WorldWideScience

Sample records for integrating voltage control

  1. Voltage margin control for offshore multi-use platform integration

    DEFF Research Database (Denmark)

    Mier, V.; Casielles, P.G.; Koto, J.

    This paper discusses a multiterminal direct current (MTDC) connection proposed for integration of offshore multi-use platforms into continental grids. Voltage source converters (VSC) were selected for their suitability for multiterminal dc systems and for their flexibility in control. A five...... terminal VSC-MTDC which includes offshore generation, storage, loads and ac connection, was modeled and simulated in DigSILENT Power Factory software. Voltage margin method has been used for reliable operation of the MTDC system without the need of fast communication. Simulation results show......, sell or store energy attending to the price in the electricity market....

  2. DC-link Voltage Control to Compensate Voltage Deviation for PV–BESSs Integrated System in Low-Voltage (LV Networks

    Directory of Open Access Journals (Sweden)

    Lee Gyu-sub

    2016-01-01

    Full Text Available The exhaustion of fossil fuel and the greenhouse gas emission are one of the most significant energy and environmental issues, respectively. Photovoltaic (PV generators and battery energy storage systems (BESSs have been significantly increased for recent years. The BESSs are mainly used for smoothing active power fluctuation of the PV. In this paper, PV–BESSs integration of two DC/DC converters and one AC/DC converter is investigated and DC-link voltage control to compensate the AC voltage deviation is proposed for the PV‒BESS system in low-voltage (LV networks.

  3. Energy Systems Integration: Demonstrating Distribution Feeder Voltage Control

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    Overview fact sheet about the Smarter Grid Solutions Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project at the Energy Systems Integration Facility. INTEGRATE is part of the U.S. Department of Energy's Grid Modernization Initiative.

  4. Impacts of Voltage Control Methods on Distribution Circuit’s Photovoltaic (PV Integration Limits

    Directory of Open Access Journals (Sweden)

    Anamika Dubey

    2017-10-01

    Full Text Available The widespread integration of photovoltaic (PV units may result in a number of operational issues for the utility distribution system. The advances in smart-grid technologies with better communication and control capabilities may help to mitigate these challenges. The objective of this paper is to evaluate multiple voltage control methods and compare their effectiveness in mitigating the impacts of high levels of PV penetrations on distribution system voltages. A Monte Carlo based stochastic analysis framework is used to evaluate the impacts of PV integration, with and without voltage control. Both snapshot power flow and time-series analysis are conducted for the feeder with varying levels of PV penetrations. The methods are compared for their impacts on (1 the feeder’s PV hosting capacity; (2 the number of voltage violations and the magnitude of the largest bus voltage; (3 the net reactive power demand from the substation; and (4 the number of switching operations of feeder’s legacy voltage support devices i.e., capacitor banks and load tap changers (LTCs. The simulation results show that voltage control help in mitigating overvoltage concerns and increasing the feeder’s hosting capacity. Although, the legacy control solves the voltage concerns for primary feeders, a smart inverter control is required to mitigate both primary and secondary feeder voltage regulation issues. The smart inverter control, however, increases the feeder’s reactive power demand and the number of LTC and capacitor switching operations. For the 34.5-kV test circuit, it is observed that the reactive power demand increases from 0 to 6.8 MVAR on enabling Volt-VAR control for PV inverters. The total number of capacitor and LTC operations over a 1-year period also increases from 455 operations to 1991 operations with Volt-VAR control mode. It is also demonstrated that by simply changing the control mode of capacitor banks, a significant reduction in the unnecessary

  5. Design of A Grid Integrated PV System with MPPT Control and Voltage Oriented Controller using MATLAB/PLECES

    Science.gov (United States)

    Soreng, Bineeta; Behera, Pradyumna; Pradhan, Raseswari

    2017-08-01

    This paper presents model of a grid-integrated photovoltaic array with Maximum Power Point Tracker (MPPT) and voltage oriented controller. The MPPT of the PV array is usually an essential part of PV system as MPPT helps the operating point of the solar array to align its maximum power point. In this model, the MPPT along with a DC-DC converter lets a PV generator to produce continuous power, despite of the measurement conditions. The neutral-point-clamped converter (NPC) with a boost converter raises the voltage from the panels to the DC-link. An LCL-filter smoothens the current ripple caused by the PWM modulation of the grid-side inverter. In addition to the MPPT, the system has two more two controllers, such as voltage controller and a current controller. The voltage control has a PI controller to regulate the PV voltage to optimal level by controlling the amount of current injected into the boost stage. Here, the grid-side converter transfers the power from the DC-link into the grid and maintains the DC-link voltage. Three-phase PV inverters are used for off-grid or designed to create utility frequency AC. The PV system can be connected in series or parallel to get the desired output power. To justify the working of this model, the grid-integrated PV system has been designed in MATLAB/PLECS. The simulation shows the P-V curve of implemented PV Array consisting 4 X 20 modules, reactive, real power, grid voltage and current.

  6. Integral Plus Resonant Sliding Mode Direct Power Control for VSC-HVDC Systems under Unbalanced Grid Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Weipeng Yang

    2017-10-01

    Full Text Available An integral plus resonant sliding mode direct power control (IRSMC DPC strategy for voltage source converter high voltage direct current (VSC-HVDC systems under unbalanced grid voltage conditions is proposed in this paper. Through detailed instantaneous power flow analysis, a generalized power compensation method, by which the ratio between the amplitude of active and reactive power ripples can be controlled continuously, is obtained. This enables the system to provide flexible power control, so that the desired performance of the system on both the ac and dc sides can be attained under different operating conditions. When the grid voltage is unbalanced, one or both of the active and reactive power terms contain ripples, oscillating at twice the grid frequency, to obtain non-distorted ac current. A power controller consisting of the proportional, integral and resonant control laws is designed using the sliding mode control approach, to achieve accurate power control objective. Simulation studies on a two-terminal VSC-HVDC system using MATLAB/SIMULINK (R2013b, Mathworks, Natick, MA, USA are conducted to verify the effectiveness of the IRSMC DPC strategy. The results show that this strategy ensures satisfactory performance of the system over a wide range of operating conditions.

  7. Design of a Novel Voltage Controller for Conversion of Carbon Dioxide into Clean Fuels Using the Integration of a Vanadium Redox Battery with Solar Energy

    Directory of Open Access Journals (Sweden)

    Ting-Chia Ou

    2018-02-01

    Full Text Available This letter presents a design for a novel voltage controller (NVC which can exhibit three different reactions using the integration of a vanadium redox battery (VRB with solar energy, and uses only electrochemical potentials with optimal external bias voltage control to carry out hydrogen production and the conversion of carbon dioxide (CO2 into methane and methanol. This NVC is simply constructed by using dynamic switch and control strategies with a time-variant control system. In this design, the interval voltage bias solutions obtained by the proposed NVC exhibit better voltage ranges and good agreement with the practical scenarios, which will bring significant benefits to operation for continuous reduction of CO2 into value-added clean fuels using the integration of a VRB with solar energy or any other renewable energy resource for future applications.

  8. Control of Grid Integrated Voltage Source Converters under Unbalanced Conditions: Development of an On-line Frequency-adaptive Virtual Flux-based Approach

    OpenAIRE

    Suul, Jon Are

    2012-01-01

    Three-Phase Voltage Source Converters (VSCs) are finding widespread applications in grid integrated power conversion systems. The control systems of such VSCs are in an increasing number of these applications required to operate during voltage disturbances and unbalanced conditions. Control systems designed for grid side voltagesensor- less operation are at the same time becoming attractive due to the continuous drive for cost reduction and increased reliability of VSCs, but are not commonly ...

  9. Four-quadrant speed control circuit of DC servo motor using integrated voltage control method; Den`atsu sekibunchi seigyo wo mochoiita chokuryu dendoki no shishogen sokudo seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Okui, H. [Osaka polytechnic College, Osaka (Japan); Irie, H. [Osaka Electro-Communication Univ., Osaka (Japan)

    1996-08-20

    The Two-Quadrant chopper is constructed by using smoothing reactor in common of the step-down chopper and step-up chopper of the DC chopper. Furthermore, since the circuit connected in bridge type by using these two groups has both of positive and negative voltage from DC source and can supplies the current from positive and negative directions for load, it is called in general as the Four-Quadrant chopper. As the Four-Quadrant chopper may supply and regenerate power, it works as power amplifier with high efficiency. In this paper, the speed control circuit of DC servo motor using Four-Quadrant integrated voltage control circuit is described. The speed control circuit is composed of simple circuits of one adder integrator and four hysteresis comparators. The Four-Quadrant speed control circuit has a DC motor speed feedback loop and a voltage feedback loop which connects with AC, it plays the Four-Quadrant speed control without current inspection. The speed control characteristics with no steady state error over four quadrants may be obtained, changing of the quadrant is smooth and transition response is rapid. 9 refs., 11 figs.

  10. Voltage-Controlled Floating Resistor Using DDCC

    Directory of Open Access Journals (Sweden)

    M. Kumngern

    2011-04-01

    Full Text Available This paper presents a new simple configuration to realize the voltage-controlled floating resistor, which is suitable for integrated circuit implementation. The proposed resistor is composed of three main components: MOS transistor operating in the non-saturation region, DDCC, and MOS voltage divider. The MOS transistor operating in the non-saturation region is used to configure a floating linear resistor. The DDCC and the MOS transistor voltage divider are used for canceling the nonlinear component term of MOS transistor in the non-saturation region to obtain a linear current/voltage relationship. The DDCC is employed to provide a simple summer of the circuit. This circuit offers an ease for realizing the voltage divider circuit and the temperature effect that includes in term of threshold voltage can be compensated. The proposed configuration employs only 16 MOS transistors. The performances of the proposed circuit are simulated with PSPICE to confirm the presented theory.

  11. Computer controlled high voltage system

    Energy Technology Data Exchange (ETDEWEB)

    Kunov, B; Georgiev, G; Dimitrov, L [and others

    1996-12-31

    A multichannel computer controlled high-voltage power supply system is developed. The basic technical parameters of the system are: output voltage -100-3000 V, output current - 0-3 mA, maximum number of channels in one crate - 78. 3 refs.

  12. Voltage Controlled Dynamic Demand Response

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    Future power system is expected to be characterized by increased penetration of intermittent sources. Random and rapid fluctuations in demands together with intermittency in generation impose new challenges for power balancing in the existing system. Conventional techniques of balancing by large...... central or dispersed generations might not be sufficient for future scenario. One of the effective methods to cope with this scenario is to enable demand response. This paper proposes a dynamic voltage regulation based demand response technique to be applied in low voltage (LV) distribution feeders....... An adaptive dynamic model has been developed to determine composite voltage dependency of an aggregated load on feeder level. Following the demand dispatch or control signal, optimum voltage setting at the LV substation is determined based on the voltage dependency of the load. Furthermore, a new technique...

  13. Control strategy and hardware implementation for DC–DC boost power circuit based on proportional–integral compensator for high voltage application

    Directory of Open Access Journals (Sweden)

    Sanjeevikumar Padmanaban

    2015-06-01

    Full Text Available For high-voltage (HV applications, the designers mostly prefer the classical DC–DC boost converter. However, it lacks due to the limitation of the output voltage by the gain transfer ratio, decreased efficiency and its requirement of two sensors for feedback signals, which creates complex control scheme with increased overall cost. Furthermore, the output voltage and efficiency are reduced due to the self-parasitic behavior of power circuit components. To overcome these drawbacks, this manuscript provides, the theoretical development and hardware implementation of DC–DC step-up (boost power converter circuit for obtaining extra output-voltage high-performance. The proposed circuit substantially improves the high output-voltage by voltage-lift technology with a closed loop proportional–integral controller. This complete numerical model of the converter circuit including closed loop P-I controller is developed in simulation (Matlab/Simulink software and the hardware prototype model is implemented with digital signal processor (DSP TMS320F2812. A detailed performance analysis was carried out under both line and load regulation conditions. Numerical simulation and its verification results provided in this paper, prove the good agreement of the circuit with theoretical background.

  14. Complete low power controller for high voltage power systems

    International Nuclear Information System (INIS)

    Sumner, R.; Blanar, G.

    1997-01-01

    The MHV100 is a custom CMOS integrated circuit, developed for the AMS experiment. It provides complete control for a single channel high voltage (HV) generator and integrates all the required digital communications, D to A and A to D converters, the analog feedback loop and output drivers. This chip has been designed for use in both distributed high voltage systems or for low cost single channel high voltage systems. The output voltage and current range is determined by the external components

  15. Systems and methods for switched-inductor integrated voltage regulators

    Science.gov (United States)

    Shepard, Kenneth L.; Sturcken, Noah Andrew

    2017-12-12

    Power controller includes an output terminal having an output voltage, at least one clock generator to generate a plurality of clock signals and a plurality of hardware phases. Each hardware phase is coupled to the at least one clock generator and the output terminal and includes a comparator. Each hardware phase is configured to receive a corresponding one of the plurality of clock signals and a reference voltage, combine the corresponding clock signal and the reference voltage to produce a reference input, generate a feedback voltage based on the output voltage, compare the reference input and the feedback voltage using the comparator and provide a comparator output to the output terminal, whereby the comparator output determines a duty cycle of the power controller. An integrated circuit including the power controller is also provided.

  16. Control of grid integrated voltage source converters under unbalanced conditions: development of an on-line frequency-adaptive virtual flux-based approach

    Energy Technology Data Exchange (ETDEWEB)

    Suul, Jon Are

    2012-03-15

    Three-Phase Voltage Source Converters (VSCs) are finding widespread applications in grid integrated power conversion systems. The control systems of such VSCs are in an increasing number of these applications required to operate during voltage disturbances and unbalanced conditions. Control systems designed for grid side voltagesensor-less operation are at the same time becoming attractive due to the continuous drive for cost reduction and increased reliability of VSCs, but are not commonly applied for operation during unbalanced conditions. Methods for voltage-sensor-less grid synchronization and control of VSCs under unbalanced grid voltage conditions will therefore be the main focus of this Thesis. Estimation methods based on the concept of Virtual Flux, considering the integral of the converter voltage in analogy to the flux of an electric machine, are among the simplest and most well known techniques for achieving voltage-sensor-less grid synchronization. Most of the established techniques for Virtual Flux estimation are, however, either sensitive to grid frequency variations or they are not easily adaptable for operation under unbalanced grid voltage conditions. This Thesis addresses both these issues by proposing a simple approach for Virtual Flux estimation by utilizing a frequency-adaptive filter based on a Second Order Generalized Integrator (SOGI). The proposed approach can be used to achieve on-line frequency-adaptive varieties of conventional strategies for Virtual Flux estimation. The main advantage is, however, that the SOGI-based Virtual Flux estimation can be arranged in a structure that achieves inherent symmetrical component sequence separation under unbalanced conditions. The proposed method for Virtual Flux estimation can be used as a general basis for voltage-sensor-less grid synchronization and control during unbalanced conditions. In this Thesis, the estimated Virtual Flux signals are used to develop a flexible strategy for control of active

  17. Voltage control of ferromagnetic resonance

    Directory of Open Access Journals (Sweden)

    Ziyao Zhou

    2016-06-01

    Full Text Available Voltage control of magnetism in multiferroics, where the ferromagnetism and ferroelectricity are simultaneously exhibiting, is of great importance to achieve compact, fast and energy efficient voltage controllable magnetic/microwave devices. Particularly, these devices are widely used in radar, aircraft, cell phones and satellites, where volume, response time and energy consumption is critical. Researchers realized electric field tuning of magnetic properties like magnetization, magnetic anisotropy and permeability in varied multiferroic heterostructures such as bulk, thin films and nanostructure by different magnetoelectric (ME coupling mechanism: strain/stress, interfacial charge, spin–electromagnetic (EM coupling and exchange coupling, etc. In this review, we focus on voltage control of ferromagnetic resonance (FMR in multiferroics. ME coupling-induced FMR change is critical in microwave devices, where the electric field tuning of magnetic effective anisotropic field determines the tunability of the performance of microwave devices. Experimentally, FMR measurement technique is also an important method to determine the small effective magnetic field change in small amount of magnetic material precisely due to its high sensitivity and to reveal the deep science of multiferroics, especially, voltage control of magnetism in novel mechanisms like interfacial charge, spin–EM coupling and exchange coupling.

  18. Methods for calculation of undelivered electricity in medium voltage network that is not integrated into the remote control system

    Directory of Open Access Journals (Sweden)

    Vrcelj Nada

    2013-01-01

    Full Text Available The method is based on data obtained from the so-called. hand-held measuring current at 10 kV voltage level and from reports of outages at reclosers that are installed in a part of network that is observed. At first, is calculates the electrical load of the main distribution power lines, and then simulates the corresponding power flow and calculates the undelivered electricity. The method was applied to parts of the network PD ED Belgrade that are not in the remote control system and is developed for the purpose of considering the effects of automation in the 10 kV PD ED Belgrade.

  19. Voltage control of cavity magnon polariton

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, S., E-mail: kaurs3@myumanitoba.ca; Rao, J. W.; Gui, Y. S.; Hu, C.-M., E-mail: hu@physics.umanitoba.ca [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Yao, B. M. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); National Laboratory for Infrared Physics, Chinese Academy of Sciences, Shanghai 200083 (China)

    2016-07-18

    We have experimentally investigated the microwave transmission of the cavity-magnon-polariton (CMP) generated by integrating a low damping magnetic insulator onto a 2D microwave cavity. The high tunability of our planar cavity allows the cavity resonance frequency to be precisely controlled using a DC voltage. By appropriately tuning the voltage and magnetic bias, we can observe the cavity photon magnon coupling and the magnetic coupling between a magnetostatic mode and the generated CMP. The dispersion of the generated CMP was measured by either tuning the magnetic field or the applied voltage. This electrical control of CMP may open up avenues for designing advanced on-chip microwave devices that utilize light-matter interaction.

  20. Coordinated Voltage Control of Distributed PV Inverters for Voltage Regulation in Low Voltage Distribution Networks

    DEFF Research Database (Denmark)

    Nainar, Karthikeyan; Pokhrel, Basanta Raj; Pillai, Jayakrishnan Radhakrishna

    2017-01-01

    This paper reviews and analyzes the existing voltage control methods of distributed solar PV inverters to improve the voltage regulation and thereby the hosting capacity of a low-voltage distribution network. A novel coordinated voltage control method is proposed based on voltage sensitivity...... optimization. The proposed method is used to calculate the voltage bands and droop settings of PV inverters at each node by the supervisory controller. The local controller of each PV inverter implements the volt/var control and if necessary, the active power curtailment as per the received settings and based...... on measured local voltages. The advantage of the proposed method is that the calculated reactive power and active power droop settings enable fair contribution of the PV inverters at each node to the voltage regulation. Simulation studies are conducted using DigSilent Power factory software on a simplified...

  1. Microwave integrated circuit for Josephson voltage standards

    Science.gov (United States)

    Holdeman, L. B.; Toots, J.; Chang, C. C. (Inventor)

    1980-01-01

    A microwave integrated circuit comprised of one or more Josephson junctions and short sections of microstrip or stripline transmission line is fabricated from thin layers of superconducting metal on a dielectric substrate. The short sections of transmission are combined to form the elements of the circuit and particularly, two microwave resonators. The Josephson junctions are located between the resonators and the impedance of the Josephson junctions forms part of the circuitry that couples the two resonators. The microwave integrated circuit has an application in Josephson voltage standards. In this application, the device is asymmetrically driven at a selected frequency (approximately equal to the resonance frequency of the resonators), and a d.c. bias is applied to the junction. By observing the current voltage characteristic of the junction, a precise voltage, proportional to the frequency of the microwave drive signal, is obtained.

  2. Integrated high voltage power supply utilizing burst mode control and its performance impact on dielectric electro active polymer actuators

    DEFF Research Database (Denmark)

    Andersen, Thomas; Rødgaard, Martin Schøler; Andersen, Michael A. E.

    Through resent years new high performing Dielectric Electro Active Polymers (DEAP) have emerged. To fully utilize the potential of DEAPs a driver with high voltage output is needed. In this paper a piezoelectric transformer based power supply for driving DEAP actuators is developed, utilizing...

  3. Symmetric voltage-controlled variable resistance

    Science.gov (United States)

    Vanelli, J. C.

    1978-01-01

    Feedback network makes resistance of field-effect transistor (FET) same for current flowing in either direction. It combines control voltage with source and load voltages to give symmetric current/voltage characteristics. Since circuit produces same magnitude output voltage for current flowing in either direction, it introduces no offset in presense of altering polarity signals. It is therefore ideal for sensor and effector circuits in servocontrol systems.

  4. Piezo Voltage Controlled Planar Hall Effect Devices.

    Science.gov (United States)

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K W; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-22

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  5. Surface acoustic waves voltage controlled directional coupler

    Science.gov (United States)

    Golan, G.; Griffel, G.; Yanilov, E.; Ruschin, S.; Seidman, A.; Croitoru, N.

    1988-10-01

    An important condition for the development of surface wave integrated-acoustic devices is the ability to guide and control the propagation of the acoustic energy. This can be implemented by deposition of metallic "loading" channels on an anisotropic piezoelectric substrate. Deposition of such two parallel channels causes an effective coupling of acoustic energy from one channel to the other. A basic requirement for this coupling effect is the existence of the two basic modes: a symmetrical and a nonsymmetrical one. A mode map that shows the number of sustained modes as a function of the device parameters (i.e., channel width; distance between channels; material velocity; and acoustical exciting frequency) is presented. This kind of map can help significantly in the design process of such a device. In this paper we devise an advanced acoustical "Y" coupler with the ability to control its effective coupling by an externally applied voltage, thereby causing modulation of the output intensities of the signals.

  6. Weighting Function Integrated in Grid-interfacing Converters for Unbalanced Voltage Correction

    NARCIS (Netherlands)

    Wang, F.; Duarte, J.L.; Hendrix, M.A.M.

    2008-01-01

    In this paper a weighting function for voltage unbalance correction is proposed to be integrated into the control of distributed grid-interfacing systems. The correction action can help decrease the negative-sequence voltage at the point of connection with the grid. Based on the voltage unbalance

  7. Microprocessor-controlled, programmable ramp voltage generator

    International Nuclear Information System (INIS)

    Hopwood, J.

    1978-11-01

    A special-purpose voltage generator has been developed for driving the quadrupole mass filter of a residual gas analyzer. The generator is microprocessor-controlled with desired ramping parameters programmed by setting front-panel digital thumb switches. The start voltage, stop voltage, and time of each excursion are selectable. A maximum of five start-stop levels may be pre-selected for each program. The ramp voltage is 0 to 10 volts with sweep times from 0.1 to 999.99 seconds

  8. Coordinated Voltage Control of Active Distribution Network

    Directory of Open Access Journals (Sweden)

    Xie Jiang

    2016-01-01

    Full Text Available This paper presents a centralized coordinated voltage control method for active distribution network to solve off-limit problem of voltage after incorporation of distributed generation (DG. The proposed method consists of two parts, it coordinated primal-dual interior point method-based voltage regulation schemes of DG reactive powers and capacitors with centralized on-load tap changer (OLTC controlling method which utilizes system’s maximum and minimum voltages, to improve the qualified rate of voltage and reduce the operation numbers of OLTC. The proposed coordination has considered the cost of capacitors. The method is tested using a radial edited IEEE-33 nodes distribution network which is modelled using MATLAB.

  9. Stability Boundaries for Offshore Wind Park Distributed Voltage Control

    DEFF Research Database (Denmark)

    Gryning, Mikkel P.S.; Wu, Qiuwei; Kocewiak, Lukasz

    2017-01-01

    pilot control. Using data from the actual wind power plant, all stabilizing subsystem voltage proportional-integral controller parameters are first characterized based on their Hurwitz signature. Inner loop current control is then designed using Internal Mode Control principles, and guidelines for feed......In order to identify mechanisms causing slow reactive power oscillations observed in an existing offshore wind power plant, and be able to avoid similar events in the future, voltage control is studied in this paper for a plant with a static synchronous compensator, type-4 wind turbines and a park...... forward filter design are given to obtain required disturbance rejection properties. The paper contributes by providing analytical relations between power plant control, droop, sampling time, electrical parameters and voltage control characteristics, and by assessing frequencies and damping of reactive...

  10. Sensorless Control of IPMSM by Voltage Injection

    DEFF Research Database (Denmark)

    Matzen, Torben N.; Bech, Michael Møller

    2006-01-01

    In this paper a sensorless discrete current control of an Interior Permanent Magnet Synchrouns Motor (IPMSM) by voltage injection is designed and tested. The whole controller is operating in the dq-frame and for this reason the rotor position is essential to know, to transform between the station......In this paper a sensorless discrete current control of an Interior Permanent Magnet Synchrouns Motor (IPMSM) by voltage injection is designed and tested. The whole controller is operating in the dq-frame and for this reason the rotor position is essential to know, to transform between...... the stationary frame and the rotor xed dq-frame. To obtain the position even at standstill a sensorless scheme using voltage injection is added to the current controller....

  11. Multiagent voltage and reactive power control system

    Directory of Open Access Journals (Sweden)

    I. Arkhipov

    2014-12-01

    Full Text Available This paper is devoted to the research of multiagent voltage and reactive power control system development. The prototype of the system has been developed by R&D Center at FGC UES (Russia. The control system architecture is based on the innovative multiagent system theory application that leads to the achievement of several significant advantages (in comparison to traditional control systems implementation such as control system efficiency enhancement, control system survivability and cyber security.

  12. Voltage control of DC islanded microgrids

    DEFF Research Database (Denmark)

    Tucci, Michele; Riverso, Stefano; Quintero, Juan Carlos Vasquez

    2015-01-01

    We propose a new decentralized control scheme for DC Islanded microGrids (ImGs) composed by several Distributed Generation Units (DGUs) with a general interconnection topology. Each local controller regulates to a reference value the voltage of the Point of Common Coupling (PCC...

  13. Integration Test of the High Voltage Hall Accelerator System Components

    Science.gov (United States)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Pinero, Luis; Peterson, Todd; Dankanich, John

    2013-01-01

    NASA Glenn Research Center is developing a 4 kilowatt-class Hall propulsion system for implementation in NASA science missions. NASA science mission performance analysis was completed using the latest high voltage Hall accelerator (HiVHAc) and Aerojet-Rocketdyne's state-of-the-art BPT-4000 Hall thruster performance curves. Mission analysis results indicated that the HiVHAc thruster out performs the BPT-4000 thruster for all but one of the missions studied. Tests of the HiVHAc system major components were performed. Performance evaluation of the HiVHAc thruster at NASA Glenn's vacuum facility 5 indicated that thruster performance was lower than performance levels attained during tests in vacuum facility 12 due to the lower background pressures attained during vacuum facility 5 tests when compared to vacuum facility 12. Voltage-Current characterization of the HiVHAc thruster in vacuum facility 5 showed that the HiVHAc thruster can operate stably for a wide range of anode flow rates for discharge voltages between 250 and 600 volts. A Colorado Power Electronics enhanced brassboard power processing unit was tested in vacuum for 1,500 hours and the unit demonstrated discharge module efficiency of 96.3% at 3.9 kilowatts and 650 volts. Stand-alone open and closed loop tests of a VACCO TRL 6 xenon flow control module were also performed. An integrated test of the HiVHAc thruster, brassboard power processing unit, and xenon flow control module was performed and confirmed that integrated operation of the HiVHAc system major components. Future plans include continuing the maturation of the HiVHAc system major components and the performance of a single-string integration test.

  14. Voltage-Sensitive Load Controllers for Voltage Regulation and Increased Load Factor in Distribution Systems

    DEFF Research Database (Denmark)

    Douglass, Philip James; Garcia-Valle, Rodrigo; Østergaard, Jacob

    2014-01-01

    This paper presents a novel controller design for controlling appliances based on local measurements of voltage. The controller finds the normalized voltage deviation accounting for the sensitivity of voltage measurements to appliance state. The controller produces a signal indicating desired pow...

  15. Design and Control of a Dynamic Voltage Restorer

    DEFF Research Database (Denmark)

    Nielsen, John Godsk

    voltage until the energy storage is completely drained or the voltages have returned to normal voltage levels. The control of the HV-DVR is a combined feedforward and feedback control to have a fast response time and load independent voltages. The control is implemented in a rotating dq-reference frame...... electric consumers against voltage dips and surges in the medium and low voltage distribution grid. The thesis first gives an introduction to relevant power quality issues for a DVR and power electronic controllers for voltage dip mitigation. Thereafter the operation and the elements in a DVR are described...... of symmetrical and non-symmetrical voltage dips. In most cases the DVR is capable of restoring the load voltages within 2 ms. During the transition phases load voltage oscillations can be generated and during the return of the supply voltages short time over-voltages can be generated by the DVR. Both...

  16. Integrated controls

    International Nuclear Information System (INIS)

    Hollaway, F.W.

    1985-01-01

    During 1984, all portions of the Nova control system that were necessary for the support of laser activation and completion of the Nova project were finished and placed in service on time. The Nova control system has been unique in providing, on schedule, the capabilities required in the central control room and in various local control areas throughout the facility. The ambitious goal of deploying this system early enough to use it as an aid in the activation of the laser was accomplished; thus the control system made a major contribution to the completion of Nova activation on schedule. Support and enhancement activities continued during the year on the VAX computer systems, central control room, operator consoles and displays, Novanet data communications network, system-level software for both the VAX and LSI-11 computers, Praxis control system computer language, software management tools, and the development system, which includes office terminals. Computational support was also supplied for a wide variety of test fixtures required by the optical and mechanical subsystems. Significant new advancements were made in four areas in integrated controls this year: the integration software (which includes the shot scheduler), the Praxis language, software quality assurance audit, and software development and data handling. A description of the accomplishments in each of these areas follows

  17. All-Pass Filter Based Linear Voltage Controlled Quadrature Oscillator

    Directory of Open Access Journals (Sweden)

    Koushick Mathur

    2017-01-01

    Full Text Available A linear voltage controlled quadrature oscillator implemented from a first-order electronically tunable all-pass filter (ETAF is presented. The active element is commercially available current feedback amplifier (AD844 in conjunction with the relatively new Multiplication Mode Current Conveyor (MMCC device. Electronic tunability is obtained by the control node voltage (V of the MMCC. Effects of the device nonidealities, namely, the parasitic capacitors and the roll-off poles of the port-transfer ratios of the device, are shown to be negligible, even though the usable high-frequency ranges are constrained by these imperfections. Subsequently the filter is looped with an electronically tunable integrator (ETI to implement the quadrature oscillator (QO. Experimental responses on the voltage tunable phase of the filter and the linear-tuning law of the quadrature oscillator up to 9.9 MHz at low THD are verified by simulation and hardware tests.

  18. Integrated differential high-voltage transmitting circuit for CMUTs

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Larsen, Dennis Øland; Farch, Kjartan

    2015-01-01

    In this paper an integrated differential high-voltage transmitting circuit for capacitive micromachined ultrasonic transducers (CMUTs) used in portable ultrasound scanners is designed and implemented in a 0.35 μm high-voltage process. Measurements are performed on the integrated circuit in order...... to assess its performance. The circuit generates pulses at differential voltage levels of 60V, 80V and 100 V, a frequency up to 5MHz and a measured driving strength of 1.75 V/ns with the CMUT connected. The total on-chip area occupied by the transmitting circuit is 0.18 mm2 and the power consumption...

  19. Voltage control on a train system

    Science.gov (United States)

    Gordon, Susanna P.; Evans, John A.

    2004-01-20

    The present invention provides methods for preventing low train voltages and managing interference, thereby improving the efficiency, reliability, and passenger comfort associated with commuter trains. An algorithm implementing neural network technology is used to predict low voltages before they occur. Once voltages are predicted, then multiple trains can be controlled to prevent low voltage events. Further, algorithms for managing inference are presented in the present invention. Different types of interference problems are addressed in the present invention such as "Interference During Acceleration", "Interference Near Station Stops", and "Interference During Delay Recovery." Managing such interference avoids unnecessary brake/acceleration cycles during acceleration, immediately before station stops, and after substantial delays. Algorithms are demonstrated to avoid oscillatory brake/acceleration cycles due to interference and to smooth the trajectories of closely following trains. This is achieved by maintaining sufficient following distances to avoid unnecessary braking/accelerating. These methods generate smooth train trajectories, making for a more comfortable ride, and improve train motor reliability by avoiding unnecessary mode-changes between propulsion and braking. These algorithms can also have a favorable impact on traction power system requirements and energy consumption.

  20. A Half-Bridge Voltage Balancer with New Controller for Bipolar DC Distribution Systems

    Directory of Open Access Journals (Sweden)

    Byung-Moon Han

    2016-03-01

    Full Text Available This paper proposes a half-bridge voltage balancer with a new controller for bipolar DC distribution systems. The proposed control scheme consists of two cascaded Proportional Integral (PI controls rather than one PI control for balancing the pole voltage. In order to confirm the excellence of voltage balancing performance, a typical bipolar DC distribution system including a half-bridge voltage balancer with proposed controller was analyzed by computer simulations. Experiments with a scaled prototype were also carried out to confirm the simulation results. The half-bridge voltage balancer with proposed controller shows better performance than the half-bridge voltage balancer with one PI control for balancing the pole voltage.

  1. Current integrator using the voltage to frequency converter

    International Nuclear Information System (INIS)

    Ukai, K.; Gomi, K.

    1975-01-01

    A current integrator using the Voltage to Frequency Converter has been constructed to measure the beam intensity of the 1.3 GeV Electron Synchrotron at the INS. This integrator ranges the current 10 -7 to 10 -11 amperes and has been calibrated by the extracted electron beam and constant current sources. The accuracy of this integrator agrees with the previous integrator within 1%. (auth.)

  2. Artificial intelligence techniques for voltage control

    Energy Technology Data Exchange (ETDEWEB)

    Ekwue, A.; Cheng, D.T.Y.; Macqueen, J.F.

    1997-12-31

    In electric power systems, the advantages of reactive power dispatching or optimisation include improved utilisation of reactive power sources and hence reduction in reactive power flows and real losses of the system; unloading of the system and equipment as a result of reactive flow reduction; the power factors of generation are improved and system security is enhanced; reduced voltage gradients and somewhat higher voltages which result across the system from improved operation; deferred capital investment is new reactive power sources as a result of improved utilisation of existing equipment; and for the National Grid Company plc (NGC), the main advantage is reduced out-of-merit operation. The problem of reactive power control has been studied and widely reported in the literature. Non-linear programming methods as well as linear programming techniques for constraint dispatch have been described. Static optimisation of reactive power sources by the use of sensitivity analysis was described by Kishore and Hill. Long range optimum var planning has been considered and the optimum amount and location of network reactive compensation so as to maintain the system voltage within the desired limits, while operating under normal and various insecurity states, have also been studied using several methods. The objective of this chapter is therefore to review conventional methods as well as AI techniques for reactive power control. (Author)

  3. Automatic Voltage Control (AVC) of Danish Transmission System - Concept design

    DEFF Research Database (Denmark)

    Qin, Nan; Abildgaard, Hans; Lund, P.

    2014-01-01

    For more than 20 years it has been a consistent plan by all Danish governments to turn the Danish power production away from fossil fuels towards renewable energy. The result today is that 37% of the total Danish power consumption was covered by mainly wind energy in 2013 aiming at 50% by 2020......, objectives, constraints, algorithms for optimal power flow and some special functions in particular systems, which inspires the concept design of a Danish AVC system to address the future challenges of voltage control. In the concept, the Danish AVC design is based on a centralized control scheme. All...... the substation loses the telecommunications to the control center. RPCs will be integrated to the AVC system as normative regulators in the later stage. Distributed generation units can be organized as virtual power plants and participate in voltage control at transmission level. Energinet.dk as the Danish TSO...

  4. a microprocessor-based control, scheme for a pwm voltage-fed

    African Journals Online (AJOL)

    Dr Obe

    power circuit over-current and over-voltage protection against adverse changes in the inverter input supply and the ... integral controllers constitute the main control program while the application of thyristor gating ... current flow to the load.

  5. High Voltage Dielectrophoretic and Magnetophoretic Hybrid Integrated Circuit / Microfluidic Chip

    Science.gov (United States)

    Issadore, David; Franke, Thomas; Brown, Keith A.; Hunt, Thomas P.; Westervelt, Robert M.

    2010-01-01

    A hybrid integrated circuit (IC) / microfluidic chip is presented that independently and simultaneously traps and moves microscopic objects suspended in fluid using both electric and magnetic fields. This hybrid chip controls the location of dielectric objects, such as living cells and drops of fluid, on a 60 × 61 array of pixels that are 30 × 38 μm2 in size, each of which can be individually addressed with a 50 V peak-to-peak, DC to 10 MHz radio frequency voltage. These high voltage pixels produce electric fields above the chip’s surface with a magnitude , resulting in strong dielectrophoresis (DEP) forces . Underneath the array of DEP pixels there is a magnetic matrix that consists of two perpendicular sets of 60 metal wires running across the chip. Each wire can be sourced with 120 mA to trap and move magnetically susceptible objects using magnetophoresis (MP). The DEP pixel array and magnetic matrix can be used simultaneously to apply forces to microscopic objects, such as living cells or lipid vesicles, that are tagged with magnetic nanoparticles. The capabilities of the hybrid IC / microfluidic chip demonstrated in this paper provide important building blocks for a platform for biological and chemical applications. PMID:20625468

  6. Voltage Balancing Control of Diode-Clamped Multilevel Inverter

    Directory of Open Access Journals (Sweden)

    ŞCHIOP Adrian

    2013-10-01

    Full Text Available In this paper is developed a control scheme for mono-phase diode clamped inverter to achieve balancing voltages on inverter capacitors. First, it develops a control scheme without taking into account the need to balance voltage on two capacitors. It examines the effects on the output voltage inverter, and then it realizes two control schemes that will balance the voltages. The simulations of control schemes were performed in OrCAD Pspice.

  7. Advanced Control of the Dynamic Voltage Restorer for Mitigating Voltage Sags in Power Systems

    Directory of Open Access Journals (Sweden)

    Dung Vo Tien

    2018-01-01

    Full Text Available The paper presents a vector control with two cascaded loops to improve the properties of Dynamic Voltage Restorer (DVR to minimize Voltage Sags on the grid. Thereby, a vector controlled structure was built on the rotating dq-coordinate system with the combination of voltage control and the current control. The proposed DVR control method is modelled using MATLAB-Simulink. It is tested using balanced/unbalanced voltage sags as well as fluctuant and distorted voltages. As a result, by using this controlling method, the dynamic characteristics of the system have been improved significantly. The system performed with higher accuracy, faster response and lower distortion in the voltage sags compensation. The paper presents real time experimental results to verify the performance of the proposed method in real environments.

  8. Resonance analysis in parallel voltage-controlled Distributed Generation inverters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe

    2013-01-01

    Thanks to the fast responses of the inner voltage and current control loops, the dynamic behaviors of parallel voltage-controlled Distributed Generation (DG) inverters not only relies on the stability of load sharing among them, but subjects to the interactions between the voltage control loops...

  9. MPPT algorithm for voltage controlled PV inverters

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Teodorescu, Remus; Liserre, Marco

    2008-01-01

    This paper presents a novel concept for an MPPT that can be used in case of a voltage controlled grid connected PV inverters. In case of single-phase systems, the 100 Hz ripple in the AC power is also present on the DC side. Depending on the DC link capacitor, this power fluctuation can be used t...... to track the MPP of the PV array, using the information that at MPP the power oscillations are very small. In this way the algorithm can detect the fact that the current working point is at the MPP, for the current atmospheric conditions....

  10. Intelligent distributed voltage control system for smart grid application

    Energy Technology Data Exchange (ETDEWEB)

    Sajadi, Amirhossein [Warsaw Univ. of Technology (Poland); Ariatabar, Mitra [RWTH Aachen Univ. (Germany)

    2012-07-01

    Increasing penetration of the renewable energy source (RES) units in distribution networks particularly due to nonlinear and unpredictable nature of renewable units brings up new challenges in different aspects of electricity network, which leads to more complex power systems. Multi-agent system is consisting of agents which are capable to perceive environment that they are located in and to reacts with each other by communication infrastructure in order to achieve overall goals. In this paper an approach to control the voltage based on in the power distribution system is proposed and discussed. Therefore, a multi-agent system has been integrated with artificial intelligence to come up with fuzzy multi-agent based system. The proposed control scheme is deployed to a smart distribution system consisting distribution generation units, modelled in MATLAB/Simulink, to evaluate its effectiveness. The simulation results show how proposed system can regulate voltage in smart distribution feeders. (orig.)

  11. On Secondary Control Approaches for Voltage Regulation in DC Microgrids

    DEFF Research Database (Denmark)

    Peyghami, Saeed; Mokhtari, Hossein; Davari, Pooya

    2017-01-01

    Centralized or decentralized secondary controller is commonly employed to regulate the voltage drop raised by the primary controller. However, in the case of high capacity MGs and long feeders with much voltage drop on the line resistances, the conventional methods may not guarantee the voltage r...

  12. On Secondary Control Approaches for Voltage Regulation in DC Microgrids

    DEFF Research Database (Denmark)

    Peyghami Akhuleh, Saeed; Mokhtari, Hossein; Davari, Pooya

    2017-01-01

    Centralized or decentralized secondary controller is commonly employed to regulate the voltage drop raised by the primary controller. However, in the case of high capacity MGs and long feeders with much voltage drop on the line resistances, the conventional methods may not guarantee the voltage...

  13. Integrated Reconfigurable High-Voltage Transmitting Circuit for CMUTs

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Larsen, Dennis Øland; Jørgensen, Ivan Harald Holger

    2014-01-01

    -out and measurements are performed on the integrated circuit. The transmitting circuit is reconfigurable externally making it able to drive a wide variety of CMUTs. The transmitting circuit can generate several pulse shapes, pulse voltages up to 100 V, maximum pulse range of 50 V and frequencies up to 5 MHz. The area...

  14. Investigation of phase-wise voltage regulator control logics for compensating voltage deviations in an experimental low voltage network

    DEFF Research Database (Denmark)

    Hu, Junjie; Zecchino, Antonio; Marinelli, Mattia

    2016-01-01

    This paper investigates the control logics of an on-load tap-changer (OLTC) transformer by means of an experimental system validation. The experimental low-voltage unbalanced system consists of a decoupled single-phase OLTC transformer, a 75-metre 16 mm2 cable, a controllable single-phase resistive...... load and an electric vehicle, which has the vehicle-to-grid function. Three control logics of the OLTC transformer are described in the study. The three control logics are classified based on their control objectives and control inputs, which include network currents and voltages, and can be measured...... either locally or remotely. To evaluate and compare the control performances of the three control logics, all the tests use the same loading profiles. The experimental results indicate that the modified line compensation control can regulate voltage in a safe band in the case of various load...

  15. An integrated gyrotron controller

    Energy Technology Data Exchange (ETDEWEB)

    Michel, Georg, E-mail: michel@ipp.mpg.de; Sachtleben, Juergen

    2011-10-15

    The ECRH system of W7-X is composed of 10 independent gyrotron modules. Each module consists of one gyrotron and its peripherals such as power supplies, cooling plants and distributed PLC systems. The fast real-time control functions such as the timing of the two high voltage supplies, trigger pulses, protection, modulation and communication with the central control of W7-X, is implemented in an integrated controller which is described in this paper. As long-term maintainability and sustainability are important for nuclear fusion experiments, the choice fell on an FPGA-based design which is exclusively based on free (as in 'freedom') software and configuration code. The core of the controller consists of a real-time Java virtual machine (JVM) that provides the TCP-IP connectivity as well as more complicated control functions, and which interacts with the gyrotron-specific hardware. Both the gyrotron-specific hardware and the JVM are implemented on the same FPGA, which is the main component of the controller. All 10 controllers are currently completed and operational. All parameters and functions are accessible via Ethernet. Due to the open, FPGA-based design, most hardware modifications can be made via the network as well. This paper discusses the capabilities of the controllers and their integration into the central W7-X control.

  16. Intelligent voltage control in a DC micro-grid containing PV generation and energy storage

    OpenAIRE

    Rouzbehi, Kumars; Miranian, Arash; Candela García, José Ignacio; Luna Alloza, Álvaro; Rodríguez Cortés, Pedro

    2014-01-01

    This paper proposes an intelligent control scheme for DC voltage regulationin a DC micro-grid integrating photovoltaic (PV) generation, energy storage and electric loads. The maximum power generation of the PV panel is followed using the incremental conductance (IC) maximum power point tracking (MPPT) algorithm while a high-performance local linear controller (LLC)is developed for the DC voltage control in the micro-grid.The LLC, as a data-driven control strategy, controls the bidirectional c...

  17. DC-bus voltage control of grid-connected voltage source converter by using space vector modulated direct power control under unbalanced network conditions

    DEFF Research Database (Denmark)

    Xiao, Lei; Huang, Shoudao; Lu, Kaiyuan

    2013-01-01

    Unbalanced grid voltage will cause large dc-bus voltage ripple and introduce high harmonic current components on the grid side. This will severely threaten the safety of the grid-connected voltage source converter (VSC) and consequently, affect the healthy operation condition of the load. In this......Unbalanced grid voltage will cause large dc-bus voltage ripple and introduce high harmonic current components on the grid side. This will severely threaten the safety of the grid-connected voltage source converter (VSC) and consequently, affect the healthy operation condition of the load....... In this study, a new proportional-integral-resonant (PI-RES) controller-based, space vector modulated direct power control topology is proposed to suppress the dc-bus voltage ripple and in the same time, controlling effectively the instantaneous power of the VSC. A special ac reactive power reference component...... is introduced in the controller, which is necessary in order to reduce the dc-bus voltage ripple and active power harmonics at the same time. The proposed control topology is implemented in the lab. Simulation and experimental results are provided to validate its performance and the analysis presented...

  18. Time-division-multiplex control scheme for voltage multiplier rectifiers

    Directory of Open Access Journals (Sweden)

    Bin-Han Liu

    2017-03-01

    Full Text Available A voltage multiplier rectifier with a novel time-division-multiplexing (TDM control scheme for high step-up converters is proposed in this study. In the proposed TDM control scheme, two full-wave voltage doubler rectifiers can be combined to realise a voltage quadrupler rectifier. The proposed voltage quadrupler rectifier can reduce transformer turn ratio and transformer size for high step-up converters and also reduce voltage stress for the output capacitors and rectifier diodes. An N-times voltage rectifier can be straightforwardly produced by extending the concepts from the proposed TDM control scheme. A phase-shift full-bridge (PSFB converter is adopted in the primary side of the proposed voltage quadrupler rectifier to construct a PSFB quadrupler converter. Experimental results for the PSFB quadrupler converter demonstrate the performance of the proposed TDM control scheme for voltage quadrupler rectifiers. An 8-times voltage rectifier is simulated to determine the validity of extending the proposed TDM control scheme to realise an N-times voltage rectifier. Experimental and simulation results show that the proposed TDM control scheme has great potential to be used in high step-up converters.

  19. An Integrated Chip High-Voltage Power Receiver for Wireless Biomedical Implants

    Directory of Open Access Journals (Sweden)

    Vijith Vijayakumaran Nair

    2015-06-01

    Full Text Available In near-field wireless-powered biomedical implants, the receiver voltage largely overrides the compliance of low-voltage power receiver systems. To limit the induced voltage, generally, low-voltage topologies utilize limiter circuits, voltage clippers or shunt regulators, which are power-inefficient methods. In order to overcome the voltage limitation and improve power efficiency, we propose an integrated chip high-voltage power receiver based on the step down approach. The topology accommodates voltages as high as 30 V and comprises a high-voltage semi-active rectifier, a voltage reference generator and a series regulator. Further, a battery management circuit that enables safe and reliable implant battery charging based on analog control is proposed and realized. The power receiver is fabricated in 0.35-μm high-voltage Bipolar-CMOS-DMOStechnology based on the LOCOS0.35-μm CMOS process. Measurement results indicate 83.5% power conversion efficiency for a rectifier at 2.1 mA load current. The low drop-out regulator based on the current buffer compensation and buffer impedance attenuation scheme operates with low quiescent current, reduces the power consumption and provides good stability. The topology also provides good power supply rejection, which is adequate for the design application. Measurement results indicate regulator output of 4 ± 0.03 V for input from 5 to 30 V and 10 ± 0.05 V output for input from 11 to 30 V with load current 0.01–100 mA. The charger circuit manages the charging of the Li-ion battery through all if the typical stages of the Li-ion battery charging profile.

  20. High-voltage integrated transmitting circuit with differential driving for CMUTs

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Larsen, Dennis Øland; Færch, Kjartan Ullitz

    2016-01-01

    In this paper, a high-voltage integrated differential transmitting circuit for capacitive micromachined ultrasonic transducers (CMUTs) used in portable ultrasound scanners is presented. Due to its application, area and power consumption are critical and need to be minimized. The circuitry...... is designed and implemented in AMS 0.35 μ m high-voltage process. Measurements are performed on the fabricated integrated circuit in order to assess its performance. The transmitting circuit consists of a low-voltage control logic, pulse-triggered level shifters and a differential output stage that generates...... conditions is 0.936 mW including the load. The integrated circuits measured prove to be consistent and robust to local process variations by measurements....

  1. Smart Demand for Improving Short-term Voltage Control on Distribution Networks

    DEFF Research Database (Denmark)

    Garcia-Valle, Rodrigo; P. Da Silva, Luiz C.; Xu, Zhao

    2009-01-01

    customer integration to aid power system performance is almost inevitable. This study introduces a new type of smart demand side technology, denoted demand as voltage controlled reserve (DVR), to improve short-term voltage control, where customers are expected to play a more dynamic role to improve voltage...... control. The technology can be provided by thermostatically controlled loads as well as other types of load. This technology is proven to be effective in case of distribution systems with a large composition of induction motors, where the voltage presents a slow recovery characteristic due to deceleration...... of the motors during faults. This study presents detailed models, discussion and simulation tests to demonstrate the technical viability and effectiveness of the DVR technology for short-term voltage control....

  2. Grid Voltage Modulated Control of Grid-Connected Voltage Source Inverters under Unbalanced Grid Conditions

    DEFF Research Database (Denmark)

    Li, Mingshen; Gui, Yonghao; Quintero, Juan Carlos Vasquez

    2017-01-01

    In this paper, an improved grid voltage modulated control (GVM) with power compensation is proposed for grid-connected voltage inverters when the grid voltage is unbalanced. The objective of the proposed control is to remove the power ripple and to improve current quality. Three power compensation...... objectives are selected to eliminate the negative sequence components of currents. The modified GVM method is designed to obtain two separate second-order systems for not only the fast convergence rate of the instantaneous active and reactive powers but also the robust performance. In addition, this method...

  3. Voltage Control System of A DC Generator Using PLC

    OpenAIRE

    Subrata CHATTOPADHYAY; Sagarika PAL

    2008-01-01

    The voltage control system of a DC generator may suffer from high frequency oscillations without offset or low frequency oscillation with offset. A PID controller can eliminate both these errors. In the present paper, the voltage control system of a DC generator using a PLC based PID controller has been designed. Operation of PLC as a continuous controller has been described and the load characteristic of DC generator with and without controller have been determined experimentally and reporte...

  4. Automatic Voltage Control (AVC) System under Uncertainty from Wind Power

    DEFF Research Database (Denmark)

    Qin, Nan; Abildgaard, Hans; Flynn, Damian

    2016-01-01

    An automatic voltage control (AVC) system maintains the voltage profile of a power system in an acceptable range and minimizes the operational cost by coordinating the regulation of controllable components. Typically, all of the parameters in the optimization problem are assumed to be certain...... and constant in the decision making process. However, for high shares of wind power, uncertainty in the decision process due to wind power variability may result in an infeasible AVC solution. This paper proposes a voltage control approach which considers the voltage uncertainty from wind power productions....... The proposed method improves the performance and the robustness of a scenario based approach by estimating the potential voltage variations due to fluctuating wind power production, and introduces a voltage margin to protect the decision against uncertainty for each scenario. The effectiveness of the proposed...

  5. Secondary control for voltage unbalance compensation in an islanded microgrid

    DEFF Research Database (Denmark)

    Savaghebi, Mehdi; Guerrero, Josep M.; Jalilian, Alireza

    2011-01-01

    In this paper, the concept of secondary control is applied for voltage unbalance compensation in an islanded microgrid. The aim of the proposed control approach is to enhance the voltage quality at the point of common coupling (PCC). Unbalance compensation is achieved by proper control...... of distributed generators (DGs). The DGs control structure mainly consists of active and reactive power controllers, virtual impedance loop and voltage and current proportional-resonant controllers. Simulation results are presented for different cases. The results show the effectiveness of the proposed approach...

  6. Secondary Voltage Control for Harmonics Suppression in Islanded Microgrids

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Guerrero, Josep M.; Blaabjerg, Frede

    2011-01-01

    in islanded microgrids. In addition to the centralized controller for fundamental frequency voltage component, a selective harmonic compensator is implemented in the secondary voltage control system. With the help of Park transformation, the cyclic references generated by the selective harmonic compensator...

