made which utilizes the fields of artificial intelligence, statistical analyses, mathematical model and engineering theories. With the availability of the microcomputer and software development as well as the promising aforementioned fields, medical diagnostic prototypes could be developed. In general, the medical diagnostic system consists of several stages, namely the 1) data acquisition, 2) feature extraction, 3) feature selection, and 4) classifications stages. Data acquisition stage plays an important role in converting the inputs measured from the real world physical conditions to the digital numeric values that can be manipulated by the computer system. One of the common medical inputs could be medical microscopic images, radiographic images, magnetic resonance image (MRI) as well as medical signals such as electrocardiogram (ECG) and electroencephalogram (EEG). Normally, the scientist or doctors have to deal with myriad of data and redundant to be processed. In order to reduce the complexity of the diagnosis process, only the significant features of the raw data such as peak value of the ECG signal or size of lesion in the mammogram images will be extracted and considered in the subsequent stages. Mathematical models and statistical analyses will be performed to select the most significant features to be classified. The statistical analyses such as principal component analysis and discriminant analysis as well

  8. Towards intelligent diagnostic system employing integration of mathematical and engineering model

    Science.gov (United States)

    Isa, Nor Ashidi Mat

    2015-05-01

    The development of medical diagnostic system has been one of the main research fields during years. The goal of the medical diagnostic system is to place a nosological system that could ease the diagnostic evaluation normally performed by scientists and doctors. Efficient diagnostic evaluation is essentials and requires broad knowledge in order to improve conventional diagnostic system. Several approaches on developing the medical diagnostic system have been designed and tested since the earliest 60s. Attempts on improving their performance have been made which utilizes the fields of artificial intelligence, statistical analyses, mathematical model and engineering theories. With the availability of the microcomputer and software development as well as the promising aforementioned fields, medical diagnostic prototypes could be developed. In general, the medical diagnostic system consists of several stages, namely the 1) data acquisition, 2) feature extraction, 3) feature selection, and 4) classifications stages. Data acquisition stage plays an important role in converting the inputs measured from the real world physical conditions to the digital numeric values that can be manipulated by the computer system. One of the common medical inputs could be medical microscopic images, radiographic images, magnetic resonance image (MRI) as well as medical signals such as electrocardiogram (ECG) and electroencephalogram (EEG). Normally, the scientist or doctors have to deal with myriad of data and redundant to be processed. In order to reduce the complexity of the diagnosis process, only the significant features of the raw data such as peak value of the ECG signal or size of lesion in the mammogram images will be extracted and considered in the subsequent stages. Mathematical models and statistical analyses will be performed to select the most significant features to be classified. The statistical analyses such as principal component analysis and discriminant analysis as well

  9. Towards intelligent diagnostic system employing integration of mathematical and engineering model

    Energy Technology Data Exchange (ETDEWEB)

    Isa, Nor Ashidi Mat [Imaging and Intelligent System Research Team (ISRT), School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2015-05-15

    The development of medical diagnostic system has been one of the main research fields during years. The goal of the medical diagnostic system is to place a nosological system that could ease the diagnostic evaluation normally performed by scientists and doctors. Efficient diagnostic evaluation is essentials and requires broad knowledge in order to improve conventional diagnostic system. Several approaches on developing the medical diagnostic system have been designed and tested since the earliest 60s. Attempts on improving their performance have been made which utilizes the fields of artificial intelligence, statistical analyses, mathematical model and engineering theories. With the availability of the microcomputer and software development as well as the promising aforementioned fields, medical diagnostic prototypes could be developed. In general, the medical diagnostic system consists of several stages, namely the 1) data acquisition, 2) feature extraction, 3) feature selection, and 4) classifications stages. Data acquisition stage plays an important role in converting the inputs measured from the real world physical conditions to the digital numeric values that can be manipulated by the computer system. One of the common medical inputs could be medical microscopic images, radiographic images, magnetic resonance image (MRI) as well as medical signals such as electrocardiogram (ECG) and electroencephalogram (EEG). Normally, the scientist or doctors have to deal with myriad of data and redundant to be processed. In order to reduce the complexity of the diagnosis process, only the significant features of the raw data such as peak value of the ECG signal or size of lesion in the mammogram images will be extracted and considered in the subsequent stages. Mathematical models and statistical analyses will be performed to select the most significant features to be classified. The statistical analyses such as principal component analysis and discriminant analysis as well

  10. Introducing philosophy of mathematics

    CERN Document Server

    Friend, Michele

    2014-01-01

    What is mathematics about? Does the subject-matter of mathematics exist independently of the mind or are they mental constructions? How do we know mathematics? Is mathematical knowledge logical knowledge? And how is mathematics applied to the material world? In this introduction to the philosophy of mathematics, Michele Friend examines these and other ontological and epistemological problems raised by the content and practice of mathematics. Aimed at a readership with limited proficiency in mathematics but with some experience of formal logic it seeks to strike a balance between conceptual acc

  11. Interactions of artificial lakes with groundwater applying an integrated MODFLOW solution

    Science.gov (United States)

    El-Zehairy, A. A.; Lubczynski, M. W.; Gurwin, J.

    2018-02-01

    Artificial lakes (reservoirs) are regulated water bodies with large stage fluctuations and different interactions with groundwater compared with natural lakes. A novel modelling study characterizing the dynamics of these interactions is presented for artificial Lake Turawa, Poland. The integrated surface-water/groundwater MODFLOW-NWT transient model, applying SFR7, UZF1 and LAK7 packages to account for variably-saturated flow and temporally variable lake area extent and volume, was calibrated throughout 5 years (1-year warm-up, 4-year simulation), applying daily lake stages, heads and discharges as control variables. The water budget results showed that, in contrast to natural lakes, the reservoir interactions with groundwater were primarily dependent on the balance between lake inflow and regulated outflow, while influences of precipitation and evapotranspiration played secondary roles. Also, the spatio-temporal lakebed-seepage pattern was different compared with natural lakes. The large and fast-changing stages had large influence on lakebed-seepage and water table depth and also influenced groundwater evapotranspiration and groundwater exfiltration, as their maxima coincided not with rainfall peaks but with highest stages. The mean lakebed-seepage ranged from 0.6 mm day-1 during lowest stages (lake-water gain) to 1.0 mm day-1 during highest stages (lake-water loss) with largest losses up to 4.6 mm day-1 in the peripheral zone. The lakebed-seepage of this study was generally low because of low lakebed leakance (0.0007-0.0015 day-1) and prevailing upward regional groundwater flow moderating it. This study discloses the complexity of artificial lake interactions with groundwater, while the proposed front-line modelling methodology can be applied to any reservoir, and also to natural lake interactions with groundwater.

  12. Applied Mathematical Optimization Technique on Menu Scheduling for Boarding School Student Using Delete-Reshuffle-Reoptimize Algorithm

    Science.gov (United States)

    Sufahani, Suliadi; Mohamad, Mahathir; Roslan, Rozaini; Ghazali Kamardan, M.; Che-Him, Norziha; Ali, Maselan; Khalid, Kamal; Nazri, E. M.; Ahmad, Asmala

    2018-04-01

    Boarding school student needs to eat well balanced nutritious food which includes proper calories, vitality and supplements for legitimate development, keeping in mind the end goal is to repair and support the body tissues and averting undesired ailments and disease. Serving healthier menu is a noteworthy stride towards accomplishing that goal. Be that as it may, arranging a nutritious and adjusted menu physically is confounded, wasteful and tedious. This study intends to build up a scientific mathematical model for eating routine arranging that improves and meets the vital supplement consumption for boarding school student aged 13-18 and in addition saving the financial plan. It likewise gives the adaptability for the cook to change any favoured menu even after the ideal arrangement has been produced. A recalculation procedure will be performed in view of the ideal arrangement. The information was gathered from the the Ministry of Education and boarding schools’ authorities. Menu arranging is a notable enhancement issue and part of well-established optimization problem. The model was fathomed by utilizing Binary Programming and “Delete-Reshuffle-Reoptimize Algortihm (DDRA)”.

  13. On some mathematical problems in the definition of Feynman path integral

    International Nuclear Information System (INIS)

    Combe, P.; Rodriguez, R.; Sirugue-Collin, M.

    1976-07-01

    It is shown how integration on a Hilbert space of paths can be performed to get exact evolution of non relativistic quantum systems for a rather large class of potentials including polynomial interaction

  14. Integral high energy nuclon-nucleus cross sections for mathematical experiments with electronuclear facilities

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Gudowski, W.; Polanski, A.

    1999-01-01

    A parametrization of the integral cross sections σ nonel , σ tl , σ tot for the elastic nonelastic and total proton- and neutron-nucleus interactions is considered at medium and high energies. On the basis of this parametrization a code is created for the interpolational calculations of the integral cross sections for arbitrary target nuclei at proton energies E=1 MeV - 1 TeV and neutron energies E=12.5 MeV - 1 TeV

  15. Development of the Mathematical Model of Integrated Management System for an Airline

    Directory of Open Access Journals (Sweden)

    Bogdane Ruta

    2016-12-01

    Full Text Available At the present stage of airline development the most effective way to increase safety is to introduce a systematic approach to the management of the organization. The creation of a single integrated management system including the combination of resources will make it possible to maintain the necessary level of quality of aviation services with safety as a key indicator. The article offers a model of such an integrated management system for medium level airlines.

  16. Building innovative and creative character through mathematics

    Science.gov (United States)

    Suyitno, Hardi; Suyitno, Amin

    2018-03-01

    21st century is predicted as the century with rapid development in all aspects of life. People require creative and innovative character to exist. Specifically, mathematics has been given to students from the kindergarten until the middle school. Thus, building character through mathematics should begin since the early age. The problem is how to build creative and innovative character through mathematics education? The goal expected from this question is to build innovative and creative characters to face the challenges of the 21st century. This article discusses the values of mathematics, the values in mathematics education, innovative and creative character, and the integration of these values in teaching mathematics that support the innovative and creative character building, and applying the values in structurely programmed, measurable, and applicable learning activities.

  17. Development of mathematical thinking of integral calculus students their relationship with educational planning

    Directory of Open Access Journals (Sweden)

    Mawency Vergel Ortega

    2016-01-01

    Full Text Available Visualization plays an important role to understand the phenomena that underlie the learning and teaching of mathematics, however, it is not a matter for immediate and easy verification, on the other hand, it is a matter of information processing that describes complexity. This article explores the role that plays the visualization associated with the geometric shapes on the way in which some textbooks that are most widely used in the South-West of Colombia, are in charge of introducing the teaching of fractions during the first levels of basic education. It was observed in the analyzed textbooks an imbalance between the number of activities that promote visually powerful roles and those which power is controlled or non-existent.

  18. A New Era of Science Education: Science Teachers' Perceptions and Classroom Practices of Science, Technology, Engineering, and Mathematics (STEM) Integration

    Science.gov (United States)

    Wang, Hui-Hui

    Quality STEM education is the key in helping the United States maintain its lead in global competitiveness and in preparing for new economic and security challenges in the future. Policymakers and professional societies emphasize STEM education by legislating the addition of engineering standards to the existing science standards. On the other hand, the nature of the work of most STEM professionals requires people to actively apply STEM knowledge to make critical decisions. Therefore, using an integrated approach to teaching STEM in K-12 is expected. However, science teachers encounter numerous difficulties in adapting the new STEM integration reforms into their classrooms because of a lack of knowledge and experience. Therefore, high quality STEM integration professional development programs are an urgent necessity. In order to provide these high quality programs, it is important to understand teachers' perceptions and classroom practices regarding STEM integration. A multiple-case study was conducted with five secondary school science teachers in order to gain a better understanding of teachers' perceptions and classroom practices in using STEM integration. This study addresses the following research questions: 1) What are secondary school science teachers' practices of STEM integration? 2) What are secondary science teachers' overall perceptions of STEM integration? and 3) What is the connection between secondary science teachers' perceptions and understanding of STEM integration with their classroom practices? This research aims to explore teachers' perceptions and classroom practices in order to set up the baseline for STEM integration and also to determine STEM integration professional development best practices in science education. Findings from the study provide critical data for making informed decision about the direction for STEM integration in science education in K-12.

  19. Applying risk insights in US NRC reviews of integral pressurized water reactor designs

    International Nuclear Information System (INIS)

    Caruso, M.A.; Hilsmeier, T.; Kevern, T.A.

    2012-01-01

    In its Staff Requirements Memorandum (SRM) on COMGBJ-10-0004/COMGEA-10-0001, 'Use of Risk Insights to Enhance Safety Focus of Small Modular Reactor Reviews,' dated August 31, 2010 (ML102510405), the U.S. Nuclear Regulatory Commission (NRC) directed the NRC staff to more fully integrate the use of risk insights into pre-application activities and the review of small modular reactor (SMR) applications with near-term focus on integral pressurized water reactor (iPWR) designs. The Commission's objective is to align the review focus and resources with the risk-significant systems, structures, and components (SSCs) and other aspects of the design, that contribute most to safety in order to enhance the efficiency of the review process while still enabling a decision of reasonable assurance of the design's safety. The staff was directed to develop a design-specific, risk-informed review plan for each SMR to address pre-application and application review activities. The NRC staff submitted a response to the Commission which describes its approach for (1) using risk insights, consistent with current regulatory requirements, to assign SSCs to one of a limited set of graded categories, and (2) adjusting the scope and depth of current review plans--where possible--consistent with regulatory requirements and consistent with the applicable graded category. Because the staff's review constitutes an independent audit of the application, the staff may emphasize or de-emphasize particular aspects of its review guidance (i.e., Standard Review Plan), as appropriate and consistent with regulatory requirements, for the application being reviewed. The staff may propose justifications for not performing certain sections of the reviews called for by the applicable review plan. Examples of acceptable variations in the scope of a review can include reduced emphasis on SSC attributes such as reliability, availability, or functional performance when the SSC will be in the scope of a program

  20. Singular integral equations boundary problems of function theory and their application to mathematical physics

    CERN Document Server

    Muskhelishvili, N I

    2011-01-01

    Singular integral equations play important roles in physics and theoretical mechanics, particularly in the areas of elasticity, aerodynamics, and unsteady aerofoil theory. They are highly effective in solving boundary problems occurring in the theory of functions of a complex variable, potential theory, the theory of elasticity, and the theory of fluid mechanics.This high-level treatment by a noted mathematician considers one-dimensional singular integral equations involving Cauchy principal values. Its coverage includes such topics as the Hölder condition, Hilbert and Riemann-Hilbert problem

  1. Bridging different perspectives of the physiological and mathematical disciplines.

    Science.gov (United States)

    Batzel, Jerry Joseph; Hinghofer-Szalkay, Helmut; Kappel, Franz; Schneditz, Daniel; Kenner, Thomas; Goswami, Nandu

    2012-12-01

    The goal of this report is to discuss educational approaches for bridging the different perspectives of the physiological and mathematical disciplines. These approaches can enhance the learning experience for physiology, medical, and mathematics students and simultaneously act to stimulate mathematical/physiological/clinical interdisciplinary research. While physiology education incorporates mathematics, via equations and formulas, it does not typically provide a foundation for interdisciplinary research linking mathematics and physiology. Here, we provide insights and ideas derived from interdisciplinary seminars involving mathematicians and physiologists that have been conducted over the last decade. The approaches described here can be used as templates for giving physiology and medical students insights into how sophisticated tools from mathematics can be applied and how the disciplines of mathematics and physiology can be integrated in research, thereby fostering a foundation for interdisciplinary collaboration. These templates are equally applicable to linking mathematical methods with other life and health sciences in the educational process.

  2. Technology-Enhanced Mathematics Education for Creative Engineering Studies

    DEFF Research Database (Denmark)

    Triantafyllou, Eva; Timcenko, Olga

    2014-01-01

    This project explores the opportunities and challenges of integrating digital technologies in mathematics education in creative engineering studies. Students in such studies lack motivation and do not perceive the mathematics the same way as mathematics students do. Digital technologies offer new...... are conceptualized. Then, we are going to apply this field data in designing learning technologies, which will be introduced in university classrooms. The effect of this introduction will be evaluated through educational design experiments....

  3. Work environment antecedents of bullying: A review and integrative model applied to registered nurses.

    Science.gov (United States)

    Trépanier, Sarah-Geneviève; Fernet, Claude; Austin, Stéphanie; Boudrias, Valérie

    2016-03-01

    This review paper provides an overview of the current state of knowledge on work environment antecedents of workplace bullying and proposes an integrative model of bullying applied to registered nurses. A literature search was conducted on the databases PsycInfo, ProQuest, and CINAHL. Included in this review were empirical studies pertaining to work-related antecedents of workplace bullying in nurses. A total of 12 articles were maintained in the review. An examination of these articles highlights four main categories of work-related antecedents of workplace bullying: job characteristics, quality of interpersonal relationships, leadership styles, and organizational culture. A conceptual model depicting the interplay between these factors in relation to bullying is also presented. Suggestions regarding other factors to incorporate within the model (e.g., individual factors, outcomes of bullying) are provided to increase our understanding of bullying in registered nurses. This paper hopes to guide future efforts in order to effectively prevent and/or address this problem and ultimately ensure patient safety and quality of care provided by health care organizations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Findings From the EASY Minds Cluster Randomized Controlled Trial: Evaluation of a Physical Activity Integration Program for Mathematics in Primary Schools.