  7. Circuit and method for controlling the threshold voltage of transistors.

    NARCIS (Netherlands)

    2008-01-01

    A control unit, for controlling a threshold voltage of a circuit unit having transistor devices, includes a reference circuit and a measuring unit. The measuring unit is configured to measure a threshold voltage of at least one sensing transistor of the circuit unit, and to measure a threshold

  8. Robust Fallback Scheme for the Danish Automatic Voltage Control System

    DEFF Research Database (Denmark)

    Qin, Nan; Dmitrova, Evgenia; Lund, Torsten

    2015-01-01

    This paper proposes a fallback scheme for the Danish automatic voltage control system. It will be activated in case of the local station loses telecommunication to the control center and/or the local station voltage violates the acceptable operational limits. It cuts in/out switchable and tap...... power system....

  9. Strategies for Voltage Control and Transient Stability Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hiskens, Ian A.

    2013-09-25

    As wind generation grows, its influence on power system performance will becoming increasingly noticeable. Wind generation di ffers from traditional forms of generation in numerous ways though, motivating the need to reconsider the usual approaches to power system assessment and performance enhancement. The project has investigated the impact of wind generation on transient stability and voltage control, identifying and addressing issues at three distinct levels of the power system: 1) at the device level, the physical characteristics of wind turbine generators (WTGs) are quite unlike those of synchronous machines, 2) at the wind-farm level, the provision of reactive support is achieved through coordination of numerous dissimilar devices, rather than straightforward generator control, and 3) from a systems perspective, the location of wind-farms on the sub-transmission network, coupled with the variability inherent in their power output, can cause complex voltage control issues. The project has sought to develop a thorough understanding of the dynamic behaviour of type-3 WTGs, and in particular the WECC generic model. The behaviour of such models is governed by interactions between the continuous dynamics of state variables and discrete events associated with limits. It was shown that these interactions can be quite complex, and may lead to switching deadlock that prevents continuation of the trajectory. Switching hysteresis was proposed for eliminating deadlock situations. Various type-3 WTG models include control blocks that duplicate integrators. It was shown that this leads to non-uniqueness in the conditions governing steady-state, and may result in pre- and post-disturbance equilibria not coinciding. It also gives rise to a zero eigenvalue in the linearized WTG model. In order to eliminate the anomalous behaviour revealed through this investigation, WECC has now released a new generic model for type-3 WTGs. Wind-farms typically incorporate a variety of

  10. Development of a fast voltage control method for electrostatic accelerators

    International Nuclear Information System (INIS)

    Lobanov, Nikolai R.; Linardakis, Peter; Tsifakis, Dimitrios

    2014-01-01

    The concept of a novel fast voltage control loop for tandem electrostatic accelerators is described. This control loop utilises high-frequency components of the ion beam current intercepted by the image slits to generate a correction voltage that is applied to the first few gaps of the low- and high-energy acceleration tubes adjoining the high voltage terminal. New techniques for the direct measurement of the transfer function of an ultra-high impedance structure, such as an electrostatic accelerator, have been developed. For the first time, the transfer function for the fast feedback loop has been measured directly. Slow voltage variations are stabilised with common corona control loop and the relationship between transfer functions for the slow and new fast control loops required for optimum operation is discussed. The main source of terminal voltage instabilities, which are due to variation of the charging current caused by mechanical oscillations of charging chains, has been analysed

  11. Adaptive Voltage Control Strategy for Variable-Speed Wind Turbine Connected to a Weak Network

    DEFF Research Database (Denmark)

    Abulanwar, Elsayed; Hu, Weihao; Chen, Zhe

    2016-01-01

    and smoothness at the point of connection (POC) in order to maximise the wind power penetration into such networks. Intensive simulation case studies under different network topology and wind speed ranges reveal the effectiveness of the AVC scheme to effectively suppress the POC voltage variations particularly......Significant voltage fluctuations and power quality issues pose considerable constraints on the efficient integration of remotely located wind turbines into weak networks. Besides, 3p oscillations arising from the wind shear and tower shadow effects induce further voltage perturbations during...... continuous operation. This study investigates and analyses the repercussions raised by integrating a doubly-fed induction generator wind turbine into an ac network of different parameters and very weak conditions. An adaptive voltage control (AVC) strategy is proposed to retain voltage constancy...

  12. Characteristics of output voltage and current of integrated nanogenerators

    KAUST Repository

    Yang, Rusen

    2009-01-01

    Owing to the anisotropic property and small output signals of the piezoelectric nanogenerators (NGs) and the influence of the measurement system and environment, identification of the true signal generated by the NG is critical. We have developed three criteria: Schottky behavior test, switching-polarity tests, and linear superposition of current and voltage tests. The 11 tests can effectively rule out the system artifacts, whose sign does not change with the switching measurement polarity, and random signals, which might change signs but cannot consistently add up or cancel out under designed connection configurations. This study establishes the standards for designing and scale up of integrated nanogenerators. © 2009 American Institute of Physics.

  13. Thermally-induced voltage alteration for integrated circuit analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cole, E.I. Jr.

    2000-06-20

    A thermally-induced voltage alteration (TIVA) apparatus and method are disclosed for analyzing an integrated circuit (IC) either from a device side of the IC or through the IC substrate to locate any open-circuit or short-circuit defects therein. The TIVA apparatus uses constant-current biasing of the IC while scanning a focused laser beam over electrical conductors (i.e. a patterned metallization) in the IC to produce localized heating of the conductors. This localized heating produces a thermoelectric potential due to the Seebeck effect in any conductors with open-circuit defects and a resistance change in any conductors with short-circuit defects, both of which alter the power demand by the IC and thereby change the voltage of a source or power supply providing the constant-current biasing. By measuring the change in the supply voltage and the position of the focused and scanned laser beam over time, any open-circuit or short-circuit defects in the IC can be located and imaged. The TIVA apparatus can be formed in part from a scanning optical microscope, and has applications for qualification testing or failure analysis of ICs.

  14. Control and Testing of a Dynamic Voltage Restorer (DVR) at Medium Voltage Level

    DEFF Research Database (Denmark)

    Nielsen, John Godsk; Newman, Michael; Nielsen, Hans Ove

    2004-01-01

    power sensitive loads from voltage sags. This paper reports practical test results obtained on a medium voltage (10 kV) level using a DVR at a Distribution test facility in Kyndby, Denmark. The DVR was designed to protect a 400-kVA load from a 0.5-p.u. maximum voltage sag. The reported DVR verifies......The dynamic voltage restorer (DVR) has become popular as a cost effective solution for the protection of sensitive loads from voltage sags. Implementations of the DVR have been proposed at both a low voltage (LV) level, as well as a medium voltage (MV) level; and give an opportunity to protect high...... the use of a feed-forward and feed-back technique of the controller and it obtains both good transient and steady state responses. The effect of the DVR on the system is experimentally investigated under both faulted and non-faulted system states, for a variety of linear and non-linear loads. Variable...

  15. Reproducible and controllable induction voltage adder for scaled beam experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Yasuo; Nakajima, Mitsuo; Horioka, Kazuhiko [Department of Energy Sciences, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan)

    2016-08-15

    A reproducible and controllable induction adder was developed using solid-state switching devices and Finemet cores for scaled beam compression experiments. A gate controlled MOSFET circuit was developed for the controllable voltage driver. The MOSFET circuit drove the induction adder at low magnetization levels of the cores which enabled us to form reproducible modulation voltages with jitter less than 0.3 ns. Preliminary beam compression experiments indicated that the induction adder can improve the reproducibility of modulation voltages and advance the beam physics experiments.

  16. Optical control system for high-voltage terminals

    International Nuclear Information System (INIS)

    Bicek, J.J.

    1978-01-01

    An optical control system for the control of devices in the terminal of an electrostatic accelerator includes a laser that is modulated by a series of preselected codes produced by an encoder. A photodiode receiver is placed in the laser beam at the high-voltage terminal of an electrostatic accelerator. A decoder connected to the photodiode decodes the signals to provide control impulses for a plurality of devices at the high voltage of the terminal

  17. Secondary Control for Voltage Quality Enhancement in Microgrids

    DEFF Research Database (Denmark)

    Savaghebi, Mehdi; Jalilian, Alireza; Vasquez, Juan Carlos

    2012-01-01

    In this paper, a hierarchical control scheme is proposed for enhancement of sensitive load bus (SLB) voltage quality in microgrids. The control structure consists of primary and secondary levels. The primary control level comprises distributed generators (DGs) local controllers. Each of these con......In this paper, a hierarchical control scheme is proposed for enhancement of sensitive load bus (SLB) voltage quality in microgrids. The control structure consists of primary and secondary levels. The primary control level comprises distributed generators (DGs) local controllers. Each...

  18. Control voltage and power fluctuations when connecting wind farms

    Science.gov (United States)

    Berinde, Ioan; Bǎlan, Horia; Oros Pop, Teodora Susana

    2015-12-01

    Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid. FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve.

  19. Control voltage and power fluctuations when connecting wind farms

    International Nuclear Information System (INIS)

    Berinde, Ioan; Bălan, Horia; Oros, Teodora Susana

    2015-01-01

    Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid. FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve

  20. Control voltage and power fluctuations when connecting wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Berinde, Ioan, E-mail: ioan-berinde@yahoo.com; Bălan, Horia, E-mail: hbalan@mail.utcluj.ro; Oros, Teodora Susana, E-mail: teodoraoros-87@yahoo.com [Technical University of Cluj-Napoca, Romania, Faculty of Electrical Engineering, Department of Power Engineering and Management (Romania)

    2015-12-23

    Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid. FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve.

  1. Evaluation of Voltage Control Approaches for Future Smart Distribution Networks

    Directory of Open Access Journals (Sweden)

    Pengfei Wang

    2017-08-01

    Full Text Available This paper evaluates meta-heuristic and deterministic approaches for distribution network voltage control. As part of this evaluation, a novel meta-heuristic algorithm, Cuckoo Search, is applied for distribution network voltage control and compared with a deterministic voltage control algorithm, the oriented discrete coordinate decent method (ODCDM. ODCDM has been adopted in a state-of-the-art industrial product and applied in real distribution networks. These two algorithms have been evaluated under a set of test cases, which were generated to represent the voltage control problems in current and future distribution networks. Sampled test results have been presented, and findings have been discussed regarding the adoption of different optimization algorithms for current and future distribution networks.

  2. Direct harmonic voltage control strategy for shunt active power filter

    DEFF Research Database (Denmark)

    Munir, Hafiz Mudassir; Zou, JianXiao; Xie, Chuan

    2017-01-01

    generation system (DPGS) where the nonlinear loads are highly dispersed. Local harmonic voltage detection based Resistive-APF (R-APF) seems more suitable to be applied in the DPGS, however, R-APF suffers from poor compensation performance and difficulty of parameter tuning. In this paper, a direct harmonic...... voltage control strategy for the S-APF is proposed with local point of common coupling (PCC) voltage detection only. The control strategy design procedure is given in detail. Simulation is conducted in Matlab/Simulink to compare the performance between the R-APF and the proposed method. The results...

  3. Voltage Control System of A DC Generator Using PLC

    Directory of Open Access Journals (Sweden)

    Subrata CHATTOPADHYAY

    2008-06-01

    Full Text Available The voltage control system of a DC generator may suffer from high frequency oscillations without offset or low frequency oscillation with offset. A PID controller can eliminate both these errors. In the present paper, the voltage control system of a DC generator using a PLC based PID controller has been designed. Operation of PLC as a continuous controller has been described and the load characteristic of DC generator with and without controller have been determined experimentally and reported in this paper.

  4. Coordinated single-phase control scheme for voltage unbalance reduction in low voltage network.

    Science.gov (United States)

    Pullaguram, Deepak; Mishra, Sukumar; Senroy, Nilanjan

    2017-08-13

    Low voltage (LV) distribution systems are typically unbalanced in nature due to unbalanced loading and unsymmetrical line configuration. This situation is further aggravated by single-phase power injections. A coordinated control scheme is proposed for single-phase sources, to reduce voltage unbalance. A consensus-based coordination is achieved using a multi-agent system, where each agent estimates the averaged global voltage and current magnitudes of individual phases in the LV network. These estimated values are used to modify the reference power of individual single-phase sources, to ensure system-wide balanced voltages and proper power sharing among sources connected to the same phase. Further, the high X / R ratio of the filter, used in the inverter of the single-phase source, enables control of reactive power, to minimize voltage unbalance locally. The proposed scheme is validated by simulating a LV distribution network with multiple single-phase sources subjected to various perturbations.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  5. Voltage Sags Ride-Through of Motion Sensorless Controlled PMSG for Wind Turbines

    DEFF Research Database (Denmark)

    Fatu, Marius; Lascu, Cristian; Andreescu, Gheorghe-Daniel

    2007-01-01

    This paper describes a variable-speed motion-sensorless permanent magnet synchronous generator (PMSG) control system for wind energy generation. The proposed system contains a PMSG connected to the grid by a back-to-back PWM inverter with bidirectional power flow, a line filter, and a transformer....... The control system employs PI current controllers with crosscoupling decoupling for both inverters, an active power controller, and a DC link voltage controller. The PMSG rotor speed without using emf integration, and the line voltage frequency are estimated by two PLL based observers. A Dmodule filter...

  6. Voltage control in smart grid using T2FLS

    DEFF Research Database (Denmark)

    Khodayar, Yaser; Sabahi, Kamel; Hajizadeh, Amin

    2017-01-01

    coordinated to keep the voltage within the standard range. Therefore, in this paper, a multi-agent controller based on type-2 fuzzy logic system (T2FLS) is utilized to coordinate the DG, ULTC, and load to regulate the voltage of the smart grid in the presence of noise and uncertainty. The proposed fuzzy...... system identifies the different parts of the smart grid as an agent (i.e. ULTC, DG, and load) and regulates the voltage by managing them. A 16-bus power system has been utilized to demonstrate the effectiveness of the proposed method. It has been shown that the proposed T2FLS controller outperforms...... the type-1 fuzzy controller and regulates the voltage in an appropriate way even in the presence of the different levels of measurement noise and uncertainty....

  7. High-Voltage LED Light Engine with Integrated Driver

    Energy Technology Data Exchange (ETDEWEB)

    Soer, Wouter [Lumileds LLC, San Jose, CA (United States)

    2016-02-29

    LED luminaires have seen dramatic changes in cost breakdown over the past few years. The LED component cost, which until recently was the dominant portion of luminaire cost, has fallen to a level of the same order as the other luminaire components, such as the driver, housing, optics etc. With the current state of the technology, further luminaire performance improvement and cost reduction is realized most effectively by optimization of the whole system, rather than a single component. This project focuses on improving the integration between LEDs and drivers. Lumileds has developed a light engine platform based on low-cost high-power LEDs and driver topologies optimized for integration with these LEDs on a single substrate. The integration of driver and LEDs enables an estimated luminaire cost reduction of about 25% for targeted applications, mostly due to significant reductions in driver and housing cost. The high-power LEDs are based on Lumileds’ patterned sapphire substrate flip-chip (PSS-FC) technology, affording reduced die fabrication and packaging cost compared to existing technology. Two general versions of PSS-FC die were developed in order to create the desired voltage and flux increments for driver integration: (i) small single-junction die (0.5 mm2), optimal for distributed lighting applications, and (ii) larger multi-junction die (2 mm2 and 4 mm2) for high-power directional applications. Two driver topologies were developed: a tapped linear driver topology and a single-stage switch-mode topology, taking advantage of the flexible voltage configurations of the new PSS-FC die and the simplification opportunities enabled by integration of LEDs and driver on the same board. A prototype light engine was developed for an outdoor “core module” application based on the multi-junction PSS-FC die and the single-stage switch-mode driver. The light engine meets the project efficacy target of 128 lm/W at a luminous flux

  8. Computer applications: Automatic control system for high-voltage accelerator

    International Nuclear Information System (INIS)

    Bryukhanov, A.N.; Komissarov, P.Yu.; Lapin, V.V.; Latushkin, S.T.. Fomenko, D.E.; Yudin, L.I.

    1992-01-01

    An automatic control system for a high-voltage electrostatic accelerator with an accelerating potential of up to 500 kV is described. The electronic apparatus on the high-voltage platform is controlled and monitored by means of a fiber-optic data-exchange system. The system is based on CAMAC modules that are controlled by a microprocessor crate controller. Data on accelerator operation are represented and control instructions are issued by means of an alphanumeric terminal. 8 refs., 6 figs

  9. A New Coordinated Voltage Control Scheme for Offshore AC Grid of HVDC Connected Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Sakamuri, Jayachandra N.; Cutululis, Nicolaos Antonio; Rather, Zakir Hussain

    2015-01-01

    This paper proposes a coordinated voltage control scheme (CVCS) which enhances the voltage ride through (VRT) capability of an offshore AC grid comprised of a cluster of offshore wind power plants (WPP) connected through AC cables to the offshore voltage source converter based high voltage DC (VSC......-HVDC) converter station. Due to limited short circuit power contribution from power electronic interfaced variable speed wind generators and with the onshore main grid decoupled by the HVDC link, the offshore AC grid becomes more vulnerable to dynamic voltage events. Therefore, a short circuit fault...... in the offshore AC Grid is likely to have significant implications on the voltage of the offshore AC grid, hence on the power flow to the onshore mainland grid. The proposed CVCS integrates individual local reactive power control of wind turbines and of the HVDC converter with the secondary voltage controller...

  10. PI and Fuzzy Control Strategies for High Voltage Output DC-DC Boost Power Converter - Hardware Implementation and Analysis

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Blaabjerg, Frede; Siano, Pierluigi

    2016-01-01

    This paper presents the control strategies by Proportional-Integral (P-I) and Fuzzy Logic (FL) for a DC-DC boost power converter for high output voltage configuration. Standard DC-DC converters are traditionally used for high voltage direct current (HVDC) power transmission systems. But, lack its...... converter with inbuilt voltage-lift technique and overcome the aforementioned deficiencies. Further, the control strategy is adapted based on proportional-integral (P-I) and fuzzy logic, closed-loop controller to regulate the outputs and ensure the performances. Complete hardware prototype of EHV converter...... performances in terms of efficiency, reduced transfer gain and increased cost with sensor units. Moreover, the internal self-parasitic components reduce the output voltage and efficiency of classical high voltage converters (HVC). This investigation focused on extra high-voltage (EHV) DC-DC boost power...

  11. Control Strategy for Microgrid Inverter under Unbalanced Grid Voltage Conditions

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Liu, Wenzhao; Zhang, X.

    2014-01-01

    This paper presents the theoretical analysis of the inherent reason of current harmonic and power oscillation phenomena in case of operating the microgrid inverter under unbalanced grid voltage conditions. In order to flexibly control the current harmonic and power oscillation, a new stationary...... inverter. Finally, the performance evaluation tests are carried out under unbalanced grid voltage conditions. Results verify the effectiveness of the propose method....

  12. Stability of DC Voltage Droop Controllers in VSC HVDC Systems

    DEFF Research Database (Denmark)

    Thams, Florian; Suul, Jon Are; D’Arco, Salvatore

    2015-01-01

    Future multi-terminal HVDC systems are expected to utilize dc voltage droop controllers and several control implementations have been proposed in literature. This paper first classifies possible dc droop implementations in a simple framework. Then, the small-signal stability of a VSC-based conver......Future multi-terminal HVDC systems are expected to utilize dc voltage droop controllers and several control implementations have been proposed in literature. This paper first classifies possible dc droop implementations in a simple framework. Then, the small-signal stability of a VSC...

  13. Buck supplies output voltage ripple reduction using fuzzy control

    Directory of Open Access Journals (Sweden)

    Nicu BIZON

    2007-12-01

    Full Text Available Using the PWM control for switching power supplies the peaks EMI noise appear at the switching frequency and its harmonics. Using randomize or chaotic PWM control techniques in these systems the power spectrum is spread out in all frequencies band spectral emissions, but with a bigger ripple in the output voltage. The proposed nonlinear feedback control method, which induces chaos, is based by fuzzy rules that minimize the output voltage ripple. The feasibility and effectiveness of this relative simple method is shown by simulation. A comparison with the previous control method is included, too.

  14. PC-based control of a high-voltage injector

    International Nuclear Information System (INIS)

    Constantin, F.

    1998-01-01

    The stability of high voltage injectors is one of the major problems in any accelerator system. Most of the troubles encountered in the normal operation of an accelerator are connected with the ion source and associated high voltage platforms, regardless of the source or high voltage generator type. The quality of the ion beam injected in the accelerator strongly depends on the power supplies used in the injector and on the ability to control the non-electrical parameters (gas-flow, temperature, etc.). A wide used method in controlling is based on optical links between high-voltage platform and computer, the adjustments being more or less automated. Although the method mentioned above can be still useful in injector control, a different approach is presented in this work, i.e., the computer itself is placed inside the high-voltage terminal. Only one optical link is still necessary to connect this computer with an user-friendly host at ground potential. Requirements: - varying and monitoring the filament current; - gas flow control in the ion source; - reading the vacuum values; - current and voltage control for the anodic, magnet, extraction, suppression and lens' sources. Even in the high voltage terminal there are compartments with different voltages regardless the floating ground. In our injector the extraction voltage is applied on the top of the ion source including the filament and the anodic voltage. The extraction voltage is of maximum 30 kV. In this situation a second optical link is required to transfer the control for the anodic and magnet source power supply assuming the dedicated computer on the floating ground. One PC is placed inside the high voltage terminal and one PC outside the injector. The optical link (more precisely two optical wires) connects the serial ports. The inside computer is equipped with two multipurpose ADC/DAC and digital I/O card. They permit to read or output DC levels ranging between 0 to 10 volts or TTL signals. The filament

  15. Design and Control of Parallel Three Phase Voltage Source Inverters in Low Voltage AC Microgrid

    Directory of Open Access Journals (Sweden)

    El Hassane Margoum

    2017-01-01

    Full Text Available Design and hierarchical control of three phase parallel Voltage Source Inverters are developed in this paper. The control scheme is based on synchronous reference frame and consists of primary and secondary control levels. The primary control consists of the droop control and the virtual output impedance loops. This control level is designed to share the active and reactive power correctly between the connected VSIs in order to avoid the undesired circulating current and overload of the connected VSIs. The secondary control is designed to clear the magnitude and the frequency deviations caused by the primary control. The control structure is validated through dynamics simulations.The obtained results demonstrate the effectiveness of the control structure.

  16. A novel high voltage start up circuit for an integrated switched mode power supply

    Energy Technology Data Exchange (ETDEWEB)

    Hu Hao; Chen Xingbi, E-mail: huhao21@uestc.edu.c [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2010-09-15

    A novel high voltage start up circuit for providing an initial bias voltage to an integrated switched mode power supply (SMPS) is presented. An enhanced mode VDMOS transistor, the gate of which is biased by a floating p-island, is used to provide start up current and sustain high voltage. An NMOS transistor having a high source to ground breakdown voltage is included to extend the bias voltage range to the SMPS. Simulation results indicate that the high voltage start up circuit can start and restart as designed. The proposed structure is believed to be more energy saving and cost-effective compared with other solutions. (semiconductor devices)

  17. DFIG turbine representation for small signal voltage control studies

    DEFF Research Database (Denmark)

    Garcia, Jorge Martinez; Kjær, Philip Carne; Teodorescu, Remus

    2010-01-01

    This paper addresses the representation of a wind power plant, based on wound rotor asynchronous generators, with a centralized voltage controller, by an equivalent transfer function, valid for small signal voltage control studies. This representation allows to investigate the influence...... introduced recently by several grid codes from around the world, making important to analyze this control when applied to wind power plants. The performance of the equivalent transfer function has been evaluated and compared using an equivalent grid with different short circuit ratios and active power...... of the centralized plant control gain and short circuit ratio on the system stability, for instance, by analyzing the zero-pole placement. Larger percentages of wind power penetration translate to more demanding requirements coming from the grid codes, for example voltage support at the point of connection has been...

  18. Controlled Compact High Voltage Power Lines

    Directory of Open Access Journals (Sweden)

    Postolati V.

    2016-04-01

    Full Text Available Nowadays modern overhead transmission lines (OHL constructions having several significant differences from conventional ones are being used in power grids more and more widely. Implementation of compact overhead lines equipped with FACTS devices, including phase angle regulator settings (compact controlled OHL, appears to be one of the most effective ways of power grid development. Compact controlled AC HV OHL represent a new generation of power transmission lines embodying recent advanced achievements in design solutions, including towers and insulation, together with interconnection schemes and control systems. Results of comprehensive research and development in relation to 110–500kV compact controlled power transmission lines together with theoretical basis, substantiation, and methodological approaches to their practical application are presented in the present paper.

  19. Two coupled Josephson junctions: dc voltage controlled by biharmonic current

    International Nuclear Information System (INIS)

    Machura, L; Spiechowicz, J; Kostur, M; Łuczka, J

    2012-01-01

    We study transport properties of two Josephson junctions coupled by an external shunt resistance. One of the junctions (say, the first) is driven by an unbiased ac current consisting of two harmonics. The device can rectify the ac current yielding a dc voltage across the first junction. For some values of coupling strength, controlled by an external shunt resistance, a dc voltage across the second junction can be generated. By variation of system parameters such as the relative phase or frequency of two harmonics, one can conveniently manipulate both voltages with high efficiency, e.g. changing the dc voltages across the first and second junctions from positive to negative values and vice versa. (paper)

  20. Design and implementation of the wireless high voltage control system

    International Nuclear Information System (INIS)

    Srivastava, Saurabh; Misra, A.; Pandey, H.K.; Thakur, S.K.; Pandit, V.S.

    2011-01-01

    In this paper we will describe the implementation of the wireless link for controlling and monitoring the serial data between control PC and the interface card (general DAQ card), by replacing existing RS232 based remote control system for controlling and monitoring High Voltage Power Supply (120kV/50mA). The enhancement in the reliability is achieved by replacing old RS232 based control system with wireless system by isolating ground loop. (author)

  1. A Bidirectional Multi-Port DC-DC Converter Integrating Voltage Equalizer

    DEFF Research Database (Denmark)

    Chen, Jianfei; Hou, Shiying; Deng, Fujin

    2015-01-01

    A novel bidirectional multi-port dc-dc converter integrating voltage equalizer based on switched-capacitor voltage accumulator (SCVA) is proposed. It has two operating modes of charging and discharging for battery modules. All battery modules are connected in series indirectly and can be equalize...... battery modules with different voltages. Simulation results has shown the feasibility of the proposed converter.......A novel bidirectional multi-port dc-dc converter integrating voltage equalizer based on switched-capacitor voltage accumulator (SCVA) is proposed. It has two operating modes of charging and discharging for battery modules. All battery modules are connected in series indirectly and can be equalized...

  2. Control Of Stepper Motor Movement By DC Voltage

    International Nuclear Information System (INIS)

    Gayani, Didi; Margono; Indasah, Iin; Sugito

    2000-01-01

    Instrumentation for controlling the power of reactor of TRIGA Mark II uses the stepper motor to move the control rod of neutron absorbers. The direction and speed of control rod movement are determined by the polarity and the amplitude of DC voltage as an error signal that is the difference of set point of power and the power of being measured on the control system. The unit of stepper motor controller of reactor instrumentation of TRIGA Mark II uses patent module of trade Mark of Vexta, USA. In this chance, the electronic circuit is made to function as the control of stepper motor movement by using the DC voltage to anticipate the problem may be faced in case of repair and maintenance of reactor instrumentation. As a result of experiment, it is stated that the control of motor movement by using DC voltage is performed into 2 stages. First, by making the oscillator that is proportional to the positive DC voltage. Secondly, by making the translator to translate the oscillator signal to be a logic pattern for controlling the movement of stepper motor. Translator and motor driver are made by using the L297 and L298 as a pair of stepper motor controller of SGS T HOMSON

  3. Distribution state estimation based voltage control for distribution networks; Koordinierte Spannungsregelung anhand einer Zustandsschaetzung im Verteilnetz

    Energy Technology Data Exchange (ETDEWEB)

    Diwold, Konrad; Yan, Wei [Fraunhofer IWES, Kassel (Germany); Braun, Martin [Fraunhofer IWES, Kassel (Germany); Stuttgart Univ. (Germany). Inst. fuer Energieuebertragung und Hochspannungstechnik (IEH)

    2012-07-01

    The increased integration of distributed energy units creates challenges for the operators of distribution systems. This is due to the fact that distribution systems that were initially designed for distributed consumption and central generation now face decentralized feed-in. One imminent problem associated with decentralised fee-in are local voltage violations in the distribution system, which are hard to handle via conventional voltage control strategies. This article proposes a new voltage control framework for distribution system operation. The framework utilizes reactive power of distributed energy units as well on-load tap changers to mitigate voltage problems in the network. Using an optimization-band the control strategy can be used in situations where network information is derived from distribution state estimators and thus holds some error. The control capabilities in combination with a distribution state estimator are tested using data from a real rural distribution network. The results are very promising, as voltage control is achieved fast and accurate, preventing a majority of the voltage violations during system operation under realistic system conditions. (orig.)

  4. Performance Characteristics of an Armature Voltage Controlled D.C. ...

    African Journals Online (AJOL)

    In this paper, the performance study of a separately excited d. c. motor whose speed is controlled by armature voltage variation is presented. Both the open loop and the closed loop steady state and transient characteristics are reported. The speed controllers considered in the closed loop mode are the proportional and the ...

  5. Control of DFIG-WT under unbalanced grid voltage conditions

    DEFF Research Database (Denmark)

    Luna, Alvaro; Lina, Kleber; Corcoles, Felipe

    2009-01-01

    The voltage oriented control in the synchronous reference frame (VOC-SRF) have been extensively used for controlling wind turbines based on doubly fed induction generators (DFIG-WTs) through the rotor side converter of a back to back power processor. Although its performance is fast and accurate ...

  6. Grid Integration of Single Stage Solar PV System using Three-level Voltage Source Converter

    Science.gov (United States)

    Hussain, Ikhlaq; Kandpal, Maulik; Singh, Bhim

    2016-08-01

    This paper presents a single stage solar PV (photovoltaic) grid integrated power generating system using a three level voltage source converter (VSC) operating at low switching frequency of 900 Hz with robust synchronizing phase locked loop (RS-PLL) based control algorithm. To track the maximum power from solar PV array, an incremental conductance algorithm is used and this maximum power is fed to the grid via three-level VSC. The use of single stage system with three level VSC offers the advantage of low switching losses and the operation at high voltages and high power which results in enhancement of power quality in the proposed system. Simulated results validate the design and control algorithm under steady state and dynamic conditions.

  7. Sequential circuit design for radiation hardened multiple voltage integrated circuits

    Science.gov (United States)

    Clark, Lawrence T [Phoenix, AZ; McIver, III, John K.

    2009-11-24

    The present invention includes a radiation hardened sequential circuit, such as a bistable circuit, flip-flop or other suitable design that presents substantial immunity to ionizing radiation while simultaneously maintaining a low operating voltage. In one embodiment, the circuit includes a plurality of logic elements that operate on relatively low voltage, and a master and slave latches each having storage elements that operate on a relatively high voltage.

  8. DC-Voltage Fluctuation Elimination Through a DC-Capacitor Current Control for DFIG Converters Under Unbalanced Grid Voltage Conditions

    DEFF Research Database (Denmark)

    Liu, Changjin; Xu, Dehong; Zhu, Nan

    2013-01-01

    Unbalanced grid voltage causes a large second-order harmonic current in the dc-link capacitors as well as dc-voltage fluctuation, which potentially will degrade the lifespan and reliability of the capacitors in voltage source converters. This paper proposes a novel dc-capacitor current control...... method for a grid-side converter (GSC) to eliminate the negative impact of unbalanced grid voltage on the dc-capacitors. In this method, a dc-capacitor current control loop, where a negative-sequence resonant controller is used to increase the loop gain, is added to the conventional GSC current control...... loop. The rejection capability to the unbalanced grid voltage and the stability of the proposed control system are discussed. The second-order harmonic current in the dc capacitor as well as dc-voltage fluctuation is very well eliminated. Hence, the dc capacitors will be more reliable under unbalanced...

  9. Selective Dirac voltage engineering of individual graphene field-effect transistors for digital inverter and frequency multiplier integrations.

    Science.gov (United States)

    Sul, Onejae; Kim, Kyumin; Jung, Yungwoo; Choi, Eunsuk; Lee, Seung-Beck

    2017-09-15

    The ambipolar band structure of graphene presents unique opportunities for novel electronic device applications. A cycle of gate voltage sweep in a conventional graphene transistor produces a frequency-doubled output current. To increase the frequency further, we used various graphene doping control techniques to produce Dirac voltage engineered graphene channels. The various surface treatments and substrate conditions produced differently doped graphene channels that were integrated on a single substrate and multiple Dirac voltages were observed by applying a single gate voltage sweep. We applied the Dirac voltage engineering techniques to graphene field-effect transistors on a single chip for the fabrication of a frequency multiplier and a logic inverter demonstrating analog and digital circuit application possibilities.

  10. Selective Dirac voltage engineering of individual graphene field-effect transistors for digital inverter and frequency multiplier integrations

    Science.gov (United States)

    Sul, Onejae; Kim, Kyumin; Jung, Yungwoo; Choi, Eunsuk; Lee, Seung-Beck

    2017-09-01

    The ambipolar band structure of graphene presents unique opportunities for novel electronic device applications. A cycle of gate voltage sweep in a conventional graphene transistor produces a frequency-doubled output current. To increase the frequency further, we used various graphene doping control techniques to produce Dirac voltage engineered graphene channels. The various surface treatments and substrate conditions produced differently doped graphene channels that were integrated on a single substrate and multiple Dirac voltages were observed by applying a single gate voltage sweep. We applied the Dirac voltage engineering techniques to graphene field-effect transistors on a single chip for the fabrication of a frequency multiplier and a logic inverter demonstrating analog and digital circuit application possibilities.

  11. Control and Protection Cooperation Strategy for Voltage Instability

    DEFF Research Database (Denmark)

    Liu, Zhou; Chen, Zhe; Sun, Haishun

    2012-01-01

    Most cascaded blackouts are caused by unexpected backup relay operations due to low voltage or overload state caused by post fault load restoration dynamics. If such state can be sensed and adjusted appropriately prior to those relay actions, system stability might be sustained. This paper proposed...... a control and protection cooperation strategy to prevent post fault voltage instability. The multi-agent technology is applied for the strategy implementation; the criteria based on wide area measured apparent impedances are defined to choose the control strategy, such as tap changer adjusting or load...

  12. Voltage Control of Antiferromagnetic Phases at Near-Terahertz Frequencies

    Science.gov (United States)

    Barra, Anthony; Domann, John; Kim, Ki Wook; Carman, Greg

    2018-03-01

    A method to control antiferromagnetism using voltage-induced strain is proposed and theoretically examined. Voltage-induced magnetoelastic anisotropy is shown to provide sufficient torque to switch an antiferromagnetic domain 90° either from out of plane to in plane or between in-plane axes. Numerical results indicate that strain-mediated antiferromagnetic switching can occur in an 80-nm nanopatterned disk at frequencies approaching 1 THz but that the switching speed heavily depends on the system's mechanical design. Furthermore, the energy cost to induce magnetic switching is only 450 aJ, indicating that magnetoelastic control of antiferromagnetism is substantially more energy efficient than other approaches.

  13. Enhanced Voltage Control of VSC-HVDC Connected Offshore Wind Farms Based on Model Predictive Control

    DEFF Research Database (Denmark)

    Guo, Yifei; Gao, Houlei; Wu, Qiuwei

    2018-01-01

    This paper proposes an enhanced voltage control strategy (EVCS) based on model predictive control (MPC) for voltage source converter based high voltage direct current (VSCHVDC) connected offshore wind farms (OWFs). In the proposed MPC based EVCS, all wind turbine generators (WTGs) as well...... as the wind farm side VSC are optimally coordinated to keep voltages within the feasible range and reduce system power losses. Considering the high ratio of the OWF collector system, the effects of active power outputs of WTGs on voltage control are also taken into consideration. The predictive model of VSC...

  14. Voltage control of magnetism in multiferroic heterostructures.

    Science.gov (United States)

    Liu, Ming; Sun, Nian X

    2014-02-28

    Electrical tuning of magnetism is of great fundamental and technical importance for fast, compact and ultra-low power electronic devices. Multiferroics, simultaneously exhibiting ferroelectricity and ferromagnetism, have attracted much interest owing to the capability of controlling magnetism by an electric field through magnetoelectric (ME) coupling. In particular, strong strain-mediated ME interaction observed in layered multiferroic heterostructures makes it practically possible for realizing electrically reconfigurable microwave devices, ultra-low power electronics and magnetoelectric random access memories (MERAMs). In this review, we demonstrate this remarkable E-field manipulation of magnetism in various multiferroic composite systems, aiming at the creation of novel compact, lightweight, energy-efficient and tunable electronic and microwave devices. First of all, tunable microwave devices are demonstrated based on ferrite/ferroelectric and magnetic-metal/ferroelectric composites, showing giant ferromagnetic resonance (FMR) tunability with narrow FMR linewidth. Then, E-field manipulation of magnetoresistance in multiferroic anisotropic magnetoresistance and giant magnetoresistance devices for achieving low-power electronic devices is discussed. Finally, E-field control of exchange-bias and deterministic magnetization switching is demonstrated in exchange-coupled antiferromagnetic/ferromagnetic/ferroelectric multiferroic hetero-structures at room temperature, indicating an important step towards MERAMs. In addition, recent progress in electrically non-volatile tuning of magnetic states is also presented. These tunable multiferroic heterostructures and devices provide great opportunities for next-generation reconfigurable radio frequency/microwave communication systems and radars, spintronics, sensors and memories.

  15. Influence of Wind Plant Ancillary Voltage Control on System Small Signal Stability

    DEFF Research Database (Denmark)

    Su, Chi; Chen, Zhe

    2012-01-01

    As a common tendency, large-scale wind farms are increasingly connected to the transmission system of modern power grids. This introduces some new challenges to the connected power systems, and the transmission system operators (TSOs) have to put some new requirements as part of the grid codes...... on the integration of wind farms. One common requirement to wind farms is the function of system voltage control which can be implemented in the grid-side convertor controller of a variable speed wind turbine. This ancillary voltage control provided by wind farms could have some influence on the system small signal...... stability. This paper implements an ancillary voltage control strategy on a direct-drive-full-convertor-based wind farm and studies its influence on the damping ratio values of the dominant oscillation mode within the connected power system. All the calculations and simulations are conducted in DIg...

  16. CMOS-compatible high-voltage integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Parpia, Z

    1988-01-01

    Considerable savings in cost and development time can be achieved if high-voltage ICs (HVICs) are fabricated in an existing low-voltage process. In this thesis, the feasibility of fabricating HVICs in a standard CMOS process is investigated. The high-voltage capabilities of an existing 5-{mu}m CMOS process are first studied. High-voltage n- and p-channel transistors with breakdown voltages of 50 and 190 V, respectively, were fabricated without any modifications to the process under consideration. SPICE models for these transistors are developed, and their accuracy verified by comparison with experimental results. In addition, the effect of the interconnect metallization on the high-voltage performance of these devices is also examined. Polysilicon field plates are found to be effective in preventing premature interconnect induced breakdown in these devices. A novel high-voltage transistor structure, the insulated base transistor (IBT), based on a merged MOS-bipolar concept, is proposed and implemented. In order to enhance the high-voltage device capabilities, an improved CMOS-compatible HVIC process using junction isolation is developed.

  17. Optimized Control Strategy for a Medium-Voltage DVR-Theoretical Investigations and Experimental Results

    DEFF Research Database (Denmark)

    Meyer, Christoph; De Doncker, Rik W.; Li, Yun Wei

    2008-01-01

    Most power quality problems in distribution systems are related to voltage sags. Therefore, different solutions have been examined to compensate these sags to avoid production losses at sensitive loads. Dynamic voltage restorers (DVRs) have been proposed to provide higher power quality. Currently......, a system wide integration of DVRs is hampered because of their high cost, in particular, due to the expensive DC-link energy storage devices. The cost of these DC-link capacitors remains high because the DVR requires a minimum DC-link voltage to be able to operate and to compensate a sag. As a result, only...... a small fraction of the energy stored in the DC-link capacitor is used, which makes it impractical for DVRs to compensate relatively long voltage sags. Present control strategies are only able to minimize the distortions at the load or to allow a better utilization of the storage system by minimizing...

  18. Multifunctional voltage source inverter for renewable energy integration and power quality conditioning.

    Science.gov (United States)

    Dai, NingYi; Lam, Chi-Seng; Zhang, WenChen

    2014-01-01

    In order to utilize the energy from the renewable energy sources, power conversion system is necessary, in which the voltage source inverter (VSI) is usually the last stage for injecting power to the grid. It is an economical solution to add the function of power quality conditioning to the grid-connected VSI in the low-voltage distribution system. Two multifunctional VSIs are studied in this paper, that is, inductive-coupling VSI and capacitive-coupling VSI, which are named after the fundamental frequency impedance of their coupling branch. The operation voltages of the two VSIs are compared when they are used for renewable energy integration and power quality conditioning simultaneously. The operation voltage of the capacitive-coupling VSI can be set much lower than that of the inductive-coupling VSI when reactive power is for compensating inductive loads. Since a large portion of the loads in the distribution system are inductive, the capacitive-coupling VSI is further studied. The design and control method of the multifunctional capacitive-coupling VSI are proposed in this paper. Simulation and experimental results are provided to show its validity.

  19. An estimator-based distributed voltage-predictive control strategy for ac islanded microgrids

    DEFF Research Database (Denmark)

    Wang, Yanbo; Chen, Zhe; Wang, Xiongfei

    2015-01-01

    This paper presents an estimator-based voltage predictive control strategy for AC islanded microgrids, which is able to perform voltage control without any communication facilities. The proposed control strategy is composed of a network voltage estimator and a voltage predictive controller for each...... and has a good capability to reject uncertain perturbations of islanded microgrids....

  20. Global voltage control for the LEP RF system

    International Nuclear Information System (INIS)

    Ciapala, E.; Butterworth, A.; Peschardt, E.

    1993-01-01

    The LEG RF system is installed as independent 16 cavity units. In addition to the eight copper cavity units originally installed 12 units with super-conducting cavities are being added for the LEP200 energy upgrade. The total RF voltage determines the synchrotron tune (Qs) and must be controlled precisely during energy ramping. Local function generators in each of the RF units are pre-loaded such that when triggered simultaneously by ramp timing events transmitted over the general timing system the total voltage varies to give the Qs function required. A disadvantage is that loss of RF in a unit at any time after the loading process cannot be corrected. As the number of RF units increases automatic control of the total RF voltage and its distribution around LEP becomes desirable. A global voltage control system, based on a central VME controller, has recently been installed. It has direct and rapid access to the RF units over the LEP time division multiplexing system. Initial tests on operation and performance at fixed energy and during energy ramping are described, as well as the implementation of a Qs loop in which Qs can be set directly using on-line synchrotron frequency measurements

  1. Remote Voltage Control Using the Holomorphic Embedding Load Flow Method

    DEFF Research Database (Denmark)

    Liu, Chengxi; Qin, Nan; Sun, Kai

    2018-01-01

    such that the approach can remotely control the voltage magnitudes of desired buses. The proposed approach is compared with a conventional Newton-Raphson approach by study cases on the IEEE New England 39-bus system. The results show that the proposed approach achieves a larger convergence region....

  2. Design and control of single-phase dynamic voltage restorer

    Indian Academy of Sciences (India)

    Amit Meena

    ... voltage sag and swell. Modelling of the DVR and its controller design is included in ..... simulation study of DVR is accomplished in MATLAB/. Simulink. Parameters of ..... During this process, the PWM signals generated by the DSP are not as ...

  3. Doubly-Fed Induction Generator Control Under Voltage Sags

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Blaabjerg, Frede; Lima, K.

    2008-01-01

    This paper proposes a new control technique to improve the fault-ride through capability of doubly fed induction generators (DFIG). In such generators the appearance of severe voltage sags at the coupling point make rise to high over currents at the rotor/stator windings, something that makes...

  4. Adaptive Sliding Mode Control of MEMS AC Voltage Reference Source

    Directory of Open Access Journals (Sweden)

    Ehsan Ranjbar

    2017-01-01

    Full Text Available The accuracy of physical parameters of a tunable MEMS capacitor, as the major part of MEMS AC voltage reference, is of great importance to achieve an accurate output voltage free of the malfunctioning noise and disturbance. Even though strenuous endeavors are made to fabricate MEMS tunable capacitors with desiderated accurate physical characteristics and ameliorate exactness of physical parameters’ values, parametric uncertainties ineluctably emerge in fabrication process attributable to imperfections in micromachining process. First off, this paper considers applying an adaptive sliding mode controller design in the MEMS AC voltage reference source so that it is capable of giving off a well-regulated output voltage in defiance of jumbling parametric uncertainties in the plant dynamics and also aggravating external disturbance imposed on the system. Secondly, it puts an investigatory comparison with the designed model reference adaptive controller and the pole-placement state feedback one into one’s prospective. Not only does the tuned adaptive sliding mode controller show remarkable robustness against slow parameter variation and external disturbance being compared to the pole-placement state feedback one, but also it immensely gets robust against the external disturbance in comparison with the conventional adaptive controller. The simulation results are promising.

  5. Voltage control of magnetic monopoles in artificial spin ice

    Science.gov (United States)

    Chavez, Andres C.; Barra, Anthony; Carman, Gregory P.

    2018-06-01

    Current research on artificial spin ice (ASI) systems has revealed unique hysteretic memory effects and mobile quasi-particle monopoles controlled by externally applied magnetic fields. Here, we numerically demonstrate a strain-mediated multiferroic approach to locally control the ASI monopoles. The magnetization of individual lattice elements is controlled by applying voltage pulses to the piezoelectric layer resulting in strain-induced magnetic precession timed for 180° reorientation. The model demonstrates localized voltage control to move the magnetic monopoles across lattice sites, in CoFeB, Ni, and FeGa based ASI’s. The switching is achieved at frequencies near ferromagnetic resonance and requires energies below 620 aJ. The results demonstrate that ASI monopoles can be efficiently and locally controlled with a strain-mediated multiferroic approach.

  6. Distributed stability control using intelligent voltage-margin relay

    Energy Technology Data Exchange (ETDEWEB)

    Wiszniewski, A.; Rebizant, W. [Wroclaw Univ. of Technology (Poland); Klimek, A. [Powertech Labs Inc., Surrey, BC (Canada)

    2010-07-01

    This paper presented an intelligent relay that operates if the load to source impedance ratio decreases to a level that is dangerously close to the stability limit, which leads to power system blackouts. The intelligent voltage-margin/difference relay installed at receiving substations automatically initiates action if the voltage stability margin drops to a dangerously low level. The relay decides if the tap changing devices are to be blocked and if under-voltage load shedding should be initiated, thereby mitigating an evolving instability. The intelligent relay has two levels of operation. At the first stage, which corresponds to the higher load to source impedance ratio, the relay initiates blocking of the tap changer. At the second stage, corresponding to the lower source to load impedance ratio, load shedding is initiated. The relay operates when the load to source impedance ratio reaches a certain predetermined level, but it does not depend either on the level of the source voltage or on the difference of source and load impedance phase angles. The algorithm for the relay is relatively simple and uses only locally available signals. Consequently, the transformer is well controlled to eliminate the cases of voltage instability. 6 refs., 7 figs.

  7. Characteristics of output voltage and current of integrated nanogenerators

    KAUST Repository

    Yang, Rusen; Qin, Yong; Li, Cheng; Dai, Liming; Wang, Zhong Lin

    2009-01-01

    three criteria: Schottky behavior test, switching-polarity tests, and linear superposition of current and voltage tests. The 11 tests can effectively rule out the system artifacts, whose sign does not change with the switching measurement polarity

  8. Robust Frequency and Voltage Stability Control Strategy for Standalone AC/DC Hybrid Microgrid

    Directory of Open Access Journals (Sweden)

    Furqan Asghar

    2017-05-01

    Full Text Available The microgrid (MG concept is attracting considerable attention as a solution to energy deficiencies, especially in remote areas, but the intermittent nature of renewable sources and varying loads cause many control problems and thereby affect the quality of power within a microgrid operating in standalone mode. This might cause large frequency and voltage deviations in the system due to unpredictable output power fluctuations. Furthermore, without any main grid support, it is more complex to control and manage the system. In past, droop control and various other coordination control strategies have been presented to stabilize the microgrid frequency and voltages, but in order to utilize the available resources up to their maximum capacity in a positive way, new and robust control mechanisms are required. In this paper, a standalone microgrid is presented, which integrates renewable energy-based distributed generations and local loads. A fuzzy logic-based intelligent control technique is proposed to maintain the frequency and DC (direct current-link voltage stability for sudden changes in load or generation power. Also from a frequency control perspective, a battery energy storage system (BESS is suggested as a replacement for a synchronous generator to stabilize the nominal system frequency as a synchronous generator is unable to operate at its maximum efficiency while being controlled for stabilization purposes. Likewise, a super capacitor (SC and BESS is used to stabilize DC bus voltages even though maximum possible energy is being extracted from renewable generated sources using maximum power point tracking. This newly proposed control method proves to be effective by reducing transient time, minimizing the frequency deviations, maintaining voltages even though maximum power point tracking is working and preventing generators from exceeding their power ratings during disturbances. However, due to the BESS limited capacity, load switching

  9. Cross Voltage Control with Inner Hysteresis Current Control for Multi-output Boost Converter

    DEFF Research Database (Denmark)

    Nami, Alireza; Zare, Firuz; Blaabjerg, Frede

    2009-01-01

    Multi-output boost (MOB) converter is a novel DC-DC converter unlike the regular boost converter, has the ability to share its total output voltage and to have different series output voltage from a given duty cycle for low and high power applications. In this paper, discrete voltage control...... with inner hysteresis current control loop has been proposed to keep the simplicity of the control law for the double-output MOB converter, which can be implemented by a combination of analogue and logical ICs or simple microcontroller to constrain the output voltages of MOB converter at their reference...... voltages against variation in load or input voltage. The salient features of the proposed control strategy are simplicity of implementation and ease to extend to multiple outputs in the MOB converter. Simulation and experimental results are presented to show the validity of control strategy....

  10. Design of auto-control high-voltage control system of pulsed neutron generator

    International Nuclear Information System (INIS)

    Lv Juntao

    2008-01-01

    It is difficult to produce multiple anode controlling time sequences under different logging mode for the high-voltage control system of the conventional pulsed neutron generator. It is also difficult realize sequential control among anode high-voltage, filament power supply and target voltage to make neutron yield stable. To these problems, an auto-control high-voltage system of neutron pulsed generator was designed. It not only can achieve anode high-voltage double blast time sequences, which can measure multiple neutron blast time sequences such as Σ, activated spectrum, etc. under inelastic scattering mode, but also can realize neutron generator real-time measurement of multi-state parameters and auto-control such as target voltage pulse width modulation (PWM), filament current, anode current, etc., there by it can produce stable neutron yield and realize stable and accurate measurement of the pulsed neutron full spectral loging tool. (authors)

  11. Voltage-controlled Enzymes: The new Janus Bifrons

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Villalba-Galea

    2012-09-01

    Full Text Available The Ciona intestinalis voltage sensitive phosphatase, Ci-VSP, was the first Voltage-controlled Enzyme (VEnz proven to be under direct command of the membrane potential. The discovery of Ci-VSP conjugated voltage sensitivity and enzymatic activity in a single protein. These two facets of Ci-VSP activity have provided a unique model for studying how membrane potential is sensed by proteins and a novel mechanism for control of enzymatic activity. These facets make Ci-VSP a fascinating and versatile enzyme.Ci-VSP has a voltage sensing domain (VSD that resembles those found in voltage-gated channels (VGC. The VSD resides in the N-terminus and is formed by four putative trans-membrane segments. The fourth segment contains charged residues which are likely involved in voltage sensing. Ci-VSP produces sensing currents in response to changes in potential, within a defined range of voltages. Sensing currents are analogous to gating currents in VGC. As known, these latter proteins contain four VSDs which are entangled in a complex interaction with the pore domain –the effector domain in VGC. This complexity makes studying the basis of voltage sensing in VGC a difficult enterprise. In contrast, Ci-VSP is thought to be monomeric and its catalytic domain –the VSP’s effector domain– can be cleaved off without disrupting the basic electrical functioning of the VSD. For these reasons, VSPs are considered a great model for studying the activity of a VSD in isolation. Finally, VSPs are also phosphoinositide phosphatases. Phosphoinositides are signaling lipids found in eukaryotes and are involved in many processes, including modulation of VGC activity and regulation of cell proliferation. Understanding VSPs as VEnz has been the center of attention in recent years and several reviews has been dedicated to this area. Thus, this review will be focused instead on the other face of this true Janus Bifrons and recapitulate what is known about VSPs as electrically

  12. Direct model-based predictive control scheme without cost function for voltage source inverters with reduced common-mode voltage

    Science.gov (United States)

    Kim, Jae-Chang; Moon, Sung-Ki; Kwak, Sangshin

    2018-04-01

    This paper presents a direct model-based predictive control scheme for voltage source inverters (VSIs) with reduced common-mode voltages (CMVs). The developed method directly finds optimal vectors without using repetitive calculation of a cost function. To adjust output currents with the CMVs in the range of -Vdc/6 to +Vdc/6, the developed method uses voltage vectors, as finite control resources, excluding zero voltage vectors which produce the CMVs in the VSI within ±Vdc/2. In a model-based predictive control (MPC), not using zero voltage vectors increases the output current ripples and the current errors. To alleviate these problems, the developed method uses two non-zero voltage vectors in one sampling step. In addition, the voltage vectors scheduled to be used are directly selected at every sampling step once the developed method calculates the future reference voltage vector, saving the efforts of repeatedly calculating the cost function. And the two non-zero voltage vectors are optimally allocated to make the output current approach the reference current as close as possible. Thus, low CMV, rapid current-following capability and sufficient output current ripple performance are attained by the developed method. The results of a simulation and an experiment verify the effectiveness of the developed method.

  13. Model Predictive Voltage Control of Wind Power Plants

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei

    2018-01-01

    the efficacy of the proposed WFVC, two case scenarios were designed: the wind farm is under normal operating conditions and the internal wind power fluctuation is considered; and besides internal power fluctuation, the impact of the external grid on the wind farm is considered.......This chapter proposes an autonomous wind farm voltage controller (WFVC) based on model predictive control (MPC). It also introduces the analytical expressions for the voltage sensitivity to tap positions of a transformer. The chapter then describes the discrete models for the wind turbine...... generators (WTGs) and static var compensators (SVCs)/static var generators (SVGs). Next, it describes the implementation of the on‐load tap changing (OLTC) in the MPC. Furthermore, the chapter examines the cost function as well as the constraints of the MPC‐based WFVC for both control modes. In order to test...

  14. Micro controller application as x-ray machine's high voltage controller

    International Nuclear Information System (INIS)

    Wiranto Budi Santoso; Beny Syawaludin

    2010-01-01

    The micro controller application as x-ray machine's high voltage controller has been carried out. The purpose of this micro controller application is to give an accurate high voltage supply to the x-ray tube so that the x ray machine could produce the result as expected. The micro controller based X-ray machine's high voltage controller receives an input voltage from the keypad. This input value is displayed in the LCD (Liquid Crystal Display) screen. Then micro controller uses this input data to drive the stepper motor. The stepper motor adjusts the high voltage auto transformer's output according to the input value. The micro controller is programmed using BASCOM-B051 compiler. The test results show that the stepper motor could rotate according to an input value. (author)

  15. Integrated reconfigurable high-voltage transmitting circuit for CMUTs

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Larsen, Dennis Øland; Jørgensen, Ivan Harald Holger

    2015-01-01

    In this paper a high-voltage transmitting circuit aimed for capacitive micromachined ultrasonic transducers (CMUTs) used in scanners for medical applications is designed and implemented in a 0.35 μm high-voltage CMOS process. The transmitting circuit is reconfigurable externally making it able...... to drive a wide variety of CMUTs. The transmitting circuit can generate several pulse shapes with voltages up to 100 V, maximum pulse range of 50 V, frequencies up to 5 MHz and different driving slew rates. Measurements are performed on the circuit in order to assess its functionality and power consumption...... performance. The design occupies an on-chip area of 0.938 mm2 and the power consumption of a 128-element transmitting circuit array that would be used in an portable ultrasound scanner is found to be a maximum of 181 mW....

  16. Reactive power management and voltage control in deregulated power markets

    Science.gov (United States)

    Spangler, Robert G.

    The research that is the subject of this dissertation is about the management of reactive power and voltage support in the wholesale open access power markets in the United States (US). The purpose of this research is to place decisions about open access market structures, as they relate to reactive power and voltage control, on a logical and consistent economic basis, given the engineering needs of a commercial electric power system. An examination of the electricity markets operating in the US today reveals that current approaches to reactive power management and voltage support are extensions of those based on historical, regulated monopoly electric service. A case for change is built by first looking at the subject of reactive power from an engineering viewpoint and then from an economic perspective. Ultimately, a set of market rules for managing reactive power and voltage support is proposed. The proposal suggests that cost recovery for static and dynamic VARs is appropriately accomplished through the regulated transmission cost of service. Static VAR cost recovery should follow traditional rate recovery methodologies. In the case of dynamic VARs, this work provides a methodology based on the microeconomic theory of the firm for determining such cost. It further suggests that an operational strategy that reduces and limits the use of dynamic VARs, during normal operations, is appropriate. This latter point leads to an increase in the fixed cost of the transmission network but prevents price spikes and short supply situations from affecting, or being affected by, the reactive capability limitations associated with dynamic VARs supplied from synchronous generators. The rules are consistent with a market structure that includes competitive generation and their application will result in the communication of a clear understanding of the responsibilities, related to voltage control, of each type of market entity. In this sense, their application will contribute to

  17. Gain Scheduling Control of an Islanded Microgrid Voltage

    Directory of Open Access Journals (Sweden)

    Haritza Camblong

    2014-07-01

    Full Text Available The aim of this research study has been to design a gain scheduling (GS digital controller in order to control the voltage of an islanded microgrid in the presence of fast varying loads (FVLs, and to compare it to a robust controller. The inverter which feeds the microgrid is connected to it through an inductance-capacitor-inductance (LCL filter. The oscillatory and nonlinear behaviour of the plant is analyzed in the whole operating zone. Afterwards, the design of the controllers which contain two loops in cascade are described. The first loop concerns the current control, while the second is linked to the voltage regulation. Two controllers, one defined as Robust and another one as GS controller, are designed for the two loops, emphasizing in their robustness and their ability to damp the oscillatory plant behaviour. To finish, some simulations are carried out to study and compare the two kinds of controllers in different operating points. The results show that both controllers damp the oscillatory behaviour of the plant in closed loop (CL, and that the GS controller ensures a better rejection of current disturbances from FVLs.

  18. A comprehensive analysis and hardware implementation of control strategies for high output voltage DC-DC boost power converter

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevikumar; Grandi, Gabriele; Blaabjerg, Frede

    2017-01-01

    voltage and efficiency of classical HV converters. This paper deals with extra high-voltage (EHV) dc-dc boost converter by the application of voltage-lift technique to overcome the aforementioned deficiencies. The control strategy is based on classical proportional-integral (P-I) and fuzzy logic closed...... are performed by the DSP. The experimental results provided show good conformity with developed hypothetical predictions. Additionally, the presented study confirms that the fuzzy logic controller provides better performance than classical P-I controller under different perturbation conditions....

  19. Generic inertia emulation controller for multi-terminal voltage-source-converter high voltage direct current systems

    DEFF Research Database (Denmark)

    Zhu, Jiebei; Guerrero, Josep M.; Hung, William

    2014-01-01

    A generic Inertia Emulation Controller (INEC) scheme for Multi-Terminal Voltage-Source-Converter based HVDC (VSC-MTDC) systems is proposed and presented in this paper. The proposed INEC can be incorporated in any Grid-side Voltage-Source-Converter (GVSC) station, allowing the MTDC terminal...

  20. Angle Stability Analysis for Voltage-Controlled Converters

    DEFF Research Database (Denmark)

    Lin, Hengwei; Jia, Chenxi; Guerrero, Josep M.

    2017-01-01

    a criterion to analyze the quasi-steady angle stability and the direct current (DC) side stability for VSCs. The operating limit and the angle instability mechanism are revealed, which is generally applicable to the voltage-controlled converters. During the analysis, the influence of the parameters on angle...... stability is studied. Further, the difference on instability mechanism between power electronic converters and synchronous generators are explained in detail. Finally, experiment results with corrective actions verify the analysis....

  1. Hybrid AC-High Voltage DC Grid Stability and Controls

    Science.gov (United States)

    Yu, Jicheng

    The growth of energy demands in recent years has been increasing faster than the expansion of transmission facility construction. This tendency cooperating with the continuous investing on the renewable energy resources drives the research, development, and construction of HVDC projects to create a more reliable, affordable, and environmentally friendly power grid. Constructing the hybrid AC-HVDC grid is a significant move in the development of the HVDC techniques; the form of dc system is evolving from the point-to-point stand-alone dc links to the embedded HVDC system and the multi-terminal HVDC (MTDC) system. The MTDC is a solution for the renewable energy interconnections, and the MTDC grids can improve the power system reliability, flexibility in economic dispatches, and converter/cable utilizing efficiencies. The dissertation reviews the HVDC technologies, discusses the stability issues regarding the ac and HVDC connections, proposes a novel power oscillation control strategy to improve system stability, and develops a nonlinear voltage droop control strategy for the MTDC grid. To verify the effectiveness the proposed power oscillation control strategy, a long distance paralleled AC-HVDC transmission test system is employed. Based on the PSCAD/EMTDC platform simulation results, the proposed power oscillation control strategy can improve the system dynamic performance and attenuate the power oscillations effectively. To validate the nonlinear voltage droop control strategy, three droop controls schemes are designed according to the proposed nonlinear voltage droop control design procedures. These control schemes are tested in a hybrid AC-MTDC system. The hybrid AC-MTDC system, which is first proposed in this dissertation, consists of two ac grids, two wind farms and a five-terminal HVDC grid connecting them. Simulation studies are performed in the PSCAD/EMTDC platform. According to the simulation results, all the three design schemes have their unique salient

  2. Integration of 100% Micro-Distributed Energy Resources in the Low Voltage Distribution Network

    DEFF Research Database (Denmark)

    You, Shi; Segerberg, Helena

    2014-01-01

    of heat pumps (HPs) and plug-in electric vehicles (PEVs) at 100% penetration level on a representative urban residential low voltage (LV) distribution network of Denmark are investigated by performing a steady-state load flow analysis through an integrated simulation setup. Three DERs integration...... oriented integration strategies, having 100% integration of DER in the provided LV network is feasible.......The existing electricity infrastructure may to a great extent limit a high penetration of the micro-sized Distributed Energy Resources (DERs), due to the physical bottlenecks, e.g. thermal capacitates of cables, transformers and the voltage limitations. In this study, the integration impacts...

  3. Voltage control in Z-source inverter using low cost microcontroller for undergraduate approach

    Science.gov (United States)

    Zulkifli, Shamsul Aizam; Sewang, Mohd Rizal; Salimin, Suriana; Shah, Noor Mazliza Badrul

    2017-09-01

    This paper is focussing on controlling the output voltage of Z-Source Inverter (ZSI) using a low cost microcontroller with MATLAB-Simulink that has been used for interfacing the voltage control at the output of ZSI. The key advantage of this system is the ability of a low cost microcontroller to process the voltage control blocks based on the mathematical equations created in MATLAB-Simulink. The Proportional Integral (PI) control equations are been applied and then, been downloaded to the microcontroller for observing the changes on the voltage output regarding to the changes on the reference on the PI. The system has been simulated in MATLAB and been verified with the hardware setup. As the results, the Raspberry Pi and Arduino that have been used in this work are able to respond well when there is a change of ZSI output. It proofed that, by applying/introducing this method to student in undergraduate level, it will help the student to understand more on the process of the power converter combine with a control feedback function that can be applied at low cost microcontroller.

  4. Integration of distributed energy resources into low voltage grid: A market-based multiperiod optimization model

    Energy Technology Data Exchange (ETDEWEB)

    Mashhour, Elahe; Moghaddas-Tafreshi, S.M. [Faculty of Electrical Engineering, K.N. Toosi University of Technology, Seyd Khandan, P.O. Box 16315-1355, Shariati, Tehran (Iran)

    2010-04-15

    This paper develops a multiperiod optimization model for an interconnected micro grid with hierarchical control that participates in wholesale energy market to maximize its benefit (i.e. revenues-costs). In addition to the operational constraints of distributed energy resources (DER) including both inter-temporal and non-inter-temporal types, the adequacy and steady-state security constraints of micro grid and its power losses are incorporated in the optimization model. In the presented model, DER are integrated into low voltage grid considering both technical and economical aspects. This integration as a micro grid can participate in wholesale energy market as an entity with dual role including producer and consumer based on the direction of exchanged power. The developed model is evaluated by testing on a micro grid considering different cases and the results are analyzed. (author)

  5. Highly efficient integrated rectifier and voltage boosting circuits for energy harvesting applications

    Directory of Open Access Journals (Sweden)

    D. Maurath

    2008-05-01

    Full Text Available This paper presents novel circuit concepts for integrated rectifiers and voltage converting interfaces for energy harvesting micro-generators. In the context of energy harvesting, usually only small voltages are supplied by vibration-driven generators. Therefore, rectification with minimum voltage losses and low reverse currents is an important issue. This is realized by novel integrated rectifiers which were fabricated and are presented in this article. Additionally, there is a crucial need for dynamic load adaptation as well as voltage up-conversion. A circuit concept is presented, which is able to obtain both requirements. This generator interface adapts its input impedance for an optimal energy transfer efficiency. Furthermore, this generator interface provides implicit voltage up-conversion, whereas the generator output energy is stored on a buffer, which is connected to the output of the voltage converting interface. As simulations express, this fully integrated converter is able to boost ac-voltages greater than |0.35 V| to an output dc-voltage of 2.0 V–2.5 V. Thereby, high harvesting efficiencies above 80% are possible within the entire operational range.

  6. Integration of Electric Vehicles in Low Voltage Danish Distribution Grids

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Thøgersen, Paul; Møller, Jan

    2012-01-01

    Electric Vehicles (EVs) are considered as one of the important components of the future intelligent grids. Their role as energy storages in the electricity grid could provide local sustainable solutions to support more renewable energy. In order to estimate the extent of interaction of EVs...... in the electricity grid operation, a careful examination in the local electricity system is essential. This paper investigates the degree of EV penetration and its key influence on the low voltage distribution grids. Three detailed models of residential grids in Denmark are considered as test cases in this study...... it is shown that there is enough head-space on the transformer capacity which can be used to charge many EVs during a day. The overall transformer capability of handling EV loads varies between 6-40% for peak and minimum demand hours, which is dependent on the robustness of the grids. The voltage drops...

  7. Coordinated Voltage Control Scheme for VSC-HVDC Connected Wind Power Plants

    DEFF Research Database (Denmark)

    Guo, Yifei; Gao, Houlei; Wu, Qiuwei

    2017-01-01

    This paper proposes a coordinated voltage control scheme based on model predictive control (MPC) for voltage source converter‐based high voltage direct current (VSC‐HVDC) connected wind power plants (WPPs). In the proposed scheme, voltage regulation capabilities of VSC and WTGs are fully utilized...... and optimally coordinated. Two control modes, namely operation optimization mode and corrective mode, are designed to coordinate voltage control and economic operation of the system. In the first mode, the control objective includes the bus voltages, power losses and dynamic Var reserves of wind turbine...

  8. Hopf bifurcation and chaos from torus breakdown in voltage-mode controlled DC drive systems

    International Nuclear Information System (INIS)

    Dai Dong; Ma Xikui; Zhang Bo; Tse, Chi K.

    2009-01-01

    Period-doubling bifurcation and its route to chaos have been thoroughly investigated in voltage-mode and current-mode controlled DC motor drives under simple proportional control. In this paper, the phenomena of Hopf bifurcation and chaos from torus breakdown in a voltage-mode controlled DC drive system is reported. It has been shown that Hopf bifurcation may occur when the DC drive system adopts a more practical proportional-integral control. The phenomena of period-adding and phase-locking are also observed after the Hopf bifurcation. Furthermore, it is shown that the stable torus can breakdown and chaos emerges afterwards. The work presented in this paper provides more complete information about the dynamical behaviors of DC drive systems.

  9. Control system integration

    CERN Document Server

    Shea, T J

    2008-01-01

    This lecture begins with a definition of an accelerator control system, and then reviews the control system architectures that have been deployed at the larger accelerator facilities. This discussion naturally leads to identification of the major subsystems and their interfaces. We shall explore general strategies for integrating intelligent devices and signal processing subsystems based on gate arrays and programmable DSPs. The following topics will also be covered: physical packaging; timing and synchronization; local and global communication technologies; interfacing to machine protection systems; remote debugging; configuration management and source code control; and integration of commercial software tools. Several practical realizations will be presented.

  10. Electronic Devices for Controlling the Very High Voltage in the ALICE TPC Detector

    CERN Document Server

    Boccioli, Marco

    2007-01-01

    The Time Projection Chamber (TPC) is the core of the ALICE experiment at CERN. The TPC Very High Voltage project covers the development of the control system for the power supply that generates the 100kV necessary for the drift field in the TPC. This paper reports on the project progress, introducing the control system architecture from the electronics up to the control level. All the electronic devices will be described, highlighting their communication issues, and the challenges in integrating these devices in a PLC-based control system.

  11. A New Secondary Control Approach for Voltage Regulation in DC Microgrids

    DEFF Research Database (Denmark)

    Peyghami, Saeed; Mokhtari, Hossein; Davari, Pooya

    2016-01-01

    feeders with much voltage drop on the line resistances, the conventional methods may not guarantee the voltage regulation on the load busses. Therefore, in addition to compensate the voltage drop of the primary controller, it is necessary to regulate the voltage of critical loads. In this paper, a new...

  12. A novel control strategy for enhancing the LVRT and voltage support capabilities of DFIG

    Science.gov (United States)

    Shen, Yangwu; Zhang, Bin; Liang, Liqing; Cui, Ting

    2018-02-01

    A novel integrated control strategy is proposed in this paper to enhance the low voltage ride through capacity for the double-fed induction generator by equipping an energy storage system. The energy storage system is installed into the DC-link capacitor of the DFIG and used to control the DC-link voltage during normal or transient operations. The energy storage device will absorb or compensate the power difference between the captured wind power and the power injected to the grid during the normal and transient period, and the grid side converter can be free from maintaining the voltage stability of the DC-link capacitor. Thus, the grid-side converter is changed to reactive power support while the rotor-side converter is used to control the maximum power production during normal operation. The grid-side converter and rotor-side converter will act as reactive power sources to further enhance the voltage support capability of double-fed induction generator during the transient period. Numerical Simulation are performed to validate the effectiveness of the proposed control designs.

  13. A Communication-Less Distributed Voltage Control Strategy for a Multi-Bus AC Islanded Microgrid

    DEFF Research Database (Denmark)

    Wang, Yanbo; Tan, Yongdong; Chen, Zhe

    2014-01-01

    This paper presents a communication-less distributed voltage control strategy for a multi-bus AC islanded microgrid. First, a Kalman Filter-based network voltage estimator is proposed to obtain voltage responses without communication links in the presence of load disturbances. Then, a voltage...... and reliability is improved for islanded microgrids due to communication-less operation. The simulations and experimental results are presented to validate the proposed distributed voltage control strategy....... optimal controller using MPC (Model Predictive Control) are developed to implement voltage optimal control. The contributions of this paper are demonstrated: (1) The proposed voltage estimator can dynamically obtain network voltage responses just through local voltage and current associated with each DG...

  14. Design and Analysis of a Slope Voltage Control for a DFIG Wind Power Plant

    DEFF Research Database (Denmark)

    Martínez, J.; Kjær, P. C.; Rodriguez, Pedro

    2012-01-01

    This paper addresses a detailed design of a wind power plant and turbine slope voltage control in the presence of communication delays for a wide short-circuit ratio range operation. The implemented voltage control scheme is based upon the secondary voltage control concept, which offers fast...... of connection with the grid. The performance has been tested using PSCAD/EMTDC program. The plant layout used in the simulations is based on an installed wind power plant, composed of 23 doubly fed generator wind turbines. The resulting performance is evaluated using a compilation of grid code voltage control...... response to grid disturbances, despite the communication delays, i.e., this concept is based on a primary voltage control, located in the wind turbine, which follows an external voltage reference sent by a central controller, called secondary voltage control, which is controlling the voltage at the point...

  15. An implantable neurostimulator with an integrated high-voltage inductive power-recovery frontend

    International Nuclear Information System (INIS)

    Wang Yuan; Zhang Xu; Liu Ming; Li Peng; Chen Hongda

    2014-01-01

    This paper present a highly-integrated neurostimulator with an on-chip inductive power-recovery frontend and high-voltage stimulus generator. In particular, the power-recovery frontend includes a high-voltage full-wave rectifier (up to 100 V AC input), high-voltage series regulators (24/5 V outputs) and a linear regulator (1.8/3.3 V output) with bandgap voltage reference. With the high voltage output of the series regulator, the proposed neurostimulator could deliver a considerably large current in high electrode-tissue contact impedance. This neurostimulator has been fabricated in a CSMC 1 μm 5/40/700 V BCD process and the total silicon area including pads is 5.8 mm 2 . Preliminary tests are successful as the neurostimulator shows good stability under a 13.56 MHz AC supply. Compared to previously reported works, our design has advantages of a wide induced voltage range (26–100 V), high output voltage (up to 24 V) and high-level integration, which are suitable for implantable neurostimulators. (semiconductor integrated circuits)

  16. Voltage Control in Wind Power Plants with Doubly Fed Generators

    DEFF Research Database (Denmark)

    Garcia, Jorge Martinez

    In this work, the process of designing a wind power plant composed of; doubly fed induction generators, a static compensator unit, mechanically switched capacitors and on-load tap changer, for voltage control is shown. The selected control structure is based on a decentralized system, since...... supplied by the doubly fed induction generator wind turbines is overcome by installing a reactive power compensator, i.e. a static compensator unit, which is coordinated with the plant control by a specific dispatcher. This dispatcher is set according to the result of the wind power plant load flow....... To release the operation of the converters during steady-state disturbances, mechanically switched capacitors are installed in the wind power plant, which due to their characteristics, they are appropriate for permanent disturbances compensation. The mechanically switched capacitors are controlled to allow...

  17. Secondary Control Scheme for Voltage Unbalance Compensation in an Islanded Droop-Controlled Microgrid

    DEFF Research Database (Denmark)

    Savaghebi, Mehdi; Jalilian, Alireza; Vasquez, Juan Carlos

    2012-01-01

    The concept of microgrid hierarchical control is presented recently. In this paper, a hierarchical scheme is proposed which includes primary and secondary control levels. The primary level comprises distributed generators (DGs) local controllers. The local controllers mainly consist of power......, voltage and current controllers, and virtual impedance control loop. The central secondary controller is designed to manage the compensation of voltage unbalance at the point of common coupling (PCC) in an islanded microgrid. Unbalance compensation is achieved by sending proper control signals to the DGs...... local controllers. The design procedure of the control system is discussed in detail and the simulation results are presented. The results show the effectiveness of the proposed control structure in compensating the voltage unbalance....

  18. Coordinated Voltage Control of a Wind Farm based on Model Predictive Control

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Guo, Qinglai

    2016-01-01

    This paper presents an autonomous wind farm voltage controller based on Model Predictive Control (MPC). The reactive power compensation and voltage regulation devices of the wind farm include Static Var Compensators (SVCs), Static Var Generators (SVGs), Wind Turbine Generators (WTGs) and On...... are calculated based on an analytical method to improve the computation efficiency and overcome the convergence problem. Two control modes are designed for both voltage violated and normal operation conditions. A wind farm with 20 wind turbines was used to conduct case studies to verify the proposed coordinated...

  19. Low-Voltage Consumption Coordination for Loss Minimization and Voltage Control

    DEFF Research Database (Denmark)

    Juelsgaard, Morten; Sloth, Christoffer; Wisniewski, Rafal

    2014-01-01

    This work presents a strategy for minimizing active power losses in low-voltage grids, by coordinating the consumption of electric vehicles and power generation from solar panels. We show that minimizing losses, also reduces voltage variations, and illustrate how this may be employed for increasing...

  20. Design and Implementation of a High-Voltage Generator with Output Voltage Control for Vehicle ER Shock-Absorber Applications

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2013-01-01

    Full Text Available A self-oscillating high-voltage generator is proposed to supply voltage for a suspension system in order to control the damping force of an electrorheological (ER fluid shock absorber. By controlling the output voltage level of the generator, the damping force in the ER fluid shock absorber can be adjusted immediately. The shock absorber is part of the suspension system. The high-voltage generator drives a power transistor based on self-excited oscillation, which converts dc to ac. A high-frequency transformer with high turns ratio is used to increase the voltage. In addition, the system uses the car battery as dc power supply. By regulating the duty cycle of the main switch in the buck converter, the output voltage of the buck converter can be linearly adjusted so as to obtain a specific high voltage for ER. The driving system is self-excited; that is, no additional external driving circuit is required. Thus, it reduces cost and simplifies system structure. A prototype version of the actual product is studied to measure and evaluate the key waveforms. The feasibility of the proposed system is verified based on experimental results.

  1. Bi-directional power control system for voltage converter

    Science.gov (United States)

    Garrigan, Neil Richard; King, Robert Dean; Schwartz, James Edward

    1999-01-01

    A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals.

  2. Assessment of the operating conditions of coordinated Q-V controller within secondary voltage control system

    Directory of Open Access Journals (Sweden)

    Arnautović Dušan

    2014-01-01

    Full Text Available The paper, discusses the possibility to use coordinated Q-V controller (CQVC to perform secondary voltage control at the power plant level. The CQVC performs the coordination of the synchronous generators' (SG reactive power outputs in order to maintain the same total reactive power delivered by the steam power plant (SPP, while at the same time maintaining a constant voltage with programmed reactive droop characteristic at the SPP HV busbar. This busbar is the natural pilot node for secondary voltage control at HV level as the node with maximum power production and maximum power consumption. In addition to voltage control, the CQVC maintains the uniform allocation of reactive power reserves at all SGs in the power plant. This is accomplished by setting the reactive power of each SG at given operating point in accordance to the available reactive power of the same SG at that point. Different limitations imposed by unit's and plant equipment are superimposed on original SG operating chart (provided by the manufacturer in order to establish realistic limits of SG operation at given operating point. The CQVC facilitates: i practical implementation of secondary voltage control in power system, as it is capable of ensuring delivery of reactive power as requested by regional/voltage control while maintaining voltage at system pilot node, ii the full deployment of available reactive power of SGs which in turn contributes to system stability, iii assessment of the reactive power impact/contribution of each generator in providing voltage control as ancillary service. Furthermore, it is also possible to use CQVC to pricing reactive power production cost at each SG involved and to design reactive power bidding structure for transmission network devices by using recorded data. Practical exploitation experience acquired during CQVC continuous operation for over two years enabled implementation of the optimal setting of reference voltage and droop on daily

  3. Integrated mobile robot control

    Science.gov (United States)

    Amidi, Omead; Thorpe, Chuck E.

    1991-03-01

    This paper describes the strucwre implementation and operation of a real-time mobile robot controller which integrates capabilities such as: position estimation path specification and hacking human interfaces fast communication and multiple client support The benefits of such high-level capabilities in a low-level controller was shown by its implementation for the Naviab autonomous vehicle. In addition performance results from positioning and tracking systems are reported and analyzed.

  4. Performance Analysis of Phase Controlled Unidirectional and Bidirectional AC Voltage Controllers

    Directory of Open Access Journals (Sweden)

    Abdul Sattar Larik

    2011-01-01

    Full Text Available AC voltage controllers are used to vary the output ac voltage from a fixed ac input source. They are also commonly called ac voltage regulators or ac choppers. The output voltage is either controlled by PAC (Phase Angle Control method or on-off control method. Due to various advantages of ac voltage controllers, such as high efficiency, simplicity, low cost and ability to control large amount of power they efficiently control the speed of ac motors, light dimming and industrial heating, etc. These converters are variable structure systems and generate harmonics during the operation which will affect the power quality when connected to system network. During the last couple of years, a number of new semiconductor devices and various power electronic converters has been introduced. Accordingly the subject of harmonics and its problems are of great concern to power industry and customers. In this research work, initially the simulation models of single phase unidirectional and bidirectional ac voltage controllers were developed by using MATLAB software. The harmonics of these models are investigated by simulation. In the end, the harmonics were also analyzed experimentally. The simulated as well as experimental results are presented.

  5. Hierarchical Control Scheme for Voltage Harmonics Compensation in an Islanded Droop-Controlled Microgrid

    DEFF Research Database (Denmark)

    Savaghebi, Mehdi; Guerrero, Josep M.; Jalilian, Alireza

    2011-01-01

    In this paper, a microgrid hierarchical control scheme is proposed which includes primary and secondary control levels. The primary level comprises distributed generators (DGs) local controllers. The local controller mainly consists of active and reactive power controllers, voltage and current...... controllers, and virtual impedance loop. A novel virtual impedance structure is proposed to achieve proper sharing of non-fundamental power among the microgrid DGs. The secondary level is designed to manage compensation of voltage harmonics at the microgrid load bus (LB) to which the sensitive loads may...... be connected. Also, restoration of LB voltage amplitude and microgrid frequency to the rated values is directed by the secondary level. These functions are achieved by sending proper control signals to the local controllers. The simulation results show the effectiveness of the proposed control scheme....

  6. High-voltage integrated linear regulator with current sinking capabilities for portable ultrasound scanners

    DEFF Research Database (Denmark)

    Pausas, Guifre Vendrell; Llimos Muntal, Pere; Jørgensen, Ivan Harald Holger

    2017-01-01

    This paper presents a high-voltage integrated regulator capable of sinking current for driving pulse-triggered level shifters in drivers for ultrasound applications. The regulator utilizes a new topology with a feedback loop and a current sinking circuit to satisfy the requirements of the portable....... The proposed design has been implemented in high-voltage 0.18 μm process whithin an area of 0.11 mm2 and it is suitable for system-on-chip integration due to its low component count and the fully integrated design....

  7. Low voltage electroosmotic pump for high density integration into microfabricated fluidic systems

    NARCIS (Netherlands)

    Heuck, F.C.A.; Staufer, U.

    2011-01-01

    A low voltage electroosmotic (eo) pump suitable for high density integration into microfabricated fluidic systems has been developed. The high density integration of the eo pump required a small footprint as well as a specific on-chip design to ventilate the electrolyzed gases emerging at the

  8. Voltage control and protection in electrical power systems from system components to wide-area control

    CERN Document Server

    Corsi, Sandro

    2015-01-01

    Based on the author’s twenty years of experience, this book shows the practicality of modern, conceptually new, wide area voltage control in transmission and distribution smart grids, in detail. Evidence is given of the great advantages of this approach, as well as what can be gained by new control functionalities which modern technologies now available can provide. The distinction between solutions of wide area voltage regulation (V-WAR) and wide area voltage protection (V-WAP) are presented, demonstrating the proper synergy between them when they operate on the same power system as well as the simplicity and effectiveness of the protection solution in this case. The author provides an overview and detailed descriptions of voltage controls, distinguishing between generalities of underdeveloped, on-field operating applications and modern and available automatic control solutions, which are as yet not sufficiently known or perceived for what they are: practical, high-performance and reliable solutions. At th...

  9. Nonlinear Robust Control for Low Voltage Direct-Current Residential Microgrids with Constant Power Loads

    Directory of Open Access Journals (Sweden)

    Martín-Antonio Rodríguez-Licea

    2018-05-01

    Full Text Available A Direct Current (DC microgrid is a concept derived from a smart grid integrating DC renewable sources. The DC microgrids have three particularities: (1 integration of different power sources and local loads through a DC link; (2 on-site power source generation; and (3 alternating loads (on-off state. This kind of arrangement achieves high efficiency, reliability and versatility characteristics. The key device in the development of the DC microgrid is the power electronic converter (PEC, since it allows an efficient energy conversion between power sources and loads. However, alternating loads with strictly-controlled PECs can provide negative impedance behavior to the microgrid, acting as constant power loads (CPLs, such that the overall closed-loop system becomes unstable. Traditional CPL compensation techniques rely on a damping increment by the adaptation of the source or load voltage level, adding external circuitry or by using some advanced control technique. However, none of them provide a simple and general solution for the CPL problem when abrupt changes in parameters and/or in alternating loads/sources occur. This paper proposes a mathematical modeling and a robust control for the basic PECs dealing with CPLs in continuous conduction mode. In particular, the case of the low voltage residential DC microgrid with CPLs is taken as a benchmark. The proposed controller can be easily tuned for the desired response even by the non-expert. Basic converters with voltage mode control are taken as a basis to show the feasibility of this analysis, and experimental tests on a 100-W testbed include abrupt parameter changes such as input voltage.

  10. A new algorithm for optimum voltage and reactive power control for minimizing transmission lines losses

    International Nuclear Information System (INIS)

    Ghoudjehbaklou, H.; Danai, B.

    2001-01-01

    Reactive power dispatch for voltage profile modification has been of interest to power utilities. Usually local bus voltages can be altered by changing generator voltages, reactive shunts, ULTC transformers and SVCs. Determination of optimum values for control parameters, however, is not simple for modern power system networks. Heuristic and rather intelligent algorithms have to be sought. In this paper a new algorithm is proposed that is based on a variant of a genetic algorithm combined with simulated annealing updates. In this algorithm a fuzzy multi-objective a approach is used for the fitness function of the genetic algorithm. This fuzzy multi-objective function can efficiently modify the voltage profile in order to minimize transmission lines losses, thus reducing the operating costs. The reason for such a combination is to utilize the best characteristics of each method and overcome their deficiencies. The proposed algorithm is much faster than the classical genetic algorithm and cna be easily integrated into existing power utilities software. The proposed algorithm is tested on an actual system model of 1284 buses, 799 lines, 1175 fixed and ULTC transformers, 86 generators, 181 controllable shunts and 425 loads

  11. An Integrated Inductor For Parallel Interleaved Three-Phase Voltage Source Converters

    DEFF Research Database (Denmark)

    Gohil, Ghanshyamsinh Vijaysinh; Bede, Lorand; Teodorescu, Remus

    2016-01-01

    Three phase Voltage Source Converters (VSCs) are often connected in parallel to realize high current output converter system. The harmonic quality of the resultant switched output voltage can be improved by interleaving the carrier signals of these parallel connected VSCs. As a result, the line...... of the state-of-the-art filtering solution. The performance of the integrated inductor is also verified by the experimental measurements....

  12. Experiences in simulating and testing coordinated voltage control provided by multiple wind power plants

    Energy Technology Data Exchange (ETDEWEB)

    Arlaban, T.; Alonso, O.; Ortiz, D. [Acciona Windpower S.A. (Spain); Peiro, J.; Rivas, R. [Red Electrica de Espana SAU (Spain); Quinonez-Varela, G.; Lorenzo, P. [Acciona Energia S.A. (Spain)

    2011-07-01

    This document presents some field tests performed in a transmission system node in order to check the adequacy of voltage control performance by multiple wind power plants, with an overall capacity of 395 MW. It briefly explains the Spanish TSO motivation towards new voltage control requirements and the necessity of performing such tests in order to set the most convenient voltage control parameters and to verify the stable operation. It presents how different the voltage control capability between modern wind turbines (DFIG) and older ones (SCIG) specifically retrofitted for voltage control is. (orig.)

  13. Voltage regulation and power losses reduction in a wind farm integrated MV distribution network

    Science.gov (United States)

    Fandi, Ghaeth; Igbinovia, Famous Omar; Tlusty, Josef; Mahmoud, Rateb

    2018-01-01

    A medium-voltage (MV) wind production system is proposed in this paper. The system applies a medium-voltage permanent magnet synchronous generator (PMSG) as well as MV interconnection and distribution networks. The simulation scheme of an existing commercial electric-power system (Case A) and a proposed wind farm with a gearless PMSG insulated gate bipolar transistor (IGBT) power electronics converter scheme (Case B) is compared. The analyses carried out in MATLAB/Simulink environment shows an enhanced voltage profile and reduced power losses, thus, efficiency in installed IGBT power electronics devices in the wind farm. The resulting wind energy transformation scheme is a simple and controllable medium voltage application since it is not restrained by the IGBT power electronics voltage source converter (VSC) arrangement. Active and reactive power control is made possible with the aid of the gearless PMSG IGBT power converters.

  14. Design and power management of an offshore medium voltage DC microgrid realized through high voltage power electronics technologies and control

    Science.gov (United States)

    Grainger, Brandon Michael

    The growth in the electric power industry's portfolio of Direct Current (DC) based generation and loads have captured the attention of many leading research institutions. Opportunities for using DC based systems have been explored in electric ship design and have been a proven, reliable solution for transmitting bulk power onshore and offshore. To integrate many of the renewable resources into our existing AC grid, a number of power conversions through power electronics are required to condition the equipment for direct connection. Within the power conversion stages, there is always a requirement to convert to or from DC. The AC microgrid is a conceptual solution proposed for integrating various types of renewable generation resources. The fundamental microgrid requirements include the capability of operating in islanding mode and/or grid connected modes. The technical challenges associated with microgrids include (1) operation modes and transitions that comply with IEEE1547 without extensive custom engineering and (2) control architecture and communication. The Medium Voltage DC (MVDC) architecture, explored by the University of Pittsburgh, can be visualized as a special type of DC microgrid. This dissertation is multi-faceted, focused on many design aspects of an offshore DC microgrid. The focal points of the discussion are focused on optimized high power, high frequency magnetic material performance in electric machines, transformers, and DC/DC power converters---all components found within offshore, power system architectures. A new controller design based upon model reference control is proposed and shown to stabilize the electric motor drives (modeled as constant power loads), which serve as the largest power consuming entities in the microgrid. The design and simulation of a state-of-the-art multilevel converter for High Voltage DC (HVDC) is discussed and a component sensitivity analysis on fault current peaks is explored. A power management routine is

  15. Improved adaptive input voltage control of a solar array interfacing current mode controlled boost power stage

    International Nuclear Information System (INIS)

    Sitbon, Moshe; Schacham, Shmuel; Suntio, Teuvo; Kuperman, Alon

    2015-01-01

    Highlights: • Photovoltaic generator dynamic resistance online estimation method is proposed. • Control method allowing to achieve nominal performance at all time is presented. • The method is suitable for any type of photovoltaic system. - Abstract: Nonlinear characteristics of photovoltaic generators were recently shown to significantly influence the dynamics of interfacing power stages. Moreover, since the dynamic resistance of photovoltaic generators is both operating point and environmental variables dependent, the combined dynamics exhibits these dependencies as well, burdening control challenge. Typically, linear time invariant input voltage loop controllers (e.g. Proportional-Integrative-Derivative) are utilized in photovoltaic applications, designed according to nominal operating conditions. Nevertheless, since actual dynamics is seldom nominal, closed loop performance of such systems varies as well. In this paper, adaptive control method is proposed, allowing to estimate photovoltaic generator resistance online and utilize it to modify the controller parameters such that closed loop performance remains nominal throughout the whole operation range. Unlike previously proposed method, utilizing double-grid-frequency component for estimation purposes and suffering from various drawbacks such as operation point dependence and applicability to single-phase grid connected systems only, the proposed method is based on harmonic current injection and is independent on operating point and system topology

  16. High Bandwidth Zero Voltage Injection Method for Sensorless Control of PMSM

    DEFF Research Database (Denmark)

    Ge, Xie; Lu, Kaiyuan; Kumar, Dwivedi Sanjeet

    2014-01-01

    High frequency signal injection is widely used in PMSM sensorless control system for low speed operations. The conventional voltage injection method often needs filters to obtain particular harmonic component in order to estimate the rotor position; or it requires several voltage pulses to be inj......High frequency signal injection is widely used in PMSM sensorless control system for low speed operations. The conventional voltage injection method often needs filters to obtain particular harmonic component in order to estimate the rotor position; or it requires several voltage pulses...... in a fast current regulation performance. Injection of zero voltage also minimizes the inverter voltage error effects caused by the dead-time....

  17. Voltage Control Support and Coordination between Renewable Generation Plants in MV Distribution Systems

    DEFF Research Database (Denmark)

    Petersen, Lennart; Iov, Florin; Hansen, Anca Daniela

    2016-01-01

    This paper focusses on voltage control support and coordination between renewable generation plants in medium voltage distribution systems. An exemplary benchmark grid in Denmark, including a number of flexible ReGen plants providing voltage control functionality, is used as a base case. First...

  18. Coordinated Voltage Control Scheme for SEIG-Based Wind Park Utilizing Substation STATCOM and ULTC Transformer

    DEFF Research Database (Denmark)

    S. El Moursi, Mohamed; Bak-Jensen, Birgitte; Abdel-Rahman, Mansour Hassan

    2011-01-01

    and optimal tracking secondary voltage control for wind parks based on self-excited induction generators which comprise STATCOM and under-load tap changer (ULTC) substation transformers. The voltage controllers for the STATCOM and ULTC transformer are coordinated and ensure the voltage support. In steady...

  19. 30 CFR 77.515 - Bare signal or control wires; voltage.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bare signal or control wires; voltage. 77.515 Section 77.515 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Electrical Equipment-General § 77.515 Bare signal or control wires; voltage. The voltage on...

  20. Improved voltage gradient control system for electrostatic accelerators

    International Nuclear Information System (INIS)

    Jones, N.L.; Dittner, P.F.

    1993-01-01

    An improved voltage gradient control system has been designed and installed in the EN tandem at the Oak Ridge National Laboratory. An improved design was sought due to high failure rates, increasing replacement parts and labor costs, and decreasing availability of the original carbon film resistor systems supplied for the EN-12 at ORNL. The resulting system utilizes two inexpensive, readily available, metal oxide resistors in series between each plane. They are protected by coaxial stainless steel shielding tubes, and spark gaps across individual resistors and adjacent pairs. The new resistors mount atop the column bridge in a compact configuration. This permits easy access both to the resistors and to the interior column components such as the belt. Well controlled gradients now provide improved machine performance. Both initial capital outlay and future maintenance result in reduced costs. Design, installation, performance, and cost details are reported. (orig.)

  1. Low start-up voltage dc–dc converter with negative voltage control for thermoelectric energy harvesting

    Directory of Open Access Journals (Sweden)

    Pui-Sun Lei

    2015-01-01

    Full Text Available This Letter presents a low start-up voltage dc–dc converter for low-power thermoelectric systems which uses a native n-type MOS transistor as the start-up switch. The start-up voltage of the proposed converter is 300 mV and the converter does not need batteries to start up. The negative voltage control is proposed to reduce the leakage current caused by native n-type transistor and increase the efficiency. The proposed converter was designed using standard 0.18 µm CMOS process with chip size of 0.388 mm^2. The peak efficiency is 63% at load current of 1.5 mA. The proposed converter provides output voltage >1 V at maximum load current of 3.2 mA.

  2. Reactive power and voltage control strategy based on dynamic and adaptive segment for DG inverter

    Science.gov (United States)

    Zhai, Jianwei; Lin, Xiaoming; Zhang, Yongjun

    2018-03-01

    The inverter of distributed generation (DG) can support reactive power to help solve the problem of out-of-limit voltage in active distribution network (ADN). Therefore, a reactive voltage control strategy based on dynamic and adaptive segment for DG inverter is put forward to actively control voltage in this paper. The proposed strategy adjusts the segmented voltage threshold of Q(U) droop curve dynamically and adaptively according to the voltage of grid-connected point and the power direction of adjacent downstream line. And then the reactive power reference of DG inverter can be got through modified Q(U) control strategy. The reactive power of inverter is controlled to trace the reference value. The proposed control strategy can not only control the local voltage of grid-connected point but also help to maintain voltage within qualified range considering the terminal voltage of distribution feeder and the reactive support for adjacent downstream DG. The scheme using the proposed strategy is compared with the scheme without the reactive support of DG inverter and the scheme using the Q(U) control strategy with constant segmented voltage threshold. The simulation results suggest that the proposed method has a significant improvement on solving the problem of out-of-limit voltage, restraining voltage variation and improving voltage quality.

  3. Modelling a single phase voltage controlled rectifier using Laplace transforms

    Science.gov (United States)

    Kraft, L. Alan; Kankam, M. David

    1992-01-01

    The development of a 20 kHz, AC power system by NASA for large space projects has spurred a need to develop models for the equipment which will be used on these single phase systems. To date, models for the AC source (i.e., inverters) have been developed. It is the intent of this paper to develop a method to model the single phase voltage controlled rectifiers which will be attached to the AC power grid as an interface for connected loads. A modified version of EPRI's HARMFLO program is used as the shell for these models. The results obtained from the model developed in this paper are quite adequate for the analysis of problems such as voltage resonance. The unique technique presented in this paper uses the Laplace transforms to determine the harmonic content of the load current of the rectifier rather than a curve fitting technique. Laplace transforms yield the coefficient of the differential equations which model the line current to the rectifier directly.

  4. Active Power Filter DC Bus Voltage Piecewise Reaching Law Variable Structure Control

    OpenAIRE

    Liu, Baolian; Ding, Zujun; Zhao, Huanyu; Jin, Defei

    2014-01-01

    The DC bus voltage stability control is one key technology to ensure that Active Power Filter (APF) operates stably. The external disturbances such as power grid and load fluctuation and the system parameters changing may affect the stability of APF DC bus voltage and the normal operation of APF. The mathematical model of DC bus voltage is established according to power balance principle and a DC bus voltage piecewise reaching law variable structure control algorithm is proposed to solve the ...

  5. Disturbance Attenuation of DC Voltage Droop Control Structures in a Multi-Terminal HVDC Grid

    DEFF Research Database (Denmark)

    Thams, Florian; Chatzivasileiadis, Spyros; Prieto-Araujo, Eduardo

    2017-01-01

    DC voltage droop control is seen as the preferred control structure for primary voltage control of future multiterminal HVDC systems. Different droop control structures have been proposed in literature which can be classified in eight categories. This paper contributes to an analysis of the distu......DC voltage droop control is seen as the preferred control structure for primary voltage control of future multiterminal HVDC systems. Different droop control structures have been proposed in literature which can be classified in eight categories. This paper contributes to an analysis...

  6. Automatic Power-Sharing Modification of P/V Droop Controllers in Low-Voltage Resistive Microgrids

    DEFF Research Database (Denmark)

    L. Vandoorn, Tine; D. M. De Kooning, Jeroen; Meersman, Bart

    2012-01-01

    Microgrids are receiving an increasing interest to integrate the growing share of distributed-generation (DG) units in the electrical network. For the islanded operation of themicrogrid, several control strategies for the primary control have been developed to ensure stable microgrid operation....... In low-voltage (LV) microgrids, active power/voltage ( P/V ) droop controllers are gaining attention as they take the resistive nature of the network lines and the lack of directly coupled rotating inertia into account. However, a problem often cited with these droop controllers is that the grid voltage...... is not a global parameter. This can influence the power sharing between different units. In this paper, it is investigated whether this is actually a disadvantage of the control strategy. It is shown that with / droop control, the DG units that are located electrically far from the load centers automatically...

  7. Application of Load Compensation in Voltage Controllers of Large Generators in the Polish Power Grid

    Directory of Open Access Journals (Sweden)

    Bogdan Sobczak

    2014-03-01

    Full Text Available The Automatic Voltage Regulator normally controls the generator stator terminal voltage. Load compensation is used to control the voltage which is representative of the voltage at a point either within or external to the generator. In the Polish Power Grid (PPG compensation is ready to use in every AVR of a large generator, but it is utilized only in the case of generators operating at the same medium voltage buses. It is similar as in most European Power Grids. The compensator regulating the voltage at a point beyond the machine terminals has significant advantages in comparison to the slower secondary Voltage and Reactive Power Control System (ARNE1. The compensation stiffens the EHV grid, which leads to improved voltage quality in the distribution grid. This effect may be particularly important in the context of the dynamic development of wind and solar energy.

  8. Voltage Control Support and Coordination between Renewable Generation Plants in MV Distribution Systems

    DEFF Research Database (Denmark)

    Petersen, Lennart; Iov, Florin; Hansen, Anca Daniela

    2016-01-01

    This paper focusses on voltage control support and coordination between renewable generation plants in medium voltage distribution systems. An exemplary benchmark grid in Denmark, including a number of flexible ReGen plants providing voltage control functionality, is used as a base case. First......, voltage sensitivity analysis is performed to quantify node voltage variations due to injections of reactive power for given operational points of the network. The results are then used to develop an adaptive voltage droop control method, where various droop settings are allocated to each ReGen plant...... according to the sensitivity indices of corresponding node voltages and the location of respective ReGen plants in the distribution system. Case studies are performed in time-domain to analyze the impact of voltage fluctuations due to active power variations of ReGen plants in order to verify...

  9. Dimerization of the voltage-sensing phosphatase controls its voltage-sensing and catalytic activity.

    Science.gov (United States)

    Rayaprolu, Vamseedhar; Royal, Perrine; Stengel, Karen; Sandoz, Guillaume; Kohout, Susy C

    2018-05-07

    Multimerization is a key characteristic of most voltage-sensing proteins. The main exception was thought to be the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP). In this study, we show that multimerization is also critical for Ci-VSP function. Using coimmunoprecipitation and single-molecule pull-down, we find that Ci-VSP stoichiometry is flexible. It exists as both monomers and dimers, with dimers favored at higher concentrations. We show strong dimerization via the voltage-sensing domain (VSD) and weak dimerization via the phosphatase domain. Using voltage-clamp fluorometry, we also find that VSDs cooperate to lower the voltage dependence of activation, thus favoring the activation of Ci-VSP. Finally, using activity assays, we find that dimerization alters Ci-VSP substrate specificity such that only dimeric Ci-VSP is able to dephosphorylate the 3-phosphate from PI(3,4,5)P 3 or PI(3,4)P 2 Our results indicate that dimerization plays a significant role in Ci-VSP function. © 2018 Rayaprolu et al.

  10. DiSC: A Simulation Framework for Distribution System Voltage Control

    DEFF Research Database (Denmark)

    Pedersen, Rasmus; Sloth, Christoffer Eg; Andresen, Gorm

    2015-01-01

    This paper presents the MATLAB simulation framework, DiSC, for verifying voltage control approaches in power distribution systems. It consists of real consumption data, stochastic models of renewable resources, flexible assets, electrical grid, and models of the underlying communication channels....... The simulation framework makes it possible to validate control approaches, and thus advance realistic and robust control algorithms for distribution system voltage control. Two examples demonstrate the potential voltage issues from penetration of renewables in the distribution grid, along with simple control...

  11. A high voltage pulse generator based on silicon-controlled rectifier for field-reversed configuration experiment.

    Science.gov (United States)

    Lin, Munan; Liu, Ming; Zhu, Guanghui; Wang, Yanpeng; Shi, Peiyun; Sun, Xuan

    2017-08-01

    A high voltage pulse generator based on a silicon-controlled rectifier has been designed and implemented for a field reversed configuration experiment. A critical damping circuit is used in the generator to produce the desired pulse waveform. Depending on the load, the rise time of the output trigger signal can be less than 1 μs, and the peak amplitudes of trigger voltage and current are up to 8 kV and 85 A in a single output. The output voltage can be easily adjusted by changing the voltage on a capacitor of the generator. In addition, the generator integrates an electrically floating heater circuit so it is capable of triggering either pseudosparks (TDI-type hydrogen thyratron) or ignitrons. Details of the circuits and their implementation are described in the paper. The trigger generator has successfully controlled the discharging sequence of the pulsed power supply for a field reversed configuration experiment.

  12. Voltage control of a power-frequency E-beam irradiator

    International Nuclear Information System (INIS)

    Zhou Zhizhong; Hu Shouming; Wang Jun; Guo Honglei; Su Haijun

    2012-01-01

    Voltage stability and precision are key specifications of an electron beam irradiator. A voltage control system was developed for smooth high voltage regulating on a power frequency electron accelerator. Pillar variac driven by servo motor was used as the regulating device, with a programmable logic controller as the control unit. An industrial PC was employed to realize human-machine interaction. Open-loop and closed-loop modes were employed to regulate the high voltage. Experimental results show that the speed, stability and precision for high voltage regulating were improved greatly, hence a much better performance of the electron accelerator. (authors)

  13. A Comprehensive Analysis and Hardware Implementation of Control Strategies for High Output Voltage DC-DC Boost Power Converter

    Directory of Open Access Journals (Sweden)

    Sanjeevikumar Padmanaban

    2017-01-01

    Full Text Available Classical DC-DC converters used in high voltage direct current (HVDC power transmission systems, lack in terms of efficiency, reduced transfer gain and increased cost with sensor (voltage/current numbers. Besides, the internal self-parasitic behavior of the power components reduces the output voltage and efficiency of classical HV converters. This paper deals with extra high-voltage (EHV dc-dc boost converter by the application of voltage-lift technique to overcome the aforementioned deficiencies. The control strategy is based on classical proportional-integral (P-I and fuzzy logic closed-loop controller to get high and stable output voltage. Complete hardware prototype of EHV is implemented and experimental tasks are carried out with digital signal processor (DSP TMS320F2812. The control algorithms P-I, fuzzy logic and the pulse-width modulation (PWM signals for N-channel MOSFET device are performed by the DSP. The experimental results provided show good conformity with developed hypothetical predictions. Additionally, the presented study confirms that the fuzzy logic controller provides better performance than classical P-I controller under different perturbation conditions.