    Science.gov (United States)

    Riley, Nicholas; Lubans, David R; Holmes, Kathryn; Morgan, Philip J

    2016-02-01

    To evaluate the impact of a primary school-based physical activity (PA) integration program delivered by teachers on objectively measured PA and key educational outcomes. Ten classes from 8 Australian public schools were randomly allocated to treatment conditions. Teachers from the intervention group were taught to embed movement-based learning in their students' (n = 142) daily mathematics program in 3 lessons per week for 6 weeks. The control group (n = 98) continued its regular mathematics program. The primary outcome was accelerometer-determined PA across the school day. Linear mixed models were used to analyze treatment effects. Significant intervention effects were found for PA across the school day (adjusted mean difference 103 counts per minute [CPM], 95% confidence interval [CI], 36.5-169.7, P = .008). Intervention effects were also found for PA (168 CPM, 95% CI, 90.1-247.4, P = .008) and moderate-to-vigorous PA (2.6%, 95% CI, 0.9-4.4, P = .009) in mathematics lessons, sedentary time across the school day (-3.5%, 95% CI, -7.0 to -0.13, P = .044) and during mathematics (-8.2%, CI, -13.0 to -2.0, P = .010) and on-task behavior (13.8%, 95% CI, 4.0-23.6, P = .011)-but not for mathematics performance or attitude. Integrating movement across the primary mathematics syllabus is feasible and efficacious.

  5. Enhancing Basic Skills in Modern Introductory Engineering Mathematics with High IT Integration

    DEFF Research Database (Denmark)

    Schmidt, Karsten; Hussmann, Peter Munkebo

    2013-01-01

    at the Technical University of Denmark (DTU), a course with high IT and Maple integration, now opens with a four-week paper and pencil course in complex numbers and functions. Since this topic is essential for the subsequent instruction in linear algebra and differential equations, we claim that this is a forward...

  6. How the Montessori Upper Elementary and Adolescent Environment Naturally Integrates Science, Mathematics, Technology, and the Environment

    Science.gov (United States)

    McNamara, John

    2016-01-01

    John McNamara shares his wisdom and humbly credits Camillo Grazzini, Jenny Höglund, and David Kahn for his growth in Montessori. Recognizing more than what he has learned from his mentors, he shares the lessons he has learned from his students themselves. Math, science, history, and language are so integrated in the curriculum that students…

  7. Improving English Language Arts and Mathematics Teachers' Capabilities for Teaching Integrated Information Literacy Skills

    Science.gov (United States)

    Ballard, Kevin

    2013-01-01

    Teachers in a large Illinois suburban school district will soon have to integrate the teaching of the Common Core State Standards into their content classes and may not feel prepared to do this effectively. Stephenson's definition of capability was used as the conceptual framework for this study, which holds that capable teachers are those who…

  8. Integrating HIV & AIDS Education in Pre-Service Mathematics Education for Social Justice

    Science.gov (United States)

    van Laren, Linda

    2011-01-01

    Since 1999, many South African education policy documents have mandated integration of HIV & AIDS education in learning areas/disciplines. Policy document research has shown that although South African politicians and managers have produced volumes of eloquent and compelling legislation regarding provision for HIV & AIDS education, little…

  9. Improving the Efficiency of Medical Services Systems: A New Integrated Mathematical Modeling Approach

    Directory of Open Access Journals (Sweden)

    Davood Shishebori

    2013-01-01

    Full Text Available Nowadays, the efficient design of medical service systems plays a critical role in improving the performance and efficiency of medical services provided by governments. Accordingly, health care planners in countries especially with a system based on a National Health Service (NHS try to make decisions on where to locate and how to organize medical services regarding several conditions in different residence areas, so as to improve the geographic equity of comfortable access in the delivery of medical services while accounting for efficiency and cost issues especially in crucial situations. Therefore, optimally locating of such services and also suitable allocating demands them, can help to enhance the performance and responsiveness of medical services system. In this paper, a multiobjective mixed integer nonlinear programming model is proposed to decide locations of new medical system centers, link roads that should be constructed or improved, and also urban residence centers covered by these medical service centers and link roads under investment budget constraint in order to both minimize the total transportation cost of the overall system and minimize the total failure cost (i.e., maximize the system reliability of medical service centers under unforeseen situations. Then, the proposed model is linearized by suitable techniques. Moreover, a practical case study is presented in detail to illustrate the application of the proposed mathematical model. Finally, a sensitivity analysis is done to provide an insight into the behavior of the proposed model in response to changes of key parameters of the problem.

  10. Construction mathematics

    CERN Document Server

    Virdi, Surinder; Virdi, Narinder Kaur

    2014-01-01

    Construction Mathematics is an introductory level mathematics text, written specifically for students of construction and related disciplines. Learn by tackling exercises based on real-life construction maths. Examples include: costing calculations, labour costs, cost of materials and setting out of building components. Suitable for beginners and easy to follow throughout. Learn the essential basic theory along with the practical necessities. The second edition of this popular textbook is fully updated to match new curricula, and expanded to include even more learning exercises. End of chapter exercises cover a range of theoretical as well as practical problems commonly found in construction practice, and three detailed assignments based on practical tasks give students the opportunity to apply all the knowledge they have gained. Construction Mathematics addresses all the mathematical requirements of Level 2 construction NVQs from City & Guilds/CITB and Edexcel courses, including the BTEC First Diploma in...

  11. Mathematical modelling

    CERN Document Server

    2016-01-01

    This book provides a thorough introduction to the challenge of applying mathematics in real-world scenarios. Modelling tasks rarely involve well-defined categories, and they often require multidisciplinary input from mathematics, physics, computer sciences, or engineering. In keeping with this spirit of modelling, the book includes a wealth of cross-references between the chapters and frequently points to the real-world context. The book combines classical approaches to modelling with novel areas such as soft computing methods, inverse problems, and model uncertainty. Attention is also paid to the interaction between models, data and the use of mathematical software. The reader will find a broad selection of theoretical tools for practicing industrial mathematics, including the analysis of continuum models, probabilistic and discrete phenomena, and asymptotic and sensitivity analysis.

  12. Mathematical modeling

    CERN Document Server

    Eck, Christof; Knabner, Peter

    2017-01-01

    Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.

  13. Integrating polarized light over a planetary disk applied to starlight reflected by extrasolar planets

    NARCIS (Netherlands)

    Stam, D.M.; de Rooij, W.A.; Cornet, G.; Hovenier, J.W.

    2006-01-01

    We present an efficient numerical method for integrating planetary radiation over a planetary disk, which is especially interesting for simulating signals of extrasolar planets. Our integration method is applicable to calculating the full flux vector of the disk-integrated planetary radiation, i.e.

  14. Microstructure Engineering in Hot Strip Mills, Part 1 of 2: Integrated mathematical Model

    Energy Technology Data Exchange (ETDEWEB)

    J.K. Brimacombe; I.V. Samaraseker; E.B. Hawbolt; T.R. Meadowcroft; M. Militzer; W.J. Pool; D.Q. Jin

    1998-09-30

    This report describes the work of developing an integrated model used to predict the thermal history, deformation, roll forces, microstructural evaluation and mechanical properties of steel strip in a hot-strip mill. This achievement results from a join research effort that is part of the American Iron and Steel Institute's (AISI) Advanced Process Control Program, a collaboration between the U.S. DOE and fifteen North American steel makers.

  15. Exploring Differential Effects of Mathematics Courses on Mathematics Achievement

    Science.gov (United States)

    Ma, Xin; McIntyre, Laureen J.

    2005-01-01

    Using data from the Longitudinal Study of Mathematics Participation (N = 1,518 students from 34 schools), we investigated the effects of pure and applied mathematics courses on mathematics achievement, controlling for prior mathematics achievement. Results of multilevel modelling showed that the effects of pure mathematics were significant after…

  16. Obtaining mathematical models for assessing efficiency of dust collectors using integrated system of analysis and data management STATISTICA Design of Experiments

    Science.gov (United States)

    Azarov, A. V.; Zhukova, N. S.; Kozlovtseva, E. Yu; Dobrinsky, D. R.

    2018-05-01

    The article considers obtaining mathematical models to assess the efficiency of the dust collectors using an integrated system of analysis and data management STATISTICA Design of Experiments. The procedure for obtaining mathematical models and data processing is considered by the example of laboratory studies on a mounted installation containing a dust collector in counter-swirling flows (CSF) using gypsum dust of various fractions. Planning of experimental studies has been carried out in order to reduce the number of experiments and reduce the cost of experimental research. A second-order non-position plan (Box-Bencken plan) was used, which reduced the number of trials from 81 to 27. The order of statistical data research of Box-Benken plan using standard tools of integrated system for analysis and data management STATISTICA Design of Experiments is considered. Results of statistical data processing with significance estimation of coefficients and adequacy of mathematical models are presented.

  17. Developing Distinct Mathematical and Scientific Pedagogical Content Knowledge in an Early Childhood Dual-Content Methods Course: An Alternative to Integration

    Science.gov (United States)

    Kalchman, Mindy; Kozoll, Richard H.

    2017-01-01

    Methods for teaching early childhood mathematics and science are often addressed in a single, dual-content course. Approaches to teaching this type of course include integrating the content and the pedagogy of both subjects, or keeping the subject areas distinct. In this article, the authors discuss and illustrate their approach to such a combined…

  18. High School Mathematics Teachers' Levels of Achieving Technology Integration and In-Class Reflections: The Case of Mathematica

    Science.gov (United States)

    Ardiç, Mehmet Alper; Isleyen, Tevfik

    2017-01-01

    The purpose of this study is to determine the levels of high school mathematics teachers in achieving mathematics instruction via computer algebra systems and the reflections of these practices in the classroom. Three high school mathematics teachers employed at different types of school participated in the study. In the beginning of this…

  19. Using Short Video Lectures to Enhance Mathematics Learning--Experiences on Differential and Integral Calculus Course for Engineering Students

    Science.gov (United States)

    Kinnari-Korpela, Hanna

    2015-01-01

    Mathematics' skills and knowledge lay the basis for engineering studies. However, the resources targeted to mathematics' teaching are in many cases very limited. During the past years in our university the reduction of mathematics' contact hours has been significant while at the same time the study groups have grown. However, the mathematical…

  20. MATHEMATICAL MODEL DESIGNATED FOR THE ASSESSMENT OF THE INTEGRATED ENVIRONMENTAL LOAD PRODUCED BY A BUILDING PROJECT

    Directory of Open Access Journals (Sweden)

    Lapidus Azariy Abramovich

    2012-10-01

    The theoretical background of the proposed approach consists in an integrated methodology implemented in the system engineering of construction projects. A building system may be represented as the aggregate of all stages of construction works and participants involved in them. The building system is object-oriented, and it is implemented under the impact of pre-determined environmental factors. The core constituent of the building system represents a Production Technology Module (PTM, or summarized groups of processes. The model formula designated for the assessment of the intensity of the ecological load produced by the construction project onto the environment may be represented as follows:

  1. Progress report of Physics Division including Applied Mathematics and Computing Section. 1st April 1971 - 30th September 1971

    International Nuclear Information System (INIS)

    2004-01-01

    All the mechanical and electronic components for the zero power splitable machine (the critical facility) arrived in excellent condition from France. Installation began and good progress was made on the mechanical side where the base and tables were successfully assembled and are being adjusted to meet the exacting specification. Power transients arising from the insertion of short reactivity steps were studied for the reactors, HIFAR, MOATA and the critical facility. Some effort was also devoted to the study of blowdown accidents in light water reactors and calculations of some Italian experiments were made successfully. The measurements of fast fission factor and initial conversion ratios for a range of natural uranium heavy water reactors were completed, and good progress is being made with neutron streaming in aluminium-water lattices. Many other investigators of this problem appear to have neglected or given insufficient attention to the case where the neutron beam is parallel to the plates. It is difficult to fit a cosine curve uniquely as coarse and fine features can not be separated. Previous analysis of the moisture content of soils and concrete by neutron scattering was successfully applied to obtain information on the variation of the moisture in large coal stacks as a function of time. This work was done in conjunction with Electricity Commission of N.S.W. Although a small Pu/Be source was found adequate for the above work, development continued on producing neutron pulses by means of a coaxial plasma focus device. Neutron pulses were produced regularly, but the output was variable; the fault was traced to breakdowns at the breech end of the device where restriking occurs. Although discrepancies of about 2% exist between V-bar for spontaneous fission of 252 Cf as measured by the liquid scintillation method and by the Manganese bath method, this important quantity is being measured locally using the liquid scintillator method. Preliminary results suggest

  2. Mathematics and history: history and analysis epistemology: from exhaustion method to defined integral

    Directory of Open Access Journals (Sweden)

    Mario Mandrone

    2015-06-01

    Full Text Available The creation of the calculation (differential, in the terminology of Leibniz, bending in that of Newton is the event that, in the second half of the seventeenth century, marked, in a sense, the transition from classical to modern mathematics. The aim of this work is a historical analysis of the rigor and epistemological question and the "metaphysics" of calculus that takes account of the methods of the ancient (eg. Of Archimedes' method of exhaustion, as well as interpretations of Leibniz and Newton and their successors. The problem of searching for a sure foundation on which to base the calculus, glimpsed by D'Alembert in the theory of limits and taken up by Lagrange to the theory of infinite series, and that the derivative functions, found in Cachy the pioneer of a new way to seek rigor in analysis. The Cauchy setting will be tightened by Weierstrass in the second half of the 800 with the definition of limit, with the epsilon-delta method, which in turn is based on definitions concerning the real numbers. In this sense we speak of "arithmetisation" analysis.         Matematica e storia: storia ed epistemologia dell’analisi: dal metodo  di esaustione  all’integrale  definito La creazione del calcolo (differenziale, nella terminologia leibniziana flessionale in quella di Newton è l’evento che, nella seconda metà del seicento, ha segnato, in un certo senso, il passaggio dalla matematica classica a quella moderna. Obiettivo del presente lavoro è una analisi storica ed epistemologica della questione del rigore e della “metafisica” del calcolo infinitesimale che tenga conto dei metodi degli antichi (ad es.  del metodo di esaustione di Archimede, nonché delle interpretazioni di Leibniz e Newton e dei loro successori. Il problema della ricerca di un fondamento sicuro su cui basare il calcolo infinitesimale, intravisto da D’Alembert nella teoria dei limiti e ripreso da Lagrange con la teoria delle serie infinite e quella delle

  3. SU-F-E-20: A Mathematical Model of Linac Jaw Calibration Integrated with Collimator Walkout

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y; Corns, R; Huang, V [Fraser Valley Cancer Centre - BC Cancer Agency, Surrey, BC (United Kingdom)

    2016-06-15

    Purpose: Accurate jaw calibration is possible, but it does not necessarily achieve good junctions because of collimator rotation walkout. We developed a mathematical model seeking to pick an origin for calibration that minimizes the collimator walkout effect. Methods: We use radioopaque markers aligned with crosshair on the EPID to determine the collimator walkout at collimator angles 0°, 90° and 270°. We can accurately calibrate jaws to any arbitrary origin near the radiation field centre. While the absolute position of an origin moves with the collimator walkout, its relative location to the crosshair is an invariant. We studied two approaches to select an optimal origin. One approach seeks to bring all three origin locations (0°–90°–270°) as close as possible by minimizing the perimeter of the triangle formed by these points. The other approach focuses on the gap for 0°–90° junctions. Results: Our perimeter cost function has two variables and non-linear behaviour. Generally, it does not have zero-perimeter-length solution which leads to perfect jaw matches. The zero solution can only be achieved, if the collimator rotates about a single fixed axis. In the second approach, we can always get perfect 0°–0° and 0°–90° junctions, because we ignore the 0°–270° situation. For our TrueBeams, both techniques for selecting an origin improved junction dose inhomogeneities to less than ±6%. Conclusion: Our model considers the general jaw matching with collimator rotations and proposes two potential solutions. One solution optimizes the junction gaps by considering all three collimator angles while the other only considers 0°–90°. The first solution will not give perfect matching, but can be clinically acceptable with minimized collimator walkout effect, while the second can have perfect junctions at the expense of the 0°–270° junctions. Different clinics might choose between these two methods basing on their clinical practices.

  4. SU-F-E-20: A Mathematical Model of Linac Jaw Calibration Integrated with Collimator Walkout

    International Nuclear Information System (INIS)

    Zhao, Y; Corns, R; Huang, V

    2016-01-01

    Purpose: Accurate jaw calibration is possible, but it does not necessarily achieve good junctions because of collimator rotation walkout. We developed a mathematical model seeking to pick an origin for calibration that minimizes the collimator walkout effect. Methods: We use radioopaque markers aligned with crosshair on the EPID to determine the collimator walkout at collimator angles 0°, 90° and 270°. We can accurately calibrate jaws to any arbitrary origin near the radiation field centre. While the absolute position of an origin moves with the collimator walkout, its relative location to the crosshair is an invariant. We studied two approaches to select an optimal origin. One approach seeks to bring all three origin locations (0°–90°–270°) as close as possible by minimizing the perimeter of the triangle formed by these points. The other approach focuses on the gap for 0°–90° junctions. Results: Our perimeter cost function has two variables and non-linear behaviour. Generally, it does not have zero-perimeter-length solution which leads to perfect jaw matches. The zero solution can only be achieved, if the collimator rotates about a single fixed axis. In the second approach, we can always get perfect 0°–0° and 0°–90° junctions, because we ignore the 0°–270° situation. For our TrueBeams, both techniques for selecting an origin improved junction dose inhomogeneities to less than ±6%. Conclusion: Our model considers the general jaw matching with collimator rotations and proposes two potential solutions. One solution optimizes the junction gaps by considering all three collimator angles while the other only considers 0°–90°. The first solution will not give perfect matching, but can be clinically acceptable with minimized collimator walkout effect, while the second can have perfect junctions at the expense of the 0°–270° junctions. Different clinics might choose between these two methods basing on their clinical practices.