  14. Flexible Demand Control to Enhance the Dynamic Operation of Low Voltage Networks

    DEFF Research Database (Denmark)

    Diaz de Cerio Mendaza, Iker; Szczesny, Ireneusz Grzegorz; Pillai, Jayakrishnan Radhakrishna

    2015-01-01

    Moving towards a carbon free energy system has become an objective for many countries nowadays. Among other changes, the electrification of strategic sectors such as heating and transportation is inevitable. As a consequence, the current power system load will substantially increase...... for controlling the demand response of a low voltage grid. This is designed to; i) maximize the grid utilization, thereby reducing the need for reinforcement, ii) accommodate the maximum number of flexible loads and iii) satisfy the power and comfort requirements from each of the consumers in the network....... In this context, the nature of the expected loads (heat pumps, plug-in electric vehicles, etc.) makes the low voltage networks specially targeted. A promising solution to overcome the challenges resulting from their grid integration, is demand response. This paper introduces a hierarchical structure...

  15. Flexible voltage support control for three-phase distributed generation inverters under grid fault

    DEFF Research Database (Denmark)

    Camacho, Antonio; Castilla, Miguel; Miret, Jaume

    2013-01-01

    Operators describe the behavior of the energy source, regulating voltage limits and reactive power injection to remain connected and support the grid under fault. On the basis that different kinds of voltage sags require different voltage support strategies, a flexible control scheme for three phase grid...... connected inverters is proposed. In three phase balanced voltage sags, the inverter should inject reactive power in order to raise the voltage in all phases. In one or two phase faults, the main concern of the distributed generation inverter is to equalize voltages by reducing the negative symmetric...... sequence and clear the phase jump. Due to system limitations, a balance between these two extreme policies is mandatory. Thus, over-voltage and undervoltage can be avoided, and the proposed control scheme prevents disconnection while achieving the desired voltage support service. The main contribution...

  16. Distributed voltage control coordination between renewable generation plants in MV distribution grids

    DEFF Research Database (Denmark)

    Petersen, Lennart; Iov, Florin

    2017-01-01

    This study focuses on distributed voltage control coordination between renewable generation plants in medium-voltage distribution grids (DGs). A distributed offline coordination concept has been defined in a previous publication, leading to satisfactory voltage regulation in the DG. However, here...

  17. Coordinated control to mitigate over voltage and under voltage in LV networks

    NARCIS (Netherlands)

    Viyathukattuva Mohamed Ali, M.M.; Nguyen, H.P.; Cobben, J.F.G.

    2016-01-01

    Increasing penetration of distributed renewable energy resources (DRES) and smart loads into the LV network lead to new power quality challenges. Important power quality challenges are overvoltage and undervoltage. A number of solutions are already developed to mitigate these voltage variations. In

  18. Development of remote control integrator system on Tokamak

    International Nuclear Information System (INIS)

    Wu Yichun; Wang Lingzhi; Shu Shuangbao

    2014-01-01

    In order to meet with the requirement of electromagnetic diagnosis to the J-TEXT Tokamak, a remote control integrator system was developed. With modular design method, the integrator system is composed of the integrator cards, a control card, a linear power card and the BNC interface cards, and it uses the PC control soft- ware to conduct network control. An integrator system provides 32 integrator channels, and all integral channels have four kinds of integral time constants for remote selection and provide three kinds of integrator running control methods. According to laboratory and J-TEXT field testing, it shows that the output voltage range is -10-10 V, output noise is not more than 5 mV, and for the four kinds of integral time constants, the integral output drifts are all less than 5 mV within 100 s for each integrator channel. (authors)

  19. Distributed Control to Ensure Proportional Load Sharing and Improve Voltage Regulation in Low-Voltage DC Microgrids

    DEFF Research Database (Denmark)

    Anand, Sandeep; G. Fernandes, Baylon; Guerrero, Josep M.

    2013-01-01

    DC microgrids are gaining popularity due to high efficiency, high reliability, and easy interconnection of renewable sources as compared to the ac system. Control objectives of dc microgrid are: 1) to ensure equal load sharing (in per unit) among sources; and 2) to maintain low-voltage regulation...

  20. Voltage-Controlled Square/Triangular Wave Generator with Current Conveyors and Switching Diodes

    Directory of Open Access Journals (Sweden)

    Martin Janecek

    2012-12-01

    Full Text Available A novel relaxation oscillator based on integrating the diode-switched currents and Schmitt trigger is presented. It is derived from a known circuit with operational amplifiers where these active elements were replaced by current conveyors. The circuit employs only grounded resistances and capacitance and is suitable for high frequency square and triangular signal generation. Its frequency can be linearly and accurately controlled by voltage that is applied to a high-impedance input. Computer simulation with a model of a manufactured conveyor prototype verifies theoretic assumptions.

  1. Low voltage driven dielectric electro active polymer actuator with integrated piezoelectric transformer based driver

    DEFF Research Database (Denmark)

    Andersen, Thomas; Rødgaard, Martin Schøler; Thomsen, Ole Cornelius

    2011-01-01

    actuators, a low voltage solution is developed by integrating the driver electronic into a 110 mm tall cylindrical coreless Push InLastor actuator. To decrease the size of the driver, a piezoelectric transformer (PT) based solution is utilized. The PT is essentially an improved Rosen type PT...

  2. Alarm radiation dosimeter with improved integrating pulse ionization chamber and high voltage supply

    International Nuclear Information System (INIS)

    Borkowski, C.J.; Rochelle, J.M.

    1975-01-01

    An alarm dosimeter is described which features an improved integrating pulse ionization chamber of the type containing an hermetically sealed gas diode. Improved operation and miniaturization of the chamber are made possible by a ringing choke converter high voltage supply having a ripple-type output that insures discharge of the gas diode. (author)

  3. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    Science.gov (United States)

    Murty, Balarama Vempaty

    2000-01-01

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  4. DC-link Voltage Coordinative-Proportional Control in Cascaded Converter Systems

    DEFF Research Database (Denmark)

    Tian, Yanjun; Loh, Poh Chiang; Deng, Fujin

    2015-01-01

    PI controllers are frequently implemented in cascaded converter system to control the DC-link voltage, because they can achieve zero steady state error. However the PI controller adds a pole at the origin point and a zero on the left half plane, and it increases the control system type number......, and then the system is more difficult to control. This paper proposed a DC-link control method for the two stages cascaded converter, and it uses proportional controller for the DC-link voltage control. This control method can achieve zero steady state error on the DC-link voltage; reduce the control system type...

  5. A New Approach to HVDC Grid Voltage Control Based on Generalized State Feedback

    DEFF Research Database (Denmark)

    Beerten, Jef; Eriksson, Robert; Van Hertem, Dirk

    2014-01-01

    in the system hamper a straight-forward definition of the power sharing. The use of a common DC voltage signal for the control can solve some of the problems. However, it disregards some of the benefits that are associated with the use of a local voltage control, such as the tendency of a controller using local...... by combining the local voltage signal available at the converter terminals with remote voltage signals at different locations in the DC system by means of communication. The local voltage feedback control is used for a fast, reliable system response. The introduction of the remote voltage signals...... in the control allows to differentiate the system response for different converter outages. Simulation results show the validity of the proposed control scheme....

  6. Loss Minimization and Voltage Control in Smart Distribution Grid

    DEFF Research Database (Denmark)

    Juelsgaard, Morten; Sloth, Christoffer; Wisniewski, Rafal

    2014-01-01

    This work presents a strategy for increasing the installation of electric vehicles and solar panels in low-voltage grids, while obeying voltage variation constraints. Our approach employs minimization of active power losses for coordinating consumption and generation of power, as well as reactive...

  7. 0.45 v and 18 μA/MHz MCU SOC with Advanced Adaptive Dynamic Voltage Control (ADVC

    Directory of Open Access Journals (Sweden)

    Uzi Zangi

    2018-05-01

    Full Text Available An ultra-low-power MicroController Unit System-on-Chip (MCU SOC is described with integrated DC to DC power management and Adaptive Dynamic Voltage Control (ADVC mechanism. The SOC, designed and fabricated in a 40 nm ULP standard CMOS technology, includes the complete Synopsys ARC EM5D core MCU, featuring a full set of DSP instructions and minimizing energy consumption at a wide range of frequencies: 312 K–80 MHz. A number of unique low voltage digital libraries, comprising of approximately 300 logic cells and sequential elements, were used for the MCU SOC design. On-die silicon sensors were utilized to continuously change the operating voltage to optimize power/performance for a given frequency and environmental conditions, and also to resolve yield and life time problems, while operating at low voltages. A First Fail (FFail mechanism, which can be digitally and linearly controlled with up to 8 bits, detects the failing SOC voltage at a given frequency. The core operates between 0.45–1.1 V volts with a direct battery connection for an input voltage of 1.6–3.6 V. Measurement results show that the peak energy efficiency is 18μW/MHz. A comparison to state-of-the-art commercial SOCs is presented, showing a 3–5× improved current/DMIPS (Dhrystone Million Instructions per second compared to the next best chip.

  8. Proportional-Resonant Control of Doubly-Fed Induction Generator Wind Turbines for Low-Voltage Ride-Through Enhancement

    Directory of Open Access Journals (Sweden)

    Zhan-Feng Song

    2012-11-01

    Full Text Available A novel control strategy is proposed in this paper for the rotor side converter (RSC of doubly-fed induction generator (DFIG-based wind power generation systems. It is supposed to enhance the low-voltage ride-through (LVRT capability of DFIGs during great-level grid voltage dips. The strategy consists of a proportional-resonant (PR controller and auxiliary PR controllers. The auxiliary controllers compensate the output voltage of the RSC in case of grid faults, thus limiting the rotor inrush current of DFIG and meeting the requirements of LVRT. Sequential-component decompositions of current are not required in the control system to improve the response of system. Since the resonant compensator is a double-side integrator, the auxiliary controllers can be simplified through coordinate transformation. The feasibility of the control strategy is validated by simulation on a 1.5 MW wind-turbine driven DFIG system. The impact of the RSC converter voltage rating on the LVRT capability of DFIG is investigated. Meanwhile, the influence of angular frequency detection and control parameters are also discussed. Compared with traditional vector control schemes based on PI current controllers, the presented control strategy effectively suppress rotor current and reduce oscillations of DFIG power and torque under grid faults.

  9. Application of Multipoint DC Voltage Control in VSC-MTDC System

    Directory of Open Access Journals (Sweden)

    Yang Xi

    2013-01-01

    Full Text Available The voltage-source-converter- (VSC- based multiterminal VSC-HVDC power transmission system (VSC-MTDC is an ideal approach to connect wind farm with power grid. Analyzing the characteristics of doubly fed induction generators as well as the basic principle and the control strategy of VSC-MTDC, a multiterminal DC voltage control strategy suitable for wind farm connected with VSC-MTDC is proposed. By use of PSCAD/EMTDC, the proposed control strategy is simulated, and simulation results show that using the proposed control strategy the conversion between constant power control mode and constant DC voltage control mode can be automatically implemented; thus the DC voltage stability control and reliable power output of wind farm can be ensured after the fault-caused outage of converter station controlled by constant DC voltage and under other faults. The simulation result shows that the model can fulfill multiterminal power transmission and fast response control.

  10. Unbalanced voltage control of virtual synchronous generator in isolated micro-grid

    Science.gov (United States)

    Cao, Y. Z.; Wang, H. N.; Chen, B.

    2017-06-01

    Virtual synchronous generator (VSG) control is recommended to stabilize the voltage and frequency in isolated micro-grid. However, common VSG control is challenged by widely used unbalance loads, and the linked unbalance voltage problem worsens the power quality of the micro-grid. In this paper, the mathematical model of VSG was presented. Based on the analysis of positive- and negative-sequence equivalent circuit of VSG, an approach was proposed to eliminate the negative-sequence voltage of VSG with unbalance loads. Delay cancellation method and PI controller were utilized to identify and suppress the negative-sequence voltages. Simulation results verify the feasibility of proposed control strategy.

  11. Threshold voltage control in TmSiO/HfO2 high-k/metal gate MOSFETs

    Science.gov (United States)

    Dentoni Litta, E.; Hellström, P.-E.; Östling, M.

    2015-06-01

    High-k interfacial layers have been proposed as a way to extend the scalability of Hf-based high-k/metal gate CMOS technology, which is currently limited by strong degradations in threshold voltage control, channel mobility and device reliability when the chemical oxide (SiOx) interfacial layer is scaled below 0.4 nm. We have previously demonstrated that thulium silicate (TmSiO) is a promising candidate as a high-k interfacial layer, providing competitive advantages in terms of EOT scalability and channel mobility. In this work, the effect of the TmSiO interfacial layer on threshold voltage control is evaluated, showing that the TmSiO/HfO2 dielectric stack is compatible with threshold voltage control techniques commonly used with SiOx/HfO2 stacks. Specifically, we show that the flatband voltage can be set in the range -1 V to +0.5 V by the choice of gate metal and that the effective workfunction of the stack is properly controlled by the metal workfunction in a gate-last process flow. Compatibility with a gate-first approach is also demonstrated, showing that integration of La2O3 and Al2O3 capping layers can induce a flatband voltage shift of at least 150 mV. Finally, the effect of the annealing conditions on flatband voltage is investigated, finding that the duration of the final forming gas anneal can be used as a further process knob to tune the threshold voltage. The evaluation performed on MOS capacitors is confirmed by the fabrication of TmSiO/HfO2/TiN MOSFETs achieving near-symmetric threshold voltages at sub-nm EOT.

  12. Multiple-Time-Scales Hierarchical Frequency Stability Control Strategy of Medium-Voltage Isolated Microgrid

    DEFF Research Database (Denmark)

    Zhao, Zhuoli; Yang, Ping; Guerrero, Josep M.

    2016-01-01

    In this paper, an islanded medium-voltage (MV) microgrid placed in Dongao Island is presented, which integrates renewable-energy-based distributed generations (DGs), energy storage system (ESS), and local loads. In an isolated microgrid without connection to the main grid to support the frequency......, it is more complex to control and manage. Thus in order to maintain the frequency stability in multiple-time-scales, a hierarchical control strategy is proposed. The proposed control architecture divides the system frequency in three zones: (A) stable zone, (B) precautionary zone and (C) emergency zone...... of Zone B. Theoretical analysis, time-domain simulation and field test results under various conditions and scenarios in the Dongao Island microgrid are presented to prove the validity of the introduced control strategy....

  13. Monitor de Control Integral

    OpenAIRE

    García Corominas, Estefania

    2016-01-01

    Control Integral es un programa informático especializado en gestión de ferreterías, bricolaje, suministros industriales y centros de construcción. Este programa está formado por dos ejecutables: el primero de ellos es el de ‘Gestión' y el segundo es el llamado ‘Monitor'. El módulo de gestión se compone de diferentes características para satisfacer las necesidades de los clientes, actualización automática de precios de los artículos, terminal punto de venta (TPV) este permite la creación e im...

  14. A novel single-phase phase space-based voltage mode controller for distributed static compensator to improve voltage profile of distribution systems

    International Nuclear Information System (INIS)

    Shokri, Abdollah; Shareef, Hussain; Mohamed, Azah; Farhoodnea, Masoud; Zayandehroodi, Hadi

    2014-01-01

    Highlights: • A new phase space based voltage mode controller for D-STATCOM was proposed. • The proposed compensator was tested to mitigate voltage disturbances in distribution systems. • Voltage fluctuation, voltage sag and voltage swell are considered to evaluate the performance of the proposed compensator. - Abstract: Distribution static synchronous compensator (D-STATCOM) has been developed and attained a great interest to compensate the power quality disturbances of distribution systems. In this paper, a novel single-phase control scheme for D-STATCOM is proposed to improve voltage profile at the Point of Common Coupling (PCC). The proposed voltage mode (VM) controller is based on the phase space algorithm, which is able to rapidly detect and mitigate any voltage deviations from reference voltage including voltage sags and voltage swells. To investigate the efficiency and accuracy of the proposed compensator, a system is modeled using Matlab/Simulink. The simulation results approve the capability of the proposed VM controller to provide a regulated and disturbance-free voltage for the connected loads at the PCC

  15. An optimized low-power voltage controlled oscillator

    Science.gov (United States)

    Shah, Kriyang; Le, Hai Phuong; Singh, Jugdutt

    2007-01-01

    This paper presents an optimised low-power low-phase-noise Voltage Controlled Oscillator (VCO) for Bluetooth wireless applications. The system level design issues and tradeoffs related to Direct Conversion Receiver (DCR) and Low Intermediate Frequency (IF) architecture for Bluetooth are discussed. Subsequently, for a low IF architecture, the critical VCO performance parameters are derived from system specifications. The VCO presented in the paper is optimised by implementing a novel biasing circuit that employs two current mirrors, one at the top and the other one at the bottom of the cross-coupled complementary VCO, to give the exact replica of the current in both the arms of current mirror circuit. This approach, therefore, significantly reduces the system power consumption as well as improves the system performance. Results show that, the VCO consumes only 281μW of power at 2V supply. Its phase noise performance are -115dBc/Hz, -130dBc/Hz and -141dBc/Hz at the offset frequency of 1MHz, 3MHz and 5MHz respectively. Results indicate that 31% reduction in power consumption is achieved as compared to the traditional VCO design. These characteristics make the designed VCO a better candidate for Bluetooth wireless application where power consumption is the major issue.

  16. Voltage-Controllable Colossal Magnetocrystalline Anisotropy in Single Layer Dichalcogenides

    Science.gov (United States)

    Sui, Xuelei; Hu, Tao; Wang, Jianfeng; Gu, Bing-Lin; Duan, Wenhui; Miao, Mao-Sheng

    Materials with large magnetocrystalline anisotropy and strong electric field effects are in great need for new types of memory devices that are based on electric field control of spin orientations. Instead of using modified transition metal films, we propose that some monolayer transition metal dichalcogenides are ideal candidate materials for this purpose. Using density functional calculations, we illustrate that they exhibit not only exceedingly large magnetocrystalline anisotropy (MCA) but also colossal voltage modulation under external field. Especially, spins in some materials like CrSe2 and FeSe2, which is strongly preferred to in-plane orientation, can be totally switched to out-of-plane direction. The effect is attributed to the large band character alteration of transition metal d-states around the Fermi level by electric field. We further demonstrate that strain can also greatly change MCA, and can help to improve the modulation efficiency while combining with electric field. Acknowledge the support of the Ministry of Science and Technology of China (Grant No.2016YFA0301001), and the National Natural Science Foundation of China (Grants No. 11674188 and 11334006), NSF-funded XSEDE resources (TG-DMR130005) especially on Stampede.

  17. Cooperative Control with Virtual Selective Harmonic Capacitance for Harmonic Voltage Compensation in Islanded MicroGrids

    DEFF Research Database (Denmark)

    Micallef, A.; Apap, M.; Spitero-Stanies, C.

    2012-01-01

    This paper focuses on the islanded operation of microgrids. In this mode of operation, the microsources are required to cooperate autonomously to regulate the local grid voltage and frequency. Droop control is typically used to achieve this autonomous voltage and frequency regulation. Inverters...... having LCL output filters would cause voltage distortion to be present at the PCC of the local load when non-linear current is supplied to the load due to the voltage drop across the grid side inductor. Techniques to reduce the output voltage distortion typically consist of installing either passive...

  18. Construction of control and instrumentation devices of high voltage power supply of double chamber plasma nitrogen

    International Nuclear Information System (INIS)

    Saminto; Eko Priyono; Sugeng Riyanto

    2013-01-01

    A control and instrumentation devices of high voltage power supply of double chamber plasma nitrogen have been made. This device consists of the software and hardware component. Hardware component consists of SCR phase angle controller LPC-50HDA type, T100MD1616+ PLC, high voltage transformer and voltage rectifier system. Software component used a LADDER program and TBasic serves to control of the high voltage output. The components in these devices have been tested in the double chamber plasma nitrogen. Its performance meet with the design criteria that can supply of plasma nitrogen operation voltage in the range 290 Vdc to 851 Vdc with glow discharge current 0.4 A to 1.4 A. In general it can be said that the control and instrumentation devices of high voltage power supply is ready for use at the double chamber plasma nitrogen device. (author)

  19. Methods, systems and apparatus for controlling third harmonic voltage when operating a multi-space machine in an overmodulation region

    Science.gov (United States)

    Perisic, Milun; Kinoshita, Michael H; Ranson, Ray M; Gallegos-Lopez, Gabriel

    2014-06-03

    Methods, system and apparatus are provided for controlling third harmonic voltages when operating a multi-phase machine in an overmodulation region. The multi-phase machine can be, for example, a five-phase machine in a vector controlled motor drive system that includes a five-phase PWM controlled inverter module that drives the five-phase machine. Techniques for overmodulating a reference voltage vector are provided. For example, when the reference voltage vector is determined to be within the overmodulation region, an angle of the reference voltage vector can be modified to generate a reference voltage overmodulation control angle, and a magnitude of the reference voltage vector can be modified, based on the reference voltage overmodulation control angle, to generate a modified magnitude of the reference voltage vector. By modifying the reference voltage vector, voltage command signals that control a five-phase inverter module can be optimized to increase output voltages generated by the five-phase inverter module.

  20. Time varying voltage combustion control and diagnostics sensor

    Science.gov (United States)

    Chorpening, Benjamin T [Morgantown, WV; Thornton, Jimmy D [Morgantown, WV; Huckaby, E David [Morgantown, WV; Fincham, William [Fairmont, WV

    2011-04-19

    A time-varying voltage is applied to an electrode, or a pair of electrodes, of a sensor installed in a fuel nozzle disposed adjacent the combustion zone of a continuous combustion system, such as of the gas turbine engine type. The time-varying voltage induces a time-varying current in the flame which is measured and used to determine flame capacitance using AC electrical circuit analysis. Flame capacitance is used to accurately determine the position of the flame from the sensor and the fuel/air ratio. The fuel and/or air flow rate (s) is/are then adjusted to provide reduced flame instability problems such as flashback, combustion dynamics and lean blowout, as well as reduced emissions. The time-varying voltage may be an alternating voltage and the time-varying current may be an alternating current.

  1. Coordinated voltage control in offshore HVDC connected cluster of wind power plants

    DEFF Research Database (Denmark)

    Sakamuri, Jayachandra Naidu; Rather, Zakir Hussain; Rimez, Johan

    This paper presents a coordinated voltage control scheme (CVCS) for a cluster of offshore wind power plants connected to a voltage-source converter-based high-voltage direct current system. The primary control point of the proposed voltage control scheme is the introduced Pilot bus, which is having...... by dispatching reactive power references to each wind turbine (WT) in the wind power plant cluster based on their available reactive power margin and network sensitivity-based participation factors, which are derived from the dV/dQ sensitivity of a WT bus w.r.t. the Pilot bus. This method leads...

  2. Quality Control of Mega Voltage Portal Imaging System

    International Nuclear Information System (INIS)

    Diklic, A.; Dundara Debeljuh, D.; Jurkovic, S.; Smilovic Radojcic, D.; Svabic Kolacio; Kasabasic, M.; Faj, D.

    2013-01-01

    The Electronic Portal Imaging Device (EPID) is a system used to verify either the correct positioning of the patient during radiotherapy treatment or the linear accelerator beam parameters. The correct position of the patient corresponds to the position at which the patient was scanned at the CT simulator and according to which the therapy plan was made and optimized. Regarding this, besides the advanced treatment planning system and optimized treatment planning techniques, the day-to-day reproduction of simulated conditions is of great importance for the treatment outcome. Therefore, to verify the patient set-up portal imaging should be applied prior to the first treatment session and repeated according to treatment prescriptions during the treatment. In order to achieve full functionality and precision of the EPID, it must be included in radiotherapy Quality Control (QC) programme. The QC of the Mega Voltage portal imaging system was separated in two parts. In the first, the QC of the detector parameters should be performed. For this purpose, the FC2 and QC3 phantoms should be used, along with the Portal Image Processing System program (PIPSpro) package for data analysis. The second part of the QC of the linear accelerator's portal imaging system should include the QC of the CBCT. In this part a set of predefined manufacturer's tests using two different phantoms, one for the geometry calibration and the other for the image quality evaluation, should be performed. Also, the treatment conditions should be simulated using anthropomorphic phantoms and dose distributions for particular EPID protocols should be measured. Procedures for quality control of the portal imaging system developed and implemented at University Hospital Rijeka are presented in this paper.(author)

  3. Unfolding of a Temperature-Sensitive Domain Controls Voltage-Gated Channel Activation.

    Science.gov (United States)

    Arrigoni, Cristina; Rohaim, Ahmed; Shaya, David; Findeisen, Felix; Stein, Richard A; Nurva, Shailika Reddy; Mishra, Smriti; Mchaourab, Hassane S; Minor, Daniel L

    2016-02-25

    Voltage-gated ion channels (VGICs) are outfitted with diverse cytoplasmic domains that impact function. To examine how such elements may affect VGIC behavior, we addressed how the bacterial voltage-gated sodium channel (BacNa(V)) C-terminal cytoplasmic domain (CTD) affects function. Our studies show that the BacNa(V) CTD exerts a profound influence on gating through a temperature-dependent unfolding transition in a discrete cytoplasmic domain, the neck domain, proximal to the pore. Structural and functional studies establish that the BacNa(V) CTD comprises a bi-partite four-helix bundle that bears an unusual hydrophilic core whose integrity is central to the unfolding mechanism and that couples directly to the channel activation gate. Together, our findings define a general principle for how the widespread four-helix bundle cytoplasmic domain architecture can control VGIC responses, uncover a mechanism underlying the diverse BacNa(V) voltage dependencies, and demonstrate that a discrete domain can encode the temperature-dependent response of a channel. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. A microcontroller application as X-ray machine's high voltage controller

    International Nuclear Information System (INIS)

    Wiranto Budi Santoso; Beny Syawaludin

    2010-01-01

    A micro controller application as x-ray machine's high voltage controller has been carried out. The purpose of this micro controller application is to give an accurate high voltage supply to the x-ray tube so that the x-ray machine could produce the result as expected. The micro controller based X-ray machine's high voltage controller receives an input voltage from the keypad. This input value is displayed in the LCD (Liquid Crystal Display) screen. Then micro controller uses this input data to drive a stepper motor. The stepper motor adjusts the high voltage auto transformer's output according to the input value. The micro controller is programmed using BASCOM-8051 compiler. The test results show that the stepper motor could rotate according to an input value (author)

  5. Highly tunable local gate controlled complementary graphene device performing as inverter and voltage controlled resistor.

    Science.gov (United States)

    Kim, Wonjae; Riikonen, Juha; Li, Changfeng; Chen, Ya; Lipsanen, Harri

    2013-10-04

    Using single-layer CVD graphene, a complementary field effect transistor (FET) device is fabricated on the top of separated back-gates. The local back-gate control of the transistors, which operate with low bias at room temperature, enables highly tunable device characteristics due to separate control over electrostatic doping of the channels. Local back-gating allows control of the doping level independently of the supply voltage, which enables device operation with very low VDD. Controllable characteristics also allow the compensation of variation in the unintentional doping typically observed in CVD graphene. Moreover, both p-n and n-p configurations of FETs can be achieved by electrostatic doping using the local back-gate. Therefore, the device operation can also be switched from inverter to voltage controlled resistor, opening new possibilities in using graphene in logic circuitry.

  6. Fast Coordinated Control of DFIG Wind Turbine Generators for Low and High Voltage Ride-Through

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2014-06-01

    Full Text Available This paper presents a fast coordinated control scheme of the rotor side converter (RSC, the Direct Current (DC chopper and the grid side converter (GSC of doubly fed induction generator (DFIG wind turbine generators (WTGs to improve the low voltage ride through (LVRT and high voltage ride through (HVRT capability of the DFIG WTGs. The characteristics of DFIG WTGs under voltage sags and swells were studied focusing on the DFIG WTG stator flux and rotor voltages during the transient periods of grid voltage changes. The protection schemes of the rotor crowbar circuit and the DC chopper circuit were proposed considering the characteristics of the DFIG WTGs during voltage changes. The fast coordinated control of RSC and GSC were developed based on the characteristic analysis in order to realize efficient LVRT and HVRT of the DFIG WTGs. The proposed fast coordinated control schemes were verified by time domain simulations using Matlab-Simulink.

  7. IBM-PC based high voltage controller [Paper No.: L7

    International Nuclear Information System (INIS)

    Mondal, N.K.; Kalmani, S.D.

    1993-01-01

    A simple IBM-PC/XT based high voltage controller is designed for C.A.E.N. high voltage supply unit, which is being used for testing the prototype detector for future accelerator experiment. The high voltage output of the supply unit can be remotely programmed. The V-set Lemo connectors at the rear panel provides the remote control facility. Similarly V-mon and I-mon can be used for remotely monitoring the voltage set and the current drawn from the supply unit. The controller described here sets the high voltage through V-set and monitors the voltage set, through V-mon at a pre-determined time interval. The monitoring is a background job and is done as an interrupt service routine of IRQ3. A simple menu driven software package used is written in Q-Basic and MASM. (author). 1 fig

  8. Digital Control Techniques Based on Voltage Source Inverters in Renewable Energy Applications: A Review

    Directory of Open Access Journals (Sweden)

    Sohaib Tahir

    2018-02-01

    Full Text Available In the modern era, distributed generation is considered as an alternative source for power generation. Especially, need of the time is to provide the three-phase loads with smooth sinusoidal voltages having fixed frequency and amplitude. A common solution is the integration of power electronics converters in the systems for connecting distributed generation systems to the stand-alone loads. Thus, the presence of suitable control techniques, in the power electronic converters, for robust stability, abrupt response, optimal tracking ability and error eradication are inevitable. A comprehensive review based on design, analysis, validation of the most suitable digital control techniques and the options available for the researchers for improving the power quality is presented in this paper with their pros and cons. Comparisons based on the cost, schemes, performance, modulation techniques and coordinates system are also presented. Finally, the paper describes the performance evaluation of the control schemes on a voltage source inverter (VSI and proposes the different aspects to be considered for selecting a power electronics inverter topology, reference frames, filters, as well as control strategy.

  9. Tuning of PID controller for an automatic regulator voltage system using chaotic optimization approach

    International Nuclear Information System (INIS)

    Santos Coelho, Leandro dos

    2009-01-01

    Despite the popularity, the tuning aspect of proportional-integral-derivative (PID) controllers is a challenge for researchers and plant operators. Various controllers tuning methodologies have been proposed in the literature such as auto-tuning, self-tuning, pattern recognition, artificial intelligence, and optimization methods. Chaotic optimization algorithms as an emergent method of global optimization have attracted much attention in engineering applications. Chaotic optimization algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from local optimum, is a promising tool for engineering applications. In this paper, a tuning method for determining the parameters of PID control for an automatic regulator voltage (AVR) system using a chaotic optimization approach based on Lozi map is proposed. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed chaotic optimization introduces chaos mapping using Lozi map chaotic sequences which increases its convergence rate and resulting precision. Simulation results are promising and show the effectiveness of the proposed approach. Numerical simulations based on proposed PID control of an AVR system for nominal system parameters and step reference voltage input demonstrate the good performance of chaotic optimization.

  10. Modeling generalized interline power-flow controller (GIPFC using 48-pulse voltage source converters

    Directory of Open Access Journals (Sweden)

    Amir Ghorbani

    2018-05-01

    Full Text Available Generalized interline power-flow controller (GIPFC is one of the voltage-source controller (VSC-based flexible AC transmission system (FACTS controllers that can independently regulate the power-flow over each transmission line of a multiline system. This paper presents the modeling and performance analysis of GIPFC based on 48-pulsed voltage-source converters. This paper deals with a cascaded multilevel converter model, which is a 48-pulse (three levels voltage source converter. The voltage source converter described in this paper is a harmonic neutralized, 48-pulse GTO converter. The GIPFC controller is based on d-q orthogonal coordinates. The algorithm is verified using simulations in MATLAB/Simulink environment. Comparisons between unified power flow controller (UPFC and GIPFC are also included. Keywords: Generalized interline power-flow controller (GIPFC, Voltage source converter (VCS, 48-pulse GTO converter

  11. Co-ordinated voltage control of DFIG wind turbines in uninterrupted operation during grid faults

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Michalke, G.; Sørensen, Poul Ejnar

    2007-01-01

    Emphasis in this article is on the design of a co-ordinated voltage control strategy for doubly fed induction generator (DFIG) wind turbines that enhances their capability to provide grid support during grid faults. In contrast to its very good performance in normal operation, the DFIG wind turbine...... concept is quite sensitive to grid faults and requires special power converter protection. The fault ride-through and grid support capabilities of the DFIG address therefore primarily the design of DFIG wind turbine control with special focus on power converter protection and voltage control issues....... A voltage control strategy is designed and implemented in this article, based on the idea that both converters of the DFIG (i.e. rotor-side converter and grid-side converter) participate in the grid voltage control in a co-ordinated manner. By default the grid voltage is controlled by the rotor...

  12. Comparison of two voltage control strategies for a wind power plant

    DEFF Research Database (Denmark)

    Martinez, Jorge; Kjær, Philip C.; Rodriguez, Pedro

    2011-01-01

    plants. This paper addresses the analysis of two different voltage control strategies for a wind power plant, i.e. decentralized and centralized voltage control schemes. The analysis has been performed using the equivalent and simplified transfer functions of the system. Using this representation......Larger percentages of wind power penetration translate to more demanding requirements from grid codes. Recently, voltage support at the point of connection has been introduced by several grid codes from around the world, thus, making it important to analyze this control when applied to wind power......, it is possible to investigate the influence of the plant control gain, short circuit ratio, and time delays on the system stability, as well as the fulfillment of the design requirements. The implemented plant voltage control is based on a slope voltage controller, which calculates the references to be sent...

  13. Control of total voltage in the large distributed RF system of LEP

    CERN Document Server

    Ciapala, Edmond

    1995-01-01

    The LEP RF system is made up of a large number of independent RF units situated around the ring near the interaction points. These have different available RF voltages depending on their type and they may be inactive or unable to provide full voltage for certain periods. The original RF voltage control system was based on local RF unit voltage function generators pre-loaded with individual tables for energy ramping. This was replaced this year by a more flexible global RF voltage control system. A central controller in the main control room has direct access to the units over the LEP TDM system via multiplexers and local serial links. It continuously checks the state of all the units and adjusts their voltages to maintain the desired total voltage under all conditions. This voltage is distributed among the individual units to reduce the adverse effects of RF voltage asymmetry around the machine as far as possible. The central controller is a VME system with 68040 CPU and real time multitasking operating syste...

  14. Wideband Electrostatic Vibration Energy Harvester (e-VEH) Having a Low Start-Up Voltage Employing a High-Voltage Integrated Interface

    International Nuclear Information System (INIS)

    Dudka, A; Galayko, D; Basset, P; Cottone, F; Blokhina, E

    2013-01-01

    This paper reports on an electrostatic Vibration Energy Harvester (e-VEH) system, for which the energy conversion process is initiated with a low bias voltage and is compatible with wideband stochastic external vibrations. The system employs the auto-synchronous conditioning circuit topology with the use of a novel dedicated integrated low-power high-voltage switch that is needed to connect the charge pump and flyback – two main parts of the used conditioning circuit. The proposed switch is designed and implemented in AMS035HV CMOS technology. Thanks to the proposed switch device, which is driven with a low-voltage ground-referenced logic, the e-VEH system may operate within a large voltage range, from a pre-charge low voltage up to several tens volts. With such a high-voltage e-VEH operation, it is possible to obtain a strong mechanical coupling and a high rate of vibration energy conversion. The used transducer/resonator device is fabricated with a batch-processed MEMS technology. When excited with stochastic vibrations having an acceleration level of 0.8 g rms distributed in the band 110–170 Hz, up to 0.75 μW of net electrical power has been harvested with our system. This work presents an important milestone in the challenge of designing a fully integrated smart conditioning interface for the capacitive e-VEHs

  15. Secondary Frequency and Voltage Control of Islanded Microgrids via Distributed Averaging

    DEFF Research Database (Denmark)

    W. Simpson-Porco, John; Shafiee, Qobad; Dorfler, Florian

    2015-01-01

    actions. The frequency controller rapidly regulates the microgrid frequency to its nominal value while maintaining active power sharing among the distributed generators. Tuning of the voltage controller provides a simple and intuitive trade-off between the conflicting goals of voltage regulation...

  16. Multi-Period Optimization for Voltage Control System in Transmission Grids

    DEFF Research Database (Denmark)

    Qin, Nan; Chen, Si; Liu, Chengxi

    2015-01-01

    Automatic Voltage Control (AVC) systems maintain the voltage in an acceptable range and minimize the power loss of the grid by coordinately regulating the controllable components. Switchable shunts and tap-able transformers are expected to be operated as few times as possible. This paper proposes...

  17. A Hybrid Optimization Method for Reactive Power and Voltage Control Considering Power Loss Minimization

    DEFF Research Database (Denmark)

    Liu, Chengxi; Qin, Nan; Bak, Claus Leth

    2015-01-01

    This paper proposes a hybrid optimization method to optimally control the voltage and reactive power with minimum power loss in transmission grid. This approach is used for the Danish automatic voltage control (AVC) system which is typically a non-linear non-convex problem mixed with both...

  18. Improved model predictive control for high voltage quality in microgrid applications

    DEFF Research Database (Denmark)

    Dragicevic, T.; Al hasheem, Mohamed; Lu, M.

    2017-01-01

    This paper proposes an improvement of the finite control set model predictive control (FCS-MPC) strategy for enhancing the voltage regulation performance of a voltage source converter (VSC) used for standalone microgrid and uninterrupted power supply (UPS) applications. The modification is based...

  19. Layout Capacitive Coupling and Structure Impacts on Integrated High Voltage Power MOSFETs

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2016-01-01

    The switching performances of the integrated high voltage power MOSFETs that have prevailing interconnection matrices are being heavily influenced by the parasitic capacitive coupling of on-chip metal wires. The mechanism of the side-byside coupling is generally known, however, the layer-to-layer......The switching performances of the integrated high voltage power MOSFETs that have prevailing interconnection matrices are being heavily influenced by the parasitic capacitive coupling of on-chip metal wires. The mechanism of the side-byside coupling is generally known, however, the layer...... extraction tool shows that the side-by-side coupling dominated structure can perform better than the layer-to-layer coupling dominated structure, in terms of on-resistance times input or output capacitance, by 9.2% and 4.9%, respectively....

  20. Voltage and frequency control of wind-powered islanded microgrids based on induction generator and STATCOM

    DEFF Research Database (Denmark)

    Bouzid, Allal; Sicard, Pierre; Guerrero, Josep M.

    2015-01-01

    This paper presents a comprehensive modeling of a three-phase cage induction machine used as a self-excited squirrel-cage induction generator (SEIG), and discusses the regulation of the voltage and frequency of a self-excited SEIG based on the action of the static synchronous Compensator (STATCOM......). The STATCOM with the proposed controller consists of a three-phase voltage-sourced inverter and a DC voltage. The compensator can provide the active and reactive powers and regulate AC system bus voltage and the frequency, but also may enhance the load stability. Moreover, a feed forward control method...

  1. A Study on Energy Saving of Single Phase Induction Motor By Voltage Control

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jong Moon [Pusan College of Information Technolgy, Pusan (Korea); Kim, Joon Hong [Dong Myong College, Pusan (Korea)

    2001-06-01

    This paper describes a simple effective method for energy saving of AC motors having a widely variable load. The proposed method is based on an optimal efficiency control which is operated by voltage-current pattern such as to maintain the maximum efficiency on the efficiency-output characteristics of the motor, TRIAC voltage control characteristics. The parameters of simplified voltage-current pattern can be determined approximately and reliably from the rated voltage and current of the motor. Experiments are focused on a single phase capacitor motor, the optimal energy saving are proved by proposed method. (author). 8 refs., 15 figs.

  2. Proportional-Integral-Resonant AC Current Controller

    Directory of Open Access Journals (Sweden)

    STOJIC, D.

    2017-02-01

    Full Text Available In this paper an improved stationary-frame AC current controller based on the proportional-integral-resonant control action (PIR is proposed. Namely, the novel two-parameter PIR controller is applied in the stationary-frame AC current control, accompanied by the corresponding parameter-tuning procedure. In this way, the proportional-resonant (PR controller, common in the stationary-frame AC current control, is extended by the integral (I action in order to enable the AC current DC component tracking, and, also, to enable the DC disturbance compensation, caused by the voltage source inverter (VSI nonidealities and by nonlinear loads. The proposed controller parameter-tuning procedure is based on the three-phase back-EMF-type load, which corresponds to a wide range of AC power converter applications, such as AC motor drives, uninterruptible power supplies, and active filters. While the PIR controllers commonly have three parameters, the novel controller has two. Also, the provided parameter-tuning procedure needs only one parameter to be tuned in relation to the load and power converter model parameters, since the second controller parameter is directly derived from the required controller bandwidth value. The dynamic performance of the proposed controller is verified by means of simulation and experimental runs.

  3. A New Method for a Piezoelectric Energy Harvesting System Using a Backtracking Search Algorithm-Based PI Voltage Controller

    Directory of Open Access Journals (Sweden)

    Mahidur R. Sarker

    2016-09-01

    Full Text Available This paper presents a new method for a vibration-based piezoelectric energy harvesting system using a backtracking search algorithm (BSA-based proportional-integral (PI voltage controller. This technique eliminates the exhaustive conventional trial-and-error procedure for obtaining optimized parameter values of proportional gain (Kp, and integral gain (Ki for PI voltage controllers. The generated estimate values of Kp and Ki are executed in the PI voltage controller that is developed through the BSA optimization technique. In this study, mean absolute error (MAE is used as an objective function to minimize output error for a piezoelectric energy harvesting system (PEHS. The model for the PEHS is designed and analyzed using the BSA optimization technique. The BSA-based PI voltage controller of the PEHS produces a significant improvement in minimizing the output error of the converter and a robust, regulated pulse-width modulation (PWM signal to convert a MOSFET switch, with the best response in terms of rise time and settling time under various load conditions.

  4. Single-point reactive power control method on voltage rise mitigation in residential networks with high PV penetration

    DEFF Research Database (Denmark)

    Hasheminamin, Maryam; Agelidis, Vassilios; Ahmadi, Abdollah

    2018-01-01

    Voltage rise (VR) due to reverse power flow is an important obstacle for high integration of Photovoltaic (PV) into residential networks. This paper introduces and elaborates a novel methodology of an index-based single-point-reactive power-control (SPRPC) methodology to mitigate voltage rise by ...... system with high r/x ratio. Efficacy, effectiveness and cost study of SPRPC is compared to droop control to evaluate its advantages.......Voltage rise (VR) due to reverse power flow is an important obstacle for high integration of Photovoltaic (PV) into residential networks. This paper introduces and elaborates a novel methodology of an index-based single-point-reactive power-control (SPRPC) methodology to mitigate voltage rise...... by absorbing adequate reactive power from one selected point. The proposed index utilizes short circuit analysis to select the best point to apply this Volt/Var control method. SPRPC is supported technically and financially by distribution network operator that makes it cost effective, simple and efficient...

  5. Voltage control in the future power transmission systems

    DEFF Research Database (Denmark)

    Qin, Nan

    Wind energy in Denmark covers 42% of the total power consumption in 2015, and will share up to 50% by 2020. Consequently, the conventional power plants are decommissioning. Under the progress of the green transition, the national decision leads to underground many overhead lines in the future...... stages. The voltage uncertainty caused by the wind power forecasting errors is estimated, which is applied as a voltage security margin to further constrain the voltage magnitude in the optimization problem. The problem under the uncertainty is therefore converted to a deterministic problem, which...... to ensure a highly reliable transmission, e.g. balancing the generation and the consumption in large geographic regions, the exchange capacities will be enlarged by upgrading the interconnections. The Danish power system, the electricity transportation hub between the Nordic and continental European systems...

  6. The Researching on Evaluation of Automatic Voltage Control Based on Improved Zoning Methodology

    Science.gov (United States)

    Xiao-jun, ZHU; Ang, FU; Guang-de, DONG; Rui-miao, WANG; De-fen, ZHU

    2018-03-01

    According to the present serious phenomenon of increasing size and structure of power system, hierarchically structured automatic voltage control(AVC) has been the researching spot. In the paper, the reduced control model is built and the adaptive reduced control model is researched to improve the voltage control effect. The theories of HCSD, HCVS, SKC and FCM are introduced and the effect on coordinated voltage regulation caused by different zoning methodologies is also researched. The generic framework for evaluating performance of coordinated voltage regulation is built. Finally, the IEEE-96 stsyem is used to divide the network. The 2383-bus Polish system is built to verify that the selection of a zoning methodology affects not only the coordinated voltage regulation operation, but also its robustness to erroneous data and proposes a comprehensive generic framework for evaluating its performance. The New England 39-bus network is used to verify the adaptive reduced control models’ performance.

  7. DC Voltage Control and Power-Sharing of Multi-Terminal DC Grids Based on Optimal DC Power Flow and Flexible Voltage Droop Strategy

    Directory of Open Access Journals (Sweden)

    F. Azma

    2015-06-01

    Full Text Available This paper develops an effective control framework for DC voltage control and power-sharing of multi-terminal DC (MTDC grids based on an optimal power flow (OPF procedure and the voltage-droop control. In the proposed approach, an OPF algorithm is executed at the secondary level to find optimal reference of DC voltages and active powers of all voltage-regulating converters. Then, the voltage droop characteristics of voltage-regulating converters, at the primary level, are tuned based on the OPF results such that the operating point of the MTDC grid lies on the voltage droop characteristics. Consequently, the optimally-tuned voltage droop controller leads to the optimal operation of the MTDC grid. In case of variation in load or generation of the grid, a new stable operating point is achieved based on the voltage droop characteristics. By execution of a new OPF, the voltage droop characteristics are re-tuned for optimal operation of the MTDC grid after the occurrence of the load or generation variations. The results of simulation on a grid inspired by CIGRE B4 DC grid test system demonstrate efficient grid performance under the proposed control strategy.

  8. A Zero-Voltage Switching Control Strategy for Dual Half-Bridge Cascaded Three-Level DC/DC Converter with Balanced Capacitor Voltages

    DEFF Research Database (Denmark)

    Liu, Dong; Wang, Yanbo; Chen, Zhe

    2017-01-01

    The input capacitor's voltages are unbalanced under the conventional control strategy in a dual half-bridge cascaded three-level (TL) DC/DC converter, which would affect the high voltage stresses on the capacitors. This paper proposes a pulse-wide modulation (PWM) strategy with two working modes...... for the dual half-bridge cascaded TL DC/DC converter, which can realize the zero-voltage switching (ZVS). More significantly, a capacitor voltage balance control is proposed by alternating the two working modes of the proposed ZVS PWM strategy, which can eliminate the voltage unbalance on the four input...... capacitors. Therefore, the proposed control strategy can improve the converter's performances in: 1) reducing the switching losses and noises of the power switches; and 2) reducing the voltage stresses on the input capacitors. Finally, the simulation results are conducted to verify the proposed control...

  9. Effect of voltage sags on digitally controlled line connected switched-mode power supplies

    DEFF Research Database (Denmark)

    Török, Lajos; Munk-Nielsen, Stig

    2012-01-01

    Different voltage disorders like voltage fluctuations, sags, frequency variations may occur in the power supply networks due to different fault conditions. These deviations from normal operation affects in different ways the line connected devices. Standards were developed to protect and ensure...... of voltage sags is analyzed. Fault tolerant control algorithm was designed, implemented and is discussed. The fault conditions and their effects were investigated at different power levels....

  10. A Reduced Switch Voltage Stress Class E Power Amplifier Using Harmonic Control Network

    OpenAIRE

    Ali Reza Zirak; Sobhan Roshani

    2016-01-01

    In this paper, a harmonic control network (HCN) is presented to reduce the voltage stress (maximum MOSFET voltage) of the class E power amplifier (PA). Effects of the HCN on the amplifier specifications are investigated. The results show that the proposed HCN affects several specifications of the amplifier, such as drain voltage, switch current, output power capability (Cp factor), and drain impedance. The output power capability of the presented amplifier is also improved, compared with the ...

  11. A simple output voltage control scheme for single phase wavelet ...

    African Journals Online (AJOL)

    DR OKE

    of the wavelet modulated (WM) scheme is that a single synthesis function, derived ... a single-phase H-bridge voltage-source (VS) inverter using MATLAB simulations. ... reconstruction process has been suggested to device a new class of ...

  12. Active Power Filter DC Bus Voltage Piecewise Reaching Law Variable Structure Control

    Directory of Open Access Journals (Sweden)

    Baolian Liu

    2014-01-01

    Full Text Available The DC bus voltage stability control is one key technology to ensure that Active Power Filter (APF operates stably. The external disturbances such as power grid and load fluctuation and the system parameters changing may affect the stability of APF DC bus voltage and the normal operation of APF. The mathematical model of DC bus voltage is established according to power balance principle and a DC bus voltage piecewise reaching law variable structure control algorithm is proposed to solve the above problem, and the design method is given. The simulation and experiment results proved that the proposed variable structure control algorithm can eliminate the chattering problem existing in traditional variable structure control effectively, is insensitive to system disturbance, and has good robustness and fast dynamic response speed and stable DC bus voltage with small fluctuation. The above advantages ensure the compensation effect of APF.

  13. H∞ Robust Current Control for DFIG Based Wind Turbine subject to Grid Voltage Distortions

    DEFF Research Database (Denmark)

    Wang, Yun; Wu, Qiuwei; Gong, Wenming

    2016-01-01

    This paper proposes an H∞ robust current controller for doubly fed induction generator (DFIG) based wind turbines (WTs) subject to grid voltage distortions. The controller is to mitigate the impact of the grid voltage distortions on rotor currents with DFIG parameter perturbation. The grid voltage...... distortions considered include asymmetric voltage dips and grid background harmonics. An uncertain DFIG model is developed with uncertain factors originating from distorted stator voltage, and changed generator parameters due to the flux saturation effect, the skin effect, etc. Weighting functions...... are designed to efficiently track the unbalanced current components and the 5th and 7th background harmonics. The robust stability (RS) and robust performance (RP) of the proposed controller are verified by the structured singular value µ. The performance of the H∞ robust current controller was demonstrated...

  14. Optimized Controller Design for a 12-Pulse Voltage Source Converter Based HVDC System

    Science.gov (United States)

    Agarwal, Ruchi; Singh, Sanjeev

    2017-12-01

    The paper proposes an optimized controller design scheme for power quality improvement in 12-pulse voltage source converter based high voltage direct current system. The proposed scheme is hybrid combination of golden section search and successive linear search method. The paper aims at reduction of current sensor and optimization of controller. The voltage and current controller parameters are selected for optimization due to its impact on power quality. The proposed algorithm for controller optimizes the objective function which is composed of current harmonic distortion, power factor, and DC voltage ripples. The detailed designs and modeling of the complete system are discussed and its simulation is carried out in MATLAB-Simulink environment. The obtained results are presented to demonstrate the effectiveness of the proposed scheme under different transient conditions such as load perturbation, non-linear load condition, voltage sag condition, and tapped load fault under one phase open condition at both points-of-common coupling.

  15. A CMOS integrated voltage and power efficient AC/DC converter for energy harvesting applications

    International Nuclear Information System (INIS)

    Peters, Christian; Ortmanns, Maurits; Manoli, Yiannos; Spreemann, Dirk

    2008-01-01

    In this paper, a fully CMOS integrated active AC/DC converter for energy harvesting applications is presented. The rectifier is realized in a standard 0.35 µm CMOS process without special process options. It works as a full wave rectifier and can be separated into two stages—one passive and one active. The active part is powered from the storage capacitor and consumes about 600 nA at 2 V supply. The input voltage amplitude range is between 1.25 and 3.75 V, and the operating frequency range is from 1 Hz to as much as several 100 kHz. The series voltage drop over the rectifier is less than 20 mV. Measurements in combination with an electromagnetic harvester show a significant increase in the achievable output voltage and power compared to a common, discrete Schottky diode rectifier. The measured efficiency of the rectifier is over 95%. Measurements show a negligible temperature influence on the output voltage between −40 °C and +125 °C

  16. Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors.

    Science.gov (United States)

    Kim, David K; Lai, Yuming; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2012-01-01

    Colloidal semiconductor nanocrystals are emerging as a new class of solution-processable materials for low-cost, flexible, thin-film electronics. Although these colloidal inks have been shown to form single, thin-film field-effect transistors with impressive characteristics, the use of multiple high-performance nanocrystal field-effect transistors in large-area integrated circuits has not been shown. This is needed to understand and demonstrate the applicability of these discrete nanocrystal field-effect transistors for advanced electronic technologies. Here we report solution-deposited nanocrystal integrated circuits, showing nanocrystal integrated circuit inverters, amplifiers and ring oscillators, constructed from high-performance, low-voltage, low-hysteresis CdSe nanocrystal field-effect transistors with electron mobilities of up to 22 cm(2) V(-1) s(-1), current modulation >10(6) and subthreshold swing of 0.28 V dec(-1). We fabricated the nanocrystal field-effect transistors and nanocrystal integrated circuits from colloidal inks on flexible plastic substrates and scaled the devices to operate at low voltages. We demonstrate that colloidal nanocrystal field-effect transistors can be used as building blocks to construct complex integrated circuits, promising a viable material for low-cost, flexible, large-area electronics.