  5. Integrated modelling of nitrate loads to coastal waters and land rent applied to catchment scale water management

    DEFF Research Database (Denmark)

    Jacosen, T.; Refsgaard, A.; Jacobsen, Brian H.

    Abstract The EU WFD requires an integrated approach to river basin management in order to meet environmental and ecological objectives. This paper presents concepts and full-scale application of an integrated modelling framework. The Ringkoebing Fjord basin is characterized by intensive agricultu...... in comprehensive, integrated modelling tools.......Abstract The EU WFD requires an integrated approach to river basin management in order to meet environmental and ecological objectives. This paper presents concepts and full-scale application of an integrated modelling framework. The Ringkoebing Fjord basin is characterized by intensive...... agricultural production and leakage of nitrate constitute a major pollution problem with respect groundwater aquifers (drinking water), fresh surface water systems (water quality of lakes) and coastal receiving waters (eutrophication). The case study presented illustrates an advanced modelling approach applied...

  6. A mathematical model for optimization of an integrated network logistic design

    Directory of Open Access Journals (Sweden)

    Lida Tafaghodi

    2011-10-01

    Full Text Available In this study, the integrated forward/reverse logistics network is investigated, and a capacitated multi-stage, multi-product logistics network design is proposed by formulating a generalized logistics network problem into a mixed-integer nonlinear programming model (MINLP for minimizing the total cost of the closed-loop supply chain network. Moreover, the proposed model is solved by using optimization solver, which provides the decisions related to the facility location problem, optimum quantity of shipped product, and facility capacity. Numerical results show the power of the proposed MINLP model to avoid th sub-optimality caused by separate design of forward and reverse logistics networks and to handle various transportation modes and periodic demand.

  7. A Mathematical Framework for the Complex System Approach to Group Dynamics: The Case of Recovery House Social Integration.

    Science.gov (United States)

    Light, John M; Jason, Leonard A; Stevens, Edward B; Callahan, Sarah; Stone, Ariel

    2016-03-01

    The complex system conception of group social dynamics often involves not only changing individual characteristics, but also changing within-group relationships. Recent advances in stochastic dynamic network modeling allow these interdependencies to be modeled from data. This methodology is discussed within a context of other mathematical and statistical approaches that have been or could be applied to study the temporal evolution of relationships and behaviors within small- to medium-sized groups. An example model is presented, based on a pilot study of five Oxford House recovery homes, sober living environments for individuals following release from acute substance abuse treatment. This model demonstrates how dynamic network modeling can be applied to such systems, examines and discusses several options for pooling, and shows how results are interpreted in line with complex system concepts. Results suggest that this approach (a) is a credible modeling framework for studying group dynamics even with limited data, (b) improves upon the most common alternatives, and (c) is especially well-suited to complex system conceptions. Continuing improvements in stochastic models and associated software may finally lead to mainstream use of these techniques for the study of group dynamics, a shift already occurring in related fields of behavioral science.

  8. On the mathematical integration of the nervous tissue based on the S-propagator formalism.

    Science.gov (United States)

    Chauvet, Gilbert A

    2002-06-01

    The integration of physiological functions in living organisms corresponds to the reconstruction of a biological system from its components. This calls for a sound theoretical framework based on the rigorous definition of the elementary physiological function within the context of multiple levels of biological organization. One of the main problems encountered in the neurosciences is that of extending the current theory of automata, as used in the study of artificial neural networks, to real neural networks. The difficulty arises because the theory of automata fails to take into account the various levels of biological organization involved in nervous activity. This article recalls the main elements of G. A. Chauvet's novel n-level field theory, i.e., the properties of non-symmetry and non-locality of functional interactions, and the S-propagator formalism that governs the propagation of a functional interaction across the different levels of the structural organization of a biological system. The neural field equations derived from this theory allow the inclusion of multiple organizational levels of a biological system into the analysis by incorporating specific local models into a global non-local model. The main advantage of the method presented here is the simplification obtained by breaking down the physiological function into its components according to the time scales and space scales of operation. Moreover, the method takes into account the non-locality of the functional interaction, assuming it to be propagated at finite velocity in a continuous and hierarchical space. Finally, this approach allows the systematic study of physiological functions within a single theoretical framework, the complexity of which could be progressively increased by integrating specific local models as new findings become available.

  9. Mathematics a minimal introduction

    CERN Document Server

    Buium, Alexandru

    2013-01-01

    Pre-Mathematical Logic Languages Metalanguage Syntax Semantics Tautologies Witnesses Theories Proofs Argot Strategies Examples Mathematics ZFC Sets Maps Relations Operations Integers Induction Rationals Combinatorics Sequences Reals Topology Imaginaries Residues p-adics Groups Orders Vectors Matrices Determinants Polynomials Congruences Lines Conics Cubics Limits Series Trigonometry Integrality Reciprocity Calculus Metamodels Categories Functors Objectives Mathematical Logic Models Incompleteness Bibliography Index

  10. A semantic web approach applied to integrative bioinformatics experimentation: a biological use case with genomics data.

    NARCIS (Netherlands)

    Post, L.J.G.; Roos, M.; Marshall, M.S.; van Driel, R.; Breit, T.M.

    2007-01-01

    The numerous public data resources make integrative bioinformatics experimentation increasingly important in life sciences research. However, it is severely hampered by the way the data and information are made available. The semantic web approach enhances data exchange and integration by providing

  11. Biological condition gradient: Applying a framework for determining the biological integrity of coral reefs

    Science.gov (United States)

    The goals of the U.S. Clean Water Act (CWA) are to restore and maintain the chemical, physical and biological integrity of water resources. Although clean water is a goal, another is to safeguard biological communities by defining levels of biological integrity to protect aquatic...

  12. Numerical Treatment of Fixed Point Applied to the Nonlinear Fredholm Integral Equation

    Directory of Open Access Journals (Sweden)

    Berenguer MI

    2009-01-01

    Full Text Available The authors present a method of numerical approximation of the fixed point of an operator, specifically the integral one associated with a nonlinear Fredholm integral equation, that uses strongly the properties of a classical Schauder basis in the Banach space .

  13. Incorporating Applied Behavior Analysis to Assess and Support Educators' Treatment Integrity

    Science.gov (United States)

    Collier-Meek, Melissa A.; Sanetti, Lisa M. H.; Fallon, Lindsay M.

    2017-01-01

    For evidence-based interventions to be effective for students they must be consistently implemented, however, many teachers struggle with treatment integrity and require support. Although many implementation support strategies are research based, there is little empirical guidance about the types of treatment integrity, implementers, and contexts…

  14. Fundamental concepts of mathematics

    CERN Document Server

    Goodstein, R L

    Fundamental Concepts of Mathematics, 2nd Edition provides an account of some basic concepts in modern mathematics. The book is primarily intended for mathematics teachers and lay people who wants to improve their skills in mathematics. Among the concepts and problems presented in the book include the determination of which integral polynomials have integral solutions; sentence logic and informal set theory; and why four colors is enough to color a map. Unlike in the first edition, the second edition provides detailed solutions to exercises contained in the text. Mathematics teachers and people

  15. Improving the integration of recreation management with management of other natural resources by applying concepts of scale from ecology

    Science.gov (United States)

    Wayde c. Morse; Troy E. Hall; Linda E. Kruger

    2008-01-01

    In this article, we examine how issues of scale affect the integration of recreation management with the management of other natural resources on public lands. We present two theories used to address scale issues in ecology and explore how they can improve the two most widely applied recreation-planning frameworks. The theory of patch dynamics and hierarchy theory are...

  16. The Effects of Applying Game-Based Learning to Webcam Motion Sensor Games for Autistic Students' Sensory Integration Training

    Science.gov (United States)

    Li, Kun-Hsien; Lou, Shi-Jer; Tsai, Huei-Yin; Shih, Ru-Chu

    2012-01-01

    This study aims to explore the effects of applying game-based learning to webcam motion sensor games for autistic students' sensory integration training for autistic students. The research participants were three autistic students aged from six to ten. Webcam camera as the research tool wad connected internet games to engage in motion sensor…

  17. Systems engineering applied to integrated safety management for high consequence facilities

    International Nuclear Information System (INIS)

    Barter, R; Morais, B.

    1998-01-01

    Integrated Safety Management is a concept that is being actively promoted by the U.S. Department of Energy as a means of assuring safe operation of its facilities. The concept involves the integration of safety precepts into work planning rather than adjusting for safe operations after defining the work activity. The system engineering techniques used to design an integrated safety management system for a high consequence research facility are described. An example is given to show how the concepts evolved with the system design

  18. Physical mathematics

    CERN Document Server

    Cahill, Kevin

    2013-01-01

    Unique in its clarity, examples and range, Physical Mathematics explains as simply as possible the mathematics that graduate students and professional physicists need in their courses and research. The author illustrates the mathematics with numerous physical examples drawn from contemporary research. In addition to basic subjects such as linear algebra, Fourier analysis, complex variables, differential equations and Bessel functions, this textbook covers topics such as the singular-value decomposition, Lie algebras, the tensors and forms of general relativity, the central limit theorem and Kolmogorov test of statistics, the Monte Carlo methods of experimental and theoretical physics, the renormalization group of condensed-matter physics and the functional derivatives and Feynman path integrals of quantum field theory.

  19. Climate proofing water and sanitation services and applying integrated water resource management in slums

    OpenAIRE

    Heath, Thomas

    2011-01-01

    This thesis assesses how climate change impacts water resources and communities and reviews how the resource can be managed in an integrated manner for small water and sanitation providers. This thesis was based upon a 10 month Knowledge Transfer Partnership (KTP) between Cranfield University and Water and Sanitation for the Urban Poor (WSUP). The aim of the project was to assess the opportunities and vulnerabilities presented by climate change and how Integrated Water Resource ...

  20. Mathematical analysis of the boundary-integral based electrostatics estimation approximation for molecular solvation: exact results for spherical inclusions.

    Science.gov (United States)

    Bardhan, Jaydeep P; Knepley, Matthew G

    2011-09-28

    We analyze the mathematically rigorous BIBEE (boundary-integral based electrostatics estimation) approximation of the mixed-dielectric continuum model of molecular electrostatics, using the analytically solvable case of a spherical solute containing an arbitrary charge distribution. Our analysis, which builds on Kirkwood's solution using spherical harmonics, clarifies important aspects of the approximation and its relationship to generalized Born models. First, our results suggest a new perspective for analyzing fast electrostatic models: the separation of variables between material properties (the dielectric constants) and geometry (the solute dielectric boundary and charge distribution). Second, we find that the eigenfunctions of the reaction-potential operator are exactly preserved in the BIBEE model for the sphere, which supports the use of this approximation for analyzing charge-charge interactions in molecular binding. Third, a comparison of BIBEE to the recent GBε theory suggests a modified BIBEE model capable of predicting electrostatic solvation free energies to within 4% of a full numerical Poisson calculation. This modified model leads to a projection-framework understanding of BIBEE and suggests opportunities for future improvements. © 2011 American Institute of Physics

  1. Integrating movement in academic classrooms: understanding, applying and advancing the knowledge base.

    Science.gov (United States)

    Webster, C A; Russ, L; Vazou, S; Goh, T L; Erwin, H

    2015-08-01

    In the context of comprehensive and coordinated approaches to school health, academic classrooms have gained attention as a promising setting for increasing physical activity and reducing sedentary time among children. The aims of this paper are to review the rationale and knowledge base related to movement integration in academic classrooms, consider the practical applications of current knowledge to interventions and teacher education, and suggest directions for future research. Specifically, this paper (i) situates movement integration amid policy and research related to children's health and the school as a health-promoting environment; (ii) highlights the benefits of movement integration; (iii) summarizes movement integration programs and interventions; (iv) examines factors associated with classroom teachers' movement integration; (v) offers strategies for translating research to practice and (vi) forwards recommendations for future inquiry related to the effectiveness and sustainability of efforts to integrate movement into classroom routines. This paper provides a comprehensive resource for developing state-of-the-art initiatives to maximize children's movement in academic classrooms as a key strategy for important goals in both education and public health. © 2015 World Obesity.

  2. Mathematics and Computer Science | Argonne National Laboratory

    Science.gov (United States)

    Extreme Computing Data-Intensive Science Applied Mathematics Science & Engineering Applications Software Extreme Computing Data-Intensive Science Applied Mathematics Science & Engineering Opportunities For Employees Staff Directory Argonne National Laboratory Mathematics and Computer Science Tools

  3. Social Technology Apply to National Policy on Solid Waste: Solid Waste Management Integrated in the Countryside

    Directory of Open Access Journals (Sweden)

    Greice Kelly Lourenco Porfirio de Oliveira

    2016-06-01

    Full Text Available This article aims to study the environmentally friendly social technologies through appropriate techniques to the treatment of solid waste disposed of improperly. After exposure of concepts, a reflection on the use of social technologies as a mechanism for realization of integrated management objectives of waste set by the National Solid Waste Policy will be made – 12.305/10 . Finally, data from the Social Technologies Bank of Brazil Foundation will be displayed showing the results of the use of technology to promote the integrated management of solid waste in rural communities Crateús/CE , through a provision aimed at PNRS, selective collection

  4. Applying the Upper Integral to the Biometric Score Fusion Problem in the Identification Model

    Directory of Open Access Journals (Sweden)

    Khalid Fakhar

    2015-08-01

    Full Text Available This paper presents a new biometric score fusion approach in an identification system using the upper integral with respect to Sugeno’s fuzzy measure. First, the proposed method considers each individual matcher as a fuzzy set in order to handle uncertainty and imperfection in matching scores. Then, the corresponding fuzzy entropy estimates the reliability of the information provided by each biometric matcher. Next, the fuzzy densities are generated based on rank information and training accuracy. Finally, the results are aggregated using the upper fuzzy integral. Experimental results compared with other fusion methods demonstrate the good performance of the proposed approach.

  5. And So It Grows: Using a Computer-Based Simulation of a Population Growth Model to Integrate Biology & Mathematics

    Science.gov (United States)

    Street, Garrett M.; Laubach, Timothy A.

    2013-01-01

    We provide a 5E structured-inquiry lesson so that students can learn more of the mathematics behind the logistic model of population biology. By using models and mathematics, students understand how population dynamics can be influenced by relatively simple changes in the environment.

  6. The Effects of Integrating LEGO Robotics into a Mathematics Curriculum to Promote the Development of Proportional Reasoning

    Science.gov (United States)

    Casler-Failing, Shelli L.

    2017-01-01

    This mixed methods, action research case study sought to investigate the effects of incorporating LEGO robotics into a seventh grade mathematics curriculum focused on the development of proportional reasoning through the lens of Social Constructivist Theory. Quantitative data was collected via pre- and post-tests from the mathematics class of six…

  7. Matematicas en la vida actual. Volumen III, edicion para el maestro. (Mathematics: A Practical View. Volume III, Teacher Edition). Applied Basic Curriculum Series.

    Science.gov (United States)

    Evaluation, Dissemination and Assessment Center, Dallas.

    This Spanish language teacher's edition of a practical mathematics text for the intermediate grades contains three components which can be structured in different combinations according to different student needs. Built around a review of selected objectives in the mathematics basic curriculum, the material is intended to stimulate interest in…

  8. Matematicas en la vida actual. Volumen I, edicion para el maestro. (Mathematics: A Practical View. Volume I, Teacher Edition). Applied Basic Curriculum Series.

    Science.gov (United States)

    Evaluation, Dissemination and Assessment Center, Dallas.

    This Spanish language teacher's edition of a practical mathematics text for the intermediate grades contains three components which can be structured in different combinations according to different student needs. Built around a review of selected objectives in the mathematics basic curriculum, the material is intended to stimulate interest in…

  9. Matematicas en la vida actual. Volumen II, edicion para el maestro. (Mathematics: A Practical View. Volume II, Teacher Edition). Applied Basic Curriculum Series.

    Science.gov (United States)

    Evaluation, Dissemination and Assessment Center, Dallas.

    This Spanish language teacher's edition of a practical mathematics text for the intermediate grades contains three components which can be structured in different combinations according to different student needs. Built around a review of selected objectives in the mathematics basic curriculum, the material is intended to stimulate interest in…

  10. Preservice Teachers' Acceptance of ICT Integration in the Classroom: Applying the UTAUT Model

    Science.gov (United States)

    Birch, A.; Irvine, V.