  17. Autonomous Voltage Unbalance Compensation in an Islanded Droop-Controlled Microgrid

    DEFF Research Database (Denmark)

    Savaghebi, Mehdi; Jalilian, Alireza; Vasquez, Juan Carlos

    2013-01-01

    Recently, there is an increasing interest in using distributed generators (DGs) not only to inject power into the grid, but also to enhance the power quality. In this paper, a stationary-frame control method for voltage unbalance compensation in an islanded microgrid is proposed. This method...... is based on the proper control of DGs interface converters. The DGs are controlled to compensate voltage unbalance autonomously while share the compensation effort and also active and reactive power, properly. The control system of the DGs mainly consists of active and reactive power droop controllers......, virtual impedance loop, voltage and current controllers and unbalance compensator. The design approach of the control system is discussed in detail and simulation and experimental results are presented. The results demonstrate the effectiveness of the proposed method in compensation of voltage unbalance....

  18. Integrated Three-Voltage-Booster DC-DC Converter to Achieve High Voltage Gain with Leakage-Energy Recycling for PV or Fuel-Cell Power Systems

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2015-09-01

    Full Text Available In this paper, an integrated three-voltage-booster DC-DC (direct current to direct current converter is proposed to achieve high voltage gain for renewable-energy generation systems. The proposed converter integrates three voltage-boosters into one power stage, which is composed of an active switch, a coupled-inductor, five diodes, and five capacitors. As compared with conventional high step-up converters, it has a lower component count. In addition, the features of leakage-energy recycling and switching loss reduction can be accomplished for conversion efficiency improvement. While the active switch is turned off, the converter can inherently clamp the voltage across power switch and suppress voltage spikes. Moreover, the reverse-recovery currents of all diodes can be alleviated by leakage inductance. A 200 W prototype operating at 100 kHz switching frequency with 36 V input and 400 V output is implemented to verify the theoretical analysis and to demonstrate the feasibility of the proposed high step-up DC-DC converter.

  19. Impedance-based Analysis of DC Link Control in Voltage Source Rectifiers

    DEFF Research Database (Denmark)

    Lu, Dapeng; Wang, Xiongfei; Blaabjerg, Frede

    2018-01-01

    This paper analyzes the dynamics influences of the outer dc link control in the voltage source rectifiers based on the impedance model. The ac-dc interactions are firstly presented by means of full order small signal model in dq frame, which shows the input voltage and load condition are the two...

  20. A Uniform Voltage Gain Control for Alignment Robustness in Wireless EV Charging

    Directory of Open Access Journals (Sweden)

    Yabiao Gao

    2015-08-01

    Full Text Available The efficiency of wireless power transfer is sensitive to the horizontal and vertical distances between the transmitter and receiver coils due to the magnetic coupling change. To address the output voltage variation and efficiency drop caused by misalignment, a uniform voltage gain frequency control is implemented to improve the power delivery and efficiency of wireless power transfer under misalignment. The frequency is tuned according to the amplitude and phase-frequency characteristics of coupling variations in order to maintain a uniform output voltage in the receiver coil. Experimental comparison of three control methods, including fixed frequency control, resonant frequency control, and the proposed uniform gain control was conducted and demonstrated that the uniform voltage gain control is the most robust method for managing misalignment in wireless charging applications.

  1. 24-channel dual microcontroller-based voltage controller for ion optics remote control

    Science.gov (United States)

    Bengtsson, L.

    2018-05-01

    The design of a 24-channel voltage control instrument for Wenzel Elektronik N1130 NIM modules is described. This instrument is remote controlled from a LabVIEW GUI on a host Windows computer and is intended for ion optics control in electron affinity measurements on negative ions at the CERN-ISOLDE facility. Each channel has a resolution of 12 bits and has a normally distributed noise with a standard deviation of <1 mV. The instrument is designed as a standard 2-unit NIM module where the electronic hardware consists of a printed circuit board with two asynchronously operating microcontrollers.

  2. An integrated low-voltage rated HTS DC power system with multifunctions to suit smart grids

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jian Xun, E-mail: jxjin@uestc.edu.cn [Center of Applied Superconductivity, School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Center of Applied Superconductivity and Electrical Engineering, School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731 (China); Chen, Xiao Yuan [School of Engineering, Sichuan Normal University, Chengdu 610101 (China); Qu, Ronghai; Fang, Hai Yang [School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Xin, Ying [Center of Applied Superconductivity, School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2015-03-15

    Highlights: • A novel LVDC HTS power transmission network is presented. • An integrated power system is achieved by using HTS DC cable and SMES. • DC superconducting cable is verified to achieve self-acting fault current limitation. • SMES is verified to achieve fast-response buffering effect under a power fluctuation. • SMES is verified to achieve favorable load voltage protection effect under a fault. - Abstract: A low-voltage rated DC power transmission network integrated with superconducting cables (SCs) and superconducting magnetic energy storage (SMES) devices has been studied with analytic results presented. In addition to the properties of loss-less and high current transportation capacity, the effectively integrated system is formed with a self-acting fault current limitation feature of the SC and a buffering effect of the SMES to power fluctuations. The results obtained show that the integrated system can achieve high-quality power transmission under common power fluctuation conditions with an advanced self-protection feature under short circuit conditions, which is identified to suit especially the smart grid applications.

  3. Improved Control Strategies for a DFIG-Based Wind-Power Generation System with SGSC under Unbalanced and Distorted Grid Voltage Conditions

    DEFF Research Database (Denmark)

    Yao, Jun; Yu, Mengting; Hu, Weihao

    2016-01-01

    This paper investigates an improved control strategy for a doubly-fed induction generator (DFIG) based wind-power generation system with series grid-side converter (SGSC) under network unbalance and harmonic grid voltage distortion conditions. The integrated mathematical modeling of the DFIG system...... with SGSC is established by taking both the negative-sequence and harmonic components of the grid voltages into consideration with multiple synchronous rotating reference frames. Under network unbalance and harmonic distortion situations, stator voltage can be kept symmetrical and sinusoidal by the control...

  4. Variable speed wind turbine generator system with current controlled voltage source inverter

    International Nuclear Information System (INIS)

    Muyeen, S.M.; Al-Durra, Ahmed; Tamura, J.

    2011-01-01

    highlights: → Current controlled voltage source inverter scheme for wind power application. → Low voltage ride through of wind farm. → Variable speed wind turbine driven permanent magnet synchronous generator-operation and control. -- Abstract: The present popular trend of wind power generation is to use variable speed wind turbine (VSWT) driving a doubly fed induction generator (DFIG), wound field synchronous generator (WFSG) or permanent magnet synchronous generator (PMSG). Among them, stability analyses of DFIG type of VSWT have already been reported in many literatures. However, transient stability and low voltage ride through (LVRT) characteristics analyses for synchronous generator type of VSWT is not sufficient enough. This paper focuses on detailed LVRT characteristic analysis of variable speed wind turbine driving a PMSG (VSWT-PMSG) with current controlled voltage source inverter (CC-VSI). Modeling and suitable control strategies for overall system are developed to augment the low voltage ride through capability of variable speed wind generator, considering recent wind farm grid code. Both symmetrical and unsymmetrical faults are analyzed as network disturbances in this paper. The permanent fault due to unsuccessful reclosing of circuit breakers is taken into consideration, which is a salient feature of this study. Moreover, the dynamic characteristic is analyzed using real wind speed data measured in Hokkaido Island, Japan. The proposed control scheme is simulated by using the standard power system simulation package PSCAD/EMTDC and results are verified by comparing that of voltage controlled voltage source inverter scheme available in power system literature.

  5. Variable speed wind turbine generator system with current controlled voltage source inverter

    Energy Technology Data Exchange (ETDEWEB)

    Muyeen, S.M., E-mail: muyeen0809@yahoo.co [Dept. of Electrical Engineering, Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); Al-Durra, Ahmed [Dept. of Electrical Engineering, The Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); Tamura, J. [Dept. of EEE, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507 (Japan)

    2011-07-15

    highlights: {yields} Current controlled voltage source inverter scheme for wind power application. {yields} Low voltage ride through of wind farm. {yields} Variable speed wind turbine driven permanent magnet synchronous generator-operation and control. -- Abstract: The present popular trend of wind power generation is to use variable speed wind turbine (VSWT) driving a doubly fed induction generator (DFIG), wound field synchronous generator (WFSG) or permanent magnet synchronous generator (PMSG). Among them, stability analyses of DFIG type of VSWT have already been reported in many literatures. However, transient stability and low voltage ride through (LVRT) characteristics analyses for synchronous generator type of VSWT is not sufficient enough. This paper focuses on detailed LVRT characteristic analysis of variable speed wind turbine driving a PMSG (VSWT-PMSG) with current controlled voltage source inverter (CC-VSI). Modeling and suitable control strategies for overall system are developed to augment the low voltage ride through capability of variable speed wind generator, considering recent wind farm grid code. Both symmetrical and unsymmetrical faults are analyzed as network disturbances in this paper. The permanent fault due to unsuccessful reclosing of circuit breakers is taken into consideration, which is a salient feature of this study. Moreover, the dynamic characteristic is analyzed using real wind speed data measured in Hokkaido Island, Japan. The proposed control scheme is simulated by using the standard power system simulation package PSCAD/EMTDC and results are verified by comparing that of voltage controlled voltage source inverter scheme available in power system literature.

  6. Voltage magnitude and margin controller for remote industrial microgrid with high wind penetration

    DEFF Research Database (Denmark)

    Cai, Yu; Lin, Jin; Song, Yonghua

    2013-01-01

    It is well known that the remote industrial microgrid is located at the periphery of the grid, which is weakly connected to the main grid. In order to enhance the voltage stability and ensure a good power quality for industries, a voltage magnitude and margin controller based on wind turbines...... is proposed in this paper. This controller includes two parts to improve voltage stability in different time scales by using local measurements. Case studies conducted for a remote microgrid with high wind penetration have proved the effectiveness of the proposed control scheme....

  7. Fast Coordinated Control of DFIG Wind Turbine Generators for Low and High Voltage Ride-Through

    DEFF Research Database (Denmark)

    Wang, Yun; Wu, Qiuwei; Xu, Honghua

    2014-01-01

    This paper presents a fast coordinated control scheme of the rotor side converter (RSC), the DC chopper and the grid side converter (GSC) of doubly fed induction generator (DFIG) wind turbine generators (WTGs) which is to improve the low voltage ride through (LVRT) and high voltage ride through...... were proposed considering the characteristics of the DFIG WTGs during voltage changes. The fast coordinated control of RSC and GSC were developed based on the characteristic analysis in order to realize efficient LVRT and HVRT of the DFIG WTGs. The proposed fast coordinated control schemes were...

  8. Automatic Voltage Control System with Market Price Employing Large Wind Farms

    DEFF Research Database (Denmark)

    Qin, Nan; Bak, Claus Leth; Abildgaard, Hans

    2018-01-01

    of the voltage control service provided by the power plant owners. The benefit of employing the large offshore wind farms in this AVC system is investigated. The simulation based on the measurement data from the Danish electricity control center demonstrates the superiority of the proposed approach in terms...... of the cost minimization. The gained profit by employing the wind farms can be an argument to purchase the voltage control service provided by these wind farms....

  9. Integrated Biological Control

    International Nuclear Information System (INIS)

    JOHNSON, A.R.

    2002-01-01

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects; and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (apriori) or in response to existing contamination spread (aposteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and apriori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, aposteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response

  10. Integrated control systems

    International Nuclear Information System (INIS)

    Smith, D.J.

    1991-01-01

    This paper reports that instrument manufacturers must develop standard network interfaces to pull together interrelated systems such as automatic start-up, optimization programs, and online diagnostic systems. In the past individual control system manufacturers have developed their own data highways with proprietary hardware and software designs. In the future, electric utilities will require that future systems, irrespective of manufacturer, should be able to communicate with each other. Until now the manufactures of control systems have not agreed on the standard high-speed data highway system. Currently, the Electric Power Research Institute (EPRI), in conjunction with several electric utilities and equipment manufactures, is working on developing a standard protocol for communicating between various manufacturers' control systems. According to N. Michael of Sargent and Lundy, future control room designs will require that more of the control and display functions be accessible from the control room through CRTs. There will be less emphasis on traditional hard-wired control panels

  11. AC Voltage Control of DC/DC Converters Based on Modular Multilevel Converters in Multi-Terminal High-Voltage Direct Current Transmission Systems

    Directory of Open Access Journals (Sweden)

    Rui Li

    2016-12-01

    Full Text Available The AC voltage control of a DC/DC converter based on the modular multilevel converter (MMC is considered under normal operation and during a local DC fault. By actively setting the AC voltage according to the two DC voltages of the DC/DC converter, the modulation index can be near unity, and the DC voltage is effectively utilized to output higher AC voltage. This significantly decreases submodule (SM capacitance and conduction losses of the DC/DC converter, yielding reduced capital cost, volume, and higher efficiency. Additionally, the AC voltage is limited in the controllable range of both the MMCs in the DC/DC converter; thus, over-modulation and uncontrolled currents are actively avoided. The AC voltage control of the DC/DC converter during local DC faults, i.e., standby operation, is also proposed, where only the MMC connected on the faulty cable is blocked, while the other MMC remains operational with zero AC voltage output. Thus, the capacitor voltages can be regulated at the rated value and the decrease of the SM capacitor voltages after the blocking of the DC/DC converter is avoided. Moreover, the fault can still be isolated as quickly as the conventional approach, where both MMCs are blocked and the DC/DC converter is not exposed to the risk of overcurrent. The proposed AC voltage control strategy is assessed in a three-terminal high-voltage direct current (HVDC system incorporating a DC/DC converter, and the simulation results confirm its feasibility.

  12. An improved control method of power electronic converters in low voltage micro-grid

    DEFF Research Database (Denmark)

    Xiaofeng, Sun; Qingqiu, Lv; Yanjun, Tian

    2011-01-01

    control of the voltage and frequency deviation added to power references could achieve secondary regulation of the voltage and frequency. In this paper, the authors take the steady and transient transition of grid connecting and disconnecting of the micro-grid as an example, and demonstrate......With the increasing acceptance, micro-grid, combined with distributed generation (DG), may be operated in two modes: grid-connected mode and island mode. In grid connected mode, energy management is the control objective. While in island mode, the control of Voltage and frequency will take...... the place. The conventional droop control can perform the energy management in grid-connected mode, but may not so effective when micro-grid transferring between grid-connected mode and island mode. The paper analysis the micro-grid in different modes (Conventional droop control, Voltage reference...

  13. ICT Based HIL Validation of Voltage Control Coordination in Smart Grids Scenarios

    DEFF Research Database (Denmark)

    Shahid, Kamal; Petersen, Lennart; Olsen, Rasmus Løvenstein

    2018-01-01

    . However, here, the results are validated through a real-time Hardware-In-The-Loop framework using an exemplary benchmark grid area in Denmark as a base case that includes flexible renewable power plants providing voltage control functionality. The provision of voltage control support from ReGen plants...... is verified on a large-scale power system against the baseline scenario, considering the hierarchical industrial controller platforms used nowadays in power plants. Moreover, the verification of online voltage control support is carried out by taking into account a communication network as well......This paper aims to validate the capability of renewable generation (ReGen) plants to provide online voltage control coordination ancillary service to the system operators. Simulation studies on online coordination concepts from ReGen plants have already been identified in previous publications...

  14. Network Constrained Transactive Control for Electric Vehicles Integration

    DEFF Research Database (Denmark)

    Hu, Junjie; Yang, Guangya; Bindner, Henrik W.

    2015-01-01

    . This paper applies the transactive control concept to integrate electric vehicles into the power distribution system with the purpose of minimizing the charging cost of electric vehicles as well as preventing grid congestions and voltage violations. A hierarchical EV management system is proposed where three...

  15. Integrated Control Using the SOFFT Control Structure

    Science.gov (United States)

    Halyo, Nesim

    1996-01-01

    The need for integrated/constrained control systems has become clearer as advanced aircraft introduced new coupled subsystems such as new propulsion subsystems with thrust vectoring and new aerodynamic designs. In this study, we develop an integrated control design methodology which accomodates constraints among subsystem variables while using the Stochastic Optimal Feedforward/Feedback Control Technique (SOFFT) thus maintaining all the advantages of the SOFFT approach. The Integrated SOFFT Control methodology uses a centralized feedforward control and a constrained feedback control law. The control thus takes advantage of the known coupling among the subsystems while maintaining the identity of subsystems for validation purposes and the simplicity of the feedback law to understand the system response in complicated nonlinear scenarios. The Variable-Gain Output Feedback Control methodology (including constant gain output feedback) is extended to accommodate equality constraints. A gain computation algorithm is developed. The designer can set the cross-gains between two variables or subsystems to zero or another value and optimize the remaining gains subject to the constraint. An integrated control law is designed for a modified F-15 SMTD aircraft model with coupled airframe and propulsion subsystems using the Integrated SOFFT Control methodology to produce a set of desired flying qualities.

  16. Integral control for population management.

    Science.gov (United States)

    Guiver, Chris; Logemann, Hartmut; Rebarber, Richard; Bill, Adam; Tenhumberg, Brigitte; Hodgson, Dave; Townley, Stuart

    2015-04-01

    We present a novel management methodology for restocking a declining population. The strategy uses integral control, a concept ubiquitous in control theory which has not been applied to population dynamics. Integral control is based on dynamic feedback-using measurements of the population to inform management strategies and is robust to model uncertainty, an important consideration for ecological models. We demonstrate from first principles why such an approach to population management is suitable via theory and examples.

  17. Improving tokamak vertical position control in the presence of power supply voltage saturation

    International Nuclear Information System (INIS)

    Favez, J-Y; Lister, J B; Muellhaupt, Ph; Srinivasan, B

    2005-01-01

    The control of the current, position and shape of an elongated cross-section tokamak plasma is complicated by the so-called instability of the current vertical position. Linearized models all share the feature of a single unstable eigenmode, attributable to this vertical instability of the plasma equilibrium movement, and a large number of stable or marginally stable eigenmodes, attributable to zero or positive resistance in all other model circuit equations. Due to the size and therefore cost of the ITER tokamak, there will naturally be smaller margins in the poloidal field coil power supplies, implying that the feedback control will experience actuator saturation during large transients due to a variety of plasma disturbances. Current saturation is relatively benign, due to the integrating nature of the tokamak, resulting in a reasonable time horizon for strategically handling the approach to saturation which leads to the loss of one degree of freedom in the feedback control for each saturated coil. On the other hand, voltage saturation is produced by the feedback controller itself, with no intrinsic delay. This paper presents a feedback controller design approach which explicitly takes saturation of the power supply voltage into account when producing the power supply demand signals. We consider the vertically stabilizing part of the ITER controller (fast controller) with one power supply and therefore a single saturated input. We consider an existing ITER controller and enlarge its region of attraction to the full null controllable region by adding a continuous nonlinearity into the control. In a system with a single unstable eigenmode and a single stable eigenmode we have already provided a proof of the asymptotical stability of the closed loop system, and we have examined the performance of this new continuous nonlinear controller. We have subsequently extended this analysis to a system with a single eigenmode and multiple stable eigenmodes. The method

  18. Thyristor voltage converter in induction electric drives with microprocessor control

    Energy Technology Data Exchange (ETDEWEB)

    Braslavsky, I.; Zuzev, A.; Shilin, S. [Electric Drive Department, Urals State Technical University, Ekaterinburg (Russian Federation)

    1997-12-31

    The paper consists of some results on developed pulse model of thyristor voltage converter which is one of the most mathematically complicated unit of electric drive. The model structure and model parameter calculating method are represented. The application of the model allows to analyse stability in `locally` by the linear pulse system theory methods with talking into consideration quantise processes within the converter. Such application provides the obtaining higher accurate results comparing with the non-linear system theory approximate methods. Logarithmic frequency characteristics are used to analyse converter dynamic features and they are represented too. (orig.) 4 refs.

  19. Adaptive robust pole-placement control of 4-leg voltage-source inverters for standalone photovoltaic systems: Considering digital delays

    International Nuclear Information System (INIS)

    Nasiri, Reza; Radan, Ahmad

    2011-01-01

    Three leg inverters for photovoltaic systems have a lot of disadvantages, especially when the load is unbalanced. These disadvantages are for example, small utilization of the DC link voltage, the dependency of the modulation factor of the load current and the superposition of a DC component with the output AC voltage. A solution for these problems is the 4-leg inverter. Most papers dealing with 4-leg inverters ignore the effect of digital delays in control loop and suggest classic controllers, such as PI controller. However, the transient performance of the system does not become adjustable by applying classic control techniques. Additionally, adaptive control techniques have not yet been discussed for 4-leg inverters. This paper proposes the pole-placement control strategy via state feedback with integral state, which is a modern control technique, to control the system. Consequently, resulted system becomes highly robust. In addition, it suggests a Self-Tuner Regulator to guarantee the adaptive performance of the final system. Moreover, it proposes a novel model, considering digital delays, for 4-leg inverters. Simulation results show that transient performance of the system becomes accurately adjustable and the 4-leg inverter generates balanced voltage, with sinusoidal waveform, in spite of the presence of RL time variant loads.

  20. Improving the Mitigation of Voltage Flicker by Usage of Fuzzy Control in a Distribution Static Synchronous Compensator (DSTATCOM)

    OpenAIRE

    Saeed Abazari; Ebrahim Haghjou; Ghazanfar Shahgholiyan

    2009-01-01

    This paper presents a study about of a fuzzy Controlled STATCOM, which can be applied for mitigation of the voltage flicker in a distribution system. The voltage flicker is produced by a large variable load absorbing continuously changing currents such as an arc furnace. The DSTATCOM includes a voltage-sourced PWM inverter and its control system. The control strategy of the DSTATCOM plays an important role in maintaining the voltage flicker. Here, the DSTATCOM controller is designed with two...

  1. Integrated control rod monitoring device

    International Nuclear Information System (INIS)

    Saito, Katsuhiro

    1997-01-01

    The present invention provides a device in which an entire control rod driving time measuring device and a control rod position support device in a reactor building and a central control chamber are integrated systematically to save hardwares such as a signal input/output device and signal cables between boards. Namely, (1) functions of the entire control rod driving time measuring device for monitoring control rods which control the reactor power and a control rod position indication device are integrated into one identical system. Then, the entire devices can be made compact by the integration of the functions. (2) The functions of the entire control rod driving time measuring device and the control rod position indication device are integrated in a central operation board and a board in the site. Then, the place for the installation of them can be used in common in any of the cases. (3) The functions of the entire control rod driving time measuring device and the control rod position indication device are integrated to one identical system to save hardware to be used. Then, signal input/output devices and drift branching panel boards in the site and the central operation board can be saved, and cables for connecting both of the boards is no more necessary. (I.S.)

  2. Coordinated control for low voltage ride-through of a PMSG-based wind power plant

    Directory of Open Access Journals (Sweden)

    Khagendra Thapa

    2016-01-01

    Full Text Available Wind turbine generators should be kept connected to a power grid, while supporting the voltage recovery in the case of a grid fault to meet low voltage ride-through requirement in some grid codes. This paper proposes a coordinated control scheme that prevents the increase in the DC-link voltage by reducing the active power in the machine side converter of permanent magnet synchronous generators (PMSGs in proportion to the voltage dip at the terminal of PMSGs. The proposed scheme changes the current priorities from the active current to the reactive current to inject more reactive power for a severe fault depending on the voltage dip. In addition, the grid-side converter operates in a voltage control mode with the slope, which is the ratio of reactive current capability to the voltage tolerance around a rated value. Moreover, during the fault, the slope is changed depending on the voltage dip to inject more reactive current. The performance of the proposed scheme is validated for a wind power plant consisting of 20 units of 5-MW PMSGs using an EMTP-RV simulator. The results demonstrate that the scheme enables the PMSGs not only to survive during the fault, but also to provide a dynamic reactive power support.

  3. Future Integrated Fire Control

    National Research Council Canada - National Science Library

    Young, Bonnie W

    2005-01-01

    Future advances in fire control for air and missile defense depend largely on a network-enabled foundation that enables the collaborative use of distributed warfare assets for time-critical operations...

  4. Integration of Fuel Cell Micro-CHPs on Low. Voltage Grid: A Danish Case Study

    DEFF Research Database (Denmark)

    You, Shi; Marra, Francesco; Træholt, Chresten

    2012-01-01

    The future significance of fuel cell (FC) powered micro combined heat and power (micro-CHP) units in meeting the residential energy demands is set to increase, which may have a considerable impact on the low voltage (LV) grid. The objective of this paper is to investigate into the related technical...... issues using a Danish case study with different penetration levels of uncoordinated FC micro-CHPs. Based on the findings, it is recommended to design grid oriented integration strategies such as Virtual Power Plants (VPPs) for achieving future smart grids with a large roll out of distributed energy...

  5. Impact and Cost Evaluation of Electric Vehicle Integration on Medium Voltage Distribution Networks

    DEFF Research Database (Denmark)

    Wu, Qiuwei; Cheng, Lin; Pineau, Ulysse

    2013-01-01

    This paper presents the analysis of the impact of electric vehicle (EV) integration on medium voltage (MV) distribution networks and the cost evaluation of replacing the overloaded grid components. A number of EV charging scenarios have been studied. A 10 kV grid from the Bornholm Island...... in the city area has been used to carry out case studies. The case study results show that the secondary transformers are the bottleneck of the MV distribution networks and the increase of EV penetration leads to the overloading of secondary transformers. The cost of the transformer replacement has been...

  6. Coordinated Voltage Control in Offshore HVDC Connected Cluster of Wind Power Plants

    DEFF Research Database (Denmark)

    Sakamuri, Jayachandra N.; Rather, Zakir Hussain; Rimez, Johan

    2016-01-01

    This paper presents a coordinated voltage control scheme (CVCS) for a cluster of offshore wind power plants (OWPPs) connected to a VSC HVDC system. The primary control point of the proposed voltage control scheme is the introduced Pilot bus, which is having the highest short circuit capacity...... in the offshore AC grid. The developed CVCS comprehends an optimization algorithm, aiming for minimum active power losses in the offshore grid, to generate voltage reference to the Pilot bus. During steady state operation, the Pilot bus voltage is controlled by dispatching reactive power references to each wind...... turbine (WT) in the WPP cluster based on their available reactive power margin and network sensitivity based participation factors, which are derived from the dV/dQ sensitivity of a WT bus w.r.t the Pilot bus. This method leads to minimization of the risk of undesired effects, particularly overvoltage...

  7. Study on Control Scheme for the Inverters in Low Voltage Microgrid with Nonlinear Loads

    Science.gov (United States)

    Xu, Jiqiang; Lu, Wenzhou; Wu, Lei

    2017-05-01

    There are a lot of nonlinear loads in real low voltage microgrid system. It will cause serious output voltage and grid current harmonic distortions problems in island and grid-connected modes, respectively. To solve this problem, this paper proposes a droop control scheme with quasi-proportion and resonant (quasi-PR) controller based on αβ stationary reference frame to make microgrid smoothly switch between grid-connected and island modes without changing control method. Moreover, in island mode, not only stable output voltage and frequency, but also reduced output voltage harmonics with added nonlinear loads can be achieved; In grid-connected mode, not only constant power, but also reduced grid current harmonics can be achieved. Simulation results verify the effectiveness of the proposed control scheme.

  8. Sensorless Control Technology for PMSG base on the Dead-time Compensation voltage

    Directory of Open Access Journals (Sweden)

    Yang Li-yong

    2015-01-01

    Full Text Available In order to improve the speed sensorless-control system of PMSG in low speed performance, this paper introduces a novel Dead-time compensation control method .Mathematical model is established according to the Dead-zone of the influence of the voltage source type inverter output voltage. At the same time, the given value of current regulator output voltage has been fixed based on the established model. Then the stator voltage after compensationed is applied to the flux estimation, which improves the performance of flux estimation. Finally, the position and speed of the rotor is estimated based on Back-Electromotive Force, which has Simple algorithm and good robustness. In order to verify the correctness of theoretical analysis, the experiment was done according to the new control method. The results proved the correctness and feasibility of this control method.

  9. Model Based Optimization of Integrated Low Voltage DC-DC Converter for Energy Harvesting Applications

    Science.gov (United States)

    Jayaweera, H. M. P. C.; Muhtaroğlu, Ali

    2016-11-01

    A novel model based methodology is presented to determine optimal device parameters for the fully integrated ultra low voltage DC-DC converter for energy harvesting applications. The proposed model feasibly contributes to determine the maximum efficient number of charge pump stages to fulfill the voltage requirement of the energy harvester application. The proposed DC-DC converter based power consumption model enables the analytical derivation of the charge pump efficiency when utilized simultaneously with the known LC tank oscillator behavior under resonant conditions, and voltage step up characteristics of the cross-coupled charge pump topology. The verification of the model has been done using a circuit simulator. The optimized system through the established model achieves more than 40% maximum efficiency yielding 0.45 V output with single stage, 0.75 V output with two stages, and 0.9 V with three stages for 2.5 kΩ, 3.5 kΩ and 5 kΩ loads respectively using 0.2 V input.

  10. Integration Testing of a Modular Discharge Supply for NASA's High Voltage Hall Accelerator Thruster

    Science.gov (United States)

    Pinero, Luis R.; Kamhawi, hani; Drummond, Geoff

    2010-01-01

    NASA s In-Space Propulsion Technology Program is developing a high performance Hall thruster that can fulfill the needs of future Discovery-class missions. The result of this effort is the High Voltage Hall Accelerator thruster that can operate over a power range from 0.3 to 3.5 kW and a specific impulse from 1,000 to 2,800 sec, and process 300 kg of xenon propellant. Simultaneously, a 4.0 kW discharge power supply comprised of two parallel modules was developed. These power modules use an innovative three-phase resonant topology that can efficiently supply full power to the thruster at an output voltage range of 200 to 700 V at an input voltage range of 80 to 160 V. Efficiencies as high as 95.9 percent were measured during an integration test with the NASA103M.XL thruster. The accuracy of the master/slave current sharing circuit and various thruster ignition techniques were evaluated.

  11. Minimum-Voltage Vector Injection Method for Sensorless Control of PMSM for Low-Speed Operations

    DEFF Research Database (Denmark)

    Xie, Ge; Lu, Kaiyuan; Kumar, Dwivedi Sanjeet

    2016-01-01

    In this paper, a simple signal injection method is proposed for sensorless control of PMSM at low speed, which ideally requires one voltage vector only for position estimation. The proposed method is easy to implement resulting in low computation burden. No filters are needed for extracting...... may also be further developed to inject two opposite voltage vectors to reduce the effects of inverter voltage error on the position estimation accuracy. The effectiveness of the proposed method is demonstrated by comparing with other sensorless control method. Theoretical analysis and experimental...

  12. The control system based on PXI technology for high voltage power supply

    International Nuclear Information System (INIS)

    Chen Dehong; Zhang Ming; Ma Shaoxiang; Xia Linglong; Zeng Zhen; Zhang Xueliang; Wang Chuliang; Yu Kexun

    2014-01-01

    A 100 kV/60 A high voltage power supply (HVPS) is being developed to carry some auxiliary heating research on J-TEXT and supply the auxiliary heating system. The power supply which consists of 144 switch modules is based on PSM technology. For the requirement of isolation, control and protection, a control system based on the PCI extensions for instrumentation (PXI) which meets up with the CODAC standards is designed with developed PSM technology for the high voltage power supply. The compact structure of hardware in the control system is presented too. And the control strategy which is based on shift phase pulse width modulation is discussed Some tests are performed on the control system to validate the control strategy, the experimental results show that the system has a good control performance and fast response, which meets the control requirement of 100 kV/60 A high voltage power supply. (authors)

  13. Coordination of voltage and reactive power control in the extra high voltage substations based on the example of solutions applied in the national power system

    Directory of Open Access Journals (Sweden)

    Dariusz Kołodziej

    2012-06-01

    Full Text Available This paper presents examples of coordination between automatic voltage and reactive power control systems (ARST covering adjacent and strongly related extra high voltage substations. Included are conclusions resulting from the use of these solutions. The Institute of Power Engineering, Gdańsk Division has developed and deployed ARST systems in the national power system for a dozen or so years.

  14. Method of controlling illumination device based on current-voltage model

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an illumination device comprising a number of LEDs, means for receiving an input signal, means for generating an activation signal for at least one of the LEDs based on the input signal. The illumination device comprises further means for obtaining the voltage...... and the colorimetric properties of said light emitted by LED. The present invention relates also to a method of controlling and a meted of calibrating such illumination device....... across and current through the LED and the means for generating the activation signal is adapted to generate the activating signal based on the voltage, the current and a current- voltage model related to LED. The current-voltage model defines a relationship between the current, the voltage...

  15. Improved control strategy for PI-R current of DFIG considering voltage and current harmonics compensation

    Science.gov (United States)

    Song, S. Y.; Liu, Q. H.; Zhao, Y. N.; Liu, S. Y.

    2016-08-01

    With the rapid development of wind power generation, the related research of wind power control and integration issues has attracted much attention, and the focus of the research are shifting away from the ideal power grid environment to the actual power grid environment. As the main stream wind turbine generator, a doubly-fed induction generator (DFIG) is connected to the power grid directly by its stator, so it is particularly sensitive to the power grid. This paper studies the improvement of DFIG control technology in the power grid harmonic environment. Based on the DFIG dynamic model considering the power grid harmonic environment, this paper introduces the shortcomings of the common control strategy of DFIG, and puts forward the enhanced method. The decoupling control of the system is realized by compensating the coupling between the rotor harmonic voltage and harmonic current, improving the control performance. In addition, the simulation experiments on PSCAD/EMTDC are carried out to verify the correctness and effectiveness of the improved scheme.

  16. An Optimal Control Strategy for DC Bus Voltage Regulation in Photovoltaic System with Battery Energy Storage

    Directory of Open Access Journals (Sweden)

    Muhamad Zalani Daud

    2014-01-01

    Full Text Available This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV system with battery energy storage (BES. The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC. For the grid side VSC (G-VSC, two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods.

  17. An optimal control strategy for DC bus voltage regulation in photovoltaic system with battery energy storage.

    Science.gov (United States)

    Daud, Muhamad Zalani; Mohamed, Azah; Hannan, M A

    2014-01-01

    This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV) system with battery energy storage (BES). The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC). For the grid side VSC (G-VSC), two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods.

  18. Voltage Control Scheme with Distributed Generation and Grid Connected Converter in a DC Microgrid

    Directory of Open Access Journals (Sweden)

    Jong-Chan Choi

    2014-10-01

    Full Text Available Direct Current (DC microgrids are expected to become larger due to the rapid growth of DC energy sources and power loads. As the scale of the system expends, the importance of voltage control will be increased to operate power systems stably. Many studies have been performed on voltage control methods in a DC microgrid, but most of them focused only on a small scale microgrid, such as a building microgrid. Therefore, a new control method is needed for a middle or large scale DC microgrid. This paper analyzes voltage drop problems in a large DC microgrid and proposes a cooperative voltage control scheme with a distributed generator (DG and a grid connected converter (GCC. For the voltage control with DGs, their location and capacity should be considered for economic operation in the systems. Accordingly, an optimal DG allocation algorithm is proposed to minimize the capacity of a DG for voltage control in DC microgrids. The proposed methods are verified with typical load types by a simulation using MATLAB and PSCAD/EMTDC.

  19. Voltage Control of Distribution Grids with Multi-Microgrids Using Reactive Power Management

    Directory of Open Access Journals (Sweden)

    WLODARCZYK, P.

    2015-02-01

    Full Text Available Low-voltage Microgrids can be valuable sources of ancillary services for the Distribution System Operators (DSOs. The aim of this paper was to study if and how multi-microgrids can contribute to Voltage Control (VC in medium-voltage distribution grids by means of reactive power generation and/or absorption. The hierarchical control strategy was proposed with the main focus on the tertiary control which was defined as optimal power flow problem. The interior-point algorithm was applied to optimise experimental benchmark grid with the presence of Distributed Energy Resources (DERs. Moreover, two primary objectives were formulated: active power losses and amount of reactive power used to reach the voltage profile. As a result the active power losses were minimised to the high extent achieving the savings around 22% during entire day.

  20. Integrated pest control

    International Nuclear Information System (INIS)

    Kassem, A.R.

    2009-01-01

    The hazards induced by pests are responsible for about 50% of the agricultural production. There are two types of methods for pest control. The traditional methods including chemical, biological, mechanical and physical methods. The modern methods depending on germs, phermones, hormones and genetic methods. The sterile insect technique is the most recent one and the more effective. It depends on the use of insect to destroy itself.

  1. The Design of Integrated Information System for High Voltage Metering Lab

    Science.gov (United States)

    Ma, Yan; Yang, Yi; Xu, Guangke; Gu, Chao; Zou, Lida; Yang, Feng

    2018-01-01

    With the development of smart grid, intelligent and informatization management of high-voltage metering lab become increasingly urgent. In the paper we design an integrated information system, which automates the whole transactions from accepting instruments, make experiments, generating report, report signature to instrument claims. Through creating database for all the calibrated instruments, using two-dimensional code, integrating report templates in advance, establishing bookmarks and online transmission of electronical signatures, our manual procedures reduce largely. These techniques simplify the complex process of account management and report transmission. After more than a year of operation, our work efficiency improves about forty percent averagely, and its accuracy rate and data reliability are much higher as well.

  2. Secondary Control for Compensation of Voltage Harmonics and Unbalance in Microgrids

    DEFF Research Database (Denmark)

    Savaghebi, Mehdi; Vasquez, Juan Carlos; Jalilian, Alireza

    2012-01-01

    of these controllers includes a selective virtual impedance loop which is considered to improve sharing of fundamental and harmonic components of load current among the DG units. The sharing improvement is provided at the expense of increasing voltage unbalance and harmonic distortion. Thus, the secondary control...... level is applied to manage the compensation of SLB voltage unbalance and harmonics by sending proper control signals to the primary level. DGs compensation efforts are controlled locally at the primary level. The system design procedure for selecting proper control parameters is discussed. Simulation...

  3. State reference design and saturated control of doubly-fed induction generators under voltage dips

    Science.gov (United States)

    Tilli, Andrea; Conficoni, Christian; Hashemi, Ahmad

    2017-04-01

    In this paper, the stator/rotor currents control problem of doubly-fed induction generator under faulty line voltage is carried out. Common grid faults cause a steep decline in the line voltage profile, commonly denoted as voltage dip. This point is critical for such kind of machines, having their stator windings directly connected to the grid. In this respect, solid methodological nonlinear control theory arguments are exploited and applied to design a novel controller, whose main goal is to improve the system behaviour during voltage dips, endowing it with low voltage ride through capability, a fundamental feature required by modern Grid Codes. The proposed solution exploits both feedforward and feedback actions. The feedforward part relies on suitable reference trajectories for the system internal dynamics, which are designed to prevent large oscillations in the rotor currents and command voltages, excited by line perturbations. The feedback part uses state measurements and is designed according to Linear Matrix Inequalities (LMI) based saturated control techniques to further reduce oscillations, while explicitly accounting for the system constraints. Numerical simulations verify the benefits of the internal dynamics trajectory planning, and the saturated state feedback action, in crucially improving the Doubly-Fed Induction Machine response under severe grid faults.

  4. Elevated voltage level I.sub.DDQ failure testing of integrated circuits

    Science.gov (United States)

    Righter, Alan W.

    1996-01-01

    Burn in testing of static CMOS IC's is eliminated by I.sub.DDQ testing at elevated voltage levels. These voltage levels are at least 25% higher than the normal operating voltage for the IC but are below voltage levels that would cause damage to the chip.

  5. Elevated voltage level I{sub DDQ} failure testing of integrated circuits

    Science.gov (United States)

    Righter, A.W.

    1996-05-21

    Burn in testing of static CMOS IC`s is eliminated by I{sub DDQ} testing at elevated voltage levels. These voltage levels are at least 25% higher than the normal operating voltage for the IC but are below voltage levels that would cause damage to the chip. 4 figs.

  6. Enhanced voltage-controlled magnetic anisotropy in magnetic tunnel junctions with an MgO/PZT/MgO tunnel barrier

    Science.gov (United States)

    Chien, Diana; Li, Xiang; Wong, Kin; Zurbuchen, Mark A.; Robbennolt, Shauna; Yu, Guoqiang; Tolbert, Sarah; Kioussis, Nicholas; Khalili Amiri, Pedram; Wang, Kang L.; Chang, Jane P.

    2016-03-01

    Compared with current-controlled magnetization switching in a perpendicular magnetic tunnel junction (MTJ), electric field- or voltage-induced magnetization switching reduces the writing energy of the memory cell, which also results in increased memory density. In this work, an ultra-thin PZT film with high dielectric constant was integrated into the tunneling oxide layer to enhance the voltage-controlled magnetic anisotropy (VCMA) effect. The growth of MTJ stacks with an MgO/PZT/MgO tunnel barrier was performed using a combination of sputtering and atomic layer deposition techniques. The fabricated MTJs with the MgO/PZT/MgO barrier demonstrate a VCMA coefficient, which is ˜40% higher (19.8 ± 1.3 fJ/V m) than the control sample MTJs with an MgO barrier (14.3 ± 2.7 fJ/V m). The MTJs with the MgO/PZT/MgO barrier also possess a sizeable tunneling magnetoresistance (TMR) of more than 50% at room temperature, comparable to the control MTJs with an MgO barrier. The TMR and enhanced VCMA effect demonstrated simultaneously in this work make the MgO/PZT/MgO barrier-based MTJs potential candidates for future voltage-controlled, ultralow-power, and high-density magnetic random access memory devices.

  7. Negative Sequence Droop Method based Hierarchical Control for Low Voltage Ride-Through in Grid-Interactive Microgrids

    DEFF Research Database (Denmark)

    Zhao, Xin; Firoozabadi, Mehdi Savaghebi; Quintero, Juan Carlos Vasquez

    2015-01-01

    . In this paper, a voltage support strategy based on negative sequence droop control, which regulate the positive/negative sequence active and reactive power flow by means of sending proper voltage reference to the inner control loop, is proposed for the grid connected MGs to ride through voltage sags under...... complex line impedance conditions. In this case, the MGs should inject a certain amount of positive and negative sequence power to the grid so that the voltage quality at load side can be maintained at a satisfied level. A two layer hierarchical control strategy is proposed in this paper. The primary...... control loop consists of voltage and current inner loops, conventional droop control and virtual impedance loop while the secondary control loop is based on positive/negative sequence droop control which can achieve power injection under voltage sags. Experimental results with asymmetrical voltage sags...

  8. Distributed voltage control and load sharing for inverter-interfaced microdrid with resistive lines

    DEFF Research Database (Denmark)

    Golsorkhi, Mohammad S.; Lu, D. D C; Shafiee, Q.

    2016-01-01

    This paper proposes a new distributed control method for coordination of distributed energy resources (DERs) in low-voltage resistive microgrids. The proposed framework consists of two level structure; primary and secondary control. Unlike the existing distributed control methods, the proposed me...

  9. Electric field control methods for foil coils in high-voltage linear actuators

    NARCIS (Netherlands)

    Beek, van T.A.; Jansen, J.W.; Lomonova, E.A.

    2015-01-01

    This paper describes multiple electric field control methods for foil coils in high-voltage coreless linear actuators. The field control methods are evaluated using 2-D and 3-D boundary element methods. A comparison is presented between the field control methods and their ability to mitigate

  10. Method and apparatus for controlling LCL converters using asymmetric voltage cancellation techniques

    Science.gov (United States)

    Wu, Hunter; Sealy, Kylee Devro; Sharp, Bryan Thomas; Gilchrist, Aaron

    2016-01-26

    A method and apparatus for LCL resonant converter control utilizing Asymmetric Voltage Cancellation is described. The methods to determine the optimal trajectory of the control variables are discussed. Practical implementations of sensing load parameters are included. Simple PI, PID and fuzzy logic controllers are included with AVC for achieving good transient response characteristics with output current regulation.

  11. Active gate driver for dv/dt control and active voltage clamping in an IGBT stack

    DEFF Research Database (Denmark)

    Rasmussen, Tonny Wederberg

    2005-01-01

    For high voltages converters stacks of IGBTs can be used if the static and dynamic voltage sharing among the IGBTs can be applied. dVCE/dt should also be controlled in order not to damage insulation material. This paper describes theory and measurements of an active gate driver for stacking IGBTs....... For the measurements two series connected standard IGBTs made for hard switching applications are used. Problems are shown and proposals for improvements are given....

  12. Mechanisms of Gain Control by Voltage-Gated Channels in Intrinsically-Firing Neurons

    Science.gov (United States)

    Patel, Ameera X.; Burdakov, Denis

    2015-01-01

    Gain modulation is a key feature of neural information processing, but underlying mechanisms remain unclear. In single neurons, gain can be measured as the slope of the current-frequency (input-output) relationship over any given range of inputs. While much work has focused on the control of basal firing rates and spike rate adaptation, gain control has been relatively unstudied. Of the limited studies on gain control, some have examined the roles of synaptic noise and passive somatic currents, but the roles of voltage-gated channels present ubiquitously in neurons have been less explored. Here, we systematically examined the relationship between gain and voltage-gated ion channels in a conductance-based, tonically-active, model neuron. Changes in expression (conductance density) of voltage-gated channels increased (Ca2+ channel), reduced (K+ channels), or produced little effect (h-type channel) on gain. We found that the gain-controlling ability of channels increased exponentially with the steepness of their activation within the dynamic voltage window (voltage range associated with firing). For depolarization-activated channels, this produced a greater channel current per action potential at higher firing rates. This allowed these channels to modulate gain by contributing to firing preferentially at states of higher excitation. A finer analysis of the current-voltage relationship during tonic firing identified narrow voltage windows at which the gain-modulating channels exerted their effects. As a proof of concept, we show that h-type channels can be tuned to modulate gain by changing the steepness of their activation within the dynamic voltage window. These results show how the impact of an ion channel on gain can be predicted from the relationship between channel kinetics and the membrane potential during firing. This is potentially relevant to understanding input-output scaling in a wide class of neurons found throughout the brain and other nervous systems

  13. A digital controlled negative high voltage power source for LINAC of HLS

    International Nuclear Information System (INIS)

    Gao Hui; Chen Jun; Hong Jun; Wang Weibing

    2005-01-01

    This paper introduces the working principle of a 10-80 kV negative high voltage power source for the electronic gun of the 200 MeV LINAC of NSRL, especially how to realize the switch power, voltage/current sampling, feedback control and microcontroller module. The firmware design for the SOC microcontroller of ADuC8xx and the application software design for PC are also presented. (authors)

  14. Enhanced DC-Link Capacitor Voltage Balancing Control of DC–AC Multilevel Multileg Converters

    DEFF Research Database (Denmark)

    Busquets-Monge, Sergio; Maheshwari, Ram Krishan; Nicolas-Apruzzese, Joan

    2015-01-01

    This paper presents a capacitor voltage balancing control applicable to any multilevel dc–ac converter formed by a single set of series-connected capacitors implementing the dc link and semiconductor devices, such as the diode-clamped topology. The control is defined for any number of dc-link vol......This paper presents a capacitor voltage balancing control applicable to any multilevel dc–ac converter formed by a single set of series-connected capacitors implementing the dc link and semiconductor devices, such as the diode-clamped topology. The control is defined for any number of dc...

  15. Elimination of output voltage oscillations in DC-DC converter using PWM with PI controller

    Directory of Open Access Journals (Sweden)

    Sreenivasappa Veeranna Bhupasandra

    2010-01-01

    Full Text Available In this paper the SIMULINK model of a PWM controlled DC-DC converter is modeled using switching function concept to control the speed of the DC motor. The presence of the voltage oscillation cycles due to higher switching frequency in the DC-DC converter is identified. The effect of these oscillations on the output voltage of the converter, Armature current, Developed torque and Speed of the DC motor is analyzed. In order to minimize the oscillation cycles the PI controller is proposed in the PWM controller.

  16. Control and protection system for an electron injector installed in a high-voltage terminal

    International Nuclear Information System (INIS)

    Martin, D.; Radu, A.; Baciu, G.; Grigore, D.

    1979-01-01

    The basic principles of operation of the control and protection system for an electron accelerator gun are described. The electron gun parameters are independently controlled by using four special secondary windings of the high-voltage transformer providing the accelerating voltage. Four groups of thyristor ac regulators employing phase control are connected so as to provide independent adjustment of each parameter of the gun. The power controller of modular construction has a single-phase supply from the 50 Hz 220 V mains. (orig.)

  17. Distributed Secondary Voltage and Frequency Control for Islanded Microgrids with Uncertain Communication Links

    DEFF Research Database (Denmark)

    Lu, Xiaoqing; Yu, Xinghuo; Lai, Jingang

    2017-01-01

    energy resources (DERs) in a MG to achieve the voltage/frequency restoration and active power sharing accuracy, respectively. In special, the secondary control inputs are merely updated at the end of each round of iteration, and thus each DER only needs to share information with its neighbors...... theory. The proposed controllers are implemented on local DERs, and thus no central controller is required. Moreover, the desired control objective can also be guaranteed even if all DERs are subject to internal uncertainties and external noises including initial voltage and/or frequency resetting errors...

  18. Control of hybrid fuel cell/energy storage distributed generation system against voltage sag

    Energy Technology Data Exchange (ETDEWEB)

    Hajizadeh, Amin; Golkar, Masoud Aliakbar [Electrical Engineering Department, K.N. Toosi University of Technology, Seyedkhandan, Dr. Shariati Ave, P.O. Box 16315-1355, Tehran (Iran)

    2010-06-15

    Fuel cell (FC) and energy storage (ES) based hybrid distributed power generation systems appear to be very promising for satisfying high energy and high power requirements of power quality problems in distributed generation (DG) systems. In this study, design of control strategy for hybrid fuel cell/energy storage distributed power generation system during voltage sag has been presented. The proposed control strategy allows hybrid distributed generation system works properly when a voltage disturbance occurs in distribution system and hybrid system stays connected to the main grid. Hence, modeling, controller design, and simulation study of a hybrid distributed generation system are investigated. The physical model of the fuel cell stack, energy storage and the models of power conditioning units are described. Then the control design methodology for each component of the hybrid system is proposed. Simulation results are given to show the overall system performance including active power control and voltage sag ride-through capability of the hybrid distributed generation system. (author)

  19. Adaptive Sliding-Mode Control in Bus Voltage for an Islanded DC Microgrid

    Directory of Open Access Journals (Sweden)

    Dan Zhang

    2017-01-01

    Full Text Available The control of bus voltage is a crucial task for the stable operation of islanded DC microgrids. To improve the DC bus voltage control dynamics and stability, this paper proposes an adaptive sliding-mode control method based on large-signal model. The sliding-mode control, adaptive observation, and fix-frequency pulse width modulation technology are adopted and combined efficiently, which guarantee stable bus voltage and the constant switching frequency of closed-loop system, regardless of how the parameters vary with the variable constant-power loads and uncertainties. In addition, the reference values can be quickly tracked by the state variables using the proposed method without any additional sensors/hardware circuits. Therefore, this method is beneficial for the scalability and plug-play of the distributed generators and loads within the DC microgrids. The performance of the proposed control method has been successfully verified in simulation.

  20. A differential low-voltage high gain current-mode integrated RF receiver front-end

    Energy Technology Data Exchange (ETDEWEB)

    Wang Chunhua; Ma Minglin; Sun Jingru; Du Sichun; Guo Xiaorong; He Haizhen, E-mail: wch1227164@sina.com [School of Information Science and Technology, Hunan University, Changsha 410082 (China)

    2011-02-15

    A differential low-voltage high gain current-mode integrated RF front end for an 802.11b WLAN is proposed. It contains a differential transconductance low noise amplifier (G{sub m}-LNA) and a differential current-mode down converted mixer. The single terminal of the G{sub m}-LNA contains just one MOS transistor, two capacitors and two inductors. The gate-source shunt capacitors, C{sub x1} and C{sub x2}, can not only reduce the effects of gate-source C{sub gs} on resonance frequency and input-matching impedance, but they also enable the gate inductance L{sub g1,2} to be selected at a very small value. The current-mode mixer is composed of four switched current mirrors. Adjusting the ratio of the drain channel sizes of the switched current mirrors can increase the gain of the mixer and accordingly increase the gain of RF receiver front-end. The RF front-end operates under 1 V supply voltage. The receiver RFIC was fabricated using a chartered 0.18 {mu}m CMOS process. The integrated RF receiver front-end has a measured power conversion gain of 17.48 dB and an input referred third-order intercept point (IIP3) of -7.02 dBm. The total noise figure is 4.5 dB and the power is only 14 mW by post-simulations. (semiconductor integrated circuits)

  1. Controlling Chaos and Voltage Collapse using Layered Recurrent Network-based PID-SVC in Power Systems

    Directory of Open Access Journals (Sweden)

    I Made Ginarsa

    2013-11-01

    Full Text Available Chaos and voltage collapse occurred in critical power systems due to disturbing of energy. PID-SVC layered reccurrent neural network-based (LRN-based PID-SVC was proposed to solve this problem. A PID was used to control chaos and voltage collapse. Then, an SVC LRN-based to maintan the load voltage. By using the proposed controller, chaos and voltage collapse were able to suppress and maintain the load voltage around the setting value. Furthemore, the proposed controller gives better response than PI-SVC controller.