    2009-01-01

    In this study, the researchers explore the factors that influence preservice teachers' acceptance of information and communication technology (ICT) integration in the classroom. The Unified Theory of Acceptance and Use of Technology (UTAUT) was developed by Venkatesh et al. ["MIS Quarterly, 27"(3), 425-478] in 2003 and shown to…

  11. Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes

    NARCIS (Netherlands)

    Rosenauer, M.; Buchegger, W.; Finoulst, I.; Verhaert, P.D.E.M.; Vellekoop, M.

    2010-01-01

    In this study, the design, realization and measurement results of a novel optofluidic system capable of performing absorbance-based flow cytometric analysis is presented. This miniaturized laboratory platform, fabricated using SU-8 on a silicon substrate, comprises integrated polymer-based

  12. Enhancing the Interdisciplinary Perspective in the Marketing Management Decision Process through an Applied, Integrated, Client Project

    Science.gov (United States)

    Askim-Lovseth, Mary K.; O'Keefe, Timothy P.

    2012-01-01

    Businesses function within a cross-functional, integrative setting, and this necessitates providing a learning environment for students that is comparable to real-life work projects. Two upper-level university classes in marketing and information systems worked collaboratively with a snack food business to design and build a Web site based on a…

  13. Design of an integrated fermentation-crystallization process applied to the production of DOIP

    NARCIS (Netherlands)

    Blokker, S.; Dabkowski, M.; Groendijk, W.; Renckens, D.; De Rond, J.

    2004-01-01

    The design problem of CPD3312 was the comparison of the conventional batch (Base case) and the new integrated fermentation-crystallization process (In Situ Product Removal or ISPR case) in particular for the production of 2 tonnes 6R-dihydrooxoisophorone (DOIP) from 4-oxo-isophorone (OIP) per year.

  14. Advancing early detection of autism spectrum disorder by applying an integrated two-stage screening approach

    NARCIS (Netherlands)

    Oosterling, Iris J.; Wensing, Michel; Swinkels, Sophie H.; van der Gaag, Rutger Jan; Visser, Janne C.; Woudenberg, Tim; Minderaa, Ruud; Steenhuis, Mark-Peter; Buitelaar, Jan K.

    Background: Few field trials exist on the impact of implementing guidelines for the early detection of autism spectrum disorders (ASD). The aims of the present study were to develop and evaluate a clinically relevant integrated early detection programme based on the two-stage screening approach of

  15. New research at Paisley Caves:applying new integrated analytical approaches to understanding stratigraphy, taphonomy, and site formation processes

    OpenAIRE

    Shillito, Lisa-Marie; Blong, John C; Jenkins, Dennis L; Stafford Jr, Thomas W; Whelton, Helen; McDonough, Katelyn; Bull, Ian

    2018-01-01

    Paisley Caves in Oregon has become well known due to early dates, and human presence in the form of coprolites, found to contain ancient human DNA. Questions remain over whether the coprolites themselves are human, or whether the DNA is mobile in the sediments. This brief introduces new research applying an integrated analytical approach combining sediment micromorphology and lipid biomarker analysis, which aims to resolve these problems.

  16. Applying Fuzzy Multiobjective Integrated Logistics Model to Green Supply Chain Problems

    Directory of Open Access Journals (Sweden)

    Chui-Yu Chiu

    2014-01-01

    Full Text Available The aim of this paper is attempting to explore the optimal way of supply chain management within the domain of environmental responsibility and concerns. The background of this research involves the issue of green supply chain management (GSCM and the concept of the multiobjective integrated logistics model. More specifically, in this paper, we suggest the fuzzy multiobjective integrated logistics model with the transportation cost and demand fuzziness to solve green supply chain problems in the uncertain environment which is illustrated via the detailed numerical example. Results and the sensitivity analysis of the numerical example indicate that when the governmental subsidy value increased the profits of the reverse chain also increased. The finding shows that the governmental subsidy policy could remain of significant influence for used-product reverse logistics chain.

  17. Advanced GPR imaging of sedimentary features: integrated attribute analysis applied to sand dunes

    Science.gov (United States)

    Zhao, Wenke; Forte, Emanuele; Fontolan, Giorgio; Pipan, Michele

    2018-04-01

    We evaluate the applicability and the effectiveness of integrated GPR attribute analysis to image the internal sedimentary features of the Piscinas Dunes, SW Sardinia, Italy. The main objective is to explore the limits of GPR techniques to study sediment-bodies geometry and to provide a non-invasive high-resolution characterization of the different subsurface domains of dune architecture. On such purpose, we exploit the high-quality Piscinas data-set to extract and test different attributes of the GPR trace. Composite displays of multi-attributes related to amplitude, frequency, similarity and textural features are displayed with overlays and RGB mixed models. A multi-attribute comparative analysis is used to characterize different radar facies to better understand the characteristics of internal reflection patterns. The results demonstrate that the proposed integrated GPR attribute analysis can provide enhanced information about the spatial distribution of sediment bodies, allowing an enhanced and more constrained data interpretation.

  18. SITEGI Project: Applying Geotechnologies to Road Inspection. Sensor Integration and software processing

    Directory of Open Access Journals (Sweden)

    J. Martínez-Sánchez

    2013-10-01

    Full Text Available Infrastructure management represents a critical economic milestone. The current decision-making process in infrastructure rehabilitation is essentially based on qualitative parameters obtained from visual inspections and subject to the ability of technicians. In order to increase both efficiency and productivity in infrastructure management, this work addresses the integration of different instrumentation and sensors in a mobile mapping vehicle. This vehicle allows the continuous recording of quantitative data suitable for roadside inspection. The geometric integration and synchronization of these sensors is achieved through hardware and/or software strategies that permit the georeferencing of the data obtained with each sensor. In addition, a visualization software for simpler data management was implemented using Qt framework, PCL library and C++. As a result, the developed system supports the decision-making in road inspection, providing quantitative information suitable for sophisticated analysis systems.

  19. MPA-11: Materials Synthesis and Integrated Devices; Overview of an Applied Energy Group

    Energy Technology Data Exchange (ETDEWEB)

    Dattelbaum, Andrew Martin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-16

    Our mission is to provide innovative and creative chemical synthesis and materials science solutions to solve materials problems across the LANL missions. Our group conducts basic and applied research in areas related to energy security as well as problems relevant to the Weapons Program.

  20. CTDB: An Integrated Chickpea Transcriptome Database for Functional and Applied Genomics

    OpenAIRE

    Verma, Mohit; Kumar, Vinay; Patel, Ravi K.; Garg, Rohini; Jain, Mukesh

    2015-01-01

    Chickpea is an important grain legume used as a rich source of protein in human diet. The narrow genetic diversity and limited availability of genomic resources are the major constraints in implementing breeding strategies and biotechnological interventions for genetic enhancement of chickpea. We developed an integrated Chickpea Transcriptome Database (CTDB), which provides the comprehensive web interface for visualization and easy retrieval of transcriptome data in chickpea. The database fea...

  1. Elements of mathematics integration

    CERN Document Server

    Bourbaki, Nicolas

    2004-01-01

    Intégration is the sixth and last of the Books that form the core of the Bourbaki series; it draws abundantly on the preceding five Books, especially General Topology and Topological Vector Spaces, making it a culmination of the core six. The power of the tool thus fashioned is strikingly displayed in Chapter II of the author's Théories Spectrales, an exposition, in a mere 38 pages, of abstract harmonic analysis and the structure of locally compact abelian groups. The present volume comprises Chapters 1-6 in English translation (a second volume will contain the remaining Chapters 7-9). The individual fascicles of the original French edition have been extensively reviewed. Chapters 1-5 received very substantial revisions in a second edition, including changes to some fundamental definitions. Chapters 6-8 are based on the first editions of Chs. 1-5. The English edition has given the author the opportunity to correct misprints, update references, clarify the concordance of Chapter 6 with the second editions of...

  2. Mathematics related anxiety: Mathematics bogeyman or not?

    Directory of Open Access Journals (Sweden)

    Videnović Marina

    2011-01-01

    Full Text Available Data of the PISA 2003 survey indicate high levels of mathematics anxiety of students in Serbia. More than half of our students worry whether they will have difficulties in mathematics class or whether they will earn poor marks. Aims of this study therefore are: examining relationship between math anxiety and achievement at mathematics literacy scale; establishing possible predictors of math anxiety and identification of students' groups in relations to their relationship towards mathematics as a subject. Mathematics anxiety is statistically negatively correlated with school achievement and achievement at mathematics literacy scale. Socio-demographic factors, motivational and cognitive aspects related to learning mathematics, perception of school and classroom climate explain 40% variance of mathematics anxiety. Based on students' relationship towards mathematics they cam be divided into three groups; while dimensions that apart them are uninterested-interested in mathematics and presence-absence of anxiety. The group displaying anxiety scores lowest among the three. Applying qualitative analysis students' and teachers' attitudes on specific issues related to teaching and learning mathematics was examined.

  3. Potential for accidents in a nuclear power plant: probabilistic risk assessment, applied statistical decision theory, and implications of such considerations to mathematics education

    International Nuclear Information System (INIS)

    Dios, R.A.

    1984-01-01

    This dissertation focuses upon the field of probabilistic risk assessment and its development. It investigates the development of probabilistic risk assessment in nuclear engineering. To provide background for its development, the related areas of population dynamics (demography), epidemiology and actuarial science are studied by presenting information upon how risk has been viewed in these areas over the years. A second major problem involves presenting an overview of the mathematical models related to risk analysis to mathematics educators and making recommendations for presenting this theory in classes of probability and statistics for mathematics and engineering majors at the undergraduate and graduate levels

  4. Containment integrity and leak testing. Procedures applied and experiences gained in European countries

    International Nuclear Information System (INIS)

    1987-01-01

    Containment systems are the ultimate safety barrier for preventing the escape of gaseous, liquid and solid radioactive materials produced in normal operation, not retained in process systems, and for keeping back radioactive materials released by system malfunction or equipment failure. A primary element of the containment shell is therefore its leak-tight design. The report describes the present containment concepts mostly used in European countries. The leak-testing procedures applied and the experiences gained in their application are also discussed. The report refers more particularly to pre-operational testing, periodic testing and extrapolation methods of leak rates measured at test conditions to expected leak rates at calculated accident conditions. The actual problems in periodic containment leak rate testing are critically reviewed. In the appendix to the report a summary is given of the regulations and specifications applied in different member countries

  5. Photovoltaic and Wind Turbine Integration Applying Cuckoo Search for Probabilistic Reliable Optimal Placement

    OpenAIRE

    R. A. Swief; T. S. Abdel-Salam; Noha H. El-Amary

    2018-01-01

    This paper presents an efficient Cuckoo Search Optimization technique to improve the reliability of electrical power systems. Various reliability objective indices such as Energy Not Supplied, System Average Interruption Frequency Index, System Average Interruption, and Duration Index are the main indices indicating reliability. The Cuckoo Search Optimization (CSO) technique is applied to optimally place the protection devices, install the distributed generators, and to determine the size of ...

  6. Designing driver assistance systems with crossmodal signals: multisensory integration rules for saccadic reaction times apply.

    Directory of Open Access Journals (Sweden)

    Rike Steenken

    Full Text Available Modern driver assistance systems make increasing use of auditory and tactile signals in order to reduce the driver's visual information load. This entails potential crossmodal interaction effects that need to be taken into account in designing an optimal system. Here we show that saccadic reaction times to visual targets (cockpit or outside mirror, presented in a driving simulator environment and accompanied by auditory or tactile accessories, follow some well-known spatiotemporal rules of multisensory integration, usually found under confined laboratory conditions. Auditory nontargets speed up reaction time by about 80 ms. The effect tends to be maximal when the nontarget is presented 50 ms before the target and when target and nontarget are spatially coincident. The effect of a tactile nontarget (vibrating steering wheel was less pronounced and not spatially specific. It is shown that the average reaction times are well-described by the stochastic "time window of integration" model for multisensory integration developed by the authors. This two-stage model postulates that crossmodal interaction occurs only if the peripheral processes from the different sensory modalities terminate within a fixed temporal interval, and that the amount of crossmodal interaction manifests itself in an increase or decrease of second stage processing time. A qualitative test is consistent with the model prediction that the probability of interaction, but not the amount of crossmodal interaction, depends on target-nontarget onset asynchrony. A quantitative model fit yields estimates of individual participants' parameters, including the size of the time window. Some consequences for the design of driver assistance systems are discussed.

  7. Virtual Manufacturing Techniques Designed and Applied to Manufacturing Activities in the Manufacturing Integration and Technology Branch

    Science.gov (United States)

    Shearrow, Charles A.

    1999-01-01

    One of the identified goals of EM3 is to implement virtual manufacturing by the time the year 2000 has ended. To realize this goal of a true virtual manufacturing enterprise the initial development of a machinability database and the infrastructure must be completed. This will consist of the containment of the existing EM-NET problems and developing machine, tooling, and common materials databases. To integrate the virtual manufacturing enterprise with normal day to day operations the development of a parallel virtual manufacturing machinability database, virtual manufacturing database, virtual manufacturing paradigm, implementation/integration procedure, and testable verification models must be constructed. Common and virtual machinability databases will include the four distinct areas of machine tools, available tooling, common machine tool loads, and a materials database. The machine tools database will include the machine envelope, special machine attachments, tooling capacity, location within NASA-JSC or with a contractor, and availability/scheduling. The tooling database will include available standard tooling, custom in-house tooling, tool properties, and availability. The common materials database will include materials thickness ranges, strengths, types, and their availability. The virtual manufacturing databases will consist of virtual machines and virtual tooling directly related to the common and machinability databases. The items to be completed are the design and construction of the machinability databases, virtual manufacturing paradigm for NASA-JSC, implementation timeline, VNC model of one bridge mill and troubleshoot existing software and hardware problems with EN4NET. The final step of this virtual manufacturing project will be to integrate other production sites into the databases bringing JSC's EM3 into a position of becoming a clearing house for NASA's digital manufacturing needs creating a true virtual manufacturing enterprise.

  8. Integrated management of operations in Santos Basin: methodology applied to a new philosophy of operations

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Leandro Leonardo; Lima, Claudio Benevenuto de Campos [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Derenzi Neto, Dario [Accenture, Rio de Janeiro, RJ (Brazil); Pinto, Vladimir Steffen [Soda IT, Rio de Janeiro, RJ (Brazil); Lima, Gilson Brito Alves [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2012-07-01

    The objective of this paper is to present the methodology used to develop the Integrated Management of Operations (GIOp) project in Santos Basin Operational Unit (UO-BS) in the South-Southeast Exploration and Production area of PETROBRAS. The following text describes how the activities were carried out to gather improvements opportunities and to design To-Be processes, considering the challenging environment of the Santos Basin in the coming years. At the end of more than 12 months of work, more than 50 processes and sub-processes were redesigned, involving a multidisciplinary team in the areas of operations, maintenance, safety, health and environment, flow assurance, wells, reservoirs and planning. (author)

  9. GENERAL TASKS OF MATHEMATICAL EDUCATION DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    V. A. Testov

    2014-01-01

    Full Text Available The paper discusses basic implementation aspects of the Mathematical Education Development Concept, adopted by the Russian Government in 2013. According to the above document, the main problems of mathematical education include: low motivation of secondary and higher school students for studying the discipline, resulted from underestimation of mathematical knowledge; and outdated educational content, overloaded by technical elements. In the author’s opinion, a number of important new mathematical fields, developed over the last years, - the graph theory, discrete mathematics, encoding theory, fractal geometry, etc – have a large methodological and applied educational potential. However, these new subdisciplines have very little representation both in the secondary and higher school mathematical curricula. As a solution for overcoming the gap between the latest scientific achievements and pedagogical practices, the author recommends integration of the above mentioned mathematical disciplines in educational curricula instead of some outdated technical issues. In conclusion, the paper emphasizes the need for qualified mathematical teachers’ training for solving the problems of students’ motivation development and content updates.

  10. Identifying Issues in Applying Integrated Project Delivery to Domestic Nuclear Power Plant Construction Projects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Joo [Korean Nuclear Society, Daejeon (Korea, Republic of)

    2016-05-15

    Integrated Project Delivery (IPD) is defined as that people, systems, business structures, and practices of key stakeholders are incorporated into a single-team, with a single process, which executes a project in a way of optimizing the project's outcome, increasing values delivered to the end user, reducing waste, and maximizing efficiency throughout the phases of engineering to construction. The researcher had carried out literature review in terms of IPD to identify major characteristics of IPD which are presented in the following section and had compared such characteristics against peculiarities of nuclear power plant (NPP) construction projects in order to shed light on obstacles in possible application of IPD method to domestic NPP construction projects in the coming days. In this research, three (3) major characteristics of IPD were identified: 1) key stakeholders signing one balanced contract, forming de facto one body, sharing risk and reward 2) an integrated project team being formed in the early stage of a project and providing input to minimize time and cost loss from rework downstream 3) team members co-locating, having open and direct communication, making decisions on time, and pursuing the success of the project itself.

  11. Sustainable energy development in Austria until 2020: Insights from applying the integrated model 'e3.at'

    International Nuclear Information System (INIS)

    Stocker, Andrea; Grossmann, Anett; Madlener, Reinhard; Wolter, Marc Ingo

    2011-01-01

    This paper reports on the Austrian research project 'Renewable energy in Austria: Modeling possible development trends until 2020'. The project investigated possible economic and ecological effects of a substantially increased use of renewable energy sources in Austria. Together with stakeholders and experts, three different scenarios were defined, specifying possible development trends for renewable energy in Austria. The scenarios were simulated for the period 2006-2020, using the integrated environment-energy-economy model 'e3.at'. The modeling results indicate that increasing the share of renewable energy sources in total energy use is an important but insufficient step towards achieving a sustainable energy system in Austria. A substantial increase in energy efficiency and a reduction of residential energy consumption also form important cornerstones of a sustainable energy policy. - Highlights: → Together with stakeholders three renewable energy scenarios for Austria were defined. → The scenarios were simulated using an integrated environment-energy-economy model. → Increasing the share of renewables in total energy use is important but insufficient. → Efficiency and a cut of energy use are also essential for a sustainable energy system.

  12. Applying integrated software to optimize corporate production performance: a case study at Suncor

    International Nuclear Information System (INIS)

    Masse, L.P.; Rhynes, P.

    1997-01-01

    The feasibility and need to introduce a central database of basic well data for use in the petroleum industry in order to enhance production performance was discussed. Suncor developed a central database of well data as the foundation for a future systems architecture for its own use. The perceived, current and future benefits of such a system were described. Suncor identified the need for a corporate repository which is accessible to multiple applications, and provides the opportunity to upgrade the system to new technology that will benefit from integration. The objective was to document existing data sets, identify what additional data would be useful and document existing processes around this well data. The integrated set of data is supplied by multiple vendors and includes public land data, production budget, public well data, forecasting, economics, drilling, procurement system, fixed assets, maintenance, land administration, field data capture, production accounting and financial accounting. In addition to being able to access the current well data, significant added value is expected from the pro-active communication within the departments, and the additional time available for analysis and decisions as opposed to searching for data and comparing sources. 4 figs

  13. Tracking and position recognition applied to remote monitoring to be used in integrated safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Bonino, Anibal D; Perez, Adrian C; Krimer, Mario J; Teira, Ruben O; Vigile, Rodolfo S; Valentino, Lucia I; Giordano, Luis A; Ferro, Juan M [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina)

    2001-07-01

    In the framework of the Strengthening and integrated Safeguards Systems new measures and tools are available to meet the safeguards objective. The credible assurance on the absence of undeclared nuclear material and activities derived from the implementation of the Additional Protocol has an impact on the current safeguards approach to declared facilities thus their through review is advisable. Among these tools, a more intensive use of unattended systems and remote transmission of safeguards relevant information are considered, specifically for On Load Reactors (ORLs). A Remote Monitoring Systems (RMS) to cover the transfers of spent fuels from the ponds to a dry storage is being tested at Embalse nuclear power plant. In connection with the RMS, this paper describes some of the technologies involved: the Global Position System (GPS) and the Radio Frequency IDentification (RFID), which were implemented due to the requirement to ascertain the position of valuable elements. The main objective of this design aimed at safeguarding the spent fuels transfers from the welding cell to the silos field by a strict surveillance of the whereabouts. The bases for the development were settled by the specifications imposed by the integrated Safeguards of the Nuclear Regulatory Authority in Argentina. The resultant tracking and position recognition system is based on GPS receivers operating in Differential Mode, with the aid of Radio Frequency Identification. In compliance with the safeguard requirement the whole system is able to operate in a continuous and remote mode, what means without human being attention. (author)

  14. Applying Adverse Outcome Pathways (AOPs) to support Integrated Approaches to Testing and Assessment (IATA).

    Science.gov (United States)

    Tollefsen, Knut Erik; Scholz, Stefan; Cronin, Mark T; Edwards, Stephen W; de Knecht, Joop; Crofton, Kevin; Garcia-Reyero, Natalia; Hartung, Thomas; Worth, Andrew; Patlewicz, Grace

    2014-12-01

    Chemical regulation is challenged by the large number of chemicals requiring assessment for potential human health and environmental impacts. Current approaches are too resource intensive in terms of time, money and animal use to evaluate all chemicals under development or already on the market. The need for timely and robust decision making demands that regulatory toxicity testing becomes more cost-effective and efficient. One way to realize this goal is by being more strategic in directing testing resources; focusing on chemicals of highest concern, limiting testing to the most probable hazards, or targeting the most vulnerable species. Hypothesis driven Integrated Approaches to Testing and Assessment (IATA) have been proposed as practical solutions to such strategic testing. In parallel, the development of the Adverse Outcome Pathway (AOP) framework, which provides information on the causal links between a molecular initiating event (MIE), intermediate key events (KEs) and an adverse outcome (AO) of regulatory concern, offers the biological context to facilitate development of IATA for regulatory decision making. This manuscript summarizes discussions at the Workshop entitled "Advancing AOPs for Integrated Toxicology and Regulatory Applications" with particular focus on the role AOPs play in informing the development of IATA for different regulatory purposes. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Integrated processing for the treatment of materials applied to thermal compression of hydrogen

    International Nuclear Information System (INIS)

    Rodriguez, M.G; Esquivel, M. R

    2009-01-01

    In this work, AB 5 intermetallics are synthesized by low energy mechanical alloying according to: AB 5 + AB 5 = AB 5 . The obtained intermetallics are annealed at 600 oC to optimize both the microstructural and hydrogen sorption properties. Then, the material is applied to the design of schemes for thermal compression of hydrogen (TCH). These results are obtained within the frame of a research project related to Energy and Environment and focused on the replacement on fossil supply systems by a hydrogen based one. [es

  16. Promoting integrity of shift report by applying ISBAR principles among nursing students in clinical placement

    Directory of Open Access Journals (Sweden)

    Pang Weng Ian

    2017-01-01

    Full Text Available Shift report is an essential method for nursing staff to carry out health care communication. The most important purpose of the shift report is to ensure the safety of patients and to provide continuous care. Nursing students are inadequate of clinical experience and rational organization during patient care. They may not be able to handle the critically ill patients and pass the messages to the following nursing staff. ISBAR (Identify, Situation, Background, Assessment and Recommendation tool is increasingly being utilized as a format for structured shift report communication. In this study, a scale of ISBAR principles is designed to provide students with self-assessment and teachers with evaluation, in a way to improve nursing students’ self-awareness of shift report. Hopefully, with the use of the scale of ISBAR, nursing students are able to complete shift report in systemic integrity and orderliness during clinical placement.

  17. Plant bio-stimulator fertilizers can be applied in integrated plant management (IPM in forest nurseries

    Directory of Open Access Journals (Sweden)

    Tkaczyk Miłosz

    2015-12-01

    Full Text Available In the circumstances of only a limited number of pesticides being approved for use in forest nurseries, it is necessary to also examine the efficacy of new products available on the European market that stimulate growth and improve resilience and vitality among seedlings and saplings, with a view to the application of these products forming part of an integrated programme of plant protection. This paper describes trials of the three commercially available fertilizer products Actifos, Zielony Busz and Effective Microorganisms (EM, as carried out in seven Polish nurseries in an attempt to promote the growth of shoots and root systems of seedlings and saplings. In 64% of cases of it being used, Actifos was shown to stimulate growth significantly beyond control levels in the shoots of oak, beech, pine, spruce and alder saplings as well as the roots of young alders and oaks.

  18. A model of integration among prediction tools: applied study to road freight transportation

    Directory of Open Access Journals (Sweden)

    Henrique Dias Blois

    Full Text Available Abstract This study has developed a scenery analysis model which has integrated decision-making tools on investments: prospective scenarios (Grumbach Method and systems dynamics (hard modeling, with the innovated multivariate analysis of experts. It was designed through analysis and simulation scenarios and showed which are the most striking events in the study object as well as highlighted the actions could redirect the future of the analyzed system. Moreover, predictions are likely to be developed through the generated scenarios. The model has been validated empirically with road freight transport data from state of Rio Grande do Sul, Brazil. The results showed that the model contributes to the analysis of investment because it identifies probabilities of events that impact on decision making, and identifies priorities for action, reducing uncertainties in the future. Moreover, it allows an interdisciplinary discussion that correlates different areas of knowledge, fundamental when you wish more consistency in creating scenarios.

  19. A combined approach of AHP and TOPSIS methods applied in the field of integrated software systems

    Science.gov (United States)

    Berdie, A. D.; Osaci, M.; Muscalagiu, I.; Barz, C.

    2017-05-01

    Adopting the most appropriate technology for developing applications on an integrated software system for enterprises, may result in great savings both in cost and hours of work. This paper proposes a research study for the determination of a hierarchy between three SAP (System Applications and Products in Data Processing) technologies. The technologies Web Dynpro -WD, Floorplan Manager - FPM and CRM WebClient UI - CRM WCUI are multi-criteria evaluated in terms of the obtained performances through the implementation of the same web business application. To establish the hierarchy a multi-criteria analysis model that combines the AHP (Analytic Hierarchy Process) and the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) methods was proposed. This model was built with the help of the SuperDecision software. This software is based on the AHP method and determines the weights for the selected sets of criteria. The TOPSIS method was used to obtain the final ranking and the technologies hierarchy.

  20. Gross Containment Leakage Monitoring System (GCLM) applied to accidental impairment of containment integrity determination

    International Nuclear Information System (INIS)

    Dinu, Camelia; Talpalariu, A.; Constantinescu, G.

    2007-01-01

    The Prioritization of Generic Safety Issues (NUREG-0933 of October 2006), section 1 task II.E.4 item II.E.4.3 recommends that a method of periodic or continuous testing has to be available, in order to detect unknown gross openings in the nuclear power plants containment structure. The Palisades incident and three other incidents are exemplified, when the reactor was operated for about 1.5 years, while the containment isolation valves in a purge system bypass line were unknowingly locked in the open position. It was estimated that the presence of a GCLM system could identify an unknown breach and reduce the expected unavailability of containment due to containment integrity breach events, to a 1.6x10 -3 /year demand. (authors)

  1. Terror management theory applied clinically: implications for existential-integrative psychotherapy.

    Science.gov (United States)

    Lewis, Adam M

    2014-01-01

    Existential psychotherapy and Terror Management Theory (TMT) offer explanations for the potential psychological effects of death awareness, although their respective literatures bases differ in clarity, research, and implications for treating psychopathology. Existential therapy is often opaque to many therapists, in part due to the lack of consensus on what constitutes its practice, limited published practical examples, and few empirical studies examining its efficacy. By contrast, TMT has an extensive empirical literature base, both within social psychology and spanning multiple disciplines, although previously unexplored within clinical and counseling psychology. This article explores the implications of a proposed TMT integrated existential therapy (TIE), bridging the gap between disciplines in order to meet the needs of the aging population and current challenges facing existential therapists.

  2. Applying a Data Stewardship Maturity Matrix to the NOAA Observing System Portfolio Integrated Assessment Process

    Science.gov (United States)

    Peng, G.; Austin, M.

    2017-12-01

    Identification and prioritization of targeted user community needs are not always considered until after data has been created and archived. Gaps in data curation and documentation in the data production and delivery phases limit data's broad utility specifically for decision makers. Expert understanding and knowledge of a particular dataset is often required as a part of the data and metadata curation process to establish the credibility of the data and support informed decision-making. To enhance curation practices, content from NOAA's Observing System Integrated Assessment (NOSIA) Value Tree, NOAA's Data Catalog/Digital Object Identifier (DOI) projects (collection-level metadata) have been integrated with Data/Stewardship Maturity Matrices (data and stewardship quality information) focused on assessment of user community needs. This results in user focused evidence based decision making tools created by NOAA's National Environmental Satellite, Data, and Information Service (NESDIS) through identification and assessment of data content gaps related to scientific knowledge and application to key areas of societal benefit. Through enabling user need feedback from the beginning of data creation through archive allows users to determine the quality and value of data that is fit for purpose. Data gap assessment and prioritization are presented in a user-friendly way using the data stewardship maturity matrices as measurement of data management quality. These decision maker tools encourages data producers and data providers/stewards to consider users' needs prior to data creation and dissemination resulting in user driven data requirements increasing return on investment. A use case focused on need for NOAA observations linked societal benefit will be used to demonstrate the value of these tools.

  3. A comparison between different error modeling of MEMS applied to GPS/INS integrated systems.

    Science.gov (United States)

    Quinchia, Alex G; Falco, Gianluca; Falletti, Emanuela; Dovis, Fabio; Ferrer, Carles

    2013-07-24

    Advances in the development of micro-electromechanical systems (MEMS) have made possible the fabrication of cheap and small dimension accelerometers and gyroscopes, which are being used in many applications where the global positioning system (GPS) and the inertial navigation system (INS) integration is carried out, i.e., identifying track defects, terrestrial and pedestrian navigation, unmanned aerial vehicles (UAVs), stabilization of many platforms, etc. Although these MEMS sensors are low-cost, they present different errors, which degrade the accuracy of the navigation systems in a short period of time. Therefore, a suitable modeling of these errors is necessary in order to minimize them and, consequently, improve the system performance. In this work, the most used techniques currently to analyze the stochastic errors that affect these sensors are shown and compared: we examine in detail the autocorrelation, the Allan variance (AV) and the power spectral density (PSD) techniques. Subsequently, an analysis and modeling of the inertial sensors, which combines autoregressive (AR) filters and wavelet de-noising, is also achieved. Since a low-cost INS (MEMS grade) presents error sources with short-term (high-frequency) and long-term (low-frequency) components, we introduce a method that compensates for these error terms by doing a complete analysis of Allan variance, wavelet de-nosing and the selection of the level of decomposition for a suitable combination between these techniques. Eventually, in order to assess the stochastic models obtained with these techniques, the Extended Kalman Filter (EKF) of a loosely-coupled GPS/INS integration strategy is augmented with different states. Results show a comparison between the proposed method and the traditional sensor error models under GPS signal blockages using real data collected in urban roadways.

  4. A Comparison between Different Error Modeling of MEMS Applied to GPS/INS Integrated Systems

    Directory of Open Access Journals (Sweden)

    Fabio Dovis

    2013-07-01

    Full Text Available Advances in the development of micro-electromechanical systems (MEMS have made possible the fabrication of cheap and small dimension accelerometers and gyroscopes, which are being used in many applications where the global positioning system (GPS and the inertial navigation system (INS integration is carried out, i.e., identifying track defects, terrestrial and pedestrian navigation, unmanned aerial vehicles (UAVs, stabilization of many platforms, etc. Although these MEMS sensors are low-cost, they present different errors, which degrade the accuracy of the navigation systems in a short period of time. Therefore, a suitable modeling of these errors is necessary in order to minimize them and, consequently, improve the system performance. In this work, the most used techniques currently to analyze the stochastic errors that affect these sensors are shown and compared: we examine in detail the autocorrelation, the Allan variance (AV and the power spectral density (PSD techniques. Subsequently, an analysis and modeling of the inertial sensors, which combines autoregressive (AR filters and wavelet de-noising, is also achieved. Since a low-cost INS (MEMS grade presents error sources with short-term (high-frequency and long-term (low-frequency components, we introduce a method that compensates for these error terms by doing a complete analysis of Allan variance, wavelet de-nosing and the selection of the level of decomposition for a suitable combination between these techniques. Eventually, in order to assess the stochastic models obtained with these techniques, the Extended Kalman Filter (EKF of a loosely-coupled GPS/INS integration strategy is augmented with different states. Results show a comparison between the proposed method and the traditional sensor error models under GPS signal blockages using real data collected in urban roadways.

  5. APPLIED ORGANIZATION OF CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    Kievskiy Leonid Vladimirovich

    2017-03-01

    Full Text Available Applied disciplines in the sphere of construction which are engaged in the solution of vital macroeconomical problems (the general trend of development of these disciplines is the expansion of problematics and mutual integration are considered. Construction organization characteristic at the present stage as a systems engineering discipline covering the investment process of creation of real estate items, is given. The main source of current research trends for applied sciences (socio-economic development forecasts, regional and local programs is determined. Interpenetration and integration of various fields of knowledge exemplified by the current interindustry problem of blocks renovation organization of existing development, is demonstrated. Mathematical model of wave construction (for the period of deployment is proposed. Nature of dependence of the total duration of renovation on the limit of annual input and coefficient of renovation, is established. Overall structure of the Moscow region housing market is presented, and approaches to definition of effective demand are proposed.