  2. Parameters-tuning of PID controller for automatic voltage regulators using the African buffalo optimization

    Science.gov (United States)

    Mohmad Kahar, Mohd Nizam; Noraziah, A.

    2017-01-01

    In this paper, an attempt is made to apply the African Buffalo Optimization (ABO) to tune the parameters of a PID controller for an effective Automatic Voltage Regulator (AVR). Existing metaheuristic tuning methods have been proven to be quite successful but there were observable areas that need improvements especially in terms of the system’s gain overshoot and steady steady state errors. Using the ABO algorithm where each buffalo location in the herd is a candidate solution to the Proportional-Integral-Derivative parameters was very helpful in addressing these two areas of concern. The encouraging results obtained from the simulation of the PID Controller parameters-tuning using the ABO when compared with the performance of Genetic Algorithm PID (GA-PID), Particle-Swarm Optimization PID (PSO-PID), Ant Colony Optimization PID (ACO-PID), PID, Bacteria-Foraging Optimization PID (BFO-PID) etc makes ABO-PID a good addition to solving PID Controller tuning problems using metaheuristics. PMID:28441390

  3. Square-Wave Voltage Injection Algorithm for PMSM Position Sensorless Control With High Robustness to Voltage Errors

    DEFF Research Database (Denmark)

    Ni, Ronggang; Xu, Dianguo; Blaabjerg, Frede

    2017-01-01

    relationship with the magnetic field distortion. Position estimation errors caused by higher order harmonic inductances and voltage harmonics generated by the SVPWM are also discussed. Both simulations and experiments are carried out based on a commercial PMSM to verify the superiority of the proposed method......Rotor position estimated with high-frequency (HF) voltage injection methods can be distorted by voltage errors due to inverter nonlinearities, motor resistance, and rotational voltage drops, etc. This paper proposes an improved HF square-wave voltage injection algorithm, which is robust to voltage...... errors without any compensations meanwhile has less fluctuation in the position estimation error. The average position estimation error is investigated based on the analysis of phase harmonic inductances, and deduced in the form of the phase shift of the second-order harmonic inductances to derive its...

  4. A novel current mode controller for a static compensator utilizing Goertzel algorithm to mitigate voltage sags

    International Nuclear Information System (INIS)

    Najafi, E.; Yatim, A.H.M.

    2011-01-01

    Research highlights: → We proposed a new current control method for STATCOM. → The current control method maintains a fixed switching frequency. → It also produces fewer harmonics compared to conventional hysteresis method. → A new voltage dip (sag) detection method was used in STATCOM. → The control method can mitigate voltage sag in each phase separately. -- Abstract: Static compensator (STATCOM) has been widely proposed for power quality and network stability improvement. It is easily connected in parallel to the electric network and has many advantages for electrical grids. It can improve network stability; power factor, power transfer rating and can avoid some disturbances such as sags and swells. Most of STATCOM controllers are based on voltage controllers that are based on balanced d-q transform. However, they are not thorough solutions for network disturbances since in most cases single-phase disturbances occur in electrical networks that cannot be avoided by the conventional controllers. Voltage mode controllers are also not capable of responding fast enough to the changes expected of a network system. This paper proposes a new current mode controller to overcome the mentioned problem. The approach uses a fixed frequency current controller to maintain voltage levels in voltage sags (dips). This approach is also simple and can be easily implemented by digitally. It has superior performance over conventional methods in terms of harmonic reduction in STATCOM output current. Another important factor for STATCOM effectiveness in sag mitigation is its sag detection method. This paper also introduces a new sag detection method based on Goertzel algorithm which is both effective and simple for practical applications. The simulation results presented illustrate the superiority of the proposed controller and sag detection algorithm to be utilized in the STATCOM.

  5. Control Method for DC-Link Voltage Ripple Cancellation in Voltage Source Inverter under Unbalanced Three-Phase Voltage Supply Conditions

    Czech Academy of Sciences Publication Activity Database

    Chomát, Miroslav; Schreier, Luděk

    2005-01-01

    Roč. 152, č. 3 (2005), s. 494-500 ISSN 1350-2352 R&D Projects: GA ČR(CZ) GA102/02/0554 Institutional research plan: CEZ:AV0Z20570509 Keywords : DC-link voltage * unbalanced three-phase voltage Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.587, year: 2005

  6. Power flow analysis for DC voltage droop controlled DC microgrids

    DEFF Research Database (Denmark)

    Li, Chendan; Chaudhary, Sanjay; Dragicevic, Tomislav

    2014-01-01

    This paper proposes a new algorithm for power flow analysis in droop controlled DC microgrids. By considering the droop control in the power flow analysis for the DC microgrid, when compared with traditional methods, more accurate analysis results can be obtained. The algorithm verification is ca...

  7. Integrating Multi-Domain Distributed Energy Systems with Electric Vehicle PQ Flexibility: Optimal Design and Operation Scheduling for Sustainable Low-Voltage Distribution Grids

    DEFF Research Database (Denmark)

    Morvaj, Boran; Knezovic, Katarina; Evins, Ralph

    2016-01-01

    on the grid operation, in addition to coordinated charging, is analysed. Results showed that when the system can be optimally designed, emissions decrease by 64% and additionally 32% with proactive EV integration, whereas EV reactive power control enables integration of larger EV amounts and provides...... in the stable operation. The model was applied to a real low-voltage Danish distribution grid where measurement data is available on hourly basis in order to determine EV flexibility impacts on carbon emissions, as well as the benefits of optimal DES design. The influence of EV reactive power control...

  8. Controllable transport of a skyrmion in a ferromagnetic narrow channel with voltage-controlled magnetic anisotropy

    Science.gov (United States)

    Wang, Junlin; Xia, Jing; Zhang, Xichao; Zhao, G. P.; Ye, Lei; Wu, Jing; Xu, Yongbing; Zhao, Weisheng; Zou, Zhigang; Zhou, Yan

    2018-05-01

    Magnetic skyrmions have potential applications in next-generation spintronic devices with ultralow energy consumption. In this work, the current-driven skyrmion motion in a narrow ferromagnetic nanotrack with voltage-controlled magnetic anisotropy (VCMA) is studied numerically. By utilizing the VCMA effect, the transport of skyrmion can be unidirectional in the nanotrack, leading to a one-way information channel. The trajectory of the skyrmion can also be modulated by periodically located VCMA gates, which protects the skyrmion from destruction by touching the track edge. In addition, the location of the skyrmion can be controlled by adjusting the driving pulse length in the presence of the VCMA effect. Our results provide guidelines for practical realization of the skyrmion-based information channel, diode, and skyrmion-based electronic devices such as racetrack memory.

  9. System for high-voltage control detectors with large number photomultipliers

    International Nuclear Information System (INIS)

    Donskov, S.V.; Kachanov, V.A.; Mikhajlov, Yu.V.

    1985-01-01

    A simple and inexpensive on-line system for hihg-voltage control which is designed for detectors with a large number of photomultipliers is developed and manufactured. It has been developed for the GAMC type hodoscopic electromagnetic calorimeters, comprising up to 4 thousand photomultipliers. High voltage variation is performed by a high-speed potentiometer which is rotated by a microengine. Block-diagrams of computer control electronics are presented. The high-voltage control system has been used for five years in the IHEP and CERN accelerator experiments. The operation experience has shown that it is quite simple and convenient in operation. In case of about 6 thousand controlled channels in both experiments no potentiometer and microengines failures were observed

  10. A Study of Economical Incentives for Voltage Profile Control Method in Future Distribution Network

    Science.gov (United States)

    Tsuji, Takao; Sato, Noriyuki; Hashiguchi, Takuhei; Goda, Tadahiro; Tange, Seiji; Nomura, Toshio

    In a future distribution network, it is difficult to maintain system voltage because a large number of distributed generators are introduced to the system. The authors have proposed “voltage profile control method” using power factor control of distributed generators in the previous work. However, the economical disbenefit is caused by the active power decrease when the power factor is controlled in order to increase the reactive power. Therefore, proper incentives must be given to the customers that corporate to the voltage profile control method. Thus, in this paper, we develop a new rules which can decide the economical incentives to the customers. The method is tested in one feeder distribution network model and its effectiveness is shown.

  11. [Investigation of radiation dose for lower tube voltage CT using automatic exposure control].

    Science.gov (United States)

    Takata, Mitsuo; Matsubara, Kousuke; Koshida, Kichirou; Tarohda, Tohru

    2015-04-01

    The purpose of our study was to investigate radiation dose for lower tube voltage CT using automatic exposure control (AEC). An acrylic body phantom was used, and volume CT dose indices (CTDIvol) for tube voltages of 80, 100, 120, and 135 kV were investigated with combination of AEC. Average absorbed dose in the abdomen for 100 and 120 kV were also measured using thermoluminescence dosimeters. In addition, we examined noise characteristics under the same absorbed doses. As a result, the exposure dose was not decreased even when the tube voltage was lowered, and the organ absorbed dose value became approximately 30% high. And the noise was increased under the radiographic condition to be an equal absorbed dose. Therefore, radiation dose increases when AEC is used for lower tube voltage CT under the same standard deviation (SD) setting with 120 kV, and the optimization of SD setting is crucial.

  12. Effect of strain on voltage-controlled magnetism in BiFeO₃-based heterostructures.

    Science.gov (United States)

    Wang, J J; Hu, J M; Yang, T N; Feng, M; Zhang, J X; Chen, L Q; Nan, C W

    2014-04-01

    Voltage-modulated magnetism in magnetic/BiFeO3 heterostructures can be driven by a combination of the intrinsic ferroelectric-antiferromagnetic coupling in BiFeO3 and the antiferromagnetic-ferromagnetic exchange interaction across the heterointerface. However, ferroelectric BiFeO3 film is also ferroelastic, thus it is possible to generate voltage-induced strain in BiFeO3 that could be applied onto the magnetic layer across the heterointerface and modulate magnetism through magnetoelastic coupling. Here, we investigated, using phase-field simulations, the role of strain in voltage-controlled magnetism for these BiFeO3-based heterostructures. It is predicted, under certain condition, coexistence of strain and exchange interaction will result in a pure voltage-driven 180° magnetization reversal in BiFeO3-based heterostructures.

  13. Effect of strain on voltage-controlled magnetism in BiFeO3-based heterostructures

    Science.gov (United States)

    Wang, J. J.; Hu, J. M.; Yang, T. N.; Feng, M.; Zhang, J. X.; Chen, L. Q.; Nan, C. W.

    2014-01-01

    Voltage-modulated magnetism in magnetic/BiFeO3 heterostructures can be driven by a combination of the intrinsic ferroelectric-antiferromagnetic coupling in BiFeO3 and the antiferromagnetic-ferromagnetic exchange interaction across the heterointerface. However, ferroelectric BiFeO3 film is also ferroelastic, thus it is possible to generate voltage-induced strain in BiFeO3 that could be applied onto the magnetic layer across the heterointerface and modulate magnetism through magnetoelastic coupling. Here, we investigated, using phase-field simulations, the role of strain in voltage-controlled magnetism for these BiFeO3-based heterostructures. It is predicted, under certain condition, coexistence of strain and exchange interaction will result in a pure voltage-driven 180° magnetization reversal in BiFeO3-based heterostructures. PMID:24686503

  14. ICT Based HIL Validation of Voltage Control Coordination in Smart Grids Scenarios

    DEFF Research Database (Denmark)

    Shahid, Kamal; Petersen, Lennart; Olsen, Rasmus Løvenstein

    2018-01-01

    as the associated data traffic patterns obtained from a real network. Based on the sets of recordings, guidelines and recommendations for practical implementation of the developed control algorithms for targeted ancillary service are made. This provides a deep insight for stakeholders i.e. wind turbines and PV....... However, here, the results are validated through a real-time Hardware-In-The-Loop framework using an exemplary benchmark grid area in Denmark as a base case that includes flexible renewable power plants providing voltage control functionality. The provision of voltage control support from ReGen plants...

  15. Modeling and Control of a DFIG-Based Wind Turbine During a Grid Voltage Drop

    Directory of Open Access Journals (Sweden)

    M. Shahabi

    2011-10-01

    Full Text Available Doubly-fed induction generators (DFIG are widely used in wind energy generation systems. During a grid voltage drop, performance is degraded with rotor over current deteriorating the fault-ride through (FRT capability of the DFIG wind-energy generation system. In this paper, a complete mathematical DFIG model is proposed. The rotor is considered fed by a voltage source converter whereas the stator is connected to the grid directly. Output power and electromagnetic torque are controlled using field-oriented control (FOC. Simulation results show the efficiency of the controller in exploiting the maximum power of wind.

  16. Multi-Stage Optimization-Based Automatic Voltage Control Systems Considering Wind Power Forecasting Errors

    DEFF Research Database (Denmark)

    Qin, Nan; Bak, Claus Leth; Abildgaard, Hans

    2017-01-01

    This paper proposes an automatic voltage control (AVC) system for power systems with limited continuous voltage control capability. The objective is to minimize the operational cost over a period, which consists of the power loss in the grid, the shunt switching cost, the transformer tap change...... electricity control center, where study cases based on the western Danish power system demonstrate the superiority of the proposed AVC system in term of the cost minimization. Monte Carlo simulations are carried out to verify the proposed method on the robustness improvements....

  17. Control of Power and Voltage of Solar Grid Connected

    OpenAIRE

    Allah, Boucetta Abd; Djamel, Labed

    2016-01-01

    Renewable energy is high on International agendas. Currently, grid-connected photovoltaic systems are a popular technology to convert solar energy into electricity. Control of power injected into the grid, maximum power point, high efficiency, and low total harmonic distortion of the currents injected into the grid are the requirements for inverter connection into the grid. Consequently, the performance of the inverters connected to the grid depends largely on the control strategy applied. In...

  18. Integration of dispenser-printed ultra-low-voltage thermoelectric and energy storage devices

    International Nuclear Information System (INIS)

    Wang, Z; Chen, A; Winslow, R; Madan, D; Nill, M; Wright, P K; Juang, R C; Evans, J W

    2012-01-01

    This paper reports on an integrated energy harvesting prototype that consists of dispenser-printed thermoelectric energy harvesting and electrochemical energy storage devices. Parallel-connected thermoelectric devices with low internal resistances were designed, fabricated and characterized. The use of a commercially available dc-to-dc converter was explored to step-up a 27.1 mV input voltage from a printed thermoelectric device to a regulated 2.34 V output at a maximum of 34% conversion efficiency. The regulated power succeeds in charging dispenser-printed, zinc-based micro-batteries with charging efficiencies of up to 67%. The prototype presented in this work demonstrates the feasibility of deploying a printable, cost-effective and perpetual power solution for practical wireless sensor network applications. (paper)

  19. A SQUID gradiometer module with wire-wound pickup antenna and integrated voltage feedback circuit

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Guofeng [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); Peter Gruenberg Institute (PGI-8), Forschungszentrum Juelich (FZJ), D-52425 Juelich (Germany); Joint Research Laboratory on Superconductivity and Bioelectronics, Collaboration between CAS-Shanghai and FZJ, Shanghai 200050 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Yi, E-mail: y.zhang@fz-juelich.de [Peter Gruenberg Institute (PGI-8), Forschungszentrum Juelich (FZJ), D-52425 Juelich (Germany); Joint Research Laboratory on Superconductivity and Bioelectronics, Collaboration between CAS-Shanghai and FZJ, Shanghai 200050 (China); Zhang Shulin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); Joint Research Laboratory on Superconductivity and Bioelectronics, Collaboration between CAS-Shanghai and FZJ, Shanghai 200050 (China); Krause, Hans-Joachim [Peter Gruenberg Institute (PGI-8), Forschungszentrum Juelich (FZJ), D-52425 Juelich (Germany); Joint Research Laboratory on Superconductivity and Bioelectronics, Collaboration between CAS-Shanghai and FZJ, Shanghai 200050 (China); and others

    2012-10-15

    The performance of the direct readout schemes for dc SQUID, Additional Positive Feedback (APF), noise cancellation (NC) and SQUID bootstrap circuit (SBC), have been studied in conjunction with planar SQUID magnetometers. In this paper, we examine the NC technique applied to a niobium SQUID gradiometer module with an Nb wire-wound antenna connecting to a dual-loop SQUID chip with an integrated voltage feedback circuit for suppression of the preamplifier noise contribution. The sensitivity of the SQUID gradiometer module is measured to be about 1 fT/(cm {radical}Hz) in the white noise range in a magnetically shielded room. Using such gradiometer, both MCG and MEG signals are recorded.

  20. Negative-feedback control system of the high voltage power supply for ECRH

    International Nuclear Information System (INIS)

    Ding Tonghai; Liu Baohua; Jiang Shufang

    2001-01-01

    A kind of high accuracy negative high voltage power supply (HVPS) was introduced. The serial feedback was regulated according to the character of the high power tetrode and a new kind of integrator with preset value, which solved the key technological problem of the HVPS that the ECRH system required a voltage of -80 kV, a pulse width of 10 - 100 ms and a precision of 99.7%. The result using a PSPICE code simulation has shown that the method is practical

  1. Modeling of the CIGRE Low Voltage Test Distribution Network and the Development of Appropriate Controllers

    DEFF Research Database (Denmark)

    Mustafa, Ghullam; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    The fluctuating nature of some of the Distributed Generation (DG) sources can cause power quality related problems like power frequency oscillations, voltage fluctuations etc. In future, the DG penetration is expected to increase and hence this requires some control actions to deal with the power...... controller. The control system is tested in the distribution test network set up by CIGRE. The new approach of the PV controller is done in such a way that it can control AC and DC voltage of the PV converter during dynamic conditions. The battery controller is also developed in such a way that it can...... quality issues. The main focus of this paper is on development of controllers for a distribution system with different DG’s and especially development of a Photovoltaic (PV) controller using a Static Compensator (STATCOM) controller and on modeling of a Battery Storage System (BSS) also based on a STATCOM...

  2. Improved Power Control Using Optimal Adjustable Coefficients for Three-Phase Photovoltaic Inverter under Unbalanced Grid Voltage

    Science.gov (United States)

    Wang, Qianggang; Zhou, Niancheng; Lou, Xiaoxuan; Chen, Xu

    2014-01-01

    Unbalanced grid faults will lead to several drawbacks in the output power quality of photovoltaic generation (PV) converters, such as power fluctuation, current amplitude swell, and a large quantity of harmonics. The aim of this paper is to propose a flexible AC current generation method by selecting coefficients to overcome these problems in an optimal way. Three coefficients are brought in to tune the output current reference within the required limits of the power quality (the current harmonic distortion, the AC current peak, the power fluctuation, and the DC voltage fluctuation). Through the optimization algorithm, the coefficients can be determined aiming to generate the minimum integrated amplitudes of the active and reactive power references with the constraints of the inverter current and DC voltage fluctuation. Dead-beat controller is utilized to track the optimal current reference in a short period. The method has been verified in PSCAD/EMTDC software. PMID:25243215

  3. Improved power control using optimal adjustable coefficients for three-phase photovoltaic inverter under unbalanced grid voltage.

    Science.gov (United States)

    Wang, Qianggang; Zhou, Niancheng; Lou, Xiaoxuan; Chen, Xu

    2014-01-01

    Unbalanced grid faults will lead to several drawbacks in the output power quality of photovoltaic generation (PV) converters, such as power fluctuation, current amplitude swell, and a large quantity of harmonics. The aim of this paper is to propose a flexible AC current generation method by selecting coefficients to overcome these problems in an optimal way. Three coefficients are brought in to tune the output current reference within the required limits of the power quality (the current harmonic distortion, the AC current peak, the power fluctuation, and the DC voltage fluctuation). Through the optimization algorithm, the coefficients can be determined aiming to generate the minimum integrated amplitudes of the active and reactive power references with the constraints of the inverter current and DC voltage fluctuation. Dead-beat controller is utilized to track the optimal current reference in a short period. The method has been verified in PSCAD/EMTDC software.

  4. Voltage control of a variable speed wind turbine connected to an isolated load: Experimental study

    International Nuclear Information System (INIS)

    Masmoudi, Abdelkarim; Krichen, Lotfi; Ouali, Abderrazak

    2012-01-01

    Highlights: ► We develop an experimental test bench of a wind energy conversion system. ► A DC motor is emulating a variable speed wind turbine using a DS1104 card. ► The production unit is supplying a three-phase load. ► A voltage control is established in order to regulate the DC bus voltage and the line-to-line voltages. - Abstract: This study is interested in the development of an experimental test bench of an autonomous wind energy conversion system (WECS) based on a permanent magnet synchronous generator (PMSG). After the description of the test bench, the elements constituting the WECS are presented. Then, a real time model implemented under a digital signal processor (DSP) system is established. The first objective of this work is to validate the functionality of the test bench leading to experiment some principles developed in theory. The second objective is to control the load connection voltages and the DC bus voltage. For the first control, two resonant controllers are used and for the second one, a dump load, connected to the DC bus, offers the possibility to maintain a balance between production and consumption in spite of wind fluctuations and load variations. The experimental results show the effectiveness of the test bench trying out in real time the behavior of a WECS supplying an isolated load.

  5. Active and reactive power control schemes for distributed generation systems under voltage dips

    NARCIS (Netherlands)

    Wang, F.; Duarte, J.L.; Hendrix, M.A.M.

    2009-01-01

    During voltage dips continuous power delivery from distributed generation systems to the grid is desirable for the purpose of grid support. In order to facilitate the control of distributed generation systems adapted to the expected change of grid requirements, generalized power control schemes

  6. A decentralized scalable approach to voltage control of DC islanded microgrids

    DEFF Research Database (Denmark)

    Tucci, Michele; Riverso, Stefano; Quintero, Juan Carlos Vasquez

    2016-01-01

    We propose a new decentralized control scheme for DC Islanded microGrids (ImGs) composed by several Distributed Generation Units (DGUs) with a general interconnection topology. Each local controller regulates to a reference value the voltage of the point of common coupling of the corresponding DGU...

  7. Grid to Standalone Transition Motion-Sensorless Dual-Inverter Control of PMSG With Asymmetrical Grid Voltage Sags and Harmonics Filtering

    DEFF Research Database (Denmark)

    Fatu, M.; Blaabjerg, Frede; Boldea, I.

    2014-01-01

    This paper describes a variable-speed motion-sensorless control system for permanent-magnet synchronous generator (PMSG) connected to grid via back-to-back inverters for wind energy generation. The grid-side inverter control system employs proportional-integral (PI) current controllers with cross...... and automatic seamless transfer method from grid connected to stand alone and vice versa. In stand-alone mode, a voltage control scheme with selective harmonic compensation is employed. The PMSG motion-sensorless control system uses an active power controller and a PLL-based observer to estimate the rotor...... and voltage harmonics compensation. While some of the aforementioned issues have been treated rather individually in previous conference publications of the authors, the present paper integrates them into a comprehensive control system of PMSG....

  8. performance characteristics of an armature voltage controlled dc motor

    African Journals Online (AJOL)

    Dr Obe

    . INTRODUCTION. The good control properties of the d.c. motor have made possible its initial large scale application in industry [1]. In spite of the present superiority of the solid state squirrel cage induction motor drive, especially at supply ...

  9. performance characteristics of an armature voltage controlled dc motor

    African Journals Online (AJOL)

    Dr Obe

    obtained by digital computer analysis. The results show that closed loop operation, with appropriate control ... Using digital computer analysis, the driver characteristics of a test motor is investigated. In the closed loop ... system circuit failure especially with respect to the semiconductor devices that may be used in varying ...

  10. INTEGRATED WEED CONTROL IN MAIZE.

    Science.gov (United States)

    Latré, J; Dewitte, K; Derycke, V; De Roo, B; Haesaert, G

    2015-01-01

    Integrated pest management has been implemented as a general practice by EU legislation. As weed control actually is the most important crop protection measure in maize for Western Europe, the new legislation will have its impact. The question is of course which systems can be successfully implemented in practice with respect to labour efficiency and economical parameters. During 3 successive growing seasons (2007, 2008, 2009) weed control in maize was evaluated, the main focus was put on different techniques of integrated weed control and was compared with chemical weed control. Additionally, during 4 successive growing seasons (2011, 2012, 2013 and 2014) two objects based on integrated weed control and two objects based on mechanical weed control were compared to about twenty different objects of conventional chemical weed control. One of the objects based on mechanical weed control consisted of treatment with the flex-tine harrow before and after emergence in combination with chemical weed control at a reduced rate in 3-4 leave stage. The second one consisted of broadcast mechanical treatments before and after emergence followed by a final in-row application of herbicides and an inter-row cultivation at 6-7(8) leave stage. All trials were conducted on the Experimental farm of Bottelare HoGent-UGent on a sandy loam soil. Maize was growing in 1/3 crop rotation. The effect on weed growth as well as the economic impact of the different applications was evaluated. Combining chemical and mechanical weed control is a possible option in conventional farming but the disadvantages must be taken into account. A better planned weed control based on the real present weed-population in combination with a carefully thought-out choice of herbicides should also be considered as an IPM--approach.

  11. Voltage control on TEG-inverter system with pulse width modulation

    International Nuclear Information System (INIS)

    Kimura, N.; Kinoshita, H.; Matsuura, K.

    1984-01-01

    An ocean thermoelectric generating system can be expected to supply cheap electric power in future. And it can be used as base power supply or isolated power source in developing areas. The authors propose to apply forced-commutation inverter to thermoelectric energy conversion system and construct an electric power station which can be operated without any other synchronous generator (S-G) and can control ac system as stable as S-G. This paper shows that inverters can control voltage constant, though within a range of 10% load change, by using pulse width modulation (PWM). It also describes the design of the voltage control system covering from 50% to 100% load with combination of PWM and output voltage tap changing of TEG

  12. Control of magnetic vortex polarity by the phase difference between voltage signals

    Science.gov (United States)

    Cui, Huanqing; Cai, Li; Yang, Xiaokuo; Wang, Sen; Zhang, Mingliang; Li, Cheng; Feng, Chaowen

    2018-02-01

    Using micromagnetic simulations, we investigate the voltage control of magnetic vortex polarity based on a designed multiferroic heterostructure that contains two separate piezoelectric films beneath a magnetostrictive nanodisk. The results show that controllable switching of vortex polarity can be achieved by proper modulation of the phase difference between two sinusoidal voltage pulses V1 and V2, which are applied to the two separate piezoelectric films, respectively. The frequencies of V1 and V2 are set at the gyrotropic eigenfrequency fG of the nanodisk, and the vortex polarity switching is completed via the nucleation-annihilation process of the vortex-antivortex pair. Our findings provide an additional effective means for ultralow power switching of the magnetic vortex, which lays the foundation for voltage-controlled vortex random access memory.

  13. Electrical engineering unit for the reactive power control of the load bus at the voltage instability

    Science.gov (United States)

    Kotenev, A. V.; Kotenev, V. I.; Kochetkov, V. V.; Elkin, D. A.

    2018-01-01

    For the purpose of reactive power control error reduction and decrease of the voltage sags in the electric power system caused by the asynchronous motors started the mathematical model of the load bus was developed. The model was built up of the sub-models of the following elements: a transformer, a transmission line, a synchronous and an asynchronous loads and a capacitor bank load, and represents the automatic reactive power control system taking into account electromagnetic processes of the asynchronous motors started and reactive power changing of the electric power system elements caused by the voltage fluctuation. The active power/time and reactive power/time characteristics based on the recommended procedure of the equivalent electric circuit parameters calculation were obtained. The derived automatic reactive power control system was shown to eliminate the voltage sags in the electric power system caused by the asynchronous motors started.

  14. Voltage-controlled colour-tunable microcavity OLEDs with enhanced colour purity

    International Nuclear Information System (INIS)

    Choy, Wallace C H; Niu, J H; Li, W L; Chui, P C

    2008-01-01

    The emission spectrum of single-unit voltage-controlled colour-tunable organic light emitting devices (OLEDs) has been theoretically and experimentally studied. Our results show that by introducing the microcavity structure, the colour purity of not only the destination colour but also the colour-tunable route can be enhanced, while colour purity is still an issue in typical single-unit voltage-controlled colour-tunable OLEDs. With the consideration of the periodical cycling of resonant wavelength and absorption loss of the metal electrodes, the appropriate change in the thickness of the microcavity structure has been utilized to achieve voltage-controlled red-to-green and red-to-blue colour-tunable OLEDs without adding dyes or other organic materials to the OLEDs

  15. A sensorless control method for capacitor voltage balance and circulating current suppression of modular multilevel converter

    DEFF Research Database (Denmark)

    Liu, Hui; Ma, Ke; Loh, Poh Chiang

    2015-01-01

    There are several problems in the Modular Multilevel Converter (MMC), such as the appearance of circulating current, capacitor voltage unbalance and the requirement for a high number of sensors. All these problems will decrease the reliability and raise the cost/uncertainty of using MMC solutions....... As a result, a sensorless control method is proposed in this paper, which targets to improve the performances of MMC in respect to the above mentioned disadvantages: To decrease the cost and simplify the physical implementation, a state observer is proposed and designed to estimate both the capacitor voltages...... and the circulating currents in order to replace the high numbers of sensors. Furthermore, a control method combining the circulating current suppression and the capacitor voltage balancing is conducted based on the proposed state observer. It is concluded that the proposed state observer and control method can...

  16. Constant voltage and constant current control implementation for electric vehicles (evs) wireless charger

    Science.gov (United States)

    Tampubolon, Marojahan; Pamungkas, Laskar; Hsieh, Yao Ching; Chiu, Huang Jen

    2018-04-01

    This paper presents the implementation of Constant Voltage (CV) and Constant Current (CC) control for a wireless charger system. A battery charging system needs these control modes to ensure the safety of the battery and the effectiveness of the charging system. Here, the wireless charger system does not employ any post-regulator stage to control the output voltage and output current of the charger. But, it uses a variable frequency control incorporated with a conventional PI control. As a result, the size and the weight of the system are reduced. This paper discusses the brief review of the SS-WPT, control strategy and implementation of the CV and CC control. Experimental hardware with 2kW output power has been performed and tested. The results show that the proposed CV and CC control method works well with the system.

  17. A dual-mode driver IC with monolithic negative drive-voltage capability and digital current-mode controller for depletion-mode GaN HEMT

    NARCIS (Netherlands)

    Wen, Y.; Rose, M.; Fernandes, R.; van Otten, R.; Bergveld, H.J.; Trescases, O.

    2017-01-01

    This work presents a driver and controller integrated circuit (IC) for depletion-mode gallium nitride (GaN) high-electron-mobility transistors (HEMTs). The dual-mode driver can be configured for cascode-drive (CD) or HEMT-drive (HD) mode. In the CD mode, a cascode low-voltage DMOS is driven to

  18. Modeling, Control and Protection of Low-Voltage DC Microgrids

    OpenAIRE

    Salomonsson, Daniel

    2008-01-01

    Current trends in electric power consumption indicate an increasing use of dc in end-user equipment, such as computers and other electronic appliances used in households and offices. With a dc power system, ac/dc conversion within these loads can be avoided, and losses reduced. AC/DC conversion is instead centralized, and by using efficient, fully controllable power-electronic interfaces, high power quality for both ac and dc systems during steady state and ac grid disturbances can be obtaine...

  19. Nonlinear control of voltage source converters in AC-DC power system.

    Science.gov (United States)

    Dash, P K; Nayak, N

    2014-07-01

    This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Neural networks for combined control of capacitor banks and voltage regulators in distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Z.; Rizy, D.T.

    1996-02-01

    A neural network for controlling shunt capacitor banks and feeder voltage regulators in electric distribution systems is presented. The objective of the neural controller is to minimize total I{sup 2}R losses and maintain all bus voltages within standard limits. The performance of the neural network for different input selections and training data is discussed and compared. Two different input selections are tried, one using the previous control states of the capacitors and regulator along with measured line flows and voltage which is equivalent to having feedback and the other with measured line flows and voltage without previous control settings. The results indicate that the neural net controller with feedback can outperform the one without. Also, proper selection of a training data set that adequately covers the operating space of the distribution system is important for achieving satisfactory performance with the neural controller. The neural controller is tested on a radially configured distribution system with 30 buses, 5 switchable capacitor banks an d one nine tap line regulator to demonstrate the performance characteristics associated with these principles. Monte Carlo simulations show that a carefully designed and relatively compact neural network with a small but carefully developed training set can perform quite well under slight and extreme variation of loading conditions.

  1. Control Strategy of Three-Phase Photovoltaic Inverter under Low-Voltage Ride-Through Condition

    Directory of Open Access Journals (Sweden)

    Xianbo Wang

    2015-01-01

    Full Text Available The new energy promoting community has recently witnessed a surge of developments in photovoltaic power generation technologies. To fulfill the grid code requirement of photovoltaic inverter under low-voltage ride-through (LVRT condition, by utilizing the asymmetry feature of grid voltage, this paper aims to control both restraining negative sequence current and reactive power fluctuation on grid side to maintain balanced output of inverter. Two mathematical inverter models of grid-connected inverter containing LCL grid-side filter under both symmetrical and asymmetric grid are proposed. PR controller method is put forward based on inverter model under asymmetric grid. To ensure the stable operation of the inverter, grid voltage feedforward method is introduced to restrain current shock at the moment of voltage drop. Stable grid-connected operation and LVRT ability at grid drop have been achieved via a combination of rapid positive and negative sequence component extraction of accurate grid voltage synchronizing signals. Simulation and experimental results have verified the superior effectiveness of our proposed control strategy.

  2. LED Current Balance Using a Variable Voltage Regulator with Low Dropout vDS Control

    Directory of Open Access Journals (Sweden)

    Hung-I Hsieh

    2017-02-01

    Full Text Available A cost-effective light-emitting diode (LED current balance strategy using a variable voltage regulator (VVR with low dropout vDS control is proposed. This can regulate the multiple metal-oxide-semiconductor field-effect transistors (MOSFETs of the linear current regulators (LCR, maintaining low dropout vDS on the flat vGS-characteristic curves and making all drain currents almost the same. Simple group LCRs respectively loaded with a string LED are employed to implement the theme. The voltage VVdc from a VVR is synthesized by a string LED voltage NvD, source voltage vR, and a specified low dropout vDS = VQ. The VVdc updates instantly, through the control loop of the master LCR, which means that all slave MOSFETs have almost the same biases on their flat vGS-characteristic curves. This leads to all of the string LED currents being equal to each other, producing an almost even luminance. An experimental setup with microchip control is built to verify the estimations. Experimental results show that the luminance of all of the string LEDs are almost equal to one another, with a maximum deviation below 1% during a wide dimming range, while keeping all vDS of the MOSFETs at a low dropout voltage, as expected.

  3. A 1.8 GHz Voltage-Controlled Oscillator using CMOS Technology

    Science.gov (United States)

    Maisurah, M. H. Siti; Emran, F. Nazif; Norman Fadhil, Idham M.; Rahim, A. I. Abdul; Razman, Y. Mohamed

    2011-05-01

    A Voltage-Controlled Oscillator (VCO) for 1.8 GHz application has been designed using a combination of both 0.13 μm and 0.35 μm CMOS technology. The VCO has a large tuning range, which is from 1.39 GHz to 1.91 GHz, using a control voltage from 0 to 3V. The VCO exhibits a low phase-noise at 1.8 GHz which is around -119.8dBc/Hz at a frequency offset of 1 MHz.

  4. Enhanced Decoupled Double Synchronous Reference Frame Current Controller for Unbalanced Grid-Voltage Conditions

    DEFF Research Database (Denmark)

    Reyes, M.; Rodriguez, Pedro; Vazquez, S.

    2012-01-01

    . In these codes, the injection of positive- and negative-sequence current components becomes necessary for fulfilling, among others, the low-voltage ride-through requirements during balanced and unbalanced grid faults. However, the performance of classical dq current controllers, applied to power converters......, under unbalanced grid-voltage conditions is highly deficient, due to the unavoidable appearance of current oscillations. This paper analyzes the performance of the double synchronous reference frame controller and improves its structure by adding a decoupling network for estimating and compensating...

  5. Guest Editorial: Flexible Operation and Control for Medium Voltage Direct-Current (MVDC) Grid

    DEFF Research Database (Denmark)

    Li, Yong; Guerrero, Josep M.; Siano, Pierluigi

    2017-01-01

    We appreciate very much the support from the IET Power Electronics editorial board for this Special Issue on ‘Flexible Operation and Control for Medium Voltage Direct-Current (MVDC) Grid’. In this final version for publication, 15 papers have been selected for this Special Issue. Three papers...... relate to the topology of MVDC converter, four papers relate to the control of MVDC converter, four papers relate to the introduction of application fields of MVDC grid, and four papers relate to the semiconductor power device and drives towards the application in the medium- and high-voltage DC grid....

  6. Modulation linearization of a frequency-modulated voltage controlled oscillator, part 3

    Science.gov (United States)

    Honnell, M. A.

    1975-01-01

    An analysis is presented for the voltage versus frequency characteristics of a varactor modulated VHF voltage controlled oscillator in which the frequency deviation is linearized by using the nonlinear characteristics of a field effect transistor as a signal amplifier. The equations developed are used to calculate the oscillator output frequency in terms of pertinent circuit parameters. It is shown that the nonlinearity exponent of the FET has a pronounced influence on frequency deviation linearity, whereas the junction exponent of the varactor controls total frequency deviation for a given input signal. A design example for a 250 MHz frequency modulated oscillator is presented.

  7. Internal voltage control of hydrogen-oxygen fuel cells: Feasibility study

    Science.gov (United States)

    Prokopius, P. R.

    1975-01-01

    An experimental study was conducted to assess the feasibility of internal voltage regulation of fuel cell systems. Two methods were tested. In one, reactant partial pressure was used as the voltage control parameter and in the other reactant total pressure was used for control. Both techniques were breadboarded and tested on a single alkaline-electrolyte fuel cell. Both methods were found to be possible forms of regulation, however, of the two the total pressure technique would be more efficient, simpler to apply and would provide better transient characteristics.

  8. Low voltage control for the liquid argon hadronic end-cap calorimeter of ATLAS

    CERN Document Server

    Brettel, H; Habring, J; Oberlack, H; Schacht, P

    2002-01-01

    At the ATLAS detector a SCADA system surveys and controls the sub- detectors. The link is realized by PVSS2 software and a CanBus hardware system. The low voltages for the Hadronic Endcaps of the liquid argon calorimeter are produced by DC/DC-converters in the power boxes and split into 320 channels corresponding to the pre- amplifier and summing boards in the cryostat. Six units of a prototype distribution board are currently under test. Each of it contains 2 ELMBs as CanBus interface, a FPGA of type QL3012 for digital control and 30 low voltage regulators for the individual fine adjustments of the outputs.

  9. New MMC capacitor voltage balancing using sorting-less strategy in nearest level control

    DEFF Research Database (Denmark)

    Ricco, Mattia; Máthé, Lászlo; Teodorescu, Remus

    2016-01-01

    This paper proposes a new strategy for balancing the Capacitor Voltages (CVs) for Modular Multilevel Converters (MMCs). The balancing is one of the main challenges in MMC applications and it is usually solved by adopting a global arm control approach. For performing such an approach, a sorted list...... of the SubModules (SMs) according to their capacitor voltages is required. A common way to accomplish this task is to implement a sorting algorithm in the same controller used for the modulation technique. However, the execution time and the computational efforts of these kinds of algorithms increase very...

  10. ICT Based HIL Validation of Voltage Control Coordination in Smart Grids Scenarios

    Directory of Open Access Journals (Sweden)

    Kamal Shahid

    2018-05-01

    Full Text Available This paper aims to validate the capability of renewable generation (ReGen plants to provide online voltage control coordination ancillary service to the system operators in smart grids. Simulation studies about online coordination concepts from ReGen plants have already been identified in previous publications. However, here, the results are validated through a real-time Hardware-In-the-Loop framework using an exemplary benchmark grid area in Denmark as a base case that includes flexible renewable power plants providing voltage control functionality. The provision of voltage control support from ReGen plants is verified on a large-scale power system against the baseline scenario, considering the hierarchical industrial controller platforms used nowadays in power plants. Moreover, the verification of online voltage control support is carried out by taking into account a communication network as well as the associated data traffic patterns obtained from a real network. Based on the sets of recordings, guidelines and recommendations for practical implementation of the developed control algorithms for targeted ancillary service are made. This provides a deep insight for stakeholders, i.e., wind turbine and photo-voltaic system manufacturers and system operators, regarding the existing boundaries for current technologies and requirements for accommodating the new ancillary services in industrial application.

  11. Application of Newton's optimal power flow in voltage/reactive power control

    Energy Technology Data Exchange (ETDEWEB)

    Bjelogrlic, M.; Babic, B.S. (Electric Power Board of Serbia, Belgrade (YU)); Calovic, M.S. (Dept. of Electrical Engineering, University of Belgrade, Belgrade (YU)); Ristanovic, P. (Institute Nikola Tesla, Belgrade (YU))

    1990-11-01

    This paper considers an application of Newton's optimal power flow to the solution of the secondary voltage/reactive power control in transmission networks. An efficient computer program based on the latest achievements in the sparse matrix/vector techniques has been developed for this purpose. It is characterized by good robustness, accuracy and speed. A combined objective function appropriate for various system load levels with suitable constraints, for treatment of the power system security and economy is also proposed. For the real-time voltage/reactive power control, a suboptimal power flow procedure has been derived by using the reduced set of control variables. This procedure is based on the sensitivity theory applied to the determination of zones for the secondary voltage/reactive power control and corresponding reduced set of regulating sources, whose reactive outputs represent control variables in the optimal power flow program. As a result, the optimal power flow program output becomes a schedule to be used by operators in the process of the real-time voltage/reactive power control in both normal and emergency operating states.

  12. Voltage-Controlled Quantum Dynamics and Generation Entanglement between Two Separated Quantum-Dot Molecules Embedded in Photonic Crystal Cavities

    International Nuclear Information System (INIS)

    Cheng Mu-Tian; Song Yan-Yan; Ma Xiao-San; Wang Xia

    2014-01-01

    Voltage-controlled quantum dynamics of two quantum-dot molecules (QDMs) embedded in two separated photonic crystal cavities are theoretically investigated. We show numerically that generation of entangled states and population transfer between the two QDMs can be realized with the same coupling parameters. The effects of parameters deviation and dissipations on generation entangled states and populations transfer are also discussed. The results may be used for realization of new-type of solid state quantum devices and integrated electro-optical devices

  13. Integrated control of Rapeseed pests

    International Nuclear Information System (INIS)

    Khattak, S.U.; Hamed, M.

    1990-06-01

    Rapeseed crop is attacked by different insects amongst which cabbage butterfly in Pakistan. Integrated control was conducted and results are mentioned in this report. The mortality in the remaining insecticides varied from 55-83% which was significantly higher than control. The higher dosages of gamma radiation ranged between 60-225 krad and results revealed that the mortality response increased with the post-irradiation time. Mortality was also significantly higher at 80-120 krad as compared to control. These results concluded that mortality was dose dependent. (A.B.)

  14. Design and Evaluation of Autonomous Hybrid Frequency-Voltage Sensitive Load Controller

    DEFF Research Database (Denmark)

    Douglass, Philip James; Garcia-Valle, Rodrigo; Sossan, Fabrizio

    2013-01-01

    The paper introduces an algorithm for control of autonomous loads without digital communication interfaces to provide both frequency regulation and voltage regulation services. This hybrid controller can be used to enhance frequency sensitive loads to mitigate line overload arising from reduced l...... load diversity. Numerical simulations of the hybrid controller in a representative distribution system show the peak system load was reduced by 12% compared to a purely frequency sensitive load controller.......The paper introduces an algorithm for control of autonomous loads without digital communication interfaces to provide both frequency regulation and voltage regulation services. This hybrid controller can be used to enhance frequency sensitive loads to mitigate line overload arising from reduced...

  15. Performance improvement of a slip energy recovery drive system by a voltage-controlled technique

    Energy Technology Data Exchange (ETDEWEB)

    Tunyasrirut, Satean [Department of Instrumentation Engineering, Faculty of Engineering, Pathumwan Institute of Technology, 833 Rama1 Road, Pathumwan, Bangkok 10330 (Thailand); Kinnares, Vijit [Department of Electrical Engineering, Faculty of Engineering, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Ngamwiwit, Jongkol [Department of Control Engineering, Faculty of Engineering, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand)

    2010-10-15

    This paper introduces the performance improvement of a slip energy recovery drive system for the speed control of a wound rotor induction motor by a voltage-controlled technique. The slip energy occurred in the rotor circuit is transferred back to ac mains supply through a reactor instead of a step up transformer. The objective of the voltage-controlled technique is to increase power factor of the system and to reduce low order harmonics of the input line current. The drive system is designed and implemented using a voltage source inverter in conjunction with a boost chopper for DC link voltage, instead of a conventional drive using a 6 pulse converter or a Scherbius system. The slip power is recovered by the help of a voltage source inverter (VSI) based on a space vector pulse width modulation (SVPWM) technique. In order to keep the speed of the wound rotor induction motor constant over a certain range of operating conditions, the servo state feedback controller designed by a linear quadratic regulator (LQR) is also introduced in this paper. The overall control system is implemented on DSP, DS1104'TMS320F240 controller board. The performance improvement of the proposed system is tested in comparison with the conventional Scherbius system and the modified conventional Scherbius system by a 12 pulse converter in conjunction with a chopper at steady state and at dynamic conditions. A 220 W wound motor is employed for testing. It is found that the motor speed can be controlled to be constant in the operating range of 450-1200 rpm at no load and full load. It is also found that the efficiency of the proposed system is remarkably increased since the harmonics of the input ac line current is reduced while the ac line input power factor is increased. (author)

  16. A Robust Control Scheme for Medium-Voltage-Level DVR Implementation

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Loh, Poh Chiang; Li, Yun Wei

    2007-01-01

    of Hinfin controller weighting function selection, inner current loop tuning, and system disturbance rejection capability is presented. Finally, the designed control scheme is extensively tested on a laboratory 10-kV MV-level DVR system with varying voltage sag (balanced and unbalanced) and loading (linear....../nonlinear load and induction motor load) conditions. It is shown that the proposed control scheme is effective in both balanced and unbalanced sag compensation and load disturbance rejection, as its robustness is explicitly specified....

  17. Autonomous Control of Current and Voltage Controlled DG Interface Inverters for Reactive Power Sharing and Harmonics Compensation in Islanded Microgrids

    DEFF Research Database (Denmark)

    Mousazadeh, Seyyed Yousef; Jalilain, Alireza; Savaghebi, Mehdi

    2018-01-01

    In microgrids, Voltage Source Inverters (VSIs) interfacing Distributed Generation (DG) units can be operated in Voltage or Current Controlled Modes (VCM/CCM). In this paper, a coordinated control of CCM and VCM units for reactive power sharing and voltage harmonics compensation is proposed....... This decentralized control scheme is based on the local measurement of signals. In this way, the need for communication links is removed which results in a simpler and more reliable structure compared to the communication based control structures. To be more exact, the VCM units contribute to harmonics compensation....... Experimental and simulation studies show that the harmonics compensation is achieved by using only local measurements in presence of virtual admittance/impedance schemes of CCM/VCM units. Furthermore, it is demonstrated that the reactive power sharing among the CCM and VCM units is obtained based...

  18. Integration of 100% heat pumps and electric vehicles in the low voltage distribution network: A Danish case story

    DEFF Research Database (Denmark)

    Shao, Nan; You, Shi; Segerberg, Helena

    2013-01-01

    The existing electricity infrastructure may to a great extent limit a high penetration of micro-sized Distributed Energy Rescores (DERs), due to physical bottlenecks, e.g. load capacities of cables and transformers and voltage limitations. In this study, integration impacts of heat pumps (HPs) an...

  19. Voltage-Controlled Reconfigurable Spin-Wave Nanochannels and Logic Devices

    Science.gov (United States)

    Rana, Bivas; Otani, YoshiChika

    2018-01-01

    Propagating spin waves (SWs) promise to be a potential information carrier in future spintronics devices with lower power consumption. Here, we propose reconfigurable nanochannels (NCs) generated by voltage-controlled magnetic anisotropy (VCMA) in an ultrathin ferromagnetic waveguide for SW propagation. Numerical micromagnetic simulations are performed to demonstrate the confinement of magnetostatic forward volumelike spin waves in NCs by VCMA. We demonstrate that the NCs, with a width down to a few tens of a nanometer, can be configured either into a straight or curved structure on an extended SW waveguide. The key advantage is that either a single NC or any combination of a number of NCs can be easily configured by VCMA for simultaneous propagation of SWs either with the same or different wave vectors according to our needs. Furthermore, we demonstrate the logic operation of a voltage-controlled magnonic xnor and universal nand gate and propose a voltage-controlled reconfigurable SW switch for the development of a multiplexer and demultiplexer. We find that the NCs and logic devices can even be functioning in the absence of the external-bias magnetic field. These results are a step towards the development of all-voltage-controlled magnonic devices with an ultralow power consumption.

  20. Control of a battery energy storage system connected to a low voltage grid

    NARCIS (Netherlands)

    van Dun, J.J.C.M.; de Groot, Robert; Morren, Johan; Slootweg, Han

    2015-01-01

    This paper describes the development of a control algorithm for a battery energy storage system, which is connected to a residential low voltage grid. By predicting future load demand and photovoltaic production within the neighbourhood concerned, flattening of the aggregated neighbourhood

  1. Voltage and Frequency Control for Future Power Systems: the ELECTRA IRP Proposal

    DEFF Research Database (Denmark)

    D’hulst, R.; Merino Fernandez, J.; Rikos, E.

    2015-01-01

    In this paper a high level functional architecture for frequency and voltage control for the future (2030+) power system is presented. The proposal suggests a decomposition of the present organization of power system operation into a ”web of cells”. Each cell in this web is managed by a single...

  2. Power System Decomposition for Practical Implementation of Bulk-Grid Voltage Control Methods

    Energy Technology Data Exchange (ETDEWEB)

    Vallem, Mallikarjuna R.; Vyakaranam, Bharat GNVSR; Holzer, Jesse T.; Elizondo, Marcelo A.; Samaan, Nader A.

    2017-10-19

    Power system algorithms such as AC optimal power flow and coordinated volt/var control of the bulk power system are computationally intensive and become difficult to solve in operational time frames. The computational time required to run these algorithms increases exponentially as the size of the power system increases. The solution time for multiple subsystems is less than that for solving the entire system simultaneously, and the local nature of the voltage problem lends itself to such decomposition. This paper describes an algorithm that can be used to perform power system decomposition from the point of view of the voltage control problem. Our approach takes advantage of the dominant localized effect of voltage control and is based on clustering buses according to the electrical distances between them. One of the contributions of the paper is to use multidimensional scaling to compute n-dimensional Euclidean coordinates for each bus based on electrical distance to perform algorithms like K-means clustering. A simple coordinated reactive power control of photovoltaic inverters for voltage regulation is used to demonstrate the effectiveness of the proposed decomposition algorithm and its components. The proposed decomposition method is demonstrated on the IEEE 118-bus system.

  3. Voltage directive drive with claw pole motor and control without rotor position indicator

    Science.gov (United States)

    Stroenisch, Volker Ewald

    Design and testing of a voltage directive drive for synchronous variable speed claw pole motor and control without rotor position indicator is described. Economic analysis of the designed regulation is performed. Computations of stationary and dynamic behavior are given and experimental operational behavior is determined. The motors can be used for electric transportation vehicles, diesel motors, and electric railway engines.

  4. Study on model current predictive control method of PV grid- connected inverters systems with voltage sag

    Science.gov (United States)

    Jin, N.; Yang, F.; Shang, S. Y.; Tao, T.; Liu, J. S.

    2016-08-01

    According to the limitations of the LVRT technology of traditional photovoltaic inverter existed, this paper proposes a low voltage ride through (LVRT) control method based on model current predictive control (MCPC). This method can effectively improve the photovoltaic inverter output characteristics and response speed. The MCPC method of photovoltaic grid-connected inverter designed, the sum of the absolute value of the predictive current and the given current error is adopted as the cost function with the model predictive control method. According to the MCPC, the optimal space voltage vector is selected. Photovoltaic inverter has achieved automatically switches of priority active or reactive power control of two control modes according to the different operating states, which effectively improve the inverter capability of LVRT. The simulation and experimental results proves that the proposed method is correct and effective.

  5. Voltage-controlled spin selection in a magnetic resonant tunneling diode.

    Science.gov (United States)

    Slobodskyy, A; Gould, C; Slobodskyy, T; Becker, C R; Schmidt, G; Molenkamp, L W

    2003-06-20

    We have fabricated all II-VI semiconductor resonant tunneling diodes based on the (Zn,Mn,Be)Se material system, containing dilute magnetic material in the quantum well, and studied their current-voltage characteristics. When subjected to an external magnetic field the resulting spin splitting of the levels in the quantum well leads to a splitting of the transmission resonance into two separate peaks. This is interpreted as evidence of tunneling transport through spin polarized levels, and could be the first step towards a voltage controlled spin filter.