  6. A systematic concept of assuring structural integrity of components and parts for applying to highly ductile materials through brittle material

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko

    2007-09-01

    Concepts of assuring structural integrity of plant components have been developed under limited conditions of either highly ductile or brittle materials. There are some cases where operation in more and more severe conditions causes a significant reduction in ductility for materials with a high ductility before service. Use of high strength steels with relatively reduced ductility is increasing as industry applications. Current concepts of structural integrity assurance under the limited conditions of material properties or on the requirement of no significant changes in material properties even after long service will fail to incorporate expected technological innovations. A systematic concept of assuring the structural integrity should be developed for applying to highly ductile materials through brittle materials. Objectives of the on-going research are to propose a detail of the systematic concept by considering how we can develop the concept without restricting materials and for systematic considerations on a broad range of material properties from highly ductile materials through brittle materials. First, background of concepts of existing structural codes for components of highly ductile materials or for structural parts of brittle materials are discussed. Next, issues of existing code for parts of brittle materials are identified, and then resolutions to the issues are proposed. Based on the above-mentioned discussions and proposals, a systematic concept is proposed for application to components with reduced ductility materials and for applying to components of materials with significantly changing material properties due to long service. (author)

  7. The MATH--Open Source Application for Easier Learning of Numerical Mathematics

    Science.gov (United States)

    Glaser-Opitz, Henrich; Budajová, Kristina

    2016-01-01

    The article introduces a software application (MATH) supporting an education of Applied Mathematics, with focus on Numerical Mathematics. The MATH is an easy to use tool supporting various numerical methods calculations with graphical user interface and integrated plotting tool for graphical representation written in Qt with extensive use of Qwt…

  8. Applying an Integrative Framework of Executive Function to Preschoolers With Specific Language Impairment.

    Science.gov (United States)

    Kapa, Leah L; Plante, Elena; Doubleday, Kevin

    2017-08-16

    The first goal of this research was to compare verbal and nonverbal executive function abilities between preschoolers with and without specific language impairment (SLI). The second goal was to assess the group differences on 4 executive function components in order to determine if the components may be hierarchically related as suggested within a developmental integrative framework of executive function. This study included 26 4- and 5-year-olds diagnosed with SLI and 26 typically developing age- and sex-matched peers. Participants were tested on verbal and nonverbal measures of sustained selective attention, working memory, inhibition, and shifting. The SLI group performed worse compared with typically developing children on both verbal and nonverbal measures of sustained selective attention and working memory, the verbal inhibition task, and the nonverbal shifting task. Comparisons of standardized group differences between executive function measures revealed a linear increase with the following order: working memory, inhibition, shifting, and sustained selective attention. The pattern of results suggests that preschoolers with SLI have deficits in executive functioning compared with typical peers, and deficits are not limited to verbal tasks. A significant linear relationship between group differences across executive function components supports the possibility of a hierarchical relationship between executive function skills.

  9. Integrated and global pseudotargeted metabolomics strategy applied to screening for quality control markers of Citrus TCMs.

    Science.gov (United States)

    Shu, Yisong; Liu, Zhenli; Zhao, Siyu; Song, Zhiqian; He, Dan; Wang, Menglei; Zeng, Honglian; Lu, Cheng; Lu, Aiping; Liu, Yuanyan

    2017-08-01

    Traditional Chinese medicine (TCM) exerts its therapeutic effect in a holistic fashion with the synergistic function of multiple characteristic constituents. The holism philosophy of TCM is coincident with global and systematic theories of metabolomics. The proposed pseudotargeted metabolomics methodologies were employed for the establishment of reliable quality control markers for use in the screening strategy of TCMs. Pseudotargeted metabolomics integrates the advantages of both targeted and untargeted methods. In the present study, targeted metabolomics equipped with the gold standard RRLC-QqQ-MS method was employed for in vivo quantitative plasma pharmacochemistry study of characteristic prototypic constituents. Meanwhile, untargeted metabolomics using UHPLC-QE Orbitrap HRMS with better specificity and selectivity was employed for identification of untargeted metabolites in the complex plasma matrix. In all, 32 prototypic metabolites were quantitatively determined, and 66 biotransformed metabolites were convincingly identified after being orally administered with standard extracts of four labeled Citrus TCMs. The global absorption and metabolism process of complex TCMs was depicted in a systematic manner.

  10. Value Priorities and Behavior: Applying a Theory of Integrated Value Systems

    Directory of Open Access Journals (Sweden)

    Shalom Schwartz

    2016-02-01

    Full Text Available A major goal of research on values has been to relate individual differences in value priorities to differences in attitudes, behavior and background variables. Past research most commonly adopted one of two approaches. Much research has selected a few single target values whose priorities were postulated to associate with the attitude, behavior and background variable of interest and then examined empirical relationships. Other research has been more exploratory.It has related lists of values to various other variables and then discussed the significant associations that emerge. The focus on relationships with single values make both these approaches insatisfying. My work has sought to overcome those approaches.It has derived what may be a nearly comprehensive set of different motivational types of values, recognized across cultures. Each value type is represented by a number of single values that are combined to form relatively reliable indexes of values priorities. Value systems can be treated as integrated wholes in their relations with behaviors and, thereby, encourages researches to abandom the prevailing single-values approaches. 

  11. Safety, reliability, risk management and human factors: an integrated engineering approach applied to nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Vanderley de; Silva, Eliane Magalhaes Pereira da; Costa, Antonio Carlos Lopes da; Reis, Sergio Carneiro dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: vasconv@cdtn.br, e-mail: silvaem@cdtn.br, e-mail: aclc@cdtn.br, e-mail: reissc@cdtn.br

    2009-07-01

    Nuclear energy has an important engineering legacy to share with the conventional industry. Much of the development of the tools related to safety, reliability, risk management, and human factors are associated with nuclear plant processes, mainly because the public concern about nuclear power generation. Despite the close association between these subjects, there are some important different approaches. The reliability engineering approach uses several techniques to minimize the component failures that cause the failure of the complex systems. These techniques include, for instance, redundancy, diversity, standby sparing, safety factors, and reliability centered maintenance. On the other hand system safety is primarily concerned with hazard management, that is, the identification, evaluation and control of hazards. Rather than just look at failure rates or engineering strengths, system safety would examine the interactions among system components. The events that cause accidents may be complex combinations of component failures, faulty maintenance, design errors, human actions, or actuation of instrumentation and control. Then, system safety deals with a broader spectrum of risk management, including: ergonomics, legal requirements, quality control, public acceptance, political considerations, and many other non-technical influences. Taking care of these subjects individually can compromise the completeness of the analysis and the measures associated with both risk reduction, and safety and reliability increasing. Analyzing together the engineering systems and controls of a nuclear facility, their management systems and operational procedures, and the human factors engineering, many benefits can be realized. This paper proposes an integration of these issues based on the application of systems theory. (author)

  12. Safety, reliability, risk management and human factors: an integrated engineering approach applied to nuclear facilities

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Silva, Eliane Magalhaes Pereira da; Costa, Antonio Carlos Lopes da; Reis, Sergio Carneiro dos

    2009-01-01

    Nuclear energy has an important engineering legacy to share with the conventional industry. Much of the development of the tools related to safety, reliability, risk management, and human factors are associated with nuclear plant processes, mainly because the public concern about nuclear power generation. Despite the close association between these subjects, there are some important different approaches. The reliability engineering approach uses several techniques to minimize the component failures that cause the failure of the complex systems. These techniques include, for instance, redundancy, diversity, standby sparing, safety factors, and reliability centered maintenance. On the other hand system safety is primarily concerned with hazard management, that is, the identification, evaluation and control of hazards. Rather than just look at failure rates or engineering strengths, system safety would examine the interactions among system components. The events that cause accidents may be complex combinations of component failures, faulty maintenance, design errors, human actions, or actuation of instrumentation and control. Then, system safety deals with a broader spectrum of risk management, including: ergonomics, legal requirements, quality control, public acceptance, political considerations, and many other non-technical influences. Taking care of these subjects individually can compromise the completeness of the analysis and the measures associated with both risk reduction, and safety and reliability increasing. Analyzing together the engineering systems and controls of a nuclear facility, their management systems and operational procedures, and the human factors engineering, many benefits can be realized. This paper proposes an integration of these issues based on the application of systems theory. (author)

  13. Applying an Integrative Framework of Executive Function to Preschoolers With Specific Language Impairment

    Science.gov (United States)

    Plante, Elena; Doubleday, Kevin

    2017-01-01

    Purpose The first goal of this research was to compare verbal and nonverbal executive function abilities between preschoolers with and without specific language impairment (SLI). The second goal was to assess the group differences on 4 executive function components in order to determine if the components may be hierarchically related as suggested within a developmental integrative framework of executive function. Method This study included 26 4- and 5-year-olds diagnosed with SLI and 26 typically developing age- and sex-matched peers. Participants were tested on verbal and nonverbal measures of sustained selective attention, working memory, inhibition, and shifting. Results The SLI group performed worse compared with typically developing children on both verbal and nonverbal measures of sustained selective attention and working memory, the verbal inhibition task, and the nonverbal shifting task. Comparisons of standardized group differences between executive function measures revealed a linear increase with the following order: working memory, inhibition, shifting, and sustained selective attention. Conclusion The pattern of results suggests that preschoolers with SLI have deficits in executive functioning compared with typical peers, and deficits are not limited to verbal tasks. A significant linear relationship between group differences across executive function components supports the possibility of a hierarchical relationship between executive function skills. PMID:28724132

  14. Time integration and statistical regulation applied to mobile objects detection in a sequence of images

    International Nuclear Information System (INIS)

    Letang, Jean-Michel

    1993-01-01

    This PhD thesis deals with the detection of moving objects in monocular image sequences. The first section presents the inherent problems of motion analysis in real applications. We propose a method robust to perturbations frequently encountered during acquisition of outdoor scenes. It appears three main directions for investigations, all of them pointing out the importance of the temporal axis, which is a specific dimension for motion analysis. In the first part, the image sequence is considered as a set of temporal signals. The temporal multi-scale decomposition enables the characterization of various dynamical behaviors of the objects being in the scene at a given instant. A second module integrates motion information. This elementary trajectography of moving objects provides a temporal prediction map, giving a confidence level of motion presence. Interactions between both sets of data are expressed within a statistical regularization. Markov random field models supply a formal framework to convey a priori knowledge of the primitives to be evaluated. A calibration method with qualitative boxes is presented to estimate model parameters. Our approach requires only simple computations and leads to a rather fast algorithm, that we evaluate in the last section over various typical sequences. (author) [fr

  15. Development of Integrated Natural Science Teaching Materials Webbed Type with Applying Discourse Analysis on Students Grade VIII in Physics Class

    Science.gov (United States)

    Sukariasih, Luh

    2017-05-01

    This study aims to produce teaching materials integrated natural science (IPA) webbed type of handout types are eligible for use in integrated science teaching. This type of research IS a kind of research and development / Research and Development (R & D) with reference to the 4D development model that is (define, design, develop, and disseminate). Data analysis techniques used to process data from the results of the assessment by the validator expert, and the results of the assessment by teachers and learners while testing is limited (12 students of class VIII SMPN 10 Kendari) using quantitative descriptive data analysis techniques disclosed in the distribution of scores on the scale of five categories grading scale that has been determined. The results of due diligence material gain votes validator material in the category of “very good” and “good”, of the data generated in the feasibility test presentation obtained the category of “good” and “excellent”, from the data generated in the feasibility of graphic test obtained the category of “very good “and” good “, as well as of the data generated in the test the feasibility of using words and language obtained the category of“very good “and” good “, so with qualifications gained the teaching materials IPA integrated type webbed by applying discourse analysis on the theme of energy and food for Junior High School (SMP) grade VIII suitable as teaching materials. In limited testing, data generated in response to a science teacher at SMPN 10 Kendari to product instructional materials as “excellent”, and from the data generated while testing is limited by the 12 students of class VIII SMPN 10 Kendari are more students who score indicates category “very good”, so that the qualification obtained by the natural science (IPA) teaching material integrated type webbed by applying discourse analysis on the theme of energy and food for SMP / class VIII fit for use as teaching material.

  16. Integrating Theory and Practice: Applying the Quality Improvement Paradigm to Product Line Engineering

    Science.gov (United States)

    Stark, Michael; Hennessy, Joseph F. (Technical Monitor)

    2002-01-01

    My assertion is that not only are product lines a relevant research topic, but that the tools used by empirical software engineering researchers can address observed practical problems. Our experience at NASA has been there are often externally proposed solutions available, but that we have had difficulties applying them in our particular context. We have also focused on return on investment issues when evaluating product lines, and while these are important, one can not attain objective data on success or failure until several applications from a product family have been deployed. The use of the Quality Improvement Paradigm (QIP) can address these issues: (1) Planning an adoption path from an organization's current state to a product line approach; (2) Constructing a development process to fit the organization's adoption path; (3) Evaluation of product line development processes as the project is being developed. The QIP consists of the following six steps: (1) Characterize the project and its environment; (2) Set quantifiable goals for successful project performance; (3) Choose the appropriate process models, supporting methods, and tools for the project; (4) Execute the process, analyze interim results, and provide real-time feedback for corrective action; (5) Analyze the results of completed projects and recommend improvements; and (6) Package the lessons learned as updated and refined process models. A figure shows the QIP in detail. The iterative nature of the QIP supports an incremental development approach to product lines, and the project learning and feedback provide the necessary early evaluations.

  17. An integrated movement capture and control platform applied towards autonomous movements of surgical robots.

    Science.gov (United States)

    Daluja, Sachin; Golenberg, Lavie; Cao, Alex; Pandya, Abhilash K; Auner, Gregory W; Klein, Michael D

    2009-01-01

    Robotic surgery has gradually gained acceptance due to its numerous advantages such as tremor filtration, increased dexterity and motion scaling. There remains, however, a significant scope for improvement, especially in the areas of surgeon-robot interface and autonomous procedures. Previous studies have attempted to identify factors affecting a surgeon's performance in a master-slave robotic system by tracking hand movements. These studies relied on conventional optical or magnetic tracking systems, making their use impracticable in the operating room. This study concentrated on building an intrinsic movement capture platform using microcontroller based hardware wired to a surgical robot. Software was developed to enable tracking and analysis of hand movements while surgical tasks were performed. Movement capture was applied towards automated movements of the robotic instruments. By emulating control signals, recorded surgical movements were replayed by the robot's end-effectors. Though this work uses a surgical robot as the platform, the ideas and concepts put forward are applicable to telerobotic systems in general.

  18. Photovoltaic and Wind Turbine Integration Applying Cuckoo Search for Probabilistic Reliable Optimal Placement

    Directory of Open Access Journals (Sweden)

    R. A. Swief

    2018-01-01

    Full Text Available This paper presents an efficient Cuckoo Search Optimization technique to improve the reliability of electrical power systems. Various reliability objective indices such as Energy Not Supplied, System Average Interruption Frequency Index, System Average Interruption, and Duration Index are the main indices indicating reliability. The Cuckoo Search Optimization (CSO technique is applied to optimally place the protection devices, install the distributed generators, and to determine the size of distributed generators in radial feeders for reliability improvement. Distributed generator affects reliability and system power losses and voltage profile. The volatility behaviour for both photovoltaic cells and the wind turbine farms affect the values and the selection of protection devices and distributed generators allocation. To improve reliability, the reconfiguration will take place before installing both protection devices and distributed generators. Assessment of consumer power system reliability is a vital part of distribution system behaviour and development. Distribution system reliability calculation will be relayed on probabilistic reliability indices, which can expect the disruption profile of a distribution system based on the volatility behaviour of added generators and load behaviour. The validity of the anticipated algorithm has been tested using a standard IEEE 69 bus system.

  19. Carbon exergy tax applied to biomass integrated gasification combined cycle in sugarcane industry

    International Nuclear Information System (INIS)

    Fonseca Filho, Valdi Freire da; Matelli, José Alexandre; Perrella Balestieri, José Antonio

    2016-01-01

    The development of technologies based on energy renewable sources is increasing worldwide in order to diversify the energy mix and satisfy the rigorous environmental legislation and international agreements to reduce pollutant emission. Considering specific characteristics of biofuels available in Brazil, studies regarding such technologies should be carried out aiming energy mix diversification. Several technologies for power generation from biomass have been presented in the technical literature, and plants with BIGCC (biomass integrated gasification combined cycle) emerge as a major technological innovation. By obtaining a fuel rich in hydrogen from solid biomass gasification, BIGCC presents higher overall process efficiency than direct burning of the solid fuel in conventional boilers. The objective of this paper is to develop a thermodynamic and chemical equilibrium model of a BIGCC configuration for sugarcane bagasse. The model embodies exergetic cost and CO_2 emission analyses through the method of CET (carbon exergy tax). An exergetic penalty comparison between the BIGCC technology (with and without CO_2 capture and sequestration), a natural gas combined cycle and the traditional steam cycle of sugarcane sector is then presented. It is verified that the BIGCC configuration with CO_2 capture and sequestration presents technical and environmental advantages when compared to traditional technology. - Highlights: • We compared thermal cycles with the exergetic carbon exergy tax. • Thermal cycles with and without carbon capture and sequestration were considered. • Burned and gasified sugarcane bagasse was assumed as renewable fuel. • Exergetic carbon penalty tax was imposed to all studied configurations. • BIGCC with carbon sequestration revealed to be advantageous.

  20. Integrating network ecology with applied conservation: a synthesis and guide to implementation.

    Science.gov (United States)

    Kaiser-Bunbury, Christopher N; Blüthgen, Nico

    2015-07-10

    Ecological networks are a useful tool to study the complexity of biotic interactions at a community level. Advances in the understanding of network patterns encourage the application of a network approach in other disciplines than theoretical ecology, such as biodiversity conservation. So far, however, practical applications have been meagre. Here we present a framework for network analysis to be harnessed to advance conservation management by using plant-pollinator networks and islands as model systems. Conservation practitioners require indicators to monitor and assess management effectiveness and validate overall conservation goals. By distinguishing between two network attributes, the 'diversity' and 'distribution' of interactions, on three hierarchical levels (species, guild/group and network) we identify seven quantitative metrics to describe changes in network patterns that have implications for conservation. Diversity metrics are partner diversity, vulnerability/generality, interaction diversity and interaction evenness, and distribution metrics are the specialization indices d' and [Formula: see text] and modularity. Distribution metrics account for sampling bias and may therefore be suitable indicators to detect human-induced changes to plant-pollinator communities, thus indirectly assessing the structural and functional robustness and integrity of ecosystems. We propose an implementation pathway that outlines the stages that are required to successfully embed a network approach in biodiversity conservation. Most importantly, only if conservation action and study design are aligned by practitioners and ecologists through joint experiments, are the findings of a conservation network approach equally beneficial for advancing adaptive management and ecological network theory. We list potential obstacles to the framework, highlight the shortfall in empirical, mostly experimental, network data and discuss possible solutions. Published by Oxford University

  1. Energy Smart Schools--Applied Research, Field Testing, and Technology Integration

    Energy Technology Data Exchange (ETDEWEB)

    Nebiat Solomon; Robin Vieira; William L. Manz; Abby Vogen; Claudia Orlando; Kimberlie A. Schryer

    2004-12-01

    The National Association of State Energy Officials (NASEO) in conjunction with the California Energy Commission, the Energy Center of Wisconsin, the Florida Solar Energy Center, the New York State Energy Research and Development Authority, and the Ohio Department of Development's Office of Energy Efficiency conducted a four-year, cost-share project with the U.S. Department of Energy (USDOE), Office of Energy Efficiency and Renewable Energy to focus on energy efficiency and high-performance technologies in our nation's schools. NASEO was the program lead for the MOU-State Schools Working group, established in conjunction with the USDOE Memorandum of Understanding process for collaboration among state and federal energy research and demonstration offices and organizations. The MOU-State Schools Working Group included State Energy Offices and other state energy research organizations from all regions of the country. Through surveys and analyses, the Working Group determined the school-related energy priorities of the states and established a set of tasks to be accomplished, including the installation and evaluation of microturbines, advanced daylighting research, testing of schools and classrooms, and integrated school building technologies. The Energy Smart Schools project resulted in the adoption of advanced energy efficiency technologies in both the renovation of existing schools and building of new ones; the education of school administrators, architects, engineers, and manufacturers nationwide about the energy-saving, economic, and environmental benefits of energy efficiency technologies; and improved the learning environment for the nation's students through use of better temperature controls, improvements in air quality, and increased daylighting in classrooms. It also provided an opportunity for states to share and replicate successful projects to increase their energy efficiency while at the same time driving down their energy costs.

  2. Generalising better: Applying deep learning to integrate deleteriousness prediction scores for whole-exome SNV studies.

    Science.gov (United States)

    Korvigo, Ilia; Afanasyev, Andrey; Romashchenko, Nikolay; Skoblov, Mikhail

    2018-01-01

    Many automatic classifiers were introduced to aid inference of phenotypical effects of uncategorised nsSNVs (nonsynonymous Single Nucleotide Variations) in theoretical and medical applications. Lately, several meta-estimators have been proposed that combine different predictors, such as PolyPhen and SIFT, to integrate more information in a single score. Although many advances have been made in feature design and machine learning algorithms used, the shortage of high-quality reference data along with the bias towards intensively studied in vitro models call for improved generalisation ability in order to further increase classification accuracy and handle records with insufficient data. Since a meta-estimator basically combines different scoring systems with highly complicated nonlinear relationships, we investigated how deep learning (supervised and unsupervised), which is particularly efficient at discovering hierarchies of features, can improve classification performance. While it is believed that one should only use deep learning for high-dimensional input spaces and other models (logistic regression, support vector machines, Bayesian classifiers, etc) for simpler inputs, we still believe that the ability of neural networks to discover intricate structure in highly heterogenous datasets can aid a meta-estimator. We compare the performance with various popular predictors, many of which are recommended by the American College of Medical Genetics and Genomics (ACMG), as well as available deep learning-based predictors. Thanks to hardware acceleration we were able to use a computationally expensive genetic algorithm to stochastically optimise hyper-parameters over many generations. Overfitting was hindered by noise injection and dropout, limiting coadaptation of hidden units. Although we stress that this work was not conceived as a tool comparison, but rather an exploration of the possibilities of deep learning application in ensemble scores, our results show that

  3. Nystro¨m method applied to integral formulation of the neutron transport equation in X-Y geometry

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Fabio S.; Sauter, Esequia; Konzen, Pedro H.A.; Barichello, Liliane B., E-mail: fabio.azevedo@ufrgs.br, E-mail: esequia.sauter@ufrgs.br, E-mail: pedro.konzen@ufrgs.br, E-mail: lbaric@mat.ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Departamento de Matem´atica Pura e Aplicada

    2017-07-01

    Neutron transport problems in X-Y geometry have been solved with several techniques in last decades but it is still a challenge to produce a good balance between computational efficiency and accuracy. In this work, we address this problem by efficiently applying the Nystr¨om method to the integral formulation of the transport equation. Analytical techniques, modern numerical packages and optimized implementation were applied to reduce the computational time. This method presented results free of ray effects leading to high accurate numerical results for two-dimensional scalar flux. Our implementation simulates homogeneous problems with vacuum and reflective boundary conditions. Results were validated with up to seven significant digits and compared with those available in the literature. (author)

  4. Boundedness for Marcinkiewicz integrals associated with ...

    Indian Academy of Sciences (India)

    c Indian Academy of Sciences. Boundedness for Marcinkiewicz integrals associated with Schrödinger operators. WENHUA GAO1 and LIN TANG2. 1School of Applied Mathematics, Beijing Normal University Zhuhai, Zhuhai 519085,. People's Republic of China. 2LMAM, School of Mathematical Sciences, Peking University, ...

  5. Conditions for integrability of a 3-form

    Czech Academy of Sciences Publication Activity Database

    Vanžura, Jiří

    2017-01-01

    Roč. 53, č. 5 (2017), s. 371-380 ISSN 0044-8753 Institutional support: RVO:67985840 Keywords : multisymplectic 3-form * 6-dimensional manifold * integrability Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics http://hdl.handle.net/10338.dmlcz/147026

  6. Mathematical problems for chemistry students

    CERN Document Server

    Pota, Gyorgy

    2011-01-01

    Mathematical Problems for Chemistry Students has been compiled and written (a) to help chemistrystudents in their mathematical studies by providing them with mathematical problems really occurring in chemistry (b) to help practising chemists to activate their applied mathematical skills and (c) to introduce students and specialistsof the chemistry-related fields (physicists, mathematicians, biologists, etc.) intothe world of the chemical applications.Some problems of the collection are mathematical reformulations of those in the standard textbooks of chemistry, others we

  7. Domains of bosonic functional integrals

    International Nuclear Information System (INIS)

    Botelho, Luiz C.L.; Para Univ., Belem, PA

    1998-07-01

    We propose a mathematical framework for bosonic Euclidean quantum field functional integrals based on the theory of integration on the dual algebraic vector space of classical field sources. We present a generalization of the Minlos-Dao Xing theorem and apply it to determine exactly the domain of integration associated to the functional integral representation of the two-dimensional quantum electrodynamics Schwinger generating functional. (author)

  8. The Palliative Outcome Scale (POS) applied to clinical practice and research: an integrative review.

    Science.gov (United States)

    Rugno, Fernanda Capella; Carlo, Marysia Mara Rodrigues do Prado De

    2016-08-15

    to identify and evaluate the evidence found in the international scientific literature on the application of the Palliative Outcome Scale (POS) in clinical practice and research in Palliative Care (PC). integrative literature review, through the search of publications in journals indexed in PubMed / MEDLINE, LILACS, SciELO and CINAHL databases, between the years 1999 and 2014. the final sample consisted of 11 articles. In the data analysis, the articles were classified into 2 units of analysis (studies using the POS as a resource in research and studies using the POS in clinical practice), in which the information was presented in the form of sub-themes related to publications of the selected studies, highlighting the synthesis of the results. POS emerged as an important tool for measuring outcomes to assess the quality of life of patients and families, of the quality of care provided and the PC service organization. The international scientific literature on the application of POS proved to be relevant to the advancement and consolidation of the field of knowledge related to PC. identificar e avaliar as evidências encontradas na literatura científica internacional, referentes à aplicação da Palliative Outcome Scale (POS) na prática clínica e nas pesquisas em Cuidados Paliativos (CPs). revisão integrativa da literatura, por meio da busca de publicações nos periódicos indexados nas bases de dados PubMed/MEDLINE, LILACS, SciELO e CINAHL, entre os anos de 1999 e 2014. a amostra final do estudo constituiu-se de 11 artigos. Na análise dos dados, os artigos foram classificados em 2 unidades de análise (estudos que utilizam a POS como recurso na pesquisa e estudos que utilizam a POS na prática clínica), nas quais as informações foram apresentadas na forma de subtemas referentes às publicações dos estudos selecionados, com destaque para a síntese dos resultados. a POS se destacou como um importante instrumento de medidas de resultados para a avalia

  9. Examining Students' Proportional Reasoning Strategy Levels as Evidence of the Impact of an Integrated LEGO Robotics and Mathematics Learning Experience

    Science.gov (United States)

    Martínez Ortiz, Araceli

    2015-01-01

    The presented study used a problem-solving experience in engineering design with LEGO robotics materials as the real-world mathematics-learning context. The goals of the study were (a) to determine if a short but intensive extracurricular learning experience would lead to significant student learning of a particular academic topic and (b) to…

  10. Impact of Interdisciplinary Undergraduate Research in Mathematics and Biology on the Development of a New Course Integrating Five STEM Disciplines

    Science.gov (United States)

    Caudill, Lester; Hill, April; Hoke, Kathy; Lipan, Ovidiu

    2010-01-01

    Funded by innovative programs at the National Science Foundation and the Howard Hughes Medical Institute, University of Richmond faculty in biology, chemistry, mathematics, physics, and computer science teamed up to offer first- and second-year students the opportunity to contribute to vibrant, interdisciplinary research projects. The result was…

  11. Transactions of the Army Conference on Applied Mathematics and Computing (8th) Held in Ithaca, New York on 19-22 June 1990

    Science.gov (United States)

    1991-02-01

    international Colloquium on Automata. Languages, and Programming, T Ottmann. ed , Karlsruhe, Federal Republic of Germany, July 1987 (E41 Eisenhart . L P...present mathematical knowledge in the form of problem reduction rules (" theo - rems"). For example, an "algorithm" for limes computations could be

  12. Do Teachers Make Decisions Like Firefighters? Applying Naturalistic Decision-Making Methods to Teachers' In-Class Decision Making in Mathematics

    Science.gov (United States)

    Jazby, Dan

    2014-01-01

    Research into human decision making (DM) processes from outside of education paint a different picture of DM than current DM models in education. This pilot study assesses the use of critical decision method (CDM)--developed from observations of firefighters' DM -- in the context of primary mathematics teachers' in-class DM. Preliminary results…

  13. Transactions of the Army Conference on Applied Mathematics and Computing (6th) Held in Boulder, Colorado on 31 May - 3 June 1988

    Science.gov (United States)

    1989-02-01

    Groebner Bases Moss Sweedler ...................................................... 699 Using Macsyma in a Generalized Harmonic Balance Method for a Problem...Doing Mathiematics by Comnputer, Addison-Wesley Publishing Company, 1988. 698 Groebner Bases GROEBNER BASES Moss Sweedler Mathematical Sciences...Institute Cornell University Ithaca NY 14853 ABSTRACT Groebner bases are remarkable sets of polynomials which permit effec- tive manipulation of multivariate

  14. Definition and GIS-based characterization of an integral risk index applied to a chemical/petrochemical area.

    Science.gov (United States)

    Nadal, Martí; Kumar, Vikas; Schuhmacher, Marta; Domingo, José L

    2006-08-01

    A risk map of the chemical/petrochemical industrial area of Tarragona (Catalonia, Spain) was designed following a two-stage procedure. The first step was the creation of a ranking system (Hazard Index) for a number of different inorganic and organic pollutants: heavy metals, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs) and polychlorinated aromatic hydrocarbons (PAHs) by applying self-organizing maps (SOM) to persistence, bioaccumulation and toxicity properties of the chemicals. PCBs seemed to be the most hazardous compounds, while the light PAHs showed the minimum values. Subsequently, an Integral Risk Index was developed taking into account the Hazard Index and the concentrations of all pollutants in soil samples collected in the assessed area of Tarragona. Finally, a risk map was elaborated by representing the spatial distribution of the Integral Risk Index with a geographic information system (GIS). The results of the present study seem to indicate that the development of an integral risk map might be useful to help in making-decision processes concerning environmental pollutants.

  15. Graph-based semi-supervised learning with genomic data integration using condition-responsive genes applied to phenotype classification.

    Science.gov (United States)

    Doostparast Torshizi, Abolfazl; Petzold, Linda R

    2018-01-01

    Data integration methods that combine data from different molecular levels such as genome, epigenome, transcriptome, etc., have received a great deal of interest in the past few years. It has been demonstrated that the synergistic effects of different biological data types can boost learning capabilities and lead to a better understanding of the underlying interactions among molecular levels. In this paper we present a graph-based semi-supervised classification algorithm that incorporates latent biological knowledge in the form of biological pathways with gene expression and DNA methylation data. The process of graph construction from biological pathways is based on detecting condition-responsive genes, where 3 sets of genes are finally extracted: all condition responsive genes, high-frequency condition-responsive genes, and P-value-filtered genes. The proposed approach is applied to ovarian cancer data downloaded from the Human Genome Atlas. Extensive numerical experiments demonstrate superior performance of the proposed approach compared to other state-of-the-art algorithms, including the latest graph-based classification techniques. Simulation results demonstrate that integrating various data types enhances classification performance and leads to a better understanding of interrelations between diverse omics data types. The proposed approach outperforms many of the state-of-the-art data integration algorithms. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. Fundamentals of scientific mathematics

    CERN Document Server

    Owen, George E

    2003-01-01

    Offering undergraduates a solid mathematical background (and functioning equally well for independent study), this rewarding, beautifully illustrated text covers geometry and matrices, vector algebra, analytic geometry, functions, and differential and integral calculus. 1961 edition.

  17. Teaching secondary mathematics

    CERN Document Server

    Rock, David

    2013-01-01

    Solidly grounded in up-to-date research, theory and technology,?Teaching Secondary Mathematics?is a practical, student-friendly, and popular text for secondary mathematics methods courses. It provides clear and useful approaches for mathematics teachers, and shows how concepts typically found in a secondary mathematics curriculum can be taught in a positive and encouraging way. The thoroughly revised fourth edition combines this pragmatic approach with truly innovative and integrated technology content throughout. Synthesized content between the book and comprehensive companion websi

  18. Mathematics for electronic technology

    CERN Document Server

    Howson, D P

    1975-01-01

    Mathematics for Electronic Technology is a nine-chapter book that begins with the elucidation of the introductory concepts related to use of mathematics in electronic engineering, including differentiation, integration, partial differentiation, infinite series, vectors, vector algebra, and surface, volume and line integrals. Subsequent chapters explore the determinants, differential equations, matrix analysis, complex variable, topography, graph theory, and numerical analysis used in this field. The use of Fourier method for harmonic analysis and the Laplace transform is also described. The ma

  19. Mathematics Connection

    African Journals Online (AJOL)

    MATHEMATICS CONNECTION aims at providing a forum topromote the development of Mathematics Education in Ghana. Articles that seekto enhance the teaching and/or learning of mathematics at all levels of theeducational system are welcome.

  20. Mathematics motivated by physics: the electrostatic potential is the Coulomb integral transform of the electric charge density

    OpenAIRE

    Medina, L; Ley Koo, E

    2008-01-01

    This article illustrates a practical way to connect and coordinate the teaching and learning of physics and mathematics. The starting point is the electrostatic potential, which is obtained in any introductory course of electromagnetism from the Coulomb potential and the superposition principle for any charge distribution. The necessity to develop solutions to the Laplace and Poisson differential equations is also recognized, identifying the Coulomb potential as the generating function of har...

  1. Impact of Interdisciplinary Undergraduate Research in Mathematics and Biology on the Development of a New Course Integrating Five STEM Disciplines

    OpenAIRE

    Caudill, Lester; Hill, April; Hoke, Kathy; Lipan, Ovidiu

    2010-01-01

    Funded by innovative programs at the National Science Foundation and the Howard Hughes Medical Institute, University of Richmond faculty in biology, chemistry, mathematics, physics, and computer science teamed up to offer first- and second-year students the opportunity to contribute to vibrant, interdisciplinary research projects. The result was not only good science but also good science that motivated and informed course development. Here, we describe four recent undergraduate research proj...

  2. Dimensioning of aerated submerged fixed bed biofilm reactors based on a mathematical biofilm model applied to petrochemical wastewater - the link between theory and practice

    OpenAIRE

    Trojanowicz, Karol; Wójcik, Wtodzimierz

    2014-01-01

    The description of a biofilm mathematical model application for dimensioning an aerated fixed bed biofilm reactor (ASFBBR) for petrochemical wastewater polishing is presented. A simple one-dimensional model of biofilm, developed by P Harremöes, was chosen for this purpose. The model was calibrated and verified under conditions of oil-refinery effluent. The results of ASFBBR dimensioning on the basis of the biofilm model were compared with the bioreactor dimensions determined by application of...