  6. A dual voltage control strategy for single-phase PWM converters with power decoupling function

    DEFF Research Database (Denmark)

    Tang, Yi; Qin, Zian; Blaabjerg, Frede

    2014-01-01

    on a symmetrical half bridge circuit is proposed to decouple the ripple power so that balanced instantaneous power flow is assured between source and load, and the required dc-link capacitance can be dramatically reduced. For proper closed-loop regulation, the small signal modeling of the proposed system...... of voltage control loop because the variation of dc-link voltage should be kept within an acceptable range during load transients. This is particularly important for systems with reduced dc-link capacitance because they are of lower energy capacity and very sensitive to step load changes. Simulation results...

  7. DC-Link Voltage Coordinated-Proportional Control for Cascaded Converter With Zero Steady-State Error and Reduced System Type

    DEFF Research Database (Denmark)

    Tian, Yanjun; Loh, Poh Chiang; Deng, Fujin

    2016-01-01

    Cascaded converter is formed by connecting two subconverters together, sharing a common intermediate dc-link voltage. Regulation of this dc-link voltage is frequently realized with a proportional-integral (PI) controller, whose high gain at dc helps to force a zero steady-state tracking error....... The proposed scheme can be used with either unidirectional or bidirectional power flow, and has been verified by simulation and experimental results presented in this paper........ Such precise tracking is, however, at the expense of increasing the system type, caused by the extra pole at the origin introduced by the PI controller. The overall system may, hence, be tougher to control. To reduce the system type while preserving precise dc-link voltage tracking, this paper proposes...

  8. Radiological controls integrated into design

    Energy Technology Data Exchange (ETDEWEB)

    Kindred, G.W. [Cleveland Electric Illuminating Co., Perry, OH (United States)

    1995-03-01

    Radiological controls are required by law in the design of commercial nuclear power reactor facilities. These controls can be relatively minor or significant, relative to cost. To ensure that radiological controls are designed into a project, the health physicist (radiological engineer) must be involved from the beginning. This is especially true regarding keeping costs down. For every radiological engineer at a nuclear power plant there must be fifty engineers of other disciplines. The radiological engineer cannot be an expert on every discipline of engineering. However, he must be knowledgeable to the degree of how a design will impact the facility from a radiological perspective. This paper will address how to effectively perform radiological analyses with the goal of radiological controls integrated into the design package.

  9. New Requirements of the Voltage/VAR Function for Smart Inverter in Distributed Generation Control

    Directory of Open Access Journals (Sweden)

    Yun-Su Kim

    2016-11-01

    Full Text Available International Electronical Committee (IEC 61850-90-7 is a part of the IEC 61850 series which specifies the advanced functions and object models for power converter based Distributed Energy Resources (DERs. One of its functions, the Voltage/VAR (V/V control function, is used to enhance the stability and the reliability of the voltage in the distribution system. The conventional V/V function acts mainly for flattening the voltage profile as for a basic grid support function. Currently, other objectives such as the minimization of line loss and the operational costs reduction are coming into the spotlight. In order to attain these objectives, the V/V function and hence the DER units shall actively respond to the change of distribution system conditions. In this paper, the modification of V/V function and new requirements are proposed. To derive new requirements of V/V function, loss minimization is applied to a particle swarm optimization (PSO algorithm where the condition of voltage constraint is considered not to deteriorate the voltage stability of the distribution system.

  10. Application of pentacene thin-film transistors with controlled threshold voltages to enhancement/depletion inverters

    Science.gov (United States)

    Takahashi, Hajime; Hanafusa, Yuki; Kimura, Yoshinari; Kitamura, Masatoshi

    2018-03-01

    Oxygen plasma treatment has been carried out to control the threshold voltage in organic thin-film transistors (TFTs) having a SiO2 gate dielectric prepared by rf sputtering. The threshold voltage linearly changed in the range of -3.7 to 3.1 V with the increase in plasma treatment time. Although the amount of change is smaller than that for organic TFTs having thermally grown SiO2, the tendency of the change was similar to that for thermally grown SiO2. To realize different plasma treatment times on the same substrate, a certain region on the SiO2 surface was selected using a shadow mask, and was treated with oxygen plasma. Using the process, organic TFTs with negative threshold voltages and those with positive threshold voltages were fabricated on the same substrate. As a result, enhancement/depletion inverters consisting of the organic TFTs operated at supply voltages of 5 to 15 V.

  11. Control and Protection in Low Voltage Grid with Large Scale Renewable Electricity Generation

    DEFF Research Database (Denmark)

    Mustafa, Ghullam

    of the inverter controllers must be developed to Voltage-Frequency (VF) mode; and the others in either PV or PQ modes. The operation of the MG with several PV inverters and single VF inverter is similar to the operation of MG with a synchronous machine as slack bus. The VF inverter establishes the voltage...... of renewable energy based DGs are reduced CO2 emission, reduced operational cost as almost no fuel is used for their operation and less transmission and distribution losses as these units are normally built near to the load centers. This has also resulted in some operational challenges due to the unpredictable...... nature of such power generation sources. Some of the operational challenges include voltage variations due to power fluctuations coming from the DG units. On the other hand, it has also opened up some opportunities. One of the opportunities is islanding operation of the distribution system with DG unit...

  12. Impact of the Converter Control Strategies on the Drive Train of Wind Turbine during Voltage Dips

    Directory of Open Access Journals (Sweden)

    Fenglin Miao

    2015-10-01

    Full Text Available The impact of converter control strategies on the drive train of wind turbines during voltage dips is investigated in this paper using a full electromechanical model. Aerodynamics and tower vibration are taken into consideration by means of a simulation program, named FAST. Detailed gearbox and electrical subsystems are represented in MATLAB. The dynamic response of electromagnetic torque and its impact on the mechanical variables are the concern in this paper and the response of electrical variables is less discussed. From the mechanical aspects, the effect of rising power recovery speed and unsymmetrical voltage dips are analyzed on the basis of the dynamic response of the high-speed shaft (HSS. A comparison of the impact on the drive train is made for two converter control strategies during small voltage dips. Through the analysis of torque, speed and tower vibration, the results indicate that both power recovery speed and the sudden torque sag have a significant impact on drive trains, and the effects depend on the different control strategies. Moreover, resonance might be excited on the drive train by an unbalanced voltage.

  13. A new emergency control for voltage stability utilizing the time overvoltage capability of large shunt capacitor banks

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Carson W; Vanleuven, Allen L; Nordstrom, Jerry M [Bonneville Power Administration, Portland, OR (United States)

    1994-12-31

    Electric utilities have become increasing concerned with the possibility of voltage instability and voltage collapse. Although many countermeasures are a possible, control based countermeasures are often the most cost effective. Voltage collapse is often only a threat during unusual conditions such as very high load and major outages. For these low probability conditions, low cost emergency controls may be the only cost effective countermeasures. This paper provides details on a prototype installation by the Bonneville Power Administration of a new low cost emergency control for voltage stability named CAPS (CAPacitor bank series group Shorting). (author) 6 refs., 5 figs.

  14. Coordinated control of a DFIG-based wind-power generation system with SGSC under distorted grid voltage conditions

    DEFF Research Database (Denmark)

    Yao, Jun; Li, Qing; Chen, Zhe

    2013-01-01

    in the multiple synchronous rotating reference frames. In order to counteract the adverse effects of the voltage harmonics upon the DFIG, the SGSC generates series compensation control voltages to keep the stator voltage sinusoidal and symmetrical, which allows the use of the conventional vector control strategy......This paper presents a coordinated control method for a doubly-fed induction generator (DFIG)-based wind-power generation system with a series grid-side converter (SGSC) under distorted grid voltage conditions. The detailed mathematical models of the DFIG system with SGSC are developed...

  15. Charging system of ECRH high-voltage power supply and its control system

    International Nuclear Information System (INIS)

    Hu Guofu; Ding Tonghai; Liu Baohua; Jiang Shufang

    2003-01-01

    High-voltage power supply (HVPS) of Electron Cyclotron Resonance Heating (ECRH) for HT-7 and HT-7U is presently being constructed. The high voltage (100 kV) energy of HVPS is stored in the capacitor banks, and they can power one or two gyrotrons. All the operation of the charging system will be done by the control system, where the field signals are interfaced to programmable logic controller (PLC). The use of PLC not only simplifies the control system, but also enhances the reliability. The software written by using configuration software installed in the master computer allows for remote and multiple operator control, and the status and data information is also remotely available

  16. Two distinct voltage-sensing domains control voltage sensitivity and kinetics of current activation in CaV1.1 calcium channels.

    Science.gov (United States)

    Tuluc, Petronel; Benedetti, Bruno; Coste de Bagneaux, Pierre; Grabner, Manfred; Flucher, Bernhard E

    2016-06-01

    Alternative splicing of the skeletal muscle CaV1.1 voltage-gated calcium channel gives rise to two channel variants with very different gating properties. The currents of both channels activate slowly; however, insertion of exon 29 in the adult splice variant CaV1.1a causes an ∼30-mV right shift in the voltage dependence of activation. Existing evidence suggests that the S3-S4 linker in repeat IV (containing exon 29) regulates voltage sensitivity in this voltage-sensing domain (VSD) by modulating interactions between the adjacent transmembrane segments IVS3 and IVS4. However, activation kinetics are thought to be determined by corresponding structures in repeat I. Here, we use patch-clamp analysis of dysgenic (CaV1.1 null) myotubes reconstituted with CaV1.1 mutants and chimeras to identify the specific roles of these regions in regulating channel gating properties. Using site-directed mutagenesis, we demonstrate that the structure and/or hydrophobicity of the IVS3-S4 linker is critical for regulating voltage sensitivity in the IV VSD, but by itself cannot modulate voltage sensitivity in the I VSD. Swapping sequence domains between the I and the IV VSDs reveals that IVS4 plus the IVS3-S4 linker is sufficient to confer CaV1.1a-like voltage dependence to the I VSD and that the IS3-S4 linker plus IS4 is sufficient to transfer CaV1.1e-like voltage dependence to the IV VSD. Any mismatch of transmembrane helices S3 and S4 from the I and IV VSDs causes a right shift of voltage sensitivity, indicating that regulation of voltage sensitivity by the IVS3-S4 linker requires specific interaction of IVS4 with its corresponding IVS3 segment. In contrast, slow current kinetics are perturbed by any heterologous sequences inserted into the I VSD and cannot be transferred by moving VSD I sequences to VSD IV. Thus, CaV1.1 calcium channels are organized in a modular manner, and control of voltage sensitivity and activation kinetics is accomplished by specific molecular mechanisms

  17. Research on Integrated Control of Microgrid Operation Mode

    Science.gov (United States)

    Cheng, ZhiPing; Gao, JinFeng; Li, HangYu

    2018-03-01

    The mode switching control of microgrid is the focus of its system control. According to the characteristics of different control, an integrated control system is put forward according to the detecting voltage and frequency deviation after switching of microgrid operating mode. This control system employs master-slave and peer-to-peer control. Wind turbine and photovoltaic(PV) adopt P/Q control, so the maximum power output can be achieved. The energy storage will work under the droop control if the system is grid-connected. When the system is off-grid, whether to employ droop control or P/f control is determined by system status. The simulation has been done and the system performance can meet the requirement.

  18. Voltage-Based Control of a Smart Transformer in a Microgrid

    DEFF Research Database (Denmark)

    Vandoorn, T. L.; De Kooning, J. D. M.; Meersman, B.

    2013-01-01

    For the islanded operation of a microgrid, several control strategies have been developed. For example, voltage-based droop control can be implemented for the active power control of the generators and the control of the active loads. One of the main advantages of a microgrid is that it can...... of common coupling. This paper addresses this issue by introducing the concept of a smart transformer (ST) at the point of common coupling. This unit controls the active power exchange between a microgrid and the utility grid dependent on the state of both networks and other information communicated...

  19. Activate distributed energy resources' services: Hierarchical voltage controller as an application

    DEFF Research Database (Denmark)

    Han, Xue; Kosek, Anna Magdalena; Gehrke, Oliver

    2014-01-01

    The flexibilities from controllable distributed energy resources (DERs) offer the opportunities to mitigate some of the operation problems in the power distribution grid. The provision of system services requires the aggregation and coordination of their flexibilities, in order to obtain the flex......The flexibilities from controllable distributed energy resources (DERs) offer the opportunities to mitigate some of the operation problems in the power distribution grid. The provision of system services requires the aggregation and coordination of their flexibilities, in order to obtain...... the flexible capacity of large scale. In this paper, a hierarchical controller is presented to activate the aggregation, and tries to obtain a global optimum of the grid operation. A distribution grid with large penetration of highly varying generation or load is under the risk that the voltage quality...... delivered to the end users is very poor. Hence, a coordinated voltage control function is investigated given such control hierarchy utilizing the flexibilities from the DER units to obtain an optimal voltage profile along the distribution feeder. The results are two folded: the controller enables...

  20. High Voltage, Fast-Switching Module for Active Control of Magnetic Fields and Edge Plasma Currents

    Science.gov (United States)

    Ziemba, Timothy; Miller, Kenneth; Prager, James; Slobodov, Ilia

    2016-10-01

    Fast, reliable, real-time control of plasma is critical to the success of magnetic fusion science. High voltage and current supplies are needed to mitigate instabilities in all experiments as well as disruption events in large scale tokamaks for steady-state operation. Silicon carbide (SiC) MOSFETs offer many advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities; however, these devices are limited to 1.2-1.7 kV devices. As fusion enters the long-pulse and burning plasma eras, efficiency of power switching will be important. Eagle Harbor Technologies (EHT), Inc. developing a high voltage SiC MOSFET module that operates at 10 kV. This switch module utilizes EHT gate drive technology, which has demonstrated the ability to increase SiC MOSFET switching efficiency. The module will allow more rapid development of high voltage switching power supplies at lower cost necessary for the next generation of fast plasma feedback and control. EHT is partnering with the High Beta Tokamak group at Columbia to develop detailed high voltage module specifications, to ensure that the final product meets the needs of the fusion science community.

  1. Distributed Reactive Power Control based Conservation Voltage Reduction in Active Distribution Systems

    Directory of Open Access Journals (Sweden)

    EMIROGLU, S.

    2017-11-01

    Full Text Available This paper proposes a distributed reactive power control based approach to deploy Volt/VAr optimization (VVO / Conservation Voltage Reduction (CVR algorithm in a distribution network with distributed generations (DG units and distribution static synchronous compensators (D-STATCOM. A three-phase VVO/CVR problem is formulated and the reactive power references of D-STATCOMs and DGs are determined in a distributed way by decomposing the VVO/CVR problem into voltage and reactive power control. The main purpose is to determine the coordination between voltage regulator (VR and reactive power sources (Capacitors, D-STATCOMs and DGs based on VVO/CVR. The study shows that the reactive power injection capability of DG units may play an important role in VVO/CVR. In addition, it is shown that the coordination of VR and reactive power sources does not only save more energy and power but also reduces the power losses. Moreover, the proposed VVO/CVR algorithm reduces the computational burden and finds fast solutions. To illustrate the effectiveness of the proposed method, the VVO/CVR is performed on the IEEE 13-node test system feeder considering unbalanced loading and line configurations. The tests are performed taking the practical voltage-dependent load modeling and different customer types into consideration to improve accuracy.

  2. A multi-mode operation control strategy for flexible microgrid based on sliding-mode direct voltage and hierarchical controls.

    Science.gov (United States)

    Zhang, Qinjin; Liu, Yancheng; Zhao, Youtao; Wang, Ning

    2016-03-01

    Multi-mode operation and transient stability are two problems that significantly affect flexible microgrid (MG). This paper proposes a multi-mode operation control strategy for flexible MG based on a three-layer hierarchical structure. The proposed structure is composed of autonomous, cooperative, and scheduling controllers. Autonomous controller is utilized to control the performance of the single micro-source inverter. An adaptive sliding-mode direct voltage loop and an improved droop power loop based on virtual negative impedance are presented respectively to enhance the system disturbance-rejection performance and the power sharing accuracy. Cooperative controller, which is composed of secondary voltage/frequency control and phase synchronization control, is designed to eliminate the voltage/frequency deviations produced by the autonomous controller and prepare for grid connection. Scheduling controller manages the power flow between the MG and the grid. The MG with the improved hierarchical control scheme can achieve seamless transitions from islanded to grid-connected mode and have a good transient performance. In addition the presented work can also optimize the power quality issues and improve the load power sharing accuracy between parallel VSIs. Finally, the transient performance and effectiveness of the proposed control scheme are evaluated by theoretical analysis and simulation results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  3. A High-Voltage Integrated Circuit Engine for a Dielectrophoresis-based Programmable Micro-Fluidic Processor

    Science.gov (United States)

    Current, K. Wayne; Yuk, Kelvin; McConaghy, Charles; Gascoyne, Peter R. C.; Schwartz, Jon A.; Vykoukal, Jody V.; Andrews, Craig

    2010-01-01

    A high-voltage (HV) integrated circuit has been demonstrated to transport droplets on programmable paths across its coated surface. This chip is the engine for a dielectrophoresis (DEP)-based micro-fluidic lab-on-a-chip system. This chip creates DEP forces that move and help inject droplets. Electrode excitation voltage and frequency are variable. With the electrodes driven with a 100V peak-to-peak periodic waveform, the maximum high-voltage electrode waveform frequency is about 200Hz. Data communication rate is variable up to 250kHz. This demonstration chip has a 32×32 array of nominally 100V electrode drivers. It is fabricated in a 130V SOI CMOS fabrication technology, dissipates a maximum of 1.87W, and is about 10.4 mm × 8.2 mm. PMID:23989241

  4. The integrated environmental control model

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E.S.; Berkenpas, M.B.; Kalagnanam, J.R. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1995-11-01

    The capability to estimate the performance and cost of emission control systems is critical to a variety of planning and analysis requirements faced by utilities, regulators, researchers and analysts in the public and private sectors. The computer model described in this paper has been developed for DOe to provide an up-to-date capability for analyzing a variety of pre-combustion, combustion, and post-combustion options in an integrated framework. A unique capability allows performance and costs to be modeled probabilistically, which allows explicit characterization of uncertainties and risks.

  5. On the Impact of using Public Network Communication Infrastructure for Voltage Control Coordination in Smart Grid Scenario

    DEFF Research Database (Denmark)

    Shahid, Kamal; Petersen, Lennart; Iov, Florin

    2017-01-01

    voltage controlled distribution system. A cost effective way to connect the ReGen plants to the control center is to consider the existing public network infrastructure. This paper, therefore, illustrates the impact of using the existing public network communication infrastructure for online voltage...

  6. Coordinated Control Strategies of VSC-HVDC-Based Wind Power Systems for Low Voltage Ride Through

    Directory of Open Access Journals (Sweden)

    Xinyin Zhang

    2015-07-01

    Full Text Available The Voltage Source Converter-HVDC (VSC-HVDC system applied to wind power generation can solve large scale wind farm grid-connection and long distance transmission problems. However, the low voltage ride through (LVRT of the VSC-HVDC connected wind farm is a key technology issue that must be solved, and it is currently lacking an economic and effective solution. In this paper, a LVRT coordinated control strategy is proposed for the VSC-HVDC-based wind power system. In this strategy, the operation and control of VSC-HVDC and wind farm during the grid fault period is improved. The VSC-HVDC system not only provides reactive power support to the grid, but also effectively maintains the power balance and DC voltage stability by reducing wind-farm power output, without increasing the equipment investment. Correspondingly, to eliminate the influence on permanent magnet synchronous generator (PMSG-based wind turbine (WT systems, a hierarchical control strategy is designed. The speed and validity of the proposed LVRT coordinated control strategy and hierarchical control strategy were verified by MATLAB/Simulink simulations.

  7. Radio frequency glow discharge source with integrated voltage and current probes used for evaluation of discharge parameters

    International Nuclear Information System (INIS)

    Wilken, L.; Hoffmann, V.; Wetzig, K.

    2006-01-01

    A radio frequency (rf) Grimm-type glow discharge source for the chemical analysis of solid samples, with integrated voltage and current probes, was developed. All elements of a plasma equivalent circuit are determined from the measured current-voltage characteristics. The procedure is based on the independent evaluation of the ion current and electron current region. The physical meaning of the parameters is investigated by comparisons with measurements from dc glow discharges. We found that the reduced rf current of the powered electrode is comparable to the reduced current in dc discharges. A formula is developed that corrects the reduced current due to gas heating. The sheath thickness at the powered rf electrode is evaluated and is between 75 and 1100 μm. The voltage of the bulk plasma is in the range 2-15 V, and the resistance is between 30 and 400 Ω. The bulk plasma consumes about 3% of the total power, and the reduced voltage is comparable to the reduced electrical field in the positive column of direct current discharges. The sheath voltage at the grounded electrode is in the range 25-100 V, the capacities are between 10 and 400 pF, and the resistances are in the range 100 Ω-5000 Ω. We also found invariants for the evaluated sheath parameters

  8. An Improved Control Strategy of Limiting the DC-Link Voltage Fluctuation for a Doubly Fed Induction Wind Generator

    DEFF Research Database (Denmark)

    Yao, J.; Li, H.; Liao, Y.

    2008-01-01

    The paper presents to develop a new control strategy of limiting the dc-link voltage fluctuation for a back-to-back pulsewidth modulation converter in a doubly fed induction generator (DFIG) for wind turbine systems. The reasons of dc-link voltage fluctuation are analyzed. An improved control...... strategy with the instantaneous rotor power feedback is proposed to limit the fluctuation range of the dc-link voltage. An experimental rig is set up to valid the proposed strategy, and the dynamic performances of the DFIG are compared with the traditional control method under a constant grid voltage....... Furthermore, the capabilities of keeping the dc-link voltage stable are also compared in the ride-through control of DFIG during a three-phase grid fault, by using a developed 2 MW DFIG wind power system model. Both the experimental and simulation results have shown that the proposed control strategy is more...

  9. A Secondary Voltage Control Method for an AC/DC Coupled Transmission System Based on Model Predictive Control

    DEFF Research Database (Denmark)

    Xu, Fengda; Guo, Qinglai; Sun, Hongbin

    2015-01-01

    For an AC/DC coupled transmission system, the change of transmission power on the DC lines will significantly influence the AC systems’ voltage. This paper describes a method to coordinated control the reactive power of power plants and shunt capacitors at DC converter stations nearby, in order t...

  10. Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment

    Energy Technology Data Exchange (ETDEWEB)

    Farajpour, A., E-mail: ariobarzan.oderj@gmail.com; Rastgoo, A.; Mohammadi, M.

    2017-03-15

    Piezoelectric nanomaterials such as zinc oxide (ZnO) are of low toxicity and have many biomedical applications including optical imaging, drug delivery, biosensing and harvesting biomechanical energy using hybrid nanogenerators. In this paper, the vibration, buckling and smart control of microtubules (MTs) embedded in an elastic medium in thermal environment using a piezoelectric nanoshell (PNS) are investigated. The MT and PNS are considered to be coupled by a filament network. The PNS is subjected to thermal loads and an external electric voltage which operates to control the mechanical behavior of the MT. Using the nonlocal continuum mechanics, the governing differential equations are derived. An exact solution is presented for simply supported boundary conditions. The differential quadrature method is also used to solve the governing equations for other boundary conditions. A detailed parametric study is conducted to investigate the effects of the elastic constants of surrounding medium and internal filament matrix, scale coefficient, electric voltage, the radius-to-thickness ratio of PNSs and temperature change on the smart control of MTs. It is found that the applied electric voltage can be used as an effective controlling parameter for the vibration and buckling of MTs.

  11. Coordinated voltage control for multiple wind plants in Eastern Wyoming. Analysis, field experience and validation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Nicholas; MacDowell, Jason; Chmiel, Gary; Konopinski, Ryan; Gautam, Durga [GE Energy, Schenectady, NY (United States); Laughter, Grant; Hagen, Dave [PacifiCorp., Salt Lake City, UT (United States)

    2012-07-01

    At high levels of wind power penetration, multiple wind plants may be the predominant generation resource over large geographic areas. Thus, not only do wind plants need to provide a high level of functionality, they must coordinate properly with each other. This paper describes the analysis and field testing of wind plant voltage controllers designed to improve system voltage performance through passive coordination. The described wind power plant controls can coordinate the real and reactive power response of multiple wind turbines and thereby make the plant function as a single ''grid friendly'' power generation source. For this application, involving seven large wind plants with predominantly GE wind turbines in Eastern Wyoming, the voltage portion of the controllers were configured and tuned to allow the collective reactive power response of multiple wind plants in the region to work well together. This paper presents the results of the initial configuration and tuning study, and the results of the subsequent field tuning and testing of the modified controls. The paper also presents some comparisons of the measured field performance with the stability simulation models, which show that the available wind plant models provide accurate, high fidelity results for actual operating conditions of commercial wind power plants. (orig.)

  12. A Unified Voltage Harmonic Control Strategy for Coordinated Compensation with VCM and CCM Converters

    DEFF Research Database (Denmark)

    Zhao, Xin; Meng, Lexuan; Xie, Chuan

    2018-01-01

    -controlled mode (VCM) and current-controlled mode (CCM), need to cooperatively provide the compensation function. Aiming at this objective, this paper proposes a unified voltage harmonic mitigation strategy for VCM and CCM converters with high harmonic current sharing accuracy. Another advantage of the proposal......Harmonics have been considered as one of the major issues in modern power grids. Considering the high penetration level of power electronic converter interfaced distributed generators (DGs), it is of interest to provide ancillary services through DG interfacing converters, such as harmonic...... compensation. In case of that, multiple DG interfacing converters are utilized to compensate harmonics, and the compensation effort should be properly shared among these converters. However, it is rarely considered in existing literatures that converters operating in different modes, such as voltage...

  13. Resonance fluorescence revival in a voltage-controlled semiconductor quantum dot

    Science.gov (United States)

    Reigue, Antoine; Lemaître, Aristide; Gomez Carbonell, Carmen; Ulysse, Christian; Merghem, Kamel; Guilet, Stéphane; Hostein, Richard; Voliotis, Valia

    2018-02-01

    We demonstrate systematic resonance fluorescence recovery with near-unity emission efficiency in single quantum dots embedded in a charge-tunable device in a wave-guiding geometry. The quantum dot charge state is controlled by a gate voltage, through carrier tunneling from a close-lying Fermi sea, stabilizing the resonantly photocreated electron-hole pair. The electric field cancels out the charging/discharging mechanisms from nearby traps toward the quantum dots, responsible for the usually observed inhibition of the resonant fluorescence. Fourier transform spectroscopy as a function of the applied voltage shows a strong increase in the coherence time though not reaching the radiative limit. These charge controlled quantum dots can act as quasi-perfect deterministic single-photon emitters, with one laser pulse converted into one emitted single photon.

  14. Graphene-gold supercapacitor as a voltage controlled saturable absorber for femtosecond pulse generation.

    Science.gov (United States)

    Baylam, Isinsu; Balci, Osman; Kakenov, Nurbek; Kocabas, Coskun; Sennaroglu, Alphan

    2016-03-01

    We report, for the first time to the best of our knowledge, use of a graphene-gold supercapacitor as a voltage controlled fast saturable absorber for femtosecond pulse generation. The unique design involving only one graphene electrode lowers the insertion loss of the device, in comparison with capacitor designs with two graphene electrodes. Furthermore, use of the high-dielectric electrolyte allows reversible, adjustable control of the absorption level up to the visible region with low bias voltages of only a few volts (0-2 V). The fast saturable absorber action of the graphene-gold supercapacitor was demonstrated inside a multipass-cavity Cr:forsterite laser to generate nearly transform-limited, sub-100 fs pulses at a pulse repetition rate of 4.51 MHz at 1.24 μm.

  15. Power-supply system for high-voltage electron guns with grid control

    International Nuclear Information System (INIS)

    Grigorev, Y.V.

    1985-01-01

    A power-supply system for electron guns with grid control is described which consists of a source of accelerating voltage between 20 and 180 kV with a current of 100 mA and a control circuit for an electron gun that contains a pulse generator having an output voltage of up to 5 kV for pulse durations of 2, 10, 50 and 90 microseconds. The output pulses of the generator are synchronized with a certain phase of the cathode heater current of the gun, and they can be repeated at a frequency between 100 and 0.4 Hz. The system is reliable and resistant to the overloads associated with breakdowns in the gun

  16. Hierarchical predictive control scheme for distributed energy storage integrated with residential demand and photovoltaic generation

    NARCIS (Netherlands)

    Lampropoulos, I.; Garoufalis, P.; van den Bosch, P.P.J.; Kling, W.L.

    2015-01-01

    A hierarchical control scheme is defined for the energy management of a battery energy storage system which is integrated in a low-voltage distribution grid with residential customers and photovoltaic installations. The scope is the economic optimisation of the integrated system by employing

  17. Power angle control of grid-connected voltage source converter in a wind energy application

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Jan [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Electric Power Engineering

    1996-12-31

    In this thesis, the connection of a voltage source converter to the grid in a wind energy application is examined. The possibility of using a cheap control system without grid current measurements, is investigated. The control method is based on controlling the voltage angle of the inverter, which governs the active power flow. The highest frequency of the power variation, coming from wind turbine, is approx. 5 Hz. Since the proposed control method easily can handle such power variations it is very well suited for wind turbine applications. The characteristics of the system depend on the DC-link capacitor, the grid filter inductance and resistance. Large values of the resistance damp the system well but increase the energy losses. A high inductance leads to a reduced harmonic level on the grid but makes the system slower. By using feed-forward of the generator/rectifier current signal, the performance is increased compared to an ordinary PI-control. Combining the Linear Quadratic (LQ) control method with Kalman filtered input signals, a robust control method with a good performance is obtained. The LQ controller controls both the phase displacement angle and the modulation index, resulting in higher bandwidth, and the typical power angle resonance at the grid frequency disappears. 22 refs, 109 figs, 14 tabs

  18. Modelling of V-Hz and vector controlled ASDs in PSCAD/EMTDC for voltage sag studies

    Energy Technology Data Exchange (ETDEWEB)

    Vegunta, S.C. [TNEI Services Ltd, Manchester M1 2PW (United Kingdom); Milanovic, J.V. [School of Electrical and Electronic Engineering of The University of Manchester, PO Box 88, Manchester M60 1QD (United Kingdom); Djokic, S.Z. [School of Engineering of The University of Edinburgh, The King' s Buildings, Mayfield Road, Edinburgh EH9 3JL (United Kingdom)

    2010-01-15

    This paper deals with modelling and performance of adjustable speed drives (ASDs) subjected to voltage disturbances in electric supply. The aim of this study was to develop appropriate models of typical ASD and investigate their sensitivity to voltage disturbances under various practical modes of operation and control. Accordingly, scalar controlled open and closed loop volts-hertz (V-Hz) and vector controlled closed loop ASDs are modelled in PSCAD/EMTDC environment, and their performance in the presence of voltage disturbances is investigated under typical operating and loading conditions. The drive sensitivity to three-phase, two-phase and single-phase voltage sags and short interruptions was assessed, and the findings are discussed in the paper. Depending on the type of drive control, type of voltage sag, applied load torque and adjusted speed, various sensitivity curves were established and analyzed. (author)

  19. Assessing the use of Low Voltage UV-light Emitting Miniature LEDs for Marine Biofouling Control

    Science.gov (United States)

    2016-07-01

    of that required to drive traditional UV mercury lamps . Secondly, given their small size and relatively low cost, UV LEDs provide ease of maintenance...UNCLASSIFIED UNCLASSIFIED Assessing the use of Low Voltage UV -light Emitting Miniature LEDs for Marine Biofouling Control Richard...settling organisms. The introduction of miniature UV light emitting diodes ( LEDs ) as a light source enables them to be embedded into thin, flexible

  20. Voltage controlled nano-injection system for single-cell surgery

    Science.gov (United States)

    Seger, R. Adam; Actis, Paolo; Penfold, Catherine; Maalouf, Michelle; Vilozny, Boaz; Pourmand, Nader

    2015-01-01

    Manipulation and analysis of single cells is the next frontier in understanding processes that control the function and fate of cells. Herein we describe a single-cell injection platform based on nanopipettes. The system uses scanning microscopy techniques to detect cell surfaces, and voltage pulses to deliver molecules into individual cells. As a proof of concept, we injected adherent mammalian cells with fluorescent dyes. PMID:22899383

  1. Impact of Wind Power Plants on Voltage Control of Power System

    DEFF Research Database (Denmark)

    Sarkar, Moumita; Altin, Müfit; Hansen, Anca Daniela

    High penetration of renewable energy sources poses numerous challenges on stability and security of power systems. Wind power plants (WPPs) of considerable size when connected to a weak grid by long transmission line results in low short circuit ratio at the point of connection. This may result...... control, during transient voltage dips. Steady-state analysis is performed for stressed system conditions. Results are validated through simulation in a detailed power system model....

  2. FPGA implementation of high-frequency multiple PWM for variable voltage variable frequency controller

    Energy Technology Data Exchange (ETDEWEB)

    Boumaaraf, Abdelâali, E-mail: aboumaaraf@yahoo.fr [Université Abbès Laghrour, Laboratoire des capteurs, Instrumentations et procédés (LCIP), Khenchela (Algeria); University of Farhat Abbas Setif1, Sétif, 19000 (Algeria); Mohamadi, Tayeb [University of Farhat Abbas Setif1, Sétif, 19000 (Algeria); Gourmat, Laïd [Université Abbès Laghrour, Khenchela, 40000 (Algeria)

    2016-07-25

    In this paper, we present the FPGA implementation of the multiple pulse width modulation (MPWM) signal generation with repetition of data segments, applied to the variable frequency variable voltage systems and specially at to the photovoltaic water pumping system, in order to generate a signal command very easily between 10 Hz to 60 Hz with a small frequency and reduce the cost of the control system.

  3. Noise-Induced Transition in a Voltage-Controlled Oscillator Neuron Model

    International Nuclear Information System (INIS)

    Xie Huizhang; Liu Xuemei; Li Zhibing; Ai Baoquan; Liu Lianggang

    2008-01-01

    In the presence of Gaussian white noise, we study the properties of voltage-controlled oscillator neuron model and discuss the effects of the additive and multiplicative noise. It is found that the additive noise can accelerate and counterwork the firing of neuron, which depends on the value of central frequency of neuron itself, while multiplicative noise can induce the continuous change or mutation of membrane potential

  4. A new home energy management algorithm with voltage control in a smart home environment

    International Nuclear Information System (INIS)

    Elma, Onur; Selamogullari, Ugur Savas

    2015-01-01

    Energy management in electrical systems is one of the important issues for energy efficiency and future grid systems. Energy management is defined as a HEM (home energy management) on the residential consumer side. The HEM system plays a key role in residential demand response applications. In this study, a new HEM algorithm is proposed for smart home environments to reduce peak demand and increase the energy efficiency. The proposed algorithm includes VC (voltage control) methodology to reduce the power consumption of residential appliances so that the shifting of appliances is minimized. The results of the survey are used to produce representative load profiles for a weekday and for a weekend. Then, case studies are completed to test the proposed HEM algorithm in reducing the peak demand in the house. The main aim of the proposed HEM algorithm is to minimize the number of turned-off appliances to decrease demand so that the customer comfort is maximized. The smart home laboratory at Yildiz Technical University, Istanbul, Turkey is used in case studies. Experimental results show that the proposed HEM algorithm reduces the peak demand by 17.5% with the voltage control and by 38% with both the voltage control and the appliance shifting. - Highlights: • A new HEM (home energy management) algorithm is proposed. • Voltage control in the HEM is introduced as a solution for peak load reduction. • Customer comfort is maximized by minimizing the number of turned-off appliances. • The proposed HEM algorithm is experimentally validated at a smart home laboratory. • A survey is completed to produce typical load profiles of a Turkish family.

  5. Voltage Control of Rare-Earth Magnetic Moments at the Magnetic-Insulator-Metal Interface

    Science.gov (United States)

    Leon, Alejandro O.; Cahaya, Adam B.; Bauer, Gerrit E. W.

    2018-01-01

    The large spin-orbit interaction in the lanthanides implies a strong coupling between their internal charge and spin degrees of freedom. We formulate the coupling between the voltage and the local magnetic moments of rare-earth atoms with a partially filled 4 f shell at the interface between an insulator and a metal. The rare-earth-mediated torques allow the power-efficient control of spintronic devices by electric-field-induced ferromagnetic resonance and magnetization switching.

  6. Sensorless direct voltage control of the stand-alone brushless doubly-fed generator

    DEFF Research Database (Denmark)

    Liu, Yi; Xu, Wei; Xiong, Fei

    2017-01-01

    The conventional stand-alone brushless doubly-fed generator (BDFG) control strategies need the feedback from the rotor position or speed sensors, which can reduce system reliability and increase the cost and axial volume of the machine. In this paper, a sensorless direct voltage control (DVC) str......) strategy is presented for the stand-alone BDFG. The satisfactory dynamic performance is verified by experimental results under four kinds of typical operation conditions. Besides, the proposed control strategy is robust due to no generator parameters being required....

  7. Adaptive control strategy for ECRH negative high-voltage power supply based on CMAC neural network

    International Nuclear Information System (INIS)

    Luo Xiaoping; Du Pengying; Du Shaowu

    2011-01-01

    In order to solve the problem that the negative high-voltage power supply in an electron cyclotron resonance heating (ECRH) system can not satisfy the requirements because of the nonlinearity and sensitivity, the direct inverse model control strategy was proposed by using cerebellar model articulation controller(CMAC) for better control, and experiments were carried out to study the system performances with CMAC tracing dynamic signals. The results show that this strategy is strong in self-learning and self-adaptation and easy to be realized. (authors)

  8. Control of SiC Based Front-End Rectifier under Unbalanced Supply Voltage

    DEFF Research Database (Denmark)

    Maheshwari, Ramkrishan; Trintis, Ionut; Gohil, Ghanshyamsinh Vijaysinh

    2015-01-01

    A voltage source converter is used as a front end converter typically. In this paper, a converter which is realized using SiC MOSFET is considered. Due to SiC MOSFET, a switching frequency more than 50 kHz can be achieved. This can help increasing the current control loop bandwidth, which is not ...... together with a positive-sequence current controller for the front-end rectifier. A gain in the feedforward term can be changed to control the negative-sequence current. Simulation results are presented to verify the theory....

  9. Scalability of voltage-controlled filamentary and nanometallic resistance memory devices.

    Science.gov (United States)

    Lu, Yang; Lee, Jong Ho; Chen, I-Wei

    2017-08-31

    Much effort has been devoted to device and materials engineering to realize nanoscale resistance random access memory (RRAM) for practical applications, but a rational physical basis to be relied on to design scalable devices spanning many length scales is still lacking. In particular, there is no clear criterion for switching control in those RRAM devices in which resistance changes are limited to localized nanoscale filaments that experience concentrated heat, electric current and field. Here, we demonstrate voltage-controlled resistance switching, always at a constant characteristic critical voltage, for macro and nanodevices in both filamentary RRAM and nanometallic RRAM, and the latter switches uniformly and does not require a forming process. As a result, area-scalability can be achieved under a device-area-proportional current compliance for the low resistance state of the filamentary RRAM, and for both the low and high resistance states of the nanometallic RRAM. This finding will help design area-scalable RRAM at the nanoscale. It also establishes an analogy between RRAM and synapses, in which signal transmission is also voltage-controlled.

  10. A Voltage and Frequency Control Strategy for Stand-Alone Full Converter Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Andrés Peña Asensio

    2018-02-01

    Full Text Available This paper addresses the design and analysis of a voltage and frequency control (VFC strategy for full converter (FC-based wind energy conversion systems (WECSs and its applicability for the supply of an isolated load. When supplying an isolated load, the role of the back-to-back converters in the FC must change with respect to a grid-connected application. Voltage and frequency are established by the FC line side converter (LSC, while the generator side converter (GSC is responsible for maintaining constant voltage in the DC link. Thus, the roles of the converters in the WECS are inverted. Under such control strategies, the LSC will automatically supply the load power and hence, in order to maintain a stable operation of the WECS, the wind turbine (WT power must also be controlled in a load-following strategy. The proposed VFC is fully modelled and a stability analysis is performed. Then, the operation of the WECS under the proposed VFC is simulated and tested on a real-time test bench, demonstrating the performance of the VFC for the isolated operation of the WECS.

  11. A hierarchical model predictive voltage control for NPC/H-bridge converters with a reduced computational burden

    DEFF Research Database (Denmark)

    Gong, Zheng; Dai, Peng; Wu, Xiaojie

    2017-01-01

    In recent years, voltage source multilevel converters are very popular in medium/high-voltage industrial applications, among which the NPC/H-Bridge converter is a popular solution to the medium/high-voltage drive systems. The conventional finite control set model predictive control (FCS-MPC) stra......In recent years, voltage source multilevel converters are very popular in medium/high-voltage industrial applications, among which the NPC/H-Bridge converter is a popular solution to the medium/high-voltage drive systems. The conventional finite control set model predictive control (FCS......-MPC) strategy is not practical for multilevel converters due to their substantial calculation requirements, especially under high number of voltage levels. To solve this problem, a hierarchical model predictive voltage control (HMPVC) strategy with referring to the implementation of g-h coordinate space vector...... and experiments with a down-scaled NPC/H-Bridge converter prototype under various conditions, which validate the proposed HMPVC strategy....

  12. Integrated Transmission and Distribution Control

    Energy Technology Data Exchange (ETDEWEB)

    Kalsi, Karanjit [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fuller, Jason C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tuffner, Francis K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lian, Jianming [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhang, Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Marinovici, Laurentiu D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fisher, Andrew R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chassin, Forrest S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hauer, Matthew L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-01-01

    Distributed, generation, demand response, distributed storage, smart appliances, electric vehicles and renewable energy resources are expected to play a key part in the transformation of the American power system. Control, coordination and compensation of these smart grid assets are inherently interlinked. Advanced control strategies to warrant large-scale penetration of distributed smart grid assets do not currently exist. While many of the smart grid technologies proposed involve assets being deployed at the distribution level, most of the significant benefits accrue at the transmission level. The development of advanced smart grid simulation tools, such as GridLAB-D, has led to a dramatic improvement in the models of smart grid assets available for design and evaluation of smart grid technology. However, one of the main challenges to quantifying the benefits of smart grid assets at the transmission level is the lack of tools and framework for integrating transmission and distribution technologies into a single simulation environment. Furthermore, given the size and complexity of the distribution system, it is crucial to be able to represent the behavior of distributed smart grid assets using reduced-order controllable models and to analyze their impacts on the bulk power system in terms of stability and reliability.

  13. Interactions Between Indirect DC-Voltage Estimation and Circulating Current Controllers of MMC-Based HVDC Transmission Systems

    DEFF Research Database (Denmark)

    Wickramasinghe, Harith R.; Konstantinou, Georgios; Pou, Josep

    2018-01-01

    Estimation-based indirect dc-voltage control in MMCs interacts with circulating current control methods. This paper proposes an estimation-based indirect dc-voltage control method for MMC-HVDC systems and analyzes its performance compared to alternative estimations. The interactions between......-state and transient performance is demonstrated using a benchmark MMC-HVDC transmission system, implemented in a real-time digital simulator. The results verify the theoretical evaluations and illustrate the operation and performance of the proposed indirect dc-voltage control method....

  14. Modeling, analysis, and design of stationary reference frame droop controlled parallel three-phase voltage source inverters

    DEFF Research Database (Denmark)

    Vasquez, Juan Carlos; Guerrero, Josep M.; Savaghebi, Mehdi

    2013-01-01

    Power electronics based MicroGrids consist of a number of voltage source inverters (VSIs) operating in parallel. In this paper, the modeling, control design, and stability analysis of parallel connected three-phase VSIs are derived. The proposed voltage and current inner control loops and the mat......Power electronics based MicroGrids consist of a number of voltage source inverters (VSIs) operating in parallel. In this paper, the modeling, control design, and stability analysis of parallel connected three-phase VSIs are derived. The proposed voltage and current inner control loops...... control restores the frequency and amplitude deviations produced by the primary control. Also, a synchronization algorithm is presented in order to connect the MicroGrid to the grid. Experimental results are provided to validate the performance and robustness of the parallel VSI system control...

  15. Technical challenges for electric power industries due to grid-integrated electric vehicles in low voltage distributions: A review

    International Nuclear Information System (INIS)

    Haidar, Ahmed M.A.; Muttaqi, Kashem M.; Sutanto, Danny

    2014-01-01

    Highlights: • Grid-Integrated Vehicles (GIVs) as mobile storage systems are briefly discussed. • Comparative analysis on electric vehicles (EVs) and charging systems are provided. • It is necessary to coordinate the GIVs to minimize its impacts on power grid. • A proper load model of EVs that predicts the realistic system behavior is required. • Offering a dual tariff by grid utilities is needed as a way to reduce peak load. - Abstract: Grid-Integrated Vehicles (GIVs) are promising technologies for future Smart Grid (SG) and offer the potential to reduce the environmental impact of vehicles. The large scale deployment of GIVs without proper control of the time to charge the vehicles can result in unexpected challenges. This can lead to a disruptive impact on the current power distribution systems and in particular its substantial impacts in building power energy systems. Therefore, a proper model that predicts the realistic system behavior is required to analysis the true effects of introducing GIVs in the power grid. This paper presents a review of existing studies on GIV systems, their modeling techniques and their effects on power grids. Following a brief overview of the common types of electric vehicles (EVs) with their charging systems, a review of their impact on the low voltage distribution systems will be analyzed. The comprehensive review presented in this paper reveals that the impact of GIVs on power distribution systems can be quantified using the aspects of EVs, such as vehicle penetration, charging time, charging characteristics, driving patterns, transportation network. GIV studies are expected to be more popular in future years with the development of EV technologies and the government support to electricity utilities. Thereby, these factors will reduce the cost of energy to charge EV and enhance the practical implications of GIVs

  16. Integrated control system for electron beam processes

    Science.gov (United States)

    Koleva, L.; Koleva, E.; Batchkova, I.; Mladenov, G.

    2018-03-01

    The ISO/IEC 62264 standard is widely used for integration of the business systems of a manufacturer with the corresponding manufacturing control systems based on hierarchical equipment models, functional data and manufacturing operations activity models. In order to achieve the integration of control systems, formal object communication models must be developed, together with manufacturing operations activity models, which coordinate the integration between different levels of control. In this article, the development of integrated control system for electron beam welding process is presented as part of a fully integrated control system of an electron beam plant, including also other additional processes: surface modification, electron beam evaporation, selective melting and electron beam diagnostics.

  17. From integrated control to integrated farming, an experimental approach

    NARCIS (Netherlands)

    Vereijken, P.H.

    1989-01-01

    Integrated control or integrated pest management (IPM), as envisaged originally, is not being practised to any large extent in arable farming, notwithstanding considerable research efforts. The reasons for this are discussed. A more basic approach called integrated farming is suggested. Preliminary

  18. Power grid current harmonics mitigation drawn on low voltage rated switching devices with effortless control

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Hugo S.; Anunciada, Victor; Borges, Beatriz V. [Power Electronics Group, Instituto de Telecomunicacoes, Lisbon (Portugal); Instituto Superior Tecnico - Universidade Tecnica de Lisboa, Lisbon (Portugal)

    2010-01-15

    The great majority of the existing hybrid active power filter solutions is normally focused in 3{phi} systems and, in general, concentrates its domain of application in specific loads with deterministic behavior. Because common use grids do not exhibit these characteristics, it is mandatory to develop solutions for more generic scenarios, encouraging the use of less classical hybrid solutions. In fact, due to the widely use of switch mode converters in a great variety of consumer electronics, the problematic of mains current harmonic mitigation is no longer an exclusive matter of 3{phi} systems. The contribution of this paper is to present a shunt hybrid active power filter topology, initially conceived to work in 1{phi} domestic grids, able to operate the inverter at a voltage rate that can be lower than 10% of the mains voltage magnitude, even under nonspecific working conditions. In addition, the results shown in this paper demonstrate that this topology can, without lack of generality, be suitable to medium voltage (1{phi} or 3{phi}) systems. A new control approach for the proposed topology is discussed in this paper. The control method exhibits an extremely simple architecture requiring single point current sensing only, with no need for any kind of reference. Its practical implementation can be fulfilled by using very few, common use, operational amplifiers. The principle of operation, design criteria, simulation predictions and experimental results are presented and discussed. (author)

  19. Voltage-controlled radial wrinkles of a trumpet-like dielectric elastomer structure

    Science.gov (United States)

    Mao, Guoyong; Wu, Lei; Fu, Yimou; Liu, Junjie; Qu, Shaoxing

    2018-03-01

    Wrinkle is usually considered as one failure mode of membrane structure. However, it can also be harnessed in developing smart devices such as dry adhesion tape, diffraction grating, smart window, etc. In this paper, we present a method to generate voltage-controlled radial wrinkles, which are fast response and reversible, in a stretched circular dielectric elastomer (DE) membrane with boundary fixed. In the experiment, we bond a circular plate on the center of the circular membrane and then pull the DE membrane perpendicular to itself via the plate. The stretched DE membrane is a trumpet-like structure. When the stretched DE membrane is subjected to a certain voltage, wrinkles nucleate from the center of the DE membrane and propagate to the boundary as the voltage increases. We adopt a theoretical framework to analyze the nucleation of the wrinkles. A simple wavelength expression is achieved, which is only related to the geometry and the stretch of the DE membrane. Results show that the theory agrees well with the experiment. This work may help the future design of DE actuators in avoiding mechanical instability and provide a new method to generate controllable radial DE wrinkles.

  20. Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas.

    Science.gov (United States)

    Lumdee, Chatdanai; Toroghi, Seyfollah; Kik, Pieter G

    2012-07-24

    Voltage controlled wavelength tuning of the localized surface plasmon resonance of gold nanoparticles on an aluminum film is demonstrated in single particle microscopy and spectroscopy measurements. Anodization of the Al film after nanoparticle deposition forms an aluminum oxide spacer layer between the gold particles and the Al film, modifying the particle-substrate interaction. Darkfield microscopy reveals ring-shaped scattering images from individual Au nanoparticles, indicative of plasmon resonances with a dipole moment normal to the substrate. Single particle scattering spectra show narrow plasmon resonances that can be tuned from ~580 to ~550 nm as the anodization voltage increases to 12 V. All observed experimental trends could be reproduced in numerical simulations. The presented approach could be used as a general postfabrication resonance optimization step of plasmonic nanoantennas and devices.

  1. Actuator Location and Voltages Optimization for Shape Control of Smart Beams Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Georgios E. Stavroulakis

    2013-10-01

    Full Text Available This paper presents a numerical study on optimal voltages and optimal placement of piezoelectric actuators for shape control of beam structures. A finite element model, based on Timoshenko beam theory, is developed to characterize the behavior of the structure and the actuators. This model accounted for the electromechanical coupling in the entire beam structure, due to the fact that the piezoelectric layers are treated as constituent parts of the entire structural system. A hybrid scheme is presented based on great deluge and genetic algorithm. The hybrid algorithm is implemented to calculate the optimal locations and optimal values of voltages, applied to the piezoelectric actuators glued in the structure, which minimize the error between the achieved and the desired shape. Results from numerical simulations demonstrate the capabilities and efficiency of the developed optimization algorithm in both clamped−free and clamped−clamped beam problems are presented.

  2. Controlling the layer localization of gapless states in bilayer graphene with a gate voltage

    Science.gov (United States)

    Jaskólski, W.; Pelc, M.; Bryant, Garnett W.; Chico, Leonor; Ayuela, A.

    2018-04-01

    Experiments in gated bilayer graphene with stacking domain walls present topological gapless states protected by no-valley mixing. Here we research these states under gate voltages using atomistic models, which allow us to elucidate their origin. We find that the gate potential controls the layer localization of the two states, which switches non-trivially between layers depending on the applied gate voltage magnitude. We also show how these bilayer gapless states arise from bands of single-layer graphene by analyzing the formation of carbon bonds between layers. Based on this analysis we provide a model Hamiltonian with analytical solutions, which explains the layer localization as a function of the ratio between the applied potential and interlayer hopping. Our results open a route for the manipulation of gapless states in electronic devices, analogous to the proposed writing and reading memories in topological insulators.

  3. Design and Tuning of Wind Power Plant Voltage Controller with Embedded Application of Wind Turbines and STATCOMs

    DEFF Research Database (Denmark)

    Petersen, Lennart; Kryezi, Fitim; Iov, Florin

    2017-01-01

    This study addresses a detailed design and tuning of a wind power plant voltage control with reactive power contribution of wind turbines and static synchronous compensators (STATCOMs). First, small-signal models of a single wind turbine and STATCOM are derived by using the state-space approach....... A complete phasor model of the entire wind power plant is constructed, being appropriate for voltage control assessment. An exemplary wind power plant located in the United Kingdom and the corresponding grid code requirements are used as a base case. The final design and tuning process of the voltage...... controller results in a guidance, proposed for this particular control architecture. It provides qualitative outcomes regarding the parametrisation of each individual control loop and how to adjust the voltage controller depending on different grid stiffnesses of the wind power plant connection...