  3. The use of isiXhosa children’s poetry as a tool to integrate literacy, mathematics and life skills in Foundation Phase: Grade R-3

    Directory of Open Access Journals (Sweden)

    Nozuko Gxekwa

    2017-12-01

    Full Text Available Literature helps us understand and make sense of the world around us. It is a part of education, which broadens one’s mind about how to understand, transfer knowledge and provide meaningful and authentic learning. Thus, this article aims to highlight how some elements of isiXhosa children’s poetry can be used to help pre-service teachers to teach and integrate mathematics and life skills with literacy in Foundation Phase (FP. This approach of using poems for integration strengthens concepts and skills in more than one subject area. The theoretical framework that informed the article is integrative learning. The data in this article were generated through non-participant classroom observations and non-structured interviews with the participants of the study and the researchers adopted the interpretative phenomenological analysis method for data analysis. This article was prompted by findings of lack of understanding of integrative teaching and learning and lack of teaching resources in isiXhosa to enhance integrative teaching and learning in FP intervention undertaken with 25 first year isiXhosa-speaking FP students.

  4. Study of the asymptotic expansion of multiple integrals in mathematical physics; Etudes sur les developpements asymptotiques des integrales multiples de la physique mathematique

    Energy Technology Data Exchange (ETDEWEB)

    Chako, N [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    We have applied the method of stationary phase to evaluate double and multiple integrals of the type: (A) U(k) = g(x)e{sup ik{phi}}{sup (x)} d(x), (x)=(x{sub 1},..., x{sub n}) for large values of the parameter k. In the first part we have established in a rigorous manner the stationary phase method to double and multiple integrals of type (A). Furthermore we have obtained an asymptotic expansion of (A), if the amplitude and phase functions can be developed in a canonical form near the vicinity of critical or stationary points of the integral. This development contains as particular cases all those which are important in physical applications, especially, to diffraction and scattering of electromagnetic and corpuscular waves by optical systems, diffracting bodies and potential scatterers. In the second part we have considered the problem of convergence of the expansion of the principal contribution to the integral in the asymptotic sense of Poincare. The proof is based on the increasing method used in mathematical analysis. The third part is devoted to the derivation of various asymptotic series due to different types of critical or stationary points associated with the amplitude and phase functions. In the fourth part we have generalized the method to multiple integrals and to the case where the parameter k enter implicitly in the phase function The latter type of integrals extend the scope of the former type to a number of important physical problems; for instance, to the propagation of waves in dispersive and absorbing media. In the last chapter we have made a study and compared the results obtained by the application of the stationary phase method to the integrals (double) of diffraction and the results derived by using the Young-Rubinowicz method. Result of our analysis shows the equivalence of the two methods of approach to the problems of diffraction based, on one hand, on the Fresnel-Kirchhoff theory and, on the other hand, the Young-Rubinowicz theory

  5. Mathematical Footprints Discovering Mathematics Everywhere

    CERN Document Server

    Pappas, Theoni

    1999-01-01

    MATHEMATICAL FOOTPRINTS takes a creative look at the role mathematics has played since prehistoric times, and will play in the future, and uncovers mathematics where you least expect to find it from its many uses in medicine, the sciences, and its appearance in art to its patterns in nature and its central role in the development of computers. Pappas presents mathematical ideas in a readable non-threatening manner. MATHEMATICAL FOOTPRINTS is another gem by the creator of THE MATHEMATICS CALENDAR and author of THE JOY OF MATHEMATICS. "Pappas's books have been gold mines of mathematical ent

  6. Open problems in mathematics

    CERN Document Server

    Nash, Jr, John Forbes

    2016-01-01

    The goal in putting together this unique compilation was to present the current status of the solutions to some of the most essential open problems in pure and applied mathematics. Emphasis is also given to problems in interdisciplinary research for which mathematics plays a key role. This volume comprises highly selected contributions by some of the most eminent mathematicians in the international mathematical community on longstanding problems in very active domains of mathematical research. A joint preface by the two volume editors is followed by a personal farewell to John F. Nash, Jr. written by Michael Th. Rassias. An introduction by Mikhail Gromov highlights some of Nash’s legendary mathematical achievements. The treatment in this book includes open problems in the following fields: algebraic geometry, number theory, analysis, discrete mathematics, PDEs, differential geometry, topology, K-theory, game theory, fluid mechanics, dynamical systems and ergodic theory, cryptography, theoretical computer sc...

  7. Some continual integrals from gaussian forms

    International Nuclear Information System (INIS)

    Mazmanishvili, A.S.

    1985-01-01

    The result summary of continual integration of gaussian functional type is given. The summary contains 124 continual integrals which are the mathematical expectation of the corresponding gaussian form by the continuum of random trajectories of four types: real-valued Ornstein-Uhlenbeck process, Wiener process, complex-valued Ornstein-Uhlenbeck process and the stochastic harmonic one. The summary includes both the known continual integrals and the unpublished before integrals. Mathematical results of the continual integration carried in the work may be applied in the problem of the theory of stochastic process, approaching to the finding of mean from gaussian forms by measures generated by the pointed stochastic processes

  8. Multimedia Approach in Teaching Mathematics--Example of Lesson about the Definite Integral Application for Determining an Area

    Science.gov (United States)

    Milovanovic, Marina; Takaci, Durdica; Milajic, Aleksandar

    2011-01-01

    This article presents the importance of using multimedia in the math classes by an example of multimedia lesson about definite integral and the results of the research carried out among the students of the first years of faculty, divided into two groups of 25. One group had the traditional lecture about the definite integral, while the other one…

  9. The integration of Mathematics, Science and Technology in early childhood education and the foundation phase: The role of the formation of the professional identities of beginner teachers

    Directory of Open Access Journals (Sweden)

    Marie Botha

    2015-02-01

    Full Text Available This article focuses on the professional identity formation of six beginner teachers (three in early childhood education and three in the foundation phase, involved in the teaching of Mathematics, Science and Technology (MST. Attention is in particular being paid to the role of professional identity in how they applied innovative teaching methods such as enquiry-based teaching. The study is based on the personal narratives of the six teachers, regarding their own learning experiences in MST, the impact of their professional training at an institution of higher education, as well as their first experiences as MST teachers in the workplace. A qualitative research design was applied and data was obtained through visual (photo collages and written stories, observation and interviews. Whilst all the teachers held negative attitudes towards Mathematics, this situation was turned around during their university training. The three teachers in early childhood education experienced their entrance to the profession as positive, due mainly to the support of colleagues in their application of innovative teaching methods. Two teachers in the foundation phase, however, experienced the opposite. The findings emphasise the complex processes in the moulding of a professional teacher identity and how teaching practices are influenced by these processes.

  10. Applied mathematics. Careful studies of drill bits and drill pipes set vibrations; Mathematiques appliquees. Etudes approfondies des vibrations du trepan et du train de tiges

    Energy Technology Data Exchange (ETDEWEB)

    Mabile, C.; Rey Fabre, I.; Benjelloun-Touimi-Dabaghi, Z. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France)

    1997-04-01

    During the rotary drilling, drill pipes and bits are submitted to physical stresses which are all the more important that the well is deep. The aim of the study is then to physically understand these phenomena in order to prevent the effects as the pre-wear, the rupture of the drill pipes or the destruction of the measure instruments used at the bottom during the drilling of the well. Computers are used to establish a mathematical model which correspond to reality and which should be directly used on offshore platforms. (O.M.)

  11. Experimental Mathematics and Computational Statistics

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, David H.; Borwein, Jonathan M.

    2009-04-30

    The field of statistics has long been noted for techniques to detect patterns and regularities in numerical data. In this article we explore connections between statistics and the emerging field of 'experimental mathematics'. These includes both applications of experimental mathematics in statistics, as well as statistical methods applied to computational mathematics.

  12. Teaching Mathematics in Geography Degrees

    Science.gov (United States)

    Bennett, Robert

    1978-01-01

    Examines ways of developing college students' motivation for mathematical training; describes the type of mathematical knowledge required in the geography discipline; and explores an applied approach to mathematics teaching based on a systems concept. For journal availability, see SO 506 224. (Author/AV)

  13. Profile of Metacognition of Mathematics Pre-Service Teachers in Understanding the Concept of Integral Calculus with Regard Gender Differences

    Science.gov (United States)

    Misu, L.; Budayasa, I. K.; Lukito, A.

    2018-01-01

    This research is to describe metacognition profile of female and male mathematics’ pre-service teachers in understanding the concept of integral calculus. The subjects of this study are one female and 1 male mathematics’ pre-service teachers who have studied integral calculus. This research type is an explorative study with the qualitative approach. The main data collection of this research was obtained by using Interview technique. In addition, there are supporting data which is the result of the written work of research subjects (SP) in understanding the question of integral calculus. The results of this study are as follows: There is a difference in metacognition profiles between male and female mathematics’ pre-service teachers in the understanding concept of integral calculus in the interpreting category, especially the definite integral concept. While in the category of exemplifying, there is no difference in metacognition profile between male and female mathematics’ pre-service teachers either the definite integral concept and the indefinite integral concept.

  14. A new direction in mathematics for materials science

    CERN Document Server

    Ikeda, Susumu

    2015-01-01

    This book is the first volume of the SpringerBriefs in the Mathematics of Materials and provides a comprehensive guide to the interaction of mathematics with materials science. The anterior part of the book describes a selected history of materials science as well as the interaction between mathematics and materials in history. The emergence of materials science was itself a result of an interdisciplinary movement in the 1950s and 1960s. Materials science was formed by the integration of metallurgy, polymer science, ceramics, solid state physics, and related disciplines. We believe that such historical background helps readers to understand the importance of interdisciplinary interaction such as mathematics–materials science collaboration. The middle part of the book describes mathematical ideas and methods that can be applied to materials problems and introduces some examples of specific studies—for example, computational homology applied to structural analysis of glassy materials, stochastic models for ...

  15. Quantitative assessment of key parameters in qualitative vulnerability methods applied in karst systems based on an integrated numerical modelling approach

    Science.gov (United States)

    Doummar, Joanna; Kassem, Assaad

    2017-04-01

    In the framework of a three-year PEER (USAID/NSF) funded project, flow in a Karst system in Lebanon (Assal) dominated by snow and semi arid conditions was simulated and successfully calibrated using an integrated numerical model (MIKE-She 2016) based on high resolution input data and detailed catchment characterization. Point source infiltration and fast flow pathways were simulated by a bypass function and a high conductive lens respectively. The approach consisted of identifying all the factors used in qualitative vulnerability methods (COP, EPIK, PI, DRASTIC, GOD) applied in karst systems and to assess their influence on recharge signals in the different hydrological karst compartments (Atmosphere, Unsaturated zone and Saturated zone) based on the integrated numerical model. These parameters are usually attributed different weights according to their estimated impact on Groundwater vulnerability. The aim of this work is to quantify the importance of each of these parameters and outline parameters that are not accounted for in standard methods, but that might play a role in the vulnerability of a system. The spatial distribution of the detailed evapotranspiration, infiltration, and recharge signals from atmosphere to unsaturated zone to saturated zone was compared and contrasted among different surface settings and under varying flow conditions (e.g., in varying slopes, land cover, precipitation intensity, and soil properties as well point source infiltration). Furthermore a sensitivity analysis of individual or coupled major parameters allows quantifying their impact on recharge and indirectly on vulnerability. The preliminary analysis yields a new methodology that accounts for most of the factors influencing vulnerability while refining the weights attributed to each one of them, based on a quantitative approach.

  16. Guidelines for the Use of Mathematics in Operational Area-Wide Integrated Pest Management Programmes Using the Sterile Insect Technique with a Special Focus on Tephritid Fruit Flies

    International Nuclear Information System (INIS)

    Barclay, H.L.; Enkerlin, W.R.; Manoukis, N.C.; Reyes-Flores, J.

    2016-01-01

    This guideline attempts to assist managers in the use of mathematics in area-wide Integrated Pest Management (AW-IPM) programmes using the Sterile Insect Technique (SIT). It describes mathematical tools that can be used at different stages of suppression/eradication programmes. For instance, it provides simple methods for calculating the various quantities of sterile insects required in the intervention area so that more realistic sterile: fertile rates to suppress pest populations can be achieved. The calculations, for the most part, only involve high school mathematics and can be done easily with small portable computers or calculators. The guideline is intended to be a reference book, to be consulted when necessary. As such, any particular AW-IPM programme using the SIT will probably only need certain sections, and much of the book can be ignored if that is the case. For example, if the intervention area is relatively small and well isolated, then the section on dispersal can safely be ignored, as the boundedness of the area means that dispersal should not be a problem, and so the section on diffusion equations can be ignored. An overview is given in each chapter to try to let the programme manager make a decision about where to put the programme efforts. On the other hand, most SIT programmes have an information system (many of them based on GIS) that produces reliable profiles of historic information. Based on the results of past activities they describe what has happened in the last days or weeks but usually do not explain, or barely explain, what is expected in the following days or weeks. Current AW-IPM progammes using the SIT have produced over many years a vast amount of every-day data from the field operations and from the mass rearing facility and packing and sterile insect releasing centres. With the help of this guideline, that information can be used to develop predictive models for their particular conditions to better plan control measures.

  17. Course of mathematics for engineers and scientists v.1

    CERN Document Server

    Chirgwin, Brian H

    1961-01-01

    A Course of Mathematics for Engineers and Scientists, Volume 1 studies the various concepts in pure and applied mathematics, specifically the technique and applications of differentiation and integration of one variable, geometry of two dimensions, and complex numbers. The book is divided into seven chapters, wherein the first of which presents the introductory concepts, such as the functional notation and fundamental definitions; the roots of equations; and limits and continuity. The text then tackles the techniques and applications of differentiation and integration. Geometry of two dimensio

  18. Mathematics education for social justice

    Science.gov (United States)

    Suhendra

    2016-02-01

    Mathematics often perceived as a difficult subject with many students failing to understand why they learn mathematics. This situation has been further aggravated by the teaching and learning processes used, which is mechanistic without considering students' needs. The learning of mathematics tends to be just a compulsory subject, in which all students have to attend its classes. Social justice framework facilitates individuals or groups as a whole and provides equitable approaches to achieving equitable outcomes by recognising disadvantage. Applying social justice principles in educational context is related to how the teachers treat their students, dictates that all students the right to equal treatment regardless of their background and completed with applying social justice issues integrated with the content of the subject in order to internalise the principles of social justice simultaneously the concepts of the subject. The study examined the usefulness of implementing the social justice framework as a means of improving the quality of mathematics teaching in Indonesia involved four teacher-participants and their mathematics classes. The study used action research as the research methodology in which the teachers implemented and evaluated their use of social justice framework in their teaching. The data were collected using multiple research methods while analysis and interpretation of the data were carried out throughout the study. The findings of the study indicated that there were a number of challengesrelated to the implementation of the social justice framework. The findings also indicated that, the teachers were provided with a comprehensive guide that they could draw on to make decisions about how they could improve their lessons. The interactions among students and between the teachers and the students improved, they became more involved in teaching and learning process. Using social justice framework helped the teachers to make mathematics more

  19. Mathematics applied to fluid mechanics and stability; Proceedings of the Conference, Rensselaer Polytechnic Institute, Troy, NY, Sept. 9-11, 1985

    International Nuclear Information System (INIS)

    Drew, D.A.; Flaherty, J.E.

    1986-01-01

    The mathematical analysis of fluid mechanics and stability and its applications in science and engineering are examined in reviews and reports. Topics addressed include Taylor-vortex flow, isothermal fluid-film lubrication theories, the morphology of spiral galaxies, rotating-fluid problems in ballistics, coupled Lorenz oscillators, the connection between chaos and turbulence, plane-front alloy solidification versus free-surface Benard convection, and the nonlinear stability of spiral flow between rotating cylinders with a small gap. Consideration is given to resonance conditions for forced two-dimensional channel flows, the secondary bifurcation of standing surface waves in rectangular basins, instability in the flow of granular materials, and the supercritical dynamics of baroclinic disturbances

  20. Integrating NASA Dryden Research Endeavors into the Teaching-Learning of Mathematics in the K-12 Classroom via the WWW

    Science.gov (United States)

    Ward, Robin A.

    2002-01-01

    The primary goal of this project was to continue populating the currently existing web site developed in 1998 in conjunction with the NASA Dryden Flight Research Center and California Polytechnic State University, with more mathematics lesson plans and activities that K-12 teachers, students, home-schoolers, and parents could access. All of the activities, while demonstrating some mathematical topic, also showcase the research endeavors of the NASA Dryden Flight Research Center. The website is located at: http://daniel.calpoly.edu/dfrc/Robin. The secondary goal of this project was to share the web-based activities with educators at various conferences and workshops. To address the primary goal of this project, over the past year, several new activities were posted on the web site and some of the existing activities were enhanced to contain more video clips, photos, and materials for teachers. To address the project's secondary goal, the web-based activities were showcased at several conferences and workshops. Additionally, in order to measure and assess the outreach impact of the web site, a link to the web site hitbox.com was established in April 2001, which allowed for the collection of traffic statistics against the web site (such as the domains of visitors, the frequency of visitors to this web site, etc.) Provided is a description of some of the newly created activities posted on the web site during the project period of 2001-2002, followed by a description of the conferences and workshops at which some of the web-based activities were showcased. Next is a brief summary of the web site's traffic statistics demonstrating its worldwide educational impact, followed by a listing of some of the awards and accolades the web site has received.