  4. Stability Analysis of a Voltage-Based Controller for Robot Manipulators

    Directory of Open Access Journals (Sweden)

    Jorge Orrante-Sakanassi

    2013-01-01

    Full Text Available A voltage-based control scheme for robot manipulators has been presented in recent literature, where feedback linearization is applied in the electrical equations of the DC motors in order to cancel the electrical current terms. However, in this paper we show that this control technique generates a system of the form Ex = Ax + Bu, where E is a singular matrix, that is to say, a generalized state-space system or singular system. This paper introduces a formal stability analysis of the respective system by considering the state-space equation as a singular system. Furthermore, in order to avoid the singularity of the closed-loop system, modified voltage-based control schemes are proposed, whose Lyapunov stability analyses conclude semiglobal asymptotic stability for the set-point control case and uniform boundedness of the solutions and semiglobal convergence of the position, as well as velocity errors for the tracking control case. The proposed control systems are simulated for the tracking and set-point cases using the CICESE Pelican robot driven by DC motors.

  5. Low Voltage CMOS Fully Differential Current Feedback Amplifier with Controllable 3-dB Bandwidth

    International Nuclear Information System (INIS)

    Madian, A.H.; Mahmoud, S.A.; Ashour, M.A.; Soliman, A.M.

    2008-01-01

    This paper presents a new CMOS fully differential current feedback operational amplifier with controllable 3-dB bandwidth suitable for analog data processing and acquisition applications. The FDCFOA has the advantage of a wide range controllable 3-dB bandwidth (∼57 MHz to 500 MHz) without changing the feedback resistance this guarantee the stability of the circuit. The FDCFOA has a standby current of 320μA. PSpice simulations of the FDCFOA block were given using 0.25μm CMOS technology from AMI MOSIS and dual supply voltages ±0.75 V

  6. DC Voltage Droop Control Implementation in the AC/DC Power Flow Algorithm: Combinational Approach

    DEFF Research Database (Denmark)

    Akhter, F.; Macpherson, D.E.; Harrison, G.P.

    2015-01-01

    of operational flexibility, as more than one VSC station controls the DC link voltage of the MTDC system. This model enables the study of the effects of DC droop control on the power flows of the combined AC/DC system for steady state studies after VSC station outages or transient conditions without needing...... to use its complete dynamic model. Further, the proposed approach can be extended to include multiple AC and DC grids for combined AC/DC power flow analysis. The algorithm is implemented by modifying the MATPOWER based MATACDC program and the results shows that the algorithm works efficiently....

  7. Modeling, analysis, and design of stationary reference frame droop controlled parallel three-phase voltage source inverters

    DEFF Research Database (Denmark)

    Vasquez, Juan Carlos; Guerrero, Josep M.; Savaghebi, Mehdi

    2011-01-01

    and discussed. Experimental results are provided to validate the performance and robustness of the VSIs functionality during Islanded and grid-connected operations, allowing a seamless transition between these modes through control hierarchies by regulating frequency and voltage, main-grid interactivity......Power electronics based microgrids consist of a number of voltage source inverters (VSIs) operating in parallel. In this paper, the modeling, control design, and stability analysis of three-phase VSIs are derived. The proposed voltage and current inner control loops and the mathematical models...

  8. Design of Neutral-Point Voltage Controller of a Three-level NPC Inverter with Small DC-Link Capacitors

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Munk-Nielsen, Stig; Busquets-Monge, S.

    2013-01-01

    A Neutral-Point-Clamped (NPC) three-level inverter with small dc-link capacitors is presented in this paper. The inverter requires zero average neutral-point current for stable neutral-point voltage. The small dc-link capacitors may not maintain capacitor voltage balance, even with zero neutral......-point voltage control on the basis of the continuous model. The design method for optimum performance is discussed. The implementation of the proposed modulation strategy and the controller is very simple. The controller is implemented in a 7.5 kW induction machine based drive with only 14 ìF dc-link capacitors...

  9. Flexible Microgrid Power Quality Enhancement Using Adaptive Hybrid Voltage and Current Controller

    DEFF Research Database (Denmark)

    He, Jinwei; Li, Yun Wei; Blaabjerg, Frede

    2014-01-01

    -pass/bandpass filters in the DG unit digital controller. Moreover, phase-locked loops are not necessary as the microgrid frequency deviation can be automatically identified by the power control loop. Consequently, the proposed control method provides opportunities to reduce DG control complexity, without affecting......To accomplish superior harmonic compensation performance using distributed generation (DG) unit power electronics interfaces, an adaptive hybrid voltage and current controlled method (HCM) is proposed in this paper. It shows that the proposed adaptive HCM can reduce the numbers of low...... the harmonic compensation performance. Comprehensive simulated and experimental results from a single-phase microgrid are provided to verify the feasibility of the proposed adaptive HCM approach....

  10. Feedback-Based Admission Control for Firm Real-Time Task Allocation with Dynamic Voltage and Frequency Scaling

    Directory of Open Access Journals (Sweden)

    Piotr Dziurzanski

    2018-04-01

    Full Text Available Feedback-based mechanisms can be employed to monitor the performance of Multiprocessor Systems-on-Chips (MPSoCs and steer the task execution even if the exact knowledge of the workload is unknown a priori. In particular, traditional proportional-integral controllers can be used with firm real-time tasks to either admit them to the processing cores or reject in order not to violate the timeliness of the already admitted tasks. During periods with a lower computational power demand, dynamic voltage and frequency scaling (DVFS can be used to reduce the dissipation of energy in the cores while still not violating the tasks’ time constraints. Depending on the workload pattern and weight, platform size and the granularity of DVFS, energy savings can reach even 60% at the cost of a slight performance degradation.

  11. Monitoring of high voltage supply using the Controller Area Network protocol

    Energy Technology Data Exchange (ETDEWEB)

    Luz, Igo Amauri dos S.; Farias, Paulo Cesar M.A.; Guedes, Germano P. [Universidade Estadual de Feira de Santana (UEFS), BA (Brazil)

    2011-07-01

    Full text: In recent years, experimental physics has made great progress in the investigation of the phenomenology of neutrinos, with significant contribution from experiments using nuclear reactors as source of particles. In this context, The Neutrinos Angra Project proposes the use of an anti-neutrinos detector with ability to monitor parameters related to the activity of nuclear reactors. One of the tasks defined in the project is the development of a system to control and to monitor the high voltage supply units used by the photomultiplier tubes (PMTs) of the detector. The solution proposed in this work is based on the use of microcontrollers, from Microchip PIC family to adjust the operating point of the high voltage supply units and to acquire the current and output voltage data. Analysis of these data allows the effective control of the gain of the PMTs and to identify anomalous operational conditions. In this work is proposed the study of the Controller Area Network (CAN) protocol and the implementation of a laboratory network to reproduce the typical operations of data acquisition and information transfer between the nodes. The development of this network is divided in two stages. The first part consisted of the setup of a CAN network, using the PIC18F2680 microcontroller, which has the CAN protocol internally implemented. This network serves as a reduced model of the final system, allowing simulation of typical situations of data acquisition and transmission between the nodes and a computer. In the second part of the work, the PIC18F4550 microcontroller was associated with the external CAN controller MCP2515 to develop a CAN/USB converter. This converter provides a new communication channel between network nodes and the computer, in addition to the RS232 interface. (author)

  12. Electric vehicles integration within low voltage electricity networks & possibilities for distribution energy loss reduction

    NARCIS (Netherlands)

    Lampropoulos, I.; Veldman, E.; Kling, W.L.; Gibescu, M.; Slootweg, J.G.

    2010-01-01

    With the prospect of an increasing number of electric vehicles (EVs) on the road, domestic charging will be the most obvious way to recharge the vehicles’ batteries. However, this can have adverse impacts to low voltage (LV) distribution grids such as high current demand, increased 3-phase load

  13. Fully Integrated, Low Drop-Out Linear Voltage Regulator in 180 nm CMOS

    DEFF Research Database (Denmark)

    Yosef-Hay, Yoni; Larsen, Dennis Øland; Llimos Muntal, Pere

    2017-01-01

    This paper presents a capacitor-free low dropout (LDO) linear regulator based on a dual loop topology. The regulator utilizes two feedback loops to satisfy the challenges of hearing aid devices, which include fast transient performance and small voltage spikes under rapid load-current changes...

  14. Large Scale Solar Power Integration in Distribution Grids : PV Modelling, Voltage Support and Aggregation Studies

    NARCIS (Netherlands)

    Samadi, A.

    2014-01-01

    Long term supporting schemes for photovoltaic (PV) system installation have led to accommodating large numbers of PV systems within load pockets in distribution grids. High penetrations of PV systems can cause new technical challenges, such as voltage rise due to reverse power flow during light load

  15. Energy storage system in medium-sized voltage lines for the integration of decentralized fluctuating energy sources; Energiespeicher im Niederspannungsnetz zur Integration dezentraler, fluktuierender Energiequellen

    Energy Technology Data Exchange (ETDEWEB)

    Bodach, M.

    2006-06-30

    The solar radiation fluctuates due to atmospheric and planetary influences. Concerning PV systems, the changes from dark clouds to clear sky result in fast and very deep fluctuations of the time behaviour of the power output fed into the low voltage (LV) network by DC-AC-Converters. On the example of a daily recorded global radiation curve with a very short sampling time (regular interval time 1 s) the paper shows that short-term sags of the solar radiation are possible up to 80% of the previous value as a result of sudden and intensive changes of the density of the clouds. These disturbances of the quality of the generated electric power are directly transformed into the LV grids. If the number of PV systems connected to existing LV networks rises essentially, the fluctuating photovoltaic energy generation will achieve a very high importance and therefore not only the well-known, but also a lot of new problems will occur. They have already been investigated theoretically in different papers and they have also been proven quantitatively by own simulations. Improvements of the energy quality at the point of common coupling will be possible if the grid-coupled PV power plants are supplemented with suitable intelligent storage systems bridging the short-term sags. So the influence of the fluctuating radiation on the generated power can be fundamentally reduced. The developed intelligent short-term storage system smoothes out the generated power of the PV system by means of a storage. It is based on the very high capacity of an electric double layer (UltraCap, produced by EPCOS) and includes a complex electronic control system. The UltraCap has the required storing characteristics and has been adjusted to the system voltage by a highly sophisticated microprocessor controlled DC/DC-converter system. Such an intelligent storage system can also be used for the connection of other decentralised power generation units (e.g. fuel cells, block-unit heating power plant) to the

  16. Research on a Hierarchical Dynamic Automatic Voltage Control System Based on the Discrete Event-Driven Method

    Directory of Open Access Journals (Sweden)

    Yong Min

    2013-06-01

    Full Text Available In this paper, concepts and methods of hybrid control systems are adopted to establish a hierarchical dynamic automatic voltage control (HD-AVC system, realizing the dynamic voltage stability of power grids. An HD-AVC system model consisting of three layers is built based on the hybrid control method and discrete event-driven mechanism. In the Top Layer, discrete events are designed to drive the corresponding control block so as to avoid solving complex multiple objective functions, the power system’s characteristic matrix is formed and the minimum amplitude eigenvalue (MAE is calculated through linearized differential-algebraic equations. MAE is applied to judge the system’s voltage stability and security and construct discrete events. The Middle Layer is responsible for management and operation, which is also driven by discrete events. Control values of the control buses are calculated based on the characteristics of power systems and the sensitivity method. Then control values generate control strategies through the interface block. In the Bottom Layer, various control devices receive and implement the control commands from the Middle Layer. In this way, a closed-loop power system voltage control is achieved. Computer simulations verify the validity and accuracy of the HD-AVC system, and verify that the proposed HD-AVC system is more effective than normal voltage control methods.

  17. Experience with voltage control from large offshore windfarms: The Danish case

    DEFF Research Database (Denmark)

    Akhmatov, Vladislav

    2009-01-01

    and frequency control carried out at central, conventional power plants. Moreover, the control of some larger decentralized combined heat and power units is activated for voltage control and system balancing, which is specific for the Danish system. In the years to come, according to the government's goal...... of increasing the share of renewable energy sources in the Danish power system, the share of large offshore windfarms in the Danish power generation mix will increase greatly, replacing central power plants, including their control characteristics during periods of strong winds. Large offshore windfarms must...... and switchable capacitor banks of the offshore wind turbines, which are smaller than those of central power plants measured per unit of the active power rating. Combine this with the use of AC cables, tens of kilometres long, to connect the large offshore windfarms to the on-land transmission system...

  18. Mitigation of Grid Current Distortion for LCL-Filtered Voltage Source Inverter with Inverter Current Feedback Control

    DEFF Research Database (Denmark)

    Xin, Zhen; Mattavelli, Paolo; Yao, WenLi

    2018-01-01

    LCL filters feature low inductance; thus, the injected grid current from an LCL-filtered Voltage Source Inverter (VSI) can be easily distorted by grid voltage harmonics. This problem is especially tough for the control system with Inverter-side Current Feedback (ICF), since the grid current...... harmonics can freely flow into the filter capacitor. In this case, because of the loss of harmonic information, traditional harmonic controllers fail to mitigate the grid current distortion. Although this problem may be avoided using the grid voltage feedforward scheme, the required differentiators may...

  19. A voltage-controlled ring oscillator using InP full enhancement-mode HEMT logic

    Energy Technology Data Exchange (ETDEWEB)

    Du Rui; Dai Yang; Chen Yanling; Yang Fuhua, E-mail: ddrr@semi.ac.c [Research Center of Semiconductor Integration, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2009-03-15

    A voltage-controlled ring oscillator (VCO) based on a full enhancement-mode InAlAs/InGaAs/InP high electron mobility transistor (HEMT) logic is proposed. An enhancement-mode HEMT (E-HEMT) is fabricated, whose threshold is demonstrated to be 10 mV. The model of the E-HEMT is established and used in the SPICE simulation of the VCO. The result proves that the full E-HEMT logic technology can be applied to the VCO. And compared with the HEMT DCFL technology, the complexity of our fabrication process is reduced and the reliability is improved.

  20. Voltage regulation in LV grids by coordinated volt-var control strategies

    DEFF Research Database (Denmark)

    Juamperez Goñi, Miguel Angel; Yang, Guangya; Kjær, Søren Bækhøj

    2014-01-01

    in a representative LV network in Bornholm Island using a multi-objective genetic algorithm. The approach is to increase the reactive power contribution of the inverters closest to the transformer during overvoltage conditions. Two standard reactive power control concepts, cosΦ(P) and Q(U), are simulated and compared...... in terms of network power losses and voltage level along the feeder. As a practical implementation, a reconfigurable hardware is used for developing a testing platform based on real-time measurements to regulate the reactive power level. The proposed testing platform has been developed within PVNET...

  1. PowerFactory model for multi-terminal HVDC network with DC voltage droop control

    DEFF Research Database (Denmark)

    Korompili, Asimenia; Wu, Qiuwei

    Nowadays, most of the installed HVDC systems are based on line commutated converters (LCC), since this technology offers a series of advantages, mainly low costs and losses. However, voltage source converters (VSCs) have recently drawn more and more attention, due to their high controllability....... Moreover, recent developments have improved efficiency and power quality. For multi-terminal HVDC grids, the advantages of VSCs become so large, that VSC-HVDC systems are the only viable solution. Nevertheless, no VSC-based multi-terminal HVDC grids exist to date. This is the reason for which many research...

  2. Coordination of Voltage and Frequency Feedback in Load-Frequency Control Capability of Wind Turbine

    DEFF Research Database (Denmark)

    Hoseinzadeh, Bakhtyar; Silva, Filipe Faria Da; Bak, Claus Leth

    2014-01-01

    In close future, with high Wind Energy (WE) penetration in the power system, the burden of Load-Frequency Control (LFC) is gradually shifted to Variable Speed Wind Turbines (VSWTs). In order to equip the VSWT with LFC capability to support the grid during sudden variation in generation or load...... regulation. The proposed scheme demonstrates remarkable improvement transient state of both voltage and frequency profiles in comparison with conventional LFC designs provided by Central Power Plants (CPP) or Wind Power Plants (WPP). Numerical simulations carried out in DigSilent Power- Factory confirm...

  3. Low voltage ride-through capability control for single-stage inverter-based grid-connected photovoltaic power plant

    DEFF Research Database (Denmark)

    Al-Shetwi, Ali Q.; Sujod, Muhamad Zahim; Blaabjerg, Frede

    2018-01-01

    and current limiter are used to absorb the excessive dc-voltage and limits excessive ac current, respectively. This control strategy can also ensure the reactive power support through the injection of reactive current according to the standard requirements as soon as the voltage sag is detected. Furthermore...... to improve the capability of ride-through fault safely and keep the inverter connected, but also to provide grid support through active and reactive power control at different type of faults....

  4. Neuro-fuzzy Control of Integrating Processes

    Directory of Open Access Journals (Sweden)

    Anna Vasičkaninová

    2011-11-01

    Full Text Available Fuzzy technology is adaptive and easily applicable in different areas.Fuzzy logic provides powerful tools to capture the perceptionof natural phenomena. The paper deals with tuning of neuro-fuzzy controllers for integrating plant and for integrating plantswith time delay. The designed approach is verified on three examples by simulations and compared plants with classical PID control.Designed fuzzy controllers lead to better closed-loop control responses then classical PID controllers.

  5. Coordinated Voltage Control in Distribution Network with the Presence of DGs and Variable Loads Using Pareto and Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    José Raúl Castro

    2016-02-01

    Full Text Available This paper presents an efficient algorithm to solve the multi-objective (MO voltage control problem in distribution networks. The proposed algorithm minimizes the following three objectives: voltage variation on pilot buses, reactive power production ratio deviation, and generator voltage deviation. This work leverages two optimization techniques: fuzzy logic to find the optimum value of the reactive power of the distributed generation (DG and Pareto optimization to find the optimal value of the pilot bus voltage so that this produces lower losses under the constraints that the voltage remains within established limits. Variable loads and DGs are taken into account in this paper. The algorithm is tested on an IEEE 13-node test feeder and the results show the effectiveness of the proposed model.

  6. Power system integration and control of variable speed wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Eek, Jarle

    2009-12-15

    A wind power plant is a highly dynamic system that dependent on the type of technology requires a number of automatic control loops. This research deals with modelling, control and analysis related to power system integration of variable speed, pitch controlled wind turbines. All turbine components have been modelled and implemented in the power system simulation program SIMPOW, and a description of the modelling approach for each component is given. The level of model detail relates to the classical modelling of power system components for power system stability studies, where low frequency oscillations are of special importance. The wind turbine model includes a simplified representation of the developed rotor torque and the thrust force based on C{sub p-} and C{sub t} characteristic curves. The mechanical system model represents the fundamental torsional mode and the first mode of blades and tower movements. Two generator technologies have been investigated. The doubly fed induction generator (DFIG) and the stator converter interfaced permanent magnet synchronous generator (PMSG). A simplified model of a 2 level voltage source converter is used for both machine types. The generator converter controllers have been given special attention. All model components are linearized for the purpose of control system design and power system interaction related to small signal stability analysis. Different control strategies discussed in the literature have been investigated with regard to power system interaction aspects. All control parameters are identified using the internal model control approach. The analysis is focused on three main areas: 1. Identification of low damped oscillatory modes. This is carried out by the establishment and discussion of wind turbine modelling. 2. Interaction between control loops. A systematic approach is presented in order to analyse the influence of control loops used in variable speed wind turbines. 3.Impact on power system performance

  7. Unraveling the High Open Circuit Voltage and High Performance of Integrated Perovskite/Organic Bulk-Heterojunction Solar Cells.

    Science.gov (United States)

    Dong, Shiqi; Liu, Yongsheng; Hong, Ziruo; Yao, Enping; Sun, Pengyu; Meng, Lei; Lin, Yuze; Huang, Jinsong; Li, Gang; Yang, Yang

    2017-08-09

    We have demonstrated high-performance integrated perovskite/bulk-heterojunction (BHJ) solar cells due to the low carrier recombination velocity, high open circuit voltage (V OC ), and increased light absorption ability in near-infrared (NIR) region of integrated devices. In particular, we find that the V OC of the integrated devices is dominated by (or pinned to) the perovskite cells, not the organic photovoltaic cells. A Quasi-Fermi Level Pinning Model was proposed to understand the working mechanism and the origin of the V OC of the integrated perovskite/BHJ solar cell, which following that of the perovskite solar cell and is much higher than that of the low bandgap polymer based organic BHJ solar cell. Evidence for the model was enhanced by examining the charge carrier behavior and photovoltaic behavior of the integrated devices under illumination of monochromatic light-emitting diodes at different characteristic wavelength. This finding shall pave an interesting possibility for integrated photovoltaic devices to harvest low energy photons in NIR region and further improve the current density without sacrificing V OC , thus providing new opportunities and significant implications for future industry applications of this kind of integrated solar cells.

  8. Voltage Stability Control of Electrical Network Using Intelligent Load Shedding Strategy Based on Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Houda Jouini

    2010-01-01

    Full Text Available As a perspective to ensure the power system stability and to avoid the vulnerability leading to the blackouts, several preventive and curative means are adopted. In order to avoid the voltage collapse, load shedding schemes represent a suitable action to maintain the power system service quality and to control its vulnerability. In this paper, we try to propose an intelligent load shedding strategy as a new approach based on fuzzy controllers. This strategy was founded on the calculation of generated power sensitivity degree related to those injected at different network buses. During the fault phase, fuzzy controller algorithms generate monitor vectors ensuring a precalculated load shedding ratio in the purpose to reestablish the power balance and conduct the network to a new steady state.

  9. Design parameters for voltage-controllable directed assembly of single nanoparticles

    International Nuclear Information System (INIS)

    Porter, Benjamin F; Bhaskaran, Harish; Abelmann, Leon

    2013-01-01

    Techniques to reliably pick-and-place single nanoparticles into functional assemblies are required to incorporate exotic nanoparticles into standard electronic circuits. In this paper we explore the use of electric fields to drive and direct the assembly process, which has the advantage of being able to control the nano-assembly process at the single nanoparticle level. To achieve this, we design an electrostatic gating system, thus enabling a voltage-controllable nanoparticle picking technique. Simulating this system with the nonlinear Poisson–Boltzmann equation, we can successfully characterize the parameters required for single particle placement, the key being single particle selectivity, in effect designing a system that can achieve this controllably. We then present the optimum design parameters required for successful single nanoparticle placement at ambient temperature, an important requirement for nanomanufacturing processes. (paper)

  10. Cooperative control of VSC-HVDC connected offshore wind farm with Low-Voltage Ride-Through capability

    DEFF Research Database (Denmark)

    Liu, Yan; Wang, Xiongfei; Chen, Zhe

    2012-01-01

    The Low-Voltage Ride-Through (LVRT) has become an important grid requirement for offshore wind farms connecting with Voltage Source Converter based High Voltage Direct Current (VSC-HVDC) links. In this paper, a cooperative control strategy with LVRT ability is proposed for a VSC-HVDC connected...... variable speed Squirrel-Cage Induction Generator (SCIG) wind farm. The approach employs a DC-link voltage versus offshore AC-bus frequency droop control on the offshore converter of VSC-HVDC link. Thus, the back-to-back converters of SCIG wind turbines can adjust the generated active power based on the AC......-bus frequency deviations, so that a fast power reduction on the wind farm side can be achieved. The EMTDC/PSCAD simulations are performed on a 300 MW offshore variable speed SCIG wind farm. Simulation results confirm the effectiveness of the proposed control method....

  11. Control model design to limit DC-link voltage during grid fault in a dfig variable speed wind turbine

    Science.gov (United States)

    Nwosu, Cajethan M.; Ogbuka, Cosmas U.; Oti, Stephen E.

    2017-08-01

    This paper presents a control model design capable of inhibiting the phenomenal rise in the DC-link voltage during grid- fault condition in a variable speed wind turbine. Against the use of power circuit protection strategies with inherent limitations in fault ride-through capability, a control circuit algorithm capable of limiting the DC-link voltage rise which in turn bears dynamics that has direct influence on the characteristics of the rotor voltage especially during grid faults is here proposed. The model results so obtained compare favorably with the simulation results as obtained in a MATLAB/SIMULINK environment. The generated model may therefore be used to predict near accurately the nature of DC-link voltage variations during fault given some factors which include speed and speed mode of operation, the value of damping resistor relative to half the product of inner loop current control bandwidth and the filter inductance.

  12. A control strategy for DC-link voltage control containing PV generation and energy storage — An intelligent approach

    OpenAIRE

    Rouzbehi, Kumars; Miranian, Arash; Candela García, José Ignacio; Luna Alloza, Álvaro; Rodríguez Cortés, Pedro

    2014-01-01

    In this paper, DC-link voltage control in DC microgrids with photovoltaic (PV) generation and battery, is addressed based on an intelligent approach. The proposed strategy is based on the modeling of the power interface, i.e. power electronic converter, located between the PV array, battery and DC bus, by use of measurement data. For this purpose, a local model network (LMN) is developed to model the converter and then a local linear control (LLC) strategy is designed based on the LMN. Simula...

  13. Parameters Designing of Slide Mode Variable Structure Controller of Bus Voltage of DC Microgrid Based on Proportion Switching Function

    Directory of Open Access Journals (Sweden)

    Sun Zhenchuan

    2017-01-01

    Full Text Available Constant value control of the DC-bus voltage is a essential problem of the control system of the DC microgrids. DC-DC converters are applied in parallel to realize the transform of energy from the distributed generations (DGs to the DC-bus. Droop control methods are applied to the DC-bus voltage while PI controllers are used in controlling the duty ratios of the converters. This method may bring out the slow response speed of the system accompanied by the large ripple of the voltage. The slide mode variable structure control can speed up the response and reduce the ripple of the voltage as well. In the traditional slide mode control based on the proportion switching function, the denominator of the transfer function of the controlled plant is a second-order characteristic polynomial without the constant term. The denominators of the transfer functions of the buck DC-DC converters contain the constant terms. The designing of the parameters of the slide mode control based on the proportion switching function is analyzed based on mathematics deductions. Simulation results show that the selected parameters can not only speed up the response of the system but also greatly reduce the ripple of the voltage.

  14. Decentralized energy management strategy based on predictive controllers for a medium voltage direct current photovoltaic electric vehicle charging station

    International Nuclear Information System (INIS)

    Torreglosa, Juan P.; García-Triviño, Pablo; Fernández-Ramirez, Luis M.; Jurado, Francisco

    2016-01-01

    Highlights: • Electric vehicle charging station supplied by photovoltaic, batteries and grid connection is analyzed. • The bus voltage is the key parameter for controlling the system by decentralized approach. • Decentralized control approach facilities the enlargement of the system. • Photovoltaic and battery systems are controlled by model predictive controllers. • Response by model predictive controllers improves that by PI controllers. - Abstract: The use of distributed charging stations based on renewable energy sources for electric vehicles has increased in recent years. Combining photovoltaic solar energy and batteries as energy storage system, directly tied into a medium voltage direct current bus, and with the grid support, results to be an interesting option for improving the operation and efficiency of electric vehicle charging stations. In this paper, an electric vehicle charging station supplied by photovoltaic solar panels, batteries and with grid connection is analysed and evaluated. A decentralized energy management system is developed for regulating the energy flow among the photovoltaic system, the battery and the grid in order to achieve the efficient charging of electric vehicles. The medium voltage direct current bus voltage is the key parameter for controlling the system. The battery is controlled by a model predictive controller in order to keep the bus voltage at its reference value. Depending on the state-of-charge of the battery and the bus voltage, the photovoltaic system can work at maximum power point tracking mode or at bus voltage sustaining mode, or even the grid support can be needed. The results demonstrate the proper operation and energy management of the electric vehicle charging station under study.

  15. Comparative study of microcontroller controlled four-wire voltage and current source shunt active power filters

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, S.

    2009-07-01

    During the past two decades, active power filters have increasingly grown their popularity as a viable method for improving electric power quality. The main reasons for this have been the advent of fast self-commutating solid-state devices, the progression of digital technology and the improved sensor technology. Four-wire active power filters provide an efficient solution for improving the quality of supply in grounded three-phase systems or three-phase systems with neutral conductors, which are commonly used for powering residential, office and public buildings. Four-wire active power filters are applicable in compensating current harmonics, reactive power, neutral current and load phase imbalance.This thesis presents a comparative study of microcontroller controlled four-wire voltage and current source shunt active power filters. The study includes two voltage source topologies and a current source topology with two different dc-link energy storage structures, which are compared on the basis of their filtering properties, filtering performance and efficiency. The obtained results are used for determining the suitability of current source technology for four-wire active power filtering and finding the most viable four-wire shunt active power filter topology. One commonly recognized disadvantage of the current source active power filter has always been the bulky dc-link inductor. To reduce the size of the dc-link inductor, an alternative dc-link structure for current source active power filters was introduced in the late 80's. The hybrid energy storage consists of both inductive and capacitive energy storage elements, two diodes and two controllable semiconductor switching devices. Since the capacitive element is used as a main storage unit, the inductance of the dc-link inductor can be considerably reduced. However, the original dc current control method proposed is not able to utilize the full potential of the hybrid energy storage and the inductance

  16. Extended Stable Boundary of LCL-Filtered Grid-Connected Inverter Based on An Improved Grid-Voltage Feedforward Control

    DEFF Research Database (Denmark)

    Lu, Minghui; Xin, Zhen; Wang, Xiongfei

    2016-01-01

    should be designed under one-sixth of sampling frequency. However, the low resonance frequency leads to a comparatively large filter inductance or/and capacitance. To extend the stable boundary to the region above fs/6, this paper proposes a novel voltage feedforward scheme for the LCL-filtered inverter....... Theoretical analysis is then provided to validate its feasibility and stability. Compared to other widely used active damping strategies, no extra sensors are needed because the filter capacitor voltage, which is used for voltage feedforward control, is also sampled for phase-locked loop in this paper...

  17. Voltage control of a magnetic switching field for magnetic tunnel junctions with low resistance and perpendicular magnetic anisotropy

    Science.gov (United States)

    Tezuka, N.; Oikawa, S.; Matsuura, M.; Sugimoto, S.; Nishimura, K.; Irisawa, T.; Nagamine, Y.; Tsunekawa, K.

    2018-05-01

    The authors investigated the voltage control of a magnetic anisotropy field for perpendicular-magnetic tunnel junctions (p-MTJs) with low and high resistance-area (RA) products and for synthetic antiferromagnetic free and pinned layers. It was found that the sample with low RA products was more sensitive to the applied bias voltage than the sample with high RA products. The bias voltage effect was less pronounced for our sample with the synthetic antiferromagnetic layer for high RA products compared to the MTJs with single free and pinned layers.

  18. New non-linear control strategy for non-isolated DC/DC converter with high voltage ratio

    International Nuclear Information System (INIS)

    Shahin, A.; Huang, B.; Martin, J.P.; Pierfederici, S.; Davat, B.

    2010-01-01

    In this paper, a non-isolated DC/DC converter with high voltage ratio is proposed to allow the interface between a low voltage power source like fuel cell and a high voltage DC bus. To take into account the low voltage-high density characteristics of power sources, a cascaded structure composed of two sub-converters has been chosen and allows obtaining a high voltage ratio. The choice of each sub-converter is based on the requirements of the source and its performances. Consequently, we have chosen a three-interleaved boost converter as the 1st sub-converter whereas the 2nd sub-converter is a three-level boost converter. The control of the whole system is realized thanks to energetic trajectories planning based on flatness properties of the system. The control of both the current and the balance of voltage across the output serial capacitors of the three-level boost converter is ensured by non-linear controllers based on a new non-linear model. Experimental results allow validating the proposed power architecture and its associated control.

  19. New non-linear control strategy for non-isolated DC/DC converter with high voltage ratio

    Energy Technology Data Exchange (ETDEWEB)

    Shahin, A.; Huang, B.; Martin, J.P.; Pierfederici, S.; Davat, B. [Groupe de Recherche en Electronique et en Electrotechnique de Nancy - INPL - Nancy Universite, 2, Avenue de la Foret de Haye, 54516 Vandoeuvre-les-Nancy Cedex (France)

    2010-01-15

    In this paper, a non-isolated DC/DC converter with high voltage ratio is proposed to allow the interface between a low voltage power source like fuel cell and a high voltage DC bus. To take into account the low voltage-high density characteristics of power sources, a cascaded structure composed of two sub-converters has been chosen and allows obtaining a high voltage ratio. The choice of each sub-converter is based on the requirements of the source and its performances. Consequently, we have chosen a three-interleaved boost converter as the 1st sub-converter whereas the 2nd sub-converter is a three-level boost converter. The control of the whole system is realized thanks to energetic trajectories planning based on flatness properties of the system. The control of both the current and the balance of voltage across the output serial capacitors of the three-level boost converter is ensured by non-linear controllers based on a new non-linear model. Experimental results allow validating the proposed power architecture and its associated control. (author)

  20. Impact Study of Electric Vehicle (EV) Integration on Low Voltage (LV) Grids

    DEFF Research Database (Denmark)

    Wu, Qiuwei; Cha, Seung-Tae; Nielsen, Arne Hejde

    2012-01-01

    the single line diagram (SLD) of the LV grid. The demand profiles of end-users are determined by the end-user yearly consumption and avreaged demand profiles of different customer types in Denmark. Five charging scenarios have been tested using the developed LV grid. The first two charging scenarios are dumb....... The two charging power levels are 1 phase 16 A and 3 phase 16 A. The loading of the power components and voltage profile are analyzed to quantify the impact of the charging scenarios and charging power levels on LV grids....

  1. Modelling, stability and control of voltage behaviour in power supply systems

    Energy Technology Data Exchange (ETDEWEB)

    Hill, David J [Sydney Univ., NSW (Australia). Dept. of Electrical Engineering; Hisken, Ian A [Newcastle Univ., NSW (Australia). Dept. of Electrical and Computer Engineering

    1994-12-31

    This paper gives an overview of a line of work on mid to long term voltages stability analysis and control in power systems. The results are based on use of a novel approach to dynamic load modelling using aggregate nonlinear structures. In general, the model for the transmission network and supply end dynamics is of the hybrid differential - algebraic - discrete kind. Various stability questions are precisely formulated and analysed in terms of network and load characteristics (steady-state and transient). The results are shown to be a useful framework for deriving criteria of the where, when and how much kind for various control actions such as load Thedding and tap-blocking. (author) 47 refs., 15 figs., 1 tab.

  2. Dual-loop control strategy for DFIG-based Wind turbines under grid voltage disturbances

    DEFF Research Database (Denmark)

    Zhu, Rongwu; Chen, Zhe; Tang, Yi

    2016-01-01

    , but also decay the stator transient flux, and avoid the accumulation of the stator transient flux. Moreover, the proposed strategy can obtain nearly constant stator active power and electromagnetic torque, which may prolong the lifetime of the drive train. A case study on a typical 2-MW DFIG-based wind......For a multimegawatts doubly-fed induction generator (DFIG), the grid voltage disturbances may affect the stator flux and induce the transient stator flux, due to the direct connection of the stator and the grid. The accumulation of the transient stator flux caused by the variations of the stator...... turbine demonstrating the effectiveness of the proposed control methods is verified with simulations in MATLAB/Simulink. The proposed control methods are also experimentally validated using a scaled-down 7.5-kW DFIG. The simulation and experimental results clearly validate the effectiveness...

  3. Local Voltage Control in Distribution Networks: A Game-Theoretic Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinyang; Tian, Jie; Chen, Lijun; Dall' Anese, Emiliano

    2016-11-21

    Inverter-based voltage regulation is gaining importance to alleviate emerging reliability and power-quality concerns related to distribution systems with high penetration of photovoltaic (PV) systems. This paper seeks contribution in the domain of reactive power compensation by establishing stability of local Volt/VAr controllers. In lieu of the approximate linear surrogate used in the existing work, the paper establishes existence and uniqueness of an equilibrium point using nonlinear AC power flow model. Key to this end is to consider a nonlinear dynamical system with non-incremental local Volt/VAr control, cast the Volt/VAr dynamics as a game, and leverage the fixed-point theorem as well as pertinent contraction mapping argument. Numerical examples are provided to complement the analytical results.

  4. Voltage controller design for air conditioning; Diseno de controlador de voltaje para aire acondicionado

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Andrade, R; Lopez Villalobos, J.J; Valderrama Chairez, J; Ramirez, R.L. [Instituto Tecnologico de Nuevo Leon, Guadalupe, Nuevo Leon (Mexico)]. E-mails: roxana_garciaandrade@yahoo.com; xe2n@yahoo.com.mx; jose.valderrama@ieee.org

    2013-03-15

    This paper discusses the design of a voltage controller for an air conditioning system in order to generate additional power in activation or startup of the system, for which as a first stage is presented the modeling power generation of electric current through alternative means, such as solar energy. The results of this study will be the basis for development of the physical prototype of this system controller. [Spanish] El presente trabajo trata sobre el diseno de un controlador de voltaje para un sistema de aire acondicionado con el fin de generar energia adicional en la activacion o arranque de dicho sistema, para lo cual como primer fase se presenta el modelado de la generacion de corriente electrica mediante medios alternos, como lo es la energia solar. Los resultados de este trabajo seran la base para desarrollo del prototipo fisico de este sistema controlador.

  5. Local Voltage Control in Distribution Networks: A Game-Theoretic Perspective: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinyang; Tian, Jie; Chen, Lijun; Dall' Anese, Emiliano

    2016-09-01

    Inverter-based voltage regulation is gaining importance to alleviate emerging reliability and power-quality concerns related to distribution systems with high penetration of photovoltaic (PV) systems. This paper seeks contribution in the domain of reactive power compensation by establishing stability of local Volt/VAr controllers. In lieu of the approximate linear surrogate used in the existing work, the paper establishes existence and uniqueness of an equilibrium point using nonlinear AC power flow model. Key to this end is to consider a nonlinear dynamical system with non-incremental local Volt/VAr control, cast the Volt/VAr dynamics as a game, and leverage the fixed-point theorem as well as pertinent contraction mapping argument. Numerical examples are provided to complement the analytical results.

  6. Density control of electrodeposited Ni nanoparticles/nanowires inside porous anodic alumina templates by an exponential anodization voltage decrease.

    Science.gov (United States)

    Marquardt, B; Eude, L; Gowtham, M; Cho, G; Jeong, H J; Châtelet, M; Cojocaru, C S; Kim, B S; Pribat, D

    2008-10-08

    Porous alumina templates have been fabricated by applying an exponential voltage decrease at the end of the anodization process. The time constant η of the exponential voltage function has been used to control the average thickness and the thickness distribution of the barrier layer at the bottom of the pores of the alumina structure. Depending on the η value, the thickness distribution of the barrier layer can be made very uniform or highly scattered, which allows us to subsequently fine tune the electrodeposition yield of nickel nanoparticles/nanowires at low voltage. As an illustration, the pore filling percentage with Ni has been varied, in a totally reproducible manner, between ∼3 and 100%. Combined with the ability to vary the pore diameter and repetition step over ∼2 orders of magnitude (by varying the anodization voltage and electrolyte type), the control of the pore filling percentage with metal particles/nanowires could bring novel approaches for the organization of nano-objects.

  7. Local Reactive Power Control Methods for Overvoltage Prevention of Distributed Solar Inverters in Low-Voltage Grids

    DEFF Research Database (Denmark)

    Demirok, Erhan; Gonzalez, Pablo Casado; Frederiksen, Kenn H. B.

    2011-01-01

    on sensitivity analysis. The sensitivity analysis shows that the same amount of reactive power becomes more effective for grid voltage support if the solar inverter is located at the end of a feeder. Based on this fundamental knowledge, a location-dependent power factor set value can be assigned to each inverter......voltage (LV) grids by means of solar inverters with reactive power control capability. This paper underlines weak points of standard reactive power strategies which are already imposed by certain grid codes, and then, the study introduces a new reactive power control method that is based......, and the grid voltage support can be achieved with less total reactive power consumption. In order to prevent unnecessary reactive power absorption from the grid during admissible voltage range or to increase reactive power contribution from the inverters that are closest to the transformer during grid...

  8. Integrating Experimentation into Control Courses

    NARCIS (Netherlands)

    Molengraft, van de M.J.G.; Steinbuch, M.; Kraker, de A.

    2005-01-01

    The Department of Mechanical Engineering at the Technische Universiteit Eindhoven, the Netherlands, aims to provide a stimulating educational environment that emphasizes the role of hands-on experiments. To achieve this goal, the Department integrated an experimentation program with courses in the

  9. Preliminary study on field buses for the control system of the high voltage of the ATLAS hadronic calorimeter

    International Nuclear Information System (INIS)

    Drevet, F.; Chadelas, R.; Montarou, G.

    1996-01-01

    We present here after a preliminary study on field buses for the control system of the high voltage of the photomultipliers of the TILECAL calorimeter. After some generalities, different commercial buses are reviewed (CAN, ARCET, WorldFIP, Profibus and LonWorks). The Profibus and LonWorks solution are more extensively studies as a possible solution for the high voltage system of the TILE hadronic calorimeter. (authors)

  10. A Consensus-Based Cooperative Control of PEV Battery and PV Active Power Curtailment for Voltage Regulation in Distribution Networks

    DEFF Research Database (Denmark)

    Zeraati, Mehdi; Golshan, Mohamad Esmail Hamedani; Guerrero, Josep M.

    2018-01-01

    The rapid growth of rooftop photovoltaic (PV) arrays installed in residential houses leads to serious voltage quality problems in low voltage distribution networks (LVDNs). In this paper, a combined method using the battery energy management of plug-in electric vehicles (PEVs) and the active power....... The effectiveness of the proposed control scheme is investigated on a typical three-phase four-wire LVDN in presence of PV resources and PEVs....

  11. A Comparative Study of Analog Voltage-mode Control Methods for Ultra-Fast Tracking Power Supplies

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2007-01-01

    This paper presents a theoretical and experimental comparison of the standard PWM/PID voltage-mode control method for single-phase buck converters with two highperformance self-oscillating (a.k.a. sliding mode) control methods. The application considered is ultra-fast tracking power supplies...... (UFTPSs) for RF power amplifiers, where the switching converter needs to track a varying reference voltage precisely and quickly while maintaining low output impedance. The small-signal analyses performed on the different controllers show that the hysteretic-type controller can achieve the highest loop...

  12. Direct Power Control for Three-Phase Two-Level Voltage-Source Rectifiers Based on Extended-State Observation

    DEFF Research Database (Denmark)

    Song, Zhanfeng; Tian, Yanjun; Yan, Zhuo

    2016-01-01

    This paper proposed a direct power control strategy for three-phase two-level voltage-source rectifiers based on extended-state observation. Active and reactive powers are directly regulated in the stationary reference frame. Similar to the family of predictive controllers whose inherent characte......This paper proposed a direct power control strategy for three-phase two-level voltage-source rectifiers based on extended-state observation. Active and reactive powers are directly regulated in the stationary reference frame. Similar to the family of predictive controllers whose inherent...

  13. Voltage Controlled Hot Carrier Injection Enables Ohmic Contacts Using Au Island Metal Films on Ge.

    Science.gov (United States)

    Ganti, Srinivas; King, Peter J; Arac, Erhan; Dawson, Karl; Heikkilä, Mikko J; Quilter, John H; Murdoch, Billy; Cumpson, Peter; O'Neill, Anthony

    2017-08-23

    We introduce a new approach to creating low-resistance metal-semiconductor ohmic contacts, illustrated using high conductivity Au island metal films (IMFs) on Ge, with hot carrier injection initiated at low applied voltage. The same metallization process simultaneously allows ohmic contact to n-Ge and p-Ge, because hot carriers circumvent the Schottky barrier formed at metal/n-Ge interfaces. A 2.5× improvement in contact resistivity is reported over previous techniques to achieve ohmic contact to both n- and p- semiconductor. Ohmic contacts at 4.2 K confirm nonequilibrium current transport. Self-assembled Au IMFs are strongly orientated to Ge by annealing near the Au/Ge eutectic temperature. Au IMF nanostructures form, provided the Au layer is below a critical thickness. We anticipate that optimized IMF contacts may have applicability to many material systems. Optimizing this new paradigm for metal-semiconductor contacts offers the prospect of improved nanoelectronic systems and the study of voltage controlled hot holes and electrons.

  14. In-situ, In-Memory Stateful Vector Logic Operations based on Voltage Controlled Magnetic Anisotropy.

    Science.gov (United States)

    Jaiswal, Akhilesh; Agrawal, Amogh; Roy, Kaushik

    2018-04-10

    Recently, the exponential increase in compute requirements demanded by emerging applications like artificial intelligence, Internet of things, etc. have rendered the state-of-art von-Neumann machines inefficient in terms of energy and throughput owing to the well-known von-Neumann bottleneck. A promising approach to mitigate the bottleneck is to do computations as close to the memory units as possible. One extreme possibility is to do in-situ Boolean logic computations by using stateful devices. Stateful devices are those that can act both as a compute engine and storage device, simultaneously. We propose such stateful, vector, in-memory operations using voltage controlled magnetic anisotropy (VCMA) effect in magnetic tunnel junctions (MTJ). Our proposal is based on the well known manufacturable 1-transistor - 1-MTJ bit-cell and does not require any modifications in the bit-cell circuit or the magnetic device. Instead, we leverage the very physics of the VCMA effect to enable stateful computations. Specifically, we exploit the voltage asymmetry of the VCMA effect to construct stateful IMP (implication) gate and use the precessional switching dynamics of the VCMA devices to propose a massively parallel NOT operation. Further, we show that other gates like AND, OR, NAND, NOR, NIMP (complement of implication) can be implemented using multi-cycle operations.

  15. Topology and Control of Transformerless High Voltage Grid-connected PV System Based on Cascade Step-up Structure

    DEFF Research Database (Denmark)

    Yang, Zilong; Wang, Zhe; Zhang, Ying

    2017-01-01

    -up structure, instead of applying line-frequency step-up transformer, is proposed to connect PV directly to the 10 kV medium voltage grid. This series-connected step-up PV system integrates with multiple functions, including separated maximum power point tracking (MPPT), centralized energy storage, power...

  16. Fuzzy Controller for a Voltage-Regulated Solar-Powered MPPT System for Hybrid Power System Applications

    Directory of Open Access Journals (Sweden)

    Jaw-Kuen Shiau

    2015-04-01

    Full Text Available This paper presents the design of a fuzzy-logic-based voltage-regulated solar power maximum power point tracking (MPPT system for applications involving hybrid power systems. The system contains a solar power system and battery as the primary and secondary power sources, respectively. The solar system alone supplies power to the electric motor and maintains the output voltage at a predetermined level when it has sufficient power. When the solar power is insufficient, the solar system is operated at its maximum power point (MPP and the battery is engaged to compensate for the insufficiency. First, a variant of the incremental conductance MPP condition was established. Under the MPP condition, the voltage-regulated MPPT system was formulated as a feedback control system, where the MPP condition and voltage regulation requirements were used as the system inputs. Next, a fuzzy controller was developed to perform the voltage-regulated MPPT function for the hybrid power system. A simulation model based on Matrix laboratory (MATLAB/SIMULINK (a block diagram environment for multi-domain simulation and model-based design and a piecewise linear electric circuit simulation (PLECS tool for controlling the dc motor velocity was developed to verify the voltage-regulated solar power MPPT system.

  17. Control integral systems; Sistemas integrales de control

    Energy Technology Data Exchange (ETDEWEB)

    Burgos, Estrella [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1999-12-31

    Almost two third of the electric power generation in Mexico are obtained from hydrocarbons, for that reasons Comision Federal de Electricidad (CFE) dedicated special commitment in modernizing the operation of fossil fuel central stations. In attaining this objective the control systems play a fundamental roll, from them depend a good share of the reliability and the efficiency of the electric power generation process, as well as the extension of the equipment useful life. Since 1984 the Instituto de Investigaciones Electricas (IIE) has been working, upon the request of CFE, on the development of digital control systems. To date it has designed and implemented a logic control system for gas burners, which controls 32 burners of the Unit 4 boiler of the Generation Central of Valle de Mexico and two systems for distributed control for two combined cycle central stations, which are: Dos Bocas, Veracruz Combined cycle central, and Gomez Palacio, Durango combined cycle central. With these two developments the IIE enters the World tendency of implementing distributed control systems for the fossil fuel power central update [Espanol] Casi las dos terceras partes de la generacion electrica en Mexico se obtienen a partir de hidrocarburos, es por eso que la Comision Federal de Electricidad (CFE) puso especial empeno en modernizar la operacion de las centrales termoelectricas de combustibles fosiles. En el logro de este objetivo los sistemas de control desempenan un papel fundamental, de ellos depende una buena parte la confiabilidad y la eficiencia en el proceso de generacion de energia electrica, asi como la prolongacion de la vida util de los equipos. Desde 1984 el Instituto de Investigaciones Electricas (IIE) ha trabajado, a solicitud de la CFE, en el desarrollo de sistemas digitales de control. A la fecha se han disenado e implantado un sistema de control logico de quemadores de gas, el cual controla 32 quemadores de la caldera de la unidad 4 de la central de generacion

  18. Control integral systems; Sistemas integrales de control

    Energy Technology Data Exchange (ETDEWEB)

    Burgos, Estrella [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-12-31

    Almost two third of the electric power generation in Mexico are obtained from hydrocarbons, for that reasons Comision Federal de Electricidad (CFE) dedicated special commitment in modernizing the operation of fossil fuel central stations. In attaining this objective the control systems play a fundamental roll, from them depend a good share of the reliability and the efficiency of the electric power generation process, as well as the extension of the equipment useful life. Since 1984 the Instituto de Investigaciones Electricas (IIE) has been working, upon the request of CFE, on the development of digital control systems. To date it has designed and implemented a logic control system for gas burners, which controls 32 burners of the Unit 4 boiler of the Generation Central of Valle de Mexico and two systems for distributed control for two combined cycle central stations, which are: Dos Bocas, Veracruz Combined cycle central, and Gomez Palacio, Durango combined cycle central. With these two developments the IIE enters the World tendency of implementing distributed control systems for the fossil fuel power central update [Espanol] Casi las dos terceras partes de la generacion electrica en Mexico se obtienen a partir de hidrocarburos, es por eso que la Comision Federal de Electricidad (CFE) puso especial empeno en modernizar la operacion de las centrales termoelectricas de combustibles fosiles. En el logro de este objetivo los sistemas de control desempenan un papel fundamental, de ellos depende una buena parte la confiabilidad y la eficiencia en el proceso de generacion de energia electrica, asi como la prolongacion de la vida util de los equipos. Desde 1984 el Instituto de Investigaciones Electricas (IIE) ha trabajado, a solicitud de la CFE, en el desarrollo de sistemas digitales de control. A la fecha se han disenado e implantado un sistema de control logico de quemadores de gas, el cual controla 32 quemadores de la caldera de la unidad 4 de la central de generacion

  19. Influence of the braking power control of the traction asynchronous machine in the voltage vector control system under DC

    Directory of Open Access Journals (Sweden)

    Юлія Олександрівна Слободенюк

    2016-11-01

    Full Text Available At braking the traction motors are transferred to generator mode and produce electrical energy which passes to the contact mains or storage device in the DC mains for further use. Such braking is called regenerative. The resulting electrical energy can be spent by trains in traction mode. Regenerative braking reduces the consumption of electric power for traction. In electric railways of our country more than 3% of the consumed electrical energy is given back to contact mains annually. As this takes place there arises the task to control the braking of the traction motors with minimal impact on electric power quality and maintaining proper braking performance. Based on the analysis of the characteristics of the brake traction of an electric locomotive with asynchronous electric machines the main braking modes have been chosen: at a constant sliding speed and the stator constant voltage; at constant braking power and the stator constant voltage; at a power value more than the nominal braking power; at a constant load torque; at a constant frequency of the stator. The vector control system with the formation of the reactive component of the stator current and the EMF regulator was chosen, basing on the working conditions characteristics in the electric braking mode (recuperation; namely, that the characteristics are defined by the laws regulating the frequency and voltage across the stator windings. This control system can fully reproduce any predetermined trajectory of traction and braking performance and adjust braking power. The offered system with recuperation can be used as a means of compensation in emergency situations with a power failure

  20. Balanced Current Control Strategy for Current Source Rectifier Stage of Indirect Matrix Converter under Unbalanced Grid Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Yeongsu Bak

    2016-12-01

    Full Text Available This paper proposes a balanced current control strategy for the current source rectifier (CSR stage of an indirect matrix converter (IMC under unbalanced grid voltage conditions. If the three-phase grid connected to the voltage source inverter (VSI of the IMC has unbalanced voltage conditions, it affects the currents of the CSR stage and VSI stage, and the currents are distorted. Above all, the distorted currents of the CSR stage cause instability in the overall system, which can affect the life span of the system. Therefore, in this paper, a control strategy for balanced currents in the CSR stage is proposed. To achieve balanced currents in the CSR stage, the VSI stage should receive DC power without ripple components from the CSR stage. This is implemented by controlling the currents in the VSI stage. Therefore, the proposed control strategy decouples the positive and negative phase-sequence components existing in the unbalanced voltages and currents of the VSI stage. Using the proposed control strategy under unbalanced grid voltage conditions, the stability and life span of the overall system can be improved. The effectiveness of the proposed control strategy is verified by simulation and experimental results.